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Abstract 

An a n a l y s i s of the most commonly used type of Ion Cy c l o t r o n Resonance (ICR) 

spectrometer i s given. Though the equations of motion of an i s o l a t e d i o n 

i n the ICR geometry are extremely n o n - l i n e a r , i t was found p o s s i b l e to 

decouple the l o n g t i t u d i n a l o s c i l l a t i o n s due to the trapping p o t e n t i a l from 

the c y c l o t r o n motion by e x p l o i t i n g the f a c t that the c y c l o t r o n frequency i s 

very much greater than the tra p p i n g frequency. A p r e v i o u s l y unsuspected 

dependence of the c y c l o t r o n frequency and d r i f t v e l o c i t y of an ion on i t s 

s p a t i a l coordinates was discovered and experimentally i n v e s t i g a t e d . The 

d i s t r i b u t i o n of energies f o r ions at resonance w i t h an a p p l i e d r - f e l e c t r i c 

f i e l d i s also discussed and improved techniques f o r the study of energy 

dependent c r o s s - s e c t i o n s are proposed. Conventional ICR techniques were used 

to estimate c o l l i s i o n frequencies of sodium and potassium ions i n helium and 

argon gases. These experiments y i e l d i n f o r m a t i o n about the d.c. d r i f t 

m o b i l i t y , i n the zero f i e l d l i m i t , of the a l k a l i ions i n i n e r t gases and are 

discussed i n terms of various models of the ion-atom i n t e r a c t i o n p o t e n t i a l . 

A crossed beam arrangement was used to obtain p r e l i m i n a r y estimates of low 

energy rate constants f o r both asymmetric and symmetric resonant charge 

t r a n s f e r between a l k a l i ion-atom p a i r s . 
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1. I n t r o d u c t i o n 

Ion Cyclotron Resonance spectroscopy (ICR) i s a w e l l e s t a b l i s h e d 

technique f o r the study of i o n - n e u t r a l c o l l i s i o n s [Wobscall et a l . , 1963] 

and other gas phase phenomena which r e q u i r e the r e t e n t i o n of charged 

p a r t i c l e s i n a w e l l defined region f o r r e l a t i v e l y long periods of time. 

B r i e f l y , the p r i n c i p l e of ICR may be explained as f o l l o w s . Ions, of mass m 

and charge q, o r b i t near a frequency = q/m B about a s t a t i c magnetic f i e l d 

B. When an o s c i l l a t i n g e l e c t r i c f i e l d w i t h frequency near i s a p p l i e d i n 

the plane of the c y c l o t r o n o s c i l l a t i o n the ions absorb energy from the 

e l e c t r i c f i e l d . This resonant absorption of energy may be detected d i r e c t l y 

using techniques s i m i l a r to those used i n Nuclear Magnetic Resonance 

[Abragam, I960]. 

A t y p i c a l ICR apparatus [Baldeschwieler, 1968; Beauchamp, 1967] i s shown 

i n F i g . 1, together w i t h the coordinate system ( I n s e r t F i g . 1) which we 

w i l l adopt f o r t h i s t h e s i s . Ions, normally produced by e l e c t r o n bombardment 

of an ambient gas, are e x t r a c t e d from the region i n which they are produced 

(the source region) by perpendicular e l e c t r i c and magnetic f i e l d s . The 

magnetic f i e l d i s a p p l i e d i n the -z d i r e c t i o n and an e l e c t r i c f i e l d , i n the 

-y d i r e c t i o n , r e s u l t s from p o t e n t i a l s and V 2 a p p l i e d to the upper and 

lower p l a t e s of the c e l l ( F i g . 1) r e s p e c t i v e l y . Since the i o n s ' motion i s 

unconstrained In the d i r e c t i o n of the magnetic f i e l d , they must be trapped 

between two suitably, biased e l e c t r o d e s (a p o s i t i v e b i a s V T to trap p o s i t i v e 

i o n s , negative f o r negative ions) o r i e n t e d i n the x-y plane. A f t e r 

production i n the source region the ions d r i f t i n the x - d i r e c t i o n under the 

combined i n f l u e n c e of the s t a t i c and magnetic f i e l d s i n t o the analyser or 

resonance region where they are detected v i a a change i n l e v e l of o s c i l l a t i o n 
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F i g . 1: A schematic diagram of the ICR spectrometer. The i n s e r t i n the 

r i g h t hand corner shows the co-ordinate system and the dimensions 

used i n the t e x t . 
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of an o s c i l l a t o r used to generate the e l e c t r i c f i e l d w i t h which the ions 

are brought to resonance [Robinson, 1959]. Hence there are three motions 

of the i o n s , a r a p i d c y c l o t r o n o s c i l l a t i o n i n the x-y plane, a net d r i f t w i t h 
2 

speed |(ExB)|/B i n the x d i r e c t i o n and p e r i o d i c o s c i l l a t i o n i n the p o t e n t i a l 

w e l l formed by the t r a p s . 

The ICR device then i s a type of radio-frequency mass spectrometer 

of f a i r l y good mass r e s o l u t i o n at low pressures and s u f f i c i e n t s e n s i t i v i t y 

to detect 1 to 10 ions per cubic centimeter [Beauchamp, 1970]. When 

operated i n a " t r a p p i n g " mode, by p l a c i n g e l e c t r o d e s at the ends of the d r i f t 

regions of the c e l l [Mclver, 1970] , ions may be r e t a i n e d i n the c e l l f o r 

s e v e r a l seconds. This f e a t u r e , combined w i t h the good s e n s i t i v i t y of ICR, 

allows measurements of cross s e c t i o n s f o r p h o t o d i s s o c i a t i o n of p o s i t i v e 

molecular ions [Dunbar, 1971], as w e l l as f o r photodetachment of e l e c t r o n s 

from negative ions [Smyth and Brauman, 1972]. Of course, the ICR 

spectrometer may be used f o r more conventional types of mass spectrometry 

such as the determination of r e l a t i v e abundances of i o n i c species from 

e l e c t r o n i o n i s a t i o n of gases and r e l a t i v e y i e l d s of products from i o n -

molecule r e a c t i o n s . These a t t r a c t i v e features of t h i s device are enhanced 

by i t s a b i l i t y to s e l e c t i v e l y a c c e l e r a t e d i f f e r e n t i o n i c species to 

greater than thermal energies. Thus i t i s p o s s i b l e to do double resonance 

experiments by monitoring the change i n the ICR s i g n a l of one i o n , say C +, 

which r e s u l t s from e x c i t a t i o n to n o n - e q u i l i b r i u m v e l o c i t i e s of a d i f f e r e n t 

i o n A +. This type of experiment can be used, i n p r i n c i p l e , to measure 

the r a t e constants, k of r e a c t i o n s / 
+ k + [1.1] A + B y C + D 
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as a f u n c t i o n of energy since the average energy of A can be c a l c u l a t e d 

i n terms of the s t r e n g t h of the e l e c t r i c f i e l d a p p l i e d at resonance w i t h 

the c y c l o t r o n frequency of A + and the time d u r a t i o n f o r which t h i s f i e l d 

i s a p p l i e d . In a given gaseous system a p a r t i c u l a r i o n C + may have s e v e r a l 

d i f f e r e n t precursor ions such as A + so that monitoring the ICR s i g n a l 

s t r e n g t h of C + and sweeping a probing o s c i l l a t o r over a wide range of 

frequencies w i l l r e v e a l a l l of the parent ions of C + through a change i n i t s 

p o p u l a t i o n . This type of experiment may r e v e a l the r e a c t i o n channels i n 

very complex ion-molecule systems. 

The ICR method i s p o t e n t i a l l y u s e f u l at i o n energies s u f f i c i e n t l y low 

(5tens of ev^ that the ions are contained i n a c e l l of reasonable s i z e 

( s e v e r a l cmi) at standard l a b o r a t o r y magnetic f i e l d s . The ICR apparatus i s 

cheaper, more compact and e a s i e r to operate than other standard techniques 

such as merged beams, e t c . used i n t h i s energy range. However, these 

advantages are o f f s e t by the f a c t that there are s e v e r a l general aspects of 

the o peration of ICR devices that have not been f u l l y i n v e s t i g a t e d . For 

example, instru m e n t a l a r t i f a c t s have hampered k i n e t i c s t u d i e s of i o n molecules 

and charge t r a n s f e r r e a c t i o n s at the low energies a c c e s s i b l e to ICR. Loss of 

ions from the c e l l [Goode et a l . , 1970], i l l - d e f i n e d d r i f t v e l o c i t i e s 

[Smith and F u t r e l l , 1973] and inhomogeneous e l e c t r i c f i e l d s [Huntress et a l . , 

1971] are a few of the problems encountered. To overcome these problems, 

t r a n s i e n t ICR experiments [Dunbar, 1971; Huntress,1971], pulsed 

techniques f o r d r i f t time measurement, [Smith and F u t r e l l , 1973] and d i f f e r e n t 

ICR geometries [Clow and F u t r e l l , 1971] have been developed. I t seems to 

t h i s author that these experimental attempts at improvement of the ICR device 

can b e n e f i t from a d e t a i l e d a n a l y s i s of the ion motion i n the ICR f i e l d 

c o n f i g u r a t i o n . 
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In t h i s t h e s i s we wish to discuss as e x p l i c i t l y as p o s s i b l e the 

complicated features of the ICR experiment and to present an approximate 

a n a l y s i s of some of the important p r o p e r t i e s of the ICR spectrometer. The 

a n a l y s i s i s based h e a v i l y on a w e l l defined treatment of the n o n - l i n e a r 

equations of motion of an i o n which are solved using an expansion of the 

c e l l p o t e n t i a l to the f o u r t h order i n the y coordinate. Previous treatments 
2 

of the equations of motion have included terms "to y , at most, i n which 
case the equations are l i n e a r and the c y c l o t r o n and trapping motions are 

4 

r i g o r o u s l y decoupled. This i s untrue when y terms are considered. However, 

we w i l l e s t a b l i s h a procedure f o r o b t a i n i n g approximate decoupled equations 

of motion which, though n o n - l i n e a r , may be solved i n terms of Weierstrass 

e l l i p t i c f u n c t i o n s . From t h i s a n a l y s i s i t i s found that both the frequency 

at which the ions o r b i t the magnetic f i e l d and the d r i f t v e l o c i t y are 

dependent on the i o n s ' s p a t i a l coordinates. Using the a n a l y s i s o u t l i n e d i n 

Sections 2 to 6 of t h i s t h e s i s we c o n s t r u c t , i n Sections 7 to 10, an 

ensemble appropriate to the mechanism of i o n production and to the p o t e n t i a l 

c o n f i g u r a t i o n of the ICR c e l l . Various p r e d i c t i o n s of our model of the 

i o n i c motions are experimentally i n v e s t i g a t e d i n Sections 12 to 16. 

In non-resonant techniques of studying i o n - n e u t r a l r e a c t i o n s energy 

s e l e c t i o n i s obtained by a l l o w i n g the ions to pass across a w e l l defined 

p o t e n t i a l d i f f e r e n c e , i n which case the f i n a l energy d i s t r i b u t i o n i s 

independent of the i n i t i a l s t a t e . In Section 11 we f i n d from an e x p l i c i t 

energy d i s t r i b u t i o n that t h i s i s not true when ions are prepared by 

c y c l o t r o n heating i n the ICR geometry. 

Various experimental techniques f o r improving the energy r e s o l u t i o n are 

proposed i n t h i s t h e s i s , but are i n a p r e l i m i n a r y stage of development. 
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Nevertheless we are able to report p r e l i m i n a r y estimates of charge t r a n s f e r 

r a t e constants f o r near thermal c o l l i s i o n s of potassium and sodium ions 

w i t h potassium atoms. C o l l i s i o n frequencies of potassium and sodium ions 

w i t h helium and argon gases are a l s o reported. 



2. Potentials and Fields in the ICR Cel l , and Equations of Motion 

for an Isolated Ion. 

Ordinary methods of solving Laplace's equation in rectangular 

coordinates (Churchill, 1941, p. 114) give the two-dimensional potential 

inside the ICR ce l l shown in Fig. 1: 

, »k cosh[(2k+l)(^y/a)] 
[2.1] V(y,z) = V T - - E {[2V T - (V +V ) ] 

1 TT k=o 2k+l 1 cosh[(2k+l)(TTb/2a)] 

•sinh[(2k+l) (iry/a)] . 
-(V rV 2) / cos[(2k+l)Oz/a)] 

sinh[C2k+l) (7rb/2a)] 

The ele c t r i c f i e l d i s easily obtained from E_ = - VV. 

A power series expansion i s the most useful form for E=(0,E ,E ) 
— y z 

in the equations of motion. Written in this way, E^(y,z) is 

[2.2] E (y,z) = E e y m z 2 n  
L J y w ' ' m,n J 

J m,n=o 

where 

[2.3] 

•We 

(-) ( vVa) v ,- >k r o i i i w , .-,m+2n r ~\ a d ' E (-) [ (2k+l) fir/a) ] e (ro even) = 4 , — ^ J ^ ' J J  

m ' n m! (2n)! k sinh[ (2k+l) (^b/2a) ] 

e ( . odd) . 4 I H t [ P M ) W . l l l ' a 

m,n „ i r? "> i * 
m" ^ n j - cosh[(2k+l) (irb/2a)] 

have written V = V T - (V1+V2)/2 and V d = for the two 



combinations o f the a p p l i e d p o t e n t i a l s that appear i n eq. [2.1]. 

Using V-E_ = 0 i t i s simple to show th a t 

r n n r -v v ( m + l ) m 2n+l [2.4] E (y,z) = - Z - 7 =—fr- 6 , 7 2 L J zKJ * n (2n+l) m+l,n^ 
m,n=0 k J ' 

A u s e f u l r e c u r s i o n r e l a t i o n f o r the c o e f f i c i e n t s f o l l o w s from VxE_ = 0 

(or d i r e c t l y from eqs. [2 . 3 ] ) : 

r? = 2n(2n-l) 
1 J m+2,n-l (m+2)(m+l) em,n* 

With t h i s , we can express a l l the e i n terms o f e 
r m,n m,o 

F i n a l l y , the p o t e n t i a l can be w r i t t e n as a power s e r i e s u s i n g the 

c o e f f i c i e n t s e : m,n 

[2.6] V t y . O - V - J ( j L , e y-V" 
m,n=0 

where i s the p o t e n t i a l at the centre o f the c e l l 

[2.7] v c . v T - (4/») » t tj ( 2 k t l ) J ^ t t a.Dfab/a.)]• 1 

I t i s i n t e r e s t i n g to compare the e l e c t r i c f i e l d c a l c u l a t e d from the 

f i r s t few terms o f eqs. [2.2] and [2.4] with t h a t given by Beauchamp and 

Armstrong (1968) f o r the c e l l geometry i n F i g . 1. They would say tha t 

[2.8] 

E = - (2V d/b) + 4 V T ( y / a 2 ) 

E z = - 4 V T ( z / a 2 ) 

This form i s not r e a l l y c o r r e c t f o r a r e c t a n g u l a r c e l l , but i s more 

acceptable than the choice o f McMahon and Beauchamp (1971), which does 

not s a t i s f y Maxwell's equations. The r e s u l t s o f both c a l c u l a t i o n s are 
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shown i n F i g s . 2, 3 and 4 f o r three cases o f i n t e r e s t . The c e l l dimensions 

are a = 0.025 m, b = 0.014 m, and the a p p l i e d p o t e n t i a l s V = 0.5 v o l t s , 

= 0.5 v o l t s , which are t y p i c a l o p erating values i n our experiments. 

(We w i l l use these values i n a l l numerical i l l u s t r a t i o n s i n t h i s t h e s i s . ) 

Eqs. [2.8] do not give even the r i g h t q u a l i t a t i v e z-dependence of E , 

which we w i l l see i s q u i t e important i n understanding the resonance 

c o n d i t i o n i n ICR c e l l s . The d i f f e r e n c e between the c o r r e c t E (y,0) 

and E z ( 0 , z ) , and eqs. [2.8] i s a l s o s i g n i f i c a n t . 

Values o f t h i s f i r s t s i x e are shown i n Table 1, f o r a v a r i e t y o f 
m,o ' 

c e l l geometries. The f i r s t l i n e g i v e s the l e a d i n g term i n E^ from eqs. 

[2.8] f o r comparison--as one e x p e c t s , i t agrees w e l l w i t h the more 

complete c a l c u l a t i o n o f e f o r f l a t c e l l s (b/a << 1) . r o,o 

Now t h a t we have complete and u s e f u l expressions f o r the e l e c t r i c 

f i e l d i n s i d e an ICR c e l l , we can t u r n to the equations of motion f o r an 

i s o l a t e d i o n o f mass m and charge q: 

[2.9] p = q ( E + v x B) 

B i s a homogeneous magnetic f i e l d p o i n t i n g i n the negative z - d i r e c t i o n , so 

t h a t t h i s becomes 

[2.10] x = -cocy 

[2.11] y = u x + K E (y,z) 
c y • • 

[2.12] z = < E z ( y , z ) 
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F i g . 2: Ey(y,0) - E^(0,0) c a l c u l a t e d from the f i r s t three terms i n the 

power s e r i e s f o r E^Cs°lid curve). For t h i s and a l l other i l l u s t r a t i v e 

c a l c u l a t i o n s , we take a = 0.025 m, b = 0.014 m and V = V, = 0.5 v o l t . 
t d 

The dashed curve i s the f i e l d used by Beauchamp and Armstrong 

C1968). The s o l i d curve agrees w e l l w i t h f i e l d s c a l c u l a t e d from 

eq. [2.1] to twenty-five terms over the region of the c e l l shown 

i n the diagram. 
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F i g . 3: E (0,z) - E (0,0) c a l c u l a t e d and compared as i n F i g . 2. 
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F i g . 4: E ( 0 , z ) , c a l c u l a t e d and compared as i n F i g . 2. 



2 
ro i 
o 
M 
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Table 1: Values of the c o e f f i c i e n t s e^ q i n the power s e r i e s expansion 

of E^(y,z) f o r a v a r i e t y of c e l l geometries, expressed i n 

dimensionless form, fe a m / V ) . The i l l u s t r a t i v e c a l c u l a t i o n s 
' mo ' J 

i n t h i s paper are based on b/a = 0.56. The r e c u r s i o n r e l a t i o n , 

eq. [2.51 can be used to generate other low-order e . For n b m,n 
comparison, we i n c l u d e " p a r a l l e l - p l a t e c a p a c i t o r " values f o r 

2a/(V^b) i n the f i r s t l i n e of the t a b l e . 



TABLE 1 

b/a = 0.1 0.25 0.56 

2a/(bVd) -20.0 -8.0 -3.57 -2.0 •1.0 

< eoo / vd ) a -20.0 -8.00 -3.52 -1.67 -0.35 

(e 1 Q/V t)a +4.88x10 -4 +0.75 +4.78 +4.38 +1.08 

(e 2 ( )/V d)a- -2.36x10 -3 -0.035 -3.24 -5.74 -1.68 

(e 3 0/V t)a^ -0.049 -19.8 -22.87 +1.69 

< e40 / Vd ) a" -0.650 +1.85 +32.55 +9.86 -1.197 

< e50 / Vt ) a +15.55 +155.9 +5.915 -20.69 -0.489 
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where we have abbreviated 

u>c = q B/m 
[2,13] 

tc = q/m 

for convenience. Eqs. [2.10] and [2.11] are combined by integration to 

give 

[2.14] y + a) c
2 y = +u,y o) + < E y(y,z) 

The ion is i n i t i a l l y at (x y z ) where i t has velocity fx ,y ,z ). 
' o o o J o o o 

These equations describe three types of superimposed motion, which 

are coupled by the complicated y and z dependence of E_: 

1) A d r i f t in the positive x-direction due to B_ and 

the non-zero average value of E . 
y 

2) Oscillation in the z-direction described by eq. [2.12] 

(trap oscillation) 

3) Quasi-cyclotron motion about the drif t i n g centre in 

the x-y plane, (described by eqs. [2.14] and [2.10]). 

The last of these is especially interesting because the frequency of this 

motion is detected in ICR experiments. The d r i f t motion is also important, 
a s i t is involved in line-width computation, and in most irate constant 

measurements. The next job is to investigate the coupling of these motions, 

and simplify" the equations so that we can solve them in closed (but 

approximate) form. 
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3. General Method of Solving the Equations of Motion and Finding the  

Quasi-cyclotron Frequency. 

The really troublesome feature of the equations of motion for y 

and z (eqs. [2.14], [2.12]) is their coupling through _E (y,z). If we 

keep only the leading term in F. , however, the trap o s c i l l a t i o n is 

harmonic, with frequency to = eio ' while the frequency of the 

quasi-cyclotron o s c i l l a t i o n is approximately m . An ion with a mass of 

40 amu has w m ^ 10^ sec \ while u ^ 2 x 10^ sec ̂  , so that OJ_ << w . 
T c ' T c 

This means that the ion does not move very much in the trap (z-direction) 

while i t goes through a complete period of i t s quasi-cyclotron motion in 

a plane perpendicular to B_. The electric f i e l d in which this high 

frequency motion takes place can therefore be parameterised by z, the 

trap coordinate, while the trapping f i e l d can be averaged (at each value 

of z) over the rapidly varying y-coordinate of the ion. 

So, we can effectively uncouple the equations of motion given in 

the last section. Eq. [2.14] becomes, with the help of eq. [2.2] for 

E y ( y , z ) , 

" 2 0 0 m [3.1] y + oj y = o) fx + u y ) + < E (m+1) e y 
m=U 

where 

[3.2] e = f e z m vm+lJ

 n mn n=0 
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The trap motion is described by 

[3.3] z + 2K Z (n+1) t z 2 n + 1 = 0 
n n n=0 

[3.4] t =-r= T T T ^ TT" ^ Cm + 1) e T < ym >• 
L J n (2n+l)(2n+2) <- J m+1 ,n : 

m=0 ' 

The average,< y m >, has to be calculated at each value of the trap 

coordinate, so that the t are functions of z. 
n 

Let us begin by solving eq. [3.1] for y(t). This is s t i l l an 

unpleasant-looking equation, since i t contains terms which are not 

linear in the dependent variable. The anharmonic terms cannot be ignored, 

in general, because they may produce an amplitude and i n i t i a l - p o s i t i o n 

dependent frequency s h i f t . Fortunately there is a general-- although 

little-known-- theory for the solution of equations with at most a cubic 

term in y. 

The f i r s t step in finding the solution to eq. [3.1] is integration 

by the substitution y = y (dy/dy) to get 

[3.5] y 2 = y 2 + 2u fx + to y .) (y - y )- w 2 (y 2 - y 2) 
1 J ' Jo c o d o w 'o c 3 : o 

~ "2 , m+1 m+K + 2K E e fy - y ) 
A m w }o ' m=0 

Truncation of the series at m = 1 gives just the harmonic approximation 

used by Beauchamp and Armstrong (1968), although the form of the fields 

(and so the values of the coefficients) are different in their work. 
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It is possible to keep terms up to and including m = 3 i f we are 

willing to have the solutions in terms of functions which are more complicated-

looking and less familiar than the trigonometric, functions used to solve 

the harmonic approximation. These are known as Weierstrass e l l i p t i c 

functions. Generally speaking, an e l l i p t i c function is any function 

of a single complex variable that is doubly periodic in that variable. 

It must be single-valued and analytic in the f i n i t e plane, except at 

poles (which are i t s only singularities). Just as a function for 

which f(w + 2 n f 2 ) = f(w) (n an integer) is called singly periodic with 

half-period Q, a doubly periodic function is one for which the relation 

f(w + 2ntt + 2mQ') = f(w) holds for integer n and m. The double 

periodicity means that i t is enough to know i t s behaviour inside a 

parallelogram in the complex plane. If this region has only a double 

pole at the origin, the e l l i p t i c function is called a Weierstrass e l l i p t i c 

function. Whittaker and Watson (1927) have an excellent discussion of 

e l l i p t i c functions (ch. XX), while Southard (1968) gives an extensive 

summary of their properties. 

The solution of eq. [3.5] truncated at m = 3, as discussed by 
2 

Whittaker and Watson (1927, p. 452f), is outlined below. Let (ds/dw) =f(s) 

where f(s) is a quartic having no repeated factors; 

4 3 2 [3.6] f(s) = a Q S + 4a^s + 6a 2s + 4a 3s + a^. 

Then for f(a) = 0, 



[3.7] w = / S d^fCO]"' 5 

may be inverted to express s as a function of w 

[3.8] s = a + I f'Ca)[G)Cw; g ^ ) - I f'Ca).]"1 

G'O'' j ^2* S3) 1 S the Weierstrass e l l i p t i c function formed from the invariants 

of the quartic(eq. [3.6]): 

2 
[3.9] g 2 = 3a 2 + a Q a 4 - 4a :a 3 

•t 2 2 

[3.10] g 3 = - + 2 a i a 2 a 3 + a Q a 2 a 4 - a ^ - a ± ^ 

The discriminant of the quartic 

[5.11] A = g 2
3 - 27g 3

2 

turns out to be a useful guide to approximations for the solution and i t s 

r e a l half-period, O J 2 . 

The direct integration of eq. [3.5] gives 

[3.12] t = fV dsffCs)]"*5 , 
yo 

where f(s) i s given by eq. [3.6] with 
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a l = K e 2 / 2 

[3.13] a 2 = C-wc
2 + 2<e )/6= - w 

a_ = [<e + oo (x +tii y )l/2 ,3 1 o c o c o 

3 '2 2 o r ' v m " ! ' l ~\ a. = y -w y - 2 in x y + K £ e y 1 4 y o c ' o c o o « m o J 

m=0 

• 2 

We notice that f(y ) = y Q 0 in general), so that eq. [3.12] must 

be rewritten 

[3.14] t = afy ds[£Cs)]'h - a/ yo d s [ f C s ) ] _ J s 

with f(a) = 0. The second integral is a constant which we c a l l <f>/oj, 

as i t is related to the phase shift in the harmonic approximation. 

Eq. [3.8] is the solution to the uncoupled, anharmonic approximation 

i f we make the identification w = t + <f>/oo and use the invariants (g and 

g^) formed with the coefficients from eqs. [3.13]. The real half-period 

( O J 2 ) °f the Weierstrass e l l i p t i c function is related to the angular 

frequency (OJ) of the quasi-cyclotron motion by 

[3.15] OJ = ir/o^. 

In Southard (1969, p. 649) the invariants are expressed in terms of the 

real half-period and a complete e l l i p t i c integral of the f i r s t kind 
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(we use u for i t s modulus). If A < 0 and u << 1, we find that 

and 

2 

To find u ^ , which is the f i r s t goal, we have to express g^, g 

and A in terms of the coefficients of the quartic function. Using 

eqs. [3.9], [3.10] and [3.13], we have 

[3.19] g 2 = ^ c o / { l - 4 j _ [ e i + 3e 2 Y Q + 6 e 3 ( Y O

2 - R Q

2 ) ] } 

c 

t 3 - 2 0 ^ h = k 1 ~ 6 - T t e l + 3 e 2 Y o + 6 e 3 ^ Y o 2 + 2 R o 2 ^ ] 
c 

and 

[3.21] A = 1 ^ ( R ^ ) 2 

where 
o 

[3.22] Y = y + (x /u ) 1 "J o 'o v o cr 

and 
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[3.23] R = (x 2 + y 2fyu L J o o • o c 

R q is the cyclotron radius of an ion in the magnetic f i e l d alone, where 

i t s frequency would be io . We already know that ^ C 7 T/ a )

c) > s o when 

the energy of the ion is expressed in electron volts and a l l other 

quantities in MKS units 

[3.24] u = -(4/3)(e 3/ K
2B 4) • (K.E.) 

For typical ions (mass = 40 amu, K.E. = (1/40) eV) in our I C R c e l l 

(with B = 0.78 tesla) we find that A < 0, because < 0. u is small 
-7 

enough (y 2 x 10 ) that we can ignore i t in the relations between the 

invariants and the real half period. Thus, from either eq. [3.19] or 

eq. [3.20], the frequency of the quasi^cyclotron motion is 

[3.25] (0 = u>c[l - CK / u

c

2 )Ce 1 + 3e 2Y Q + ee^J)] 

The fractional error in the frequency sh i f t , AOJ = OJ ̂  u^, due to ignoring 

the term of order y is less than 0.1% for the typical case considered 

above. 

If A > 0, which i t w i l l be for cells with a < b, a similar 
2 

parameterisation in y 1 = 4y leads to the same expression for the 

quasi-cyclotron frequency. 
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The frequency of the applied rf f i e l d in the analyser section of 

an ICR c e l l is usually fixed, for technical reasons, and the magnetic 

f i e l d varied instead. A lower resonance frequency at fixed f i e l d means 

a higher f i e l d at fixed frequency. Hence, 

[3.26] AB = (1/u )(e. + 3enY + 6e7Y 2) L J w c 1 2 o 3 o ' 

is the change in resonance f i e l d for a given x , y and z. Averaged 
o o o 

over a l l (equally probable)values of x , AB depends e x p l i c i t l y on the 

i n i t i a l ion position (y ) and implicitly on the trap coordinate (z) 

through eq. [3.2]. 

This result is quite different from the harmonic calculation, which 

gives AB independent of y^ and z. Ions are produced over an extended 

region of the ICR c e l l , usually along y 'v o for (-a/2) < z < (a/2), and 

move toward the negative drift- plate as they leave the negative space-

charge region of the electron beam. In Fig. 5, we show contours of 

AB for isolated ions near the centre of the c e l l . It is obvious that 

there are large effects due to variation of y Q (for the analyser region) 

and z (the trap o s c i l l a t i o n ) . The consequences of these are 

discussed in following sections. 

The expression for AB is accurate as long as the last term in 

eq. [3.26] is small compared to the f i r s t , which means that 

[3.27] y o « Ce 1 0/3e 3 ( ))^ 

In our case, we are restricted to y << 0.01 m, approximately. 
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— ^ 

Fig. 5: Contours of 'AB = constant (units are 10 Tesla) in the (y Q,z) 

plane. The bold lines are given by the theory of section 3 

(field expansion to 3rd order y = 0); the rest is from the 

theory of section 6, using terms up to k = 25 in eq. [2.1]. 

The c e l l parameters are the same as for Fig. 2; the ion mass 

is 40 amu, and B = 0.780 Tesla (a = 1.867 x 10 6/sec). 
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By using e l l i p t i c functions, we have solved the simplified equations 

of motion for the quasi-cyclotron frequency. This i s possible because 

the y and z motions in an ICR c e l l have very different frequencies, 

which means that the more rapid component of motion in the complicated 

el e c t r i c f i e l d can be considered as taking place at a constant value of 

the more slowly varying coordinate. As long as this is true, and the 

potential i s well represented by a quartic in y, we have a trustworthy 

expression for the quasi-cyclotron frequency. In the next section, 

we tackle the problem of finding simple expressions for x(t) and y(t). 
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4. Simple Expressions for x(t), y(t) and the Drift Velocity. 

We wish to find useful expressions for the quasi-cyclotron and d r i f t 

motions of an ion in the ICR c e l l , for two reasons. The d r i f t velocity 

is an important ingredient in line-width calculations, and a knowledge 

of the quasi-cyclotron motion figures into the averaging procedures used 

in the interpretation of resonance experiments. In the last section we 

saw that Weierstrass e l l i p t i c functions can be used to solve simplified 

equations of motion for the y-coordinate - but eq. [3.8] is not very useful 

for practical calculations. 

Given the conditions under which we have solved for the quasi-cyclotron 

frequency, however, the motion in the x-y plane can be expressed in terms 

of trigonometric functions. The f i r s t step is to find the root of f(y)= 0 

(given by eqs. [3.6] and" [3.13]) near y = y . We find that 

[4.1] f(y) = y Q
2

+ 2u ) c
2Y o(y-y o) (y2-yQ

2) 

2 2 
+ 2K[e Q(y-y o) + e^y -yQ ) 

* e 2 C / V > + e 3 ( v 4 - y o

4 ) ] . 

The root at a = yQ-£ 1 S computed by setting the f i r s t three terms in 

the Taylor series expansion of f about y Q equal to zero: f(y Q-e) = 0. 

Thus a b i t of algebra yields 

© 

[4.2] a = y o - [f'(y Q) - f ( a ) ] / f"(y Q) 
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with 

[4.3] f (oO = [ ( f ( y 0 ) ) 2 - 2f ( y o ) f " ( y 0 ) ] % 

Neg lec t ing terms o f order (Aco/wc) << 1, we f i n d that 

[4.4] f'Cy ) = 2u [x + Ke (y )/w ] 1 J KJ o c o y o c 

[4.5] f ' ( a ) = 2o3c { [ x o + Ke y(y o)/(o c] 2 + y / } ^ 

and 

[4.6] f"(a) = - 2to2 

where we use the abbrev ia t ion 

2 3 
[4.7] e (y ) = e + 2e,y + 3e„y + 4e„y y w o o 1 o 2 o 3 o 

f o r the y-component o f the e l e c t r i c f i e l d c a l c u l a t e d to t h i r d order in 

y , the i o n ' s i n i t i a l p o s i t i o n , 
o 

Now, us ing the r e l a t i o n between Weierstrass funct ions and Jacobi 

e l l i p t i c funct ions given by Southard (1968, p. 649), we f i n d that 

[4.8] 6>(w) = (co 2 /6 ) [ l +1 * + c n f r " 2 1 - cn(uw 

Terms o f order y can be ignored i n to, where we a l ready know that they have 

smal l e f f e c t . S u b s t i t u t i n g from eqs [4.6] and [4.8] i n t o the general 

s o l u t i o n , with w = t + cj>/a> gives us 

[4.9] y (w) = a + (f'(a)/2co2) [1 - cn(4*|y)] 



An approximate expression for cn(u|u), valid for small u, is 

y 

[4.10] cn(u|u) = cos u + j (u - sin u cos u) sin u. 

The fractional error due to neglecting the term proportional to p in 

[1 - cn(u|u)] is of order u. We already have said that p « 1 is required 

for our approximations, so the very simple result is that 

'Xj 

[4.11] cn(u y) ^ cos u. 

Using eqs. [4.2] and [4.3] for a and f 1 (a) in eq. [4.9], the final 

r e s u l t i s 

[4.12] y(t0 = y n + -K [f* CvJ - - ' (c) cos (at + 
The phase angle <j> is chosen so that y(p) = y Q: cos <j> = f' (y )/f' (a). 

Now i t is simple to get x(t) by integrating eq. [2.10], 
2 2 

[4.13] x C t ) - x Q + {(1 - X q - - E y • 1 

OJ OJ J 

- (rr) [sin(wt + - sin <f>]. 
2OJ 

There are just four independent i n i t i a l values of the coordinates (XQ, y ) and 

their derivatives (x , y ) involved in the expressions for x(t) and y(t). Both 

f' (a) and <J> are defined in t&rms of these. The value of the trap coordinate (z) 

that appears implicitly in e (y^) is a free parameter at this point, as is 

explained in section 3. 
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The motion described by eqs. [4.12] and [4.13] is similar to the 

motion of a charged particle in crossed E_ and B_ fi e l d s . However, the d r i f t 

velocity, v D, which is given by the term in curly brackets in eq. [4.13] 

i s not just (E_ x B)/|B_| , although i t i s approximately that i f we neglect 

terms of order (ACJ/OJ). Then 

[4.14] v D = - e y(y Q)/B 

shows that the electric f i e l d must be evaluated at the i n i t i a l y-coordinate 

of the ion and the local value of the trap coordinate, z. Fig. 6 shows contours 

of constant v D, in the same way that A B was plotted in Fig. 5. The 

quasi-cyclotron motion takes place about the drif t i n g centre, which moves 

with velocity v^. In this frame, i t is e l l i p t i c a l (with the ratio of 

semi-axes equal to OJ^/OJ) . This is the same result as is obtained in the 

harmonic theory, .although we must.,remember that OJ is. position-dependent -when 

we take the higher order terms into account. 

In this section, we have obtained solutions for the motion of an 

isolated ion in the plane perpendicular to the static magnetic f i e l d . 

While the main features of this motion are similar to the results of the 

harmonic treatment, they are different in subtle but significant detail. 

In particular we find a previously unsuspected dependence of the quasi-

cyclotron frequency and d r i f t velocity on the position of the ion in the 

c e l l . The assumptions needed to simplify the equations of motion and 

solve them in useful form are simple and well satisfied: 

(1) The trap o s c i l l a t i o n i s much slower than the quasi-cyclotron 

o s c i l l a t i o n . 

(2) The y-component of the electric f i e l d is given accurately by 

cubic terms in y. 
? (3) The parameter u = (1/48) (q/m)E^''(0)CR0/wc) is very small. 
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Fig. 6: Contours of = constant C u nits are m/sec) for the same situation 

as in Fig. 5. 
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Briefly, these conditions let us uncouple the equations of motion, terminate 

the power series expansion for the potential, and solve the resulting 

equations for the quasi-cyclotron motion in simple closed form. 

As we have previously stressed, the d r i f t velocity and quasi-cyclotron 

frequency depend on the coordinates of the ions. In order to relate the 

observed line width and resonance f i e l d to these quantities we must 

perform appropriate averages over a l l ions and their motions in the cell'. 

In particular their z dependence must be averaged over the unobserved 

trap o s c i l l a t i o n , which we examine in the next section. 



- 38 -

5. The Trap Oscillations 

The separation of variables in the equations of motion leads us to 

the equation for z: 

n; n I2 I 2

 A o v * r 2 n + 2 2n + 2> |>.1J z - z +2tcE t fz -z 1 = 0 
n=0 n ° 

where 

[5.2] t = -jrx—T-T-TX—I (m+1) e , < y > L J n (2n+l)(2n+2) n
 v J m+l,n J 

m=0 ' 

The average of y m has to be taken over one period of the quasi-cyclotron 

osc i l l a t i o n at a particular value of z, because i t s frequency and amplitude 

depend on z, by eqs. [3.25], [3.2] and [4.12]. Inspection shows us that 

< y m > is a function of z 2, so when eq. [5.1] is solved by the general 

method outlined i n Section 3, we find the coefficients of the quartic 

to be 

a Q Z - K e N / 6 

a l = 0 

[5-3] a 2 * - K ( e 1 0 + 2 e 2 0 y o + 3 e 3 ( ) y o
2 ) / 6 

a 3 = 0 

' 2 2 4 a. = z +2<(t z +t,z ) 4 o v o o 1 o J 
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These lead to the solution for z(t) as in Section (3) and (4): 

[5.4] z(t) = [ Z Q
2 + {zo/uT)2]h cos CuTt + 

where 

[5.5] o>T
2= <[e 1 0 + 2 e 2 0 y o + 3 e 3 0 y o

2 ] 

û , i s the frequency of osci l l a t i o n of an isolated ion in the trapping f i e l d , 

which is shown in Fig. 4 for y = 0. 

These expressions are correct i f the parameter 

1 * 2 4 [5.6] y" = Cg) < e n Z Q /U>T ) 

is much less than one. Assuming that the ions form a thermal population, 

this may be related to the parameter (y) governing the approximations made 

in understanding the y-motion of ions. 

[5.7] y" ̂  (i)(a) c/ai T) 4 y 

_2 

Thus, u" ̂  2 x 10 , which is sufficiently small for us to accept the 

approximate expression for z(t). 
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6. Another Way to Express the Results 

The equations of motion which we have worked with up to now use 

an expansion of the electric f i e l d about the origin. In the results for 

w,(o_, and v,̂ , we found expressions for E' fy ) and E fy ) , taken to ' T D 1 y ' o y o 
second or third order in y . This fact makes i t interesting to expand 

E about y = v in a Taylor series , and use the same tactics to solve 
y Q 

the equation of motion that follow when we truncate the series at the 
3 

(y~yo) term. The results are 

[6.1] u = (» ( l - [E1 Cy ,z) + (x /oi DE1 1 (y ,z) 
1 J c ( _ 2 L y w o ^ o c y 'o 

2w j 1 

c '2 " 2 3x + 2y / 
2OJ " Y c 

for the frequency of the quasi-cyclotron osci l l a t i o n . With the s ame 

assumptions that we made in section (3), and noting that< Xq> = o for 

thermal ions, we have the very simple result that 

[6.2] AB = ̂ — E' (y ,z) 2oj y Jo c 

This supposes that 

[6.3] K E " « (yQ,z) « 1, 

which is essentially the criterio n u « 1. Physically, this means that 
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the second order part of the time-averaged variation in the energy associated 
1 - 1 1 1 4 

with the elec t r i c f i e l d , (p -)^ E y RQ> is much less than the energy 
1 2 ? of the orbital motion, m̂u R 
2 c o 

For the d r i f t velocity, we find 

[6.4] V d = _ E (y o,z)/B. 

The trap o s c i l l a t i o n can, of course, be analysed in much the same 

way. The average of E^ over one quasi-cycloti-on period is approximated 

by E (y Q,z), and then expanded about z = 0. V«E_ = 0 relates the f i r s t 

derivatives of E and E , so that y z* 

[6.5] to2 = KE y(y o,0) 

We see that the relation 

[6.6] co 2 = OJ 2 + to 2 

c T 

which holds rigorously in the harmonic approximation (Beauchamp and 
2 2 

Armstrong, 1968) is really true only when w << to and z = 0. This 

i s another example of the small but important differences between that 

approach and the more complete treatment given here. 
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7. Influence of the trap oscillations 

The motion of ions in the ICR c e l l is conveniently described in terms 

of several characteristic frequencies. The ions may be pictured as 

precessing e l l i p t i c a l l y in the x-y plane ("quasi-cyclotron motion") about 

an instantaneous center, which oscillates along the z-axis ("trap oscillation") 

and drif t s in the x-direction. Strictly speaking, the quasi-cyclotron 

frequency is expressed in terms of the i n i t i a l value of y. Since the theory 

outlined previously implicitly assumes that the amplitude of the cyclotron 

motion is small, and since oj(y,z) is a slowly varying function of y and z, we 

may identify y with the centre of the cyclotron motion. This characteristic 

angular frequency to(y,z) of the quasi-cyclotron motion, varies with z over 

a range of frequencies Aoj(y,z) << OJ . That this inequality is very well satisfied 

may be seen from Fig. 7 in which o)(y,z) is plotted as a function of z for three 

different values of y for Ar + ions under typical operating conditions. The 

quasi-cyclotron frequency is modulated due to the trap oscillations at an 

angular frequency OJ^ which usually satisfies the inequalities 

[7.1] Aoj(y,z) « (JJT << OJ 

as may be seen from Table 2. Finally, as a result of the d r i f t of the ions 

through the resonance region of the ICR c e l l , the ions spend a f i n i t e time 

T = &/v in a c e l l of length £, giving rise to a resonance line width u>j which 

usually f a l l s between Aoj(y,z) and O J t. In this section, we use the inequality 

[7.1] to derive an approximate expression for the ICR frequency for ions 

having a well-defined value of y and which oscillate between z = ±z . The 
m 

effect of a distribution of y and z is described in the next section. 
J m 

For convenience of notation we re-write Eq. 2.1 in the form 
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Fig. 7: A plot of - u)(y,z) as a function of z for three different values 

of y for Ar + ions. The c e l l parameters are a = 0.025 m., b = 0.014 m., 

VT = V l = 0 , 5 v o l t s » a n d V2 = " ° * 5 v o l t s - u
c / 2 7 r i s 3 0 0 k H z 

corresponding to a magnetic f i e l d of about 0.780 Tesla. 
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Table 2. Values of characteristic frequencies of Ar ions in an ICR 

c e l l under the operating conditions of Figure 5. 



TABLE 2 

6 
Cyclotron Frequency = K B 1.885 x 10 (sec 

Trapping Frequency toT(0,0) = ^-j E^(0,0) 6.80 x 10^ (sec. 

T • T T - ^ 5.566K E (0,0) | _ Line Width 1 y ' 1
 p o c . J , ,„ IT. , , , , . , s to, = i 8.25 x 10 (sec. (Full Width at half height) % to l c 

Frequency Spread to(0,0) - to(0,0.35a) - [E 1 (0,0.35a) - E'(0,0)] 2.82 x 10 3 (sec" 
wc y y 
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[7.2] V(y,z) = V T - I A^y) cos t(2k+l) ^ ] 
k=o 

where 

o ,_ nk cosh[(2k+l)^-] sinh[(2k+l) i y-] 

cosh[(2k+l)~] A " sinh[(2k+l)-^J 
za 2a 

When the condition w c >> w T is satisfied, we can approximate the y-

component of the ion motion over a time t << 2ir/u) by the expression, 

[7.4] y(t) = y +A c o s [ w ( y , z ) t + tf>] 
3. 

where the amplitudes y and A and the phase factor <j> are determined by the i n i t i a l 

conditions and w(y,z) i s defined by [6.1] in terms of the instantaneous 

center (y,z) of the quasi-cyclotron motion. 

If an ICR experiment were carried out over a time much less than 27r/u)̂ ,, 

the ICR spectrum would consist of a superposition of lines centered at 

frequencies distributed over a range Au corresponding to the spatial 

distribution of ions in the c e l l . However, each line would, under such 

conditions, have a width much greater than OĴ , so that the frequency spread 

AOJ would be undetectable according to [7.1]. In practice, of course, ICR 

experiments are usually performed over a time much greater than 2ir/^ so 

that the effect of the trap oscillations must be taken into account. 
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. The effect of the trap oscillations is to modulate 

<jj(y,z(t)) due to the time dependence of the z-co-ordinate. As mentioned 

earlier, the effect of the inhomogeneous electric f i e l d of the c e l l on the 

cyclotron motion is to change the circular cyclotron orbits into e l l i p t i c a l 

orbits. The ratio of the major and minor axes of the ellipse differs from 

unity only by an amount of order - A a i^' Z^ . Since Aw << m , we may neglect 
U) c — a  

c 

the small modulations of the amplitudes y and A to a good approximation 

and replace Eq. [7.M] by 

[7-5] y(t) = y +A cos[ 
3. 

rt 

o)(y,z(t')) dt' + <(.] 
o 

Eq. [7.5] i s a good approximation for y(t) i f the variation in the quasi-

cyclotron frequency due tc the trapping oscillation satisfies the adiabatic 

condition that 
2 du> • 0) >> — z c dz 

which is well met in the ICR apparatus. Using Eqs. [6.1], [7.2], [7..3] and 
r , - 3 V 
y " " 2' 

[7-6] 
2 

rfc 0 0 d A, (y) ft ... 

u>(y,z(f))dt' = u t - I — V - cos[(2k+l)^-I]dt' 
c 2u ,L , 2 , c k=o dy 1 o a 

Using Eq. [7.6] i t i s possible to define an average quasi-cyclotron 

frequency as a function of y and z^ by numerical methods. F i r s t l y , the 

equation of motion for z(t) may be integrated for any given ICR c e l l 

potential parameters and the maximum amplitude of osci l l a t i o n z . Then, i f 
m 
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the integral in [7.6] is evaluated numerically at long times (w^t >> 1) i t 

w i l l be well represented as a linear function of time plus small 

oscillations. The linear factor which multiplies t is the "average quasi-

cyclotron frequency" for (y,z^). Instead of presenting numerical results 

of such calculations, we choose to evaluate [7.6] in terms of a simplified 

description of the trap oscillations. 

We now evaluate [7.5] and [7.6] in the harmonic approximation for the 

trap osc i l l a t i o n s , i.e. 

[7.7] z(t) = z cos out m i 

This i s quite a good approximation near y=o, where the decoupled 

equation of motion for z i s almost linear. An 

accurate representation of z(t) for y ~ -b/4 would require the introduction 

of harmonics of ŵ . The generalization of the results to be derived below 

to include higher harmonics is straightforward, but tedious, and is not 

presented here. Substituting [7.7] into [7..6] and using the well known 

expression (Watson, 1962; page 22) involving Bessel functions 

oo 

[7.8] cos(acosg) = J (a) + 2 Y ( - l ) n J 0 (a) cos2n8 o i zn n=l 

we obtain 

[7.9] 

where 

o)(y,z(t'))dt' = [u - n ( y , z J ] t - I , n m sin(2noJrrt) c o m u ^ n o j m 1 o n=l T 

,2, 
n » d'A.(y> (2k+l ) T T Z 

[7,10] , 2 n ( y , z m ) « ( - l ) n ̂  I —V- J 2 n [ ^ ] 
c k=o dy 
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As may be seen from the definition of fi„ and Table 1, 
2n ' 

2n ^ AOJ 
S — << 1. 

Therefore, substituting [7.9] into [Z.5] and expanding to f i r s t order in these 

small Quantities enables us to write 

[7.11] y ( t ) = y + A { C O S [ C J (y,z ) t+<!> ] + sin[w (y,z )t+<J>] Y sin(2noj mt)}. a o m o m L. nco_ T n=l T 

where 

[7.12] % ( y , z m ) = U c - ^ ( y , z m ) 

We identify w
0 ( y 5 z

m ) with the average frequency of the quasi-cyclotron 

motion, the average being taken over the trap oscillation in the harmonic 

approximation. The ICR spectrum for ions having a ve r t i c a l position y and 

an amplitude of oscillation in the trap should consist of a main 

resonance line at ui (y,z ) and small intensity s a t e l l i t e lines at the 
o J ' m 3 

frequencies ^ ( y * ^ ) - 2noĵ ,, n = 1,2 

We wish to emphasize that, though the harmonic approximation was used 

in treating z ( t ) , the general expression for the potential was s t i l l used 

in calculating u>(y,z) . 

The d r i f t velocity of the ions in the c e l l i s given by Eq. [6.4], which 

may be treated in a manner similar to the quasi-cyclotron motion. The ions 

d r i f t in the x-direction at an average velocity v
n ( v > z

m ) which depends on 

y and z , with small oscillations at the frequencies 2nw . The average 
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velocity is given in the harmonic approximation by Eqs. [6.4], [7.2], [7.7] 

and [7.8] to be 

0 0 dA, (y) irz 
[7.13] v D(y,z m) - - i J - \ - J 0[(2k +1)-^] 

k=o 

The variation of u^Y*2^ a n c* V
D ^ ' z

m ^ w l f c n Y ari^ z
m
 i s shown, 

respectively, in Figures 8 and 9. 
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.8: A plot of a) -to (y,z ) as a function of z , the maximum amplitude c c o m m 
of oscillation in the z direction, for three different values 

of y. The harmonic approximation for the trapping oscillations 

has been used. A l l parameters are the same as in Fig. 5. 
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Fig. 9; A plot of the average d r i f t velocity as a function of z^ for three 

values of y under the same conditions as in Figure 5. 
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8. Line Shapes 

We have derived an expression for the ICR frequency OJ (y,z ) of an 
- J o m 

ion at a v e r t i c a l position y and trap oscillation amplitude z^. Suppose 

that N ions pass through the resonance region of the ICR c e l l per second 

and that a fraction 

p(y 5z m) dydz m 

of these are between y and y+dy and have maximum oscillation amplitude 

between z and z +dz . Then the power absorption in the ICR c e l l for an m m m r r 

oscillating f i e l d at a frequency oô  is given by 

i 4 ! ' a / 2 

[8.1] = N J Z dy d z
m p(y>0 e(w, ;y,z ) 

, i m m 1 m b 'o 2 

where £(oj^;y,zm) i s the energy absorbed by a single ion characterized by 

(y,z m) in passing through the c e l l in a time x = SL/v^iy ,z^) . The ensemble 

averaged line shape I(OJ^) should not be confused with the line shape of an 

ion having a well-defined (y,z m), which is proportional to e (OJ^ ;y, z^) . It 

i s convenient to write 

[8.2] e C v y . z J = e r e s.(y> z
m> G { V W o ( y ' Z m ) } 

where e (y.z ) i s the energy absorbed by an ion at resonance as i t res. m O J J 

traverses the c e l l and G{OJ -OJ (y.z )} is an unnormalized line shape function 
l o r n r 

which s a t i s f i e s G(o) = 1. In our discussion we have assumed thus far that 

each ion has a constant (y> z
m) throughout i t s passage through the c e l l . 
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This implies that the time between collisions of the ions with the 

molecules of the background gas is much greater than T. In this low 

density, collisionless regime, i t is easy to show that ( B u t r i l l , 1969) 

2 ^ 2 2 q <E > x 
[8.3] e (y,z ) = ^ 

res. m 8m 
and 

Sin (—=-) 
[8.4] . GCfio,') = , 6<-' = "i- % Cy,zm) 

( ~ 2 ~ ) \ 

where <E > i s the average magnitude of the y-component of the r-f f i e l d for 
iy 

an ion characterized by (y» z
m)» t n e average being taken over the trap 

oscillations. Thus, 610, <E^^ > and T a l l depend on y and z^ in [8.3] and [8.4]. 

In order to calculate <E]_y>> t n e effective radio-frequency e l e c t r i c a l 

c i r c u i t must be specified. Usually, the trap potential i s at r-f ground, 

i.e. (V-jJ r_j = 0. Experiments could be performed with ^ i ^ r _ f = ~ ^ 2 ^ r - f ^ t ^ 

V r cos w t, but i t seems to be more customary to put (V,) r or (V.) r-f 1 r 1 r-f 2 r-f 
equal to zero. In any case, once the r-f potentials are specified, the 

co-efficients [^(y) ] r _ f analogous to the d-c co-efficients of [7.3] may be 

calculated and the value of <E-^y for a given (y» z
m) computed in terms of 

d [A^.(y) ] r_^/dy in analogy with [7.13]. The dependence of ^^y 5" o n y a n d 

for some typical operating conditions is shown in Fig. 10. 

It i s of interest to examine the line shape I ( w ^ ) for some special 

cases of experimental importance. When the ions are produced by electron 

bombardment, the electron beam traverses the c e l l over a very small range 

of y near y = y ', and the ions are produced with roughly equal probability at 
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Fig. 10: A plot of < E^y> Versus z^ for two values of y and three different 

rf voltage configurations. The values of E^/V^ a r e given for 

a = 0.025 m. and b = 0.014 m. 
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each value of z. If the average recoil energy of the ions and the thermal 

energy of the background gas atoms or molecules from which the ions are 

produced are i^uch less than qV^, the ensemble of ions produced is well 

approximated by 

[8.5] pJy>zJ =4 s(y-y') 
o> m a 

^where 6(y-y') i s a Dirac 6-furiction. As we shall discuss in Section 9, this 

spatial distribution of ions w i l l be preserved as the ions d r i f t from the 

source to the resonance region only i f certain stringent experimental 

conditions are met. Under these conditions, the line shape is given by 

2N 
[8.6] I C ^ ) = ^ 

fa/2 

o 
dz m e ( U l ; y ' > Z m ) 

It i s easy to see that [8.1] and [8.6] are each convolutions of two line shape 

functions. One of these shape functions is G(OJ) given by [8.4]. The other is 

the distribution of frequencies u (y'_,z ), each weighted in [8.6] by 
dz 

2Ne (y',z ) , which would be obtained from the ions in the small region 
res " m a 

between z and z +dz for very long c e l l s . In a long c e l l the condition m m m 

Am (y',z ) T >> 1 o m 

is s a t i s f i e d , where Aai (y',z ) i s the spread of frequencies associated with ' o • m * • 
the distribution of z . 

m 

Our numerical calculations indicate that under typical operating 

conditions, the width 1/T due to f i n i t e transit time of the ions in the c e l l 
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is somewhat larger than the spread due to the spatial distribution of the 

Au (y' ,z ) x << 1. o m 

Some typical line shapes predicted by [8.6] are shown in Fig. 11, but comparison 

with experiment is le f t to Section 16. The most striking features of the 

theoretical absorption spectra of Figure 11 are: 

1. The frequency of maximum absorption and the line width are 

functions of y'. A detailed discussion of the properties w i l l be 

given in Section 10 in terms of a simplified "average ion" model. 

2. The lines are not symmetric, the degree of asymmetry being dependent 

on y'̂ . Such asymmetric lines have been observed by many experimenters, 

though they have not been discussed extensively in the literature. 

We find that the sign and nature of the asymmetry are well explained 

by our theory. In Figure 11, the absorption sideband in the high 

frequency Clow field) side of the resonance is noticeably larger 

than that on the opposite side for y' = -b/4. When V T is decreased 

to smaller values the asymmetry decreases. It is common practice 

in many laboratories to eliminate the asymmetry empirically by 

using small trapping voltages. The origin of the asymmetry lie s 

in the asymmetric distribution of frequencies associated with the 

distribution of trap oscillation amplitudes. However, the asymmetry 

is sometimes enhanced by the fact that the average d r i f t velocity 

is also a function of z . The plots of Figure 11 include both 
m 

of these effects as well as the variation of <En > with z . A l l 
ly m 

these influences are included in Eqs. [8.2] - [8.6]. Calculations 

show, however, that the influence of <^2y > o n t' i e a s 3 a n m e t r y i - s 

generally less important than the other factors. 
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Fig. 11: The ICR line shape as given by Eq. 8.6, for three different 

values of y' and the same parameters as in Fig. 5. The bottom 
6 — 

scale shows a sweep of frequency, OJ^, with O J c = 1.885 x 10 sec. 

while the top scale shows a sweep of OJ c (or f i e l d , B) with 

OJ = 1.885 x 106 sec? 1. 
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9. Influence of the Cell Potential on the Spatial  
Distribution of the Ions 

As discussed in Section 8, the ICR characteristics are influenced by 

the spatial distribution function of the ions in the resonance region, denoted 

by p(y,z m) in [ 8 . 1 ] . Usually, the ions are produced in a source region by 

an electron beam- and then d r i f t slowly into the resonance region. The 

electron beam, i f i t is sufficiently intense, gives rise to an inhomogeneous 

electric f i e l d which may contribute appreciably to the potential .energy of 

the ions when they are produced. The ions then d r i f t far enough away from 

the electron beam, while s t i l l in the source, that the electron beam 

contribution to the potential can be neglected. One can then define a two-

dimensional source spatial distribution function P s(y s> z
m s)* For sufficiently 

weak electron beams that i t s contribution to the c e l l potential is everywhere 

negligible, p (y ,z ) can be adequately approximated by [ 8 . 5 ] , but more s s ms 
generally i t i s necessary to take into account the motion of the ions in the 

potential of the electron beam to estimate p (y ,z ). 
r s w s ms 

In some experiments, i t has been found desirable to use different d r i f t 

potentials (V^,V2) and/or trapping potentials (V^) in the source and 

analyzer or other regions of the ICR c e l l . For example, Clow and Futrell 

(1970) introduced a reaction region between the source and analyzer. Primary 

ions were f i r s t excited by applying a resonant electric f i e l d in the form of 

a pulse in the source region and the effects of charge exchange reactions 
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were monitored in the analyzer or resonance region. By using a d r i f t f i e l d 

in the reaction region of magnitude much smaller than those in the source 

and detector regions, the probability of charge exchange reactions in the 

source and detector regions was minimized. In order to obtain the resonance 

region spatial probability distribution pCy.z^) from P s ( v
s » z

m s ) » ^ s 

necessary to integrate the equations of motion of the ions in the inhomogeneous 

electric f i e l d between the source and resonance regions to obtain y(y ,z ) 
s 3 s ms 

and z (y ,z ). Then, we can write a formal expression for p(y,z ) in terms m s ms r m 
of p (y ,z ) as follows s s ms 

[9.i] p(y> z
m) 

v\ ra /2 
d y s b S 

dz <5(y-y(y ,z )) 6(z -z (y ,z )) p (y ,z ) ms s ms m m 3 s ms r s w s ' ms o 

In a similar way, one can generate P s ( v
s > z

m s ) from the i n i t i a l spatial 

distribution function of the ions in the ionising electron beam i f the 

potential of the electron beam is known. 

The problem of integrating the equations of motion of the ions as 

they d r i f t from one part (region 1) of the c e l l to another part (region 2) 

i s complicated for the general case. It is possible to give simple solutions 

for two special limiting cases of experimental interest. We shall c a l l 

these cases the fast d r i f t and the adiabatic d r i f t limits, respectively. 

Expressed in terms of the separation s, of the two regions, the average 

angular trapping frequency OJ^ and average d r i f t velocity between the regions, 

these limits can be defined by inequalities w^s/v^ << 1 and w^,s/vD >> 1, 

respectively, i.e. in the fast d r i f t limit, the time to d r i f t from one region 

to the other is much less than a single trapping oscillation, while the 
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opposite is true in the adiabatic d r i f t limit. In each case, we assume that 

many quasi-cyclotron oscillations occur during the time of d r i f t between 

regions 1 and 2, i.e. u
0

s / v
n
 > : > 1< The implication of the last approximation 

is that the d r i f t always occurs along equipotential surfaces. The particular 

path along these surfaces i s different for the fast d r i f t and slow d r i f t 

limits, while the paths for d r i f t speeds intermediate to these limits should 

l i e between the paths for the limiting cases. In the following discussion, 

we denote the values of (y,z ) bv (y ,z .,) and (y~,z ~) for regions 1 and 2, 
m x ml 2. mi 

respectively. 

The fast d r i f t l i m i t : From the preceding discussion, i t is clear that 

[9-2] Zml Zm2 

and 

[9.3] v C y ^ ) = V (y 2,z r a 2) 

which, for this case, are sufficient to determine Y2^ yl' ZmP a i U* Zm2^ yl , ZmP' 

The adiabatic d r i f t l i m i t ; The well-known condition satisfied by adiabatic 

mechanical processes i s that the action integrals remain constant (Born, 1969) 

Assuming, that the trap oscillations are decoupled from the quasi-cyclotron 

motions, this condition gives 

[9.4] ml 
Z l d z l = 

Jm2 z 2dz 2 

or equivalently 

[9.5] 
ml 

t V ( y l ' Z m l ) " V ( y "> ' 2 i ) ] 2 d z 

Jo i ' r 
[V(y 2,z m 2) - V ( y 2 , z 2 ) ] 2 d z 2 
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which, combined with the energy conservation equation [9.3], is sufficient 

to determine y 2 ( y i ' z
r a i ) a n d z

m 2 ^ y l , Z m l ? ' 
2 

Practical considerations: Under typical operating conditions v^ = 10 m./sec. 
and OJ^ - lO^sec."*" as may be seen from Table 1. Thus, the characteristic 

_3 
distance which defines the two limiting cases is s^ = v^/u^, ~ 10 m. In 

experiments such as those of Clow and Futrell (1970) in which different 

trapping and d r i f t voltages are used in different regions of the c e l l , the 

distance over which the potential varies appreciably is determined by "end 

effects". The c e l l geometry dictates then that this distance is of the order 
-2 

of the smaller of a or b, i.e. typically, of the order of 10 m. Thus, the 

adiabatic d r i f t limit should normally be applicable in this type of situation. 

On the other hand, in taking into account the influence of the potential due 

to the ionising electron beam on the d r i f t of the ions, i t would appear 
-3 

that for typical electron beams (diameter :10 m.), the d r i f t rate may be 

intermediate between the fast and adiabatic limits. 

A calculation of the effect of d r i f t between two regions in the adiabatic  

d r i f t limit has been carried out in Appendix 1 for the harmonic potential 

approximation. It would be straightforward to carry out numerical 

calculations of the influence of d r i f t on the spatial distribution of the 

ions for more r e a l i s t i c potentials, but the available experimental results do 

not seem to warrant such an effort at this time. In the next section, we 

shall develop a simplified, ad-hoc model which we have found useful in 

taking into account the effect of ICR potentials on the spatial distribution 

of the ions. It should be noted, however, that the calculation in Appendix 1 

indicates a considerable dispersion of the ions in the y-direction. 
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10. Ad-Hoc "Average Ion Model" for Studying the Spatial 
Distribution of Ions in an ICR Cell 

We have shown in previous sections that the ICR properties 

of an ensemble of ions depend on their spatial distribution. The ions are 

usually produced in the source with the relatively simple distribution of 

Eq. [8.5] corresponding to a well defined vertical position y in the c e l l and 

a uniform distribution of trap oscillation amplitudes z . It seems, from the 

considerations of Section 9 and Appendix 1, that as the ions d r i f t from the 

source into the resonance region of the c e l l , an appreciable dispersion of 

the ions in the y-direction may result. Even for the simple distribution 

[8.5], however, the line shapes are not simple in the collisionless regime. 

For example, a marked asymmetry of the ICR line shape was predicted in 

Section 8. 

In view of the complexity of numerical calculations of the ICR line 

shapes, we have looked for a simplified, but r e a l i s t i c model with which to 

probe the spatial distribution of the ions in the c e l l . The two most easily 

measured line shape parameters are the frequency of maximum power absorption 

a) and the l i n e width defined in Section 7. Both of these parameters, as 1 -2 

well as the l i n e shape, are influenced by changes in the c e l l potentials 

V T, V^, and in a manner which depends on the spatial distribution of the 

ions. Thus, study of the dependence of OJ and Wj on the c e l l potentials can 

give information on the positions of the ions in the c e l l , thus serving as a 

useful diagnostic tool for ICR spectrometers. 

In our model, we replace the ensemble of ions described by the 

distribution function p(y,z m) by an '.'average ion" at a vertical, position y 
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having a potential energy corresponding to the average potential energy of 

the simplified distribution function [8.5]. The average potential energy 

is given by 

[10.1] <V> 
_b 
2 

a/2 
dzm V ' ' ^ 

and V(y',z ) is the average potential energy of an ion characterized by 
m 

(y',z m) in the harmonic approximation as is given by [7.2], [7.7] and [7.8] 

to be 

TTZ 

[10.2] VCy'^) = V T - I A^Cy') J Q I C2k+l)-p] 
k=o 

Substituting [10.2] into [10.1], we obtain 

[io .3] <v> = v T - I \*\(y) 
k=o 

where 

[10.4] a . = k TT(2k+l) 
( k + % ) T T 

J Q(p)dp 

<V> is shown as a function of y in Fig. 12 for several different potential 

configurations. 

It is convenient for our purposes to express <V> exp l i c i t l y in terms 

of the c e l l potentials and the position y of the "average ion". 

V -V V +V 
[io.5] <v> = v T + f 1 ( y ) v d + f 2 ( y ) ( v T - v a ) ; v d = , v a = - — ^ 
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Fig. 12: The position dependence of the averaged potential <V(y)> for five 

different values of V1-V"2 with V T = 0.5 volt and V;L+V2 = 0. Similar 

curves for arbitrary V.. , V„ and V may be obtained from Eq.[10.3], 





where, using [7,2] and I10.3J 

oo (-l) ka sinh[(2k+l)-^] 
[10.6] f 1 ( y ) = + - I k £ 

1 TT i 2k+l . r . .-.Nirb-, 
k=o sxnh[ (2k+l)—] 

Za 
and 

» (-1) a cosh[(2k+l)^y-] 
[10.7] f ( y ) = - ± J k £ 2 TT . 2k+l , r , 0 , ..viib, k=o cosh[ (2k+l)-^—] za 

Similarly, the average quasi-cyclotron resonance frequency <u>^(y,z^)> 

is given by 
2 

°° d A, (y) [10.8] <OJ > = a) - ^ - I a. ^— o c 2u> , L k „ 2 c k=o dy 

= " c - K [ g 1 ( y ) v d + g 2 ( y ) ( v T - v a ) ] 

3E 
K • y 

c 2co 3 y c. J 

Clearly, 

[ 1 0 - 9 1 «i - --sr — i • 1 -1>2 

c dy 

The amplitude averaged electric f i e l d gradient <Ey(y)> is shown in Fig. 13. 

Often, the resonance magnetic f i e l d is measured keeping the frequency 

fixed. This is given by 

[10.10] B e f f = B + g ]_(y)V d + g 2 ( y ) ( V T - V a ) 

where is identified with the magnetic f i e l d corresponding to maximum 

ICR absorption intensity. 

Following the same procedure for the d r i f t velocity [2.13], which enters 

"2 
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Fig. 13: Position dependence of the averaged electric f i e l d gradient, 

OE /9y>. As in Figs. 5 and 6, V T = 0.5 v and V1+V2 = 0. 
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df (y) df (y) 
[ 1 0 ' 1 1 ] < V = E T [ - i y - V d + - d y - ^ T - V a ) ] 

- =i<E y(y)>-

The amplitude averaged electric f i e l d <E^(y)> is shown in Fig. 14. 

Effect of a change in the c e l l potential 

We now consider the effect of a change in an ICR c e l l voltage parameter 

on the resonance characteristics of the "average ion". Suppose, for example, 

that a small change AV i s made in the V keeping V, and V constant. Then, 
1 I C S 

the ratio of the change i n resonance f i e l d &^-e£f t o V̂ , i s given, in the 

limit AVT -> 0, by 

[10.12] ^ e f f d_£l + _ y ^ f l ] ^ 
^ 3V„,  JV ,V. S 2 v y ; 1 d dy ^ T a'dy J V3V,/V ,V, T a d 17 • ' T a d 

The f i r s t term in [10.12] i s associated with the change in B due to the 
y local change in — j L- produced by AV , while the second term i s due to the dy l 

shift in B
e££ resulting from the displacement of the ions as they follow 

the changed equipotentials due to AV^. Since the ions d r i f t along 

equipotentials (see Section 9), the "average ion" satisfies the condition 
9y_ 

can be obtained from [10.5]. In order to do so, however, i t is necessary to 

that <V> is a constant for different parts of the c e l l . Thus, Orn -)„ 
9 VT V a 

specify the manner in which the change in V^ changes <V> in the source and 
3y 

resonance region. Let us i l l u s t r a t e this remark by calculating Crtr")™ v 

d VT d'a 
for two different voltage configurations in the ICR c e l l . 

Case 1. The potentials V^, V,, V are taken to be identical in the source r T d a 

and resonance region. Assume that the ions are produced in the source at y=0 

by an electron beam which perturbs the potential in the immediate v i c i n i t y 



- 76 -

Fig. 14: Position dependence of the averaged d r i f t electric f i e l d . As in 

Fig. 5 V T = 0.5 v, and V1+V2 = 0. 
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of the ionising region by a constant amount A . Let y be the vertical 

position of the average ion in the resonance region. Since the ions d r i f t 

along equipotentials between the source and resonance region we obtain the 

following relationship from [10.5], 

[10.13.] V T + f 1 ( 0 ) V d + f

2 ( ° ) ( V V a ) + A = VT + f l ( y ) V d + f 2 ( y ) ( W 

This gives the result required to complete [10.12] 

f„(0) - f.(y) 
[10.14] Cav V , V ~ df, df T d' a 1 9 

V — - + (V -V ) — -d dy T a'dy 

Case 2. Suwnose that the c e l l potentials in the resonance (V_. V > V ) and ^ - I d a 
S "S s source (V , V , V ) regions are independently controlled. Then, instead of 
i -Gl a 

[10.13],the d r i f t along equipotentials gives the relation 

[10.15] +. f 1 ( 0 ) V d + f 2(0)(V*-V a) + 'A = vj + f x ( y ) V d + f 2(y)(V^-V^) 

r 

Then, a variation of with no change in any other of the c e l l 

potentials gives the result 

[10.16'] ) 
l + f 2 ( y ) 

r r df, df_ 
3 V T V V a V r — ^ + (V r-V r)— 2-T d a Vd dy ^ T a ;dy 

v s v s.v s 

V d* a 

With the substitution of either [10.14] or [i-Oj-6] , or an expression for 

) appropriate for the ICR c e l l under consideration, we can interpret the 
" 3VT 
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variation of B with Vm. Similar results are derived for the variation of err 1 

3 r r or <v > with any of the c e l l voltages. The kind of behaviour predicted ef f d 
is illustrated below by substituting [10;1A] into [10-J-2] (Case 1) 

dg dg 

t i o , W C ^ > v , v - s 2(y) + S - S - j ^ [f 2 ( 0 ) - f 2 ( y ) ] • 

Therefore, the slope of a B
e££ versus V T plot is expected to be constant 

both for large and small V̂ ,, but i t should be different in each limit i f y / 0. 
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i l . D i s t r i b u t i o n of Ion K i n e t i c Energies i n an ICR C e l l 

An important a p p l i c a t i o n of ICR i s the study of the energy dependence 

of the s c a t t e r i n g and charge exchange c r o s s - s e c t i o n s f o r c o l l i s i o n s between 

ions and n e u t r a l atoms or molecules. In order to i n t e r p r e t the ICR 

experiments, i t i s necessary to know the d i s t r i b u t i o n of i o n energies over 

which the t h e o r e t i c a l , energy-dependent c r o s s - s e c t i o n s must be averaged. 

The ions are produced w i t h some s o r t of s p a t i a l and energy d i s t r i b u t i o n both 

of which depend on the production mechanism. They then o s c i l l a t e i n the 

trap and d r i f t from the source to the r e a c t i o n and anal y z e r regions of the 

c e l l . During t h i s d r i f t i n t e r v a l , i t i s p o s s i b l e to change the i o n energy 

by a p p l y i n g a resonant r - f e l e c t r i c f i e l d , both the time over which the ions 

are s u b j e c t to ICR and the r - f e l e c t r i c f i e l d amplitude being c o n t r o l l e d by 

the experimenter. In t h i s s e c t i o n , we c a l c u l a t e the f i n a l d i s t r i b u t i o n of i o n 

k i n e t i c energies r e s u l t i n g from trap o s c i l l a t i o n and the a p p l i c a t i o n of an 

ICR r - f f i e l d under the f o l l o w i n g assumptions. 

1. The i o n motions along the z-axis and i n the x-y plane are 

independent of one another. 

2 . The t r a p o s c i l l a t i o n s may be approximated by simple harmonic motion. 

3. The r - f f i e l d , averaged over the trap o s c i l l a t i o n , i s uniform. 

4. The i n i t i a l d i s t r i b u t i o n of ions i s given by Maxwell-Boltzmann 

d i s t r i b u t i o n f u n c t i o n s f o r motions p a r a l l e l and pe r p e n d i c u l a r to 

the z - a x i s . 

In an experimental s i t u a t i o n assumptions 1 to 3 are v i o l a t e d to a c e r t a i n 

extent by the complicated p o t e n t i a l s t r u c t u r e of the ICR c e l l . Assumption 4 

i s v i o l a t e d when the ions are produced by molecular d i s s o c i a t i o n . 
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However, no discussion of the energy resolution of the ICR spectrometer is 

available in the literature for even the idealized case presented here. 

We denote the kinetic energy associated with motion along the z-axis 

and perpendicular to i t by E,f and Exy respectively at a time t after the 

ions have been produced. The total time-dependent kinetic energy E^is given 

by 

[ 1 1 . 1 ] \= E „ + E x 

Since the para l l e l and perpendicular motions are independent according to 

assumption 1 , the distribution function for E{i and is the product of the 

individual distribution functions, i.e. 

[ 1 1 . 2 ] P(E„,E A)dE 1 ( dE^ = Pj-CE^dE,, PjL(EJL)dEJ_ 

We wish to calculate the functions E,(E„) and PA(Ej_) given that the 

distributions of i n i t i a l energies £„ and e± are Maxwellian, as stated in 

assumption 4 . If the i n i t i a l effective temperatures associated with e(| and 

e A are T „ and T X , respectively, then 

_ 111 
[ 1 1 . 3 ] P o | (( e„) = ( 7 7 T T - ) 2 -

and 
kT 

[ 1 1 , 4 ] P o x ( E x ) = 

where P (e„) and P (s.) are normalized distributions for one and two on " ox 
degrees of freedom, respectively. 
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Effect of ICR on the energy distribution: 

We f i r s t consider the calculation of ( E ^ ) . Suppose that after the 

ions are produced they are subjected to ICR for a time t in an r-f electric 

f i e l d of amplitude E^. Then, for ions having an i n i t i a l momentum whose 

projection i n the x-y plane makes an angle y with the (rotating) r-f f i e l d 

( B u t r i l l , 1969) 

[11.5] E = E + 2(E e ) 2u + ^ 
J - m m J. •* 

where 

[11.6] 
m 

2 2 2 q E 1 t 
8m and u = cosy 

We assume that y is randomly distributed between 0 and TT , from which i t 

is easily shown that the distribution function for u is given by 

[11.-7] p(y) 
i r(l-y )' 

-1 < y ^ +1 

Eqs. [11.5] and [11.7] enable us to define a distribution function G(E±,z±) 

such that G(E_L,e_L)dE_L is the fraction of ions having kinetic energies between E^and 
EJ. + dEj_ for those ions having a given i n i t i a l kinetic energy e x , 

[11.8] G(E A, e j_) 
P(y{EJL,eJL}) 

TT[4E e - ( E . - E -e ) ]' m X X m X 

from which ^(E^) i s calculated as follows. 

+ 
[11.9] W = _ G ( E j . > e x ) P o x ( e j - ) d e i 
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The lower and upper limits arise from the limits on u in [11.7] and are 

easily shown to be 

[11.10] e £ = E A + E m ± 2(E mE A) 

Making the substitution 

[11.11] % = 2(E mE J/ 5w+ E x + E m 

Eqs. [114], [11.8] and [11.9] give the result 

E.+E 
_ m v 

kTx 2(EE ) 2 

.[11.12] p A ( E l ) B ! _ e I Q [ k T j_" ] 

wnere 

[11.13-] J-o(p) = J Q ( i p ) = \ 
+1 £-pw 
• YT d w 

-1 (1-wV 

i s the zero'th order Bessel function of imaginary argument. The distribution 
function Pj_(EA) i s plotted as a function of E^ in Figure 15 for different 

values of E /kT, . It reduces, as expected, to the form of P (E.) for m X oj. 
E =0, since I (0) =1, while for the limit E /kT, » 1, the asymptotic form m o m i 

of I Q(p) (see, e.g. Watson, 1962; page 204) may be used to obtain the 

result 

( W 2 

•>• m 
j " 4E kT, 

[11,14] P ^ E J = (^~rf2 e m , E m » k T j 
m JL 

This Gaussian function, peaked at E = E , has a relative f u l l width 
J. m 
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Fig. 15: Plots of the distribution function for the energy associated with 

the cyclotron motion for three values of the average energy 

imparted to the ions by the r-f electric f i e l d . 
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at half-maximum given by 

[11.15] = (8ln2) 2 (—) 
m 

Thus, i f an ensemble of ions i s prepared with average energy one 

hundred times greater than i t s i n i t i a l energy spread kT^, the fractional 

width of the f i n a l distribution i s predicted to be - 0.235, which is very high. 

We conclude that the standard method of exciting ions to higher energies in 

ICR spectrometers is not capable of giving good energy resolution on i t s own, 

even i f the Inhomogeneities in the r-f electric f i e l d are ignored. The 

reason for this i s that ions produced with i n i t i a l momentum components parallel 

to the r-f ele c t r i c f i e l d are speeded up, while those with anti-parallel 

components are slowed down. Since the method of changing the ion energies 

involves the acceleration of the ions for a fixed time, the i n i t i a l energy 

spread i s amplified. By contrast, in those systems in which the change in ion 

energy i s produced by passing the ions across a given potential difference, a l l 

the ions acquire the same change of energy regardless of the i n i t i a l state. 

Effect of trap osc i l l a t i o n s : 

An ion produced at position z in the trap with a momentum component P 
z 

2 
such that P z = 2me1| w i l l o s c i l l a t e between ±z^ given by 

[.11.16] V(z ) = V(z) - V(0) + e„ E V + e m <i I! 

In the harmonic approximation (Assumption 2), the kinetic energy of 

such an ion i s given by 
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[11.17] E ( I = (V+e4|)sin 90 ' V V 

Then, the kinetic energy distribution function for ions produced with 

given potential energy V and longitudinal kinetic energy e(1 is given by 

[11.18] P(E H,V,e u) P(6Q) 

ir(E„) 2(V+e | rE„)' 

where we have used the normalized distribution function for 

[11.19] P(6 0')=-

If the ions are produced with equal a p r i o r i probability in each interval 

dz, the probability g(V)dV that an ion is produced with potential energy 

between V and V + dV i s given by 

[11.20] g(V) 
2V2V2 

o 

for the harmonic potential (Assumption 2) 

[11.21] V(y,z) - V(y,o) = (^-) 2 V , - 1 < Z < % • 
a o 2 2 

where V Q = V T - V ( y , D ) . 

Averaging over a l l values of V in a manner which implicitly assumes that 

e n K < V , we obtain o 
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[11.22] P ( E „ , E | | ) = 

V 

P(E H,V, e j |)g(V)dV 

1, v. 
.. V 2 + (V +c -E 

= - I T U - In [ ; T ] , E | | < V, 
T T E 2 V 2 

^ l l - e u 

where = 0 i f E ) (- E ( | , and = E^-e^if E„- e(j . 

Finally, the distribution function P (E|() is obtained by averaging [11,22"] 

over the i n i t i a l energy distribution given by [11.3]. The result can be 

written in the form 

[11.23] P | G < E U ) = P( En> e»> P
oll<e«i> d £ » 

dv V 2 + {V_ + E I {(v-l)} 
In [-

o v 

One energy region of interest for the case V >> kT- is the region 
o H-

E J ( >> kT„. For this case, Eq.'[ll-. 23] reduces, approximately, to [11.22] with 

e„ =0. A plot of this distribution of energies is given in Figure 16 

Although P(E K ,0) diverges as E„ •> 0, this logarithmic singularity i s integrable 

and thus presents no problem when P(E,|,e(() i s used to calculate an ensemble 

average. Included in Fig. 17 as an insert is a plot of f (E1) = J P(EJ( ,0)dE|(, 
3 Jo 

which i s the fraction of ions having E|( ̂  E 1 . 

In the f i r s t part of this section we have derived a result for the 

distribution cf ion kinetic energies due to the influence of the r-f electric 
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Fig. 16: Plots of the distribution function P(E(|,0) for two different values 

of the trapping well depth, V . The insert shows f^(E'), the 

fraction of ions with energy E ^ E'. 
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f i e l d under resonant conditions, while in the second part the distribution 

of energies due to the trapping oscillations has been calculated when kT(|<< 

Often, the ions are produced with an average kinetic energy ~ V q . Under 

such conditions, i t is clear that a certain fraction of the ions w i l l escap 

from the trap. A calculation of this fraction i s given in Section 15-
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12. Experimental Apparatus : Ionisation by Electron Bombardment 

The ICR device used in these experiments is divided into 

three separate d r i f t regions as is common practice [Clow and F u t r e l l , 1970]. 

Ions are produced in the source region by an electron beam which traverses 

the c e l l in the direction of the magnetic f i e l d (-z direction; see Fig. 1) 

after passing through a small hole, about 0.003 m. in diameter, situated in the 

centre of the source trapping plate. Next to the source region is a 

reaction region through which the ions d r i f t unperturbed by the detection 

rf or the ionising electron beam. The purpose of this region is to decouple 

ion production in the. source from the detection r f . In the third region, 

the analyser , ions are detected by rf excitation of their quasi-

cyclotron o s c i l l a t i o n using conventional resonance techniques [Robinson, 1958]. 

The d r i f t plates in the analyser also serve as the tank c i r c u i t of a 

Robinson osc i l l a t o r of standard design with rf level continuously variable 

over a range from 5 to 200 mv . peak to peak. Best ICR signals were obtained 

with the oscillator connected to the bottom d r i f t plate, a l l other 

electrodes being at ac ground. 

The d r i f t and trapping plates are 0.014 m. and 0.025 m. apart, respectively, 

in a l l regions. The source, reaction, and analyser region are 0.025, 0.035 

and 0.061 m long in the direction of the ions' d r i f t (x-direction, see Fig. 1) 

and are e l e c t r i c a l l y insulated from one another by thin mica strips. 

Likewise the trapping electrodes in the source are separated from the trapping 

plates which serve both the reaction and analyser regions, so that, the - ^ 

source trapping potential may be varied independently of that in the other 

two regions. A l l electrodes are constructed of electropolished stainless 
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steel about 0.001 ra.thick and held in position by G.E. lucalox poly-

crystalline alumina rods. 

The ionising electrons are produced by thermionic emission from a hot 

wire filament, mounted in a boron nitride holder, and are accelerated 

through a collimating grid and across the c e l l by negative biasing on the 
-4 

filament. The negatively biased grid is a thin plate, about 5 x 10 m. thick, 

having a 0.002 m.diameter hole through which the electrons pass before 

entering the c e l l . A schematic diagram of the filament mount and grid i s 

shown in Fig. 17. A similarly constructed holder containing the electron 

collector i s mounted on the trap opposite the filament mount. Both 

filament and collector mounts are supported on the lucalox rods which hold 

the c e l l electrodes in place. Wire mesh grids, 67% transparent, are spot 

welded across the holes in the trap, through which electrons enter and leave 

the c e l l , to prevent penetration of electric fields associated with the 

filament, grid and collector voltages. Tungsten, iridium, and rhenium wire 

filaments of varying diameters were used in the experiments reported here, 

and the results were found to be independent of the type of metal used. 

The large static magnetic f i e l d B constrains electrons to small 

cyclotron r a d i i at normal electron energies (15 to 100 ev). Furthermore B 

minimizes secondary electron emission due to electrons striking metal c e l l 

electrodes [Farnsworth, 1925] and therefore the electron beam should be 

relatively well defined spatially near y = 0 in the c e l l . From the 

dimensions of the filament and grid aperture we expect the electron beam 
-4 

to be about 1 x 10 m. thick and about 0.002 m. wide i n i t i a l l y and to diverge 

slightly due to coulombic repulsion as i t crosses the c e l l . 
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Fig. 17: A schematic diagram, to scale, of the filament and it s mount, with 

the grid plate not shown. Further construction details are given 

in the text. The electron beam is indicated by the arrow. 
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A 15-inch Magnion electromagnet with a 2-s inch gap was used. At about 

0.9 Tesla the magnetic f i e l d gradient across the ICR c e l l was less than 
-3 -5 10 Tesla/m. With this homogeneity ICR line widths of about 8 x 10 Tesla 

were observable. B was measured with an NMR proton probe or a rotating 

c o i l calibrated by the NMR probe, whichever was convenient. The system was 
—8 

evacuated by a cold trapped CVC-PMCS-4 o i l diffusion pump to about 3 x 10 

torr. Normal operating pressures, controlled by a variable leak valve, 

were about 3 x 10 ̂  torr, well within the collisionless regime for the ions 

under consideration. 

The ICR experiment offers many different parameters for modulation in 

a phase sensitive detection scheme. Magnetic f i e l d , source d r i f t potential 

and source trapping potential were a l l modulated at various stages of this 

work. The results were found to be independent of these modes of operation. 
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13. Effect of Electron Beam on ICR 

In these experiments ion cyclotron resonance is monitored by fixing 

the detection os c i l l a t o r frequency and sweeping through the resonance with 

B. In practice the ICR absorption intensity, line width and magnetic 

f i e l d at maximum signal are dependent on the trapping and d r i f t 

potentials in the source, reaction and analysing regions. To simplify 

quantitative analysis we f i r s t consider the case in which the same trapping 

potential, V T, and d r i f t voltages, V and V^, on the top and bottom plates 

respectively,are used in a l l regions of the c e l l . If the c e l l potentials 

are different i n the various c e l l regions they w i l l be denoted by [V,] , 
1 source 

[ v
x] a T l a i y S e r s ^ l ^ reaction e t c-> b u t w h e n a 1 1 regions have the same electrode 

voltages the notation V etc. w i l l be used. With this notation the d r i f t 

e lectric f i e l d results from the potential V^-V^ while the average potential 

in the c e l l is mainly determined by and the average potential of the 

d r i f t plates, (V +V"2)/2. 

In Figs.[18] and [19] we show the variation of B £ f with V^-V^ and V T 

respectively, from which i t is clear that B ^ for A r + ions i s dependent 

on the electron beam current, I . The line width also exhibits a dependence 
e 

on I . This i s i n agreement with Smith and Fut r e l l (1973) who find that 

the residence times of the ions in the source are strongly dependent on the 

electron beam current. No dependence of B ^ or the line width on the grid 

or collector potentials i s observed although we detect a slight dependence 

on electron energy at high currents. 

The electron beam can influence the ions detected in the analyser in 

several ways. Fi r s t we w i l l discuss the effects of electron space charge 
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Fig. 18: The variation of ^ e^> t n e magnetic f i e l d at which ICR occurs, with 

V 1~V 2 for several different ionising currents. The oscillator 

frequency was 346.16 kHz while V +V„ = 0 and V = 0.5 volt. 
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Fie. 19: The variation of B „, with V„ for several different electron beam — c eti i 

currents. The oscillator frequency was 346.16 kHz, while 

V l + V 2 = ° a n d V1~ V2 = 1 , 0 V 0 l t " 
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[Beauchamp, 1967; Woods et a l , 1973], Ions are produced uniformly across 

the z-axis of the c e l l near y = 0 (Fig, 1). The negative space charge 

depression due to the electron beam distorts the potential at which the 

ions are formed so that as positive ions leave the source where they are 

influenced by electrons they move downward-in the c e l l in such a way as to 

conserve their average potential energy; that i s , for our choice of 

coordinates positive ions move to negative values of y. In addition their 

amplitude of oscillation in the trap w i l l be somewhat altered, but this w i l l 

be discussed in Section 14. When the ions reach the analyser the effect of 

the electron beam is negligible but here instead of the ions being near y = 0, 

the centres of their quasi-cyclotron orbits are distributed about some average 

y satisfying the condition; 

[13.1] [<V(y)>] . = [<VC0)>] + A L J analyser source 

where A is the potential due to the electron beam and <V(y)> is the average 

potential energy of the ensemble, the average being performed f i r s t over one 

period of the trapping oscillation and then over a l l possible amplitudes of 

oscillation. 

Thus the space charge of the electron beam alters the spatial 

distribution of ions which changes the average quasi-cyclotron frequency of 

the ions. If we interpret as corresponding to the average quasi-

cyclotron frequency of the ion ensemble then 

3E-
[13.2] B = B + <—Z> eff 2u) 9y c 

as we have seen in Section 10. However in writing this equation, i t must be 

emphasized that we 
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1) neglect the dependence of the line shape on the inhomogeneous 

rf e l e c t r i c f i e l d with which the ions are detected, 

2) assume that the distribution of amplitudes z i s not altered 

during the passage of the ions through the complicated 

potentials inside the c e l l , 

3) assume that a l l ions have a common y coordinate, 

A) assume that the quasi-cyclotron frequency and d r i f t f i e l d of 

the average ion are equivalent to the ensemble average frequency 

and d r i f t f i e l d respectively. 

Equation [13.2] predicts a f i e l d dependent shift (to the f i r s t order) 

in the resonance f i e l d of the ion ensemble due to the ele c t r i c f i e l d gradient 

inside the c e l l . The frequency of the tank c i r c u i t of the Robinson o s c i l l a t o r 

i s also shifted by the dispersion which usually accompanies power absorption 

in these devices [Anders, 1967; Hughes and Smith, 1971], This l a t t e r 

frequency s h i f t varies rapidly i n the v i c i n i t y of the ICR signal maximum, 

is a function of the number of ions in the c e l l and results in distorted 

l i n e shapes. No such frequency pulling was observed in the experiments 

reported here, although shif t s in the os c i l l a t o r frequency as large as 15 hz 

have been detected in our laboratory and have been reported by others [Anders, 1967] 

Because the spread in the ions' quasi-cyclotron frequencies due to their 

trapping o s c i l l a t i o n i s somewhat smaller than the width, in frequency units, 

of the ICR absorption as determined by the transit time of the ions through 

the analyser, i t i s often a good approximation to write, 

5.566|^ I 
[13.-3] K

 = - o T T l ' V 1 
2 
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where Bj is the f u l l width at half maximum intensity of the absorption line. 

It is important to note that i f we interpret the position y as the average 

y coordinate for the distribution of ions y = y, then a knowledge of either 

B ... or B, is sufficient to determine y. ef f % J 

Eqs. [13.1], [13.2] and [13.3] may be used to discuss semi-quantitatively 

the dependence of B
e £ j on 1^ shown in Figs. [18] and [19]. The space charge 

depression due to the electron beam has been estimated by Haeff [1939] as 

» I b 
[13.4] A = -4.79 x 10 6 

w ^ o ~ 

where W is the width of the beam, E Q is the energy of the electrons in 

electron volts and A is the space charge potential in volts. Eq. [13.4] 

neglects complicated edge effects near the trapping electrodes [Morse and 

Feshbach, 1953; Pg. 1241] but is reasonably accurate near the c e l l centre. 

For c e l l potentials of V T = 0.5v., = 0.5v. and V 2 = -0,5v. and an electron 

current I * 5 x 10~6amp. with E Q = 30ev, Eqs. [13.1] and [13.4] give A = 0,22v, 

that <V(y=0)> + A = -0.09v., taking <V(0)> from Fig. 12. This corresponds to a 

position y ~ -0.0033m. in the analyser region of the c e l l and roughly accounts 

for the variation of B
g £ £ with V^-V2 and V̂ , of Figs. 18 and 19 respectively 

for I = 5 x 10 ^ amp. Because of the approximate nature of Eq. [13.4] and 

uncertainties in measuring the space charge depression of the potential 

may be underestimated somewhat in the preceding discussion. However, with 

this qualification we see that the space charge depression can be neglected 
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i f A << <V(0)> or when I << 10 6 amp. f o r 30ev e l e c t r o n s . T h i s means that 
e 

B should be independent of the e l e c t r o n current when I i s l e s s than about e r r e -

10 ^ amp. which i s not normal ly the observed case wi th our system. The 

ampli tude of o s c i l l a t i o n i n the trap z i s a lso s e n s i t i v e to the space 
m r 

charge through i t s dependence on z . T h i s r e s u l t s i n a non-uni form d i s 

t r i b u t i o n of z m ' s and y ' s fo r which the equations presented i n t h i s s e c t i o n 

are not p r e c i s e . A l s o , s t r a y e l e c t r o n s may be d i s t r i b u t e d over the e l e c 

t rodes i f the c e l l sur faces are s l i g h t l y d i r t y from pump o i l vapour or 

s i m i l a r r e s i d u e . The p o t e n t i a l i n s i d e the c e l l i s then cons iderab ly 

d i s t o r t e d r e s u l t i n g i n compl icated non-uni form s p a t i a l d i s t r i b u t i o n s of 

the i o n s . We have, indeed , found that c l e a n i n g and baking the c e l l l e s 

sens the dependence of B r , on I , but that p r e c i s e agreement between 
e f f e 

experiment and the theory presented here occurs only at very low e l e c t r o n 

c u r r e n t s , even under best c o n d i t i o n s . 

As we have s ta ted b e f o r e , by measuring we are able to e s t i 

mate y f o r the i o n ensemble and s i n c e measurement of Bj a l s o y i e l d s y , 

we have an independent check on the est imate obtained from %e£f F i g - 2-0 
shows B, as a f u n c t i o n o f V . - V - w i t h V„ and V-+V,, he ld cons tan t . The 

% 1 2 T 1 I 
s o l i d curve i s the v a r i a t i o n of Bj p r e d i c t e d by Eq. [13 .3] us ing va lues of 

y obta ined from the B „ versus V..-V,, curve which i s shown by the i n s e r t 
J e f f 1 2 

in the bottom r i g h t hand corner o f the f i g u r e . The dashed curve i s 

obta ined from Eq . [13 .3 ] ' assuming a constant e l e c t r i c f i e l d i n s i d e the 

c e l l ; i . e . , <E > = ( V 1 - V 9 ) / b [Beauchamp and Armstrong; 1969]. F i g . 21 
y Li. 

e x h i b i t s the v a r i a t i o n of B __ wi th V m when V, and V„ are h e l d cons tan t . 
e r r T L i . 

Here the s o l i d l i n e shows B c a l c u l a t e d from B, (B, i s shown In the 
e f f h % 

i n s e r t ) and the dashed l i n e i s that p r e d i c t e d by Beauchamp and Armstrong 

[1969]. In both F i g s . [ 2 0 ] and [21] the agreement between theory and 
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Fig. 20: The variation of the ICR line width, Bj , with V -V, for V =0.5 

volt and V^+V2 = 0 in a l l regions of the c e l l . The solid line i s 

the theoretical line width predicted by Eq, [3.6J while the 

dashed line is the line width predicted by assumption of a constant 

electric f i e l d , E =(V -V„)/b. The insert shows the variation of ' y 1 2 
B with V,-V„ from which the solid line was obtained. In this eff 1 2 

~9 

experiment the electron current was 4.5 x 10 amp. with a mean 

electron energy of about 30 ev. and an oscillator frequency of 

329.51 kHz. 
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Fig. 21: The variation of B £f£ with showing the behavior predicted from 

measurement of the line width (solid curve) and that predicted by 

Beauchamp and Armstrong [1969] (dashed lin e ) . In this experiment 
_g 

the electron current was 2.3 x 10 amp. In a l l d r i f t regions of 

the c e l l V^-V2 = 1.0 v. and v-|+̂ 2 = ^' T' i e o s c l ±-'- a t : o r frequency 

was 329.54 kHz. 
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experiment i s q u i t e good. We have there fore demonstrated the v a l i d i t y 

of Eq . [-13.2] 5and [13.3] i n the low current regime when the harmonic appro

ximation f o r the p e r i o d i c t rapping o s c i l l a t i o n i s used to obta in the 

mot iona l l y averaged e l e c t r i c f i e l d and i t s grad ient wi th respect to y . 

The s p a t i a l d i s t r i b u t i o n of the ions i n the ICR c e l l i s a l t e r e d by 

the e l e c t r o n beam, and t h i s i s mani fested by a dependence of and 

on I . Measurement of B as a f u n c t i o n of V. . -V„ and/or V„ may be used 
e e t i I l i 

to est imate the s p a t i a l d i s t r i b u t i o n of the i o n s . I f there i s no space 

charge d e p r e s s i o n o f the p o t e n t i a l i n the source and y - 0 , B ^ ^ i s i n d e 

pendent o f V j - ^ ( F i g . 1 3 ) . For a c e l l wi th geometry a = 0.025 m. and 

b = 0.014 m. , B _ f v a r i e s l i n e a r l y wi th V having a s lope of 0.5242 K / U 

-4 -(10 t e s l a / v o l t ) when y = 0 i n the a n a l y s e r . These va lues d i f f e r somewhat 

from the r e s u l t s o f Beauchamp and Armstrong [1969] s i n c e a r e a l i s t i c p o t e n t i a l 

f o r the ICR geometry has been used to take account of the t rapp ing o s c i l l a t i o n s 
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14. Control of the Ions' Position i n the Analyser 

In the preceding section we considered the variation of B, and B 
• ' h eff 

with V and V^-V^ when the potentials on the d r i f t and trapping plates 

were the same in a l l three regions of the c e l l . In some experimental 

situations i t may be advantageous to operate the ICR c e l l with different 

electrode potentials in the various c e l l regions. However, i t is important 

to note that changing the c e l l potentials can alter the spatial distribution 

of the ions in the c e l l and thus alter their average d r i f t time through the 

apparatus. In this section we wish to show how the position of the ions 

along the y-direction in the analyser can be controlled by adjustment of the 

d r i f t and trapping potentials in the source. Once again Bj and B w i l l 

be used to estimate the ions average position y. 

As mentioned previously .the d r i f t electric ..field ..results from V^-V^ 

while the average potential of the d r i f t plates is (W^+V^)/2 so the 

average potential of the source region may be adjusted with either [V 1 or 
J T source [V..+V„] . When an ion moves from the source to an analyser with a 1 2 source 

different set of electrode potentials, i t s new amplitude of trapping 

os c i l l a t i o n and position y in the analyser depends on the nature of the 

transition between the two regions. There are two limiting cases, a sudden 

transition and an adiabatic one. In the sudden transition both and the 

potential V(y,z ) remain constant, (see Eqs." [9.2], and [9.3]) 

but for most cases of interest in ICR, the transition between two regions 

of differing electrode potentials i s nearly adiabatic; that is to say the 

ions undergo several trapping oscillations during the transition. For 

this case the ratio of the z 's before and after the transition is equal to 
m 
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the fourth root of the ratio of the trapping well depth before and after 

the transition. This change in the amplitude of oscillation in the trap 

is not a particularly drastic one, being dependent on the fourth root of 

the c e l l potentials, so i t i s often a good approximation to ignore any 

change in the levels of os c i l l a t i o n and consider only the change in y via 

Eq. [13.. 1]. However we must proceed with caution in using this approach, 

since, for example, not only does y of the ion swarm change during a 

transition but so does the distribution of y's. In particular, ions with 

large levels of oscillation w i l l undergo a larger change in y than tho.se with 

small z 's. , • m 
Ions are produced in the source region with y ~ 0, where 

the amplitude averaged potential <V(y)> is independent of V^-V2 (Fig. 12.) 

and hence the spatial distribution of the ions should be independent of 

[Vn-V„] i f the other c e l l potentials are not altered. There-1 2 source 
fore, B r j. and B, w i l l also be independent of [V,-V„] . This i s eff ^ 1 2 source 
verified in-Fig. 22"where the upper curve shows B r r versus [V,-V„] 

° v eff 1 2 source 
with other c e l l potentials: 

[V,+V_] = [V,+V„] , [v,+v„] . = 0 1 2 source 1 2 analyser = 1 2 reaction 

^T"'source '•^reaction ^T^analyser °- 5 v 

and [V..-VJ . . = [V - V j . = 1.0 v. 
1 2 analyser 1 2 reaction 

Also shown in Fig. 22- i s the result of varying V^-V2 in 

a l l regions of the c e l l for the same electron current. As in Figs.18 and 20 

the variation of B e£j with V^-V2 results from both a spatial rearrangement 

http://tho.se
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Fig. 22: A comparison of B versus [V -V„] and B versus V -V„, — ° r eff 1 2 source eff 1 2 
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of the ions and a local variation of the motionally averaged electric f i e l d 

gradient with [V,-V„] ., which causes a shift of the quasi-cyclotron e 1 2 analyser . 
frequency for off-centre (y ̂  0) ions. 

Fig. 23 shows the dependence of B on [V m] while the 6 v eff T Jsource 
insert shows B, versus this potential. Increasing [Vm] while % ^ & T source 
keeping a l l other electrode potentials constant, forces the ions to more 

positive y's in the analyser hence decreasing both the amplitude averaged 

electric f i e l d and electric f i e l d gradient of the ensemble. This accounts 

for the decrease in both B, and B with increasing [V m] . Fig.24-
*2 eff T source 

shows y versus [V m] estimated from B in Fig.23, J T source eff 
Fig. 25 shows B, versus [V.,+V„] and the insert shows B versus & % 1 2 source eff 

this same parameter. Proceeding as in section 13 we use the. measured values 

of to obtain an estimate of y f rom. Eq. [13. 2̂]? and then use Eq. [13. 3J.-to 

obtain B1 shown by the solid line in the figure. Agreement between the 

measured and predicted values of B^ is quite good at positive values of 

[V..+V„] but is very poor for [V..+V-] <0. There are two possible 1 2 source 1 2 source 
explanations for this behavior. F i r s t l y for negative [V..+V„] the ions are v 1 2 source 
forced to negative y's in the analyser where the potential is no longer harmonic 

and the approximation, z(t) = z^ coscot i s not a valid one. If this i s 

the case then we cannot use the harmonic approximation to evaluate the 

averages required by Eqs. [13.2]- and [13.3] and a tedious analysis of the 

line shape i s required to obtain a reliable y. A second possibility i s that 

in moving towards the negative d r i f t plates the ions undergo a transition 

to regions of higher trapping well depth. As we have already discussed 

this restricts their amplitude of osci l l a t i o n in the trap since the well 
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Fig. 23; The effect of the source trapping potential on B^^^ and B^. The 

potentials in the other regions of the c e l l are given in the text. 

The solid curve shows B ._ calculated from B, which i s shown in 
eff \ 

_g 

the insert. The electron current was 7.5 x 10 amp. while the 

oscillator frequency was 329.89 kHz. 
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Fig. 24: The variation of the average ion position in the analyser, y, with 

the source trapping potential. In this case y was calculated from 

the line width, shown as a function of [V ml in Fig. 11. 
T source 
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F i g . 25: The d e p e n d e n c e o f B, a n d B c c ( i n s e r t ) o n [V,+Vj . The —5 r h e f f 1 2 s o u r c e 
o t h e r c e l l p o t e n t i a l s w e r e : 

[ V N - V . ] -i = [ V , - V J = [ V , - V 0 ] = 1.0 v o l t 1 2 a n a l y s e r 1 2 r e a c t i o n 1 2 s o u r c e 
1 2 a n a l y s e r 1 2 r e a c t i o n 

[ V s o u r c e = [ V T ] a n a l y s e r = [ V T ] r e a c t i o n = ° ' 5 Volt' 
_g 

T h e e l e c t r o n c u r r e n t w a s 7 . 5 x 1 0 a m p . a n d t h e o s c i l l a t o r 
f r e q u e n c y w a s 329.89 kHz. 





- 122 -

depth increases with decreasing y. Indeed by restricting the range of 

averaging over in Eqs. [13.2]" and [13.3]; we are able to obtain 

consistency between the measurements of B r r and B, as shown by the J eff 
dashed line in Fig. 13. However, in order to f i t the measured values of 

B, and B at [V,+V„] = -l.Ov. we must choose y =• -0.0045 m. and Jg eff 1 2 source 
restri c t z to values ^ 0.1a which is considerably smaller m 
than one would expect in the adiabatic transition limit. It is therefore 

likely that the agreement between the measurements of B and B i implied J ° eff -2 

by the dashed line i s fortuitous and that the real truth of the matter 

l i e s in a combination of the two p o s s i b i l i t i e s expressed above. 
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15. Determination of .-the I n i t i a l Distribution of  
Energy in'the ICR System 

The i n i t i a l distribution of kinetic energies of ions formed by electron 

impact depends on the nature of the electronic transition from which the 

ions result. Ions formed by dissociation of molecules may have kinetic 

energies several hundreds of times greater than kT. This energy results from 

conversion of internal energy of the parent molecule into kinetic energy 

of the daughter particles. On the other hand ions formed by electrons from 

atoms or molecules without dissociation have kinetic energies very near to 

that of the corresponding neutral particles (~ 3/2 kT) due to the small ratio, 

of the electron mass to the atomic mass. Those ions formed in the ICR c e l l 

with i n i t i a l energies very much greater than the trapping well depth may 

escape from the system, but since the ions are formed with equal a p r i o r i 

probability i n each dz in the range - a/2 ^ z - a/2 and the potential 

distribution inside the c e l l i s known, the fraction of ions retained by the 

traps may be calculated. We now wish to calculate this fraction which we 

w i l l denote by f. 

An ion from a mono-energetic ensemble of ions whose i n i t i a l velocity 

makes an angle 6 with the z axis has an energy 

[15.1] e„ = ̂  m v 2 = E cos 29 
II 2 z 

associated with i t s z motion. We assume that the potential V(z) in the z 

direction i s well represented by the approximation of Section 11 

V(z) = V(0,0) + V (2 z/a) 2 

o 
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where V = V_ - V(0,0) i s the trapping well depth. Further, i f the f i r s t o T 
3 assumptions outlined in Section 11 are valid, then those ions that are 

formed with e„ - V - V(z) w i l l hit the c e l l walls and presumably be lost 
o 

from the system. It i s therefore possible to define a cut-off angle by 

V - V(z) ^ 
[15.2] cos 6 = (-2— ) 2 

c 

so that those ions with 8 < 0^ escape from the trap. Those ions with 

6 > 6 c w i l l remain in the c e l l i f the magnetic f i e l d in the -z direction i s 

suff i c i e n t l y large to ensure that the ions' cyclotron radii are much less 

than b/2. If the i n i t i a l velocity distribution is isotropic, then the 

probability of having 6 between 6 and 8 + d8 in the interval 0 ̂  6 - TT/2 

is sin9d6. Note that since motion in the +z direction is equivalent to 

motion in the -z direction insofar as kinetic energy i s concerned, the intervals 

0 ^ 9 ^ n/2 and TT/2 ̂  6 < n are equivalent. 

There are two regimes of V q which we must consider for ions of energy E, 

V ^ E and V - E . There is a 8 for each value of V(z) so that the fraction o o c 

of ions F ( V ) , produced with potential V(z) = V which satisfies V Q - E i s 

given by 

[15.3] F(V) = 1 -
e 

r c 
sin8d8 

o 
V -V , 

= (-2—)* 
V E ' 

But in Section 11 the probability that an ion is formed with potential between 

V and V+dV i s given by [Eq.11.20]. Thus the total fraction of ions 
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collected for V ^ E is o 

V 
• o 

[15.4] f = F(V)g(V)dV 
J o 

In the case that V - E a l l ions formed at potentials V - V -E are 
o r o 

captured, FCV) = 1, and the fraction of mono-energic ions collected by the 

trap is 

[.15.5] f 
v ~ E V w w 

to r o v -v j 
g(V)dV + (-^r-)^g(V)dV o ^ V -E o 

V -E , V j , V - E , 

o o 

It i s now only necessary to average f over the distribution of i n i t i a l 

energies, g(E), to obtain the total fraction of ions collected at a given 

V . When ions are formed by molecular fragmentation their distribution of o . 

kinetic energies depends on the nature of the electronic energy state of the 

molecule before and after the dissociative transition. For these ions a 

general g(E) cannot be defined. However, g(E) for ions formed without 

dissociation i s well approximated by a Maxwell-Boltzman distribution 

r n /T*\ /4E~ ,1.3/2 -E/kT .[15.6] g(E) =J— (—) e 
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where I g(E)dE = 1. The t o t a l f r a c t i o n of ions c o l l e c t e d by the traps foi 
^ o 

t h i s Maxwell ian d i s t r i b u t i o n of i n i t i a l k i n e t i c energies i s therefore 

[15.7] <f> (kT) 
-3 /2 

V 
r o U - E / k T 1 

6 2 

fV - E " 

V + cos 
-1 

[V - E 
o dE 

+ 
- E / k T ^ e dE 

Making the s u b s t i t u t i o n / E / V = s i n <*>/2 and using the r e l a t i o n 

rz r 3 c o s * s i n 2 v + d * = ̂  (|)v r(v+i) i (3) 

[Gradshteyn and Ryzhik , 1965; Pg. 482], Eq. [15,7] becomes, a f t e r some 

a l g e b r a i c man ipu la t ion , 

irV j - V /2kT V V 
[15.8] <f>= ( ^ e ° [ 1 ^ ) + I 0 ( ^ ) ] 

where I and 1^ are Besse l func t ion with imaginary arguments. 

Eq. [l5.8~] gives the dependence of < f > on the trapping w e l l depth for a 

thermal popula t ion of i ons . Since the ICR s i g n a l i n t e n s i t y i s p r o p o r t i o n a l 

to the number dens i ty of ions i n the c e l l one can obta in informat ion about 

the i n i t i a l d i s t r i b u t i o n of v e l o c i t i e s from the dependence of the s i g n a l 

s trength on using r e l a t i o n s such as [15.8] 
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The energy distribution for ions formed by dissociation of a molecule 

is usually discussed i n terms of an energy level diagram of the type shown 

in Fig. 26. The energy distribution of the fragmented particles may be of 

two forms providing the transition of dissociation does not violate the 

Franck-Condon principle [Massey 1969; Chapter 12], In Fig. 26 a transition 

of type A results from excitation to a repulsive state of the molecule 

possibly giving rise to fragments with large kinetic energies. Type B 

transitions occur upon excitation of the molecule to a bound state for 

which part of the Franck-Condon region of the ground state l i e s above the 

energy of i n f i n i t e separation of the molecule's constitutents. The form 

of g(E) arising from these two types of transitions i s shown at the right 

in Fig. 26. Dissociative transitions which violate the Franck-Condon 

principle are also possible [Massey, 1969; Chapter 12] resulting in a 

third type of energy distribution of the fragmented particles. This type 

of transition w i l l not be considered here. 

The ICR signal intensity i s directly proportional to the number 

density of ions and thereby reflects their i n i t i a l velocity distribution. 

Thus, to estimate this distribution we need only study the dependence of 

the ICR signal on the trapping well depth, or v^. In order to avoid 

alteration of the c e l l potentials or the ionising electron beam the 

magnetic f i e l d was modulated for these experiments. In this care the 

observed signal i s the derivative of the absorption and the strength of the 
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Fig. 26: Energy distribution of particles formed by molecular dissociation. 

The lined section shows the Franck-Condon region for the ground 

state of the molecule and two possible transitions leading to 

dissociation are indicated by the arrows marked A and B. 
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line is best represented by the peak to peak intensity which we may write 

[ B u t r i l l , 1969] 

[15.9] A = C T 2 <f> PP 

where x is the average d r i f t time of the ions through the analyser, and C 

is a constant depending on the ionic mass and the level of the rf electric 

f i e l d . Eq.[15.9] neglects the effect of rf inhomogenity and 

the complicated dependence of the ICR line shape, through x and w
e££> o n the 

spatial distribution of the ions. 

In changing the .potentials of the ICR c e l l the spatial distribution 

of ions in the c e l l i s altered as i s the average d r i f t time through the c e l l . 

Thus A is a function of V„ through both x and <f>. Also, as we show in 
PP T 

Appendix 2 the line width and signal strength are dependent on b /\ where 
m -2 

b is the f i e l d modulation amplitude and B. is the line width as defined m h 

previously in Eq. [13.3]. Since B^ changes when x varies i t is necessary to 

correct the measured signal strengths for the effect of f i e l d modulation and 

we have, 

[15.10] <f> = C A (B, ) 2 

pp -5 
2 

where the dependence of A on x is cancelled by multiplying by the 
PP 

experimentally determined Bj , and C contains a normalizing factor to cancel 

the dependence of A on b /B, . 
pp m % 

The solid lines in Fig. 27 shows <f> versus V Q for a Maxwell-Boltzman 

distribution of i n i t i a l velocities in the one case (Ar +) and a gaussian 

distribution centred at 8.6 ev with 5.0 ev f u l l width at half maximum. 
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Fig. 27: Theoretical calculation of the fraction of ions collected by the 

traps as a function of the well depth (solid line) together with 

normalized experimental results for argon ions (•) and protons from 

dissociation of H 0 (•). 
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This latter case approximates the experimentally determined distribution 

of energies for protons formed by dissociation of molecular hydrogen by 

75 ev. electrons [Dunn and Kieffer, 1963] but neglects the slight anisotropy 

of the real g(E) [Dunn, 1962]. Also shown in Fig. 27 are the experimental 

values of <f> found by further normalizing the ICR signal strength to one 

value of V Q on the appropriate theoretical curve. The upper points are 

for Ar*~ ions and the bottom for protons. 

Normally we find that Ar + and ions with similar velocity distributions 

are lost from our system at higher trapping potentials than is predicted 

by Eqs. [15.5] to [15.8]. However, this is not surprising in view of,the 

complex dependence of the ICR signal on the electrostatic potentials, and 

other incalculable factors. But, at least a qualitative statement may be made. 

Ions from a thermal population are easily confined in the ICR c e l l at low 

trapping potentials while ions with large i n i t i a l kinetic energies require 

larger values of to trap an appreciable fraction of the originally 

formed ions. Using the technique outlined here, i t is possible to obtain 

a qualitative understanding of the distribution of.energies in the ICR 

apparatus. 
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16. Experimental Apparatus: Surface Ionisation . 

In the preceding sections we have shown that an ionising electron 

beam distorts the electrostatic potential of the ICR c e l l so that the 

spatial distribution of the ions becomes poorly defined. While the 

analysis' used here yields estimates of the average - position of the 

ions, there are obvious advantages to having the ions near the geometric 

centre of the c e l l . Since biasing the source trap greater than that in the 

analyser dees not sufficiently restrict the maximum amplitude of trapping 

o s c i l l a t i o n , i t seems best to inject the ions into the ICR apparatus from 

an external source (e.g. a mass spectrometer), 0 r to cross the ion beam 

with a well colliminated neutral beam of the particles being investigated, 

thereby selecting a relatively well defined energy range. 

Experiments of this type using a hot wire ioniser for ion production 

have been performed in our laboratory. When a neutral atom or molecule with 

ionisation potential I strikes a surface with work function <f) there is a 

very high probability that i t w i l l be re-emitted as a positive ion i f <j>>I. 

If T is the temperature of the surface, then the ratio of positive ions to s 
atoms re-emitted is [Zandberg and Ionov, 1959] 

{ 1 6 m l ] ^ = A e ^ / k I s n a 

where A is a dimensionless coefficient often set equal to one. Because of their 

high work function, hot tungsten or platinunr filaments (<j> ~ 4.5 and 4.1 ev, 

respectively) are ideally suited for surface ionisation of the a l k a l i 

metals and a small class of molecules. 
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The c e l l used for experiments with a hot wire differed from that 

described in Section 12 only in that the source region and the electron 

beam were removed and replaced with a stainless steel oven. This is shown 

in Fig. 28 while a schematic side view of the oven and ICR c e l l is shown 

in Fig. 29. The oven is mounted on a stainless steel post attached to a 

rod which supports the ICR c e l l . 

The receptacle of the alka l i metal is 0.021 m. long and 0.005 m. in 

diameter. Upon heating, the atoms effuse from the oven through a channel 
-4 

4 x 10 m. in diameter and 0.005 m. long. The heating filament was inductively 
-4 

wound from 3 x 10 m. (O.D.) tungsten wire and passed through two holes in 

a ceramic insulator which was inserted into a 0.003 m. diameter hole at the 

front of the oven, very near to the effusion channel. Thus the front was the 

hottest part of the oven to prevent pile-up of metal atoms at the effusion 

hole. Two straps were attached to the sides of the oven (Fig. 28), but 

insulated from i t , to support a tungsten filament about 0.025 m. in front of 

the effusion channel. This filament (7 x 10 ^ m. O.D.) is less than 5% of the 

width of the ICR c e l l in length (i.e. about 0.001 m»), so that ions are 

created very near to the geometric centre of the c e l l . The wire was biased 

slightly positive to cancel space charge due to electrons and prevent them 

from leaving the metal surface. The average position of the ions in the ICR 

c e l l is altered by this potential but i t s precise influence on the energy 

and spatial distribution is not yet known. In any case i t has been 

experimentally demonstrated that the spread in energies of ions leaving a hot 

tungsten surface is about kT g where T g is the temperature of the surface 

[Zandberg and Ionov, 1959]. 
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Fig. 28: The a l k a l i oven and i t s mount together with the ionisation filament. 
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Fig. 29: A side view of the alkali oven and the ICR c e l l . 
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By varying the biasing on the filament the average energy of the ions 

formed there was changed. Thus both the amplitude of oscillation in the 

z-direction and the height of the ions in the y-direction w i l l change with 

the filament biasing resulting in a variation of the averaged electric 

f i e l d that the ions experience in the analyser. F i g . 30 shows the dependence 

of line width on the potential of the hot wire. At higher potentials Bj i s 

smaller since the ions move to positive y's where their "<E > is smaller. The 
y 

exact dependence of B^ on is very complicated since the manner in which the 

ions' total average energy is shared between potential energy (y position in 

the cell) and kinetic energy (oscillation in the trap, cyclotron oscillation) 

is not yet completely known. For small biasing voltages, however, one expects 

low trapping oscillations and an ion beam that is relatively well defined 

spatially. 

The temperature of the oven was measured with a copper-constantan 
39 + 

thermocouple. Excellent ICR signals were obtained from K ions at an oven 

temperature of about 70°C. corresponding to a potassium vapour pressure of 

about 4x10 torr. inside the oven with the filament a dull red in colour 

(~1400°K.). The efficiency of ionisation of sodium on tungsten is consider

ably smaller than that of potassium [Datz and Taylor, 1956] , but adequate 

23 + 
ICR signals of Na were obtained with an oven temperature near 150°C. 

—6 

(the vapour pressure of sodium at 150°C. is approximately 7.9x10 torr-

[Nesmeyanov, 1963]) and a slightly hotter filament. The temperature was also 

monitored at the end of the ICR c e l l near the detection region and was found 

to vary appreciably from room temperature only when the ion oven was heated 

above 300°C. Thus the experiments reported here were performed at about 

293°K. 
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Fig. 30: The line width of K ions formed by surface ionisation on a hot 

tungsten wire as a function of the biasing on the wire, ^. In 

this experiment the oscillator frequency was 404.34 kHz. and the 

ICR c e l l potentials were V 1~V 2 = 1.0 v., V
1+V 2 = 0 v. , and 

V T = 0.2 v. (•) and V T = 1.0 v. (•). 
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As we have mentioned i n Se c t i o n 8, most ICR researchers f i n d that the 

s i n g l e resonance l i n e s e x h i b i t an asymmetry i n which the s i d e bands on the 

high f i e l d (low frequency) s i d e of the maximum are suppressed. One p o s s i b l e 

explanation f o r t h i s asymmetry was suggested i n Section 8. The model, 

based on the p o s i t i o n dependence of the q u a s i - c y c l o t r o n frequency, p r e d i c t s 

that ICR l i n e s should be n e a r l y symmetric i f y > 0 but should e x h i b i t the 

experimentally observed asymmetry i f y < 0. A l s o , since the asymmetry i s 

suggested to r e s u l t from the r a t h e r l a r g e e l e c t r i c f i e l d g r a d ients i n the 

ICR c e l l , the asymmetry should be l e s s prominent i f the ions have, on average, 

small amplitudes of o s c i l l a t i o n i n the t r a p . 

Therefore i t i s i n t e r e s t i n g to compare low pressure l i n e shapes using a 

hot w i r e i o n i s e r and an e l e c t r o n beam to the theory o u t l i n e d i n S e c t i o n 8. 

However, such a comparison must n e c e s s a r i l y be q u a l i t a t i v e f o r s e v e r a l 

reasons. F i r s t l y the theory of S e c t i o n 8 assumes a s i n g l e unique p o s i t i o n 

along the y axis f o r a l l ions i n the system, a uniform d i s t r i b u t i o n of 

amplitudes of o s c i l l a t i o n along the z a x i s , and the harmonic approximation 

f o r the ion motion i n the trapping d i r e c t i o n . A l l of these assumptions are 

c e r t a i n to be v i o l a t e d i n a r e a l c e l l , so exact comparison between theory 

and experiment i s u n l i k e l y . Secondly, extensive m o d i f i c a t i o n s of the 

spectrometer are required to convert from i o n i s a t i o n by a hot w i r e to ion 

production by e l e c t r o n bombardment, and s i n c e the s p a t i a l d i s t r i b u t i o n of the 

ions i n the c e l l i s dependent on c e l l o r i e n t a t i o n and c l e a n l i n e s s , only 

q u a l i t a t i v e comparisons between the l i n e shapes of the two techniques can be 

expected. 
39 + 

In F i g . 31 (a) we show the K resonance as a f u n c t i o n of the b i a s i n g 

on the hot w i r e i o n i s e r . The asymmetry of the l i n e s i s most prominent at low 
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bias voltages for which the ions are expected to be in the lower part of 

the c e l l . As in Fig. 30 the lines at low are broader. In Fig. 31 (b) 
40 + 39 + a typical Ar resonance shows a more marked asymmetry than the K lines 

in qualitative accordance with theory. 
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39 + 40 + 
Fig. 31: A comparison of K and Ar resonances. The c e l l parameters 

were V T = 0.5Svi,, ^1 = -V"2 = °- 5 v-



39 K + Q t 0 J , / 2 7 r = 4 2 3 k H z 

(i) Vf,| • 0.6 v 

(vi) Vf,|=0.05v 

( b ) 

*°Ar + at w\/2ir=Z30kH 
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17. Non-Reactive Collisions: Discussion of Collision Frequencies  
and Ionic Energy Distribution Functions 

In the ICR spectrometer the free motion of the ions in the crossed 

electric and magnetic fields is interrupted by collisions with atoms or 

molecules in the background gas. This results in a pressure dependence of 

the ICR absorption spectra from which i t is possible to determine the ion-

neutral collision frequency defined by [Beauchamp, 1967] 

nM [17.1] K = ^ 7 <a,v > m+M d o 

where m and M are the ionic and neutral masses respectively, n is the 

neutral number density, a, is the momentum transfer cross section and v is 
3 d o 

the relative velocity of the colliding pair. The brackets in the above 

equation indicate an averaging of a^vQover the ion-atom relative velocity 

distribution function. In this section we report measurements of E, for 

sodium and potassium ions in argon and helium gases. These systems are 

particularly simple since both the alkali ions and the inert gas atoms have 

closed electronic shells, hence charge exchange between ion and atom in the 

bi-particle collision is unlikely. At the end of this section the velocity 

dependence of £ is discussed and a crude velocity distribution for ions 

undergoing elastic collisions with neutrals is derived. 

However, f i r s t let us discuss the theoretical ICR line shape for ions 

undergoing non-reactive collisions. When the r-f electric f i e l d used to 

detect the ICR signal is uniform over the spatial distribution of the ions, 

B u t r i l l [1969] has shown that the rate of change of energy at time t of an ion 

that has moved freely under the influence of the crossed electric and magnetic 
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fields from t to t is o 

dE. E 2 q 2 sin 6oj(t-t ) X 1 o 
[ 1 7 , 2 ] dt" = 4m 

where 6OJ = OJ -OJ, , OJ is the frequency of the ion at maximum absorption o 1 o 
intensity and OĴ  i s the detector frequency. If the average ion undergoes 

no collision during the time that i t is in the analyser then t = 0, but 

i f the neutral particle density is such that collisions between ion and 

neutral are possible then t is the time of the last c o l l i s i o n . At time t 
dE, 

in the analyser there is a distribution of -j-j^— 's associated with the 

distribution of t 's resulting from collisions [Bloom, 1971]. The probability 
- C t - t O ) / T C 

that an ion moves from t to t without collision is e while the 
o 

fraction of ions that undergo collision in time dt is dt Ix . Therefore 
6 o o c 

the instantaneous power absorption is 
- ( t - t j / x dE t dE, V L V c -t/x dE, 

X 6 dt +n e C [ - ± 1 _ , dt x o o dt t =0 o J o c o 

where n is the number of ions in the analyser and x (=£ "S is the mean o c 
time between collisions. The f i r s t term of Eq. [17.3] accounts for a l l 

those ions which undergo collisions between 0 and t, and the second those 

that move freely for this interval. Substituting Eq. [17.2] into [17.3] 

yields a well known expression for the instantaneous power absorption 

[Comisarow, 1971; Dunbar, 1971; Huntress, 1971]; 

2 2 
dE. q E nn -t/x , . , 

r - , ^ . -i X n 1 o r c / r . . cos 6oJt s , -1, [17.4] <TT>^ = o T~ t e (6tL) S l n 6 a ) t ; ^ + Tr- ̂  o 4m(ooj +x ) c c 
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If we denote the average time which an ion spends•in the analyser of the 

ICR c e l l by T then the average power absorption is giyen by 

2 2 -2 2 q E (x -6o> )cos 6u)T 

[17.5] A(6co) = ~ — 2 — { [ — C -2 2 
4m (x +6O> ) T T + 6W c c 

-1 , 2 - 2 
x So) sin 6u)x - T / T 6OJ - X 

0 C •, C , C X , 

- 2 -2^ , 2 ] 6 + , 2 - 2 + T } • 
T + <5u) O U ) + T C c c 

The assumption of an average d r i f t time of the ions through the analyser 

region is of course a crude one i f there is a large dispersion of the 

positions of the ions in the ICR c e l l . However, the model has met with some 

success [Huntress, 1971] previously and should be a valid one, particularly 

for our geometry where the ions are produced with restricted amplitudes 

of oscillation in the trapping well. It therefore seems reasonable to 

estimate x from the low pressure ICR absorption line, so that i t is a simple 

matter to estimate x c for a given ion-atom pair from pressure broadened ICR 

lines. 

The ICR c o l l i s i o n frequencies g were obtained by a least squares f i t 

of Eq.[17.5] to experimental spectra. Fig. 32 shows one of the best f i t s of 

experiment to theory while Figs. 33 and 34 show estimates of ? for Na+ and K+, 

obtained with very low r-f electric f i e l d s , as functions of helium and argon 

pressures. When the average energy gained by an ion between collisions is 

very small the velocity distribution is nearly Maxwellian with the same 

temperature as the neutrals and the ICR co l l i s i o n frequency is simply related 

to the zero f i e l d d.c. mobility K(o) of the ions [Ridge and Beauchamp, 1971] 
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Fig. 32: A f i t of an experimental K resonance CO) to Eq. [17,5] 
-4 

(solid line). The average d r i f t time was taken as 8.08x10 sec, 
-4 

and an argon pressure of 2.75x10 torr. was measured. The 

noise level of the Robinson oscillator was less than the size 

of the dots representing experiment on the diagram. 
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Fig. 33: The collision frequency £ = T
c as a function of pressure for 

Na + and K + in helium gas. Typical ICR c e l l parameters are 

= 0.5v, V 2 = -0.5v, V T = 0.15 to 0.5v with a bias on the 

ionization filament from O.lv to 0.7v. 
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Fig. 34: The collision frequency of K and Na as a function of argon gas 

pressure. Experimental parameters are the same as for Fig. 33. 
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A theoretical discussion of the relations among E,, K(o) and is given in 

Appendix 3 and the influence of various ion-atom interaction potentials on 

K(o) is discussed in Section 18. The solid lines in Fig. 33 and 34 were 

calculated from Eq. [17.6] using the experimental results of Tyndall et a l . 

as given by Massey [1971]. Agreement between the ICR measurements and the d.c. 

mobility experiments are within the present errors in measurement of pressure 

[about 10%], which was measured with a Bendix G IC-017-2 ion tube on a CVC-GIC-

111A control consul. Both ion tube and consul were calibrated using a McLeod 

gauge. 

In this experiment the ion flux is independent of the pressure of the 

background gas unlike those experiments in which the ions are produced by 

electron bombardment of the neutrals. Thus i t is a simple matter to compare 

the ICR signal amplitude as a function of pressure with the theoretical 

prediction of Eq, [17.5]. This is done in Fig. 35 were we plot the relative 
39 + 

intensity of the K signal at resonance versus argon pressure, the solid 

line being obtained from Eq. [17.5], Measurement of the ICR signal intensity 

at resonance can, in principle, yield as much information as measurement of 

the line shape [Huntress, 1971] especially at high pressures where the analysis 

is particularly simple. Plots such as Fig. 35 • give a useful check of our 

experimental determination of £ from the line shape. 

We now wish to extend the discussion of the ionic energy distribution 

given in Section 11 to include the effect of collisions. This i s of interest 

since no such discussion is presently available in the literature nor is there 

available an expression for the average ion energy which adequately bridges 

the gap between the low pressure regime and the steady state limit where the 

average energy gained by the ion between collisions is equal to that lost to 

the neutrals through collisions. 
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Fig. 35: The relative intensity of the K signal as a function 

argon pressure. The solid line is obtained from Eq. [B. 
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If the i n i t i a l energy distribution of the ions' motion in the x-y 

plane is represented by a two dimensional Maxwellian, with an i n i t i a l 

temperature , then as we have shown in Section 11, the energy distribution 

function after the ions have been subjected to ICR for a time t-t during 
J o 

which no collisions occur is given by 

-(E A + E;)/kT A 2 ( E , H 
m i ' [17.8] P A(E A) = ̂ — I o i - £ f - ) 

-x 

where I is the Bessel function with imaginary argument, o 

E' = -5-^ (t-t T = n ( t - t ) , 0 < t ^ t m 8m o 1 o ' o 

and is the amplitude of the r-f electric f i e l d . 

Now, assuming that the average time between collisions is T , the 

fraction of ions per element of energy d E j L that have undergone no collision 
- t / T C 

at time t under resonant conditions is just e [P, (E,)] _ . The 
t —U 

probability that an ion which underwent a col l i s i o n at t undergoes no 
o c collision between t and t is e while the fraction of ions which o 

undergo collisions in time dt is dt /T . so that at time t the fraction of 
o o c 

ions per element of energy dE^ whose last collision occured between t and 
- ( t - t )/T dt ° 

t +dt is e [P.(E,)] . t may take on a l l values between o o A x t ̂ 0 T o 3 

o c 

and t, so a generalized distribution function for ions undergoing collisions 

may be written in the form, 

-t/x - ( V E ^ / k T 2(Ej^E )^ 
[17.9] P A ( E j L , V t) = e C ^ ^ : \ ( ~ ^ - ) 

- V T g ,t - ( t - t ) / , - 2 ^ - V 2 ( ^ H E ^ 
§ L dt e 0 C e 8 I ( 2 - ^ L ± - ( t - t ) ) kT T I o o kT o g c J o g 
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2 where E = nt • The integral in the above expression may be evaluated in 

terms of Generalized Hypergeometric Series, but the result is not very 

tractable and w i l l not be given here. 

The f i r s t term in Eq. [17.9] represents the contribution to the 

distribution function of those ions which do not undergo collisions in time 

t while the second term accounts for those ions which do. In the steady 

state limit, where the average energy gained between collisions is equal 

to the average energy lost to the neutral particles, Huntress[1971] has shown 

that the average energy of an ion is different by a factor (m+M)/2m from the 

total energy gained between collisions. Thus in the second term of Eq. [17.9] 

E 1 is replaced by (m+M)E'/2m. Also, in the limit of x ̂  -> °° the ions must m r ' m c 
come to equilibrium with the neutral gas so T , the i n i t i a l ion temperature, 

is replaced by T , the gas temperature, for those ions undergoing collisions. 

P. (E , x , t)dE, is the fraction of ions whose cyclotron energy f a l l s c 
between E± and Ej_ + dE^ after being subjected to a resonant r-f electric 

f i e l d for a time t in a medium where the average time between collisions 

with the background gas is x . In this constant mean free time model x ^( = 5) 
c c 

is assumed independent of the ion energy (i.e. x^ is assumed independent of 

t and t ). P (E,, x , t) is shown as a function of E, for several different o * c J" 

values of t / x in Fig. 36 for the special case m=M. As we would expect 

P A(E A, x , t) reduces to PA (E^) when x ^ = 0 and to a two dimensional Maxwellian 

when x ̂  ->°°. Also shown in the insert of Fig. 36 for t / x = 2.5 is c c 
r E 

f(E') = P,(E, , x , t)dE , the fraction of ions whose energy E 
o 



- 161 -

Fig. 36: The ICR energy distribution function Pi,(EJ>, x , t) versus E x for 

several different values of x "*"t. P i(E., x , t) was computed 
c ™* c 

2 
numerically from Eq. [17.9] with m=M, E = nt = 1.0 ev and 

m 

kT, = kT = 0.025 ev. The insert shows the fraction of ions 

with E, < E' for the case t/x = 2.5. 
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th In Appendix 4 the n moments of P.(E. , x , t) are calculated. This is 

of interest for two reasons the f i r s t being that i t gives insight into the 

effect of the energy distribution on measurements of energy dependent cross 

sections; i.e. i t gives a feeling for oEx when a is expanded in powers of 

E x . Secondly, quantitative information on the spread of energies in the ICR 

apparatus is given by (E x - (EJ_) ) Z/Ex the fractional width of the 

distribution, which is shown by the solid lines in Fig. 37. 

The distribution P, (E, , x , t) which we have discussed above results 

when ions are prepared by subjecting them to resonant r-f for a fixed 

time t, such as in double resonance experiments [Clow and F u t r e l l , 1970]. 

If after passing through a region of high r-f for a time t the ions enter a 

region in which they experience no cyclotron heating, they w i l l evolve toward 

equilibrium with the gas and after a time t' in the new region the distribution 

function becomes 

where the primes indicate parameters in the region with no applied r-f. It 

is obvious from Eq. [17.10] that the ions very rapidly relax to thermal 

velocities i f C x p ^ is large. 

Often the ions are detected and heated by the same oscill a t o r , in which 

case the distribution function evolves, because i t is a function of time, 

during the course of the measurement. In this circumstance a crude measure 
2 2 5--

of the fractional spread in energies is given by [<Ex>t - (<E x > t ) ] 2 / < E _ L
>

t 

where the brackets < > indicate a time average over a l l t in the range 

0 £ t £ x, x being the time that the average ion spends under the influence 

[17.10] P i C E x , x c , t, xj,, t 1 ) = e P L C E X , T c, t) + (1-e 
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F i g . 37: The f r a c t i o n a l energy spreads of the d i s t r i b u t i o n P j^CE^ , T , t) 

-1 4 
as a funct ion of pressure p , for T t = 1.25 x 10 p. The s o l i d 

2 2 ̂  2 
l i n e s show [E. - E . ] 2 / E , for two d i f f e r e n t values of E = nt M * m 

2 2 J' 
while the dashed l i n e s show [ < E A > . - <Ej_> t] 2 / < E J > > t for values of 

2 
E = TIT . 
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of the heating r - f . From the dashed lines in Fig.37, this fractional 

spread in energies i s seen to be considerably greater than the width of 

Pi (E, , T , t) at low pressures. j» J. c 
It should be emphasized that only the two-dimensional motion in the x-y 

plane has been considered here, neglecting the effect of the trapping 

oscillations in the z-direction. If the ions are produced with thermal 

energies at z - 0 in the trap then P(E^) is i n i t i a l l y a one-dimensional 

Maxwellian and ET= -r- kT + Ej_ i f the temperature of the gas and the ions 

are the same. The effect of collisions is not only to damp out the trapping 

oscillations but also to i n i t i a t e them in the presence of ICR by conversion 

of part of the energy gained from the r-f between collisions into motion 

in the z direction. A more r e a l i s t i c ICR energy distribution than that 

considered here must account for both of these effects. This has been done 

by Whealton and Woo [1971] for ions moving under the influence of a time 

independent e l e c t r i c f i e l d in the absence of a magnetic f i e l d . 

Fig. 38 shows the collision frequency, at constant pressure, or Na 

with argon neutrals as a function of <Ê >̂ , which was altered by varying 

the r-f level of the detector oscillator and the value of x used in Eq. [A4.5] 
c 

was obtained from measurements made at small E^. If the ions are produced 

by electron bombardment with a l l ' possible amplitudes of oscillation in the 

trapping potential, one whould use the amplitude averaged r-f electric 

f i e l d (Section 8) to calculate <Ej_>t. However in this experiment the ions 

are i n i t i a l l y produced at the geometric centre of the ce l l and the spatial 

distribution of the ions can be controlled to a certain extent by the bias 

voltage of the filament, so that the r-f electric f i e l d amplitude at y=0, 
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z=0 was used to estimate E ^ . This of course is an over-simplification of 

the problem of calculating the average electric f i e l d strength. 

From Fig. 38, x ^ ' i s seen to be independent of < E A > t to about 1.0 ev 

(160 mv peak to peak r-f voltage; E^ = 11.5 ev) at which point a decrease in 

the total ion current collected at the end of the analyser was observed, 

indicating a loss of ions from the system. A similar decrease in the total 

ion current was noted at about the same r-f level in the collisionless regime. 

The total amount of r-f energy required to expand the ions cyclotron radii 
2 2 2 

to a value b/2 is considerably larger than either <Ej_> or = q E^x /(8 m) 

the latter being the average energy after a time x of those ions undergoing 

no collisions. This phenomena has been observed by many other workers 

[Beauchamp and Ridge, 1971; Goode et a l , 1971; Clow and Futrell, 1971], 

Since under most experimental conditions there is a considerable spatial 

dispersion of the ions in the y-direction of the ICR c e l l and since in the 

collisionless regime half of the ions have energies greater than the average 
2 2 

energy (Section 11), a loss of ions at energies less than mb ŵ /8 is to be 

expected. This effect also could be a manifestation of the anharmonic 

nature of the electric fields inside the c e l l and may even be a result of 

coupling between the cyclotron and trapping oscillations at large cyclotron 

amplitudes. 

The collision frequency of Na + in argon is seen to be relatively 

independent of average ion energy. Similar results were obtained for K + 

in helium and argon and Na + in helium. Because the ICR col l i s i o n frequencies 

were obtained from a least squares f i t of the central portion of the 

experimental absorption spectra, they are a weighted average of £ ( E A) over the 

off resonance energy distribution function and the effective energy of the ions 

for the measurements of Fig. 38 is lower than <E > [Dunbar, 1971]. 
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Fig. 38: The ICR collision frequency of Na T in argon as a function of <Ej_> 

at two different gas pressures. The spread in energy at 
—^ -1 -1 resonance with <Ej_> t = 0,61 ev for = 3460 sec. is given 

by the solid bar at the bottom of the plot. 
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18. Discussion of Ion-Atom Interaction 

At low energies the dominant interaction between an ion and a neutral 

arises from the well-known polarization attraction of the ion to the dipole 

induced on the atom by- the ion i t s e l f . This interaction i s described by 

the potential 

2 
118.1] V(r) » - -SSL, 

2r 4 

where a i s the p o l a r i z i b i l i t y of the neutral atoms and r is the ion-atom 

separation. For the above potential a ,v is independent of v and the 
do o 

mobility takes a particularly simple form [Dalgarno, 1958] 

[18.2] K- = ̂  *m.=.2hi 
o va 

where u is the reduced mass of the colliding pair, a' i s the p o l a r i z i b i l i t y 
3 

expressed i n a^, N is the neutral gas density at atmospheric pressure at 
the temperature of measurement and N is Loschmidt's number. Thus K' is 

o 
-1 2 

measured i n (Volt sec.) cm. (PMU) 2. In many systems Eq. [18-̂ 2] adequately 

accounts for the observed dc mobilities. However, for the a l k a l i ion-inert 

gas case the experimental mobilities of Tyndall et a l . [Massey, 1969] are 

consistently larger than indicated by a pure polarization attractive force and 

therefore.other.forms of the potential will.be.discussed. The effect of short 

range repulsion on the mobility has been approximated by assuming a 

purely hard sphere c o l l i s i o n and also by combining the polarization 

attraction and the hard sphere repulsion in the following manner [Langevin, 

1905] 
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, 2 
[18. 3'] VCr) - - r > D 

= oo r ^ D 

where D, the c o l l i s i o n diameter is the sum of the atomic and ionic r a d i i . 
—8 

Hasse and Cook [1931] have included a r repulsive term in the potential 

but usually both models f a i l to account for observed dc mobilities. 

More recently Mason and Schamp [1958] have calculated c o l l i s i o n 

integrals of the form ^ v ^ using a potential which includes 
^ —12 

a r attractive term and a r repulsion as well as the polarization 

attraction. They write 

\ e J(1+Y) Q [18.4] V(r) = ^ e|(l+ Y)C-^) 1 2 - 4 Y ( ^ ) 6 - 3 ( l - y ) ( ^ ) 4 

4 2 
where 3 ( l - v ) E r = e a, r is the value of r at minimum V(r) and y is an m m 

adjustable parameter which determines the importance of the r ^ term relative 

to the r ^ attraction. The r ^ term in Eq. [18.4] accounts for a charge 

induced quadrupole attraction and the London dispersion energy while the 
-12 

short range repulsion is entirely represented by the r term. 

By varying the two adjustable parameters in Eq.[18,4] Mason and 

Schamp [1958] were able to f i t their derivation of K' to the temperature 

dependence of the experimental mobilities and obtain values of r , e and y. 

On the other hand Patterson[1972] defined the c o l l i s i o n diameter D to be 

the value of r for which the interaction potential is zero. Thus using an 

experimental D the parameters r^ and e, and hence K' may be calculated 
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f o r any Y. Dymerski et a l . have used Patterson's technique to est imate 

the Mason-Schamp p o t e n t i a l parameters f o r anions in numerous molecular gases. 

We have a lso used th is procedure to c a l c u l a t e t h e o r e t i c a l K ' s f o r the 

Mason-Schamp p o t e n t i a l wi th Y=0, 0.25 as w e l l as f o r the Hasse-Cook 

p o t e n t i a l . Table 3 compares experimental and t h e o r e t i c a l d r i f t m o b i l i t i e s 

f o r these d i f f e r e n t models of the i n t e r a c t i o n p o t e n t i a l . Table 4 g ives the 

parameters of Eq. [18 .4 ] which lead to the best agreement between theory and 

experiment. 

On the b a s i s of these ICR experiments there seems no reason to 

suspect sys temat ic e r ro rs i n the measurements of T y n d a l l et a l , as 

suggested by Dalgarno et a l . [1958] and an ion-atom i n t e r a c t i o n p o t e n t i a l 

l i k e that of Mason and Schamp i s required to account fo r the m o b i l i t i e s 

of the a l k a l i ions i n i n e r t gases. Poor energy r e s o l u t i o n of the ICR 

spectrometer as w e l l as lack of p r e c i s e t h e o r e t i c a l in format ion on the 

e f f e c t of a v e l o c i t y dependent on the ICR l i n e shape prevents a 

d e t a i l e d study of the energy dependence of the ICR c o l l i s i o n f requenc ies . 

Never the less a f i r s t order energy d i s t r i b u t i o n f o r ions at resonance with 

an a p p l i e d r - f e l e c t r i c f i e l d was - der ived and the average ion energy 

obtained f o r a l l regimes of p ressure . It i s hoped that the treatment of 

the ICR l i n e shape given i n th is s e c t i o n w i l l lead to a bet ter understanding 

of the i n f l u e n c e of v e l o c i t y dependent rate constants on the ICR l i n e 

shape. 
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Table 3. A comparison of the effect of different ion-atom interaction 

potentials on the d.c. d r i f t mobility. 



TABLE 3 

EXPERIMENTAL THEORETICAL 

DC Drift 
Mobility ICR0 

Polarization^ 
4-Power e 

Hard Sphere Lanagevin^ 
Mason-S champ 

4-12 Power 
Hassd-Cook8 

4-8 Power 
39 + 
K In Argon 11.7 a , 11.8 b 11.4 10.8 49.6 12.2 12.9 14.4 

39 + yK In Helium 41.0 a 40.7 30.5 58.7 34.7 ' 46.8 58.4 
23 + 

Na In Argon 11. 5 a 11.6 10.8 66.6 12.1 11.6 13.2 
23 + 

Na In Helium 41.9 a 42.8 30.5 80.9 35.1 45.4 57.5 

a Tyndall et a l . as recorded by Massey [1969] 

b James et a l . [1973] 

c This work- " 

d Dalgarno et a l . [1958] 

e Patterson [1972] 

f Lanagevin [1905] , Hasse* and Cook [1931] 

g Coefficient of the higher power obtained by setting V(D) = 0 

h a given by Landolt-Barnstein [1950], ionic rad i i from Seitz [1940, Pg.93] 
o o 

atomic diameters of helium and argon taken as 2.18 A and 2.6 A respectively [Mason and Schamp, 1958] 
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Values of the parameters in the Schamp-Mason potential 

that lead to best agreement between theory and measured 

d.c. mobilities. 
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TABLE 4 

r (A) D(A) e(ev) K'(cm2(PMU)^/v 

39 + 
K In Argon 0.25 3.0 2.63 0.13 11.8 

39 + 
K In Helium 0.25 2.76 2.42 0.02 41.0 

23 + 
Na In Argon 0 2.6 2.27 0.14 11.6 

23 + 
Na In Helium 0.25 2,35 2.06 0.04 40.7 
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19. A Crossed Beam Experiment 

As we have already mentioned, an important application of ICR involves 

the study of rate constants for charge exchange or ion-molecule reactions. 

The measurement of the cross section cr(vQ) as a function of average velocity 

of the ions is of particular interest, but for such investigations i t is 

necessary to use as well-defined an ion velocity as possible. In ICR we 

measure not a cross section but a rate constant '^gfvllv >,.so in order to 

extract information about a i t is necessary to have a thorough knowledge 

of the relative velocity distribution of the interacting particles. Unfo

rtunately we saw in Sect. 10 that the ensemble of ions is quite complicated 

since i t involves a large distribution of trapping oscillation amplitudes. 

Furthermore, the result of resonant r-f is to amplify the i n i t i a l spread 

of ion velocities. In Sect. 16 a possible method of restricting the 

trapping oscillation amplitudes was proposed, but there appears to be no 

obvious method for eliminating the large spread in energy of the ion beam 

when ion cyclotron heating in the manner of double resonance experiments 

is used. However using a background gas seems not to be the best means of 

introducing a target for the ion beam. Somewhat better energy selection 

might be achieved by intersecting the ion beam at a well-defined height 

in the c e l l with a secondary neutral atom beam. After traversing the c e l l 

the neutral beam could be removed from the system by a suitable cold trap, 

and since the beam need not be confined in the magnetic f i e l d , the total 

atom flux could easily be monitored. In our laboratory we have started 

such a project, and although not complete, we will present preliminary 

measurements here. 
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F i g . 39. The secondary a l k a l i oven and i t s mounting c o l l a r 



cr 

UJ I 
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A second a l k a l i oven (secondary oven, Fig. 39) was mounted at the end 

beam. To facilate i t s removal the secondary oven was mounted in a collar 

which contained the heating elements. Four screws in the bottom of the 

collar forced the oven into thermal contact with the heaters. The collar 

was mounted in the same manner as the primary oven. In these preliminary 

experiments charge exchange rate constants of a l k a l i metal ions with a l k a l i 

atoms in the secondary atom beam were estimated from c o l l i s i o n broadening of 

single resonance absorption lines. In order to obtain a relatively intense 
-4 -4 atom beam a large effusion o r i f i c e (3.5 x 10 m radius and about 5 x 10 m 

long) was used. Two systems were studied; one in which both secondary and 

primary ovens were charged with potassium and the other in which the primary 

oven contained sodium and the secondary potassium. 

Rate Equations and Method of Analysis: 

Before we specialize to the particular cases mentioned above let us 

consider the reactions; 

which are characterized by rate constants k'(=<a'v >) and k"(=<a"v >). The 
' o o 

number densities of atoms A and B are n^ and n^ respectively and the corres

ponding ion currents are N. and NR. The rate equations for these reactions are, 

i 'of the c e l l opposite the oven (primary oven, Fig. 28) used to generate the ion 

[19.1] + k * + A + B £ A + B 

+ k" + B + A * B + A 

[19.2] dN A 
dt 

and 

[19.3] dN A dN B 
dt dt 
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The f i r s t term on the right hand side of Eq.[19.2] accounts for a loss of A + 

ions due to charge transfer to B atoms and the second represents a gain of A + 

ions from collisions of B + ions with neutral A atoms. The solution of Eq. 

[19.2] is 
Nn. k" ,„ . Nn k" 

[19.4] N A(t),[N A(o) - + ^ k„] e" * nA +- nB> + ^ ,„ 

where N^(°) is the value of N
A ( t ) at t = 0 and N (= N^Co) + Ng(o)) is the 

current of ions. N D(t) may be obtained from Eq.[19.4] by interchanging A 
D 

and B, and k' and k". 

To calculate the instantaneous power absorption at time t we follow the 

procedure outlined briefly in Sect. 17, bearing in mind that for reactions 

[19.1] the ion populations change with time in accordance with Eq.[19.4]. 

Consider ion A +, for which the co l l i s i o n frequency (i.e. the inverse of the 

mean time between collisions) for momentum transfer to both atoms A and B is 

and the co l l i s i o n frequency for charge exchange with atom B i s £'. The 

fraction of A + ions that undergo charge exchange between t Q and t + d t Q ; is 
5' d t and the fraction of B + ions that convert to A + ions in this time o 
interval is d t where i s the col l i s i o n frequency for charge transfer 

between B + and A. At time t the total number of A + ions that have their 
o 

momentum randomized in d t is 
o 

[19.5] T N A (t Q) K d t Q + T N B (t o) 5" d t Q 

T again being the average d r i f t time in the x- direction. Note that T is 

a number of particles since is a current. The probability that an ion A + 

moves without c o l l i s i o n for a time t - t is e ^ t o ^ ^ +^ J , so at time t 
o ' 

the total contribution to the instantaneous absorption by those ions that 

have undergone collisions in the time interval 0 < t < t is 



- 182 -

[19.6] (N Act 0) 5 + N b c V 5 » ) e - c t - y c ^ ) d t t 

where i s g i v e n by Eq , [17.2] . To obta in the t o t a l instantaneous 

power absorbed at time t , A C t , 6u>), we must add to Eq . [19.6] the power 

absorbed by that f r a c t i o n f o f A + ions that move without c o l l i s i o n from time 
J o 

t = 0, so that o ' 

[19.7] A ( t , Su) = T C N A c y e • « B cto) e » ) d t 

+ T fo V°> ^ t =b o 

where the zero of time i s the time at which an ion enters the ana lyser . Fur ther , 

note that the i n t e g r a t i o n over t i n the above i s equivalent to i n t e g r a t i o n 

er x , the d is tance along the ax is of the ana lyser , s ince x = Y D t Q where ov 

V Q , the d r i f t v e l o c i t y , i s assumed constant f o r a l l ions and independent of 

the c o l l i s i o n f requenc ies . Eq . [19.7] may be used to obta in the t o t a l power 

absorp t ion , 

[19.8] A (fio) = - A ( t , 6 w ) d t . 

To proceed fu r ther i n our a n a l y s i s i t i s necessary to s p e c i a l i z e to the 

processes CEq. [19.9] to [19.12]) which we wish to inves t iga te here , 

U „ k l 3% t 4i;,+ 
[19.9] 

[19.10] 

[19.11] 

[19.12] 

3 V +

 4 1 K - K + K 

4 1 K +

 +

 3 9 K J 4 1 K +

 3 9 K + 

23 M + 39., 3 23.. a 39,.+ Na -»+ K ->• Na + K 

3 V +

 2 3 N a + 4 3 9 K +

 2 3 N a + 



39 We will also study charge exchange between like isotopes of K. These 

reactions may be written in the form 

applicable to Eqs. [19.9] - [19.2] since the a l k a l i atoms have a single s-

electron in their outer shell, and the corresponding ions have closed shell 

configurations. Symmetric resonant charge transfer occurs when A and B 

are identical and the energy of the transferred electron i s the same in 

both atoms. Thus, reactions [19.9] and [19.10] are equivalent to symmetric 
41 

resonant charge transfer only i f the ionisation potentials of the K and 
39 

K atoms are identical. There are two main isotope shifts [Stacey, 1966] 

resulting from the f i n i t e mass of the nucleus and the overlap of the wave 

function of an s-electron with the nucleus. Neither of these effects have 

been completely investigated either theoretically or experimentally for 

elemental masses less than 60 A.M.U, but they are presumably very small. To 
39 41 

a f i r s t approximation the ionisation potentials of K and K are equal 

(4.339 ev), so at the typical thermal velocities considered here, the rate 

constants k^ and k£ associated with processes [19.9] and [19.10] are the same. 
39 + 41 + 

With k, = k„ the current of both j>yK+ and K ions is independent of the time 1 2 K R 

spent in the ICR c e l l and Eq. [19.7] takes the form, 

A + + (B + + e") •* (A+ + e") + B +. 

That i s , we picture a single electron which may be on either nucleus A + or 

B+ and neglect a l l other electrons in the atoms. This model is particularly 

[19.13] A (t,6u>) = NA(o) T [ e 
- ( t - t Q ) U+V) d t o 

o 

+ e 
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Using Eq. [19.8] we get 

2 2 2 2 q E N Co) CC. -5w ) cos 6a)T % s u sin6u>T - T E 
[19.14] A CM = 2 2 {[ - T 2 T l - 2 — ] e 

4mCC +<5o) ) •*+ 5to £ + Su) c c c 

2 - e 2 

6a> c , + g 2 ,2 + V } 

+ 6 to c 

where C C = C + C . Eq. [19.14] i s identical to Eq. [17.5] with T^," 1 C=£) 
41 + 

replaced by E, . This equation gives the ICR line shape for K ions moving 
39 

through a vapour primarily composed of K atoms. We can neglect charge 
39 + 41 

exchange and momentum transfer between K and the K atomic isotope since 
i t comprises less than 7% of the total natural abundance by mass of potassium. 

If we make this approximation Eq. [19.14] also gives the ICR line shape of 
39 + 

K ions with E, and C £ appropriately redefined. 

In addition to N^Co) Eq. [19.14] contains only two unknown parameters 

T and £ c which must be determined from experiment. On the basis of a single 

experiment the relative contributions of E, and to ? c cannot be estimated. 

As in Sect. 17 we choose to estimate T from the ICR line shape in the 

collisionless regime, E,^ = 0 and then to use this value of T in Eq. [19.14] 

to f i t theoretical and experimental lines at higher neutral particle densities, 

thereby obtaining an estimate of E,^. A typical f i t of a pressure broadened 
39 + 41 + K resonance to Eq. [19.14] is shown in Fig. 40. Fig. 41 shows £ for K 

39 + 41 39 
and K ( ^ c and ^ c respectively) as a function of the square root of 

\, 

the number density, n g
2 of potassium atoms inside the secondary a l k a l i 

oven. The significance of the dependence of E,^ on n s
 2 w i l l be discussed 

after a discussion of the experimental and theoretical line shapes for Na+ 

39 
ions colliding with K atoms. 
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Fig. 40. A typical f i t of the theoretical (solid line) and experimental 
39 + 

(points) ICR absorption line shapes for K ions colliding 
with a beam of potassium atoms. The number density inside 

21 -3 
the secondary oven was 4.2 x 10 m , with an average dr i f t 

_3 

time of 1.0 x 10 sec. The Robinson oscillator frequency 

was 420.15 kHz and the r - f level in this.and-: subsequent experiments 

was such that E < 0.1 ev. 
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41 + 39 + 

Fig, 41. The ICR col l i s i o n frequency £ c of K and K ions 

plotted as a function of the square root of the number 

density inside the secondary oven, n . 



(xio 1 0 m " * 2 ) 
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Consider Eqs. [19.11] and [19.12]. In this case there i s an energy 
23 + 39 23 39 + defect between the systems Na K and Na K of 0.8 ev since the 

23 39 ionisation potential of Na (5.138 ev) is greater than that of K. Hence 

for reaction [19.12] to take place 0.8 ev must be transfered to the system 

(i.e. reaction [19.12] is endothermic) from the relative translational motion 

of the colliding particles, and for thermal velocities k^ = 0. Sodium ions 
39 + 

moving at thermal velocities in potassium metal vapour give rise to K 

ions since reaction [19.11] is exothermic and k^ is non-zero. With k̂  = k" = 0 

Eqs. [19.4] and [19.7] yield, 

[19.15] A(t,5a0 = N A(o)x { * h e " ? , t o e - C 5 + 5 ' ) ( t - t 0 ) d t 

dt ^ o 

+ e 
o 

(C+C')t rdE CdtPt = o J 

Substituting Eqs. [19.15] and [17.2] into Eq. [19.8] we get, 

N (o)q 2E 2 

[19.16] A(SaO = — {F (£ , £ ) + f, (1-e K )} 
4m (5io +? ) ^ 

where 
P -^+5')t 2 

F,u,c'r= [ o o ccsu+o-sa ) C 0 S s^t 

-6ob:(2£+£') sin 6<jdt)]T 

o 

N. (o) is now the current of sodium ions at t = 0. 

Single resonance line shapes of Na+ ions (from the primary oven) were 

measured as a function of the vapour pressure of potassium inside the second

ary oven. The best least squares f i t s of the experimental lines to Eq. [19.16] 

were obtained with E, £ £' . These c o l l i s i o n frequencies are shown as a 
h 

function of n -a in F.ig. 42. 
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Fig. 42. The c o l l i s i o n frequency 5* for sodium ions as a function 

of the square root the number density of potassium atoms 

inside the secondary oven. The two sets of points represent 

different experimental runs. 
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The area, C(n s, n ) under an ICR absorption line i s , 

[19.17] CCn s, n ) = A(Sco) d (6u) 

which using Eq. [19.15] becomes 

2 2 n 235 f - 2 3e'T N [19.18] C(n , n ) = S J i U 1
 N ( - 5 x [ : L - e j 

L J s' p 4m A ^ 1 L 23^, J 

where x' is the average d r i f t time between the ioniser and the analyser region. 

N^C-x') is the current of sodium ions formed at the ioniser and is dependent 

on n , the number density in the primary oven. In Fig. 43 C(n^, n ) . is., shown 
23„ + , for ^Na" ions as a function of n g

2 obtained by numerical integration of the 

experimental lines. The solid line in Fig. 43 is obtained from Eq. [19.18] 
23 

using the experimental values of £' shown in Fig. 42. The agreement between 
23 

theory and experiment gives an independent check on the values of obtained 
from the analysis of the line shape and also indicates that there are no other 

23 + 23 ion loss mechanisms for z Na in addition to that represented by £' over the 
39 + 41 + 

range of n g used here. The area under the K and K resonances w i l l be 

dealt with later in this section. 

In order to investigate our experimental results more f u l l y we wi l l use 

the formalism of the Boltzman equation [Beauchamp, 1967]. If we neglect 
41 + 41 

momentum transfer and charge exchange of K with K then we need only 
41 + 39 

consider momentum and charge transfer between K and K, and the col l i s i o n 

term of the Boltzman transport equation [Appendix 3] is 
9-1- 1 f 

[i9.i9] c—) c o l l = 7jrj,< j ( v i - y ^ u - p ^ ^ 

d»„dVT„ 
- < —i. -1 P12 f t - l ^ F V12 b d b d i dX-idK2

 } 
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23 + Fig. 43. The area C(n , n ) of the Na absorption as a function of s p 
the square root of the number density of potassium in the 

23 
secondary oven. C( n

s> np) is a function of n g through £' 
and of n through N (-T'). The significance of the theoretical P A 
curve is discussed in the text. 
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41 39 where the subscript!, refers to the K isotope, 2 to K and v^ 2 is the 

relative velocity of the ion atom pair. A l l parameters in Eq. [19.19] 

are defined in Appendix 3. The f i r s t term represents elastic collisions 

and the second charge transfer. Using the factorization procedure outlined 

in Appendix 3 for simple elastic collisions allows us to re-write Eq. [19.19] 

as; 

[19.20] 

where 

[19.21] 

( A , 
L3t ' coll -41

5 < V j >f-4-V < v x > f 

m. 
(1-P 1 2) (1-cos 6) bdb)v 1 2f (Vj) F (v_2)dv_1dV2 

and 

[19.22] 

= < V12 2 n (1-P 1 2) (1-cos 0) bdb > n 3 9 

41. P ] 2 f ( V j ) F (V 2) v 2 bdbd.edVjdVg 

= < v 1 2 . 2n: P 1 2 bdb > n 3 9 

n^g is the number density of potassium -39 atoms seen by the ions. The 

brackets < > again indicate an average over the relative velocity distribution 

of the ion-atom pairs. This distribution is discussed- in Appendix 5. 
41 + 

Eq. [19.22] defines the c o l l i s i o n frequency for charge exchange between K 
39 41 and K, so Eq. [19.21] and [19.22] together give a formal definition of 

appearing in Eq. [19.13], An analogous equation to [19.22] defines the c o l l i s i o n 
23 ? 23 + 39 frequency E, for charge transfer from Na to K which appears in Eq. [19.16]. 

39 + 39 The co l l i s i o n term for K moving in K is 

[19.23] L3 t J c o l l (n +D 2 

( 1 - P 2 2 ) ( v 2 ' - v_ 2> 2 2f(v 2)F(V 2)bdbd edv 2dV 2 

+ ( ( v p c - v 2) P 2 2 v 2 2f(v 2)F(V 2)bdbdedv 2dV 2} 
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i 39 + 
where (v 2 ) is t n e velocity of K following charge exchange. When charge 

transfer occurs between an ion and i t s parent atom the ion appears to be 

scattered through an angle n-0 (see Fig. A3.1) and integrating (y_2')c - Y_2 

over "e gives [Beauchamp, 1967] 

[19.24] 

and this leads directly to 

[19.25] 39 39 39 £ = £ + £* c 

n39 { < V22 ( I T 

+ < v 2 2 (TI 

(1-P 2 2)(1-cos 0)bdb)> 
o 

P 2 2 (1+cos 6)bdb) 
o 

n39 11 { < V22 C (1-cos 0) bdb + 2 P 2 2 cose bdb)>} 

Eq. [19.25] defines the co l l i s i o n frequency £ £ appearing in Eq. [19.16] for 
39v+ . . 

K moving in i t s parent gas. 
41 39 

£ c and £ c from Eq. [19.21], [19.22] and [19.25] di f f e r because when 

different isotopes collide the momentum of the fi n a l ion i s uncorrelated with 

the orientation of the rotating electric f i e l d associated with i t s ICR since 

the momentum of the i n i t i a l ion has no such correlation. This is not true 

for collisions between like isotopes. Thus there is a persistence of momentum 
39 + 39 39 41 in the K K system that results in £ c being somewhat smaller than £_c, -

as wi l l be shown using a well known model of symmetric resonant charge transfer 

The co l l i s i o n frequencies in the above expressions are expressed in terms 

of P „ , the probability of charge transfer from ion i to atom j , which in 

general depends on the impact parameter b and the relative velocity v̂ ... The 

cross section for charge exchange then is [Rapp and Francis, 1962]. 

119.26] a (v) = 2 n c P. . (b, v. 0 bdb 
1J i j 
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For symmetric resonant charge transfer CA+ + A ->• A + A+) an expression for 

P „ may be derived from an analysis of the c o l l i s i o n complex AA+ treated as 

a one electron problem iFirsov, 1951]. The non-stationary state describing 

the c o l l i s i o n can be expressed in terms of the symmetric and antisymmetric 

stationary states of the single electron orbitals. The difference in energies 

of these anti-symmetric and symmetric states depends only on the separation 
+ 2 2 2 2 r of A and A + e where r = b + v ^ t , t being the time measured from - °° 

to °°. By choosing a semi-empirical wave function for A + + e Rapp and Francis 

[1962] find that P^ oscillates rapidly between 0 and 1 for b < b^ and is 

sma-11 for b > b^ so replacing P „ by ^ for b <_ b^ yields 

[19.27] a \ = /fT b 
c Jj 1 

where 

£ n D (J_) b
 3 / 2 c l + ! o j e -yb 1/a o ^ 

^ a V:. 1 Y b i 6 ' o i j '1 

I is the ionisation potential of the atom and y = 1/13.6. This theory 

assumes rectilinear motion of the ions and is valid only at f a i r l y high 

velocities. At low velocities the ionic orbits are not rectilinear but an 

ad hoc model of the charge exchange may be used to calculate a . At large 

impact parameters and low velocities the potential between the ion and atom 

is dominated by the polarization attraction and one speaks of two types of 

collisions; orbiting collisions in which the incident ion orbits the target 

atom and grazing collisions. The c r i t i c a l impact parameters b Q such that a l l 

collisions with b < b Q result in orbiting is [Gioumousis^and iStevenson, 1958] 

A 2 L ^ [19.28] b Q = ( 4 q a
 2) 

ii. . v. . 
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where u . . and v.. are the reduced mass and relative velocity of the colliding 
1J i l 

pair and a pure polarization attraction has been assumed. 

If b Q > b^ i t i s customary [Beauchamp, 1967] to take 

[19.29] P 1 2 = P 2 2 = \ , b < b Q 

= 0 b > b — o 

Substituting Eq. [19.29] into Eqs. [ 19 .21 ] , [19.22] and [19.25] gives 

[19.30] * \ % „ 3 9 ,(lf 

and 
A-, 2 , mn 2 . 

[19.31] 4 \ % n_. C n ( ^ + 2.21 n C 3 ^ ) 
c 3 9 \ 2

 m l + m 2 »12 

a being the polarizability of the neutral potassium atom. The f i r s t term 
41 

in Eq. [19.31] is the col l i s i o n frequency for charge exchange £ 1 and the 
second is 4 1 £ for the pure polarization potential [Dalgarno et a l , 1958] . 

41 41 39 39 This crude theory indicates that £ , £ - £ c and £ c are in the ratios 

2.1 : 1.1 : 1 .0, to be compared with experimental ratios of about 1.9 : 0.9 : 1.0 

obtained from' Fig. 4 1 . In view of the crude nature of the theory and the 

accuracy of this experiment the agreement seems quite good. 
23 + 39 

For the case of asymetric charge transfer from Na to K we might 

assume thattthe cross section is the same as the cross section for orbiting 

collisions [McDaniel, 1969, Pg. 72 ; Groumousis and Stevenson, 1958] and 

calculate that 

] 19.32] 2V = n_ q 2n 
"* M 23 

23 39 23 where y 2 ^ is the reduced mass of the Na+ K system. Wecthus expect £' 
39 

and ? c to be in the ratio of 2.3 : 1.0 but experimentally find that 
23 39 *\J 

£'/ £c <\j 2 . 9 . The reason for this rather poor agreement of experiment 

with Eq. [19.31] is not known, but may l i e in the experiment. Nevertheless, 



199 

23 39 i t is significant that £' > £ . 

Effusion: 

To this point we have not attempted to make a quantitative estimate of 

the rate constants for the two processes studied here, since this requires 

knowledge of the neutral particle number density. The rather striking 

dependence of the co l l i s i o n frequencies on the square root of the number 

density inside the secondary oven also requires some discussion. Atoms 

from the secondary oven traverse the c e l l , and a certain fraction are ionised 

on the hot wire placed in front of the primary oven. The ICR signal strengths 

are a measure of the total flux of atoms f a l l i n g on the ioniser. It is easy 
41 + 

to show that the area of the K resonance is given by 
2 p 2 

[19.33] CCn , n ) = q . 1 ft N. (o) T L J ^ s' p"̂  4mx A v ' 
41 

which is independent of the col l i s i o n frequency E,^ since the total number 
41 + 

of K ions does not change with position in the c e l l at thermal velocities 
when both secondary and primary ovens are charged with potassium. Thus 

41 + 

N. (O)T , the number K ions formed at the ioniser is dependent on both n 

and n . But, the quantity 
[19.34] R(n s) = G(n s, n p) - C(0, n ) 

41 + 

where C(0, n ) is the contribution to the area of the K resonance of the 

primary beam, is proportional to the flux of atoms from the secondary oven. 

Fig. 44 shows that R(n s) is linear with n g
2 , a strong indication that the 

atomic number density seen by the ioniser is proportional to n g
2 . While this 

behavior of R( n
s) indicates why the experimentally determined col l i s i o n 

h 

frequencies are proportional to , i t does not yield an absolute number 

density inside the c e l l . It is therefore necessary to investigate the process 
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Fig. 44. ^'-ns-' a s a f u n c t i o n °f the square root of the number density 

inside the secondary al k a l i oven. ^Cng) is proportional to 

the flux of atoms from the secondary oven as explained in the 

text. 
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of effusion of atoms through an oven o r i f i c e . 

Depending on the ratio of the mean free path X of the atoms in a tube 

to the dimensions of the o r i f i c e , several different types of molecular 

flow can be distinguished. For a cylindrical tube of length L q and radius c, 

true effusion occurs only i f X » L Q> C [Lew, 1967], and in this case the 

peak intensity and total flow rate are proportional to the pressure behind 

the source. When X is comparable with the length of the tube the peak 

intensity of the beam is not proportional to the pressure behind the source 

since collisions between atoms in the beam are then important. The atomic 
° 18 -1 diameter d of potassium is 4.76 A indicating a mean free path A ̂  10 n g 

I . 2 

( = l / ( / 2 n d n
s ) ) - This means that for at least a portion of the 

density range spanned in these experiments collisions between atoms in the 

source played a role in defining the emergent atomic beam. 

Giordmaine and Wang [1960] have studied molecular flow through tubes 

both experimentally and theoretically. They find that the peak beam 

intensity i s 

[19.35] I(o) = ^ Ja n * 
8 d L 2 5 

o 
while the total flow rate from the source is proportional to n^' In Eq.[19.35] 

v & is the average velocity inside the oven source not in the beam. Since 

the ioniser is aligned with the secondary oven's effusion tube, the dependence 

of the area of the ICR lines on n g
 2 (see Fig. 43) is probably explained by 

Eq. [19.35]. Furthermore i f the ions :in the primary beam are relatively well 

defined spatially near the centre of the c e l l , they w i l l see a secondary atom 

flux that is proportional to n s
2 . This might explain why the co l l i s i o n 

frequencies are dependent on n g
2 also. It should be noted, however, that 

the half width of the angular distribution of particles in the co l l i s i o n -
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dispersed atomic beam is also proportional to n s
2 (recall that the total 

flow rate is proportional to n g) and i f the ions are distributed over a 

considerable fraction of the atomic beam they will see an average atom flux 

that is proportional to n g. One further cautionary note is that the theory 

of Giordmaine and Wang is usually only applied to very long tubes (i.e. L Q>>C) 

while for the oven used in these experiments L q is about a factor of 2 larger 

than c. 

We assume that the ion beam is homogeneous having a circular cross 

section of area A . At large densities in the source the angular distribution 

of the atomic beam may be approximated by [Giordmaine and Wang, 1960]. 

3/2 a [19.36] 1(8) £ 1(0) cos 

and for small A the atom flux across A is 
P P 

I = 2n 
a 

sin @ I (0) d 

£.211 » 2 I (9) 

where 

@h?i-s Oann angle measured from the axis of the effusion tube and @̂  i s the 

half angle subtended by A . is assumed small. The number density at 

a distance L from the source oven is now just 
I 

[19.37] n(L) = - a — -
A v P a 

( c — J n c 
2 I g 

L" 8d L ^ i T -2 S 

The number density obviously varies with distance from the source so we 
-2 -1 replace L in Eq. [19.37] by(L' L") where L' is the distance from the 
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effusion tube to the ICR c e l l and L" is the distance to the end of the 

analyser. Substituting for values of the parameters in Eq. [19.36] we 

obtain n^g £ 4.31 x 10 ^ n s
2 . for potassium atoms. Since the slope of 

39 _8 3/2 
? c versus 2 plot in Fig. 41 i s 3.1 x 10" m /sec. we obtain a rate 

-15 3/ -9 3 constant of 7 x 10 m sec. (7 x 10 cm /sec.) for symmetric resonant 
39 + 39 

charge transfer between K ions and K atoms. In Fig. 45 this rate 

constant is compared with other measurements by Kushnir et al [1959] who 

measured the attenuation of a potassium ion beam in a neutral potassium 

background. The solid line in Fig. 44 shows the theoretical prediction 

[Rapp and Francis 1962] of Eq. [19.27]. This line differs slightly from 

that published by Rapp and Francis, due to the use of a slightly different 

ionisation potentials. Also shown by the dashed lines in Fig. 45 is the 

value of a c v ^ obtained from Eq. [19.30] using two different values of the 

polarizability [Landolt-Bornstein, 1953]. The error bars on the point 
2 J' 

represent estimates, of the errors in measurement of c / L Q
2 in the one case, 

and the kinetic temperature of the ions in the other. 

Double Resonance 

Double resonance experiments were also performed on the two a l k a l i 

ion-atom systems using the crossed beam arrangement, but these did not meet 
with much success. In order to selectively heat either ionic species 
41 + 39 + 

( K or K in this case), a secondary oscillator (Wavetek Model 114) 

was connected to the positive d r i f t electrode in the reaction region. The 

double resonance experiments consisted of fixing the magnetic f i e l d and 
41 + 

monitoring the single resonance signal of K with the fixed frequency 

Robinson oscillator attached to the bottom plate of the analyser region. 

When the secondary oscillator was swept through the cyclotron frequency of 
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Dependence of the rate constant for charge exchange between 
39 + 39 
K and K on relative velocity. 
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39 + 41 + 
K ions a change in the K ICR signal was detected due to the coupling 
39 + 41 + 

of K to K via reaction [19.9]. However we found that both the sign 

and magnitude of this double resonance signal werea functions'of the magnetic 

f i e l d as indicated in Fig. 46 which shows the change in the ICR single 
41 + 

resonance signal of K as a function of the secondary oscillator frequency 

for several different values of the magnetic f i e l d . 

A qualitative explanation of the above phenomena might be as follows. 
39 + 

In cyclotron heating the K ions we change both their average energy and 
39 + 

spatial distribution. Changing the average energy of K increases the 
41 + 

rate constant k^ hence increasing the number of K ions which leads to an 
41 + 

increase in the K signal. On the other hand changing the spatial 39 + 41 + distribution of the K ions changes the spatial distribution of the K 
ions due to charge exchange reactions, resulting in a change in their average 

41 + 
quasi-cyclotron frequency. This shift of the resonance condition of K 

41 + 
also leads to a change in the K signal i f the magnetic f i e l d i s constant, 

41 + 
but does not reflect a change in the net number of K ions detected. To 

41 + 
pursue thismmatter somewhat more quantitively let us assume that the K 

39 + 
ICR line shape is the same when K are irradiated as when they are not. 

39 + 41 + Then in the absence of K cyclotron heating the K signal is 

[19.38] = qi G(B - B e £ f) 

where B is the magnetic f i e l d , B e f£ the magnetic f i e l d at maximum intensity 
39 + 

and G(B - B ~_) is a shape factor so that G(0) = 1. When K is irradiated 
41 + 

the K signal strength is 

[19.39] S 2 = Q2 G(B - B' f f) 
where B' the f i e l d at maximum intensity, i s different from B because eff ' eff 

41 + 

of the spatial rearrangement of the K ions. The ICR double resonance 

signal is just the difference between $ 2 and S^, 
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Fig. 46 The double resonance signal AS for reaction [19.9] plotted 
41 + 

as a function of B and t o 2 / 2 n . The K resonance was 
monitored with the Robinson oscillator and is indicated as 

a function of B. - B by the base line of the double 1 eff J 

resonance signals. AS was obtained by sweeping a heating 

oscillator (frequency denoted by i o 2 / 2 n ) through resonance 
39 + 

with K . The Robinson oscillator frequency was 420.15 kHz. 
and the number density inside the secondary a l k a l i oven was 

20 -3 39 + 6.2 x 10 m . The fin a l energy of the K ions was about 

E_ = 0.7 ev. 
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[19.40] S 2 - S 1 = Q 2 GCB - B"eff) Q1 G CB B e £ £) 

Expanding G(B - B^ £ £) i n a Taylor's series about B - B g £ £ we obtain, 

[19.41] S 2 - S x = Q 2 [G(B - B e f f) • CB e £ f - B; £ £) G'(B - B e £ £) 

+ C — —y G"(B - B )+....] 
21 e r 

- Q l G(B - B e £ £) 

(Q2 - Q l)GCB - B e £ £) - (B e £ £-B; £ £)G'(B - B e £ £ ) + -

If we now normalize S to 1 then = 1 and 
S S 

[19.42] 2 ^ 1 = AS = Q G(B - B e £ £) + ( B e £ £ - B; £ £)(1 + Q) g'(B - B e £ £) 

where Q = '()Q2 - Q-̂ )/Q̂ . This expresses the double resonance intensity in 

terms of the single resonance signal and it s derivative, G' (B - B g £ £) = dG/dB, 

higher derivatives having been neglected. Q and ( B g £ £ - B^ £ £)(1 + OJ are 

parameters which contain information on the variation of the rate constant 
39 + 

with the average energy of K as well as the spatial rearrangement of 

the ions by the secondary oscillator. Fig. 47 shows a f i t of AS versus 

B - B g £ £ (Eq. [19.42]) to the experimental results. Similar results were 

obtained at higher irradiating amplitudes where f i t s of the experiment to 

theory require higher derivatives of G. 

Using the theory developed in this section and plots such as Fig. 47 
39 + 

i t should be possible to extract the dependence of k^ on K average velocity, 
provided that the r - f level of the secondary oscillator is maintained below 

39 + 

the ejection threshold of K and i f the higher derivatives in Eq. [19.41] 

are small. We wi l l not attempt this analysis here, but these results on the 

energy dependence of reactions [19.9] to [19.12] wi l l be reported at a later 

date. 
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Fig. 47. A f i t of the experimental double resonance signal AS (c) 

for reaction [19.10] to Eq. [19.42] represented by the 

solid line. The line shape factors G(B - B^^) and 
41 + 

G'(B - B^^) were obtained directly from the K single 

resonance line shape indicated in the previous figure. 

The analysis yields the parameters Q = 0.187 and B g £ £ -
B' = 1.96 x 10"4 Tesla. eff 
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A dependence of the sign A S on B has not been reported in the 

literature and appears to be unique to our apparatus. Similar results were 

obtained in the sodium-potassium system with the same Robinson oscillator, 

and the large separation between and 2 0 0 kHz) in this case seems 

to eliminate the possibility of beating between the oscillators. The same 

effect was noted when the secondary oscillator was applied to the top electrode 

of the analyser region, quite far removed from the ioniser. It is thus quite 

probable that the explanation offered here is the correct one, and the 

phenomena reflects the non-uniform number density in the beams. 

The analysis of this section has neglected spatial variation of the 

atomic flux from the secondary oven, so the results are admittedly crude 

ones. Furthermore estimation of the number density inside the ICR c e l l is 

based on a theoretical calculation, not on an absolute calibration, although 

the theory was crudely tested by weighingg the amount of metal plated out on 

a target. However, i t seems reasonable to expect more reliable results after 

the effusion from the ovens is studied more thoroughly. This may be done 

using spectroscopic techniques. 
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20. Summary 

In this thesis we have developed a theory of Ion Cyclotron Resonance 

for typical cells of rectangular cross section. The effect of inhomogeneous 

electrostatic fields on the dynamical motions of the ions was investigated 

in some detail using an expansion of the electric f i e l d to the third power 

of the y co-ordinate. An ensemble to specify the spatial distribution of 

the ions as they d r i f t through the complicated fields was developed. 

An explicit energy distribution function was derived for ions at 

resonance with a uniform r-f electric f i e l d . It was found that the i n i t i a l 

spread in energy of the ions was amplified by such resonant r-f fi e l d s . The 

ionic energy distribution is also broadened by the large distribution of 

trapping oscillation amplitudes. Production of the ions with small amplitudes 

of oscillation at the bottom of the trapping well has obvious advantages, 

and we have investigated one possible method of doing this. The hot wire 

ioniser is relatively easy to woperatieh but can only be used for a very small 

class of molecules. However, there seems no reason why the ions cannot be 

produced from a well collimated molecular beam which is made to cross an 

electron beam at the geometric centre of the c e l l . Better energy selection 

might also be expected if a second molecular beam crosses the ion beam at a 

well defined cyclotron radius. This secondary beam might be incident along 

the x-axis as in the experiments reported here or along the z direction in 

which case the particles need not be neutral. We believe that the experiments 

performed here, although in a preliminary stage of development, indicate that 

such techniques are feasible. It should be emphasized however that the 

theory of ICR presented here is based on a linearized model of the ionic 

motions in which the cyclotron motion is rigorously/ decoupled from the 
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trapping oscillation. At high r - f levels when the ion cyclotron radius 

becomes an appreciable fraction of the c e l l dimensions, this is no longer 

true, and the ionic motions and the manner in which energy is shared between 

the trapping and cyclotron amplitudes are probably quite complex. 

Of course the study of the energy dependence of cross sections for 

charge transfer and ion molecule reactions is not the only application of 

the ICR device. Its most attractive feature is i t s a b i l i t y to guide an ion 

beam at very near thermal energies in a well defined direction. Thus i t s 

major use is in the determination of thermal energy rate constants for ion 

molecule reactions. It is probably more reliable to determine the short 

range part of the interaction which determine these rate constants by temper

ature dependent studies rather than by their dependence on average ion energy. 

At near thermal energies the precision with which rate constants may 

be determined is dependent on the accuracy with which the pressure and average 

dr i f t time are measured. It is hoped that the calculation of the average 

dr i f t velocity and the treatment of the ICR line shape given here wi l l be of 

use to workers in this f i e l d . 
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Appendix 1 Drift of Ions Between Different: Regions  
of an ICR Cell 

Consider two regions 1 and 2 of an ICR c e l l of the type shown in 

Figure 1, which are characterized by c e l l parameters a^, b^ and , and 
(1) (1) (2) (2) voltages V (y^,z^), V and V (y2>z2)> v>p » respectively. Suppose that 

an ion has a ver t i c a l position y^ and a reduced trap oscillation amplitude 

P- = 2z ,/a . After drifting from I to 2, the ion has a vertical position y„ X ml _L 2. 

and reduced trap oscillation amplitude p„ = 2z 0 / a 0 . As has been shown in 

Section 4, the values of and p2 can be obtained in a straightforward way 

in terms of y^, p^ and the c e l l dimensions and voltage parameters for the 

limiting cases of fast d r i f t and adiabatic d r i f t . In this Appendix we 

derive explici t expressions for y^ and p^ in the adiabatic d r i f t limit for 

potentials in regions 1 and 2 given by the harmonic approximation, i.e. 

[Al.l] V ( i )(y.,p^) = V ( i )(y.) + [ V ^ - V ^ ( y . ) ] p ] 2 

where 

[A1.2] V ( i ) ( y . ) = V ( i )(y.,0) 

and 

z . 
[A1.3] p! = - i - (Note that 0 ̂  p! < 1) 

i 

Then, Eqs. [9.3] and [9.5] for the adiabatic d r i f t limit may be written 

for this case as 

[A1.4] V ( 1 ) ( y 1 , p 1 ) = V ( 2 ) ( y 2 , p 2 ) 
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and 

IA1.5] [V<»-V<1><,1)r1pj[- lV<»-V«\y2»V2 

2 

respectively. Substituting fcr from [A1.5] into [A1.4] and [Al.l] 

gives the equation 

2 2 9 2 2 [A1.6] u 2 - U 1 P 1 U 2 + ( u ^ - u - A ) = 0 

where 

[A1.7] u2
± = V< i } - V ( i )(y.) 

and 

[A1.8] A = V< 2 ) - Vr^1} 

The only physically allowed solution to [A1.6] i s 

[A1.9] u 2 = \ + [ u 2 ( l - \ p 2 ) 2 + K]k 

By squaring [A1.9] and using [A1.7], this solution may be written in the 

form 

[ALIO] V ( 2 ) ( y 2 ) = V ( 1 ) ( y ] ) + u 2 p 2 ( l - \ p 2 ) { l - [1 + 2 - \ 2 2 ] H } . 
u l ( l - - P l ) 

Special Case: A « u 2 = - V^Cy ). 

For this case of a small difference between the trap voltages of 1 and 2, 
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2 
expansion of [A1.10] in powers of A/u^ gives the result 

A p 2 

[Al.ll] V ( 2 ) ( y 2 ) = V ( 1 ) ( y ] L ) 
2(1- 2 p p 

It may be seen from calculations such as these that the influence of 

different potentials in different regions of the c e l l can give a substantial 

dispersion of the beam in the y-direction. For example, i f one identifies 

A in [ A l . l l ] and [A1.8] with the effect of the ionising electron beam on the 

c e l l potential and i f i t s effect is to displace the potential near y^ by a 

constant amount A, so that 

[AI.12] v^ 2 )-v^ 1 } : v ( 2 ) ( y ; L ) - v ( 1 ) ( y ; L ) = A 

then the approximately linear variation of V ^ ( y ) for small changes in 

y, i.e. 

[A1.13] V ( 2 ) ( y 2 ) = V ( 2 ) ( y ; L ) + A(y2-Vl) + - -

= V a ) ( y ± ) + A + A(y 2- y ]_) + - -

taken together with [ A l . l l ] gives 

[A1.14] y_-y 2 n I 2 
(1- 2Pi) 

This result predicts a large dispersion of the beam [(Ay) /(Ay) . ~ 2], 
max min 
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since ions are produced with uniform probability in the range 0 ^ ^ +1. 

Note that since p2^P^_ ^-s Proportional to the fourth root of the ratio of 

potential well depths in regions 1 and 2 (see Eq. [A1.5])., the dispersion 

in the reduced maximum trapping oscillation amplitude produced by adiabatic 

d r i f t i s not expected to be as large as the dispersion in y. 
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Appendix 2: E f f e c t of Magnetic F i e l d Modulat ion On ICR S igna l s 

In the constant e l e c t r i c f i e l d approximation the low pressure 

ICR l i n e shape i s g iven by [ B u t r i l l , 1969] 

• 2 * i , 2 . 7 8 3 sin oB — 
? 7 ft "3 

[A2.1]- A(B) = Z ' ^ 5 

(2.783 5B/B, ) 2 

'2 

where B, i s the a b s o r p t i o n l i n e width defined by Eq.[13.3] and 6B(= B-B ,.,,) 
-2 err 

i s the d i s t a n c e a long the magnetic f i e l d axis from the centre of the l i n e . 

The l i n e shape i n E q . [ A 2 ; l ] has been normalized to u n i t y , 

[A2..2] A(B) dB = 1 

I f we modulate the magnetic f i e l d wi th a smal l p e r i o d i c f i e l d , b cos ur> f and 
r m m 

sweep through the resonance at ^ e £ £ then 

t 

[A2.3] B( t ) = B (t) + b cos u:t-

m m. 

where B'(t) i s the s lowly v a r y i n g a p p l i e d magnetic f i e l d . 

Under these cond i t i ons the output of a phase s e n s i t i v e detector i s 

p r o p o r t i o n a l to the c o e f f i c i e n t of the f i r s t harmonic term i n the F o u r i e r 

expansion of the resonance l i n e shape [Smith, 1964]. Therefore r e w r i t i n g 

Eq. [A2.1] 
s i n 2 2 * ( 6 B ' + b cos tot) 

[A2.4]- A(B) = 2 _ 
H ( U | 3 _ + _ b c o g w 2 

B. m m 
h 

2.783 v 
— - — ) a cos . nuo t 

TTBJ l n m 
H. n=0 
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where K B ' = B 1 (t) - B We thus see that the quantity of interest is 

[A2.5] a = -
1 IT 

f 1 T sin^(3 + a c o s 6 ) a , a - — - cosOdG 
-TT ( 6 + « c o s 6 ) 

In the above equation 
6B' 3 = 2.783 

and 

2.783 b /Bi 
m -2 

co t m 
As i s well known a^, the output of the p.s.d., i s an approximation to the 

derivative of the absorption line, but the nearness of a-̂  to the real 

derivative depends on the amplitude of the magnetic f i e l d modulation. At 

very low values of b , a, is a quite adequate representation of the 
m 1 

derivative of the true line shape but when b^ i s large the observed signal 

may be much broader than the real line. In Ion Cyclotron Resonance 

experiments the signal intensity i s often of interest and this too is a 

function of the modulation amplitude. Thus there are two parameters 

that must be examined as a function of b . The f i r s t i s the observed 
m 

peak to peak line width Bpp» o r the separation between the extrema of 
a, , and the other is the value of a, at i t s maximum ( a j . 1 1 1 p 

In Fig.[A2".l] we show B /B, versus b /B, obtained numerically from 
PP ^ m % J 

Eq. [A2.5] while Fig.[A2.2] shows ( a
x) > normalized- to i t s maximum value, 

as a function of b /B, . It is interesting to note that maximum signal 
m h • 

intensity i s obtained for b /B, - 0.68 but undistorted line shapes occur 
m % 

only for b /B, < 0.2. 
J m *5 
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Fig. A2.1; The effect of magnetic f i e l d modulation amplitude b on the 

apparent line width B of the low pressure ICR absorption 
PP r 

derivative. 
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Fig. A2.2: The effect of magnetic f i e l d modulation amplitude on the ICR 

signal intensity. 
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Appendix 3 : Bi-Particle Collisions 

The effects of collisions on the motions of ions through a gas of 

uniform density are treated in this appendix. We.discuss both elastic 

collisions and resonant charge exchange and in the case of simple elastic 

collisions establish a formal relationship between E , the collision frequency, 

and K(o), the dc mobility. The influence of the ion-atom interaction 

potential on the momentum transfer cross-section and the transport properties 

of gases is also discussed. The outline presented here follows closely that 

of Beauchamp [1967]. 

From the Boltzmann equation i t has been shown that the time rate of 

change of some property x(v_^) of ions moving under the influence of external 

forces in a neutral gas is given by [ A l l i s , 1956] 

a q(n ) 9x(v ) 
[A3.1] f r[(n +) <x(v.)>J = — <(E(t) + v.xB). 1 •> dt ^ l i f m. — — i — 3v. f l — i 

+ I 
j 

r 
[x(v!) - x(v.)] f(v.)F(v.)v.. bdbdedvdV - i - i - i - J i j 

where V. is the velocity of neutral atom j , v. the velocity of ion i , v.. the - J - i i j 
magnitude of v.-V. and F(V.) the three dimensional Maxwellian velocity - i —j - j 
distribution characterizing the neutrals j . f(v_^) is the velocity distribution 

of ion i and is normalized to (n+)^., the ion number density. In terms of the 

velocity distribution discussed in Section 17, 

f(E.) = (n +). 
E 

P (E.-E(|) P„(EI()dEM 

o 

1 2 
where E_̂  = — a n d P(l (E„) must include the effects of energy transfer, via 
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collisions between the cyclotron and trapping oscillations. The brackets 

< >£ in Eq. [A3.1] indicate an average over f(v^). 

In a collision the ion interacts with a neutral, their velocities 

changing from v^ and V to v\ and respectively. The scattering parameters 

are b, the i n i t i a l impact parameter, e the scattering azimuth and 0, the 

angle through which the relative velocity vector v.-V. rotates on co l l i s i o n . 

Thus the f i r s t term on the right hand side of Eq. [A3.1] accounts for the 

rate of change of (n +)^ xCv^) due to externally applied electric and magnetic 

fields while the second term represents the rate of change of (n +)^ x(v^) due 

to collisions. 

The equation of motion of the average ion i is found by setting x(v^) = 

and, i f 9(n +) /9t = 0 

9<v> 9v. 
[A3.2] — — i - = 3L. E(t) + SL. <v > : x B + ( — i ) 

9t i i ~~ c o l l 

9v. 
where (——-) accounts for the effect of collisions on <v.:> . For ions i dt c o l l — l r 
colliding with neutrals i and j there are five elastic or charge exchange 

reactions which alter <v.>̂ . These are 
— i f 

(1) elastic collisions and charge exchange between ions i and 

their atomic parents, 

i + + i ->• i + + i 

+ i + i + 

(2) the above two processes for i + ions with neutrals j , 
i + + j + i + + j 
.+ , . • ..+ 
i + J -> i + 3 

(3) charge transfer between ions j and neutrals i 
.+ , . . ..+ 
J + i •* 1 + J 
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Fig. A3.1; A collision in velocity space, 

elastic collision. 

V and v are not changed by an 





- 230 -

The two processes in (1) above cannot be experimentally distinguished 

from one another. The second of (2) results in a decrease and (3) an increase 

in the population of ions i . If P is the probability of charge exchange 

between ion i and neutral j on collision then [Beauchamp, 1967] 

3 v . 

[ A 3 - 3 J <;>r>coii • < 4 [ j (v!-v.)(l-P..)f(v.)F(V.)v.. bdbdedv.dV. — i — i i i — i — l i i — l — i 

[(v!) - v.] P.. f(v.) F(V.) v,. bdbde.dv.dV. — i c — i i i — l — x i i — l — l 

+ I 

J*1J 

(v.- v.)(l-P..)f(v.)F(V.) v.. bdbdedv.dV. - i - i I J - l - j i j - i — j 

v. P.. f(v.) F(V.) v.. bdbdedv.dV. - i i j - i - j i j - i - j 

+ I Kzi)c
 p - i X-±

 f(Z-) F(Y_.) v.. bdbde.dv.dV.] j^2_J J J i J j i / 

where Cv\) c is the value of v^ following charge exchange and the reactions 

listed above correspond to sucessive terms in Eq. [A3.3]. 

For elastic collisions ( P£^ =0) between ions of mass m with neutrals of 

mass M Eq. [A3.3] becomes (dropping the subscripts i and j) 

[A3.4] = f 
3t c o 1 1 n+ 

(v'-v) f(v) F(v) V q bdbdedvdV 

where V q = ||v-V| . v, V, V Q , 9 and V ( = [mv + MV] / [m+M]) , the velocity of 

the centre of mass are indicated by Fig. A3.1 from which i t is seen that 

[A3.5] 
2TT 

(v'-v) de = - 2-rr — (1 - cos0)(v-V) 
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The momentum transfer cross section is defined as [McDaniel, 1964] 

[A3. 6] a, = 2TT d (1 - cos6) bdb 

and the collision term becomes 

[A3.7] (!) -M 
TE'coll " n+(m+M) j ̂  Y o d ^ 

since the average of in Eqs. [A3.5] and [A3.4] over F(V) vanishes. We 
9v cannot evaluate unless the velocity dependence of o.v is known, but 9t c o l l d 0 > 

fortunately the momentum transfer cross section i s inversely proportional 

to V q i f the interaction potential between ion and atom depends on the inverse 

fourth power of the distance between their centres. For this polarization 

potential and others that are not strongly velocity dependent we may write, 

[A3.8] v 9 t ' c o l l 
-M 

(m+M)n+ 

(JX. dv^ o.v f(v) F(V) dvdV d o — — 

-M n <v> <a,v > (m+M) - f " d o 

= - 5<v>f 

where the dependence of f and F on n + and n respectively has been extracted 

from the average over ^ v >. The effect of elastic collisions i s therefore 

to introduce a damping term into the equation of motion for the average ion, 
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This equation has been solved for the ICR f i e l d configuration to yield 

precisely the same line shape as derived in Section 17. The analysis of 

that section requires that £(or a.v ) be independent of v . This is true 
d o o 

only when the polarization force dominates the ion-atom interaction. 
-4 

Terms other than the r term in the interaction potential result in a 

velocity dependence of a ^ v
Q
 a n d become more important as the average velocity 

of the ions with respect to the neutrals becomes large. Alternately, we 

may say that the polarization force dominates the ion-atom interaction at 

low ion velocities. Therefore, the approximation in Eq.[A3.8] is best 

satisfied when low rf levels are used to detect the ions or when the neutral 

gas density is sufficiently high that the average energy gained by an ion 

between collisions is small. We have already seen that under these conditions 
[A3.10] f ( v ) = ( T T ^ ) 3 / 2

 E - M V 2 / 2 K T 

and substituting into <a,v > we obtain 
d o 

, (mv2+MV2) 
< ? r — -— • -

2kT rA3 H I r = r—^ (A"11) \ 3 

which reduces to 

[A3.12] 5 = 
m+M IT y 

with g = < — ) * v o . 

e a.v dvdV d o 

,00 

O 

3 -g 2 

g ad e &-.dg 

In d r i f t tube experiments the dc mobility is measured directly from the 

time of flight of a pulse of ions across a region of constant electric f i e l d 
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and pressure [Albritton et a l , 1967]. From analysis of the shape of 

the arrival times of the ions at a suitable counter, the longitudinal and 

transverse diffusion constants of the ions under study may be determined. 

Experiments such as these have been extensively investigated theoretically 

so that to date they provide the most reliable estimates of the ion-atom 

interaction. Kihara [1953] calculates that at low electric f i e l d strengths 

the average component of ionic velocity in the direction of the applied 

electric f i e l d is 

[A3.13] <v > —SL-jr- E, = K(o) E^ z 16 n p Q. dc dc 

where E d c is the electric f i e l d and S is a collision integral with form? 

[A3.14] n = (M-)* 5 _g2 
° d g q dg 

o 

The dc mobility in the limit of zero f i e l d is thus 

[A3.15] K(o) = ~r — 3 — • 
16 n y 

It is clear that the dc mobility is simply related to the ICR collision 

frequency o n l y . i f - i s relatively constant and may be taken outside the 

integrals in Eqs. [A3.12] and [A3.14]. The relation 

[A3.16] K'(o) = -V 
mt,'-

is therefore seen to apply only at very low ionic velocities. When the 

ionic velocity is not well approximated by a Maxwellian Eq. [A3.16] is not 
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valid since the operational definition of £(Eq. [A3.8]) requires 

modification. The extension of ICR measurements to high rf electric f i e l d 

strengths therefore requires further theoretical development. Now let us 

consider a single elastic collision in detail. 

A two body collision is dynamically equivalent to the one-body 

collision problem in which a hypothetical particle of mass y = mM/m+M 

approaches a fixed scattering centre with impact parameter b; and velocity 

V q equal to the relative velocity of the two interacting particles. The one 

body collision is illustrated in Fig. A3.2. The distance from the hypo

thetical particle y to the scattering center is r and the force f i e l d of the 

scatterer is represented by a potential V(r). The effect of V(r) on y is 

to change i t s direction by an angle 9. 
1 2 

Far from the scattering center y has energy ̂ yv^ so conservation of 

energy requires that 
2 

[A3.17] 4 v 2 = ikiir 2 + - ^ r + V(r) 
2 0 2 2yr 2 

where the right hand side of the equation is the energy of y in the presence 
2 2 

of V(r). The term J /2yr in the above expression represents the rotational 

kinetic energy of the system. Since = mr x r we may rewrite Eq. [A3.17] 

1 2 1 2 2 2 2 [A3.18] 4 n v = ^yr + yv b /2r + V(r) 
l o l o 

The angle i> gives the orientation of r with respect to v and the value 
— —o 

of $ for which r is a minimum is denoted by From Fig. A3.2 i t is clear 

that the trajectory of P is symmetric about $ and that 
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[A3.19] 6 = TT - 2$ 

The angle through which the relative velocity v^ i s rotated during a 

collision is completely specified by $, a quantity that is easily calculated 
• d e b 2 

by noting that <f> = = bv /r , from the constancy of angular momentum, and 
dt o 

[A3.20] j - ±£ [1 - b i j % d<J> <f> b 2 2 y yv r o 

At the angle of closest approach =0, r = r^ and 0 is given by 

r r 
[A3.21] 

f a 
^ d r = -dr 

a „ , 2 (b/r ) dr 
ri _ 2 v ( r ) _ bV 2 2 2J 

yv r o 

Eqs. [A3.12], [A3.15] and [A3.21] relate K(o), 5 and a . For a given 

interaction potential the distance of closest approach r and $ may be 
ct 

calculated as functions of v and b. The average of l-cos6 over a l l possible 
o r 

impact parameters then yields as a function of V q . The appropriate average 

over the relative velocity distribution f i n a l l y yields the desired transport 

properties. Although this procedure is purely classical, Vogt and Wannier 

[1954] have shown that a quantum mechanical description of the polarizatic 

potential is similar in most respects. 

L o n 
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Fig. A3.2: The one body equivalent of a bi-particle c o l l i s i o n . 
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Appendix 4 : Moments of the Energy Distribution Function 

In section 17 an approximate energy distribution for ions subjected 

to resonant r-f for a time t was derived in which the possibility of 

collisions of the ions with a background gas was included. The n moment 

of this energy distribution may easily be calculated in the following 

manner; 

•—- ,00 
[A4.1] = E ^ P x ( E A , T , t)dE L 

^1 - t / x c -Em/kT _ V k T ^ 

< i o ( - w t " > d E J . + 

o J~ 
kT 

kT , dp e
 P e g 

n(m+M 2 2 I r——— 
2^T T c P | r» -E./kT. 2 T 

d E ^ e ^ 8 I C\lm C E J I 
O E 

The integrals over E^ in the above expression may be expressed in terms 

of Whittaker function M̂  ̂  using the standard form [Gradshteyn and Ryzhik, 

1965; Pg. 720] 

f 0 0 V~T a r(y+v+k 1 .2. 2 
[A4.2] J o s a"'8 I 2 v (26/?)ds - 7 5 ^ - 6"1 eS ' 2»(pj*X„ ^ 

where T(k) is the Gamma function. The Whittaker functions resulting from 

substitution of Eq. [A4.2] into Eq. [A4.1] are transformed to degenerate 

hypergeometric functions $; 
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so that for n=0,l,2 Eq. [A4.L]- takes the following simple forms 

[A4.4] n=0 : E x = P X(E A, T t)dE x- 1 

_ -t/x -t/x 
n=l : E. = CkT.+E )e + kT (1-e 

1 x m g 
c. , (m+M)„ 2 . 

} + 2m" n T c Y ( 3 ' t h 

n=2 : Er = " t / T c 2 e ( k T x ) Z 

(m+M) nx 
2m kT C ) Y ( 5 ' t / T c } 

g 

(nrt-M)nx -t/x 
+ 4 (-STwT ) Y ( 3 ' t / T c ) + 2(1 - e C) 

g 

where yCk, t/x ) is an incomplete Gamma function. 

When the same osc i l l a t o r is used to both heat and detect the ions, 

the experiment i s actually performed over a time x where x i s the total 

time the ions remain i n the resonant r - f . Thus the time average of E x is 

[•A4.-5] <E,> = -
J- t x 

rx 
E A dt 

-x/x X 
= kT + kT (e C - 1) — 

g g T 

-X /X X T)T 
+ kT (1 - e C) — + — Y ( 3 , X/X ) 

X X c 

n(m+M) x c ex 
2m x 'o 

Y ( 3 , t/x c) dt 

and <Ex>t i s similarly obtained from E x, 
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Appendix 5 : The Relative Velocity Distribution 

In this appendix we wish to calculate the relative velocity distribution 

for ion-atom pairs over which the rate constants measured in ICR experiments 

are averaged. As in Appendix 3 the ion velocity is denoted by v^, that of 

the atom by V. and the relative velocity by v.. = v. - V.. Angles (6., e.) 
—3 J J — I J — i — j 6 i ' iJ 

and (0_., £j) define the orientation of v_̂  and with respect of an arbitrary 

co-ordinate system and angles 6' and e' give the orientation of v^ with 

respect to V_. - y_„ as shown in Fig. A5.1. The relative velocity distribution 

H(y_„) is given in general form by [M. Bloom, private communication]. 

[A5.1] H ( V = 4? 
- r2n 

sin ( 3 'de de' F (V. yv. dV . , 
3 3 3 ) 

d df 
4n 

SI: 
1 

V . 

f(v.)6(v. - V. - v..) 

m. 

The ionic distribution of speeds is assumed to be Maxwellian. 

2 
_a. v. 

[A5.2] f(v.) = A. e " 1 with A. = 4 (nap and a ± = - ^ r -
i 

subject to the restrictions which are discussed in previous sections. It 

is further assumed that f(v.) is independent of (0.,e.) for any (8., e.). 
i 3 3 i i 

From Fig. [A5.1] the relation 

[A5.3] (V. + v. . ) 2 = V. 2 + v.} - v.. V. cos 6' 
- J - i ] 1 i l i l 1 

is easily obtained and substituting into Eq. [A5.1] yields 

IA5.4J 
n 
sineHei 

„ -a.(V.2+v... -2V.v..cos 0')dV. 
w 2 T? fir 1-11-., l'l 1 
V." .F (V:) e J fV. *• . • . J 

1 1 J J 3 
0 u 

2v. . a . 
i j i 

-a. (v. .2+ V.2-* 
F(V.) V. e 1 1 3 J sinh (2V.v..a.)dV. 1 1 i i l i 3 
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A5.1 The relative velocity vector 



s 
N 
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There are two types of distributions F(V\) that are of interest here. 

Case 1. If the atomic distribution function is Maxwellian, analogous to 

Eq. A5.2, then 
2 r

ai a j , -v. . ( J — ) 
TT ai ai 3/2 P 1 J a, + a-i [A5.5] H(v. 0 = 4 ( n a l a J ) ' 6 1 3 

!1 â  + aj 

This distribution function describes the relative speeds when the target 

of the ion beam f i l l s a well defined spatial region. /It has been used in 

Appendix 3 to obtain Eq. [A3.11] from [A3.10].. 

Case 2. The velocity distribution in a molecular beam is not Maxwellian. 

The probability of an atom emerging from an oriface in an oven is proportional 

to i t s velocity, and as a result the velocity distribution inside a beam is 

[Ramsey, 1969] . 
- a. V. 

[A5.6] F(V.) = A! V. e 3 J 

1 1 1 
where 

A! = 2 a.2 and a. = M./2kT.. 
1 1 1 1 1 

Now, the relative velocity distribution becomes 

[A5.7] Hfv..) = 
A A i a.v. .2 oo , .2 i A.A. - 1 11 -fr« ^' z 

1 ~1 Q •* - 1 1 e 

i j 2a. v. . 
l i i 

c.~ „ -(d.+a.)v 
V. 2 e 1 3 3:; ••:sirih(2aiVjv.jDdVj 

o 

In the crossed beam experiment reported in Sect. 19, the number density 

inside the ICR c e l l was controlled by varying the temperature of the secondary 

ion oven, thus changing the velocity distribution in the atomic beam. It is 

therefore important to understand the dependence of measured co l l i s i o n 

frequencies on a_., and since Itlhese c o l l i s i o n frequencies are averages of a 
rate constant v. . a over Hfv. .") the moments of Hfv. .") are of interest, i j ij i j 
If a cross section a is proportional to v j j 0 then the corresponding c o l l i s i o n 

frequency is proportional to n+3 
Hfv..) v.. dv... Calculation of the 1] !J !J 
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th (n + 1) moment of H(v....) is tedious and wil l not be given here. However 

i t is a simple matter to show from Eq. [A5.7] that the (n + 1) moment is 

proportional to T.^n + l j ^ 2 i f a. = a.. 
1 i l 
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GLOSSARY OF SYMBOLS 

Symbol Definition Page 

a Distance between trapping electrodes. 3 

(aQ,a^,a2>SiT)>SLA) Coefficients of quantic in Weierstrauss calculation. 22 

(a^)^ Maximum of f i e l d modulated ICR absorption derivative. 221 

A(6io), A(6B) ICR absorption signal assuming uniform electric f i e l d . 149 

A(t, 6OJ) Instantaneous power absorption. 181 

A^ (y) y dependent term in the expansion of V(y, z) 47 

A^ A convenience parameter; the normalization constant of 
th 

the velocity distribution function of the i compo

nent in the system, 240 
A Area over which ions are distributed. 203 P 
A Distance between extrema of the ICR absorption PP F 

derivative, 130 

Ar (£,,£.') Argon Atom. i . ' • * * , r s . : • jnisrv.'^ 

b Distance between d r i f t electrodes in the ICR c e l l . 3 
b. Distance between d r i f t electrodes,in the i * " * 1 c e l l 

I 

216 region. 

b Impact parameter in a two particle c o l l i s i o n . 227 

Impact parameter for orbiting collisions. 197 

b^ Impact parameter such that P „ = 0 for a l l b>b^ 

in Firsov theory of resonant charge exchange. 197 

b Field modulation amplitude. 220 m 
B Static Magnetic Field. 3 

B e ££ Magnetic f i e l d at maximum power absorption. 72 
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Definition 

E*eff in the presence of an irradiating r - f electric 

f i e l d . 

Half width at half height (in magnetic f i e l d units). 

of the low pressure ICR absorption. 

Line width of the absorption derivative. 

Radius of effusion aperature. 

See Abramowitz and Stegun [1969, pg. 587]. 

Area under the ICR absorption line. 

Strengths of the derivative of the ICR absorption. 

Atomic diameter. 

Collision diameter; sum of atomic and ionic r a d i i . 

Expansion coefficient of the electric f i e l d . 

Sum of Z 2 n e over n. m,n 
I n i t i a l kinetic energy of an ion. 

Total kinetic energy of ion species i . 

Static electric f i e l d vector. 

Static electric f i e l d in d.c. mobility experiments. 

Energy gained by an ion from resonant r - f in a time 

Energy gained by an ion from resonant r - f . in a time 

Energy gained by an ion from resonant r - f in a time 

t-t . 
o 

Total time dependent kinetic energy, 

y component of two dimensional E_. 

Z component of two dimensional E_. 

i n i t i a l kinetic energy in the Z d 1 rc - i . Liji 
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Symbol Definition Page 

<Ey> Amplitude (Z m) averaged (y, z). 75 

<Ê > Amplitude (Z m) averaged electric f i e l d gradient. 72 

Kinetic energy associated with the cyclotron motion. 81 

E Kinetic energy associated with the trapping oscillation. 81 

E' An energy such that E(), , <_ E-'. 89 

Ej_ Average of E x at time t. 239 

<EJL>t Time average of E x. 239 

E Q Average electron energy. 104 

^1* ^rf' 1' e l e c t r i c f i e l d amplitude. 57 

f Fraction of monoenergic ions collected by the trap. 125 

f Fraction of ions that have moved for time t without o 
co l l i s i o n . 181 

f(s) A quartic polynominal in s. 22 

<f> f averaged over a l l i n i t i a l ionic energies. 126 

f ̂  (y), f2Cy) Parts of A^ (y); convenience functions. 72 

f (v^) Distribution of velocities v^ of ion species i . 226 

F (y\) Distribution of velocities V_. of neutral species j . 226 

F CV) Fraction of ions with potential V collected by the traps. 124 

C S J S ' ) Part of the ICR absorption, used for convenience only. 189 

g Reduced relative velocity (dimensionless). 232 

g (E) Maxwell-Boltzmann distribution of ionic energies. 125 

g (V) Distribution of ionic potentials in the trapping well. 87 

g^, g^ Invarients of the quartic f ( s ) . 23 

g1(y) > g 2(y) Convenience function; g i(y) = C'2^)" 1 fV(y). 72 
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Symbol Definition Page 

G (6u), G (6B) Unnormalized line shape function. 57 

H (v. .) i l Distribution of relative velocities. 240 

i A subscript only. 72 

I Ionisation potential 134 

I 
a 

Atomic flux through area A . 203 

I 
e 

Ionising electron current. 104 

V : i Bessel functions with imaginary argument. 83 

ICR ensemble averaged power absorption. 60 

i m Atomic flux as a function of angle. 202 

j A subscript only. 226 

j Angular momentum in relative coordinate system. 234 

n v 1 

th 
n order Bessel function with real argument. 49 

k A subscript only. 47 

.̂k, k', 
k l k2 

k " ) 
k3 V 

Rate constants. 179 

K Symbol for potassium atom. 150 

K CO) D.C. d r i f t mobility at zero f i e l d . 149 

K' Reduced zero f i e l d d.c. d r i f t mobility. 170 

I C Length of analyser region. 46 

L Distance from the source of atomic beam. 203 

L', L" Distances to the ends of the analyser from the atom 

source. 203 

L 
o 

Length of the effusion tube. 202 

m A subscript. 8 

Cm, i r u ) ."Ionic masses. 1 

Electronic mass. 
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Symbol Definition Page 

(M, M . , m.) Neutral masses. 147 J 1 
Mj. (p) Whittaker function. 238 \i,v 

n A subscript. 8 

fn, n., n. , n , , .̂  147 j A Neutral number density. 
V n39 5 

n Number of ions in the analyser. 148 o J 

(h +)^ Number density of ion species i . 226 

n^ Number density inside the primary oven. 192 

n^ Number density inside the secondary oven. 184 

n + Positive ions emitted by surface ioniser. 134 

n Atoms emitted by surface ioniser. 134 
a J 

(N, N., ND) Ion current. 60 A ri 
Na Sodium atom. 152 

p̂  Ion momentum. 10 

p Neutral gas pressure. 164 

P (y-> General spatial distribution of ions. 56 

P 0 (y, Z m) A special case of p (y, Z m) 60 

P̂ _. Probability of charge transfer between ion i and 

neutral j . 230 

P (Ey) Distribution function of E^. 81 

P() CE,),) Distribution function of E„ 81 

P,i(E'P)l) Special case of P|( (E,),) 89 

P ± (E^) Distribution function of in the limit of zero 

pressures. 81 

P±(Ex,i ^,t) Pj_(E^) generalized to include the effect of non-

reactive collisions. 159 



Symbol Definition Page 

q Ionic charge, equal in magnitude to the electronic 

charge in this thesis. 1 

^1' ^2' ̂  Intensity of ICR signals with andv.withputJirradating 

oscillator. 207 

r Ion-atom separation. 170 

r a Distance of closest approach of reduced mass to 

scattering centre in a bi-particle c o l l i s i o n . 237 

r Value of r at the minimum of the ion-atom interaction m 
potential.. 171 

R Cyclotron radius. 26 o ' 
Rfn ) Contribution to the area of the ICR resonance of the v s' 

secondary oven. 199 

s The argument of fCs) the quartic polynominal. 22 

s Separation between two ce l l regions. 65 

S^, ICR absorption with and without irradition by the 

secondary oscillator. 207 

t Time. 24 

t Time of a momentum randomizing c o l l i s i o n . 148 o to 

t Sum of <ym> CJ (m+1) over m; used for convenience, n 3 m+l,n ^ J ' 
T^, T.. Temperature of ion component i and neutral component j . 240 

Tg Neutral gas temperature. 160 

T s Temperature of an ionising surface. 134 

T x Temperature associated with the two dimensional 

cyclotron motion. 81 

T|( Temperature associated with the one dimensional 

trapping motion, 81 

O 'jjt+<J0 Argument of cn. term in yh-). 
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Symbol Definition Page 

V p Ion d r i f t speed in the x direction. 34 

y_^j Relative velocity of ion i and neutral j . 229 

v Average velocity of an atom in a gas. 202 

v. Velocity of ion i before co l l i s i o n , 229 
— I 1 

(y_^)c Velocity of ion i after a c o l l i s i o n resulting in 

charge exchange. 230 

y_̂  Velocity of ion i after an elastic c o l l i s i o n . 229 

V Q Relative velocity in a system of one neutral and 

one ionic component. 147 
< v z

> Average velocity in the direction of the electric 

f i e l d in the d.c. mobility experiment. 233 

V [y, z), V Two dimension potential at (y, z) inside the ICR c e l l . 8 

V. Velocity of neutral i before c o l l i s i o n . 229 
-1 
V! Velocity of neutral j after c o l l i s i o n . 229 
-1 

V Q Trapping well depth. 124 

V^ Positive d r i f t potential. 1 

V 2 Negative d r i f t potential. 1 

V^ Trapping potential. 1 

V^-j. Bias potential on the surface ioniser. 140 

V d (V rV 2)/2 8 

V t V T-(V 1 +V 2)/2 8 
V Potential at the centre of the c e l l . 9 c 
<V> Amplitude (z ) averaged potential. 69 

V (V,+V9)/2 average potential of the d r i f t plates. 69 

V(r) Ion-atom interaction potential. 170 
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Symbol Definition Page 

w An arbitrary parameter. 22 

W Width of the electron beam. 104 

(x, y, z) Spatial coordinates inside the ICR c e l l . 2 

x::,(t) ,y(t) ,z (t) Spatial coordinates of an ion as a function of time. 31 

(X ,y ,z ) In i t i a l coordinates, 19 o J o o ^ 
(X, y, z) Components of velocity of an ion in the ICR c e l l . 10 

(Xyiy^7ZQ)'t; I n i t i a l velocities 19 

(X, y, z) Components of acceleration of an ion. 10 

y Amplitude of y(t). 47 
cl 

Y q I n i t i a l amplitude of y(t). 25 

y Average of y position of the ion ensemble. 102 

Z m Amplitude of oscillation in the trap. 49 

a Zero of the quartic f(y). 31 

a Atomic Polarizability 170 

Inverse temperature parameter in distribution of 
velocities. 240 

Integral over Bessel function, may be expressed in 

terms of Strauve functions. 69 
-4 -6 

Y Ratio of r fto' r term in V(r). 171 

Y Angle between r-f electric f i e l d and i n i t i a l velocity. 82 

Y (n> t) Incomplete Gamma function. 239 

r(n) Gamma function. 238 

<5o) Distance along the frequency axis from the maximum of an 

an absorption line. 57 

^Cy^y') Dirac delta function. 60 

A Discriminant of the quartic f ( s ) . 25 
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Symbol Definition Page 

A Space charge depression 104 

ABj Shift of an ion's cyclotron frequency (expressed 

at a magnetic field) due to the electric f i e l d 

gradients. 27 

Aco Spread in quasi cyclotron frequency resulting from 

the modulation of co by the trapping oscillation. 42 

e Deviation of y Q from a the zero of r (y). 31 

(e,e'-,e^) Azimuthal angles. 241 

e(w^;y, Z ) Power absorbed by an ion at y with trapping 

amplitude Z . 56 m 
e (y, z ) Energy absorbed at resonance by an ion at y with res w ' m b J 3 3 

trapping amplitude Z . 56 

Energy associated with T^. 81 

e Energy associated with T,( 81 
+ 

zx Limits on due to y. 82 

E, Collision frequency associated with the 

momentum transfer cross section. 147 

£", £ ' Collision frequencies for charge transfer. 180 

K Charge to mass ratio, q/m. 19 

p. '• •> ..'-tjPhase angle of y(t). 24 

^•rienuin " Orientation of r_ with respect to v^. 237 

$ The value of <J> at the position of closest approach 

of p to the scattering centre in a bi-particle 

c o l l i s i o n . .237 

$(y,v,z) Degenerate Hyp.engeometr.ic..Function. 238 
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Symbol Definition Page 

y „ Reduced mass of particles i and j . 198 

y Reduced mass in an elastic c o l l i s i o n . 170 

y ( = cos y ) used for convenience only. 82 

( y , y ' , y " ) Moduli of Jacobi E l l i p t i c function used in 

•i Weierstrauss calculation. 25 

ti q 2 E2/8 m. 159 

f!P Weierstrauss E l l i p t i c function. 23 

(p., p') Reduced trapping amplitude and z coordinate 

respectively. 216 

Momentum transfer cross section. 147 

a c Charge exchange cross section. 196 

a An arbitrary cross section. 147 

?2 A parameter used for convenience of notation in 

the expansion of w(y,z). 49 

n Solid angle, 240 

0 Angle between the i n i t i a l velocity of an ion and the 

z axis. 123 

6 c Cut off angle for 6 such that a l l particles with 

6 >_ 6 ^ are trapped in the c e l l , 124 

6 Angle through which the relative velocity vector 

is rotated in velocity space by an elastic c o l l i s i o n . 229 

( 8 ^ , 6 ' ) Angles specifying orientation of and y_„ respectively. 242 

0 Angle of a particle in a beam with respect to the 

axis of the effusion o r i f i c e , 203 

Oj Half angle subtended by A^ a distance c from the 

effusion source, 203 
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Symbol Definition Page 

T Mean d r i f t time of the ions through the analyser. 149 

T ' Mean d r i f t time of the ions from the ioniser to 

the analyser. 192 

T . Mean time between collisions. 148 c 

w(y, z) Instantaneous quasi cyclotron frequency of an ion. 26 
wo ^' ^mJ Quasi-cyclotron frequency of an ion at y with 

trapping oscillation amplitude Z . 50 

cj c Cyclotron frequency of an ion in a uniform electric 

and magnetic f i e l d . 1 

Detector oscillator frequency. 57 

u>2 Secondary oscillator frequency. 208 

co-j. Trapping oscillation frequency. 20 

u n Frequency of modulation. 220 

0̂ 2 Half period of the Weierstrauss E l l i p t i c function. 24 

oil ICR line width (in frequency units) at half 
" 2 

maximum in the collisionless regime of pressure. 46 

•x. ! v i ' - " n c ; r 0 -.: ' ICR '-i.b-Ol'pt 


