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ABSTRACT

A quantum theory of gravitation 1s constructed, by
considering the gravitational field in the linear approximation
to be a rank II tensor fleld, which has imposed upon 1t the
auxiliary conditions of syﬁmetry, transversality, and traceless-
ness.‘ Extensive use is made of the close analogy between the
electromagnetic field as a special case of a vector field, and
the gravitational field as a speclal case of a tensor fleld.
This analbgy Includes the necessity of introducing an indefin-
ite metric in ofder to make the auxlliary conditions compatible

with the commutation relations.

A complete theory of gravitation must take into account
the gravitating nature of gravitation and hence must be a non-
linear theory. A method proposed by Gupta of iterating the
1inear field equations for this purpose 1s investigated, and it
is shown that this‘method fails, because the Lagrangian for the
second order equations does not exist. An alternative method
of iteration is proposed which avoids this problem, and which
yields a functional equation for the Lagranglian of the full

nonlinear theory.

FPinally, the problem of photon-photon scattering due to
the gravitational interaction 1s investigated. This 1s done
by constructing an interaction Hamiltonian by using the prin-
ciple of the compensating fleld and then applying the standard

methods of quantum electrodynamics. It 1s found that for
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sufficlently high frequencies this process dominates the pure-

ly electrodynamlc scattering of photons by photons.
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INTRODUCTION

In the past, attempts at incorporating the theory of gravi-
tation into the body of quantum field theory have followed two

different avenues of attack.

One line of approach has as starting point the classical
theory of gravitation due to Einstein (1916) without approxi-
mations, and 1s based on the bellef that canonical quantizatlon
procedures, such as those of Heisenberglgnd Paull (1929) or of
Pelerls (1952), can be applied to such an essentially nonlinear
classical theory, even though these procedures were fashioned
originally for the purpose of establishing an unambigupus cor-
respondence between eséentially linear classical fleld theoriles,
such as electrodynamics, and their quantum mechanical analogs.
Proponents of this approach have been Arnowitt et. al. (1959,
1960, 1961), Bergmann et. al, (1956, 1958, 1960), de Witt
- (1961), Dirac (1964), Anderson (196l ), and others.\'Thesebb
authors have all been faced with fofmidable mathematicalﬂand
conceptual difficulties arising froﬁ the need of casting Ein-
stein's theory into canonicél form, either in- terms of a Ham-
iltonian or in terms of Polsson brackets, before the cénonical
quantization procedures can be applied. . In fact, different
opinions are held about what constitutes a sultable set of
canonical variables in the theory of gravitation, and 1t is
not known whether the different'quaﬁtum theories resulting from
this approach are physically equivalent. For example, Arnowiﬁt
and Deser (1959) prefer to cast the theory ofvgravitation into

1
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the so-called Palatinl form (see Schroedinger, 1950) in which
the components of the metric tensor and the affinities are
treated as independent variables, and the connect;ons between
them are imposed later as constraints on the theory, requiring
appllcation of special mathematical technigues developed by
Dirac (1949) and Bergmann (1955). De Witt (1961), on the other
hand, sets up Polsson brackets only between invariants of the

" gravitational field, thus eliminating the need for subsidiary
condlitions, and carries out the transitlon to quantum theory at
that stage, leaving open the question whether this technlque
leads to the same physical conseéuences as the Hamlltonlan
formalism of Arnowitt and Deser. An attempt by Feynman (1962)

also belongs 1In this category.

The other line of approach has as starting point a linear
approximation to Einsteints field eduations, obtalned by con-
sldering the deviations from the pseudoéeuclidean metric tensor
as fileld varlables, and neglecting terms of quadratic and
higher order in these variables (see Einstein, 1918). 1In a
classic paper, Pauli and Fierz (1939) proved that the resulting
field equations, in the absence of external sources, can be
looked upon as dynamical equations describing the propagation
and polarlization propertles of a massleds particle of spin 2,
the "graviton", in analogy to the classical Maxwell vacuum
equations which can be looked upon as dynamical equations des-
cribing the propagstion and polarization properties of a mass-

less particle of spin 1, the'"phdton" (see, for example,



Archibald, 1955). The Lorentz condition of classical electro-
dynamics, which restricts the gauge freedom of the electromag-
netic potentlals and functions as a;tfansversality-condition

on the possible polarization states of the free photon, has ité_
analog in the gravitational case iIn two so-cdlled gauge ccondi-
tions, due to Hilbert (192u) and Fierz (1939), which function
as traﬁéversality conditions on the possible polarization states
of the free graviton, leading, as in the electromagnetic case,
to the elimination of all propagation}modes that do not corres-
pond to eifher parellel or antipar&llei orientation of the spin
with respect to the direction of propagation. Within the frame-
work of this classical theory of gravitons one can perform har-
monic analysls and classify multijgravitoﬁ states according to
their energy, angular momentum, and parity quantum numbers, as
was done, for example, by Zhirnov and Shirokov (1957), and
derive selection rules governing the decay of objects into two
or more gravitons (see, for example, Carswell, 1965), However,
“transition to a full quantum fleld theory of gravitation, re=-
quiring a description in terms of graviton annihilation and
.creation operators, runs into a characteristic difficulty, en-
countered already 1In quantum electrddynamiés° When one uses

as basis for the quantization procedufe an action principle
ylelding both fleld equations and trahsversality conditions,

as was done for electrodynamics by Fermi (1932) and for the
linearized theory of gravitation by Paull and Flerz (1939),

one ends up, upon quantization, with an Inconsistency, because
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the transversality conditions, if imposed as operator equations,
are incompatible with the cémmutation relations of the theory,

- as was polnted out by Belinfante (1949). A way out of this'dif_
ficulty was shown by Gupta (1950, 1952) and Bleuler (1950).
These authors develop the quantum field theory for a generalized
type of massless particle unrestricted by auxiliary conditions,
and then impose the transversality conditions only for the posi- .
tive frequency part and in terms of a constraint oh possible
gtate vectors. In this fashion one can satisfy the commutation
relations without impoéing the constrdints as operator equa-
tions. The price one has to pay for this method is introduction
~of state vector spaces witﬁ indefinlite metric, and the trans- |
versality conditions hold only as expectation values for physi-
cally permissible.stateé. The result 1s a theory in which par-
ticles corresponding to polarization modes other than the pﬁre-
ly transverse ones still do not contribute to the expectation
values of dynamical observables such as the ehergy and momentum
of the fleld, even thoﬁgh their exlstence asAvirtual particles
must be conceded 1f the state vector space spanned by the fileld .

operators be complete.

The approach based on the linearlzed gravitationél fileld
equations of Einstein has the advantage of ylelding at once a
viable quantum fleld theory, permitting use of a terminology
which aécribeé to purely transverse gravitons the same degree
of reality as that ascribed to the trangverse photons of quan-

{
tum electrodynamics. However this-close analogy to quantum



electrodynamics becomes an encumbrance when one trles to modify
the Initially linear quantum theory of gravitation to accommo-
date an essentially nonlinear feature which distinguishes
gravitation from electrodynamics on account of the equivalence
between energy and gravitational mass, namely the fact that

the gravitational field itself must be a source of gravitation,
whereas the electromagnetic fleld itself 1is not a carrler of
electric currehtso It 1s apparently mathematically impossible
to construct a theory of gravitons taking into account soufces,
elther due to other flelds or due to the gravitating effect of
the gravitational fleld itself, under simultaneous retention of
the gauge conditlons which are:necessary for the elimination

of all but the purely transverse propagation modes. This was
found out by Gupta (1952, 19t8L) when he tried to incorporate
sources into the quantum theory of gravitatibn. Indeed, 1if one
linearizes Einstein's field equations with external sources,
then not even in the first approximation can one satlsfy the
second gauge condition of Fierz. Gupta (1952) managed to re-
palr this defect by the artifice of introducing an additional
scalar field, corresponding to an 'additional kind of spinless
graviton, and then arranging an additlonal constraint so that
these spurious particles do not contribute to any observables
of the gravitational field. If one now tries to take into ac=-
count the gravitating effect of the gravitons themselves, for
example by some iteration method as was proposed by Gupta

(195L), then insistence on retaining the Fierz gauge conditions



presents an apparently insurmountable obstacle, and Gupta was
unable by his method to produce for the nonlinear theory an
expliclt Lagrangian which he presumed to exist under these con-
ditions., In fact, there are reasons to believe that such a

Lagrangian does not exlst, as will be shown later in this work,

These conslderations raise the question whether there are
any stringent reasons why one could not relax the gauge condi-
tions of Flerz when one aims at nonlinear modification of the
initially linear quantum fileld thgpry of gravitatlion. This
amounts to seriously entertalning the possibility that graViu
tons may exlst with polarization propertiles other than the
purely transverse modes treated exclusively in the usual ver-
" slons of the linear theory. A corresponding possibility cer-
tainly does not present 1itself in quantum electrodynamlecs, be-
cause the Lorentz condition, which serves to eliminate the
longitudinal and tlime~like polarization modes, can also be
used as a convenient device for extraction of the law of con-
servatlion of charge from the fleld equations in terms of an
identically vanishing divergence of the current four-vector.
In fact, if the law of conservation of current were not true,
then the field equations and the Lorentz condition would be-
come incompatible. In a theory of gravitation which uses Ein-
stein's theory as a guide for how to couple sources to the
field, on the other hand, the first gauge condition of Fierz
would require that the ordinary divergence of the energy-

momentum tensor vanish, whereas the actual requirement on the



energy-momentum tensor 1s that 1ts covariant divergence vanish
(see Landau and Lifshitz, 1962). Similarly, the second condi-
tlon of Flerz would require that the trace of thls tensor be
zero, which is certainly not true in most cases. Thus the same
reasons that lead to retentioﬁ of the Lorentz condition in
gquantum electrodynamics and to the ensuing disqualiflication of
longitudlinal and timelike photons as real particles, argue for
abolitlon of the gauge conditions of Flerz In any quantum the=-
~ory of gravitation almed at incorporating sources and nonlinear
features of the gravitational fleld, and for development of a
formalism that glves room to all possible polarization states
of the tensor-field whose quanta are to be identified as gravi-

tons.

With these views 1n mind, the work reported iIn thls thesls
began with the development of a linear quantum field theory of
massless tensor particles without restriction on their possible
polarization states. Accordingly one has to do with 16 inde-
pendent field variables, whose symmetric parts acquire physical
content by identification with the deviations from the pseudo-
euclidean metric field tensor. The symmetric part of the field
gives rise to lO polarization modes, corresponding in particle
language to 10 types of gravitons, namely 5 modes belonging to
the spin quantum number j = 2, 3 modes belonging to j =1, and
2 independent modes eaéh belonging to j = 0. Thg skew sym-
metric part of the field yields 6 more modes, corresponding to

2 independent sets of 3 gravitons each, all belonglng to j = 1.



If one ignores the skew part, and imposes on the symmetric part
the gauge conditions of Filerz, one arrives, of course, at
Gupta's linear theory without sources. It is then shown how
one can account for gravitating effects of these various gravi-
tons by an l1lteration procedure, devised such that 1ts results
agree with those of Eilnstein's theory in first approximation.
However, this procedure 1s not aimed at recovering Einstein's

' full nonlinear theory in the 1limit of infinite iteration, as
was attempted by Gupta (1954). This ralses the intriguing pos-
gibility tHat the physical consequences of the theory developed
here will differ for strong fields substantially from the cor-
responding consequences of Einstein's theory, which has never
been tested experimentally except for weak fields, and strong
field solutions of Einstein's field equations thus far have
been applied only speculatively to questions arising from the
problem of gravitational collapse of superdense stars. The
effect of the gravitons considered Here on other objects, such
as electrons or photons, can be tréated in the usual way, for
example by the method of Utiyama (1956), and one can thus pre-
dict, in principle, how unusual types of gravitons, 1f they
exist, would manifest themselves through interaction with-such

other objects.



l. The Linearization of Einstein's Field Equations

All quantum theories of gravitation use as starting point
the fleld equations due to Einstein (1916), which in absence

of external sources have the form
R//«D = O: (101)

Expressed 1in terms of the affinltiles

o kol
T;’ é 8/‘ < 8/00'/1)+ S‘Do/a- - 90-»0/‘°> (1.2)
the symmetric Riccl tensor
= o o o o
Ro= T - T + WL -T2 (1.3)

exhibits Einsteint's field equations (l.l) as a set of 10 non-
linear partial differential equations of second order for the
10 independent components Sﬁg of the symmetric metric tensor.

(A vertical bar is understood to mean partial differentiation,

thus
Ao = |
M jz£¥’ , etco (L.l)
X
Greek indices run from 1 to li, repetition of an index implies
summation, co-ordinates are labelled as x1=E X, x2 =y, xssz Zy

quE i1t in a particular co-ordinate systeﬁ, and conventional

natural units requiring ¢ = kB = 1 are used throughout this
work.) The gravitating effect of the metric field is under=-
stood to manifest itself in the motion of test particles whose

worldlines ére assumed to be geodeslcs in this metric field,
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so that the co-ordinates x/(s) of such a test particle satisfy

the conditlions

4 '[Z:?Zvﬁﬂ':__o (1.5)

where a dot denotes differentiation with respect to the proper

time s of the particle,

If one is interested only in weak gravitatlonal filelds,
characterized by not more than infinitesimal deviations from

the pseudo=euclidean metric tensor

C{,dF-__ &Ie: +’+‘+'+,:}} : O‘ﬁ Fz;' J {O x 2T (1.6)

=T

then one can linearize the equations (l.l), as was done first
by Einstein (1918), by introducing new field variables glﬂ

which descrlbe these deviatlons,
S = oot Lo, (1.7)

and retaining only terms llnear In these new variables. In
this approximation the tensor ch 1s sufficient for the lower-

ing and raising of indices, as in
-
Tq} = é‘) %D s etCOg (108)
and the field equations (l.1) reduce to

E’D/o‘f— <’J‘O"DG‘_ZZ a'O‘//D) (W/, J‘:"of“')/,,) ‘ (1.9)

These equations have the interesting property of being invar-
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iant under the "gauge transformation"
/
@f’% = //o +/\ (1.10)

with an arbitrary vector fleld /3# . They can be simplified
further on account of a theorem by Hilbert (192l), who ob-
served that 1t 1s always possible to find an infinitesimal co-
ordinate trénsformation, which does not destroy the infinites-

imal character of the ?;9 s 80 that
!
0;1,/0_ ~ % J;—cr/-o =0 . (1.11)

These equations are called the "Hilbert gauge conditions™
They amount to restricting the possible gauge functions-/&n
introduced in (1.10) to solutions of

Nuser = O, | (1.12)

and reduce the field equations (1.9) to the form

Booper = ©. O (1.13)

/
Indeed, 1f one is confronted with a field o not satisfyling
the conditions (l.11), then a gauge transformation with /Xﬂ

chosen such that

/ /
/\/,%r = 7(/0,-'/;7{;% (1.14)

and imposition of the restriction (1l.12), will guarantee the

simultaneous validity of (1.13) and (1.11l). The remaining

gauge freedom is sufficient, as was first shown by Filerz (1939),
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to permit a further specialization to filelds satisfying the

"first gauge condition of Fierz",

o > -

[Ye (1.15)
as well as the "second gauge condition of Filerz",
T, =0. (1.16)

These conditlons amount to a further restriction on the gauge

function /\, to solutions of
New =0, (1.17)

Indeed, 1f one 1s confronted within the Hilbert gauge with a
' /
field '@m. not satisfying the condition (1.16), then a gauge

transformation with /}M chosen such that

VAV (1.18)

and imposition of the restriction (1.17) will guarantee valid-
ity of (l.16), while the wvalidity of (1.15) follows from the

Hilbert gauge condition (l.1ll).

The field equations (1l.13), used in conjunction with the
gauge conditions (1l.1l%) and (1l.16), which restrict the gauge
freedom (1,10) by the conditions (1.12) and (1.17), bear a
close analogy to the corresponding treatment of vacuum elec-
trodynamics 1in terms of the electromagnetic potentials 6% .

Maxwell's field equations in terms of these potentials,



- (1.19)
ﬂ/‘/"f Ha—/o-/(, = O_,

have the interesting property of being invariant under gauge

transfiormations

5= 6= B+ B (1.20

where B 1s an arbitrarz scalar fleld. One can always find a
gauge such that the Lorentz condition holds,

Ay, =0 (.21

This equation amounts to restricting the possible gadge func~

tions B introduced in (1.20) to solutions of

B/ee = O (1.22)

J

and reduces the field equations (1.19) to the form

@u/fo—f-o, (1.23)

/
Indeed, if one 1s confronted with a potential H,. not satis-
fying the condition (1.21), then a gauge transformation with

B chosen such that
/
B/rro‘: Hs‘/e- (l.24)

and imposition of the restriction (1.22) will guarantee the

simultaneous validity of (1.21) and (1.23).



2. The Quantum Mechanical Significance of Gauge

Transformations

If one carries out on any quantum mechanical Y -function

a phase transformatlion, characterized by a parameter &€ ,

Y - Wee'ea(x) (2.1)

with an arbitrary scalar function A(x), then the Schroedinger
eqqation for a free particle does not remain invariant because
the derivatives of ¥ transform according to
¥ ( d e QZL)L// (2.2)
axﬂ ox? ax® .
However, lnvarlance of the Schroedinger equatlion can be re-
stored, if the particle 1s coupled to a vector fleld A, such

that the derivatives of (P occur always in the form

QY = (%Q_K’H)LP (2.3)

and provided any phase transformation (2.1l) is accompanied by
a compensating gauge transformation

ﬁ'o'_) A, + 8_7&_ ) (2.4 )

ox?

of the vector field., 1In fact many authors look upon the re-
gquirement of phase invariance, as was done first by London
(1927), as the raison d'etre for the electromagnetic field,
whdse potentials can be identifled wlth the vector field A,

introduced above, provided the pabameter € 1s taken as the

i
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electric charge of the particle described by the Y -function.
Then the gauge freedom of the electromagnetic potentials can
be utilized to guérantee the invariance of the Schroedinger
equation under one-parameter phase transformations of the

type'(Z.l),

A similar situation arises if one insists, in presence of
gravitational or quasi-gravitationsl inertial fields, on invar-

iance of the action principle under local Lorentz transforma-

tions. If one denotes, in an underlying continuumcof.co=ordin-
ates %" ., the co-ordinates of a local inertial frame by §£
(k=1,2,3,44), then any infinitesimal Lorentz transformation to

T4
another local inertial frame §
4 ck Ak £ |
§= § = ¥+ A,m8 (2.5)
1s characterized by a six-parameter skew tensor

34 . V3 :
Vo = =A% C(2.6)

and affects any Y -function according to

yi4
Y — 6&1(0/\&‘!} (2.7)

whereJ\*l is the appropriate operator representation of the
transformation }f? acting on the components ofq), for which
explicit expressions will be given in the next section. For

the purpose of the present section 1t suffices to note that

the derivatives %?g) are not invariant under the transformation
;X
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(2.7). Indeed, in case of an infinitesimal transformation
q} yIs .
- [1+ p XNy (2.8)

the derivatives of (V transform as

% - [I+ &X%)Akd g_‘;po + 4 g_%: NV (2.9)

However, invariance Qf‘the action principle governing the
dynamlcs of the Y -function can be restored as was first
noticed in this case by Utiygma (1956) (see also Kaempffer,
1965), if the particle is coupled to a compensating field

4 , L4 . ' .
Byx)=-Bye (2.10)

such that the derivatives of q) occur 1In the action principle

always in the form '
‘ y o
. 134 .
and provided Bﬂ transforms according to
V2
H V7 £ mi £ kw .
B, > B + A By Am Bo™ + —g%o (2.12)

By analogy with (2.4), it 1s this transformation (2.12) for
which one should reserve the term "gauge transformation" in
this case. There is a connection between the derivatives aﬂl}l
introduced in (2.11) and the covariant derivatives of Y, which
can be exﬁracted as follows. The transformation in the neigh-

borhood of any given continuum point;%# to a local inertial

: k
frame with co-ordinates,§ can always be carried out to first
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order 1f one knows the functions

€% _ h/( .
so that
£ D _ o ¥4
"}u.f,e "d}« ~ and f[éj =J£, ‘ (2.14)

It should be noted that in general
£ 1 £
huw = by # O | (2.15)

if the Bi(x) can be considered as 16 given functions, inde-
pendent of the definition (2.13), representing the properties
of a glven gravitational or quasi-gravitational inertial field.
For example, the transformations between an inertial and a ro-
tating co-ordlnate system
X' = §'cos ({QF¥) = §rsin(iw§y) F=x'cos(oxy +xsin(uw
x* = B sin(i0€) + Teos(@§) 5 -xsinion)+xeos(@xd  (2,16)

»= 8 e

x*=§" §-x’

are determined by the transformation functions

H, = coS((d%X%) I«,z, = -sin(iwx?) hi=o h =
h,= sin(iwxd b2 = o5 (i) ha=0 hy=0
hs =0 | hy = © “Z=| ha=©

. Y
h'* =“a)E.'x'5[n([u)7f‘9+ l:‘f= -LQ“')(lcos(iu)X“)-\' H?*=O h‘-t= !
2. ‘u).x\’
® cos (6094“)] Wisiale )]



18

or, alternatively, by

! ' z
JC/‘ cos(iwx*) Jcl = sin(ioxY jc|3 =0 fq =0
L eyl |
352_ sen(iwry 32: = cos(cx¥) fl-0 F¥ -
, iy , =0 (2.18)
5y =0 : |
§3=0 il g
§/=—10)'x1 ‘ 3=l ’ L
y §+ = (X" 3 2 4
¢+ - o) . '5“_ = ,

The metric tensor SL” of the continuum, defined by

ds*= S/odxf‘dx“’ (2.19)

. &
can be obtalned from the functions kyt(x) by noting that if

one takes as inertlal frame a cartesian system with

2.__. . gk é 4 N o | | (2.20)
dS"gzkdgd§ &*g_fr%d"m* - S&L}Ghi':;%/‘c{?(‘) .
one has simply S '

g/m‘& l’/\‘«,‘ﬂi and also 9’“‘)=£Ef°/.“d£) - (2.21)

allowing one to compute all other metric properties of the
4
continuum in terms of the {2~ . For the example glven above

one finds that

1 0 0 Y%
0 1 0 =(wx'
9/" B 0 0 1 0 | (2.22)
x  —iwr' o Aok 0]

and
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I = (x> Sxt 0 _ipx
3 e Sxa* )t 0 ot
0 0 1 0
-{0x* {wx! 0 1

and this tensor describes in the usual fashion (see Landau

and Lifshitz, 1962) the quasi-gravitational inertial effects,

such as Coriolls and éentrifugal forces, in thils particular

rotating continuum. It will also be noticed that in the limit
¢ /

w —> 0 the metric tensor S%o as well as the b“ and 5} re-

vert to diagonal form, and one anticlpates that an expansion

of 5%9 in the form + Xl) wlll correspond to similar ex-

/41)
‘pansions of }1 and 5} . The derivative (2.11) for the
special case of a tensor field with components 9)7 in the local
inertial frame can be cast, on account of the representation

(see the next section) for /\kein this case,

A,éI e S (JJ jn éj( ) JJ( m m) (2.23)
in the form

g kid o ik . . .

oY 3(:: Bt - B - (2.2)

- ' Lo s
The components lPH are connected with the components (Pf in

the underlying continuum by
- o i v wee

allowing one to write, using &\)k(.# &! (,//‘M and :&/‘hs =J‘£>
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SRR %;ff* NG e (2.26)
The symbols T;f are abbreviations for

ol = Jf‘hi/ﬁ -6{, | (2.27)
where |

B.io = §fht &A ff, (2.28)

If one now writes down equation (2.26) for the metric tensor
Sf) , for whose components (5"7 in the inertial frame one has
by definition (2.24) and because of the antlsymmetry of the

ck
fields B,
jy__gi_g* - o
9135" - -G, &, > ‘ (2.29)
one obtains for the r7the equations

a%%,ﬂ;fg* + T, g =0 . (2.30)

They can be solved uniquely if one assumes that the symbols

T are symmetric in the lower indices,
P _1f _
T':-o - 1:3 ' (2.31)

with the result

C_ oy |
e = 58 (oo + Qo= Qo) (2.32)

Under the assumption (2.31) the T;f are thus recognized as the

affinities of the metric 3/, and this establishes equation
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(2.26) as the covariant derivative of qu‘;
o o &
££570,99 = ¥, (2.33)

It should be noted, however, that (2.32) is by no means the
most general solﬁtion of the equation (2.30). 1In fact, as was
already pointed out by Schroedinger (1950), if one does not
assume the symmetry (2.31), the the solution of (2.30) is

e al | | | | '
To =Ty - (Ch-¢l) + C.of @
where C 1s a tensor, arbitrary except for the antisymmetry

Cop==Cpup (2.35)

By solving equations (2.27) and " (2.28) oné can thus express
#
the compensating fleld B, In terms of the metric fleld quan-

tities as

A |
B -8 (h,,/; "‘f ’C~> | - (2.36)

(For the example of the rotating system characterized by the

metric tensor (2.22) one finds for the affinities (2.32)

a . v ' P! 2 o P

all otherT' =

and thus for the components of the compensating field
ﬂ* o]
B-O - (2038)

which is not surprising because such a quasi-gravitational
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~ Inertial field can always be transformed away globally.) The
obviously quite different structure of the true gauge trans-
formation (2.12) of the compensating field Bﬁ{ , as compared
to the so-called gauge transformations (1.10) of the linear-
ized fleld, should serve here to cast serious doubt on the
fundamental nature of the transformations (l.1l0), and to en=-
courage attempts at discarding 1n a full quantum theory of
gravitation any "gauge conditions" flowing from this particu-
lar feature of the linearized theory. 1In fact, 1ﬁ the linear

approximation

S = 9‘(3,,1*3/"«:)‘ /A-JL-/-Z,/ | (2.39)

the compensating fleld components are of the form
= — Y — .
Buse =Tugo = % (Yo + Tote = Vurpe) (2.40)

and are invariant under the "gauge transformations'" (1.10),

which require ?yg to transform as

%
?/2 - %,ea = ?éz */Ié/j (2.41)

contrary to the compensating fields 6&. which are just not.in-
variant under the correspondlng gauge transformation in the

electromagnetic case,



3., The Requirement of Local Lorentz Invariance

Even though iﬁ presence of gravitation, locally inertial
frames, l.e. co-ordinate systems tied to freely falling observ-
ers who are not rotating with respect to the distant so-called
fixed stars, are 1In general not connected by Lorentz transform-
ations if they are some finite distance apart, one can still
inslst on the requirement'of local Lorentz invariance, so that

coincident observers can be connected by a Lorentz transforma-

tion., Thils requirement is equivalent to retaining Newton's
first law of motion in the form: Any two coincident inertial
observers move at most with constant instantaneous velocity with

regspect to each other.

Reverting now for the purpose of this section to the nota-
tion introduced in Section 1, ahd dropping the distinction be-
tween contravariant and covariant components which is not nec-
essary fdr the purpose at hand, such a local Lorentz transform-

ation is mediated by a constant matrix [7M0 so that
: , L—
)/(‘*—9 X"' - /n)Xz) . (3«1)

To obtaln the representations of this transformation it is suf-

ficient to consider an infinltesimal transformation
Lﬁgﬂ*%«v (3.2)

where the matrix elements %yv satisfy\?w0\<<Jq and the skew-

symmetry relation

23
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A== A (3.3)
on account of the invariance of
%99{ = X% = X“+8‘+ 23-2‘2" | (3.4)

The inverse transformation is then simply

A/—,ﬁ» = %, A (3.5)

and since the (k=1,2,3) are real, and X4 is pure imaginary,
the 7\ik)>"“" are real, and the 7&.,,( are pure imaginary. Now
consider a multicomponent field Q% which under the transforma-
tion (3.1) transforms into gz/. One defines the representation

/\/.; of 7\/,; by writing

/
Yo = Yo = Wat o Roo Mo W, - 3.8

(By convention, the index A 1s understocd to run from 1 to L

d
n rank tensor

in case of a vector field, and in case of a 2
field“ﬂ = “LP the index A may be thought of to run from 1 to
16 according to the correspondence

A :1 2 3 4L 5 6 7 8 9 1011 12 13 14 15 16
«B ¢ 11 12 13 1 21 22 23 24 31 32 33 34 41 42 L3 Lh,

with similar conventions for spinor fields and tensor fields

(3.7)

of higher rank.) By vlacing a probability interpretation on

Q% , one requires conservation of probability,

w? 7 >

4# qﬂ = qﬁ Ya | (3.8)
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which upon substitution of (3.6), neglecting terms quadratic

in the :§’% s becomes

+7\/u/\

= O
/u\);B)H .

Koo o 00 (3.9)

On account of the reality properties of the 7>a>this means
that €/§m>, written as a matrix in the indices A,B, is hermit-

ean for S/zo ) = (jk), (4h),

. _ __/\x- (3,10a)
Mess = =0 Nuvs 50 for (wp ) = (36), (44)

where as for S/ZQ ) = (Lk), (j4) the matrix:/}ﬂﬂs hermitean,

_ »* (3.10b)
sz = Desan tor (ud) = (o), ().

The generators /Sﬂo quite generally satisfy the C.R.'s (see

for example, Lomont (1959))

/o,/\rtj 4 /D/rx'c/\x'r (3.11)

with

gfw,«r,x'c‘é;&»gw"'&cgyu&,o‘él,oo(;&r—grcguo&/' (3.12)

In a three-vector notation they may be written

TS =ia; TxK =K, KkxK=_/% (3.13)

- where

[/\/;z 5235[/\232213 Z/\.?IEE-ZS /\NEK‘S/\”E K’“B /\3"5 Ks . (3.1l)

The vector 2, can be interpreted as angular momentum operator,

generating the pure rotations in space, and the vector K as
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center of mass co-ordinate operator, generating the pure
Lorentz transformations.
For later reference, the following three examples of these

representations are useful.

(1) The Vector Field

By definition, any vector fileld éﬂ, transforms according to

A

Identification with the definition (3.6) gives the conditions

AN /]0‘/, - /”

—>é/=&+ 1/7)/?»- (3.15)

(3.16)

which are solved by
TAVE =<§;«fw_<§%§% _ (3.17)

(ii) The Tensor Field

By definition, any tensor field'g;o transforms according to

5= 00 =Lyl = ?;ﬁ(%o Ave+ Ou Auo) T, (3.18)

Identification with the definitiom (3.6) gives the conditions

l/l}\)(?:/\x'tym)/o.r = Ci;olvo’“l'({u‘r 7\/‘/”0 ‘ (3-19)

which are solved by

Sl bundes=S0bie) + 81 (8, 5 dd,). (20

/\ X 2'}7:1),/00‘ =
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(1i1) The Spinor Fileld

A four component spinor (P transforms under an infinitesimal

Lorents transformation (see Pauli (1958)) according to
/
Y- Y'=SY with 8 = I + '/g[?fx)m] A (3.21)

where the 123 are the well-known Dirac matrices operating on

the spinor indices of 4/ « Identification with the definition

(3.6) gives at once the representation

/\u'(; = %f[mn, Z:z] .

(3.22)



. Classification of Polarization States of a Vector Field

in Terms of Spin Quantum Numbers

In the linearized quantum theory of gravitation one aims
at the closest possible analogy with electrodynamics. Accord-
ingly,}it is desirable to classify the possible polarization
states of gravitons in close analogy to the classification of
‘photons into transverse, longlitudinal, and time-like photons
(see, for example, Akhlezer and Berestetskii, 196L), It 1s the
purpose of this section to briefly summarize the well-known
description of the polarization states of a vector fleld, for
given propagation vector X , in terms of the elgenvectors of
the operator representing an infinitesimal rotation around the
direction of X , and to introduce a notation that lerds 1ltself

for an easy adaptation to the case of the tensor field which is

the object of the next section.

Consider a rotation about the X3= axis which 1s generated
by the operator (see equations (3.1llL) and (3.17), with//o

labelling rows and %) labelling columns)

0 i 0 0
=1 0 0 0
23 = L/\\a = ‘ (4.1)
0 0 0 0
0] 0 0 0

The eigenvalues of 523 are obtained in the usual way by setting

the determinant

28
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det(Ty-A1) = A 1 o o | =A(-Y=0
-1 =X 0 o
0 0 -A ©
0 0 0 =)

yielding the solutions A =1,0,-1;0, corresponding to a reduc-
tion of ’223 into a direct sum of a (3x3) operator represent-
ing a spin j=1 and a (1xl) operator representing a spin j=0.
Classifying the respective elgenvectors according to the quan-
tum numbers (j,m), one has a set of four such eigenvectors
(1,1), (1,0), (1,-1); (0,0) of '313 which upon normalization
may be written as the columns of the unitary matrix

1 0 1 0

;-1 0o 1 o hs)

s = — .3
/2 o Y2 o0 o
o 0 0 V2

In order to find the elgenvectors of the operator 2..v , which
generates the rotation about the X -axis, it is useful to first
write all three generators = =iN,5 , 3 = i\, , 2, =/,

in the representation in which f23 is diagonal, which is brought

about by the unitary transformation matrix S according to
= - . ~\
GTES'Z|S) o; =5'%,s 0; = S I35 = dieg(1,0,-1,0).  (h.L)

In this representation one has
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27(3 _‘l;"-l- 0 0
“\[5)(- 0 axse O (LL-S)
g =21
o= 2 0 Janu- -ax, 0 with, =z X, % ( M,
0 0 0 0

and each O 1is, of course, again a direct sum of the respec-
tive operators representing a spin j=1 and a spin j=0. The
operator (L.5) has again the eigenvalues 1,0,-1;0, and its
normalized eigenvectors 7Z(j,m), claséified according to spin

Y
quantum numbers j and m, are (withed = [Xf+?faz+7(32‘] *)

_ - o
;)ﬁ-(a)-ﬁ(_gﬂ M+ (o)
?@ﬁ=__i__ﬁhﬂﬂ)5%@d=4;ﬁm;7@q=c> - (L.6)

2cNwr—x 2 2w
3t (w-i5) X~ O
0 = |

The eigenvectors of 2i-X are then obtained by 1lnverting the

transformation (L.L4), thus
-)(/ )G— ('(d)(,a

g" (1) = S? ( /) = [;?a)?-(a)‘- K;):l-‘“— “XaXs + (X
-
O

(4.7)
X, A3+ (@)

S@a = 87(/;*’) = [2@1(@‘—)(3‘)]% XX - ok,
W-x5

o
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X

X
G = S00= 4 |
03

@]

9‘(4} = S?(O,O) = o
0]

|

The "polarization state vectors" €.(s) (s=1,2,3,4), character-

ized by the "polarization quantum number" s, have the proper-

tles

% = :
€5C1) &) s 9’:(3)_-_ €3 ; Qf(e) = €u¥)

O for s=1,2

L = = .
/g«(s) @ for s=3 where_)/(‘= (x, ca.))

(W for s=l

L6t = 4

;gf(S) €,(0) = é,)

9(!,2) = 9*(5),) for
CCxs) = ¢ S8)=Ellng) Tor
—€.(7,9= -—9’:(5)3) for

S (24 = 9:‘(2;,4} for

s=1

s=3

8=l..

(4.8)

(L.9)

(4.10)

(u.ll)

(4.12)
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It is the property (4.9) which allows one to look upon the
vectors 6;/(/) and 9(2) as representing "transverse" polariza-
tion states, the vector 9(3) as a "longitudinal" polarization
state, and the vector 9(¢)a "time-like" polarization state.
For some purposes it will be found useful to express j;he 9(5)
in terms of polar angles 6, & Eefined by the __dir-ection of _)_( s

— . . ol
._)-( - (49 5/'766‘05%) ")5/.”6 St'ﬂ%) 0)6056) (Ll- 3)
with the result
- coSO cos & ~(sn P [(scn 5“5}»’1
g«(’%=é ~CoS® SenP +icosH 9(3)= Stn @ stn &
—-S¢m B ' cos O
O o]
~ J (Lo1l)
~cos @ cosF#+send (0 )
= - Gsingd-( =
9((.?) 7’:2'/_ coS O sind -(cos & 9.(#) o)
-Snm e (0]
o L

An additional property of the transverse polarization vectors
is
UxE(X,) = (welxn)

X

X
10

(%2 = ~cog(aa (4.15)



5. Classification of Polarization States of a Tensor

Field in Terms of Spin Quantum Numbers

The tensor field may be treated in a féshion analogous to
the vector field, provided that the 16 components of the tensor
field are treated as components of a 16 dimensional column vec-
tor, according to the labelling scheme given in (3.7). The
(16x16) operator generating a rotation about the X3 -axis
(see (3.20) with «v labelling rows and [ labelling columns)

is given by
X 4T 0 0
-1 X 0 0
==\~ (5.1)
0 0 X 0
0 0 o X

where I = diag (1,1,1,1) and X is the matrix (4.1l). DNote that

‘./\m;/.«o,(ao' = él(a® l/\\z-)-o,g- + (/\\1-/4)|°® A (5.2)

where & symbolizes a direct product. The eigenvalues of §23

are solutions of

]
o

aet(Z-2D = A=) (A*-) : (5.3)

namely A =2,1,0,-1,-2;1,0,-1;0;0;1,0,-1;1,0,-1 corresponding
to a reduction of '523 into a direct sum of a (5x5) operator
repreéenting a spin j=2, three (3x3) operators representing
spins j=1, and two (1xl) operators representing spins j=0.

Classifying the respectlve eigenvectors according to quantum

33
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numbers (j,m) one has a set of sixteen such eigenvectors (2,2),
(2,1),(2,0),(2,=1),(2,=2); (1!1)’(1)0)p(1’f1); (0,0); (0,0);
(L,1),(1,0),(1,-1); (1,1),(1,0),(1,-1) which, upon normaliza-

tion, may be wrltten as the columns of the unitary matrix

1 0-FZ01 000 % 1 000 00 0
-t 0 001 00O O O O0Jf2 0 0 0 0
©1 010 000 0 0 101 000
©o0 000 101 0 0 000 1 01
-t 0 001 00O O 0 0-20 0 00
1 0-{%0-1 0004 1 000 00 O
0o-1+ 01 0 000 0 0 -1 01 0 0 0
s=tl o 0 0 0 0 -1 04 0 0 0 0 O -1 0 1 (5:4)
©1 010 00O O O0-120-1 00 O
0o-1+ 01 0 00 0 O O 1 0-1 0 0 O
0o 020 00 000 /# 1 000 00O
00 000 OfL 0 0 0 00 0o 0 0
o0 000 1 01 0 0 00 2 -1 0-1
©o0 00O - 041 0 0 00 0 1 0-1
0o 0 0 0 0 O0J2 0 0 0 0 0 0 O0-/20
co o000 0O0O0O-83 1 000 0 0 0]
__ |

Rémembering that these columns, with the labelling convention
(3.7) represent 2nd rank tensors, one can see that the first
nine of these tensors are symmetric and traceless, the tenth
is diagopaliand has a trace, and the remaining six are skew

(and hence traceless). Defining the I analogously to the
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vector case,'S provides a breakdown of d-x 1into blocks, cor-
responding to.a reducfion into a direct sum of the type

(3=2) ® (§=1) ® (§=0) ® (J=0) ® (j=1) @ (j=1) similar to the

reduction of i3 namely

[#xs -2+ © o o)
A RMG e o O | |2 -2k O

2cx=| o —fex o & o |e [HBx- o Em

o) 0 EH-. = K 0 GH —an
o 0 e ;2%2 —4N3
. J | (5.5)
QXU =2y O oy £ —JZ?(-.- o
®(0]® [0)® [wix- o | ® |ex- O VEM
- O  -RiM- -anrs| 0 i -2

The operator (5.5) agaln has eigenvalues 2,1,0,-1,-2;1,0,-1;
03031,0,-131,0,-1 and its normalized eigenvectors classified

according to (j,m) are given in Appendix A and labelled

%(j,m)‘: j=2 m=2,1,0,-1,=2

j=1 m=1,0,-1 §(0,0) S(1,m): m=1,0,-1 .6
. j=0 m=0 CB(1,m): m=1,0,-1
symmetric, traceless . trace skew

The elgenvectors of =X are also given in Appendix A, and are
1ébelled
S# (3om) = € (9-ILi*]-m)
S §(0,0) = € (s9)
ST (1,m) = Suu(/2-7)
S¥(1,m) = Ceo(15-7)

L

(5.7)

W
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The sixteen polarization tensors g;w

terized by the polarization guantum number s, can be decomposed

\

(s) (s l,...16), charac-

into 11néar combinations of products of the four polarization

vectors gkéytreated in the preceding section, as follows:

e

€Enl) = S () E€x) )

e

transverse-transverse
§;~(5J = §u(—??€v(2) . P (5.8)
/

!

€old) = £[€utt) €0(3) + €u(3)€0¢)]

- 27 7 transverse-
' longitudinal
End) = ¢ [eu (R EL(3) + € (3) 61)(%{’
pd \/5 /

€u(3) = £[3€.6/6,(3) = €V €n2) = €.c2)€ucy)] mixed
(4
o (¢) = 4 [€ull) €xts) + Euil) év(/)J transverse-
A d time-like
En(8)= 1[€c€nts) + Culy) €. |
[ rd

Eo() = /[ Cu(t) €0(2) + €09 €401)
2/3 | mixed
| 7 Cu(YE2(3) = 3 Cue ) Eu(#
uo(m) Cult)€u(2) + €u(2)E ()
7 mlxesd
R €9 €E4(3) + 6/.(%) En(¥) |

§w Yy = [€u (1) €Ex(3) = 9(3) 6’”(’)] transverse-
longitudinal
€

- (3) €03) |

e

1)(/3) = —_é_ €u(2) 641(3)
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€ (72) =f_g [§¢(/)€v(2) - 6«(2)5:»(/),-] transverse-transverse
&3

Ew0#) = Z w(?) €,(%) = Eutt) €5 0) transverse-

= ¢3‘[ 7 ] time-1like

/6/4“(/5} = _ﬁ[ z) €v("‘) /V/év(Q)]
vz

Ent) = £ [€u(DEH) = CulH)E (s) ] longitudinal-

%3 ~ time-llke
Cn () \/..zé [« (3) Evew) + € En9) Ewc2) ] -

The polarization tensors have been named according to the com-
bination of polarization vectors from which they have been

formed. They have the additlonal properties

E50) = €un(3), ES) =Cuutd), €NGE =€), - (5.9)
ES !
v (1) = €y (13) §u: ) = §w//r),) all others are real
. *
NefwD = O amz €SO O e
W €v(ha) s=2,l Q€S (ha)  s=2,i
\a | Ja
2 €4(3) s=3 | 20 €4(3)  8=3
3 | 3
@ €5(1,2) 5=6,8 (D €5(42) s=6,8
2 Ja
* *
L X s=7 LA s=7
Jz vz
2 -3 s=9 L ([ —3<w) 8=
23 2z

?y g=10 . s=10
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FR €vts2) s=11,13 - 260 €350,2) .  s=11,13
vz Iz ,
o s=12 o s=12
o €v(r2) s=1L,16 =i €+ G,2)  s=1l,16
2 | 7z
-4 M s=15 - X s=1§
vz JzZ
vt
| € (3) €/> (s') = Css” (5.11)
o
?:\ E v (9 §=¢'(5)‘=§;a£ur (5.12)

Other propertles such as the expression of €/,,)(s)‘ In terms
of poler angles and the values of g‘,‘,(-g()s) . may be found

from (5.8) and the appropriate result from Section l.



6. The Dynamical Attributes of Classical Gravitons Flowing

From an Action Principle

The soﬁrce—free gravitational field in 1ineér approxima-
tion, as was explained In section 1, is described by a tensor
field of the éecond rank,i@gbﬁ which satisfies the wave
equationv- | |

2 . 2
Db = Yjew = Qo _ 'Ly - O, (6.1)
| INo¥,  Jtr

the symmetry condition

fo-Tp=0 | . C (6.2)

and the two gauge conditions of Fierz

Voot =0 - (6.38)
T.=0. | | © (6.3D)

The dynahical properties of such a fleld will be examined 'in
this section and in section 7. In this section, the three con-‘
ditions (6.2), (6.3) will bé ignored, and'79uzwill represent

a general'tensor fileld satisfying only the wave equétion (6.1)
and the reality conditions'ﬂk- ’ 324 real, Z& R Z@ Imagin-
ary which follow from the reaiity conditlions on the'%/g stated
after (3.5). This corresponds to a study of "generalized
electrodynamics" which is described by a vector fileld
satisfying only the wave equation (1.23)° Generalized electro-

.dynamics becomes the same as Maxwell's electrodynamics only
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when, to (1.23), is added the Lorentz condition (l.21). Thus,
the gravitational analog of the Lorentz condition is the set
of conditions (6.2) and (6.3). |

The field equations (6.1) may be "derived" from an action

principle, using the Lagranglan density

L = =% G Bye (const.) (6.1)

where a constant must be included for dimensional consistency,
but will be ignored for now., If one treats the ?Do as 16

independent field variables, then the action principle

J(fdx ) -0 ‘(é»;s)

yields, in the usual manner, the Euler-Lagrange equations

SL _ oL a[aLX_qu .0 |
$6s 380 %L 9B o (6.6)

where dx = d&,= dx, dx,dx,dt (see Roman, 196, Ch. IV, §1)

From Noether's theorem, the invariance of the action

L = f&xL (6.7)

under various transformations implies the existence of con-
served quantitles as follows. Suppose £ = l‘(ﬁg , 9%4-)
where 9% is an arbitrary fleld. If 2 1is invariant under

space or time translations, then the momentum

= ‘fﬁ/"f%‘/%/z | (6.8)
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or the energy

V% Eﬂ_,_<<9_é Yo =) (6.9)
A |

respectively is conserved, where dx = dx dx,dx,. If /ﬁ 1s

invariant under rotations, then the total angular momentum
Je=L+S¢ (6.10)
is conseryed, where |
L, = -Cj;jc]z «: ] (6.11)

is the orbital angular momentum, which depends on the cholce
of the co=-ordinate system (with 4? the momentum density, and
€5¢ the usual completely antisymmetric tensor density) and

Sk Is the spin angular momentum .
Sp= ¢ yéfo/x aL /\ s H (6.12)

with /\55m3 defined by (3.6). The momentum, energy, and

spin are, in terms of the tensor field %\»)

= - f"’i‘@v/‘ffw// | (6.13)

(6.14)

S, = ¢ C4t dx(%;f,c/‘,—le%,‘, * G B ly). (6.15)
. ) .1
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At this point the development of Section § enables one to
. make a‘Fourier decomposition of qFQOQ s in complete analogy
to the corresponding expansion of electrodynamics, by using the

polarization tensors é;vﬁﬂ (see definition (5.7)) as follows

y

I¢ _ ' ;. : —{nx ' '
L0 =2 55 L[evabmae™s oabu9e™] (620
v 4= 2D ' '

where V is a normalization volume, which can be extended to in-

-~ finity by means of the correspondence

V2 G e - | (67

v.4

.ﬁhe terms in the exponentials are four vector products
XX = 3% =T . | (6.18)

so that (6.16) automatically satisfles the wave equation (6.1),
the AQ%;Q_ and 542?9 are Fourier amplitudes defined by (6.16),
and. the factor 62@)ﬂ%‘maj-be-thought of as part of this defini-
tion for reaéoné which will become obvlous later; A constant
to match the dimenslonality has been omitted for the present.
The reality conditions on thei@m ‘require that the Fourier

amplitudes satisfy the relations

*
[-f ] b¢xs) s=1-5,9,10,11-13

x5 ' (6.18)
—4r7s) g=6-8;1L-16.

If one substitutes the expansion (6.16) into (6.1ll), the energy

becomes
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//=_4fo/9(z7 (XJ( “#w?) [6,.,/5) ,,,(5/)5(;( 5)/(255)6‘(”*””
: xx' sst 2W
- /%vz[x
+€ag(5) 0(5)5(27)5)‘(1 s1e ‘ "
2 (6.19)
~((X-2)X
- 935 (5) Cors 694 ;zr 980259 €
* : n-xx
_9;,1) (s §AO(S)A7;!{5'}A[55) e ] N
Because of the relation
A/xeﬂ’(’m‘”‘ - e:i(a’ﬂaﬂﬁz @ 2i(HrH)X
v (6.20)
= Cwm*“’)z‘ ) f/zmzr)
and the fact that
P . ,
KoK + w0’ = XK +w0" = Owhen 7= _x; : (6.21)
the first two terms vanish; so, using (6.17),
H=-=5 Aes e 'A?‘w 9b(xs)+ € (s/ 0985 6¢
2T LIS 889k Snblxdbeny | (6.22)

and, making use of the orthonormality relation (5.11l), one ob-

tains
# = Roblysbey = Toan(x? | (6.23)

where #(Zs) may be thought of as the number of "classical gravi- .
tong" of momentum X and polarization s. A similar calculation .

for the momentum ylelds

“- =% % 8 9benn = Znns), (6.21)

s
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The spin is more complicated, a simlilar calculation yields

o= RE 2% [€heo Sy 18798259

(6.25)
= €u (J) €xh (S)A ”:SJ&Z{-S)J

where the symbol ‘33 means a summation only over s and s!

elther both 1ess than 11 (symmetric) or both greater than lO
(skew).,

An explicit substitution using relations (5.8) and
the polarization vectors (l4.7) yieids, suppressing the X
S, = 2{32(2 Lhw -ns)] + Tn@-n] + CLnge) -ne)d + Lne) -nessd

¥ |2 _

FLnoy —n//g)J) + Rk[A’Z)A @) -4 f//o//f) +;/’ 5 472049

- /j b8y - 1 4 Terben) - 4 Zndes) - 2 &%) brz)
< VR J2 J2

(6 .26)
*

*/ 17(12)5(6) +28 (/s#)é(/f) -7 A s)o/ (/5}J+ [5722)5(/)
J2 JZ Jz
~ L%obey) + [B B73)802) — (G B%wbesi + 877 5ve)

&% v /2 v |

—24£ (?)/(7) 74 (lz)o/(//) t 8 Tinboz) + 2 87%980:4) -, g?/g)g(,_gj

vZ V2 VZ Jz V2

where :

R = P YA ; for = HHzt (DX,
40_(@1— x£) Yo

= - rx?)
@ (o™=, z}/1—

@0



7. The Restrictions Imposed by the Auxiliary Conditions

The linearized, source-free grayitational field is des-
eribed by a tensor field ?;g which satisfies, in addition to
the wave equation (6.1), the condition of symmetry (6.2) and
the Fierz gauge‘conditioné (6.3). Applying these conditions

to the expansion (6.16), one obtains from (6.2)

X
# 2 ) [e 9= €t b ™™+
Wz /—'{[ ] (7.1)
nx
L& - 69,4(5)]5(!,3)6‘ }"O
and since, for s=11, ...l6,
€ ()= €gu(5) = R E€0(5) # O, (7.2)
it follows that
b(s) = BQS) = 0 for s=1l,...16, (7¢3)
Similarly, from the condition (6.3&5 one obtains
= 6E.(9b¢) =0, | (7.)

which 1is a set of four conditions S/Z =1,2,3,4). TUsing the

relations (5.10), one finds that they become

blz)+ cbee) + ([ hup+buw] =0
bew) +ibes) - [bua—bewe)d = O

(7.5)
A7) - Eé(?) -*\/é‘l(/o) ~Aus) =
2

bp-Lb@) — 258639 — (£ Bb(re) + bas) = 0.
V3 z vz

Similarly, condition (6.3b) yields
L5
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b(10) = B(10) = o, (7.6)

Combining these conditions, one arrives sat

Bra)+cb) = O
bew) +ibes) =0
b(7) —¢ B A(z) =0
() )/_‘;5(7) .
Te7
A3 — 1 86G) =0
V2

b(s) =0, S=/0,+-- /¢

n

and from them, one obtains for the classical "graviton numbers"

22(5) ‘/;5)‘{@ the constraints
n(2) + n(6) = 0
n(h) + n(8) =0

(7.8)
n(3) + n(7) + n(9) =0

n(s) = 0, s=10,...16,

These conditions are the complete analog of the effect the Lor-
entz condition has in electrodynamics, which, in terms of

Pourier amplitudes, amounts to the constraints
b(3) + ib(k) = 0, n(3) + n(L4) =0 (7.9)

where polarizations 3 and L4 refer respectively to longitudinal
and time-like photons. The energy énd momentum are modifiled

by (7.7) to become

/7 = ;wﬁv‘('““”ﬂ - | (7.10a)
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%= 22 %[+ 0] E (7.100)

which 1s an important result, namely, that only the two polari-
zatlons of symmetric transverse-transverse gravitons contribuﬁe
to the energy and momentum. - These may be defined respectively
as right hand and left hand circﬁlar polarizatiohs. The spin
is also modified by (7.7) to yield

S = z{w 2 Unty-ns1] + RLET0be)- Lok |
= (7.11)

+ 5 [ A’(zzéo -4%s)bry ] ]

In the next section, it wlll be shown that the coefflcients of
Kt eand 2&# in (7.11) are gauge dependent and hence are of no
physical significance. Thus, the spin (in the direction of pro-
pagation) may be identified with the difference of the number of

right hand circularly polarized gravitons #2(!) and theé number
of left hand circularly polarized gravitonSgOﬂg times the spin
of a single graviton which is 2, in'rcomplete: dnaXogy withicthe
electromagnetic field whose spin is given by the number of RH
minus number of LH circularly polarized photons, times the spin

of a single photon (which is 1).

Consider a pure Lorentz transformation in the ¢, direc-
tion With4x.4="%W = v (see eguation (3.2)), where V<< | s0

that



48

7(2/= Ka ‘

, |  (7.12)
‘X3 = X3 '
7‘4/" Ke=TX,

Before the behaviour of the gravitational field under such a
transformation 1s considered, the behaviour of the electromag-
netic field will be examined. The electromagnetic field 1s a

vector field and hence must transform according to

A = A, + vy
/q‘?/____ﬁz R
(7.13)
/ .
e =% |
VA
/94 :ﬁy"?/’/g/
by the rule (3.15). Besides being a vector field,»é&ﬁo must

also satisfy the Lorentz condition

A, =0 . (7.14)

in the new system, since (7.1lL4) is a scalar. In order to see
how the Fourier amplitudes of such a field are affected by this

'transformation,'one must make the decomposition
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Cxx I ) |
Al t0) = i[e,,(s)ﬁgs)e “r el | (1.15)
d W ! ;zu) s=

where the polarization vectors g;é? were introduced in Section
L. It is helpful to take the simple~case of a plane wave, with
propagation vector k = (0,0,w) and with RH circular polariza-

tion (8=1), so that

Ak ) e kx + c.C.

/Q,(X) 2/
f‘ -3 /2‘ - (7.16)
@)
®)
In components, the transfofmed field becomes
7/
Atx) =y 1 ldé(f d<€ f‘c:c.
»/7@«7
/%/(X') = n ~7 , y
vz (7.17)
A%?%7‘=
/49‘/(7(’) = “ —_z " V4 '
2

Now the vector product kx' may be written as k'x if one defines

k' to be a new propagation vector
k' = (ivw, O, w, iw). (7.18)

This enables one to determine the Fourier amplitudes of the

transformed field, 5/7‘ s) , defined by

’ X c )5 —()(?{].
/%/x) ‘/_/;J_ ?ﬁ/ [gu(S)A(%S)e + €L6)6 (x5 € (7.19)


http://~i.1L
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,
First of all, it is clear that é(_g)s) vanishes unless 2=4" .

Next, expressions for %;(ijs) are found, using definition

(L.7) to be
6/:«(&,’//3% (4,-¢,-v, 0) Ea#73)= (¢4 0,4,0)
(7.20)
Ca(#1D) = £ (1,€,~ %9 € (4#) = (0,0,0,)

and, solving the equations (7.17) for the b'(k',s), one obtains

A7) =4¢)

A72) =0 (7.21)
‘Aiéﬂ = cvd0)

V2
£14) = 20

JZ

where the important facts are that the amplitudes for longitud-

inal and timelike photons still obey
b'(3) + ib'(4) = 0, n'(3) + n'(4) =0 (7.22)

which 1is required by the Lorentz condition, and that the ampli-

tudes for transverse photons are invariant.

The treatment of the gravitational field proceeds in the
same manner. The condition of symmetry and the gauge conditions
must remain true in the transformed co-ordinate system, because
they are expressed by tensor, vector, and scalar equations.

Using the symmetry condition one can obtain the transformation
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law for the field components from equation (3.18)

5. = 7+ avi BT

¥ = Tt vy oy = B VI

273/=2:3?V2;? ’0;3/"3(;3

K=y~ v(5,-73,) B = T Ty 722
72 =7 Tho= Doy - 27 .

Then, if one takes the example of a plane gravitational wave
with propagation vector k = (0, O, w) and with RH circular
polarization (s=1), the field may be written

c)é’)(

bk )E + c.C. (7.24)

OQOH K
oNoloNe)
o NoXoNe)

As in the electromagnetic case, the decomposition

/ y / X
Tuolx) = o 3 L ’? [glﬁ.)/sw tns) e & €56t e ] (7.25)
’ v 2yam ST -

yields the result that the A(/Z!,S) vanlsh except when % =é/)
and one may obtain expressions for the f;m (4/5]  from those
in (7.20) for the g;(ﬂﬁﬁﬁ and the relations (5.8). Then the
component equations of (7.2L) may be solved to yield

b'(1l) = b(l), b'(2) = ivb(1), b'(6) = -vb(1) (7.26)

with all other b'(s) = 0. So, it is still true that
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b'(2) + ib'(6) = 0, n'(2) + n'(6) = 0, (7.27)
and the amplitudes of the purely transverse gravitons have been
left invariant by the transformation. It follows that the en-
ergy, momentum, and gauge=-independent spin are also left invar-

1ant.



8. Utilization of the Remaining Gauge Freedom
| It was shown in Section 1 that the linearized gravita-
tional field equations (6.1) and the auxiliary conditions (6.2),

(6.3) are invariant under gauge transformations of the type
,0:m—> ’K\a::‘- E0+/\ 4)+/\-ulu. (8‘1)
e _ Ve S /“/ 7

where /Xﬂ, is a vector field satisfying

E][>, =0 (8.2a)
AN

and the conditions that /\k are real, /\q. imaginary because of
the reality conditions imposed on Jus . Note that the "gauge
field" />« satisfies all the requirements of the electromag-

"netic field fi“ « Thus /S, may be expanded in a Fourier series

Ne= LS 1 s (ccme™ = ctog e"."’j | (8.3)
e N Em s [/ X ,

where the Fouriler amplitudes§;° and gi satisfy the reality

-

conditions
3 _
ey =c, €=-c (8.14)

and the condition

! NCul¥) = 0O | (8.5)
due to the restriction (8.2b). Usihg:this expansion and that
of the field, (6.16), one arrives at the expression for the

transformed fileld:

53



S

/
’gno - }u0+/>,1/u + /\"Jf‘ =

X

(8.6)

) { [ €me2b50 + 2 Cetrg+puCoco) €
V2o 7

-()(

+[Z g esbln, 426G, ¢l + 74‘6‘>(u)]

If one multiplles the contents of the first square bracket by
* ,
§;o(39 and those of the second by g;m(s) , and uses the

orthonormality property (5.11), one finds that

L) = 8(s) + %o €15(5) G + %g,m)cﬂ
&)
(8.7)
A:z—o/s)fg g,«g,)(s)c,,
/ 77 '
where 6}3),¢{({) are the PFouriler amplitudes of the transformed
field. For s=1,5 the transversality condition on §;¢ﬁ?causes
the gauge terms to vanish, leaving
7 7
Len =80, B(5) = 4¢s) . (8.8)

Hence, the energy and momentum must be gauge-invariant

Vat STaln'iens] = gcaLn(.ng)J =K
> 2

(8.9)
£ = am'e] = 24l +ns] =
A P
for s=2,4, the transversality conditions (5.10) yield
. -
By =84 *+VZ Cu (52) Gu (8.10)

where é}(@@) are the transverse polarization vectors introduced

in Section . These may be used to make the decomposition
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Cul¥) = i E.(r)C(x,p) (8.11)
7 =) s

whereby equations (8.10) become

L2y = Bz +VZ C(1) \ B14) = Bes) +J7 CO). (8.12)

Using this gauge freedom, one can make b'(2) and b'(l) vanish,

by choosing

ct=-1480 | c(2) = -y Ecw) (8.13)
2 Z

so that the spin, from (7.11), becomes

S,= 22 # Lay -nes) ] (8.1l)
Z

in the new gauge, as was promised In Section 7. Although the
spin is not gauge-invariant, the total angular momentum, orbital
plus spin, is gauge invariant. This may be shown as follows.

The orbital angular momentum (see (6,11) and (6.13)) is given

by
4y = (5 Jobx % Loy | (8.15)

Application of the gauge transformation (8.1) yields

s .
A/é = 4é +< G‘Z/{/O/ZC xX; [ ;J\m)/zf />-‘"/"*j ,+ }:ﬂ/‘f /\m}u J

-+ 4«/»%2:#0' "”/\/*/""‘ /)“/“f/' + /lﬂ/ﬂ‘f/\”f‘t)' (8.16)

+/\vy+3/A“’/J + Nopes 4“/10' * /\”f”*/\”//‘uj]7

and using the symmetry of ELQ s this becomes
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4’: £, +;e£€-;4/o/_9{ Yc[—Kw/st/\A/«g + Tu' /\u/v‘f

+/\A/—W-/—/\,u/o —+ /\”/1)9‘/\0%] N

Now, using the conditions (8.2) on /B, as well as the Filer:z

condition (6.3a) on g;y,,,}oneQméy?writej@Qig_in-the_formf

4 Ly + R €q£/;/x x; am +x9M 5 | - | - (8.18)
0%a - T
where . ¢
M= Zv/é‘/]a/ﬂ *AA/?‘ /‘a/lf‘# +/\a/g /\é/a_q'{" /L,t/a/./] 9./494 ' ‘ (8~19 ) .

and /‘7 Zlg/ /|u/4 2290 /}u/a +/\a/a Nt +: /\“/’* /\“/‘*

-—/QO/ﬁqﬂy (/,@ny jZ%n¢) 4—/\ CAWMQ f74¢g5) N

An integration by parts (where it 1is assumed_that all fieid31 y
-vanish at the boundaries) ylelds | | |

4 = A'é _26 O/x [Mg + Madg\,a ] . ’ (8020) -
The first term vanishes because it is symmetric in 1 and j,

leaving _

where some terms have been dropped because of ‘the antisymmetry -
and more integrations by parts. The spin angular momentum

(see (6.15)), utilizing the symmetry of @;a ’ may'bg written
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S,é";‘ j«f/o/’f e ¢/4 (8.22)

which, after the gauge transformation (8.1) becomes

S +.7¢€ /ﬂ? [-/,(/4./\‘,/ -+ g/y/\d//“ + ’6\\/ Nt o
+ //uﬁ/\ﬂ/d +/\,«/(q¢/\/«- +/\¢qu (8023)
#Nigus Nty + Nigea Nyp] -

The fourth term, /y/,‘q /\//J‘ » vanlshes after an integration by
parts because of the antisymmetry of 1 and j. The eighth term,
/\c‘yq /\J% » may be wrltten

/\¢7¢4/\j/o. Al /\é/w /\J‘H =
/\('/a'-f/\d‘/q - /\c/aa,/\J)+ = v (8.2L|.)
/\i/¢‘+/\j/« + /\¢‘/4/\J/a+

which is symmetric in i and j and vanishes. The second and

sixth terms may be written
?:\uj/#/\ g + Z.t;/\[//ﬂ‘f =
%W“A iz Tt Z‘t/?‘/]JV‘f 2:"://\ o+ * Xy‘/' <'/'f4
22:?/4 74 2 (ajm/a \jj+ T 7;‘y/?' LI*)' 2‘,:‘J/\f/%‘* =
VapiNite = Doy Nipan = (8.25)
- ec‘/ya./" - ZZ'/aac/\i =
; (7/44‘ /aa) =
-AN; (2;/4«,« 2;‘_//““) = -/, T@ﬂa =0.
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A similar calculation reduces the fifth and seventh terms to
 zero. This leaves the first and third terms, and an integra-
tion by parts and permutation of i and j changes the third term

so that

Ve
Sk = S,é f,?a€yx/o/g [ %;/4/},40 + 2:;0-//1“/4] . (8.26)
Finally, (8.26) may be combined with (8.21) to yield

/ ’
T =Li+5] = 4,#5 = Je - (8.27)

At this point it 1s interesting to note that the require-
ment of gauge invarlance alone is sufficient to restrict the
Lagrangian so that the field equations must necessarily be
wave equations, provided that the auxiliary conditions are
taken into account. This was shown for the case of a symmefric
tensor field by Wyss (1965). Consider first the electromag-
netic (vector) field. The most general Lagrangian must consist
of a bilinear combination of the field variables and their first

derivatives. The possible invarlants are

Z; = (e

Zy = (o Jet (8.28)

]; = //exﬁ/« /?1,/,,,

Z-'f '_;/?t/ﬂ/ia//,« = L+Qa— [é /91)//44 —ﬂo//i«//‘t‘] .
X ' ,

D
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Since.Z; differs from JG only by a four-divergence, it may
be omitted from separate consideration so that the most general

Lagrangian

L =cl+ .l + ¢ 1. (8.29)

This yields, upon variation with respect to {Z~ s the Euler-

Lagrange equations

26 e = 2Ca/Pupoo = 2Ca Ay =0 (8.30)
Requiring invariance of (8.30) under the gauge transformation
(P = (et Gpe (8.31)

one obtains the conditions

;ch B//ﬂ —0?<C2+C3) B//avo =0 or

(8.32)
C =0, C3=-Csi.
This reduces the Lagrangian to
L = alBpopo = e o) (8.33)
and the field equations %o
(Lo = ope = O . (8.34)

When the Lorentz condition 1s imposed, these reduce to wave

equations

0A. = o. (8.35)
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For the general tensor fleld, one finds fourteen invariants:

17==5Z§}Z; Z; =_jzw@jzz70

1;==2£u%;! Z, "}EW*‘Q;OW

Z: = /2;4 Do Ly = )Z:v/r 2:-174

I, =/221,/¢/Z%~ g 9 = /2;«4 o~ 2311/0'

_zg==52wh.%ka- Lo = }%;%ralﬂa

I, =/Z»/»/2;a-/a- =7, +aa; (;Z,}/Z,’,,/o —/2“",,/2/20,/0) (8.36)

_z-/: f-o/o Z;-u/,,- = I7 +9i (9:0. //1, 7’ Z—,«/g)
Zz = jZ%y«;ana = JZ; *‘g%l_<,219j£¢u"520 Z;%ﬁ)
LT

Zu= %f/ﬂ'/ﬂgf#/o = Z,. 7 2_(22‘)«/7/}#/»’ 22‘0/2;«0)
2N

Since Z,, 7,,,Z,,, L,, differ from,lg)];)];)jco by a four-diver-
gence, respectively, the most general Lagrangian may be ex-

pressed as a linear combination of the first ten

/0
£L=2.cT: . (8.37)
oy

Variation of (8.37) with respect to 15;9 vields the Euler-

Lagrange equations

QC|_§1\4—0 + 2 C;. ’bﬂyu.'f" o?Cj' gm ’o:-r - 2 Cq-mg\w/ro’ "o?C.s'%l« T
~2C, Leepor = Co Upupue = Crllagpr =2C, %gal,ﬂf-acygfg[w/w (8.38)

- Czox-o;/uv“‘ C/ez?&.: ;Z‘o‘ s =0-
Requiring invariance of (8.38) under the gauge transformation

(8,1) one obtains the conditions
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C+Ca=0, C3=0, Q(C*+C5+Cg)+C7=O)
Q(Cy+Cs+C) +Co 2 O, CutCr+CotCro=0 (8.39)

QC?#‘ C/o = O

If C,c4,Cs, and C, are taken to be independent, £ may be

wriltten
<= 6T (B ) # € BB 9T, ) +
/2,;«4/4- (07 o> = Z/«)/o’):} + Cs[@m((’bﬂy»\r —d Wg-,uw) + | (8.40)

Q;u/{r (07 ZZ@'/«) - 2;)/()] -+ Ce@ﬂ)lr (’g«r/o - D;'M/.w) + U\fyu‘)

and the field equations become

C,(/ézﬂé - @M) - C%[@”\’/o‘d‘ + Tgﬁulr«) + ’6\«)0‘}4'0’ 4’6‘0_(/,,,4)

B g/ﬂ (T[’ﬂﬁf"'wﬁlwﬂ - Cs:[ my[w +rgulﬁ3 * 7ﬂ,r/|w

(8.41)
—’K\d'bjm) - 5141) <W(o<rl(ho'+ W{DF,(‘Q) - C‘ (2;;“/1,0._ -/'/g)qo,/v(
+ %a:/xxo' t Zﬁu/ﬂo’) =O.
Imposition of the symmetry condition reduces them to
- (Cy+Cs) [?:w/co’ + 2;7,/@) + 2:4—//Mr - Zo’//xﬂ)
(8.42)

“&uﬂ (v}*flfr*(\(plrf)J -2 C (U;—,«/o-o t 7}0/,74) = O)

and with the Filerz gauge conditions, they become wave equations

0l =9 (8443)



9. Transition to Quantum Field Theory

The classical field theory of gravitation, developed up
to this point, may be turned into a quantum field theory in
the same way that classical electrodynamics is turned into
quantum electrodynamics. The fourier amplitudes‘50%5) and

‘5;2;9 become respectively the annihilation and creation
operators for a graviton of momentum X and polarization s.
These operators are required to obey the usual commutation
relations for bosons:

(b5, bextsd)] = (B9, B@is)] =0

[bons), Henisg] = cg\_u_\ Se - (9.1)

They operate on a vector space of graviton number states, where

“ﬂm{> denotes the state containing anp gravitons of
momentum ¥ and polarization s. The general state is a linear
combination of direct products of states ‘Hz)€:> over all pos-
sible values of X and s. The normalization rule for these

-

states 1is

<Y\Z,,sih?_,,:x,> = &y,&g, L (9.2)

f
The usual representation of ZQ?%@’ and 45(&35) will be used,

namely where

AT = fam fned 6.3

A/ﬁ> ==vQ7/5—£> ( X and s are suppressed except where needed)

from which it follows that /Vﬁ> is an eigenstate of the
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number operator ﬁ'

Film> = 572 /> = nln. (9.4)

The hermitean conjugate operators 6 and 5 may be explicitly

represented by the matrices

01 0
N {1 o
L = NE 4 = £ o (9.5)
ol 3 o

I «
; | oo
| . L
|

where In> 1is a column vector containing a 1 in the (n+1)th

position and zeros elsewhere. The expectation value of any

’-
5 or J must vanish.

b5 = <mll>ln> = <nlRin-D= wnin-1d = O (9.6)
because of the normalizsation condition (9.2).

The flelds, being linear combinations of the b's, are
now operators as well. The commutator of the fields at two

space~-time points x and x' may now be calculated. Let

Lot = ﬁ (€005 €+ € (:)/ xs) € ]
53

_ (9.7)
Teor =12, 1 [€ Pcr(s')lwrs)e +€ﬁ-(s/)é(x 59€ WJ
Vs mor
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Then, the linear property of the commutator yields

[F o0, Wff ()] =

{ €ui(5) €0r(57) € el Lbexs),bonsg) +
o €% (59 € O [ iy o Waers | +
o) €550 €7 (L9 Bzsn ]+

() ey € TN [ﬂ(z)n Lex;sn]

;.{Gw ) € e - X 64.,.(:)@""""’"} -
=

£ 50T | [o I o]

vV ¥ 2

A
%
§uﬁ g—oa- ¢ J\dﬂ SMS ng'x—w'ﬁ =

-(opcf.D(x—x')Whel‘e Dre)= - -/ C/J(S(n Xx .
6wd3

!SV\‘\S‘ w|

(9.8)

The properties of D(x), & function singular on the light cone
and zero everywhere else, are well known from quantum electro-

dynamics.

The three auxlliary conditions on jﬁg must now be re-
interpreted iIn the context of the quantum field theory. The
obvious interpretation, namely that of operator conditions,
will now bg shown to be incompatible with the field commutation
relations (9.8).

The symmetry condition 2&;- %}«= 0

Consider the commutator

[T 00 -0, Gprtxr] =

[T, Brter] = [ Tyt Toe )] = (9.9)
~ (D te-xy {é\uf Sua' = gvlp CSM'}

according to (9.8), which does not vanish everywhere. Thus

Em)f*)‘ T 6 ~ cannot be zero.
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The first gauge condition 3&Wb =0

Conslider the commutator
E;G\av/\)()())’l:od‘(x')] = 9_9_ [’6/141) (x))qpa'&')]: ]
% (9.10)
- d’ggpa% Dx-xy
which does not vanish everywhere. Thus, ngw cannot be zero.

The second gauge condltlon “}0 =0

Conslder the commutator,

[ano (Y)).@Fo’ (X‘)] = - [SFQ’D (X-Y‘) (9-}11)

which does not vanish everywhere. Thus, 6;0 cannot be zero.
The conclusion is that none of the three auxlliary conditions
may be interpreted as operator equations; another interpreta-

tion will be given in the next section.

The dynamical quantities AZ fz) and .3( become operators
in the quantum theory. The calculations in Section 6, which
gave these quantities in terms of the Fourler amplitudes, are
not valid in the quantum theory since they have been made un-
der the assumption th&bé&?ﬁ) and 5?%5) comnute. Thus, the

correct energy operator should be

A = 722 60[_':1’(21.5)':(!,5) + E(y,s)g(z,s)]

xs

)

L~ (9.12)
= Zfy + 2@
).S

”

-J

“n

The second term may be thought of as the zero polnt energy and
neglected, as in quantum electrodynamics so the energy operator

is then
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A = Z;_,aaf')v(gjs) (9.13)
z,

whose expectation value, in a state contalning quS gravitons

of momentum X and polarization s, 1is

W = hy, (9.14)

which corresponds tolan energy of @ per graviton. Similar
considerations apply to the momentum and spin, and the operator
expressions for them are just like the classical expressions
(6.2y) and (6.26), with the amplitudes regarded as operators.
Further consideration of these quantities will be given in Sec~-

tion 12.

In some formulations of a quantum theory of gravitation
the commutator of the energy density operator with 1tself does
not vanish for space-like separations (Schwinger, 1963). It
will now be shown that thls 1s not a problem for the present

theory. Consider the commutator [_?597% 7??}1] » where
Z
2‘6\’) = 4(2;40/5/2;»/5 —Z,yq/z’w/‘f) - (9.15)

This commutator may be written as a sum of four terms,

,E%()’)' #(4’",] = H, +AQ +H3+ fq‘f-) where

= 5[ oot 0 Desgi0) , Ty () Ty (X‘):,
/9;\ = '%f [;J‘”,)/((X)/a\w ,,‘(X)> ’[:M'/st (X’) 'Jllr/tf (X’)_]

r

/9? = J4 L?:«v/‘f () ;.o/nf ), F{:«'ﬁ,« (x!) ,J\/(/:f (X'):l .

(9.16)
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Fy = -%f[’b;«o/¢(xJ:fw/#(x)) O:M/J (x) Jaa—y(x’)}

By use of the propertles of the commutator, one finds that
4/91 = Z)f")_/[ (x) [’g‘uv/( (x) 3 '6';0‘/\}‘ (X') 'q‘o{‘/j (Xl)]

+ E@Nlc (Y))T(,d-{}u(xn)mfg (x\):' )/Tm/c' (x)
and (9.17)
Erﬁ/\«o/c &, T‘oq—/ ;O Npay (x')} =
[lru':/i (x))’a‘(ao'b“ (x')j ’K‘f"'ﬁ (xy =+ /6\()4-0' (x') I‘_@m)/,; (x), a;o—o C\f')] .
Thus, /7/ i1s proportional teo

[TW/J (0 TM-/- (X‘)J = g _LFN(*)\.G\«(Y')) = .
7/ <Y T axca,){j/ < r‘ (9018)

72 {-td.duDomn}.
9‘)(;9')5-’ ‘ v//

Similarly, the other coefficients are also esach proportional
to some |

2 Dox-xy . (9.19)

X Ix] ,

But, since D(x-x') may be written as ’?—’;,:J\[(x-x')f] ECt-¢) and -
" the derivative of é?[(x-xulj with respect to any 2§4 or jY;/
1s proportional to JY%X—XQ{Z) expression (9.19) is proportion-
al to elther cﬂ[(x—xd{] or its derivative, both of which vanlsh
;verywhere except on the light cone. Thus, each of the /9;
and hence the commutator[?QYﬁ,}fﬁﬂ]vanisﬁ except on the light

conee.



10, Accommodatlon of the Auxlllary Condlitlons by Introduction

of an Indefinite Metriec

There are two problems In the quantum fleld theory devel-
oped in the last section. The first, as has been shown, is
that the auxiliary conditions on the field may not be inter-
preted as operator conditions. The second is that since A
andlér are hermitean conjugates, matrix elements for any com-
ponent of the field make up a hermitean matrlx., However, for
those components whose classical counterparts'are pure imag-
inary, the matrix elements should make up a skew-hermitean
matrixe. The SOldtion to both these difficulties may be guessed
from the analogy with‘electrodynamics. The 'analogous problem
there 1is solved by use of an indefinite metric (see Gupta,
1950) and this method works equally well in the case of gravi-

tatlon.

The metric operator :? 1s deflned to satisfy
[’7) b¢]= O, s=1-5,9-13

(10.1)
[?) 1.5(5)]+ = ?Z{S)-ﬁé(:)?:o) s=6-8,14-16
and also the requirement |
T= Poat -7 10.2
? ?) ? %% <, ( )

i.e. that %7 be hermitean and unitary. Then (10.1l) remains
true 1if A is replaced by Af. Tt follows from this defini-
tion and from the definition of €.s(s) that

68
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Lot ] =0 when ( 49)=(ab), (L))

(10,3)
[, m)()f)] =0 when (/m>)=(au),(ua).

From now on, products in the state vector space will be rede-

fined as : |
’<altg>"'> <a\"?ll>,> (10.4)
and the expectation values will become
= (10.5)
<H>a <alpAla> .

Consider now a matrix element of §>g « For (#2) = (ab),(LL)

4 . | ,
<Gl7Lel 3> = <al BEHTIL> = <alTuhlbd = abyfolsd (10.6)
so the matrix elements are hermitean, corresponding to a real

?D* in the classical theory. But for S/”v) = (al),(La)

<ClnBulad = <alTu?lb> = = <3l Tulbd (10.7)

so these matrix elements are skew-hermitean, corresponding to
'a pure imaginary'§>o in the classical theory. An expliclt rep-
resentation of 72 is easy to construct. For a given X, %’ is
a direct product of identity matrices for s=1-5,9-13, and of
matrices of the form diag (1,-1,1,-1,...) for s=6-8,1l-16,

the time~like gravitons. The norm of a state containing n of

some particular polarization of time-like gravitons 1is then

<nloyin> = S Y. (10.8)

States of negative norm cannot be understocd in any way consis-
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tent with the usual probability interpretation of quantum
. mechanics; therefore, since such states have been introduced
because of the metric operator, they will have to be elimin-

ated. It is the auxiliary conditions which will do the job.

Since the auxillary conditions are incompatible with the com-
mutation relations 1if they are interpreted as operator condi-

tions, a weaker interpretation will be made. The auxiliary con-

ditions need hold only for the expectation values of the oper-
ators, according to
<awz(:®o—ﬁ,u)|z9 =0
<a|v(’9)wola> =0 (10.9)
(3\7(6‘1»\3> =0,
These are restrictions not on the operators themselves, but on
the admissible states, |a> . It will be shown that all states
of negative norm are eliminated by conditions (10.9). It is

sufficient to satisfy (10.9) that the conditions on the states

be replaced by

(+)

(Bo-Tp) 12> =0
Tunsla> =0 (10.10)
Tuo 13> = 0

where the (+) refers to the positive frequency part (annihila-
tion operators only) of each Fourier decomposition. These con-
ditions amount to the following restrictions on the states in-

volving the annihilation operators (see Section 7)
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[I;(.?Htt(c)]Ia) =0
[bn+ib@]ia> =0
[an-ngmlm>=o
Lba- L b@lla> =0

Ja
beila) = 0, s=10,+ 16+

(10.11)

Simllaer restrictions hold for the "bra" states, for example

<allH@- i8] = <a|l€@- tdoly =<a\'7ul(a>+c\§<c)l = 0. (10.12)



11, Determination of Admissible States in the Flerz Gauge

It was polnted out in the last section that an admissible
statela> 1s one satisfying the conditions (10.11). It is suf-
ficient to deal with gravitons of a fixed momentum X because

the general state will simply be a direct product

- (11.1)
3> TJ\35>~

The state \an> may be split into a direct product

132> = 13,:>® 13, ® 134> ® 3330 @\
@la e - ®la., -

There are no restrictions on the transverse-transverse states

(11.2)

(8=1,5) so that \aw;> may be written as the linear combina-

tion

‘a|>5> = 2 dh(\),ncs)\h('3>m5)> . (11.3)

R hes)

For the trace and skew polarizations (s=10,11,...16) the

condition

bela) =0 (11.4)

Implies that \as> can only be the vacuum state Ick>, for

each of these polarizations,

The states \aQA:> containing transverse-longitudinal and
transverse-time~llke gravitons may be found in the same way as
states containing longitudinal and time-like photons are found
in electrodynamics. The state \3%6:> may be written as a lin-

ear combination

72
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EFR > Ch(a);n(c)\h(2)‘n(€)l> (11.5)

hi nte)

where the states \h@%h«ﬁ) have the normalization

nie) \ '
<h(:z)}h(é)\’)(| h‘(z))h‘(6)> =(-) gmz)n‘(z) gh(e)n(e) s (11.6)

Then the condition

[Eca)+tl>(<.)]_|a;,6> =0 (11.7)

glves a set of relations between the coefficientschmhm

fo@et Cnat, nee + U yAERTF Ch(a),n(c)ﬂ = O. (11.8)

Thls means that there 1ls exactly one admissible state for each
total number of gravitons with the s=2,6 polarizations, and

these states may be explicltly. listéed
(o)
|82 = 10,0>

(11.9)
132, = 11,00 + Lloy>

and in general,
\3.(:2>= o> + c'/c—“‘-) b-id + 0 e ot tr@ L=, e
4. Moy
= {‘Iﬁl[g(l)+tg(e)]hlo)o>~ .

(v}
The inner product of two such admissible states(a;,él"]l&,;}

vanishes for h#n' , and when p = N',



h

R Iait) = o oolp{lbamibabos ] 00>

= ° 2 LD 1 =0
=z < ,OI?{E( )Bea) l;(e)l;(c)} [0,0>

except when n=0, where it equals one.
Thus the condition (11.7) eliminates all states with negative

norm. Then \a%6>> may finally be written

|82¢) = 10,0> + ZC(“’ 135 > (11.11)

and of these states, only the vacuum has a nonvanishing norm.

Exactly the same procedure may be followed for the states

|34s> , with the result that

134> =10,0> + ciplan (11.12)
Y0
where \a“‘ has zero norm for n >0,

Finally, the states contalning symmetric spin zero gravi-

tons \8@2{> may be written as linear combinations

\83 7q> S Ch(ﬂ n(7),h(9) \h(3) n(7) h(q)> (11013)

h(3) () ne)

where the states |h(3}h(ﬂ,h(ﬂ:> have the normalization

<neyneyn @)l yinG, Moy pia> =

s d,
-/) 2)n't3) One». v Anes) -

The conditions

(11.1l4)
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[‘5(7) - ‘LE E(QNJ las,m> =0

Lbe - J\=_\:>(q):“537q> =0

glve two sets of relations among the coefficients thﬂ“ﬂﬂnm)
: , (),

(11.15)

W+ C_h(:ol.mﬂﬂ/n(‘i) - é:/o___:?)h(?ﬂ/ Ch(;),mv), moes = O (11.16)

Iary C"n(J)-H) h(?),n(q) -'x/:?é Y+ Cn(3)/n(7}//7(f/+/ =0 .

From these, one may infer that there can be exactly one admiss-
ible state for each total number of gravitons with the s=3,7,9
polarizations:
(°%;> = |o0,0>
\a3me) = lLo,0> + Bilo,i0> +NT 100>

and, in general,

(11.17)

n : "
;)q = // Lg(3)+\[§£g(7)+{§g(9)] |°,°/°> .

(n) \
The inner product of two such states <3s ",r7lagﬁq:>

vanishes for N#¥W' , and when h=n' |,
a1l 335 £ <o besy + Bebo + Eb@)
<3s391n ) = i 2017 (b + Bebe + b
[B’<3)+J§LQ(7)+JZUH)]} lo,0,0>
N (11.18)

<O 9 Ol’lz {L:ml;'(s) 3bHe) + 2L @ U'(Q)} lo,0,0

= 0 except when n=0, when 1t equals one.,
Again, all states of negative norm have been eliminated, and

|a$3?;> may be written

|a37q> ,OOO> +EC(:IQ\ '(;)71,9> | (11919)
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where ]33“;’9> has zero norm for n> 0,
Finally, (11.2) may be written as

f
13> = >, c\m\, g0y n(s>® EC: 235

nanis)
®2C‘“’ Tep) © ECE“%q d1re) ®10D>® 10>

and it 1s clear that the only contributions to a nonvanishing

(11.20)

norm come from the purely transverse states, s=1,5,



12, Further Exploration of the Remaining Gauge Freedom

In order to determine the meaning of the geuge freedom
(see Section 8) in the gquantum theory of gravitation, one must
first consider the expectation values of the operators A}Q
in the admissible states described in the preceding section.
Consider the operators é(.?) and A(é} . Since they operate

_ ‘ !a(m)
on the states 2,6 according to

B lad> = mias™

(12.1)
brea5L> = (dnlal
the expectation value
<';(-?)> = <a.7,4h(l>(9)‘ag,4>‘ (12.2)
= O] (h) (n\
= <a:;/ { L?(o?) ,
7 h>o ac >
tn') ¢ ( " (
T <A mbwia > = G -
n>e N6
Similarly, the otﬁer‘expectation values are found to be
.~ () ( '
<b(é)> = LCJ‘.\G <\>(3)> = C?l)79
1 o ¢
by = Cyr (b= J31C45,

(12.3)
b)) = iCeh <l>(q)> & Cira

o> =0, s=lo,---l¢-

Then the expectation value of the field may be calculated:

Ty = <alplowiay =

77
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_ ) »* + —(x
A gl_t__ _[e/uo(s)@(s))e + €nu)KEede "J

=13 ___l__{ (gao(') bnd + €I be> + CLl [+ €nca]
(1) ° () ) 3 ( 12 °}4- )
+Co [€wo@+7€n)] + Csla (€0 (3) + B LEL O +E Cil))e™™

+ <kc>} .

Letting

<ok, =¢§%{L9°C') by + €51 besdle™ + <h.c.>} (12.5)

be the purely transverse part of the field, and simplifying the

1linear combinations of polarization tensors, one obtains

<(®W> </6;«)>1. %2 J..{(-KOE_QCJ é /e(l) +Jg_g CH—.? €u(2) ‘
(12.6)

+o 3 ,9)6c+ Clle,) + wCle,
S HNZ K ” [_j% 2,& =l B w.» En(2d)

+J@J§ aQ,q)(»]) (nx + <hc>}

A comparison of (12.6) with the classical expression (8.6)

shows that
Cul) = a)[c(‘)ej () + cw,yeﬂ@HLC;lg/q ) (12.7)

which satisfies the requirement MG« = 0. Thus, the quantum
mechanical representation of the gauge freedom is found in the
possible admixtures of virtual graviton states. Tha higher
coefficients(:§2_ (“>l) etc. would be involved in the expec~
tation values%@fvproducts of the fields. In addition to the

above there exists the possibility of operator gauge functions
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(the so-called Landau gauge transformation), which have not

been investigated in this work.

Considef now the energy and momentum operators.

£= 3 (s (12.8)
X s=1 7
where l% =lH. In order to obtain the expectation value
</Fi> =ﬁ<a\"z/el8> , one must first compute the expectation

- values of the various operators N(s),

<nes)d = <a|v( E(s)l;(s)la> : (12.9)

For s=10,...16 it follows from equation (1ll.l) that L) <o,

Consider the case s=2:

<a 6)1’77 Babalaid = @w {as. ')\W(l am"> (12.10)
which vanlshes unless n=n'=l, Thus,

<n@) = |Chel™ (12.11)

Similar calculations yield

<nee)d = =\l <> ="
{nend = |Copl® nnd=-31¢;hal" (12-12
e = -ledlm <nad = 2lcf, 1T
from which one immediately obtalns the relations
<N+ nte)d =
< + <n#)d =0 | (12.13)

<n(3D + D> 4<n@) =
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Then the expectation value of the energy and momentum

B> = T iy - S ae rod+ <ad]. (12.14)
X s=

Thus, only the purely transverse gravitons contribute to the

expectation values of the energy and momentum.

Simllarly, for the expectation value of the spin, one ob-

tains (see (7.11))

<) = %{%& Lo - <1+ R <Bb e -
< Bebe)+ Ry L<Bmbad = < E(q)>]} (12.15)

=§{Zg 2[<nms-<nesn] + R [ B> - C A <hesd |

R [C by - cia<Bed}

The gauge-independent part of this expression 1s proportional
to the dlfference between the numbers of R.H. and L.H. clrcu-
larly polarized transverse-transverse gravitons. As in the
classical theory, the other terms are assumed to be of no
physical significance since they depend upon the choice of the

gauge functions.



13, The Gravitational Analog of Calkin's Transformation

In electromagnetic theory, a transformation among the
electric and magnetic fields of the form

,
£ =L coso+ Hsne

- : (13.1)
/7 =—f£snb 7"_/_9’(056

—

leaves Maxwell's equations invariant. This transformation 1s
called a duality rotation, see Wheeler (1962). The resulting
conserved quantlty for an Infinitesimal transformatlon, para-
metrized by Se s 1ls minus twice the spin component in the dir-

ection of propagation,

- 2.86 Ihr-nw] (13.2)

for a transverse fleld. Thls was polnted out by Calkin
(196%5).

Conversely, one may consider the spin operator S3 for a

quantlized gravitational fleld, and ask what sort of transform-
atlon 1s generated by thils operator. Consider the spin oper-
ator for some fixed propagation diregtion k which defines the

direction of the x3 co-ordinate,

S, = 2L 0mboy-Eebes)] (13.3)

and the infinitesimal unitary transformation

U=T+1865; = T+2i50[ Hobw- biebes] (13.1)

generated by S3 which transforms the field according to
81
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L - Uj&ou"% T+ o (s, L] (13.5)

Using the expansion of the fileld operator (9.7), one may work

out this commutator

[Ss, 8] = 2,2 15 9 Gt LB, 0B, ), b)) ~
v & «‘"‘ s

— L ¢ |_<,5>L>(L<.s)>l:(g,s)]) e |
(13.6)

+ 25 () (L0 beka, b))
- LB (eobk,), (2s)) 'W}
Now,
[B bt b 9] = Bk Lbiky), bress] (13.7)
+ LHk), by lb (k) = ‘CSM gs,é(_é,z)
d
Lg“_")‘)E(lfs‘))g(Z>J).] = g_)_(_é gs'ér(.é)/)
S0 (13.5) becomes
£T,9 = £4.)(1-2:88) (13.6)

745 =4kt 5 (1+2¢80)

with all other £fxs) = Lrws)

In order to see how this transformation 1s analogous to
Calkin's transformation (13.1), one must define analogs to the

electric and magnetic field "vectors", namely the "tensors"

Lot = —C.(%"‘/‘r‘ B 2—;{/5)

%‘! = c—:“:q/ 2;’0//(. *

(13.9)

The expectation values of these operators, in dyadic form,
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satlsfy close analogs of Maxwell's vacuum equations:

V-E=0 -~ ¥'H =0 .
E . = (13.10)
{ZxE+A> =0 {xu- E)D

where (Z'é_)a = Eal/y (ZxE)y) = €.§co/£_?¢//: 5 etc.
Using expansion (9.7) agaln, one finds that these operators

have the form

o, ﬁ {[Lobéal,@) )0654(5)JE(5)€ x+ l’\.c.}
zs@—o

(13.11)
Ay = 2 2 LA E, 16515617 4 he
SVED

and restricting them to the case of a plane wave propagating
in the k directlon (which means that 1t 1s expectatlion values

that are being considered), one obtains

Eog=_L_ {Wfaw)l:(')*- LW€aL(5)A(5)}€_ "+ he.

X A
Al = 1 A Cus € Vb1 + (XeCpe Car (9] €7 + hc.
vedwV
and, using relations (5.8) and (4.15), one can simplify Hgy to
%
s =1 {'w Enb+ w e bl € whe (13.13)
yY2w\

Now, it 1s easily seen that the transformation (13.8) is equiv-

alent to the transformation

£l = Eus - 286 Mo
(13.1h)

e = fod +2<‘f956 :

In other words, the infinitesimal gravitational analog of Cal-

kin's transformation
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f/’£+ﬁof6 A= H—fJ:e (13.15)

1s generated by the operator -%83.



1. Proof That a Lagrangian for the Iterated Field Equations

Proposed by Gupta Does Not Exist

A linear field theory cannot properly describe gravitation
because it fails to take into account the gravitating effect of
gravitation itself, i.e. the fact that the gravitational field
contains energy, wbich, because of 1ts equivalence to mass,
must 1tself be a source of gravitation., This is a non-linear

effect,

Gupta (195L) has outlined an iteration procedure which,
beginning wlth the type of linear theory described in.this
paper, supposedly enables one to take into account the gravi-
tating effects of gravitation to any deslred order, and which
becomes 1dentlical to Elnstein's theory 1in the limit of infine-
1tely many iterations., Thls procedure 1s supposed to work as

follows.

First, it 1s helpful when external sources of gravitation
are present to make a change of variables from the‘};o‘which
have been used up tlll now. If one replaces the g;@ by the
new varlables g%“ s defined by

B = 24 (Yoo = 5 Uor b102)
(%4—.) =;77{"(}71) "‘/éZ:rJu)

one finds that the linear homogeneous field equations and aux-

(1h.1)

iliary conditlons remain true for the 940
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‘[]éé -0
/Um)“ (/})M =O .
Uotr = O ' . (1.2)
s .
04':': O

so that evefything stated so far about the 229 is also true for
the (fw . The advantage of using the //O is that with an ex-
ternal source, represented by an energy-momentum tensor ;;; ’
thé linear approximation of Einsteln's theory gives as inhomo-
geneous fleld eguations

Ol =k Lo . (1l4.3)
The coupling constant k 1s related to Newton's gravitational
constant G by v

k= nG. | (1.Ly)
Then, in the absence of external sources, the true (nonlinear)
equation describing a gravitatlonal field 1s

QU =kt (14.5)
where é;w 1s the energy-momentum tensor of the gravitational
fleld. As a first approximation'to obtaining a Lagranglan

for the equation (lL.5) one tsakes
ya = - % /Mv/a—/ao/a- (14.6)

given previously in (6.4). From this is calculated the energy-

momentum tensor
) D (
L =z gﬁ;"éii/) Cé%yo
) aaﬁ“ ' (1. 7)
= 07«3/;( Ugaa’/—o _’; éo %’A/a- 074/6- -
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Gupta obtains the second approximation by shifting (lLh.7) to
the left hand side of the field equations

Dg«v -k (Uapy* UG;F/-;) — % é:oU.,F,qu,g,a—) = O . (14.8)

Then, (1l4.8) must be the Euler-Lagrange equations of a Lagran-

tan L7 which Gupta writes as

L= b lyr UYsr + o (14.9)
e Vi

where f3 conslsts of one or more terms such that each term is
a product of three factors, each factor being either k) or
its derivative, and each term containing a total of two deri-

vatives.

This method of iteration fails, because, as 1t will now

be shown, no such f, exists. There are fifty-seven possible
<

terms which could contribute to f3, which are listed in Appen-
dix B, using the notation.

) = Yo, L00/et) 2 Ussor- | (14.10)
This list ?xhausts all possibilities, since a term containing
a second derivative would differ from a linear combination of

the Li (i=1,2,...57) by a four~divergence, for example

fuvsa)fa)(98) = = L= Lz + 22_ Y_gﬂo/d)/c«d)@g) - (1l.11)
Then, f3 may be written as
Y4
L==C (14.12)

4“

and the coefficients C, are determined by the fact that the
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variation of f3 with respect to g}w must yield, from (14.8)

S = ~4 [ (oardrst) ~ oo Cotodiciare) ] (14.13)
S Yeo
The conditlons among these coefficients (see Appendix B)
Include
Ci+Ca— Caq ~Cgo~ Cyr = Cag = =4 (s )(=r?)
- - (a1l
-2(ci+ca) = © (=y2) (ifo3)
~ (Caa+Cso+ Css +Cz5) = O (e )(er50)

where the coefficients of the terms on the right have been
selected. These equations are clearly incompatible. Since
(14.12) was the most general Lagranglan, it can only be con-

cluded thsat f3 and hence L' does not exist.

This proof leaves open the possibility that equatlons
(14.8) could be obtained from a Lagrangian whiéh was other
than cubic in the field varlables. However, even if such a
Lagrangian could be found, to be used in this procedure 1t
would have to be expanded as a power series in k, and only
terms containing £ to the zeroth or first power would be re-
tained for the iteration. But then, the Lagrangian would have

to be of the form (14.9) which has been shown not to exist.



15. Attempt at Incorporating the Gravitating Effects of

Gravitation by an Iteration Procedure

Although the method of 1lteration proposed by Gupta, out-
lined in the last section, fails, it is possible to develop
an lteration procedure which wlll work along very similar lines.
The first order equations are given by (1Lh.2) and will be writ-

ten as

)
ng) = O) with
W) — ) [T

uv = ™ UJpu = O (1501)
4 Pl 7/

oy _ G
@u = Uy =0

c" = Up =0.
They are obtained from the Lagrangian AL(O given by (1lL.6)

and from which may be constructed the energy-momentum tensor

Z"
& given by (14.7).
The second order equations are written as

(2) Q)] .

DUM'\) _k-t»n) = O (1502)
/ Pl

but thils equation will now be understood to have a different

(2)
—‘)

meaning. Instead of understanding that the variables U
appear in the expression for ;;3) as well as in Clgﬂl as
Gupta did, one can interpret the §;f) as a function of the
co~ordinates B@ s, In terms of the known functilons gﬂL . Con-

sider what happens to the auxiliary conditions for a solution

£ (15.2): ’ o
o e (15.3)
0 = £(zi-70) = o °
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(2) (2)
Although EJQ,» vanishes, there 1s nothing to insure thatéiv

itself vanishes.
Similarly,

C\B“)- oy, - z:,i;: =0 (15.4)

2

but this does not insure that 3 itself be zero. Finally

/(
) ) ,
0C¥ = aly = 4% = —4¢L50 Lo # O (15.5)
S0 (:(a cannot vanish in general.

There 1s no problem in obtaining a "Lagrangian" for equa-
tions (1l5.2); 1t must of course be an explicit (as well as im-

plicit) function of the co-ordinates

L - YL US - UL (15.6)

2 '
Notice that £ ) is not a true Lagranglan, since its dependence
¢)
on the co-ordlnates through Z;z contains a dependence on a

particular solution of (15.1l). Howgver,4lﬂv> and the other

L will be called "Lagrangians" because they are used to
generate the energy-momentum tensor for each order, just as an
ordinary Lagrangian may be so used.

From Af“q can be constructed the energy-momentum tensor

2) é\ ( (2) 2) (2) (2) (a)
;m) == 07/3/a‘ ag/r / a//;/d

-

(1)=» (2) C/’ (2) )
54:1' —/é /m) , océ'

7

(15.7)

where

(l)“%(n) - ") () "
Z;«o - yga(sf/)u (/7«;/«) - g 0 y 7(4}6" (15.8)

”-
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Then, the iteration may be repeated to yield the third order

equations

ULBJ - kt(i‘) — ) op

(15.9)
) -» rn) ( m
DU - t gu\) ::3

where the Lf? appears only in the first term, the other terms
being expllicit functions of the co-ordinates. Again the aux-

1liary condltions do not hold. All that can be said is that

0Bl = -KURth. # 0 (15.10)

(3) (2) (1) 2,,02 (/)
O - "Uaﬁ/«‘ o B - 4'( 0-;4' ?é O -

The "Lagrangian" and energy-momentum tensor for this order are

respectively
7 3 ¢3) (3) £(2)
4()____. _Za‘/g/a_ a///r /éaxfz
' (15.11)
C (t)—>(3) 3 2
s = 4 A ls )f"

' th
The pattern for successive ilterations 1s clear, and the n

order equations

(ir -2
oY -2 ) = - (15.12)
may be derived from the hth order "Lagrangian"

n)

” (») %) (h-1) :
L( ) = “Z%A/ra;wz- 'éﬂ% )Z;fh 5 (15.13)

whose energy-momentum tensor 1is

(n) (')—>(h} tn) (0 =1)
RS R PAYN (15.14)
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Substituting the definition of é;:ﬂo into (15.13), one obtains
the functional equation
D R VA R i ) B CERT
Va4
where it 1s to be understood that the expression in the square
brackets 1s an explicit function of the co-ordinates. Although
there is no information about the convergence of this procedure,
one may assume that the field equatlons obtained by varyinglﬁnv
do not differ significantly from those obtained by varyings ™~/
when N>>| . Then, if this assumption 1s valid, one may drop
the distinction between Aﬁ"v and /im—o in equation (15.15)

and just write

L+ /5 UyapeUyapr 4 Une (L] = £ Upe [3[;; You| =0 (1526

where £ 1s the Lagranglan and [L] 1s the expression for /
evaluated as an explicit function of the co-ordinates. Then

one obtains a functional equation for L, the Lagrangian for a
fully nonlinear theory. It 1s not known how to solve this
equation. Thus the solutions of equation (15.16), if they ex-
ist, would yield fileld equations for a source-free, gravitating,
gravitational field which in linear approximation have solutions
compatible with all known experimental results. Because the
auxiliary conditions would not be true in such a nénlinear the-
ory, it must be concluded that polarization modes other than the

purely transverse ones would be possible, including the skew

modes. This should be a very interesting field for investiga-
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tion. It would also be very useful to study whether solutions
of these equations are also solutions of Einstein's field equa~

tions.



16, The Scattering of Photons by Photons due to the

Gravitational Interaction

The considerations of Section 2 show how an interaction
Hamiltonian for the electromagnetic-gravitational interaction
may be constructed, using the principle of the compensating
field. Once this construction has been made, such quantities
as the cross-section for photon-photon scattering due to the ex-
change of a graviton can be calculated by the usual methods of
guantum electrodynamics. The content of this sectlon follows

closely a development by Kaempffer (1967).

The motivation for investigating such a small quantlty as
the photon-photon cross-section can be seen from the following
dimensional considerations: In quantum electrodynamlics the
lowest order contribution to photon-photon scattering comes

from the fourth order term whose Feynman graph is (Karplus and

Neuman, 1951) . ,
k.
4 \
< (16.1)
/ﬂ | R\

where the dotted lines represent photons and the solid lines
represent electrons or positrons, and the cross-section is on

the order of

. A
e e

for low frequencies, where %o < mMyC?

el
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For extremely high frequencies, where ﬁdxx>wgc2, the cross-
th

section cannot depend on We and must depend, for the n order
term, upon the inverse square of the frequency as
n 2 -
e\ o
o? - ‘r—z) a)l— . (1603)

On the other hand, the contribution to this cross-section from
the graviton exchange Interaction, which can be represented by

the Feynman diagram

N oL
® oA
P - ~~ =graviton (16.4)
N .

in the second order, must depend on frequency as

2 -—
o~ e & ~ 1676 o (16.5)
c* O

since there 1s no mass factor which can be included.

Why the gravitational constant appears to the second power will
be shown 1In the calculation. Then, clearly, when the fre-
quency reaches a certain critical value, the gravitational term
will become dominant. This frequency 1is about 10“1 sec-l, which
corresponds to an energy equivalent to the annihilation of 10-7
grams of matter. Thus, for extremely high energies, there 1is

reason to believe that the gravitational interaction plays an

important role in the scattering of photons,

Now, the interaction Hamiltonian is constructed in the fol-
lowing manner. One starts with the Hamiltonlan for the free

electromagnetic field,
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A= Zfﬁﬂ_{@/é/%/é (16.6)

in which the gauge 1s chosen so that /Z‘= 0, and transverse
photons only are being considered. To take into account the
gravitationalAinteraction, one simply replaces the ordinary
derivative /ﬁg« by the special derivative é%/ég , lntroduced
in (2.11). The form of this derivative, in the linear approxi-
mation, is given in (2.40) as

é&'ég EE/QW%’* ézgac’6L
(16.7)
=ﬁaA§ + L/)Zac/l - X% (Tac/&"" Wba/c- W&:[a)]ﬂc .
Now, in thls approximation, ?ac may be replaced by /’S%C since
only symmetric, in fact only purelj transverse gravitons will

be considered. Then, one may write

BAs = Ao+ (T Boya) Ao

(16.8)
= fop + Jo Esrssea Fe
where ,
Eurog = 2 Viope™ Uoero) - (16.9)

Now one may expand A& as a sum of photon creation and annihila-

tion operators

0 :
Ha = —LZZ ‘_ a c
7E 2 ‘ﬁ}_{e_(g,o-)a(bﬁ‘)e_mx} (16.10)

AKx

+E€s(k)alkd e

where the €§(E;ﬂ are the polarlzation vectors introduced in
Section L4, and 3(55? and a*(EFﬂ respectively annihilate and

create a photon of momentum K, polarization 0 . Also, one has
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2 . ,
b= 4220 L l__€a:,(z,5)é(af,5)e‘”" + h.c] (16.11)
S W EEEs

where the constant k has finally been introduced for dimension-
al reasons, as was promised in Section 6, and the polarization
s=5 1s now being written s=2. Using the various properties of
the €4.(%3 and the €5(%5) , one then finds that (16.9) may

be written as

2 | o
firsey = }'_Vé EI(-')SQ €a=m(§:g (8)€m(ndbmne™+ he].  (16.12)

So, the interaction part of the Hamiltonian may be written as
P ,
= Z‘([ﬁa/éﬂca/cj e+ Estarcy Ao ﬁa/&} . (16.13)

The /Z and the /sz may be commuted since the operators which

do not commute will be eliminated by the relation

Eabc€a(k,T)EF (K =0 (16.1L)

and 7¥/ is seen to be already in normal order, and may be writ-
ten as

Fb) = BN Ao 0 otpoger ) Aol (16.15)
where the operator N places all creation operators to the left

of all annihilation operators.

Now, the full machinery of quantun electrodynamics may be
used to evaluate, for example, the cross-section for photon-

photon scattering. The scattering operator

S =T [-e)(? -:/%fx/o&l . (16.16)


http://i6.il
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is expanded as

S= Tt TLH b1 = )T [0l ip]oliche# - (16.17)

where T 1s the time=-ordering operator. The lowest order term
which can contribute to a scattering process 1s the second or-

der term, which may be written

Sa= =4[/ T {N[Aa L 0B bgajea ™ A, o )
N Lﬂaa/ba(Yz) Ebg[&;lc_;] (x2) Aca (x:.)l} Clxn dXz. .

Wick's theorem allows one to write: (16.18) as the sum of six

(16.18)

terms whose graphs are

\\ . Y N /
, N N
wvv§. M - )vvv;(
/ N / \ / AN
7 N s \ / N
(I) (I1) (II1)
SZ SZ SZ
_d_(\”:'}__ e W e fonny
2 (IV) g(V) s(VI)
SZ 2 2

(I11)

The photon-photon scattering term 1s 82 , Which can be

written

f \ (16.20)
&,Ea/qj () Eg_z[a,/cij () = <O‘TLEé,[a,/q_7 (“)Eé[a;/cd(’(’)] IO> .

The following identities allow one to simplify this propagator:

2 My M,
265,(%5) € (ns) = cg\:.tx" ‘;)f‘

(16.21)
Eabe, es@ - ?_(_L) "% $ourtr+ 4 0
o= 2 “
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a@akzkh"CgmhﬂQ}Z\}

so that (16.20) becomes

,é:‘
L(.zw)‘*

SA 51-—)&/ ﬁ(émax ;{C/ ”CL + <;Ca )(&/ ;(&1
2

9, Ca %C: ){GA -

< da )(8/}/0: -

Cirle—xz) o s

(16.22)

where F 1s the Feynman contour on the ‘22 -plane; which in-

cludes one of the poles Xyu= ,

time-order of X; and Xa. Then

Hy= -2, depending on the

(III)

S2

teen fundamental processes, whose graphs are:

(I1I) =
SZ

.\R 4/\R \R ,"\k
”
YA Raesd
(1) (2)
N \N »’ N\
S A S (PO
- 7 P
(5) (6)
7N s s
n R
+ 6"-"‘Vﬂ =+ (\"\.'\?;
) [
\ N7
(9) (10)
N 7 \
Kk =2 [
TN e
\ 4 /

N\ /s
LN & a”
-+ Mk\ “+ %:.;,;\ﬁ
(3) (L)
N\ 4 \
R »
+ ﬂ)“““& - 1)»\xA
4 h 7 /N
(7) (8)
/ 4 4
» 7
+ fx b
~ n 2
\ N\ \/ N
(11) (12)
+ d
Ay + O
SN AN Ve ,,\/7' A
15) (16)

may be split into slx-
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where the convention used is that photon lines from ﬁ% are:

drawn from SW to NE, those from /4 are drawn from SE to NW.

and creation (annihilation) operators are represented by a line

leaving (entering) a vertex. The processes which can contribute

to photon-photon scattering are those numbered (L), (6), (7),
(10), (11), and (13).

The matrix elements may best be evaluated in the centre-of-

momentum system

Pd

A =L
} _/ -Q|= 'Q2 =.Q|/=ﬂ2/= Q
£ =4
—_—— —

E-E\= Q%cos @ (1602LI-)
Kz/= K7
where they may be wrltten as
Klo-k,@ 8] k07 -k, 02> (16.25)

It can be seen that the uth and 13th diagrams do not contribute,

and the remaining four are identical. Thus, the complete mat- -

rix element is

(277)% Casé-fl)/f/J‘(;(’ P K - £) (16.26)
02y cosé®-!
where

M= (et )ee)kie)t (e eI 4-E")

' (16.27)
+(e ) tle)(4-e) + (e -k )47 E)
and
€ =g(4 ) €= §§(5f077
€a 2 E(-£,03) €= €(-£,03)

The usual phase-space conslderations (see Jauch and Rohrlich,

1955) enable one to compute the differential cross-section



Ods= & O/S‘(osé-f “//if/ (16.28)
/6 03 Cos8 -/

where M 1s found by averaging over initial spins and summing
over final spins,

% 2 SN NP = Y sinteLetr-cose)+ coso] - (15.29)

o G &G
Then the differential cross=-section 1is

ads = G5 (coso +)?[a(s-cos6)+ cos’0] (16.30)
/6

and the total cross-section 1s given by

ar

ardl af/crds = 207G (16.31)
Y3 2]

or, in cgs units,

T = ,?_ov<s*ﬁn> et (em)* (16.32)
< cs | Q*

Other quantities may be calculated in a similar fashion, and

should prove to be a worthwhile subject of investigation.
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- Appendix A. Normalized Eigenvectors of Spin Projection

Operators for the Tensor Field

The elgenvectors of the operator 4 introduced in (5.5),

labelled according to spin quantum numbers (j,m), are:

)’(f(a? 203
FR U2 X)(*- X5)
A D
22X (0FXN 0™ XF)

XElo2)6)?
C

R
H#H(w x5)

o O o O o O o o o o
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2 M (w0 220)
2 X (02 XG)(2H: F)
—JZ Xz (%= 3P
FH- (OF X ) (2762 w)
71 (07X

?(2,1/}; /

2“)1(‘07___ )(37)'/'/;.

O O O O o O o o o o o
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203 16 X3
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?(/)t/) = .

/
2&2(4)‘—7(374

o O O O o -

FHe(W2)G)
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+X(0F)G)
0
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The elgenvectors of the operatoro,-W are obtained from those
of "X by the operation S (see definition (5.7)) with the

result

X = oE 2600 X007
Ma(oat) s coXs (a6
(W r ) (- 706 F (26
0
D)% 602G (%X
x5 PHPF 8D M s

(W Xxf) (-2 Xz £ L))

/41) (lss) = = / ) O
(w1, -
g (D27 Xs T (L0Xs)
(@A) + iDK)

(% x$#)?

O O O O O
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/
Q@a(QEQQ?VL
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— XX T DX Xa
~RXHXHs = LD(H7~T)
X, (02265 7 CwXaXs
0
—RH X6 £ (XX
~RMG)E £ 2¢ QMK
R(W2X5) £ LD XXz
0
Wi (0% 26) T CoXXG
PACORT LT E R AL,

RN (=AY
0

0
0
O.
Ol
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S X
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- Appendix B. The Fifty-Seven Possible Terms in the Lagrangian

f5 and the Result of their Varistion.

The first elghteen contain 1) (4?)
11) some permutation of‘ogéyz

11) some permutation of = 30

I, = ;aa)&pe/h)Gyf/b) Lyg = #2)(45/) (55/)
Ly = () (egs ) (/D) L11 = fud Ve fB) (o f5)
Ly = (w) (g ) 0 5) 2 = f0) (xf8) (59 /)
L, = f ) legafu) (50 /) = () (74)3) (9/8)
Lg = (w0 ) (o8 fu) (9 46 Lm = fp0) ()8 ) (92 o)
Ly = () () (1)/3/« Lig = [0 ) JAY8) (= )8)
Ly = () (e#/8)(5/> Ing = J#7) )2 ) oo/ )
Lg = (w0 ) (gu/x) (e /4)) Lyg = (#2)(#) (9/5)
Ly = (W) (' f8) (55 /') Lyg = (#2) (~)3) (98/)

The neit nine contain 1) («»)

11) somelpermutation Of o, of

111) some permutatidn'oﬁ/aﬁtv
Lyg = fov ) (<otfuc) (95 ) Ly, = ) e/ ) (92)7)
Log }ﬂd)ﬁ*ﬂjﬂ)}gdjk) Lyg = S (pelf ) (58D )
Ly = fwo) leter fu) (95/5) Log = o ) jwet ) j29 )
Lop = (9 ) (etfe) (95/2) Log = fu) fuerfed ) (V25
Lpy = S Y e/t ) (328 )

The next eighteen contain 1) }ﬂ@)

1i) some permutation of 4 «

iii) some permutation ofagﬁgﬁ
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Lg = 440 ) (o /) (g8 ) Ly, = () (944) g6 /)
Log = o ) /) gt/ Lyg = faw) (Dt/n) (et )
Ly, = (uv) /ot ) 073//:') Lyg = (0 ) (et ) (A J )
L31 = (uv )yor/o /5/0( -Luo = (a) (o;«/»)(/g/s/oz)
Ly, = 0) /o) oot f£) Ly = §#) (/?) Yaotfe)
Ly, = (o) (Htfd ) (45 /8) Iyo = (ad ) (4/0 ) («B/5)
Ly, = juo) (/) (8 /) By 3 = J40) («of ) (55/)
Lyg = (90) (gu /=) (B2 by, = (o) (g ) et )
Ly = ) () 45/ Lo = J#d ) (43 4) e fe)
The last twelve contain (ere¢)

Lyg = (o) fow f2) fu2) Lep = (o) (g2u) (994u)
Lyg = o) 0/2) (90/)8) Lgy = (=) (g8/u) (94/?)
Lyg = (<) )8 25/) Lgy, = (o) y3800) (pro /)
Lo = (oto) (08 ) (98 ) Log = (o) (g)8) (9 /)
Ly = (=) fif) fg4/) Lgg = (o) (SH4)28) (av/y )
Lgy = (<) (w2 f2) (524 Lgy = () (48)8) (M)

The variation of f. (see equation (1lL4.13)) yields

ey {lo8f) (e5/5) --32<«,e>w/oyf> - o) (/) = fo o) )+

o, {(mfu) /o) = 206 (9fgp) = (HY2) (/=) = (gm /o) (g3 o))+

3 {(O;,g/u)(do//g) - RV AB/PH) - (ogs/x) (f5/D) = (29)(45/24) }
- @xvé&)paé/d)

Ly PP = ) L) = () (P = (50) (50 }
- Jo7 [) (e#/8)

]

og {lepfu) P/g) = () o) = (eppf) /) - (o«/«)w%/e;«f)}

- ) (95 /)
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o {u;;my«/«) = (98) (B2 =) = (/) (pofu) - y/)(«v/o;ﬂ)}
= S (= p)
c7{(a//6)(¢/a) - (o) (uet/98) - ayz/ya/ﬁ) - (Det) /(,4/3/0;5)}
- () e sfx) ) +
cg gw/o()(o,«g/a) = (efB8) (Ptfur) = (48)8) (Detfpt) = (2)8) /«;soo}
| | - (9B0) (g f2) ) +
o {yoza)(w/a) - (B HPB) - (oaff) (cpf?) - (o) (@J/o%)} |
~ Y f3) (98 /<)
°10 { Yo 55/2) = (P emfup) - (egaf) o) = L) 00 o)
- /) (<o)
ey { ) R) - () et fBB) — (ea/B) M) - (D) nyms
| = (PP ae)
¢1s { PV /) = (59) e fa) = (8/) (aaf) - (0u0) w«;«m}
- (P (Beyx)
13- ) - (o) ) - (o) }
cmg (z4/p) oﬁ/ao = NEPHA) - R eplr) - () ( /’/ﬂd)}
| - = (/) (o3f2) ) +
Clsg 2B) (D)) = (=) (VYEAE) = (uet/3) (D)) - (=) (aet/.2)
- (w/,@)(w/ﬁ)}
BRI < ) o - o)
- ,(ff'«)/a/) (B )
gyo%eﬂw//j) = ) (D)58) - (He)5) (v r) = (opr) (o«%;g)}
- (/) (02 8)
c18 {ya4e><0/s‘/«) = JuA) (F/P) - faetf) (=48/v) - (M) W/o«)}
- e /) )+

cwg (i fp ) (@3/5) = 2(=f) (vr/&(s)gw - (/o) (/@) Sur
- /P /0 S
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w;« Jyaafp) - (o) Wp/o/x) - («o/mg;e/s/x (o) (ofs ),
= (es/) (o) IS

021 (ddé“)(%/ﬁ) - }4/«)(,(-(//-9) - W/O)(de/ée - (a(/é’)}/?d'/o'o()g} |
| (of/é/o()gxxo"/o') 2 |

- - (= f/R) (ot ) e
°23 (e W"//” | "F “/"//‘ (“’F/‘ /<) = ) <“F/¢>}
- (ﬁ«) o(/s/d)

o | 02)4- ol/(/o( —9(3/§ ‘)"‘)("(F/F/")" q)o(//A) o(/g/F) - ((,'/u d/?/o(q))}

0222.7«/,( ye/z/@ - 0,8 ““//7‘) - 1’/6/“ 0’«//3 - (o) (oot &}

(BA/2) (/)
o«/,z Vop/). -yé) (/o) = Sorf) (Bple) - (o) gm-/w /S,,
“epg (/a(/oz)_(/sw)/fz yzo( (Fe(/,ea) - y,//—a)g,éo(/ﬁ (/2—0) (/fd/ M
o { - A -;m/mw«/d)}
P %5/*«/«) (»2/2) - /(,«o( a}d//ﬁ'b /(,«,(/0)(»(/3//?) () ;ao(/o@)}
| - §24/?) et/ )
oapf- 0 g2 ) - - joorpeienf- e/ e S} +
029{ yw);é’oy/fo/) - (d[ﬁ)(o(/S//‘) - (53p0) (e3/») N -
}W/q (43/f) = Laev) (e )8 = Lamferl) (S8)R) = (o92) (5 )ur?) }

: ( ) - (g2 ) (568/?)
g (PAPYUBI) = ) y3afst) = (Y]] - S oG
{}4 » - jga/x) y«/o-)g,s +
32 /) (B3 “kd)%ﬂkd) - L)) fagR) = (58) (=)
- (o3 /u) («r2/3)

c 33 | /2) (/) - yfa«) W) = et (B 8) = (opf) ///%)}
= (e8/2) (e4/$)
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) 58/) = () Yt

YN 3l = (49) fpe )
() (oo = ) faetpr)
(Derfer) (BB/) = (o) (32/7)

\A)
2

(Do) fB=f8) = () (V)52

0 5o [t BIR) = () (P eh

opy (I pEr) - () fguee)

/) (Y B) = (V) J#r8/ o)

oy [ 581 = (e fga fee)

T /) e/ €

i
iy
K
*|
g /et Ju0)
{(oyt/v? $92/) - (=) o
|
i
5
"

{(»«v/«) (e/B/P) = () o3/

(/o) 38/o0) = 455 78ty
- kr/,«)(o;é%«)&,)

(oafr) aetl) 3+

(/) jpgr) Y3
(/=) (3a/9) - o) (s
e
(/=) y5/) - ea;eu@'/yn}"
- (egBy) yav/x) I
e/ (2p) = (42) VJ/’/@)}
- (B 0V jaH/ ) I
(vod/ N JFE) - = Yo (el s
| - Jac) (g ) )G
(Vetfet) (3113 ) = (%(7)&/9«)}‘
- (epBu) (Do)
(Def A fur3/5) - (o;e),c«x/em} |
- (/) Jpeet ) I
(/e Y38 J) = 436) T oy
- ype/) (’(G'/F)C/CO}*
(/=) Y3MP) - (a?f)(w/w}
- (oyap) (V8= J+
(orelfed) 23/ /3) = (o) imfB/ed)
oo

C}_l_é XO//F 0‘(/@)51) - 2ot /(/(—://3/9) - 2 "“’(/ﬁ}“"/,é) }
L;? {o(o'/F) (ﬁ'a(/(g)é;d'\) - 2(oter) { 7)//@3 - 2/ ,(a/ﬁ)(v//F) }
0y [P (/A ) Guo = 2leved (BIR) = 20/ ) 3/ ) ¥
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(w8 (/) Qs = (<o) (VBYp) = (elff) (s JH1) = (ot y//J/j
- (eet/B) (BH/D) [+
(ot
)

o0 | LTRNFH N = (g - (et ) - (o ”///}/}
- (e 1)/34«.)
i
2

(o/o-/@)(pr/o/)or/«» - 2(al) (BUfus) - 2( .xo(//e)y«// ) § o+

- 2(°(d),(/3//6‘()£a - \otet/ ) 35/07) %:1) } +

egy | - (B3] - (LAY 0] - (<) (<r/:*/cr,e)c§w}

SLL { (/o) W/‘“) (/) {38/ /u - (o(a() }66/0? ém) }+
{Wo(//e) (6ot /c7) cgw - 2(teX) /(/?v)%/l) - 2( o(ofﬂ %7}45) }

56 {(,ao(wuf/f)o;g - (e JBHYBV) - (/) fgif8) = (o) (95 fm)

- () (YBE)  _JF

{(,(/g//g) (ors/a) &w - 2xe) (A0 - 2(0(«/4))y,€/,6’)}

- kiz(-y:/ﬂ /) Qoo = () (49}
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2



