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is shown that under certain conditions the fluctua-
tions of the electron numbers in the conduction band
can be super-poisson. The general auto correlation
function for a three level system is derived. For
certain limits this correlation function is the sum
of two damped sinusoidal terms. It is speculated
that the phenomena of oscillating chemical reactions

can be explained by this correlation function.

The photon distribution as a function of posi-~
tion within an active medium is derived. A loaded
cavity width is defined and shown to have a lower
bound consistent with the usual cavity width c(1-R)
/2 nL. The loaded cavity width is found generally
to be a function of the cavity amplification and of

the mirror reflectivities.

The distribution of photoelectrons emitted
from a detector of area A and resolving time T
due to an incident light beam is derived. By using
a binomial rather than a deterministic quantum

efficiency, an additional term is obtained in the



auto-correlation function. The resulting spectral
density of the photocurrent fluctuations is shown to
be the sum of a Poisson particle noise and wave inter-
ference term. Several examples are discussed including

an intensity modulated light beam.
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ABSTRACT

The fluctuations of the constituent populations in
a multi-level system are considered as applied to a
three and four level semiconductor model, It is shown
that under certain conditions the fluctuations of the
electron numbers in the conduction band can be super-
poisson, defined as having a variance greater than the
mean number, The general autocorrelatidn function for a
three level system is obtained, For certain limits, this
correlation function is the sum of two damped sinusoidal
terms., This would indicate there is an oscillatory inter-
action between the population numbers,

.The photon distribution as a function of position
within a one-dimensional active medium is derived.  When
two partially reflécting mirrors are situated at both
ends of the medium, the stationary photon distribution
obtained is a function of the cavity amplification and
the mirror reflectivities,

.The distribution of photo-electrons emitted from a
detector of area A and resolving time T when illum-
inated by an incident light beam is derived. By using
a binomial rather tha a deterministic quantum efficiepcy
an additional term is obtained in the autocorrelation
function, . The resulting spectral density of the photo-
current fluctuations is shown f6 be the sum of a Poisson
particle noise and wave interference term., Several examples
of different spectral line shapes are discussed., Also

considered is an intensity modulated light beam,
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CHAPTE 1

ANTRODUCTION

1-1 Numb luctuatio in Multi-level ¢ ems:

The fluctuations of a ¢ urrent passed through a
semiconductor can be attributed to a combination of
thermal effects and to population fluctﬁations in the
electronic energy levels. The thermal noise due to the
velocity distribution of the electrons can be calculated
from Nyguists theorem. The transport noise is due to
the fluctuations of the numbers of electrons in the various
electronic energy bands. These fluctuations are completely
determined by the‘transitién probabilities between the.
various energy levels.

We will be concerned with determining the variances
and covariances of the fluctuations in the level populations.
In particular we will be interested in the non-eguilibrium
steady state when the system is driven by some external
source.

The general theory for the fluctuations of numbers
in multi~level systems has been derived by van Vliet et al
(1956, 1965). We have used the Langevin approach to
derive the second moments and the spectral density'of the
number fluctuations. We believe this gives the required
results more directly withoht haviﬁg to expand the

generalized Fokker-Planck equation as domne by van Vliet.



Previous to an article by van Vliet (1964), it was
believed that the variances of the numbers of electrons
and holes could never be super-poisson, defined as being
greater than the mean number,  Van Vliet showed that for
a particular three level model, super-poisson fluctuations
were possible. . We have extended his treatment of this
model by analyzing the fluctuations of the trapped electrons
and the fluctuations of the holes in the valence band.

The correlation between the conduction eleétrons and the
trapped electrons is examined and a simple criterion

for the onset of super~poisson fluctuations in the conduction
band is obtained,

The analysis waé extended by adding an additional
impurity level into the model, . Because of the complexity
of the expressions for the second moments; the fluct-
uations were only evaluated in two speciéi limits,

The general auto-correlation function for a three
level system has been derived, It is shown that under
certain conditions it contains damped sinusoidal terms.
This implies there is an oscillating interaction between
the levels under consideration. For the semiconductor
systems considered, this condition can never arise. It
is speculated that the phenomena of oscillating chemical
reactions can be explained by this correlation function.
It is shown that in a certain limit for the chemical
kinetics assumed the condition for oscillation can

indeed arise,



1-2 Incoherent emission from an active medium

In chapter 3, a one dimensional homogeneous medium
is assumed capable of absorption, induced emigssion and
spontaneous emission of photons. A differential dif-
ference equation is derived for the joint probability of
having n and m photons travelling in opposing dir-
ections respectively within the medium. By introducing
partially reflecting mirrors at both ends of the medium
we form a cavity enclosing an active medium. An expression
for the fluctuations of the photon numbers as a function
of position within the cavity is obtained. In this
analeis we are just dealing with photon numbers and do
not account fqr the phase and coherence of the reflected
waves. Our results therefore do not include the coherent
enission line.

A general expression for thgwggaity width of the
emission line is evaluated using the usual definition
of the Quality factor "Q" of the ¢ avity. It is shown
that this reduces to the usual cavity widths assumed
in the literature for the case of almost‘perfectly
reflecting mirrors. Upper and lower bounds for the
cavity width are also determined for various mirror

reflectivities.



1-3 Photon Counting

The distribution of the photoelectrons emitted from
a detector with response time T is evaluated. Mandel
(1958) derived the distribution for the number of photo-
electrons emitted in a time interval T. In a further
paper with Wolf(1961) he derives the autocorrelation
function for the photoelectron fluctuations in a time
interval 'T. In both of these derivations a deterministic
qpantum efficiency is assumed. By using a stochastic
binomial guantum efficiency we obtain an additional
term in the autocorrelation function and show it corresponds
to the pure shot npise spectrum of the photoelectric
fluctuations. The spectral density of the photoelectric
current is therefore the sum of a shot noise and a wave
interference term. This wave interference spectrum
which is thg convolution of the spectral line shape with
itself was first derived by Forrester (1961)

Examples of the photon counting spectrum of various
spectral line.shapes,are considered. We also investigate
the special case of an intensity modulated light . beam
and the resulting spectrum.

The photoelectron distribution calculated is shown
to beuthe boson distribupion for C cells in phase space,

C is sﬁ;wn to be the product of the numb;r of coherence
areas on the detector surface and the number of correlation

times in the measuring interval T.
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CHAPTER 2

NUMBER FLUCTUATIONS IN MULTILEVEL SYSTEMS

2-1 Derivafio‘ of Spectral Densities and Covariance

~The fluctuations of carrier numbers in a semiconductor
are important in determining the fluctuations of the current
under the influence of an electric field. In this chapter
we will be concerned with the fluctuations of electrons or
holes due to transitions between electronic energy bands.
We will not deal with velocity fluctuations or scattering
within a band as this gives rise to the thermal noise
which is calculable by.Nyquist's theorem.

The fluctuations of numbers in a multilevel system due
to inter—band transitions has been generally solved by
van Vliet and Blok(1956)_for_an N+l level system. We will
summarize his method and results and.give an‘alternative
derivation.

Consider an N+l level system (refer to figure 2-1)
where n; is the occupation number of the 1 th level and
Pﬁgﬁ)is the probability of a‘transition from level i to
level i in a time interval_t,t+ot. |

van Vliet and Blok wrote down the generalized time
dependent Fokksr-Planck equation and by assuming that all
numbers ng under consideration were large,:linearized the
transition probabilities. This is valid oroyided the
fluctuations about the mean values are small. Then bya

matrix transformation they were able to show that the



joint probability distribution for the number of particles »
in the various levels was a multi-variate gaussian distribution.
Taking the limit as time taco.they elimlnated_the.exponential
.or transient termsvtolobtain the stationary,distribution
function; | | |

‘The covariances resulting from this calculation are
_then found from the matrix equation~ | |

' AC + cX %'—s

where A= {o.-:& B éil‘ijg and C = §¢ﬂ%
B ThevtranspOse is‘denoted:by ag = ay

t The various matrix elements are. then-

Opx; :
Oij= Z‘_ é%"j— %—%% L,J = L2 N and Pu=

bui = = (pyep)e ity
’ N+l

bi = 2 Z(pud,

C'u' = Ang Any

The subscript "o" means the expression. in the preceding
.hraeket is evalgated_at n; =Ty , the mean)occnpation
number where.the bar lmpliesvan ensemhle,average.
o Using the;ahoie:results,lvan Vllet and Fassett (1965)
derived the speetralhdensity matrix of the carrier fluct- N
uations:
S(£) = 2Re(a + fwIJ B (R - jwI)
where A and B are the matrices previously defined.
We will derive the above spectral density matrix

directly'by the Langevin'approach Then by a simple integral

theorem we will find the covariances°



If we have N + 1 levels as in figure 2-1, then by
neutrality\i%_n; = constant and we will only have N indepen-
dent variables. ' | |

The kinetic equations for the stochastic variables are

6("‘ 2(9_“—;&:_1\ b2 ,2, - N
where PH@f} is againAtheltransition probability from level i
to level j in the time‘ihterval t,t+At{ For a stationary
‘prooess Py will not'be an explicit funotiOn of tine},‘Thus
Pﬁ will be a function only of the N independent n;. |

Linearizing ‘the - above equation by expanding it about

the mean values of the nL (denoted by the subscript "o")

and adding the Langevin random fluctuating source terms, we

g 2B - Bloor,

If we‘denotevthe'Fourier”transform'bY EFuand
g(“*‘“ﬁ) = .g\(
[_lll PJ - ‘.'-i\'é_] = 'S‘tw
9 L - 2y
and Y <9“n ohe o~ 2%

then —_iv)Sg, = éﬂdtnsx + gm.a i= ha,... N

have-

In matrix notation, where A= %aml and %t = ain

Define the vectors | S = s, . -_Q_p = Sw
s.& %;u)
S N

then’

l

!
o
(

(A +JwI>S =
g;(ﬁ'+iu31:)

il

|
Watl
£
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The spectral density matrix is defined by.

SO = {Sy0)- 2R (8%

e S = 2 Re (A+jwI) B(K-oI)
where we have let B —(ﬁ:;"z = -Q- h‘;"’
NH Nfl

thus. | E:i= — =, g(Pn Pir)e g (Ps.i P—l*)-t

the product of the Fourier transforms of the stochastic
4;source terms. h -

The relaxation time constants, obtained from the
macroscopic mass action equation are much 1onger than any

,time constants contained in the stochastic source term

TR = @R
, l_where_ ' alnz - 2(@-;— "-D = Fi)

‘ The spectrum of the source term can therefore be considered
.as., white for the purposes of our calculation.w This also
'implies there will be no measurable correlation between:
;different elements of the source term.v A graph of what
F(t) might look like is plotted in figure 2 2. A positive
‘or negative delta function pulse indicatee the increase

or decrease of n; by one electron. The exaggerated flat
plateau between events indicate@ whether P,‘c(m\ —FL_I(Y\K\
is(positive or‘negative. Thus a positive plateau indicates
that a downward transition_is'sliéhtly favoured and vice-
versa. This;naintains our steady state.: Since the fluct-
uations of the nk are small, the graph of F(t) is basically
just‘a series of positive and negative delta.functions.

The a.c. spectrum of F(t) is invariant to whether the

~



S

pulses are all positive, all negatiVe or both. The mean rate

of occurence of an event is the constant(Pia-Eﬁ)D , therefore
the spectrum of (P:]"FJ‘)t is Z(P"i"' Ri)e and:

E(Prz,-e g*(PaJX = (P"Do g.., g.q Sgi;l , 2]

=0, i}
Simplifying B, one obtains:

Z (peiepid.

L |

Wl
= £ ‘2‘- CP‘":)D L2 hz, o0 N
=\

since the net increase :2:‘.(?“-‘;;,) of any level is
zero for a s_tationafy sy'étem. _ |
\bq = h_ir. = - (P"i *F'ibo L:}:J

The choice of potat'ion is now evident, as the matrices
A and B defined in this derivation are the same as those
quoted in the previous results. The spectral density
matrix is thus obtained directly without a knowledge of
the covariances.

The second moments can now readiliy be obtained if we
use the identity: o0 -
Re Q(Mingiw = I'n‘/a ¥ Zmu>0

.= —IT/Z % 2.\"\&(0

where M = (’.W‘:jg is any real sguare matrix independent
of w . If we define: ‘ \
G= SE) +{56) = 2Re (A+jw]) B (K-poI)

then

Re (8ol 6O ds = 2Re §BH-0I'd
Re §° e (H-poDds = 2 Re NG qw:}":azé

But S’ggﬁ ds = C '_ as previously defined.
o
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0 - Swiiyds = - B/2

Q

el » Swd®ds = - B/p

The negative sign on the right hand side was used

because:
- Za;., 2"?—(9m %‘%ﬁ_),, < O

since F“L is a decreasing function of n; and Py is

Therefore:

an increasing function of ntp .

Adding the two equations we obtain the desired result:

AC + CH--3B

2 - 2 Two level system

For a two level system we obtain Burgess' (1956) well
known g-r theorem. In this case:
P = ) and Pa = Q(n’)
The spectrum is given by:

53,\(4) = 4 o)

W L4t -ven]

The auto-correlation function defined by:

Vol¥) = Tafees =7 = gsn () Y d5

s W = r@;lexg_ (rgm_ (nb\ T
(R -9 4 ]

and the variance:

var n = Yo(o) = b (ne)
) = 4'ne)
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2-3 The gpectral density and auto-correlation function

for a three level system.

The comélexity of the spectra and covariances increases
notable with the addition of every new level. We will
therefore limit our discussion to two and three level
systems and a few particular cases of a four level system.

Consider the general three level system where P§==Pﬁbhh>
and n,+ n,+ np=constant. For this system our spectral

density matrix will be:
S = , 2T

W+ ujz(a.u‘d- d.:a."’zd'mam) + (Q\\a—as'a-llaibz
where
:-\-. = L“ wa +* *B\\ Q:‘ e aL|:a—lia'3‘1 + Bl:a'la;u
3;3= -.r,_, = E\-..u)'— En Q2232 +¥\z@-\laaa+ana¢=h- \nna.n Qia
':rz:. = B,,.,o"-a— ku as - b2l + k\\ all
and
-
b\\ 2 K‘Pll +P|5]’
b= La\ = - LP\& + Fn\1°
\:an = 2[_ P ?n]o
and

e
»

i
i
>
»iE

l

\))
7

+
S

¥
4
|
NS
5 -
]
[+4
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The correlation function matrix ’l/’@’)= W@(ﬂi

where v () = M Njear — LY

S° Sy (8) coa 0" d%

Then find:
—|pl¥

- (g coag + |p| (B- @) ad g ¥
V) = Mwwﬁ[%@ Fersgy « bl (8- g) aing Y]

where a
:I-= AW =+ éb
and P‘-‘- ?'2. = Qlaz— QnQa
2[3 = Ay +Qaa

We have written 'wéﬁb in the above fashion to

illustrate the fact that g may be real.

4= - Y_@...—Q;S * 4@&»] / )

Thus for g to be real, we must have:

@, - 4.y < - Hanas
Generally this inequality is not valid and q is a
pure imaginery number making 'wlfb the sum of fwo exp-
onential terms. If g is real however, this would indicate
we have an oscillating interaction between the three

occupation numbers.
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, 2=4 Oscillating chemical reactions

Bak(1963), in his review of recent contributions to
the theory of chémical kinetics discusses the inadequacy
of the present theories to deal with oscillating chemical
reactions. The kinetic equations are the same as those
under discussion. In this case the driving force would
likely be an external heat source as the reactions would
natu;ally be endothermic.
| An example of a system.where g could be real would
be the following. (Refer to figure 2-3) Let n, , n,
and nz be the number of molecules of the three constituents
of interest. Again n,+n,rny= constant and we have only
two independent variables.

The reaction changing n, to n, and n, to n, etc.
will bé assumed to be favoured over any reverse reaction.
This would be ﬁhe case when a by-product formed in the
reaction n, to n, was used in the interaction n, to n; .
We will ignore by-products and catalysts which are un-
doubtedly necessary to make the reaction work, but dé not
enter explicitly into the kineﬁics. We will assume the

_net rate changing n, to n, as on, (N;—nb . When n.= N,
we will have detailed balance. Similarly for the other
two transitions. We will examine the case when we have
cyclic transitions (N:,—m) > [ and real g  resulting

4in an oscillating reaction.
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In the steady state:
K = °(Y\\ (N;—ﬂ,) = r&n, (N;—n;} = YY‘! (”l_ns
where all n, ,n, and n, used hereafter are mean values.

Then the matrix elements are:

= -K(L+Lal) a,= K(_J__ 1

n, N-n, ns N:.‘ Na ns

I B

N;"n; Ns‘ “3

Qa, = ‘< ("L"—'—'L_ 'a-az=“\<<“v\\';+

"\ ] Na‘ns

N-n Ny Na - Na NN

and ' 2 -

A= K s ) )
For the second term in this expression to be dominant '

and negative, we must have n;<<(N—n?)' , which implies

we are fér from equilibrium and detailed balance does not

hold. Then for g to be real we can have

Ny Ny Ny << Ny

and

-
then %a = KA: Na
The oscillation frequency can be determined from the

power spectrum:

S = 2w+ ) "
3 W &po‘( ?a_ f\) + (F‘-r ?-‘3

Maximizing S(f) with respect to w, we find that:

SO AN

where the characteristic frequency w, is:

wot= -8k + (G- -9 + (ﬁ»«?ﬂy‘
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For the case under discussion, the frequency of

oscillation for all n; is the same since 94 >>Q§L$§>
and 0%é>(§24?> S)(&ﬁ+??;.

Thus w: o~ - (P‘_?‘>
In this particular case we find:
Wy = K/(n.n;)‘

W, 1s therefore a function of the molecular concentrations
and of the transition rates.

We have thus shown that g can be real, resulting iﬁ
an oséillating reaction about some characteristic freq-
uency W, . We will not discuss other limits for which g

may be real as the purpose of this discussion was merely

to show that indeed ¢ c¢an be real.

The covariances for a three level system are:

e N e

More explicitly, they become:

> 2
var n, = L“ (a—\l Qaa - CGiala) +a—aa) — 2% a2 ?sa t L;; Oy

V4 la-u '\'Qaz\ (a-u Qaa —Qpa 1\)

COV (YI. VI’) = "L)u QaiLlaa + 2biaoulan — -Laa anli
’ z \a..“ + a—a:.l (a.n a;; - 4\141\)

Vo’r Na = B\\ Q;? - 3~£\2. QuQa, + Laz (an aa;-dlgam +a_|?3

Alan+a.) (ai@an- a..;aab
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We will now comsider a three level system where the
variance of the fiuctuations in one level can be much
greater than the meamn value, We will call these super-
poisson fluctuationms, |

Censider the model of a three level photoconductor
in the steady state by far from equilibrium, The
transition probabilities py, pa  and FB,;'will be
considered negligible compared to all other transitions,
The transition probabilities for this semiconductor model
are depicted in‘figure 2-4, The p, transition is
optically induced and is a function of thebsource intensity
and absorption efficiency of the éhple orly, n, i and p
are the carrier numbefs in the eonduction~band, the trap-
ping level and the valence band respectively., I is the
number of traps in a unit volume, o and X are pro-
portional to the capture cross-sections for the n and
p carriers, and will be constant in the steady state,

This parficular model has been discussed by van
viiet(1964) and Cole(1965)., Van Vliiet introduces an
approkimation info his analysis which invalidates
several limits he discusSes..(Van Vliiet, 1964: figure 4
is incorrect. The lower bound for thehfiﬁctuations never
approaches zero) We will correct this error and also
discuss the correlation and Iluctuationexih the trapping
level. Cole, in his critique of van Vliet's work, derived
the correct expression for the fluctuations of n from a
bivariate difference equation., This difference equation

’ |
is however just a particular case of the general Fokker-
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Planck equation. Cole has unknowingly performed. the same
linearization van Vliet geheralized for N levels. Thus
Cole's claim that his method is superior to van Vliet's

is invalid.

The kinetic equations are:

%%%—:ﬁ oL — §h1(I—>)
f%t - Sn(T-D) —‘7<lén+f>

The linearized matrix elements are:

a, = -S(I- :'.93 O = Sno

aa = 3(T-10) - Xi, Oaa = —Omg=Xn,+2iy)
B“ = Lla. = o _bl-'l.== taq = —o
where oL = Sn, (I—tb = Yi.(mﬁ lo>

Then f£ind that the fluctuations of the conduction band

carriers are given by:

LoNo \-_—(I- to n: +&t,nb + L:(V\o"'t'b-]
Q- Y02 4Sian3 + Tagng + 265) + (T2 onel@n +biony+ 3:5) + omS et i)

Using the ratios C[-t.) i, = Kk and "«/,bn ¢ we have in van

Vliets notation:

Whe Lo kgl - gl
\((%+5?,+ $,+2> +|<(2?, %.,,37) +?—(‘8—+D

"'We have written the variance in the above form to

facilitate recognizing conditions for super-poisson and
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sub-poisson fluctuations. Similarly:

cov(ni) = -n;k[d+@ - q,k(zxzi_l
U3 e L 5 7D

ver t/; = 1 — k(q,+4?,+3+|<(9—+5++3q)+ ‘(q—+3

Kk (@,#-;7 +7?,+2§+ k[:l?,'ﬂ-é?, +5?> 4-?3(?_»3

erpf o= L= kD [kizgeD) +qlpen]
k* (ﬁ' + 5'7, + 7?,4234- k[.ZT, +é7,+3?.\) + %(«3;«-3

C_OV(VI,FB = N (9&3[‘@(% 31—-*23 k(?_-»si_»«) +?-(7..+§-]
S5 B ) s K@ o3) 2 g2

Written in this form, it is immediately obvious that
the fluctuations of i and p‘are sub-poissonian. Also the

correlation between n and p is‘always positive.
2-6 Super-poisgon fluctuationsg
Super poisson fluctuations occur in the conduction

s (3»“\ _ (%4_5\

This is also just the condition for the covariance

band when:

covin,l) to be positive.

Thus when Var(n) > n, then Cov (n\D >0

and when Var(W)<h,  then cov(ni)<Q
When n is super-poissonian, an increase in n tends

to increase i and when n is sub-poissonian, an increase
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in n will cause i to decrease.

From the steady state rate equations:
oL = Snp (B-1) = Ki, (110
we obtain S koo— 0 X(j— D
= +

= (G- X-u

the ratio of the cépture cross—-sections of electrons
and holes by the trapping level respectively. For super-

poisson fluctuations therefore:

- (k) <
4 g-+1 é%+20
y will thus always be less than one-half when varn noal.
- When the traps are almost full Cr—u « l, and when
the density of carriers in the conduction band is much
less than that in the trap level n,<<iL, ., then the electrons
in the conduction band will exhibit giant fluctuations,

which we define as var n >> ne

In this case Vvar n/n e L since C’.«l
/]
This can be indefinitely great subject to the limit-

ations of our linearized theory. Thus we can write:

Nar n = L, . _
When the conduction carriers exhibit giant fluct-
uations, namely when (%.<<| and k«] , then:
2
Varij, = k

ko (Qk-\_- %Ck-\- ?,3

Var p = k + g
/é 62k+é5
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Depending on the relative magnitude of g and k we obtain
the following two limits:

1) when k«q:

Nar 9Q°== <F7é>;
er b, = 1= (%)

Thus the trap carrier fluctuations tend to zero as
the traps become filled and the hole fluctuations invthe
valence band tend to become poisson.

ii) when k>»g

verife, = & = (A
wahﬁyéo = %Z + —ﬁTZ?€>

In this limit the variance of both i and p approaches
one-half the mean value as the number of electroﬁs in the

conduction band decreases.

- e ge
Another case of interest is when %». and k»|
Then: ,
— —— l
ver " = 1 ,4(

V&V“ELO'-'—‘ 1 - y%—)/k
VM-F/Fo 1= Z/f, -

For this limit the "bottleneck" effect of the traps

is minimized and all fluctuations become poisson.



GRAPH SHOWING THE MINIMUM VALUE OF
VAR N/ Ny WITH RESPECT TO k AS A

FUNCTION OF ¢
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van Vliet asserted that the conduction carrier fluctuations
tended to zero in_the high input region, namely when %>>| .
On examination of this limit, we found the lower bound

Var(ﬁ)no > 0.75 This may be seen as follows:

& (x V

= <+ »

Let varng 1 ¥ 0
Minimizing with respect to the independent variable

k requires that: , 25 — :T_g%
| q 5

Thus <Vo;r . Abm‘n - 1 + @

=1 - gfé%+23
where | Rk, <?‘3+ 53:'4.77”. 2+ (23’34- é%‘-\- 373
kg (g4 G +3441) -3k, G 3gT) — 4T (P304 D) = O

There is only one positive root for this quadratic

and it is bounded by 1 <)<;<e¢l . For any value of g
this equétibn then gives us thé value of k‘-that min-
imizes the fluctuations of n; (Refer to figure 2-5)
The minimum valqe of 0.75 is obtained when the input
light intensity is‘gréat, q,—> s , and the traps are
half filled, k=1. |

It is easily verified that the fluctuations of i

and p have the following bodnds:'

O < Yrt o1

Lo

and

¢ Vavg <1
2. Po



k < 1 kK =1 k>» 1.
qe 1 1 io.7iq’5_ o.71§’5 (L-2qk) /k
q=1 0.71k’5‘ -0.06 -0.26
a» 1| (k/q) (1-kq) -0.41q7% —q%
FIGURE 2-6a
TABLE OF M; FOR VARIOUS LIMITS
ke 1 K =1 k> 1
qe 1 1 2.12q% 1.41q%
q=1 1 0.83 0.72
a» 1 1 1 1

FIGURE 2-6b

TABLE OF \"nr FOR VARIOUS LIMITS
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2-8‘ Maggitude of_grosg-cgrrglatiogg

It is of interest to examine the éorrelation coef-

ficients . and P“P where we define:
r,_ = cov Ct:_) H\
4 . Ve
Lran 2 xomr )
By the Schwarz inequality lh&il <1

ryﬂ is a measure of the degree of'qorrelation between
the two stochastic variables x and Y- Refer to figure
2-6 for a tabulation of I~y and P"F for various
limits of q and k.

From the table Qf ™ we note that there is complete
positive correlation between n and i only wheninrqAb > 1,
For.all other cases the correlation between n and 1
is relativély small.

From the table of T, we observe that there is
,complete positive correlation between the cénduction
electrons and the holes in the valence band when either
the traps are virtually empty or when the density of
conduction carriers is much greater than the density df

trap carriers.

2=9 Four level §¥$t¢m

We will now consider some special cases of a four-
level photoconductor. (Refer to figure 2-7) Again we will
discuss a driven system, one in which a steady state has

been reached but wherevwe are so far from thermal equil-



| A
fgrl(Pf—nﬁ
m v &n(T-1)
RR®P®®OO O o’
M-m
L v
Xm (n+m+ 1) RRRO00O0
I-t
XL_(n+m+L)
v ' %
ONONONONGS]
N+Xm+=.

FIGURE 2-7

CYCLIC TRANSITIONS 1IN A

FOUR LEVEL PHOTOCONDUCTOR
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ibrium that detailed balance does not hold. We will
assume the traps are sufficiently diffuse to eliminate
the‘possibility of Pas and F;,,transitions° This will
also eliminate the possibility of "hopping" from one trap
to another within an impurity level. All transition
rates not labelled in the diagram are assumed to be much
smaller than those labelled. The p, transition is
pumped and the conduction electrons now have two possible
paths to returm to the valence band. For the above
kinetics to be strictly valid we should also state tﬁat
the drift velocities for the electroms and holes are

assumed to satisfy the following inequalities respectively°

" Ve > da #(M-M,D
Vo > As Xi,

dz, and Aa are the mean distances between traps within
levels 2 and 3 respectively. This is to emsure that the
electron or hole effectively "sees" all the available
traps before making a transition;

As a consequence of stationarity:
A= Bny(M-mo) + Sn, (I-iy)
éhoa“"mv = Y’MOZV‘O“’“D"'LD

57\0 (I-1D = Ki, (n°+m,+l'-p> :

where the subscript "o" indicates the most probable
value which is very near the imean value for large

numbers.
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The linearized matrix elements in this case are:
Q.“ = "ﬁ(M-M;) ‘Sa-ib O = ,én,, Q= SV\,
= ﬁ(M-MD - YMO a;a '—'-“#“p"%{ho*lo'iZMb 0'2.} = -—\(mo

Q;\ = SC[-\‘.A "X;.o Quy = "X.Lo 2an = "Sno‘ Xénp*mo*&ig>

b = b = —fro(Mem) b= <Sma(Toid)
“(gV\D(M Vﬁb E:-:.
= —5“0 (l“"b : \isz = O EB‘& = 25"‘0 (:"‘-D

(T'
\I

RN, (M—mh kan= O

i

(7.-
|

Solving for the matrix elements of C using:
Ld
AC + CA = -B
we obtain six equations in six unknowns since C is

symmetric. If we let: ‘
m%_mh =~ N %-0193= S | M;/no: P\ L%oe %—
and kK = Sn,@-t,}/@no(w_hb \

the ratio of the net flux through the two possible
return paths.

The six equations thus obtained canm be found in
Appendix I. These equations are too complicated to
solveiexactiy, thus we will only consider two special
cases.,

1) k»i, s.4»1 and sig>vnp

In this case the transition through level 3 is

dominant. The traps in level 3 are almost filled and
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the density of trap 3 carriers is greater than the demsity
of conduction electrons. If the tramsitiom through level
2 were missing, this would correspond to the giant fluc-
tuation case of the three level system.

On solving the six equations we find:

Chv=Varn = N, g,k/s Cu = coVinwm) = N4 /s
a\3= COV(YI\I'B= 2“0%‘/5 ’ Aza_ = Yar m = r_“_‘;iﬂg
s(r+ 1)

Lay= Vari = io &‘b-‘*s\/s*

If g and s are of thg,same magnitude, then the
fluctuations of n are super—poissog, and the fluctuations
of i are sub-poisson.

It is interesting to note that when the traps in
level 2 are mostly empty corresponding to v<| , then
m is also super-poissonian. This would suggeét that like
in the three level case, the filling up of the traps in |
the majof tramnsition route causes the super-poisson
fluctuations in the conduction band. The fluctuations
in level 2, the minor transition route have little effect
on the conduction electrons but themselves follow the
fluctuations‘in the conduction band..

The correlatiocn between the n and m, and n and i
electrons expressed in terms of the—correlation coef-

ficlents is:

%
Thm = %ﬁ:é;+%s} XLkQ&}+éﬁl
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Again if r<| and p<«| , the correlation between
levels 1 and 2 could be considerable aéwexpected if the
fluctuations in level 2 are to follow those in level 1.
rgt . however, is small in this case while_itvwas'large

in the 3 level model.

1) keel, sg»1, and sg>wp
In this case the transition through level 2 is
dominant due to the relativeiy small capture cross-
sections between levels 1 and 3 and levels 3 and 4.
For all sub-cases considered, namely: |
A) r:,P << 4
'B), rvp > 1
a) @r>>sz
b)  gr < kps

it was always found that var n /h. = 4
Thus in this case the fluctuations in the conduction
band are virtually independent of the fluctuations in the

minor transition trapping level.



CHAPTER

INCOHERENT EMISSION FROM AN ACTIVE MEDIUM .

3-1 __ Derivation of photon distributi

Considér a subs;ancé, homogeneous inziﬁsibulk
propert;eé,_in intéréctioﬁ'with a radiatioh'fiélda
Depending.on whether our system is a gas qf a semiéonductor,
let Nz denote‘the number éf gas atqms or éléc;rbns per
unit volume respectively ;n thekuppe:,ehergy*levellEz .
Similarly let N, denote the const1tﬁent density in ﬁhé lower
energy level E, . We will only consider transitions
between levels E and,Ez . assuming these are the only
two levels in the system capable ofwsuppqrting an inverted
population. Physically both energy levels E, and E,
‘will have a finite width AE, and &E, which will be a
contributing factor to the width of the emission spectrum.
We will examine the characteristics.of'both the internal
and emitted radiation fields. o

Consider a:one dimensional sYstem'ofvlength'L,
cross-sectional area A and thickness dagL so that we
may ignore angular effects. We can then write a Fokker-
Planck equation for'¥iﬂm,_, the probability‘of having
n and m photons of energy € 2 (E,-E )my travelling in a
positive ahd'negative x-direction respectively in a
volume A&ix) at a position x where 0%£x4L. The trans-
ition probabilities, namely absorption, spontaneous

emission and induced emission will be mot only functioms
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of (ax)but also of the electron or gas'densityfin‘the
appropriate levels. We will only consider é‘StaﬁiQnary
system in the sense that at any position x, the average
photon density is not a function Sf time. Thus_weiwill
not consider transient "switch on" or warm up" effects.
We will also assume that the steady state valueslpf_the
densities N, and N, are sufficient;yllarge to}bebvirtually
independent of the photon_density at any positicn'x. In
this analysis we are just deéling'with'ph0£op'numbergv
and do not account for the phase_and cqherénée of the”
reflected waves. “Qur results'éheréfore'do'nqt”inglgde'
the coherent emiésién line. |

We are now able to derive a diffe:entiél,diffgrence'
equation for R . .- Tmxr however, is a function of
both Pam.x-sx and Frm,seax. TO fa_cil'i’tat‘é writing

Rom.x we will transform to a time scale‘us‘:‘tfng (Aw)-; ¢ @t)

The'E%m}e so defined is therefore_complgtely determined
be Ruw t-at - Thus we are dealing’with a first order
Markov process. | |

For_ﬁhe‘sake_of mathematical symmetry and the
possibility of other applications, we will inélude in
the following list of tramsition probabilities,vse?eral
not realingle in the two systemé aforementioned.'b

Subscriﬁts of 4 or _ will refer to the x direction
of the particle under-consideratiqn. Multiple subscripts

will refer ‘to the direction of the’ianming.pa;t;cleAand
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the emitted particle or particles respectively.
' Consider the following transition probabilities for

an incident particle on an increment of width @0).

Absorption: ol (a%) oo (a%)
' This will include bulk absorption and

surface losses due to angular séétté:ing°
Spontaneous Emission: E,.(6%), &_ (a)

Induced Emission: é“* (ax) , ‘&,.,- (mb, 'é...-- (A:Q
| Boue (o, Alil (om), Bova (o)
| = Yl | = ¥ %)

Transmission:

Reverse Scattering:

Gy (20, Oy (a0
Keeping only first order terms in (L\t) , we can write:
R\m, trat = @'\'BQC@DP\QI\m,t + 1) Br-- ¢&%?+-,m-a)¢
+ (nen) 83- DRt e + 1 B-- e P ment
+ (v\—h ‘&“ DY T e + (MDY D) Rl b
+ b)) Bows YR, iy + (Do, eeD R it
B e Rt + (DA el R e
Y er D Rime + £.cDR
+ (l-— nY+céb\)é— mY. cl&b}(\ - gc@%YI—s_caﬁv-tht

In the limit as (4 >0, we have in the space co-

ordinate frame:
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d'P“\M\“‘ = &H‘D /B+--—PV-#|\M-2,$ + @*“»a:——PV\‘\"\;W“\;i
dx
-+ (YH—D dsq- -PVN-\, wm, % + X_M_hlg-~-+ £_+V]#++—]-PY\\M-\,>L
- [n‘é r e, v w4 &_]R\mw_

+ CM“’D/&-‘\‘*—RQ\\MH e * (wu-bd: —P-l e, %
¥ lme)) Ao Fhomeie + [@ D Bavs + &, m/e\ ]

=lym 2L

If we introduce the bivariate generating function:
- ' hom
G(r,s;x) = ZZM-§ r -Pn\m,z,

Then the above differential difference equation can be
‘written as a partial differential equatiomn in G(r,s:x) .
Multiplying the above eqhation by‘ ="+ and summing

over all m and n , we £ind that:
Q& = G‘[& Lr-3+ g.(s- 3]
I
+9@‘ é___r +/B+,r*s+ ﬁ_n.s + & *S—Yr +4:l

¥ %% [é*ws‘ + I&N-rs + A-- e A v‘-:J

If we substitute: y=8-1 and z =r - 1

and let F (v,z:x) = 1ln G(y,z:x)
Then: ’ ' '
%_E'; = (esy+e 2—>
?P > - - ; ‘e T a
+'5Z {a,&___f 5{2,& +j,8_ . czwﬂ

4-%11[ ﬁm &Izﬁa +ER - :(ma]
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where o= ﬁ\s-- *ol, + O “,8*_..‘. Qa= 2B, +/$++_ + O
Ci= Ru tebren -A. Ca= 2B B o,
and Ay + ﬁ+++ + ﬁ""‘"" 4-(3*-- + Ou. = \(4-
A- + ﬁ-—- + {S--\-J- + (3—4-- + Uay = Y—_—

3-2  Calculation of the first and second momentg:

Generally the explicit evaluation of this partial
diffefential equation is not possible. The various

moments of n and m however may be found using:

<_9_U> = W= (2 - W
UG - \Z7/g8

<21;1 = Var - Tx 20 = var WI,‘—'-VW_x.
24 )y=o 2 240

_2_1_[‘—— = CoV % 2z
sl O

The average value of any function f(n,m;x) is defined

f{n,m;x) = 2"2. Qnuw—ﬁmw

All moments of n and m can therefore be found. from

as:

. the partial differential eqhation'by differentiating the
appropriate number of times with the variables in
questidna - | |

‘Fdr simplicity, consider the gemeral partial dif-
ferential equation of the above form.

D Myai) _ Ao + Bya 2MheiD) o Cpu2Myeis
D o= —H

Boo = Coo = O

where . Aoo
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Differentiating with respect to y or z, the letting
y = 2z = 0, we obtain the following two differential equ-
ations for 7W;,and'ﬁ; respectively, the average values of

n and m at position X,

9\‘17-'31 = 24 , 2Bwz + 2¢ W
< o2 oz P2
ec

&

QQE£-~= éﬁg + 2B W, + 2¢
dx oy 9y By Jymeso

Similarly we obtain the differemtial equations

for the second moments in terms of:
w = Va,Y‘ WM — '”x
V = var Nx — Nx

and k= covlheme)

Therefore:
W - 23C k + 29B s 4 2C 2°B W,
3 22 o2 Qa‘w T = +'92aﬂ
“‘E=D

%gf RgL v + 29Bk+_91‘n,+923ﬁ,‘+9‘n

24 oY 2 oy

A ¢ o
= 2C vV +(2C +gB 2B 2C Wi )
ot = g8 (g(+9*k+9,§{w+@_¢fzn +295W' ‘4

# 220
-For a particular system, these coupled equations

could readily be solved using Laplace transforms.

3-3 E ilibrium Fluctuations:

For the equilibrium casg each increment of volume
A(dx) will emit as many particles as it absorbs. By

. detailed bélance the above statement holds for either
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direction. The above equations will thus be independent

of x in equilibrium. Then in Jacobian notation°

- 208 2(3,@] - _ﬁc_@a@a
SEVATEND - aca

v k ol

Letting M = C A = 895 i_%
%y B /g
=Y
where i hye + Bﬂt_ * Cye M

an - chla = 9(3_)02
a det (O = S - Bleid

Then the matrix equation for the covariances is:
’ A . N
M&-‘-&M‘;"(@ oif = oyt
In équilibrium, the transitiom probabilities will

be the same for particies propagating in the positive

or negative =x direction. .In that case:

Moa = &M
thus ZMOL:‘ ——/5

The moments of interest are then:

VQ-Y‘ n b.‘—’ Var m = n -+ -ﬁ YQ‘AA.p +2aalﬁ+4_ + a4, P+_.—l

2 (“l a——a)
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COV~(VI\,M3 = "N [.“-=(5+++ + 24..' tha + Qo [3,,__..]
Z (Q\a"a—:)

=m = 8+/@-|‘an

The fluctuations of the total number of particles

where w

in a volume = A(dx) is.
var{n + m) = vaf n %+ var m + 2cov(n,m)

g

For our system in equilibrium this reduces to'z

Vaf'".(“‘*’mw RN, *‘@—n_-‘ia—:[éﬂ-» +2 Byr- + (3+--]

where -2 = oAy - (@+++ +,$.H_ +/$+_.)

is positive in equilibrium.

If we write var n = n(l + k)
and var(n + m) = 2n(l + k)
then ke = K, + f’i".%’.'ﬂ).
(-]

k 2 will equal k, only when there is mno correlation be-

tween the n and m pafticles as is the case for photonso
-4 _Non-equi ium photon tributi ctio

For photons in a gas or semiconductor, the tzcansitién
pxobabilities é+-- and ﬁ ad must be zexo as the induc:.ng
photon does not undergo any transition. Als,o for a
highly collimated beam, the probability of reverse
scéttering into a small solid angle is negligible.

The direction of the induced emission will also be the

same as the direction of the incident radiatiom. (Fowler,
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1929;Sobel'man and Tyutin, 1963) Thus Biv- amd B_, .
must also be zero.. |

In this case ﬁhe cov(n,m) = 0 and the partial diff-
erential equétion is separable. In the original G(r,s;x)

notation we have:

26 _ Gl e« 22T8 60 u (0]

%°

+ 9@__6@;[/54_(3‘—5) + ol (\—S\]

where we have dropped the multiple subscripts.
Let G(r,s;x) = G,(s;x)G‘z(r;x)
then

?_Q%%EQ = G-, e, ls-0) + C%_Gs_’\_ &ﬁ;(s"—sﬁ +ody (\—531

LN I P T X

For a generating function =s 1£:

Yo o
‘@_9_: = 9@ Coie + gl 92‘%,5

. Z—Q(Sz" J '
then Yxs = H (gu . S., ) d¢

where §.,}s may be found from 'Q’&S'

and H(s) is the input photon distribution, namely \/s\,,
For the derivation of these relationships rgf_er to
Appegdix’II.
.b Solving for G (s:;x):
| then QCS\ = (s s - &v‘/&)s + ods
§l&) =  &+(s-D
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Thus g JIL = =
) B e

S = 1+ _CeoBNA-D/R
C%‘D('—ex?@*’ﬁb") + Le-fe ex[’é@‘tegx

* Nt — el ) i ot
Msor 3 G(Sudx! = ’3—4’-&)@& 6-Di—explu-pd) + ot explicd
, %,
— ’h{l + (.‘_;’\%_E;i(\“ e—K‘D-(gh'(s'D:L\):l

If we have an input photon distribution with effective

temperature 1, for frequency ¥, then the generating

function for the boson distribution in N cells is

Hs) = Y_l + b (\-sb:l-'\l
where \:\o-'- [_exr (h%'r.s- 11-4

Thus , N
L) = by, (I-S) exp -(44-,50 % ]
H (g 5\) [ 1+ 1+ f—P—_"O—s\() - ""‘F.“(‘l"-‘(ﬁ“'\")

The required solutiqn is therefore:

| QY
G'\ (s ) = |1 + by (- s\ exp —(.g-‘,e.,),(_ :
3 1+ ;Zé‘iﬁ*‘(l‘g(\‘ exF—Gh--wa.) X

[1 NN (l-exr-(a-/&b*}]'SZﬁ

oA*- A*
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N is the number of cellé in boson phase space of the
input photons. Since it is proportional to the volume it
will not éhange throughout our system. .Therefore N =_€7¢L_

~

and ' -N
C—,(s;u:) = [1 - Cl-sﬁi b exp-(uBr)x 4—*.:@-5- (\-— e.xﬁ—@»«‘/&*}x)ﬁ
= o4
Where now b, (x) is the effective boson factor at position
x of the n photoms.

Then

b6 = boexp-brpde + 2B (1 exptinpie)

Simi;arly for the m photons;
Babd) = bavexp @--P.\&-Q * fz?(l - ar@.—ﬁ.ﬁ&—@)

‘For a highly attenuating medium, namely when ol: >> /g:
the effective boson factors quickly lose all informatiom

about the input and finally reduce to:
b= bm = /5%*-/&,3 EJ@“ Baw = /8%(__/6_3

where we define 'bm and Lﬂq as the effective
boson factors of the medium. Also the gain of the medium

tonpositionl ¥ may be written as:

al(."-\ = ‘exr"' é‘a-"P-r»Xa
qa () = exp G- PG L)
Then we have with Burgess (1561)3
b = b 3.(%3 + bum C\—&.(ﬂ)
b () = baw g2 + b (1- qat)
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where 3;(.1—3 <1 and l;:(mj >0 R S /5
and 3;(—»3 > 1 and b <0 & o{<ﬁ

Thus. for an amplifying medium the induced emission
must,exceed the absorption. This corresponds to the medium
being rep?esented by a negative temperatureo |

In é gas or semiconductor laser for example, g}(i)
and gz(L—ub will have to be egual. This is because the
medium is homogeneous and the doppler broadened width
of the emission spectrum will be the same as viewed from
either end of the device. This is of coﬁrse assuming the
doppler broademing is greater thamn the Lorentz broadenimgo

If tﬂ; enerqgy differenée between the two levels‘
under consideration is 'Wuo, then the incoming phqton must
be of frequency DOX;EE?- or ¥LSL;£L depending on
whether the photon is—f;avelling igkﬁke same or opposite
direction respectively of the interacting electromns or
atoms. (§=Vn/¢ where V is the velocity of the electronm
or atom and n’ is the refractive index of the medium.

If the velocity distribution of the particles is. Maxwel-
lian, then V= = kT)‘h where m is the mass of the
electron or gas atom. If‘ F3<<3., then the doppler
width will have equal contributioms from particles
travelling in the same or opposite direction to the
interacting photons.

Thus @.\J)Dhﬂ;\“ = R poa n' %
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If we have a superimposed drift velocity Vo . for
example due to an electric field abplied élong a semi-
conductor specimen, then the resultant velocity is ;L:'U:\E
as seen by an n or m photon. Then U= +\gd = §¥.+V§
Again we have equal contributions to éMhu from electrons
‘travelling in the same or opposipé direction to the in-

~ducing photoms. In this case:
(A%,,PP\“ = Zk%n X LANNRVAS

c ™

and the line is broadened.

The generating function derived for the photons
in the medium is st;;ctly correct only for a single
frequency. It 1sjhowgver a good approximation for a
narrow spectral line where the.ﬁransiti@n probabilit;es
are 1ndepend¢nt of the frequencyo To show this, let TD(H)
be~ghe prpbability of having n photons in a nérrow
freduency interval éaﬁ) . If we comsider the discrete
case where we have k different frequencies in -é;ﬁ)>

then:

P = FF R ROREY Rl

subject to the constraint that -%—”F n
Then the generati;t'xg function for ©T(n) is:
)= = PO = T
For bosons: | Gl = G+ b -k Tm
For (-&) to have the form ()= Q“‘E‘ESS“,
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all E; must be the same E.= b= o be=b and N = 2 N
.Therefore for the above amnalysis to be strictly
valid, we must be able to approximate the spectral line

shape by a rectangular shape.
3-5 Cavi Lipe Width

Let us now introduce partially reflecting boundaries .
" into our system at x=0 and ==L , thus forming a
cavity. Let p, and p, be the pmobab;l#ties that a photon
is reflected at x =0 ‘and x =L respectively.

When photons are reflected or transmitted at a
boundary they undergo a»binomial process,v Any statistical
distribution of particles remains invariant in forﬁ or
stablé when subjected to a binomial process. (Refer to
Appendix III) Thus bosons subjected to a binomial
process are still bosomns. If p is the probability
: of:reflection and the incident photons have a. boson
factor S,lthen the reflected and transmitted photons will
have boson factors pb and (1-p)b rgspectively.

Let B,= -+ and. O, = L-A

then Ll(.") = Elo”?(’ g\") + %‘:— (\ -exF(-g,x\>
, \b,,(.’b = \;;\_e—%‘b Q;GL—D + _,%;:O— exp 9,6&-\3)}

When the system has reached a steady state, then:

blo = Pu b:o
‘Ez\. = Fi \D‘h



41

Solving for \;;b and B“. , we find:

b = plA)e (1™ + FAYI-& .

\— F‘F"“F (8:+6DL
be = p (B e (1o &™) + Brayi- <)

\ - P P> exp- (5, +BDU

If

For simplicity, we will only consider the symmetric

case, when 6:=8,=06, and | /3= /34- = /Q_.
Then

b = _.5, (\ exj( QL\\O + Pae.xp(—eby
| - P Pa exF( 26L)

b = £ O““EC“QMH‘ prexp (-6L)
© \ - F‘tF: e"‘r (“291.\)

For an attenuating medium, & >0 while for an
amplifying medium 6 <O

. E,_o_ and b\u , however,
must always be positive.

Thus | - |=~.'=; e.xF L—ae,b >0
or eL > —‘Z—- /Zn (F‘Fb

In the steady state this will be the lower bound for
51, or the upper bound for the amplification. If OL
was less tham the above minimum, for example in the initial
warm up period in a laser, then the photon demsity would

build up until the losses became sufficiently large such

that oL > Lhn(pp) .
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The boson factors for the output photons from the

cavity will be:

i
o

At x

Lr:'—' Q"FD L:.o
®x =L Eh = (\-— F:b\:\h |

loaded
The quality factor or "Q" of theVYcavity may be

found from the usual defimition.

@ = Mo = 2w lenexqgy stored in the cavity
@W)cov. energy lost/cycle

For a narrow spectral line each photon will have
energy approximately 'equal td kuo where W, is the

central frequency. Then:

The energy stoxed in the cavity = hpoN[Sb (O da+ SDB (vbzfi]
The energy lost/cycle = L\C N [b +L‘x]

where n’ is the refractive index ¢f the medium.

The cavity width LA\DQ is thems

E C 4 Eh
e = = Lgugalw«gb@d]

where S:E.(’bd" _%. ( ) .._.e-(e. - 3 - /&L/G
Chtdde = £(E™-D - b (20D - puy
Thus £find:

9L§

@\» = /C\) 32-&-@.4»]:3(9 _D QFF‘
2L (\ Pipa ) + D[z+@,+f;)@ ) - 7FP=6 ]
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When p,= p,= p , we have egual outputs from both

ends of the cavity and (2W). simplifies to:

@‘Dc—:‘ ____E)_C(l-. \ ‘
el 1 P35 - @y )
where

Eh F < Dl <« =®

The function

SlL) = - — |
&L (egh—l>
is a monotomnically decreasing fumction of O , where
Skwy=1, Sb= 4 Sk=0

The upper and lower bounds for (awW)e are therefore:
cl=py < @i < 32T 4 (F)
anl L 21N

CAVQ)is therefore gemerally dependent omn the active

medium, its lower bound being the usual cavity width

c(\-é)

2rn' bl
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CHAPTER 4

PHOTON COUNTING

4-1. Introduction

In this chapter we will be concermed with calculating
the fluctuatioms of the photoelectron numbers emitted
from a detector due to an incident light source. We will
also calculate the spectral demsity of the photoeléctric
current which would be the quantity of interest in any
experimental measurements. We wiil illgstrate ourx results
by assuming various spectral line'shapes for the incident
light beam.

We will use the theory of amalyti¢ signals to
describe the electric field om the detector surfacgo
{(Deutsch, 1962) Thus considef a quasi-monochromatic
light wave incident onm a photodetector of area A. Let
| E, denote the electric vector omn the detector surface at

time t. Then

-
Et = G‘h +‘]‘\-th

where ut and vy are Hilbert transform pairs, namely

“" _L“pg unl't"

P denoting the Cauchy principal value at t'= t.
Thus if w(w) is the Fourier tramsform of us , them the

Fourier transform of vy is:s
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Vi) = _;iulub W0
= 4 wlo) PYs)

The Fourier transform of Ei+ is therefore:
Fw = 2 who) w>0

el w=0

O w< O

]

i

Thus using analytic signals, E«: has positive
frequency components only.
We will assume thé electric vector components are
gaussian distributed. For bléck body radiatiom this can
be found by comsi@ering an ensemble of harmonic oscillators.
This has been_genérally justified for "random waves" by
various authors by appealing to the Central Limit theorem.
We will only comsider plane polarized light in this
discussion. It is shown in Appendix IV that for un-
polarized light we have equal and additive contributions
to:thé spectral demsity from the two resolved components
of the electric field vector. A partially plane polarized
source will also‘give additive comtributions to the spectral
density as we can consider the scurce as a supe:position
of an unpolarized and a polarized beam. |
Théarea of coherence, defined as the area of the
detector over which the radiatiom field is closely

correlated is given by A:/Jl. where A is the wave-
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length of the incident radiation and . is the solid
angle suptended bH the source at the detector. (Forrester,
1961) If C, is the number of coherence areas on our
detector surface of area A, then ¢, = R-IL//Aa

We will be concermed with the photon amd photoelectron
statistics in the following'analysiso Thus if there are

n ‘photons imcident on the detector in a time T, then

[~

n= ;Eéru where mn; are the number of photoms incident
=1

in the L% coherence area. Since the ni in different

coherence areas are uncorrelated, we have the following

averages:

<> = N<ne>

varn = N var ng

We need therefore analyze only one c¢oherence area,
all areas being additive imn the cumulants of which the
mean and variamnce éie the most importanmnt for present work.

Thus consider a beam of plame polarized light
incident on one coheremce area of the detector. Define
the intensity of the light on the detector at time t as
I, = E%E: = u* + v*. We will assume there is no

reflectidm at the detector.

photoelectron fluctuations

If .Ph&Jﬁ 1s the probability that n photons are

incident on one c¢oherence area of the photodetector in a
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time interval t - T, t; where T is the detector resolving

time, then: 3 L, dt) = « Ledt

where A= /\‘/_O_ Rhu
and A74L==%Q.vcoherence area
R= Q"’/e,byz impedance of space
h Planck's constant
W frequency of the input light

On the assumptiomn of a Markov proc¢esss

IR LD - EP.\_, 4D - P Lmtt)—l «I,
ot ,

thus:s - n .
- |\ gy gl
potey = [« ST exp |- I "*]

We will assume the detector response has a uniform
memory or sampiing time T. The mean value of n in a
single system of an ensemble in the time imterval T
is:

+
S npaled) = T = o ST
+-T

TE} will in gemneral be a fluctuating number, the
fluctuations being determined by the relative magnitude
of T and M, , the correlatiom time for the imput

spectral line defined by: (Mandel, 1959)

T, = _Sjwl () 4 /Y, (o)
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where 'IP_-;_ (’V\) = <I+. It+'f> - <]'->=~

is the autocorrelation function of the intensity
We will denote by a < > an ensemble average, thus

the averaged quantitys

<nf.,> <y = <~ §L'4+>
= < <I>T

Similarly the second moment for a single photon
counting system is:

t +
Znn‘lbh(t;ﬂ = ndr = dSIr'Jf' "‘*’Sg I.I, dude
4T

T <

| Taking the ensemble average, we find:

<Ta> = <ney + xggﬂi 1. ddvr

4-1T +-r

var ne = <mep o+ wgg VY, le- ) die dvr

= <nry + 21&?'§§37—’f)'d£é§)49P

We thus have super-poisson fluctuations, the second
term in the variamce due to the wave nature of the incident
light. It is shown in Appendix V that this super-
poisson character of the variance can be simulated by
modulating a beam of poisson parti@les°

‘The above expression is therefore the variance of

the number of photons incident on the detector area A/A0-
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in a time interval T, given the autocorrelation function
of the incident light. This expression is similar to that
derived by Mandel (1958) for the fl@ctuati@ns of photo-
electrons. His expression 1s not strictly valid as he
-assumes a deterministic rather than a stochastic quantuﬁ
éfficieﬁcy;

Using the results of Appendix III, we can readily
determine the fluctuations of'the emitted photoelectrons.

The generating functiomn for Panﬂﬁ_forba single'

system is:

G—P&\) = Zhs" Phu:,ﬂ

| exp [‘n; (s-n]

If the detector has a quantum efficiency Y[ and

assuming that for every incident photon we have either

zero of one photoelectron emitted, then we can write:
G’Q(S\) = GP (\— n+ r(s>

where. G-Q[_s) is the generating function for Qm U;)T')
the probability that m photoelectrons are emitted in

a time interval t - T, t. Thus:
(;algv_ﬁ- Gj:("'ﬂ*'qsb

From the well known properties of the gemerating

function, we obtain for'the ensemble averages:

ey = ﬂ\<&h:>
-
Var me = Q(m) + é’ZéUDz Sod'- ) 1”’: br)dv
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4-3 _Derivation of the photon distrib

" The distribution of photons in an observing interval

Pr = < pale,™ D
<_\V—‘_'. (oc §i:_E¢'J-t')ncx P <—°( gL' d—b'>

Let C-,-_r (s) be the generating function for FTUD

Then (ol = =" pr )
| £ (=D S I "t
YN

If we let l’i = It'a['é'

e

then | GT () = SO‘"‘FEL@_M] _P(L—D{Zf(

where P(y) is the probability distribution for the

T is:

stochastic variable y. We will derive P(y) for the
two limits: T<«<V. and TN s
i) T << quc,
In a time T<<'Vc‘ I, is a slowly varying
function and‘ we can write vy = _IT° | |

. If we first only consider omne coherence area, then:

I= EE*= u}-&-\/:

where - 6°
BV
= = -
(93 PR = Q" w,v=

The average intensity on one ccherence area 1s Io’—‘- 20
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2

-—PCZ.\Q = X EY: 2.,./28 I

O’:&ZZWZ.,z

= ex 42
i fr[lm; g TG

There fore —P(I\) = -—— exp [ I/I]

the intensity dlstrlbution on one coherence area. For

If we let z,=u?® and z,= v®, then

and

C, coherence areas:

1= é-I
where —P(I‘b - gi(ﬁ [_— I‘./L:]

Therefore since all areas are independent:

BT = PEMT, PENAL. ... PEDL L,

subject to the comstraint ZI.‘ = I

If we take the Laplace transform of P(I)

%(a} = SFPC[\) e.xF C u.].) ZI_
-
then S (u) = S-P(I;) exp (-u,IDJI: = é\-\— uID

and s(’-lb = Y_g‘ ("D]Cl = (l + “’I5CI

is therefore the Laplace tramsform of the. gamma

distribution. Therefore when T«%:

G (D = ?e'—séfb(s-m 7] PAOLT
= glxt-o1]



52

Thus : Cr-r(s\; (\4_*1,1- (1-3356-
(l + Q"DO"s\)SC—

where <nis the mean number of photoms imcident on
one coherence area in a time T, o
1) T>»

In this case there will only be correlation between
photons arriving within a time kTe' of each other, where

.k 1is a constant to be determim;edo T’herefore:

where o 0—2 T/k'u.
If 2(: kT, =

then

- SPE " T
- [sw]”
(+ u,IS "o

]

In this case: G (e) = ge_x‘:[_iés -DkTL 2] Tl d=

c.c:z

VTllusg G“r (g\ = D + d\Iokr‘.‘C O—SB]

We therefore obtain the boson distribution of hav1ng

n photons dlstributed among C = C Cacells, namely

= _['(c+n)
);TUB LYoy nnl ‘ l+b <\+b>
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where b= «I, kT , the mean number of photons
in one cell.

The fluctuations of the n. photons can be written

as Vor ne = <no> (1+ B)
where E = ‘<h£>//CL
Consequently Nar me = <mp> ( | + r(_b)

The super-poisson fluctuations of the photons ‘thus
reappear slightly reduced in the fluctuations of the
photoelectrons. From the second moments previously

derived, we deduce:
C- ST (i

-
If our observing time 1<<‘ 7 , then '2@@'\ = LI

throﬁghout the domain of,integration. Therefore:
a_a a T -l
C= &1 {<:> Q- 4
(<

and (‘, = C. or C; =1
Thus as expected for very short measuring times
all photons arriving in a single ccherence area occupy
the same céll in phase space. | :
. We will,évalua;e C explicitly for various ZA:(T§

i) If the input spectral line shape is gaussian, then

Yot = <55 enp|T 0]



54

The number of cells C is given by:

C=2¢ X e ert (&_ T/’Y) e (\—e.xF(—er7q»‘_=)>]-l

where

As expected, when T T, then C =2¢C,. As
our observing length increases beyond our coherence
length, then only photons within a distance Lo = ¢ TL
of each other are correlated. Finally when 1>»7, , we
obtain C‘?C|T/'l‘°, Therefore (.= 'T'/'l:",_ or k = 1.
C ie therefore the product of the number of cohefence
times ﬂ;} in our measuring interval T and the number
of coherence areas on our detector surface;

ii) Similarly if our line shape is Loremtzian, then

W) = <53 expl-al/r]

[ -Fli-antr]

Again we find that when 1<~Te. , then C = C,

and

and when { »T. , then C= C.T/‘t:_o In this case also
C is the product of the number of c¢oherence times
in our measuring interval T and the number of coherence

areas on our detector surface.



Physical measurements on an incident light beam can
be made indirectly by exémining the spec¢tral density
of the fluctuations in the resultant photoelectric
current in the detector cifcuit°

If 0Ngx+ is the number of photoms incident on one
coherence area of the detector in the time interval
t - T, t; then let Mg~ be the corresponding number
of photoelec trons emitted within the same time interval.
The photocurrent averaged over the interval of duration T

terminating at t is therefore:

= &£ m
do == M

where e 1is the electromnic charge.

If we let <Y\.b\-‘- Ylew;r> - <V\-r>=. = s’(ﬂ‘)
and <W\+,‘r Mt+‘1’,1‘> - <\'V\-r->a = 3 C’f’)

Then <-It: I¢+~> - <I+7a = 7@-@‘3 = (—e?j.ﬂ ™)

We must now relate the photoelectron autocorrelation
function to the photcn autocorrelation functiomn. This

requires the consideration of the two cases, namely

when |l > T and when Il & T

i) When \74 2> T , we are averaging the product of
two separate samples of photdns or photoelectrons. Let
Tb(n“n;) be the probability of having n, photons in the
sample t, t+ T and n, photons im the sample t+Y, t+T+T.
Let Clbm,m;) be the corresponding probability for the

photoelectrons. Then since we are dealing with two non-
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overlapping samples, we will have:

QUnw) = Z=Z Flo,n) B B fma)
where En C‘M\ = (\\/ﬂn ) v-L"' O-von-m

is the binomial distribution.

' = "B = (-qeqe)

Then = 3" Bn(w) = (=041
where Q is the quantum efficiemncy of the detector.
-The bivariate gemerating functions for Wbbnn; and

élbm,m; are defined as follows:

bo ) = =2 Pland " 2™
bo(nd) = == Qlumdr™ =™

Then f£ind that:

| n&
Calnd = %?,—?0-@0-%@“ (\-Q+ qs\
= G—F C\-Q-H'U\ I—r(+rls) |

Then from the properties of the gemerating function;

<m|m;> = 9=G-a(rs]§ = Qz<h‘n=>
ral

I~os

Therefore if lﬁ4 e T

460 =5

In this case: ‘
opr, s> = e 2 M s P ,T) P (64, 1-3>
where Phtﬁ;ﬁ) is the Poissom distribution originally

defined.  Therefore:

g}é§) = ¥1CT]‘T)WJ):= aL=§;£ufg4;év=uf+¢5¢1u-
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where the two T 's in \n(T')T,'Y\) represent the
two upper limits of integration respectively and i

is self evident.

ii) When I'Y\ < T . we are averaging the product
..of two overlapping samples. Let W, = S + S, and
na= S,+ S, .~ where n, and n, are as previously
defined. S, is the number of photons contained in the
overlapping volume of the two samples. Similérly for the
photoelectrons, let wm, = §|+ €. and my= B+ Ss

Then again:

<Y\l> = <Y\=.>= <Yl-r7
Lmiy= Lmap= <my/

and

(VY = cov (8,8 + cov(8/Sx) +c.ov(§,,§-_3+\/a.v- Sa
q () = cov (§,8D) reov(§, 8)+eov (8.5 + wr &,

From the generating function on the previous page:

< Mr (e - b> - 2 iég—géﬁms')] = 22&&?‘1 s)] "

va |
as| Ay

= <t

Therefore var me = N*verns + <M, rz(l_pp

Sw

This is the expression for the fluctuations of the
photoeleci:rons as a function of the photon fluctuat;ions.
‘Evgluating the covariances in -Q-('\-’) , one finds:
. cov (8.8 = cov(3.8)= h{rT )
cov(8.8) = h{T7r,T)
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var €, = hiT=r 17 0) + <8.>

It is.readily verified that:
h(rm®) = 2h (7%, ™) +h(™ T 1) + T, 0)

Therefore:
Sy = hWiTTY) + <=0
Since CoN (g; §.l) = Qz coV (gi. §J3 L#"_]

‘and Var 8, = vf Var S, + <& vl.(_\—ro
we £ind: (V) = Q‘Dw (T,v) + <§,>] +<S;>vz(\-h)
But L) = (I:{—m> <nrp

Therefore the general photocurrent autocorrelation

function is:

%) = (%‘:—)2 [ﬂ‘hhmﬂ 4 <> (t;jgﬂ)] 4 IMeT
[ESphinm®) e

Mandel and Wolf (1961) obtainedvthe term involving

h(ﬁw:dﬁ as.valid fbr all\(V due to héing a deterministic

rather than stochastic quanthm efficiency. - '
The spectral density of the photoelectron fluctuations

due to an incident light beam is therefore

S, () = zgﬂ»ma e
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The first term of 1&(@5 valid for all " can be

simplified to:
<<I>> fSCT:-\if)\(61+4§\f*6141f5 d~

where ‘{CF) is the normalized correlation function fior
the electric field defined in Appendix Iv.
Thus:

A | W
S0 = 2252 ()™
T < .

T = "
y 2L Sér_ k)l SYG&'ﬂ Y¥oD) e §
™™ ) =

By Parseval's theorem:

g\(étﬂ:‘) ¥ (=) —"ud'r = Sw@r le,2) G (S-ue,) due
vhers & (&%) = § Yesp) e AT L

uD

= e. F)
and F(f) is the normalized spectral line shape
. derived in Appendix IV. Similarly;

GlSe)= e F&

The spectral density becomes:

S &) = 26<I>[Z_3‘(\ coquT:l

i} |
+ 2 ___{5’2: g(-r_ |,,,\\e'wz d= §°‘: () Flars §) dir
™ 4
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Or

S8 = Re <:r>[ (- ca:wﬁ']

+ 2<3> (sin Q"’T g Fl) F(rs8) dom
z

Frequencies of interest will be much less.than the
inverse of the detector response time. Thus we can

write for (wT)<< 1,

Se§) = 2e <> + 2453 C A Flrad) do

The shot noise term may be associated with the
particle fluctuation nature of the light while the
conQolution term is associated with the waﬁe interference
néﬁure of the incident light. The second or photoelectric
mikingwterm of §%(4) was derived by Forrester (1961)
using somewhat implausible arguments.

As stated ﬁhe above derivation is valid only for
lightnincident on one coherence area. Due to the in-
dependence of the fluctuations in different areas we can
write:

| S(8) = € Sg(9)
and <:Ii> = CL <:E:>

where  <Ii) is the average photocurrent contribution
from the (% coherence area and <@j> is the total
mean photocurrent. Thus the spectral density for the total

photocurrent in the detector circuit is:



6l

Se(8) = Re > + 2__253" 1& Ftw) Flo+5) dv

To determine the relative magnitude of the two
terms, consider the case 6f black body radiation in
a freduency interval CAN) , for example‘abspectfal%line
from a Qas discharge. The wave interference term divided
by‘shof noise.is'therefore: “ |

LD
S - e—c»\@u\)

— 'l <n<7 = ¢ A &
| TV —an{y

where ﬁ(\h = N h b(“yaa and A /c, = ’\2/_0.. |
. b ol
Therefore S = YL b (\"3 where E(@ = <f— " |>

For a source temperature of 10, 000° K  and
waveléngth ,\= 6000 an. and a quantum.efficiehcy
of unity we find S =0.1 . This is also valid for
' unpolarized ligﬁt because of the additive naturerf the
.spectral density. For”theimal sources in the optical
fénge theréfore the Wave interference term will be
undetectaﬁle.

V‘Since the advent of lasers, we have access to
light sources with very high effectiventemperétgres.
This has made possible speétral dénsity measurements
where the wave interference contribution is dominant

compared to the shbt noise.
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We will define a bandwidth of ourAinput.spectral

=\

line as:

b6 = gr: () 45

where F(f) is the normalized input spectrum. It

is readil§ verified, see Appéndix IV, that é§4)qi,== 1.

If our input line shape is:
i) Gaussian:
then E (% -~ ex \__ (%-S-S/z;:(
Uism'
where @§) =W o ~ and £, is the central
frequehcy of the line. We assume that @Q << 'Qo

If B is the bandwidth at half intensity, then

éﬂi} ==(Sé%kz’%f5 ~ |,58

S (&) = Re<W + %%‘exﬁ[-ﬂ‘/@%ﬂ

Thus:

ii) Rectangular:

Then Fe)

"

69Y fr l4-%| DA
o b 14-%)> @Dk

and < = 2e< 24 | 69 - forpaGalat
nd 5 () D> - @u[@ §| foroated

= 2e <D Gor  $§3@%)

For L @-Q there will be only the pure shot

noise gomponent present.
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iii) Lorentzian
2B
| #5535 + B7]

where B is the bandwidth at half intensity.

Fls) =

In this case

@%H=TH

and a _
: = LB \
(5= Re<kD> + R S ( fmzae)

In a gas laser, the mirror spacing is usually
sufficiently-large to allow the excitation of several
longitudinal modes within the doppler broadened lihe
width. _If for example we had N longitudinal modes

each with a gaussian lineshape, then

Fl = = Grer L‘C""“Vzb—z]

=l

where (6; determines the relative intensity of
each line. Then Z ,5:, =
since F(f) is the normalized line shape.
| $: = central frequency of'ﬁhe L% mode

(A_Q.b__.. ¥ o ic the linewidth of the (*h mode

From the definition of Qné) we thus obtain:

o - 22 bl beSThone]
AT

For two lines of eqgual intensity and width:

@) = "L"r/le P ED



64

When the lines are will separated, (&%) is just
the sum of the two individual line widths. The spectral
density is then: |

- 2B == Bif ex -(‘r+‘rz-’§7
S_,.(fr) = Ze<Iy + {;1,]"&24 [ﬁ?&P Z_(U?ﬂﬁ)

When 1 = j, the wave interference term is. just
the sum of N individual self-mixing spectra. The i # j
terms correspond to the photoelectric mixing between
differént modes and are ceﬁterea at the éorresponding

difference frequencies.
4- Pho counti fo m lated ligh ource

If we modulate sinusoidally the input light intensity,

then the intensity at the detector is:

I; = al, [14- m.c.os@,'l:']

where I has all the properties previously defined.
a(l4m) and m are less than unity and w, = Rmr¥, o
is the modulating frequency.l |
| Fof'élsingle'spéctral line this modulation has the
effect'of producing two sidebands each with intensity
(m/,j I, where I, 1is the ihtensity of the central
line. For the resolutioh of these fh:ée lines, fhe‘
modulation frequeﬁcy | S. >(A4> the linewidth of the
incident beam. ' | '

The average photocurrent is therefore:

D = e.Y?.oLA. <D
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The wave interference autocorrelation function of

the photocurrent after uniform averéging ovér T is:

YD) = <o (o oo Dess i

oy

il %"2’. S@_‘\"—DQ + -':ﬂz- casu,(x-»ﬂ) Y s Y¥bea V) do
- '

The spectral density is:

S8 = 2e<D o+ a(@z;n (- conioT) S (6-%)
w,T

<0

¢ 2 <2501 ) 2@} C Ry Pl
-2
2 a =° -
+ éé_f‘?;m S@_ ubxy,gw; 214D Your) V) 4
~T =

Again using Parseval s theorem:
Sws _._@_w) ‘6&-\-‘!\')\("‘(%"\})@ J"t‘ = g W leye) Ho( S v:) die

where H, (&, x) = S cos 2 fx+) 6 et ) e,-‘i“n:(qa
and Wi = S eon 2 bud) Yoy LTl

l-ll(if-,,i) as a function of the input light specqt;r_um is

therefore: .

B :
Wi = o [Fe-4A) + Flsa i)
w3
Hatctid = & [F5-5) + Fla+ 4]
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Using the properties of F(f), we find:

Quted Mlosid) die = [rplioad |2 Sronrimdrdo
+ g*i:(ﬂ Flv +. lff—‘ﬂD dvr

+ iF(v\ Flo+%+5) Jv]

Thus:
Sl8) = 2e<> [ 2 Omcomad]| 4 z<r>m1(\ w0 T l6=4)
+ 2<355 S‘L’ﬁ? Sa Flo) Flv+$) dv
2 | . Z o 7
- <F (sg> [ CFe) Flors 15-61) dor + SF(V\F(WJ@A%
z/ L° °
_Again for frequencies of interest, wT<«l  and:
5 uXT<<3. S |

S &)= <D + <:>‘ S (5 %) +z<¢>‘§fzv\\=(v+4)4v

+ ; a[ §: Fto) Flr+ 15-5Ddvr +§:® Flri+$) Jq{l

If the input lineshape is gaussian, then again

F(§) = ‘%E‘[— (64322  wnere ()= 2FW o
. a2ty A
The spec¢tral density of the photocurrent is: -

S )= Red> + LM B4-E)

v agd] Ty ey Théw
| g W
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FIGURE 4-1

SUPERIMPOSED SPECTRA "FOR A MODULATED LIGHT
SOURCE. WITH A DOMINANT WAVE INTERFERENCE

TERM .
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The third term in the spectrum is the sum of the
self-mixing terms of the optical lime and its two side-
bands. The last two terms correspond to the mixing of
the input speétral line with its two optical sidebands.
Since the three spectral lines are derived from.the same
input spectrum, all components of frequency difference

%, are completely cocheremt. This results iﬁ the
delta fupction at the modulation frequency 4, in the
detector circuit. (see figure 4-1)

When the wave interferemce term is negligible as

compared to the shot moise, for example from a. black

body source, then the photocurrent spectrum iss

S = Re KT+ &Y B(5-K)
Thus a modulated black body source can be used for

the transmission of information.
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CHAPTER _5

CONCLUSIONS

An alternmative derivation of the number fluctﬁatioms
in a multilevel system has been obtained using the
Langevin approach. van Vliets analyslis of a three level
éemiconductor model has been extended and a lowerAbound
of 0.75 was obtained for the ratio of the variance to
the mean number of the conduction electrons. A special
case of a four level system was discussed. It was shown
that in certain limits super-poisson fluctuations of the
conduction electrom numbers could occur.

A general expression fqr the autocorrelation fumnction
for a three level system was derived. It was demonstrated
that in certaim limits this was the sum of two éinusoidally
damped terms. A genexal criteriom for the appearance
of oscillatory correlation is a profitable topic for
future investigationoA

Another importamt area for further work is the
examination of non-statliomnary systems. This wauld
require a modification of the present theory in terms
of the time-dependemnt Fokker-Planck formulation.

The fluctuations of the photom numbers as a function
of position within a cavity enclosing an active hoﬁo-
| geneous medium were derived. The width of the emission

line was obtained and for small mirror reflectivities
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shown to be a function of the cavity amplificationol For
reflectivities almost equal to unity, the width is
virtualiy independent of the.amplification.and”redu@es
to the unloaded cavity width. C(L'§2/Evn'L .

Further analysis would require the consideration of
wave interference effects and some specific coupling
betWeen the photons and gas atoms.,

The spectral density of the fluctuations in a photo-
electric curremt was derived by comsidering a plane pol-
arized light beam incident on a detector of area A
and resolving time T. By using a stochastic quahtum
efficiency, a term additional to that derived by Mandel
(1958) is obtained in the autocorrelation fuunctioh° The
spectral demnsity derived from this c¢orrelation function
is then thé sum of a particle noise and wave interference
~term.

The distribution of photons incident on a detector
of area A 1imn a time interval T has the boson distfi-
bution fof C c¢ells in phase space. € 1s found to
be the proﬁuct of the nuﬁber of coherence areas on the-
detector surface and the ratio of the observing interval
T to the reciprocal of the linme width of the ipcidént.
radiational

Further work would comsist of deriving the spectral
density of the photocurrent fluctuations £for any arbitrary

polarization of the incident light.
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APPENDIX I

The six equations for evaluating the covariances )

for the four level system are:
- (k-H Cov + v Ciz + kps Cia = m, k"D
i # P

F%(P*’CPC‘“ - %{(,:u—rk +r+ NF-&-C}--PD + P]C., -PY Cia
+ r$_(‘,n + kps lay = Mo?—(?-!-?—-‘-b

F?q:+® Ch — 4P Cia - F[@,«n—%k»r s+ D(F+3’+D + ﬂca
+psln + (F¢/K)Ca = Loplprgri)

kPI%l\m-cp élz -ci,c,\— i@"'b(?""l“h*‘fzcn] N
o[reripén - pim-itetpegedoplen] - 0

Plp+g) Cia - i&fh(pﬁ_m 4P} Can = P laz = Mo (p+gerl)
?_(.FHPC\; - %é‘*D(F*‘}—"'D +?:§c“ - %C;; = —io(P-\—j_-l-b
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APPENDIX II

We will extent the analysis of Bartlett (1951) for
a Markov Chain to include spontaneous emission. First

of _all, however, we will briefly review Bartlett's results.

At t=0, we have a one particle imput into our system.
Each particle can generate' a distribution of particles,'
whose generating function is G(s) .. Lf events occur at
discrete times (A'Q apart, then Sh (s) is the generating
function of the system after the hﬁ"' event, namely at
a time nt) .

Thus S.le)=s S/ = 6k)
L. = G(6() = S, (66 = &(3.)
Similarly:

Shey () = Sn (@m é—(s.zs\)

As At->0 we can write

CeY- = = 3&3 at
and s-ﬁ-nt ) = S (&) = G'(S*L"\>

Expanding in powers of @¢t) .
Sea v 280D = S r2S 46 &%)
and
L + 9S @) = S + q (@) ot
We therefore obtain .@;rtlett's results:

Ses - 28 +e
2_57_2_ = 3(53_5_5_45

9% = g (Ses)
ot
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To find Egbs , we then simply evaluate

S ,34@

The former analysis has not included the possibility

of spontaneous emission at any time t. Let F(s) be the

generating function of the distribution of particles

generated spontaneously in a time 69%5 Let us now

denote the total generating functiom of the systemvafter
the nﬂ~ event as k%s.

Then again for a one particle imput: x;6$==$

¥ (D= Yo (665 F&)
%%+\Q§)= ‘Kn<@}é3)¥:(€)

Expanding in (&t) , we obtain in the limit as

the differential equation.

Y, S = A 292&
-éﬁi— %(3\8;5 +—£3&5 15;5

where we have used:

é}éﬁ).—.s. = 536536?¢>
Flay - 1 = &6 @b

To solve explicitly for \Qs

i

we must proceed as

Y= S F
Yal)= SilF C%Ls% Fé)

\¥;+|é£> = 53“+,G£) —jﬁ; F:(S;;&S)

or taking the logarlthm

Zej Yo ) = éj Swi () + 2153 SENA

follows:

thus
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Again using Fle) -\ = Sk) at

and also: log(a+b) = log a + b/a if a»b

we find upon éxpansi’on in @f}‘.
bg Yoo + - TEED = bgSia s L 286D + Z (et

In the limit as At»0 we find

+
\{-bs = s-&s CKF gﬁ% Cgsﬁhiﬁ‘

Obviously for no spontaneous emissiom, £(s) = 0, and

Yes = gts as previously derived.

If instead of a one particle imput, we have an input

distribution generating function H(s), then:

Y, () = HE)
Y= H{3() F&)
\dé- (33 = H (ga(‘\B F(S.[s\\ F(S)

thus

§G+|(§)== ¥}(§$W\GS>‘IEL F:(SWGSD

Taking logs and expanding as befo:e, we f£ind that:

+
Yl = H(SDexp S 5(BDLY

where as before Xilg)satisfies the differential equation

a—f-" %(SS Yes + _3653
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APPENDIX III

Proof of,the‘stability of any statistics when
subjected to a Einomial process.

If the distribution of the input particles is P(m)
and the distribution of the output particles is Q(n) after

having been subjected to a binomial process, then
_ v o -
QY = = PbD B ()
where R, (n) is the binomial distribution:
n m-—n
B () = (w) p (-F)

where p 1s the probability for am m particle to

become an n particle. If:

Cp &= = =™ Plw)
and baty= = =" Qb

then (1o _n-%a s" é,?‘"‘“ B b
é‘o _P(m\ (\— P+ Fﬁwm

or G‘a&\ = QP (1- P+ s\ﬂ

Thus the gemerating functions remain invariant in

form. The moments are therefore:
nl — 9'Y§Qﬁ§1 F '
h-n 7s" (_\m G
If @r éhis a boson distribution generating function. then

Gpe)= (+b-bsy"
thus N
‘ G-g_[s‘): O"’ EP"LPS\

and the effective boson factor b has become pb.
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Derivation of A '711’1 ('1'5 and =1 (-Q :

- e
The instantaneous intensity I.= EuESf

= > =Y
where Ee= W+ Ve
and Wy and Vi are Hilbert transform pairs:

Also S Y
: L Ui + juat

-
ﬁ = _i Vie + ~ Vit
-

where 'f and | are unit vectors in the x and vy
directions respectivelyo' We will assume the light is
incident in the z direction. Also 4« and WYk
are .gaussian random variables with zero mean.

Therefore if E, and E are the x and y components

of the electric vector on the detector, then:

Eip = We + Ve
Ezt = Uae +‘~1 Vate

Define an electric field correlation coefficient:

Yy = Rie Egen > /<<Ii><[k>>¥z
—_=<(u,:¢ +] WQ(M«-&+’P*_JWM)>/(<I£><1&>>2
where <IL> is the intensity dqle to light polarized

in the t direction. From the ¢gonjugate properties of

u and v , we have: (Mandel and Wolf, 1961)

<0Lgt U—K;b-»'r'> = <'U"C\¢ v\&,t+’(‘>
<u-i‘t U'k\-evr? = - <U-K\-tvr* Vi.t)
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Therefore:

e 2t g ] G
and - Yo (M) = X (P

Allso: <It> = 2 [QL?> + <u-:>]

<I-e Itw> = < 22, é (e + vt Yt + v;:*.,.3>

If the z; (1=1,2,3,4) form a multivariate gaussian

distribution, then we have the following identity.

(22,2, = <B2.DE2D + B2 + @Ry
Thus. <ﬁa111§a~>> = <Q¢a><ﬁtz>'4‘:2‘<ﬁu:dn¢+¢>f

The other products may be similarly reduced. Again

using the conjugate properties of U+ and Vg , we

LIelewry = | s 4-<u:>]2
P 22 [t + etnan]

find:

The autocorrelation function:

'u$é§5'$ <<IEI¥#€>-— <<I;?
1s thén 71& (V)= K 2—% {4‘-& u.u-e-n->= + iy 'U'ke-»nS]
or Tkt C’T’) = 22 \Yw(’ﬂ \1<I:><1v.>

The spectral density defined by: -
. ! ft.;
S = 2§%0) A
- )
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is

Sel) = 2 22 <<ty \Vut) ¥ @) i

Then using Parseval's theorem:

) T ' °o
(U ar = (RER (4-9dx

wheré F&K Us» = _S‘b\(LK('V\) e —Jwé’f’

Fi () = S oy e ™ gr

Let Bunl) = i hxssr
then using the properties of analytic signals (Deutsch,
1962)
h = - o
KIo<ao] vt = 280ama™Tor 40
- §@L‘(¢5 T gy $a0
= 0 540
Similarly F-},: (—!D = Fu (‘Q

Therefore:

QXM GDT = SR Fucle- e
= QR Fin ey e

Thus: St D= 2 ?.?—ét><1\‘> g:\:—ug (%) Py (o) d

For unpolarized light ¥:l)=0 , ana:

e = 2 F <5 (Fulo) Fuclerd e
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The intensity on the detector is It==Im*'Ia¢

where  LI> = <EY = <Ly Yub) = SFu® &

Thus R, (&) and F..§) are the input spectral
line shapes for the. two polarization components. For
unpolarized light F.l6) = Fo %) and we have two
équal contributions to the spectral density.

For a plane polarized beam in the x-direction

we have (dropping the suffices):

Vel = LTF YD) XN
where \K(’Y) = <Et E:;'T‘> / <E" E':> _
¥t =0 Y= 1

2
Therefore wx(D\ = <I> as expected since the
intensity is exponentially distributed when considering
a single coherence area.

The wave interference spectrum is:
o)
2l = <5 FOFler ) de
O

where F(f) is the normalized input spectral line

shape.

Proof that Ted= 1

We defined T = gj”zlﬂ dT / "J’I (o>
an d o
d A = [SF‘&M’::{'
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Using the relationship between the autocorrelation

function and the spectral density, namely:

'IPI@-B = g:sz(éﬁ cosw d%

T o Sar(Saemor s

Y (0)

- § S8 3(8) 4%
¥1(o)

= 5&:&5
2 W (0)

oK

= § Fods

and

@{73 Te = 1
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APPENDIX v
Modulated poisson input:

Gi§en a éource which emits particles at random, the
probability of an emission in a time interval'£;t+atheing
wat . Then the statistics of the number of pérticles
emitted in a time interval T is poisson. Then insert
a chopper into the patﬁ of the particles such that it
alternately transmits the particiés for a time T, and
absorbs them for a time T, . A detector after the
chopper counts the particles. By examining the first and
second moments of the number.of particles incident on the
detegtor 1# a time T we can show that.the resulting
fluctuations are/élways super-polsson. ”

We will examine two cases:

1. T, and T, are constant

2. T and T, are stochastic

1. The probibility that n particles are emitted in a
time T is: o A W
§ exp v /il
RN = ET) explem) /ul

The generating function for T>(n) is:
Cel)= SR = exp (wTleD)

Then it T,= L+ 1, -, then ‘ N
| b= [5G0 6,6 G fe)
/
where N= {TA;] and t, and t, are the remaining
paftial intervals that were included in the tiﬁe T.
/ : .
[}Lj] denotes the greatest integer less than. or

equal to x.
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If @ (w)is the probability of detecting m particles

in a time T, then the generatlng functlun for ézrad)is.

Hote) = 10w 64,6
S N =)

The moments of m for this particular measuring

'i‘nterval gre.‘: - N'YNT. . f:l

MMy = W INT,+t .]a

"

t will, however, depend on where we start our
measuring interval. If we take an ensemble averagde over

all possible meésuring intervals, then:
Gay = W INT + &)
and Varm = <m>4 W vart,
If we let = T-NT, and T« T
then find: &y = gT./To

wet, = SL[3Tm-sT]  0eSeT

#

133@',—35 - Tl T+SeT,
3T,

and var t'}s = var ‘b.] g
S;nce va»t\= wart, the case for'TliT;is easily
;evaluated. |
2. T, and T, are stochastic-
If Aot is the probability that the pulse T will
terminate between t and t+at if it is on at t; then the

probability of having a pulse of duration T is:

‘P(TB )\( e.xp(-/\'T)
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‘Similarly M = »/\ze;«é (- t\;ra>

Then using the previocus approach:

G*é§)== _q_[G?u(;ﬁgl
where =2 Tu+Ta =T
and I () = TG..,.“ = ex \:Iu[s-hi.‘l‘.;:(
.Therefore: : Tz W ;;[11

W = W Z 2 T

Again taking an ensemble average and noting that

T and ‘Tg ard independent 4if L]
<\m>= W N <T|>
GnlbnD> = W NCTD + DS ]
where N= T /((TD + <T.a>>

We obtain:
Varm = <m>+ RN var T,

o Nar w = <mD (\ + 4'\>/N>

In boﬁh of these esamples, the modulation increases
the ratio of the variaﬁcé to the mean. This modulation
has the effect of sending packets or bunches of ﬁérticles
‘to the detector. Thus the'supér-poissom nature of bosons
is attr ibuted to .} bunching.

At present it is not known whether there is any
possible operation that performed on the poisson p#rticles
would producevsub-poisson fluctuations in ﬁhe 6utput

particles.
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