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A b s t r a c t 

T h i s t h e s i s d e s c r i b e s a study of the low temperature 

s p e c i f i c heat of L i NbS 2, where x i s between 0 and 1. 

Samples were prepared by i n t e r c a l a t i n g l i t h i u m i n t o niobium 

d i s u l f i d e in e l e c t r o c h e m i c a l c e l l s . S t r u c t u r a l data obtained 

by x-ray d i f f r a c t i o n are presented. These, together with 

e l e c t r o c h e m i c a l measurements, show that staged phases e x i s t 

f o r some values of x. The e l e c t r o n i c s p e c i f i c heat of 

L i NbS 2 i s c o n s i s t e n t with complete charge t r a n s f e r from the 

i n t e r c a l a t e d l i t h i u m to the bands of the NbS 2 host. The 

l a t t i c e s p e c i f i c heat a l s o shows l a r g e changes as a f u n c t i o n 

of x. A d i s c u s s i o n of the data i n terms of continuum 

e l a s t i c i t y theory suggests that i n t e r c a l a t i o n produces l a r g e 

changes i n the shear e l a s t i c constant c 4 „ . A b r i e f 

d i s c u s s i o n of s u p e r c o n d u c t i v i t y i n L i NbS 2 i s a l s o i n c l u d e d . 

i i 
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1. INTRODUCTION 

1.1 INTERCALATION 

Intercalation, as the term is used here, is the reversible 

insertion of 'guest' atoms or molecules into a 'host' solid, 

in such a way that the crystal structure of the host is not 

drastically altered. A necessary condition for intercalation 

is the existence of sites in the host which are available 

for occupation by the guest. These sites must be accessible 

from the surface of the host, and the guest, or intercalant, 

must be mobile in the host. Perhaps the best known 

intercalation host is graphite, in which a wide variety of 

atoms and molecules can be inserted between the carbon 

layers. Graphite intercalation compounds have been 

comprehensively reviewed by Dresselhaus and Dresselhaus 

(1981). Other layered materials which have been shown to be 

intercalation hosts include some of the layered s i l i c a t e s , 

and the layered transition metal dichalcogenides (LTMDs) 

such as NbS
2
. For reviews of intercalation in the LTMDs see 

Whittingham and Jacobson (1982), Whittingham (1978), Levy 

(1979), or Marseglia (1983). Intercalation has also been 

observed in some non-layered hosts; for example lithium 

intercalates into V
2
0

5
 (Murphy et a l . 1979) and some of the 

other transition metal oxides, and into Mo
6
S
B
 (Schollhorn 

and Kumpers 1977, Mulhern 1982). 

Electrochemical cells based on intercalation 

(Whittingham 1976) have received a great deal of attention 

1 
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in recent years, s i n c e they can form the b a s i s of long l i f e , 

h igh energy d e n s i t y rechargable b a t t e r i e s . The most 

promising systems from a p r a c t i c a l p o i n t of view are those 

i n v o l v i n g l i t h i u m i n t e r c a l a t i o n i n t o the LTMDs. C e l l s based 

on l i t h i u m i n t e r c a l a t i o n i n t o T i S 2 have been s t u d i e d 

e x t e n s i v e l y (J.R.Dahn 1982, Whittingham 1979) and Li/MoS 2 

c e l l s (Py and Haering 1983) are now being produced 

c o m m e r c i a l l y 1 . T h i s t h e s i s i s concerned with the 

i n t e r c a l a t i o n compound L i NbS 2 r which can a l s o be prepared 

and s t u d i e d by means of e l e c t r o c h e m i c a l i n t e r c a l a t i o n . A 

schematic diagram of a L i / L i NbS 2 c e l l i s shown i n f i g u r e 1, 

to i l l u s t r a t e the o p e r a t i o n of an i n t e r c a l a t i o n c e l l . The 

h a l f c e l l r e a c t i o n s are 

xL i x L i + + xe" (1-1) 

• at the l i t h i u m metal anode and 

x L i + + xe" + NbS 2 *-̂ > L i NbS 2 (1-2) 
X 

at the L i NbS 2 cathode. The e l e c t r o n s move from the anode to x * 
the cathode through an e x t e r n a l c i r c u i t , and the L i + ion 

moves through the e l e c t r o l y t e . 

In a d d i t i o n to t h e i r p r a c t i c a l a p p l i c a t i o n s , 

i n t e r c a l a t i o n c e l l s can be used to obt a i n a great deal of 

thermodynamic i n f o r m a t i o n about the i n t e r c a l a t i o n compound. 

T h i s i s because the open c i r c u i t v o l t a g e of a l i t h i u m 

i n t e r c a l a t i o n c e l l i s given by (McKinnon and Haering 1983) 

'Moli Energy L t d . , Burnaby, B.C. 
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• V v V 

Li 

Li
x
NbS

2 

Electrolyte 

F i g u r e 1: Schematic diagram of an i n t e r c a l a t i o n 
c e l l . The e l e c t r o l y t e c o n s i s t s of a 
l i t h i u m s a l t d i s s o l v e d i n an o r g a n i c 
s o l v e n t . 



4 

V(x)=(u -u )/e (1-3) 

a C 

where M
=
 and n are the chemical potentials of lithium atoms 

in the anode and cathode, respectively, and e is the 

electronic charge. 

A complete review of the literature of intercalation 

cells would be beyond the scope of this thesis, so only a 

few examples will be given. High resolution electrochemical 

measurements of V(x) and 9x/9V (J.R.Dahn and McKinnon 1984a) 

can be compared with theoretical models of the intercalation 

compound (Dahn, Dahn, and Haering 1982, McKinnon and Haering 

1983). These and related electrochemical techniques have 

been used to study a number of phenomena which occur in 

layered intercalation compounds. One of these is staging. An 

intercalation compound of stage n is one in which every n 

interlayer gap contains a higher concentration of guest than 

the intervening n-1 gaps. Staging is best known in the 

graphite intercalation compounds, and also occurs in some of 

the intercalated LTMDs, such as Ag
x
TaS

2
 (Scholtz and Frindt 

1980), Li NbSe
2
 (D.C.Dahn and Haering 1982) and Li NbS

2
. 

X X 

Li
x
TaS

2
 (J.R.Dahn and McKinnon 1984b) exhibits staging as 

well as two-dimensional lithium ordering in the interlayer 

gaps. In addition to V(x) measurements, the temperature 

coefficient 3V/9T of c e l l voltage has been used to obtain 

the entropy of intercalation compounds (J.R.Dahn and Haering 

1983) . 
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Intercalation c e l l s can also be used as a convenient 

sample preparation technique, and i t i s primarily in thi s 

role that they appear in thi s t h e s i s . By preparing a Li/NbS
2 

c e l l and allowing i t to discharge, the cathode material i s 

converted to L i NbS
2
, where x can be accurately determined 

A. 

by time-integrating the c e l l current. As shown in Chapter 2 

for Li
x
NbS

2
, materials prepared t h i s way may be in a 

different c r y s t a l phase than materials of the same 

composition prepared by other methods such as direct high 

temperature reaction of the elements. 

1.2 NIOBIUM DISULFIDE 

NbS
2
 is one of the layered t r a n s i t i o n metal dichalcogenides. 

These are compounds of the form MX
2
, where M i s a group IV, 

V, or VI t r a n s i t i o n metal and X i s s u l f u r , selenium, or 

tellurium. The LTMDs consist of strong covalently bonded MX
2 

layers separated by so-called Van der Waals gaps. The 

interlayer bonding i s r e l a t i v e l y weak, although i t i s no 

longer believed to be due e n t i r e l y to the Van der Waals 

interaction (Umrigar et a l . 1983, Hibma 1982). A number of 

review a r t i c l e s dealing with the LTMDs (Wilson and Yoffe 

1969, Yoffe 1973, Hullinger 1976, Lieth and T e r h i l l 1977, 

Vandenberg-Voorhoeve 1976), their charge density waves 

(Wilson et a l . 1975, Williams 1976), and superconductivity 

(Frindt and Huntley 1976), are a v a i l a b l e , and I w i l l 

therefore r e s t r i c t the following discussion to NbS
2
 as much 

as possible. 



6 

NbS
2
 i s found in two p o l y t y p e s ; one ( r e f e r r e d to as 2H) 

with a two l a y e r high hexagonal u n i t c e l l and one (3R) with 

a three l a y e r rhombohedral s t r u c t u r e . The NbS
2
 used i n t h i s 

work was 2H. These s t r u c t u r e s are shown in f i g u r e 2. I f we 

c o n s i d e r the s t r u c t u r e s as s t a c k s of two dimensional c l o s e 

packed p l a n e s , the s t a c k i n g sequences are BaB-CaC f o r 

2H-NbS
2
 and BaB-CbOAcA f o r 3R-NbS

2
. The l e t t e r s r e f e r to 

the three i n e q u i v a l e n t p o s i t i o n s marked in f i g u r e s 2 and 3. 

C a p i t a l l e t t e r s r e f e r to S and small l e t t e r s to Nb. By 

analogy with L i T i S
2
 (J.R.Dahn et a l . 1980), i n t e r c a l a t e d 

l i t h i u m atoms are b e l i e v e d to l i e i n the o c t a h e d r a l l y 

c o o r d i n a t e d s i t e s i n the i n t e r l a y e r gaps. 

.1 .3 BAND STRUCTURE AND THE RIGID BAND CHARGE TRANSFER MODEL 

The e l e c t r o n i c energy band schemes f o r NbS
2
 and the other 

LTMDs f i r s t proposed by Wilson and Y o f f e (1969) have s i n c e 

been confirmed by a number of experiments, as w e l l as by 

d e t a i l e d band s t r u c t u r e c a l c u l a t i o n s (Mattheis 1973, Wexler 

and Wooley 1976). The q u a l i t a t i v e f e a t u r e s of the 2H-NbS
2 

bands are shown in f i g u r e 4. The valence bands are 

predominantly of s u l f u r 3s and 3p c h a r a c t e r , and the 

p a r t i a l l y f i l l e d conduction band i s d e r i v e d p r i m a r i l y from 

niobium 4d s t a t e s . The 3R p o l y t y p e has an almost i d e n t i c a l 

d e n s i t y of s t a t e s , at l e a s t f o r the d s t a t e s , s i n c e the 

c o o r d i n a t i o n of S around Nb i s t r i g o n a l p r i s m a t i c i n both 

p o l y t y p e s , and t h i s i s the most important f a c t o r i n 

determining the d s t a t e s p l i t t i n g . NbS
2
 i s m e t a l l i c , s i n c e 



Figure 2 : The structure of 2H-NbS2• Black c i r c l e s 
indicate niobium atoms and open c i c l e s 
are s u l f u r . Intercalated lithium i s 
believed to l i e i n the octahedral s i t e 
halfway between the two niobium atoms. 
3R-NbS2 has layers of the same type, but 
a different i n t e r l a y e r stacking sequence. 

Figure 3: De f i n i t i o n of the l e t t e r notation 
close-packed atomic planes. 

for 



F i g u r e 4 : Schematic band s t r u c t u r e of NbS 
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the Fermi level lies in the middle of the half f i l l e d dz
2 

band. 

The properties of LTMDs and their intercalation 

compounds have frequently been discussed in terms of the 

rigid band charge transfer model (RBCT). This model assumes 

that: 

1. The d bands at least are not affected very much by 

intercalation (rigid bands). 

2. On intercalation of an alkali metal atom, its valence 

electron is donated to the lowest unoccupied state in 

the host bands (complete charge transfer). Other 

intercalated electron donors such as certain organic 

molecules exhibit incomplete charge transfer. 

RBCT has been used extensively to explain the optical and 

electrical properties of intercalated LTMDs. The reviews by 

Marseglia (1983) and by Yoffe (1982), for example, discuss a 

number of experimental results from this point of view. 

Occasionally the predictions of RBCT f a i l ; this is o.ften due 

to intercalation induced changes in the s and p bands which 

can lead to overlap with the d band. Theoretical insight 

into the RBCT model has come from the calculations of 

McCanny (1979), and of Umrigar et a l . (1983). In both these 

works, f i r s t principles band structure calculations for TiS
2 

and Li TiS
2
 are performed and compared. The calculated d 

bands are not significantly altered by intercalation, except 

by f i l l i n g due to charge transfer. The sulfur 3s and 3p 

bands are, however, modified considerably, as is a 
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h i g h - l y i n g T i 4 s ~ l i k e band. Although the t i g h t - b i n d i n g model 

of band s t r u c t u r e i s not accurate enough f o r c a l c u l a t i o n s i n 

the LTMDs, one can d i s c u s s the r e s u l t s i n a t i g h t - b i n d i n g 

framework. From t h i s p o i n t of view, the s and p bands are 

more s t r o n g l y a f f e c t e d by i n t e r c a l a t i o n because the atomic s 

and p s t a t e s on which they are based are la r g e i n s i z e , and 

extend s i g n i f i c a n t l y i n t o the i n t e r l a y e r gap. (The s u l f u r p 

s t a t e s extend f a r t h e s t i n t o the gap, and i t i s t h e i r o v e r l a p 

which i s p r i m a r i l y r e s p o n s i b l e f o r i n t e r l a y e r bonding i n the 

u n i n t e r c a l a t e d LTMDs.) On i n t e r c a l a t i o n , there i s a l a r g e 

o v e r l a p of the s and p s t a t e s with the L i 2s s t a t e . The 

metal atom d s t a t e s , because of t h e i r smaller s i z e , do not 

extend i n t o the gap and are not a f f e c t e d . 

From the above d i s c u s s i o n , there i s good reason to 

expect RBCT to be a v a l i d way of understanding those 

e l e c t r o n i c p r o p e r t i e s of i n t e r c a l a t e d LTMDs which depend 

p r i m a r i l y on e l e c t r o n s at or near the Fermi l e v e l (that i s , 

in the d bands). One such property i s the e l e c t r o n i c 

c o n t r i b u t i o n to the low temperature s p e c i f i c heat, and i t 

was the p o s s i b i l i t y of making a q u a n t i t a t i v e t e s t of the 

RBCT model i n t h i s way which motivated the work d e s c r i b e d in 

t h i s t h e s i s . 

1.4 CONTRIBUTIONS OF THIS THESIS 

Chapter 2 of t h i s t h e s i s i s concerned with the p r e p a r a t i o n 

and c h a r a c t e r i z a t i o n of NbS 2 and L i NbS 2. I t w i l l be shown 
X 

that staged phases e x i s t i n L i NbS 2, as in L i NbSe 2 
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(D.C.Dahn and Haering 1982). This has not been realized by 

previous authors (McEwan and Sienko 1982, McEwan 1983). 

Chapter 3 describes the low temperature heat capacity 

cryostat built for this work, and the procedures used for 

measurements and data analysis. The results for eleven 

Li NbS
2
 samples covering the range 0 to 1 in x are given in 

chapter 4. 

The specific heat of a normal metal at sufficiently low 

temperatures has the form (Ashcroft and Mermin 1976, for 

example) 

c = 7
T+j3T

3

 (1-4) 

where 7 and 0 are constants
2

. The f i r s t term in (1-4) is due 

to the electrons and is proportional to the density of 

states at the Fermi level. It can be separated from the 

cubic term by f i t t i n g the data to (1-4). In the RBCT model, 

as x is increased by intercalation, the Fermi level moves up 

through the host bands, and the variation of 7 with x 

directly maps out the d band density of states. The 

interpretation of the electronic specific heat data in this 

fashion is discussed in chapter 5 . 

2 

Note that it has not been specified whether this is the 
specific heat at constant volume or constant pressure. 
Experimental evidence and thermodynamic arguments show that 
the difference between these is insignificant in solids, 
especially at low temperatures (Ashcroft and Mermin 1976, 
p427). Although we can ignore the difference between the 
two, the experimental data in this thesis were measured at 
constant pressure, while the theoretical expressions in 
chapters 5 and 6 are, s t r i c t l y speaking, valid for constant 
volume. 
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The c u b i c term i n the low temperature s p e c i f i c heat i s 

due to l a t t i c e v i b r a t i o n s . The c o e f f i c i e n t 0 of t h i s phonon 

term a l s o changes as a f u n c t i o n of x, and some p o s s i b l e 

reasons f o r t h i s are presented i n chapter 6 . 

Chapter 7 i s a b r i e f d i s c u s s i o n of s u p e r c o n d u c t i v i t y i n 

L i NbS 2 and chapter 8 summarizes the t h e s i s . Suggestions f o r 

f u t u r e work are a l s o g i v e n . 



2. PREPARATION AND STRUCTURE OF INTERCALATED NIOBIUM 

DISULFIDE 

2.1 PREPARATION OF NbS, 

The NbS
2
 used in this work was prepared by reaction of the 

elements in evacuated quartz ampoules. The starting 

materials were 99.9% pure niobium powder and 99.9999% pure 

sulfur powder
3

. The niobium powder was reduced by heating it 

to 500°C in hydrogen." After reduction the niobium was 

handled only in an argon atmosphere. Weighed amounts of 

niobium and sulfur were placed in quartz ampoules which were 

then evacuated using a diffusion pump, and sealed. Enough 

excess sulfur was added to produce approximately 

6 atmospheres of sulfur gas pressure at the annealing 

temperature of 750°C
5

. The excess sulfur is required in 

order to get a stoichiometric product with the 2H structure 

3

 Both from SPEX Industries, Metuchen, N.J. 

o 

Hydrogen can be absorbed into Niobium to form a metal 
hydride. It has recently been learned that the reduction 
procedure that was used leaves a significant amount of 
hydrogen in the niobium metal. X-ray diffraction 
measurements of the niobium that was used to prepare NbS

2 
batch DD12 indicated that it contained about 20 atomic 
percent hydrogen. (The lattice parameters of H Nb are known 
as a function of x; see Schober and Wenzl 1978

X

) However, 
proton NMR measurements failed to detect any hydrogen in the 
NbS

2
 that was produced from this material. When NbS

2
 is 

prepared by high temperature reaction, the hydrogen may 
react with some of the excess sulfur present to form H

2
S. 

5 

The thermodynamic properties of sulfur vapour have been 
measured by Rau et a l . (1973) 

13 
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(Fisher and Sienko 1980). Typical ampoules had an interior 

volume of about 12cm
3

, and contained about a 6g total 

charge, of which about .2g was excess sulfur. The ampoules 

were heated slowly to the reaction temperature of 950°C, 

left there for 2 to 3 days, then annealed at 750°C for one 

day. This was followed by a quench into cold water. The 

quench is necessary in order to obtain the 2H phase, and 

also neatly separates the excess sulfur from the NbS
2
, since 

a l l the sulfur vapour condenses out on the cold walls of the 

ampoule during the quench. The product is a free flowing 

powder. Since the excess sulfur adheres to the walls, only 

the material which can be poured freely out of the ampoule 

when i t is cracked open is used. 

X-ray powder diffraction measurements were made on the 

NbS
2
 powders. For the three batches of NbS

2
 used in this 

work, the dimensions of the hexagonal unit c e l l are listed 

in table I. A l l these batches are pure 2H phase. No Bragg 

peaks corresponding to the- 3R- structure were seen. The 

lattice parameters were determined by a least squares f i t to 

the positions of at least 8 Bragg peaks
6

. The three batches 

of NbS
2
 have the same lattice parameters, within the 

accuracy of the measurements. The values depend to some 

extent on the details of the f i t t i n g procedure and the 

methods used to correct for diffractometer errors such as 

6

Using computer programs written by J.R.Dahn, P.Mulhern and 

the author. 
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the off-axis effect (J.R.Dahn et a l . 1982). Estimates of 

these possible systematic errors have been included in the 

errors quoted in the table, and this is why the differences 

between the three a values, in particular, are less than the 

uncertainty in each one. Lattice parameters from the 

previous literature are also included in the table, and 

agree reasonably well with the present values. 

As noted by previous authors (Jellinek et a l . 1960, 

Revelli 1973, Fisher and Sienko 1980), some of the Bragg 

peaks are quite broad. For example, the (104) peak of DD9 

NbS
2
 has a width at half maximum of 1.3° in 29, where 6 is 

the Bragg angle
7

. The broad peaks indicate some disorder in 

.the crystals. The type of disorder can be deduced from the 

fact that a l l the lines with Miller indices (hkl)=(0Ql) or 

(11/) are sharp. It can be shown (Revelli 1973, for example) 

that these lines are not broadened if the disorder is due 

only to stacking faults. Stacking faults occur frequently in 

layered transition metal dichalcogenide crystals, and.are, 

in this case, errors in the registry between adjacent S-Nb-S 

sandwiches. In terms of the letter notation of section 1.2, 

the sequence 

. . .BaB-CaC-BaB-AbA-CbC... 

has a stacking fault between the third and fourth layers. 

7

DiffTactometer r e s u l t s are u s u a l l y given i n terms of 2d 

rather than 6 s i n c e the instrument a c t u a l l y measures 2d. 



Table I 

Properties of 2H-NbSp 

Included are hexagonal lattice parameters a and c, superconducting transition 
temperature, T and specific»heat coefficients y and 3 . Unless indicated otherwise, 
T„ was measurea by a magnetic susceptibility method, and T

c
 taken as the temperature 

when the transition was 50% complete. 

Reference a (A) c (A) T. C(K) range of 
T

c
 (K) 

Y 2 

(mJ/mole-K ) 
6 

(mJ/mole-K ) 

This work: 
DD6 
DD9 
DD12 

3.325 
3.323 
3.324 

(±.005) 

11.96 
11.96 
11.95 

(±.01) 

5 .7* 5.5-6.0 19.3±1.5 0.31±0.04 

Fisher and Sienko 
(1980) 
McEwan (1983) 

3.324 
(±.003) 

11.95 
(±•02) 

6 

6 

.33 

.46 

6.25-6.41 

0.4IK wide 

Aoki et al (1983) 
Nakamura and Aoki 
(1983) 

6 
6 

. l
f 

.06 + 
18.2 0. 33 

Revelli (1973) 3.31 11.90 6 .1 5.5-6.6 

Van Maaren and 
Harland (1969) 5 .5* 10. 7 0.31 

Van Marren and 
Schaeffer (1966) 

powders 
single crystals 

5.8-6.2 
6.1-6.3 

Molinie et al (1974) 6 .23
 + 

f - onset temperature 
* - measured calorimetrically 
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Superconducting transition temperatures for NbS
2
 from 

the literature are also given in table I. There is 

considerable disagreement on the superconducting transition. 

The transitions are a l l rather broad. This has been 

explained by some authors (Van Maaren and Schaeffer 1966, 

Revelli 1973) in terms of variations in stoichiometry within 

the sample. Many LTMDs are known to have metal rich phases, 

which are essentially the stoichiometric phases with some 

excess metal intercalated between the layers. The assumption 

made is that the samples were actually 2H-Nb
1+
yS

2
, with 

slight variations y within each sample and between samples. 

The transition temperature is said to drop very rapidly with 

increasing y, in agreement with the rigid band charge 

transfer model, since intercalated excess Nb should donate 

electrons to the dz
2

 band and hence lower the density of 

states at the Fermi le v e l . Revelli (1973) stated that the 

transition drops by about 1.5K for each change in y of .01. 

Non-stoichiometry might be a satisfactory- explanation of the 

variations of the transition temperature, except for the 

results of Fisher and Sienko (1980), which indicate that 

Nb,, S
2
 exists only in the 3R structure, and that 3R-Nb,, S

2 1 +y
 2 1

 ' 1 +y 

is not a superconductor. Fisher and Sienko did not, however, 

offer an alternate explanation of the broad and variable 

transitions. 

The superconducting properties of stoichiometric 

3R-NbS
2
 are also unclear. Jones et a l . (1972) reported a 

transition at 5.9K, while Van Maaren and Schaeffer(1966) saw 
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a transition extending from 5.0 to 5.5K. Fisher and Sienko 

were not able to prepare stoichiometric 3R-NbS
2
 and 

suggested that the earlier samples were a l l 

non-stoichiometric, and that the observed superconductivity 

was due to small amounts of 2H present as impurities. 

However, further work by the same group confirms that 

stoichiometric 3R-NbS
2
 can be prepared, provided the 

reaction temperature is sufficiently low (McEwan 1983). 

McEwan found T
c
=4.67K for the stoichiometric 3R phase. 

Previous specific heat results for the 2H phase 

(table I) are also in disagreement. Although the values for 

0 in 

c=7T+0T
3

 (1-4) 

agree, the value for 7 given by Van Maaren and Harland 

(1969) is much smaller than that reported by Aoki et 

al.(l983). The specific heat of NbS
2
 was measured during the 

course of the work leading to this thesis, and the results 

(section 4.3) are in agreement with those of Aoki et a l . The 

differences in 7 values may be due to the methods used to 

f i t the data to equation (1-4). Equation (1-4) is only valid 

in the normal state. As will be discussed in section 4.3, 

however, the normal state data alone are not sufficient to 

determine 7 accurately. It is possible to use the specific 

heat data in the superconducting state to derive an extra 

constraint on the f i t , and only i f this is done can the 

parameters in (1-4) be determined accurately. 
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2.2 PREPARATION OF Li^NbS; 

To prepare Li NbS
2
, lithium was intercalated into NbS

2
 in 

electrochemical c e l l s . The c e l l cathodes (positive 

electrodes) were prepared by fixing NbS
2
 powder to a nickel 

f o i l substrate using the following procedure. F i r s t , the 

nickel f o i l substrates were etched in nit r i c acid to clean 

and roughen them. They were then thoroughly rinsed and 

dryed. NbS
2
 was ground using a mortar and pestle, until i t 

passed through a 400 mesh (38Mm) sieve. The powder was then 

mixed with cyclohexane to form a thick slurry, which was 

spread evenly over the substrates. After the cyclohexane 

evaporated, the cathodes were passed between two steel 

rollers, which compact the NbS
2
 layer, thereby improving the 

electrical contact between the NbS
2
 grains, and between the 

NbS
2
 and the substrate. Inserting a sheet of weighing paper 

between the cathode and the upper roller helps to prevent 

the NbS
2
 from sticking to the r o l l e r . The mass of NbS

2
 on 

the cathodes was established by weighing the- bare substrates 

and the finished cathodes. Cathodes used for preparation of 

low temperature specific heat samples were 1.75 inches in 

diameter, and contained typically 0.3g of NbS
2
. Similar but 

smaller cathodes containing 10 to 20 mg of NbS
2
 were used in 

cells intended for the electrochemical measurements to be 

described later in this chapter. 

Anodes for the cells were lithium metal f o i l
8

. The 

From Foote Minerals, Exton, Pa. 



20 

c e l l s were assembled in an argon f i l l e d glovebox. They were 

of the flange c e l l type (figure 5). Cells were assembled by 

placing a porous polypropylene film separator
9

 between the 

anode and cathode. The separators were wet with an 

electrolyte consisting of a 1 molar solution of LiAsF
6

1 0

 in 

propylene carbonate. The active components of the cells were 

sandwiched between stainless steel flanges, which were 

separated by Viton rubber o-rings. The o-rings served to 

provide airtight seals for the c e l l s , as well as 

electrically isolating the flanges. The anode and cathode 

are each in electrical contact with one of the flanges, so 

that electrical connection to the c e l l is accomplished by 

simply connecting a lead to each flange. Li NbS
2
 samples for 

low temperature specific heat measurements were made by 

discharging flange cells to a preset voltage using a 

Princeton Applied Research model 173 

Potentiostat/Galvanostat. The current which passed through 

the c e l l during discharge was- integrated by a PAR model 179 

dig i t a l coulometer. Since for each L i
+

 ion which moves from 

anode to cathode during the discharge, one electron moves 

through the external c i r c u i t , the value of x in the Li
x
NbS

2 

samples could be calculated using 

QM 
x = (2-1) 

m (96,500 Coul/mole) 

9

Celanese Plastics Celgard #2500 or 3501 
10

U.S.Steel Agrichemicals, 'Lectrosalt' brand. 
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F i g u r e 5: A t y p i c a l f l a n g e c e l l . 



2 2 

where Q i s the charge which has passed through the c e l l , M 

i s the molecular weight of NbS 2 (1 5 7.Og/mole), and m i s the 

mass of NbS 2 on the cathode. 

In order to have a u n i f o r m l y i n t e r c a l a t e d sample, a 

c e l l must be allowed to f u l l y e q u i l i b r a t e . When a f r e s h l y 

prepared c e l l ( x = 0 , open c i r c u i t v o l t a g e = 3 . 2 V ) i s 

connected to a f i x e d v o l t a g e V 0 such as that p r o v i d e d by the 

PAR 1 7 3 , c u r r e n t should flow u n t i l the cathode m a t e r i a l i s 

uniformly i n t e r c a l a t e d to a composition given by 

V 0 = V ( X ) = (M ~*x (x) )/e ( 2 - 2 ) 

3 C 

(see equation 1 - 3 ) . The e q u i l i b r a t i o n of a c t u a l c e l l s i s not 

q u i t e t h i s simple, s i n c e the approach to e q u i l i b r i u m can be 

rather slow, and at some p o i n t as the i n t e r c a l a t i o n c u r r e n t 

slowly d i e s away, spurious changes i n Q due to coulometer 

d r i f t and c e l l leakage c u r r e n t s may become s i g n i f i c a n t . A 

u s e f u l way of monitoring an e q u i l i b r a t i o n i s to make a p l o t 

of c u r r e n t as a f u n c t i o n of Q, or e q u i v a l e n t l y , x as 

determined from ( 2 - 1 ) . T h i s was done d u r i n g the 

e q u i l i b r a t i o n s of the sample p r e p a r a t i o n c e l l s . The p l o t s of 

c u r r e n t a g a i n s t x e x h i b i t e d an almost l i n e a r appearance as 

the c u r r e n t approached z e r o . T h i s s o r t of behavior i s not 

s u r p r i s i n g , s i n c e at l e a s t near e q u i l i b r i u m i t i s reasonable 

to expect the c u r r e n t to be p r o p o r t i o n a l to the d e v i a t i o n 

from e q u i l i b r i u m . Discharges were stopped by o b s e r v i n g t h i s 

l i m i t i n g behavior and d i s c o n n e c t i n g the c e l l only when x had 

come w i t h i n about 1% of the apparent l i m i t i n g v a l u e . The 

times r e q u i r e d f o r t h i s were u s u a l l y 5 to 1 0 days, and the 
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f i n a l c u r r e n t s were always l e s s than 5uA. C e l l s were 

g e n e r a l l y not l e f t on the PAR 173 f o r more than 10 days, i n 

order to minimize the e f f e c t s of d r i f t and leakage c u r r e n t s . 

One of the problems that has been a s s o c i a t e d with 

e l e c t r o i n t e r c a l a t i o n i n the past i s cathode u t i l i z a t i o n . 

Often some of the cathode p a r t i c l e s are not i n good 

e l e c t r i c a l c ontact with the s u b s t r a t e , and consequently 

cannot be i n t e r c a l a t e d . T h i s was seen, f o r example, in the 

author's p r e v i o u s work on L i NbSe 2 (D.C.Dahn and Haering 

1982) The cathodes used i n that study were not r o l l e d , 

however, and the a d d i t i o n of the r o l l i n g s tep i n the cathode 

p r e p a r a t i o n procedure appears to have e l i m i n a t e d a l l 

problems with cathode u t i l i z a t i o n . X-ray d i f f r a c t i o n on 

L i NbS 2 prepared using r o l l e d cathodes c o n s i s t e n t l y shows no 

t r a c e of Bragg peaks due to u n i n t e r c a l a t e d m a t e r i a l . Because 

of t h i s , the u n c e r t a i n t y i n x i s determined p r i m a r i l y by 

c e l l leakage c u r r e n t s , coulometer d r i f t , and p o s s i b l y by 

s i d e r e a c t i o n s i n the c e l l . The magnitude of these e f f e c t s 

i s not easy to estimate a c c u r a t e l y , but i s b e l i e v e d to be a 

few percent of x. 

The next step i n the p r e p a r a t i o n of a s p e c i f i c heat 

sample was to take an e q u i l i b r a t e d c e l l back i n t o the argon 

glovebox, open i t , and scrape the i n t e r c a l a t e d cathode 

m a t e r i a l o f f the s u b s t r a t e . To remove the e l e c t r o l y t e which 

remained on the s u r f a c e s of the L i NbS 2 g r a i n s , they were 
X 

r i n s e d w i t h pure propylene carbonate and d r i e d i n vacuum. 

The propylene carbonate used was s p e c i a l l y d i s t i l l e d and 
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co n t a i n e d about 10 to 20 p a r t s per m i l l i o n of water. T h i s 

was the same m a t e r i a l used i n the p r e p a r a t i o n of 

e l e c t r o l y t e . About 1ml was used f o r the r i n s e . 

A f t e r d r y i n g , some of the L i NbS 2 powder was pressed 

i n t o a p e l l e t f o r use as a s p e c i f i c heat sample. The 

p r e s s i n g was done i n a s t e e l p i s t o n d i e which forms a p e l l e t 

6mm i n diameter and a few mm hi g h . The f o r c e r e q u i r e d to 

form a p e l l e t i s of order 1000N and i s a p p l i e d with a 

c-clamp. The p e l l e t was then weighed and mounted in the 

c r y o s t a t as d e s c r i b e d in chapter 3. The remaining L i NbS 2 

powder c o u l d be used f o r x-ray d i f f r a c t i o n . A l l h a n d l i n g of 

the L i NbS 2 samples took p l a c e i n an argon atmosphere. 
X 

2.3 THE STRUCTURE OF L i NbS, x <L 

X-ray d i f f r a c t i o n and e l e c t r o c h e m i c a l measurements have been 

used to determine the c r y s t a l s t r u c t u r e s and approximate 

phase boundaries of the L i x N b S 2 phases formed by 

i n t e r c a l a t i o n at room temperature. For x>.23, L i NbS 2 has a 

stage 1 s t r u c t u r e , that i s , there i s an equal c o n c e n t r a t i o n 

of l i t h i u m i n each i n t e r l a y e r gap. For x between (roughly) 

.11 and .19 there i s a w e l l - o r d e r e d stage 2 s t r u c t u r e . In 

stage 2, every second gap c o n t a i n s l i t h i u m , and the 

i n t e r v e n i n g gaps are e i t h e r empty or n e a r l y so. There i s 

evidence f o r a d i s o r d e r e d stage 3 phase ( l i t h i u m i n every 

t h i r d l a y e r on average but with no long range order i n the 

s t a g i n g sequence), which e x i s t s f o r compositions near x=.08. 

Samples with average compositions between those of the 
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staged phases are phase mixtures. The staging behavior is 

similar to that observed in Li NbSe
2
 (D.C.Dahn and Haering 

1982). 

An especially powerful way of observing the staging 

phase transitions is the use of electrochemical cells with 

beryllium x-ray windows (J.R.Dahn et a l . 1982). These cells 

are similar in construction to the flange cells described in 

the previous section. The NbS
2
 powder, instead of being 

fixed to a nickel substrate, is fixed directly to the inner 

surface of a .25mm thick beryllium f o i l window which is set 

into one of the flanges. To keep preferred orientation of 

the cathode powder to a minimum, x-ray c e l l cathodes are not 

rolled. Ideally, it would be best to have completely random 

orientation of the cathode particles, since this simplifies 

interpretation of powder diffraction measurements. However 

the NbS
2
 particles are thin platelets with their 

crystallographic c-axis normal to the flat faces. Because of 

their shape, they tend to settle with their c-axis normal to. 

the substrate to which they are attached. With r o l l i n g , this 

orientation is enhanced to the point where only (00/) Bragg 

peaks can be seen. 

Figure 6 shows portions of diffTactometer scans made 

while an x-ray c e l l was slowly equilibrating to a final 

voltage of 2.760V. The region around the (008) Bragg peak is 

shown in the figure, although complete scans from 10 to 90° 

2d were made in each case. Only NbS
2
 peaks were seen in the 

fi r s t scan, made before the discharge started. As 



gure 6: The (008) region during the discharge of 
a Li/Li

x
NbS

2
 x-ray c e l l to 2.760V. 

a- Before discharge (x=0) 

b- After 3 days (x=.06) 

c- After 6 days (x=.08) 

d- After 15 days (x=.14). At this point 
i n t e r c a l a t i o n was e s s e n t i a l l y complete. 
The remaining int e n s i t y in the NbS

2 

peak i s due to material which was 
not e l e c t r i c a l l y connected to the 
substrate. 
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intercalation proceeded, these peaks shrank. They did not 

disappear completely, because of incomplete cathode 

utilization* At the end of the equilibration the cathode 

(except for the non-utilized fraction) was in the stage 2 

phase. A third set of peaks, corresponding to what is 

believed to be a disordered stage 3 phase, was seen during 

the intercalation process. This occured because while going 

from NbS
2
 to stage 2, it is necessary to pass through stage 

3 as an intermediate state. During the intercalation process 

in this c e l l , each cathode particle had NbS
2
 at the center, 

surrounded by a region of stage 3, surrounded in turn by a 

region of stage 2 at the surface. Intercalation apparently 

proceeded by both phase boundaries propagating into the 

center. 

That the phase between x^.11 and .19 is truly stage 2 

can be seen from the presence of a (009) Bragg peak. In 

pristine 2H-NbS
2
 and in the stage 1 intercalation compound, 

(00/) Bragg peaks with / odd are a l l extinct. This happens 

because of a symmetry of the two layer high unit c e l l which 

causes the geometrical structure factor for these lines to 

be zero. In the stage 2 compound, only one of the two 

interlayer gaps in the unit c e l l contains lithium and is 

expanded. The two layers in the unit c e l l are no longer 

equally spaced along the c-axis, and (00/) peaks with / odd 

are allowed. Note that staging is observed primarily through 

the distortion of the host lattice due to the fact that 

intercalated gaps expand, as the scattering power of lithium 
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is very small. Although of the (00/) peaks with / odd, only 

(009) is observed, intensity calculations (Appendix 1) show 

that the (003), (005), and (00JJ_) peaks are weak. The (001) 

peak has a scattering angle which is too small for it to be 

detectable in the x-ray c e l l configuration. The (007) peak 

should be observable, but unfortunately a beryllium Bragg 

peak originating in the window interferes with i t . 

The stage 1 and 2 phases both appear to have the same 

structure as 2H-NbS
2
, except for the addition of the lithium 

and the resultant expansion of the interlayer gaps. This is 

an important point, since McEwan (1983) and McEwan and 

Sienko (1982) report that Li
x
NbS

2
 prepared by direct high 

temperature reaction of the elements forms in the 3R phase 

or in a 2H-3R phase mixture for x between .01 and .13. 

Apparently, doing the intercalation at room temperature 

avoids this. Another comment on McEwan and Sienko's work 

should be made here. Although they state that a l l their 

samples were stage 1, they report the presence of (007) and 

(009) Bragg peaks in 2H-Li
x
NbS

2
 for x between .13 and .17. 

McEwan (1983) surmises that the (007) peak may be due to a 

superlattice of period 7c
0
 along the c-axis. This is clearly 

an incorrect explanationsince such a superlattice would 

produce (0,0,1/7) and related peaks, rather than a (007) 

peak. The most likely explanation is that McEwan and 

Sienko's samples were stage 2 between X=.13 and .17. 

The dimensions a and c of the unit c e l l are shown as a 

function of x in figure 7. Accurate values of c and a could 
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from t n i s work, and the p o i n t s are from 
McEwan (1933). 
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not be obtained for the' stage 3 phase, since it has so far 

only been observed as an intermediate state during 

intercalation from NbS
2
 to stage 2. An approximate value for 

c in the stage 3 phase is 12.2A. 

Also shown in figure 7 are the lattice parameters of 

McEwan and Sienko's high temperature prepared Li NbS
2
. The 

X 

precision of the data is good because Li NbS
2
 prepared at 

high temperature has very sharp Bragg peaks, indicating 

fewer stacking faults than in Li NbS
2
 prepared by room 

temperature intercalation. Only those samples which were 2H, 

or where 2H was the major component of a 2H-3R phase 

mixture, are included. Plateaus at the stage 3 and stage 2 

compositions can be seen in the c-axis data. Note that the c 

values for x>.2 are lower than the results from this work. 

McEwan and Sienko prepared their samples by reaction in 

evacuated quartz tubes, and some of the lithium was lost due 

to reaction with the quartz.
1 1

 The amount of tube attack 

increased as a function of lithium concentration (McEwan 

1983). As a result, the x values quoted by McEwan and Sienko 

are too high, and the error in x increases as a function of 

x. Comparison of the c data shows, for example, that McEwan 

and Sienko's 'x=.33' sample actually had a composition near 

x=.25. 

i 1 

Similar tube attack by lithium has been observed in the 
course of high temerature compound preparation in this 
laboratory (J.R.Dahn and P.J.Mulhern, unpublished). 
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F u r t h e r i n f o r m a t i o n on the phase t r a n s i t i o n s i n L i x N b S 2 

was o b t a i n e d from e l e c t r o c h e m i c a l measurements. As mentioned 

in chapter 1, the v o l t a g e of a L i / L i NbS 2 c e l l can be used 

to study the thermodynamics of the i n t e r c a l a t i o n compound, 

si n c e 

V(x)=(u -M ( x ) ) / e 
a C 

where u and u„ are the chemical p o t e n t i a l s of l i t h i u m i n 

l i t h i u m metal and i n the i n t e r c a l a t i o n compound, 

r e s p e c t i v e l y . Only a b r i e f d i s c u s s i o n of the i n t e r p r e t a t i o n 

of e l e c t r o c h e m i c a l measurements w i l l be r e q u i r e d here; f o r 

more complete d i s c u s s i o n s see Johnson (1982) or J.R.Dahn and 

McKinnon (1984a). As the value of x i n a c e l l cathode i s 

i n c r e a s e d by i n t e r c a l a t i o n , the cathode i s sometimes 

observed to undergo a f i r s t order phase t r a n s i t i o n between 

two compositions, say x, and x 2 . During the t r a n s i t i o n the 

average composition x i s given by 

x = f 1 x 1 + ( 1 - f , ) x 2 (2-3) 

where f^ and (1-f,) are. the f r a c t i o n s of the sample i n the 

x, and x 2 phases, r e s p e c t i v e l y . Regions of constant v o l t a g e 

V i n a c e l l ' s V(x) curve are the s i g n a t u r e s of such phase 

t r a n s i t i o n s , s i n c e as long as the sample i s a phase mixture 
M i s constant and t h e r e f o r e V i s c o n s t a n t . These f e a t u r e s c 
in V(x) curves may be d e t e c t e d more e a s i l y by n u m e r i c a l l y 

c a l c u l a t i n g the i n v e r s e time d e r i v a t i v e dt/dV d u r i n g a slow 

constant c u r r e n t charge or d i s c h a r g e of the c e l l . T h i s i s 

because ( i g n o r i n g k i n e t i c e f f e c t s due to l i t h i u m d i f f u s i o n 

g r a d i e n t s i n the cathode and the i n t e r n a l impedence of the 
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c e l l ) 

dt/dV = (Q,/i)(dx/dV) (2-4) 

where i i s the c e l l current (positive on discharge) and 

is the amount of charge corresponding to a change in x of 1. 

Phase transitions w i l l therefore produce sharp peaks in 

dt/dV. The peaks are not i n f i n i t e l y high because of the 

lithium d i f f u s i o n gradients mentioned above. 

V(x) data for L i / L i NbS
2
 are shown in figure 8. Because 

X 

of incomplete cathode u t i l i z a t i o n (91% u t i l i z a t i o n ) in the 

small flange c e l l used, the data have been scaled so that 

x=1 occurs at 1.90V. Also included are the V(x) data from 

s p e c i f i c heat sample preparations. The results are in 

agreement with less accurate previous measurements (Holleck 

et a l . 1975, DiPietro et a l . 1982). Using a microcomputer 

based instrument which calculates dt/dV during a constant 

current discharge or charge, dt/dV measurements were made on 

several c e l l s . Typical results are shown in figure 9. The 

data are shown in terms of -dx/dV (equation 2-4) The staging 

phase transitions are c l e a r l y seen. The higher peak at about 

2.74V i s due to the stage 2 to stage 1 t r a n s i t i o n . A smaller 

broader peak at about 2.78V is seen on the f i r s t recharge 

and second discharge. This i s believed to be due to the 

stage 2 to stage 3 t r a n s i t i o n . As can be seen from figure 8, 

L i / L i NbS
2
 c e l l s cannot be recharged a l l the way back to x=0 

X 
in the L i NbS

2
 cathode. This is the reason that the f i r s t 

x 

discharge curve in figure 9 is d i f f e r e n t than the other two. 

The area under the -dx/dV curve at voltages above the stage 
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Figure 8 Cell voltage as a function of x for 
L i NbS2- The lines show the f i r s t discharge 
anct the subsequent f i r s t charge of c e l l 
DD65. The discharge and charge were both 
at a rate of Ax=l in 60 hours. Also shown 
(x) are the V(x) values of the specific 
heat samples. 



34 
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V (volts) 

F i g u r e 9 : -dx/dV data f o r L i / L i NbS ? c e l l D D 4 5 , 
showing the s t a g i n g t r a n s i t i o n s . 

a- F i r s t d i s c harge 

b- F i r s t recharge 

c- Second d i s c h a r g e . 
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2 - stage 1 peak is larger for the f i r s t discharge than for 

subsequent charges or discharges. (The area under a -dx/dV 

curve between two voltages is the change in x between those 

voltages.) This presumably happens because of some kinetic 

barrier which prevents de-intercalation of the stage 3 

phase. Similar behavior has been observed in the Li NbSe
2 

X 

system, where the presence of residual lithium in fully 

charged cathodes has also been verified directly by x-ray 

diffraction (D.C.Dahn and Haering 1982), as well as in the 

intercalated graphite 'residue compounds'. There is also 

apparently some kinetic or nucleation barrier at the very 

beginning of the intercalation process. Since the x-ray 

results clearly show a succession of three transitions (NbS
2 

to stage 3, stage 3 to stage 2, and stage 2 to stage 1), 

there should, in principle, be three peaks in -dx/dV on the 

f i r s t discharge. There are, however, only two. For some 

reason, the f i r s t intercalation can only proceed (at a rate 

of Ax=1 in about 200 hours- in this- case) when the c e l l 

voltage has already dropped into the stage 2 region. The 

kinetics of the staging transitions in Li NbS
2
, Li NbSe

2
, 

and related materials might be an interesting topic for more 

detailed study in the future. 

An additional feature in -dx/dV was observed in two 

cells made using freshly prepared NbS
2
 from batch DD12. Two 

small peaks near 2.67V (x^.3) could be seen (figure 10). The 

cells which showed this feature were assembled 14 days and 

28 days after batch DD12 was prepared and ground. Also shown 
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Figure 10: -dx/dV data on L i / L i NbS
2
 c e l l s , showing 

the aging effect. Thi solid line is data 
from a c e l l made with freshly prepared 
NbS

2
 from batch DD12, and the dashed line 

with aged NbS
2
 from the same batch. The 

dashed line has been displaced downward 
by .5 V" for c l a r i t y . The arrows 
indicate the extra peaks mentioned in 
the text. 
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in the figure is data from a c e l l after i t was made from 

DD12 NbS
2
 which had been stored in a closed v i a l for 177 

days. The extra peaks are not seen in this data. The extra 

peaks in -dx/dV were never observed in the other batches of 

NbS
2
; however, dx/dV runs were not made on these batches 

until they were a few months old. 

The extra peaks are similar to those due to lithium 

ordering on a /3a triangular superlattice at x=1/3 in 

Li TaS
2
 (J.R.Dahn and McKinnon 1984). The same type of 

lithium ordering may be involved here. 

A possible reason for the disappearance of the extra 

peaks in 'old' material is loss of sulfur. There is evidence 

that NbS
2
 slowly gives off sulfur; i t smells faintly of H

2
S 

when it is in a i r , and smells very strongly when being 

ground
1 2

. The smell presumably comes from sulfur lost by the 

NbS
2
, which then reacts with moisture in the a i r . Aging 

effects have also been observed by Dutcher(1985) in TaS
2
. He 

found that the intensities of x-ray Bragg peaks due to the 

charge density wave changed as a function of time and 

storage conditions, and also believes that sulfur loss is 

the cause. 

If sulfur is lost from NbS
2
, we are left with excess 

Nb, which would intercalate into the interlayer gaps. The 

presence of randomly placed niobium in the gaps could serve 

1 2 

Loss of sulfur during grinding is not the explanation for 
the extra peaks in -dx/dV, since a l l the cells were made 
using ground material. 
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to i n h i b i t l i t h i u m o r d e r i n g . The amount of s u l f u r l o s t i s 

not known, but i t must be r a t h e r small s i n c e no s i g n i f i c a n t 

changes i n the l a t t i c e parameters were observed. 

C r y s t a l l o g r a p h i c data on 2H-Nb 1 +^S 2 f o r small y are not 

a v a i l a b l e , but Huisman et a l . (1970) have measured the 

l a t t i c e parameters of 2H-Nb 1 +ySe 2. If the behavior of 

2H-Nb 1 +yS 2 i s s i m i l a r , the f a c t t h a t no changes i n the 

l a t t i c e parameters were observed means that changes i n y 

were about .01 or l e s s . 



3. THE LOW TEMPERATURE SPECIFIC HEAT EXPERIMENT 

3.1 INTRODUCTION 

This chapter begins with a brief review of the various 

experimental methods used for s p e c i f i c heat measurements at 

low temperatures. The reasons for choosing the relaxation 

time method for t h i s work are given. There follows a 

discussion of the cryostat used, the measurement and control 

of the reference block temperature, and the sample 

temperature. The measurement cycle and data analysis are 

then discussed in d e t a i l . 

3.2 TECHNIQUES FOR LOW TEMPERATURE SPECIFIC HEAT  

MEASUREMENTS • 

3.2.1 ADIABATIC CALORIMETERS 

Although some low temperature calorimetry on solids 

was done late in the last century, i t was not u n t i l the 

work of Nernst, Eucken, and their collaborators 

beginning in 1909 that s a t i s f a c t o r y results over a wide 

range of low temperatures were obtained. (For a review 

of early work see Partington 1952.) The 'adiabatic 

calorimeter' f i r s t used by Nernst i s , with improvements, 

s t i l l in wide use today. In i t s simplest form, an 

abiabatic calorimeter consists of a vacuum chamber 

immersed in a low temperature bath and containing the 

sample, which i s suspended on supports having very low 

39 
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thermal conductance . A thermometer and r e s i s t a n c e 

heater are mounted on the sample; here again care i s 

taken to minimize the thermal l i n k between the sample 

and the bath through the l e a d s . To make a measurement 

the sample i s f i r s t c o o l e d by the i n t r o d u c t i o n of 

exchange gas. T h i s i s then pumped out, l e a v i n g the 

sample (approximately) thermally i s o l a t e d . A pulse of 

heat Q i s then a p p l i e d to the heater, causing the 

temperature of the sample to r i s e by an amount AT. The 

heat c a p a c i t y of the sample, thermometer, and heater 

assembly i s then given by 

C=Q/AT (3-1) 

The p u l s e d heating i s then repeated, p r o v i d i n g 

measurements of C at s u c c e s s i v e l y higher temperatures. 

Improvements s i n c e Nernst's day (Gmelin 1979, f o r 

example) include b e t t e r thermometry, the i n t r o d u c t i o n of 

a temperature-regulated r a d i a t i o n s h i e l d around the 

sample, and computer data a q u i s i t i o n . Since l a r g e 

amounts of exchange gas can be adsorbed on the sample, 

e s p e c i a l l y i f i t i s powdered or porous, and s i n c e the 

removal of exchange gas t y p i c a l l y r e q u i r e s s e v e r a l hours 

of pumping, many modern a d i a b a t i c c a l o r i m e t e r s are 

equipped with a mechanical heat switch f o r c o o l i n g the 

sample. 

A b i a b a t i c and r e l a t e d methods s t i l l p rovide the 

most a c c u r a t e r e s u l t s on l a r g e samples (mass a few 

grams) at temperatures above 1K. The a b s o l u t e accuracy 
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can be b e t t e r than 0.5% (Gmelin 1979). The l a r g e samples 

are r e q u i r e d so that the i n e v i t a b l e heat leaks along 

thermometer l e a d s , e t c , have an ac c e p t a b l y small e f f e c t 

on the sample temperature. Below 1K, f r i c t i o n a l h eating 

by the heat switch i s a s e r i o u s problem. 

A v a r i a t i o n on the a d i a b a t i c method i s the 

q u a s i - a d i a b a t i c heat p u l s e method. Here the thermal l i n k 

between the sample and the regulated' r a d i a t i o n s h i e l d or 

r e f e r e n c e block i s made l a r g e enough so th a t a f t e r a 

heat pulse the sample c o o l s again i n a reasonable time, 

t y p i c a l l y a few minutes. T h i s e l i m i n a t e s the need for a 

thermal switch or exchange gas. As long as the c o o l i n g 

time i s very long compared to the d u r a t i o n of the heat 

p u l s e , the maximum AT a f t e r a heat pulse w i l l s t i l l be 

give n to high accuracy by (3-1). In some cases, 

c o r r e c t i o n s must be made to account f o r the heat l o s t 

down the thermal l i n k d u r i n g the hea t i n g p u l s e ( S e l l e r s 

and Anderson 1974, Fagaly and Bohn 1977). When the 

sample's thermal c o n d u c t i v i t y i s low, the sample may not 

be isothermal immediately a f t e r the p u l s e . As long as 

the i n t e r n a l r e l a x a t i o n time of the sample i s short 

compared to the sample to r e f e r e n c e block c o o l i n g time, 

i n t e r n a l r e l a x a t i o n e f f e c t s may a l s o be c o r r e c t e d f o r 

( L a s j a u n i a s et a l . 1977). 
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3.2.2 THE AC TEMPERATURE METHOD 

Sullivan and Seidel (1968) introduced a new method 

of low temperature heat capacity measurement. In this 

method, the sample is connected to a temperature 

regulated block by a thermal link of thermal conductance 

k. A heater and thermometer are attached to the sample. 

An AC heater current at frequency co/2 is applied to the 

heater, and produces an AC temperature in the sample at 

frequency w. In the simplest case, the AC temperature is 

given by 

AT =P /2uC ( 
ac ac 

where P is the heater power and C is the total heat 

capacity of the sample and its addenda (heater, 

thermometer, supports, etc.) For (3-2) to be valid, the 

internal thermal response times r^
nt
 of the thermometer 

and heater must be very short compared to 1/a>, the 

sample-to-block thermal relaxation time r=C/k must be 

much longer than 1/CJ, and the sample's thermal 

conductivity must be sufficiently high. If these 

conditions are not met, the analysis becomes more 

complicated (Sullivan and Seidel 1968), but in principle 

the method can s t i l l be applied. The greatest 

d i f f i c u l t i e s arise when the sample has a low thermal 

conductivity. In this case (assuming again that 

r. <<1/CJ<<T), we have, for heater and thermometer on 
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opposite sides of the sample 

P 
AT = (l+2k/3k_) (3-3) a C

 2coC 

where k
g
 is the thermal conductance across the sample. 

The frequency independent correction factor in (3-3) 

means that in order to make measurements of high 

absolute accuracy, we need either to have k/k
g
 small, or 

to make an accurate independent measurement of k and k
g
. 

It is therefore d i f f i c u l t to make accurate measurements 

using the AC method, on samples with low thermal 

conductivity. The Li
x
NbS

2
 samples used in this work were 

pellets of compacted powder and were very poor 

conductors of heat. 

The main advantages of the AC method are that it 

can be used with very small samples (<1mg mass) and that 

it can be used to give a continuous readout of C (via a 

lock-in amplifier) as the temperature and other 

parameters such as magnetic f i e l d are varied. The 

continuous nature of the measurement makes i t the method 

of choice in studies were high precision but not 

necessarily high absolute accuracy is needed. 

3.2.3 THE RELAXATION TIME METHOD 

The relaxation time method was introduced by 

Bachmann et a l . (1973), and is also discussed in the 

review by Stewart (1983). A simplified apparatus is 

shown in figure 11. The sample is attached to a platform 
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Schematic diagram of an apparatus 
for relaxation time heat capacity 
measurements. 

a- Sample 

b- Sample platform 

c- Heater 

d- Thermometer 

e- Temperature regulated block. 

The platform is supported by the heater 
and thermometer wires, which make thermal 
contact to the block. 
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such as a sapphire s l i d e , to which are connected a 

heater and thermometer. The sample p l a t f o r m i s suspended 

from a temperature r e g u l a t e d r e f e r e n c e block by means of 

the heater and thermometer l e a d s . These wires are 

t h e r m a l l y anchored to the block, and p r o v i d e a thermal 

conductance k w between the p l a t f o r m and the block. 

A measurement begins with the sample and p l a t f o r m 

at the block temperature T 0 . A DC c u r r e n t i s then 

a p p l i e d to the heater, producing power P. The 

temperature d i f f e r e n c e 6 between the sample and block 

then r i s e s , e v e n t u a l l y reaching a constant maximum value 

60 given by 

0 o = P A w (3-4) 

The heater c u r r e n t i s then turned o f f . Assuming the 

sample's thermal c o n d u c t i v i t y i s high and there i s no 

thermal r e s i s t a n c e at the boundary between the sample 

and the p l a t f o r m , the sample and p l a t f o r m w i l l have a 

uniform temperature T g as they c o o l . T h i s w i l l r e l a x 

back to T 0 a c c o r d i n g to 

k w ( T s - T 0 ) = - C ( d T s / d t ) (3-5) 

or; 

T s - T 0 = t 9 0 e " t / T (3-6) 

where C i s the t o t a l heat c a p a c i t y of the sample and 

p l a t f o r m and T=C/k w i s the r e l a x a t i o n time. Measurement 

of T,60i and P i s s u f f i c i e n t to determine C, s i n c e 

C=rk w=TP/0 o (3-7) 
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When the sample's thermal conductance k
g
 is not 

in f i n i t e , the sample is not isothermal during cooling 

and (3-5) to (3-7) no longer hold. It i s , however, 

possible to determine k
g
 from the decay data. A fai r l y 

straightforward calculation then determines C. The data 

analysis in the presence of a finite k
g
 is discussed in 

Bachmann et a l . (1973), and later in this thesis 

(section 3.4 and Appendix 2). The specific heat can be 

determined with reasonable accuracy when k
g
 is of order 

k
w
 or greater. This condition is much less restrictive 

than the corresponding one for the AC temperature 

method, making the relaxation time method more suitable 

for samples of low thermal conductivity. 

To avoid confusion, i t should be pointed out that 

some authors (for example Fagaly and Bohn 1977) use the 

term 'relaxation time method' to describe a form of the 

quasi-adiabatic method discussed in section 3.2.1. A 

measurement of the exponential relaxation time after a 

short heat pulse can be used to extrapolate the sample 

temperature back to the time of the pulse. A relaxation 

time measurement, as the term is used by Bachmann et a l . 

and in this thesis, should involve a measurement of both 

T and k . w 

3.2.4 DISCUSSION 

For the specific heat measurements described in 

this thesis, the relaxation time method was used, since 
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i t a l l o w s accurate measurements on small samples of low 

thermal c o n d u c t i v i t y . Since the L i NbS 2 samples were 

p e l l e t s of pressed powder, t h e i r thermal c o n d u c t i v i t y 

was q u i t e small (see s e c t i o n 3.4.2). As we have seen, 

the AC temperature method i s not s u i t a b l e f o r such 

samples. Samples of about 150mg mass can e a s i l y be 

prepared i n e l e c t r o c h e m i c a l c e l l s . Although samples of 

t h i s s i z e are q u i t e adequate f o r a r e l a x a t i o n time 

measurement, i t would be d i f f i c u l t to reduce the heat 

l e a k s through the heater and thermometer leads enough to 

allow a d i a b a t i c or heat-pulse method measurements, at 

l e a s t at temperatures below about 10K. 

At higher temperatures, such as 15K and above, the 

r e l a x a t i o n times become much lo n g e r , t y p i c a l l y of order 

100s with the present c r y o s t a t and sample s i z e s . At 4K, 

decay times are t y p i c a l l y 10s. T h i s happens because the 

sample's heat c a p a c i t y i n c r e a s e s r a p i d l y as the 

temperature i s r a i s e d , as does k g, the, sample's thermal 

c o n d u c t i v i t y . Because of t h i s , the present system c o u l d 

be run i n a q u a s i - a d i a b a t i c heat pulse mode at higher 

temperatures. I f i t i s ever d e s i r a b l e to make extensive 

measurements at temperatures above 15K, a s l i g h t 

m o d i f i c a t i o n of the computer software c o n t r o l l i n g the 

experiment would allow t h i s , and permit measurements to 

be made more q u i c k l y than with the present r e l a x a t i o n 

time method. The present method i s rather slow at high 

T, s i n c e one must wait s e v e r a l r e l a x a t i o n times with the 
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sample heater on i n order to get a s t a b l e maximum sample 

temperature. 

3.3 THE SPECIFIC HEAT CRYOSTAT 

3.3 .1 GENERAL FEATURES 

The s p e c i f i c heat c r y o s t a t i s of standard d e s i g n , 

except f o r p r o v i s i o n s to allow the mounting of 

a i r - s e n s i t i v e samples. F i g u r e 12 i s a s i m p l i f i e d drawing 

of the c r y o s t a t , showing i t s important f e a t u r e s . The 

vacuum can i s supported i n s i d e a "He bath by i t s pumping 

l i n e . I nside the can i s a copper temperature r e g u l a t e d 

block which supports the sample p l a t f o r m . The c r y o s t a t 

i s designed to allow samples to be mounted i n s i d e an 

argon f i l l e d glovebox. Since the a i r l o c k used to t r a n f e r 

a r t i c l e s i n and out of the glovebox cannot accomodate 

the e n t i r e c r y o s t a t , the vacuum can may be detached from 

the pumping l i n e . Samples are mounted i n the glovebox, 

and the vacuum can i s c l o s e d . A brass plug with two 

o - r i n g s i s used to s e a l the port in the top f l a n g e of 

the can. At t h i s p o i n t the vacuum can, f u l l of argon and 

containimg a sample, can be removed from the glovebox 

and j o i n e d to the r e s t of the c r y o s t a t by means of a 

indium s e a l . The e l e c t r i c a l leads pass out of the vacuum 

can i n t o the l i q u i d helium space through epoxy 

feedthroughs and are j o i n e d to w i r i n g l e a d i n g t o the top 

f l a n g e of the c r y o s t a t by means of Amphenol m u l t i - p i n 
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Figure 12: (facing page) 

Simplified diagram of the low temperature specific 
heat cryostat (not to scale). 

a- Pumping line for vacuum can. 

b- Liquid helium f i l l port. 

c- Glass liquid helium Dewar. 

d- Pumping line (3/4 inch thin wall stainless 
steel tubing). 

e- Joint with indium seal. 

f- Electrical feedthrough. 

g- Vacuum can. 

h- Temperature regulated block and sample 
holder assembly. For details of this 
area see figures 13 and 14. 

i - Socket for pumping line plug. 

j - Pumping line plug. 

k- Control rod. 

1- Radiation shields. 

m- Pumping port for Dewar. 

n- Control rod feedthrough. 

The distance from the top of the Dewar to the bottom 
of the vacuum can is 35 inches. 
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connectors. 

Once the cryostat has been assembled and installed 

in a liquid heliun dewar, the pumping line is evacuated. 

A rod is then lowered down the center of the pumping 

line and threaded into the brass plug. By raising the 

rod, the plug is removed to a chamber at the top of the 

cryostat, and the argon is pumped out of the vacuum can. 

The sample is never exposed to a i r . After the can is 

evacuated, the system is precooled to liquid nitrogen 

temperature, and then liquid helium is transferred into 

the dewar in the usual way. If necessary, at the end of 

a measurement when the system is again at room 

temperature the plug may be replaced, sealing the sample 

in vacuum. The vacuum can may then be removed from the 

cryostat and brought back into the glovebox for 

inspection or removal of the sample. 

The copper reference block inside the vacuum can is 

shown in detail in figure- 13. It is supported on three 

thin wall stainless steel tubes. To allow cooling of the 

block, a thermal link to the bath is made by means of a 

brass rod and a length of copper braid. This arrangement 

gives a block to bath thermal conductance of 0.8mW/K at 

4.2K, which allows the block to be regulated above the 

bath temperature without excessive amounts of power. The 

block cools from 80K to 4.2K in about 90 minutes. 

The sample platform (figure 14) is a sapphire chip 

6mm square and ,1mm thick. On the side facing the copper 
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Figure 13: Detail of the vacuum can interior, 

a- Copper plug 
b- Brass rod (3/16 inch solid) 
c- Copper braid.'This and the brass rod 

form the block to bath heat link, 
d- Support used in sample mounting, 
e- Sample (see figure 14). 
f- Radiation shield. 
g- Germanium resistance thermometer, 
h- Copper reference block, 
i - Block heater. 
j - Support (thin wall stainless steel tubing-

one of three). 
k- Top flange of vacuum can (stainless steel). 
1- 8-lead electrical feedthrough (one of three). 
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Figure 14: De t a i l of the top side of the sample 

platform (the side away from the sample). 

a- Gold contact pad. 

b- Nichrome f i l m heater. 

c- Au+.07%Fe vs chrome! thermocouple. 

d- Carbon r e s i s t o r s l i c e . This i s glued 
on top of the heater. 
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block (the upper side) there i s an evaporated thin film 

nichrome heater. The two contact pads were made f i r s t . 

They consist of about 1 Mm of gold, underlaid by a very 

thin layer of chromium to provide good adhesion. The 

chromium and gold were evaporated in a standard vacuum 

deposition unit, using e l e c t r i c a l l y heated 'boat' 

sources and a copper f o i l mask. A nichrome layer about 

15nm thick was then deposited through a d i f f e r e n t mask 

using an electron beam gun source. The resistance of 

this f i l m is about 6000 and is nearly temperature 

independent. The leads to the heater are .003 inch 

diameter brass wires and are soldered to the gold 

contact pads with about 1mg of pure indium. Two sample 

thermometers were used. The f i r s t was a Au+.07%Fe vs 

chromel thermocouple (Sparks and Powell 1972, Rosenbaum 

1968) in a d i f f e r e n t i a l configuration with on junction 

on the block and the other on the sample platform. The 

second sample thermometer is a small s l i c e of an 

Allen-Bradley carbon composition r e s i s t o r which is glued 

on top of the sample heater. Both the re s i s t o r and 

thermocouple were bonded to the sample platform using 

Emmerson and Cummings Stycast 2850 high thermal 

conductivity epoxy. Sample thermometry w i l l be discussed 

in more d e t a i l in section 3.3.3. 



55 

Samples are attached to the platform using a few 

milligrams of Cry-Con
13

, a high thermal conductivity 

grease. Sample mounting is facilitated by a small foam 

cushioned support which holds the platform while the 

sample is pressed onto i t . The specific heat of Cry-Con 

has been measured (Torikachvili et a l . 1983) and the 

grease heat capacity can therefore be subtracted from 

the data, as will be discussed in section 3.4.2. Samples 

can be removed by very carefully sliding them sideways 

off the platform, or by dissolving the grease in 

cyclohexane. 

3.3.2 MEASUREMENT AND CONTROL OF THE REFERENCE BLOCK  

TEMPERATURE 

The temperature of the reference block is measured 

by means of two encapsulated doped germanium resistance 

thermometers. These were purchased from Lakeshore 

Cryotronics
1

 *. Lakeshore also supplied calibrations 

covering the temperature range 1.4 to 100K. One 

thermometer is used in a feedback loop to control the 

block temperature, the other is used as a backup and a 

check on the stability of the calibration. The 

resistances of the thermometers are measured with a low 

1 3

 Air Products and Chemicals, Inc., Allentown, PA 
1fl

 Westerville, Ohio, models GR-200B-1500 and GR-200B-1000 
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power automatic resistance bridge.
1 5

 This instrument 

makes a four terminal AC resistance measurement, using 

30Hz excitation, phase sensitive detection, and a 

typical power dissipation in the thermometer of 1nW at 

4K. 

The temperatures derived from the two thermometers 

agreed within about ±3mK below 10K and ±l0mK above. The 

differences were random, and correspond roughly to the 

accuracy with which the resistances were measured. 

Lakeshore's calibration of one of the thermometers 

was checked between 2K and 20K by S. Steel and 

W.N.Hardy. The standards used were "He and H
2
 vapour 

pressure and the susceptibility of the paramagnetic salt 

Gd
2
(SO,)

3
-8H

2
0. The salt was used to interpolate the 

temperature scale between the regions where vapour 

pressure could be used. The Lakeshore calibration gave 

.temperatures which were consistently about 10 to 15mK 

higher than the vapour pressure-salt temperature. 

Unfortunately, the existence of temperature gradients of 

this magnitude between the vapour pressure c e l l and the 

Ge thermometer in the calibration cryostat could not be 

ruled out. The Lakeshore calibration was therefore used 

without any adjustments. 

The accuracy of the block thermometry is now 

summarized. Block temperatures were measured with a 

15

AVS-45 from R.V.Elektroniika, Finland, or similar. 
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p r e c i s i o n of ±3mK below 10K and about 10mK above 10K. 

The two thermometers agree with each o t h e r , i f the 

manufacturer's c a l i b r a t i o n s are used. Any systematic 

e r r o r s i n the temperature s c a l e are b e l i e v e d to be l e s s 

than about 15mK, because of the c a l i b r a t i o n check. 

Thermometry of t h i s accuracy i s more than adequate f o r 

t h i s experiment. 

As p r e v i o u s l y mentioned, one of the Ge r e s i s t o r s 

was used i n a feedback loop to c o n t r o l the block 

temperature. The automatic r e s i s t a n c e bridge has an 

a d j u s t a b l e i n t e r n a l r e f e r e n c e r e s i s t a n c e , and a voltage 

output which i s p r o p o r t i o n a l to the d i f f e r e n c e i n 

r e s i s t a n c e between the thermometer being measured and 

the r e f e r e n c e . Using t h i s as an e r r o r s i g n a l , i t i s a 

simple matter to r e g u l a t e the block temperature. The 

s t a b i l i t y of the block temperature during the time 

r e q u i r e d f o r a s p e c i f i c heat measurement was ±0.1mK or 

b e t t e r , which i s s u f f i c i e n t . 

3.3.3 SAMPLE THERMOMETRY 

The f i r s t sample thermometer i n s t a l l e d was a 

d i f f e r e n t i a l thermocouple with one j u n c t i o n on the 

sample p l a t f o r m and the other on the re f e r e n c e b l o c k . 

The m a t e r i a l s were Au+.07%Fe f o r the block to p l a t f o r m 

l e g and chromel ( a l s o known as KP) for the o t h e r s . T h i s 

thermocouple p a i r was chosen because of i t s u n u s u a l l y 

high s e n s i t i v i t y at low temperatures, f o r example 13MV/K 
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at 4.2K and 9/zV/K at 2K (Sparks and Powell 1972, 

Rosenbaum 1968). The thermocouple voltage was measured 

with a Keithley 148 nanovoltmeter. 

The advantages of the thermocouple include its 

small size and low heat capacity, and that it directly 

measures the sample to block temperature difference 8. 

However, the thermocouple proved unsatisfactory for 

several reasons. F i r s t , the total noise was about ±.02MV 

at the nanovoltmeter input, corresponding to a 

temperature noise of ±2mK at 4K. This should be compared 

to a typical value of 80, the maximum temperature 

difference during a measurement, which is 50mK. (One 

tries to keep 0
O
<.O2T - see section 3.4) The noise 

situation is even worse at lower temperatures, since 

smaller 8
0
s must be used and the sensitivity of the 

thermocouple decreases. Another problem was the lack of 

an absolute calibration of the thermocouple; 

thermocouples made from different samples of Au-Fe wire 

may have sensitivities which differ by 5% or more. 

Standard tables can only be used for these thermocouples 

if one is prepared to accept these possible systematic 

errors. 

Although the problems with the thermocouple could, 

in principle, have been solved by calibrating our batch 

of wire and signal averaging to reduce the noise, a 

simpler solution was to add a small resistance 

thermometer to the sample platform. This is a .5mm thick 
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slice cut from the centre of an Allen-Bradley 15J2, .1W 

carbon resistor. Its mass is lOmg. Small portions of the 

original resistor leads remain, and two .003 inch 

diameter brass wires were soldered to each of these to 

allow for a four terminal resistance measurement. Brass 

was chosen because its thermal conductivity is low 

enough that wires of reasonable mechanical strength can 

be used without creating too large a sample to block 

heat link. One side of the resistor slice was covered 

with a 6nm mylar sheet. This was/then glued to the 

sample platform, directly on top of the thin film 

heater. The mylar served to prevent electrical contact. 

The adhesive was Stycast 2850 epoxy. 

Since the response time of the automatic resistance 

bridge used for the block thermometers is too long to 

allow i t to follow the thermal decays of the sample, the 

sample resistor was measured with the AC 'bridge' 

circuit shown in figure 15. It is similar to one 

described by White (1979). In the diagram, A1 and A2 are 

OP-07 low noise operational amplifiers, R
g
 is the sample 

thermometer, and r represents the resistances of the 

leads (the lead resistances need not be equal). R̂  is a 

resistance box, and the other resistors are 1% metal 

film types. 

The c i r c u i t makes a four terminal AC measurement. 

A1 is a non-inverting follower, which forces the voltage 

at point P to be equal to . A2 is a constant current 
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lOOkfl 

' O S C 

+ I5V 
(offset 

null) 

100 kQ 

AAA 
Rc 

100 kQ 

lOOkfl 

r 

•WH 

ref. 

lock-in 

F i g u r e 15: C i r c u i t diagram of the AC b r i d g e used 
to measure R . I t s o p e r a t i o n i s d e s c r i b e d 
i n the t e x t . 
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source which delivers an AC current i=V /lOOkfl through 
osc

 3 

R
g
. The detector is a Princeton Applied Research HR-8 

lock-in amplifier referenced to the oscillator which 

drives the c i r c u i t . The bridge is balanced by adjusting 

R̂  to give zero signal at the lock-in. In this case we 

have 

iR =V R /l00kR=V
1
=V R. / ( lOOkG+R. ) 

s osc s'
 1

 osc b' b 

R
s
=R

b
/(1+R

b
/I00kfi) (3 

Since R
g
<1400fl in the temperature range used, this 

effectively is
 R

s

=

£
b
- When the bridge is out of balance, 

the detector voltage is (R,-R )V /lOOkfi. This linear 
JJ *D VJ O w 

response is one advantage of using a bridge with active 

components. 

When using the bridge, the oscillator level must be 

kept low enough to avoid significant heating of the 

sample platform. The levels used were 800mV rms above 

8K, 400mV from 4 to 8K, and 200mV below 4K. The power 

dissipation in the resistor i s , for example, 5nW at 

4.2K. Considering that the thermal conductance between 

the sample platform and the block is about 6MW/K at this 

temperature, this is acceptably small. 

At 4.2K, dR
g
/dT= 108J2/K, so the temperature 

sensitivity of the bridge is 430MV/K. The lock-in is 

normally operated on a 20MV f u l l scale range. The 

frequency used was 394Hz. Quadrature signals were 5% of 

f u l l scale or less when the bridge output in phase with 

V was zeroed. Total noise at the lock-in input is 
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about ±1iriV peak-to-peak, although of course the lock-in 

is insensitive to most of t h i s . With a time constant of 

.1s, the noise at the lock-in output corresponds to 

±0.2MV at its input, or ±0.5mK at 4.2K. This is much 

better than the thermocouple. Although the noise can be 

reduced further by increasing the lock-in time constant, 

this was not done because i t is also important to keep 

the time constant much shorter than the sample's thermal 

relaxation time. 

Using the calibrated germanium thermometers, it is 

easy to make an accurate calibration of the sample 

thermometer. With the sample heater off, the sample is 

at the same temperature as the reference block. During 

each experimental run, values of the sample thermometer 

resistance and the germanium thermometer temperature T 

were recorded. About 25 temperatures were used in a f i t 

to an equation of the form (White 1979) 

N 
lnT=Z P InR (3 

n=l
 n 

The f i t s were made using an orthogonal polynomial least 

squares method
16

. The program determines the best 

polynomial order N by increasing i t u n t i l l the 

improvement in the f i t is no longer s t a t i s t i c a l l y 

significant. N was always 5,6, or 7. Residual deviations 

1 6

 UBC subroutine DOLSF (Moore 1981) 
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between the data and the f i t were typically ±2mK. 

A new calibration had to be made for each run. The 

calibration changed each time the cryostat was warmed up 

to room temperature for sample replacement. Typical 

calibration changes corresponded to temperature errors 

of about 50mK. It is possible the. calibration changes 

are related to the procedure used to remove most of the 

samples. This involves immersion of the entire sample 

platform, including the resistor, in cyclohexane, which 

dissolves the grease holding the sample on. 

As an example of one of these calibrations, figure 

16 shows the data and f i t obtained during the run on a 

Li 2 Q
N d S

2 sample. The data are shown as small crosses. 

Note that, as might be expected, the f i t breaks down 

rapidly outside the temperature range covered by the 

calibration points. For this reason, the derivative 

dR
g
/dT of the f i t is not expected to be valid at the 

endpoint temperatures.. Since an accurate dR
g
/dT is 

required for specific heat data analysis, specific heat 

data were not taken at the endpoints. The other 

calibration points are, for the most part, the same 

temperatures at which the specific heat was measured. 

3.3.4 COMPUTER DATA AQUISITION SYSTEM 

The thermal decays used to determine the heat 

capacity are recorded using a microcomputer, which also 

controls the sample heater. The computer is based on a 



Figure 16: Sample thermometer resistance as a 
function of temperature. The line 
is a f i t using equation (3-9). 
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Z80 microprocessor. It was assembled by the Physics 

Dept. Electronics Shop, using, for the most part, 

commercially available S100 bus circuit boards. Two 

8-inch floppy disk drives and 64 kbytes of memory are 

used. 

A department standard interface system (PHYS44), 

designed and built by the Physics Electronics Shop, is 

used for data aquisition and control of the experiment. 

A number of input and output devices are available in 

the PHYS44 system. Those used for the specific heat 

measurements are 8, 12, and 16 bit analog to digital 

converters, and a computer controlled relay used to 

switch the sample heater on and off. The 16 bit 

converter is a dual slope device
1 7

 with a conversion 

time of about one second. This was used when the 

sample's relaxation time was greater than about 30s. For 

typical samples, this occurred at temperatures above 

about 8K. At lower temperatures, the relaxation time is 

shorter, and a shorter conversion time is required in 

order to get a sufficient number of data points during a 

thermal decay. For the f i r s t few runs of the system, the 

only fast A/D converter available was an 8 bit device
1 8

. 

This did not have sufficient resolution, and was 

replaced by 

1 7

 Intersil ICL 8068/ICL 7104 
1 8

National ADC 0801 
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a 12 b i t s u c c e s s i v e approximation c o n v e r t e r 1 9 . 

A m u l t i p l e x e r i n the PHYS44 system a l l o w s up to 8 

d i f f e r e n t analog v o l t a g e inputs to be connected to 

e i t h e r of the A/D c o n v e r t e r s . Inputs from the s p e c i f i c 

heat experiment were the sample heater v o l t a g e , and the 

recorder outputs of two automatic r e s i s t a n c e b ridges (Ge 

thermometers), the nanovoltmeter (sample thermocouple), 

and the l o c k - i n a m p l i f i e r i n the sample r e s i s t a n c e 

thermometer b r i d g e . 

3.4 MEASUREMENT PROCEDURE AND DATA ANALYSIS 

3.4.1 MEASUREMENT PROCEDURE 

The general p r i n c i p l e s of the r e l a x a t i o n time 

method have been d i s c u s s e d i n s e c t i o n 3.1. The 

experimental procedure used w i l l now be d e s c r i b e d i n 

more d e t a i l . The measurement c y c l e i s shown i n f i g u r e 

17. I t begins with the r e f e r e n c e block and sample at a 

common temperature T set by the block temperature 

r e g u l a t o r . The c a l i b r a t e d r e s i s t a n c e thermometers on the 

block are read at t h i s time, and the AC br i d g e measuring 

R g i s balanced. The microcomputer then switches on the 

sample heater. The sample heater c u r r e n t comes from a 

re g u l a t e d DC power supply and passes through a r e l a y 

c o n t r o l l e d by the computer. The v o l t a g e a c r o s s the 

1 9 A n a l o g Devices AD572 
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Figure 17: Specific heat measurement cycle. 

The major steps in the cycle are: 

a- Balance sample thermometer bridge 

b- Sample heater on 

c- Balance sample thermometer bridge to 
measure 6 0 -

d- Reset bridge. 

e- Sample heater off 

f- Computer monitors the thermal decay. 
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sample heater is read using a different pair of leads 

and a Keithley 177 digital multimeter. After the heater 

is turned on, the temperature difference 9 between the 

sample and block rises, eventually reaching a maximum 

value 0
O
 whick is typically about 50mK. This causes the 

R bridge to go out of balance. The R bridge is nulled 

again, providing a measurement of 6Q which is 

independent of the gain of the bridge c i c u i t . The 

resistance box is then set back to its original value. 

The next step is to prepare the microcomputer to 

collect data. While the heater is s t i l l on, the 

experimenter gives it a sampling rate and a sampling 

duration. The duration of the measurement was usually 

chosen to be about four times the expected thermal 

relaxation time T. The sampling rate was then chosen to 

give 90 to 100 samples during the measurement. The 

operator also chooses which analog to dig i t a l converter 

is to be used. In early runs, the 8 bit converter was 

used for sampling rates greater than 1 sample/s, 

otherwise the the 16 bit converter was used. After the 

12 bit converter was installed, i t was used in place of 

the 8 bit device. 

Once a l l this information has been entered, the 

microcomputer reads the sample thermometer voltage, 

which at this time corresponds to t?
0
. It then shuts off 

the sample heater by opening the relay, and repeats the 

thermometer reading at the .preset sampling rate. The 
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timing is done with a quartz oscillator counter/timer 

which is part of the microcomputer system. At the end of 

the measurement, the microcomputer stores the values of 

sample thermometer voltage and time on a floppy disk for 

later analysis. If desired, several thermal decays can 

be made at the same block temperature T, and the results 

averaged to reduce the noise. Signal averaging was 

usually performed when the thermocouple sample 

thermometer was being used, but was not normally 

necessary when using the carbon resistor sample 

thermometer. 

The thermal relaxation time r is a function of 

temperature. It is therefore important to have 80 small 

enough that r does not change significantly during the 

thermal decay. Sample heater powers were chosen so that 

0
O
/T<O.O2, which ensures r is constant to about 2% or 

better for typical samples. 

To get the specific heat as a function of 

temperature, the thermal relaxation measurements are 

repeated for different block temperatures. Typically 

about 25 temperatures covering the range 2.6 to 25K were 

used. 

Data analysis is done on the UBC Computing Centre's 

Amdahl V/8, since the calculation speed of the 

microcomputer is too low. The data are transferred to 

the Computing Centre over a high speed data l i n e . 
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3.4.2 COMPUTATION OF THE SPECIFIC HEAT 

The analysis begins with the data in the Amdahl in 

the form t
N
, V ( t

n
) (

n = 1

 to N), where V(t
n
) is the sample 

thermometer voltage at time t
n
, N is the number of 

samples, and, since the sampling was carried out at a 

fixed rate
 1

/ t
s
,
 t

n

= n t

s
« Since the maximum temperature 

difference 80 is small, V is proportional to 8 even for 

the resistor sample thermometer, and V i t s e l f can be f i t 

to an exponential decay without converting each voltage 

to a temperature. So, V is f i t to an equation of the 

form 

V ( t ) = V
I E
"

T / T ,

+ V (3 
os 

where V" is a possible small voltage offset. (V=V 
os

 c 3

 os 

when 69=0.) V,,!,, and V
q s
 are a l l parameters determined 

by the f i t . The f i t t i n g i s done by minimizing the 

reduced chi-squared parameter 

x

2

 = ? (V(t )-(V
i e
-

t / T l

+V ) ) 2 (3-
r (N-3)6V

2

 n=l
 n 1 O S 

where N-3 is the number of degrees of freedom, and 5V is 

the standard deviation of each of the V(t ), or, -
n 

equivalently, the noise at the sample thermometer 

voltage output. 

To illustrate the data f i t t i n g and analysis, the 

data on a Li
 3
gNbS

2
 sample at T=4.60K will be used 

(figure 18). The resistor sample thermometer was used 

for this measurement. The noise at the lock-in amplifier 
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Figure 18: Data for a typical thermal decay. The 
figure shows the voltage at the lock-in 
output as a function of time, as recorded 
by the microcomputer. The line is a f i t 
to equation (3-10). The arrow marks the 
beginning of the data used in the f i t . 
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output was about ±.002V, so for the f i t 6V was taken to 

be .002V. It should be pointed out that the parameter 

values which minimize x
r

2

 are independent of 8V, so that 

only a rough estimate is needed. When a l l of the data 

are used in the f i t , the best f i t value of x
r

2

 is 17.2. 

This is unacceptably high, since for a good f i t we 

expect x
r

2

-1. 

The reason for the large value is clear on 

examination of figure 18; the thermal decay was not 

truly a single exponential. This happened because the 

sample's thermal conductivity was low enough that i t was 

not isothermal during the decay. A solution of the heat 

flow problem for this case (Appendix 2) shows that the 

temperature at the sample platform decays according to 

the infinite sum of exponentials 

0(t) = I e „ e ~
t / T

n (3-12) 

where 

n=l 

(3-13) 
2k T 

6 i = w I  

0 0 m K c o t y i l + tan y
1
l ) ( k w x 1 - C

pl
) + kwx

 1
 + C

p]
_ 

and 

C s = ( k w T i " C p l ) P l 1 ' t a n ( 3 _ 1 4 ) 

Here C
g
 and C ^ are the heat capacities of the sample 

and sample platform, respectively, k
w
 is the platform to 

block thermal conductance, and /u,l is an eigenvalue 

defined in appendix 2. One finds that T
n
« r , for n>1, so 
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that after dropping the f i r s t few data points the rest 

of the data f i t a single exponential very well, allowing 

us to determine 8, and r, from the f i t . 

In the example, the f i r s t eight points are dropped, 

resulting in a best f i t with x
r

2

=.83. x
r

2

 does not ' 

decrease significantly if more points are dropped. The 

f i t determines values of T , , V, (the voltage 

corresponding to 0, ) , and V
q s

. In the example, these are 

21.36s, 1.588V, and .005V, respectively. The ratio 8y/80 

is given by 

ei/0o=V,/(V(t=O)-V
os
)=1.588/(1.771-.005)=.899 

To determine C
g
, we also need k

w
. With the sample 

heater off, the thermometer .resistance R
g
 was 285.39J2, 

corresponding to T=4.5981K using the fi t t i n g function 

(3-9). At the maximum sample temperature, R was 

s 

281.08O, corresponding to T+0
O
 = 4. 651 2K, or c90 = 53. 1mK. 

The sample heater power P was .371uW, giving 

k
w
=P/0

o
=6.98MW/K. 

The sample platform heat capacity had been measured 

previously (see section 4.2), and at this temperature 

was 29.6MJ/K. TO this should be added the heat capacity 

of the 6mg of Cry-con grease used to mount the sample, 

(the grease is considered part of the platform rather 

than part of the sample.) Torikachvili et a l . (1983), 

have measured the specific heat of Cry-con, and give a 

polynomial f i t to their data which is valid between .56 

and 20K. Using this f i t , the heat capacity of 6mg of 
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grease at 4.60K is 4.93MJ/K (±7%), which when added to 

the heat capacity of the bare platform gives a total 

platform heat capacity of 34.5MJ/K. 

The values of 9\/dQ, r,, k
g
, and C ̂  are now 

inserted into equation (3-13) which is solved 

numerically to get M,1=.609. This value is inserted into 

(3-14) to get 

C

s
= ( k

w
r 1

 "
C

p l *
 M 1 1

/
t a n

*
i

 1
1 =

 •
1

 00mJ/K. 

Since the sample mass was 117mg and the molecular weight 

of NbS
2
 is 157.1g/mole, the molar specific heat c is 

. 136J/mole-K. 

Note that if the non-exponential nature of the 

decay is not taken into account, we would use simply 

W ^ p l
 ( 3

"
1 5 ) 

which would result in a 13% error. (In some of the other 

samples the effect is larger; the worst case was the 

L i ^ b S j sample at 2.73K, which had M , 1/tanju , 1= . 1 5 . ) The 
value of Mil is related to the thermal conductivity K

g 

of the sample. From (A2-10), 

U i D ^ C g l / K g A r , (3-16) 

where 1 is the thickness of the sample and A its 
cross-sectional area. Taking approximate values l=3mm 

and A=7r(3mm)
2

 gives K
s
=.029W/m-K for the Li

 30
NbS

2 

sample at 4.6K. For comparison, commercial copper has a 

thermal conductivity of about 500W/m-K at the same 
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temperature, and nylon has about .OlW/m-K (White 1979). 

Since the sample is a pressed powder, the value for K
g 

is not characteristic of undivided Li 2 Q
N b s

2 f which 

should have a considerably higher thermal conductivity. 

3.4.3 ACCURACY OF THE SPECIFIC HEAT 

Most of the specific heat data is estimated to be 

accurate to a few percent. In cases where the 8 bit 

analog to digital converter and thermocouple sample 

thermometer were used, or where the sample thermal 

conductivity was unusually low (Li,NbS
2
), the accuracy 

is poorer. These cases are pointed out in section 4.4 

where the data are presented. In this section, an error 

estimate of a typical measurement is carried out, in 

order to show the factors which limit the accuracy of 

the measurement. The example used is Li
 3
g

N b

^ 2
 a t

 4.60K, 

as in the previous section. 

Errors which contribute to the scatter in a plot of 

c as a function of T for a particular sample will be 

called random errors and are treated f i r s t . Errors which 

do not contribute to the scatter in a c(T) plot will be 

called systematic errors. Examples of systematic errors 

are errors in the temperature scale or the mass of a 

sample. The reason for making the distinction between 

random and systematic errors in this way is to allow an 

understanding of the scatter in the c(T) plots. This 

understanding aids in distinguishing noise from genuine 
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fine structure in the specific heat. 

The final step in data analysis is the calulation 

of C starting from k , C T , , V,, and V . The 
s w pi

 1 1

 os 

uncertainties in T , , V,, and V „ are correlated, since 
os 

a l l these are determined from the same f i t . The 

uncertainty in V
Q g
 is so small that i t makes an 

insignificant contribution to the uncertainty in the 

final result. Using this fact, and treating only random 

errors at this point, we have 

'_
S

-j 2_|_ SR^ ^1
S

\2_|_ f x\T
 S

\ 2 2
 dc

s
 3c 3c 

(«0 - (6k — S

)
2

+ ( S T — S ) Z + ( 6 V
X
—

f a

) 
S W

3 k
w
 3

T l
 3V

X 

6c 6c 

+ 2 a
T v

 (6T
X
 —

 S

) ( 6 V ! —
S

) 
T i V i 

(3-17) 

6TI 6V
: 

where 6 in front of a quantity indicates the uncertainty 

in that quantity, and
 v

 is the correlation 

coefficient between 6T, and 5V,. The correlation 

coefficient is determined by the f i t t i n g program. The 

uncertainties S T , and can also be determined from 

the f i t , but not without some ambiguity. 

According to standard s t a t i s t i c a l theory (Bevington 

1969, for example), if the errors in each data point are 

random, then the uncertainty in a parameter determined 

from a non-linear least squares f i t is the amount by 

which that parameter must be changed in order to 

increase x2 by one from it s minimum (best f i t ) value. As 

the parameter in question is varied, x2 must remain 

minimized with respect to a l l the other parameters. Here 
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(cf. 3 -11) , 

X
2 =

 TW2 * ^ ( ^ - ( V ^ ^ - V o s ) )
2

 = (N-3)
X r

2

 (3-18) 
V • n=l 

If the errors in the different samples
 v

( t
n
) are 

correlated, for example i f there is a significant amount 

of low frequency noise in the data, then the criterion 

above can lead to parameter errors that are too small. 

Roughly speaking, some of the 'averaging out' which one 

has expected has not taken place. Some low frequency 

noise is present in the thermal relaxation data, and i t 

is therefore safer to determine the uncertainties in the 

fitted parameters using a different criterion. This is 

that the uncertainty in a parameter is the amount by 

which i t has to be changed in order to double x
2

. 

When this is done for our example, the results are 

6 T , = . 4 S , 6 V 1 = . 0 2 V , and 6 V Q S = . 0 0 5 V . A comparison of the 

last two of these justifies the earlier statement that 

6 V
q s
 is not important. The correlation coefficient 

between 7 , and V , is - . 8 0 . Percentage errors are 2% in 

T, and 1% in V , . 

The thermal conductance of the wire is given by 

k
w
=P/0O. P is known with an uncertainty of 0 . 1 % , which 

is insignificant. 80 is determined from two resistance 

values, say R, and R
2r
 both of which are determined with 

a precision of 0 . 0 1 Q , . Assuming no significant error in 

the calibration, the result for the example is 
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6k
w
/k

w
=6t9

0
/c9

0
 = 6(R

1
-R

2
 )/(R

1
-R

2
)=

v
/2( .01fi)/4.31fi=0.3% 

The various terms in (3-17) can be evaluated using 

finite differences, giving (recall C
s
=.l00mJ/K) 

5k
w
(9C

s
/3k

w
)=+.0003mJ/K 

5 r , O C /3T,)=+.0023mJ/K 

8V,OC /3V,)=+.00l3mJ/K 

Combining these using (3-17) gives 

6C
S
=.0015mJ/K 

or a percentage error in C
g
 of 1.4%. 

Total random errors of about this size (1 or 2 

percent) are typical, and are consistent with the 

scatter in the c(T) plots for most of the samples. In 

most cases, the largest contribution to the uncertainty 

in the specific heat comes from 6T, and 6V,. 

Measurements made with the thermocouple sample 

thermometer have a larger uncertainty, because of the 

noisier temperature signal. 

It is also necessary to consider systematic errors 

in the results. As discussed in section 3.3.2, 

systematic errors in the temperature scale derived from 

the germanium thermometer are believed to be 15mK or 

less and are insignificant Since the resistor sample 

thermometer is calibrated against the germanium 

thermometer, it too should contribute l i t t l e error 

(section 3.3.3). The thermocouple sample thermometer 

will be assumed to measure temperature differences with 

an accuracy of ±5%. The sample masses were measured with 
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an accuracy of ±1mg or about ±1%. As discussed in 

section 4.2, the sample platform heat capacity Cp-̂  was 

measured with an accuracy of about ±3%. It is typically 

about 20% of the total heat capacity. Since the effect 

of the data analysis is (approximately) to subtract Cp-̂  

from the total to get the sample heat capacity C , we 

can take dC
s
/dCp^=-1. This implies that the uncertainty 

in C i contributes about ±1% to the error in C . The 
pi s 

grease heat capacity is known with an accuracy of about 

±15%, due mostly to uncertainties in the grease mass. 

Since the grease heat capacity is typically only about 

4% of the total, this is insignificant. 

Combining the errors mentioned so far, yields a 

total possible systematic error of about ±2% or less 

(roughly ±6% with the thermocouple). Another possible 

source of error is residual gas in the vacuum can. An 

upper limit on the magnitude of this effect will now be 

estimated. 

During measurements, the can was pumped continually 

with a diffusion pump. The pressure measured at room 

temperature with an ionization gauge near the pump was 

about 2' 10"
7

 torr in most cases, which is the lowest 

pressure obtainable with the pumping system used. In 

some of the experimental runs, however a small superleak 

was present somewhere in the vacuum can. No leak could 

be detected as long as the temperature of the helium 

bath was above its superfluid transition. When the bath 
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was cooled below the transition, the pressure inside the 

cryostat rose. By comparing two heat capacity 

measurements made at the same reference block 

temperature, one with the superleak present and the 

other with the bath above the superfluid transition, we 

can determine how sensitive C
g
 is to the residual gas 

pressure. 

Such a pair of measurements was made on the 

L i
Q 16

NbS
2
 sample at a block temperature of 2.73K. The 

f i r s t was made with the bath at 2.3K and not superfluid, 

the second with a superfluid bath at 1.4K. The vacuum 

system pressures at the ionization gauge were 1.7-10~
7 

and 4.2•10"
7

 torr, respectively. Thermal relaxation 

measurements gave a sample to block thermal conductance 

k =3.89yW/K and heat capacity C =47.6uJ/K with the 
w S 

normal bath, and k =6.80MJ/K and C =52.0MJ/K with the 
w s 

superfluid bath. The large difference in thermal 

conductance; is, due to conduction of heat through the 

gas. At these low pressures, the thermal conduction 

through the gas is proportional to the pressure in the 

cryostat, which in equilibrium is proportional to the 

pressure at the gauge
20

 (White 1979, p130). 

The relative difference in C between the two 

s 
measurements is much smaller than the difference in k . 

w 

2 o 

The pressures in the gauge and the cryostat are not equal 
even in equilibrium, because of thermomolecular effects. 
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This is because of the way the measured thermal 

conductance is used in the calculation of the specific 

heat (section 3.4.2). The only reason that C is 

s 

different for the two measurements is that the residual 

gas distorts the heat flow pattern in the sample. The 

equations used for data analysis assume that a l l the 

heat leaves the sample through the platform. When there 

is a significant amount of gas around the sample there 

is also heat loss through its free face and sides. 

Most data were taken with the bath above the 

superfluid point, and the error due to residual gas 

should be small. We can roughly estimate the size of 

this error by assuming measured C
g
 values deviate from 

the true value by an amount which is proportional to the 

pressure at the ionization gauge. The error to be 

obtained from this assumption is really an upper li m i t , 

since high pressures mean there is flow out of the 

cryostat. From the two measurements described above, the 

proportionality constant can be obtained, and is 

dC
s
/dP=l8 J/K-torr. 

At the lower pressure of 1.7«l0~
7

torr this gives a 

deviation from the true C
g
 of 3juJ/K or 6%. 

Measurements at higher temperatures are affected 

less by residual gas, since both k
w
 and the sample 

thermal conductivity increase with increasing 

temperature. The Li
 1
gNbS

2
 sample discussed above had a 

fairly typical thermal conductivity and size, so the 
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effect residual gas had on it should be typical of most 

samples. 

In summary, then, systematic errors due to causes 

other than residual gas are believed to be about ±2% for 

typical measurements (±6% with the thermocouple sample 

thermometer). The error due to residual gas is d i f f i c u l t 

to estimate accurately, but is believed to be about +6% 

or less near 3K for typical samples. The effect of 

residual gas should decrease rapidly with increasing 

temperature. 

3.4.4 DETERMINATION OF THE LINEAR AND CUBIC TERMS IN THE  

SPECIFIC HEAT 

Specific heat data are often presented in the form 

of plots of c/T against T
2

. This- is because the specific 

heat of a normal metal at sufficiently low temperatures 

has the form (see equation 1-4) 

c = yr+0T
3 

where 7 and 0 are constants. The linear and cubic terms 

are due to electrons and phonons, respectively. When c/T 

is plotted as a function of T
2

, data satisfying this 

equation l i e on a straight line with slope /3 and 

intercept 7 . 

Such a plot for the Li 2Q
N

hS
2
 sample between 1.8 

and 10K is shown in figure 19. The data l i e on a 

straight line for temperatures between 2.8 and 6K. Above 

6K, the phonon specific heat begins to deviate from 
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Figure 19: Specific heat of L i
 3Q
NbS

2
 as a function 

of temperature. The" line is the f i t 
described in the text. 
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cubic behavior. (This is to be expected - see section 

6.5.) To reach temperatures below 2.8K, the bath 

temperature had to be taken below the superfluid point. 

The small superleak in the vacuum can caused a high 

helium gas pressure in the can and a large positive 

systematic error in the specific heat (see the previous 

section). Because of this, the deviation from the line 

of the points between 1.8 and 2.8K is not significant. 

Error bars are shown on some of the points. These 

are the results of error calculations similar to those 

in the preceding section, and include random errors 

only. The scatter of the points around the line is 

consistent with the calculated random error. 

The values of the constants 7 and 0 were determined 

using a standard linear least squares f i t to the 

straight line region between 2.8 and 6K. The results are 

7=9.4±.6mJ/mole-K
2

 and 0=.96±.03mJ/mole-K
4

. The errors 

quoted here are due to the random errors in the data 

only. In addition, we saw in the previous section that 

there was a possible residual gas effect of 6% or less 

near 3K, as well as possible systematic errors due to 

other causes of about 2%. Since the effect of residual 

gas should decrease rapidly with temperature, the 

maximum possible effect of residual gas on 7 and /3 can 

be estimated by assuming +6% error at 3K and no error at 

6K. Deviations in 7 and p° due to this can be easily 

estimated graphically, and when these are combined with 
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the other errors the error bounds are 

7=9. 4(
+!

M) mJ/mole-K
2

' 
_

 1 . D 

/ 3 = . 9 6 ( * , Q J ) mJ/mole-K" 

Analyses similar to this were performed on a l l the 

Li NbS
2
 samples. 



4. RESULTS OF THE SPECIFIC HEAT MEASUREMENTS 

4.1 INTRODUCTION 

In this chapter, the results of the low temperature specific 

heat measurements are presented. Section 4.2 describes a 

measurement of the heat capacity of the sample platform. 

Section 4.3 contains results on NbS
2
, and section 4.4 on 

Li
x
NbS

2
 samples. A table at the end of the chapter 

summarizes the data. The interpretation of these results is 

discussed in chapters 5, 6, and 7. 

4.2 SAMPLE PLATFORM HEAT CAPACITY 

In order to extract the heat capacity of.a sample from the 

raw data, the heat capacity of the sample platform must be 

known. This was measured as a function of temperature on two 

occasions, once before the carbon resistor sample 

thermometer was installed, and again after. Since most of 

the measurements on Li NbS
2
 were performed with the carbon 

A. 

resistor in place, the sample platform results with the 

resistor will be presented f i r s t and in more d e t a i l . 

The measurements were made as described in section 

3.4.1. Recall that in the case where a sample was present, 

the thermal decays could not be f i t with a single 

exponential (section 3.4.2). With no sample attached, the 

decays were single exponentials and the heat capacity C ^ 

could be calculated directly from 
C

p l
 = Tk

w
 ( 4

" ° 

86 
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where T is the relaxation time and k is the thermal 
w 

conductance of the wires (see equation 3-7). The results are 

shown in figure 20 in the form of C ^/T as a function of T
2

. 

To avoid introducing extraneous scatter into the 

Li
x
NbS

2
 data, the sample platform heat capacity data were 

smoothed. The data below 5.5K were f i t to an equation of the 

form 

C
pl
=aT+bT

3

 (4-2) 

using the linear least squares method. Since normal solids 

are expected to obey an equation of this form at 

sufficiently low temperatures, (4-2) is the best equation to 

use for the extrapolation of the platform heat capacity to 

temperatures below 2.74K, the lowest temperature at which i t 

was measured. The f i t parameters are a=.42357MJ/K
2

 and 

b=.28365MJ/K
4

. 

At higher temperatures, the data deviate from (4-2), 

and so the smoothing was done using a least squares f i t to a 

fourth order polynomial of the form 

4 
C_, = aT + bT

3

 + I p
n
(T-5.5K)

n

 (4-3) p i

 n=2
 n 

In (4-3), a and b have the same values as in (4-2). This 

ensures that at 5.5K, where the transition from (4-2) to 

(4-3) is made, both Cp^(T) and its derivative are 

continuous. The parameters p
n
 are determined from a f i t to 

a l l data between 5.5 and 20K, and are p
2
=-.31569MJ/K

3

, 

p
3
=1.1635nJ/K

ft

, and p„=-.13494nJ/K
5

. When the platform heat 
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Figure 20: Sample platform heat capacity. 
Shown is the heat capacity of the 
sample platform with the resistance 
thermometer (x), and without i t ( A ) . 
The line is the f i t described in 
the text. 
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capacity is needed for analysis of data on Li
x
NbS

2
 samples, 

(4-2) is used below 5.5K and (4-3) from 5.5 to 20K. 

The data deviate from the smooth curve of (4-2) and 

(4-3) by ±3% or less in a l l but 2 cases, and this is 

believed to be approximately the accuracy with which the 

smoothed curve represents the actual platform heat capacity. 

The possible systematic error due to residual gas, discussed 

in section 3.4.3, should not be present in this measurement, 

because the thermal conductivities of the platform 

components are much higher than those of the samples. 

For the f i r s t several runs of the specific heat 

cryostat, the carbon resistor was not in place. The heat 

capacity of the sample platform in this condition was also 

measured and, is shown as the triangular points in figure 20. 

Because of the poor accuracy of both Cp^ and C
g
 in these 

early runs where the thermocouple sample thermometer and 

8-bit D/A converter were used, i t was not considered 

worthwhile to smooth the data. Instead, C
 n
 values for data 

p i 

analysis were obtained simply by linear interpolation in Cp^ 

against T
2

 between the measured points. Below 4.4K, the 

straight line extrapolation shown in figure 20 was used. 

4.3 THE SPECIFIC HEAT OF NbS
2 

Figure 21 shows the specific heat of a sample of NbS
2
 from 

batch DD9. The most significant feature is the specific heat 

anomaly at the superconducting transition temperature T . 

The transition takes place between 5.5 and 6.OK, and is 50% 



Figure 21: a- The specific heat of NbS
2
. 

b- Detail below 7.1 K. 

The line is the f i t to the normal state 
specific heat described in the text. 
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complete at 5.7K. In the normal state, at low enough 

temperatures, the specific heat is expected to s a t i s f y
2 1 

c
N
=7T+/3T

3

 (4-4) 

It is d i f f i c u l t to assign accurate values to 7 and 0 using 

the normal state data alone, because of the very limited 

temperature range (about 6 to 8K) over which (4-4) is valid. 

It is possible, however, to derive an additional constraint 

on the f i t from the superconducting data. 

Because the superconducting transition is second order, 

the entropy in the superconducting and normal states must be 

equal at T . Thus, 

T T 
c c 
J(c

s
/T)dT = J(c

N
/T)dT (4-5) 

0 0 

By substituting (4-4) in (4-5), we get 

T 

c 

/(c
s
/T)dT = 7T

c
+(1/3)0T

C

3

 (4-6) 

0 

By evaluating the left-hand side of (4-5) a constraint on 7 

and j3 can be obtained (Schwall, et al 1 976). To do this, i t 

is necessary to extrapolate the superconducting state data 

to T=0. Since the electronic specific heat of a 

21 

This equation is essentially (1-4). In this section c
N
 is 

used for the normal state specific heat, Cg for the 
superconducting state specific heat, and c for the measured 
specific heat. 
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superconductor is appoximately exponential well below T , 

(Tinkham 1975, p8), the extrapolation is done by assuming 

c=c
s
=Ae"

b/T

+/3T
3

 (4-7) 

at temperatures below the range covered by the data. The 

constants A and b in (4-7) were determined by plotting the 

measured specific heat c in the form of ln(c-/3T
3

) against T. 

On such plots, the four data points below 3.2K l i e on a 

reasonably straight l i n e . For several values of 0 between .3 

and .4mj/mole-K", plots were made, and A and b were 

determined. The lowest temperature at which data was taken 

was 2.645K. The integral in (4-6) was therefore split into 

two parts, covering the temperature ranges 0 to 2.645K and 

2.645K to T , respectively. The low temperature part is 

determined from the extrapolation (4-7) and is described by 

2.645K 

/ (c
g
/T)dT = 14.0mJ/mole-K + (1.5K

3

)|3 (4-8) 

0 

The weak dependence on /3 comes about because the values of A 

and b determined from the plot depend on the value of /3 used 

for the plot. 

The other part of the integral was determined by 

numerical integration of the data. Because of the broad 

transition, i t was decided to take T to be 5.7K (the 

c 
midpoint of the transition), but to include in the integral 
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the excess specific heat between 5.7 and 6.OK. That i s , 

T 6.OK 6.OK 

/ (c
s
/T)dT = / (c/T)dT - / ((

T
T+6T

3

)/T)dT (4-9) 

2.645K 2.645K 5.7K 

When this is calculated and added to the low temperature 

part of the integral, the result is 

T

c 
J (c

Q
/T)dT = (l37±5)mJ/mole-K - (,3K)

7
 + (8.8K

3

)0 (4-10) 
0
 b 

Using (4-10) and T
c
=5.7K in (4-6) gives 

(6.0K)7+(70.5K
3

)/3 = (1 37±5 )mJ/mole-K (4-11) 

Requiring y and 0 to satisfy (4-11) and to f i t the data 

between 6 and 7K yields 

7=19.3±1.5 mJ/mole-K
2 

/3 = 0 . 3 1 ± . 04 mJ/mole-K
ft

. 

These values are in agreement with those of Aoki, et al 

(1983), which are y-18.2mJ/mole-K
2

 and 0=0.33mJ/mole-K". 

Another quantity of interest is the size of the 

specific heat jump Ac at T
c
. For NbS

2
, the ratio bc/yT

c
 is 

1.3, compared to 2.14 in NbSe
2
 (Schwall, et al 1976), and 

1.43 in the BCS theory (Tinkham 1975, p36). It is also 

possible to use the data to calculate the thermodynamic 

c r i t i c a l f i e l d H (0) from 

c 
T

c 
J

C

(c
s
-c

N
)dT = (V/8TT) H

c

2

(0) (cgs units) (4-12) 
0 
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(Zemansky 1957) where V is the molar volume. Evaluating the 

integral using the exponential extrapolation (4-7) gives 

H (0)=1.0kG, compared with 1.28kG in NbSe
2
 (Schwall, et al 

1976). 

4.4 THE SPECIFIC HEAT OF Li NbS, 
x
 2

-

This section presents specific heat data for eleven Li NbS
2 

samples. The data are given in order'of increasing x. Unless 

stated otherwise, the data were measured using the resistor 

sample thermometer, 12 bit A/D converter, and the method of 

section 3.4. The specific heat of each sample is plotted as 

c/T as a function of T
2

 in figures 22 to 33. The error bars 

on some of the. data represent error calculations similar to 

those of section 3.4.3, and include random errors only. The 

coefficients of the linear ( 7 ) and cubic (j3) terms in (1-4) 

were determined by least squares f i t s as described in 

section 3.4.4. The results are summarized at the end of the 

section in table II. 

Comments on the individual samples. 

x=. 1 3 

This was a stage 2 sample. There is a slightly larger 

than usual uncertainty in the value of x for this sample 

(X=.13±.01). This is because of a problem during the 

discharge of the c e l l . For a time of about 1 day near 

the end of the discharge, the coulometer was not 

connected and the c e l l current was not integrated. The x 
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Figure 22: a- Specific heat of L i
 13
NbS

2
. 

b- Detail below 7.1 X. 

The line is the f i t described in the text. 
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value was obtained, with'the accuracy stated above, by 

estimating the lost charge. This same x value is 

obtained in other c e l l s discharged to the same voltage. 

The specific heat (figure 22) was measured using the 

thermocouple sample thermometer and 8 bit A/D, which is 

the reason for the large scatter in the data. The least 

squares f i t to determine y and /3 uses the data between 

2.67 and 7K. 

x=. 16 

This sample was also stage 2. Note the large slope of 

the c/T vs T
2

 plot, and the relatively low temperature 

(=*7K) at which the specific heat begins to deviate from 

its cubic behavior (figure 23). The small superleak 

mentioned in section 3.4.3 was present in this run. The 

four points at lowest temperature were taken with the 

bath superfluid, and therefore with a high residual gas 

pressure in the cryostat. Because of this, they contain 

a large positive systematic error> and their- deviation 

from the line is not considered significant. They were 

not used in the f i t made to determine y and j3, which 

extends from 2.73 to 7K. 

x=. 23 

This and a l l remaining samples are stage 1. The specific 

heat jump at 3.1K is due to a superconducting transition 

(figure 24). A f i t from 3.2 to 7K was used to determine 

7 and j3. 
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x= .25 

This sample was measured using the thermocouple and 8 

bit converter, and the data is therefore of rather poor 

quality (figure 25). There is a superconducting 

transition at 3.1K. That the specific heat anomaly is 

truly due to superconductivity was confirmed by a 

magnetic susceptibility measurement to be described in 

chapter 7. This was performed on a small piece of the 

specific heat sample, which was broken off (in the 

glovebox) after the specific heat measurement. 

x=.30 

Here again the 4 lowest temperature points were taken 

with the superleak present. The apparent rise in 

specific heat below 2.8K (figure 26) is not significant. 

7 and 0 were determined from a f i t between 2.8 and 6K. 

This sample has an unusually high 0 value. The discharge 

of the c e l l used to prepare this sample was unusual. It 

was held at 2.730V (in the stage 2 voltage range) for 3 

days, then the voltage was lowered to 2.670V and fi n a l 

equilibration took place. 

x= .32 

This was intended as a repeat of the x=.30 run. The 

x=.30 and .32 samples were both prepared by discharging 

cells to the same voltage (2.670V). The reason for the 

8% difference in x is not completely clear. It is 

possible that i t is related to the unusual mode of 

discharge of the x=.30 c e l l . If part of the cathode 
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material became disconnected while the c e l l was at 

2.730V, i t would have been 'left behind' in the stage 2 

phase, resulting in the lower overall x value. X-ray 

diffraction measurements were performed on both the 

x=.30 and .32 samples, however, and neither one shows 

any stage 2 Li NbS
2
, or NbS

2
 Bragg peaks. If the x=.30 

sample contains more than a few percent of stage 2, it 

must be either highly disordered or in the form of very 

fine particles (=100A or less). Another possible reason 

for the different x values is the difference in 

electrochemical behavior in this region between 'fresh 

and 'aged' NbS
2
 (section 2.3). 

The specific heat results for the x=.32 sample are 

shown in figure 27. A f i t from 2.8 to 7K was used to 

determine 7 and /3.. 

x=. 35 

This sample was prepared and measured by D.Li using the 

author's apparatus. Good specific heat data are 

available only between 2.8 and 7K (figure 28). A l l of 

the data were f i t to determine 7 and 0. 

x=.41 

This was the f i r s t sample measured using the resistor 

sample thermometer. Rather than the 4 terminal bridge of 

section 3.3.3, a simple 2 terminal AC Wheatstone bridge 

was used to measure the thermometer resistance. The 

detector was a PAR 129 lockin amplifier. This 

arrangement was noisier than the 4 terminal bridge used 
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in later measurements, and this is reflected in the 

scatter in the data (figure 29). A f i t from 2.6 to 7.5K 

was used to determine 7 and )3. 

.50 

The specific heat data are shown in figure 30. A f i t 

between 2.8 and 8K was used to determine 7 and $. 

.68 

These data were taken using the thermocouple sample 

thermometer and 8 bit converter (figure 31). 7 and 0 

were found using a f i t between 2.8 and 8.2K. 

1 .00 

The results are shown in figure 32. The interpretation 

of these data is complicated by the fact that the sample 

had a very low thermal conductivity, which resulted in 

large systematic errors below about 6K. The low 

conductivity caused the thermal decays to be highly 

non-exponential, as shown in figure 33 for the 2.73K 

measurement. As discussed in section 3.4.2, the 

difference e?(t) between the sample and reference block 

temperatures should decay according to 

6(t) = Z 6 e
_ t / T

n (4-13) 
n=l

 n 

Values of T, and 0,/0
o
 determined from a f i t to the data 

are used to calculate the specific heat. Since T
 1

<<T
1
, r

 n> 1 

simply dropping the f i r s t few data points is sufficient 

to isolate the n=1 term in (3-12). For this measurement, 

however, 0,/0
o
=.13, and by the time the n=1 term is 
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Figure 3 2 : The specific heat of L i ^ Q Q J ^ ^ . 

The solid line is the result of a least 
squares f i t between 7 and 10 K. The 
dashed line shows that the data are also 
consistent with y=0 (see text). A large, 
positive systematic error is present at 
the lower temperatures, due to the 
unusually low thermal conductivity of 
this sample. 



Figure 33: Thermal decay of the L i ,
 nn
NbS

0
 sample 

at 2.73K (see text).
 1 > U 0 2 

The maximum thermometer signal of 1.8V 
corresponds to a temperature difference 
9
0
=19mK. 
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isolated the signal level is only about 5 times the 

noise. (Measurements on a l l other samples had 

. 5^0,/0
O
< 1 . ) As a result, the uncertainties in the 

fitted parameters 0, and r, are unusually large for this 

sample, resulting in a large random error in the 

specific heat (±40%). In addition, a low thermal 

conductivity sample will enhance the systematic error 

due to residual gas. Because of this, the apparent 

upturn in the specific heat below 6K is not believed to 

be significant. At 7K and above, the sample's thermal 

conductivity was high enough that accurate specific heat 

measurements could be made. (For example, at 8K, 

0i/0
o
=.9) 

The coefficients 7 and /3as determined from a f i t 

to the data between 7 and 10K, are 1.3mJ/mole~K
2

 and 

.18mJ/mole-K", respectively. This f i t is shown as the 

solid line in figure 32. The data are also consistent 

with 7 = 0 , and 0=.19mJ/mole-K* (the dashed li n e ) . The 

rigid band charge transfer model (section 1.3) predicts 

7=0 for this sample, since the dz
2

 band should be f u l l , 

and the sample should be a semiconductor. The low, 

strongly temperature dependent thermal conductivity is 

also consistent with a semiconducting sample. 

No superconducting transition or other specific 

heat anomalies were observed in this sample, although 

because of the poor quality of the data below 6K, i t 

would have been d i f f i c u l t to observe such an anomaly 
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even if it did occur. There is no reason to expect 

Li,NbS
2
 to be a superconductor. 

If more accurate measurements of the specific heat 

of Li,NbS
2
 are ever required, they could perhaps be made 

by mixing the powder sample with a known amount of a 

thermal contact agent such as vacuum grease. Because of 

the high reactivity of the samples, the chemical 

compatibility of the contact agent with lithium would 

have to be checked. 

The values of 7 and /3 for a l l the samples are listed in 

table I I . The table also contains details of the sample 

preparation conditions, the sample masses, and the masses of 

Cry-Con grease used to attach the samples. 7 and 0 are shown 

as functions of x in figures 34 and 35, respectively. The 

interpretation of these results is the subject of the 

following three chapters. 



Table II 

Specific Heat results for Li y NbS2 samples 

The table includes x, the equilibrium voltages of the electrochemical cells used to 
prepare the samples, the masses of the samples and the grease used to mount them, the 
specific heat coefficients y and 6, and the superconducting transition temperature, T 
Where no T

c
 was observed, T

c
 is shown as being lower than the lowest temperature at 

which measurements were made. 

x stage ce l l 
voltage 

(V) 

NbSo 
batch 

0 - - DD9 

. 1 3 ± . 0 1 2 2. 760 DD9 

.16 2 2. 755 DD12 

.23 1 2.710 DD12 

.25 1 2. 707 DD9 

.30 1 2.670 DD12 

.32 1 2.670 DD12 

.35 1 2.640 DD12 

.41 1 2.600 DD9 

.50 1 2.500 DD12 

.68 1 2.350 DD9 

1.00 1 1.900 DD9 

(mg) 
mass 
(mg) 

Y(-
mJ 

mole-K 
r) B(-

mJ 

mole-K 

(K) 

231 

124 

111 

117 

106 

117 

98 

129 

143 

103 

201 

155 

4.8 

3 

5 

3 

1.5 

6 

7 

7 

6 

2 

2.8 

4 

1 9 . 3 ± 1 . 5 
f+1.0) 

10.9 

13.1 

11.6 

10.3 

9.4 

11.4 

6 10 

6 

5 

4 

1 

1.4 
+0.5 
•1.5 

+0.4 
- 1 . 0 
+1.0 
- 1 . 4 
+0.6 
- 1 . 6 
+0.3 

1.0 
+0.3 
- 1 . 0 

0+0.3 

{ 

. 8 ± 0 . 2 

.8+0.3 

•3(ti:S] 

0.31+0.04 

0 . 7 0 ± 0 . 0 6 

+ .05 
- .02 
+ .03 
- . 0 1 
+ .05 
- . 0 3 
+ .06 
- . 0 4 
+ .03 
- . 0 1 
+ .03 
- . 0 1 

0 . 3 6 ± 0 . 0 1 

1. 32 

0.55 

0.66 

0.96 

0.36 

0.29 

0.187+.005 

0 . 2 4 ± . 0 1 

0 . 1 8 ± . 0 1 

5 .7 

<2. 7 

<2.0 

3 .1 

3 .1 

<1.8 

<2. 8 

<2.8 

<2.6 

<2.8 

<2.8 
none 

observed 
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20 

Figure 34: The l i n e a r s p e c i f i c heat c o e f f i c i e n t y 
as a function of x for the Li

x
NbS2 samples. 

The dashed l i n e i s intended only as a 
guide for the eye. 
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0.4 0.6 

x in L i x N b S 2 

F i g u r e 35: The c u b i c s p e c i f i c heat c o e f f i c i e n t 6 
as a f u n c t i o n of x f o r the L i NbS ? samples. 
The dashed l i n e i s p r o v i d e d only to guide 
the eye. ° 



5. THE ELECTRONIC SPECIFIC HEAT 

5.1 INTRODUCTION 

This chapter begins with a short introduction to the theory 

of the electronic specific heat of metals. In section 5.3, 

the effect of intercalation on the electronic specific heat 

is discussed in terms of the rigid band charge transfer 

model. The electronic density of states calculated by Doran 

et a l . (1978) is used to predict the electronic specific 

heat of Li NbS, as a function of x. The theoretical x
 i 

predictions are compared with the data in section 5.4. 

In disordered systems, i t is possible for there to be a 

linear term in the low temperature specific heat which is 

not of electronic origin (Anderson et a l . 1972). In a 

disordered solid such as a glass, some atoms or groups of 

atoms may be in positions were they have access to two 

closely separated potential energy minima. A distribution of 

these 'tunneling states' is responsible for the linear 

specific heat. The magnitude of this linear term is 

generally rather small. Typical glasses have linear specific 

heats which are of order 100 times smaller than the 

electronic specific heats of metals such as Li
x
NbS

2 

(Hunklinger et a l . 1975, for example). There is disorder in 

Li NbS
2
, most significantly that due to the arrangement of 

the lithium atoms in the interlayer sites. As is discussed 

further in sections 6.2 and 6.6.1, the lithium is believed 

to l i e on the octahedral sites in the interlayer gaps, and 

1 16 
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for most values of x i s di s t r i b u t e d at random among these 

s i t e s . The lithium-lithium interaction i s believed to be 

small compared to the energy required for a lithium atom to 

hop from one s i t e to the next. Therefore, in spite of the 

disorder, lithium atoms (except perhaps a few near defects, 

or possibly at phase boundaries or domain walls i f these 

exist) should be in deep, single potential energy minima. 

The linear s p e c i f i c heat due to l a t t i c e disorder i s probably 

much smaller than in glasses, and we can be reasonably sure 

that the measured lin e a r s p e c i f i c heat i s electronic in 

o r i g i n . 

5.2 THE ELECTRONIC SPECIFIC HEAT OF A METAL 

Consider a system of independent electrons with a density of 

states in energy given by N(e). At temperature T, the 

occupation of these states i s given by the Fermi-Dirac 

d i s t r i b u t i o n 

where n i s the chemical potential of the electrons. The 

to t a l electronic energy at temperature T i s therefore given 

1 
f ( e ) = 

e ( e - y ) / k
B
T _

 1 
(5-1) 

by 

CO 

U = J e N ( e ) f ( e ) d e (5-2) 
— oo 

From t h i s , i t is possible to derive the well known 

expression for the electronic s p e c i f i c heat of a metal (see, 
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for example, Ashcroft and Mermin 1976, chapter 2). 

c
el
= ( 9U/9T)

 N
= ( TT

2

/3 ) k
B

2

TN ( e
F
 ) (5-3) 

where e
p
 is the Fermi energy. 

In a real metal, this must be corrected for the 

electron-phonon interaction. Instead of (5-3) we have 

c
el
=( 1+X) (7r

2

/3)k
B

2

TN(e
F
) (5-4) 

where X is the electron-phonon coupling constant
2 2

. The 

linear specific heat coefficient 7 (see equation 1-3) is 

5.3 THE ELECTRONIC SPECIFIC HEAT IN THE RIGID BAND CHARGE  

TRANSFER MODEL 

An introductory discussion of the rigid band charge transfer 

(RBCT) model has been given in section 1-3. As was mentioned 

there, the Fermi level in NbS
2
 l i e s in the center of the 

h a l f - f i l l e d dz
2

 band. According to RBCT, as x is increased 

in Li
x
NbS

2
, the electrons donated by the intercalated 

lithium progressively f i l l the band, until i t is completely 

f u l l at x=1. As x increases, e
p
 moves up through the dz

2 

band, and N(e
F
) changes, eventually falling to zero at x=1. 

Although X may also change on intercalation, the dominant 

factor affecting the electronic specific heat is expected to 

be N(e
F
). The behavior of the electronic specific heat 

coefficient 7 should therefore directly reflect the 

7=(1+X) ( 7 r
2

/3)k
B

2

N(e
F
) (5-5) 

2 2

 This is also called the mass enhancement factor. 
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structure of the dz
2

 band density of states. In this 

section, a calculated density of states is used with RBCT to 

predict j ( x ) . 

Wexler and Wooley (1976) made band structure 

calculations for NbS
2
 and several other layered compounds 

using the layer method. The results are in reasonable 

agreement with those calculated for some of the layered 

compounds (but not for NbS
2
) by Mattheis (1973), who used an 

augmented plane wave method. Doran et a l . (1978) made a 

tight-binding f i t to Wexler and Wooley's bands and used this 

to calculate the density of states of NbS
2
. The f i t to the 

bands is shown in figure 36. The labels on the horizontal 

axis of figure. 36 refer to points of high symmetry in the 

hexagonal Brillouin zone (figure 37). Figure 38 shows the 

calculated density of states for the dz
2

 band. The density 

of states given by Doran et a l . , has been multiplied by two 

to account for electron spin, and the energies have been 

converted from Rydberg units to electron volts. 

(1 Ryd=l3.6eV). 

Some comments should be made at this point. The weak 

splitting of the two dz
2

 sub-bands disappears at the top 

face of the Brillouin zone (the plane containing A,H,and L 

in figure 37). This is due to the same symmetry of the unit 

c e l l which causes the geometrical structure factor of (00/) 

Bragg peaks to be zero for / odd (section 2.3, appendix 1). 

Because of this, the Fermi surface can be 'unfolded' into a 

doubled zone, as is done in figure 37. In stage two Li NbS
2 
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Figure 36: Tight-binding f i t (Doran et al.1978) 
to the layer method band structure of 
NbS2- The small crosses represent the 

layer method results of VJexler and 
Wooley (1976). A separate f i t was used 

2 
to determine the dz band density of 
states. 
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K 

Figure 37: Brillouin zone and Fermi surface of NbS 
The Fermi surface has been 'unfolded' 
into a double zone (both r and r

1

 are 
the zone center). After Wexler and 
Wooley (1976). 
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e-eF (eV) 

Figure 38: The dz band density of states for NbS 
(Doran, et a l , 1978) 
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this symmetry disappears, and some sub-band splitting will 

occur even at the zone boundary. This is the only 

topological change in the bands to be expected in any of the 

intercalation compounds, unless lithium ordering occurs. 

Ordering in the interlayer gaps would result in a larger 

unit c e l l and further band s p l i t t i n g , although this 

splitting would probably be weak. The splitting due to 

staging is also expected to be weak, since it is due to 

interlayer interactions, and i t should not have a large 

effect on the density of states. 

Another point concerns the shape of the dz
2

 band 

density of states. The Fermi level lies on the side of an 

extremely sharp peak in the density of states. Because of 

this , the calculated N(e
F
) should not be considered to be 

very precise. A slight change in e „ would change N ( e „ ) 

drastically. There is also a 'shoulder' (van Hove 

singularity) in the density of states at e-e
F
=.27eV. This 

shoulder is due to the saddle point in the lower sub-band at 

T. Although the exact size and location of the shoulder 

depend on the details of the calculation, its existence does 

not. 

The next step is to treat Li NbS
2
 in the RBCT model by 

adding electrons to the dz
2

 band. Consider the Fermi energy 

to be a function of x. With N(e) expressed in units of 

states per unit energy per formula unit, the assumption of 

complete charge transfer means that 
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e F(x) 
x = / N(e) de (5-6) 

This integral equation has been used to calculate N(e
p
(x)) 

as a function of x. The results are shown in figure 39. The 

electronic specific heat coefficient 7 is given simply by 

7(x) = (l+X)(7T
2

/3)k
B

2

N(e
F
(x)) (5-7) 

5.4 DISCUSSION 

To use (5-7) to f i t the 7(x) data we need, in principle, to 

know X as a function of x. Given the lack of any information 

which- would allow the independent determination of X, we 

will proceed by making the assumption that i t is constant. 

One way of assigning a numerical value to X is to use the 

values of 7 and N(e
p
) at x=0. These are 19.3±1.5 mJ/mole-K

2 

and 2.94 states/eV-formula unit, respectively, giving X=1.8 
using (5-7). This is in reasonable agreement with the value 

of 1.94±(10 to 20%) which Aoki et a l . (1983) have calculated 

from NMR relaxation time and specific heat measurements. 

The curve obtained by the use of (5-7) and X=1.8 is 
shown in figure 40, along with the data. A curve for X=1.2 
is also included. The general features of the data and the 

calculated curves agree reasonably well. Because of the 

approximate nature of the band calculations, exact agreement 

should not be expected anyway. Variations in X as a function 
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Figure 39: The density of states at the Fermi level 
of Li

x
NbS2, plotted as a function of x. 

This curve was calculated using the 
rig i d band charge transfer model and the 
density of states of Doran et a l . (1978). 
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Figure 40: The electronic specific heat coefficient 
Y as a function of x in L i NbS

0
. The data 

x 2 

are shown (chapter 4), together with the 
predictions of the ri g i d band charge 
transfer calculation for two values of 
the electron-phonon coupling constant X 
(see text). 
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of x are also possible, and could contribute to the 

differences between the data and the calculated curves. (As 

we shal l see in Chapter 6, the s p e c i f i c heat data also imply 

s i g n i f i c a n t changes in the phonon spectra as a function of 

x.) 

Several conclusions can be drawn from the data: 

1 . 7 tends to a value near zero at x= 1 . This supports the 

hypothesis of complete charge t r a n s f e r , that i s , each 

intercalated lithium atom donates one electron to the 

NbS
2
 bands. 

2. Use of the dz
2

 bands of the NbS
2
 host gives reasonable 

agreement with the Li
x
NbS

2
 data. There is no evidence 

that i n t e r c a l a t i o n leads to either major changes in the 

dz
2

 band, or to band overlap in t h i s material. 

3. The shoulder in the s p e c i f i c heat data at x=.4 indicates 

that t h i s i s the value of x for which the Fermi l e v e l of 

Li NbS
2
 crosses the saddle point in the L i NbS

2
 dz

2 

A X 

band. If we assume a completely r i g i d band (that i s , the 

Li NbS
2
 dz

2

 band i s exactly the same as the NbS
2
 dz

2 

X 

band), t h i s puts the following constraint on the density 

of states of NbS
2 e

S 
J N(e) de = .4 states/formula u n i t . (5 

e F 

Here e
p
 and e

g
 are the Fermi energy of NbS

2
 and the 

energy of the saddle point, r e s p e c t i v e l y . Note that t h i s 

result does not depend on any assumptions concerning X. 



6. THE LATTICE SPECIFIC HEAT 

6.1 INTRODUCTION 

This chapter is concerned with the specific heat due to 

lattice vibrations (phonons). The well known fact that the 

phonon specific heat of a three dimensional solid is 

proportional to T
3

 at sufficiently low temperatures has 

already been mentioned. The theory which explains this will 

be briefly reviewed in section 6.3. The T
3

 behavior occurs 

at temperatures so low that only long wavelength acoustic 

phonons can be thermally excited. Because these are ordinary 

sound waves, the specific heat can be calculated using 

continuum elasticity theory. This allows a discussion of the 

specific heat data in terms of the macroscopic elastic 

constants of Li
x
NbS

2
 (section 6.4). 

In section 6.5, the question of deviations from T
3

 is 

addressed. The mechanisms which cause these deviations as 

the temperature is raised are discussed. It is possible to 

make a rough theoretical estimate of the temperature above 

which significant deviations from T
3

 begin to occur, and 

this is found to be in agreement with the data. 

In section 6.6, we take a different approach which 

sheds further light on the problem. Simple one dimensional 

lattice-dynamical models are used to investigate possible 

effects of lithium intercalation on the elastic behavior. 

These models are also used to describe the effects of 

staging. Section 6.7 concludes the chapter. 

128 
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Before beginning a discussion of the specific heat 

which includes only vibrational motion, we recall that one 

of the most important features of Li NbS
2
 is that, at least 

near room temperature, the intercalated lithium is highly 

mobile in the host. The internal energy of the system 

depends on how the lithium is distributed among the sites in 

the interlayer gaps, because of lithium-lithium interactions 

and elastic energy effects (J.R.Dahn, D.C.Dahn, and Haering 

1982). The equilibrium configuration of the lithium atoms 

i s , in general, a function of temperature. We might 

therefore expect a term in the specific heat which is 

related to the changes in lithium configuration as a 

function of temperature. The following section (6.2) wil l 

show, however, that at the temperatures used in this study, 

motion of lithium between sites will have essentially 

stopped. The specific heat at these temperatures is 

therefore due only to the thermally excited vibrational 

motion of a crystal in which each lithium is 'frozen' on one 

particular s i t e . 

6.2 MOBILITY OF INTERCALATED LITHIUM 

It is clear that lithium is free to move about in the 

interlayer gaps of intercalated layered compounds at room 

temperature, since intercalation is not possible otherwise. 

Neutron diffraction studies of Li TiS
2
 (J.R.Dahn et a l . 

X 

1980) show that intercalated lithium spends most of its time 

localized in the octahedral sites in the interlayer gaps. 
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Because the local environment of the lithium is very 

similar, this is also expected to be true in Li
x
NbS

2
. The 

accepted point of view of lithium motion between sites 

involves occasional thermally activated 'hops' over a 

potential energy barrier. As is well known, the time 

between hops in such a situation is given by 

T h = A e

E

/
k

B
T

 (6-1) 

where E is the energy barrier and A is a constant. Direct 

evidence for this picture comes from the NMR measurements on 

Li TiS
2
 made by Kleinberg (1982) and Silbernagel (1975). 

From the temperature dependence of the
 7

L i linewidth, 

Kleinberg was able to evaluate the constants A and E and 

found A=1.9-10'
11

S and E=.29leV (E/k
B
=3370K). Similar values 

of A and E should occur in Li
x
NbS

2
. 

Using for convenience the approximate values E=.3eV and 

A=10"
11

 allows a calculation of as a function of 

temperature, the results of which are shown in table III. 

Since the temperature corresponding to a given value of 

depends only logarithmically on A, it need not be accurately 

known. The temperatures do depend strongly on E, however, 

and since E was measured on L i
x
T i S

2
, the values in the table 

must be considered to be only approximate. It is clear that 

at' the temperatures of the specific heat measurements, 

lithium hopping will be frozen out, and the configurational 

degrees of freedom will not contribute to the specific heat. 

So far i t has been shown that at low temperatures the 

intercalated lithium will be fixed in one particular 
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Table III 

Hopping time as a function of temperature. 

!h<s> T(K) 

10"
6 

302 

10- 3 188 

1 137 

10
3 

101 

10
s 

89 

10
9 

76 

configuration; nothing has been said about the nature of 

that configuration. This is an important point, since phase 

transitions may occur on cooling. As an example, the phase 

diagram of Li
x
NbS

2
 is expected to qualitatively resemble one 

calculated using the 'spring and plate' model (J.R.Dahn, 

D.C.Dahn, and Haering 1982; see also Safran 1980, and 

Millman and Kirczenow 1983). This is a lattice gas model 

which includes in the Hamiltonian the elastic energy 

associated with the expansion of the host lattice on 

intercalation. The phase diagram for staging is shown in 

figure 41. Clearly, i f the system remains in thermodynamic 

equilibrium, there is a possibility that some samples will 

change stage on cooling. Another possibility is that phase 
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2.0 

0 0.25 0.50 0.75 1.0 

x 

Figure 41: Staging phase diagram for a typical 
intercalation compound according to the 
model of Dahn, Dahn, and Haering (1982). 
The integers represent regions of pure 
stages; the shaded areas are phase 
mixtures. The model allows for phases of 
higher stage, although these are not 
included in the diagram. 
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transitions involving in-plane lithium ordering may occur. 

The question of what configuration is frozen in as the 

temperature is lowered can be addressed using a simple 

theory f i r s t used by Bragg and Williams (1934) in their 

classic paper on atomic ordering in quenched alloys. 

Consider an intercalation compound at temperature T, in 

which the lithium atoms happen to be in a configuration 

which is the equilibrium state at another temperature 8. We 

assume that the system relaxes to equilibrium at T with a 

time constant T , which we assume is of order r^. That i s , we 

write 

d0/dt = -(0-T ) /T~-(0-T)A
h
 (6-2) 

If we now assume the intercalation compound is being cooled 

at a constant rate dT/dt=-r, 

d0/dT^(0-T)/r
h
r (6-3) 

An analytic expression for the solution of this equation can 

be easily obtained, but it is rather unwieldy. As pointed 

out by Bragg and Williams there is a simple approximate 

solution which is good enough for our purposes. As long 

as r^r<<1, 0-T will be small, and the solution is 

essentially 0=T. As T is lowered, begins to increase 

rapidly. At f i r s t , we s t i l l have d0/dT=*1 , and the solution 

i s 

0^T+rr
h
 (6-4) 

At s t i l l lower temperatures, r r ^ becomes large enough that 

the approximation of (6-4) breaks down, and after this 8 
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remains essentially constant as T is decreased further. This 

point where 6 'decouples' from T occurs roughly at the point 

where d0/dT=O in (6-4), that i s , when 

dx rAE 
-r — " = —

2
e

E / k

B
T

 = 1 (6-5) n 
k T

: 

dT
 K

B
X 

Temperatures calculated from (6-5) for various cooling rates 

are shown in table IV. 

The precooling from room temperature to liquid nitrogen 

temperature before a specific heat experiment takes 3 to 4 

hours, so that the cooling rate is about 0.1 K/s. The 

Li NbS
2
 samples should therefore end up in a state 

X 

characteristic of equilibrium at about 120K (assuming 

E=.3eV). Note that the cooling rate does not have a large 

effect on this temperature. 

This calculation shows that the low temperature staging 

and ordering phase transitions predicted by equilibrium 

lattice gas models of intercalation compounds (J.R.Dahn, 

D.C.Dahn, and Haering 1982, and references therein) will not 

actually occur at temperatures below about 100K, no matter 

how slow a cooling rate is used. Since the exact phase 

diagram and E value for Li NbS
2
 are not known, these 

calculations do not provide an unambiguous answer to the 

question of whether or not some Li
x
NbS

2
 samples changed 

stage on cooling. If the samples remained in thermal 

equilibrium down to T=0, the spring and plate model 

indicates that a l l the samples would be phase mixtures of 

the staged structures at X=1/3,1/2, etc.(figure 41). The 
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Table IV 

Decoupling temperature for various cooling rates. 

Cooling Rate (K/s) Decoupling Temperature (K) 

100 1 54 

1 29 

0.1 1 20 

0.001 1 04 

arguments of this section do make it clear that this extreme 

type of phase separation wi l l not occur. 

6.3 PHONON SPECIFIC HEAT 

In this section the theory of low temperature lattice 

specific heat will be briefly reviewed. This theory is based 

on the well known quantum theory of the harmonic lattice 

(see, for example, Ashcroft and Mermin 1976, chapter 23). 

The lattice specific heat depends on the dispersion 

relations "
S
(K) of phonon modes. (Here s is a branch index 

and k~ is the phonon wave vector.) Most rigorously, the 

specific heat c is given by a sum over the discrete set of 

phonon modes. In a macroscopic crystal, however, the allowed 

phonon wavevectors are very close together, and the sum may 

be replaced by an integral in the usual way. This leads to 
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the following expression for the specific heat per mole; 

° = V W s B ^ Z T
7

^
3

 e* u8< R W k
B
T _

 x

 ( 6

"
6 ) 

where V is the molar volume, and the integral is taken over 

the Brillouin zone. 

This general relation can be simplified for low 

temperatures, since the Bose-Einstein occupation factor 

( e * i o ) s ( k ) / k B T _
 1 }

- 1 

becomes vanishingly small for fta>( k~)>>kgT. At low enough 

temperatures in a three dimensional material only the three 

acoustic phonon branches, for which w(k~)-»0 as k"-K), make a 

significant contribution to c. The following simplifications 

in (6-6) may then be made: 

1. Optical phonon modes may be ignored. 

2. At very low temperatures, only the very long wavelength 

portion of the acoustic phonon dispersion curves will be 

important. In this region, the phonon dispersion 

relation is linear, and we can use 

a»
e
(Tc)=v

e
(R)k (6-7) s s 

where k is the magnitude of k~, R is a unit vector in the 

direction of k\ and v (R) is the velocity of sound in 
s 

that direction. 

3. Since the integrand is vanishingly small except near 

k=0, we may take the integral in (6-6) to be over a l l of 
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k-space. 

These simplifications lead to 

3 dit frv
s
(k)k 

The integral will be rewritten in spherical coordinates. 

Taking dk~=k
2

dkdS2 (0 is the solid angle); 

3 dk fiv
s
(k)k

d 

c = V ̂  | / dfi / ̂
3 ( e f t V s ( R ) k / k B T

 _
 x )
 (6-9) 

Making the change of variables y=fiv
g
(R)k/kgT in the k 

integration gives 

3T
 s
 ( T i l

 ( t V s
( f i ) ) 3 o e ^ - l 

Since the definite integral over y is just 7r/l5, carrying 

out the derivative with respect to T yields 

7Tk
B
VT

3

 dfi 

c = — ^ i f (6-11) 
30ft

3

 s (v
s
(£)) 

If 1/v
3

 is defined to be the average over mode index s and 

solid angle of the inverse cubed sound velocity,that is 

1 _ 1 y r 1 (6-12) 
v
3

 " 3 I
 1

 5? v7(kT
3 
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then c is given by 

3 

c = 
(6-13) 

The phonon specific heat coefficient 0 is given by 

c 2TT2 1 
- 1, (6-14) 

These relations hold at temperatures low enough that the 

only phonons which have a significant probability of being 

thermally excited are the long wavelength acoustic phonons 

which satisfy the linear dipersion relation (6-7). 

The well-known Debye formula was devised to describe 

the specific heat over the entire temperature range from T=0 

up. It is often used to f i t data at intermediate 

temperatures where (6-13) f a i l s . However, i t f i t s the data 

for layered compounds very poorly, primarily because, as we 

shall see, their phonon dispersion relations are highly 

anisotropic. In spite of this, specific heat data even on 

layered compounds are often presented in terms of an 

effective Debye temperature, and in order to define this i t 

will be useful to briefly review Debye theory. The Debye 

formula is derived by setting o> (k~)=vk in (6-6) and taking 

the integration not over the Brillouin zone, but over a 

sphere in k-space which contains the same number of allowed 
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phonon wave vectors
2 3

. This condition on the size of the 

sphere specifies its radius, the Debye wavenumber kp. The 

Debye frequency w
Q
 and temperature e?

D
 are given by 

k
B
0

D
=fiw

D
-nvk

D
 (6-15) 

The result for the molar specific heat is 

/
T
\

3 D

 y*
e
y dy 

C

 =
 9 N

A M ! J <
6

-
1 6 ) 

;
e
y - i )

2 

0 

where N
A
 is Avogadro's number. In the limit T-?0, this 

becomes 

1 2 - " l 3 

C = — F ~
 N

A
k

B (Ij «"
17

> 

and the coefficient /3 is 

1 2 ^ N
A
k

B
 . 

6 - (6-18) 

Since the definition (6-15) of t?
D
 in terms of the Debye 

sphere does not make sense for layered compounds, effective 

Debye temperatures for these materials are defined in terms 

of the low temperature limits (6-17) and (6-18). 

2 3 

Note that both the sound velocity and the distance from 
the origin to the zone boundary are assumed to be isotropic. 
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6.4 THE PHONON SPECIFIC HEAT OF Li NbS, IN THE ELASTIC x_
 4  

CONTINUUM (T
3

) LIMIT 

As we have just seen, the cubic specific heat coefficient 0 

can be related to an 'average' sound velocity v and a Debye 

temperature #
D
 by means of equations (6-14) and (6-18), 

respectively. Using the measured 0 values (figure 35), v and 

6n have been calculated for the Li NbS
2
 samples and are 

i-) X 

shown in figures 42 and 43, respectively. Clearly, there are 

large changes in the lattice dynamics as a function of x. 

In this section, an elastic continuum model wil l be 

used to discuss the specific heat in terms of the elastic 

constants of Li NbS
2
. To show how 0 depends on the elastic 

constants, a value for NbS
2
 will be calculated. Materials of 

hexagonal symmetry have 5 independent elastic stiffness 

constants, which are, in the standard abbreviated subscript 

notation, c
1 1 f

 c
3 3
, c

a f t
, c

6 6
 = ( c

n
- c ,

2
) / 2 , and c

1 3
 (Auld 

1973). To the author's knowledge, the elastic constants of 

NbS
2
 have not been measured. McMullen and Irwin (1984) have 

recently f i t Raman spectra for NbS
2
 with a simple 

4-parameter valence force model. In principle, elastic 

constants can be calculated from these inter-atomic forces., 

but because of the simplicity of the model and the limited 

amount of data used in the f i t i t is not clear that the 

values would be reliable. 

More extensive data are available for several related 

compounds, however, and these are listed in table V. The 

values for a l l three compounds in the table are similar, and 
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Figure 42.- 'Average' sound velocity v (equation 6-14) 
for the L i NbS

2
 samples. The dashed line 

is intendea only as a guide for the eye. 
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Figure 43: Debye temperatures for the Li NbS
2
 samples. 

The dashed line is a guide fo? the eye. 
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Table V 

Elastic constants for some layered transition metal 
dichalcogenides with the 2H structure. The values in the 
table are in units of l0

1o

N/m
2

. 

Elastic Compound 
ic 4* ic ic 

Constant TaSe
2
 NbSe

2
 MoS

2 

c,, 19.6 to 12.4 10.8 17.4 

c
3 3
 5.3 4.6 5.2 

Cnu 1 .74 1.9 1.9 

c
6 6
 5.5 to 5.4 4.6 7.3 

c
n
 1 .34 to . 76 =0 . 2.3 

* Feldman (1982) t Feldman (1976, 1982); Jericho et a l . (1980) 
** Feldman (1976, 1982) 

the same may be expected of NbS
2
. For the purposes of this 

illustration the elastic, constants of NbSe
2
 will be used. 

Most of the NbSe
2
 constants in the table were deduced from 

inelastic neutron scattering data by Feldman (1976). Jericho 

et a l . have measured c,, ultrasonically. In Feldman's 1976 

work c
1 3
 could not be specified very accurately; i t was 

given as between +3.1 and -0.2 in units of 10
1o

N/m
2

. A more 

sophisticated analysis involving an atomic force model 

(Feldman 1982) gives c
1 3
 between 1.34 and 0.76 in the same 

units, for TaSe
2
. This result should be approximately 
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applicable for NbSe
2
 as well, and so for the following 

calculations c , 3 = 1 . 0 • 1 0
1

°N/ m
2

 w i l l be used. 

To calculate 0 from the elastic constants we f i r s t find 

the sound velocity as a function of the direction of 

propagation, then calculate the average of the inverse cube 

of the velocity (equation 6 - 1 2 ) . The sound velocities in a 

hexagonal crystal are functions only of the angle 6 between 

the c-axis and the direction of propagation. The velocities 

of the three acoustic modes are (Auld 1 9 7 3 ) 

' V i ( e ) = { C i i s i n
2

6 + c
3 3
cos

2

9 + C i ^ 

- ( ( c
1 1
- C M ) s i n

2

8 + ( c ^ - c 3 3 ) c o s
2

8 ) 2 + ( c
1
3 + c ^ ) 2 s i n 2 6 } ' * / ( 2 p ) 

v 2 ( e ) = { ( c
6 6
s i n 2 e + c<

4 4
cos 2 e) /p}^ (6-19) 

v 3 ( 9 ) = { C i i s i n
2

9 + c
3 3
cos

2

6 + 

+ ( ( c n - c . O s i n 2 e + ( c 1 ) , - c 3 3 ) c o s 2 e ) H ( C l 3 + c ^ ) 2 s i n 2 6}'V(2p) 

In these equations, p is the density (4.6g/cm
3

 for NbS
2
). 

Polar plots of the inverse sound velocities as a function of 

6 are given in figure 44. Mode 1 is a quasi-shear wave. At 

0=0 i t becomes a pure shear (transverse) wave propagating 

along the c-axis, with atomic displacements in the basal 

plane. This is an example of what is called a 'rigid layer' 

shear mode. Since intralayer bonding forces are much 
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In plane component of 1/v 
(1 unit = 10~4

s/m) 

s 

Figure 44: Polar plot of the inverse sound velocities 
calculated for NbS

?
 (see text). The curves 

are labelled with the mode index s. Modes 
1 and 2 intersect the vertical axis at 

( p/c. 
'44 

axis at 

. Mode 

( p / c
3 3 

3 intersects the vertical 

)
2

. Modes 1, 2, and 3 inter­

sect the horizontal axis at ( p / c ^ ) 

( e /
c

6 6 >
% and (P/C-Q)

2

, respectively. 



1 46 

stronger than the interlayer ones, this acoustic wave 

involves essentially rigid layers vibrating as units. At 

0=TT/2, mode 1 again is a pure shear wave, now propagating in 

the basal plane with the atomic displacements along the 

c-axis. That this is also essentially a rigid layer shear 

mode (at least for long wavelength) is clear from figure 45. 

The fact that mode 1 is a rigid layer shear wave at both 0=0 

and tt/2, results in its sound velocity being /c«
 8
/p in both 

those directions. c
4
, is the elastic constant associated 

with 'rigid layer' shear. Since mode 1 is the mode with the 

lowest sound velocity i t makes the largest contribution to 

the specific heat. 

Mode 2 is a pure shear wave for a l l 0, polarized in the 

direction normal to both the c-axis and the direction of 

propagation. It is a rigid layer shear wave at 0=0, but at 

0=7r/2 i t involves shearing of the layers themselves (elastic 

constant c
6 6
) . Mode 3 is a quasi-longitudinal wave, which 

becomes pure longitudinal at 0=0 and TT/2. 

Because the sound velocity is a function only of 0, 

equation (6-12) for the average inverse cube velocity 

becomes 

i i -\
 7 1 / 2 

_ = 2 i f
 s i n e d e

 (6 -20) 
v

3

 3 s=l
 0
 v

3

 (6) 

The integral for the pure shear wave (mode 2) can be 
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4* 
c 

Figure 45: Acoustic mode 1 at 6=TT/2. The curved 
lines represent the NbS2 layers. The 
parallelogram would be a rectangle in the 
undistorted material, and indicates the 
nature of the strains associated with the 
wave. 
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evaluated easily and is 

•n/2 

S sine de 1/2 
= 4.9*10 - I i s 3 / m 3 (6-21) 

0 
v 3

( 9 ) c 6 6 6 *- k it 

The numerical value was calculated using NbSe
2
 elastic 

constants and the density of NbS
2
. The integrals for the 

other two modes were calculated numerically, and are 

9.21 • 10"
 1

 'sVm
3

 for mode 1 and 1 . 50 • 1 0"
1 1

 s
3

/m
3

 for mode 3. 

The average of these is 1/v
3

=5.21•10"
11

s
3

/m
3

, which, when 

used in (6-14) gives /3=. 22mJ/mole-K
fl

. The experimental value 

for NbS
2
 is . Sli^ma/mole-H*, which is 30% higher. This is 

reasonable agreement, considering the calculations were made 

using the elastic constants of NbSe
2
, a closely related, but 

different, material. The difference in 0 indicates that NbS
2 

has somewhat softer elastic constants than NbSe
2

2fl

. The 

corresponding calculated and experimental Debye temperatures 

are 206K and 187±7K, respectively. 

Now the effect of intercalation on the specific heat 

can be considered in this elastic continuum l i m i t . Of the 

five elastic constants, there are two, c
3 3
 and c

fl(1
, which 

depend primarily on interlayer forces. c
3 3
 is associated 

with compression along the c-axis, and c«„ is associated 

McMullen and Irwin's (1984) f i t to the Raman spectra does 
not seem to agree with this conclusion. For example, the f i t 
implies c«

4
^2.5•10

1

°N/m
2

, which is s t i f f e r than NbSe
2
. 

However, this discrepancy may not be significant, since the 
elastic constants depend on the model used to f i t the Raman 
data. 

2 a 
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with r i g i d layer shear. These two elastic constants are 

expected to change significantly as x in Li
x
NbS

2
 is varied. 

Of these two interlayer elastic constants, c
u u
 plays a 

much larger role in determining the low temperature specific 

heat. In the calculation above the contribution to 0 from 

mode 1, which depends mainly on c
4 a
, is much larger than the 

contributions from the other modes. Another illustration of 

the importance of c^, comes from a numerical calculation of 

the derivatives of /3 with respect to the c's. These are, in 

units of 1 0-
 1

 ̂ J/N-mole-K", 

dp/dc, ! = - . 4 2 

a/3/9c 3 3 = - 1 . 5 2 

3 / 3 / 3 C , I , = - 7 . 9 1 

30/9c
66
=-1.47 

9j3/9c , 3=+1 . 0 5 

9/3/9c«
a
 is much larger than the others. 

To roughly estimate the size of the changes in c
afl 

which are required to explain the data, /3 was calculated for 

several values of c,,
4
. The results are shown in figure 4 6 . A 

similar plot was also made for c
3 3
. As can be seen from the 

plot, the range of 0 values covered by the Li NbS
2
 data ( . 1 8 

to 1 . 3 2 mJ/mole-K") corresponds to changes of c
fttt
 of about a 

factor of 1 0 , provided the other elastic constants are fixed 

at their NbSe
2
 values. Much larger fractional changes in c

3 3 

(about a factor of 20 ) would be required. 

In addition, the simple 'spring and plate' elastic 

model to be presented later in this chapter (section 6 . 6 . 2 ) 



Figure 46: 3 as a function of c,,. The other 
elastic constants arg fixed at their 
NbSe2 values (see text). 
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shows that c
3 3
 should increase monotonically as a function 

of x in Li
x
NbS

2
. Basically, the argument is that since the 

interlayer gaps expand on intercalation, the lithium must be 

pushing the layers apart. Intercalated lithium atoms can be 

thought of as compressed springs which act against the 

original NbS
2
 interlayer forces to separate the layers. 

Since we are adding more interlayer springs as x increases, 

c
3 3
 must also increase. The Li NbS

2
 samples with x between 

.12 and .5, however, have j3 values higher than at x=0. This 

indicates an intercalation induced reduction in whichever 

elastic constant is primarily responsible for the variations 

in 0 . The elastic constant primarily responsible for the 

changes in 0 is therefore almost certainly c
a
„ . 

Another point concerning c
3 3
 can be made here, although 

i t is not essential to the argument that the data reflect 

the behavior of c „ . Elastic stability conditions may be 

derived from the requirement that the elastic energy must be 

a positive definite function of the strains. If it is not, 

there will be some strain for which the elastic energy is 

negative, and the crystal w i l l spontaneously distort. This 

argument leads to the conditions (Born and Huang 1954, 

Feldman 1976) 

c
3 3
>c

2

3
/c,, (6-22) 

c
33
>2c

2

3
/(c

1
,+c,

2
) (6-23) 

There are no restrictions on C i , , , except, of course, that i t 

must be positive. The stability conditions can be evaluated 

using the NbSe
2
 elastic constants. In units of l0

1o

N/m
2

, 



1 52 

using c
13
=1.0 as in the specific heat calculations yields 

c
33
>.09 and c

33
>.16, respectively. If the maximum c

1 3
 (3.1) 

consistent with Feldman's (1976) estimates is used we get 

c
33
>.89 and c

33
>1.5, respectively. To explain the data in 

terms of c
3 3
' alone would require i t to take on a value of 

about .3 in the x=.16 sample, which might result in a 

violation of the stability c r i t e r i a , depending on the actual 

value of c
1 3
. The lattice distortions that would result from 

this have not been observed in either Li
x
NbS

2
 (chapter 2), 

or in Li
x
NbSe

2
 (D.C.Dahn and Haering 1982). 

6.5 BEYOND THE ELASTIC CONTINUUM LIMIT 

This section will show how, as the temperature rises, the 

phonon specific heat begins to deviate from its low 

temperature T
3

 behavior. The reasons for this will be 

explained, and approximate calculations of the temperature 

at which significant deviations set in will be made. An 

understanding of the deviations from T
3

 is important, since 

it 

1. allows us to be confident that the experiments have 

truly found the low temperature l i m i t , and 

2. provides some additional insight into the mechanism for 

changes in the specific heat on intercalation, 

supporting the conclusion that c«
4
 is primarily 

responsible. 

Deviations from T
3

 behavior at higher T come about 

because the phonon dispersion curves are linear only in the 
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very long wavelength limit, and because they are truncated 

at the Brillouin zone boundaries. (At higher T we can no 

longer make the approximation that the integral in (6-6) 

extends over a l l of k-space.) Phonon dispersion curves for 

2H-NbSe
2
 have been measured at room temperature by inelastic 

neutron scattering (Moncton et a l . 1977) and are shown in 

figure 47. The dispersion curves for NbS
2
 and i t s 

intercalation compounds should be similar. The labelling of 

the different phonon branches is that of Moncton et a l . The 

long wavelength parts of branches L
3
 and A

6
 correspond to 

acoustic mode 1 of the previous section.(the rigid layer 

shear mode), with propagation along the a and c axes, 

respectively. Note that at point A on the zone boundary 

there is no splitting between the A
6
 acoustic and A

5
 optical 

shear branches, or between the A, and A
2
 longitudinal 

branches. This is because of the symmetry of the two layer 

high unit c e l l . We could think of the A
6
 and A

5
 branches as 

an acoustic branch in the double zone, which has simply been 

folded over. In a stage 2 intercalation compound the 

symmetry is broken and a small gap should appear at the zone 

boundary. 

Looking further at the dispersion curves of figure 47, 

we notice two features that may cause the f i r s t deviations 

from T
3

 as the temperature is raised. One of these is the 

relatively low energy of the top of the A
6
,A

5
 branch. The 

other is the anomalous upward curvature of the E
3
 branch. 
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i I i 1 r f 
2H-NbSe2 (300 K) 

-[ooc] [COO] -
<2«-/c) WAVE VECTOR (4»/VTo> 

Figure 47: Phonon dispersion curves from inelastic 
neutron scattering measurements on NbSe 
After Moncton et a l . (1977). 
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This upward curvature can be explained in terms of 

forces associated with bending of the layers, as was f i r s t 

demonstrated in theoretical studies of the specific heat of 

graphite (Komatsu 1955, Bowman and Krumhansl 1958). Acoustic 

waves propagating in the basal plane with atomic 

displacements along the c-axis, although they are basically 

shear waves, also involve bending of the layers (see 

figure 45 in the previous section). Since the layers are 

s t i f f and c
fl
„ is small, the energy due to bending the layers 

can be significant, especially at short wavelengths. The 

layer bending energy density is proportional to the square 

of the layer curvature, that i s , i t is proportional to 

(9
2

u/9y
2

)
2

, where u is the atomic displacement associated 

with the wave, and y is a coordinate along the direction of 

propagation. The shear elastic energy is c«
f l
(9u/9y)

2

. It can 

be shown (Komatsu 1955) that when the potential energy is a 

sum of layer bending and shear terms, the dispersion 

relation for waves is 

pcj
2

=c
I1(t
k
2

+bk'' (6-24) 

where b is a positive constant. The second term is due to 

the layer bending forces. This explains the upward curvature 

of the E
3
 phonon branch. The value b can be estimated 

graphically from, figure 47, and is approximately 

4- 1.0-
 1

 " r n V s 2 . 
To estimate the temperatures at which the bk

ft

 term and 

the truncation of the A
6
,A

5
 mode will cause deviations from 

T
3

 in the specific heat, we f i r s t recall (6-6), the general 
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expression for the phonon specific heat. This involved 

integrals of the form 

/dit 1 (6-25) 
efia) s(it)/k BT _ x 

If we assume for the moment an isotropic elastic material 

(as in the Debye model), this becomes 

2 irk 2fivk 
/ dk (6-26) 

e*vk/kB
T _

 1 

I f we define z=fivk/k_T, then the integrand is proportional 
a 

to z
3

/(e - 1 ) . This function is the' same as the black body 

radiation spectrum (Kittel 1969, p256, for example) and has 

its maximum value at z=*3. It drops to zero at large z, and 

has half i t s peak value at z^5.5. What this means is that 

the specific heat is quite sensitive to phonons with 

energies up to about 5 times kgT. The general conclusion 

that the specific heat is sensitive to phonon energies up to 

several times k
g
T is expected to be true even for 

anisotropic materials. 

It is now possible to produce rough estimates of the 

temperatures at which the two different effects being 

considered will cause deviations from T
3

 in the specific 

heat. The top of the A 6 , A 5 branch occurs at a phonon energy 

fuj of order fi/c,„/p(2n/c), where c is the height of the two 

layer unit c e l l . As we have just seen, deviations from T
3 

will occur when this phonon energy becomes less than about 

5k_T. If T . is defined as the temperature above which this 
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c-axis" truncation causes deviations from T
3

, we have 

fi 2ir 

Similarly, we can define as the temperature above which 

the bk" term in the dispersion relation for the layer 

bending (£
3
) branch causes deviations from T

3

. This can be 

estimated by setting 5k^T^ equal to the energy at which the 

two terms c
att
k

2

 and bk" in the dispersion relation (6-24) 

are equal. This gives 

For c«„=1.9«10
1

°N/m
2

, the value used for the 

calculation of /3 for NbS
2
, we get T

fc
=16K and T

b
=30K. The 

estimates of of T and T^ are very approximate, but we can 

see that both mechanisms are probably important. This is 

unlike the case of graphite, where T^ appears to be 

significantly lower than T (Komatsu 1955). To compare these 

estimates with the data, the quantity T^Q^ wil l be used. 

This is defined as the temperature at which the lattice 

specific heat data deviate by 10% from 0 T
3

. The results are 

given in table VI. 

The value for NbS
2
 (16+1K) is reasonably close to the 

estimated temperatures T
fc
 and T^. This suggests that the 

explanation of the deviations from T
3

 given above is 

correct. 

The T^Q^ data also show that there is a strong 

correlation between high 0 values (which we believe to be 
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Table VI 

P a n d T

10% 
for the Li NbS

2 x
 2 samples. 

X 0(mJ/mole-K
a

) T

10%
( K ) 

0 .31 1 6±1 

.13 .7 9.5±1 

. 1 6 1 .32 9.5±.5 

.23 .55 13±.5 

.25 .66 9±2 

.30 .96 9±.5 

.32 .36 1 6±2 

.35 .29 Insufficient data 

.41 .36 >9 

.50 .19 >1 5 

.68 .24 13±1 .5 

1 .00 .18 1 5±2 

due to low c
a
„'s), and low T^^. This is what is expected on 

the basis of the equations (6-27 and 6-28) for T
fc
 and T^. 

Taking another numerical example, the value of /3 for the 

x=.16 sample implies a c„„ value of about 0.2•10
1

°N/m
2

. This 

yields T
fc
 = 5K and T

b
=3K. T

1 Q 5
. was 9.5±.5K. Again, this is 

reasonable agreement, considering the roughness of the 

theoretical estimates. 
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An interesting feature to note is that because of the 

different ways that T
fc
 and depend on c „

a
, the plate 

bending mechanism will become relatively more important as 

C m is lowered. This suggests that the specific heat vs 

temperature curves of different Li NbS
2
 samples will have 

different shapes. This is unlike simple Debye theory, where 

the specific heats of different materials a l l f a l l on one 

universal curve i f they are plotted as a function of T/0
D
. 

The present Li NbS
2
 data for higher temperatures (above 10K) 

are not, unfortunately, of sufficient quantity or quality to 

allow a satisfactory test of this result. 

A more complete discussion of the specific heat above 

the T
3

 regime would best be based on a detailed atomic force, 

constant model such as those used by Wakabayashi and Nicklow 

(1979), or Feldman (1982). Such models attempt to f i t the 

entire phonon spectrum, and allow calculation of the 

specific heat at arbitrary temperatures directly from the 

general expression (6-6). At present, because of the limited 

high temperature specific heat data, and the lack of other 

measurements of the phonon spectra, the effort involved in 

such an approach would not appear to be j u s t i f i e d . 

6.6 SIMPLE MICROSCOPIC MODELS 

So far in this chapter, the approach to lattice dynamics has 

been primarily through an elastic continuum approximation. 

To complement this view, and to gain some further insight 

into the specific heat of Li NbS
2
, i t is useful to consider 
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some simple microscopic dynamical models. 

6.6.1 VIBRATIONAL MOTION OF A SINGLE INTERCALATED  

LITHIUM ION 

When one lithium ion is inserted into a site 

between the layers of a NbS
2
 crystal, we expect the 

appearance of three new vibrational modes, because of 

the three new degrees of freedom associated with motion 

of the lithium ion about the center of its three 

dimensional s i t e . These new modes are localized 

vibrational modes involving the lithium as well as 

neighboring sulfur and niobium atoms (see Pryce 1969, 

for example). However, because the mass of lithium is so 

small compared to the other atoms in the compound, the 

amplitude of vibration of the lithium w i l l be very much 

larger than that of the surrounding heavy atoms. The 

approximate frequency of the localized modes can 

therefore be calculated assuming the surrounding NbS
2 

layers are fixed. To model the forces on the lithium, we 

assume i t is connected to the fixed rigid layers by 

springs. A reasonable value for the spring constant G
c 

associated with lithium motion in the c-axis direction 

is 160 N/m. This will come out of the 'spring and plate' 

model calculations in the next section. The vibrational 

frequency of the mode where the lithium motion is along 

the c-axis is then 

a>c=j/G
c
/m (6 
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where m is the mass of a lithium atom. Numerical values 

are UQ= 1. • 1 0
 1

 •s
- 1

 and ficj
c
/k

fi
=900K, so that this 

vibrational mode will clearly not contribute to the low 

temperature specific heat. 

The spring constant G associated with motion 

parallel to the layers can be estimated from the fact 

that there is a potential energy barrier of order ,3eV 

high between adjacent lithium sites (Kleinberg 1982). 

Assuming the lithium atom sits in a harmonic potential 

well of depth .3eV and width equal to half the distance 

between sites yields G »4N/m
2

. This yields an in-plane 

vibrational frequency 

CJ =/G /m=2- 10
1

 3 S "
 1

 (6-

3 a. 

which is equivalent to a temperature of 140K. This is 

also much too high to be seen in the low temperature 

specific heat. 

In the discussion above, i t was assumed that the 

lithium atom was in a 'typical' s i t e , and that the only 

forces on i t were those associated with localizing i t on 

its site (that i s , those due to interaction with the 

host layers). The situation may be somewhat more 

complicated. 

Staged intercalation compounds are generally 

believed to posess a domain or island structure as 

proposed by Daumas and Herold (1969). Within each domain 

there is a well defined staging sequence, but globally 

there are guest atoms in every interlayer gap. As an 
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example, a stage 2 Li NbS
2
 crystal would have lithium in 

gaps 1,3,5, etc. in some domains and in gaps 2,4,6, etc. 

in the others. Kaluarachchi and Frindt (1983) have found 

that the domain size is of order 130A in Ag Ti S
2
. At the 

boundaries between the staging domains, the host layers 

must bend, and this raises the possibility that some of 

the lithium sites are significantly distorted. Lithium 

atoms in these sites would have different vibrational 

frequencies than the others, and we cannot rule out the 

possibility that they would contribute to the low 

temperature specific heat. 

Another complication arises from the fact that 

intercalated lithium atoms interact with each other. 

There is some evidence that this interaction is 

relatively weak. Lattice gas model f i t s to 

electrochemical data on L i
x
T i S

2
 (J.R.Dahn, D.C.Dahn, and 

Haering 1982) used a repulsive nearest-neighbor 

lithium-lithium interaction of 50meV, which is small 

compared to the .3eV barrier between sites. Because of 

this, it may be that the effect of lithium-lithium 

interaction on the vibrational frequencies is small. On 

the other hand, the lithium-lithium interaction is the 

driving force for the lithium ordering transitions which 

occur in Li TaS
2
 (J.R.Dahn and McKinnon 1984), and 

X 

probably in 'fresh' Li NbS
2
 (section 2.3), and it cannot 

be completely ignored. A wide range of unusual elastic 

behavior is possible in systems where there is a 
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competition between a periodic background potential (in 

this case due to the NbS
2
 layers) and an interparticle 

interaction. (For discussions of one dimensional systems 

of this type see, for example, Von Hohneyen et a l . 1981, 

Sharma and Bergerson 1984, and references therein.) One 

possibility in the case of Li NbS
2
 is that for lithium 

concentrations near but not equal to values such as 

X=1/3 where ordering occurs, the lithium configuration 

in each gap may consist of ordered two dimensional 

regions separated by discommensurations (domain walls). 

There could be soft modes associated with these domain 

walls. Further theoretical and experimental work is 

needed to determine if any such soft modes actually 

exist in Li NbS
2
. 

x
 2 

6.6.2 ONE DIMENSIONAL MODELS 

The basic model to be used in this section is a one 

dimensional infinite chain of masses M separated by 

springs of spring constant K. The model will be used to 

describe rigid layer longitudinal modes, so each mass 

can be thought of as representing an entire NbS
2
 layer. 

K represents the interlayer forces (figure 48). Since 

both M and K are both proportional to the area of the 

layer and because the vibrational frequencies depend 

only on their ratio K/M, the layer area is arbitrary. 

For convenience, we will take the area to be the base of 

a unit c e l l , so that M is just the mass of one NbS
2 
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t 

Figure 48: Definition of terms used in the 
one-dimensional 'spring and plate' 
model (see text). 
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unit. We also take the system to l i e along the z axis. 

The distance between masses is c/2, because the unit 

c e l l is two layers high. The dispersion relation for 

waves in this system is well known, and is 

where k and co are the wavenumber and frequency, 

respectively. The spring constant K is related to c
3 3
 by 

where c and a are the lattice parameters. The NbSe
2 

value c
3
3=4.6•10

1

°N/m
2

 gives K=7.4 N/m. The same 

equations apply for vibrations normal to the z-axis 

(rigid layer shear waves), except that K is then 

To deal with the longitudinal rigid layer waves of 

intercalated material, i t is possible to use the 'spring 

and plate' model of intercalation (J.R.Dahn 1982; 

J.R.Dahn, D.C.Dahn, and Haering 1982) In this model the 

host material is again considered to be a system of 

rigid plates joined by springs of strength K. The 

equilibrium length of these 'host springs' is taken to 

be the host layer spacing c
0
/2. Intercalation is 

modelled by the insertion of 'lithium springs' of 

strength G and length c
T
/2>c

0
/2. In Li NbS

2
, there are x 

Li X 

lithium springs for each host spring. Balancing the 

forces of the springs yields an equation for the c-axis 

(6-31) 

K=/3c
33
a

2

/c (6-32) 

/3c
 a u
a

2

/c. 
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of the intercalation compound as a function of x. 

c(x) - c
0
 .

 ( 6
_

3 3 ) 

c
L
 - c

0
 x+K/G 

With appropriate values of c
L
 and K/G, this equation 

gives a c-axis expansion in approximate agreement with 

experimental results for many intercalation compounds. A 

rough f i t to the Li NbS
2
 lattice expansion data requires 

X 

K/G=*.2. The most striking success of the spring and 

plate model has been its use in s t a t i s t i c a l mechanical 

lattice gas models of intercalation compounds. These 

models can be used to calculate the voltage V(x) of 

intercalation c e l l s , but f i t the data for systems such 

as Li TiS
2
, Li NbSe

2
, and Li NbS

2
 very poorly unless the 

X X X 

elastic energy associated with the lattice expansion 

(6-33) is included in the Hamiltonian. The elastic 

energy also provides a mechanism which produces staging. 

To use the spring and plate model to discuss 

vibrational modes, consider f i r s t the case of Li,NbS
2
. 

According to the model, each pair of adjacent layers is 

now separated by two springs in p a r a l l e l , with spring 

constants K and G. This is equivalent to one spring with 

spring constant K
e
j^=K+G. The lithium ion of mass m is 

placed in the center of this effective spring, dividing 

i t into two springs each of strength
2 5 

The spring constant G of the previous section is 4K 
or about 160 N/m.

 c 
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^
K

e f f *
 T

^
e

 °^^
s

P
e r s

^
o n

 relation for this system has two 

branches, corresponding to the + and - signs in 

2K 
2 e f f 

to = m̂ + M ±y/m
2

+M
2

+2mM cos(kc(l)/2) ) (6-34) 
mM 

where c(1) is the c-axis of Li,NbS
2
. The - branch is an 

acoustic branch. Using the fact that m/M=.045 is small, 

we can justify the use of the approximate relation 

tO 

M 

. kc(l) 
(6-35) 

in which the mass of the lithium has been ignored. 

For the optical (+) branch, the same approximation 

results in 

cj=2v
/

K
eff
/m (6-36) 

As might be expected, the frequency is the same as that 

of a single lithium vibrating between stationary layers. 

The new modes associated with the lithium degrees of 

freedom are contained in this optical branch. The 

optical branch is at too high a frequency to contribute 

to the low temperature specific heat, and it wil l 

therefore be ignored in the rest of this discussion. 

Since only the acoustic mode is important, we can, 

as we have just seen, ignore the lithium mass and say 

that the only effects of intercalation are to alter the 

spring constant from K to and to expand the c-axis. 

(Of these, the f i r s t is far more important.) This 

approach wil l now be used to discuss Li NbS
2
 with x<1. 
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For stage one compounds, the spring constant 

between each layer is K
ê
^=K+xG, and the dispersion 

relation is just 

R ?

 " kc(x) 
- - if*" s i n -

(6-37) 

ffA
2+

K'eff
+2KK

eff cos kc(x) (6-38) 

M 

where c(x) is the height of the two layer unit c e l l of 

Li
x
NbS

2
. 

A stage two compound may be modelled by alternating 

springs of strength K (empty gaps) and K
g f
£=K+2xG ( f u l l 

gaps), where x is the overall lithium concentration. The 

dispersion relations are 

K+K
 f f

. 
2 e r f , w = ±

 Mi 

M
 1 

Here again there is an optical and an acoustic branch. 

In figure 49, dispersion relations representing 

NbS
2
, stage 2 Li

 1
gNbS

2
, and stage 1 Li 2

N

^S
2
 are shown. 

The dispersion relations for the stage 1 compounds have 

been 'folded over' into the smaller one dimensional 

Brillouin zone of the stage 2 compound. We see that the 

i n i t i a l slope of the stage two curve lies between that 

of the x=0 and stage 1 curves, in spite of the lowering 

of part of the acoustic branch due to the gap at the 

zone boundary. This is a general result, and indicates 

that in the spring and plate model the contribution to 

the specific heat from the rigid layer longitudinal mode 

(elastic constant c
3 3
) will be a monotonically 

decreasing function of x, even when staging is taken 
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Figure 49: Model dispersion relations for the 
longitudinal mode propagating along the 
c-axis in L i NbS2• Included are curves 
representing NbS2 (lower solid lines), 
stage 2 L i 1 5 ^ 8 2 (dotted lines) , and 

stage 1 L i -MbS,, (upper solid l i n e s ) . 
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into account. 

6.7 DISCUSSION 

The simple theoretical arguments put forward in this chapter 

indicate that the elastic constant c
o u
 and the rigid layer 

shear modes associated with it are primarily responsible for 

the differences in the specific heat coefficients 0 of the 

different Li
x
NbS

2
 samples. The extra vibrational modes due 

to the addition of lithium are at frequencies too high to 

contribute to the specific heat. Looking at the data again 

in this lig h t , i t is possible to draw the following 

conclusions: 

1. In the samples with x<.3, c
 fl
 „ was significantly smaller 

than in pure NbS
2
. Most of the c-axis expansion which 

. takes place on intercalation happens at low x 

(figure 7). By x=.3, the expansion is almost complete, 

and if we assume the expansion is a l l in the interlayer 

gaps, the gaps have expanded by about 15%. Intercalation 

and gap expansion appear to greatly reduce the 

interlayer shear forces that were present in the pure 

host. 

It is interesting to note that the sample with the 

highest 0 (lowest c„„) was stage 2 (x=.16). This is 

surprising, since only half of the interlayer gaps 

contain lithium and are expanded. If the shear forces 

between two layers depend only on the lithium 

concentration in the gap between them, we would expect 
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Ci,„ for stage 2 to be between the values for x = 0 and 

stage 1. That this is not so seems to imply that the 

shear forces across an interlayer gap are sensitive not 

only to the lithium in that gap, but also to the lithium 

in neighboring gaps. It is possible that charge transfer 

has something to do with this. Another possibility has 

been mentioned in section 6.6.1; there may be soft modes 

associated with Daumas-Herold staging domain boundaries. 

As x approaches 1, the lattice stiffens up again. At 

x=1, p is actually smaller than x=0, indicating c
a
„ is 

greater than in the pure host. A rough calculation shows 

that i t may be possible to explain the stiffening at 

large x by assuming shear stresses are transmitted from 

one NbS
2
 layer to the next through the intervening layer 

of lithium. From the activation energy for lithium 

hopping between sites i t was estimated (section 6.6.1) 

that an effective spring constant for in-plane motion of 

a lithium atom near the center of its site is 4 N/m. If 

we consider this as being due to two 'springs', one 

connecting the lithium ion to each of the two adjacent 

layers, the spring constant of each is 2 N/m. These 

springs are joined end to end at the lithium atom, and 

are therefore equivalent to a single spring of strength 

1 N/m connecting the layers. If we assume these springs 

are the only interlayer shear forces, the elastic 

constant c
fl
„ is given by 

c,,=2cGx//3a
2

 (6-
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where c and a are the dimensions of the unit c e l l and G 

is the spring constant (1 N/m) per lithium. For Li,NbS
2 

this yields c„„=1.3•10
1

°N/m
2

. Although this is smaller 

than the value of about 2.5«l0
1 o

N/m
2

 implied by the 

specific heat data, i t is at least of the right order of 

magnitude, and indicates that lithium contributes to the 

interlayer shear forces. 

3. /3, and therefore c
â
, do not appear to be smoothly 

varying functions of x for the set of samples studied. 

In particular, the samples at x=.16 and .30 have higher 

|3 values than the samples near them in x. These two 

samples were both prepared from NbS
2
 from batch DD12, 

shortly after that batch was grown. As mentioned in 

chapter 2, freshly prepared and aged DD12 material 

behaved differently electrochemically. Cells made from 

fresh material showed two small peaks in -dx/dV near 

2.67V, which may be due to lithium ordering. Recall that 

2.67V is also the voltage used for preparation of the 

x=.30 (fresh) and x=.32 (aged) specific heat samples. 

Since a l l of the specific heat samples except for x=.16 

and .30 (which were anomalous) and x=.50 (which was 

prepared at a voltage far from the extra dx/dV peaks) 

were made from relatively old NbS
2
, i t seems likely that 

whatever aging effect caused changes in the 

electrochemistry also caused changes in the specific 

heat. If the aging effect is due to loss of sulfur and 

subsequent intercalation of excess niobium into the 
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interlayer gaps, this might serve to help bind the 

layers together and reduce the specific heat. The 

presence of lithium ordering might itself influence the 

specific heat. It should be noted that both the x=.3 and 

x=.16 samples had compositions near values where 

ordering might be expected, since the x=.16 sample was 

stage 2 and therefore had a lithium concentration near 

X=1/3 in the f i l l e d gaps. The effects of aging obviously 

need to be investigated further. 



7. SUPERCONDUCTIVITY 

7.1 INTRODUCTION 

Specific heat anomalies due to superconductivity were 

observed in only three of the samples, NbS
2
 (T

c
=5.7K), 

Li 23
N b s

z (3.1K), and Li
 2
5

N b S

2 (3.1K). The data are 

reproduced here (table VII), together with the electronic 

specific heat coefficient 7 . It i s , of course, likely that 

at least some of the other samples were superconductors, but 

with T
c
's below the temperatures at which the measurements 

were made. These minimum temperatures are also listed in the 

table. Some results related to superconductivity in the NbS
2 

sample have already been presented in section 4.3. 

Because of the reduction in N(e
p
), the density of 

electron states at the Fermi level, which is due to charge 

transfer into the dz
2

 band, the general result that 

superconductivity is eventually destroyed at large x is to 

be expected. Some of the results, however, clearly cannot be 

explained on the basis of rigid band charge transfer alone. 

The stage 2 samples at x=.12 and .16 did not exhibit 

superconductivity, even though the .16 sample was measured 

down to 2.OK. This is surprising, since the 7 values for the 

stage two samples are roughly equal to those of the 

superconducting samples, indicating that they have about the 

same N ( e „ ) . A similar situation occurs for the stage one 

samples at x=.30, .32 and .35, These a l l had 7 values 

comparable to the superconducting samples, but did not have 

174 



175 

Table VII 

Superconducting transition temperatures and electronic 
specific heat coefficients for the Li NbS

2
 samples. Where no 

transition was observed, T is listed as being lower than 
the lowest temperature at which measurements were made. 

X T
c
(K) 7(mJ/mole-K

4

) 

0 5.7 19.3 

.13 <2.7 10.9 

.16 <2.0 13.1 

.23 3.1 11.6 

.25 3.1 10.3 

.30 <1 .8 9.4 

.32 <2.8 11.4 

.35 <2.8 10.6 

.41 <2.6 6.0 

.50 <2.8 5.8 

.68 <2.8 4.8 

1 .00 None observed 1 .3 

superconducting transitions. This puzzling state of affairs 

will be discussed further at the end of this chapter. 

In the next section, a Meissner effect measurement on 

one of the Li NbS
2
 samples is described. This verifies that 

the specific heat anomalies observed were truly due to 
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superconductivity. In section 7.3, the present results will 

be compared with previous data (McEwan 1983, McEwan and 

Sienko 1982). 

7.2 MEISSNER EFFECT MEASUREMENT 

A magnetic measurement was made on a piece of the Li 25
N

bS
2 

sample
26

. The cryostat used (R.H.Dee and J.F.Carolan, 

unpublished) contains two identical, oppositely wound, 

superconducting coils in series. The sample was placed in 

the center of one of these pickup c o i l s , and a piece of pure 

indium for calibration purposes in the other. The coils are 

connected to an RF-SQUID, which, together with i t s 

associated electronics, produces an output signal 

proportional to the total magnetic flux through the pickup 

c i r c u i t . The arrangement is insensitive to uniform magnetic 

fi e l d s , because the coils are oppositely wound. Whenever 

either the sample or the indium standard becomes 

superconducting, i t expells magnetic flux (Meissner effect), 

and produces a signal. Transitions in the sample and indium 

can be distinguished because the flux change signals are of 

opposite sign. Thermometry for the experiment was provided 

by an Allen-Bradley carbon resistor which had previously 

been calibrated in the specific heat system by comparison 

with the germanium thermometers. The magnetic f i e l d in the 

vicinity of the sample could be varied by means of a 

26

The experiment was performed by J.Beis and the author 
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solenoid surrounding the pickup c o i l assembly. The fields 

used were of order a few gauss or less. 

Data taken during a temperature sweep are shown in 

figure 50. The transitions due to both the sample and indium 

can be seen. There is also a slowly varying background, 

presumably due to paramagnetism in some of the components of 

the pickup c o i l - sample holder assembly. The indium 

transition is measured at 3.403K. The accepted value is 

3.404K (Weast 1970), which provides a check on the 

thermometer calibration. 

The transition of the Li 25
N d

S
2
 sample occurred over 

the range 3.31 to 2.93K, with 50% of maximum flux expulsion 

at 3.20K. The calorimetrically measured transition was 

centered at about 3.1K. The siightly'higher magnetic 

transition is not surprizing, if the width of the 

transitions is due to inhomogenieties in the sample. This is 

because a reasonably complete Meissner effect can be seen, 

even i f a significant part of the sample is s t i l l normal. 

A l l that is necessary to block magnetic flux is that 

superconducting regions somewhere in the sample extend a l l 

the way across a cross-section'perpendicular to the f i e l d . 

The calorimetrically measured transition, on the other hand, 

is sensitive to the bulk of the sample. 

Similar temperature scans were made in several 

different low magnetic fie l d s , going both up and down in 

temperature. The transition temperature and width were both 

independent of the sweep direction and the f i e l d . (The 
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Thermometer Res is tance ( i l ) 

Figure 50: Meissner effect data on a L i 2 5 ^ ^ ?
 sam

P^-
e

-
The horizontal axis is the resistance of 
the carbon resistor used as a sample 
thermometer. The temperatures of important 
features have been calculated: 

a- Indium transition at 3.403 K. 
b- 3.31 K: transition in sample 10% complete, 
c- 3.20 K: transition in sample 50% complete, 
d- 2.94 K: transition in sample 90% complete. 

The dashed line is the estimated background. 
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solenoid was not calibrated, but the fields used were 

between zero and a few gauss. The small applied magnetic 

fiel d was used only to provide some flux to be expelled at 

the transition. To avoid depressing the transition 

temperature, the fields used must be much less than the 

c r i t i c a l f i e l d . Fields of a few gauss are expected to 

satisfy this condition, and the fact that the transition was 

independent of f i e l d , for fields of this magnitude, shows 

that this is indeed the case.) 

7.3 COMPARISON WITH PREVIOUS WORK 

The superconducting transition temperature of Li
x
NbS

2
 has 

been measured by McEwan and Sienko (McEwan 1983, McEwan and 

Sienko 1982). The results are shown in figure 51. The 

samples were prepared by high temperature reaction, and for 

X<.13 are phase mixtures of the 2H and 3R crystal types. 

Samples which were phase mixtures sometimes showed two 

separate transitions, and this is why the figure has two 

T 's for some values of x. Li NbS
2
 prepared by room c X 

temperature intercalation is 2H at a l l x, and so it is not 

possible to directly compare the results for x<.13. 

For x>.13, however, McEwan and Sienko's samples were 

pure 2H, and in principle should have had the same 

properties as room temperature prepared material. For x 

between .13 and .17, McEwan and Sienko's samples exhibited 

(007) Bragg peaks in x-ray diffaction. Although they did not 

realize this, this line indicates that these samples were 
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0.0 0.1 0.2 0.3 

x in L i x N b S 2 

0.4 0.5 

Figure 51 T as a 
c 

function of x for a series of 

L i NbS
9
 samples prepared at high temperatures 

(McEwan 1983). For samples where no T
c
 was 

observed, the symbol T indicates the lowest 
temperature measured. 
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stage 2, or stage 2-stage 1 phase mixtures (section 2.3). 

Their result that T
c
 in the stage 2 region is lower than in 

the stage 1 region near x=.25 agrees with the results of the 

present study. 

As McEwan and Sienko increased x above .17, they f i r s t 

passed through a region where the presence of two T
c
's 

probably indicates a stage 2-stage 1 phase mixture. Near 

x=.25, close to the low x limit of the stage 1 phase, they 

observed one transition at about 3.2K, also in agreement 

with the present work. Between x=.30 and .35, however, 

McEwan and Sienko's T values remain in the 3.2 to 3.5K 

c 

range, while in this work, the x=.30, .32 and .35 samples 

showed no superconductivity. This disagreement is not 

significant, since as mentioned in chapter 2 in relation to 

lattice parameter data, McEwan "and Sienko's x values appear 

to be too high (by about .05 or more) in this region. 

7.4 DISCUSSION 

In the BCS theory of superconductivity, (Bardeen, Cooper, 

and Schrieffer 1957), T
c
 is given by 

T c - *£S> exp 
C Kfi 

N(e
F
)V (7-1) 

where <CJ> is an average phonon frequency, V is the strength 

of the phonon mediated effective interaction, and N(ep) is 

the density of states at the Fermi le v e l . Based on this 

equation, McEwan argued (qualitatively), that i f <o> and V 

remain constant on intercalation, the rigid band charge 
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transfer model implies that T
c
 should be a monotonically 

decreasing function of x. This argument is correct as far as 

it goes. Although the BCS equation for T
c
 does not give 

accurate numerical values, it does correctly identify the 

general trends. (For a recent review of the theory of T , 

see Allen and Mitrovic 1982.) As N(e
p
) decreases due to 

charge transfer and band f i l l i n g , T
c
 should drop. 

Unlike more accurate equations for T , the BCS equation 

displays the dependence of T
c
 on N(e

p
) e x p l i c i t l y . It is 

therefore possible to use i t , together with rigid band 

charge transfer, to calculate numerical values for T
c
 in 

Li NbS
2
. Values for V and <u> can be estimated from data on x

 2 

NbS
2
. Using N(e

c
,) from the calculation of Doran, et al 
r 

(1976), and setting •n<co>/k
B
=0

D
, allows V to be determined by 

solving (7-1) with T
c
 equal to the observed value of 5.7K. 

In chapter 5, values of N(e
p
) as a function of x were 

obtained using the rigid band charge transfer assumption. 

Putting these values into the BCS equation (7-1 ) gives the 

results shown in figure 52. 

The results calculated using rigid band charge transfer 

and the BCS equation do not agree with any of the data. The 

lack of precise numerical agreement is not serious, since 

there is no reason to expect it anyway. What is significant 

is that although the calculation predicts a T
c
 which 

decreases almost monotonically as a function of x, McEwan 

and Sienko's data show a rapid drop at low x, followed by a 

recovery between x=.1 and .3. McEwan (1983) has explained 



183 

Figure 52 T as a function of x, using the r i g i d 
band charge transfer model and the BCS 
equation for T

£
 (7-1). 
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the' depression of T
c
 between x^.02 and .3 in terms of a 

hypothetical charge density wave which is present only in 

this composition range. Near X=1/7, some form of lithium 

ordering along the c-axis with period 7c is supposed to play 

a role, causing, for example, the lack of any T
c
 in their 

x=.15 sample. There are serious problems with this 

explanation, however. First of a l l , McEwan searched for 

evidence of the CDW"in the resi s t i v i t y and magnetic 

susceptibility, and found none. McEwan also argues that 

Thompson's empirical relation for CDW transition 

temperatures in layered transition metal dichalcogenides 

(Thompson 1975) predicts that a CDW should occur. The 

Thompson relation is based on the c/a ratio of the 

crystallographic unit c e l l . It was not originally intended 

for use in intercalation compounds. Considering the drastic 

changes in the Fermi surface that will be produced by 

intercalation and charge transfer, there is no real reason 

to expect that the Thompson relation will apply to 

intercalation compounds. CDW's are now generally believed to 

be related to Fermi surface nesting (Wilson, et al 1975, 

Friend and Jerome 1979), and although there may well be a 

simple relation between Fermi surface geometry and unit c e l l 

geometry within a group of materials with similar 

structures, this will probably break down as soon as 

intercalation raises the Fermi level. Even if a CDW does 

occur, i t must be a relatively low amplitude, low 

temperature one, similar to that in NbSe
2
. Otherwise it 
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should have been easily observable. In NbSe
2
, the charge 

density wave transition temperature T
0
 is 33K and T"

c
 is 

7.2K. Data on the pressure dependence of T"
c
 (Berthier, et al 

1976) gives an idea of the magnitude of the effect that the 

CDW has on T . The application of pressure decreases T
0
 and 

increases T , until at 36kbar T
0
 disappears and T

c
 is 8.2K. 

Further increase in the pressure has l i t t l e effect on T . 

This can be understood by saying that the CDW opens gaps on 

the Fermi surface, reducing N(e
p
) and depressing T

c
 (from 

8.2 to 7.2K). Destroying the CDW with pressure then raises 

T . The fractional depression of T
c
 (=*12%) by the CDW in 

NbSe
2
 is much smaller than the 50% differences between T 's 
' c 

in Li NbS
2
 near x=.13 and .25. It may not be possible for a 

very weak CDW to produce the T
c
 variations observed. 

McEwan's evidence for the c-axis lithium ordering is the 

presence of the (007) Bragg peak, and, as we have seen in 

section 2.3, this is actually due to a simple stage 2 

structure. Ordering along the c-axis with period 7c would 

give rise to (0,0,1/7) and related peaks, not (007) ones. 

A correct and complete explanation of the behavior of 

T
c
 as a function of x is not available at present. As we 

have seen, the rigid band charge transfer model alone cannot 

explain the data. The behavior of T
c
 as a function of x 

should be influenced as well by the large changes in the 

phonon modes which are caused by intercalation (chapter 6). 

The BCS equation tends to overemphasize the importance 

of the density of states and in any case is valid only in 
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the limit of weak electron phonon coupling ( X « 1 ) . Since 

NbS
2
 and its intercalation compounds have the coupling 

constant X approximately equal to 1.8 (chapter 5), we are 

clearly in the regime of 'strong coupling' superconductivity 

and should really be using a different equation for T . 

The most widely used such equation is the 'modified 

McMillan equation' (McMillan 1968, Allen and Mitrovic 1982).' 

This is 

•ft GO 
J . O 0 -

exp T = l°K 
-1.04(1+A) 

1.2k
fi
 [_ (1+0.62 ) 

(7-2) 

where ^ *
s a

 l° 9
a r

i
t n m

i
c

 average phonon frequency, and u 

is an adjustable parameter of order .1 which represents 

Coulomb repulsion. This equation was used by Aoki, et a l , 

(1983) to discuss superconductivity in NbS
2
 intercalated 

with organic molecules. Another approach which works well 
* 

for many materials with 1.2<X<2.4 and . 1£/i £.15 (the usual 

range) is the empirical relation of Leavens and Carbotte 

(1974) 
T =0.1477A (7-3) 
c 

where A is the area under the electron-phonon coupling 

spectrum a
2

F(u), that is 

oo 

A = /a
2

F(co) dco (
7

"
4

> 
0 

The interaction spectrum a
2

F(co) is a dimensionless measure 

of the effectiveness of phonons of frequency u in scattering 

electrons between different points on the Fermi surface. It 

can be obtained from tunneling experiments. The structure in 
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a
2

F ( c o ) generally bears a close resemblance to the phonon 

density of states. The coupling constant X (also known as 

the mass enhancement factor), can be related to the 

interaction spectrum by 

x
 =

 2
 / ^ a

2

F(u))
 ( 7 _ 5 ) 

0
 w 

for isotropic materials (Allen and Mitrovic 1982). 

Although there is insufficient information to actually 

use the T
c
 equations (7-2) or (7-3), they do indicate that 

the phonons and electron-phonon coupling are extremely 

important in determining T . It is clear from the lattice 

specific heat data that intercalation produces large changes 

in the phonon spectra, although the low freqency acoustic 

phonons important in the specific heat are not necessarily 

the most important in determining T . 

The mechanism for the T
c
 variations in Li

x
NbS

2
 might be 

revealed by measurements of phonon spectra by tunneling or 

inelastic neutron scattering. It is not clear, however, that 

samples of suffient quality to allow these measurements 

could be prepared using the present methods. 



8. CONCLUSION 

8.1 SUMMARY OF THIS THESIS 

Most of this thesis is concerned with measurements of the 

low temperature specific heat of Li
x
NbS

2
. This is the f i r s t 

low temperature specific heat study of lithium intercalation 

in a layered transition metal dichalcogenide. 

Sample preparation was carried out by intercalating 

lithium into NbS
2
 in electrochemical c e l l s . Electrochemical 

and x-ray diffraction measurements were used to study the 

structure of Li
x
NbS

2
. Stage 2 and stage 3 phases were 

identified for the f i r s t time. In addition, there is some 

preliminary electrochemical evidence for in-plane lithium 

ordering near X=1/3. The extra peaks in -dx/dV which suggest 

ordering were seen only in electrochemical cells made from 

freshly prepared NbS
2
. The changes in electrochemical 

behavior may happen because of sulfur loss during storage. 

A cryostat suitable for specific heat measurements on 

small samples of air sensitive compounds was b u i l t . I t , and 

the experimental procedure, were described in chapter 3. 

Measurements were made on NbS
2
 and eleven Li NbS

2
 samples, 

covering the range 0<x^1. 

The original reason for doing this work was to test the 

rigid band charge transfer model of the electronic 

properties of intercalation compounds. The results for the 

electronic specific heat are consistent with complete charge 

transfer from the intercalated lithium atoms to the bands of 

188 
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the NbS
2
 host. Because the electronic specific heat of 

Li NbS
2
 is determined by the f i l l i n g of the original NbS

2 

bands, the data provide information on the electronic 

density of states of NbS
2
. In particular, a shoulder in the 

density of states predicted by earlier band structure 

calculations was reflected in the data, and its position was 

determined. 

There were also large changes in the phonon specific 

heat as a function of x. In chapter 6, we showed that the 

configurational degrees of freedom of the lithium will not 

contribute to the low temperature specific heat, since 

lithium motion will be 'frozen out' at temperatures below 

about 100 K. Simple models of the vibrational motion of 

intercalated lithium show that the new vibrational modes due 

to the addition of lithium are at high frequencies, and will 

not be seen in the specific heat. Because of this, the data 

could be discussed in terms of an elastic continuum model of 

lattice vibrations. The results suggest that intercalation 

induced changes in the elastic constant c
4fl
 associated with 

rigid layer shear are primarily responsible for the changes 

in phonon specific heat as a function of x. For x less than 

about .3, Cnn is significantly lower than in pure NbS
2
, 

indicating that small lithium concentrations between the 

layers weaken the interlayer shear forces. At higher x, c«
ft 

increases again, and by x=1 is larger than in NbS
2
. This 

suggests that the bonding in Li
1
NbS

2
 is more three 

dimensional than in NbS
2
. 
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Superconductivity in Li NbS
2
 is discussed briefly in" 

chapter 7. It is shown that the variations in N(e
p
) due to 

rigid band charge transfer are not sufficient to explain the 

available data. Intercalation induced changes in the phonon 

spectrum and the electron-phonon interaction must also be 

involved. 

8.2 SUGGESTIONS FOR FUTURE WORK 

The electronic specific heat of Li
x
NbS

2
 is now reasonably 

well understood in terms of rigid band charge transfer. The 

electronic specific heat of other intercalation systems 

might be of interest. For example Ti S
2
, which has an empty 

dz
2

 band and is either a semiconductor or semimetal, becomes 

metallic on intercalation. Li TiS
2
 would show an electronic 

x ^ 

specific heat which would increase with x. This might be a 

good system in which to make detailed comparisons between 

the data and the predictions of band theorists, since very 

detailed and supposedly accurate calculations are available 

for both TiS
2
 and Li,TiS

2
 (Umrigar, et al 1983, McCanny 

1979). 

A class of intercalation hosts for which simple rigid 

band charge transfer will not work at a l l are MoS
2
 and 

NbyMo.
]
_yS

2
 (0<y<l). These compounds undergo structural phase 

transitions when lithium is added. Py and Haering (1983) 

suggest that the transition is driven by the electronic 

energy. Electronic specific heat measurements on samples 

with lithium concentrations near the value at which the 
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transition occurs could improve our understanding of this 

process. 

The lattice specific heat data show that there is 

probably a softening of the shear elastic constant c
qfl
 in 

samples with 0<x<.3. It is of interest to know whether this 

is typical of a l l lithium intercalated transition metal 

dichalcogenides, or is peculiar to Li
x
NbS

2
. 

As seen in chapters 2 and 6, aging the NbS
2
 seems to 

have had an effect on the electrochemical properties and 

lattice specific heat of Li NbS
2
 prepared from i t . We have 

suggested that this may be due to loss of sulfur. It may be 

possible to test this hypothesis directly by preparing the 

non-stoichiometric compound Nb
1+
yS

2
, with a small well 

controlled amount y of excess niobium, and then 

intercalating this with lithium. (It may not, however, be 

possible to get this to grow in the 2H phase - see Fisher 

and Sienko 1980.) Another, rather time consuming, approach 

would be to start with the stoichiometric compound, and make 

a systematic study of the effects of aging and storage 

conditions on the electrochemical properties. 

A series of specific heat measurements on samples 

prepared from 'fresh' NbS
2
 would be of interest. By 'fresh' 

NbS
2
, we mean material which shows the extra peaks in 

-dx/dV, and which yields specific heat samples which behave 

like the x=.30 and .16 samples in the present study. It is 

not yet clear whether the high /3 values of the x=.30 and .16 

samples are related to lithium ordering which was not 
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present in the other samples, or to the presence of 

interlayer excess niobium i t s e l f . 'Fresh' samples might, in 

the f i r s t case, show peaks in (J at x values corresponding to 

the ordered states, or, in the second case, they might have 

higher /3 values throughout the low x range. 

The interpretation of the phonon specific heat data in 

terms of intercalation induced changes in the elastic 

constant c
M
 suggests a possible application for Li NbS

2
 or 

related intercalation compounds. Layered materials, chiefly 

graphite and MoS
2
, are widely used as solid lubricants. 

Their lubricating ability is related to the fact that 

because of the relatively weak interlayer interactions, the 

layers can slide over one another in response to a 

mechanical force. When some powdered MoS
2
, for example, is 

placed between two sliding surfaces, layer slipping allows 

it to spread into a smooth lubricating film. A low value of 

c„„ means that the interlayer shear forces are weak, and 

that layer slipping can occur easily. If we assume that the 

other elastic constants have values close to the ones we 

used for NbS
2
, the specific heat results for Li

 1
gNbS

2
 imply 

that i t had c
4
2 • 1 0

1

° N / m
2

. For comparison, graphite and 

MoS
2
 have C„ 4 • 1 0

 1

 °N/m
2

 and 1 . 9 • 1 0
 1

 °N/m
2

 , respectively 

(Wakabayashi and Nicklow 1979, Feldman 1976). It is 

possible, therefore, that Li NbS
2
 with 0<x<.4 may be a 

superior solid lubricant for c r i t i c a l applications, and its 

lubricating properties should be investigated. Although the 

presence of reactive lithium might seem to rule out the 
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practical use of Li NbS
2
, solid lubricants are often used 

mixed with grease or o i l , and this might be sufficient to 

protect the intercalation compound from a i r . It may also be 

that layer compounds intercalated with other, less reactive, 

species w i l l show similar behavior. 

As mentioned in chapter 7, the superconducting 

properties of Li NbS
2
 remain something of an enigma. It 

should be pointed out that the superconducting transition 

temperature of Li NbSe
2
 varies as a function of x in a way 

that is very different than for Li
x
NbS

2
 (McEwan 1983). 

McEwan's measurements on Li
x
NbSe

2
 were made on samples 

prepared at high temperatures. The samples had the 2H 

structure, and the presence of (007) and (009) Bragg peaks 

in the x-ray diffraction patterns for some of the samples 

indicates the presence of a stage 2 phase similar to that in 

Li NbS
2
, and in Li NbSe

2
 prepared by electrochemical 

X X 

intercalation (D.C.Dahn and R.R.Haering 1982). The band 

structure of NbSe
2
 is very similar to that of NbS

2
 (Wexler 

and Wooley 1976). In spite of the fact that i t s host band 

structure and staging behavior are almost identical to those 

of Li NbS
2
, T for Li NbSe

2
 is a smooth monotonically 

X C X 

decreasing function of x. The reasons for the drastically 

different T
c
(x) behavior in these two compounds is an 

intriguing problem to be solved by future research. 
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APPENDIX 1; INTENSITIES OF X-RAY BRAGG PEAKS FOR STAGE TWO 

Li NbS
2 —— 

The purpose of this appendix is to briefly outline a 

calculation of the Bragg peak intensities for stage 2 

Li
x
NbS

2
, to present the results, and to compare them with 

measurements on Li ^NbS
2
 made using an electrochemical c e l l 

with a beryllium x-ray window. Portions of this data have 

already been presented in figure 6(d). The hexagonal lattice 

parameters were c=12.35 A and a=3.330 A. 

To calculate the intensities we need to know the 

positions of the atoms in the unit c e l l . Atom positions will 

be given in terms of the three basis vectors c, a,, and a
2
. 

c has length c and l i e s in the direction normal to the 

layers, a, and a
2
 both have length a, l i e in a plane 

parallel to the layers, and make an angle of 120° with each 

other. In the notation to be used (p,q,r) indicates a 

position pa
1
+qa

2
+rc. Picking the origin to l i e halfway 

between the two niobium atoms in the unit c e l l (that i s , at 

one of the octahedral sites in the gap), the atom positions 

for the 2H-NbS
2
 structure are (see figure 2): 

Nb at ±(0,0,-1/4) 

S at ±(1/3,2/3,z), ±(1/3,2/3,1/2-z) 

where z is defined in figure A1 — 1. These atom positions lead 

to a structure factor of zero for (00/) Bragg reflections 

with / odd. The exact value of z for NbS
2
 is not known, but, 

as in most of the 2H transition metal dichalcogenides, it is 

approximately 1/8 (Hulliger 1976). The extinction of (00/) 

200 
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peaks with / odd does not depend on the value of z. 

To get atom positions for stage 2 Li NbS
2
, we start by 

taking Z=1/8 in pure NbS
2
. We then make the assumption that 

the change in the c-axis in going from NbS
2
 to stage 2 

Li NbS
2
 is due entirely to the expansion of only one of the 

two interlayer gaps in the unit c e l l (we choose the one at 

the origin). This is shown schematically in figure A1 — 1. 

Since the scattering factor of lithium is very low, the 

inclusion of the lithium in the calculation makes l i t t l e 

difference in the results. The most important factor 

determining the intensities is the gap expansion. For 

completeness, however, we will include the intercalated 

lithium, and will assume it lies in the octahedral sites in 

the expanded gap. There is not a lithium atom in every unit 

c e l l , so for the purposes of the intensity calculation we 

take the scattering factor at the lithium site to be 2x 

times the scattering factor of a lithium atom. Here x is the 

overall value in Li NbS
2
. Since- every second gap is empty, 

the concentration in the f i l l e d gaps is 2x. In terms of the 

expanded unit c e l l , the atom positions in stage 2 Li NbS
2 

are: 

Nb at ±(0,0,-.257) 

S at ±(1/3,2/3,.136), ±(1/3,2/3,.379) 

2x Li at (0,0,0) 

Starting with these atom positions, the integrated 

intensities of the peaks were calculated using a computer 
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b 

• - Nb 

O - S 

0 - L i 

Figure Al-1: Projections onto a (110) plane of the 
unit cells of 

a- NbS
2 

b- stage 2 L i NbS
9
. 

(not to scale) 
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program written by R.Marselais
2 7

. The program begins by 

calculating the structure factor F in the usual way. Atomic 

scattering factors from Ibers and Hamilton (1974) were used. 

The measurements were made with a Philips PW1050/70 vertical 

goniometer, which uses the Bragg-Brentano pseudofocusing 

geometry shown in figure A1-2. For a goniometer with an 

angular divergence 6 of the incident beam, and a diffracted 

beam monochromator, the integrated intensity of a Bragg peak 

centered at angle 28 is (for a thick sample) 

l+cos
2

2 8cos
2

2(^ 
I = I

0
m|F|

2

6 
_ sin6sin2cj) 

(Al-1) 

where I
0
 is a constant, m is the multiplicity of the 

reflection, and the angles 8 and <t> are defined in the 

figure. The results of calculations using (Al-1) are listed 

in table A1-I for peaks at angles 2 0 < 9 O°. They are in the 

column labelled 'standard intensity'. 

In our diftactometer, 8 is not constant because of a 

Philips PW1386/50 automatic divergence s l i t , which instead 

of providing a beam of constant divergence as would a fixed 

s l i t , keeps the illuminated area of the sample approximately 

constant. In addition, when using an x-ray c e l l , the 

intensities must be corrected for absorption in the 

beryllium window. Corrections for these effects have been 

discussed by Py and Haering (1983) and J.R.Dahn (1982), and 

are included in the computer program. The corrected 

27

XBAT:SPECTRUM.S 
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Figure Al-2: The Bragg-Brentano focusing geometry. 
In most diffractometers the sample is 
f l a t , not curved. Because the sample 
dimensions are much less than R, the 
focusing condition is s t i l l approximately 
satisfied, hence pseudofocusing. 
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intensities are also included in the table, as are the 

diffaction angles 26 calculated for copper Ka radiation. 

Detailed comparison of a l l the intensities with 

experiment was not done. This would be d i f f i c u l t because of 

preferred orientation effects (the calculation assumes 

random orientation in the powder sample), and in any case we 

are primarily interested in the (00/) peaks, especially 

those with / odd. Calculated and observed relative 

integrated intensities for the (00/) lines are given in 

table A1-II. Preferrred orientation should have an equal 

effect on a l l of the lines in this group. The agreement 

between calculated and experimental values is reasonably 

good. The calculation shows why, of a l l the (00/) peaks with 

/ odd, only the (007) and (009) peaks have been observed in 

stage 2 Li NbS
2
 and stage 2 Li NbSe

2
 (this work, McEwan 

X X 

1983, D.C.Dahn and Haering 1982). 

The (009) peak was considerably wider than the other 

observed (00/) peaks. The f u l l width at half maximum of the 

(009) peak was ^.7° in 26, while the (008) peak, for 

example, was .3° wide. This indicates some disorder in the 

staging sequence. It can be shown (J.R.Dahn 1982), that 

staging disorder broadens the (00/) lines with / odd much 

more than those with / even. 

The experimental (10/) lines had relative intensities 

in qualitative agreement with the calculation. Since these 

lines depend strongly on the stacking sequence of the NbS
2 

layers, this agreement indicates that the host stacking 
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sequence is not affected by intercalation (that i s , it is 

s t i l l BaB-CaC in the notation of section 1.2). 
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Table A1-I 

Calculated integrated intensities and angles for stage 2 
Li NbS

2
 (see text). 

29 
h k 1 (degrees) 
0 0 1 7.15 
0 0 2 14.34 
0 0 3 21 .57 
0 0 4 28.90 
1 0 0 30.98 
1 0 1 31 .84 
1 0 -1 31.84 
1 0 2 34.29 
1 0 -2 34.29 

0 5 36.35 
1 0 3 38.07 
1 0 -3 38.07 
1 0 4 42.88 
1 0 -4 42.88 

0 6 43.97 
1 0 5 48.49 
1 0 -5 48.49 

0 7 51 .79 
1 0 6 54.76 
1 0 -6 54.76 
1 1 0 55. 1 1 
1 1 1 55.65 
1 1 2 57.26 
1 1 3 59.87 

0 8 59.88 
1 0 -7 61 .58 
1 1 4 63.42 
2 0 0 64.58 
2 0 1 65.07 
2 0 -1 65.07 
2 0 2 66.54 
2 0 -2 66.54 
1 1 5 67.83 
0 0 9 68.32 
2 0 3 68.95 
2 0 -3 68.95 
1 0 8 68.96 
1 0 -8 68.96 

Standard Corrected 
Intensity Intensity 
(relat ive) (relat ive) 

0.74 0.07 
100.00 48.08 
0.40 0.39 
1 .78 2.71 

20.76 34.85 
7.87 1 3.73 
8.54 14.90 
31 .58 61 .04 
31.21 60.32 
0.07 0.14 
8.89 1 9.78 
0.82 1 .82 
27.49 71 .52 
38.44 100.00 
4.00 10.75 
6.42 1 9.56 
0.33 1 .00 
0.82 2.71 
7.95 28.16 
8.75 31.01 
24.21 86.46 
0.03 0.12 
15.23 57.00 
0.16 0.63 
5.27 20.82 
2.21 9.04 
1 .55 6.58 
2.59 11.21 
0.89 3.90 
0.81 3.54 
4.34 1 9.42 
4.38 1 9.64 
0.07 0.33 
0.58 2.69 
0.11 0.53 
1 .39 6.48 
3.25 15.17 
0.86 4.04 
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Table A1-I (Continued) 

Standard Corrected 
29 Intensity Intensity 

h k 1 (degrees) (relat ive) (relative) 
2 0 4 72.26 7.77 38.24 
2 0 -4 72.26 5.59 27.53 
1 1 6 73.04 5.18 25.81 
2 0 5 76.43 0.08 0.42 
2 0 -5 76.43 1 .62 8.48 
1 0 9 76.89 0.07 0.40 
1 0 -9 76.89 1 .61 8.47 
0 0 10 77.20 1 .04 5.53 
1 1 7 79.02 1 .40 7.58 
2 0 6 , 81.43 2.77 15.50 
2 0 -6 81 .43 2.51 14.07 
1 0 1 0 85.48 1.81 1 0.63 
1 0 -10 85.48 1.31 7.70 
1 1 8 85.77 11.81 69.62 
0 0 1 1 86.67 0.11 0.64 
2 0 7 87.26 0.87 5.21 
2 1 0 89.93 2.19 13.51 
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Table A1-II 

Integrated (00/) intensities for stage 2 Li
x
NbS

2
. The (007) 

peak was not observed because i t s position coincided with.a 
beryllium Bragg peak originating in the c e l l window. The 
(002) peak may have been partially obstructed by the c e l l 
case. 

Calculated 
Corrected Intensity Observed Intensity 

Peak (relative to (008)) (relative to (008) ) 

(001 ) 0.35 out of range 

(002) 230 150 ' 

(003) 1 .9 not observed 

(004) 13. 1 2 

(005) 0.67 not observed 

(006) 51 70 

(007) 1 3 obscured by Be 

(008) 100 1 00 

(009) 1 3 1 5 

(00JJ0) 27 20 

(001 1 ) 3.0 not observed 



APPENDIX 2; SOLUTION OF THE HEAT FLOW EQUATIONS 

This Appendix contains the solution of the heat flow problem 

for a relaxation time heat capacity measurement in which the 

sample's thermal conductivity is f i n i t e . Some of the results 

are given in Bachmann, et al (1972), but it will be useful 

to outline the derivation here. Also, in the cryostat used 

in this work, the heat capacity of the wires which support 

the sample platform is very small compared to the heat 

capacities of the sample and the platform. This leads to a 

useful simplification of the resulting equations, which is 

also discussed. 

Consider the system of figure A2-1. If the thermal 

conductivity of the platform is high enough that it is 

always essentially isothermal, and if there is no heat loss 

from the sample's edges, the temperature in the sample will 

be a function only of z, the coordinate normal to the plane 

of the platform. In this case, we have a one-dimensional 

heat flow problem. 

It is convenient to work in terms of a relative 

temperature 

where T
0
 is the temperature of the block. The heat equation 

for an inhomogeneous system is then (Carslaw and Jaeger 

where s(z) is the heat capacity per unit length and K(z) is 

0(z,t)=T(z,t)-T
o 

(A2-1) 

1959) 

(A2-2) 

210 
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R e f e r e n c e Block (TQ) 

Figure A2-1: Model system for heat flow calculations. 



212 

the (1D) thermal conductivity. The thermal diffusivity 

K(z)/s(z) is constant in each of the three parts of the 

system and can be described by 

s(z)/K(z)=C
w
/k

w
L

2

 0<z<L 

s(z)/K(z)=C
p l
/k

p l
/

2

 L<z<z
0
 (A2-3) 

s(z)/K(z)=C
s
/k

s
l

2

 z
0
<z<z, 

where the C's and k's are, respectively, the appropriate 

heat capacities and thermal conductances of the parts. 

At z=0, the temperature is fixed at the block 

temperature, and at z=z, there is no heat flow, so the 

boundary conditions are 

0(O,t)=O (A2-4) 

90(z,,t)/9z=0 (A2-5) 

At the internal boundaries z=L,z
0
 we require that the heat 

flow be continuous: 

K(z) 90(z,t)/9z continuous at z=z
0
,L (A2-6) 

If there is no thermal contact resistance at either of the 

boundaries, we also have 

0(z,t) continuous at z=z
0
,L (A2-7) 

The case of a non-zero thermal boundary resistance (e.g. a 

poor grease joint) has been treated by Bachmann, et al 

(1972). 

To solve (A2-2), we begin by separating variables 

0(z,t)=0(z)<//(t) (A2-8) 
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Then, defining the separation constant as -1/T, 

s(z) dz L_ dzj 

1_ 1_ [ ^
( z )

d i l 
dt 1 (A2-9) 

T 

which gives 

</>(t)=e -t/r (A2-10) 

and 
dtj> 
dz 

+ s(z) 
T 

0 (A2-11) 

Equation (A2-11) and the boundary conditions define a 

Sturm-Liouville system. The eigenfunction solutions will be 

called 0
n
 and the corresponding eigenvalues T . Using the 

homogeniety of the boundary conditions, i t can be shown that 

the. eigenfunctions are orthogonal with respect to s(z), that 

is , 

(Strictly speaking, we must also require s(z) and K(z) to be 

continuous; for this reason (A2-3) should be considered only 

an approximation to the actual s(z) and K(z) which change 

rapidly but continuously at z=l and z=z
0
.) 

The next step is to find the <t> . The following form 

z 
fs('z)tf>

n
(z)4>

m
(z)dz=0; 

0 

m*n (A2-12) 
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satisfies (A2-11) and the boundary conditions; 

<t> (z) = sinX z 0<z<L 
n n 

<p (z) = a COS7 z + b cosy L<z<z
0
 (A2-13) n n n 

V>
n
(z) = d cos(i

n
(z,-z) z

0
<z<z, 

where 
(X

nL)2=V
k

w
7

n 

( V
) 2 = C

p l /
k

p l
T

n
 ( A 2

~
1 4 ) 

and a, b, and d are constants to be determined from the 

internal matching conditions (A2-6) and (A2-7). These 

conditions yield the equations 

sinX L = a sin7 L + b C O S 7 L 
n n n 

d cosju
n
l = a sin7

n
(L+/) + b cos7

n
(L+/) (A2-15) 

X k L cosX L = a7 k ,/ C O S 7 L - b7 k , / sin7 L 
n w n n pi n n pi n 

dM k 1 sinji 1 = a7 k , / C O S 7 (L+/) n s n 'n pi 'n 

- b7 k ,/ sin yn(L+l ) ' n pi n 

We wil l be interested in the case kpi*
0 0

 (or 7
n
-*0)» so the 

problem can be simplified by expanding the right hand sides 

of these equations to order 7
n

2

. Doing this and solving the 

f i r s t three equations for a, b, and d gives 

a - 7
n
L sinX

n
L + (VVr

n
/C

pl
) cosX

n
L 

b - sinX
n
L(1-

7

2

L/2) - (V^V
 T

n
/ C

p l
> 7

n
 c o s X

n
L

 (A2-16) 

d sinX
n
L/cosju

n
l 
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Substituting these into the fourth equation of (A2-15) and 

dropping terms of order 7 * gives the eigenvalue equation 

-(C
w
/X

n
D cotX

n
L + (Cs/Mn

D tanM
n
l
 + c

p l
 =

 0

 (A2-17). 

which is valid in the limit k (This equation can also 

be derived by taking kp^=°° at the start of the problem, that 

i s , taking the sample platform to be isothermal. In this 

case, the internal matching condition (A2-6) is meaningless 

and must be replaced by a heat balance equation for the 

platform, which then reduces directly to (A2-17).) 

Therefore, the eigenfunctions 4>n are given by 

<t> = sinX z 0^z<L 
n n 

<t> = sinX L L<z<z
0
 (A2-18) 

n n 

<j> = sinX L cosu (z ,-z) /cosu 1 z0^z<z^ n n n n 

where u and X are defined in terms of T by (A2-14) and T n n n •* n 

is the n
fc

^ solution of the eigenvalue equation (A2-17). 

The solution to the entire time-dependent heat flow 

problem is then 

0(z,t) = I A
n
«

n
( z ) e Z/Tn (A2-19) 

n=l 

where the coefficients A are determined by the i n i t i a l 
n 

conditions. In the case of a relaxation time heat capacity 

measurement, we take t=0 to be the time the sample heater is 

switched off. Heat has been supplied to the sample platform 

at a rate P for t<0. Thus the i n i t i a l condition is 
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0(z,O)=0
o
=P/k

w
 L<z<z, (A2-20) 

0(z,O)=0z/L 0^z<L 

So, since the #
n
 form an orthogonal basis, 

/ dz s(z)9(z,0)ct)
n
(z) 

A =
 0 . (A2-21) 

/ dz s(z){cb (z)}
2 

0 

Evaluating the integrals and using (A2-14) and (A2-17) gives 

2e
0
c . c _ c , - l 

A = (l+tan
2

y
n
l + —(1+cot

 2

A
n
L) + ) n

 C A
2

L
2

sinX L C " C s n n s s 
(A2-22) 

which, together with (A2-14), (A2-17), (A2-18), and (A2-19), 

completely specifies the solution. 

Bachmann, et al (1973) outline a method of data 

analysis which is based on a numerical solution of equations 

(A2-17) and(A2-22) with n=1. It uses as input data the 

values of C
w
, k

y
, C

 T

i»
 a n

^ h)<t> ̂  (L)/6
0
. and C

w
 must 

be known beforehand; the other values can be determined from 

a f i t to the thermal decay data. (h^<p^{L) is available from 

the data because the temperature is measured at the 

platform, that i s , at z=L.) 

In the cryostat used for this work, however, the wire 

heat capacity C
w
 is not accurately known. It i s , however, 

much smaller than either the platform heat capacity C
p
^ or 

the sample heat capacity C
g
. Rough estimates also show that 

C /k r,=(X,L)
2

 is typically about .02, and that C /C is of 
W W s w 
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order 100. It is therefore useful to examine the equations 

in the limit where C
w
 and X,L are small. Setting tanX^-X^ 

in (A2-22), and using the fact that C « C , gives 

AiSinAiL 2k n 
(A2-23) 

0o C
g
(l+tan

2

yil) + y i + C
p l 

Treating the eigenvalue equation (A2-17) the same way and 

solving for C
g
 gives 

C
s
=(k

w
T

1
-C

p l
)^il/tanM,l (A2-24) 

Substituting this into (A2-23) gives 

(A2-25) 
AiSinXiL 2k T i 

w 

0o yxKcotyil + tanu a ) (k
W
T ! - C

p]
_) + k

W
T
 x
 + C

p l 

Section 3.4.2 describes how (A2-24) and (A2-25) were used in 

analysis of Li
x
NbS

2
 specific heat data. In the notation used 

there, A,sinX,L is 0,. 


