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Abstract 

This thesis describes the development of an automated image segmentation system for 

resolving overlapping cell nuclei in crowded scenes such as tissue biopsy section images. 

The system uses a succession of imaging algorithms that combine to double the number 

of extracted nuclei from lung epithelial section images compared to selecting free lying 

nuclei. 

1. The system uses the distance transform and watershed transformation to analyse 

the shape of object clusters and split them into smaller clusters or into individ­

ual nuclei. The watershed algorithm reliably separates two overlapping ellipses 

provided less than 30% of either ellipse's perimeter is occluded by the other. 

2. A Hough transform algorithm was created by combining the ellipse center finding 

routine of Yuen with the least squares ellipse fitting formula of Fitzgibbon. Fitzgib-

bon's formula was adapted to include a weighting for data points so that strong 

ellipse edges contribute more in the determination of ellipse fit parameters. The 

transform was tested on a set of 431 overlapping nuclei in cytological images of 

lung tumour cell lines grown in culture. The Hough transform was able to produce 

good ellipse fits for 85% of the nuclei in the set. 

3. Active contour refinement is used to refine the borders of objects segmented using 

the Hough transform. It was applied to the cytological image set and reduced the 

area misfit measure between the true nuclear mask and the Hough ellipse approx­

imations from 8 ± 4% to 4 ± 2%. The final segmentation of the nuclei created 

borders that delineated the overlap regions between nuclear pairs. These overlap 

regions were then measured for cytological and histological images to determine if 

the mean optical density (OD) in non-overlap regions could be used to predict the 
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mean O D in overlap regions. It was found that the overlap regions contain 60-70% 

of the predicted OD. This result was used as an empirical factor in the develop­

ment of an O D apportioning scheme for the reconstruction of individual nuclei from 

overlapping pairs based on a maximum likelihood probability model. 

The complete segmentation system was used to automatically segment biopsy section 

images for the purpose of recovering intact nuclei for morphometric analysis. Exper­

iments on a set of ten tissue section images revealed that an average of 55 free lying 

nuclear shaped objects can be extracted from typical section frames, 83 can be extracted 

by applying the watershed algorithm and 102 can be extracted using the complete seg­

mentation system. A n experiment was performed on a set of nine biopsy section images 

that had been manually segmented and given a score using a morphometric index (MI) 

scoring system, which categorizes image frames based on nuclear irregularity. A decision 

tree was created to select "valid" nuclei based on their feature values and these nuclei 

were then classified with the existing MI system. The automated MI scores were com­

pared to the manual ones and agreed for three of the nine cases. The automated system 

was less likely to identify abnormal appearing nuclei than normal ones. This caused it 

to disagree with the manual MI system for images containing severe abnormalities. The 

lack of success in the MI experiment is due the difficulty of combining a decision tree 

which attempts to throw out irregular objects with a second decision tree that seeks to 

categorize them. Further work in the classifier design may yield an automated biopsy 

section analysis system which performs as well as humans. 
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Chapter 1 

Introduction 

1.1 Background 

Lung cancer is the leading cause of cancer death in Canada [51] and other developed 

countries. It accounts for nearly one third of all cancer deaths for men and more than 

one quarter for women. Despite the advances made in cancer treatment, the five-year 

survival rate for all people diagnosed with lung cancer is less than 15% [4]. This is largely 

due to the fact that approximately 85% of people diagnosed with lung carcinoma (in the 

United States) already have advanced stages of the disease [61], where the therapeutic 

options are mostly palliative. 

The patient prognosis for lung cancer is strongly dependent on how early it is detected. 

Patients diagnosed with Stage 0 or Stage I disease have a five-year survival of > 90% 

and 70-80% respectively. If the diagnosis is made later in the disease's progression, the 

prognosis is much poorer. Stages II through IV have five year survival rates that range 

from 40% to less than 5%. These statistics demonstrate a great benefit to discovering 

the disease early, where more treatment options exist. Early detection of lung cancer can 

dramatically increase a patient's chance of survival. 

Lung cancer is a form of epithelial cancer which accounts for 92% of all cancers 

detected [71]. The development of lung cancer is a complex and poorly understood 

phenomenon. Current models suggest that most lung cancers are the end result of the 

accumulation of genetic damage to the nuclei of cells located in the central airways of the 
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lung [5, 58]. The genetic damage causes changes in the conformation of the D N A within 

epithelial cell nuclei that cause them to behave abnormally. They may become immortal 

as well as proliferate giving rise to a premalignant lesion. The visual appearance of an 

abnormal arrangement of epithelial cells is termed dysplasia (or neoplasia). Premalignant 

lesions are typically diagnosed as mild, moderate or severe dysplasia. These categories 

represent different grades of intraepithelial neoplasia. 

Classification of preinvasive neoplasia into such categories is a difficult task. It is 

common for there to be variations in the grading of a sample by different pathologists. 

For example, in a study of interobserver variability of grading lung epithelial biopsies by 

clinical pathologists, the grading categories matched for only 34.8% of the samples, and 

differed by one or less categories for only 66% of the samples [38]. This suggests that 

the development of methods to quantitate the analysis of tissue section images may both 

improve the reproducibility of the diagnosis of lesions and give insights into objective 

criteria that can aid pathologists in understanding the pathogenesis of cancer. 

Precancer diagnoses can be made through observing visual changes in epithelial nu­

clei. Abnormal cellular nuclei tend to have features that distinguish them from normal 

nuclei such as being larger, darker, more irregularly shaped, etc. These changes can be 

measured in cytological preparations of the epithelial cells, where they are extracted, 

mounted on a microscope slide, stained and observed using a light microscope. Cytomet­

ric measurements may made on the nucleus and, in some cases, the surrounding cellular 

cytoplasm. The most common cytometric measurements fall into three classes: 

• morphometric features relating to nuclear shape, 

• densitometric features relating to nuclear optical density (darkness), and 

• textural features relating to organization of material in the nucleus. 
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Precancer diagnoses are also made through analysis of histological preparations of the 

epithelial tissue. In this case, the tissue is obtained during bronchoscopy as a bronchial 

biopsy, sliced into sections typically a few micrometres thick, mounted, stained and ob­

served under a light microscope. As well as being able to study the cytometric features of 

individual nuclei, the organization of cells within the epithelial layer can also be observed. 

Efforts to quantitate and automate the diagnosis of precancerous lesions through 

the analysis of cytologic and histologic images have been made for more than thirty 

years. [36]. The transition from biological sample to quantitative diagnosis consists of 

four major steps: 

1. Digital images are obtained from the sample. 

2. The image scene, consisting of one or more nuclei is segmented. Segmentation is the 

process of dividing an image scene containing pixels (picture elements) into regions 

or structural units that represent the objects of interest. 

3. Features are extracted from the segmented images and multivariate analysis is 

performed on the features. 

4. Classification functions obtained through multivariate analysis are applied to the 

image dataset to give a diagnosis for the sample. 

The second step, segmenting images, is the most difficult stage for quantitative image 

analysis. For histological samples, there are no completely automatic systems for seg­

menting nuclei from these images. These samples contain a wide variety of cell types, 

large amounts of debris and contain such a great deal of nuclear overlap that, invariably, 

human intervention is required. Free lying nuclei can usually be recognized automatically 

in these images, but in order to segment more nuclei manual analysis is required. 
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This thesis focuses on the automation of the segmentation of images containing touch­

ing and overlapping objects. The specific problem addressed is how to separate nuclei 

from each other and the background. Having an accurate automated segmentation sys­

tem would not only speed up the processing of tissue section images, but it would also 

allow new questions to be posed in the area of histological analysis. Currently, the man­

ual segmentation step requires 45 minutes per image or longer. This limits the amount of 

data that can be collected and therefore the nature of the studies that may be performed. 

The ability to automatically process tissue section images will allow us to expand the 

scope of histological analysis and give a better idea of the precision of current histological 

analysis methods. 

1.2 Format of this thesis 

This thesis is divided into six chapters. Section 1.3 explains the hypotheses that are 

addressed. Section 1.4 describes the imaging equipment used to obtain the cytological 

and histological images that were used in the experiments performed for this thesis. 

Chapters 2 to 5 describe the development of the automated nuclear image segmenta­

tion system and the experiments performed on the individual components of the system. 

The segmentation system starts with grey level images and generates image masks by 

thresholding (chapter 2). The image masks are analysed and the shape of the masks 

is used to initially break large clusters of objects into smaller clusters (chapter 3). The 

image grey level information is analysed using elliptical Hough transforms to separate 

individual nuclei from small clusters (chapter 4). The borders of individual nuclei are 

then optimized using active contour techniques and optical density in overlapping regions 

was apportioned to obtain the final segmentation of the nuclei (chapter 5). 

Chapter 6 describes the application of the segmentation system to the analysis of 
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lung epithelial biopsy sections. The system was used to isolate individual nuclei from 

the sections. Current practice uses manual effort to select these nuclei from the images. 

The results of using the automated system were compared to those obtained manually. 

Finally, chapter 7 gives a summary to the hypotheses and states the conclusions to the 

thesis. 

1.3 Hypotheses 

This thesis examines three hypotheses: 

1. Given that lung epithelial nuclei appear elliptical in shape, it is possible to design an 

imaging system to locate them in cytological and histological images by searching 

for ellipses in these images. 

2. Nuclear optical densities in cytological and histological absorbance microscopy im­

ages are additive. 

3. It is possible to recover nuclear images from lung biopsy sections in a completely au­

tomated fashion and generate equivalent morphometric indices to those determined 

by manual analysis of the images. 

Chapters 2-4 and section 5.1 address the first hypothesis. Section 5.2 details ex­

periments concerning the second hypothesis for measuring nuclear optical density while 

section 5.3 describes a probabilistic model for reconstructing optical density for overlap­

ping objects. Chapter 6, which describes the morphometric analysis of biopsy sections, 

addresses the third hypothesis 
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1.4 Description of imaging system and samples 

The cytological and histological images in this thesis were captured using an imaging 

system designed by the Cancer Imaging Department of the B C Cancer Agency and X i l l i x 

Inc [24]. The system uses a light microscope with an objective lens with magnification, 

M = 20x, and numerical aperture, NA=0.75. Samples are illuminated using light that 

passes through a 70nm narrow bandpass filter centred at A=600nm. Images are captured 

using a C C D array placed in the primary image plane of the objective. The C C D is 

made up of an array of 1280 x 1024 elements 6.8^m on edge with a 100% array fill factor. 

Images are digitised into 8-bit grey scale images so that each image pixel has 256 possible 

grey level values from black=0 to white=255. 

Wi th 20 x magnification and C C D array element size of e = 6.8/mi, the resolution of 

the device is 0.34//m per pixel. This means, for example, that an object that is 34/mi 

long will produce an image that is 100 pixels in length. The depth of field, df, of the 

imaging system is a measure of the depth in specimen space that appears in to be in 

focus within the image without readjustment of the microscope [31]. It is given by the 

equation 

Xn ne , . 
; ~~ N A 2 + M N A ( L 1 ) 

where n is the refractive index of the medium (n aj r = 1.0). Substituting the system 

parameters into equation 1.1 gives df = 1.52/j.m for this device. 

The cytologic images used in the experiments in this thesis consisted of 212 images 

of touching and overlapping nuclei from a lung tumour cell line grown in culture. The 

images were all classified by a cytotechnologist as containing multiple cells. The cells 

were stained with a Feulgen-Thionin stain which binds to the D N A in the nucleus and 

leaves the surrounding cytoplasm invisible. Most images contained two nuclei and some 

contained three. The images contained 431 nuclei in total. Each image pixel was manually 
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categorized as belonging to one nucleus or to both. Figure 1.1 shows a gallery of 14 of 

the images. Beside each image is a mask, which shows the pixels that comprise the 

nuclei. The darker grey regions of the masks show the portions of the nuclei that are 

non-overlapping and the overlap regions are shown with a lighter grey tone. 

Cell culture images were used because they tend to be free from debris. This makes 

the exact nuclear borders easier to detect, which makes it easier to do a precise manual 

segmentation of the images. The nuclei of cells from a lung tumour line contain abnormal 

amounts of D N A and therefore tend to be larger and less elongated than normal cell 

nuclei. Large round objects are easier for algorithms to automatically recognize, so these 

images provided a starting point for the testing the algorithms used to process the images. 

The set of histologic images used in this thesis consisted of 235 images of biopsied 

lung epithelial tissue. The epithelial biopsies were cut into 7[im sections, Feulgen-Thionin 

stained and then imaged. The images were analysed and most diagnosed as being normal 

or containing mild atypia while some were diagnosed as containing various stages of 

precancerous legions from mild dysplasia to carcinoma in situ. 

The image set was split into two groups. The first group consisted of 226 images that 

were used in the development of the segmentation system described in this thesis (Chap­

ters 2-5). The second group consisted of nine images that were manually segmented by 

histotechnologists in a study of the use of nuclear morphometry in the development of 

a reproducible method to quantitate the grading of bronchial neoplastic lesions. Fig­

ure 1.2 shows examples of two of the nine biopsy sections used in the morphometric 

analysis study. Each image contains several hundred nuclei, many of which are touching 

or overlapping with others. 
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Figure 1.1: Images of overlapping nuclei in lung cell culture. A 20/j.m scale bar is shown 
in the image in the lower left 



Figure 1.2: Two of the 235 images of lung epithelial biopsies studied in this thesis. Each 
section image contains a 20/xm scale bar. 



Chapter 2 

Thresholding 

2.1 Definition 

A n image is created, whether by photography or electronic imaging, so that the objects of 

interest stand out from the background. When analysing the image scene it is necessary 

to separate the regions that we are interested in (foreground) from the background. This 

is most commonly done by noting the range of brightness values that are part of the 

foreground versus those that are part of the background, and, setting a limit, called a 

threshold, between them. Thresholding is probably the single most important and widely 

used procedure in image segmentation. Threshold selection is important because most 

of the subsequent steps in image analysis procedures depend on having a good initial 

threshold. 

The thresholding procedure converts a grey level image f(x,y) into a binary image 

b(x,y), where (for dark objects against a light background) b is defined as 

f 1 i f / ( x , y ) < T 
b(x,y) = i 

0 \if{x,y)>T 

and T is the threshold level. Defined in this manner, the threshold divides the image into 

regions of object and non-object. A n alternative scheme is to define multiple threshold 

levels, Tj, and categorize pixels into several sets based on mutually exclusive grey level 

ranges. Although this may have useful application in attempts to segment the darker 

overlap regions of overlapping objects, this approach is not explored further in this thesis. 

10 
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The threshold function, T, can be defined in one of three different ways [69] 

1. Global threshold: T = T{f(x, y)} 

T depends on image data and the same T value is applied to all pixels in the image. 

2. Local threshold: T = T{f(x,y), N(x,y)} 

T depends on image data and on a function ./V whose value depends on a local 

neighborhood around (x,y). 

3. D y n a m i c or adaptive threshold: T = T{f(x, y), N(x, y),x, y} 

T depends additionally on some desired property of the image at the co-ordinate 

(x,y), such as maintaining the "roundness" of segmented objects or the continuity 

of object borders in b, etc. 

The most common technique for finding global threshold is by analysing the his­

togram of image grey level values. Histogram analysis relies on the fact that ideal image 

histograms are bimodal and the threshold, T, should be set somewhere in the valley 

between the modes. Figure 2.1a shows an image of a pair of nuclei and the histogram 

of this image (figure 2.1b). The histogram is clearly bimodal, with a sharp peak due to 

the lighter background pixels that surround the nuclei and a broader peak due to the 

nuclei. The standard histogram minimum technique [69] sets T at the location where the 

minimum of the region between the peaks occurs. The histogram is usually smoothed to 

eliminate false peaks before the minimum is determined. Figure 2.1c shows the image 

mask created by thresholding the nuclear image at T=185 which is the location of the 

histogram minimum. 

Local thresholding is based on treating the image as a series of neighborhoods. A 

property, N(x, y), is calculated for each neighborhood and a local threshold is determined. 

The kinds of functions calculated for the neighborhoods are often the same ones calculated 
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Grey level 

Figure 2.1: A n image of a pair of nuclei (a), its histogram of grey levels (b), and the 
mask of the thresholded image at T=185 (c). 

for global histograms. By calculating them on smaller regions a threshold may be selected 

that is more responsive to the nature of the image in that region. 

Calculating a local threshold for each neighborhood produces a field of thresholds 

across the whole image. A problem that can occur is that when two neighboring regions 

have different thresholds an object at the border of the two neighborhoods is partly 

thresholded at one T value and partly at a second. This may produce an unsatisfactory 

object mask that displays banding effects due to the abrupt transitions in threshold value. 

This problem can be overcome by applying some sort of smoothing procedure to the 

field of local thresholds. For example, the thresholding scheme developed by Chow and 

Kaneko [18] divided the images he used into a grid of 64 x 64 pixel regions and calculated 

a local threshold for each region. Then the grid of thresholds was interpolated on a pixel 

by pixel basis so that each pixel in the image was assigned a threshold. This scheme 

allowed the threshold to gradually vary across the image. Technically, this is an instance 
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of a dynamic thresholding [25] scheme since the threshold function, T, is an explicit 

function of (x, y). 

Local thresholds are typically used when variations in illumination make it impossible 

to find a suitable global threshold. Figure 2.2a shows an image of a field of nuclei with 

non-uniform illumination. There is a clear decrease in the illumination from the top of 

the image towards the bottom. The histogram of the image, (figure 2.2b), contains two 

distinct background peaks. The histogram minimum technique suggests two possible 

thresholds, at T=102 and T=124. Figures 2.2d and 2.2e show the results of thresholding 

the image at these levels. The upper threshold produces a reasonable mask for the top 

half of the image but completely fails for the bottom half. Conversely, the lower threshold 

is suitable for the bottom portion of the image but not for the top portion. 

Figure 2.2e shows the histograms for three regions marked with rectangular boxes. 

Comparing the histograms, we can see how the location of the background peak shifts to 

lower values as we sample closer to the bottom of the image. We can use these histograms 

to construct varying thresholds that are suitable to each region. The image is divided into 

a series of neighborhoods and a local threshold is calculated based on each neighborhood 

histogram. Figure 2.2f shows the mask generated when the histogram minimum method 

is applied to neighborhoods consisting of 16 rows of pixels at a time. A total of 45 different 

local thresholds are determined and each applied to its respective neighborhood. The 

final mask is a good approximation to the nuclei that are present in the image. 

2.2 Applications to cytology and histology 

Many thresholding schemes have been studied in medical image analysis [23, 56] and 

for finding nuclei in cytological cell preparations in particular. The most common ap­

proach applied to cytology is to select thresholds based on the shape of the grey level 
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Figure 2.2: Global versus local thresholding for a field, (a), with non uniform illumination. 
The global histogram, (b), contains two background peaks with minima at T=102 and 
T=124. The thresholded images for T=124 (c), and T=102, (d). Local histograms (e), 
show the variation of the background from top to bottom. Applying local thresholds 
based on histograms like those in (e) provides a good final mask, (f). 
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histogram [11, 14, 28, 41, 42, 59]. Some of the thresholding methods described in these 

papers and others described below were studied in order to find an effective one for the 

biopsy section samples used in this work. 

Since thresholding is an important component of a segmentation system the initial 

work in this thesis focused on developing a thresholding scheme suitable for the types of 

images under consideration. The cytological and histological images studied in this thesis 

were all Feulgen-Thionin stained. This stain is a quantitative D N A stain that only stains 

the cell nucleus. For example, for the cytological image in figure 2.1, only the nuclei are 

seen and the cellular cytoplasm that surrounds each nucleus is suppressed. This should 

make the task of thresholding these images easier than images of specimens stained using 

other techniques, such as Papanicolaou staining (which stains the nucleus with one stain 

and the cytoplasm with another). 

Figure 2.3 shows a portion of a Thionin stained lung epithelial tissue section image. 

The region shown is 443 x 368 pixels while a full frame is 1280 x 1024 pixels. The image 

contains roughly 120 nuclei or nuclear fragments. The nuclei have a wide range of grey 

level distributions due to being sliced in the biopsy preparation and also because some 

nuclei are not in the image focal plane. The grey level histograms for two nuclei are 

shown at the top. For example, the lighter object that is highlighted has a mean grey 

value of 132 while the darker has a mean grey value of 74. Their grey level distributions 

hardly overlap. A good threshold for the darker object of T = 124 excludes more than 

half of the pixels of the lighter nucleus. 

At the base of the image is the subepithelium, which consists of fibrous material, 

collagen, etc. This material does not stain with the Feulgen-Thionin reaction, but it 

contains density variations that cause light to refract as it passes through. The visual 

effect is to create a textured region that can influence the threshold selected by global 

thresholding routines. Also present in the subepithelium are a significant number of 
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Out of focus nuclei fibroblasts and 
lymphocytes 

subepithelium: elastin and 
other fibers, collagen, etc. 

Figure 2.3: Portion of a lung epithelial tissue section image. There are large variations 
in the grey level intensity of different nuclei. Fibroblasts and lymphocytes often appear 
as very dark objects in the image. A 20pm scale bar is shown in the top-right. 
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Figure 2.4: Grey level histogram for the image shown in figure 2.3. 

lymphocytes and fibroblasts. These objects, particularly the lymphocytes, tend to be 

darker than the epithelial nuclei. A few of the nuclei in the image are out of focus. This 

is common when imaging thicker biopsy sections. They pose a problem for segmentation 

systems because they display a gradual intensity change from object to background rather 

than a sharp border. 

Figure 2.4 shows the grey level histogram for the whole frame. The background is 

very uniform, having a standard deviation of only four grey levels. The distribution of 

nuclear pixels is very wide, extending from roughly 35 grey levels to 175. Between the 

nuclei and background is a region of grey levels that come from two sources: subepithelial 

texture and pixels that are very close to nuclear borders. A l l of the pixels darker than 

35 grey levels correspond to the lymphocytes and to regions of nuclear overlap. 

The flatness of the nuclear grey level distribution and the presence of a transition 

zone between nuclei and background means that this kind of image is not amenable to 

thresholding techniques that look for minima in the global histogram. There is no clear 
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distinction between the nuclear and background regions, so the histogram minimum tech­

nique is not likely to select a good threshold. In fact, the selection of any global threshold 

requires a trade-off between including or excluding lighter objects versus generating en­

larged or optimal borders for dark objects. 

2.2.1 Grey level distribution based thresholding 

The separation of the histogram in figure 2.4 into different grey level regions suggests that 

it may be possible to define a probability distribution approach to selecting a threshold. 

In this approach, we assign a probability model to the distribution of object pixels and 

background pixels and perform a numerical fit to model. The threshold T is then selected 

to minimize the probability of misassigning pixels. This is the basis of the optimal 

thresholding method described by Gonzalez [25]. This method assumes that the pixel 

values are drawn from two Gaussian populations—one representing the object pixels, with 

mean fii and noise level <7i, and the other representing the background, with parameters 

{ M 2 ) ° 2 } - Gonzalez calculates the optimal threshold based on these quantities and the 

proportions of nuclear and background pixels. This approach requires fitting a bimodal 

Gaussian distribution to the grey level histogram. 

The bimodal Gaussian fit for the histogram of figure 2.4 is shown in figure 2.5a. The 

Gaussian model does a reasonable job of fitting the background grey level distribution, 

which although not exactly symmetric, is within 15% of the experimental value at each 

point. However, since the distribution of nuclear pixels is not Gaussian, and is certainly 

not symmetric, the Gaussian fit does a poor job of approximating their distribution. 

This wide grey level spread leads to an estimate of o-i = 30 pixels. The optimal Gaussian 

threshold for this image, using the method of Gonzalez, is T = 198. 

This is an extremely high threshold for such an image. The high threshold from the 

Gaussian model results because the background distribution has a very small standard 
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Bimodal Gaussian fit to a biopsy U.2=216.2 
image grey level distribution . -

a2=4.6 

Figure 2.5: The bimodal Gaussian fit, (a), to the grey level histogram in figure 2.4 leads 
to an estimate of T = 198. Thresholding at this level produces the segmented objects 
outlined in (b). 
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deviation of o~2 = 4.6 pixels, while the nuclear pixels have a standard deviation 6.5 times 

larger. The method sets T at the grey level which minimizes the misfit according bimodal 

distribution assumption. The large 0\ value causes the nuclear Gaussian approximation 

to be non-zero for very large grey level values. This means that to minimize the proba­

bility of misfit, the threshold level is forced upwards, towards the background grey level 

peak. 

Figure 2.5b shows the outline of the segmented objects for T = 195. Most of the 

segmented objects are surrounded by a ring of background pixels that have been included 

in the mask definition. Segmenting the objects at this threshold distorts the shape of 

the mask and prevents the splitting of clusters based on nuclear shape, which will be 

discussed in section 3.2. For this reason, global thresholding using this method was 

rejected. 

A second problem with global thresholding based on a bimodal density model occurs 

when the number of background pixels greatly exceeds the number of nuclear pixels. 

When this occurs, the fitting algorithms can reduce the misfit criterion by attempting to 

fit the background with two distributions and ignoring the nuclear pixels altogether. The 

ratio of number of background pixels to object pixels for the image shown in figure 2.3 is 

2.4:1, which is a relatively small ratio for tissue section samples being studied. Figure 2.6a 

shows a histogram of the ratio of number of background pixels to nuclear pixels for the 

set of 226 lung epithelial tissue section images. The ratios range from a minimum of 2:1 

for a dense image to a maximum of 49:1 for an image containing only a few dozen nuclei. 

The mean ratio for the all the tissue sections was 8.5:1. 

Figure 2.6b shows the bimodal Gaussian fit to one of the images where the ratio of 

the number of background to nuclear pixels was 12:1. The fitting procedure minimizes 

the misfit between the model and the actual data by ignoring the object pixels and fitting 

the region centred at grey level 213. This leads to an unreasonable estimate of T = 216, 
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Figure 2.6: The ratio of the number of background pixels to the number of object pixels 
for 226 tissue section images (a), and a bimodal Gaussian fit demonstrating an error 
where both modes attempt to fit the background and ignore the object pixels, (b). 

a value that is high enough to be well into the background. Since nearly a quarter of 

the images have background to object ratios higher than this image, it is clear that the 

bimodal fitting scheme cannot be applied on a global basis. 

It can be argued that since the darkness of desirable nuclei varies significantly, ap­

plying the bimodal Gaussian model on a local basis may give better results. This is 

the approach used in the local thresholding method of Chow and Kaneko mentioned 

earlier. Their method performed bimodal Gaussian fits over a 7 x 7 mesh of 256 pixel 

neighborhoods in order to find optimal local thresholds. 

Local thresholding schemes require setting the dimension of a window over which 

the local histograms will be calculated. The window size must be large enough so that 

valid background and nuclear estimates can be calculated from the histogram. Since the 

nuclei are 20-30 pixels in diameter, this suggests that a window size of at least 30 x 30 is 

required. 

Figure 2.7 shows two portions from the tissue section image of figure 2.3. A 30 x 30 

neighborhood is outlined in each portion, and its grey level histogram is shown. Each of 
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Figure 2.7: Local 30 x 30 neighborhoods for portions of the lung tissue section image 
(figure 2.3) and their grey level histograms. 

the histograms contains three modes: one for the background, and one each for the light 

and dark objects within the outlined neighborhood. Fit t ing a single Gaussian to the 

nuclear pixels as a whole will not produce a good fit to the data. Thus, we are unlikely 

to obtain a good threshold for this region. 

The problem is not solved by making the neighborhood smaller. This results in fewer 

pixels available to generate the histograms which leads to less reliable Gaussian fits. As 

well, when the neighborhood falls on the region between a light object and a dark object, 

it will still have a histogram like those of figure 2.7 and not lead to a suitable threshold. 

Yet, it is the regions at the borders of touching objects where it is important to have 

good local thresholds. 

The difficulties demonstrated by images such as those in figure 2.7 demonstrate that 

local thresholding methods based on only the grey level histogram are not suitable for 

segmenting tissue section images that are thick enough to contain significant variations 

in average nuclear intensity. The Gaussian noise model could be replaced with another 

noise model, but this does not address the root of the problem. The fault lies in the 



Chapter 2. Thresholding 23 

assumption that a predefined neighborhood gives information relevant to segmenting a 

single object. It is necessary to look to other indicators of the boundaries of objects, such 

as using the image gradient, in order to develop an effective thresholding scheme. 

2.2.2 Compactness based thresholding 

Some of the algorithms that are used successfully in segmenting cytological scenes do not 

work well for segmenting tissue sections. The nuclei in cytology images and thin histo­

logical sections are generally non-overlapping. For all but the thinnest biopsy sections, 

the section images will tend to contain a large number of overlapping nuclei. 

Having distinct nuclei allows the use of shaped based criteria, such as compactness. 

Compactness is a measure of circularity given by C = where P is the object perimeter 

and A is the area. Figure 2.8 shows the compactness for several different geometric 

figures. Circles have the maximum possible compactness of 1.0. A l l other shapes will 

have a compactness less than 1.0. The more intricate the border of an object, the 

larger its perimeter compared to its area. Several authors have described local or global 

thresholding methods that use the a priori knowledge that nuclei are mostly circular 

and therefore very compact objects. They calculate the compactness of the resulting 

mask for different threshold levels and set the threshold to the value that.maximizes the 

compactness of the segmented objects. The method has been applied to finding nuclei 

in cytology [17, 55] and liver biopsies [2]. 

Unfortunately, this method is not suitable for tissue section images that contain a 

significant amount of nuclear overlap. When nuclei touch, the compactness of the mask of 

combined object is lower than for the nuclei alone. Setting the threshold that maximizes 

the compactness causes the method to choose a threshold that makes the blob, as a 

whole, rounder. This is accomplished by setting T to a higher value, one that includes 

some of the background pixels in the object mask to make it rounder. 
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Figure 2.8: The compactness, C, for several geometric figures. 

This behavior can be seen in figure 2.9, which shows the application of the com­

pactness based thresholding to two nuclear clusters. The nuclear clusters are shown in 

figure 2.9a surrounded by a polygon that shows the neighborhood used in the compactness 

calculations. For the pixels in the two neighborhoods, the compactness was calculated 

for the mask that would result for each possible threshold setting. This was plotted in 

the graphs in figure 2.9b. The histograms have peak values at T = 202 and T = 215 

respectively, which are the optimal thresholds for maximizing the object compactness. 

These are unreasonably high threshold values. 

Figure 2.9c shows the outline of the segmented objects at these thresholds. The reason 

for the high thresholds becomes clear. The selected thresholds incorporate some of the 

background pixels to make the object masks rounder. A good threshold would produce 

an outline that hugs the nuclear edges and creates a relatively long object perimeter. 

This would correspond to a lower compactness value. The compactness maximizing 

technique is not suitable for segmenting images where there is a significant amount of 

nuclear overlap. For the tissue sections studied in this thesis, there may be in excess of 

a hundred nuclei in a cluster, so another technique was sought. 
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Figure 2.9: The failure of compactness based thresholding for nuclear clusters. The 
polygons that surround the nuclear clusters (a) define a neighborhood for which the 
histogram of compactness versus threshold is shown (b). Setting the thresholds at the 
peak value produces objects whose masks are too large (c). 
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2.2.3 Gradient based thresholding 

A n effective thresholding criterion that has been applied to medical image analysis [35, 

43, 44, 69] is the gradient weighted (GW) thresholding method. For a greyscale image 

with values f(x,y), the gradient image g{x,y) contains large values wherever an edge is 

present in / . The gradient image is usually calculated using the Sobel filter, and wil l 

be described more fully in section 4.1.1. A n example of the Sobel filter of an image can 

be seen in figures 4.1a and 4.1b. Letting w and h represent the width and height of the 

image, the G W thresholding method calculates the threshold T as 

T=Ex,yHx,y)g(xy) x = 1 ^ y = l _ h ( 2 - 1 ) 

T,x,y9{x,y) 

T may be calculated on a global basis or on a neighborhood by neighborhood basis. 

Equation 2.1 can be interpreted as a thresholding scheme that assigns large weighting 

to grey level values that occur near edges. At one extreme, if all the pixels had the same 

gradient value, g(x,y) — j, then T would be set to the mean of all the grey levels in 
f{x,y) 

the image, T — ' • A t the other extreme, if only pixels with a certain grey level 

f(x, y) = i have non-zero g(x, y), then equation 2.1 assigns all the weight to the one grey 

value—much like an election where there is only one candidate to vote for. 

Watanabe [68] described a thresholding method for cytology where the sum of the 

gradient values for each grey level are plotted in a histogram. The method sets the 

threshold at the grey level for which the total magnitude is the largest. This predisposes 

the method to choose a threshold at a value for which there are many pixels. Weszka [69] 

modified the algorithm to divide the total gradient by the number of pixels at that grey 

level to give what will be referred to as the mean gradient (MG) histogram method. The 

threshold T for this method is given by 

T = arg max E 9(x,y) 
l(x,y)3f(x,y)=i 

lm x = l...w, y = l...h (2.2) 
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where n» is the number of pixels having grey level i. 

Figure 2.10a shows the graph of the mean gradient values as a function of grey level 

for the tissue section portion shown in figure 2.4. The trend in the graph is to rise to 

a peak somewhere between 144 and 170 grey levels. There are also small local peaks at 

around 35 and 241 grey levels. The lower peak corresponds to the regions of overlap and 

lymphocytes present in the image. The upper peak is due to a few noise pixels and is not 

significant for this image. This can be seen by referring to the histogram in figure 2.4, 

where the pixel count for grey levels above 235 is too small to be seen. Applying a 

Gaussian smoothing operator to the M G graph with a — 2 gives a global maximum at 

153, which is where the threshold is set. Figure 2.10b shows the result of thresholding 

the sample image at this level. 

Qualitatively, the segmentation looks reasonable. Most of the objects are selected 

by this T value and only a few of the lighter ones are broken or excluded. Many of the 

nuclei are separated by this threshold and those that remain joined have a border which 

may be separable using shape analysis. In comparison, the G W threshold for this image 

is T = 144, which is 9 grey levels darker. These two threshold values are close enough 

that there are no significant visual differences between segmenting at these values. 

The comparison of threshold levels by different techniques for a complicated scene is 

a difficult task. Fu [23] and Pavlids [53] comment that an image segmentation is an issue 

of psychophysical perception and not one that has an analytical solution. One option 

would be to have the scenes thresholded by an experienced technician and then compare 

the values to those selected by the two algorithms. However some scenes, with good 

contrast, are insensitive to the exact threshold level. Choosing a level between say, 120 

and 170 grey levels might give roughly the same results. For other images, a difference 

of 15 grey levels in thresholds can make a significant difference in the number of objects 

correctly segmented. This makes it difficult to quantify what grey level difference is 
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Figure 2.10: The histogram, (a), of the mean gradient value as a function of grey level 
for figure 2.4. Smoothing this graph and selecting the peak gives T = 153. Thresholding 
at this level produces the segmented objects outlined in (b). 
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Figure 2.11: The comparison of thresholds selected by the gradient weighted and mean 
gradient thresholding methods. 

significant between two thresholds. A second difficulty is that the threshold selected by 

one technician may differ from that selected by another. Each will respond to different 

visual cues and inevitably select a threshold that is biased by their experience in tissue 

section imaging. 

The approach taken was to compare the G W and M G global thresholds for the 226 

tissue section data set and to look for instances of large differences between the thresholds 

selected. The statistics for the mean gradient threshold ( ? M Q ) were T-^Q = 138 with 

standard deviation cryQ = 15 and for the gradient weighted threshold (7/Q\y), TQ^J = 

159 with C T Q ^ Y = 10. Figure 2.11 shows the scatter of the two thresholds for all 226 

tissue sections. The diagonal line represents the occurrence of both methods selecting 

the same threshold. 

The most prominent feature of this graph is that T Q y y > Ty^Q for all but 39 cases— 

17% of the tissue sections. The difference between the two thresholds is a mean of 20 

grey levels, but with a very large standard deviation of 15 grey levels. In eight cases, 
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-^GW e x c e e d s T M Q by 60 or more grey levels. The two methods seem to be responding 

to different visual features in these images. 

Figure 2.12 shows a portion of a tissue section where the threshold difference is 60 

grey levels. The image was captured by placing the region of interest in focus while 

ignoring the focus of the other regions. For this image, TjyjQ = 99, which is verified 

by noting the peak of the mean gradient histogram shown in the figure inset. At this 

threshold, the dark nuclei at the top are included and much of the rest of the material 

is excluded. The threshold is low enough to cause some of the nuclei with lighter pixels 

to be cut. On the other hand, TQ^J — 159, a threshold that is high enough to cause the 

inclusion of a significant number of transition zone pixels in the object mask. Because 

the nuclei are so close together, the epithelial layer of more than 200 nuclei are segmented 

into three large masses. 

Setting the threshold manually suggests that a suitable threshold is around T = 110, 

which is closer to Ty^Q. The high value of TQ^J can be explained by looking at the 

histogram of grey levels (solid line) in figure 2.12. The background peak is asymmetric 

with a significant shoulder in the region between 192 and 210 grey levels. This shoulder 

is due to the large number of out-of-focus pixels present in the image. Instead of having 

a clear transition between object and background, the out-of-focus nuclei have a smooth 

rise in grey level values. These transition pixels have non-zero gradient values and thereby 

contribute to the numerator of T Q ^ V m equation 2.1. 

This point is demonstrated in figure 2.13. The two images (figures 2.13a and 2.13d) 

contain an out-of-focus and. an in-focus nucleus, respectively. Each nucleus is marked 

with a pair of triangles to demarcate a cross-sectional line of pixels. The grey levels of 

these pixels and the gradient values at these locations are shown in figures 2.13b and 

2.13e. The gradients were calculated using the Sobel filter (section 4.1.1) and reflect the 

gradient of the 2d image, so the dashed curve is not merely the derivative of the solid 
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(c) 
Product of grey level and gradient 

for the cross section of a blurred nucleus 

10 12 14 16 18 
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Figure 2.13: A comparison of grey level and gradient profiles (b,e) for an out-of-focus 
and an in-focus nucleus (a,d) selected from figure 2.12. The triangles in (a) and (d) show 
the cross sectional limits. The product of the two curves gives the local contributions 
(c,f) to T Q - ^ Y for each image. 

curve. The solid curve in figure 2.13b shows how the grey level changes only gradually 

across the nucleus. The gradual change causes the gradient to have a significant value at 

most of these pixels. 

Having the gradient spread across several pixels, as opposed having a sharp transition 

(as is seen in figure 2.13e), raises the G W threshold above what it would be for an in-

focus image. The numerator of TQ^J in equation 2.1 can be equivalently expressed as 

the product of the number of pixels at grey level i with the mean gradient value at that 
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level. This is the product of the solid and dashed curves in figures 2.13b and 2.13e, 

and is shown in figures 2.13c and 2.13f. These curves represent the relative contribution 

to the numerator of T Q y y of each pixel in the cross sections. Figure 2.13f shows that 

for the in-focus nucleus, contributions come almost exclusively from just a few pixels 

at the nuclear edge while in (c) contributions come from most of the pixels across the 

cross-section. 

Both the M G and G W thresholding methods are affected by the spread of high gradi­

ent values among out-of-focus pixels. However the effect of the gradient value spread on 

the M G graph is to lower and broaden the peak. Provided there is a significant amount 

of in-focus information in the tissue section image, the effect should not significantly 

change the location of the peak. As the results above show, the G W threshold value is 

systematically raised proportional to the amount of out-of-focus information present in 

the image. 

Examination of the images for which TQyy exceeded T J ^ Q by 60 or more pixels 

revealed another difference between the methods. Figure 2.14 shows a portion of a tissue 

section image for which T J ^ Q = 107 while TQyy = 171. Once again, the value of TQyy 

seems too high, labelling much of the transition areas as part of the nuclei. Manually 

setting the threshold indicates that a value around 120 reasonably includes most of the 

objects without rejecting too much. Most of the image is in good focus, so the threshold 

level difference is not due to lack of image focus. There is a great deal of bright texture 

present in the stroma and this appears to be affecting the threshold. 

To demonstrate this point, the image in figure 2.14 was thresholded at T = 226, 

which is well above the background peak in the grey level histogram. The mask of the 

thresholded image is shown in figure 2.15a. Pixels with grey levels greater than 226 in 

the original image appear as white dots in this image. The large region in the top-left 

portion of the image contains only background pixels and no objects. The threshold has 
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F i gure 2.14: Portion of a tissue section image where T J ^ Q = 107 while T Q - ^ Y = 171. 
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been set high enough so that almost every pixel in this region is beneath the threshold. 

Notice that there are only a few white dots in the top-left of figure 2.15a, out of the many 

thousands of pixels in this region. Since the light path is unobstructed as it passes through 

this region, this should be the brightest region in the image (since the illumination is 

relatively uniform). However, the entire stromal structure can be discerned in the figure, 

and every one of these pixels is significantly brighter than the true background. 

This effect is caused by refraction of light between the collagen fibres and other 

material of different refractive index. The refraction has the effect of concentrating the 

amount of light collected from some regions leading to excessively bright texture. The 

bright texture has a significant gradient value associated with it, as can be seen in the 

gradient image in figure 2.15b. According to the histogram in figure 2.14, the pixels 

brighter than 224 grey levels have mean gradients of roughly 60, which is around 15% of 

the maximum mean gradient. These pixels inflate the G W threshold, dragging it towards 

the background. 

If a polygonal neighborhood is carefully drawn around just the nuclei at the top so 

as to exclude the all the stroma, the new threshold is TQ^ — 134, which is closer to the 

true threshold. This shows that it is necessary to be careful in the application of TQ^ 

to the exact region of interest rather than automatically applying it to the whole tissue 

section frame. The value of Ty^Q does not change significantly whether the polygonal 

neighborhood or whole image frame is used. 

Which of these two thresholding methods is better will undoubtedly depend on the 

nature of the images being examined. The tendency of the mean gradient method to select 

lower thresholds appears to make it better suited for separating the dense arrangement 

of nuclei in tissue sections. However, using a lower threshold gives very tight borders to 

the objects being segmented and sometimes ignores some of the nuclear optical density at 

the perimeter of the nuclei. The borders that are generated when technologists manually 



Figure 2.15: The mask, (a), for the image shown in figure 2.14 thresholded at T = 226, 
and the gradient image, (b). 
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segment nuclei tend to include this optical density, so the mean gradient method may 

not generate nuclear segmentations that match those that technologists do. In section 6, 

both methods are tested as part of the complete segmentation system applied to tissue 

section image analysis. 



Chapter 3 

Analyzing mask shape 

Thresholding the greyscale image gives us a binary mask that contains both free lying 

nuclei and clustered nuclei. We need to determine which of the objects in our mask fall 

into each of these categories and how to split up those objects that are determined to 

be clusters. Analysis of the shape of the binary mask is a computationally efficient and 

powerful technique for performing this task. One of the primary image processing tools 

for describing the shape of the object is the distance transform (DT), which is described 

in this chapter. The analysis of shape with the D T and algorithms that use the D T is 

the primary tool for selecting nuclei from clusters. 

3.1 The distance transform 

3.1.1 Derivation 

The Euclidean distance map (EDM) is a function that converts a binary image—con­

taining object pixels and background pixels—into a real valued image where each object 

„pixel is replaced with a value that represents its distance to the background. Figure 3.1a 

shows a mask (in black) for an object consisting of two overlapping circles. The E D M 

for this mask is shown in figure 3.1(b). The pixels in this image are scaled so that the 

maximum value of the E D M is represented by black and the rest are rescaled accordingly. 

A simple way to calculate the E D M is to calculate the Euclidean distance between 

each object pixel and each background pixel in the image. This would be inefficient and 

38 
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Figure 3.1: A n object mask (a) with its exact Euclidean distance map (b) and distance 
transform (c). The D T is shown with only three grey tones, which represent the approx­
imate integer distances from each pixel to the background. For example, the dark rings 
in (c) represent successive distances of 1, 4, 7, 10.. . units. 

prohibitively time consuming for most reasonably sized images. Also, since binary images 

are constructed from greyscale images using thresholds, they are subject to both thresh­

olding errors and to the quantization errors of the grey scale image. It is of questionable 

value to calculate an exact distance for each pixel in the mask when other sources of 

error in the imaging system can lead to larger losses in precision than imprecise distance 

calculations. 

Because the binary images are not exact, it is common to use an approximation to 

the E D M called the distance transform (DT). The D T is calculated using an algorithmic 

procedure that replaces each pixel in a digital image with an integer that is proportional to 

the distance to the nearest background pixel. A n example of a D T is shown in figure 3.1c. 

In essence, the distance transform of a binary image resembles a contour map, with the 

value of contours increasing for points situated further from the boundary. 

Standard techniques for calculating the D T look at only a small neighborhood at a 

time around each pixel rather than performing a global search for the nearest background 

pixel. These algorithms approximate global distances by the sum of local distances in 

order to speed up the calculation of the D T . A straightforward iterative technique for 

constructing the map is described as follows [57]: 
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2 (b) 4 3 2 
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Figure 3.2: Pixels that touch a central pixel are shown for a grid with 4-connected pixels, 
(a), and 8-connected pixels, b). 

1. Assign each background pixel a value of 0. Assign each object pixel an infinite 

value (in practical terms, a value larger than half of the image height or width). 

2. Set a variable N equal to 0. 

3. For each pixel with value > N that touches a pixel with value iV, set its value to 

N + l. 

4. Increment N and repeat the procedure until all pixels have been assigned a value. 

The number of iterations required is proportional to the size of the object. The 

question that arises is: what is meant by "touches another pixel" in step 3? For a 

square lattice, it is natural to define pixels to be touching if they are 4-connected or 

8-connected. Figure 3.2a shows the pixels that touch a central pixel for a 4-connected 

object and figure 3.2b shows the same for an 8-connected object. 

In the case of the 4-connected definition, we set a pixel the value of + 1 if the pixel 

above, below, left or right has value N. The distance between two pixels is the sum of 

the number of horizontal and vertical steps required to move from one pixel to another. 

More precisely, if (xi,yi) and {x2,y2) are the locations of two pixels in a 4-connected 

neighborhood, then the distance between them is given by the city block metric, dj, 

which is 

di [(xi,yi), (x2,y2)] = \x2-Xi\ + \y2 - yi\ (3.1) 
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(a) d 4 metric (b) d$ metric (c) E D M 

Figure 3.3: Distances between pixels a central pixel (•) for 4-connected pixels (a), 8-con­
nected pixels (b), and using the Euclidean distance measure (c). 

The distances between a central pixel (*) and its neighboring pixels are shown in the left 

panel of figure 3.3 for a 4-connected neighborhood. 

In the case of an 8-connected neighborhood a simple distance measure is the chess 

board metric, ds: 

d8 [(xi,yi), (̂ 2,2/2)] = max( |x 2 - Xi\, \y2 - yi\) (3.2) 

Using this metric, diagonal pixels also have a local distance of one. The distances between 

a central pixel and its neighboring pixels are shown in the central panel of figure 3.3 for 

this local distance scheme. 

Both schemes distort distances along the diagonal. This can be seen by comparing the 

first two grids (figures 3.3a and 3.3b) with the third (figure 3.3c) , which shows the exact 

Euclidean distances. In the 4-connect case, diagonal distances are too large. Diagonally 

adjacent pixels are separated by 2 units (one horizontal plus one vertical step) rather 

than the true distance of \/2 fa 1.414. On the other hand, the 8-connect grid returns 

distances along the diagonals that are too small; it assigns diagonally adjacent pixels a 

separation of only one unit. 

It is possible to improve the accuracy of the D T values by using approximations to 

the Euclidean distances shown in the right of figure 3.3. As with the earlier algorithm, 



Chapter 3. Analyzing mask shape 42 

(a) 

c 5 
c 4 c 3 c 4 c 5 

C l c 2 
c 4 c 2 C l c 2 c 4 

oo 1 oo 1 1 1 
C l 0 C l (b) c 3 C l 0 C l c 3 (c) 1 0 1 (d) 1 0 1 
c 2 C l c 2 c 4 c 2 C l c 2 

c 4 CO 1 oo 1 1 1 
c 5 

c 4 c 3 c 4 c 5 

Figure 3.4: Masks containing local distance values for the calculation of the distance 
transform, (a) and (b) show the form of masks for 3 x 3 and 5 x 5 neighborhoods, (c) 
and (d) are the masks for d4 and d$ shown in figure 3.3. 

object and background pixels are initially assigned values of oo and 0, respectively. A 

mask is defined such as the ones shown in figure 3.4. The size of mask used depends 

on the accuracy required. Its coefficients, cn, are the local distances to be propagated 

through the distance map. Let vf* be the value of the pixel at (i, j) at iteration m. Let 

c(k, I) be the value of the mask at position (k, I), with the mask center being (0,0). The 

value at each pixel is updated according to the formula 

t # + 1 = min \v™+k i + l + c(k, I)] 
h J (M)emaskL + J + J 

(3.3) 

The procedure is repeated for each pixel until no pixels change value. As before, the 

number of passes through the image is proportional to the size of the object. 

There are many ways to select the mask coefficients cn. Borgefors [16] reviews pre­

vious methods and calculates optimal values of c„ for different sized neighborhoods. His 

optimality criterion is to minimize the maximum possible difference between the pixel 

values of the D T and the exact Euclidean Distance Map (EDM) . This difference is ex­

pressed in terms of a fraction of the maximum distance M from an object pixel to the 

background. 

For example, for the 3 x 3 mask (figure 3.4a), the optimal mask coefficients are [16] 

c ? p t « 0.95509 and c ° p t « 1.36930 (3.4) 
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which gives the maximal difference between D T and E D M values of maxdiff « 0.04491 * 

M. This means that the maximum difference between the approximate and exact distance 

values is less than 4.5% of the object radius M. For a circular object with a radius of 20 

pixels, this would correspond to a maximum possible error of approximately one unit in 

the distance assigned to the center pixel of the object. 

When computing the optimal 5 x 5 mask, it is not necessary to compute values for 

C3 and C5. If the value of C3 > 2ci, then C3 would not be used since two steps of c\ 

would be shorter. If C3 < 2ci, then c\ would only be used to mark pixels next to the 

background and C3 would be used exclusively afterwards. The same argument applies to 

C5. Eliminating these coefficients from the mask in figure 3.4b results in a mask of the 

form 
- c 4 - c 4 -

c 4 c 2 Cl c 2 c 4 

- Cl 0 Cl -

c 4 c 2 C l c 2 
c 4 

- c 4 - c 4 
-

Borgefors derives the optimal 5 x 5 mask coefficients to be 

C l

p t = 1, 1.39463 < c 2

p t < 1.43155 and c ° p t w 2.19291 (3.6) 

which gives the maximal difference between D T and E D M values of maxdiff « 0.01958 * 

M. 

This difference of less than 2% corresponds to a maximum expected error of less than 

half a unit for an object with a 20 pixel radius. There are eight instances of c 4 and a total 

of eight instances of c i and c 2 (combined) in D T 5 x 5 . This means that the calculation of 

the D T using the 5 x 5 neighborhood requires twice as much computational effort as using 

a 3 x 3 neighborhood. The reduction in the expected error in the distance transform, 
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however, justifies the extra computing expense. 

Since pixels in digital images are integer valued, it is common to round the local 

distance approximations in equations 3.4 and 3.6. For the 3 x 3 case, it is best to use 

integer pairs for c\ and c 2 that preserve the ratio of ^ « 1.36. Using c\ = 3 and c 2 = 4 

gives a ratio of 1.33 and an expected maximum error of less than 8%. Replacing the 

optimal values in equation 3.6 with 

Ci = 5, c 2 = 7 and c 4 = 11 (3.7) 

results in a maximum error of 2.02% for the 5 x 5 D T . Borgefors reports that the ratios 

for this triple of integers is so close to the optimal values in equation 3.6 that it would 

be necessary to use integers more than 10 times as large in order to obtain any further 

reduction in the maximum expected error. 

3.1.2 Locating object centres with the DT 

The distance transform is a valuable tool for finding objects within clusters in binary 

images. It is a global algorithm that processes pixels in a raster fashion, and is therefore 

efficient to calculate compared to other shape analysis algorithms. Figure 3.5a shows 

the distance transforms for four images of overlapping nuclei. The dark outlines show 

the extent of the masks that are used to calculate the transforms. The transforms were 

calculated using the city block, chess board and 5 x 5 local distance methods (figures 3.5b, 

3.5c and 3.5d) discussed in the previous section. 

In the case of the 5 x 5 method, the integer coefficients of c„ = {5,7,11} were used 

since they give the desired ratio for the local distances {1.0,1.4. . . , 2.2 . . . } . This choice 

essentially quantizes distances into steps of 0.2 pixels in the D T . For illustrative purposes, 

the distances have all been rounded to 1.0 pixels. This allows the drawing of the unbroken 

contours shown in figure 3.5d. 
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Figure 3.5: Distance transforms for masks of the outlined images (a). The DTs are 
calculated using the city block and chessboard metrics of figure 3.4 and using the optimal 
5 x 5 local distance scheme of equations 3.5 and 3.7. 
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Figure 3.5 demonstrates how the D T can be used to locate the nuclei within the 

cluster images. Each transform image contains local maxima that closely coincide with 

the centres of the nuclei. These local maxima are called Ultimate Erosion Points (UEP) 

since the D T using the d^ and d$ metrics can be also be calculated (less efficiently) by 

successive morphological erosion operations. By calculating the D T and locating the 

UEPs we can obtain an estimate of the number and approximate position of objects that 

are present in a cluster. 

There are sometimes subtle and sometimes significant differences in the DTs obtained 

using the different methods. For example, in panel 1, both the d± and 5 x 5 methods 

correctly identify local maxima at the approximate centres of the two nuclei. However, 

the ds method only returns a single U E P . In panel 2b, it is seen that the city block 

method returns a U E P in the wrong position for the left-hand nucleus. For the three 

nuclei in panel 3, only the 5 x 5 method finds a U E P for the nucleus on the left. Panel 

3b actually shows three local maxima near each other for the nucleus on the right, which 

is not a desirable result. Finally, none of the methods are able to find the UEPs for all 

three nuclei in panel 4. There is an incorrect maximum near another U E P in the center 

of panel 4b, but no methods find a maximum for the nucleus on the right. 

For D T 5 x 5 , the missing maximum from panel 4 is not an artifact of truncating the 

exact D T values. This was simply a case where the degree of overlap of the two nuclei on 

the right of the image is large enough so that the D T algorithms do not produce a reliable 

result. Figure 3.6 shows the D T calculated for the same image shown in figure 3.5. Panel 

1 shows the original outlined image and 5 x 5 D T . Panel 2 shows a new outline, where-the 

border has been changed by adding a single pixel to the mask definition. The resulting 

D T now contains a local maximum at approximately the correct position of the nucleus 

on the right. 

Figure 3.6 demonstrates the extreme sensitivity of the D T to the exact shape of the 
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Figure 3.6: Distance transforms for the two masks which differ by only a single pixel. 
Panel 1 shows the original mask definition (a) and 5 x 5 D T (b) for the nuclear cluster from 
figure 3.5. Adding one extra pixel to the mask definition in 2a causes a local maximum 
to appear in the D T (2b) for the nucleus on the right. 

object mask. The alteration of a single pixel in a mask containing 1327 pixels affects 

whether a local maximum is found for one of the nuclei in the image. If the grey level 

value for the pixel were slightly lower, below the threshold level, the pixel would be 

part of the mask, and the D T would find an appropriate U E P . This demonstrates that 

one cannot rely solely on the D T to find the nuclei in a clustered nuclear image. The 

number and location of UEPs found depends on the distance metric, threshold level used 

to generate the mask, and pixel noise present in each greyscale image. 

Despite these difficulties, the D T works very well for locating objects which do not 

overlap significantly. Several of the nuclei in the images in figure 3.5 were resolved, no 

matter which metric was used to calculate the D T . The next task in the segmentation 

procedure is to define objects by using the UEPs as seeds and labelling the pixels of 

the mask that surround them. This is done through the application of the watershed 
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transformation, described next. 

3.2 The watershed transformation 

The goal of segmenting an image is to partition the pixels of the image into different 

groups representing each of the objects present in the image and the background. The 

distance transform converts a binary image to one where local maxima are surrounded by 

pixels with intermediate values. It gives information about how many objects are present 

in the image but does not tell us how to assign each of the pixels of the mask to the 

various objects. This step is performed by the watershed transformation. It transforms 

an image containing D T peaks and valleys into an image with labelled objects. The 

watershed transformation takes its name from the field of topography and has been a 

tool for digital image analysis for more than 20 years [12, 39]. It has also become a useful 

tool for separating clustered objects during cytometric analysis as well [54, 47]. 

Consider a curve in one dimension such as the one shown in figure 3.7a. The curve 

has four local minima separated by hills. Imagine letting a drop of water fall onto this 

topographic surface. The drop of water wil l flow downhill until it reaches one of the local 

minima. Which minimum the water reaches depends on where you drop it initially. Each 

local minimum defines a catchment basin (the regions between the dotted lines). Any 

water drops released into a catchment basin will flow to the same local minimum. The 

places where catchment basins meet are called watershed points. In this one-dimensional 

example, the watershed points are the points marked with triangles. 

The description of the watershed above is not suitable to define its behavior in all 

cases. For example, if a point is part of a local plateau, a drop of water placed there will 

not flow to any local minimum. The following definition of the algorithm to perform the 

watershed transformation avoids this problem. 
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Figure 3.7: A curve in one dimension (a) contains several local minima. Each local min­
imum defines a catchment basin. A drop of water that falls into a particular catchment 
basin will flow downhill to the local minimum. The points where catchment basins meet 
are called watershed points (marked with triangles). The watershed algorithm converts 
the curve into a series of labelled regions, (b), with each region marking a catchment 
basin. 

Consider immersing the one dimensional surface of figure 3.7a into water. Initially the 

deepest local minimum (on the left of the curve) will be submerged along with the region 

around it. As the surface is submerged further, other local minima wil l be submerged as 

well. Eventually, the water in adjacent catchment basins will meet. This point is called a 

watershed point. Imagine erecting an infinitely tall thin wall at this point at the moment 

when the water from two adjacent basins meet. This will keep the water from these 

basins from merging as the water level is increased (thereby maintaining the separation 

of the catchment basins and the definition of the respective regions). As the flooding 

progresses, more catchment basins are defined, and the watershed algorithm gives each 

point on the curve a label according to its catchment basin. 
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The final result of applying the watershed transform is the series of regions shown 

in figure 3.7b. The watershed algorithm thus can be interpreted as a partition func­

tion which converts a surface in space into set of regions. Vincent and Soille [67] have 

published an efficient algorithm for computing the watershed of a digital image in two 

dimensions. This algorithm was used for the segmentation experiments in this thesis. 

When the watershed algorithm is applied to two-dimensional images, the watersheds are 

lines (rather than points) that separate the image into different regions. 

When the watershed is used for image segmentation it is usual to apply some kind 

of transformation to the image prior to applying the watershed. The nature of the 

transformation applied depends on the kind of image features that we are interested in. 

Soille [60] calls this transformed image the segmentation function. If we are interested 

in segmenting an image into regions of similar grey tone, we would use the original grey 

scale image in the watershed algorithm. If we are interested in finding edges, we would 

use the gradient (section 4.1.1) image. Since we are resolving overlapping objects based 

on their mask shape, the segmentation function we use is the distance transform of the 

image mask. 

Figure 3.8 shows the application of the watershed algorithm to a two-dimensional 

image. The original image (figure 3.8a) consists of circles and ellipses with slight contact 

between the objects. The rounded 5 x 5 distance transform and the watershed segmenta­

tion of the D T are shown in figures 3.8b and 3.8c. Due to the minimal contact between 

the ellipses, there is a U E P for every ellipse with the exception of one (arrow 1). The 

contact between this pair of ellipses is sufficient such that they cannot be resolved by the 

DT—although Meyer [49] describes a local modification of the D T algorithm that may 

help resolve them. 

There is also an instance where an extended ellipse peak (arrow 2) appears as three 

UEPs . These false peaks are inherent to calculating distances on square lattices and are 



Figure 3.8: A binary image (a), the distance transform (b) and the watershed segmenta­
tion of the D T (c) are shown. 
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not a result of any rounding errors in the calculations. False peaks tend to occur when an 

extended local peak such as the one seen in this instance lies on a diagonal with respect 

to the lattice. 

The circularity of nuclear images makes the watershed well suited to segmenting 

nuclear clusters. Figure 3.9 shows three images of nuclear clusters from lung tissue 

section images. In each image there are nuclei with limited contact to the rest of the 

cluster. These nuclei are all resolved correctly by the D T and watershed. In the cases 

where there is significant contact or overlap, the results are mixed. The significant overlap 

between three of the nuclei in the center of panel 3 causes the watershed to find a single 

peak. In panel 3, the watershed creates extra objects (marked by arrows) which are not 

actually present in the original image. 

So far, it has been discussed how the positions of the U E P s can be used to segment an 

image. The D T values at these points can also be of use in analysing the binary image. 

Since the value of each D T local maximum gives the distance to the nearest boundary, 

a histogram of these values can be used to give an estimate of the distribution of the 

sizes of objects in an image. Figure 3.10a shows the histogram of the D T maxima for 

the cluster of circles and ellipses shown in figure 3.8. When segmenting circles, a plot of 

this type will show the distribution of circular radii. In the case of ellipses, such a plot 

will show the distribution of the short axes of the ellipses. 

Figure 3.10b shows the same histogram for the three nuclear cluster images shown in 

figure 3.9. Since the nuclei tend to be elliptical, the plot indicates the distribution of the 

short axes of the nuclei, which tend to be between 7 and 11 pixels. The extreme value of 

14 pixels is due to the D T maximum in the center of the cluster in panel 3 of figure 3.9. 

The presence of an outlier in this histogram gives us evidence that the D T has failed in 

this region and that the watershed segmentation is not to be trusted for this portion of 

the nuclear cluster. Wi th only 21 counts in the histogram the evidence is not conclusive, 



Chapter 3. Analyzing mask shape 53 

Figure 3.9: The distance transform and watershed segmentation are shown for three 
clusters of overlapping nuclei from tissue section images. The arrows show errors in the 
segmentation. A 20pm scale bar is shown in the bottom image 
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Figure 3.10: The distribution of the maxima of the distance transform for: (a) the cluster 
of circles and ellipses (figure 3.8), (b) the three nuclear cluster images (figure 3.9). 

but when this procedure is applied to an image with hundreds of nuclei, the outliers can 

be more readily discerned. 

3.3 Resolving overlapping objects in digital images 

In order to use the watershed of the distance transform as part of an image segmenta­

tion system we need to know the limits of the algorithm's ability to correctly resolve 

overlapping ellipses. This requires answering several questions: 

1. How much must two objects be overlapped before the D T returns a single U E P 

rather than two? 

2. How should the overlap of the two objects be measured? As a function of separation, 

overlap area, or occluded perimeter? 

3. When the D T returns multiple U E P s for a clump and the watershed is calculated, 

how can we trust that it hasn't divided a single object into two or created a false 
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object (as can be seen in figure 3.9)? 

3.3.1 Resolving circles 

To answer the first question, it is necessary to understand what causes the merging 

of UEPs as objects are brought together. The simplest case to analyse is the case of 

resolving a mask made of two overlapping circles of radii T\ and r 2 lying on the x-axis, 

as is shown in figure 3.11a. Let the separation between the centres be s. The height, h, 

represents the D T value of the point on the x-axis where the circle perimeters meet. It 

has the smallest D T value of any point on the x-axis between the two circle centres. 

If the circles are just touching, the D T will certainly produce two U E P s and resolve 

the circle centres. As the two circle centres are brought closer and closer, h increases. 

The condition where the two U E P s merge into one occurs when h > m i n ^ i , ^ ) . In the 

case where the circles are the same size (ri = r 2 ) , this only occurs when the two circles 

are identically on top of each other. This means that two circles of the same radius 

should be resolvable provided that they are not identically on top of one another. 

For the exact E D M calculated for circles in digital images, this is nearly the case. 

For circles with equal radii, it finds two U E P s provided the circles are separated by 

two or more pixels (dashed curve in figure 3.11b). However, when using the 5 x 5 D T , 

the minimum separation required to resolve two equal sized circles increases with the 

radii of the circles, as is shown by the solid curve in figure 3.11b. The graph plots the 

minimum separation between circle centres required for the D T to generate two UEPs . 

For example, when the radii are 20 pixels, a separation of at least 14 pixels between the 

centres is required two resolve them. 

This situation is shown in figure 3.11c. The circles have radii of 20 pixels and have 

one U E P when separated by 13 pixels and two U E P s when separated by 14 pixels. As 

the separation of the two circles decreases, the height h in figure 3.11a approaches r. If 
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Radius of circles (r) 

Figure 3.11: Measuring the ability of the D T to resolve overlapping circles. The graph 
(b) shows the minimum separation required to resolve two circles of equal size. In the 
case where the radius is 20 pixels (c), the D T cannot resolve two circles separated by 13 
pixels, but can resolve them at 14 pixels. 

the separation is small enough, the indentation disappears, as is seen in the top part of 

figure 3.11b. The absence or presence of the indentation determines whether there will 

be one U E P or two. 

It would appear that the approximate D T is significantly inferior to the exact E D M 

for resolving overlapping circles. However, it turns out that the apparently good results 

of using the E D M are a result of the objects being exact circles. Removing as little as a 

single pixel from the boundary of the mask increases the minimum separation required 
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to resolve the circles. The value of smm for a pair of circles with randomly removed 

border pixels varies from a minimum of 2 pixels to a maximum of the D T value for smin. 

For example, if the single pixel at the top of either of the two overlapping circles in 

of figure 3.11c is removed, the result for the E D M jumps from s m i n = 2 to s m i n = 14, 

identical to that of the D T . Thus, there is no advantage to using the E D M in this situation 

unless we are resolving noiseless circles. 

It should be noted that the circles and ellipses generated for these analyses are situated 

at the center of pixels in the grid. By this, I mean that when referring to a circle centred 

at (xo,yo) with radius r, the algorithm that creates the images generates a circle centred 

at (xo + 0.5, j/o + 0.5) that extends from XQ — r to XQ + r and similarly for yo- So strictly 

speaking, the radius is r + 0.5. 

The odd staircase effect seen for sm\n in figure 3.11b arises from the description of 

the circle boundary with digital pixels rather than a continuous curve. A l l distances that 

would normally be described with a fractional value in a continuous space are truncated 

in the digital space. This truncation leads to the stepwise behavior of the s m i n curve. 

It is possible to derive a formula for the minimum separation as is shown in figure 3.12 

Let r — h be the difference between the circle radius and the height of the indentation 

and x be the distance from the circle center to the indentation. The two circles can be 

resolved if the integer x is large enough that r — h exceeds one pixel. This condition 

is satisfied when x is large enough so that x2 + (r — l ) 2 > r 2 . In terms of x we get 

x > \/2r — 1 or x > y/2r — 1 + 1. Noting that s m i n = 2x, we obtain for the D T 

smin(r) > 2 * ( I N T ( v / 2 7 ^ T ) + 1). (3.8) 

This formula produces the step curve seen in figure 3.11b. 

As the radii of the circles increase, the minimum separation required to resolve in­

creases as well. However, as r increases, s m i n increases only as y/r. This means that 
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Figure 3.12: The construction for calculating the minimum separation of resolvable cir­
cles. 

Smin becomes a smaller and smaller fraction of the radius. As the radius of a digital 

circle increases, the pixel errors in the digitization of its border decrease. For example, 

a digital circle with r = 3 looks more like a square than a circle due to digitization. The 

digitization effects for the border of a circle with r — 100, on the other hand, are hardly 

noticeable. The effective radius of the circles can be increased by using a finer mesh 

to digitize the circle. This is accomplished by increasing the resolution used to image 

the circles. Since is smaller for circles imaged at higher resolution, this argues that 

resolving circles of equal radius is best done at the highest resolution available. 

The analysis for determining the required separation to resolve two circles of different 

radii proceeds in a similar fashion to the case of circles of equal radii. As mentioned 

earlier, two circles such as those in figure 3.13a cannot be resolved by the E D M if h > 

min(ri , r2) . In the case where r2 < r\, they can be resolved if h < r2. This occurs 

when y > 0 and gives the result that the minimum separation is given by x > dr\ — r\. 

Taking the truncation of distances into account, we have y > 1 and x > \Jr\ — r2 + 1. 

Therefore, the minimum separation for circles to be resolved by the E D M is 

When r\ — r2, equation 3.9 gives s m j n = 2, which is the result obtained earlier. 

As before, the D T requires an indentation to occur where the circle borders meet in 

(3.9) 
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(b) Two circles with r, = 20 and r2 = 12 

1 maximum found 2 maxima found 

Figure 3.13: The construction (a) for calculating the minimum separation of resolvable 
circles where r{ > r 2 . Distance transforms (b) for a pair of unresolvable and resolvable 
overlapping circles. 

order to be able to resolve them. Wi th reference to figure 3.13, this requires that r 2 — h 

exceed one pixel (i.e. that h < r 2 - 1). This gives y > \Z2r2 — 1 and x > \Jr\ - (r 2 — l ) 2 . 

Since s r a j n = x + y, we obtain for the D T 

«£to( r i , r 2 ) = I N T ( ^ r 2 - (r 2 - l ) 2 ) + I N T ( ^ 2 r 7 ^ T ) + 2 (3.10) 

Substituting r\ = r 2 into equation 3.10 gives the same result as equation 3.8, which shows 

that the latter equation is a generalization of the former. 

A comparison of s m

D

n

M ( r i , r 2 ) (equation 3.9) to that of s ^? ( r i , r 2 ) (equation 3.10) 

again shows that the E D M is able to resolve circles with smaller separation. For example, 

figure 3.13b shows the DTs for two cases of overlapping circles with radii r i = 20 and 

r 2 = 12. According to equation 3.9, the E D M is able to resolve these circles at a 

separation of 18 pixels. The circle centres cannot be resolved by the D T when they are 



Chapter 3. Analyzing mask shape 60 

separated by 21 pixels but can be resolved when they are separated by 22 pixels or more. 

As before, the superior performance of the E D M over the D T is a result of applying 

the E D M to noiseless images. Altering the border of the object mask by as little as a 

single pixel changes s m i n so that it ranges from a minimum of s m

D

n

M to a maximum of 

s m ? . Since experimental images will contain noise and objects that are not even perfect 

ellipses, there is no appreciable performance loss in using the 5 x 5 D T instead of the 

E D M . 

The form of equation 3.10 shows that (holding r 2 constant) s^Jn oc TV This behavior 

is different to the case of equal radii circles where s m ? oc y/r. This difference reflects the 

fact that if a small circle (radius r 2 ) overlaps a large one (radius r i ) , the circle centres 

must be separated by at least r\ or the small circle will be completely obscured by the 

larger. 

If s^Jn oc r i , this appears to negate the advantage of imaging the overlapping circles 

at higher resolutions. Doubling the resolution creates circles that are twice as big, but 

twice the separation is required to resolve them. So it appears that there is no gain 

to using the higher resolution. However, the form of equation 3.10 is such that when 

imaging overlapping circles that have a fixed range of radii, the exact dependency of smm 

on the radii is somewhere between square root and linear dependence. If the range of 

radii is small, s m ? \A* a n d we are best off imaging at the highest possible resolution. 

If the range of radii is very large, we are still constrained to choose the resolution based 

on being able to image the largest size of object of interest. So we would still try to use 

the highest resolution that is available. 

There are two main conclusions to be drawn from the analysis of distance transforms 

on binary images of overlapping circles. The E D M is superior to the D T for resolving 

noiseless circles in digital images. However, when the circles are subject to noise or 

distortion affects that change their boundaries, the two methods produce equivalent 
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results. The second conclusion is that there is an advantage to resolving circles using 

the highest resolution available. If the circles are of equal size, the separation required 

is proportional to the root of the circle radii. If the circles have different radii, the 

proportionality lies somewhere between square root and linear, depending on the range 

of radii being imaged. 

3.3.2 Resolving ellipses 

The rotational symmetry of circles allows a complete analysis of their separability with 

D T in terms of three parameters—their center to center separation, s, and their re­

spective radii, r\ and r 2 . When imaging clustered nuclei, however, we are interested in 

resolving overlapping ellipses. The simplest instance of resolving two arbitrary ellipses 

requires adjusting seven parameters. Deriving a closed form expression for the minimum 

separation in terms of seven parameters is not feasible, so it was necessary to take another 

approach. 

The approach used in this thesis was to perform a Monte Carlo analysis to measure 

the separability of pairs of overlapping ellipses as a function of overlap. Binary images 

of overlapping ellipse pairs were generated with random axes lengths and orientations. 

The positions were also randomly selected such that they overlapped to some degree. 

In order to perform the Monte Carlo analysis, it was necessary to select a range of 

axis lengths for the ellipses. Just as was seen with overlapping circles, the ability of the 

D T to separate the ellipses depends on their sizes. In order to make the results relevant 

to the tissue section images segmented in this thesis, the ellipse size range should match 

the expected sizes of nuclei within these images. 

It is possible to obtain an estimate of nuclear parameters using the watershed seg­

mentation as a starting point. For example, figure 3.14a shows the best fit ellipses based 

on the watershed segmentation of a cluster of nuclei shown in panel 3 of figure 3.9. The 
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(a) (b) 

Figure 3.14: The best fit ellipses (a) for the watershed of the nuclear cluster in panel 3 of 
figure 3.9, and the histograms (b) of axes lengths for fit ellipses for all 3 clusters in that 
figure. 

ellipses are calculated from the first and second moments of the object center of gravities. 

The axes lengths of these ellipses provide an estimate of the axes lengths of the nuclei in 

the image. Figure 3.14b shows the histograms of the major and minor axes lengths for 

the ellipse fits to all three clusters in figure 3.9. 

This histogram procedure was applied to the set of 226 images of lung epithelial tissue 

sections obtained at 20 x magnification with the image acquisition system. Each image 

is a frame of 1280 x 1024 pixels containing between 200 and 500 nuclei along with debris, 

lymphocytes and other objects. The watershed of the distance transform was calculated 

for the whole frame and ellipse fits to the watershed were calculated. Figure 3.15a shows 

the histograms of the axes lengths for the 70,570 objects found in the images. Figure 3.15b 

shows the radii of the best fit circles to the same masks. 

The results were obtained without any intervention in the segmentation procedure, 
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Figure 3.15: The histogram of major and minor axes lengths for the fit ellipses, (a), 
and radii of circle fits, (b), to the watershed segmentation of 226 lung epithelial tissue 
sections. 

with the exception of automatically rejecting objects with areas less than 150 pixels as 

being too small to be a nucleus. They therefore contain many instances of improper 

segmentation, such as the ones seen in figure 3.9. However, the effect of these kinds of 

errors are to produce excessively large or small objects. By truncating the extremes of 

the length distributions of the ellipse major axis, (a), and minor axis, (b), we obtain 

an approximate estimate of ellipse parameters for the Monte Carlo simulations. The 

portions of the length distributions used were 9 < a < 19 and 5 < b < 13 pixels. 

The two axis length distributions were assumed to be independent for the generation 

of ellipses for test images. This is not completely true since the coefficient of correlation 

for a and b for the 70,570 objects was p — .44. The positive correlation suggests that 

the objects that were found were slightly more round than oblong. Since the correla­

tion is positive, treating a and b as independent allows the creation of more elongated 
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objects than were actually measured in the tissue section images. However, the auto­

matic histogram procedure is somewhat flawed because the D T is more inclined to fail 

for elongated objects on digital grids (as was seen in figure 3.8). So it is likely that many 

elongated nuclei were missed in this procedure. Treating a and b as independent distri­

butions was unlikely to alter the results, so this assumption was made when generating 

test images. 

As mentioned earlier, the rotational symmetry of circles allowed the derivation of a 

formula for the minimum separation required to resolve circles in terms of their radii 

(equation 3.10). When dealing with ellipse pairs, there is no rotational symmetry (al­

though there is axial symmetry). Also, there are four different length parameters, {ai , bi} 

and {02,62}- This causes more difficulty in describing the overlap between two ellipses. 

Figure 3.16a shows the parameters for a pair of ellipses while figures 3.16b-d illustrate 

three possible measures to describe their overlap. The measures are by no means exhaus­

tive, but they are the three most obvious ways to refer to the overlap. 

The first measure, M A (figure 3.16b), measures the overlap of the ellipse pair as a 

function of the ellipse area. The area of overlap, O A , is common to both ellipses, which 

will likely have different areas. The measure M A is selected to be the maximum of the 

two percentage overlaps M A i and M A 2 . The maximum of M A j and M A 2 is used because 

it makes the measure more sensitive to differences in object separability. For example, 

when a small ellipse (area=Ai) significantly overlaps a large one (area=A 2), M A i will 

be large while M A 2 will be close to 0. The watershed wil l be unlikely to separate the 

ellipses in this case, but M A 2 would give us no clue that this is the case. Hence, for all 

three of the measures, the maximum of the two possible values is used to give a larger 

correlation between measure value and separability of ellipses. 

The second measure, M P (figure 3.16c), measures the overlap as a function of the 

perimeters occluded by their overlap. The occluded portion of the ellipse borders are 
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Three Possible Measures of Overlap for Ellipse Pairs 

(a) Ellipse parameters (b) Overlap area: 

Figure 3.16: Possible measures of overlap for Monte Carlo simulations of watershed 
separation of overlapping ellipses, (a) shows the parameters of the ellipses, while (b-d) 
show three possible measures based on the parameters. 
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denoted in the figure by O P i and O P 2 - The measure M P is the maximum of the two 

percentages M P i and M P 2 . Since both M A and M P are percentages, they are bounded 

between 0-100%. 

The third measure, Ms (figure 3.16d), measures overlap as a function of ellipse center 

separation divided by the "size" of the ellipse. Because it is based on the linear sepa­

ration of the centres, it bears the closest resemblance to the one derived for circles in 

equation 3.10. However, in order to remove the dependence of Ms on the scale of the 

ellipses, it is divided by the geometric mean of the ellipse axes lengths. This renders the 

measure unitless and eliminates its dependence on the scale of the ellipses. 

The area of ellipse with axes {a, b} is irab, so the geometric mean turns out to be 

directly proportional to the square root of the area. The lower extreme for Ms, 0, 

corresponds to two ellipses with concentric centres. The upper extreme for Ms occurs 

when a largest possible ellipse just barely contacts a smallest possible ellipse along their 

major axes. In this situation, the separation s is maximized while Vab is minimized. For 

ellipses used in this Monte Carlo analysis, 

M Umax + 0-min _ 19 + 9 _ . -

Since Ms is a ratio of lengths, it is somewhat more difficult to interpret than the other 

measures. One way to envision the measure is that a value of Ms=1.0 occurs when 

the center of a smaller ellipse is located very near the border of a larger ellipse. This 

represents a situation where the watershed is somewhat more likely to fail to resolve the 

objects than to succeed. 

Figure 3.17 shows the calculation of all three measures for two instances of overlapping 

ellipses. In both cases, ellipse 2 is smaller than ellipse 1, so each of the three overlap 

measures reflects the larger degree of overlap experienced by ellipse 2. In figure 3.17a, 

the ellipses are resolved despite 41% area overlap and 31% perimeter occlusion of ellipse 
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(a) 

1 
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MP ; 23% 31% 
MS; 1.2 1.7 
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Figure 3.17: The three overlap measures for an instance of two resolvable ellipses (a) and 
two unresolvable ellipses (b). 

2. However, in figure 3.17b the overlap is large enough so that the ellipses cannot be 

resolved. 

In the Monte Carlo analysis, masks for one million randomly generated overlapping 

ellipse pairs (such as those seen in figure 3.17) were generated. The ellipse axes lengths 

were selected using the truncated form of the distributions in figure 3.15, as discussed ear­

lier. The integer histograms (without smoothing) were used to generate the axes lengths, 

so these lengths were constrained to be integers. The xy coordinates were randomly 

selected so that the overlap ranged from minimal to complete overlap. 

For each mask the distance transform was calculated. In many cases, the D T found 

only one local maximum, as is seen in figure 3.17b. When the D T found more than one 

maximum, the watershed segmentation was performed (figure 3.9), and ellipse fits to the 

watershed were generated (figure 3.14a) The separation between each of the ellipse fit 

centres and the true ellipse centres were calculated. In instances where the separation 
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was less than 25% of the ellipse axis length the center was considered to be close enough 

to be called a success. Otherwise, the instance was marked as a failure. The success or 

failure was tabulated as a function of each of the three measures, and histograms were 

generated. 

Figure 3.18a shows the graph of the percentage of ellipse pairs resolved successfully 

versus the percentage of area overlap, M A . The solid curve shows the results for the {a, b} 

parameter distributions discussed earlier, which were obtained from images obtained at 

20X magnification. The dashed curve shows what the results would be if the scale 

of the ellipses were doubled (i.e. if we were attempting to segment nuclei in images 

obtained at 40X magnification). Both curves show a gradual decline as the amount of 

overlap increases. In contrast, the graph of separability versus percentage of perimeter 

occluded, M P (figure 3.18b), shows a steep decline for both magnifications. The final 

graph (figure 3.18c) shows the percentage of ellipses resolved versus the center separation 

measure, Ms. 

For all three measures, the 40X separability results are roughly the same as the 20X 

results for extreme values of the measures. However, in the middle of the measure ranges, 

the 40X curve is nearly 20% higher in each of the three cases. This leads to the conclusion 

that using an increased resolution increases the separability of overlapping ellipses based 

on shape. Just as with resolving overlapping circles based on shape, the digitization and 

truncation errors are minimized as their size increases, so this result is expected. 

The 40X results for M A and M P (figures 3.18a and 3.18b) remain 3-5% higher than 

those of the 20X even as both measures approach complete overlap. This is due to errors 

in calculating the distance transform using D T 5 x 5 . As mentioned earlier, the expected 

error in the DTs X5 value at any pixel is approximately 2.02% times the Euclidean distance 

to the nearest boundary. The ellipses used in the 40X analysis were twice as large and 

had a correspondingly larger error in their D T values. These errors are large enough to 



Chapter 3. Analyzing mask shape 69 

Separability of objects versus Separability of objects versus 

% area overlap (MA) %ofperimtociccluded(MP) 

Separability of objects versus 
separation of object centers (Ms) 

Separation of centers (Ms) 

Figure 3.18: The graphs of separability of one million randomly generated overlapping 
ellipse pairs segmented with the watershed versus each of the three measures of overlap. 
The theoretical results for circles with the same area distribution are overlaid with dotted 
lines. 
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cause false maxima to appear in the D T and create extra watershed objects. These extra 

objects may happen to fall in the region of overlap, causing the tabulation procedure to 

incorrectly label them as a successful segmentation. 

It is possible to derive closed form expressions for M A , M P and Ms in terms of ri, r 2 

and s for overlapping circles. This is done in Appendix A . Combining the measures 

with the equation for s m ; n (equation 3.10) we can tabulate the theoretical separability 

of circles as a function of each measure. This was done using circles with the radius 

distribution shown in figure 3.15b. As with the ellipse axes distributions, the extremes 

were truncated such that the circle radii were limited to 7 < r < 16 pixels. The results 

are shown in the dotted curves in figure 3.18. The curves were calculated by generating 

a table of measure values as a function of r\ and r 2 for s = s m ; n ( r i , r 2 ) . Then for each 

possible measure value in the histogram, the joint densities for ( r i , r 2 ) pairs that were 

separable at this value were summed. 

For each measure, the theoretical circle separability curves show the same qualitative 

behavior as the curves for the Monte Carlo simulation for ellipses. However, the theoret­

ical curves drop off more steeply than experimental curves. The most striking result is 

the steep drop-off of the circle separability around MP=30%. At MP=31%, 97% of the 

overlapping circles can be resolved while at MP=35% this figure drops to 2%. 

The stepwise nature of the theoretical separability versus M A and Ms curves (fig­

ure 3.18a) occurs because of the limited number of radii used. Wi th rm\n = 7 pixels, 

r m a x = 16 and the constraint that r i < r 2 , the tables of measure values have only 50 

entries (10 • y ) . The curves generated from these tables will necessarily contain a series 

of steps rather than a smooth transition. 

When attempting to segment an experimental image we are approaching the task in 

the reverse of the manner described so far. We start off with an image of a nuclear cluster 

and threshold to obtain the object mask. We do not know how many nuclei are present 
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in the mask and apply the D T and watershed to find out. If the watershed returns a 

single object, we can do no more processing based on shape and must move on to some 

other method to break up potential clusters. 

If the watershed returns more than one object, we would like a measure, M , that 

tells us what the likelihood is that the watershed has done a good job. It is desirable 

that the ellipse separability be sensitive to changes in M . A n ideal measure would have 

an operating point such that if M is less than this value, the watershed is known to be 

100% successful and if M is greater, then the watershed is known to always fail. Then we 

can accept or reject the watershed segmentation with confidence. Of the three measures, 

the slope of the perimeter occlusion measure curve in figure 3.18b, is the steepest and 

therefore has this property to the greatest degree. Further, we must also have a way to 

calculate the measure using the information at hand. Each of the measures above relies 

on knowing the true ellipse parameters, which is something that is not available. 

After the watershed has been applied, there is useful information in the form of 

the contact length between different watershed objects. Figure 3.19a shows a pair of 

overlapping circles, and the watershed segmentation of the mask of these circles. The M P 

measure requires knowing the length of the occluded portion of the perimeter of each of 

the objects, O P i and O P 2 . We can obtain an estimate of these quantities by substituting 

C L , the contact length of the watershed border. This length underestimates O P i and 

O P 2 . For ellipses that overlap only slightly, the difference is not significant. In the worst 

case, the contact length is close to the diameter of the object, whereas the occluded 

perimeter is | times as much. However, since M P is calculated as a percentage of the 

occluded perimeter over the total perimeter, the total perimeter is also underestimated. 

The errors partially cancel each other out. Letting P w s be the perimeter of the watershed 
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(a) (b) 

Original Watershed 

OP, - occluded CL - contact 
perimeter length 

• largest M P ' 
contact (%) 

1 2 3 

2 4 13 

3 4 52 

4 3 21 

5 7 21 

6 8 47 

7 5 21 

8 6 36 

Figure 3.19: A pair of overlapping circles and the watershed segmentation of the mask 
(a) . The M P measure requires knowing OP* but only the contact length, C L is available. 
(b) , the application of a reformulated version of M P (MP') to the nuclear cluster from 
figure 3.9. 

segmented object, we define M P ' as 

M P ' = 
* W R 

(3.11) 

Reformulating M P as M P ' , the ratio of the contact length divided by the visible 

perimeter, makes it simple to apply to experimental images. After the watershed is 

applied, M P ' is calculated for each pair of touching objects. Figure 3.19b shows this for 

the nuclear cluster shown in figure 3.9. Each watershed object (labelled 1 through 8) 

is in contact with one or more other objects. The table shows the labels of the other 

objects with the longest contact length. The value of M P ' for each of the contact pairs is 

tabulated in the right hand column. By looking for large values of M P ' we are looking for 

likely instances where the watershed has failed. These are situations where the watershed 

objects should be remerged and an alternate scheme used to segment that portion of the 

cluster. In this figure, it is clear that objects 3 and 4 should be remerged. Also, object 6 

has a long contact length with each of its neighbors. Since the contact length with object 
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8 is longest, the current scheme remerges objects 6 and 8. 

The M P ' measure is used as a decision criterion in the initial splitting of nuclear 

clusters in the segmentation system described in this thesis. Through initial experimen­

tation with tissue section images containing clumps such as those seen in figure 3.9, it 

was noticed that object pairs with M P ' > 30% were often incorrectly segmented by the 

watershed. Setting a threshold on M P ' at 30% produced an initial segmentation that 

resolved most mildly touching objects and produced few errors. Wi th figure 3.18b in 

mind, it is clear how this 30% figure arises. For resolving the perfect ellipses using the 

exact form of M P , there is a steep drop-off of separability versus M P between MP=20% 

and MP=40%. The percentage of ellipses correctly resolved drops from around 90% to 

just above 10%. 

Although the position of the drop-off may shift a few percent, separability versus M P ' 

has the same qualitative behavior. The choice of rejecting watershed segmentations when 

M P ' > 30% served as an appropriate trade-off between making maximal use of the wa­

tershed versus generating too many split objects. This analysis shows how the watershed 

of the mask can be used reliably for the initial shape segmentation in complex scenes. 

Objects with a small M P ' value are likely single cells (provided that their other features 

such as area and optical density fall within prescribed single cell limits). Therefore, be­

sides using the value of M P ' to decide whether to remerge watershed objects, the value 

is a useful nuclear feature in itself. It can be used in conjunction with regular nuclear 

features for creating decision functions. The population of M P ' values for a whole image 

scene could even be used to describe the degree of nuclear contact present in a tissue 

section image. 



Chapter 4 

Finding nuclei from grey scale information 

When segmenting complex scenes, there are instances where the mask shape of overlap­

ping nuclei is not suitable for correctly separating the nuclei. In these cases we may be 

able to use the grey scale information to aid in correctly segmenting the scene. Most 

grey scale segmentation techniques use the presence of edges in the image as an indicator 

for the limits of an object boundary. This chapter describes how edge filters such as the 

Sobel filter can be used to locate edges, and how to discern objects from a collection of 

edges using the Hough transform. 

4.1 Edge detection 

4.1.1 The Sobel filter 

One of the primary operations for segmentation of grey level images is the detection of 

edges using an edge detection algorithm. Objects in the image can be distinguished from 

the background by locating discontinuities in the grey level value. For an image whose 

pixels are given by f(x,y), these discontinuities are found using the gradient vector 

Vf(x,y) = 

where Gx and Gy represent the value of the x and y-direction gradients at the point 

(x, y). The magnitude of this vector, referred to as the gradient is given by 

Vf(x,y) = ^ G l + G l (4.2) 
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§1 
dx 

§1 
dv 

(4.1) 
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The exact magnitude of the gradient is not usually as important as finding locations 

where the gradient value is large. For this reason, it is common to replace the squares 

and square root with absolute value signs in order to speed up the computation, giving 

V f ( x , y ) * \ G x \ + \Gy\ (4.3) 

The gradient operation is an example of a spatial filtering operator. Filtering oper­

ations are done by specifying a kernel, which is a matrix of weighting coefficients and 

convolving the original image with this mask. 

The convolution of each image pixel with the kernel |-110111, takes the pixel to the 

right, subtracts the pixel to the left and stores the result in the central pixel. This kernel 

produces large magnitudes anywhere that there is a discontinuity along the horizontal 

axis (i.e. a vertical line) and implements the central difference definition of Similarly, 

a central difference based definition of 4- would be 
oy 

d_ 
dy 

(4.4) 

Convolution with the kernel in equation 4.4 replaces each image pixel with the difference 

of the pixel below and the pixel above. The two difference kernels above are sensitive 

to pixel noise. One way to reduce the effect of noise is to smooth the image through 

some kind of pixel averaging mechanism. Applying the smoothing kernel 1112111 to the 

image after applying the ^ kernel has this effect. These two convolution operations are 

equivalent to using a single pass of the 3 x 3 kernel 

D y = 

-1 -2 -1 

0 0 0 

1 2 1 

(4.5) 
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Similarly, the smoothed 3 x 3 kernel for calculating x-direction derivatives D x is given 

by 
-1 0 1 

-2 0 2 

-1 0 1 

(4.6) 

The convolution of the image f(x, y) with the kernels in equations 4.5 and 4.6 can be 

used to calculate the two directional gradient components, 

Gx = f(x, y) <8> D x and Gy = f{x, y) ® D y (4.7) 

where <g> represents the convolution operation. Combining equations 4.3 and 4.7 defines 

the Sobel filter, a commonly used operator for edge detection: 

Vf(x,y)fs | f ( x , y ) ® D x | + | f ( x , y ) ® D y | (4.8) 

Figure 4.1a shows a cluster of overlapping nuclei from a Feulgen stained 7/xm thick 

lung epithelial section.. The Sobel filter is effective for highlighting the object from 

background as is shown by the strong exterior edges in figure 4.1b. The thresholded 

Sobel image, (c), shows that the largest magnitude edges in (b) are the exterior edges. 

Figure 4.1a shows that there are also significant interior edges present in the overlap 

regions of the nuclei. They are easy to detect visually and allow us to discern the 

elliptically shaped nuclei present in the left half of the image. However, these interior 

edges are seen only faintly in (b) and do not appear in the thresholded Sobel image. 

Because the grey level change from background to object is larger than the grey level 

changes within the nuclei, the exterior edges dominate the Sobel image. Our eye is able 

to detect the interior edges since it is more sensitive to the local contrast between grey 

levels. 



Figure 4.1: A cluster of overlapping nuclei (a) is shown along with its Sobel image (b), 
thresholded Sobel image (c), contrast image (d) and thresholded contrast image(e). The 
contrast operator enhances interior edges of clusters. 
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4.1.2 Contrast based filtering 

Johnson [33] defines a contrast based Sobel filter (here referred to as a contrast operator) 

that is useful for finding interior edges in absorption images. This operator finds edges 

in low brightness regions by accounting for the local average light level. This is done by 

modifying the Sobel value at each pixel according to the average grey level value over a 

specified area. The contrast based Sobel operation C(x,y) is defined 

C(x,v)JI^pA±E^^ (4.9) 
±(f(x, y) <g> A 3 ) 3 ) + d 

where d is a D C offset and A 3 i 3 is the 3 x 3 averaging mask 

A 3 , 3 = 

1 1 1 

1 1 1 

1 1 1 

The final result is then scaled to give the pixel values an acceptable dynamic range. 

The local averaging term in the denominator penalizes edges in bright regions more 

than it does edges in dim regions. For the problem of segmenting overlapping nuclei, it 

enhances the magnitude of interior edges of overlapping objects relative to exterior edges. 

Figure 4. Id shows the contrast image of the clustered objects. The ratio of interior to 

exterior edge strengths for the contrast image is higher than for the Sobel image. This 

can be seen in the two pairs of overlapping nuclei in the left of the image. Figure 4.1e 

shows how thresholding the contrast image retains the interior edges. 

One side effect of enhancing edges in darker regions is that noise is also enhanced 

in these regions. This effect is seen in figure 4.Id, where there is more noise present 

than in the Sobel image. The trade-off between noise suppression and dynamic range is 

controlled by adjusting the offset d in equation 4.9. Increasing the value of d increases 

the amount of noise suppression in the filtered image. If the value of d were allowed to 
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become very large compared to the average pixel value, the denominator of equation 4.9 

would approach a constant value for all pixels. In this case, the value of C(x,y) would 

depend only on the numerator. So as the value of d increases the value of C(x,y), to 

within a multiplicative constant, approaches the Sobel filter (equation 4.8). 

There are situations where enhancing local contrast can actually hamper our ability to 

find the relevant edges and segment an image. If the objects being imaged have significant 

interior texture, enhancing the local contrast wil l degrade results. Figure 4.2a shows an 

image of HL-60 nuclei grown in culture. There is significant nuclear texture visible for 

this pair of abnormal nuclei. The Sobel and contrast images are shown in figures 4.2b 

and 4.2d. Both edge images contain a great deal of extraneous edges due to the nuclear 

texture. In the case of the contrast image these edges are enhanced to the point that 

their intensities exceed those of the true nuclear edges. This can be seen by comparing 

the thresholded Sobel image to the thresholded contrast image (figures 4.2c and 4.2e). 

The Sobel image recovers significant portions of the nuclear edges while scattered interior 

pixels dominate the thresholded contrast image. 

4.2 Hough transform — Finding straight lines 

Filtering an image to find its edges provides a starting point to segmenting the objects in 

it, but we need a way to recognize the existence of shapes from these edge maps. Various 

techniques exist to make the transition from edges to objects. These can be divided 

into local techniques such as edge-walking algorithms and global algorithms such as the 

Hough transform (HT). Hough [29] proposed an algorithm for finding straight lines in 

digital images. Let (xi, y\) be a point in the xy plane and consider the equation of a line 

passing through that point, 

yi = axx + b (4.10) 
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Figure 4.2: A pair of cultured HL-60 nuclei in (a) are shown along with the Sobel image 
(b), thresholded Sobel image (c), contrast image (d) and thresholded contrast image (e). 
Edge recovery fails when the image contains significant nuclear texture. 
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y Image Space b Parameter Space 

• (x„y,) 

Figure 4.3: The Hough transform for finding lines in two dimensions. Each point in the 
xy plane on the left gives rise to a line in the ab parameter space on the right. The 
intersection of lines in the parameter space represents points that are collinear in the 
image space for some value of (a,b). The intersection point, (a',b'), on the right gives 
the parameters of the dotted line that passes through (£1,2/1) and (£2,2/2)-

If we rearrange this equation to solve for the unknown parameters a and b, we get the 

equation 

b = -x1a + yi (4-11) 

We can then plot this line (equation 4.11) in the ab parameter space as is shown in 

shown in figure 4.3. Each point along the line represents a different (a, b) combination 

that satisfies equation 4.10. If we repeat this procedure for a second point (£2,2/2)) we 

obtain a second line b = —£20 + 2/2 in the parameter space. Let the intersection of the 

two lines in the parameter space be (a', b'). This parameter pair specifies the values of a 

and b that represent the line in the xy plane that passes through the points (xi, y\) and 

(£2) 2/2)- Thus, using two points selected from a line in the xy plane we obtain a point in 

the ab plane, whose coordinates specify the parameters of our original line. 

This is the basis of the Hough algorithm for finding lines in digital images. We define 
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an accumulator A(a,b), an array of possible values for a and b. The bounds of A(a, b) 

are set to the expected range of values for slope and intercept, (amin, a m a x ) x (bmin, bmax). 

Then, for each feature point (a;i, y») in the image space, we increment all the cells of the 

accumulator along the line b — —Xia + yi. In essence, each feature point votes for all 

the lines to which it may belong. The value of each cell A (a, b) is equal to the number 

of points in the original image that lie along this line. The final step is to scan A(a, b) 

for peak values. Each peak, (a',b'), represents the likely presence of a line with these 

parameters the image space. 

The power of the H T lies in its ability to detect lines under various conditions. It 

does not require that a line be continuous, so it will detect lines even if portions of it are 

obscured. Discontinuities in lines reduce the number of votes cast for a particular peak, 

but do not cause the method to fail entirely. Noise pixels result in spurious votes being 

cast in A; however unless a large proportion of the noise pixels are collinear, their votes 

are insignificant to those cast for the true lines present in the image. The winner-takes-all 

approach to finding peaks means that the position of (a1, b') is not shifted by the presence 

of noise. 

The H T of a noisy line image is shown in Figure 4.4. There are two line segments 

present in the original image along with a field of uniform random noise. Eighty percent 

of all the pixels are noise pixels. Each pixel of the image space gives rise to a line in 

the transform space on the right. There are two distinct peaks in the transform space. 

These peaks correspond to the slopes and intercepts of the two line segments on the left. 

The votes cast by the noise pixels are visible as the lines of intermediate intensity seen 

around the peaks. 
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Figure 4.4: The Hough transform for a noisy line image. The two lines in the image 
give rise to peaks in the transform space that are clearly visible despite the noise (which 
constitutes 80% of the pixels in the original image). 

4.3 Hough transform — Finding ellipses 

Although the original H T was developed to detect lines, the idea of performing a trans­

formation from an image space to a parameter/voting space has been explored for many 

different shapes [30]. The term Hough transform is generally applied to any of these 

algorithms that use a transformation to a parameter/voting space to detect objects. To 

see how it can be applied to finding ellipses, consider a pixel (x, y) from an edge map 

that is presumed to be from the edge of an ellipse. The equation of all ellipses that pass 

through this point is given by 

where (x0,yo) is the ellipse center, amaj and amin are the semi-major and semi-minor axes 

lengths, and 9 is the ellipse orientation. 

Thus the vector {x0, y0, amaj,amin, 0} represents the five unknown parameters needed 

[(x - s 0 ) c o s 6 > - (y - 2/0)sin6>]2 [(y - y0) cos 0 + (x - x0) sin 6]2 

= 1 (4.12) 
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to describe an ellipse. It is certainly possible to specify that the Hough parameter space 

be represented by a five dimensional accumulator A(XQ, yo, amaj, amin, 0). However, there 

are several reasons why this approach is not generally used [40]: 

1. Memory requirements. Wi th five dimensions, the memory space required for 

this definition of A would be enormous. Two of its dimensions are image height and 

width, two of them are the range of all reasonable axes lengths, and the final dimen­

sion is the discretization of the angles between 0 — 180° (into say, 5° increments). 

For a typical clustered nuclear image, the number of cells in this accumulator are 

100 x 100 x 15 x 15 x 36 which is more than 80 million cells. 

2. Computational complexity. The computational complexity grows exponentially 

with the dimension of the problem. For each possible edge point (x,y), we would 

increment all cells of A which satisfy equation 4.12. There are typically a few 

hundred possible edge pixels in a nuclear cluster image, which would require the 

casting of votes in ~ 10 7 accumulator cells per image. 

3. Parameter extraction. Locating the maxima in the parameter space requires 

finding the local maxima of a multidimensional accumulator array. This requires 

using a multidimensional peak finding algorithm to find the peaks. As the number 

of dimensions increase the chance of spurious local maxima increases. 

Besides requiring more computational effort, using the H T with ellipses is more diffi­

cult to visualize. When transforming straight lines, we go from a two-dimensional image 

space to a two-dimensional parameter space. Since the parameter space can be plotted, 

it is easy to see how peaks in the parameter space correspond to the lines in the orig­

inal image. When transforming ellipses, we go from a two dimensional space to a five 

dimensional space. 
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It is possible to reduce the dimension of the transform space by using a priori infor­

mation about the objects. Ballard described a generalized Hough transform [8, 9] (GHT) 

which can be used to find objects of arbitrary shape whose exact shape and orientation 

is known. This method uses edge orientation information and requires a template of 

the shape being sought. In the case of finding ellipses, this template is an ellipse with 

specified axes lengths. Davies [19] adapted the G H T to finding ellipses using this idea 

and the method has been applied to locating cell nuclei in cervical smears [64]. Since 

the G H T requires that both ellipse axes be specified the authors restricted themselves to 

searching for ellipses of a certain size with low eccentricity (essentially circles). This also 

eliminates the difficulty of having to deal with ellipse orientations at the cost of limited 

applicability of the algorithm. 

Using an ellipse template is one way to reduce the dimensionality of the parameter 

space. A n alternate way is to use pairs of points such as the diameter bisection technique 

of Tsuji [65]. This method considers edge points in pairs and uses the property that if two 

points on the edge of an ellipse have antiparallel gradient directions, then their midpoint 

coincides with the center of an ellipse. By comparing many such pairs of edge points 

we cast votes for possible ellipse centres. Since the votes are cast in a two-dimensional 

space identical to the image space the method has the advantage that the results are 

easy to visualize. To recover the remaining three ellipse parameters, the algorithm is run 

a second time. On the second pass, edge pixels that vote for a particular center location 

are recorded. The set of points that voted for a particular center are fitted using a least 

mean squares technique. 

A typical image with multiple objects will contain many points that have antiparallel 

gradients. Most of these will be spurious and lead to non-useful votes being cast in the 

parameter space. This is a significant problem with this method. Further, most pairs 

of points from the edge of an ellipse do not have antiparallel gradients, so none of these 
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O 

Figure 4.5: The Yuen method for finding the center of an ellipse. P i and P2 are two 
points on the edge of an ellipse. Their tangents intersect at T and the midpoint of P1P2 
is M. Due to the geometry of ellipses, the extension of the line TM passes through the 
ellipse center, C. 

edge pairs help in the determination of the ellipse centres. 

Yuen [73] maximizes the information contributed by pairs of ellipse edges with his 

method of finding ellipses based on a geometric property of ellipses. Let P\(x,y) and 

P2(x, y) be two points on the edge of an ellipse as shown in figure 4.5. The tangent lines 

for these two points meet at T and midpoint of the line connecting them is M. The 

extension of the line between T and M passes through the center, C , of the ellipse and 

reaches the other side at point O. As with Tsuji's method, the voting space is congruent 

with the image space, so votes for the possible center of the circle will be cast along the 

line specified by TM. Since the point M always lies between C and T, votes need only 

be cast along the segment OM, because the center must fall on this line segment 

The use of all possible pairs of edge points provides significantly more information 

than is available to Tsuji's method, which can only use those pairs whose gradients are 

antiparallel. It is clear that the number of voting pairs in Tsuji's method is proportional to 
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the number of edge pixels m, since each edge point should have exactly one corresponding 

edge point with an antiparallel gradient. However, Yuen's method may potentially use 

^y voting pairs, maximizing the amount of information extracted from the image. This 

means that Yuen's method will be better able to deal with situations where significant 

portions of the ellipse edge are occluded. 

Using points in pairs and their gradients reduces the dimensionality of the parameter 

space from five dimensions to two dimensions, which is more convenient to search. The 

price of this convenience is paid in significantly higher computation costs. As mentioned, 

an image with m edge points requires ^y of the geometric constructions described above. 

A single nucleus will have at least 100 edge pixels, with 300 pixels being a more typical 

number. This means that there are potentially 45,000 edge pairs to be used in the voting 

process. 

The number of pairs that are considered can be reduced. Point pairs that are too far 

apart can be eliminated since they must belong to different objects. This sets a limit, 

dmax, of twice the maximum axis length as the cut-off for maximum distance between 

pairs. Pairs that are too close together should also be eliminated. In a digital image, if P i 

and P2 are close together, their tangent lines are more likely to be nearly parallel. Since 

T is calculated as the point where the two tangent lines meet, it will be very sensitive to 

any errors in the gradient directions at P i and P 2 . 

A second problem can occur if the tangent lines are close to being parallel. If one 

considers the triangle P i P 2 T in figure 4.5, the distance from T to the triangle base, M, 

will be necessarily small if P i T and P 2 T are nearly parallel. Since T and M will be close 

together, the line TM wil l not reliably pass through the ellipse center. The particular 

value of the lower limit, dmin will depend on the expected size of the ellipses being sought. 

Throwing out pairs that are too close or too far amounts to a windowing process on the 

candidate point pairs. Wi th this computational reduction, the information gain in using 
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(a) (b) (c) 

Figure 4.6: The transformation from image space, (a), to vote space (b). The distribution 
of bright points in (b) represents likely positions of an ellipse center. The voting peaks are 
shown in (c). Eight of the ten nuclei are located immediately with the Hough transform. 

pairwise edges outweighs the computational cost of the method. 

The result of applying Yuen's method to nuclear clusters from an epithelial biopsy 

section is shown in figure 4.6. Figure 4.6a shows several clusters of overlapping nuclei, 

with three, two and five nuclei in the top, middle and bottom clusters, respectively. The 

clusters are outlined in black to show the extent of the masks that were determined by 

thresholding. Figure 4.6b shows the center position accumulators for each of the three 

clusters. Dark regions represent areas with few or no votes, while lighter regions represent 

likely positions of ellipse centres. The brightness of each accumulator is scaled so that 

the maximal peak for that cluster is white. 

Applying a peak finding algorithm to figure 4.6b recovers the most significant peaks 

of the vote space, (figure 4.6c). Since the Hough transform is an evidence accumulation 

procedure that selects parameter combinations that receive the most votes, we can view 

these voting peaks as the maximum likelihood estimates of a parametric estimator. For 

the nuclear clusters in the figure, all five of the nuclear centres are recovered for the 
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top two clusters. The bottom cluster itself contains five nuclei, of which only three are 

recovered. The two nuclei that are not identified are fainter than the rest and do not 

contribute significantly to the vote space. 

Once the ellipse center has been located by finding the voting peaks it still remains 

to find the remaining three parameters amaj, amin, and 8. Yuen's approach attempts 

to recover all three parameters at once using a three-dimensional accumulator. Another 

approach [50] is to run a second pass through the image to find the ellipse orientation, 

and a third pass to recover the axes lengths. However, the disadvantage of using multi­

stage algorithms such as this is that systematic errors are propagated and compounded 

at each stage. 

4.4 A proposed method for ellipse detection 

This thesis proposes an alternate scheme to recover the remaining parameters by com­

bining the second stage of the Hough transform with a modified form of a newer least 

squares algorithm for fitting ellipses. From the outset, a grey scale image containing a 

group of elliptical objects is transformed into an edge map using the contrast based edge 

operator from equation 4.9. A histogram of the gradient magnitudes is made and all 

pixels whose gradient magnitude exceeds a threshold are marked as potential edges for 

use in the Hough transform. 

The position of the threshold depends on the nature of the objects being imaged. 

In the case of imaging absorbing nuclei, interior edges are distinct from background but 

are not as bright as exterior edges, despite the local contrast enhancement. Since it is 

believed that they can contribute to the ellipse parameter determination, the gradient 

threshold is set to a fraction of the median gradient value. For the tissue section images 

studied in this thesis, threshold values between 60-90% of the median gradient allow the 
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interior edges to vote and still suppress most of the noise and nuclear texture pixels. 

A value of 70% was used for the tissue section experiments. The initial stage of the 

Hough transform follows Yuen's method for finding the ellipse center (xo, yo) using pairs 

of points Pi(x,y), P2(x,y) that satisfy the condition: 

dmin < \Pi{x,y) - P2(x,y)\ < dmax 

where dmin and dmax are described above. Wi th each {Pi,P2} pair, the construction 

shown in figure 4.5 is used to find the line OT, which should pass through the ellipse 

center. Votes are cast in the accumulator along the line OT. The manner in which they 

are cast is discussed next. 

4.4.1 Sharpening peaks in the accumulator 

Different techniques exist to sharpen peaks or suppress false peaks in the accumulator to 

assist in the interpretation of the parameter space. Many techniques focus on assigning 

larger weight factors to votes cast by edge pixels that are more certain to be part of the 

true object. For example, some schemes use the size of the edge gradient to determine 

the weight factor used in the voting [8, 66]. Another method [72] notes that true lines 

tend to be thicker than random sequences of edge pixels and satisfy local connectivity 

criteria that random pixels should not. Presumed edge pixels are given larger weighting 

factors in the votes that they cast when the criteria are satisfied. 

The commonality that ties these types of methods together is the interpretation of 

the Hough transform as an instance of a maximum likelihood parametric estimator. 

Stephens [62] demonstrates the relationship between the two by deriving a probabilistic 

Hough transform using likelihood principles. The result is that the accumulation of votes 

in the parameter space from a group of independent image features (edges) is equivalent 

to computing log-likelihood of a cumulative probability distribution. His method shows 
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Figure 4.7: Demonstration of uniform (a,b) and weighted (c,d) accumulator voting strate­
gies for the-location of the center of an ellipse. 

that for problems where a formula for the error distribution for the parameters is known, 

it is possible to suppress false peaks by spreading votes over a range of cells based on the 

parameter distributions. 

When applying the ellipse Hough transform for finding the nuclear centres we do not 

have an explicit formula for the errors in the parameters. In the framework derived by 

Stephens, we can see that the ellipse finding methods that use uniform voting [19, 50] 

are applying a binary probability density function (PDF) for the parameters and assume 

a priori that the P D F is uniform for all valid parameter combinations. A n example of 

this voting scheme is shown in figures 4.7a and 4.7b. The accumulator is shown after two 

edge pairs have voted using Yuen's construction (figure 4.5). The votes are cast over a 

range of valid radii between r m i n and rmax. The accumulation of two votes in the cell in 

the center of figure 4.7b represents the fact this location is twice as likely as the others 

to be the ellipse center. 
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This suggests that it is possible to incorporate prior knowledge of the expected size 

distribution as weights on the votes cast in the parameter space. A n example of this is 

shown in figures 4.7c and 4.7d. If we knew that the expected distance from border to 

ellipse center had a distribution such as shown in 4.7c, we could weight the votes cast 

accordingly leading to a concentration of votes in the accumulator space (figure 4.7d). 

This can sharpen the peak by making it relatively higher than the surrounding accumu­

lator cells. This kind of weighted voting scheme can be used to account for object size 

distributions but does not deal with other kinds of errors that affect the voting. Edge 

orientation errors due to noise in the image or the inherent inaccuracy of the Sobel filter 

direction (expected to be around 1° [20]) will prevent the line from passing through the 

center. 

The idea of using a weighted voted scheme determined by the known distribution of 

object sizes was tested for finding the centres of ellipses. For the cytological image set of 

212 images described in section 1.4, the best fit ellipses were calculated and the distri­

bution of axis lengths were determined. This distribution was used to generate synthetic 

images of ellipses such as those shown in figure 4.8a. Both the uniform and weighted 

voting schemes correctly locate the ellipse center for such perfect ellipses. However, the 

concentration of votes around the peak differs for the two schemes. 

This can be seen by comparing the spread of votes for the uniform voting scheme 

and the weighted scheme (figures 4.8b and 4.8c). In both of these images the standard 

deviation for the peak using the weighted scheme is smaller than that of the uniform 

scheme. This is the case for most of the generated images, although extremely large 

or small images can show the opposite trend. The standard deviations, {ax,ay}, of 

the peaks were calculated for both schemes using synthetic images of ellipses generated 

according to the distributions mentioned. The geometric mean of the average standard 

deviations was calculated to give a measure of the size of the peak spreads (a = y/axay). 
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Figure 4.8: Two accumulators for two ellipse images, (a), are shown for uniform, (b), 
and weighted, (c), Hough voting schemes. 

The limit of the peaks was determined by using accumulator elements that were at least 

one third of the peak height. The results were not sensitive to this choice—giving the 

same trend if a threshold of 25% or 40% had been used. The peak sizes were measured 

to be oviform = 3.05 pixels and <JWeighted = 2.64 pixels. Thus, under the uniform voting 

method, the spread of the peaks was roughly 1.15 times larger than using the weighted 

voting method. 

These results are certainly particular to the distribution of the ellipses being processed, 

but they indicate that there is an advantage to using a weighted voting scheme when 

the distribution of ellipse sizes is available. The narrower peak distribution prevents the 

peak from being obscured when there is noise present in the image. In order to obtain a 

confirmation of this idea for real nuclei, both the uniform and weighted voting strategies 

were applied to detecting ellipses in 212 images containing 431 overlapping nuclei. The 
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Classification Uniform voting Weighted voting 
Good (< 20% error) 
Marginal (20-40% error) 
Failure (> 40% error) 

315 (73%) 
59 (14%) 
57 (13%) 

354 (82%) 
45 (10%) 
32 (7%) 

Table 4.1: Comparison of uniform versus weighted voting for detection of 431 overlapping 
nuclei using the ellipse Hough transform. 

results are shown in table 4.1. 

These results will be discussed in more detail in section 4.4.3, where the classification 

scheme will be explained. At this point it is sufficient to note that the top row contains 

the nuclei that were considered to be successfully detected with the Hough transforms. 

Using the weighted voting scheme improved the recognition of the nuclei from 73% to 

82%. From this we conclude that using the empirical distribution of object sizes to weight 

the voting in the Hough accumulator can improve the recognition of ellipses and hence, 

the recognition of nuclei in images. 

4.4.2 Detecting peaks in the accumulator 

The combination of discretization errors and edge orientation errors can cause ellipse 

center peaks to be spread over more than one cell in the accumulator A(XQ, yo)- This can 

lead to multiple local peaks in the parameter space separated by only a few pixels. This 

is the case for the two nuclei shown figure 4.9a. The vote space is shown in figure 4.9b 

using brighter pixels to show accumulator cells with larger numbers of votes. Plotting the 

vote space as a three dimensional surface, (figure 4.9d), shows the seven local maxima. 

These false peaks are caused by votes for the true peaks that become spread over several 

cells and by edge orientation errors. 

In order to suppress the false peaks and find the true center of the distribution a 
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Figure 4.9: A n image of overlapping nuclei, (a), the Hough vote space, (b), and the 
smoothing of the vote space using a Gaussian smoothing operator (c). The vote spaces 
plotted as surfaces (d,e) show seven and two voting peaks respectively. 

Gaussian smoothing filter is applied to A. The size of the kernel standard deviation cr, 

depends on the expected size of the ellipses being sought. A value of o that is too small 

can be easily detected as an excessive number of closely spaced peaks in A(xo,yo) and 

can be adjusted accordingly. The application of a smoothing operator with o = .625 

to the vote space of figure 4.9b produces the vote spread shown in figure 4.9c. As can 

be seen from the three dimensional representation of smoothed voting space ( 4.9e), the 

seven peaks have been reduced to two. 

The ellipse centres are recovered from the peaks of A(xo,yo). Let the set of ellipse 
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Figure 4.10: The voting edge accumulators, Bl for: (a) the cluster of three nuclei in 
the top of figure 4.6, and (b) the two ellipse centres recovered from figure 4.9c. The 
brightness of each pixel corresponds to the number of times it voted (in conjunction with 
another edge) for the respective ellipse center. 

center estimates be denoted by (XQ,^). A second pass of the transform is executed 

with a new accumulator, B^(x,y), for each (xl,^). During this pass, cells of B J ( x , y) 

corresponding to pairs of edges that vote for each (x 0 , yl) are incremented. This produces 

a set of accumulators that each contain the edges of a different ellipse. 

The edge accumulators, B1, B2 and B3 for the cluster of nuclei in the top of figure 4.6 

are shown in figure 4.10a. Similarly, B1 and B2 for the two ellipse centres of figure 4.9c 

are shown in figure 4.10b. The accumulator values are scaled so that the brightness of 

an edge is proportional to how often it voted for the respective ellipse center. 

The thickness of the ellipse edges seen in figure 4.10 is controlled by the threshold 

on the gradient level of edges which are allowed to vote. Setting the threshold to a 

low value ensures that all true edges are used but also increases the amount of noise 



Chapter 4. Finding nuclei from grey scale information 97 

present in the accumulator. These spurious edges can be reduced by setting the gradient 

threshold higher. Since the spurious edges tend to cast fewer votes (and appear darker 

in figure 4.10) they can also be removed by thresholding or applying an erosion operator 

to the edge accumulator, BK What remains is to recover the ellipse parameters from the 

edges. 

4.4.3 Least squares recovery of ellipse parameters 

Fitzgibbon [21] recently published an algorithm (B2AC algorithm) for least squares fitting 

of ellipses. The algorithm improves upon existing ellipse fitting techniques and is adapted 

for the problem at hand. Let the general equation of a conic be written as the implicit 

polynomial 

F(a, x) = a • x = ax2 + bxy + cy2 + dx + ey + / = 0 (4.13) 

with a — [a b c d e f]T and let 

x = [x 2 xy y2 x y l ] . (4-14) 

Given a set of N points x, , the general procedure for fitting a conic is to find a solution 

for a that minimizes the squared error term 

£(a) = i > ( X i , a ) 2 (4.15) 
» = i 

In order to obtain a unique, non-trivial solution for a, it is necessary to apply con­

straints to the minimization problem. The salient difference between many published 

conic fitting algorithms is the nature of the constraint applied. The constraint may be 

linear, of the form c a — 1, such as a + c = 1, and / = 1. It may also be quadratic, of the 

form a T Ca = 1 (where C is a 6 x 6 constraint matrix), such as |a| = 1 or a 2 + | b 2 + c 2 = 1. 

Fitzgibbons discusses the properties of existing methods and notes that there is no 

"direct specific ellipse fitting" method. There are general conic fitting methods or iterative 
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methods that nudge a conic solution towards an ellipse. In principle, it is possible to force 

the solution vector, a, of equation 4.15 to be an ellipse by specifying that the discriminant 

b2 — iac be negative. Problems with arbitrary scaling parameters are overcome by setting 

this condition as an equality constraint, 4ac — 62 = 1. In matrix form this quadratic 

constraint is written as 

r 0 0 2 0 0 0 

0 - 1 0 0 0 0 

2 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

The ellipse fitting problem may now be written as a generalized eigenvalue problem. 

Let the matrix of edge point locations be written as 

â  Ca = a1 a = 1 (4.16) 

D = x i x 2 
(4.17) 

Define the scatter matrix, S, as S = D T D . Each element, Sjj, of the scatter matrix wil l 

therefore be 

s « = E D S k D * j ( 4- 1 8) 
k 

Bookstein [15] showed that the problem of minimizing the squared difference error in 

equation 4.15 subject to the quadratic constraint in equation 4.16 was equivalent to 

solving a generalized eigenvalue of the form 

Sa = ACa (4.19) 

where A represents a generalized eigenvalue. Fitzgibbon's method uses this result to 

obtain the least squares estimates of the ellipse parameters from the eigensolutions to 

equation 4.19 subject to the constraint in equation 4.16. 
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If the pair (Aj,Uj) is a solution to equation 4.19, the application of the constraint 

equation gives the conic parameters, a, as 

Since S is positive definite and C is symmetric there will be only one positive generalized 

eigenvalue \ and therefore, only one set of solution parameters a*. This solution is the 

parameters of the best fit ellipse to the edge points. 

Figure 4.11 shows the B 2 A C algorithm applied to data points sampled from portions 

of the same ellipse. Each instance represents data subject to different noise conditions. 

The solid lines show the ellipse fit and the dotted lines show proper fit in the absence of 

noise. Figure 4.11a shows that the algorithm is able to recover the exact ellipse param­

eters given only 12 points sampled from a fraction (120°) of the border. Figures 4.11b 

and 4.11c show the gradual degradation of the fit as the sample points are subjected to 

increasing Gaussian noise. 

In all three cases (figures 4.11a-c), the sampled data is seemingly consistent with 

either an ellipse or a parabola, given how little of the border is represented in the data. 

These panels show one of the benefits of this algorithm over other conic fitting techniques 

for recovering ellipses. It has a low eccentricity bias because the equality constraint 4.16 

prevents the discriminant b2 — 4ac from approaching zero, which is the condition of an 

ellipse. This constrains the long axis of the fit ellipse from becoming too large even if the 

data is perfectly consistent with an ellipse. This is desirable for the problem of fitting 

nuclear images since often only portions of nuclear boundaries are present in the edge 

map. 

Figure 4 . l i d shows how the algorithm performs given a heavily occluded border. The 

sample points are scattered in three groups and are subject to small Gaussian noise. Each 

group represents a roughly 30° portion of the border. Despite only having data from a 

(4.20) 
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(e) (f) 

Figure 4.11: Fitzgibbon's B 2 A C algorithm for fitting ellipses using edge data. The 
scattered data used to generate the ellipse parameters are shown with x's. The points 
were selected from the same ellipse and subject to various noise levels. The solid lines 
show the ellipse fit and the dotted lines show the true ellipse in the absence of noise. 
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quarter of the border, the fit ellipse is nearly identical to the correct ellipse. 

Figures 4 . l i e and 4.1 If, demonstrate the limitations of the B 2 A C approach. Each 

contains 40 noise free points along the ellipse perimeter and a single outlier. Despite the 

numerical weight of the 40 points in the calculations, the ellipse fit borders are pulled in, 

(figure 4 . l ie) , or extended, (figure 4.11f), to accommodate the extra point. The B 2 A C 

algorithm is a direct least squares method that gives each data point equal weight. It 

does not explicitly deal with outliers, which must be removed from the data set. 

Removing the outliers is important when applying this algorithm as the final step of 

the ellipse Hough transform. As is shown in figure 4.10, the edge accumulator for nuclear 

images is very likely to contain some random false edges which can often be removed by 

thresholding or erosion of B. However, even after this is done, it is possible for a few 

stray edge pixels to remain. 

We reduce the effect of these pixels by applying a modification to the B 2 A C algorithm 

to take the magnitude of edges in B into account. The original algorithm gives all points 

equal weight in the scatter matrix. It is possible to change the form of the scatter matrix 

equation 4.18 so that the magnitude of edge in B is used as a weight in a modified form 

of the equation. Essentially, the weight each pixel contributes to the ellipse parameter 

calculation is made proportional to the number of times it voted (in conjunction with 

others) for the ellipse center. The elements of the modified scatter matrix, S', are given 

by 

S'ij = EB(*>v)VZPkd (4.21) 
k 

where B(x,y) is the magnitude of the edge accumulator for the pixel whose location 

(x, y) is encoded in D (according to equations 4.14 and 4.17) as x — T>k,4 and y = Dk,5-

The modified B 2 A C algorithm provides the final component to the ellipse Hough 

transform that was used as part of the nuclear image segmentation system. Figure 4.12 
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Figure 4.12: The final result for the ellipse Hough transform applied to: (a) the nuclear 
clusters in figure 4.6a, and (b) the pair of nuclei in figure 4.9a. 

shows the application of the ellipse Hough transform to the cluster images of figures 4.6a 

and 4.9a. The coloured outlines show the ellipses detected by the Hough transform. For 

one of the nuclei in the center of figure 4.12a, a portion of the red ellipse lies outside the 

nucleus. This reminds us that the Hough transform uses only the grey scale information 

in the image and does not use the mask determined by thresholding. The ellipse detected 

by the H T will often lie partly outside of the object being detected. This is a desirable 

feature if we are recovering an ellipse from an arc portion. In this application, where we 

are estimating the shape of a partly occluded nucleus, we can combine the H T ellipse 

estimate and mask information by performing a logical A N D between the two. 

The ellipse H T was applied to the cytology image set to test its ability to recognize 

overlapping nuclei. It was tested using both the uniform and weighted voting schemes 

described in section 4.4.1. The performance of the ellipse fits was measured by computing 

the percentage area misfit between the fit ellipse and the true object. The definition of 
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ErrA=16% ErrA=22% 

Figure 4.13: Definition of the measure of difference between the Hough ellipse fit and 
the true object, (a), and examples showing increasing error levels between the fit ellipses 
and true objects, (b). 

this measure is shown in figure 4.13a. In essence, the error is the sum of the pixels that 

do not match divided by the total number of pixels for the two objects. If the objects 

coincide perfectly, the misfit is 0%. If they do not overlap at all the error is 100%. 

Examples of error values for circles that overlap by different amounts is shown in 

figure 4.13b. In general, a value of E r r A < 10% is a very good fit and values less than 

20% represent objects that can usually be recovered by refining their borders afterward. 

Values greater than 20% are poor fits and beyond 40% are considered outright failures. 

Figure 4.14 shows some examples of the successes and failures of the ellipse H T using 

the weighted voting scheme. The Hough ellipses are superimposed over the grey scale 

images for the same image gallery that was shown in figure 1.1. The Err A values are 

denoted by (r) or (g) to indicate whether they refer to the red or green ellipse. They 

were calculated using the ellipses and the manually segmented masks that are shown in 
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figure 1.1. In some of the cases only a single fit ellipse is shown and the error for the 

other ellipse is listed as 100%. These are occasions where the Hough transform found 

only a single peak or found a second peak that was too small to be considered a valid 

peak. 

Figure 4.15 shows the graph of the cumulative number of nuclei detected versus the 

error level for the ellipse fits using the H T with uniform and weighted voting schemes. 

The difference between the two methods is also shown as the dashed line at the bottom 

of the graph. The difference is between 20 and 41, depending on the error level. We are 

interested in the number of nuclei that were adequately determined versus the number of 

failures. As mentioned earlier, ellipses with a roughly 20% misfit or less are considered 

to be adequate and those with an error of 40% or greater considered to be failures. 

The H T results are summarized using these categories in table 4.1 in section 4.4.1. 

There are 39 more good fits using the weighted voting scheme—a 9% improvement. As 

well, the number of failures is 6% lower. The exact results are sensitive to the parameters 

used in the gradient threshold (section 4.4) and the parameters used to erode the edge 

accumulator, B. 

The sensitivity of the results to different parameter combinations was tested by apply­

ing both methods to the image set with different parameter combinations. The gradient 

threshold percentage was allowed to vary from 50-100% of the gradient mean and the 

tolerance on the erosion of B was also allowed to vary. A total of 480 runs were per­

formed. The uniform voting scheme had a mean success rate of 78% while the weighted 

voting scheme had a mean score of 85%. The maximum success rate for the uniform 

voting scheme was 83% while the maximum success rate for the weighted voting scheme 

was 90%. 
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ErrA(g)=9% 
ErrA(r)=100% 

ErrA(r)=8% 
ErrA(g)=6% 

ErrA(g)=30% 
ErrA(r)=100% 

ErrA(r)=6% 
ErrA(g)=6% 

Err A(g)=ll% 
ErrA(r)=100% 

ErrA(r)=9% 
ErrA(g)=10% 

ErrA(g)=30% 
ErrA(r)=100% 

ErrA(r)=25% 
ErrA(g)=8% 

ErrA(r)=7% 
ErrA(g)=10% 

mm ErrA(g)=30% 
ErrA(r)=100% 

ErrA(gl)=7% 
ErrA(r)=17% 
ErrA(g2)=35% 

ErrA(r)=9% 
ErrA(g)=15% 

ErrA(r)=9% 
ErrA(g)=8% 

Err A (g l )= l l% 
ErrA(r)=13% 
ErrA(g2)=25% 

Figure 4.14: The Hough transform applied to some the cultured cell nuclear images. The 
errors were calculated by comparing the fit ellipses to the manually segmented masks 
shown in figure 1.1. The (r) and (g) designations refer to the red and green ellipses. 
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Figure 4.15: The cumulative number of nuclei detected versus the percentage area misfit 
for the 431 nuclei in the cultured cell data set. 



Chapter 5 

Refining nuclear boundaries and assigning nuclear optical density 

The segmentation procedures described so far give the position and approximate bound­

aries of the nuclei extracted from images of nuclear clusters. The goal of the segmentation 

process is to recover useful features from nuclear images. Two important types of fea­

tures that are used in tissue section analysis are shape features and optical density related 

features. In order to be able to calculate these features, we need to recover the exact 

nuclear borders—which may overlap-and to apportion the optical density (OD) in the 

overlap regions. 

This chapter describes how the border refinement can be done using active contour 

(AC) models and then how to divide the O D once the final borders have been determined. 

The A C model used in this thesis follows standard A C model techniques, but the novel 

element is that the model uses the watershed segmented objects and Hough transform 

ellipses from chapter 4 to simplify the search space for border optimization. This is 

discussed in section 5.1. In section 5.2, the hypothesis that the O D in overlap regions 

can be inferred from the OD in the non-overlap regions is studied. In section 5.3 a 

probabilistic model for reconstructing individual nuclear images from an overlap image 

is derived. Finally, a sequential procedure for removing nuclei from clusters is described 

in section 5.4. 

107 
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5.1 Active contours 

Active contour models are a powerful tool for image analysis resulting from the work of 

Kass, Witk in and Terzopolous [34]. Also called snakes, they are energy minimizing splines 

used to approximate features in an image. They represent a special case of matching a 

deformable model to an image by defining and minimizing an energy criterion. 

This method defines the snake as a curve in space in parametric form as v(s) = 

(x(s),y(s)) where (x(s),y(s)) are the coordinates along the contour and 0 < s < 1. The 

energy of the snake is given by the equation 

-E'snake = / 
JO 

where a(s) and /3(s) are adjustable parameters, E\m&se(v(s)) is the energy functional 

of the image and Econ(\(s)) are external constraints that incorporate the user's prior 

knowledge of snake shape. 

The solution to an active contour problem requires adjusting the values of v(s) so 

as to minimize i?Snake- As with other minimization problems the energy space is highly 

non-linear, and most snake implementations start with an initial configuration that is 

minimized using some sort of multivariate descent algorithm. A simple example of a 

snake is shown in figure 5.1a. This shows a snake, v(s) that is initialized to some random 

path, and the image data, which is a series of points. The optimal snake for this image 

is the one that matches the image points as closely as possible subject to the path 

constraints imposed by a(s) and (3(s). 

The first term in equation 5.1 involves the derivative of the snake with respect to 

its path in space, This term determines the elasticity of the snake. Making a very 

large emphasizes the ^ contributions in the total energy. Minimizing these causes the 

snake to behave as a series of straight segments, much like an elastic band stretched over 

a(s) 
dv 
ds ds2 

+ £image(v(s)) + Ecoa(v(s)) ds (5.1) 
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Initial snake Elastic snake solution Stiff snake solution 

Figure 5.1: Fitt ing a snake to image data. The contour is initialized either randomly 
or to an estimate of the image data (a). Optimizing the snake results in one that fits 
the data subject to the relative sizes of elasticity constraint a(s), (b), and the stiffness 
constraint B(s), (c). 

a series of pegs. This situation is shown in figure 5.1b. If the ratio of a to B is made 

very large (perhaps by setting 8 = 0), the snake can become second-order discontinuous, 

having sharp corners. 

The second term in equation 5.1 involves the second derivative of the snake with 

respect to the path, ^ f . This term determines the degree of curvature of the spline fit 

to the data. Making B(s) larger forces the snake to behave more like a stiff rod that can 

only be bent into smooth curves. This is illustrated in figure 5.1c. 

The term E-image(\(s)) contains the information regarding the image and the type of 

feature in the image that we are trying to fit. Its definition will depend on whether we 

are looking to trace lines, bright edges, intersect disparate points, etc. For the example 

shown in figure 5.1a, a suitable definition of ^ i m a g e would be the sum of squares distance 

between the snake and the image points shown. 
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The most common task is to find edges of objects in the image, whose grey levels 

are denoted by f(x,y). To find edges we define E\ma,ge as some function of the gradi­

ent, V/ (x ,y) (section 4.1.1). Kass et al [34] used the squared gradient with Sedge = 

— | V / ( x , y ) | 2 , but others have used the absolute value [27] with .©image = — 7 | V / ( x , y)\. 

The difference between the two is that the former method puts more emphasis on match­

ing strong edges at specific points rather than the edge as a whole. 

The term Econ(v(s)) contains the energy contribution from external constraints im­

posed by either the user or some other higher process which seeks to guide the snake's 

evolution into its final configuration. This term would express information about the 

desired final configuration of the snake. For example, it could encode a requirement such 

as whether the snake should look for a square or an ellipse, or whether the ends of the 

snake should be near or far apart. It could also be used to encode interactive forces such 

as an attempt by a software user to drag a portion of the contour. 

Kass' method for generating a snake solution to an image processing problem starts 

with generating an initial snake approximation to the image feature being fitted. This 

is done by the user or by some other higher process to put the snake in the region of a 

solution. Selecting a good initial configuration is important since energy minimization 

is inherently a local optimization process. Snakes tend to evolve to a nearby contour 

(i.e. a local energy minimum). Kass' energy minimization method requires deriving 

the Euler equations for the derivatives of the snake coordinates in terms of the energy 

functionals. The position of each point of the snake is then evolved by taking a step 

of a predetermined size along the direction of the gradient. This is essentially a form 

of steepest descent minimization that nudges the snake with small steps into the final 

position. 

Although the form of the original parameterization of v(s) and the snake energy (equa­

tion 5.1) is in a continuous form, it is more common to implement the snake as a planar 
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curve of N connected control points (or vertices) on the (x,y) grid, = { w i , . . . , v^}. 

The snake-energy is then redefined to replace the integral with a summation over the 

control points: 

N 2 I I 2 

#snake = a ( V i ) l V w ' | 2 + ^ K ) + #image(^) + Econ(Vi) (5.2) 
i-1 

A n important simplification can be made to the space of control points by restricting 

their locations to fall on a predefined grid. This restricts the nature of shapes that can 

be represented by the curve, but is a useful step if we have an idea of the shape we 

are looking for. Figures 5.2a and 5.2b show a continuous snake, and a planar curve 

representation of the snake lying on such a grid. Each element in the two dimensional 

grid represents the location of a point in the original image. We discretize the original 

curve v(s) into N points, each of which may take on M different values. The grid could 

be selected to consist of a block of consecutive pixels in the image, but one can also select 

points spread out in space and connect them with either straight line segments (shown as 

solid segments in the figure) or with a piecewise spline (dotted segments). The vertices 

are labelled where 1 < j < N and k is the iteration number of our optimization 

algorithm. 

The snakes described so far have been instances of open contours, where the locations 

of the ends are not constrained. For imaging problems where we are trying to locate object 

boundaries, we are interested in closed contours—ones where the first and last point of 

the contours are connected. This is done by implementing circular boundary conditions 

on Vj so that v\ and VM are considered to be adjacent when calculating the | V V J | and 

| V 2 V i | 2 energy terms. 

The active contour model used in this thesis follows the one used by Bamford [10] for 

segmenting individual nuclei in pap smears. In this formulation, E'image = — | V / ( x , y ) \ 

and Econ — 0, and the elasticity factor, a, is set to zero. The image forces are determined 
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(a) ^ \ v ( s ) 

(b) i = i O . . . D O O O O O 
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V, Vj V N 

Figure 5.2: A continuous snake (a), and the planar curve representation (b) as a series 
of vertices on a predefined grid. The vertices may connected by straight line segments 
(solid segments) or a piecewise spline (dotted segments). 

by both the magnitude and direction of the image gradient by setting -Bim age = — V / ( x , y). 

The curvature term, v", is calculated at each control point Vj using the central difference 

formula for the second derivative of v: 

V Vj+i-Vj-! J 

The overall energy of the snake is now written as 

^snake = £ A fVj+1 ~ 2^ + ^ V - (1 - A) | V / ( s , y ) | (5.4) 

where A is a regularization parameter with 0 < A < 1. 

Minimizing the snake energy in equation 5.4 forces the snake to follow strong edges in 

the image, while at the same time maintaining minimum contour curvature. The degree 

to which these two forces dominate the final contour is controlled by A. If A is small, 

the curvature minimizing term will dominate while as A approaches one, the snake wil l 

follow the brightest points in the image without regard to shape. 

In Bamford's experiments, the closed contours were optimized on a circularly sym­

metric grid centred on the nucleus. For example, figures 5.3a and 5.3b show the image 

of a nucleus from a tissue section image and a circular sampling grid superimposed over 
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Transform 

Sampling grid (c) 

Figure 5.3: Transformation of a nuclear image, (a) using an circular sampling grid (b). 
The circular transform of the image and the vertical direction contrast based gradient 
are shown in (c). The nuclear border is a smooth curve in the transform space (c) 
Transforming back into the image space gives the segmented nucleus (d). 

the image. If we sample the grey scale values in this fashion and unwind the grid into 

a linear strip we obtain the circular transform of the image shown on the right. The 

transform in figure 5.3c was created by sampling along 90 rays (4° increments) and is 30 

pixels tall. 

Figure 5.3c also shows the magnitude of the vertical direction contrast based gradient 

in the transform image. Calculating only the vertical component of the gradient in the 

transform image is equivalent to calculating the gradient along the grid lines in figure 5.3b. 

This makes the gradient image sensitive to edges that are perpendicular to the grid lines. 

If the nucleus is nearly circular, then its entire edge will be perpendicular to the grid lines, 

and the gradient image values will have maximal magnitude along the true nuclear edges. 

The benefit of using the directional derivatives will be shown for resolving the borders 
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of overlapping objects. A suitable snake fit to the transform image and the resulting 

segmented nucleus are shown in figures 5.3d and 5.3e. 

Since nuclei are elliptical in shape using an elliptical sampling grid is more suitable to 

segmenting such nuclei. There are two main advantages to using an elliptical sampling 

grid. The first benefit of using the elliptical transform is that for elongated ellipses 

the directional gradient remains perpendicular to the nuclear edges. The second is that 

provided the ellipse fit is close to the true nuclear shape, then the border of nucleus wil l 

nearly be a straight line in the transform space. This is shown in figures 5.4a and 5.4b, 

which show an elliptical sampling grid for the same nucleus shown in figure 5.3a and the 

transform space for this image. In this space, a horizontal line is equivalent to a perfect 

ellipse in the image space. This means that minimizing the curvature component of the 

snake energy will favor snakes that are elliptical in shape—a desirable property. 

The optimal nuclear border is nearly a straight line (figure 5.4c) in this space rather 

than a curve (figure 5.3d). When optimizing the border in the circular transform space 

there is competition between the curvature energy, which favors a circular border, and 

the gradient energy, which for this image favors an ellipse. In the elliptical transform 

space, there is less competition between these two forces. In general, the curvature and 

image gradient terms will compete to force the snake in different directions. Choosing 

the correct balance between these forces requires adjusting the A parameter to suit the 

particular imaging problem. 

The most difficult problem for active contour design is how to efficiently optimize the 

snake configuration to reach the energy minimum. As mentioned earlier, the energy space 

is highly non-linear, so most techniques use a variation of steepest descent to optimize 

the contour configuration. This approach does not guarantee the best possible solution 

since the size of the search space is large. Using the sampling grid approach of figure 5.2, 

where we have TV vertices having M possible values, the number of paths in this space is 
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Transform 

Figure 5.4: Transformation of a nuclear image of figure 5.3 using an elliptical sampling 
grid (a). The transformed image and vertical direction contrast based gradient are shown 
in (b). Using the elliptical transformation the nuclear border is nearly a straight line in 
the transform space, (c). The final segmentation of the nucleus is shown in (d). 

NM. For the transform spaces shown in figures 5.3 and 5.4, this amounts to 30 9 0 paths. 

The approach to contour optimization taken in this thesis is to use the watershed 

boundaries and Hough ellipse fits as the initial snake configuration. In the transform 

spaces in figures 5.3c and 5.4b this initial guess is a horizontal line across the transform. 

The snake vertices are then optimized one at a time so as to minimize the snake energy 

in equation 5.4 until a local energy minimum is found. 

Using the initial border estimate to help direct the snake to a local energy minimum 

leads to a quick optimization step. However, due to the highly non-linear nature of the 

energy space it is not likely to lead to the optimal snake configuration. In essence we are 

making a gradient based descent in the energy space from a single starting point to a 

local minimum. However, if the Hough ellipses are accurate, the final snake configuration 
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is likely to be a good one. This trade-off between speed and the chance of obtaining poor 

segmentations is acceptable since there are many objects to be segmented in a typical 

tissue section image and an inadequate segmentation for some fraction of the objects is 

inevitable. 

Figure 5.5 shows the active contour segmentation of an overlapping nucleus using the 

Hough transform ellipse fit as a starting point. The Hough ellipse has axes a m a j = 20 

and a m , „ = 15 and orientation 6 = 82°. This defines the sampling grid used to create 

the ellipse transform. In the transform space the ellipse fit appears as a horizontal line. 

Using the area misfit definition shown in figure 4.13, the ellipse fit error is ErrA = 8% 

Most of this error is due to the misfit in the overlap region, which is the dark region in the 

center of the transform space. The gradient image shows an interior edge that separates 

the overlap region from the other nucleus. Optimizing the initial contour produces the 

refined contour and hence the final segmentation shown at the bottom of the image. The 

misfit for the refined border is ErrA = 2.4%. 

When the degree of contact between overlapping nuclei is not too large the watershed 

can provide a good initial segmentation to which active contour refinement can be applied. 

Figure 5.6 shows such a scenario. The watershed provides the initial segmentation shown 

at the top of the figure. From this we calculate the best fit ellipses and use them to 

construct the elliptical transformation of the object and its initial border. Refining the 

contour produces the final segmentation shown at the bottom. For both refined nuclei 

ErrA ~ 3% compared to the watershed segmentation which had misfits of 6% and 8% for 

the yellow and red borders respectively. 

Expressing the improvement in the segmentation simply as an area misfit percentage 

hides some of the important benefits of applying active contour refinement to the over­

lapping nuclear images. For example, while the watershed segmentation overestimates 

the one nuclear area by 6% and underestimates the other by 8%, the benefit of applying 
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Refined contour 

Final segmentation 

Figure 5.5: Active contour segmentation of an overlapping nucleus based on the Hough 
transform ellipse fit to the grey scale image. 

active contours goes beyond the 3% and 5% improvement in E r r A . Having a segmenta­

tion which delineates the overlap region allows other important nuclear features to be 

calculated. For the segmented nuclei shown at the bottom of figure 5.6, we could also 

calculate Fourier shape features for the whole nuclei and grey level texture features using 

only the non-overlapping portions of the nuclei. We could not do this with any confidence 

for the watershed segmented images, since both the nuclear shape and grey level texture 

are compromised by the slightly incorrect segmentation. 

Active contour refinement provides the final component for recovering nuclear shape 

for the segmentation system described in this thesis. A n experiment was conducted to test 
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Initial segmentation Watershed segmentation 

Figure 5.6: Active contour segmentation of two overlapping nuclei based on the watershed 
segmentation of the thresholded image. 
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the benefit of applying active contours to all segmented nuclei for the cytological image 

set. The images were initially segmented using the watershed algorithm. A l l watershed 

segmentations for which the occluded perimeter measure (equation 3.11), M P ' , exceeded 

30% were rejected. These objects were resegmented using the elliptical Hough transform 

procedure (section 4.4.3), using the combination of Hough transform parameters which 

identified 89% (384) of the 431 nuclei. Finally, the borders of all objects were refined 

using active contour refinement. 

Figures 5.7a and 5.7b show histograms of the area misfit measure for the segmented 

nuclei before and after active contour refinement. The number of nuclei that fall into 

the range ErrA < 20% (the cut-off for acceptable segmentations) does not change as a 

result of the border refinement, but the average misfit is improved by refinement. The 

number of objects segmented correctly to within ErrA < 5% jumps from 110 to 349 after 

refinement. The average misfit value (for all nuclei with ErrA < 20%) improves from 

8 ± 4% before refinement to 4 ± 2% after refinement. Figure 5.7c shows some examples 

of the segmented images after the border refinement procedure has been applied. 

5.2 Testing the optical density hypothesis 

The second hypothesis (section 1.3) in this thesis is that in absorbance microscopy images 

of Thionin stained lung epithelial nuclei, the optical densities of overlapping nuclei are 

additive. In simpler terms, it is hypothesized that when two nuclei overlap, the over­

lap region appears darker, and we can predict how dark it should be. It is clear from 

examination of both cytologic and histologic images that the ODs appear to be addi­

tive. Nuclear overlap regions do appear to be darker than the non-overlap areas for the 

individual nuclei. 
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Figure 5.7: Histograms of the area misfit measure (ErrA) for the cultured nuclei (fig­
ure 1.1) prior to active contour border refinement, (a), and after border refinement, (b). 
The refined borders are shown for five of the images (c). 
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In order to test the hypothesis for cytological images, the optical densities were mea­

sured for the cultured nuclei image set (figure 1.1). The optical density was calculated 

for each pixel (x, y) as 

where B is the background intensity for the image and f(x,y) is the pixel intensity. 

When written this way, equation 5.5 assumes that there is no D C grey level offset that 

need be subtracted from numerator and denominator. The mean optical densities, O D , 

were calculated for each of the non-overlap and overlap regions (figure 5.8a) by summing 

the pixel optical densities and dividing by the area of the regions. The entire image 

set consists of 431 nuclei with 219 regions of overlap. Some of the regions of overlap 

consisted of only a few pixels and were not considered reliable for analysis purposes. 

Only nuclear pairs for which the overlap exceeded 20 pixels (roughly 4% of the area of 

a typical nucleus) were analysed. This left 188 overlap pairs for which the ODs were 

measured. 

Figure 5.8b shows a graph of the mean measured optical density in overlap regions, 

O D c , versus the sum of the means for the non-overlap regions, O D ^ + O D s . The data is 

scattered, but there is a linear trend visible. The linear regression to the data is plotted 

with the solid line. Wi th the equation of the line written as y = mx + b, the parameters 

of the regression line are m = .71 ± .04 and b = .10 ± .03. The model prediction, that 

the optical densities sum linearly, is equivalent to plotting the line y = x. This is shown 

with the dotted line. 

The regression slope reveals that the mean optical density in the overlap regions is 

only 71% of the predicted value—the overlap areas are not as dark as the model predicts 

them to be. The reason for this is likely related to the size of the nuclei in cytological 

preparations. As mentioned in section 1.4, the depth of field, df, of the imaging system 

(5.5) 
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1.5 
6T3A+6T3B 

Figure 5.8: Experiments in measuring the mean optical density in overlap regions versus 
non-overlap regions. The non-overlap regions are designated A and B and the overlap 
region is designated C, (a). The graphs of measured mean OD in overlap regions versus 
the sum for non-overlap regions are shown for 188 overlap regions in cytological images, 
(b), and for 204 regions in biopsy sections, (c). The dotted lines represent the model 
prediction that O D ^ + O D B = O D C -

is approximately 1.5/xm. This means that when the microscope is adjusted to give the 

best possible focus of a cell, approximately 3/mi depth 1 of stained material contributes 

to the optical density seen at a point. Since the region of overlap wil l be thicker than the 

regions containing any individual nuclei, less of the overlap region wil l be in focus than 

other portions of the nucleus. 

The effect of changing the focal plane position on the measured optical density of 

an object can be seen in figure 5.9. Figure 5.9a shows an HL-60 nucleus imaged at 15 

^he axial intensity contributions depend on the square of the sine function, and 2 x df gives the 
distance between the first minima on either side of the central peak [31]. 
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Figure 5.9: Fifteen images of a nucleus (a) captured at 1/xm increments and the graph 
of total optical density versus the focal plane position, (b). 

different focal positions, each separated by 1/xm intervals. The best focus position occurs 

in the middle of the range, around the ninth image. Figure 5.9b shows the total optical 

density of the nucleus as a function of the focal plane position. The values have been 

normalized by dividing by the maximum OD measured, so the O D value at each point 

represents a fraction of the maximum OD. 

As expected, the maximum OD measurements occur for the images in the best focus, 

in the region of image 9. When the focal plane is set at this position, the depth of field 

is filled with nuclear material that contributes to the measured O D . The OD drops off 

on either side of the peak and reaches 50% within 6pm on either side of the peak. At 

the extreme, for image 1, which is at least 8pm beneath the focal plane and lies beneath 

the nucleus itself, the O D value is still 40% of the peak value. Here, most of the nuclear 

material lies outside the depth of field and (due to the drop-off of the axial intensity 

function) does not contribute significantly to the measured OD. This is the case with the 

regions of overlap for overlapping nuclei. The portions of the overlap that lie above or 
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Figure 5.10: Images and manually segmented masks of overlapping nuclei from lung 
tissue section images. The light grey regions in the masks denote the regions of overlap. 

below the depth of field do not make significant contributions to the measured optical 

density. 

The optical density experiment was repeated for images of nuclei taken from biopsies 

sections. A total of 204 overlap regions were sampled from 41 images of the tissue 

section image set. Figure 5.10 shows some examples of the overlap regions excised from 

the images. Manually segmenting nuclei is a more difficult task for biopsy sections than 

for the cytological images. There is a significant amount of debris present in the image 

which makes it difficult to determine the best nuclear borders. As well, there are typically 

multiple overlaps in these images, so in some cases only the portions of nuclei were used 

for some measurements (as can be seen in the last overlap image in figure 5.10). 

Figure 5.8c shows the graph of O D c versus O D ^ + O D ^ for the tissue Section images. 

There is more scatter of the data points than was seen in the cytology case, but a 

somewhat linear trend is present. As with the cytology case, the regression line to the 
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data has a slope that is less than the model prediction. For the histological segmentation, 

m = .61 ± .03 and b = .32 + .05. 

The 61% value for the mean O D in overlap regions is again partly due to the depth of 

field issue. The tissue section samples are all 7 am. thick, so just under half of the depth 

of material lies in the region that is in focus. A second, and potentially greater effect, 

occurs from the cutting of nuclei that occurs in the biopsy sectioning process. Most of 

the nuclei in the biopsies exceed 7//rn in diameter, so the act of cutting the 7/xm slices 

from the biopsy sample cuts the nuclei into fragments. In areas of overlap, the portions 

of each of the two nuclei are necessarily thinner than the non-overlapping portions. This 

may account for the lower O D measured in the overlap portion of the image. 

5.3 A model for assigning ODs for overlapping objects 

Although there is some uncertainty in the O D measured in nuclear overlap regions, the 

results shown in figures 5.8a and 5.8b provide a means to estimate the optical density 

contributions of individual nuclei to regions of overlap. We can use the regression slope 

to O D c versus O D ^ + OD# as an empirical weighting factor to apply to O D values 

measured for overlapping pixels in order reconstruct the true O D contribution of each 

nucleus. 

This is done by using a probability model for the distribution of O D values in each 

nucleus. When an O D measurement is made for a pixel for the overlap region the OD is 

apportioned to the two nuclei according to the probability model. In this manner, two 

individual nuclei are reconstructed with the overlap removed. The grey level values for 

what was formerly part of the overlap region will be synthetic, however they wil l represent 

the most likely values that could explain the OD measured at that pixel location. 

The image reconstruction scheme is outlined in figure 5.11. Figures 5.11a and 5.11b 
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show two overlapping cell culture nuclei and the segmentation of the two objects. The 

non-overlapping portions of the nuclei are labelled A and B while the overlap is labelled 

C. Figure 5.11c shows the optical density histograms for regions A and B. 

The reconstruction model assumes that pixel O D values are normally distributed, such 

that ODA ~ M{HAI <?A} and O D B ~ JV{IJ-B, cfj}- The population means and standard 

deviations are not known, but they can be approximated by the sample means and 

standard deviations calculated from the optical density histograms. Assume we measure 

a pixel in region C to have an optical density equal to x*. From section 5.2 we know that 

this O D value is too small by a factor of m (the slope of the graph in figures 5.8b and 

5.8c). Let the corrected O D at this pixel be written as x = 

This optical density value is the sum of the O D contributed by nucleus A and that 

contributed by nucleus B . Let the O D contributions be assigned as O D ^ = y and O D g = 

x — y. Then the joint probability for this occurrence is written as p(OD^ = y, O D B — 

x — y). It is reasonable to assume that the probability distributions for O D ^ and O D B 

are independent. The darkness of one nucleus is not likely to depend on the darkness of 

another. In this case, 

p ( O B A = y , O D B = x-y)<x p ( O D A = y) • p ( O D B = x-y). (5.6) 

It can be shown (appendix B) that this joint probability distribution is of the normal 

form 

p(OD^ = y, ODB = x - y) ~ N \ 2 2 , 2 2 \ (5.7) 
I AA "+" AB ® A ' ®B J 

Equation 5.7 gives the probability density for the various ways that the pixel O D can 

be apportioned into components O D ^ = y and O D B = x — y. The maximum likelihood 

(ML) estimate for O D ^ is given by the value of y that maximizes equation 5.7. Since it is 

a normal distribution, the maximal value occurs when y is equal to the mean. Therefore 
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Figure 5.11: Demonstration of the image reconstruction method. The overlapping nu­
clei (a) are segmented (b), and the optical density histograms are calculated for the 
non-overlapping regions (c). The model assumes that pixel O D values are normally dis­
tributed and performs a Gaussian approximation to the O D histograms. The O D c are 
then apportioned using this model giving the reconstructed nuclei (d). 
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the M L estimate of the reconstructed pixel O D for nucleus A is 

V = 
H A o B + xo\ - HB^A (5.8) 

The M L estimate for the reconstructed pixel O D for nucleus B is 

x — y = x — 
HAQB + Xo\ - l l B o \ _ -VAOB + XCRB + ^B<A (5.9) 

Equations 5.8 and 5.9 are applied to each pixel in the overlap regions to reconstruct 

the two nuclei. Figure 5 . l i d shows the result of using this method to reconstruct the 

overlapping nuclei from figure 5.11b. The reconstruction was performed using the O D 

correction factor of m=0.71 for culture nuclei from section 5.2. 

The reconstructed portions of the nuclei match the rest of the nuclei fairly well, but 

they exhibit less texture than the non-overlap portions. This occurs due the smaller 

grey level range seen in the overlap region in figure 5.11a. Figure 5.12 shows the grey 

level histograms for the non-overlap portions of the two nuclei (A and B) in figure 5.11b 

and for the overlap region (C). Region A has an intensity range from 85-186, a range 

of 101 grey levels while region B has a range from 113-187, a range of 74 grey levels. 

Region C has a smaller range of pixel values, from 80-116, a range of 36 grey levels. The 

reconstructed regions are calculated by converting an intensity value from region C into 

an O D and finding the M L estimates from equations 5.8 and 5.9. Wi th only 36 different 

intensity values entering the equations, only 36 different grey level pairs result. 

This means that if the goal of the reconstruction is to obtain the most reliable estimate 

of the optical density of the nuclei, then the texture must be sacrificed. A n alternate 

plan would be to not use the M L estimates but rather choose a random {y, x — y} pair 

according to the probability density in equation 5.7. This produces reconstructed pixel 

pairs (for A and B) that are not optimal in the sense that the values do not reflect 

the most likely assignment of the O D at that pixel. However, the method produces 



Chapter 5. Refining nuclear boundaries and assigning nuclear optical density 129 

RegionA RegionB 

0 32 64 96 128 160 192 224 256 
Grey level 

Figure 5.12: Grey level histograms for the three regions of the nuclear image in fig­
ure 5.11b. 

images that have more texture in the overlap region. It could be argued since the O D is 

apportioned for many such pixels, the cases where a pixel is given too much O D will be 

averaged out by the cases where another pixel is given too little. If this averaging effect 

were successful it would be possible to reconstruct a nucleus with both optimal total O D 

and approximate texture. 

The possibility of assigning pixels in this fashion was explored, but the images pro­

duced were unsatisfactory as they had too large an intensity range in the overlap regions. 

Figure 5.13 shows the reconstruction of the two nuclei using this pixel assignment scheme. 

The unreasonably large intensity variations in the overlap portions occur because the nor­

mal approximations (seen in figure 5.11c) to the O D histograms are inadequate. Since 

the data is not normally distributed, the a values calculated from the sample ODs tended 

to be large. This caused the tails of the O D probability densities to be overestimated, 
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Figure 5.13: Reconstructed nuclei from figure 5.11 with O D assignments made according 
to the joint probability density (equation 5.7) rather than using the M L estimates for 
that equation. 

allowing very dark and very bright pixels to be selected during the image reconstruction. 

This produced too much texture variation in the overlap regions. A different model for 

the O D distributions would have to be used in order to be able to reconstruct texture as 

well as nuclear OD. 

The result of performing the O D apportionment is that we now have an estimate of the 

total optical density of the individual nuclei. For the non-overlap regions in figure 5.11b, 

ODA = 265 and O D B = 251. The reconstructed regions contribute 85 and 81 units 

of O D to nuclei A and B respectively. The contributions are nearly equal since the 

OD means in figure 5.11c are nearly equal. Since the active contour refinement has 

produced nearly the exact borders for both nuclei the uncertainty in the reconstructed 

O D values for the nuclei is mostly determined by the uncertainty in the OD correction 

factor from section 5.2. Since the factor was .71 ± .04, this implies that there is a roughly 

6% uncertainty in the reconstructed portions. This gives a final total optical density 

measurement of O D 1 / = 350 ± 5 and O D 1 ^ = 332 ± 5. 

The validity of the total O D value for the nuclei is subject to the applicability of 

the model of fitting a Gaussian to the non-overlap O D distributions. However, having 
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only a single image of the overlap, the only alternative to sharing the overlap O D is to 

ignore the information in the overlap and simply assigning the overlap O D based on O D 

measurements for the non-overlapping portions. The total O D value also depends on the 

correctness of the active contour refinement. A n overlap region that is not recognized 

as overlap is treated as a dark portion for one of the nuclei, inflating its O D value. 

Reconstructing the overlap portion will then assign excess amounts of O D from the 

overlap region to the already dark nucleus. Despite these difficulties, analysing the O D 

in nuclear overlaps gives us the potential to extract information from nuclei which is 

currently not available. Having some nuclei with uncertainty on their feature values may 

prove to be more useful than not having them at all. 

Reconstruction of isolated nuclei from overlapping images has also been studied by 

J i and Tucker [32]. Their approach also assumes that the O D in non-overlap regions can 

be used to predict the O D in overlap regions. Their scheme is more comprehensive in 

the sense that they used images from multiple focal planes in the specimen to obtain the 

best focal plane for each portion of the overlap (rather than using a single image as is 

done in this thesis). However, their scheme simply subtracts a mean O D value from each 

pixel in the overlap region for the reconstructed nuclei rather than measuring the O D at 

each pixel and then deciding how to apportion it. In the future, reconstructing nuclei 

using a multi-focal plane approach is preferable since it can allow us to avoid such things 

as the empirical O D correction factor calculated in section 5.2. 

5.4 A sequential approach to breaking up nuclear clusters 

The degree of overlap of nuclei in tissue section images makes them difficult to separate, 

even with the techniques described so far. For small clusters, the Hough transform may 

simultaneously tell us the location of all the nuclear centres, as occurs for the top two 
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clusters in figure 4.6. However, it is more often the case that there are six or eight nuclei 

in a cluster (after the watershed transform has been applied) and the Hough transform 

reliably returns the locations of, say, two of them. This poses a problem if we wish to 

extract as many objects from the cluster as possible. Because this situation occurs often, 

a sequential approach was taken to the problem of breaking up nuclear clusters. 

The sequential nuclear removal procedure is outlined in figure 5.14. When the H T 

is applied to a cluster, the ellipse with the largest number of votes in the accumulator 

space is processed first. For the cluster shown in figure 5.14a, nucleus C is processed 

first. Figure 5.14b shows the elliptical transformation of the Hough ellipse to nucleus C 

and its gradient. Although, the transformation space looks difficult to interpret, there is 

an interior edge through the overlap region that the active contour refinement was able 

to locate. The refined nuclear border is shown in figure 5.14c. 

At this point, there is a problem with any attempt to segment what remains of 

the cluster. Removing one nucleus leaves a remainder containing most of nuclei A and 

B (figure 5.14d), which is missing some of its material from the overlap region with 

the nucleus C. The Hough transform is not likely to recover the center ellipse from 

the remainder, so an attempt was made to recover the overlap portions between the 

remainder and nucleus C. The two points where these two regions meet are labelled 1 

and 2 in the figure. A rectangular grid is superimposed over the image between these 

two points (figure 5.14e) such that the two points lie on the center of opposite sides of 

the grid. Figure 5.14f shows the grey levels for the grid. A simple search is done for an 

open active contour path on this grid that is constrained to start at 1 and end at 2. The 

yellow line shows the best path for the cluster remainder. This becomes the new border 

for the clump remainder in this region (figure 5.14g). 

We have now recovered the approximate shape for all the nuclei that remain in the 

cluster, so the procedure can be applied again to the remainder. When this is done for 



Figure 5.14: Outline of the sequential procedure for removing nuclei from clumps. A small 
portion of the border of the clump remainder is refined after each nucleus is removed to 
allow more nuclei to be retrieved. 
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this example, we obtain the final border segmentation shown in figure 5.14h. The final 

borders overlap for nuclei B and C, so we apply the optical density apportioning model 

to obtain the reconstructed nuclei in figure 5.14i. 



Chapter 6 

Biopsy section processing experiments 

The third hypothesis in this thesis is that it is possible to automatically segment tissue 

section images by recovering intact nuclei for the purpose of morphometric analysis, and 

generate results equivalent to those obtained by manual analysis of the image. Morpho­

metric analysis is a standard research procedure for tumour grading and quantitating 

prognosis in cytopathology and histopathology [6, 7, 70]. When applied to biopsy sec­

tions, it requires the segmentation and analysis of the free lying nuclei. Since the nuclei in 

thin sections are cut, there tends to be a significant variability in the features calculated 

from the individual nuclei. However, if enough nuclei can be recovered from the tissue 

section image, useful statistics may be calculated for the sample as a whole. 

The usefulness of morphometric analysis for the grading of lung tissue section images 

is currently being investigated at the B C Cancer Agency Cancer Imaging laboratory [37, 

45]. In this study an attempt is made to create a grading system for lung sections 

that is reproducible and correlates with the patient diagnosis. For each tissue section 

image, Morphometric analysis results in a score called the morphometric index (MI) 

which represents the grading assigned to that image. The MI score falls into the range 

1-10, where 1 represents a normal diagnosis, 5 represents a diagnosis of severe dysplasia, 

and a score approaching 10 represents a sample with a large population of abnormal cells, 

perhaps from a carcinoma in situ. 

In the current procedure for manually analysing images, the sections are prepared in 

the manner described in section 1.4, and the following procedure is executed: 

135 
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1. The area with the most abnormal appearance biopsy section is centred in the field 

of view under the microscope and an image is captured. 

2. A mask is created for the image by setting the threshold at 165. This value has 

been determined in the past to be suitable for most tissue sections. It is not optimal 

since staining variations in the biopsies alter the best threshold. However, in the 

absence of an optimal thresholding method, it was decided to leave the threshold 

constant for all biopsy sections analysed. 

3. A region of interest is drawn around the epithelial layer. For the current analysis 

scheme, it is necessary to ensure that objects from the subepithelium are excluded 

from the analysis. 

4. Free lying, intact nuclei are selected. The decision as to whether a free lying object 

is relatively intact is based on operator experience. Consistency in the darkness 

across the extent of the nucleus is the most obvious feature to indicate that it is 

acceptable for analysis. 

5. Nuclei that have minor contact with others are selected by digitally cutting a por­

tion of the image from the rest. The number of nuclei collected varies widely. 

Although there are typically a few hundred present in an image, most tend to be 

clustered. The number collected varies between 20 and approximately 100, with 50 

nuclei being the average. 

6. The nuclear images are saved and their numerical features are calculated. 

7. The nuclei (now represented as an array of feature values) are passed through a 

decision tree which sorts them into ten different categories from "normal appearing" 

to "abnormal appearing". 
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8. The frequency of objects in these groups is calculated and the morphometric index 

(MI), a weighted function of the frequencies is calculated. 

The decision tree in step 7 consists of a series of ten discriminant functions that sort 

nuclei into different categories based on increasing irregularity in their shape. The nuclear 

features that are used in the discriminant function are: 

• area: the area of the nuclear mask. 

• mean_radius: the mean distance in pixels from the mask centroid to the edge 

pixels of the mask. 

• max_radius: the largest distance from the mask centroid to the edge pixels of the 

mask. 

• var_radius: the normalized variance of the distribution of distances from mask 

centroid to the edge pixels of the mask. 

• sphericity: the distance from the mask centroid to the nearest edge pixel divided 

by the distance from the mask centroid to the farthest edge pixel. These two values 

would be equal for a perfect circle, giving a maximal value of 1. 

• eccentricity: the ratio of the short axis to the long axis of the best fit ellipse to 

the mask. 

• inertia_shape: a roundness measure that is the ratio of the second moment of 

inertia of the mask to the square of its area. 

Step 3 will pose a problem for the automated processing of tissue sections since the 

routines do not attempt to distinguish epithelium from subepithelium. However as can 

be seen in figure 2.3, many of the objects present in the subepithelium are either very 
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small and dark or very elongated. It may be possible to add a decision function to the 

automated system to exclude such objects. 

The automated segmentation system described in chapters 2-5 replaces the manual 

effort in steps 4 and 5. When an image is segmented manually, the technologist specifically 

chooses intact nuclei that are in good focus and then segments only these nuclei. So far, 

the description of the segmentation system has not made any mention of incorporating a 

classification step of deciding what is a valid nucleus and what constitutes an adequate 

segmentation of that nucleus. A method was needed to process all the objects generated 

by the automated segmentation through a decision function. This function would sort 

them into either "valid" nuclei or junk categories. The "valid" nuclei category would 

consist of nuclei of all grades that were intact and in good focus. The junk category 

would be made up of all objects that must be eliminated before the images are processed 

by the MI decision tree in step 7. This would include fragments, clusters that could not 

be processed by the Hough transform, leukocytes, subepithelial structures, out-of-focus 

nuclei, etc. 

The approach taken was to create a decision tree to separate nuclei from all other 

objects in the image frame. Figure 6.1 shows an outline of the complete decision tree 

system. The objects generated by automated segmentation are classified by a decision 

tree to separate valid objects from the rest. Only these objects will then be processed by 

the MI decision tree and eventually contribute to a MI score for the tissue section image. 

In order to create the nuclear decision tree, a training set was created by selecting 

ten tissue section images from the image set of 226 histological images. The images were 

taken at random with the only stipulation being that no two images come from the same 

block of biopsy material—some patients will have multiple histological sections created 

from a single biopsy block. The ten images were then processed automatically and all the 

segmented objects were classified as valid nuclei or junk objects by a histotechnologist. 
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Valid nuclei 
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Nuclear decision tree 

M I decision tree 

M I score function 

Figure 6.1: Outline of the decision tree steps in the automated MI scoring system. 

A decision tree of thresholds and a discriminant function was then created to separate 

the valid nuclei from the rest. 

The question arose as to what parameters should be used for the various components 

of the segmentation system in order to create the training set. One potential difficulty was 

that the generation of MI scores from the manual segmentation always used a threshold 

level of T = 165. Since the MI decision tree was created from these objects there was 

a concern that the objects generated through automatic thresholding (which tends to 

produce lower thresholds) would be smaller than those obtained with T = 165. This 

might lead to changes in the MI scores for these objects. Since they would tend to be 

smaller, this would drive the MI score downward. However, changes in other features 

such as the elongation of the cell with lower thresholds are somewhat unpredictable, so 

we could not be sure that the MI scores would change systematically. 
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Because it was not clear what thresholding procedure produces the best results in 

conjunction with the watershed splitting of nuclear clusters, it was decided to test five 

different thresholding/watershed schemes: 

• 7i65, WS: Threshold the image at grey level 165, then split clusters using the 

watershed algorithm 

• TUG, WS: Threshold the image at a level set by the mean gradient technique 

(section 2.2.3), then apply WS. 

• T Q W , WS: Threshold the image at a level set by the gradient weighted technique 

(section 2.2.3), then apply WS. 

• TMG, WS, DW5: Apply TMG, apply WS, then dilate the masks of the resulting 

objects until the borders reach grey level 165 (or meet another object). 

• T G w , WS, DI65: Apply T G W , apply WS, then apply D165. 

For some objects, the schemes outlined above generate similar segmentations. How­

ever, the shape of the nuclear masks is highly dependent on the threshold level, so the 

watershed segmentation will often give different results for each scheme. For example, 

figure 6.2 shows the final objects that can result, (b-c), when a grey level image, (a), is 

segmented in different manners. Thresholding this image at a value of T — 135 and ap­

plying the watershed algorithm generates two objects (figure 6.2b), while setting T = 165 

creates a mask which cannot be split with using the watershed (figure 6.2d). Thresh­

olding the image at T = 135 and dilating the masks until the object borders reach grey 

level 165 generates the masks shown in figure 6.2c. Combined, the masks have the same 

shape as simply using T = 165, but the segmentation creates two objects instead of one. 

Although this example is artificial, it is indicative of the situations that occur when these 

procedures are applied to tissue sections. 
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1: Threshold at 135 1: Threshold at 165 
2: Apply watershed 2: Apply watershed 
3: Dilate mask until border 

grey level is 165 

Figure 6.2: Segmenting a grey level image, (a), will lead to different final segmentations 
depending on the thresholding options used (b-d). 

It was decided that to create the training set, two different segmentations of the 

same ten images would be used. For both segmentations, the mean gradient threshold 

was used, followed by the watershed splitting of the clusters. One set of images was 

left in this manner, while the nuclear masks for the other set were dilated until the 

borders reached grey level 165. This created a dataset of 12882 images. Each object was 

represented twice in the data with two slightly different masks—one obtained strictly by 

thresholding and the other by thresholding and dilation. The data was categorized as 

valid nuclei or junk by a histotechnologist creating a group of 1178 valid nuclei and 11704 

junk objects. 

A decision tree was created to attempt to reproduce the technologist's results on this 

data. The tree consisted of a series of feature value thresholds on discriminating features 
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True group Called "valid" Called "invalid" Total Percent correct 
valid 1009 169 1178 85.6% 
invalid 643 11061 11704 94.5% 
Total 1652 11230 12882 93.7% 

Table 6.1: Confusion matrix for the decision tree created to select valid nuclei for mor­
phometric analysis. 

such as 

• shape features: to eliminate unsplit clusters and fragments 

• texture features: to eliminate out-of-focus objects 

• densitometric features: to eliminate segmentations that combined two objects with 

different ODs into one unit 

After the extreme objects were removed, the final step of the tree used a discriminant 

function with 20 features, created with stepwise selection, to separate the nuclei from 

what remained. Table 6.1 shows the confusion matrix for the overall classifier on the 

training set. 

The overall performance of the classifier was 93.7% on the 12882 objects. Although 

this score sounds like good performance for a classifier created on such experimental 

data, it means that nearly 40% (643 out of 1652) of the objects called "valid" by the 

classifier were objects that were rejected by the technologist. The technologist's standards 

for accepting an object were high, however. Many of those 643 incorrectly classified 

objects were ones that represented valid nuclei, but were rejected because their mask was 

improper. For these objects, either a portion of the mask had been chopped off by the 

watershed segmentation or small debris adjacent to the nucleus had caused the mask to 

be too large. 
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Because it was not practical to have a technologist manually categorize the nuclei for 

all the possible segmentation combinations, this classifier was used as the standard of 

truth by which the results of different segmentation experiments were compared. In ad­

dition to having five different thresholding options, four different cluster splitting options 

were examined: 

1. no cluster splitting: This served as a baseline for the segmentation experiments. 

A l l clusters are treated as individual nuclei and passed through the decision tree. 

Under this scheme, free lying nuclei should be categorized as valid nuclei, so all the 

segmentation methods of this thesis should improve upon these results. 

2. WS: The watershed algorithm is applied to all masks and the results are accepted 

unconditionally. 

3. W S ( M P ' < 30%): After the watershed is applied, object pairs for which the contact 

perimeter measures M P ' > 30% tend to be incorrectly segmented. These objects 

are remerged. This recovers some of the individual elongated nuclei that are often 

broken up by the watershed algorithm. 

4. W S ( M P ' < 30%), H T + A C : After the methods outlined in option 3 have been 

applied, the Hough transform is used to further break up clusters and the active 

contour refinement is applied to all segmented objects in the frame. Finally, the 

optical density assignment model is applied to all segmented objects which have 

overlapping borders. 

This gives a total of twenty different segmentation options. These were all applied to 

the 10 image training set and segmented objects were categorized using the decision tree. 

Table 6.2 summarizes all twenty methods and lists the total number of objects generated 

by the segmentation and the number of "valid" nuclei as given by the classifier. The 
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runs are split into four groups—one for each cluster segmentation option. The results 

for run 6 and run 7 are marked with an asterisk because the objects from these two 

segmentations were the ones used to create the decision tree. Since the decision tree was 

optimized to detect the nuclei from these two datasets there is the possibility that these 

two results could appear excessively good. However, the results of runs 6-10, which all 

use the same cluster segmentation option, are close enough that these two results do not 

stand out from the others. 

Table 6.2 may be used to address many of the segmentation questions posed in this 

thesis. Treating the 20 runs as four groups, there is a clear increase in the number of 

"valid" nuclei obtained from the images. In the first group, there are an average of 3389 

objects and 548 "valid" nuclei segmented from the images. Since there were ten images, 

this amounts to 55 nuclei per frame. This represents approximately the number of free 

lying nuclei that can be collected from a tissue section frame without significant extra 

effort. 

Applying the watershed nearly doubles the number of objects in the dataset and in­

creases the number of "valid" nuclei to an average of 815. If after applying the watershed 

we remerge objects that contact their neighbors significantly, we reduce the number of 

objects collected from 6503 to 5657. However, the number of "valid" nuclei rises to 833, 

on average. This shows that the M P ' feature is a useful feature for detecting individual 

nuclei that have been incorrectly split by the watershed algorithm. Applying the Hough 

transform and active contour refinement we obtain 1020 "valid" nuclei from the deci­

sion tree. This is a 22% increase in the average number of objects obtained from the 

third group of runs, and nearly double the number of nuclei obtained from the simplest 

procedures with no cluster separation. 

There is certainly an increased computational cost in applying the more sophisticated 

segmentation algorithms to segment the tissue section image frames. The complete image 
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Run Segmentation scheme Total number Number of 
of objects "valid" nuclei 

1 T M G , -^165 3435 542 
2 3435 588 
3 3369 522 
4 3369 544 
5 7l65 3341 548 

1...5 Mean 3389 548 
6 TMG, WS, £> 1 6 5 6442 780* 
7 TUG, WS 6442 872* 
8 T G W , WS, D 1 6 5 6525 786 
9 T G w , WS 6525 853 
10 T i 6 5 , WS 6584 784 

6 . . .10 Mean 6503 815 
11 T M G , W S ( M P ' < 30%), A e s 5577 789 
12 T M G , W S ( M P ' < 30%) 5577 900 
13 T G W , W S ( M P ' < 30%), A 6 5 5728 797 
14 T G W , W S ( M P ' < 30%) 5728 891 
15 Ties, W S ( M P ' < 30%) 5677 788 

11. . .15 Mean 5657 833 
16 TMG, W S ( M P ' < 30%), D 1 6 5 , H T + A C 5636 997 
17 T M G , W S ( M P ' < 30%), H T + A C 5553 1050 
18 T G W , W S ( M P ' < 30%), D165, H T + A C 5625 1014 
19 T G W , W S ( M P ' < 30%), H T + A C 5697 1032 
20 Ties, W S ( M P ' < 30%), H T + A C 5637 1009 

16. . .20 Mean 5630 1020 

Table 6.2: Results of the automated segmentation of the 10 tissue section image training 
set using different segmentation options. The number of valid nuclei is obtained by 
passing all the segmented objects through the nucleus decision tree. 

Symbols: 
TUG - Mean gradient threshold selection 
TGW - Gradient weighted threshold selection 
Ti65 - Set the grey level threshold to 165. 
£>i 6 5 - Dilate nuclear masks until border grey level reaches 165 
WS - Watershed transformation to break up object clusters 
W S ( M P ' < 30%) - WS then remerge contacting pairs of objects for which M P ' > 30% 
H T + A C - Apply Hough transform then apply active contour border optimization 
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analysis system was written in Java and the experiments were run on a desktop com­

puter equipped with an A M D Athlon 1.3Ghz processor. The Java programs were run 

using the standard Sun Microsystems Java2 version 1.3 runtime environment. Whichever 

segmentation scheme was used, the object masks required 10-15 seconds to be labelled. 

For the simplest segmentation schemes (runs 1-5) the thresholding process requires less 

than a second and the conditional dilation requires 6-8 seconds. The watershed algo­

rithm requires approximately 15 seconds per image and the remerging step (runs 11-20) 

an additional 10 seconds. The Hough transform and active contour refinement were 

the computationally intensive operations, requiring roughly 10-12 seconds per object. A 

whole frame, with 500 or so objects, is processed in approximately ten minutes. 

Comparing the results for the two gradient based thresholding schemes, there is vir­

tually no difference between using T M G or TQW- Comparing the results of 1 and 2 versus 

3 and 4, etc, T M G generates a few more "valid" nuclei (1-4% more), but not enough to 

be significant. These experiments did not answer the question as to whether one of these 

thresholding methods was more suitable than the other. However, with the exception of 

run 4, both of these thresholding methods outperform the constant threshold of T = 165 

for each group of runs. As well, the act of dilating the masks after the gradient threshold 

and watershed had been applied always leads to poorer results than not dilating at all. 

This can be seen by comparing runs 1 versus 2, 3 versus 4, etc. This suggests that the 

concern that it is necessary to dilate the masks in order to generate nuclear masks that 

resemble those obtained manually, may not be justified. The answer to this question can 

only be obtained by calculating morphometric index scores for an image and comparing 

to the MI score obtained manually. 

The ultimate goal of these experiments was to automatically process section images 

and generate segmentations that would yield similar morphometric index scores to those 

obtained manually. The segmentation system and nuclear decision tree were tested using 
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Image # Morphometric index 
1 2.34 ± 0 . 2 6 
2 3.90 ± 0.65 
3 1.26 ± 0 . 0 3 
4 2.46 ± 0 . 1 4 
5 5.45 ± 0.43 
6 3.47 ± 0 . 1 5 
7 5.35 ± 0 . 2 6 
8 1.24 ± 0 . 0 6 
9 7.89 ± 0.34 

Table 6.3: Morphometric index values for nine tissue section images obtained through 
manual analysis of the images. The uncertainty values are the standard deviations of 
the four MI values calculated on two separate manual segmentation attempts by two 
technologists. 

a set of nine tissue section images that have been used as a validation set for morphom­

etry experiments. These images have been manually segmented two times each by two 

technologists. Each of the segmentations was processed by the MI decision tree to sort 

them into ten categories of abnormality. Finally, category frequencies were calculated 

and passed into the MI scoring function to obtain four MI scores. Table 6.3 shows the 

MI means and standard deviations for the four measurements. 

The images in the validation set were selected so that the set contained a wide variety 

of diagnostic grades. The MI scores in table 6.3 reflect this large diagnosis range. The 

scores range from a minimum of MI=1.24 to a maximum of MI=7.89. The standard 

deviations of the MI values tend to increase with the MI score. Since the scores are 

dependent on the relative frequency of irregular objects versus more regular objects, the 

score variations can occur because one technologist collects more irregular objects than 

another. 

The nine images were processed using all twenty of the segmentation schemes outlined 
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in table 6.2. The "valid" nuclei were obtained using the nuclear decision tree and then 

the morphometric index tree was applied to measure the MI score for each image. The 

results for all twenty schemes were graphed for the nine images in figures 6.3, 6.4 and 

6.5. For each graph, the mean manual MI score is plotted as a solid horizontal line and 

the standard deviations are plotted with dashed lines. 

The results are mixed, since the automated MI scores lie within uncertainty of the 

manual ones for only three of the nine images (graphs 1, 3 and 8). For all the others, 

the automated MI scores are lower. The larger the manual MI score the greater the 

difference between those and the automatic ones. None of the automated scores exceed 

5.0, while the manual scores exceed this value for three of the nine test cases. However, 

if one takes the uncertainties of the manual MI values into account, the automated MI 

value does tend to increase with diagnostic category. Figure 6.6 plots the automated MI 

scores versus manual MI scores. The automated ones form a spread of MI values for 

each manual one. The automated MI scores increase as the manual MI score increases. 

This behavior is desirable. The trend does not look monotonic, but some of the manual 

MI scores have large uncertainties. When these uncertainties are taken into account, the 

trend is monotonic. Even if the automated MI values are smaller than the manual ones, 

we would like them to increase monotonically with manual MI value. This would indicate 

that the automated scores have a useful diagnostic predictive value and only require a 

rescaling in order to compare them to the manual ones. 

The MI score is dependent on the fraction of abnormal looking nuclei in the segmented 

population. These nuclei tend to be larger and have irregular shape. However, these two 

properties are also ones that separate the "valid" nuclei from the junk. So the nuclear 

decision tree is likely to throw out the very objects that the MI decision tree seeks to 

categorize as abnormal. This may explain why the automated scores seem reasonable 

for the lower grade images, but then diverge for the higher grade ones. Insufficient 
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Image 3 morphometric index scores 

Cluster segmentation method 

Figure 6.3: Automated morphometric index score calculations for test images 1 , 2 and 
3. The solid and dashed lines show the mean and standard deviation for the manual 
analysis of these images. 
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Image 4 rnorphometric index scores 

2.44 

Ouster segmentation method 

Image 5 morphometric index scores 

, 5 -L 

5.04 

None WS WS(MP<30) HT+AC 

Ouster segmentation method 

Image 6 rrcrphornetric index scores 
3.64 - -

Ouster segmentation method 

Figure 6.4: Automated morphometric index score calculations for test images 4, 5 and 
6. The solid and dashed lines show the mean and standard deviation for the manual 
analysis of these images. 
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Image 7 morphometric index scores 

151 

None WS WS(MP<30) 
Cluster segmentation method 

Image 8 morphometric index scores 

HT+AC 

None WS WS(MP<30) 
Ouster segmentation method 

Image 9 morphometric index scores 

HT+AC 

None WS WS(MP<30) HT+AC 
Ouster segmentation method 

Figure 6.5: Automated morphometric index score calculations for test images 7, 8 and 
9. The solid and dashed lines show the mean and standard deviation for the manual 
analysis of these images. 
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Automatic versus manual calculation of 

Manual MI score 

Figure 6.6: Comparison of the automatic morphometric index calculations to those ob­
tained through manual analysis. The MI score for all 20 different segmentation methods 
are plotted for each image. 

irregular nuclei are being considered by the MI decision tree. This suggests that the task 

of replacing the operator's discerning ability with a decision tree cannot be completely 

separated from what is done with the nuclei afterwards. Specifically, it may be necessary 

to create a decision rule that specifically separates abnormal nuclei from junk so that 

they are not accidentally thrown out before being analysed. 

Another problem that may occur is that the automated segmentation procedure does 

a better job of segmenting normal nuclei than abnormal ones. Abnormal nuclei tend 

to have a more irregular shape (which may interfere with the watershed and Hough 

transform algorithms) and a more irregular optical density distribution (which may affect 

the active contour refinement routine). Consequently, it is more likely to generate good 

segmentations for normal nuclei than abnormal ones. These two difficulties both bias the 
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system to detect more normal nuclei than abnormal ones. 

For all nine MI score graphs, there is a downward trend between the MI scores ob­

tained with either watershed scheme versus those obtained by the full active contour 

segmentation. This occurs because the complete segmentation is finding more nuclei in 

the image and since it is biased towards finding normal ones, it generates final segmen­

tations with a larger fraction of normal nuclei. This leads to a lower MI score. 

The overall value of performing the complete segmentation with active contour re­

finement versus only selecting the free lying nuclei in an image should not be judged by 

the results in figures 6.3, 6.4 and 6.5, alone. These graphs appear to suggest no improve­

ment in the MI score between no cluster segmentation versus the full system. However, 

the graphs are indicative of the performance of the segmentation plus the nuclear deci­

sion tree. The results of table 6.2 better reflect the merits of the different segmentation 

schemes. The number of normal appearing nuclei increases with the segmentation effort 

applied, with nearly twice as many nuclei being segmented by the complete scheme as 

compared to doing no cluster splitting. 



Chapter 7 

Conclusions 

This thesis describes the development of an automated image segmentation system for 

resolving images of nuclei in crowded scenes such as tissue section images where objects 

tend to overlap. Chapter 2 looks at the problem of automated thresholding of grey level 

images. Several existing techniques were studied and determined to be unsuitable for 

automated biopsy analysis. Two possible thresholding schemes (which have been used 

successfully by others) appear to be well suited for automated biopsy analysis : the 

mean gradient threshold, TMG> and the gradient weighted threshold, TQW- Application 

of the two schemes to a set of 226 images revealed significant differences in the thresholds 

selected by these schemes. T Q W was adversely affected by image properties such as out-

of-focus regions and overly bright texture. Both schemes were applied to the ten image 

training set and nine image test set in chapter 6. While they provided equivalent results, 

it is likely that the image sets of only ten and nine images were not large enough to reveal 

the differences between the thresholding methods. 

The first hypothesis (section 1.3) proposes that it is possible to segment nuclei from 

complex image scenes by treating them as ellipses and using algorithms that focus on 

locating ellipses. Chapter 3 describes how mask shape can be used to separate overlapping 

nuclei by applying the watershed algorithm to the distance transform of the mask. A 

theoretical analysis was carried out to derive the formula for the minimum distance 

required to resolve two overlapping circles based on the exact and approximate distance 

transforms. Because this analysis was not tractable for arbitrary overlapping ellipses, a 

154 
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Monte Carlo simulation was performed to measure the separability of ellipses (using the 

DT) as a function of their overlap. 

Three different measures of overlap of pairs of ellipses are defined. The first measures 

overlap as a function of the ratio of overlapping area to the area of the smaller ellipse. The 

second measures the ratio of the occluded perimeter of an object to its total perimeter, 

and the third measures the ratio of the separation to the ellipse "size". The Monte Carlo 

simulations revealed that the perimeter measure performs the best of the three measures. 

It also showed that for the sizes of ellipses studied, the watershed segmentation should be 

rejected if the measure exceeded 30-40% for an object pair. Theoretical curves of these 

measures for overlapping circles were plotted and they displayed the same behavior as the 

curves for the Monte Carlo results. This confirmed that the perimeter occlusion measure 

gave the best distinction between correctly and incorrectly segmented object pairs. 

The Monte Carlo study results also indicated that the ellipses used would be resolved 

better at higher magnification. This suggests that if mask shape is used to resolve 

overlapping elliptical objects, we should use the highest resolution available. Whichever 

overlap measure was used, overlapping objects were 10-20% more likely to be resolved at 

a particular overlap level if the magnification were doubled. Thus, the D T + watershed 

can be reliably used to break large clusters of elliptical objects into smaller ones and 

resolve small clusters when the overlap is not too large. 

Chapter 4 introduces the Hough transform, a grey scale image technique that can 

be used to find parametric shapes in images. The method was adapted by Yuen to 

use pairs of edge points and geometry to estimate a line that passes through an ellipse 

center. His method was modified by implementing a weighted voting scheme based on 

prior knowledge of the distribution of ellipse sizes. A n experiment was performed using 

ellipses whose size distribution matched those of a cytological image set containing 431 

overlapping nuclei. The voting spreads for the uniform voting scheme were measured to 
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be 1.15 times larger on average than the weighted voting scheme. Larger voting spreads in 

the Hough accumulator space can lead to false minima occurring for complicated scenes. 

The uniform and weighted voting schemes were compared for the identification of the 

location and shape of the 431 cytological nuclei. The uniform voting scheme led to a 

correct ellipse fitting (of the nuclear shape) of 73% of the 431 nuclei while the weighted 

voting scheme scored 82%. This suggests that if the distribution of object sizes is known, 

it is advantageous to encode this information into the Hough voting procedure. 

Yuen's center estimating technique was combined with Fitzgibbon's B 2 A C least squares 

fitting algorithm to determine ellipse parameters from their edge points. Fitzgibbon's 

algorithm is biased towards finding ellipses of low eccentricity, consequently, given only 

a small arc of points, the algorithm will return an ellipse with major and minor axes of 

comparable lengths rather than a parabola, which other conic fitting methods tend to 

do. However, since it is a least squares method, it is susceptible to outliers. Fitzgibbon's 

algorithm was modified to include a weighting factor for the data points in the ellipse 

parameter calculations. The voting frequency of points in the edge accumulator, B, were 

used as weighting factors. This modification, combined with a threshold applied to B, 

reduced the effect that noise had on the recovered ellipse parameters. The method was 

tested on the image set of 431 nuclei resulting in the 73% and 82% success rates described 

above. When the method was tested with 480 different combinations of parameters, the 

mean success rate for the voting scheme was 78%, while the mean success rate for the 

weighted voting scheme was 85%. 

Section 5.1 describes how approximate ellipse fits returned by the Hough transform 

could be optimized using the active contour fitting model. The snake model used was 

the one described by Bamford, but the Hough ellipse fit was used in order to create 

an elliptically shaped sampling space. Using an elliptical grid rather than a circular one 

prevents competition between curvature and gradient forces when minimizing the snake's 
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total energy. The active contour border refinement was applied to the cytological image 

set. A n area misfit measure was defined to describe the difference between the true 

nuclear mask and fits to that mask. This measure was calculated for the Hough ellipse 

fit to the true mask and for the active contour refinement based on the Hough ellipse. In 

an experiment, the number of nuclei for which the area misfit measure was less than 5% 

jumped from 110 to 349 nuclei after active contour refinement. The average area misfit 

for all nuclei considered to be successfully identified, dropped from 8 ± 4% to 4 ± 2% 

after active contour refinement. 

Section 5.2 addresses the second hypothesis of this thesis—that optical densities in 

absorbance images of overlapping nuclei are additive. The hypothesis was tested by man­

ually segmenting 188 overlapping nuclei pairs in cytological images and 204 overlapping 

nuclei pairs in histological images. A graph of measured mean O D amount versus pre­

dicted mean O D amount was plotted for each case. Both graphs had linear trends with a 

significant spread of the data. The spread was larger for the histological experiment. The 

regression parameters (for an equation expressed as y = mx + b) were m = .71 ± .04 and 

b — .10 ± .03 for the cytological measurements, and m = .61 ± .03 and b = .32 + .05 for 

the histological measurements. This suggests that only a fraction of the expected optical 

density is measured in the overlap regions in either case. Several effects contribute to 

this. The depth of field of the imaging system is approximately 1.4/xm. Thus only part of 

an object will be in focus and contribute to the measured optical density. Since overlap 

regions in cytological images are thicker, this effect will be more pronounced in these 

regions. For histological sections, since the nuclei are cut, the portions of two nuclei that 

overlap will be thinner in the overlap regions than in the non-overlap regions. 

Even though the mean O D in nuclear overlap regions is not a linear sum of the non-

overlap regions, the regression slopes can be used as empirical factors for the purpose of 

reconstructing two individual nuclei from an image where they overlap. In section 5.3, 
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a probability model was introduced to apportion OD based on the assumption that nu­

clear O D is normally distributed and that the O D in nuclear overlap regions can be 

approximated by the O D from non-overlap regions. The joint distribution for the ODs 

of two individual nuclei was determined to be a Gaussian density that depended on the 

means and standard deviations of the ODs for each non-overlap region. The method 

reconstructed the images and apportioned the O D from the overlap region based on 

the maximum likelihood estimator for the joint distribution. This generates two recon­

structed nuclei that give the most likely total O D at the expense of not approximating 

the nuclear texture as well as possible. The Gaussian model was inadequate for the 

purposes of approximating the nuclear texture as it produced reconstructed images with 

excessively large intensity variations. 

Chapter 6 discussed the third hypothesis—that it is possible to automatically seg­

ment tissue sections and recover intact nuclei for morphometric analysis and generate 

results equivalent to those obtained by manual segmentation. Part of the hypothesis was 

successfully addressed in that the automated procedure recovers as many "valid" nuclei 

as are obtained through manual analysis. The segmentation system described in chapters 

2 through 5 was applied to a training set of ten tissue section images with five different 

thresholding schemes and four levels of sophistication for the cluster splitting routines. 

Two of the 20 image sets were analysed by a histotechnologist, who separated 12882 

segmented objects into 1178 valid nuclei and 11704 invalid objects. This data was used 

to create a decision tree to classify objects as "valid" or "invalid". The classifier scored 

93.7% on the training data. It was used to judge the success of all 20 segmentation runs 

on the training set. Extracting free lying nuclei without any cluster separation yielded an 

average of 55 "valid" nuclei per image frame. Performing the watershed segmentation of 

the image produced about approximately 83 nuclei on average. Applying the full cluster 

segmentation system including the Hough transform and active contour refinement (with 
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O D apportioning) produced 102 nuclei per image frame. This is almost twice the number 

of free lying nuclei and 22% more nuclei, per frame, than just using the watershed to 

segment the frame. 

The segmentation system and "valid" nuclear decision tree were combined with the 

existing morphometric index tree being used in the Cancer Imaging department and ap­

plied to a set of nine tissue section images that had been manually analysed four times. 

The HI decision tree was designed to correlate with patient diagnosis, returning a score 

of 1 for a normal biopsy section and a score of 10 for an extremely abnormal section. 

The automated MI scores were calculated for all 20 segmentation option combinations 

and compared to the manual MI scores. The automated scores fell within the standard 

deviation of the manual scores for only three of the nine images. The automated MI 

values tended to be close to the manual ones for low MI values. For images with signif­

icant numbers of abnormal nuclei the manual MI values increased to nearly 8 diverging 

significantly from the automated scores. When the uncertainties of the manual scores 

are taken into account, the automated MI scores increase monotonically, which can be 

considered a significant success. This would imply that they need only be rescaled to 

compare them to the manual ones. 

The reason for the lack of correlation of the manual and automated scores for high 

grade dysplasias is twofold. First, the segmentation system was designed to find regular 

elliptically shaped objects using the watershed and Hough transforms. Abnormal nuclei 

may have an irregular shape that interferes with the algorithms' attempt to segment 

these objects. Abnormal nuclei may also have irregular O D distributions, sometimes 

having dark clumps inside the nucleus. This may cause the active contour refinement 

algorithm to incorrectly refine a border to lie along an interior edge inside the nucleus, 

thereby splitting an object in two. 

The second, and likely more important reason, for the lack of correlation of MI scores 
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for high grade images concerns the interaction of the nuclear decision tree and the MI 

decision tree. The discerning ability of the technologist is an important element in 

obtaining good candidate nuclei for morphometric analysis. Ultimately, the reliability of 

the MI score is determined by the skill of the technologist. The approach taken in this 

thesis was to attempt to replace the technologist's skill with a decision tree to separate 

all nuclear shaped objects from the improper segmented objects and debris in the tissue 

section image frame. This decision tree used features such as the irregularity of the 

mask shape to separate "valid" nuclei from clusters and fragments. However, the image 

properties that cause an object to be rejected for further analysis were also the ones that 

the MI tree used to classify an image as abnormal. The two trees worked in opposition 

to each other, with the outcome that abnormal nuclei were not being used sufficiently to 

generate MI scores. 

It is concluded that the process of collecting "valid" nuclei cannot be implemented 

without any reference to what they will be used for. The automated MI scoring procedure 

used in this thesis first separated "valid" nuclei from junk, and then used the existing 

MI tree to separate normal from abnormal looking nuclei. It should be possible to 

create a better automated MI scoring procedure by creating a single decision tree that 

separates out each category of nucleus from the remainder all the objects. This would 

prevent abnormal nuclei from being thrown out and improve the diagnostic value of the 

automated MI scores. 

The work done in this thesis can be extended in several ways. The segmentation 

system, although largely successful, can be improved by making it more robust to the 

variability of object shapes in tissue section images and account for the effect of debris 

on the segmentation. This effort should focus on improving the Hough ellipse fits and 

exploring alternate active contour border refinement schemes. The Hough transform was 

most likely to fail on large elongated objects, a situation that occurs when two elliptical 
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objects are lined up along their long axes. The active contour routine was most likely to 

fail when small debris intersected the nucleus. This caused the method to either include 

the debris in the object mask, or exclude the portion of the object beneath the debris. 

These kinds of errors suggest that it is necessary to have some kind of goodness of 

fit measure to compare alternate segmentations of the same scene. There are many ways 

to segment a nuclear cluster image that produce objects whose borders approximate the 

edges seen in the image. A goodness of fit measure based on the prior knowledge of 

shapes of nuclei and debris may allow for a better assessment of when a segmentation is 

to be trusted. This analysis would require further work into characterizing the objects 

that are found in epithelial biopsy section images. 

The morphometric decision tree described in chapter 6 used only the shape of the nu-

clei to categorize their degree of irregularity. It did not use the optical density information 

that was also available. A recent study [63] has shown that densitometric information in 

histologic images is highly correlated with patient prognosis for oral squamous cell carci­

nomas. However, including densitometric information in quantitative histologic grading 

systems enters into a controversy [26] around the topic of D N A measurement in histo­

logic sections. The problem is that in thin biopsy sections, most of the nuclei are sliced, 

so it is improper to speak of measuring its ploidy—the measure of D N A complement— 

distribution. Nonetheless, it is possible to model the sectioning of nuclei during the 

creation of tissue sections as the slicing of spherical objects [22]. One can then use the 

distribution of optical density values of the fragmented objects to estimate the true ploidy 

distribution. 

Using the O D assignment method described in section 5.3, it is possible to reconstruct 

intact nuclei from images in which they overlap. Since we have an estimate of their O D , 

further work in the development of the MI decision tree may allow the use of O D as 

a feature to describe the nuclear irregularity. This may lead to the creation of a more 
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accurate system for grading epithelial biopsies. 



Appendix A 

Derivation of Overlap Measures for Circles 

It is possible to derive explicit formulas for M A , M P and Ms for two overlapping circles 

of radii r\ and r2. Figure A . l shows the geometric construction needed to do this. In 

the figure, the separation of the two circles is s = x + y. The circle center locations are 

labelled C\ and C2 and the extent of each circle along their common axis is labelled W\ 

and W2. The point at which their boundaries meet is P, and the angles are l Q C \ P = a 

and L Q C 2 P = B. 

The quantities r\, r2 and s are known, and it is necessary to obtain expressions for 

x, y, a and B in terms of these. Looking at the triangles, we see that 

x2 = r\ - h2 and (s - x)2 =r\- h2. 

After rearranging these equations, the expressions for x and y — s — x are 

s2 + r2 — ri , s 2 — r? + r 2 

x = and y -. 

The angles a and B are then given by 

X A a y 
a = arccos — and p = arccos — 

r\ r2 

Obtaining a closed form expression for percentage of area overlap, M A , requires know­

ing the area of overlap, OA. The value of OA, is given by 

O A = 2{APQWl + ApQW2) 

where APQWX and APQW2 are the areas of the two regions P Q W i and P Q W 2 in the figure. 

The factor of two is required since only the top half of each circle is shown. The area 
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Q w, c2 

Figure A . l : Construction for deriving the measures of overlap for two circles of different 
radii. 

ApQWi is the difference between the area of the sector PC\W\ and the triangle PQC\. 

This is given by 

A a 2 1 2 

APQWI — 7T?"i — nri cosOi sinoi 

where a is given in radians. Similarly, the area of the region APQW2 is given by 
APQW2 = - ^ c o s ^ s i n / 3 . 

Assuming that r2 < r±, the expression M A can now be written as 

M A ( r i , r2, s) - _ 2 ^ \ar2 — r2cos a sin a + Br\ — r\ cos B sin B] . 
irr2 irr2

 L J 
(A.l) 

where the terms involving a and 8 are replaced using 

+ ri 
cos a 

cos .1 = 

2srx 

s2 — r\ + r\ 
2sr2 

sin a = 

sin B = 

i~ r 2 2 , 2 _ r 2 
and a = arccos 

2sr, 
• (A.2) 

JR2 (S2-rf+rU2 s —I— r z 

V r 2 i. _2* /_ o r l ^ fl_o^rto£ r l + r 2 , (A.3) 
2̂ 

and /? = arccos 
2sr2 
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The formula for the percentage of perimeter occluded, MP, is more straightforward 

to calculate. Again, under the assumption that r 2 < ri} circle 2 will necessarily have the 

larger MP, value. The arc length of the occluded portion of circle 2 will be twice that of 

the chord PW2 since only the top half of the circle is shown. Hence, OP 2 is given by 

OP 2 = 2Br2 

with B, in radians, is specified in equation A.3. This gives 

. OP 2 1 s 2 - r \ + rl A. M P ( r i , r2, s) = = -arccos - 1 (A.4) 
27rr2 7r 2sr2 

The normalized measure of center to center separation, Ms, is the simplest to calcu­

late. When r\ < r 2 ) 

M s ( r i , r 2 , s ) = —. (A.5) 
r2 



Appendix B 

Derivation Optical Density Distribution for Overlapping Objects 

The probability densities for the ODs in the non-overlap regions of figure 5.11b are given 

by 

and 

p{ODA = y) = 

p(ODB = x-y) 

1 

2iraA 

2%aB 

exp 

exp 

2a\ 

-{x-y- u.By 
2al 

From equation 5.7, 

p(OVA = y , O D B = x-y) = kp{ODA = x)p{ODB=x-y) 

k 
exp 

(y ~ HA)2 {x-y- Ms)2 

2o\ 2a% 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
2naaaB 

where k is a normalization constant. The values of O D ^ and ODB are linked in that 

they must sum up to x, so this joint probability function is slightly different than the 

standard product of Gaussians. 

Let vA = crA, vB — a\ the term inside the brackets in equation B.9 be labelled *. 

Then 

* = -7T^— \(y - VA)2Vb + {x-y- HB)2VA] • (B.10) 

Expanding equation B.10 gives 

= -TTT——r \(VA + vB)2 - {2u-AvB + 2xvA - 2u-BvA)y + (J?A + X2VA - 2xp,BvA + u.2

BvA] 2{vAvB) t 
( B . l l ) 
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Let ki — VA+VB and k2 = nAvB+xvA — \XBVA- Rewriting equation B . l l and removing 

those terms that can be included in the normalization constant, it can be written as 

, 12 

* — 2vAvB 

y hi 

Equation B.12 is the exponent of a normal probability density with mean 

k2 HAVB + xvA - VBVA 

il — ~r = T 
h vA + vB 

and standard deviation 

a = 
VAVB O~AO~B 

(B.12) 

(B.13) 

(B.14) 
lvA + vB. 

These parameters specify the joint density for the O D values in the overlap region in 

equation 5.7. 
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