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Abstract

An analysis of the most commonly used type of Ion Cyclotron Resonance (ICR)
spectrometer is given. Though the equations of motion of an isolated ion
in the ICR geometry are extremely non-linear, it was found possible to
decouple the longtitudinal oscillations due to the trapping potential from
the cyclotron motion by exploiting the fact that the cyclotron frequency is
very much greater than the trapping frequency. A previously unsuspected
dependence of the cyclotron frequency and drift velocity of an ion on its
spatial coordinates was discovered and experimentally investigated. The
distribution of energies for ions at resonance with an applied r-f electric
field is also discussed and improved techniques for the study of energy
dependent cross-sections are proposed. Conventional ICR techniques were used
to estimate collision frequencies of sodium and potassium ions in helium and
argon gases. These experiments yield information about the d.c. drift
mobility, in the zero field limit, of the alkali ions in inert gases and are
discussed in terms of various models of the ion-atom interaction potential.
A crossed beam arrangement was used to obtain preliminary estimates of low
energy rate constants for both asymmetric and symmetric resonant charge

transfer between alkali ion-atom pairs,
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PREFACE

Portions of this thesis are identical in content to manuscripts which
have been accepted for publication in the Canadian Journal of Physics. These
papers are entitled:

'Analysis of Ion Cyclotron Resonance': by T.E. Knott and M. Riggin.

'"Theory of Ion Cyclotron Resonance': by M, Bloom and M. Riggin.

'Dependence of ICR on Electrostatic Potentials': by M, Riggin and

I.B. Woods

Two sections (17 and 18) of the thesis have been submitted for publication

under the title:
'"ICR Collision Erequencies of Alkali Ions in Rare Gases': by M. Riggin.

The MKS system is used throughout this thesis except for quantities
that are traditionally expressed in different units. Traditional symbols
are used for most quantities, and this leads to some duplication. To avoid

confusion a glossary of symbols is included at the end of the thesis.
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1. Introduction

Ion Cyclotron Resonance spectroscopy (ICR) is a well established
technique for the study of ion-neutral collisions [Wobscall et al., 1963]
and other gas phase phenomena which require the retention of charged
particles in a well defined region for relatively long periods of time.
Briefly, the principle of ICR may be explained as follows. Ions, of mass m
and charge q, orbit near a frequency w, = q/m B about a static magnetic field
B. When an oscillating electric field with frequency near W, is applied in
the plane of the cyclotron oscillation the ions absorb energy from the
electric field. This resonant absorption of energy may be detected directly
using techniques similar to those used in Nuclear Magnetic Resonance
[Abragam, 1960].
A typical ICR apparatus [Baldeschwieler, 1968; Beauchamp, 1967] is shown
~in Fig. 1, together with the coordinate system (Insert Fig. 1) which we
will adopt for this thesis. Tons, normally produced by electron bombardment
of an ambient gas, are extracted from the region in which they are produced
(the source region) by perpendicular electric and magnetic fields. The
magnetic field is applied in the -z direction and an electric field, in the
-y direction, results from potentials Vl and V2 applied to the upper and
lower plates of the cell (Fig. 1) respectively. Since the ions' motion is
unconstrained in the direction of the magnetic field, they must be trapped

between two suitably biased electrodes (a positive bias V,_ to trap positive

T

ions, negative V. for negative ions) oriented in the x-y plane. After

T
production in the source region the ions drift in the x-direction under the

combined influence of the static and magnetic fields into the analyser or

resonance region where they are detected via a change in level of oscillation



Fig. 1: A schematic diagram of the ICR spectrometer. The insert in the

right hand corner shows the co-ordinate system and the dimensions

used in the text.
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of an oscillator used to generate the electric field with which the ions
are brought to resonance [Robinson, 1959]. Hence there are three motions
of the ions, a rapid cyclotron oscillation in the x-y plane, a net drift with
speed|(§g§ﬂ/B2 in the x direction and periodic oscillation in the potential
well formed by the traps.

The ICR device then is a type of radio-frequency mass spectrometer
of fairly good mass resolution at low pressures and sufficient sensitivity
to detect 1 to 10 ions per cubic centimeter [Beauchamp, 1970]. When
operated in a ''trapping" mode, by placing electrodes at the ends of the drift
regions of the cell [McIver, 1970], ions may be retained in the cell for
several seconds. This feature, combined with the good sensitivity of ICR,
allows measurements of cross sections for photodissociation of positive
molecular ions [Dunbar, 1971], as well as for photodetachment of electrons
from negative ions [Smyth and Brauman, 1972]. Of course, the ICR
spectrometer may be used for more conventional types of mass spectrometry
such as the determination of relative abundances of ionic species from
electron ionisation of gases and relative yields of products from ion-
molecule reactions. These attractive features of this device are enhanced
by its ability to selectively accelerate different ionic species to
greater than thermal energies. Thus it is possible to do double resonance
experiments by monitoring the change in the ICR signal of one ion, say C+,
which results from excitation to non-equilibrium velocities of a different
ion A+. This type of experiment can be used, in principle, to measure

the rate constants, k of reactions,"

K
[1.1] at+s =2 e



as a function of energy since the average energy of A* can be calculated

in terms of the strength of the electric field applied at resonance with

the cyclotron frequency of Af and the time duration for which this field

is applied. 1In a given gaseous system a particular ion C+ may have several
different precursor ions such as A+ so that moﬁitoring the ICR signal
strength of C+ and sweeping a probing oscillator over a wide range of
frequencies will reveal all of the parent ions of C+ through a change in its
population., This type of experiment may reveal the reaction channels in
very complex ion-molecule systems.

The ICR method is potentially useful at ion energies sufficiently low
(Stens of ev) that the ions are contained in a cell of reasonable size
(several cm.) at standard laboratory magnetic fields. The ICR apparatus is
cheaper, more compact and easier to operate than other standard techniques
such as merged beams, etc. used in this energy range. However, these
advantages are offset by the fact that there are several general aspects of
the operation of ICR devices that have not been fully investigated. For
example, instrumental artifacts have hampered kinetic studies of ion molecules
and charge transfer reactions at the low energies accessible to ICR. Loss of
ions from the cell [Goode et al., 1970], ill-defined drift velocities
[Smith and Futrell, 1973} and inhomogeneous electric fields [Huntress et al.,
1971] are a few of the problems encountered. To overcome these problems,
transient ICR experiments [Dunbar, 1971; Huntress, 1971], pulsed
techniques for drift time measurement, [Smith and Futrell, 1973] and different
ICR geometries [Clow and Futrell, 1971] have been developed. It seems to
this author that these experimental attempts at improvement of the ICR device
can benefit from a detailed analysis of the ion motion in the ICR field

configuration.



In this thesis we wish to discuss as explicitly as possible the
complicated features of the ICR experiment and to present an approximate
analysis of some of the important properties of the ICR spectrometer. The
analysis is based heavily on a well defined treatment of the non-linear
equations of motion of an ion which are éolved using an expansion of the
cell potential to the fourth order in the y coordinate. Previous treatments
of the equations of motion have included terms to yz, at most, in which
case the equations are linear and the cyclotron and trapping motions are
rigorously decoupled. This is untrue when y4 terms are considered. However,
we will establish a procedure for obtaining approximate decoupled equations
of motion which, though non-linear, may be solved in terms of Weierstrass
elliptic functions. From this analysis it is found that both the frequency
at which ﬁhe ions orbit the magnetic field and the drift velocity are
dependent on the ions' spatial coordinates. Using the analysis outlined in
Sections 2 to 6 of this thesis we construct, in Sections 7 to 10, an
ensemble appropriate to the mechanism of ion production and to the potential
configuration of the ICR cell. Various predictions of our model of the
ionic motions are experimentally investigated in Sections 12 to 16.

In non-resonant techniques of studying ion-neutral reactions energy
selection is obtained by allowing the ions to pass across a well defined
potential difference, in which case the final energy distribution is
independent of the initial state. In Section 11 we find from an explicit
energy distribution that this is not true when ions are prepared by
cyclotron heating in the ICR geometry.

Various experimental techniques for improving the energy resolution are

proposed in this thesis, but are in a preliminary stage of development.



Nevertheless we are able to report preliminary estimates of charge transfer
rate constants for near thermal collisions of potassium and sodium ions
with potassium atoms. Collision frequencies of potassium and sodium ions

with helium and argon gases are also reported.



2. Potentials and Fields in the ICR Cell, and Equations of Motion °

for an Isolated Ion.

Ordinary methods of solving Laplace's equation in rectangular
coordinates (Churchill, 1941, p. 114) give the two-dimensional potential

inside the ICR cell shown in Fig. 1:

2 e (_)k cosh{ (2k+1) (my/a) ]
[2.1] V@r,2) =V, - = B ————-'{[zv& SCAAY
m k=o 2k+1 cosh[(2k+1) (wb/2a) ]
. -sinh[ (2k+1) (wy/a)] .
—(Vl—Vz) }- cos[(2k+1) (wz/a)]
sinh[(2k+1) (vb/2a)] '
The electric field is easily obtained from E = - VV.

A power series expansion is the most useful form for Ef(O,Ey,E")

in the equations of motion. Written in this way, Ey(y,z) is

. o= m 2n
[2.2] Ey(y,z) = i - ®n,n Y
where
n+1
e _(meven) = 4 ) (Vd/a) i (—)k[(2k+1)(“/a)]m+2n
m,n m! (2n)! sinh[(2k+1) (mb/2a)]
[2.3]

n+l ’
GOy R ke (/) ™R

° m! (2n)!

em,n(m odd) = 4

o

cosh[ (2k+1) (mb/2a)]

We have written Vt = VT - (V1+V2)/2 and Vd = (Vl-Vz)/Z for the two



-9 <
combinations of the applied potentials that appear in eq. [2.1].

Using V-E = 0 it is simple to show that

(m+1) m 2n+l

[24] Ez(}',z) = -1 0 _(211—4—1) em+l,n

m,n=
A useful recursion relation for the coefficients follows from VxE = 0

(or directly from eqs. [2.3]):

2n(2n—1).

[2.5] ®m+2,n-1 © 7 (m+2) (m+1) ®m,n"
 With this, we can express all the e in terms of e

m,n m,o’

Finally, the potential can be written as a power series using the

coefficients e
m,n

m+l 2n
y Z

(2.6] V0.2 = Ve- T (Gp e

n.n=0 m,n
where Vé is the potential at the centre of the cell

' _)k .
=O[(2k+l) cosh [(2k+1)(nb/2a)]']

[2.7] Vo= V- @/m v i

It is interesting to compare the electric field calculated from the
first few terms of eqs. [2.2] and [2.4] with that given by Beauchamp and

Armstrong (1968) for the cell geometry in Fig. 1. They would say that

2
E= - (2v,/b) + a
= - (@Vg/b) +ay_(v/a")
[2.8] .
2
EZ = -4 VT (z/a™)
This form is not really correct for a rectangular cell, but is more

acceptable than the choice of McMahon and Beauchamp (1971), which does

not satisfy Maxwell's equations. The results of both calculations are
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shown in Figs. 2, 3 and 4 for three cases of interest. The cell dimensions
are a = 0.025 m, b = 0.014 m, and the applied potentials Vt = 0.5 volts,

Vd = 0.5 volts, which are typical operating values in our experiments.

(We will use these values in all numerical illustrations in this thesis.)
Eqs. [2.8] do not give even the right qualitative z-dependence of Ey’

which we will see is quite important in understanding the resonance
condition in ICR cells. The.difference between the correct Ey(y,O)

and EZ(O,z), and eqs. [2.8] is also significant.

Values.of this first six em,0 are éhowh in Table 1, for a variety of
cell geometries, The first line gives the leading term in Ey from egs.
[2.8] for comparison--as one expects,it agrees well with the more
complete calculation of eo,o for flat cells tb/a << 1).

Now that we have complete and useful expressions for the electric

‘field inside an ICR cell, we can turn to the equations‘of motion for an

isolated ion of mass m and charge q:
[2.9] p=q(E+yvxB)

B is a homogeneous magnetic field pointing in the negative z-direction, so

that this becomes

e
1]

[2.10] -0 Y
[2.11] y = 0 X+ KEy(y,z)
[2.12] z = kE, (v,2)
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Fig:hz; Ey(y,O) - Ey(0,0) calculated from the first three terms in the
power series for Ey(solid curve). For this and all other illustrative
calculations, we take a = 0.025 m, b = 0.014 m and Vt = Vd = 0.5 volt.
The dashed curve is the field used by Beauchamp and Armstrong
(1968). The solid curve agrees well with fields calculated from

eq. [2.1] to twenty-five terms over the region of the cell shown

in the diagram,
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‘ Fig. 3: Ey(O,z) - Ey(0,0) calculated and compared as in Fig. 2.
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- Fig. 4: EZ(O,Z), calculated and compared as in Fig. 2.
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Table 1:
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Values of the coefficients e 5 in the power series expansion

of Ey(y,z) for a variety of cell geometries, expressed in
dimensionleés form, (emoam/V). The illustrative calculations
in this paper are based on b/a = 0.56. The recursion relation,
eq. f2.5] can be used to generate other low-order em,n' For

comparison, we include '"parallel-plate capacitor' values for

2a/(de) in the first line of the table.



TABLE 1

b/a = 0.1 0.25 0.56 1 2
2a/(bV,) ~20.0 ~8.0 ~3.57 ~2.0 ~1.0
(egy/Vy)a ~20.0 ~8.00 -3.52 -1.67 ~0.35
(eyo/V,)a" +4.88x10™ +0.75 +4.78 +4.38 +1.08

3 -3
(e,g/V)a ~2.36x10 ~0.035 ~3.24 -5.74 ~1.68
(eqy/V,)a" ~0.049 ~19.8 ~22.87 0 +1.69
| (e[’o/vd)a5 -0.650 +1.85 +32.55 +9.86 -1.197
(e_./V)a +15.55 +155.9 +5.915 ~20.69 -0.489
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where we have abbreviated

w_=q B/m

[2.13]
. q/m

I
1]

for convenience. Egs. [2.10] and [2.11] are combined by integration to

give
[2.14] y +o " y-= wc(Xo *uoy )t Ey(y,i)

The ion is initially at (Xo,yo,zo) where it has velocity (£o’;o’;o)'
These equations describe three types of superimposed motion, which
are coupled by the complicated y and z dependence of E:
1) A drift in the positive x-direction due to B and
the non-zero average value of Ey'
2) Oscillation in the z-direction described by eq. [2.12]
(trap oscillation)
3) Quasi-cyclotron motion about the drifting centre in
the x-y plane. (described by eqs. [2.14] and [2.10]).
The last of these is especially interesting because the frequency of this
motion is detected in ICR experiments. The drift motion is also important,
as it is involved in line-width computation, and in most:rate constant
measurements. The next job is to investigate the coupling of the;e motions,
and simplify' the equations so that we can solve them in closed (but

approximate) form.
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3. General Method of Solving the Equations of Motion and Finding the

Quasi-cyclotron Frequency.

The really troublesome feature of the equations of motion.for y
and z (eqs. [2.14], [2.12]) is their coupling through E_(y,zj. If we
keep only the leading term in EZ, however, the trap oscillation is |
harmonic, with frequency¢¢rg (Kelo)%’ while the frequency of the
quasi-cyclotron oscillation is approximately W, An ion with a mass of
40 amu has w, 10° sec—l, while w_ " 2 x 10° sec_l, so that w, << w_.
This means that the ion does not move very much in the trap (z-direction)
while it goes through a complete period of its quasi-cyclotron motion in
a plane perpendicular to B. The electric field in which this high
frequency motion takes place can therefore be parameterised by z, the
trap coordinate, while the trapping field can be averaged (at each value
of z) over the rapidly varying y-coordinate of fhe ion.

So, we can effectively uncouple the equations of motion given in

the last section. Eq. [2.14] becomes, with the help of eq. [2.2] for

Ey(y,Z),

- . 2 . 0 m
[3.1] ¥.+ w7y = mc(xo + mcyo) +K I (m+1) ey

m=0

where

[3.2] e

|
N
=)
+ | =
[y
Ly
t~
o
N
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The trap motion is described by

3.3 z+2¢ ¥ (n+l) tn22n+1 =0

n=0

- l _ 1 © m
[3.4] tn (Z2n+1) (2n+2) i=0 (m+1) em+1','n MR

The average,< ym >, has to be calculated at each value of the trap
coordinate, so that the tn are functions of z.
Let us begin by solving eq. [3.1] for y(t). This is still an
unpleésant-looking equation, since it contains terms which are not
linear in the dependent variable. The anharmonic terms cannot be ignored,
in general, because they may produce an amplitude and initial-position
dependent frequency shift. Fortunately there is a general-- although
little-known-- theory for the solution of equations with at most a cubic
term in y. -
Thg first step in finding the solution to eq. [3.1] is integration
by the substitution y = y (dy/dy) to get

22 o 2.2 2
[3.5] ¥y =y, + 2, (x +wy )& -y ) o G -y)

m+1 m+l
(y

-y, )

m o}

Truncation of the series atm =1 éives just the harmonic approximation
used by Beauchamp and Armstrong (1968), although the form of the fields

(and so the values of the coefficients) are different in their work.



- 22 -

It is possible to keep terms up to and inclqding m= 3 if we are
williﬁg to have the solutions in terms of functions which are more complicated-
looking and less familiar than the trigonometric. functions used to solve
the harmonic approximation. These are known as Weierstrass elliptic
functions. Generally speaking, an elliptic function is any function
of a single compléx variable that is doubly periodic in that variable.

It must be single-valued and analytic in the finite plane, except at
poles (which are its only singularities). Just as a function for
which f(w + 2nQ) = £f(w) (n an integer) is called singly periodic with
half-period Q, a doubly periodic function is one for which the relation
f(w + 2nQ + 2mQ') = f(w) holds for integer n and m. The double
periodicity means that it is enough to know its behaviour inside a
parallelogram in the complex plane. If this region has only a double
.polg at the origin, the elliptic function is called a Weierstrass elliptic
function. Whittakgr and Watson_(1927) have an excellent discussion of
elliptic functions (ch. XX), while Southard (1968) gives an extensive
éummary of their properties.

_ The solution of eq. [3.5] truncated at m = 3, as discussed by
Whittaker and Watson (1927, p. 452f), is outlined below. Let (ds/dw)2=f(s)

where f(s) is a quartic having no repeated factors;

. _ 4 3 2
[3.6] f(s) = as + 4als + 6a25 + 4a35 *a,.

Then for f(a) = 0,



3.7 w= g% dg[e))

‘may be inverted to express s as a function of w

[3.8] 1

s=a+p £@O[P0G 85y08g) - 2y £

F(w; g,,g) is the Weierstrass elliptic function formed from the invariants
£5582 P

of the quartic(eq. [3.6]):

: ' 2
[3.9] g, o3y - 4a.a

I
)
+
»
)

[3.10] g+ + a,a.a, - a 2 2

1%2%3 T %% - %pd5 - 3 a,.

"
)
o
+
N
()
o
[

The discriminant of the quartic
x 3 2
[9.11] A= g, - 27g3

turns out to be a useful guide to approximations for the solution and its
real half-period, Wy

The direct integration of eq. [3.5] gives

L]

[3.12] t =/ ds[f(s)] ?
yO

where f(s) is given by eq. [3.6] with
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ao,= 2|<e3
a; = Ke2/2
[3.13] a, = (~w 2 + 2xke_ }/6= -w 2/6
2 c 1 e
ag = [KeO + wc(io +U)Cyo)]/2
a4 902 B wczyo -2 [wcioyo TK §=Oemyom+%]

We notice that f(yo) = yoz (# 0 in general), so that eq. [3.12] must

be rewritten

1 1
-4 -4

[3.14] t = afy ds[£(s)] 2 - afyo ds[f(s)]

with f(a) = 0. The second integral is a constant which we call o/w,
as it is related to the phase shift in the harmonic approximation.

Eq. [3.8] is the solution to the uncoupled, anharmonic approximation
if we make the identification w = t + ¢/w and use the invariants (g2 and
gs) formed with ;he coeffiéients from eqs. [3.13]. The real half—périod
(mz) of the Weierstrass elliptic function is related to the angular

frequency (w) of the quasi-cyclotron motion by

[3.15] w = n/wz.

In Southard (1969, p. 649) the invariants are expres$ed in terms of the

real half-period and a complete elliptic integral of the first kind
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(we use u for its modulus). If A <0 and u << 1, we find that

3 1 = 4
2

1 1w .6 63
(3171 g5 =975 G @y w)
and

_ 1 m 12
[3.18] A= - Ig-(w ) u

2
To find Wy s which is the first goal, we have to express 8y 8z

and A in terms of the coefficients of the quartic function. Using

eqs. [3.9], [3.10] and [3.13], we have

| o1 A ' 2 2
- [3.19] g, = 17 Y -{1 -4 x [e1 + 3e2Yo + 6e3(Y0 - R0 )l}

| 1 6 K 2 2
[3.20] g2 = 57 Y '{1 -6 ;—7 [e1 + 3e2Yo + 6e3(Y0 + 2Ro )l}
c
and
1 2
= — Ke
[3.21] A =g% ke, R /w)" w ",
where

[3.22] Y = Yo * (;o/wc)

and
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2 2.k
[3.23] Ry = 7 +y.5) 2/mc

RO is the cyclotron radius of an ion in the magnetic field alone, where

its frequency would be w.- We already know that w v (ﬂ/wc), so when

2

the energy of the ion is expressed in electron volts and all other

quantities in MKS units

[3.24] = ~(4/3) (eg/c’8") + (K.E.)

For typical ions (mass = 40 amu, K.E. = (1/40) eV) ih our ICR cell

.

(with B = 0.78 tesla) we find that A < 0, because €y < 0. u is small
enough (v 2 x 10_7) that we can ignore it in the relations between the
invafiants and the real half period. Thus, from either eq. [3.19]_or'
eq. [3.20], the frequency of the quasi-cyclotron motion is
[3.25] w = [1 - (x/w 2)(e + 3e,Y + 6e Y 2)]
c c 1 20 30

The fractional error in the frequency shift, Aw = & - W, due to ignoring
the term of order u is less than 0.1% for the typical case considered
above.

If A > 0, which it will.be for cells with a < b, a similar

parameterisation in p' = 4u2 leads to the same expression for the

quasi-cyclotron frequency.
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The frequency of the applied rf field in the analyser section of
an ICR cell is usually fixed, for technical reasons, and the magnetic
field varied instead. A lower resonance frequency at fixed field means
a higher field at fixed frequency. Hence,

[3.26] 4B = (1/w ) (e, + 3e,Y_ + 6e3Y02)

is the change in resonancé_field for a given io’ Yo and z. Averaged
over all (equally probable)valpes of io’ AB depends explicitly on the
initial ion position (yo) and implicitly on the trap coordinate (z)
through eq. [3.2].

This result is quite different from the harmonic calcuiation, which
gives AB independent of Yo and z. Ions are produced over an extended
region of the ICR cell, usually along y f 0 for (-a/2) < z < (a/2), and
move toward the negative drift plate as they leave the negative space-
charge region of the electron beam. In Fig. 5, we show contours of
AB for isolated ions near thg.centre of the cell. It is obvious that
there are large effects due to variatidn.of Yo (for the analyser region)
and 2z (the trap oscillation). The consequences of these are

discussed in following sections.

The expression for AB is accurate as long as the last term in

eq. [3.26] is small compared to the first, which means that

1
'
[3.27] Yo << (e10/3e30)

In our case, we are restricted to Yo << 0.01 m, approximately.
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- Fig. 5: Contours of AB = constant (units are 10_4 Tesla) in the (yo,z)
plane. The bold lines are given by the theory of section 3
(field expansion to 3rd order y = 0); the rest is from the
theory of section 6, using terms up to k = 25 in eq. [2.1].
The cell parameters are the same as for Fig. 2; the ion mass

is 40 amu, and B = 0.780 Tesla (mc = 1.867 x 106/sec.).
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By using elliptic functions, we have solved the simplified equations
of mofion for the quasi-cyclotron frequency. This is possible because
the y and z motions in an ICR cell have very different frequencies,
which means that the more rapid component of motion in the complicated
electric field can be considered as taking place at a constant value of
the more slowly varying coordinate. As long as this is true, and the
potential is well represented by a Quartic in y, we have a trustworthy
expression for the quasi-cyclotron frequency. In the next section,

-we tackle the problem of finding simple expressions for x(t) and y(t).
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4, Simple Expressions for x(t), y(t) and the Drift Velocity.

We wish to find useful expressions for the quasi-cyclotron and.drift
motions of an ion in the ICR cell, for two reasons. The drift velocity
is an important ingredient in line-width calculations, and a knowledge
of.the quasi-cyclotron motion figures into the averaging procedures used
in the interpretation of resonance experiments. In the last section we
saw that Weierstrass elliptic functions can be used to solve simplified
equations of motion for the y-coordinate - but éq. [3.8] is not very useful
for practical calculations.

Given the conditioﬁs under which we have solved for the quasi-cyclotron
frequency, however, the motion in the x-y plaﬁe can be expressed in terms
of trigonometric functions. The first step is to find the root of f(?)= 0

-(given by eqs. [3.6] and’ [3.13])near y = Yo We find that

' "2 2 2 2 9
[4.1]  £0) =y "+ 20 Y (y-y,) -u "0y )

2 2
*2cfe (y-y)) +e;(v"-y )

3 3 4 4
*e, Y-y ) +egly -y )l

The root at a y - 1s computed by setting the first three terms in

(o]

the Taylor series expansion of f about equal to zero: f(y -e) = 0.
P yo ! 0

Thus a bit of algebra yields

°

[4.2] a=y - [£'0G) - 1@ £04)
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with
(4.3) £ = (o0 260 F0I7
Neglecting terms of order (Aw/wc) << 1, we find that

[4.4] f'(yo) = 2wc[>'c0 + Key(yo)/wc]

[4.5] f'(a) = 2wc' {[z'cO + l<ey(>'o)/wc]2 + 5’02}%
and
[4.6] £'(a) = - 20°

where we use the abbreviation
[4.7] e (y) =e_ + 2e y_ + 3e y2 + de y3
y-o 0 170 270 30

for the y-component of the electric field calculated to third order in
Yo » the ion's initial position.
Now, using the relation between Weierstrass functions and Jacobi

elliptic functions given by Southard (1968, p. 649), we find that

_ 2 +3 1 + cn(wwiu)
[4.8] @(W) (w™/6)[1 5 1—_?1,@;}?)]

Terms of order p can be ignored in w, where we already know that they have
small effect. Substituting from eqs [4.6] and [4.8] into the general °

solution, with'w = t + ¢/w gives us

[4.9] ¥ ) =+ (/26D [ - cnu]i)]
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An approximate expression for cn(u]u), valid for small yp, is

U
[4.10] cn(u|u) = cos u + + (u - sin u cos u) sin u.

4
The fractional error due to neglecting the term proportional to u in
[T - cn(u]u)] is of order p. We already have said that p << 1 is required

for our approximations, so the very simple result is that
o
[4.11] en(ulp) ¥ cos u.

Using eqs. [4.2] and [4.3] for o and f'(a) in eq. [4.9], the final

result is

[4.12]  y(®) =y, + 212 [£'(v,) - £'(0) cos (ut + ¢)].
w

The phase angle ¢ is chosen so that y(o) = Yoi COS ¢ = fv(yo)/f'(a),
Now it is simple to get x(t) by integrating eq. [2.10],

2

W, . W, ey(yo)
[4.13] x(t) = X, +.{(1 - ?) X, - wz * 5 t
, w
- f_%ﬁl. (—EJ [sin{wt + ¢) - sin ¢].
w
2w

There are just four independent initial values of the coordinates Cxo, yo) and
their derivatives (xo, yo) involved in the expressions for x(t) and y(t). Both
f'(a) and ¢ are defined in terms of these. The value of the trap coordinate (z)

that appears implicitly in ey(yo) is a free parameter at this point, as is

explained in section 3.
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The motion described by eqs. [4.12] and [4.13] is similar to the
motion of a charged particle in crossed E and B fields. However, the drift
velocity, VD’ which is given by the term in curly brackets in eq. [4.13]
is not just (E x §)/|§J2, although it is approximately that if we neglect

terms of order (Aw/w). Then
[4.14] vp = - ey(yo)/B

shows that the electric field must be evaluated at the initial y-coordinate

of the ion and the local value of the trap coordinate, z. Fig. 6 shows contours
of constant Vp» in the same way that AB was plotted in Fig. 5. The
quasi-cyclotron motion takes place about the drifting centre, which moves

witﬁ velocity Vp- In this frame, it is elliptical (with the ratio of

semi-axes equal to wc/m). This is the same iesult as is obtaiﬁed in the
harmonic theory, .although we must.remember that w is. position-dependent when

we take the higher order terms into account.

In this section, we have obtained solutioﬁs for the motion of an
: isolated ion in the plane perpendicular to the static magnetic field.
While the main fgatures of this motion are similar to the results of the
harmonic treatment, they are different in subtle but significant detail.
In particular we find a previously unsuspected dependence of the quasi-
cyclotron frequency and drift velocity on the position of the ion in the
cell. The assumptions needed to simplify the equations of motion and
solve them in useful form are simple and well satisfied:
(1) The trép oscillation is much slower than thé quasi—cyclotron
oscillation.
(2) The y-component of the electric field is given accurately by
cubic terms in y.

(3) The parameter p = (1/48)(q/m)E;"(0)(Ro/mc)2 is very small.



- 35 -

Fig. 6: Contours of vy = constant (units are m/sec) for the same situation

as in Fig. 5.
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Briefly, these conditions let us uncouple the equations of motion, terminate
the power series expansion for the potential, and solve the resulting
equations for the quasi-cyclotron motion in simple closed form.

As we have previously stressed, the drift velocity and quasi-cycletron
frequency depend on the coordinates of the ions. In order to rélate the
observed line width and resonance field to these quantities we must
perform appropriate averages over all ions and their motions in the cell.

In particular their z dependence must be averaged over the unobserved

trap oscillation, which we examine in the next section.
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5. The Trap Oscillations

The separation of variables in the equations of motion leads us to

the equation for z:

[5.1] 22 -zt e ¥ ¢ (@2, W2y
o n o
n=0
where
_ 1 © m
[5.2] tn = na) (e D) ;:0 {m+1) em+1,n <y >

The average of ym has to be taken over one period of the quasi-cyclotron
oscillation at a particular value of 2z, because its frequency and amplitude
depend on z, by eqs. [3.25], [3.2] and [4.12]. Inspéction.shows us that

< ym > is a function of 22,.50 when eq. [5.1] is solved by the general

method outlined in Section 3, we find the coefficients of the quartic

to be
n
a0 Noo- Ke11/6
a1 =0
: n 2
[5.3] a, v - K(e10+2e20y0+3e30y0 )/6
a3 =0

Y]
]
™
+
N
Fal
~
ct
o
N
o
+
(—f
N
—
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These lead to the solution for z(t) as in Section (3) and 4):
(5.4] 208 = [2.2 + (2 /6)2% cos (urt + 1)
) 0 o T T '

where

2

285070 * 30307, ]

5 .
+[5.5] W = uc[elO

w,, 1s the frequency of oscillation of an isolated ion in the trapping field,

T
which is shown in Fig. 4 for y = 0.

These expressions are correct if the parameter

[5.6]  u" = (3) xey, z o)

is much less than one. Assuming that the ions form a thermal population,
this may be related to the parameter (u) governing the approximations made

in understanding the y-motion of ions.
R 1 4
[5.7] w'ty 3) (w /o) u

Thus, p" v 2 x 10_2, which is sufficiently small for us to accept the

approximate expression for z(t). -
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6. Another Way to Express the Results

The equations of motion which we have worked with up to now" use
an expansion of the electric field about the origin. In the results for
1 V 2 X ] A s €
CRE and Vs we found expressions for Ey(yo) and Ey()o), taken to
second or third order in Yo This fact makes it interesting to expand
Ey about y = Yo in a Taylor series , and use the same tactics to solve

the equation of motion that follow when we truncate the series at the

(y—yo)3 term. The results are

K

[6.1] W= o {1 - [E;,(yo,z) * (Qo/wc)E;,' ry-2)

2w 2
C
3x02 + 2yo2
¢ B L)
- 2MCZ y 0

for the frequency of the quasi-cyclotron oscillation. With the same
assumptions that we made in section (3), and noting that< Xy = 0 for

thermal ions, we have the very simple result that

[6.2] 4B = =2 E' (y_,z)
Cc y-o

This supposes that

(631  «E"' Oy ,2)(R/w D) << 1,

which is essentially the criterion p << 1. Physically, this means that
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the second order part of the time-averaged variation in the energy associated

tee

with the electric field, Q%r)q E

y
. . 1 22
-of the orbital motion, zmw "R 7.
. c o

&

Ri, is much less than the energy

For the drift velocity, we find
[6'4] VD = - E},(}’O,Z)/B-

The trap oscillation can, of course, be analysed in much the same
way. The average of EZ over one quasi-cyclotron period 1s approximated
by EZ(yo,z), and then expanded about z = 0. V'E = 0 relates the first

derivatives of Ey and Ez’ so that

2 _ 1
[6.5] Wy = KEy(yO,O).

We see that the relation
[6.6] w4 W

which holds rigorously<in the harmonic approximation (Beauchamp and

Armstrong, 1968) is really true only when sz << w2 and z = 0. This

is another example of the small but important differences between that

approach and the more complete treatment given here.
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7. Influence of the trap oscillations

The motion of ions in the ICR cell is conveniently described in terms
of several characteristic frequencies. The ions may be pictured as
precessing elliptically in the x-y plane ('quasi-cyclotron motion'") about
an instantaneous center, which oscillates along the z-axis ("trap oscillation")
and drifts in the x-direction. Strictly speaking, the quasi-cyclotron
frequency is expressed in terms of the initial value of y. Since the theory
outlined pfeviously implicitly assumes that the amplitude of the cyclotron
motion is small, and since w(y,z) is a slowly varying function of y and z, we
may identify y with the centre of the cyclotron motion. This characteristic
angular frequency w(y,z) of the quasi-cyclotron motion, varies with z over
a range of frequencies Aw(y,z) << W, . That this inequality is.very well satisfied
may be seen from Fig, 7 in which w(y,z) is plotted as a function of.z for three
different values of y for Ar+ ions under typical operating conditions. The
quasi-cyclotron frequency is modulated due to the trap oscillations at an

angular frequency w,, which usually satisfies the inequalities

T

[7.1] Aw(y,z) << W << W

as may be seen from Table 2. Finally, as a result of the drift of the ions
through the resonance region of the ICR cell, the ions spend a finite time

T = l/vD in a cell of length %, giving rise to a resonance line width w, which

1

: ’
usually falls between Aw(y,z) and W In this section, we use the inequality
[7.1] to derive an approximate expression for the ICR frequency for iomns
having a well-defined value of y and which oscillate between z = tzm.. The

effect of a distribution of y and z, is described in the next section.

For convenience of notation we re-write Eq. 2.1 in the form
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Fig. 7: A plot of w, = w(y,z) as a function of z for three different values
of y for Ar+ ions. The cell parameters are a = 0.025 m,, b = 0.014 m.,
Vp = Vl = 0.5 volts, and v, = -0.5 volts, wc/2n is 300 kHz

corresponding to a magnetic field of about 0.780 Tesla.
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Table 2. Values of characteristic frequencies of Ar+ ions in an ICR

cell under the operating conditions of Figure 5.



Cyclotron Frequency

Trapping Frequency

Line Width
(Full Width at half height)

Frequency Spread

TABLE 2

K ot
LOT(O,O) = \/;Ey(oso)

5.566K[Ey(0,0)|

w—.
4 )
&

w(0,0) - w(0,0.35a) = 2—“— [E}"(0,0.BSa) - E}',(0,0)]

w
C

1.885 x lO6

6.80 x lO4

8.25 x lO3

2.82 x lO3

(sec._l)

(sec.-l)

(sec.—l)

(sec_l)
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[e0]

[7.2] V(y,2) = Vo - ] A () cos [(2k+1) T
k=0
where
2 (1 cosh[(2k+1)EZ] sinh[ (2k+1)2X]
[7.3] (y) == {@v, - v, - V) - (V.-V.) a_"3
7 e T cosh[ (2k+1)22] 12 sinh[ (2k+1)32]

When the conditiocn W, >> Wy is satisfied, we can approximate the y-

component of the ion motion over a time t << 27/w,_ by the expression,

T

[7.4] y(t) =y _*A coslu(y,z)t + ¢]

where the amplitudes ya_and A and the phase factor ¢ are determined by the initial
conditions and w(y,z) is defined by [6.1] in terms of the instantaneous
_center (y,z) of the quasi-cyclotron motion.
If an ICR experiment were carried out over a time much less than 2n/mT,
the ICR spectrum would consist of a superposition of lines centered at
frequencies distributed over a range Aw corresponding to the spatial
distribution of ions in the cell. However, each line would, under such

conditions, have a width much greater than w_ so that the frequency spread

T

Aw would be undetectable according to [7.1]. In practice, of'COurse, ICR

experiments are usually performed over a time much greater than Zﬂ/wT so

that the effect of the trap oscillations must be taken into account,
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The effect of the trap oscillations is to modulate
w(y,z(t)) due to the time dependence of the z-co-ordinate. As mentioned
earlier, the effect of the inhomogeneous electric field of the cell on the
cyclotron motion is to change the circular cyclotron orbits into elliptical
orbits. The ratic of the major and minor axes of the ellipse differs from
unity only by an amount of order ég&flzl . Since Aw << w,, we may neg?ect

the small modulations of the amplitudes Y, and A to a good approximation

and replace Eq. [7.4] by
_ t
[7.5] y(t) =y _+A COS[J w(y,z(t')) dt' + ¢]
o

Eq. [7.5] is a good approximation for y(t) if the variation in the quasi-
cyclotren frequency due to the trapping oscillation satisfies the adiabatic
condition that

w” >> 2 g

which is well met in the ICR apparatus. Using Eqs. [6.1], [7.2], [7.3] and
2 .

3°V
E' = - =,
y ay2
t dzAk(y) t
©o T
[7..6] f wiy,z(t'))dt' = w_t - 2; y > j cos[(2k+l)n~za(lt—)]dt'
o ¢c k=o dy o}

Using Eq. [7.6] it is possible to define an average quasi-cyclotron
frequency as a function of y and z by numerical methods. Firstly, the
equation of motion for z(t) may be integrated for any given ICR cell

potential parameters and the maximum amplitude of oscillation z - Then, if
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the integral in [7.6] is evaluated numerically at long times (mTt >> 1) it
will be well represented as a linear function of time plus small
oscillations. The linear factor which multipiies t is the "average quasi-
cyclotron frequency™ for (y,zm). Instead of presenting numerical results
of such calculations, we choose to evaluate [7.6] in terms of a simplified
description of the trap oscillations.

We now evaluate [7.5] and [7.6] in the harmonic approximation for the

trap oscillations, i.e.

(7.7] z€t) = z ©OS wgt

This is quite a good approximation near y=o, where the decoupled
equation of motion for z is almoét linear. An -
accurate representation of z(t) for y £ -b/4 would require the introduction
of harmonics of e The generalization of the results to be derived below
_to include higher harmonics is straightforward, but tedious, and is not
presented here. Substituting [7.7] into [7.6] and using the well known
expression (Watson, 1962; page 22) involving Bessel functions
[7.8]  cos(acosB) = J (a) + 2 zl(—l)ngn(a) cos2nB

n=

we obtain

o 92n(y,z )

_ t
[7.9] Jo w(y,z(t'))dt' = [wC - Qo(y,zm)]t - nzl __EEE;JE sin(2ant)
where
; ) |
o d Ak(y) (2k+1) 7z
. M _ n K m
[7.10] 2, 7,z) = (1) 53— ] 5— I, [——F1

¢ k=0 dy
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As may be seen from the definition of @ and Table 1,

2n

Therefore, substituting [7.9] into [7Z.5] and expanding to first order in these

small quantities enables us to write

o 0
[7.11] y(£) =y thlcoslo_(y,z Ye+o] + sin[wo(y,zm)t+¢]nzl ﬁi sin(2nu )},
where
7121w (y,2) = u_ - 2 (7,2

We identify Qo(y,zm) with the average frequency of the quasi-cvclotron
motion, the averége being taken over the trap oscillation in the harmonic
~approximation. The ICR spectrum for ions having a vertical position y and
an amplitude of oscillation in the trap 2. should consist of a main
fesonance line at wo(y,zm) and small intensity satellite lines at the

frequencies wo(y,zm) * 2nw =1,2, ... .

re B
We wish to emphasize that, though the harmonic approximation was used
in treating z(t), the general expression for the potential was still used
in calculating w(y,z).
The drift velocity of the ions in the cell is given by Eq. [6.4], which
may be treated in a manner similar to the quasi-cyclotron motion. The ions

drift in the x-direction at an average velocity vD(y,zm) which depends on

y and z s with small oscillations at the frequencies 2an. The average
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velocity is given in the harmonic approximation by Egs.

and [7.8] to be

o dA (y) TZ
1 m
[7.13] v (y,2) = - 3 kzo T I [(2k+1)—1.

[6.41, [7.2], [7.7]

The variation of wo(y,zm) and VD.(y’zm) with v and z 1is shown,

respectively, in Figures 8 and 9.
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Fig. 8: A plot of wc—wo(y,zm) as a function of z the maximum amplitude
of oscillation in the z direction, for three different values
of y. The harmonic approximation for the trapping oscillations

has been used. All parameters are the same as in Fig. 5.
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Fig. 9: A plot of the average drift velocity as a function of z, for three

values of y under the same conditions as in Figure 5,
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8. Line Shapes

We have derived an expression for the ICR frequency wo(y,zm) of an
ion at a vertical position y and trap oscillation amplitude z . Suppose
that N ions pass through the resonance region of the ICR cell per second

and that a fraction

p(y,zm) dydzm

of these are between y and y+dy. and have maximum oscillation amplitude
between z. and zm+dzm. Then the power absorption in the ICR cell for an

oscillating field at a frequency w, is given by

1

| —+
[8.1] I(w) = N J

o) o

a/2
dy J dz p(y,zm) E(wl;y,zm)
o]

o

where s(wl;y,zm) is the energy absorbed by a single ion characterized by
(y,zm) in passing through the cell in a time 1 = Q/VD(y,zm). The ensemble
averaged line shape I(wl) should not be confused with the line shape of an
ion having a well-defined (y,zm), which is proportional to s(wl;y,zm). It
is convenient to write

[8.2] e(ml;y,zm) =€ es.(y’zm) G{wl—wo(y,zm)}

T
where € as (y,zm) is the energy absorbed by an ion at resonance as it
traverses the cell and G{wl-wo(y,zm)} is an unnormalized line shape function
which satisfies G(o) = 1. 1In our discussion we have assumed thus far that

each ion has a constant (y,zm) throughout its passage through the cell.
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This implies that the time between collisions of the ions with the
molecules of the background gas is much greater than 1. 1In this low

density, collisionless regime, it is easy to show that (Butrill, 1969)

2 2 2
qQ<E, > T
[8.3] Eres.(y’zm) - 8m
and ' i e
| ' |
SinZ(Gwzr)
[8'4] N G(Gw') = W’ Sw' = wl - U)O (y,Zm)

— - - -~

where <Ely> is the average magnitude of the y-component of the r-f field for

an ion characterized by (y,zm), the average being taken over the trap

.oscillations. Thus,éw, <E. > and T all depend on y and z_ in [8.3] and [8.4].
™

ly
In order to calculate <Ely>, the effective radio-frequency electrical

circuit must be specified. Usually, the trap potential is at r—f ground,

i.e. (V)

T rof = 0. Experiments could be performed with (Vl)r_f(t) = —(V

2)r—f
Vr—f cos wlt, but it seems to be more customary to put (Vl)r—f or (V2)r—f
equal to zero. Imn any case, once the r-f potentials are specified, the
co—-efficients [Ak(y)]r—f analogous to the d-c co-efficients of [7.3] may be
calculated and the value of <El; for a given (y,zm) computed in terms of
d [Ak(y)]r_f/dy in analogy with [7.13]. The dependence of <Ely> on y and
' z for some typical operating conditions is shown in Fig. 10,

It is of interest to examine the line shape I(wl) for some special
cases of experimental importance. When the ions are produced by electron

bombardment, the electron beam traverses the cell over a very small range

of y near y = y?, and the ions are produced with roughly equal probability at

(t) =
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Fig. 10: A plot of <Ely> versus z for twoe values of y and three different

rf voltage configurations, The values of Erf/V are given for

. rf
a= 0,025 m. and b = 0,014 m.
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each value of z. If the average reccil energy of the ions and the thermal
energy of the background gas atoms or molecules from which the ions are

produced are wmuch less than qV

T the ensemble of ions produced is well

approximated by

VTN

[8.5] p{,z) =5 80y )

where &(y-y'} is a Dirac &-furction. As we shall discuss in Section 9, this
spatial distribution of ions will be preserved as the ions drift from the
source to the resonance region only if certain stringent experimental

conditions are met. Under these conditions, the line shape is given by

fa/2

2N -
Jo dz_ c(wl,y ,zm)

[8.6] I(ml) ==

It is easy to see that [8.1] and [8.6] are each convolutions of two line shape
functions. One of these shape functions is G(w) given by [8.4]. The other is
the distribution of frequencies wo(yl,zm), each weighted in [8.6] by

dz '

2Neres(yj,zm) _EE , Which would be obtained from the ions in the small region

between z and zm+dzm for very long cells. In a long cell the condition
Awo(yf,zm) T >> 1

is satisfied, where Awo(y',zm) is the spread of frequencies associated with
the distribution of Z
Our numerical calculations indicate that under typical operating

conditions, the width 1/t due to finite transit time of the ions in the cell
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is somewhat larger than the spread due to the spatial distribution of the

ions, i.e.

Awo(y',zm) T << 1,

Some typical line shapes predicted by [8.6] are shown in Fig. 11, but comparison

with experiment is left to Section 16. The most striking features of the

theoretical absorption spectra of Figure 11 are:

1.

The frequency of maximum absorption and the line width are
functions of y'. A detailed discussion of the properties will be

given in Section 10 in terms of a simplified "

average ion" model,
The lines are not symmetric, the degree of asymmetry being dependent
on yé. Such asymmetric lines have been observed by many experimenters,
though they have not been discussed extensively in the literature.
We find that the sign and nature of the asymmetry are well explained
by our theory. In Figure 11, the absorption sideband in the high
frequency (low field) side of the resonance is noticeably larger
than that on the opposite side for y' = -b/4. When Vp is decreased
to smaller values the asymmetry decreases. It is common practice

in many laboratories to eliminate the asymmetry empirically by

using small trapping voltages. The origin of the asymmetry lies

in the asymmetric distribution of frequencies associated with the
distribution of trap oscillation amplitudes. However, the asymmetry
is sometimes enhanced by the fact that the average drift velocity

is also a function of z The plots of Figure 11 include both

of these effects as well as the variation of <Ely> with z All

these influences are included in Eqs. [8.2] - [8.6]. Calculations

show, however, that the influence of <E, > on the asymmetry is

ly

generally less important than the other factors.



Fig. 11:

-62 =

The ICR line shape as given by Eq. 8.6, for three different

values of y' and the same parameters as in Fig. 5. The bottom
scale shows a sweep of frequency,wl, with w, = 1.885 x 106 sec?1

while the top scale shows a sweep of W, (or field, B) with

w = 1.885 x 106 sec?l.
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9. Influence of the Cell Potential on the Spatial

Distribution of the Ions

As discussed in Section 8, the ICR characteristics are influenced by
the spatial distribution function of the ions in the resonance region, denoted
by p(y,zm) in [8.1]. Usually, the ions are produced in a source region by
an electron beam' and then drift slowly into the resonance regicn. The
electron beam, if it is sufficiently intense, gives rise to an inhomogeneous
electric field which may contribute appreciably to the potential energy of
the ions when they are produced. The ions fhen drift far enough away from
the electrdn beam, while still in the source, that the electron beam
contribution to the potential can be neglected. One can then define a two-
dimensional source spatial distribution function ps(ys,zms). For sufficiently
weak electron beams that its contribution to the cell potential is everywhere
negligible, ps(ys,zms) cén be adequately approximated by [8.5], but more
generally it is necessary to take into account the motioh of the ions in the
potential of the electron beam to estimafe ps(ys,zms).

In some experiments, it has been found desirable to use different drift
potentials (Vl;Vz) and/or trapping potentials (VT) in the source and
analyzer or other regions of the ICR cell., For example, Clow and Futrell
(1970) introduced a reaction region between the source and analyzer. Primary

ions were first excited by applying a resonant electric field in the form of

a pulse in the source region and the effects of charge exchange reactions
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were monitored in the analyzer or resonance region. By using a drift field

in the reaction region of magnitude much smaller than those in the source

and detector regions, the probability of charge exchange reactions in the
sourcé and detector regions was minimized. In order to obtain the resonance
region spatial probability distribution p(y,zm) from ps(ys,zms), it is
necessary to integrate the equations of motion of the ions in the inhomogeneous
electric field between the source and resonance regions to obtain y(ys,zms)

and zm(ys,zms). Then, we can write a formal expression for p(y,zm) in terms

of ps(ys,zms) as follows

— a/? )
[9.1] p(y,zm) = rz dy Jo dz_ S(y—y(ys,zms)) G(Zm-zm(ys,zms)) ps(ys=zms)

In a similar way, one can generate ps(ys,zms) from the initial spatial
distribution function of the ions in the ionising electron beam if the
-potential of the electron beam is known.

The problem of integrating the equations of motion of the ions as
they drift fromlone part (region 1) of the ceil to another part (region 2)
is complicated for the general case. It is possible to give simple solutions
for two special limiting cases of experimental interest. We shall call

these cases the fast drift and the adiabatic drift limits; respectively.

Expressed in terms of the separation s, of the two regions, the average

angular trapping frequency w, and average drift velocity between the regions,

T

these limits can be defined by inequalities w s/VD << 1 and wTs/vD >> 1,

T

respectively, i.e. in the fast drift limit, the time to drift from one region

to the other is much less than a single trapping oscillétion, while the
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opposite is true in the adiabatic drift limit. In each case, we assume that

many gquasi-cyclotron oscillations occur during the time of drift between
regions 1 and 2, i.e. wos/vD >> 1, The implication of the last approximation
is that the drift always occurs along equipotential surfaces. The particular
path along these surfaces is different for the fast drift énd slow drift
limits, while the paths for drift speeds intermediate to these limits should
lie between the paths for the limiting cases. In the following discussion,

we denote the values of (y,zm) by (yl,zml) and (yz,zmz) for regions 1 and 2,

respectively.

The fast drift limit: From the preceding discussion, it is clear that
[9.2] z =z

and

[9.3] Vyys2z) = V(yz;zmz)

which, for this case, are sufficient to determine yz(yl,zml) and zmz(yl,zml).

The adiabatic drift limit: The well-known condition satisfied by adiabatic
mechanical processes is that the action integrals remain constant (Born, 1969).

Assuming, that the trap oscillations are decoupled from the.quasi=cyclotron

motions, this condition gives

zml zmé
[9.4] J ] zldzl = J 22d22 .

o o
or equivalently

z_. Z 4 .

ml L _ {*m2 _ 4
[9- 5] Jo [V(yl’zml) - V(ylszl)] dzl = Jo [V(yz)zmz) V(yzszz)] dzz
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which, combined with the energy conservation equation [9.3], is sufficient
to determine yz(yl,zml) and 2m2(yl’zm1)'

. . . . - 2
Practical considerations: Under typical operating conditions vy ® 107 m./sec.

and Wp = lOssec.._l as may be seen from Table 1. Thus, the characteristic
distance which defines the two limiting cases is s, =V [w, = 10—3m. In

experiments such as those of Clow and Futrell (1970) in which different

trapping and drift voltages are used in different regions of the cell, the

"end

distance over which the potential varies appreciably is determined by
effects". The cell geometry dictates then that this distance is of the order

of the smaller of a or b, i.e. typically, of the order of 10—2 m. Thus, the

adiabatic drift limit should normally be applicable in this type of sitqation.
On the other hand, in taking into account the influence of the potential due
to the ionising electron beam on the drift of the ions, it would appear

that for typical electron beams (diameter 310“3 m.), the drift rate may be
~intermediate between the fast and adiabatic limits.

A calculation of thé effect of drift between two regions in the adiabatic

drift 1limit has been carried out in Appendix 1 for the harmonic potential

approximation. It would be straightforward to carry out nuﬁerical
calculations of the influence of drift on the spatial distribution of the
ions for more realistic potentials, but the available experimental results do
not seem to warrant such an effort at this time. In the next section, we
shall develop a simplified, ad-hoc model which we have found useful in

taking into account the effect of ICR potentials on the spatial distribution
of the ions. It should be noted, however, that thercalculation in Appendix 1

indicates a considerable dispersion of the ions in the y-direction.
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10. Ad-Hoc "Average Ion Model" for Studying the Spatial

Distribution of Ions in an ICR Cell

We have shown in previous sections that the ICR properties .
of an ensemble of ions depend on their spatial distribution. The ions are
usually produced in the source with the relatively simple distribution of
Eq. [8.5] corresponding to a well defined vertical position y in the cell and
a uniform distribution of trap oscillation amplitudes z It seems, from the
considerations of Section 9 and Appendix 1, that és the ions drift from the
source into the resonance region of the cell; an appreciable dispersion of
the ions in the y-direction may result. Even for the simple distribution
[8.5], however, the line shapes are not simple in the collisionless regime.
For example, a marked asymmetry of the ICR line shape was'predicted in
Section 8.

In view of the complexity of numerical calculations:of the ICR line
shapes, we have looked for a simplified, but realistic model with which to
.probe the spatial distribution of the ions in the cell. The two most easily
measured line shape parameters are the frequency of maximum power absorption
Ei and the line width wl/2 defined in Section 7. Both of these parameters, as
well as the line shape, are influenced by changes in the cell potentials
'Vi, Vl’ and VZ in a manner which depends on the spatial distribution of the
ions. Thus, study of the dependence of w, and w,_on the cell potentials can

1 3
give information on the positions of the ions in the cell, thus serving as a
useful diagnostic tool for ICR spectrometers.

In our model, we replace .the ensemble of ions described by -the

distribution function p(y,zm) by an-"average ion" at a vertical position y



- 69 -

having a potential energy corresponding to the average potential energy of
the simplified distribution function [8.5]. The average potential energy

is given by

a/2
] 1 1
dy J dz_ po(y 2 ) V(y 22,)

[10.1] <V> = J
(o]

NﬁU‘ Qtr

and V(y',zm) is the average potential energy of an ion characterized by
(y',zm) in the harmonic approximation as is given by [7.2], [7.7] and [7.8]

to be

© mZ
[10.2] Viy',z ) = Vo - kZo A" I [(Q2k1)—]

Substituting [10.2] into [10.1], we obtain

<o

[10.3] V> =V, - kz o A (¥)
=0
where
, (et
,[10'4] o = ;?EE:IT J Jo(p)dp

<V> is shown as a function of y in Fig. 12 for several different potential
configurations.
It is convenient for our purposes to express <V> explicitly in terms

of the cell potentials and the position y of the "average ion'".

Vl—-V2 Vl+V2

2 ’ a 2

[10.5] <V> = VT + fl(y)Vd + fz(y)(VT_Va) ; Vd =
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Fig. 12: The position dependence of the averaged potential <V(y)> for five

different values of Vl—-V2 with VT = 0.5 volt and Vl+V2 = 0, Similar

curves for arbitrary Vl’ V., and VT may be obtained from Eq.[10.3],

2
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where, using [7.2] and [10.3]

o (-1)%.  sinh[(2k+1)™]
[10.6] £,60 = + 2 ) 2k+1 < E
T k=0 sinh[(2k+l)%g]

and Kk
o (=1) o cosh[(2k+l)£z]
[10.7] £,(0) = -2 7 TRFL . 5
T k=0 cosh[(2k+l)gz]

Similarly, the average quasi-cyclotron resonance frequency <wo(y,zm)>

is given by

2
® d”A, (y)
K
[10.8] <wo> =0 T 2w 2 “ T 2
¢ k=o dy
=uw, = xlg, MV + 8,(y) (V-V )]
© 9E
=m—'K _<-.
c ch. 3y
Clearly,
1 dzfl
{10.9] By = " 3. > s i=1,2
¢ dy

The amplitude averaged electric field gradient <E;(y)> is shown in Fig. 13.
Often, the resonance magnetic field is measured keeping the frequency

fixed. This is given by

[10.10] Bgg =B+, MV, + 8, (y) (V=V )

where Beff is identified with the magnetic field corresponding to maximum
ICR absorption intensity.
Following the same procedure for the drift velocity [2.13], which enters

into the calculation of <uw, >,
1
2
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Fig., 13: Position dependence of the averaged electric field gradient,

<8Ey/8y>. As in Figs. 5 and 6, Vo = 0.5 v and V,+V, = 0.

1
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LdE) e, )
[10.11] <Vd> = §{~—E§—— Vd + —~E§——(VT—V8)]
1 . 4
’ =3 0>

The amplitude averaged electric field <Ey(y)> is shown in Fig. 14.

Effect of a change in the cell potential

We now consider the effect of a change in an ICR cell voltage parameter
on the resonance characteristics of the "average ion'". Suppose, for example,

that a small change AVT is made in the VT keeping Vd and Va constant. Then,

the ratio of the change in resonance field ABé%f to VT is given, in the

limit AV_, - 0O, by

T
B .  ag dg
10.12} ff 1 2
HO12L - (g2thy = e 0+ Iyt T AE,
T a’'d T "a’'d
The first term in [10.12] is associated with the change in B of due to the
oE
local change in 3;1 produced by AVT, while the second term is 'due to the
shift in Béff resulting from the displacement of the ions as they follow

“the changed equipotentials due to AV, Since the ions drift along

T
equipotentials (see Section 9), the "average ion" satisfies the condition
that <V> is a constant for different parts of the cell. Thus, GjLﬂ

T d’
can be obtained from [10.5]. 1In order to do so, however, it is necessary to

specify the manner in which the change in V,

T changes <V> in the source and

resonance region. Let us illustrate this remark by calculating (BV )V V
T '’

for two different voltage configurations in the ICR cell.

Case 1. The potentials VT’ v Va are taken to be identical in the source

d’

and resonance region. Assume that the ions are produced in the source at y=0

by an electron beam which perturbs the potential in the immediate vicinity
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Fig. 14: Position dependence of the averaged drift electric field. As in

Fig. 5 V_ = 0.5 v, and V1+V = 0,

T 2
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of the ionising region by a constant amount A . Let y be the vertical
position of the average ion in the resonance region. Since the ions drift
along equipotentials between the source and resonance region we obtain the

following relationship from [10.5].

[10.13] VT + fl(O)Vd + f2(0)(VT—Va) + 4 = VT + fl(y)Vd + f2(y)(VT—Va)

This gives the result required to complete [10.12]

2y £,(0) = £,()

[10.14] Gv )vd,v = df df,
Vaiy T UrVogg
Case 2. Suppose that the cell potentials in the resonance (V;, VE, Vz) and
scurce (V;, Vz, V:) regions are independently controlled. Then, instead of
{10.13],the drift along equipotentials gives the relation
_ s s .8 w _ b T r_ T
[10.15] Vo + £,(0)V] + £,(0) (Vo=Vo) + B = Vo o+ £,(5Vy + £,(3) (Vo-V))

Then, a wvariation of V;'with no change in any other of the cell

potentials gives the result

1+ fz(y)
[10.16] &) = -
r r . r df df
. BVT Vd,V . 1 + (V vt 2
a d dy a dy
ve,ve,ve
T*'d’ a

With the substitution of either [10.14] or [10l6], or an expression for

(QZ_) appropriate for the ICR cell under consideration, we can interpret the



- 79 -

variation of Béff with VT. Similar results are derived for the variation of

Beff or <Vd> with any of the cell voltages. The kind of behaviour predicted

is illustrated below by substituting [10;14] into [10312] (Case 1)

1 2

9B . V, —= + (V_-V )—=

1.0 168 __eff - d dy T "a’ dy
[10.167 (aVT )Vd’va 8, (y) + aE] at, [£,(0) - £,(y)]

' Vd dy +.(VT—Va) dy

Therefore, the slope of a Beff versus VT plot is expected to be constant

both for large and small V_, but it should be different in each limit if y # O.

T’
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11. Distribution of Ton Kinetic Energies in an ICR Cell

An important application of ICR is the study of the energy dependence
cf the scattering and charge exchange cross—séctions for collisions between
ions and neutral atoms or molecules. In order to interpret the ICR
experiments, it is necessary to know the distribution of ion energies over
which the theoretical, energy-dependent cross-sections must be averaged.

The ions are produced with some sort of spatial and energy distribution both
of which depend on the production mechanism. They then oscillate in the

trap and drift from the source to the reaction and analyzer regions of the
cell. During this drift interval, it is possible to change the ion energy

by applying a resonant r-f electric field, both the time over which the ions
are subject to ICR and the r—f electric field amplitude being controlled by
the experimenter. In this section, we calculate the final distribution of ion
kinetic energies resulting from trap oscillation and the application of an
"ICR r-f field undexr the following assumptions.

1. The ion motions along the z-axis and in the x-y plane are

independent of one another.

2. The trap oscillations may be approximated by simple harmonic motion.

3. The r-f field, averéged over the trap oscillation, is uniform.

4. The initial distribution of ions is given by Maxwell-Boltzmann
distribution functions for motions parallel and perpéndicular to
the z-axis.

In an experimental situation assumptions 1 to 3 are violated to a certain

extent by the ccmplicated potential structure of the ICR cell. Assumption 4

is violated when the ions are produced by molecular dissociation.
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\

However, no discussion of the energy resolution of the ICR spectrometer is
available in the literature for even the idealized case presented here.

We denote the kinetic energy associated with motion along the z-axis
and perpendicular to it by E,, and E,, respectively at a time t after the

ions have been produced. The total time-dependent kinetic energy Eris given

by

[11.1] E,= E, +E,

Since the parallel and perpendicular motions are independent acccerding to
assumption 1, the distribution function for E, and E, is the product of the

individual distribution functions, i.e.
[11.2] P(E",E¢)dEN dEL = P“(E")dE" P_i_(E_L)dE__L

We wish to calculate the functions RE(E,) and B(E,) given that the
. distributions of initial energies ¢, and ¢, are Maxwellian, as stated in
assumption 4. If the initial effective temperatures associated with g, and

€, are T, and T,, respectively, then

el!
- _ 1% kT,
[11.3] Pou(e") B (ﬂe"kT") €
and _ E4
- , T
[11:4] on (81 = kT, ©

where Po’(e") and Pol(e*) are normalized distributions for one and two
1 .

degrees of freedom, respectively.
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Effect of ICR on the energy distribution:

We first consider the calculation of P, (E,). Suppose that after the
ions are produced they are subjected to ICR for a time t in an r-f electric

field of amplitude E Then, for ions having an initial momentum whose

1
projection in the x-y plane makes an angle vy with the (rotating) r-f field

(Butrill, 1969)

L
— 2
[11.5] E, = Em + Z(Emel) u+oe
where
REX
[11.6] E = "8 and p= cosy

We assume that y is randomly distributed between 0 and =, from which it

is easily shown that the distribution function for u is given by

til.J] p(u) = —1 -1

. +1
Tr(l-uz)/2

1A
=
In

Eqs. [11.5] and [11.7] enable us to define a distribution function G(El’?L)
such that G(El,sl)dEl is the fraction of ions having kinetic energies between E;and

E, + dE; for those ions having a given initial kinetic energy g, ,

P(u{E;,¢e, }) 1
[11.8] G(Ey,e) = —55 = 7L
- L - -E -
Cg—— Tr[4Eme.1. (El B ?L) ]
uoTey

from whicﬂ B(E,) is calculated as follows.

+ .
. [ €1
[11.91 B, (E) = J DGRy, eP (6)de,

€

4
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+

The lower and upper limits g} arise from the limits on u in [11.7] and are

easily shown to be

1.
x = + 2
[11.10] ef =E, +E * 2(E E)

Making the substitution
: L
[11.11] g = 2(E E)w+E +E

Eqs. [11.4]}, [11.8] and [11..9] give the result

E, +E
m 1
=TT, 3
11.121" I | KTy . 2(E E,)
tr-12] 1) = kT,, © o[ kT, :
where
1 +l e—pw
[11.13] i (p)=2J (ip) = = J e 4w
© ° ™ol a-vh)E

is the zero'th order Bessel function of imaginary argument., The distribution

function PL(EL) is plotted as a function of E, in Figure 15 for different
values of Em/k?L' It reduces, as expected, to the form of PoL(El) for
Em=0, since IO(O) = 1, while for the limit Em/k’l‘.1 >> 1, the asymptotic form

 of Io(p) (see, e.g. Watson, 1962; page 204) may be used to obtain the

result
2
(E,E )
T 4E kT
. . 1 3 m L
[11714] RL(EJ) = (Z;E;Ei:) e , Em >> k?L

This Gaussian function, peaked at EL ='Em, has a relative full width
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Fig. 15: Plots of the distribution function for the energy associated with
the cyclotron motion for three values of the average energy

imparted to the ions by the r~f electric field,
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at half-maximum given by

OE, o1 gk KT o
[11.15] = (81n2) (i:—)
m m

Thus, if an ensemble of ions is prepared with average emnergy Em one
hundred times greater than its initial energy spread kT, , the fractional
width of the final distribution is predicted to be = 0.235, which is very high.
We conclude that the standard method of exciting ions to higher energies in
ICR spectrometers is not capable of giving good energy resolution on its own,
even if the inhomogeneities in the r-f electric field are ignored. The
reason for this is that ions produced with initial momentum components parallel
to the f—f electric field are speeded up, while those with anti-parallel
components are slowed down. Since the method of changing the ion energies
involves the acceleration of the ions for a fixed time, the initial energy
spread is amplified. By contrast, in those syétems in which the change in ion
energy is produced by péssing the ions across a given potential difference, all
.the ions acquire the same change of energy regardless of the initial state.

Effect of trap oscillations:-

An ion produced at position z in the trap with a momentum component-Pz

~ such that Pz = 2meg, will oscillate between izm given by

(117161 V(z ) = V(z) - V(0) + ¢, =V +¢

In the harmeonic approximation (Assumption 2), the kinetic energy of

such an ion is given by
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' . 2
[11.17] E" = (V+£")51n 8 s 8_= w,.t

Then, the kinetic energy distribution function for ions produced with

given potential energy V and longitudinal kinetic energy e, is given by

[11.18]  P(E,.V,g) = —soi2 - — 5
) m(ER) * (Vhey—Ey)
06, "V, gy ~

where we have used the normalized distribution function for

CRINY
(]
1A
(a5
IA

INIE]

[11.19] P(Qg)=

If the ions are produced with equal a priori probability in each interval
dz, the probability g(V)dV that an ion is produced with potential energy

between V and V + dV is given by

1

1. 1
2v3y2

(o]

[11,20] g(v) =

for the harmonic potential (Assumption 2)

- [11.21] V(y,2z) - V(y,0) = (3592 Vos - %

A
IA

N

where Vo =V, - V(¥,0)-

T

Averaging over all values of V in a manner which implicitly assumes that

€y << Vs we obtain
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v
o
[11.22] P(E,,e,) = J P(E,,V,e,)g(V)dv
\
1
L Y5
1 Vo + (Vo+€"—E")
=— ¢ 1n [ ] , E, SV
TE V2 B L ] o
0 l n=Cuy

_ . < = F —g i 2
where V, = 0 4if Ey= € and V, = E" Eulf E,~ €

1 1 We

Finally, the distribution function P“(E“) is obtained by averaging [11,22]
over the initial energy distribution given by [11.3]. The result can be

written in the form

[11.23] P (E,)

P(E",Eu) Pouﬁe") de,,
o .

v

1
<
o

+{v_ + E"(v-l)}%
o

]

L

2 L 5
(KT, V)* ‘o v E

}-.l
—
8
Ia
W<
-
e

ﬂ3/ 1—v|1/2

One energy region of interest for the case VO >> kT"_is the region
E,, >> kT,. For this case, Eq.[11.23] reduces, approximately, to[11.22] with
ey = 0. A plot of this distribution of energies is given in Figure 16
Although P(E;,0) diverges as E,; > 0, this logarithmic singulafity is integrable
and thus presents no problem when P(E”,s") is used to calculate ;Q ensemble
average. Ineluded in Fig. 17 as.an insert is a plot of f3(E')= jo P(E,,0)dE,,
which is the fraction of ions having E; < E'.

In the first part of this section we have derived a result for the

distribution c¢f ion kinetic energies due to the influence of the r-f electric
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Fig, 16: Plots of the distribution function P(E,,,0) for two different values
of the trapping well depth, Vo' The insert shows fB(E')’ the

fraction of ions with energy E = E'.
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field under resonant conditions, while in the second part the distribution

of energies due to the trapping oscillations has been calculated when kT“<< VO.
Often, the ions are produced with an average kinetic energy 2 Vo' Under

such conditions, it is clear that a certain fraction of the ions will escape

from the trap. A calculation of this fraction is given in Section 15.



- 92 -

12. Experimental Apparatus . Ionisation by Electron Bombardment

The ICR device used in these experiments is divided into

three separate drift regions as is common practice [Clow and Futrell, 1970].
Ions are produced in the source region by an electron.beam which traverses
the cell in the direction of the magnetic field (~z direction; see Fig. 1)
after passing through a small hole, about 0,003 m, in diameter, situated in the -
centre of the source trapping plate. Next to the source region is a
reaction region thréugh which the ions drift unperturbed by the detection
rf or thé ionising electron beam. The purpose oflthis region is to decouple
ion production in the source from the detection rf. In the third region,
the analyser, ions.are detected by rf excitétion-of their quasi-
cyclotron oscillation using conventional resonance techniques [Robinsoh, 1958].
The drift plates in the analyser also serve as the tank ciréuit of a
Robinson oscillator o% standard design with rf level continuously variable
over a range from 5 to 200 mv . peak to peak. Best ICR'signals were obtained
with the oscillator connected to the bottom drift plate, all other
electrodes being at ac ground. _

The drift and trapping plates are 0.014 m. and 0.025 m. apart, respectively,'
in all regions. The source, réaction, and analyser region afe 0.025, 0.035
“and 0.061 m long in the direction of the ions' drift (x—diréction, see Fig. 1)
and are electrically insulated from one another by thiﬁ mica strips.
Likewise the trapping electrodes in the source are sepa;ated from the trapping
plates which serve both the reaction and analyser regions, so that.the - :
source trapping potential may be varied independéntly of that in the other

two regions. All electrodes are constructed of electropolished stainless



steel about 0.001 m.thick and held in position by G.E. lucalox poly-
crystalline alumina rods.

The ionising electrons are produced by thermionic emission from a ho£
wire filament, mounted in a boron nitride holder, and are accelerated
through a collimating grid and across the cell by negative biasing on the
filament. The negatively biased grid is a thin plate, about 5 x 10_4 m. thick,
having a 0.002 m,diameter hole through which the electrons pass before
entering the cell. -A schematic diagram of the filameng mount and grid is
shown in Fig. 17. A similarly constructed holder containing the electron
collector is mounted on the trap opposite the filament mount. Both
filament and collector mounts are supported on thé lucalox rods which hold
the cell electrodes in place. Wire mesh grids, 67% transparent, are spot
Qelded across the holes in the trap, through which electrons enter and leave
the cell, to prevent penetration of electric fields associated with the
filament, grid and collector voltages. Tungsten, iridium, and rhenium wire
filaments of varying diameters were used in the experiments reported here,
and the results were found to be independent of the type of metal used.

The large static magnetic field Bi constrains electrons to small
cyclotron radii at normal electron energies (15 to 100 ev). Furthermore B»
minimizes secondary electron emission due to electroms striking metai cell
electrodes [Farnsworth, 1925] and therefore the electron beam should be
relatively well defined spatially near y = 0 in the cell. From the
dimeﬁsions of the filament and grid apenfurel we éxpecf the eleétron beam
to be about 1 x 10—4m. thick and about 0.002 m. wide initially and to diverge

slightly due to coulombic repulsion as it crosses the cell.
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Fig. 17: A schematic diagram, to scale, of the filament and its mount, with
the grid plate not shown. Further construction details are given

in the text. The electron beam is indicated by the arrow.
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A 15-inch Magnion electromagnet with a 2% inch gap was used., At about

0.9 Tesla the magnetic f;eld gradient across the ICR cell was less than
10_3 Tesla/m. With this homogeneity ICR line widths of about 8 x 10_5 Tesla
were observable. B was measured with an NMR proton probe or a rotating
coil calibrated by the NMR probe, whichever was convenient. The system was
evacuated by a cold trapped CVC-PMCS-4 oil diffusion pump to about 3 x 10-8
torr. Normal operating pressures, coatrolled by a variable'leak valve,
were about 3 x 10'_6 torr, well within the collisionless regime for the ions
under consideration.

| The ICR experiment offers many different parameters for modulation in
a phase sensitive detection scheme. Magnetic field, source drift potential
and source trapping potential were all modulated at various stages of this

work. The results were found to be independent of these modes of operation.
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13. Effect of Electron Beam on ICR

| In these experiments ion cyclotron reéonance is monitored by fixing
thg detection oscillator frequency and sweeping through the resonance with
B. In practice the ICR absorption intensity, line width and magnetic
field at maximum signal Beff are dependent on the trapping and drift
potentials in the source, reaction and analysing regions. To simplify
quantitétive analysis we first consider the case in which the same-trapping
potential, VT’ and drift voltages, V1 and V2, on the top and bottom platés

respectively, are used in all regions of the cell. If the cell potentials

are different in the various cell regions they will be denoted by [V ] ,
1'source

[Vl]analyser’ [Vljreaction etec., but when all regions have the same electrgde

voltages the notation Vl etc. will be used. With this notation the drift

electric field results from the potential Vl—V2 while the average potential
in the cell is mainly determined by VT and the average potential of the
drift plates, (V1+V2)/2.

"In Figs.[18] and [19] we show the variation of Beff with Vl-Vz.and VT_

+ .
respectively, from which it is clear that Be for Ar ions 1is dependent

ff

" on the electron beam current, Ie. The line width also exhibits a dependence
on I . This is in agreement with Smith and Futrell (1973) who find that
the residence times of the ions in the sourée are strongly dependent on the
electron béam-current. No dependence of Beff or the line width on the grid
or collector potentials is observed 4lthough we defect a slight dependence
on eléctron energy at high currents.

The electron beam can influence the ions detected in the analyser in

several ways. First we will discuss the effects of electron space charge
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Fig. 18: The variation of Beff’ the magnetic field at which ICR occurs, with

Vl—V2 for several different ionising currents. The oscillator

frequency was 346.16 kHz while V +V2 = 0 and V., = 0,5 volt.
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Fig. 19: The variation of Beff with VT for several different electron beam
currents. The oscillator frequency was 346.16 kHz, while

V1+V2 = 0 and Vl—V2 = 1,0 volt.
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[Beauchamp, 1967; Woods et al, 1973]. 1Ions are produced uniformly across

the z-axis of the cell near y = 0 (Fig., 1). The negative space charge
depression due to the electron beam distorts the potential at which the

ions are formed so that as positive ions leave the source where they are
influenced by electrons they move downward.in the cell in such a way as to
conserve their average potential energy; that is, for our choice of
coordinates positive ions move to negative values of y. 1In addition their
amplitude of oscillation in the trap will be somewhat altered, but this will
be discussed in Section 14. When the ions reach the analyser the effect of
the electron beam is negligible but here instead of the ions being near y = O,
the centres of their quasi-cyclotron orbits are distributed about some average
§ safisfying the condition;

[13.1] [<V(Y)>] = [<V(0)>] + A

analyser source
where A is the potential due to the electron beam and <V(y)> is the average
potential energy of the ensemble, the average being performed first over one
period of the trapping oscillation and then over all possible amplitudes of
oscillation.

Thus the space charge of the electron beam alters the spatial
distribution of ions which changes the average quasi-cyclotron frequency of

the ions. If we interpret Be as corresponding to the average quasi-

ff

cyclotron frequency of the ion ensemble then

SE-

_ 1 v
[13.2] Beff =B + S < 3y>

as we have seen in Section 10. However in writing this equation, it must be

emphasized that we



- 103 -

1) neglect the dependence of the line shape on the inhomogeneous
rf electric field with which the ions are detected,

2). assume that the distribution of amplitudes z. is not altered
during the passage of the ions through the complicated
potentials inside the cell,. |

3) assume that all ions have a common y coordinate,

4) assume that the quasi-cyclotron frequency and drift field of
the average ion are equivalent to the eﬂéémble.average frequency

and drift field respectively.

Equation[ls.z] predicts a field dependent shift (to the first order
in the resonance field of the jon ensemble due to the electric field gradient
inside the ceil. The frequency of the tank circuit of the Rebinson cscillator
is also shifted by_the.dispersion which usually accompanies power absorption
in these devices [Anders, 1967; Hughes and Smith, 1971]. This latter
frequency shift varies rapialy in the vicinity of the ICR signal maximum,
is a function of the number of ions in the cell and results in distorted
line shapes. No such frequency pulling was observed in the experiments
reported here, although shifts in the oscillator frequency as large as lS.hz
have been detected in our laboratory and have been reported by others [Anders, 1967].
Because the spread in the ions' quasi-cyclotron frequencies due to their
trapping oscillation is somewhat smaller thén the width, in frequency units,
of the ICR absorption as determined by the transit time of the ions through

the analyser, it is often a good approximation to write,

. . 5.566
[13.’3] D‘/Z = mc£,

< |
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where B, is the full width at half maximum intensity of the absorption line.
2

It is important to note that if we interpret the position y as the average
y coordinate for the distribution of ions y = ;, then a knowledge of either

B or B, is sufficient to determine y.
eff 5

Eqs. [13.1], [13.2] and [13.3] may be used to discuss semi-quantitatively

the dependence of Beff on Ie shown in Figs. [18] and [19]. The space charge

depression due to the electron beam has been estimated by Haeff [1939] as

4 Ib

w/E;

[13.4] A=-4,79 x 10

where W is the width of the bean, EO is the energy of the electrons in

electron volts and A is the space charge potential in volts, Eq. [13.4]

neglects complicated edge effects near the trapping electrodes [Morse and

Feshbach, 1953; Pg. 1241] but is reasonably accurate near the cell centre.

For cell potentials of VT = 0.5v., Vl = 0.5v. and V2 = -0,5v. and an electron
current Ie = 5% 10-6amp. with EO = 30ev, Egqs. [13.1] and [13,4] give & = 0,22v,, so
that <V(y=0)> + A = -0.09v., taking <V(0)> from Fig. 12. This corresponds to a
position § ¥ -0.0033m. in the analyser region of the cell and roughly accounts

for the variation of Beff with Vl—V2 and VT of Figs. 18 and 19 respectively

_6 .
for Ie = 5 x 10 ~ amp. Because of the approximate nature of Eq. [13.4] and
uncertainties in measuring Ie’ the space charge depression of the potential
may be underestimated somewhat in the preceding discussion. However, with

this qualification we see that the space charge depression can be neglected
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if A << <V(0)> or when Ie << 10_6 amp. for 30ev electrons. This means that
Beff should be independent of the electron current when Ie is less than about
10-_7 amp. which is not normally the observed case with our system. The
amplitude of oscillation in the trap z. is also sensitive to the space
charge through its dependepce on z. This results in a non~uniform dis-

tribution of zm's and y's for which the equations presented in this section

are not precise. Also, stray electrons may be distributed éver the elec—
trodes if the cell surfaces are slightly dirty from pump oil vapour or
similar residue. The potential inside the cell is then considerably
distorted resulting in complicated non-uniform spatial distributions of
the ions. We have, indeed, found that cleaning and baking the -cell les-
sens the dependence of Beff on Ie, but thét precise agreement between
experiment and the theory presented here occﬁrs only at very low electron
currents, even under best conditions.

As we have stated before, by measuring Beff we are able to esti-
mate y for the ion ensemble and since measurement.of B}5 also_yields v,
we have an independent check on_the estimate obtained from Beff' Fig. 20

shows B, as a function of V.-V, with V,_ and V.4V, held constant. The
5 1 2 T 172
s0lid curve is the variation of B% predicted by Eq.[13.3] using values of
y obtained from the Beff versus Vl-V2 curve which is shown by the insert
in the bottom right hand corner of the figure. The dashed curve is
obtained from Eq.[13.3] assuming a constant electric field inside the
cell; i.e., <Ey> = (Vl-Vz)/b [Beauchamp and Armstrong; 1969]. Fig. 21
exhibits the variation of B with V_ when V, and V_, are held constant.
eff T 1 2

Here the solid line shows B calculated from B, (B, is shown in the

- eff s 3

insert) and the dashed line is that predicted by Beauchamp and Armstrong

" [1969]. In both Figs.[20] and [21] the agreement between theory and
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The variation of the ICR line width, B, , with Vl—V for VT=O'5
2

2

volt and V1+V2 = 0 in all regions of the cell. The solid line is
the theoretical line width predicted by Eq, [3.6] while the

dashed line is the line width predicted by assumption of a constant
electric field, Ey=(Vl—V2)/b. The insert shows the variation of
Beff with Vl—-V2 from which the solid line was obtained., 1In this
experiment the electron current was 4.5 X 10“9 amp. with a mean

electron energy of about 30 ev, and an oscillator frequency of

329.51 kHz.
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Fig. 21:
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The variation of Beff with VT showing the behavior predicted from
measurement of the line width (solid curve) and that predicted by
Beauchamp and Armstrong [1969] (dashed line). 1In this experiment
the electron current was 2.3 x 10_8 amp., In all drift regions of
the cell Vl—V2 = 1.0 v. and V.+V, = 0. The oscillator frequency

1 72
was 329.54 kHz.
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experiment is quite good. We have therefore demonstrated the validity

of Eq. [13.2]%and [13.3] in the low current regime when the harmonic appro-

ximation for the periodic trapping oscillation is used to obtain the

motionally averaged electric field and its gradient with respect to .
The spatial distribution of the ions in the ICR cell is altered by

the electron beam, and this is manifested by a dependence of Beff and B]/2

on'Ie. Measurement of Beff as a function of V1~V2—and/or VT may be used

to estimate the spatial distribution of the ions. If there is no space

1R

charge depression of the potential in the source and ¥ 0, B is inde-

_ eff

pendent of Vl-VZ (Fig.13). For a cell with geometry a = 0.025 m. and

b = 0.014 m., Beff varies linearly with VT having a slope of 0.5242 K/wC
(10_4 tesla/volt) when ¥ = O in the analyser. These values differ somewhat

from the results of Beauchamp and Armstrong [1969]) since a realistic potential

for the ICR geometry has been used to take account of the trapping oscillations.
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14. Control of the Ions' Position in the Analyser

In the preceding section we considered the variation of B, and Be

1
72

_ ff
with VT and Vl-—V2 when the potentials on the drift and trapping plates
were the same in all three regions of the cell. In some experimental
situations it may be advantagéous to operate Fhe ICR cell with different
electrode potentials.in the various cell regions. However, it is important
to note that changing the cell potentials can alper thg spatial distribution
of the ions in the cell and thus alter their average drift time through the
apparatus. In this section we wish to show how the position of the ions
aiong the y-direction in the analyser can be controlled by adjustment of the
drift and trapping potentials in the source. Once again B% and Beff will.
be used to estimate the ioné averaée position y.

As mentiuned previously the drift electric field .results from-V_l-V,2
while the average potential of the drift plates is (Vl+V2)/2 so the
average potential of the source region may be adjusted with either [VT]

[V1+V When an ion moves from the source to an analyser with a

2]source'
different set of electrode potentials, its new amplitude of trapping
oscillation and position y in the analyser depends on the nature of the
transition between the two regions. There are two limiting cases, a sudden

transition and an adiabatic one. In the sudden transition both zi and the

potential V(y,zm) remain constant, (see Eqs. [9.2] and [9.3]) S
\

but. for most cases of interest in ICR, the transition between two regions

of differing electrode potentials is nearly adiabatic; that is to say the

ions undergo several trapping oscillations during the transition. For

this case the ratio of the zm's before and after the transition is equal to

or
source



the fourth root of the ratio of the trapping well depth before and after
the transition. This change in the amplitude of oscillation in the trap
is not a particularly drastic one, being dependent on the fourth roét of
the cell potentials, so it is often a good approximation to ignore any
change in the levels of oscillation and consider only the change in y via
Eq.[13.1]. However we must proceed with caution in using this approach,
since, for example, not only does ; of the.ion swarm change during a
transition but so does the distribution of y's. 1In particular, ions with

large levels of oscillation will undergo a larger change in y than those with

small z 's. .
m

Ions are produced in the source region with ; = 0, where

the amplitude averaged potential <V(y)> is independent of V —V2 (Fig.12)

1

and hence the spatial distribution of the ions should be independent of

[Vl—Vz] if the other cell potentials are not altered. There-

source

fore, B and B

of £ 1 will also be independent of [Vl—V ' This is

2 source’

verified in-Fig. 22 where the upper curve shows Be versus [Vl—V ]

ff 2°source

with other cell potentials:

[VlfVZ]source B [V1+V2]ana1yser = [V1+V2]reaction =0
[VT]source B [VT]reaction - [VT]analyser =0.5v
and [Vl_VZ]analysér - [Vl—‘Z]reaction =1.0wv.

Also shown in Fig. 22  is the result of varying v -V, in’

all regions of the cell for the same electron current. As in Figs. 18 and 20

the variation of Beff with Vl—V2 results from both a spatial rearrangement
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versus [V_-V and B versus V_-V,_.

Fig. 22: A comparison of Beff 1 2]Source of f 1Y
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of the ions and a local variation of the motionally averaged'electriq field

]

gradient with [V,-V, analyser

which causes a shift of the quasi-cyclotron

frequency for off-centre (y # 0) ions.

. . r . th
Fig. 23 shows the dependence of B off OO LVT]source while e
insert shows B, versus this potential. Increasing [V ] while
“3 T source

keeping all other electrode potentials constant, forces the ions to more
positive y's in the analyser hence decreasing both the amplitude averaged

electric field and electric field gradient of the ensemble. This accounts

for the decrease in both B% and Beff with increasing [VT]source' Fig.24_
- 3 ‘C . -
shows y versus [VT]source estimated from Beff in Flg.ZB.
Fig. 25 shows B versus [V ] and the insert shows B versus
2 sourc eff

this same parameter. Proceeding as in sectionl3 we use the measured Qalues
of Beff to obtain an estimate of § from Eq.[13.2)F and then use Eq.[i3.3jfto
obtain Bl/2 shown by the solid line in the figure. Agreement between the
measured and predicted values of B% is quite good at positive values of.
[V

but is very poor for [V <0. There are two possible

2]source 2]source

explanations for this behavior. Firstly for negative --[V the ions are

2]source
forced to negative y's in the analyser where the potential is no longer harmonic
and the approximatioﬁ, z(t) = z, coszt is not a valid one. If this is

the case then we cannot use the harmoﬁic approximation to evaluate the

averéges required by Eqgs. [13.2] and [13.3] and a tedious anaiysis of the

l;ne shape is required to obtain a reliable ;. A gecond'possibility is that

in moving towards the negative drift plates the ions undergo a transition

to regions of higﬁer trapping well depth. As we héve_already discussed

this restricts their amplitude of oscillation in the trap since the well
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The effect of the source trapping potential on Beff and B, . The

Ny

potentials in the other regions of the cell are given in the text,
The solid curve shows Beff calculated from B, which is shown in

2
the insert. The electron current was 7.5 x 10_8 amp. while the

oscillator frequency was 329,89 kHz,
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Fig. 24: The variation of the average ion position in the analyser, §, with
the source trapping potential. In this case §'was calculated from

the line width, shown as a function of [V_] in Fig. 11.
T"source
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Fig. 25: The dependence of Bl/2 and B . (insert) on [V1+V21source' The
other cell potentials were:
[Vl—VZ]analyser - [VlHVZJreaction - [VlHV2]source = 1.0 volt
[V1+V2]ana1yser - [Vl+v2]reaction -
[VT]source - [VT]analyser B [VT]reaction = 0.5 vole.

The electron current was 7.5 x 10_8 amp. and the oscillator

frequency was 329.89 kHz.
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depth increases with decreasing y. Indeed by restricting the range of
aveﬁaging over z in Eqs.[13.2] and [13.3]" we are able to obtain

consistency between the measurements of Beff and B, as shown by the
: y .

dashed line in Fig. 13. However, in order to fit the measured values of

B, and B
e

2

at [V, -+

v, 1] = -1.0v, we must choose y * -0.0045 m. and
1 "2 source :

f£f

restrict z  to values g 0.1la which is considerably smaller
than one would expect in the adiabatic transition limit. It is therefore

likely that the agreement between the measurements of Be and B% implied

ff

by the dashed line is fortuitous and that the real truth of the matter

lies in a combination of the two possibilities expressed above.
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15. Determination of -the Initial Distribution.of

Energy in the ICR System

The initial distribution of kinetic energies of ions formed by electron
impact depends on the nature of the electronic transition from which the
ions result. Ions formed by dissociation of molecules may have kinetic
energies several hundreds of times greater than kT. This energy results from
conversion of intermal energy of the parent molecule into kinetic energy
of the daughter particles. On the other hand ions formed by electrons from
atoms or molecules without dissociation have kinetic energies very near to
that of the corresponding neutral particles (* 3/2 kT) due to the small ratio.
of the electron mass to the atomic mass. Those ions formed in the ICR cell
with initial energies very much greater tham the trapping wéll depth may
escape from the system, but since the ions are formed with equal a priori
probability in each dz in the range - a/2 = z £ a/2 and the potential
distribution inside the cell is known, the fraction of ions retained by the
traps may be calculated. We now wish to calculate this fraction which we
| will denote by f.
An ion from a mono—enefgetic ensemble of ions whose initial velocity

makes an angle © with the z axis has an energy
[15.1] g, = %-m v: = E cosze

associated with its z motion. We assume that the potential V(z) in the =z

direction is well represented by the approximation of Section 11

v(z) = V(0,0) + VO(Z z/a)2



- 124 -

where Vo = VT - V(0,0) is the.trapping well depth. Further, if the first
3 assumptions outlined in Section 1l are valid, then those ions that are
formed with g 2 Vo - V(z) will hit the cell walls and presumably be lost
from the system. It is therefore possible to define a cut-off angle by

V0 - V(z)
[15.2] cos 8 = (———E———— )

so that those ions with 6 < ec escape from the trap. Those ions with
6 > ec will remain in the cell if the magnetic field in the -z direction is
sufficiently large to ensure that the ions' cyclotron radii are much less
than b/2. If the initial velocity distribution is isotropic,lthen the
probability of having 6 between 6 and & + d6 in the interval 0 = © < /2
is sinB6d6. ¥Note that siﬁce motion in the +z direction is equivalent to
motion in the -z direction insofar as kinetic energy is concerned, the intervals
0206 = w/2 and w/2 £ 8 £ 7 are equivalent.

There are two regimes of Vo which we must consider for ions of energy E,
Vo < E and V0 2 E. There is a GC for each value of V{(z) so that.the fraction

<

of ions F(V), produced with potential V(z) = V which satisfies Vo S E is-

given by

[15.3] F(V)

c
1 - J sinfdb6
o

]
~
o]
N’
N

But in Section 11 the probability that an ion is formed with potential between

V and V+dV is given by [Eq.1L.20]. Thus the total fraction of ions
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collected for Vo £E is

v
(o)

[15.4] £ J F(V)g(v)av
[¢]

m Vo L
=% (F)

In the case that Vo Z E all ions formed at potentials V = VO—E are

captured, F(V) 1, and the fraction of mono-energic ions collected by the

trap is
Vo—E fVO VO—V L
[15.5] £ = J g(V)dv + J C——E—)zg(V)dV
o V -E
o
V -E A V -E
_ 1 o % __01/2 -1, 0 L. >
=5 {¢ v_ )+ (E )2 cos 6?2:0 }; V,ZE

It is now only necessary to average f over the distribution of initial
energies, g(E), to obtain the total fraction of ions collected at a given
Vo. When ions are formed by molecular fragmentation their distribution of
kinetic energies depends on the natﬁre of the electronic enérgy state of the
molecule before and after the dissociative transition. For these ions a
general g(E) cannot be defined. However, g(E) for ions formed without

dissociation is well approximated by a Maxwell-Boltzman distribution

[15.6] g(E) =»/%: (_kl__r)?:/z oE/KT
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rm
where J ¢(E)dE = 1.

The total fraction of ions collected by the traps for
o .

this Maxwellian distribution of initial kinetic energies is therefore

v '
7 _ O L _m/n V -E \ _ —E.1
[15.7] > = 2 ey 32 J pZe B/KT %U—:;—— +\/—° cos T [-o— | dE
m o L O

E

T IV c
+ ° J o B/KT 4p
'

o

Making the substitution I/E/Vo = gsin ¢/2 and using the relation

"
[ 8030 cia?Vap = e BVt D 1 ()
(o]

[Gradshteyn and Ryzhik, 1965; Pg. 482)], Eq. [15,7] becomes, after some

- algebraic maripulation,

aV_, =V _/2kT v v

[15.8] <f> = (ﬁ)’2 e © [11(—2%) + Io(ﬁi?)]

where Io and Il are Bessel function with imaginary arguments.

Eq. [15.8] gives the dependence of <f> on the trapping well depth for a
thermal population of ions. Since the ICR signal intensity is proportional
to the number density.of ions in the cell one can obtain information about

the initial distribution of velocities from the dependence of the signal

strength on V0 using relations such as [15.8].
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The energy distribution for ions formed by dissociation of a molecule
is usually discussed in terms of an energy level diagram of the type shown
in Fig. 26.. The energy distribution of the fragmented particles may be of
two forms providing the transition of dissociation does not violate the
Franck-Condon principle [Massey 1969; Chapter 12]. 1In Fig. 26 a transition
of type A results from excitation to a repulsive state of the melecule
possibly giving rise to fragments with large kinefic energies. Type B
transitions occur upon excitation of the mélecule to a bound state for
which part of the Franck-Condon region of the ground state lies above the
energy of infinite separation of the molecule's constitutents. The form
of g(E) arising from these two types of.transitions is shown at the right
in Fig. 26, Dissociative transitions which violate the Franck-Condon
principle are also possible [Massey, 1969; Chapter 12] resulting in a
third type of energy distribution of the fragmented particles. This type
of transition will not be considered here.

The ICR signal intensity is directly proportional to the number
density of ions and thereby reflects their initial velocity distribution.
Thus, to estimate this distribution we need only study the dependence of
tﬁe ICR signal on the trapping well depth, or VT' .In orﬂer to avoid
alteration of the cell potentials or the ionising electron beam the
magnetic field was modulated for these experiments. In this'case the

observed signal is the derivative of the absorption and the strength of the
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Energy distribution of particles formed by molecular dissociation.
The lined section shows the Franck-Condon region for the ground
state of the molecule and two possible transitions leading to

dissociation are indicated by the arrows marked A and B,
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line is best represented by the peak to peak intensity which we may write

[Butrill, 1969]

[15.9] A = CrP <f>
1%

where T is the average drift time of the ions through the analyser, and C
is a constant depending on the ionic mass and the level of the rf electric
field. Eq.[15.9] neglects the effect of rf inhomogenity and
the complicated dependence of the ICR line shape, through t and Woggr OO the
spatial distribution of the ioms.

In changing the poteptials of the ICR cell the spatial distribution
of ions in the celi is altered as is the ave¥age arift time through the cell.
Thus A_pp is a function of VT through both 1 and <f>. Also, as we show in
Appendix 2- the line width énd signal strength are dependent on bm/Bl/2 where
bm is the field modulation amplitude and Bl/2 is the line width as defined
previously in Eq. [13.3]. Since Bl/2 changes when 1 varies it is necessary to

correct the measured signal stfengths for the effect of field modulation and

we have,

[15.10] <f> = (C' A (Bl/)2
PP 3

where the dependence of App on 12 is cancelled by multiplying by the
.experimentally determined B%, and C' contains a normalizing factor to cancel
the dependence of A_ on b_/B, .
PP m 73 _
The solid lines in Fig. 27 shows <f> versus VO for a Maxwell-Boltzman
.*.'
distribution of initial velocities in the one case - (Ar ) and a gaussian

distribution centred at 8.6 ev with 5.0 ev full width at half maximum.
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Fig. 27: Theoretical calculation of the fraction of ions collected by the
traps as a function of the well depth (solid line) together with
normalized experimental results for argon ions (®) and protons from

dissociation of I-I2 (m).
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This latter case approximates the experimentally determined distribution
of energies for protons formed by dissociation of molecular hydrogen by
75 ev. electrons [Dunn and Kieffer, 1963] but neglects the slight anisotropy
of the real g(E) [Dunn, 1962]. Also shown in Fig. 27 are the experimental
values of <f> found by further normalizing the ICR signal strength to one
value of V0 on the appropriate theoretical curve. The upper points are
for Ar+ ions and the bottom for protons.

Normally we find that Ar+ and ions with similar velocity distributions
are lost from our system at higher trapping potentials than is predicted
by Eqs. [15.5] to [15.8]. However, this is not surprising in view of. the
complex dependence of the ICR signal on the electrostatic potentials, and
other incalculable factors. But, at least a qualitative statement may be made,
Tons from a thermal population are easily confined in the ICR cell at low
trapping potentials while ions with large initial kinetic energies require
larger values of VT to trap an appreciable fraction of the originally
formed ions. Using the technique outlined here, it is possible to obtain
a qualitative understanding of the distribution of energies in the ICR

apparatus.



16. Experimental Apparatus: Surface Tonisation

In the preceding sections we have shown that an ionising electron
beam distorts the electrostatic potgntial of the ICR cell so that the
spatial distribution of the ioﬁs becomes poorly defined. While the
analysis used ‘here yields estimates of the average- position of the
.ions, there are obvious adVantages to -having the ions near the geometric
centre of the cell. Since biasing the source trap greater than that in the
analyser does not sufficiently restrict the maximum amplitude of trapping
oscillation,it seems best to inject the ions into.the ICR apparatus from
an external source (e,g; a mass spectrometer), or to cross the ion beam
with a well colliminated neutral beam of the‘partiéles being investigated,
thereby selecting a relatively well defined energy range.

Experiments of this type using a hot wire ioniser fo?_iﬁn ﬁroduction
have been performed i& our laboratory. When a neutral atom or molecule with
ionisation potential I strikes a surface with work function ¢ there is a
very high probability that it will be re-emitted as a positive ion if ¢>I.
1f Tsis the temperature of the surface, then the ratio of positive ions to
atoms re-emitted is [Zandberg and Ionov, 1959]

n
[16.1] ;i = A e(

a

¢$-I) /KT,

where A is a dimensionless coefficient often set equal to one, Because of their
high work function, hot tungsten or platinum filaments (¢ * 4.5 and 4.1 ev,
respectively) are ideally suited for surface ionisation of the alkali

metals and a small class of molecules.
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The cell used for experiments with a hot wire differed from that
described in Section 12 only in that the source region and the electron
beam were removed and replaced with a stainless steel oven. This is shown
in Fig. 28 while a schematic side view of the oven and ICR cell is shown
in Fig. 29. The oven is mounted on a stainless steel post attached to a
rod which supports the ICR cell.

The rgceptacle of the alkali metal is 0.021 m. long and 0.005 m. in
diameter. Upon heating, the atoms effuse from the oven through a channel
4 x 10_4 m. in diameter and 0.005 m. long. The heating filament was inductively
wound from 3 x lO—4 m. (0.D.) tungsten wire and passed through two holes in
a ceramic insulator which was inserted into a 0,003 m. diameter hole at the
front of the oven, very near to the effusion channel. Thus the front was the
hottest part of the oven to prevent pile-up of metal atoms at the effusion
hole. Two straps were attached to the sides of the oven (Fig. 28), but
insulated from it, to support a tungsten filament about 0.025 m. in front of
the effusion channel. This filament (7 x 10-5 m. 0.D,) is less than 5% of the
width of the ICR cell in length (i.e. about 0.001 m,), so that ions are
‘created very near to the geometric centre of the cell, The wire was biased
slightly positive to cancel space charge due to electrons and prevent them
from leaving the metal surface. The average position of the ions in the ICR
cell is altered by this potential but its precise influence on the energy
and spatial distribution is not yet known. In any case it has been
experimentally demonstrated that the spread in energies of ions leaving a hot
tungsten surface is about kTS where TS is the temperature of the surface

[Zandberg and Ionov, 1959].
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Fig. 28: The alkali oven and its mount together with the ionisation filament.
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Fig. 29: A side view of the alkali oven and the ICR cell.
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By varying the biasing on the filament the average energy of the ions
formed there was changed. Thus both the amplitude of oscillation in the
z—direction and the height of the ions in the y-direction will change with

the filament biasing V resulting in a variation of the averaged electric

fil
field that the ions experience in the analyser. Fig. 30 shows the dependence
of line width on the potential of the hot wire. At higher potentials B, is

2
smaller since the ions move to positive y's where their KEy> is smaller, The

exact dependence of B; on V is very complicated since the manner in which the
2

fi1
ions' total average energy is shared between potential energy (y position in
the cell) and kinetic energy (oscillation in the trap, cyclotron oscillation)
is not yet completely known. For small biasing voltages, however, one expects
low trapping oscillations and an ion beam that is relatively well defined
spatially.

The temperature of the oven was measured with a copper-constantan
thermocouple. Excellent ICR signals were obtained from 39K+ ions at an oven
temperature of about 70°C. corresponding to a potassium vapour pressure of
about 4}(10_6 torr. inside the oven with the filament a dull red in colour
(*1400°K.). The efficiency of ionisation of sodium on tungsten is consider-
ably smaller than that of potassium [Datz and Taylor, 1956], but adequate
ICR signals of 23Na+ were obtained with an oven temperature near 150°C.

(the vapour pressure of sodium at 150°C. is approximately 7.9x10“6 torr.
[Nesmeyanov, 1963]) and a slightly hotter filament. The temperature was also
monitored at the end of the ICR cell near the detection region and was found
to vary appreciably from room temperature only when the ion oven was heated
above 300°C. Thus the experiments reported here were performed at about

293°K.
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Fig. 30: The line width of 39K+ ions formed by surface ionisation on a hot

tungsten wire as a function of the biasing on the wire, In

Vfil'
this experiment the oscillator frequency was 404.34 kllz. and the

ICR cell potentials were Vl—V2 = 1.0 w, V1+V2 = 0v., and

VT = 0,2 v. (®) and VT =1.0v. (®).
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As we have mentioned in Section 8, most ICR researchers find that the
single resonance lines exhibit an asymmetry in which the side bands on the
high field (low frequency) side of the maximum are suppressed. One possible
explanation for this asymmetry was suggested in Section 8. The model,
based on the position dependence of the quasi-cyclotron frequency, predicts
that ICR lines should be nearly symmetric if y ? 0 but should exhibit the
experimentally observed asymmetry if y < 0. Also, since the asymmetry is
suggested to result from the rather large electric field gradients in the
ICR cell, the asymmetry should be less prominent if the ions have, on average,
small amplitudes of oscillation in the trap.

Therefore it is interesting to compare low pressure line shapes using a
" hot wire ioniser and an electron beam to the theory outlined in Section 8,
However, such a comparison must necessarily be qualitative for several
reasons. Firstly the theory of Section 8 assumes a single unique position
along the y axis for all ions in the system, a uniform distribution of
amplitudes of oscillation along the z axis, and the harmonic approximation
for the ion motion in the trapping direction. All of these assumptions are
certain to be violated in a real cell, so exact comparison between theory
and experiment is unlikely. Secondly, extensive modifications of the
spectrometer are required to convert from ionisation by a hot wire to ion
production by electron bombardment, and since the spatial distribution of the
ions in the cell is dependent on cell orientation and cleanliness, only
qualitative comparisons between the line shapes of the two techniques can be
expected.

In Fig. 31 (a) we show the 39K+ resonance as a function of the biasing

on the hot wire ioniser, The asymmetry of the lines is most prominent at low
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bias voltages for which the ions are expected to be in the lower part of

the cell. As in Fig. 30 the lines at low Vfil are broader. 1In Fig. 31 (b)
. 0 39+ ..
a typical Ar resonance shows a more marked asymmetry than the "~"K 1lines

in qualitative accordance with theory.
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Fig. 31: A comparison of 39K+ and 4OAr+ resonances. The cell parameters

were V., = 0.52v7i,, Vv, = -V, = 0.5 v.
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17. Non-Reactive Collisions: Discussion of Collision Frequencies

and Ionic Energy Distribution Functions

In the ICR spectrometer the free motion of the ions in the crossed
electric and magnetic fields is interrupted by collisions with atoms or
molecules in the background gas. This results in a pressure dependence of
the ICR absorption spectra from which it is possible to determine the ion-

neutral collision frequency defined by [Beauchamp, 1967]

[17.1] £ =

>
m+M do

where m and M are the ionic and neutral masses respectively, n is the

neutral number density, o, is the momentum transfer cross section and Vo is

d
the relative velocity of the colliding pair. The brackets in the above

equation indicate an averaging of o v, over the ion-atom relative velocity

d
distribution function. In this section we report measurements of £ for
sodium and potassium ions in argon and helium gases. These systems are
particularly simple since both the alkali ions and the inert gas atoms have
closed electronic shells, hence charge exchange between ion and atom in the
bi-particle collision is unlikely. At the end of this section the velocity
dependence of £ is discussed and a crude velocity distribution for ions
undergoing elastic collisions with neutrals is derived.

However, first let us discuss the theoretical ICR line shape for ions
undergoing non-reactive collisions. When the r-f electric field used to
detect the ICR signal is uniform over the spatial distribution of the ioms,

Butrill [1969] has shown that the rate of change of energy at time t of an ion

that has moved freely under the influence of the crossed electric and magnetic
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fields from to to t is

dEL E2q2 sin Sw(t-t )
[17.2] -1 2
' dt 4m Sw

where Sw = W Wy w 1is the frequency of the ion at maximum absorption

o
intensity and wy is the detector frequency. If the average ion undergoes
no collision during the time that it is in the analyser then t0 = 0, but
if the neutral particle density is such that collisions between ion and
neutral are possible then t0 is the time of the last collision. At time t
dE
in the analyser there is a distribution of EE_‘S associated with the
distribution of to's resulting from collisions [Bloom, 1971]. The probability
—(tﬁto)/r
that an ion moves from tO to t without collision is e while the

fraction of ions that undergo collision in time dtO is dto/rc. Therefore

the instantaneous power absorption is

—(t-to)/TC

dE t dE -t/t_ dE
4 _ i e c 4
[17.3] “ac ot Mo J dt T dto * 1o® [dt ]t =0
o o c o

where n is the number of ions in the analyser and TC(=£_1) is the mean
time between collisions, The first term of Eq. [17.3] accounts for all
those ions which undergo collisions between O and t, and the second those
that move freely for this interval. Substituting Eq. [17.2] into [17.3]
yields a well known expression for the instantaneous power absorption
[Comisarow, 1971; Dunbar, 1971; Huntress, 1971];

2.2
dEL q Elno -t/T

[17.4] g, = e (6w sin Swt -
O

cos th) + T—l].

4m(6w2+r; ) Te ¢
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If we denote the average time which an ion spends-in the analyser of the

ICR cell by t then the average power absorption is given by

qui (T;2~6w2)cos SwT
[17.5] A(Sw) = =5 5 =
dm(t “+Sw )T T "+ Sw
c c
T; Sw sin Swt —T/TC sz - i;z .
-2 ] e + — + —} .
T;2+ Gwz Gwz + TCZ Tc

The assumption of an average drift time of the ions through the analyser
region is of course a crude one.  if there is a large dispersion of the
positions of the ions in the ICR cell. However, the model has met with -some
success [Huntress, 1971] previously and should be a valid one, particularly
for our geometry where the ions are produced with restricted amplitudes
of oscillation in the trapping well. It therefore seems reasonable to
estimate t from the low pressure ICR absorption line, so that it is a simple
matter to estimate T, for a given ion-atom pair from pressure broadened ICR
lines.

The ICR collision frequencies £ were obtained by a least squares fit
of Eq.[17.5] to experimental spectra. Fig. 32 shows one of the best fits of
experiment to theory while Figs. 33 and 34 show estimates of £ for Na® and K+,
obtained with very low r-f electric fields, as functions of helium and argon
pressures. When the average energy gained by an ion between collisions is
very small the velocity distribution is nearly Maxwellian with the same
temperature as the neutrals and the ICR collision frequency is simply related

to the zero field d.c. mobility K(o) of the ions [Ridge and Beauchamp, 1971]

[17.6]
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A fit of an experimental 39K+ resonance {(0) to Eq.[l7,5]

(solid line). The average drift time was taken as 8.08x10"-4 sec,
and an argon pressure of 2.75x10"4 torr. was measured. The
noise level of the Robinson oscillator was less than the size

of the dots representing experiment on the diagram,
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The collision frequency & = T;l as a function of pressure for
Na+ and K+ in helium gas. Typical ICR cell parameters are
Vl = 0,5v, V2 = =0.5v, VT = 0.15 to 0,5v with a bias on the

ionization filament from 0.lv to 0.7v.
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+
Fig. 34: The collision frequency of K and Na+ as a function of argon gas

pressure. Experimental parameters are the same as for Fig. 33.
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A theoretical discussion of the relations among £, K(o) and 9y is given in
Appendix 3 and the influence of various ion-atom interaction potentials on

K(o) is discussed in Section 18. The solid lines in Fig. 33 and 34 were
calculated from Eq. [17.6] using the experimental results of Tyndall et al.

as given by Massey [1971]. Agreement between the ICR measurements and the d.c.
mobility experiments are within the present errors in measurement of pressure
[about 10%], which was measured with a Bendix G IC-017-2 ion tube on a CVC-GIC-
111A control consul. Both ion tube and consul were calibrated using a McLeod
gauge.

In this experiment the ion flux is independent of the pressure of the
background gas unlike those experiments in which the ions are produced by
electron bombardment of the neutrals. Thus it is a simple matter to compare
the ICR signal amplitude as a function of pressure with the theoretical
prediction of Eq. [17.5]. This is done in Fig. 35 were we plot the relative
intensity of the 39K+ signal at resonance versus argon pressure, the solid
line being obtained from Eq. [17.5]. Measurement of the ICR signal intensity
at resonance can, in principle, yield as much information as measurement of
the line shape [Huntress, 1971] especially at high pressures where the analysis
is particularly simple. Plots such as Fig. 35 - give a useful check of our
experimental determination of £ from the line shape,

We now wish to extend the discussion of the ionic energy distribution
given in Section 11 to include the effect of collisions. This is of interest
since no such discussion is presently available in the literature nor is there
available an expression for the average ion energy which adequately bridges
the gap between the low pressure regime and the steady state limit where the

average energy gained by the ion between collisions is equal to that lost to

the neutrals through collisions.
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Fig. 35: The relative intensity of the 39K+ signal as a function of

argon pressure. The solid line is obtained from Eq. [B.3].
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If the initial energy distribution of the ions' motion in the x-y
plane is represented by a two dimensional Maxwellian, with an initial
temperature T,, then as we have shown in Section 11, the energy distribution
function after the ions have been subjected to ICR for a time t—tO during

which no collisions occur is given by

- '. 3
. (E.L+Em) /kTJ_ Z(EI;EL) 3
[17.8] P (E,) = T I ( kT, )

where IO is the Bessel function with imaginary argument,

2.2

E =5 (t—to)2 = n(t-to)z, 0t =t

and El is the amplitude of the r-f electric field.

Now, assuming that the average time between collisions is T the

fraction of ions per element of energy dE, that have undergone no collision
—t/'rC
at time t under resonant conditions is just e [QL(EL)]t -0
o

The

probability that an ion which underwent a collision at t undergoes no
—(t-t ) /7

collision between tO and t is e while the fraction of ions which

undergo collisions in time dtO is dtO/TC, so that at time t the fraction of

ions per element of energy dEL whose last collision occured between to and
—(t—to)/TC dtO
t +dt i P, (E —
R [Py (BT, 40 T
o) c
and t, so a generalized distribution function for ions undergoing collisions

tO may take on all values between

may be written in the form,

- 1
_t/TC . (Em+E.l ) /k—T . 2 (ELEm) 2
[17.9] B (E,, T, t) = e T ,Io( T )
-E, /KT _mtne o ) (M+m) 4
L g gt -(t-t /T, 2mkT, (G5 MEy)
+ —‘-‘kT T—- dtO e e IO(2 kT
g c’o g

(t—to))
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where Em = ntz. The integral in the above expression may. be evaluated in
terms of Generalized Hypergeometric Series, but the result is not very
tractable and will not be given here.

The first term in Eq. [17.9] represents the contribution to the
distribution function of those ions which do not undergo collisions in time
t while the second term accounts for those ions which do. 1In the steady
state limit, where the average energy gained between collisions is equal
to the average energy lost to the neutral particles, Huntress[1971] has shown
that the average energy of an ion is different by a factor (m+M)/2m from the
total energy gained between collisions. Thus in the second term of Eq. [17.9]
E; is replaced by (m+M)E;/2m. Also, in the limit of T;l + o the ions must

come to equilibrium with the neutral gas so T the initial ion temperature,

Ly s
is replaced by T , the gas temperature, for those ions undergoing collisions.,

B (E,, Tos t)dE, is the fraction of ions whose cyclotron energy falls
between E, and E, + dEL after being subjected to a resonant x-f electric
field for a time t in a medium where the average time between collisions
with the background gas is T In this constant mean free time model T;l( = £)

is assumed independent of the ion energy (i.e. T is assumed independent of

t and to). P (E

Lo Tos t) is shown as a function of E, for several different

values of t/rC in Fig. 36 for the special case m=M. As we would expect

P, (E Tgo t) reduces to P, (E;) when T—i = 0 and to a two dimensional Maxwellian

3 ?

when T;l-+w. Also shown in the insert of Fig. 36 for t/TC = 2.5 is

El
f(E") = J %SEL’ Tos t)dE, , the fraction of ions whose energy E, < E'.
0
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The ICR energy distribution function P, (E,, T t) versus E, for
several different values of T;lt. EL(EL, Tos t) was computed
numerically from Eq. [17.9] with m=M, Em = nt2 = 1.0 ev and

kT, = kT_ = 0.025 ev. The insert shows the fraction of ions

with E, £ E' for the case t/TC = 2,5.
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In Appendix 4 the nth moments of PL(E s Tes t) are calculated, This is
of interest for two reasons the firs; being that it gives insight into the
effect of the energy distribution on measurements of energy dependent cross
sections; 1.e. it gives a feeling for GEI when ¢ is expanded in powers of
El.. Secondly, quantitative information on the spread of energies in the ICR
apparatus is given by (Eg - (E:)z)%/gr the fractional width of the
distribution, which is shown by the solid lines in Fig. 37.

The distribution PL(El’ Too t) which we have discussed above results
when ions are prepared by subjecting them to resonant r-f for a fixed
time t, such as in double resonance experiments [Clow and Futrell, 1970].

If after passing through a region of high r-f for a time t the ions enter a
region in which they experience no cyclotron heating, they will evolve toward
equilibrium with the gas and after a time t' in the new region the distribution

function becomes

- 1
~t'/1! —t'/ré El/kTg

_[17.10] QL(EL: Tt Té, t') = e c Pl(EL’ T t) + (1-e ) ELIﬁ;____

g
where the primes indicate parameters in the regién with no applied r-f. It
is obvious from Eq. [17.10] that the ions very rapidlylrelax to thermal
velocities if (ré)—l is large.

Often the ions are detected and heated by the same oscillator, in which
case the distribution function evolves, because it is a function of time,
during the course of the measurement., In this circumstance a crude measure
of the fractional spread in energies is given by [;£g>t,- (QE:>t)2]%/€EI}t
where the brackets < >t indicate a time average over all t in the range

0 <t 1, 1 being the time that the average ion spends under the influence
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The fractional energy spreads of the distribution P, (E,, Teo t)

as a function of pressure p, for T;lt = 1.25x 104p. The solid

2

2 2. —
lines show [EL - E*]é/E* for two different values of Em = nt

—_— 1 _
while the dashed lines show [<EJZ_>E - <EJ_>i]/2/<E‘_>t for values of
2

Ef =Nt
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of the heating r-f. From the dashed lines in Fig.37, this fractional
spread in energies is seen to be considerably greater than the width of
EL(Ei’ Tos t) at low pressures.

It should be emphasized that only the two~dimensional motion in the x-y
plane has been considered here, neglecting the effect of the trapping
oscillatiéns in the z-direction. If the ions are produced with thermal
energies at z * 0 in the trap then P“(E“)Iis initially a one~dimensional
Maxwellian and §;= %-kTg + E:-if the temperature of the gas and the ions
are the same. The effect of collisions is not only to damp out the trapping
oscillations but also to initiate them in the presence of ICR by conversion -
of part of the energy gained from the r—-f between collisions into motion
in the z direction. A more realistic ICR energy distribution than that
considered here must account for both of these effects. This has been done
by Whealton and Woo [1971} for ions moving under the influence of a time
independent electric field in the absence of a magnetic field.

Fig. 38 shows the collision frequency, at constant bressure, of Na
with argon neﬁtrals as a function of <§I>t, which was altered by varying
the r—f level of the detector oscillator and the value of TC used in Eq. [A4.5]
was obtained from measurements made at small El' If the ions are produced
by electron bombardment with all” possible amplitudes of oscillation in the
trapping potential, one whould use the amplitude avefaged r—; electric
"field (Section 8) to Lalculate QEI>t. However in this experiment the ions
are initially produced at the geometric centre of the cell and the spatial

distribution of the ions can be controlled to a certain extent by the bias

voltage of the filament, so that the r-f electric field amplitude at y=0,
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z=0 was used to estimate El' This of course is an over-simplification of
the problem of calculating the average electric field strength.
From Fig. 38, T;l‘is seen to be indeﬁendent of <E:>t to about 1.0 ev

(160 mv peak to peak r-f voltage; E. = 11.5 ev) at which point a decrease in

f
the total ion current collected at the end of the analyser was observed,
indicating a loss of ions from the system. A similar decrease in the total
ion current was noted at about the same ¥r-f level in the collisionless regime,
The total amount of r-f energy required to expand the ions cyclotron radii
to a value b/2 is considerably larger than either <E.L>t or Ef = quiTz/(8 m)
the latter being the average energy after a time 1 of those ions undergoing
no collisions. This phenomena has been observed by many other workers
[Beauchamp and Ridge, 1971; Goode et al, 1971; Clow and Futrell, 1971].
Since under most experimental conditions there is a considerable spatial
dispersion of the ions in the y-direction of the ICR cell and since in the
collisionless regime half of the ions have energies greater than the average
energy (Section 11), a loss of ions at energies less than mbzwi/S is to be
expected. This effect also could be a manifestation of the anharmonic
nature of the electric fields inside the cell and may even be a result of
coupling between the cyclotron and trapping oscillations at large cyclotron
amplitudes.

The collision frequency of Na+ in argon is seen to be relatively
independent of average ion energy. Similar results were obtained for K+
in helium and argon and Na+ in helium. Because the ICR collision frequencies
were obtained from a least squares fit of the central portion of the
experimental absorption spectra, they are a weighted average of &(E,) over the

off resonance energy distribution function and the effective energy of the ions

for the measurements of Fig. 38 is lower than <EI>t [Dunbar, 1971].
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Fig. 38: The ICR collision frequency of Na+ in argon as a function of QEIEt
at two different gas pressures, The spread in energy at
resonance with <EI>t = 0,61 ev for T;l = 3460 sec."l is given

by the solid bar at the bottom of the plot.
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18. Discussion of Ion—-Atom Interaction

At low energies the dominant interaction between an ion and a neutral
arises from the well-known polarization attraction of the ion to the dipole
induced on the atom by the ion itself, This interaction is described by

the potential
o 2
[18.1] V() = -=L-

3
where a is the polarizibility of the neutral atoms and r is the ion-atom

separation. For the above potential SR/ is independent of v and the
o o

mobility takes a particularly simple form [Dalgarno, 1958]

K(ON _ 35.9
N Jar

[18.2] K!

where p is the'reduced mass of the colliding pair, o' is the polarizibility
expressed in az, N is the neutral gas density at atmospheric pressure at

the temperatufe of measurement and NO is Loschmidt's number. Thus K' is
measured in (Volt sec.)—lcm.z(PMU)%. In many systems Eq.[18=2] adequately
accounts for the observed dc mobilities. However, for the alkali ion-inert
gas case the experimental mobilities of Tyndall et al. [Massey, 1969] are
consistently larger than indicated by a pure polarization aftractive force and
therefore. other. forms of the potential will be.discussed. The effect of short
range repulsion on the mobility has been approximated by assuming a

purely hard sphere collision and also by combining the polarization
attraction and the hard sphere repulsion in the folloﬁing manner [Langevin,

1905]
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2 :
[18.3] V(r) = - 92‘%— r > D
= o r <D

where D, the collision diameter 1s the sum of the atomic and ionic radii.
-8 .
Hassé and Cook [1931] have included a ¥ repulsive term in the potential

but usually both models fail to account for observed dc mobilities.

More recently Mason and Schamp [1958] have calculated collision

integrals of the form <o WB> using a potential which includes

d

; -12 ; . .
ar attractive term and a r repulsion as well as the polarization

attraction. They write

[18.4] V(r) =

N

r - r r )
e [(1+v> -4y D = 30 (r—“‘>‘*]

where 3(l—y)er; = eza, r is the value of r at minimum V(r) and Y is an
adjustable parameter which determihes the importance of the r"6 term relative
to the r—4 attraction. The r_6 term in Eq. [18.4] accounts for a charge
induced quadrupole attraction and the London dispersion energy while the
short range repulsion is entirely represented by the r_12 term.

By varying the two adjustable parameters in Eq.[18,4}-Mason_and
Schamp [1958] were able to fit their derivation of K' to the temperature
dependence of the experimental mobilities and obtain values of ros € and v.
On the other hand Pattersoni1972)] defined the collision diameter D to be
the value of r for which the interaction potential is zero. Thus using an

experimental D the parameters L and e, and hence K' may be calculated



- 172 -

for any Y. Dymerski et al. have used Patterson's technique to estimate

the Mason-Schamp potential parameters for anions in numerous molecular gases.
We have also used this procedure to calculate theoretical K''s for the
Mason-Schamp potential with y=0, 0.25 as well as for the Hassé-Cook
potential. Table 3 cémpares experimental and theoretical drift mobilities
for these different models of the interaction potential. Table 4 gives the
parameters of Eq.[18.4] which lead to the best agreement between theory and

experiment.

On the basis gf these ICR expér;ﬁents there seems no reaéon fo
suspect systematic errors in the measurements of Tyndall et al, as
suggested by Dalgarno et al. [1958] and an ion-atom interaction potential
like that of Mason and Schamp is required to account for the mobilities
of the alkali ions in inert -gases. “Poor energy resolution of the ICR
spectrometer as well as lack of precise theoretical information on the
effect of a velocity dependent odﬁ)on the ICR line shape prevents a
detailed study of the energy dependence of the ILCR collision frequencies,
Nevertheless a first order energy distribution for ions at resonance with
an applied r—f_electric field was. dexived and the average lon .energy

obtained for all regimes of pressure., It is hoped that the treatment of

———— e s TR e

. the ICR line shape given in this section will lead to a better understanding

of the influence of velocity dependent rate constants on the ICR line

shape.
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Table 3. A comparison of the effect of different ion-atom interaction

potentials on the d.c. drift mobility.



TABLE 3

EXPERTMENTAL THEORETICAL™ |
DC Drift Polarizationd . Maéon—Schampg Hassé-—Cookg
Mobility IcR® 4-Power Hard Spheree "Lanagevin 4-12 Power 4-8 Power
%" In Argon 11.7%, 11.8° 11.4 10.8 49.6 12.2 12.9 6.6
39" In Helium 41.0% 40.7  30.5 58.7 34,7 © 46.8 58.4
23ya* 1n Argon 11.5% 11.6 . 10.8 | 66.6 12.1 1.6 13.2
23Na" 1n Helium 41.9° 42.8 30.5 80.9 351 45.4 57.5

a Tyndall et al. as recorded by Massey [1969]

b James et al. [1973]

S pLT =

¢ This work- -~

d Dalgarno et al. [1958]

e Patterson [1972]

f. Lanagevin [1905], Hassé and Cook [1931]

g Coefficient of the higher power obtained by setting V(D) = 0

h o given by Landolt-Barnstein [1956], ionic rédii from Seitz [1940, Pg.93]

atomic diameters of helium and argon taken as 2.18 A and 2.6 A respectively [Mason and Schamp, 1958]
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Table 4. Values of the parameters in the Schamp-Mason potential
that lead to best agreement between theory and measured

d.c. mobilities.



39K+ In Argon

39K% In Helium

23Na+ In Argon

23Na+ In Helium

0.25

0.25
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TABLE 4

T (A)

3.0
2.76
2.6

2,35

DA

2,63
2.42
2,27

2.06

elev)

0.13
0.02
0.14

0.04

K" (en? (BMU) 2/ v 5)

11.8
41.0
11.6

40.7
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19. A Crossed Beam Experiment

As we have already mentioned, an important application of ICR involves
the study of rate constants for charge exchange or ion-molecule reactions.
The measurement of the cross section o(vo) as a function of average velocity
of the ions is of particular interest, but for such investigations it is
necessary to use as well-defined an ion velocity as possible. In ICR we
measure not a cross section but a rate constant Rq(Xg)gdzgsso“in order to
extract information about ¢ it is necessary to have a thorough knowledge
of the relative velocity distribution of the interacting particles. Unfo-
rtunately we saw in Sect. 10 that the ensemble of ions is quite complicated
since it involves a large distribution of trapping oscillation amplitudes.
Furthermore, the result of resonant r-f is to amplify the initial spread
of ion velocities. In Sect. 16 a possible method of restricting the
trapping oscillation amplitudes was proposed, but there appears to be no
obvious method for eliminating the large spread in energy of the ion beam
when ion cyclotron heating in the manner of double resonance experiments
is used. However using a background gas seems not to be the best means of
introducing a target for the ion beam. Somewhat better energy selection
might be achieved by intersecting the ion beam at a well-defined height
in the cell with a secondary neutral atom beam. After traversing the cell
the neutral beam could be removed from the system by a suitable cold trap,
and since the beam need not be confined in the magnetic field, the total
atom flux could easily be monitored. In our laboratory we have started
such a project, and although not complete, we will present preliminary

measurements here.
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Fig. 39, The secondary alkali oven and its mounting collar
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A second alkali oven (secondary oven, Fig. 39) was mounted at the end

Ce—— e - —_—

{of the cell opp051te the’ oven (prlmary oven Flg 28) used to generate the ion

Py

- beam. To facilate its removal the secondary oven was mounted in a collan
which contained the heating elements. Four screws in the bottom of the
collar forced the oven into thermal contact with the heaters. The collar
was mounted in the same manner as the primary oven. In these preliminary
experiments charge exchange rate constants of alkali metal ions with alkali
atoms in the secondary atom beam were estimated from cellision broadening of
single resonance absorption lines. In order to obtain a relatively intense
atom beam a large effusion orifice (3.5 x 10™%n radius and about 5 x 10 'm
long) was used. Two systems were studied; one in which both secondary and

primary ovens were charged with potassium and the other in which the primary

oven contained sodium and the secondary potassium,

Rate Equations and Method of Analysis:

Before we specialize to the particular cases mentioned above let us
consider the reactions;

+ k! +

f19.1] A" +B3 A+B

11

+ + A %n B + A+

which are characterized by rate constants k'(=<c'vo>) and k”(=<o”vo>). The

number densities of atoms A and B are n, and n, respectively and the corres-

A B
ponding ion currents are NA and NB' The rate equations for these reactions are,
dN
[19.2] A _ . "
I - " " k NA + NB n, k
and
no.s]  Ta_ T
dt dt
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The first term on the right hand side of Eq.[19.2] accounts for a loss of A"
ions due to charge transfer to B atoms and the second represents a gain of A"
ions from collisions of B' ions with neutral A atoms. The solution of Eq.

[19.2] is

Nn, k"

Nn, k"
1 1Al .
A (k n, + k nB) t A

[19.4] N, (£)=[N, (o) - kT, ol e k"

T ‘7~'_"
ny K"+ n,

where NA(o) is the value of NA(t) at t = 0 ahd N (= NA(o) + NB(o)) is the
current of ioms, NB(t) may be obtained from Eq.[19.4] by interchanging A
and B, and k' and k",

To calculate the instantaneous power absorption at time t we follow the
procedure outlined briefly in Sect. 17, bearing in mind that for reactions
[19.1] the ion populations change with time in accordance with Eq.[19.4].
Consider ion A+, for which the collision frequency (i.e. the inverse of the
mean time between collisions) for momentum transfer té Both atoms A and B is
£, and the collision frequency for charge exchange with afom B is £'. The
fraction of A® ions that undergo charge exchange between to and to +d to;is
g' d t0 and the fraction of B' ions that convert to A" ions in this time
interval is g" d to where £" is the collision frequency for charge transfer
between B' and A. At time t, the total number of A® ions that have their

momentum randomized in d t0 is
11"
[19.5] T NA (to) g d to + T NB (to) g d to

T again being the average drift time in the x- direction. Note that t NA is

is a current. The probability that an ion N

o (t -t )(E +E")

a number of particles since NA

moves without collision for a time t - to'is , S0 at time t
the total contribution to the instantaneous absorption by those ions that

have undergone collisions in the time interval 0 gt <t is
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€ g, wy o (E-t ) (E+EM)
[19.6] T CT'E— (NA(tO) £ + NB (tO) E'") e (o] d tO
o
where %%é- is given by Eq. [17.2]. To obtain the total instantaneous
power absorbed at time t,A(t, Sw), we must add to Eq. [19.6] the power

absorbed by that fraction fo of A" ions that move without collision from time

to = 0, so that

t
[19.7] A(t, Sw) = 1 J gEJ‘ (NA (to) £+ NB (tg) £ e~ (t‘to) (E*’E')d .
o] e o
+ T £ N, (0) [%%ﬁqt ;

0
where the zero of time is the time at which an ion enters the analyser. Further,
note that the integration over t, in the above is equivalent to integration
over X_, the distance along the axis of the analyser, since x = VD t0 where
VD’ the drift velocity, is assumed constant for all ions and independent of
the collision frequencies. Eq. [19.7] may be used to obtain the total power
absorption,
1 T
[19.8] A (Sw) = = [ A(t,dw) dt.

0

To procééd further in our analysis it is necessary to specialize to the

processes (Eq. [19.9] to [19.12]) which we wish to investigate here,

k Z i N
9V 4 !
[19.9] 39,4, 4L, L1 39% 5 aLid
k
[19.10] Alpr 39 L2 A4l 9+
K
[19.11] 2xatis 3% 53 Pya 4 B
k

[19.12] K' + ““Na ~ K + ““Na*



We will also study charge exchange between like isotopes of 39K. These

reactions may be written in the form

AV BT+ ey > (AT v eT) + B,
That is, we picture a single electron which may be on either nucleus AY or
B" and neglect all other electrons in the atoms. This model is particularly
applicable to Egqs. [19.9] - [19.2] since the alkali atoms have a single s-
electron in their outer shéll, and the corresponding ions have closed shell
configurations. Symmetric resonant charge transfer occurs when A and B
are identical and the energy of the transferred electron is the same in
both atoms. Thus, reactions [19.9] and [19.10] are equivalent to symmetric
resonant charge transfer only if the ionisation potentials of the 41K and
391( atoms are identical. There are two main isotope shifts [Stacey, 1966]
resulting from the finite mass of the nucleus and the overlap of the wave
function of an s-electron with the nucleus. Neither of these effects have
been completely investigated either theoretically or experimentally for
elemental masses less than 60 A.M.U, but they are presumably very small. To
a first approximation the ionisation potentials of 391( and 41K are equal
(4.339 ev), so at the typical thermal velocities considered here, the rate
constants k1 and k2 associated with processesv[19.9] and [19.10] are the same.
With k, = k2 the current of both ggﬁt and 41K+ ions is independent of the time

1
spent in the ICR cell and Eq. [19.7] takes the form,

taE, -(t-t ) (£+€")

[19.13] A (t,80) = Ny(0) [ J T (eve") e dt,

o

- t(£+g') dE
'L
+e (gt e - o]
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Using Eq. [19.8] we get

2. 2 2 2 :
qQE; "N (@) (5 7-bu ) cos Swt £ 6w sindwt _ -TE,
[19.14] A (Sw) = s =5 -2 = >—]e
: 4m(gc +6w) E; -+ Sw gc + 6w
2 2
N Gwz - gC2 + £ 1)
EC + Sw ¢

where E. = &+ £'. Eq. [19.14] is identical to Eq. [17.5] with Tc‘1 (=8)
replaced by Eer This equation gives the ICR line shape for 41K+ ions moving
through a vapour primarily composed of 39K atoms. We can neglect charge
eXchange and momentum transfer between 39K+ and the 41K atomic isotope since
it comprises less than 7% of the total natural abundance by mass of potassium.
If we make this approximation Eq. [19.14] also gives the ICR line shape of
39K+ ions with £ and gc appropriately redefined.

In addition to NA(o) Eq. [19.14] contains only two unknown parameters
T and Ec which must be determined from ekperiment. On the basis of a single
ekperiment the relative contributions of £ and &' to Ec cannot be estimated.
As in Sect. 17 we choose to estimate t from the ICR line shape in.the
collisionless regime, gc = 0 and then to use this value of t in Eq. [19.14]

to fit theoretical and experimental lines at higher neutral particle densities,

thereby obtaining an estimate of Ec. A typical fit of a pressure broadened

39K+ resonance to Eq. [19.14] is shown in Fig. 40. Fig. 41 shows e for 41K+
and 39K+ (41£C and 39€C respectively) as a function of the square root of

1

3

the number density, n, of potassium atoms inside the secondary alkali

L & s .
2 will be discussed

oven. The significance of the dependence of Ec on n_
. . . . . +
after a discussion of the experimental and theoretical line shapes for Na

ions colliding with 39K atoms.
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Fig. 40. A typical fit of the theoretical (solid line) and experimental
(points) ICR absorption line shapes for 39K+ ions colliding
with a beam of potassium atoms. The number density inside
the secondary oven was 4.2 x 1021 m_3, with an average drift
time of 1.0 x 10_3 sec. The Robinson oscillator frequency

was 420.15 kHz and the r-f level in thisiand:subsequent - experiments

was such that Ef < 0.1 ev.
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Fig, 41. The ICR collision frequency gc of 41K+ and 3gK+ ions

plotted as a function of the square root of the number

density inside the secondary oven, n_.
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Consider Egs. [19.11] and [19.12]. In this case there is an energy

defect between the systems 23Na+ 39K and 23Na 39K+ of 0.8 ev since the

3Na (5.138 ev) is greater than that of 39K. Hence

ionisation potential of 2
for reaction [19.12] to take place 0.8 ev must be transfered to the system
(i.e. reaction [19.12] is endothermic) from the relative translational motion
of the colliding particles, and for thermal velocities k4 = 0. Sodium ions
moving at thermal velocities in potassium metal vapour give rise to 39K+

ions since reaction [19.11] is exothermic and k3 is non-zero. With k4 =k" =20

Eqs. [19.4] and [19.7] yield,

t
[19.15] At,80) = N, (0)7 { §§+ge et em (£+£')(t—to)dto
o]
- (g+g")t dE
te (afﬁ)to = o}

Substituting Eqs. [19.15] and [17.2] into Eq. [19.8] we get,

NA(O)qZElZ ' £ -E'T
[19.16] A(Sw) = — 5 {Fl (85 € ) + g}(l—e )}
dm (Sw +£7)
where
o -(E+ENt N
Fl(E,E')'= [ 5 3 ((E(g+£') -8 )cos Swt
(E+£')" +idw

-83:{2g+£ ") sin th)]T
0

NA(o) is now the current of sodium ions at t = 0.

Single resonance line shapes of Na® ions (from the primary oven) were
measured as a function of the vapour pressure of potassium inside the second-
ary oven. The best least squares fits of the experimental lines to Eq. [19.16]
were obtained with £ 2 g'. These cqllision frequencies £' are shown as a

L

function of nsi in Eig. 42.
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Fig. 42. ‘The collision frequency 235' for sodium ions as a function

of the square root the number density of potassium atoms

inside the secondary oven. The two sets of points represent

different experimental runs.
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The area, C(ns, np) under an ICR absorption line is,

[19.17] C(ns, np) = J A(Sw) d (Sw)

-0

which using Eq. [19.15] becomes
z - [

[19.18] Cng, n) = %ﬂ N, (-1')e ‘zsg'T'[l;e___g_T]
where 1' is the average drift time between the ioniser and the analyser region.
NA(—T') is the current of sodium ions formed at the ioniser and is dependent
on np, the number density in the primary oven. In Fig. 43 C(ngh np).i§ﬁshown
for 23Na+ ions as a function of nsl/2 obtained by numerical integration of the
experimental lines. The solid line in Fig. 43 is obtained from Eq. [19.18]
using the experimental values of 235' shown in Fig. 42. The agreement between
theory and experiment gives an independent check on the values of 235' obtained
from the analysis of the line shape and also indicates that there are no other
ion loss mechanisms for %SNa+ in addition to that represented by 235' over the
range of n, used here. The area under the 39K+ and 41K+ resonances will be
dealt with later in this section.

In order to investigate our experimental results more fully we will use
the formalism of the Boltzman equation [Beauchamp, 1967]. If we neglect
momentum transfer and charge exchange of 41K+ with 41K then we need only

consider momentum and charge transfer between 41K+ and 39](, and the collision

term of the Boltzman transport equation [Appendix 3] is

V.
9=1- _ 1 e - . .
09.197 &Y oy = gy U] (o) QP TRV, babae e,

dy. v, - J vy Prp £ (yy) F (V) vy, bdbdE dvydVy )
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Fig. 43. The area G(ns, np) of the 23Na+ absorption as a function of
the square root of the number density of potassium in the
secondary oven. C(ns, np) is a function of n_ through 23&'
and of np through NA (-1'). The significance of the theoretical

curve is discussed in the text,
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where the subscriptl,refers to the 41K isotope, 2 to 39K and Vio is the
relative velocity of the ion atom pair. All parameters in Eq. [19.19]
are defined in Appendix 3. The first term represents elastic collisions

and the second charge transfer. Using the factorization procedure outlined

in Appendix 3 for simple elastic collisions allows us to re-write Eq. [19.19]

as;
31 41 41
[ = IR -
[19.20] GE? conn E Yy e <V vy
where
a1 a1, ™
[19.21] £ = (n)] (511559 J (1-P},) (l-cos ) bdb)v,,£ (v;) F (v,)dv,dV,
= "2 ) < v 21 °°(1—P ) (l-cos 8) bdb > n
(m1+m2 12 12 39
and °
[19.22] Mt o L 1 p_f (v,) F (V.) v.. bdbdedv,dV
M, )5 127 Y =27 712 a0
= < vlz_znzj Py, bdb > n g
0 .
n,, is the number density of potassium -39 atoms seen by the ions. The

39

‘brackets < > again indicate an average over the relative velocity distribution

of the ion-atom pairs. This distribution is discussed’' in Appendix 5.

Eq. [19.22] defines the collision frequency for charge exchange between 411(+

and 3gK, so Eq. [19.21] and [19.22] together give a formal definition of 41gc

appearing in Eq. [19.13]. An analogous equation to [19.22] defines the collision

frequency 23&' for charge transfer from 23Na+ to 39K which appears in Eq. [19.16].

The collision term for 39K+ moving in 391( is

v 1
92 1 (1-P,. ) (v - v.)v,,£(v,)F(V,)bdbdedv dV
[19.23] Georr = T, { j 227 g = LplVapt i)ty e

+

J ((yg)c - v,) o, Vo £ (V,)F (V) bdbdedy,dv,}
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9

1
where Cvz )c is the velocity of 3 K following charge exchange. When charge

transfer occurs between an ion and its parent atom the ion appears to be

scattered through an angle M-8 (see Fig. A3.1) and integrating (yQ')C -V,
over £ gives [Beauchamp, 1967]

2n
[19.24] l ((Xé)c - yé)de = - (1 + cos e)gXQ - YQ)

and this leads directly to

[19.25] 9 = 3% .+

= n39.{ WV, (I Jsl_PZZ)(l_COS 8)bdb)>
{

< Vo, (m JPZZ (1+cos 8)bdb)
0] .

~

Ny I {<v22 ( j {l1-cos 8) bdb + 2 J coso bdb)>}
0]

Eq. [19.25] defines the collision frequency Ee appearing in Eq. [19.16] for

p22

+ . L.
39K moving in its parent gas.

415 and Sggc from Eq. [19.21], [19.22] and [19.25] differ because when

c

different isotopes collide the momentum of the final ion is uncorrelated with

the orientation of the rotating electric field associated with its ICR since

the momentum of the initial ion has no such correlation. This is not true

for collisions between like isotopes. Thus there is a persistence of momentum

in the 39K+ 39K system that results in Sgic being somewhat smaller than 41gc,

as will be shown using a well known model of symmetric resonant charge transfer
The collision frequencies in the above ekpressions are expressed in terms

of Pij’ the probability of charge transfer from ion i to atom j, which in

general depends on the impact parameter b and the relative velocity Vij' The

cross section for charge exchange then is [Rapp and Francis, 1962].

[19.26] o ) = 2-nI Pij (b, vy;) bdb

o]
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. + + ' .
For symmetric resonant charge transfer (A° + A~ A + A ) an expression for

Pij may be derived from an analysis of the collision complex AAY treated as

a one electron problem [Firsov, 1951]. The non-stationary state describing

the collision can be expressed in terms of the symmetric and antisymmetric

stationary states of the single electron-prbitals;- The difference in energies

of these anti-symmetric and symmetric states depends only on the separation

+ 2 2 2,2 . .
r of Aand A + e where r~ = b~ + Vij t”, t being the time measured from - =
to «®. By choosing a semi-empi:rical wave function for N Rapp and Francis

[1962] find that Pij oscillates rapidly between 0 and 1 for b < b1 and is

small for b > b1 so replacing Pij by % for b f-bl yields
Y
[19.27] c 4% = /B b,
c /5 1
2
where
.201'[) (I ) b-3/2 (1+ 2 ) e —-ybl/a0 I
?&ao Vij 1 Yb1 6

I is the ionisation potential of the atom and y = I/13.6. This theory
assumes rectilinear motion of the ions and is valid only at fairly high
velocities. At low velocities the ionic orbits are not rectilinear but an
ad hoc model of the charge ekchange may be used to calculate o.- At large
impact parameters and low velocities the potential between the ion and atom
is dominated by the polarization attraction and one speaks of two types of
collisions; orbiting collisions in which the incident ion orbits the target
atom and grazing collisions. The critical impact parameters bO such that all

collisions with b < b0 result in orbiting is [Gioumousis~and iStevenson, 1958]
4 2 o e
[19.28] b, = (—.—‘1—2)

Hij Vij
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where uij and Vij are the reduced mass and relative velocity of the colliding
pair and a pure polarization attraction has been assumed.

If bO > b1 it is customary [Beauchamp, 1967] to take

B !
[19.29] Po=Py=5, bs<b

Substituting Eq. [19.29] into Eqs. [19.21], [19.22] and [19.25] gives

. 2 1
[19.30] 39gc Vg 17
and F22
2y m 2
[19.31] 415c N g mE372 4 2.21 1 m2+m 127
M12 172 M12

o being the polarizability of the mneutral potassium atom. The first term
in Eq. [19.31] is the collision frequency for charge ekchange 415' and the

second is 41g for the pure polarization potential [Dalgarno et al, 1958].

This crude theory indicates that 41£c, 41£c - 39£C and 39£C are in the ratios

2,1 : 1.1 : 1.0, to be compared with experimental ratios of about 1.9 : 0.9 : 1.0
obtained from Fig. 41. In view of the crude nature of the theory and the
accuracy of this experiment the agreement seems quite good.
. 23, + 39 .

For the case of asymetric charge transfer from “"Na - to "“K we might
assume thatithe cross section is the same as the cross section for orbiting
collisions [McDaniel, 1969, Pg. 72; Gioumousis and Stevenson, 1958] and
calculate that

2%
119.32] g1 =, 21 (o
59 o3

)4

23N + 39

where y,, is the reduced mass of the a K system. Wecthus expect 235'

and 39£C to be in the ratio of 2.3 : 1.0 but experimentally find that
23&'/39£C N 2.9. The reason for this rather poor agreement of experiment

with Eq. [19.31] is not known, but may lie in the experiment. Nevertheless,
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it is significant that 23&' > Sggc.

Effusion:

To this point we have not attempted to make a quantitative estimate of
the rate constants for the two processes studied here, since this requires
knowledge of the neutral barticle number density. The rather striking
dependence of the collision frequencies on the square root of the number
density inside the secondary oven also requires some discussion. Atoms

from the secondary oven traverse the cell, and a certain fraction are ionised

on the hot wire placed in front of the primary oven. The ICR signal strengths
are a measure of the total flux of atoms falling on the ioniser. It is easy
to show that the area of the 41](+ resonance is given by

| 2 ;2

S - 49 1 7
[19.33] C(ns, np) = ——Za;—-n NA(o) T

which is independent of the collision frequency 4150 since the total number

'y ions does not change with position in the cell at thermal velocities

of
when both secondary and primary ovens are charged with potassium. Thus
NA(o)T , the number 41K+ ions formed at the ioniser is dependent on both n_

and np. But, the quantity
[19.34] R(ns) = G(ns, np) - C(0, gp)

where C (0, np) is the contribution to the area of the 41K+-resonance of the
primary beam, is proportional to the flux of atoms from the secondary oven.
Fig. 44 shows that R(ns) is linear with ns%, a strong indication that the
atomic number density seen by the ioniser is proportional to ns%. While this
behavior of R(ns) indicates why the experimentally determined collision

1

frequencies are proportional to nsﬁ, it does not yield an absolute number

density inside the cell. It is therefore necessary to investigate the process
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Fig. 44, R(ns) as a function of the square root of the number density
inside the secondary alkali oven. R(ns) is proportional to
the flux of atoms from the secondary oven as explained in the

text.
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of effusion of atoms through an oven orifice.

Depending on the ratio of the mean free path A of the atoms in a tube
to the dimensions of the orifice, several different types of molecular
flow can be distinguished. For a cylindrical tube of length Lo and radius c,
true effu§ion occurs only if A >> Lo> ¢ [Lew, 1967], and in this case the
peak intensity and total flow rate are proportional to the pressure behind
‘the source. When X is comparable with the length of the tube the peak
intensity of the beam is not proportional to the pressure behind the source
since collisions between atoms in the beam are then impoertant. The atomic
diameter d of potassium is 4.76 ; indicating a mean free path A k 1018 ns_1
( = f/( VI o d? ns)). This means that for at least a portion of the
density range spanned in these experiments collisions between atoms in the
source played a role in defining the emergent atomic beam.

Giordmaine and Wang [1960] have studied molecular flow through tubes
both experimentally and theoretically. They find that the peak beam
intensity is

[19.35] 10) = 2= Vo o

while the total flow rate from the source is proportional to ns;. In Eq.[19.35]
V; is the average velocity inside the oven source not in the beam. Since

the ioniser is aligned with the secondary oven's effusion tube, the dependence
of the area of the ICR lines on nsl/2 (see Fig. 43) is probably explained by

Eq. [19.35]. Furthermore if the ions :in the primary beam are relatively well
defined spatially near the centre of the cell, they will see a secondary atom

1
]

flux that is proportional to n, This might explain why the collision

1
%%

frequencies are dependent on n, also. It should be noted, however, that

the half width of the angular distribution of particles in the collision-
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dispersed atomic beam.is also proportional to nsl/2 (recall that the total
flow rate is proportional to ns) and if the ions are distributed over a
considerable fraction of the atomic beam they will see an average atom flux
that is proportional to.ns. One further cautionary note is that the theory
of Giordmaine and Wang is usually only applied to very long tubes (i.e. Lo>>c)
while for the oven used in these experiments LO is about a factor of 2 larger
than c.

We assume that the ion beam is homogeneous having a circular cross
section of area Ap. At large densities in the source the angular distribution
of the atomic beam may be approximated by [Giordmaine and Wang, 1960].

3/2

[19.36] I(@) ~ I(0) cos @

and for small A_ the atom flux across A_ is

A
5
Ia = 20 sin® 1 () d 6
(o]
" 2
n e 211 @1 I (8)
where
®h=1is Oann angle measured from the axis of the effusion tube and @1 is the
half angle subtended by AP. @1 is assumed small. The number density at
a distance L from the source oven is now just
Ia
[19.37] n(lL) = —
A v
p a
¥
2 2/t g2 1
== (——T—) ng
L 8d L *

0

The number density obviously varies with distance from the source so we

replace L_2 in Eq. [19.37] by(L' L")—1 where L' is the distance from the
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effusion tube to the ICR cell and L" is the distance to the end of the
analyser. Substituting for values of the parameters in Eq. [19.36] we

- L
obtain n_, ~ 4.31 x 10 6 nsz. for potassium atoms. Since the slope of

39
3 -8 m3/2

L :
QEC versus ns/2 plot in Fig. 41 is 3.1 x 10 /sec. we obtain a rate

-15 ms/sec. (7 x 10_9 cms/sec.) for symmetric resonant

constant of 7 x 10
charge transfer between 3gK+ ions and 39K atoms. In Fig. 45 this rate
constant is compared with other measurements by Kushnir et al [1959] who
measured the attenuation of a potassium ion beam in a neutral potassium
background. The solid line in Fig. 44 shows the theoretical prediction
[Rapp and Francis 1962] of Eq. [19.27]. This line differs slightly from
that published by Rapp and Francis, due to the use of a slightly different
ionisation potentials,. Also shown by the dashed lines in Fig. 45 is the
.Value of.oC V22 obtained from Eq. [19.30] using two different values of the
polarizability [Landolt-Bornstein, 1953]. The error bars on the point

. } L2, B
represent estimates, of the errors in measurement of @& /LO2 in the one case,

and the kinetic temperature of the ions in the other.

Double Resonance

Double resonance experiments were also performed on the two alkali
ion-atom systems using the crossed beam arrangement, but these did not meet
with much success. In order to selectively heat either ionic species
(41K+ or 39K+ in this case), a secondary oscillator (Wavetek Model 114)
was connected to the positive drift electrode in the reaction region. The
double resonance ekperiments consisted of fixing the magnetic field and
monitoring the single resonance signal of 41K+ with the fixed frequency
Robinson oscillator attached to the bottom plate of the analyser region.

When the secondary oscillator was swept through the cyclotron frequency of
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Fig. 45, Dependence of the rate constant for charge exchange between

39K+ and 39K on relative velocity.
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39K+ ions a change in the 41K+ ICR signal was detected due to the coupling

of 39K+ to 41K+ via reaction [19.9]. However we found that both the sign
and magnitude of this double resonance signal werea functions”of the magnetic
field as indicated in Fig. 46 which shows the change in the ICR single
resonance signal of 41K+ as a function of the secondary oscillator frequency
w, for several different values of the magnetic field.

A qualitative explanation of the above phenomena might be as follows.
In cyclotron heating the 39K+ ions we change both their average energy and
spatial distribution. Changing the average energy of 39K+ increases the
rate constant k1 hence increasing the number of 41](+ ions which leads to an
increase in the 41K+ signal. On the other hand changing the spatial

distribution of the 39K+ ions changes the spatial distribution of the 41K+

ions due to charge exchange reactions, resulting in a change in their average

quasi-cyclotron frequency. This shift of the resonance condition of 411(+

also leads to a change in the 41K+ signal if the magnetic field is constant,

but does not reflect a change in the net number of 411(+ ions detected. To

. - +
pursue thismmatter somewhat more quantitively let us assume that the 41K

39

ICR line shape is the same when K" are irradiated as when they are not.

is

Then in the absence of 39K+ cyclotron heating the 41K+ signal S1

' [19.38] S = Q G(B - Bg)

where B is the magnetic field, Beff the magnetic field at maximum intensity

and G(B "Beff) is a shape factor so that G(Q) = 1. When 39K+ is irradiated
41 + . .
the K signal strength S2 is
- - [
[19.39] S, =1Q, G(B - Blcp)
where Béff, the field at maximum intensity, is different from Beff because

of the spatial rearrangement of the 41K+ ions. The ICR double resonance

and §

signal is just the difference between .S2 1°
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Fig. 46 The double resonance signal AS for reaction [19.9] plotted

as a function of B and wz/ZH. The 41K+ resonance s1 was

monitored with the Robinson oscillator and is indicated as

a function of B1 - Beff by the base line of the double
resonance signals. AS was obtained by sweeping a heating
oscillator (frequency dénbted by w2/2H) through resonance
with 39K+. The Robinson oscillator frequency was 420.15 kHz.
and the number density inside the secondary alkali oven was

3

6.2 x 1020 m °. The final energy of the 39K+ ions was about

Ef = 0.7 ev.
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[19.40] S, - S, =Q G(B ~ BL ) - Q G(B = Bygg)
Expanding G(B - Béff) in a Taylor's series -about B - Beff we obtain,
[19.41] 52751 = Q@ [6(B - Boge) * (Boge = Bogg) G'(B - Boge)
+ Effff;f—féffaz G'(B - Bt ..]

Q G(B - Bre)

fe

(Q - QJG(B - Bypp) + Q) (Bopp-Bleg)G' (B - Boge)+--

If we now normalize S1 to 1 then Q1 = 1 and

s. s
[19.42] 2L =S =QG(B - B ) + (Bpe - Blee) (1 + Q) g'(B - B_cp)

1

where Q = @92 - Ql)/Ql. This expresses the double resonance intensity in
terms of the single resonance signal and its derivative, G'(B - Beff) = dG/dB,
higher derivatives having been neglected. Q and (Beff - Béff)(l + Q) are
parameters which contain information on the variation of the rate constant
k1 with the average energy of 39K+ as well as the spatial rearrangement of
the ions by the secondary oscillator. Fig. 47 shows a fit of AS versus
B - Beff (Eq. [19.42]) to the experimental results. Similar results were
obtained at higher irradiating amplitudes where fits of the experiment to
theory require higher derivatives of G.

Using the theory developed in this section and plots such as Fig. 47
it should be possible to extract the dependence of k1 on 39K+vaverage velocity,
provided that the r-f level of the secondary oscillator is maintained below
the ejection threshold of 39K+ and if the higher derivatives in Eq. [19.41]
are small. We will not attempt this analysis here, but these results on the
energy dependence of reactions [19.9] to [19.12] will be reported at a later

date.
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A fit of the eXperimental double resonance signal AS (e)
for reaction [19.10] to Eq. [19.42] represented by the
solid line. The line shape factors G(B - Beff) and
G'(B - Beff) were obtained directly from the 41K+ single
resonance line shape indicated in the previous figure.

The analysis yields the parameters Q = 0.187 and'Beff -

’ -4
1 =
Beff 1.96 x 10 Tesla.
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A dependence of the sign AS on B has not been reported in the
literature and appears to be unique to our appératus. Similar results were
obtained in the sodium-potassium system with the same Robinson oscillator,
and the large separation between W) and W, (% 200 kHz).in this case seems
to eliminate the possibility of beating between the oscillators. The same
effect was noted when the secondary oscillator was applied to the top electrode
of the analyser region, quite far removed from the ioniser. It is thus quite
probable that the explanation offered here is the correct one, and the
phenomena reflects the non-uniform number density in the beams.

The analysis of this section has neglected spatial variation of the
atomic flux from the secondary oven, so the results are admittedly crude
ones. Furthermore estimation of the number density inside the ICR cell is
based on a theoretical calculation, not on an absolute calibration, although
the theory was crudely tested by weighingg the amount of metal plated out on
a target. However, it seems reasonable to expect more reliable results after
the effusion from the ovens is studied more thoroughly. This may be done

using spectroscopic techniques.



- 214 -

20. Summary

In this thesis we have developed a theory of Ion Cyclotron Resonance
for typical cells of rectangular cross section. The effect of inhomogeneous
electrostatic fields on the dynamical motions of the ions was investigated
in some detail using an expansion of the electric field to the third power
of the y co-ordinate. An ensemble to specify the spatial distribution of
the ions as they drift through the complicated fields was developed.

An explicit energy distribution function was derived for ions at
resonance with a uniform r-f electric field. It was found that the initial
spread in energy of the ions was amplified by such resonant r-f fields. The
ionic energy distribution is also broadened by the large distribution of
trapping oscillation amplitudes. Production of the ions with small amplitudes
of oscillation at the bottom of the trapping well has obvious advantages,
and we have investigated one possible method of doing this. The hot wire
ioniser is relatively easy to wopérateh but can only be used for a very small
class of molecules. However, there seems no reason why the ions cannot be
produced from a well collimated molecular beam which is made to cross an
electron beam at the geometric centre of the cell. Better energy selection
might also be expected if a second molecular beam crosses the ion beam at a
well defined cyclotron radius. This secondary beam might be incident along
the x-axis as in the experiments reported here or along the z direction in
which case the particles need not be neutral. We believe that the experiments
performed here, although in a preliminary stage of development, indicate that
such techniques are feasible. It should be emphasized however that the
theory of ICR presented here is based on a linearized model of the ionic

motions in which the cyclotron motion is rigorously, decoupled from the
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trapping oscillation. At high r-f levels when the ion cyclotron radius
becomes an appreciable fraction of the cell dimensions, this is no longer
true, and the ionic motions and the manner in which energy is shared between
the trapping and cyclotron amplitudes are probably quite complex.
Of course the study of the energy dependence of cross sections for
charge transfer and ion molecule reactions is not the only application of
the ICR device. Its most attractive feature is its ability to guide an ion
beam at very near thermal energies in a well defined direction. Thus its
major use is in the determination of thermal energy rate constants for ion
molecule reactions. It is probably more reliable to determine the short
range part of the interaction which determine these rate constants by temper-
ature dependent studies rather than by their dependence on average ion energy.
At near thermal energies the precision with which rate constants may
be determined is dependent on the accuracy with which the pressure and average
drift time are measured. It is hoped that the calculation of the average
drift velocity and the treatment of the ICR line shape given here will be of

use to workers in this field.
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Appendix 1 Drift of Ions Between Different Regions

of an ICR Cell

Consider two regions 1 and 2 of an ICR cell of the type shown in

Figure 1, which are characterized by cell parameters a b, and a b, and

1’ 71 2° "2
(1) (2)(y (2)

1 8 .
voltages V( )(yl,zl), VT and V 2,22), VT , respectively. Suppose that

an ion has a vertical position Yy and a reduced trap oscillation amplitude
pl = ZZml/al. After drifting from 1 to 2, the ion has a vertical position Y,

and reduced trap oscillation amplitude p, = 2z_,/a As has been shown in

9
can be obtained in a straightforward way

Section 4, the values of Y, and <PY

in terms of R and the cell dimensions and voltage parameters for the

P1

limiting cases of fast drift and adiabatic drift. In this Appendix we

derive explicit expressions for Yy and Py in the adiabatic drift limit for

potentials in regions 1 and 2 given by the harmonic approximation, i.e.

(1), oy _ (D) (1) (1) .2
C[AL.1] VI (ygeel) = V) o+ VTV (v ) Te)
where _
(1) _ (1)
[Al.2] \ | (y;) = V750
and
zZ, ~
[Al.3] Di =-Zi~ (Note that 0 < pi < 1)
-2

Then, Egs. Ej.B] and [§15] for the adiabatic drift limit may be written

for this case as

(1) - v(2
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and

15 2

msl vPv 1%l = wP v @y )12

respectively. Substituting for pi from [Al.5] into [Al.4] and [Al.1]

gives the equation

2 2 22 2 _
[Al.6] u, - u,pu, + (ulpl—ul—A) = {
where

2 _ @) _ @),
[A1.7] _ui = VT \ (]i)
and

_ o2) _ L@
[A1.8] A= VT VT

The only physically allowed solution to [Al.6] is

1 2,0 1 2.2 . ..%
[Al1.9] u, =5 u ul(l— > pl) + A

By squaring [Al.9] and using [Al.7], this solution may be written in the

form
(2) v 22, 1 2 L
[A1.10] Vi) =V (yl) +ujp (1= 3 ol){l - [1+ 2(1 1.2)2] }.
AL
Special Case: A << ui = Vél) - V(l)(yl)-

For this case of a small difference between the trap voltages of 1 and 2,
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expansion of [Al.10] in powers of A/ui gives the result

Ap2

2 ~ 1 1
[A1.11] vy = vWPg) - >
2 1 2(1- lq‘)

2F1

It may be seen from calculations such as these that the influence of
different potentials in different regions of the cell can give a substantial

dispersion of the beam in the y-direction. For example, if one identifies
Ain [A1.11] and [Al.8] with the effect of the ionising electron beam on the

cell potential and if its effect is to displace the potential near Y, by a

constant amount A, so that

a2y vV 2 y@ gy vW sy

then the approximately linear variation of V(l)(y) for small changes in

y, i.e.

a3l vPa) s vP ) v e,y - -

[X3

V(l)(yl) A+ A,y - -

taken together with [Al.11] gives

[Al.14] V¥, - —AA

. 12
(1= %)

This result predicts a large dispersion of the beam [(Ay)max/(Ay)min ~ 21,
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'since ions are produced with uniform probability in the range 0 = Py S+,
Note that since 02/pl is proportional to the fourth root of the ratio of
potential well depths in regions 1 and 2 (see Eq. [Al.5]), the dispersion
in the reduced maximum trapping oscillation amplitude produced by adiabatic

drift is mot expected to be as large as the dispersion in y.
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Appendix.Z2i-Effect of Magnetic Field

Modulation On ICR Signals

In the constant electric field

approximation the low pressure

ICR line shape is given by [Butrill, 1969]
sin2 ¢B 2é783
= 2.783 s
[A2.l]  A(B) wE,

/2

(2.783 §B/B, )°
"2

where B, is the absorption line width defined by Eq.[13.3] and 8B(= B—Beff)
]

is the distance along the magnetic field axis from the centrelof the line.
The line shape in Eq.[A2;1] has been normalized to unity,

o
[A2.2] J A(B) dB = 1
-0

If we modulate the magnetic field with a small periodic field, bmcos waf and

then

sweep through the resonance at Béff

' ]
[A2.3] B (t) + bmcos Wt

B(t)
where B(t) is the slowly varying applied magnetic field.

Under these conditions the output of a phase sensitive detector is
prdportional to the coefficient of the first harmonic term in the Fourier

expansion of the resonance line shape [Smith, 1964]. Therefore rewriting

Eq.[A2.1]
sin2 2.783 (8B' + b cos w't)
2.783 By mom
[A2.4]): A(B) = - —
1 2.783 ., o - 2
( "—ng{dB +—bmcosqmt»
5 :
- 2.783 5 a_ cos .nw 't
TTBLi nio n m
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where §B' = B' (t) B g We thus see that the quantity of interest is

ff

[A2.5]

i 2
, a8 4
A = %_ J sin” (B + acosbH) c0s6d6
-7

(f + wcosh)

In the above equation

sB'
B 3

1
2

g = 2.783

Q
il

2.783 b /B,
m 3
and
0 = wt
m

As is well known aj, the output of the p.s.d., is an approximation to the
derivative of the absorption line, but the nearness of a; to the real
derivative depends on the amplitude of the magnetic field modulation. At
very low values of bm, a; is a quite adequate representation of the
derivative of the true line shape but when bm is large the observed signal
may be much broader than the real line. In Ion Cyclotron Resonance
experiments the signal intensity is often of interest and this too is a
function of the modulation amplitude. Thus there are two parameters
that must be. examined as a function of bm. The first is the observed
peak to peak line width Bpp’ or the separation between the extrema of
a;, and the other is the value of-a1 at its maximum (al)p.

In Fig.[A2}1] we show B__ /B, versus b /B, obtained numerically from

PP = mo 3
Eq. [A2.5] while Fig.[A2.2] shows (al)p’ normalized to its maximum value,
as a function of bm/BP' It is interesting to note that maximum signal
2 .
intensity is obtained for bm/BP = 0.68 but undistorted jine shapes occur
2

only for bm/B1 <0.2.
3
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Fig. A2.1; The effect of magnetic field modulation amplitude bm on the
apparent line width Bpp of the low pressure ICR absorption

derivative,
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Fig. A2.2: The effect of magnetic field modulation amplitude on the ICR

signal intensity.
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Appendix 3: Bi-Particle Collisions

The effects of collisions on the motions of ions through a gas of
uniform density are treated in this appendix. We.discuss both elastic
collisions and resonant charge exchange and in the case of simple elastic
collisions establish a formal relationship between £, the collision frequency,
and K(o), the dc mobility. The influence of the ion-atom interaction
potential on the momentum transfer cross-section and the transport properties
of gases is also discussed. The outline presented here follows closely that
of Beauchamp [1967].

From the Boltzmann equation it has been shown that the time rate of
change of some property x(z;) of ions moving under the influence of external
forces in a neutral gas is given by [Allis, 1956]

q(n,). ox(v..)

[43.1]  [(n) <x(v)>.] = —2 <(E(t) + v xB). —— >

+ f[x(zi) - x(@,)] f(Xi)F(l’j)Vij bdbdedvdV
j

where ya is the velocity of neutral atom j,_zi the velocity of ion i, Vij the
magnitude of Xijzj and F(yj) the three dimensional Maxwellian velocity
distribution characterizing the neutrals j. f(gi) is the velocity distribution
of ion i and is normalized to (n+)i, the ion number density. In terms of the
velocity distribution discussed in Section 17,

E,

. i
£(E) = (ny), J P (E;~E)) P, (E,)dE,
)

where Ei = % mivi and P"(E”) must include the effects of energy transfer, via
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collisions between the cyclotron and trapping oscillations., The brackets
< > in Eq. [A3.1] indicate an average over f(gi).

In a colliéion the ion interacts with a neutral, their velocities
changing from v, and Xj tO.Xi and y& respectively. The scattering parameters
are b, the initial impact parameter, € the scattering azimuth and 6, the
angle through which the relative velocity vector‘zi—yj rotates on collision.
Thus the first term on the right hand side of Eq. [A3.1] accounts for the
rate of change of (n+)i x(zi) due to externally applied electric and magnetic
fields while the second term represents the rate of change of (n+)i x(gi) due
to collisions.

The equation of motion of the average ion i is found by setting X(Xi) = v

—i
and, if a(n+)i/3t =0
a§z>f ' q_ azi
[43.2] St m; E(t) + m <'y‘i>f-':x'l:}'- + (Bt )coll

v,

—1 . e . .
where CEE—) accounts for the effect of collisions on $Xi> For ions i

coll f*

colliding with neutrals i and j there are five elastic or charge exchange

reactions which alter <v_.> These are

i £’
(1) elastic collisions and charge exchange between ions i and
their atomic parents,
.+ . .+ .
i +41i-»1i + 1
> i+ 1
I . .
(2) the above two processes for i ions with neutrals j,
.+ . .+ .
i +3->1i + 3
+ L
i + 3 ->1i+4+ ]
(3) charge transfer between ions j and neutrals i

J+ +1i->3j+ j+
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Fig. A3.1: A collision in velocity space. -yc and v are not changed by an

elastic collision.
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The two processes in (1) above cannot be experimentally distinguished
from one another. The second of (2) results in a decrease and (3) an increase
in the population of ions i. 1If Pij is the probability of charge exchange

between ion i and neutral j on collision then [Beauchamp, 1967]

oV, 1
—i — ' .
[A3.3] 63——)coll = (n_*_)i[J(X_i—_zi)(l—Pii)f(_'\_I:,L)F(__\[i)vi'i bdbdsdziqzi

bdbdedv.dV,
—i—i

* f[@i)c‘ vil By Q) FO) vy

+.Z.J(Ki— li)(l—Pij)f(zi)F(yj) vij bdbds:-dzidl/_j
J#i
- f v. P, £f(v,) F(V,) v., bdbdedv,dvV,

e e S M & =i =]

! A
+ Z_f(zi)c Pji i1 f(xj) F(Y,) Vis bdbde.dzjdgi]
J¥i
where (zi)c is the value ofxi following charge exchange and the reactions
listed above correspond to sucessive terms in Eq. [A3.3].
For elastic collisions (Pii=0) between ions of mass m with neutrals of

mass M Eq. [A3.3] becomes (dropping the subscripts i and j)

(a3.4] %y L
ot

= — . .-
coll n, J(X v) f(z) F(X) VO bdbdedzdy

where v, o= ly:zl. v, V, A 6 and VC( = [mv + MV]/[m+M]), the velocity of

the centre of mass are indicated by Fig. A3.1 from which it is seen that

27 . M
[A3.5] fo (v'-v) de = - 27 Ty (1L - cos®) (v-V)
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The momentum transfer cross section is defined as [McDaniel, 1964]

[A3.6] o4 = 27 J (1 - cos®) bdb
o)

and the collision term becomes

v -M
~B‘E)coll - n+(m+M) f.X f(v) F(v) Odvodzqz

[A3.7]

since the average of V in Egqs. [A3.5] and [A3.4] over F(V) vanishes. 'We

P
cannot evaluate C*g) unless the velocity dependence of o.v is known, but
dt’ coll 7 P o

d
fortunately the momentum transfer cross section is inversely proportional
to v_ if the interaction potential between ion and atom depends on the inverse

fourth power of the distance between their centres. For this polarization

potential and others that are not strongly velocity dependent we may write,

oV N -M Jv £(v) dv
Mo . v s
(m+M) — f do
= - E<v>

£

where the dependence of f and F on n, and n respectively has been extracted

from the average over <0dv0>. The effect of elastic collisions is therefore

to introduce a damping term into the equation of motion for the average ion,

<>
[A3,9] —f _q _
—SE—— = [E(t) + §X>f x B] giz}f



- 232 -

This equation has been solved for the ICR field configuration to yield
precisely the same line shape as derived in Section 17. The analysis of

that section requires that &(or o vo) be independent of v This is true

d
only when the polarization force dominates the ion-atom interaction.

Terms other than the r_'4 term in the interaction potential result in a
velocity dependence of SEAAN and become more important as the average velocity
of the ions with respect to the neutrals becomes large. Alternately, we

may say that the polarization force dominates the ion-atom interaction at

low ion velocities. Therefore, the approximation in Eq.[A3.8] is best
satisfied when low rf levels are used to detect the ions or when the neutral

gas density is sufficiently high that the average energy gained by an ion

between collisions is small. We have already seen that under these conditions

2
[A3.20] £(v) = _m_y3/2 -~mv"/2KT

27kT

and substituting into <o.,v > we obtain

d o
L _ (mv2+MV2)
Mn (mM) ™2, 3 2kT
[A3.11] £ = QEIM) TRT JJ e 94Y dvdv

which reduces to

[A3.12] £ = (

) Y “dg

Mo, ,32.% kT.% [~ 3 -g2
— g0, e
m+M T u d

(o]

i
with g = (ZET)2 v

In drift tube experiments the dc mobility is measured directly from the

time of flight of a pulse of ions across a region of constant electric field
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and pressure [Albritton et al, 1967]. From analysis of the shape of

the arrival times of the ions at a suitable counter, the longitudinal and
transverse diffusion constants of the ions under study may be determined.
Experiments such as these have been extensively investigated theoretically
so that to date they provide the most reliable estimates of the ion-atom
interaction. Kihara [1953] calculates that at low electric field strengths
the average component of ionic velocity in the direction of the applied

electric field is
[A3.13] wr=2 4 g = K(o) E

where Edc is the electric field and © is a collision integral with form;

kT %

[A3.14] Q= ( ) g, g q‘g2 dg
* 21y d

(e}

The dc mobility in the limit of zero field is thus

-3 _9q9
[A3.15] K(o) = 3¢ = ™

It is clear that the dc mobility is simply related to the ICR collision
frequency only‘if‘cdv0 is relatively constant and may be taken outside the

integrals in Eqs. [A3.12] and [A3.14]. The relation
; - 9.
[A3.16] K'(o) mE-

is therefore seen to apply only at very low ionic velocities. When the

ionic velocity is not well approximated by a Maxwellian Eq. [A3.16] is not
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valid since the operational definition of £ (Eq. [A3.8]) requires
modification. The extension of ICR measurements to high rf electric field
strengths therefore requires further theoretical development. Now let us
consider a single elastic collision in detail.

A two body collision is dynamically equivalent to the one-body
collision problem in which a hypothetical particle of mass p = mM/m+M
approaches a fixed scattering centre with impact parameter b- and velocity
Y, equal to the relative velocity of the two interacting particles. The one
body collision is illustrated in Fig. A3.2. The distance from the hypo-
thetical particle u to the scattering center is r and the force field of the
scatterer is represented by a potential V(r). The effect of V(r) on p is
to change its direction by an angle 4.

2

. 1 .
Far from the scattering center p has energy UV so conservation of

energy requires that

1,2 J2
= SutT 4

1 2
[A3.17] VS 5 + V(r)

2Ur

where the right hand side of the equation is the energy of U in the presence
of V(r). The term J2/2ur2 in the above expression represents the rotational

kinetic energy of the system. Since J = mr x I we may rewrite Eq. [A3.17]

1 2 1.2 2.2 2
[A3.18] Fuv, = 5 WE + uvob /2" + V(r)

The angle ¢ gives the orientation of r with respect to v, and the value
of ¢ for which r is a minimum is denoted by ¢. From Fig. A3.2 it is clear

that the trajectory of U is symmetric about ¢ and that
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[A3.19] 8 =1 - 29

The angle through which the relative velocity v is rotated during a

collision is completely specified by ¢, a quantity that is easily calculated

by noting that $ =& bvo/rz, from the constancy of angular momentum, and

dt
2 2
dr r 2v(r) b7 .4
— . = - — L =
[A3.20] ) 7 t s [1 > 2]
uv T
o
dr

At the angle of closest approach 0, r = r, and ¢ is given by

de

r r

[A3.21] ¢ = - f LI J /) ar
' w 4T 2v(r)  bZ.y
[ -==-l
MV r
(o]

Eqs. [A3.12], [A3.15] and [A3.21] relate K(o), £ and 0y For a given
interaction potential the distance of closest approach r, and ¢ may be
calculated as functions of v, and b. The average of 1-cosf over all possible

impact parameters then yields o, as a function of A The appropriate average

d
over the relative velocity distribution finally yields the desired transport
properties. Although this procedure is purely classical, Vogt and Wannier

[1954] have shown that a quantum mechanical description of the polarization

potential is similar in most respects.
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Fig. A3.2: The one body equivalent of a bi-particle collision.
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Appendix 4 : Moments of the Eneérgy Distribution Function

In section 17 an approximate energy distribution for ions subjected
to resonant r-f for a time t was derived in which the possibility of

. . . . th
collisions of the ions with a background gas was included, The n = moment
of this energy distribution may easily be calculated in the following
manner;

=
[a4.1] E} f By P,(By, T_, t)dE
(e}

=
]

- - L
t/Tc Em/kT -E, /KT, a 2(E E )™~

_ e e m L
= KT e EL Io( k?L )d§l+
o
n(mtM 2 2
1 P kaTg teP ® 0 —QL/kTg 2 #nﬁ%ﬁ!l Ti ]
. - . >3,
T [ dp e " e J dEJE) e Io( T %LP)
g o o g

The integrals over E, in the above expression may be expressed in terms

of Whittaker function MU N using the stahdard form [Gradshteyn and Ryzhik,

K]

1965; Pg. 720]

1
T'(u+vio 2 _ 2
' 27 -1 B"/2p, fu B

T (2v+1) B e (p) M—u,v(p )

2

[A4.2] f s e PS I, (2BVs)ds =

(o]

where T'(k) is the Gamma function. The Whittaker functions resulting from
substitution of Eq. [A4.2] into Eq. [A4.1] are transformed to degenerate

hypergeometric functions ¢;

8y - (&
(4630 M B = &)



so that for n=0,1,2 Eq.[A4.1] takes the following simple forms

[A4.4] n=0 : E| = [ Py (B, T, £)AE;= 1
o)
'~t/T -t/T ,
— T o c _ c (M) 2
n=1 El = (k?L+Em)e + kTg(l e ) + om nTC v(3, t/TC)
S -t/T E E
_ 2 c 2 m-2 m
n=2 E, = e (kTJ_) [(_—kT_L) + 4(————le) + 2:]

2 (m+M)nTi 9
+O<Tg) (—Zm_—kT—g-) v(5, t/TC)

(ki) e -t/
+ 4(m—) v(3, t/TC) +2(1 - e )
g

vhere y(k, t/'rc) is an incomplete Gamma function.
When the same oscillator is used to both heat and detect the ions,
the experiment is actually performed over a time T where T is the total

time the ions remain in the resonant r-f. Thus the time average of E, is

— 1 (' —
[A4.5] <Ey>y =7 J E, de
o]

_ —'r/'rc T,
kT + kT (e - 1) —
b4 g T

-T/TC T, -n'ri
4+ kT (1L - e )-T—-+ P v(3, 'c/'rc)
2
n(mtM) T 1
+—7‘TT—— jo_ y(3, t/Tc) dt

. and <Ei>t is similarly obtained from E_lz_
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Appendix 5 : The Rélative Velocity Distribution

In this appendix we wish to calculate the relative velocity distribution
for ion-atom pairs over which the rate constants measured in ICR experiments
are averaged. As in Appendix 3 the ion velocity is denoted by Vs that of
the atom by Yj and the relative velocity by !ij =V, - Yﬁ' Angles (ei, ei)
and (ej, ej) define the orientation of v, and Yj with respect of an arbitrary
co-ordinate system and angles 6' and ¢' give the orientation of v, with

respect to Yj - V'j as shown in Fig. A5.1. The relative velocity distribution

H(Xij) is given in general form by [M. Bloom, private communication].

=] -]

1 < 21 2 d in 2
= = : ' ' ' 1 R
[A5.1] H(!ij) I J sin 6'de J de J F(VJ.)Vj de J T J 2
! o) o Qi
flv)elv; -V, - 113-) dv,
The ionic distribution of speeds is assumed to be Maxwellian.
2
a. V., m,

[A5.2] Fv.) = A, e 5 1 with A, = 4(le.°) and o, = =i

) i i i i i 2kTi

subject to the restrictions which are discussed in previous sections. It
is further assumed that f(vi) is independent of (Gj,sj) for any (ei, ei).

From Fig. [A5.1] the relation

[A5.3] ‘ v, + v..)2 = V.2 + v..2 -v,. V., cos 9
=5 ] j ij ij j

is easily obtained and substituting into Eq. [A5.1] yields

_ "Ai: I N ' @Ry o | —qi(¥j2+vfj2-zvj¥ijcqs 6')de.
[A5.,4] HCvij) == J sxneﬂedJ %j“jF(Vj)Je N (Vj v SR
0 0 u
2)

S -ai(v..2+ v,
Jp(v.) V. e ) sinh (2V.v..o.)dV,
i’ 73 itij il

(o]
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Fig. A5.1 The relative velocity vector
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There are two types of distributions'F(Vj) that are of interest here.

Case 1. If the atomic distribution function is Maxwellian, analogous to

Eq. A5.2, then

v..” (—2—
as a5 3/2 13 Ca: *oas
[45.5] Hev, ) = 4 ASL 8 )32 e it
13 (o A0 + [s )
1 J
‘This distribution function describes the relative speeds when the target

of the ion beam fills a well defined spatial region. At has been used in

Appendix 3 to obtain Eq. [A3.11] from [A3.10]..

Case 2. The velocity distribution in a molecular beam is not Maxwellian.
The probability of an atom emerging from an oriface in an oven is proportional
to its velocity, and as a result the velocity distribution inside a beam is

[Ramsey, 1969].

A5.6 F(V.) = A!' V., e i3
[ 1 (J) 3 Vs
where

Al =2 u.z and a, = M./2kT..
J J J J J

Now, the relative velocity distribution becomes

A R R (e v 3V
- J---S1ln oa.V.V.. .
i ij
: (o]

In the crossed beam experiment reported in Sect. 19, the number density

inside the ICR cell was controlled by varying the temperature of the secondary
ion oven, thus changing the velocity distribution in the atomic beam. It is
therefore important to understand the dependence of measured collision
frequencies on aj, and since ithese collision frequencies are averages of a
rate constant vij o over H(vij) the moments of H(Vij) are of interest.

If a cross section ¢ is proportional to Vijn then the corresponding collision

n+3

frequency is proportional to J H(vij) viJ

dvij' Calculation of the

[¢]
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(n + l)th moment of H(vij) is tedious and will not be given here. However

it is a simple matter to show from Eq. [A5.7] that the (n + l)th moment 1is
(n+1)/2 if o

= A,

roportional to T. .
prop j i j



- 245 -

* REFERENCES

Abragam, A. 1961. The principles of Nuclear Magnetism, Oxford University
Press, London.

Albritton, D.L., Martin, D.W., McDaniel, E.H.j Miller, T.M., and Moseley, J.T.,
Technical Report, School of Physics, Georgia Institute of Technology,
Atlanta, Georgia.

Allis, W.P. 1956. Handbuch der Physik (S. Flagge, ed) Springer-Verlag 21, 383.

Anders, L.R. 1967. Ph.D. Thesis (unpublished), Harvard University.

Baldeschwieler, J.D. 1968. Science 159, 263.

Beauchamp, J.L. 1967. Jour. Chem. Phys. 46, 1231.

1967. Ph.D. Thesis (unpublished), Harvard University.

Beauchamp, J.L., and Armstrong, J.T. 1969. Rev. Sci. Instrum. 40, 123.

Beauchamp, J.L. 1971. Ann. Rev. Phys. Chem. 22, 527.

Bloom, M. 1971 Proceedings of Second Annual Conference on Atomic Physics,
Plenum Press, London.

Born, M. 1969. Atomic Physics, 8th Edition, Blackie and Son Ltd. London.

Butrill, S:E. 1969. J. Chem. Phys. 50, 4125.

Churchill, R.V. 1941, Fourier Series and Boundary Value Problems, (McGraw-
Hill, New York).

Clow, R.P. and Futrell, J.H. 1970. Int. J. Mass Spect. Ion Phys. 4, 165.

Comisarow, M.B. 1971. Jour. Chem. Phys. 55, 205.

Dalgarno, A, McDowell, M.R.C. and Williams, A. 1958, Proc. Roy. Soc. 250, 51.

Datz, S. and Taylor, E.H. 1956. Jour. Chem, Phys. 25, 389.

Dunbar, R.C. 1971. Jour. Chem. Phys. 54, 711.

_— 1971. J. Amer. Chem. Soc. 93, 4354.



- 246 -

Dunbar, R.C., and Kramer, J.M. 1973. J. Chem. Phys. 58, 1266.

Dunn, G.H., and Kieffer, L.J. 1963. Phys. Rev. 132, 2109.

Dunn, G.H., 1963. Phys. Rev. Lett. 8, 62.

Dymerski, P.P., Dunbar, R.C. and Dugan, J.V. (to be published, private
communication from Paul Dynerski).

Farnsworth, H.E. 1925. Phys. Rev. 25, 41.

Firsov, 0.B. 1951. Zh. Eksperim i Teo. Fiz. 21, 1001.

Giordmaine, J.A. and Wang, T.C. 1960. J. Appl. Phys. 31, 458.

Gioumousis, G. and Stevenson, D.P. 1958. J. Chem. Phys. 29, 294.

Goode, G.C., Ferrer-Correia, A.J. and Jennings, K.R., 1970. Int. J. Mass.
Spectrom. Ion Phys. 5, 229,

Gradshteyn, I.S. and Ryzhik, I.M. 1965. Tables of Integrals, Series and
Products. Academic Press. New York.

Haeff, A.V. 1939. Proc. I.R.E. 27, 586.

Hassé, H.R. and Cook; W.R. 1931. Phil. Mag. 12, 554.

Huntress, W.T. 1971. Jour. €hem. Phys. 55, 2146/

Hughes, D.G., and Smith, M.R. 1971. Jour. Phys. E (U.K) 4, 13.

James, I.R. Graham, E., Thomson, G.M., Gatland, I.R. and McDaniel, E.W.
1973. Jour. Chem. Phys. 58, 3653.

Kihara, T. 195. Revs. Mod. Phys. 25, 844,

Kushnir, R.M., Palyukh, B.M., Sena, L.A. 1959. Bull. Acad. Sci. U.S.S.R.,
Phys. Ser. 23, 1161.

Landolt, H. and Bornstein, R. 1950. Atom. und Molekularphysik, pt. I,
Springer, Berlin.

Langevin, P. 1905 Annls. Chem. Phys. 5, 245.

Lew, H. 1967. Methods of Ekperimental Physics. (Hughes, V.W. and Schultz,

H.L.; eds.).



- 247 -

McDaniel, E.W. 1964. Collision Phenomena in Ionized Gases, (John Wiley & Sons.
Inc. New York). |

Mclver, R.T. 1970. Rev. Sci. Instrum. 41, 555.

McMahon, T.B. and Beauchamp, J.L. 1971. Rev. Sci. Instr. 42, 1632 (1971).

Mason, E.A. and Schamp, H.W. 1958. Ann. Phys. (New York), 4, 233.

Massey, H.S.W. 1969, Electronic and Ionic Impact and Collision Phenomena,
Vol. 3, Oxford University Press, London.

Morse, P.M., and Feshbach, H. 1953. Methods of Theoretical Physics, (McGraw-
Hill, New York),

Nermeyanov, A.N. 1963. Vapour Pressure of the Chemical Elements, Elsvier
Publishing Co., Amsterdam.

Pattepsen,P.L. 1972. Jour. Chem. Phys. 56, 3943,

Ramsey, N.E. 1969. Molecular Beams, (Oxford University Press, London).

Rapp, D. and Francis, W.E. 1962. J. Chem. Phys. 11, 2631.

Ridge, D.P. and Beauchamp, J.L. 1969. Jour. Chem. Phys. 51, 470.

Robinson, F.N.H. 1959. J. Sci. Instrum. 36, 481.

Seitz, F. 1940. Modern Theory of Solids, (McGraw-Hill, New York).

Sharp, T.E., Eyler, J.R. and Li, E. 1972. Inter. J. Mass Spectrom. Ion Phys.,

-~ 9, 421 (1972).

Smith, D.L., and Futrell, J.H, 1973. Int. J. Mass Spectrom. Ion Phys. 10, 405.

Smith, G.W. 1964. J. Appl. Phys. 35, 1217.

Smyth, K.C. and Brauman, J.L. 1972. J. Chem. Phys, 56, 1132,

Southard, T.H. 1969. In Handbook of Mathematical Functions, edited by
M, Abramowitz and I.A. Stegun (N.B.S. U.S. Gov't Printing Office, Washington}.

Stacey, D.N. 1966. Rep. Prog. Phys. 29, 171.

Tyndall, A.M. 1938. Mobilities of Positive Ions in Gases, (Cambridge University

Press, London).



- 248 -

Vogt, E. and Wannier, G.H. 1954. Phys. Rev. 95, 1190.

Watson, G.N. 1962. Theory of Bessel Functions, 2nd Edition, (Cambridge
University Press, London).

Whealton, J.H. and Woo, S.B. 1971. Phys. Rev. A6, 2319.

Whittaker, E.T. and Watsoh, G.N. 1927. A Course of Modern Analysis, 4th ed.
(Cambridge University Press, London).

Wobschall, D., Graham, J.R., Malone, D.F. 1963. Phys. Rev. 131, 1565.

Woods, I.B., Riggin, M., Knott, T.F.m and Bloom, M. 1973. Int. J. Mass
Spectrom. Ion Phys. 12, 341.

Zandberg, E.,Ya., and Tonov, N.I. 1959. Soviet Phys. - Uspekhi (English

Transl.) 2, 255,



- 249 -

GLOSSARY OF SYMBOLS

Symbol Definition Page
a Distance between trapping electrodes. 3
(ao,al,az,as,a4) Coefficients of quanrtic in Weierstrauss calculation. 22
(al)p Maximum of field modulated ICR absorption derivative. 221
A(Sw), A(SB) ICR absorption signal assuming uniform electric field. 149
A(t, Sw) Instantaneous power absorption. 181
A ) y dependent term in the expansion of V(y, z) 47
Ai A convenience parameter; the normalization constant of

the velocity distribution function of the ith compo -

nent in the system, ' 240
Ap Area over which ions are distributed. 203
App Distance between extrema of the ICR absorption

derivative, 130
Ar{c,£") Argon Atem. . -~ Trion, sl o wo2nience
b Distance between drift electrodes in the ICR cell. 3
bi Distance between drift electrodes.in the ith cell

region. 216
b Impact parameter in a two particle collision. 227
b Impact parameter for erbiting collisions. 197
b1 Impact parameter such that Pij = 0 for all b>b1

in Firsov theory of resonant charge exchange. 197
bm Field modulation amplitude. 220
B Static Magnetic Field. 3
B Magnetic field at maximum power absorption. 72
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Symbol Definition Page
Béff Beff in the presence of an irradiating r-f electric

field. 207
Bl/2 Half width at half height (in magnetic field units).

of the low pressure ICR absorption. 103
Bpp Line width of the absorption derivative. 130
c Radius of effusion aperature. 202
cn (u) See Abramowitz and Stegun [1969, pg. 587].

'C(ns, np) Area under the ICR absorption line, 192
(c, c') Strengths of the derivative of the ICR absorption. 130
d Atomic diameter. 202
D Collision diameter; sum of atomic and ionic radii. 171
ém,n Expansion coefficient of the electric field. 8
e sum of z°" e . Over m. 20
E Initial kinetic energy of an ion. 123
Ei Total kinetic energy of ion species i. 226
E Static electric field vector. 8
Eye Static electric field in d.c. mobility experiments. 233
Ef Energy gained by an ion from resonant r;f in a time T. 164
E. Energy gained by an ion from.resonant r-f. in a time t. 82
Eﬁ Energy gained by an ion from resonant r-f in a time

t-t . 159
0 .

ET Total time dependent kinetic energy. 81
Ey (y, z) y component of two dimensional E. 8
EZ (y, z) Z component of two dimensional E. 8

initial kinetic energy in thc Z drreocing



Symbol

<E >

<E'>

f(s)

<f>
£,00, £,00)
f Cvi)

F CVj)

F (V)

F, (€,8")
g

g (E)

g (V)
g2, g3

g, () g,(»)
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Definition

Amplitude (Zm) averaged Ey (y, z).
Amplitude (Zm) averaged electric field gradient,

Kinetic energy associated with the cyclotron motion.

Kinetic energy associated with the trapping oscillation.

An energy such that Elﬂ’ E, <E'.

Average of E; at time t.

Time average of E, .

Average electron energy.

r-f electric field amplitude.

Fraction of monoenergic ions collected by the trap.
Fraction of ions that have moved for time t without
collision.

A quartic polynominal in s.

f averaged over all initial ionic energies.

Parts of Ak (y); convenience functions.

Distribution of velocities vy of ion species i.

Distribution of velocities Vj of neutral species j.

Fraction of ions with potential V collected by the traps.

Part of the ICR absorption, used for convenience only.
Reduced relative velocity (dimensionless).
Maxwell-Boltzmann distribution of ionic energies.
Distribution of ionic potentials in the trapping well.
Invarients of the quartic f(s).

Convenience function; gi(y) = (.,’xgwc)—1 fg(y).

Page

75
72
81
81
89
239
239
104
57

125

181

22
126

72
226
226
124
189
232
125

87

23

72



Symbol

G (Sw), G (8B)

K, k', k"
& k) x, k)

17273 "4
K

K (0)

K

% (

L

Ll-’ LH
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Definition

Unnormalized line shape function.
Distribution of relative velocities.

A subscript only.

Ionisation potential

Atomic flux through area Ap,

Ionising electron current.

Bessel functions with imaginary argument.
ICR ensemble averaged power absorption.
Atomic flux as a function of angle.

A subscript only.

Angular momentum in relative coordinate system.

nth order Bessel function with real argument.

A subscript only.
Rate constants.

Symbol for potassium atom.

D.C. drift mobility at zero field.
Reduced zero field d.c. drift mobility.
Length of analyser region.

Distance from the source of atomic bean.

Distances to the ends of the analyser from the atom

source,

Length of the effusion tube.
A subscript.

Jonic masses.

Electronic mass.

Page

57
240
72
134
203
104
83
60
202
226
234
49

47

179
150

149

170
46

203

203

202



Symbol

M, M., m,
(JJ)

e

p (G, Zu)

P, (vs Z)
ij

P (ET)

Py Cﬁ%3
P, (Ex0))

P, (Ei)

P.L (.E_L:Té:t)
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Definition

Neutral masses.
Whittaker function.

A subscript.

Neutral number density.

Number of ions in the analyser.

Number density of ion species i,

Number density inside the primary oven.

Number density inside the secondary oven.
Positive ions emitted by surface ioniser.

Atoms emitted by surface ioniser.

Ton current.

Sodium atom.

Ion momentum.

Neutral gas pressure.

General spatial distribution of ions.

A special case of p (y, Zm)

Probability of charge transfer between ion i and
neutral j.

Distribution function of ET.

Distribution function of E,

Special case of P, (Ep)

Distribution function of E, in the limit of zero
pressures.

P, (E, ) generalized to include the effect of non-

reactive collisions.

Page

147

238

147

148
226
192
184
134
134

60
152

10
164

56

60

230

81

81

89

81

159



Definition

Ionic charge, equal in magnitude to the electronic
charge in this thesis.

Intensity of ICR signals with andwwithout:irradating
oscillator.

Ion-atom separation.

Distance of closest approach of reduced mass to
scattering centre in a bi-particle collision.

Value of r at the minimum of the ion-atom interaction
potential. .

Cyclotron radius.

Contribution to the area of the ICR resonance of the
secondary oven,

The argument of f(s) the quartic polynominal.
Separation between two cell regions.

ICR absorption with and without irradition by the
secondary oscillator.

Time.

Time of a moméntum randomizing collision.

m_ o,
Sum of <y > ¢
. m+l,n

Temperature of ion component i and neutral component j.

Neutral gas temperature.

Temperature of an ionising surface.

Temperature associated with the two dimensional
cyclotron motion.

Temperature associated with the one dimensional
trapping motion,

{= wt+¢) Argument of cn term in viv}.

(m+1) over m; used for convenience.

Page

207

170

237

171

26

199
22

65

207

24

148

240

160

134

81

81



Symbo1l

<v >

vV (y,z),V
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Definition

Ion drift speed in the x direction.

Relative velocity of ion i and neutral j.

Average velocity of an atom in a gas.

Velocity of ion i before collision,

Velocity of ion i after a collision resulting in
charge exchange.

Velocity of ion 1 after an elastic collision.
Relative velocity in a system of one neutral and
one ionic component.

Average velocity in the direction of the electric

field in the d.c. mobility experiment.

Two dimension potential at (y, z) inside the ICR cell.

Velocity of neutral j before collision.
Velocity of neutral j after collision.
Trapping well depth.

Positive drift potential.

Negative drift potential.

Trapping potential.

Bias potential on the surface ioniser.
(Vl—Vz)/Z

VT—(V1+V2)/2

Potential at the centre of the cell.
Amplitude (zm) averaged potential.
(V1+V2)/2 average potential of the drift plates.

Ion-atom interaction potential.

Page

34
229
202

229

230

229

147

233

229

229

124

69
69

170



Symbol

w

W

x, y, z)

X (t),y(t),z(t)

'(XO,YO,ZO)

X, y, 2)

()ErJ’};}rﬁi j"(;'
0’70’0

X, y, z)

Ya
Y
o

<

y (n, t)
T (n)

Sw

§(y=y")
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Definition

An arbitrary parameter.

Width of the electron beam.

Spatial coordinates inside the ICR cell.

Spatial coordinates of an ion as a function of time.
Initial coordinates,

Components of velocity of an ion in the ICR cell.
initial velocities

Components of acceleration of an ion.

Amplitude of y(t).

Initial amplitude of y(t).

Average of y position of the ion ensemble.
Amplitude of oscillation in the trap.

Zero of the quartic f(y).

Atomic Polarizability

Inverse temperature parameter in distribution of
velocities.

Integral over Bessel function, may be expressed in
terms of Strauve functions.

Ratio of r 7 fto r_6 term in V(r).

Angle between r-f electric field and initial velocity.

Incomplete Gamma function.

Gamma function.

Distance along the frequency axis from the maximum of an

an absorption line.
Dirac delta function.

Discriminant of the quartic f£(s).

Page

22

104

31
19
10
19
10

47

102
49
31

170

240

69
171
82
239

238

57
60

25



Symbol

AB

€

(e,e&,ei)

E(Wl;y, Zm)

€res Vs Z

Prien.a

d

o(u,v,z)

m

)
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Definition

Space charge depression

Shift of an ion's cyclotron frequency (expressed
at a magnetic field) due to the electric field
gradients.

Spread in quasi cyclotron frequency resulting from
the modulation of w by the trapping oscillation.
Deviation of Y, from a the zero of’ (y).

Azimuthal angles.

Power absorbed by an ion at y with trapping
amplitude Zm.

Energy absorbed at resonance by an ion at y with
trapping amplitude Zm.
Energy associated with T&l‘
Energy associated with Ty,

Limits on E due to vy,

Collision frequency associated with the
momentum transfer cross section.

Collision frequencies for charge transfer.

Charge to mass ratio, g/m.

st7)Phase angle of y(t).

Orientation of r with respect to Y

The value of ¢ at the position of closest approach
of y to the scattering centre in a bi-particle
collision.

Degenetate Hypergeéometrie .Function.

Page

104

27

42
31

241

56

56
81
81

82

147
180
19
24

237

237

238
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Symbol Definition Page
uij Reduced mass of particles i and j. 198
u Reduced mass in an elastic collision. 170
M ( = cos y) used for convenience only. 82
(u,ut,u™ Moduli of Jacobi Elliptic function used in
w Weierstrauss calculation, 25
fi q2 Ei/S m, 159
63 Weierstrauss Elliptic function. 23
(pi, o") Reduced trapping amplitude and z coordinate

respectively. 216
o4 Momentum transfer cross section, 147
O Charge exchange cross section. 196
o An arbitrary cross section. 147
2o A parameter used for convenience of notation in

the eXpansion of w(y,z). 49
9) Solid angle, 240
8 Angle between the initial velocity of an ion and the

Z aXis. 123
6. Cut off angle for 6 such that all particles with

S i-ec are trapped in the cell, 124
8 Angle through which the relative velocity vector

is rotated in velocity space by an elastic collision,. 229
i A Angles specifying orientation of v, and !ij respectively. 242
o Angle of a particle in a beam with respect to the

akis of the effusion orifice, 203
91 Half angle subtended by Ap a distance c from the

effusion source, 203



© Symbol

w(y, z)

wO ()’, zm)
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Definition

Mean drift time of the ions through the analyser.
Mean drift time of the ions from the ioniser to
the analyser.

Mean time between collisions.

Instantaneous quasi cyclotron frequency of an ion.
Quasi-cyclotron frequency of an ion at y with
trapping oscillation amplitude Zm.

Cyclotron frequency of an ion in a uniform electric
and magnetic field,

Detector oscillator frequency.

Secondary oscillator frequency.

Trapping oscillation frequency.

Frequency of modulation.

Half period of the Weierstrauss Elliptic function.
ICR line width (in frequency units) at half
makimum in the collisionless regime of pressure.

P aoTcT D .t LCR =sh=orpt:

Page

149

192
148

26

50

57
208
20

220

24

46



