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Abstract

This thesis describes a study of the low temperature
specific heat of LibeSZ, where x is between 0 and 1.
Samples were prepared by intercalating lithium into niobium
disulfide in electrochemical cells. Structural data obtained
by x-ray diffraction are presented. These, together with
electrochemical measurements, show that staged phases exist
for some values of x. The electronic specific heat of
LibeSZ is consistent with complete charge transfer from the
intercalated lithium to the bands of the NbS, host. The
lattice specific heat also shows large changes as a function
of x. A discussion of the data in terms of continuum
elasticity theory suggests that intercalation produces large
'changes in the shear elastic constant c,4. A brief

discussion of superconductivity in LibeS2 is also included.
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1. INTRODUCTION

1.1 INTERCALATION

Intercalation, as the term is used here, is the reversible
insertion of 'guest' atoms or molecules into a 'host' solid,
in such a way that the crystal sﬁructure of the host is not
drastically alteréd. A necessary condition for intercalation
is the existence of sites in the host which are available
for occupation by the guest. These sites must be accessible
from the surface of the host, and the guest, or intercalant,
must be mobile in the host. Perhaps the best known
intercalation host is graphite, in which a wide variety of
atoms and molecules can be inserted between the carbon
layers. Graphite intercalation cohpounds have been
comprehensively reviewed by Dresselhaus and Dresselhaus
(1981). Other layered materials which have been shown to be
intercalation hosts include some of the layered silicates,
and the layered transition metal dichalcogenides (LTMDs)
such as NbS,. For reviews of intercalation in the LTMDs see
Whittingham and Jacobson (1982), Whittingham (1978), Levy
(1979), or Marseglia (1983). Intercalation has also been
observed in some non-layered hosts; for example lithium
intercalates into V,05 (Murphy et al. 1979) and some of the
other ;ransition metal oxides, and into Mo¢Syz (Schollhorn
and Kumpers 1977, Mulhern 1982).

Electrochemical cells based on intercalation:

(Whittingham 1976) have received a great deal of attention



in recent years, since they can form the basis of long life,
high energy density rechargable batteries. The most
promising systems from a practical point of view are those
involving lithium intercalation into the LTMDs. Cells based
on lithium intercalation into TiS, have been studied
extensively (J.R.Dahn 1982, Whittingham 1979) and Li/MoS,
cells (Py and Haering 1983) are now being produced
commercially'. This thesis is concerned with the
intercalation compound LibeSZ, which can also be prepared
and studied by means of electrochemical intercalation. A
schematic diagram of a Li/LiXNbSZ cell is shown in figure 1,
to illustrate the operation of an intercalation cell. The
half cell reactions are

xLi e xLi* + xe- (1-1)
at the lithium metal anode and

xLi* + xe~ + NbS, «> LibeSZ (1-2)

at the LibeSZ cathode. The electrons move from the anode to
the cathode through an external circuit, and the Li* ion
moves through the electrolyte.

In addition to their practical applications,
intercalation cells can be used to obtain a great deal of
thermodynamic information about the intercalation compound.
This is because the open circuit voltage of a lithium

intercalation cell is given by (McKinnon and Haering 1983)

'Moli Energy Ltd., Burnaby, B.C.
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| LiyNbS,

_—Electrolyte

Figure 1:

Schematic diagram of an intercalation
cell. The electrolyte consists of a
lithium salt dissolved in an organic

solvent.



V(x)=(u_-u_) /e (1-3)

where My and u, are the chemical potentials of lithium atoms
in the anode and cathode, respectively, and e is the
‘electronic charge.

A complete review of the literature of intercalation
cells would be beyond the scope of this thesis, so only a’
few examples will be given. High resolution electrochemical
measurements of V(x) and 9x/9V (J.R.Dahn and McKinnon 1984a)
can be compared with theoretical models of the intercalation
compound (Dahn, Dahn, and Haering 1982, McKinnon and Haering
1983). These and related electrochemical techniques have
been used to study a number of phenomena which occur in
layered intercalation compounds. One of these is staging. An
intercalatidn compound of stage n is one in which every nth
interlayer gap contains a higher concentration of guest than
the intervening n-1 gaps. Staging is best known in the
graphite intercalation compounds, and also occurs in some of
the intercalated LTMDs, such as Ag Tas, (Scholtz and Frindt
1980), Li _NbSe, (D.C.Dahn and Haéring 1982) and Li NbS,.
LixTaSZ (J.R.Dahn and McKinnon 1984b) exhibits staging as
well as two-dimensional lithium ordering in the interlayer
gaps. In addition to V(x) measurements, the temperature
coefficient 9V/3T of cell voltage has been used to obtain
the entropy‘of intercalation compounds (J.R.Dahn and Haering

1983).,



Intercalation cells can also be used as a convenient
sample preparation technique, and it is primarily in this
role that they appear in this thesis. By preparing a Li/NbS,
cell and allowing it to discharge, the cathode material is
converted to LibeSZ, where x can be accurately determined
by ﬁime—integrating the cell current. As shown in Chapter 2
for LibeSZ,_materials prepared this way may be in a
different crystal phase than materials of the same
composition prepared by other methods such as direct high

temperature reaction of the elements.

1.2 NIOBIUM DISULFIDE

NbS, is one of the layered transition metal dichalcogenides.
These are compounds of the form MX,, where M is a group'IV,
vV, or VI transition metal and X is sulfur, selenium, or
tellurium. The LTMDs consist of strong covalently bonded MX,
layers separated by so-called Van der Waals gaps. The
interlayer bonding is relatively weak, although it is no
longer believed to be due entirely to the Van der Waals
interaction (Umrigar et al. 1983, Hibma 1982). A number of
review articles dealing with the LTMDs (Wilson and Yoffe
1969, Yoffe 1973, Hullinger 1976, Lieth and Terhill 1977,
Vandenberg-Voorhoeve 1976), their charge density waves
(Wilson et al. 1975, Williams 1976), and superconductivity
(Frindt and Huntley 1976), are available, and I will
therefore restrict the following discussion to NbS, as much

as possible.



NbS, is found in two polytypes; one (referred to as 2H)
with a two layer high hexagonal unit cell and one (3R) with
a three layer rhombohedral structure. The NbS, used in this
work was 2H. These structures are shown in figure 2. If we
consider the structures as stacks of two dimensional close
packed planes, the stacking sequences are BaB-CaC for
2H-NbS, and BaB-CbC-AcA for 3R-NbS,. The letters refer to
the three inequivalent positions marked in figures 2 and 3.
Capital letters refer to S and sﬁall letters to Nb. By
analogy with Li TiS, (J.R.Dahn et al. 1980), intercalated
lithium atoms are believed to lie in the octahedrally

coordinated sites in the interlayer gaps.

1.3 BAND STRUCTURE AND THE RIGID BAND CHARGE TRANSFER MODEL

The electronic energy band schemes for NbS, and the other
LTMDs first proposed by Wilson and Yoffe (1969) have since
been confirmed by a number of experiments, as well as by
detailed band structure calculations (Mattheis 1973, Wexler
and Wooley 1976). The qualitative features of the 2H-NbS,
bands are shown in figure 4. The valence bands are
predominantly of sulfur 3s and 3p character, and the
partially filled conduction band is derived primarily from
niobium 4d states. The 3R polytype has an almost identical
density of states, at least for the d states, since the
coordination of S around Nb is trigénal prismatic in both
polytypes, and this is the most important. factor in

determining the d state splitting. NbS, is metallic, since



|27

Figure 2: The structure of 2H-NbS,. Black circles
' indicate niobium atoms and open cicles
are sulfur. Intercalated lithium is
believed to lie in the octahedral site
halfway between the two niobium atoms.
3R-NbS»> has layers of the same type, but
a different interlayer stacking sequence.

Figure 3: Definition of the letter notation for
‘ close-packed atomic planes.
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Figure 4: Schematic band structure of Nsz.



the Fermi level lies in the middle of the half filled dz?

band.

The properties of LTMDs and their intercalation
compounds have frequently been discussed in terms of the
rigid band charge transfer model (RBCT). This model assumes
that:

1. The d bands at least are not affected very much by
intercalation (rigid bands).

2., On intercalation of an alkali metal atom, its valence
electron is donated to the lowest unoccupied state in
the host bands (complete charge transfer). Other
intercalated electron donors such as certain organic
molecules‘exhibit incomplete charge transfer.

RBCT has been used extensively to explain the optical and

electrical properties of intercalated LTMDs. The reviews by

Marseglia (1983) and by ¥offe (1982), for example, discuss a

number of experimental results from this point of view.

Occasionally the predictions of RBCT fail; this is often due.

to intercalation induced changes in the s and p bands which

can lead to overlap with the d band. Theoretical insight

- into the RBCT model has come from the calculations of

McCanny (1979), and of Umrigar et al. (1983). In both these

works, first priﬁciples band structure calculations for TiS,

and_LixTiSZ are performed and compared. The calculated d

bands are not significanﬁly altered by intercalation, except

by filling due to charge transfer. The sulfur 3§ and 3p

bands are, however, modified considerably, as is a
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high-lying Ti 4s-like band. Although the tight-binding model
of band structure is not accurate enough for calculations in
the LTMDs, one can discuss the results in a tight-binding
framework. From this point of view, the s and p bands are
more strongly affected by intercalation because the atomic s
and p states on which they are based are large in size, and
extend significantly into the interlayer gap. (The sulfur P,
states extend férthest into the gap, and it is their overlap
which is primarily responsible for interlayer bonding in the
unintercalated LTMDs.) On intercalation, there is a large
overlap of the s and p states with the Li 2s state. The
metal atom d states, because of their smaller size, do not
extend into the gap and aré not affected.

From the above discussion, there is good reason to
expect RBCT to be a valid way of understanding those
electronic properties of intercalated LTMDs which depend
primarily on electrons at or near the Fermi level (that is,
in the d bands). One such property is the electronic
contribution to the low temperature specific heat, and it
was the possibility of making a quantitative test of the
RBCT model in this way which motivated the work described in

this thesis.

1.4 CONTRIBUTIONS OF THIS THESIS

Chapter 2 of this thesis is concerned with the preparation
and characterization of NbS, and LibeSZ. It will be shown

that staged phases exist in LibeSZ, as in LibeSe2
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(D.C.Dahn and Haering 1982). This has not been realized by
previous authors (McEwan and Sienko 1982, McEwan 1983).

Chapter 3 describes the low temperature heat capacity
cryostat built for this work, and the procedures used for
measurements and data analysis. The results for eleven
LibeS2 samples covering the range 0 to 1 in x are given in
chapter 4.

The specific heat of a normal metal at sufficiently low
temperatures has the form (Ashcroft and Mermin 1976, for
example)

c=yT+BT? (1-4)
where v and B are constants?. The first term in (1-4) is due
to the electrons and is proportional to the density of
states at the Fermi level. It can be separated from the
cubic term by fitting the data to (1-4). In the RBCT model,
as x is increased by ihtercalation, the Fermi level moves up
through the host bands, and the variation of 4 with x
directly maps out the d band density of states. The
interpretation of the electronic specific heat data in this

fashion is discussed in chapter 5.

Note that it has not been specified whether this is the
specific heat at constant volume or constant pressure.
Experimental evidence and thermodynamic arguments show that
the difference between these is insignificant in solids,
especially at low temperatures (Ashcroft and Mermin 1976,
p427). Although we can ignore the difference between the
two, the experimental data in this thesis were measured at
constant pressure, while the theoretical expressions in
chapters 5 and 6 are, strictly speaking, valid for constant
volume.
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The cubic term in the low temperature specific heat is
due to lattice vibrations. The coefficient B of this phonon
term also changes as a function of x, and some possible
reasons for this are presented in chapter 6.

Chapter 7 is a brief discussion of superconductivity in
LibeSZ and chapter 8 summarizes the thesis. Suggestions for

future work are also given.



2. PREPARATION AND STRUCTURE OF INTERCALATED NIOBIUM

DISULFIDE

2.1 PREPARATION OF NbS,

The NbS, used in this work was prepared by reaction of the
elements in evacuated qguartz ampoules. The starting
materials were 99.9% pure niobium powder and 99.9999% pure
sulfur powder?®. The niobium powder was reduced by heating it
to 500°C in hydrogen.® After reduction the niobium was
handled only in an argon atmosphere. Weighed amounts of
niobium and sulfur were placed in quartz ampoules which were
then evacuated using a diffusion pump, and sealed. Enough
excess sulfur was added to produce approximately

6 atmospheres of sulfur gas pressure at the annealing
temperature of 750°C®. The excess sulfur is required in

order to get a stoichiometric product with the 2H structure

3 Both from SPEX Industries, Metuchen, N.J.

4

Hydrogen can be absorbed into Niobium to form a metal
hydride. It has recently been learned that the reduction
procedure that was used leaves a significant amount of
hydrogen in the niobium metal. X-ray diffraction
measurements of the niobium that was used to prepare NbS,
batch DD12 indicated that it contained about 20 atomic
percent hydrogen. (The lattice parameters of H_Nb are known
as a function of x; see Schober and Wenzl 1978,) However,
proton NMR measurements failed to detect any hydrogen in the
NbS, that was produced from this material. When NbS, is
prepared by high temperature reaction, the hydrogen may
react with some of the excess sulfur present to form H,S.

5

The thermodynamic properties of sulfur vapour have been
measured by Rau et al. (1973)

13
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(Fisher and Sienko 1980). Typical ampoules had an interior
volume of about 12cm?®, and contained about a 6g total
charge, of which about .2g was excess sulfur. The ampoules
were heated slowly to the reaction temperature of 950°C,
left there for 2 to 3 days, then annealed at 750°C for one
day. This was followed by a quench into cold water. The
guench is necessary in order to obtain the 2H phase, and
also neatly separates‘the excess sulfur from the NbS,, since
all the sulfur vapour condenses out on the cold walls of the
ampoule during the quénch. The product is a free flowing
powder. Since the excess sulfur adheres to the walls, only
the material which can be poured freely out of the ampoule
when it is cracked open is used.

X-ray powder diffraction measurements.were made on the
NbS, powders. For the three batches of NbS, used in this
work, the dimensions of the hexagonal unit cell are listed
in table I. All these batches are pure 2H phase. No Bragg
peaks corresponding to the: 3R structure were seen. The
lattice parameters were determined by a least squares fit to
the positions of at least 8 Bragg peaks®. The three batches
of NbS, have the same lattice parameters, within the
accuracy of the measurements. The values depend to some
extent on the details of the fitting procedure and the

methods used to correct for diffractometer errors such as

®Using computer programs written by J.R.Dahn, P.Mulhern and

the author.
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the off-axis effect (J.R.Dahn et al. 1982). Estimates of
these possible systematic errors have been included in the
errors quoted in the table, and this is why the differences
between the thfee a values, in particular, are less than the
uncertainty in each one. Lattice parameters from the
previous literature are also included in the table, and
agree reasonably well with the present values.

As noted by previous authors (Jellinek et al. 1960,
Revelli 1973, Fisher and Sienko 1980), some of the Bragg
peaks are quite broad. For example, the (104) peak of DD9
NbS, has a width at half maximum of 1.3° in 26, where 6 is
the Bragg angle’. The broad peaks indicate some disorder in
.the crystals. The type of disorder can be deduced from the
fact that all the lines with Miller indices (4k/)=(00/) or
(117) are sharp. It can be shown (Revelli 1973, for example)
that these lines are not broadened if the disorder is due
only to stacking faults. Stacking faults occur frequently in
layered transition metal dichalcogenide crystals, and.are, .
in this case, errors in the registry between adjacent S-Nb-§
sandwiches. In terms of the letter notation of section 1.2,
the sequence

...BaB-CaC-BaB-AbA-CbC...

has a stacking fault between the third and fourth layers.

"Diffractometer results are usually given in terms of 26

rather than 6 since the instrument actually measures 26.



Table I
Properties of 2H-NbS,

Included are hexagonal lattice parameters a and c, superconducting transition

temperature, T , and specific. heat coefficients y and B. 'Unless indicated otherwise,
T. was measured by a magnetic susceptibility method, and T, taken as the temperature
wﬁen the transition was 507 complete.

Reference a (A) c (A) T .(K) range of Y , B N
: . T, (K) (mJ/mole-K") (mJ/mole-K )
This work:
DD6 3.325 11.96 .
DD9 3.323 11.96 5.77 5.5-6.0 19.3+1.5 0.31+0.04
DD12 3.324 11.95
(£.005) (+.01)
Fisher and Sienko 3.324 11.95 6.33 6.25-6.41
(1980) (£.003) (+.02)
McEwan (1983) 6.46 0.41K wide
Aoki et al (1983) 6.17 18.2 0.33
Nakamura and Aoki 6.067T
(1983) ‘ :
Revelli (1973) 3.31 11.90 6.1 5.5-6.6
Van Maaren and %
Harland (1969) 5.5 10.7 0.31
Van Marren and
Schaeffer (1966)
powders 5.8-6.2
single crystals 6.1-6.3
Molinie et al (1974) 6.23%

+ - onset temperature
* - measured calorimetrically

91
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Superconducting transition temperatures for NbS, from
the literature are also given in table I. There is
considerable disagreement on the spperconducting transition.,
The transitions are all rather broad. This has been
explained by some authors (Van Maaren and Schaeffer 1966,
Revelli 1873) in terms of variations in stoichiometry within
the sample. Many LTMDs are known to have metal rich phases,
which are essentially the stoichiometric phases with some
excess metal intercalated between the layers. The assumption
made is that the samples were actually 2H—Nb1+ys2, with
slight variations y within each sample and between samples.
The transition temperature is said to drop very rapidly with
increasing y, in agreement with the rigid band charge
transfer model, since intercalated excess Nb should donate

.electrons to the dz? band and hence lower the density of
states at the Fermi level. Revelli (1973) stated that the
transition drops by about 1.5K for each change in y of .01.
Non-stoichiometry might be a satisfactory explanation of the
variations of the transition temperature, except for the
results of Fisher and Sienko (1980), which indicate that

1+y
is not a superconductor. Fisher and Sienko did not, however,

Nb S, exists only in the 3R structure, and that 3R—Nb1+ysz

offer an alternate explanation of the broad and variable
transitions.

The superconducting properties of stoichiometric
3R-NbS, are also unclear. Jones et al. (1972) reported a

transition at 5.9K, while Van Maaren and Schaeffer(1966) saw

’
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a transition extending from 5.0 to 5.5K. Fisher and Sienko
were not able to prepare stoichiometric 3R-NbS, and
suggested that the earlier samples were all
non-stoichiometric, and that the observed superconductivity
was due to small amounts of 2H present as impurities.
However, further work by the same group confirms that
stoichiometric 3R-NbS, can be prepared, provided the
reaction temperature is sufficiently low (McEwan 1983).
‘McEwan found TC=4.67K for the stoichiometric 3R phase.

Previous specific heat results for the 2H phase
(table I) are also in disagreement. Although the values for
g in

c=yT+BT? (1-4)

agree, the value for v given by Van Maaren and Harland
(1969) is much smaller than that reported by Aoki et
al.(1983). The specific heat of NbS, was measured during the
course of the work leading to this thesis, and the results
(section 4.3) are in agreement with those of Aoki et al. The
differences in vy values may be due to the methods used to
fit the data to equation (1-4). Equation (1-4) is only valid
in the normal state. As will be discussed in section 4.3,
however, the normal state data alone are not sufficient to
determine 7y accurately. It is possible to use the specific
heat data in the superconducting state to derive an extra
constréint on the fit, and only if this is done can the

parameters in (1-4) be determined accurately.
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2.2 PREPARATION OF LibeSZ

To prepare LibeSZ, l;thium was intercalated into NbS, in
electrochemical cells. The cell cathodes (positive
electrodes) were prepared by fixing NbS, powder to a nickel
foil substrate using the following procedure. First, the
nickel foil substrates were etched in nitric acid to clean
and roughen them. They were then thoroughly rinsed and
dryed. NbS, was ground using a mortar and pestle, until it
passed through a 400 mesh (38um) sieve. Thé powder was then
mixed with cyclohexane to form a thick slurry, which was
spread evenly over the substrates. After the cyclohexane
evaporated, the cathodes were passed between two steel
rollers, which compact the NbS, layer, thereby improving the
electrical contact.between the NbS, grains, and between the
NbS, and the substrate. Inserting a sheet of weighing paper
between the cathode and the upper roller helps to prevent
the NbS, from sticking to the roller. The mass of NbS, on
the cathodes was established by weighing the. bare substrates
and the finished cathodes. Cathodes used for preparation of
low temperature specific heat samples were 1.75 inches in
diameter, and contained typically 0.3g of NbS,. Similar but
smaller cathodes containing 10 to 20 mg of NbS, were used in
cells intended for the electrochemical measurements to be
described later in this chapter.

Anodes for the cells were lithium metal foil®. The

8From Foote Minerals, Exton, Pa.
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cells were assembled in an argon filléd glovebox. They were
of the flange cell type (figure 5). Cells were assembled by
placing a porous polypropylene film separator® between the
anode and cathode. The separators were wet with an
electrolyte consisting of a 1 molar solution of LiAsF¢'° in
propylene carbonate. The active components of the cells were
sandwiched between stainless steel flanges, which were
separated by Viton rubber o-rings. The o-rings served to
provide airtight seals for the cells, as well as
electrically isolating the flanges. The anode and cathode
are each in electrical contact with one of the flanges, so
that electrical connection to the cell is accomplished by
simply connecting a lead to each flange. LibeSZ samples for
low temperature specific heat measurements were made by
discharging flange cells to a preset voltage using a
Princeton Applied Research model>173
Potentiostat/Galvanostat. The current which passed through
the cell during discharge was- integrated by a PAR model 179
digital coulometer. Since for each Li* ion which moves from
anode to cathode during the dischargé, one electron moves
through the external circuit, the value of x in the LiXNbSZ

samples could be calculated using

, ‘ QM
X = (2-1)
m (96,500 Coul/mole)

Celanese Plastics Celgard #2500 or 3501

1°y.S.Steel Agrichemicals, 'Lectrosalt' brand.



A typical flange cell
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where Q is the charge which has passed through the cell, M
is the molecular weight of NbS, (157.Cg/mole), and m is the
mass of NbS, on the cathode.

In order to have a uniformly intercalated sample, a
cell must be allowed to fully equilibrate. When a freshly
prepared cell (x=0, open circuit voltage = 3.2V) is
connected to a fixed voltage V, such as that provided by the
PAR 173, current should flow until the cathode material is
uniformly intercalated to a composition given by

Vo=V(x)=(u_~u_(x))/e (2-2)

(see equation 1-3). The equilibration of actual cells is not
guite-this simple, since the approach to equilibrium can be
rather slow, and at some point as the intercalation current
slowly dies away, spurious changes in Q due to coulometer
drift and céll leakage currents may become significant. A
useful way of monitoring an equilibration is to make a plot
of current as a function of Q, or equivalently, x as
determined from (2-1). This was done during the
~equilibrations of the sample preparation cells. The plots of
current against x exhibited an almost linear appearance as
the current approached zero. This sort of behavior is not
surprising, since at least near equilibrium it is reasonable
to expect the current to be proportional to the deviation
from equilibrium. Discharges were stopped by observing this
limiting behavior and disconnecting the cell only when x had
come within about 1% of the apparent limiting value. The

times required for this were usually 5 to 10 days, and the
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final currents were always less than 5uA. Cells were
generally not left on the PAR 173 for more than 10 days, in
order to minimize the effects of drift and leakage currents.

One of the problems that has been associated with
electrointercalation in the past is cathode utilization.
Often some of the cathode particles are not in good
electrical contact with the substrate, and consequently
_cannot be intercalated. This was seen, for example, in the
author's previous work on LibeSez (D.C.Dahn and Haering
1982) The cathodes used in that study were not rolled,
however, and the addition of the rolling step in the cathode
preparation procedure appears to have eliminated all
problems with cathode utilization. X-ray diffraction on
LibeS; prepared using rolled cathodes consistently show$ no
trace of Bragg peaks due to unintercalated material. Because
of this, the uncertainty in x is determined primarily by
cell leakage currents, coulometer drift, and possibly by
side reactions in the cell. The magnitude of these effects
is not easy to estimate accurately, but is believed to be a
few percent of x.

The next step in the preparation of a specific heat
sample was to take an equilibrated cell back into the argon
glovebox, open it, and scrape the intercalated cathode
material off the substrate. To remove the electfolyte which
remained on the surfaces of the LibeS2 grains, they were
rinsed with pure propylene carbonate and dried in vacuum.

The propylene carbonate used was specially distilled and
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contained about 10 to 20 parts per million of water. This
was the same material used in the preparation of
electrolyte. About 1ml was used for the rinse.

After drying, some of the LibeSZ powder was pressed
into a pellet for use as a specific heat sample. The
pressing was done in a steel piston die which forms a pellet
émm in diameter and a few mm high. The force required to
form a pellet is of order 1000N and is applied with a
c-clamp. The pellet was then weighed and mounted in the
cryostat as described in chapter 3. The remaining LibeS2
powdér could be used for x-ray diffraction. All handling of

the Libesz samples took place in an argon atmosphere.

2.3 THE STRUCTURE OF Li NbS,

X-ray diffraction and ezectrochemical measurements have been
used to determine the érystal structures and approximate
phase boundaries of the LiXNbSZ phases formed by
intercalation at room temperature. For x2.23, LibeSZ has a
stage 1 structure, that is, there is an equal concentration
of lithium in each interlayer gap. For x between (roughly)
.11 and .19 there is a well-ordered stage 2 structure. In
stage 2, every second gap contains lithium, and the
intervening gaps are either empty or nearly so. There is
evidence for a disordered stage 3 phase (lithium in every
third layer on average but with no long range order in the

staging sequence), which exists for compositions near x=.08.

Samples with average compositions between those of the



25

staged phases are phase mixtures. The staging behavior is
similar to that observed in LibeSez (D.C.Dahn and Haering
1982).

An eépecially powerful way of observing the staging
phase transitions is the use of electrochemical cells with
beryllium x-ray windows (J.R.Dahn et al. 1982). These cells
are similar in construction to the flange cells described in
the previous section. The NbS, powder, instead of being
fixed to a nickel substrate, is fixed directly to the inner
surface of a .25mm thick beryllium foil window which is set
into one of the flanges. To keep preferred orientation of
the cathode powder to a minimum, x-ray cell cathodes are not
rolled. Ideally, it would be best to have completely random
orientation of the cathode particles, since this simplifies
interpretation of powder diffraction measurements. However
the NbS, particles are thin platelets with their
crystallographic c-axis normal to the flat faces. Because of
their shape, they tend to settle with their c-axis normal to
the substrate to which they are attached. With rolling, this
orientation is enhanced to the point where only (00/) Bragg
peaks can be seen.

Figure 6 shows portions of diffractometer scans made
while an x-ray cell was'slowly equilibrating to a final
voltage of 2.760V. The region around the (008) Bragg peak is
shown in the figure, although complete scans from 10 to 90°
260 were made in each case. Only NbS, peaks were seen in the

first scan, made before the discharge started. As
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Figure 6: The (008) region during the discharge of

a Li/LiXNbS2 xztay cell to 2.760V.
a- Before discharge (x=0)

b- After 3 days (x=.06)

c- After 6 days (x=.08)

d- After 15 days (x=.14). At this point
intercalation was essentially complete.
The remaining intensity in the NbS,
peak is due to material which was
not electrically connected to the
substrate.
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intercalation proceeded, these peaks shrank. They did not
disappear completely, because of incomplete cathode-
utilization. At the end of the equilibration the cathode
(except for the non-utilized fraction) was in the stage 2
phase. A third set of peaks, corresponding to what is
believed to be a disordered stage 3 phase, was seen during
the intercalation process. This occured because while going
from NbS, to stage 2, it is necessary to pass through stage
3 as an intermediate state. During the intercalation process
in this cell, each cathode parficle had NbS, at the center,
surrounded by a region of stage 3, surrounded in turn by a
region of stage 2 at the surface. Intercalation apparently
proceeded by both phase boundaries propagating into the
center. '

That the phase betheen x=,11 and .19 is truly stage 2
can be seen from the presence of a (009) Bragg peak. In
pristine 2H-NbS, énd in the stage 1 intercalation compound,
(00/) Bragg peaks with ! odd are all extinct. This happens
because of a symmetry of the two layer high unit cell which
causes the geometrical structure factor for these lines to
be zero. In the stage 2 compound, only one of the two
interlayer gaps in the unit cell contains lithium and is
expanded. The two layers in the unit cell are no longer
equally spaced along the c-axis, and (00/) peaks with / odd
are allowed. Note that staging is observed primarily through
the distortion of the host lattice due to the fact that

intercalated gaps expand, as the scattering power of lithium
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is very small. Although of the (00!/) peaks with / odd, only
(009) is observed, intensity calculations {(Appendix 1) show
that the (003), (005), and (0011) peaks are weak. The (001)
peak has a scattering angle which is too small for it to be
detectable in the x-ray cell configuration. The (007) peak
should be observable, but unfortunately a beryllium Bragg
peak originating in the window interferes with it.

The stage 1 and 2 phases both appear to have the same
structure as 2H-NbS,, except for the addition of the lithium
and the resultant expansion of the interlayer gaps. This is
an important point, since McEwan (1983) and McEwan and
Sienko (1982) report that Li NbS, prepared by direct high
temperature reaction of the elements forms in the 3R phase
or in a 2H-3R phase mixture for x between .01 and .13.
'Apparently, doing the intercalation at room temperature
avoids this. Another comment on McEwan and Sienko's work
should be made here. Although they state that all their
samples were stage 1, they report the presence of (007) and
(009) Bragg peaks in 2H—LibeS2 for x between .13 énd 7.
McEwan (1983) surmises that the (007) peak may be due to a
superlattice of period 7c, along the c-axis. This is clearly
an incorrect eXplanation,‘since such a superlattice would
produce (0,0,1/7) and related peaks, rather than a (007)
peak. The most likely explanation is that McEwan and
Sienko's samples were stage 2 between x=.13 and .17.

The dimensions a and ¢ of the unit cell are shown as a

function of x in figure 7. Accurate values of ¢ and a could
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not be obtained for the stage 3 phase, since it has so far
only been observed as an intermediate state during
intercalation from NbS, to stage 2. An approximate value for
c in the stage 3 phase is 12.2A4.

Also shown in figure 7 are the lattice parameters of
McEwan and Sienko's high temperature prepared Libesz. The
precision of the data is good because LibeS2 prepared at
high temperature has very sharp Bragg peaks, indicating
fewer stacking faults than in.LibeS2 prepared by room
temperature intercalation. Only those samples which were 2H,
or where 2H was the major component of a 2H-3R phase
mixture, are included. Plateaus at the stage 3 and stage 2
compositions can be seen in the c-axis data. Note that the c
values for x>.2 are lower than the results from this work.
McEwan and Sienko prepared their samples by reaction in
evacuated quartz tubes, and some of the lithium was lost due
to reaction with the quartz.'' The amount of tube attack
increased as a function of lithium concentration (McEwan
1983). As a result, the x values quoted by McEwan and Sienko
are too high, and the error in x increases as a function of
X, Cdmparison of the c¢ data shows, for example, that McEwan
and Sienko's 'x=.33' sample actually had a composition near

x=,25,

Similar tube attack by lithium has been observed in the
course of high temerature compound preparation in this
laboratory (J.R.Dahn and P.J.Mulhern, unpublished).
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Further information on the phase transitions in LibeS2
was obtained from electrochemical measurements. As mentioned
in chapter 1, the voltage of a Li/LiXNbS2 cell can be used
to study the thermodynamics of the intercalation compound,
since

V(x)=(u -u_(x))/e

where Mo and M, are the chemical potentials of lithium in
lithium metal and in the intercalation compound,
respectively. Only a brief discussion of the interpretation
of electrochemical measurements will be required here; for
more complete discussions see Johnson (1982) or J.R.Dahn and
McKinnon (1984a). As the value of x in a cell cathode is
increased by intercalation, the cathode is sometimes
observed to undergo a first order phase transition between
two compositions, say x; and x,. During the transition the
average composition x is given by

x=f,x,+(1-£,)x, (2-3)
where f; and (1-f;) are. the-fractions of the sample in the
x; and x, phases, respéctively. Regions of constant voltage
V in a cell's V(x) curve are the signatures of such phase
transitions, since as long as the sample is a phase mixture
M is constant and therefore V is constant. These features
in V(x) curves may be detected more easily by numerically
calculating the inverse time derivative dt/dv during a slow
constant current charge or discharge of the cell. This is
because (ignoring kinetic effects due to lithium diffusion

gradients in the cathode and the internal impedence of the
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cell)

dt/av = (Q,/i)(dx/dv) (2-4)
where i is the cell current (positive on discharge) and Q,
is the amount of charge corresponding to a change in x of 1.
Phase franSitions will therefore produce sharp peaks in
dt/dv. The peaks are not infinitely high because of the
lithium diffusion gradients mentioned above.

V(x) data for Li/LibeSZ are shown in figure 8. Because
of incomplete cathode utilization (91% utilizationy in the
small flange cell used, the data have been scaled so that
x=1 occurs at 1.90V. Also included are the V(x) data from
specific heat sample preparations. The results are in
agreement with less accurate previous measurements kHolleck
et al. 1975, DiPietro et al; 1982). Using a microcomputer
based instrument which calculates dt/dV during a constant
current discharge or charge, dt/dV measurements were made on
several cells. Typical results are shown in figure 9. The
data are shown in terms of -dx/dV- (equation 2-4) The staging
phase transitions are clearly seen. The higher peak at about
2.74V is due to the stage 2 to stage 1 transition. A smaller
broader peak at about 2.78V is seen on the first recharge
and second discharge. This is believed to be due to the
stage 2 to stage 3 transition. As can be seen from figure 8,
Li/LibeS2 cells cannot be recharged all the way back to x=0
in the LibeS2 cathode. This is the reason that the first
discharge curve in figure 9 is different than the other two.

The area under the -dx/dV curve at voltages above the stage
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Cell voltage as a function of x for

Li_NbS,. The lines show the first discharge
and thé subsequent first charge of cell
DD65. The discharge and charge were both

at a rate of Ax=1 in 60 hours. Also shown

(x) are the V(x) values of the specific
heat samples.
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2 - stage 1 peak is larger for the first discharge than for
subsequent charges or discharges. (The area under a -3dx/dv
curve between two voltages is the change in x between ;hose
voltages.) This presumably happens because of some kinetic
barrier which prevents de-intercalation of the stage 3
phase. Similar behavior has been observed in the LiXNbSez
system, where'the presence of residual lithium in fully
charged cathodes has also been verified directly by x-ray
diffraction (D.C.Dahn and Haering 1982), as well as in the
intercalated graphite 'residue compounds'. There is also
apparently some kinetic or nucleation barrier at the very
beginning of the intercalation process. Since the x-ray
results clearly show a succession of three transitions (NbS,
to stage 3, stage 3 to stage 2, and stage 2 to stage 1),
there should, in principle, be three peaks in -dx/dV on the
first discharge. There are, however, only two. For some
reason, the first intercalation can only proceed (at a rate
of Ax=1 in about 200 hours in this case) when the cell
voltage has already dropped into the stage 2 region.  The
kinétics of the staging transitions in LiXNbSZ, LibeSez,
and related materials might be an interesting topic for more
detailed study in the future.

An additional feature in —dx/dV was observed in two
cells made using freshly prepared NbS, from batch DD12. Two
small peaks near 2.67V (x=.3) could be seen (figure 10). The
cells which showed this feature were assembled 14 days and

28 days after batch DD12 was prepared and ground. Also shown
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the aging effect. ThE s
from a cell made with freshly prepared
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indicate the extra peaks mentioned in
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in the figure is data from a cell after it was made from
DD12 NbS, which had been stored in a closed vial for 177
days. The extra peaks are not seen in this data. The extra
peaks in -dx/dV were never observed in the other batches of
NbS,; however, dx/dV runs were not made on these batches
until they were a few months old.

The extra peaks are similar to those due to lithium
ordering on a y3a triangular superlattice at x=1/3 in
LiXTaSZ (J.R.Dahn and McKinnon 1984). The same type of
lithium ordering may be involved here.

A possible reason for the disappearance of the extra
peaks in 'o0ld' material is loss of sulfur. There is evidence
that NbS, slowly gives off sulfur; it smells faintly of H,S
when it is in air, and smells'very strongly when being
ground'?, The smell presumably comes from sulfur lost by the
NbS,, which then reacts with moisture in the air. Aging
effects have also been observed by Dutcher(1985) in TaS,. He
found that the intensities of x-ray Bragg peaks due to the
charge density wave changed as a function of time and
storage conditions, and also believes that sulfur loss is
the céuse.

If sulfur is lost from NbS,, we are left with excess
Nb, which would intercalate into the interlayer gaps. The

presence of randomly placed niobium in the gaps could serve

Loss of sulfur during grinding is not the explanation for
the extra peaks in -dx/dV, since all the cells were made
using ground material.
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to inhibit lithium ordering. The amaunt of sulfur lost is
not known, but it must be rather small since no significant
changes in the lattice parameters were observed.

- Crystallographic data on 2H—Nb1+ysz for small y are not
available, but Huisman et al. (1970) have measured the
lattice parameters of 2H—Nb1+ySe2. I1f the behavior of
2H—Nb1+ys5 is similar, the fact that no changes in the
lattice parameters were observed means that changes in y

were about .01 or less.



3. THE LOW TEMPERATURE SPECIFIC HEAT EXPERIMENT

3.1 INTRODUCTION

This chapter begins with a brief review of the various
experimental methods used for specific heat measurements at
low temperatures. The reasons for choosing the relaxation
time method for this work are given. There follows a
discussion of the cryostat used, the measurement and control
of thé reference block temperature, and the sample
temperature. The measurement cycle and data analysis are

then discussed in detail.

3.2 TECHNIQUES FOR LOW TEMPERATURE SPECIFIC HEAT

MEASUREMENTS

3.2.1 ADIABATIC CALORIMETERS

Although some low temperature calorimetry on solids
was done late in the last century, it was not until the
work of Nernst, Eucken, and their collaborators
beginning in 1909 that satisfactory results over a wide
range of low temperatures were obtained. (For a review
of early work see Partington 1952.) The 'adiabatic
calorimeter' first used by Nernst is, with improvements,
still in wide use today. In its simplest form, an
abiabatic calorimeter consists of a vacuum chamber
immersed in a low temperature bath and containing the

sample, which is suspended on supports having very low

39
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thermal conductance . A thermometer and resistance
heater are mounted on the sample; here again care is
taken to minimize the thermal link between the sample
and the bath through the leads. To make a measurement
the sample is first cooled by the introduction of
exchange gas. This is then pumped out, leaving the
sample (approximately) thermally isolated. A pulse of
heat Q is then applied to the heater, causing the
temperature of the sample to rise by an amount AT. The
heat capacity of the sample, thermoﬁeter, and heater
assembly is then given by
C=Q/AT (3-1)

The pulsed heating is then repeated, providing
measurements of C at successively higher temperatures.

Improvements since Nernst's day (Gmelin 1979, for
example) include better thermometry, the introduction of
a temperature-regulated radiation shield around the
sample, and computer data aquisition. Since large
amounts of exchange gas can be adsorbed on the sample,
especially if it is powdered or porous, and since the
removal of exchange gas typically regquires several hours
of pumping, many modern adiabatic calorimeters are
equipped with a mechanical heat switch for cooling the
sample.

Abiabatic and related methods still provide the
most accurate results on large samples (mass a few

grams) at temperatures above 1K. The absolute accuracy
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can be better than 0.5% (Gmelin 1979). The large samples
are required so that the inevitable heat leaks along
thermometer leads, etc, have an acceptably small effect
on the sample temperature. Below 1K, frictional heating
by the heat switch is a serious problem.

A variation on the adiabatic method is the
guasi-adiabatic heat pulse method. Here the thermal link
between the sample and the regulated radiation shield or
reference block is made large enough so that after a
heat pulse the sample cools again in a reasonable time,
typically a few minutes. This eliminates the need for a
thermal switch or exchange gas. As long as the cooling
time is very long compared to the duration of the heat
pulse, the maximum AT after a heat pulse will still be
given to high accuracy by (3-1). In some cases,
corrections must be made to account for the heat lost
down the thermal link during the heating pulse (Sellers
and Anderson 1974, Fagaly and Bohn 1977). When the
sample's thermal conductivity is low, the sample may not
be isothermal immediately after the pulse. As long as
the internal relaxation time of the sample is short
compared to the sample to reference block cooling time;
internal relaxation effects may also be corrected for

(Lasjaunias et al. 1977).
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3.2.2 THE AC TEMPERATURE METHOD

Sullivan and Seidel (1968) introduced a new method
of loy temperature heat capacity measurement. In this
method, the sample is connected to a temperature
regulated block by a thermal link of thermal conductance
k. A heater and thermometer are attached to the sample.
An AC heater current at frequency w/2 is applied to the
heater, and produces an AC temperature in the sample at
frequency w. In the simplest case, the AC temperature is
given by

ATac=Pac/2wC (3-2)

where Pacis the heater power and C is the total heat
capacity of the sample and its addenda (heater,
thermometer, supports, etc.) For (3-2) to be valid, the

internal thermal response times Ty of the thermometer

nt
and heater must be very short compared to 1/w, the
sample-to-block fhefmal relaxation time 7r=C/k must be
much longer than 1/w, and the sample's thermal
conductivity must be sufficiently high. If these
conditions are not met, the analysis becomes more
complicated (Sullivan and Seidel 1968), but in principle
the method can still be applied. The greatest
difficulties arise when the sample has a low thermal

conductivity. In this case (assuming again that

Tint<<1/w<<f), we have, for heater and thermometer on
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opposite sides of the sample

P

- _ac -

AT = - (1+2k/3kg) (3-3)
wC ‘

where ks is the thermal conductance across the sample.
The frequency independent correction factor in (3-3)
means that in order to make measurements of high
absolute accuracy, we need either to have k/ks small, or
to make an accurate independent measurement of k and ks.
It is therefore difficult to make accurate measurements
using the AC method, on samples with low thermal
conductivity. The LibeSZ samples used in this work were
pellets of compacted'powder and were very poor
conductors of heat.

The main advantages of the AC method are that it
can be used with very small samples (<img mass) and that
it can be used to give a continuous readout of C (via a
lock-in amplifier) as the temperature and other
parameters such as magnetic field are varied. The
continuous nature of the measurement makes it the method
of choice in studies were high precision but not

necessarily high absolute accuracy is needed.

3.2.3 THE RELAXATION TIME METHOD

The relaxation time method was introduced by
Bachmann et al. (1973), and is also discussed in the
review by Stewart (1983). A simplified apparatus is

shown in figure 11. The sample is attached to a platform



d LS
e W b

o

Figure 11: Schematic diagram of an apparatus
' for relaxation time heat capacity
measurements.

a- Sample

b- Sample platform

c- Heater

d- - Thermometer

e- Temperature regulated block.

The platform is supported by the heater

and thermometer wires, which make thermal
contact to the block.
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such as a sapphire slide, to which are connected a
heater and thermometer. The sample platform is suspended
from a temperature regulated reference block by means of
the heater and thermometer leads. These wires are
thermally anchored to the block, and provide a thermal
conductance kw between the platform and the block.

A measurement begins with the sample and platform
at the block temperature T,. A DC current is then
applied to the heater, producing power P. The
‘temperature difference 6§ between the sample and block
then rises, eventually reaching a constant maximum value
6o given by

90=P/kw (3-4)

The heater current is then turned off. Assuming the
sample's thermal conductivity is high and there is no
thermal resistance at the boundary between the sample
and the platform, the sample ana platform will have a
uniform temperature T, as they cool. This will relax
back to T, according to

k, (T ~To)=-C(dT_/dt) (3-5)

or;

TS—T0=90e_t/T (3_6)

where C is the total heat capacity of the sample and
platform and T=C/kw is the relaxation time. Measurement
of 1,0,, and P is sufficient to determine C, since

C=Tkw=TP/90 (3—7)
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When the sample's thermal conductance ks is not
infinite, the sample is not isothermal during cooling
and (3-5) to (3-7) no longer hold. It is, however,
possible to determine kS from the decay data. A fairly
straightforward calculation then determines C. The data
analysis in the presence of a finite ks 1s discussed in
Bachmann ‘et al. (1973), and later in this thesis
(section 3.4 and Appendix 2). The specific heat can be
determined with reasonable accuracy when ks is of order
kw or greater. This condition is much less restrictive
than the corresponding one for the AC temperature
method, making the relaxation time method more suitable
for samples of low thermal conductivity.

To avoid confusion, it should be pointed out that
some authors (for example Fagaly and Bohn 1977) use the
term 'relaxation time method' to describe a form of the
guasi-adiabatic method discussed in section 3.2.1. A
measurement of the exponential relaxation time after a
short heat pulse can be used to extrapolate the sample
temperature back to the time 6f the pulse. A relaxation
time measurement, as the term is used by Bachmann et al.
and in this thesis, should involve a measurement of both

7 and k. .
w

3.2.4 DISCUSSION

For the specific heat measurements described in

this thesis, the relaxation time method was used, since
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it allows accurate measurements on small samples of low
thermal conductivity. Since the LibeS¢ samples were
pellets of pressed powder, their thermal conductivity
was quite small (see section 3.4.2). As we have seen,
the AC temperature method is not suitable for such
samples. Samples of about 150mg mass can easily be
prepared in electrochemical cells. Although samples of
this size are quite adequate for a relaxation time
measurement, it would be difficult to reduce the heat
leaks through the heater and thermometer leads enough to
allow adiabaﬁic or heat-pulse method measurements, at
least at temperatures below about 10K.

At higher temperatures, such as 15K and above, the
relaxation fimes become much longer, typically of order
100s with the present cryostat and sample sizes. At 4K,
decay times are typi;ally 10s. This happens because the
sample's heat capacity increases rapidly as the
temperature is raised,,asudoesuks, the. sample's thermal
conductivity. Because_of this, the present system could
. be run in a quasi-adiabatic heat pulse mode at higher
temperatures. If it is ever desirable to make extensive
measurements at temperatures above 15K, a slight
modification of the computer software controlling the
experiment would allow this, and permit measurements to
be made more quickly than with the present relaxation
time method. The present method is rather slow at high

T, since one must wait several relaxation times with the



3.3

48

sample heater on in order to get a stable maximum sample

temperature.

THE SPECIFIC HEAT CRYOSTAT

3.3.1 GENERAL FEATURES

The specific heat cryostat is of standard design,
except for provisions to allow the mounting of
air-sensitive samples. Figure 12 is a simplified drawing
of the cryostat, showing its important features. The
vacuum can is supported inside a “He bath by its pumping
line. Inside the can is a copper temperature regulated
block which supports the sample platform. The cryostat
is designed to allow samples to be mounted inside an
argon filled glovebox. Since the airlock used to tranfer
articles in and out of the glovebox cannot accomodate
the entire cryostat, the vacuum can may be detached from
the pumping line. Samples are- mounted in the glovebox,
and the vacuum can is closed. A brass plug with two
o-rings is used to seal the port in the top flange of
the can. At this point the vacuum can, full of argon and
containimg a sample, can be removed from the glovebox
and joined to the rest of the cryostat by‘means of a
indium seal. The electrical leads pass out of the vacuum
can into the liquid helium space through epoxy
feedthroughs and are joined to wiring leading to the top

flange of the cryostat by means of Amphenol multi-pin
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Figure 12: (facing page)

Simplified diagram of the low temperature specific
heat cryostat (not to scale).

a- Pumping line for wvacuum can.
b- Liquid helium fill port.
c- Glass liquid helium Dewar.

d- Pumping line (3/4 inch thin wall stainless
/ steel tubing).

e- Joint with indium seal.

f- Electricél feedthrough.

g- Vacuum can.

h- Temperature regulated block and sample
holder assembly. For details of this
area see figures 13 and 14.

i- Socket for pumping line plug.

j=- Pumping igne plug.

k-~ Control rod.

1- Radiation shields.

m- Pumping port for Dewar.

n- Control rod feedthrough.

The distance from the top of the Dewar to the bottom
of the vacuum can is 35 inches.
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connectors.

Once the cryostat has been assembled and inétalled
in a liquid heliun dewar, the pumping line is evacuated.
A rod is then lowered down the center of the pumping
line and threaded into the brass plug. By raising the
rod, the plug is removed to a chamber at the top of the
cryostat, and the argon is pumped out of the vacuum can.
The sample is never exposed to air. After the can is
evacuated, the system is precooled to liquid nitrogen
temperature, and then liquid helium is transferred into
the dewar in the usual way. If necessary, at the end of
a measurement when the system is again at room
temperature the plug may be replaced, sealing the sample
in vacuum. The vacuum can may then be removed from the
cryostat and brought back into the glovebox for
inspection or removal of the sample.

The copper reference block inside the vacuum can is
shown in detail in figure..13. It is supported on three
thin wall stainless steel tubes. To allow cooling of the
block, a thermal link to the bath is made by means of a
brass rod and a length of copper braid. This afrangement
gives a block to bath thermal conductance of 0.8mW/K at
4.2K, which allows the block to be reéulated above the
bath temperature without excessive amounts of power. The
block cools from 80K to 4.2K in about 90 minutes.

The sample platform (figure 14) is a sapphire chip

émm square and .1mm thick. On the side facing the copper
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Detail of the wvacuum can interior.

a—
b-
C—
N
.
f-
g-
h-
i-
j_
k-
1-

Copper plug

Brass rod (3/16 inch solid)

Copper braid. This and the brass rod

form the block to bath heat link.

Support used in sample mounting.

Sample (see figure 14).

Radiation shield.

Germanium resistance thermometer.

Copper reference block.

Block heater.

Support (thin wall stainless steel tubing-
one of three).

Top flange of vacuum can (stainless steel).
8-lead electrical feedthrough (one of three).
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Detail of the top side of the sample

platform (the side away from the sample).

a- Gold contact pad.
b- Nichrome film heater. -
c- Aut+.07%Fe vs chromel thermocouple.

d- CarBon resistor slice. This is glued
on top of the heater.

A
O
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block (the upper side) there is an evaporated thin film
nichrome heater. fhe two contact pads were made first.
They consist of about tum of gold, underlaid by a very
thin layer of chromium to provide good adhesion. The
chromium and gold were evaporated in a standard vacuum
deposition unit, using electrically heated 'boat’
sources and a copper foil mask. A nichrome layer about
15nm thick was then deposited through a different mask
using an electron beam gun source. The resistance of
this film is about 6002 and is nearly temperature
independent. The leads to the heater are .003 inch
diameter brass wires and are soldered to the gold
contact pads with about 1mg of pure indium. Two sample
thermometers were used. The first was a Au+.07%Fe vs
chromel thermocouple (Sparks and Powell 1972, Rosenbaum
1968) in a differential configuration with on junction
on the block and the other on the sample platform. The
second sample thermometer is a small slice of an
Allen-Bradley carbon composition resistor which is glued
on top of the sample heater. Both the resistor and
thermocouple were bonded to the sample platform using
Emmerson and Cummings Stycast 2850 high thermal
conductivity epoxy. Sample thermometfy will be discussed

in more detail in section 3.3.3.
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Samples are attached to the platform using a few
milligrams of Cry-Con'?®, a high thermal conductivity
grease. Sample mounting is facilitated by a small foam
cushioned support which holds the platform while the
sample is pressed onto it. The specific heat of Cry-Con
has been measured (Torikachvili et al. 1983) and the
grease heat capacity can therefore be subtracted from
the data, as will be discussed in section 3.4.2. Samples
can be removed by very carefully sliding them sideways
off the platform, or by dissolving the grease in

cyclohexane.

3.3.2 MEASUREMENT AND CONTROL OF THE REFERENCE BLOCK

TEMPERATURE

The temperature of the reference block is measured
by means of two encapsuiated doped germanium resistance
thermometers. These were purchased from Lakeshore
Cryotroﬁics‘“. Lakeshore also supplied calibrations
covering the temperature range 1.4 to 100K. One
thermometer is used in a feedback loop to control the
block temperature, the other is used as a backup and a
check on the stability of the calibration. The

resistances of the thermometers are measured with a low

13 Air Products and Chemicals, Inc., Allentown, PA

14 Westerville, Ohio,-models GR-200B-1500 and GR-200B-1000
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power automatic resistance bridge.'® This instrument
makes a four terminal AC resistance measurement, using
30Hz excitation, phase sensitive detection, and a
typical power dissipation in.the thermometer of 1nW at
4K.

The temperatures derived from the two thermometers
agreed within about *3mK below 10K and x10mK above. The
differences were random, and correspond roughly to the
accuracy with which the resistances were measured.

Lakeshore's calibration of one of the thermometers
was checked between 2K and 20K by S. Steel and
W.N.Hardy. The standards used were “He and H, vapour
pressure and the susceptibility of the paramagnetic salt
Gd,(s0O,);-8H,0. The salt was used to interpolate the
temperature scale between the regions where vapour
pressure could be used. The Lakeshore calibration gave
.temperatures which were consistently about 10 to 15mK
higher than the vapour pressure-salt temperature.
Unfortunately, the existence of temperature gradients of
this magnitude between the vapour pressure cell and the
Ge thermometer in the calibration cryostat could not be
ruled out. The Lakeshore calibration was therefore used
without any adjustments.

The accuracy of the block thermometry is now

summarized. Block temperatures were measured with a

15AVS-45 from R.V.Elektroniika, Finland, or similar.



precision of +3mK below 10K and about 10mK above 10K.
The two thermometers agree with each other, if the
manufacturer's calibrations are used. Any systematic
errors in the temperature scale are believed to be less
than about 15mK, because of the calibration check.
Thermometry of this accuracy is more than adequate for
this experiment.

As previously mentioned, one of the Ge resistors
was used in a feedback loop to control the block
temperature. The automatic resistance bridge has an
adjustable internal reference resistance, and a voltage
output which ié proportional to the difference in
resistance between the thermometer being measured ahd
the reference. Using this as an error signal, it is a
simple matter to regulate the block temperature. The
stability of the block temperature during the time
required for a specific heat measurement was *0.1mK or

better, which is sufficient.

3.3.3 SAMPLE THERMOMETRY

The first sample thermometer installed was a
differential thermocouple with one junction on the
sample platform and the other on the reference block.
The materials were Au+.07%Fe for the block to platform
leg and chromel (also known as KP) for the others. This
thermocouple pair was chosen because of its unusually

high sensitivity at low temperatures, for example 13uV/K
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at 4.2K and 9uV/K at 2K (Sparks and Powell 1972,
Rosenbaum 1968). The thermocouple voltage was measured
with a Keithley 148 nanovoltmeter.

The advantages of the thermocouple include its
small size and low heat capacity, and that it directly
measures the sample to block temperature difference 6.
However, the thermocouple proved unsatisfactory for
several reasons. First, the total noise was about +.02uV
at the.nanovoltmeter input, corresponding to a
temperature noise of +2mK at 4K. This should be compared
to a typical value of 6,, the maximum temperature
difference during a measurement, which is 50mK. (One
tries to keep 6,<.02T - see section 3.4) The noise
situation is even worse at lower temperatures, since
smaller 6,s must be used and the sensitivity of the
thermocouple decreases. Another problem was the lack of
an absolute calibration of the thermocouple;
thermocouples made from different samples of Au-Fe wire
may have sensitivities which differ by 5% or more.
Standard tables can only be used for these thermocouples
if one is prepared to accept these possible systematic
errors.

Although the problems with the thermocouple could,
in principle, have been solved by calibrating our batch
of wire and signal averaging to reduce the noise, a
simpler solution was to add a small resistance

thermometer to the sample platform. This is a .5mm thick
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siice cut from the centre of an Allen-Bradley 152, .1W
carbon resistor. Its mass is 10mg. Small portions of the
original resistor leads remain, and two .003 inch
diameter brass wires were soldered to each of these to
allow for a four terminal resistance measurement. Brass
was chosen because its thermal conductivity is low
enough that wires of reasonable mechanical strength can
be used without creating too large a sample to block
heat link. One side of the resistor slice was covered
with a 6um mylar sheet. This was /then glﬁed to the
sample platform, directly on top of the thin film
heater. The mylar served to prevent electrical contact.
The adhesive was Stycast 2850 epoxy.

Since the response time of the automatic resistance
bridge used for the block thermometers is too long to
allow it to follow the thermal decays of the sample, the
samplé resistor was measured with the AC 'bridge'
circuit shown in figure 15. It is similar to one:
described by White (1979). In the diagram, A1 and A2 are
OP-07 low noise operational amplifiers,'RS is the sample
thermometer, and r represents the resistances of the
leads (the lead resistances need not be equal). Ry is a
resistance box, and the other resistors are 1% metal
film types.

The circuit makes a four terminal AC measurement.
Al is a non-inverting follower, which forces the voltage

at point P to be equal to V,. A2 is a constant current
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Figure 15: <Circuit diagram of the AC bridse used

to measure R_. Its operation is described

in the text.
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source which delivers an AC current i=Vosc/100kQ through
Rg. The detector is a Princeton Applied Research HR-8
lock-in amplifier referenced to the oscillator which
drives the circuit. The bridge is balanced by adjusting
R to give zero signal at the lock-in. In this case we

have

1RS=VOSCRS/100kQ=V1=VOSCRb/(100k9+Rb)

RS=Rb/(1+Rb/100kQ) (3-8)

Since RSS14OOQ in the-temperature'range used, this
effectively is R =R, . When the bridge is out of balance,
the detector voltage is (Rb—RS)Vosc/100kQ. This linear
response is one advantage of using a bridge with active
components.

When using the bridge, the oscillator level must be
kept low enough to avoid significant heating of the
" sample platform. The levels used were 800mV rms above
8K, 400mv from 4 to 8K, and 200mV below 4K. The powef
dissipation in the resistor is, for example, 5nW at
4,2K. Cénsidering that the thermal conductance between
the sample platform and the block is about 6uW/K at this
temperature, this is acceptably small.

At 4.2K, dRs/dT=1089/K, so the temperature
sensitivity of the bridge is 430uV/K. The lock-in is
normally operated on a 20uV full scale range. The |
frequency used was 394Hz. Quadrature signais were 5% of
full scale or less when the bridge output in phase with

V oo Was zeroed. Total noise at the lock-in input is
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about +*1mV peak-to-peak, although of course the lock-in
1s insensitive to most of this. With a time constant of
.1s, the noise at the lock-in output corresponds to
+0.2uV at its input, or *0.5mK at 4.2K. This is much
better than the thermocouple. Although the noise can be
reduced further by increasing the lock-in time constant,
this was not done because it is also important to keep
the time constant much shorter than the sample's thermal
relaxation time.

Using the calibrated germanium thermometers, it is
easy to make an accurate calibration of the sample
thermometer. With the sample heater off, the sample is
at the same temperature as the reference block. During
each experimental run, values of the sample thermometer
resistance and the germanium thermometer temperature T
were recorded. About 25 temperatures were used in a fit
to an equation of the form (White 1979)

N

1nT=Z P_1nR (3-9)
n=1 1 _

The fits were made using an orthogonal polynomial least
squares method'®. The program determines the best
polynomial order N by increasing it untill the
improvement in the fit is no longer statistically

significant. N was always 5,6, or 7. Residual deviations

¢ UBC subroutine DOLSF (Moore 1981)



63

between the data and the fit were typically #2mK.

A new calibration had to be made for each run. The
calibration changed each time the cryostat was warmed up
to room temperatufe for sample replacement. Typical
calibration changes corresponded to temperature errors
of about 50mK. It is possible the. calibration changes
are related to the procedure used to remove most of the
samples. This involves immersion of the entire sample
platform, including the resistor, in cyclohexane, which
dissolves the greése holding the sample on.

As anAexample of one of these calibrations, figure
16 shows the data and fit obtained during the run on a
Li ;4NbS, sample. The data are shown as small crosses.
Note that, as might be expected, the fit breaks down
rapidly outside the temperature range covered by the
calibration points. For this reason, the derivative
dRS/dT of the fit is not expected to be valid at the
endpoint temperatures.. Since an accurate dRS/dT is
required for specific heat data analysis, specific heat
data were not taken at the endpoints. The other
calibration points are, for the most part, the same

temperatures at which the specific heat was measured.

3.3.4 COMPUTER DATA AQUISITION SYSTEM

The thermal decays used to determine the heat
capacity are recorded using a microcomputer, which also

controls the sémple heater. The computer is based on a
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function of temperature. The line
is a fit using equation (3-9).
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280 microprocessor. It was assembled by the Physics
Dept. Electronics Shop, using, for the most part,
commercially available S100 bus circuit boards. Two
8-inch floppy disk drives and 64 kbytes of memory are
used.

A department standard interface system (PHYS44),
designed and built by the Physics Electronics Shop, is
used for data aquisition and control of the experiment.
A number of input and output devices are available in
the PHYS44 system. Those used for the specific heat
measurements are 8, 12, and 16 bit analog to digital
converters, and a computer controlled relay used to
switch the sample heater on and off. The 16 bit
converter is a dual slope device'!’ with a conversion
time of about one second. This was used when the
sample's relaxation time was greater than about 30s. For
typical samples, this occurred at temperatures above
about 8K. At lower temperatures, the relaxation time 1is
shorter, and a shorter conversion time is required in
order to get a sufficient number of data points during a
thermal decay. For the first few runs of the system, the
only fast A/D converter available was an 8 bit device'S.
This did not have sufficient resolution, and was

replaced by

17 Intersil ICL 8068/ICL 7104

'8National ADC 0801
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a 12 bit successive approximation converter'?.

A multiplexer in the PHYS44 system allows up to 8
different analog voltage inputs to be connected to
either of the A/D converters. Inputs from the specific
heat experiment were the sample heater voltage, and the
recorder outputs of two automatic resistance bridges (Ge
thermometers), thg nanovoltmeter (sample thermocouple),
and the lock-in amplifier in the sample resistance

thermometer bridge.

3.4 MEASUREMENT PROCEDURE AND DATA ANALYSIS

3.4.1 MEASUREMENT PROCEDURE

The general.principles of the relaxation time
method have been discussed in section 3.1. The
experimental procedure used will now be described in
more detail. The measurement cycle is shown in figure
17. It begins with the reference block and sample at a
‘common temperature T set by the block temperature
regulator. The calibrated resistance thermometers on the
block are read at this time, and the AC bridge measuring
Ry is balanced. The microcomputer then switches on the
sample heater. The sample heater current comes from a
regulated DC power supply and passes through a relay

controlled by the computer. The voltage across the

'SAnalog Devices AD572
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Sample heater on
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measure 6.
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Sample heater off

Computer monitors the thermal decay.
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sample heater is read using a different pair of leads
and é Keithley 177 digital multimeter. After the heater
is turned on, the temperature difference 6 between the
sample and block rises, eventually reaching a maximum
value 6, whick is typically about 50mK. This causes the
RS bridge to Qo out of balance. The RS bridge is nulled
again, providing a measurement of 6, which is
independent of the gain of the bridge cicuit. The
resistance box is then set back to its original value.

The next step is to prepare the microcomputer to
collect data. While the heater is still on, the
experimentef,gives it a sampling rate and a sampling
duration. The duration of the measurement was usually
chosen to be about four times the eXpected-thermal
relaxation time 7. The sampling rate was then chosen to
~ give 90 to 100 samples durihg the measurement. The
operator also chooses which analog to diéital converter
is to be used. Iﬁ early runs, the 8 bit converter was
used for sampling rates greater than 1 sample/s,
otherwise the the 16 bit converter was used. After the
12 bit converter was installed, it was used in place of
the 8 bit device.

Once all this information has been entered, the
microcomputer reads the.sample thermometer voltage,
which at this time corresponds to 8,. It then shuts off
the sample heater by opening the relay, and repeats the

thermometer reading at the .preset sampling rate. The
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timing is done with a qQuartz oscillator counter/timer
which is part of the microcomputer system. At the end of
the measurement, the microcomputer stores the values of
sample thermometer voltage and time on a floppy disk for
later analysis. If desired, several thermal decays can
be made at the same block temperature T, and the results .
averaged to reduce the noise. Signal averaging was
usually performed when the thermocouple sample
thermometer was being used, but was not normally
necessary when using the carbon resistor sample
thermometer.

The thermal relaxation time 7 is a function of
temperature. It is therefore important ﬁo have 6, small
enough that 7 does not change significantly during the
thermal decay. Sample heater powers were chosen so that
6,/T<0.02, which ensures 7 is constant to about 2% or
better for typical samples.

To get the specific heat as a function of
temperature, the thermal relaxation measurements are
repeated for different block temperatures. Typically
about 25 temperatures covering the range 2.6 to 25K were
used.

Data analysis is done on the UBC Computing Centre's
Amdahl V/8, since the calculation speed of the
microcomputer is too low. The data are transferred to

the Computing Centre over a high speed data line.
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3.4.2 COMPUTATION OF THE SPECIFIC HEAT

The analysis begins with the data in the Amdahl in
the form t_,V(t ) (n=1 to N), where v(t ) is the sample
thermometer voltage at time t,r N is the number of
samples, and, since the sampling was carried out at a
fixed rate 1/ts, t,=ntg. Since the maximum temperature
difference 6, is small, V is proportional to 6 even for
the resistor sample thermometer, and V itself can be fit
to an exponential decay without converting each voltage
to a temperature. So, V is fit to an equatiéﬁ of the

form

- —t/Tl -
v(t)=V, e *Vos (3-10)

where Vos is a possible small voltage offset. (V=Vos
when 6=0.) Vv,,7,, and Vos are all parameters determined
by the fit. The fitting is done by minimizing the

reduced chi-squared parameter

, 1 N : £/, ) i
Xgp = ———— I (V(t )-(Ve +V ) (3-11)
(N-3)8V?2 n=1

where N-3 is the number of degrees of freedom, and 8V is
the standard deviation of each of the V(t ), or, -
equivalently, the noise at the sample thermometer
voltage output.

To illustrate the data fitting and analysis, the
data on a Li.3ONbsz sample at T=4.60K will be used
(figure 18). The resistor sample thermometer was used

for this measurement. The noise at the lock-in amplifier
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Figure 18: Data for a typical thermal decay. The

’ figure shows the voltage at the lock-in
output as a function of time, as recorded
by the microcomputer. The line is a fit
to equation (3-10). The arrow marks the
beginning of the data used in the fit.
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output was about *.002V, so for the fit 8V was taken to
be .002v. It should be pointed out that the parameter
values which minimize sz are independent of &V, so that
~only a rough estimate is needed. When all of the data
are used in the fit, the best fit value of xr2 is 17.2.
This is unacceptably high, since for a good fit we
expect xr2=15

The reason for the large value is clear on
examination of figure 18; the thermal decay was not
truly a single exponential. This happened because the
sample's thermal conductivity was low enough that it was
not isothermal during the decay. A solution of the heat
flow problem for this case (Appendix 2) shows that the
temperature at the sample platform decays according to

the infinite sum of exponentials

o(t) = ene't/Tn (3-12)
n=1
where
(3-13)
2k T
o1 . wis
%0 pi1l(cot p;1l + tan Ull)(kle'- Cpl) + kwT1 + Cpl
and
CS = (kWT1 - Cpl) u,1°/ tan ull - (3-14)

Here Cs and C  are the heat capacities of the sample

p
and sample platform, respectively, kw is the platform to
block thermal conductance, and u;1 is an eigenvalue

defined in appendix 2. One finds that T,<<T) for n>1, so
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that after dropping the first few data points the rest
of the data fit a single exponential very well, allowing
us to determine 6, and 7, from the fit.

In the example, the first eight points are dropped,
resulting in a best fit with xr2=.83. sz does not
decrease significantly if more points are dropped. The
fit determines values of 7,, V, (the voltage
corresponding to 6,), and Vos‘ In the example, these are
21.36s, 1.588v, and .005V, respectively. The ratio 6,/6,
is given by

91/90=v,/(v(t=0)—vo )=1.588/(1.771-.005)=.899

s

To determine C,, we also need kw. With the sample
heater off, the thermometer resistance RS was 285.39Q,
corresponding to T=4,5981K using the fitting function
(3-9). At the maximum sample temperature, R, was
281,089, corresponding to T+6,=4.6512K, or 6,=53.1mK.
The sample heater power P was .371uW, giving

kw=P/90=6.98uW/K.

The sample platform heat capacity had been measured
previously (see section 4.2), and at this temperature
was 29.6uJ/K. To this should be added the heat capacity
of the é6mg of Cry-con grease used to mount the sample.
(the grease is considered part of the platform rather
than part of the sample.) Torikachvili et al. (1983),
have measured the specific heat of Cry-con, and give a

polynomial fit to their data which is valid between .56

rand 20K. Using this fit, the heat capacity of émg of
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grease at 4.60K is 4.93uJ/K (+7%), which when added to
the heat capacity of the bare platform gives a total
platform heat capacity of 34.5ud/K.

The values of 6,/6,, 7., ks’ and Cpl are now
inserted into equation (3-13) which is solved
numerically to get p;1=.609. This value is inserted into
(3-14) to get

CS=(kwT1—Cpl)u,l/tanu1l=.100mJ/K.
Since the sample mass was 117mg and the molecular weight
of NbS, is 157.1g/mole, the molar specific heat c is
.1363/mole-K.

Note that if the non-exponential nature of the
decay is not taken into account, we would use simply

Cs=kw11—C (3-15)

pl
which would result in a 13% error. (In some of the other
samples the effect is larger; the worst case was the.
Li,NbS, sample at 2.73K, which had u,1/tanu,l=.15.) The
value of u,;l1 is related to the thermal conductivity Ky

of the sample. From (A2-10),

(u,1)2=Csl/KSAr1 (3-16)

where 1 is the thickness of the sample and A its
cross-sectional area. Taking approximate values 1l=3mm

and A=7(3mm)? gives KS=.029W/m—K for the Li NbS,

30
sample at 4.6K. For comparison, commercial copper has a

thermal conductivity of about 500W/m-K at the same
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‘temperature, and nylon has about .01W/m-K (White 1979).
Since the sample is a pressed powder, the value for Ks

is not characteristic of undivided Li NbS,, which

.30
should have a considerably higher thermal conductivity.

3.4.3 ACCURACY OF THE SPECIFIC HEAT

Most of the specific heat data is estimated to be
accurate to a few percent. In cases where the 8 bit
analog to digital converter and thermocouple sample
thermometer were used, or where the sample thermal
conductivity was unusually low (Li,NbS,), the accuracy
is poorer. These cases are pointed out in section 4.4
where the data are presented. In this section, an error
estimate of a typical measurement is carried out, in
order to show the factors which limit the accuracy of

the measurement. The example used is Li NbS, at 4.60K,

30
as in the previous section.

Errors which contribute to the scatter in a plot of
c as a function of T for a particular sample will be
called random errors and are treated first. Errors which
do not contribute to the scatter in a c(T) plot will be
called systematic errors. Examples of systematic errors
are errors in the temperature scale or the mass of a
samplé. The reason for méking the distinction between
random and systematic errors in this way is to allow an

‘understanding of the scatter in the c(T) plots. This

understanding aids in distinguishing noise from genuine
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fine structure in the specific heat.
The final step in data analysis is the calulation

of CS starting from k T,, V,, and Vo . The

w’ Cpl’ s

uncertainties in 7,, V,, and V0 are correlated, since

s
all these are determined from the same fit. The
uncertainty in Vos is so small that it makes an
insignificant contribution to the uncertainty in the

final result. Using this fact, and treating only random

errors at this point, we have

acs ac ac

2
(8cg) = (Sk,— y%+ (81,—") % (8V;—°)2
akw 9Ty 8V1

sc sc (3-17)

+ 20 v (671, ——s)(ﬁvl——s)
T1Va 8T, sV,

where & in front of a guantity indicates the uncertainty
in that QUantity, and o v, is the correlation
coefficient between 87, and 8V,. The correlation
coefficient is determined by the fitting program. The
uncertainties 87, and 6V, can also be determined from
the fit, but not without some ambiguity.

According to standard statistical theory (Bevington
1969, for example), if the errors in each data point are
random, then the uncertainty in a parameter determined
from a non-linear least squares fit is the amount by
which that parameter must be changed in order to
increase x? by one from its minimum (best fit) value. As

the parameter in question is varied, x? must remain

minimized with respect to all the other parameters. Here
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(cf. 3-11),
2_ 1 YN v etn/Ti_y > _ )
X"= qavye I V() - (Ve Vo)) = (N-3)x.% (3-18)

1f the errors in the different samples V(tn) are
correlated, for example if there is a significant amount
of low frequency noise in the data, then the criterion
above can lead to parameter errors that are too small.
Roughly speaking, some of the 'averaging out' which one
has expected has not taken place. Some low frequency
noise is present in the thermal relaxation data, and it
is therefore safer to determine the uncertainties in the
fitted parameters using a different criterion. This is
that the uncertainty in a parameter is the amount by
which it has to be changed in order to double x2.

When this is done for our example, the results are

ér,=.4s, 6V,=.02V, and 6Vo =,005V. A comparison of the

s
last two of these justifies the earlier statement that
GVOS is not important. The correlation coefficient
between 7, and V, is -.B0. Percentage errors are 2% in
7, and 1% in V,.

The thermal conductance of the wire is given by
kw=P/6°. P is known with an uncertainty of 0.1%, which
is insignificant. 6, is determined from two resistance
values, say R, and R,, both of which are determined with

a precision of 0.01Q. Assuming no significant error in

the calibration, the result for the example is
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6kw/kw;860/60=6(R1-Rz)/(R,—R2)=V2(5019)/4.319=0.3%
The various terms in (3-17) can be evaluated using
finite differences, giving (recall CS=.1OOmJ/K)
akw(acs/akw)=+.0003mJ/K
57,(8Cs/871)=+.0023mJ/K
8V (9C_/8V,)=+.0013mJ/K
Combining these using (3-17) gives
5CS=.OO15mJ/K
or a percentage error in c, of 1.4%.

Total random errors of about this size (1 or 2
percent) are typical, and are consistent with the
scatter in the c(T) plots for most of the samples. In
most cases, the largest contribution to the uncertainty
in the specific heat comes from 67, and éV,.
Measurements made with the thermocouple sample
thermometer have a larger uncertainty, because of the
noisier temperature signal.

It is also necessary to consider systematic errors
in the results. As discussed in section 3.3.2,
systematic errors in the_temperature scale derived from
the germanium thermometer are believed to be 15mK or
less and are insignificant Since the resistor sample
thermometer is calibrated against the germanium
thermometer, it too should contribute little error
(section 3.3.3). The thermocouple sample thermometer
will be assumed to measure temperature differences with

an accuracy of *5%. The sample masses were measured with
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an accuracy of #img or about +1%. As discussed in
section 4.2, the sample platform heat capacity Cpl was
measured with an accuracy of about *3%. It is typically
. about 20% of the total heat capacity. Since the effect
of the data analysis is (approximately) to subtract Cpl
from the total to get the sample heat capacity Cs' we

can take dCS/dC 1. This implies that the uncertainty

pl™
in Cpl contributes about #1% to the error in Cs’ The
grease heat capacity is known with an accuracy of about
t15%; due mostly to uncertainties in the grease mass.
Since the grease heat capacity is typically only about
4% of the total, this is insignificant.

Combining the errors mentioned so far, yields a
total possible systematic.error of about *2% or less
(roughly 6% with the thermocouple). Another possible
source of error is residual gas in the vacuum can. An
upper limit on the magnitude of this effect will now be
estimated.

" During measurements, the can was pumped continually
with a diffusion pump. The pressure measured at room
temperature with an ionization gauge near the pump was
about 2-10-7 torr in most cases, which is the lowest
pressure obtainable with the pumping system used. In
some of the experimental runs, however a small superleak
was present somewhere in the vacuum can. No leak could

be detected as long as the temperature of the helium

bath was above its superfluid transition. When the bath
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was cooled below the transition, the pressure inside the
cryostat rose. By comparing two heat capacity
measurements made at the same reference block
temperature, one with the,superleak present and the
other with the bath above the superfluid transition, we
can determine how sensitive CS is to the residual gas
pressure.

Such a pair of measurements was made on the
Li0.16NbSZ sample at a block temperatu;e of 2.73K. The
first was made with the bath at 2.3K and not superfluid,
the second with a superfluid bath at 1.4K. The vacuum
system pressures at the ionizatioh.gauge were 1.7-10°7
and 4.2-10°7 torr, respectively. Thermal relaxation
measurements gave a sample to block thermal conductance
k =3.89uW/K and heat capacity CS=47.6uJ/K with the
normal bath, and kw=6.80uJ/K and CS=52.0uJ/K with the
superfluid bath. The large difference in thermal
conductance: is. due to conduction of heat through the
gas. At these low pressures, the thermal conduction
through the gas is proportional to the pressure in the
cryostat, which in equilibrium is proportional to the
pressure at the gauge?°® (White 1979, p130).

The relative difference in CS between the two

measurements is much smaller than the difference in kw.

20

The pressures in the gauge and the cryostat are not equal
even in equilibrium, because of thermomolecular effects.
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This is because of the way the measured thermal
conductance is used in the calculation of the specific
heat (section 3.4.2). The only reason that C, is
different for the two measurements is that the residual
gas distorts the heat flow pattern in the sample. The
equations used for data analysis assume that all the
heat leaves the sample through the platform. When there
is a significant amount of gas around the sample there
is also heat loss through its free face and sides.

Most data were taken with the bath above the
superfluid point, and the error due to residual gas
should be small. We can roughly estimate the size of
this error by assuming measured CS values deviate from
the true value by an amount which is proportional to the
pressure at the ionization gauge. The error to be
obtained from this assumption is really an upper limit,
since high pressures mean there is flow out of the
cryostat. From the two measurements described above, the
proportionality constant.can be obtained, and is

dCs/dP=18 J/K-torr.
At the lower pressure of 1.7-10 7torr this gives a
deviation from the true Cq of 3uJ/K or 6%.

Measurements at higher temperatures are affected
less by residual gas, since both kw and the sample
thermal conductivity increase with increasing
temperature. The Li NbS, sample discussed above had a

.16
fairly typical thermal conductivity and size, so the
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effect residual gas had on it should be typical of most
samples.

In summary, then, systematic errors due to causes
other than residual gas are believed to be about 2% for
typical measurements (+6% with the thermocouple sample
thermometer). The error due to residual gas is difficult
to estimate accurately, but is believed to be about +6%
or less near 3K for typical samples. The effect of
residual gas should decrease rapidly with increasing

temperature.

3.4.4 DETERMINATION OF THE LINEAR AND CUBIC TERMS IN THE

SPECIFIC HEAT

- Specific heat data are often presented in the form
of plots of ¢/T against T2. This- is because the specific
heat of a normal metal at sufficiently low temperatures
has the form (see equation 1-4)

c=yT+BT3

where y and f§ are constants. The linear and cubic terms
are due to electrons and phonons, respéctively. When c¢/T
is plotted as a function of Tz; data satisfying this
equation lie on a straight line with slope f and
intercept 7.

Such.a plot for the Li.30NbSZ sample between 1.8
and 10K is shown in figure 19. The data lie on a
straight line for temperatures between 2.8 and 6K. Above

6K, the phonon specific heat begins to deviate from
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Figure 19: Specific heat of Li 30NbS as a function

of temperature. The '~ "lin& is the fit

described in the text.
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cubic behavior. (This is to be expected - see section
6.5.) To reach temperatures below 2.8K, the bath
temperature had to be taken below the superfluid point.
The small superleak in the vacuum can caused a high
helium gas pressure in the can and a large positive
systematic error in the specific heat (see the previous
section). Because of this, the deviation from the line
of the points between 1.8 and 2.8K is not significant.

Error bars are shown on some of the points. These
are the results of error calculations similar to those
in the preceding section, and include random errors
only. The scatter of the points around the line is
consistent with the calculated random error.

The values of the constants v and B were determined
using a standard linear least squares fit to the
straight line region between 2.8 and 6K. The results are
v=9.4+.6mJ/mole~-K? and f=.96+.03mJ/mole-K*. The errors
quoted here are due-to the random errors in the data
only. In addition, we saw in the previous section that
there was a possible residual gas effect of 6% or less
near 3K, as well as possible systematic errors due to
other causes of about 2%. Since the effect of residual
gas should decrease rapidly with temperatufe, the
maximum possible effect of residual gas on y and B8 can
be estimated by assuming +6% error at 3K and no error at
6K. Deviations in 4 and 8 due to this can be easily

~estimated graphically, and when these are combined with



the other errors the error bounds are

7=9.4(t?'g) mJ/mole-K?

+.06
-.04

Analyses similar to this were performed on all the

B=.96/( ) mJ/mole-K*

Libes2 samples.
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4. RESULTS OF THE SPECIFIC HEAT MEASUREMENTS

4.1 INTRODUCTION

In this chapter, the results of the low temperature specific
heat measurements are presented. Section 4.2 describes a
measurement of the heat capacity of the sample platform.
‘Section 4.3 contains results on NbS,, and section 4.4 on
Libesz samples. A table at the end of the chapter
summarizes the data. The interpretation of these results is

discussed in chapters 5, 6, and 7.

4,2 SAMPLE PLATFORM HEAT CAPACITY

In order to extract the heat capacity of a sample from the
raw data, the heat capacity of the sample platform must be
known., This was measured as a function of temperature on two
occasions, once before the carbon resistor sample
thermometer was installed, and again after. Since most of
the measurements on LibeS2 were performed with the carbon
resistor in place, the sample platform results with the
resistor will be presented first and in more detail.

The measurements were made as described in section
3.4.1. Recall that in the case where a sample was present,
the thermal decays could not be fit with a single
exponential (section 3.4.2). With no sample attached, the
decays were single exponentials and the heat capacity Cpl
. could be calculated directly from
cpl=7kw (4-1)

86
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where 7 is the relaxation time and k., is the thermal
conductance of the wires (see equation 3-7). The results are
shown in figure 20 in the form of Cpl/T as a function of T2,

To avoid introducing extraneous scatter into the
LibeSZ data, the sample platform heat capacity data were
smoothed. The data below 5.5K were fit to an eqguation of the
form

C_,=aT+bT® (a-2)

pl
using the linear least squares method. Since normal solids
are expected to obey an eqguation of this form at
sufficiently low temperatures, (4-2) is the best equation to
use for the extrapolation of the platform heat capacity to
temperatures below 2.74K, the lowest temperature at which it
was measured. The fit parameters are a=.42357uJ/K? and
b=.28365uJ/K".

At higher temperatures, the data deviate from (4-2),
and so the smoothing was done using a least squares fit to a
fourth order polynomial of the form ’

4

- 3 - n- -
Cpy = aT + bT +n§2pn(T 5.5K) (4-3)

In (4-3), a and b have the same values as in (4-2). This
ensures that at 5.5K, where the transition from (4-2) to
(4-3) is made, both Cpl(T) and its dérivative are
continuous. The parameters p, are determined from a fit to
all data between 5.5 and 20K, and are p,=-.31569uJ/K?,

ps;=1.1635nJ/K*, and p,=-.13494nJ/K5. When the platform heat
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Figure 20: Sample platform heat capacity.
Shown is the heat capacity of the
sample platform with the resistance
thermometer (x), and without it (A).
The line is the fit described in
the text.
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capacity is needed for analysis of data on LibeSZ samples,
(4-2) is used below 5.5K and (4-3) from 5.5 to 20K.

The data deviate from the smooth curve of (4-2) and
(4-3) by *3% or less in all but 2 cases, and this is
believed to be approximately the accuracy with which the
smoothed curve represents the actual platform heat capacity.
The possible systematic error due to residual gas, discuésed
in section 3.4.3, should not be present in this measurement,
because the thermal conductivities of the platform
components are much higher than those of the samples.

For the first several runs of the specific heat
cryostat, the carbon resistor was not in place. The heat
capacity of the sample platform in this condition was also
measured and, is shown as the friangular points in figure 20.
Because of the poor accuracy of both Cpl and CS in these
early runs where the thermocouple sample thermometer and
8-bit D/A converter were used, it was not considered
worthwhile to smooth the data. Instead, Cpl values for data
analysis were obtained simply by linear interpolation in Cpl
against T? between the measured points. Below 4.4K, the

straight line extrapolation shown in figure 20 was used.

4,3 THE SPECIFIC HEAT OF NbS,

Figure 21 shows the specific heat of a sample of NbS, from
batch DD9. The most significant feature is the specific heat
anomaly at the superconducting transition temperature Tc'

The transition takes place between 5.5 and 6.0K, and is 50%
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The line is the fit to the normal state
specific heat described in the text.
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‘complete at 5.7K. In the normal state, at low enough
temperatures, the specific heat is expected to satisfy?’

c,,=yT+pT3 (4-4)

N
It is difficult to assign accurate values to y and § using
the normal state data alone, because of the very limited
temperature range (about 6 to 8K) over which (4-4) is valid.
It is possible, however, to derive an additional constraint
on the fit from the superconducting data.

Because the superconducting transition is second order,
the entropy in the superconducting and normal states must be

equal at Tc. Thus,

T T

C C
f(cS/T)dT = f(cN/T)dT (4-5)
0 0 '

By substituting (4-4) in (4-5), we get

T
c

j(cS/T)dT = 7TC+(1/3)3TC3 (4-6)
0

By evaluating the left-hand side of (4-5) a constraint on ¥
and B can be obtained (Schwall, et al 1976). To do this, it
is necessary to extrapolate the superconducting state data

to T=0. Since the electronic specific heat of a

This equation is essentially (1-4). In this section cy is
used for the normal state specific heat, Cg for the
superconducting state specific heat, and c“for the measured

specific heat.
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superconductor is appoximately exponential well below Tor
(Tinkham 1975, p8), the extrapolation is done by assuming
-b/T

c=cS=Ae

+pT3 (4-7)
at temperatures below the range covered by the data. The
constants A and b in (4-7) were determined by plotting the
measured specific heat ¢ in the form of 1ln(c-gT?) against T.
On such plots, the four data points below 3.2K lie on a
reasonably straight line. For several values of 8 between .3
and .4mJ/mole-K*%, plots were made, and A and b were
determined. The lowest temperature at which data was taken
was 2.645K. The integral in (4-6) was therefore split into
two parts, covering the temperature ranges 0 to 2.645K and
2.645K to T+ respectively. The low temperature part is
determined from the extrapolation (4-7) and is described by
2.645K

[ (cg/T)AT = 14.0mI/mole-K + (1.5K?)f (4-8)
0

The weak dependence on f comes about because the values of A
and b determined from the plot depend on the value of B used
for the plot.

The other part of the integral was determined by
numerical integration of the data. Because of the broad
transition, it was decided to take T. to be 5.7K (the

midpoint of the transition), but to include in the integral
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the excess specific heat between 5.7 and 6.0K. That is,

Tc : 6.0XK 6.0K
) (CS/T)dT = S (¢/T)AT — [ ((YT+8T?)/T)dT (4-9)
2.645K 2.645K 5.7K

When this is calculated and added to the low temperature
part of the integral, the result is

T

§ (cg/T)AT = (137¢5)mI/mole-K = (.3K)y + (B.BK)p  (4-10)
0

Using (4-10) and T.=5.7K in (4-6) gives
(6.0K)y+(70.5K?*)B = (137+5)mJ/mole-K (4-11)
Requiring y and B to satisfy (4-11) and to fit the data
between 6 and 7K yields
¥=19.3+1.5 mJ/mole-K?
B=0.31+.04 mJ/mole-K*,
These values are in agreement with those of Aoki, et al
(1983), which are y=18.2mJ/mole-K? and $=0.33mJ/mole-K*.
Another guantity of interest is the size of the
specific heaf jump Ac at TC. For NbS,, the ratio Ac/-y'I'c is
1.3, compared to 2.14 in NbSe, (Schwall, et al 1976), and
1.43 in the BCS theory (Tinkham 1975, p36). It is also
possible to use the data to calculate the thermodynamic
critical field HC(O) from
T
f%c
0

g~Cy)aT = (v/8m) ch(O) (cgs units) (4-12)
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(Zemansky 1957) where V is the molar volume. Evaluating the
integral using the exponential extrapolation (4-7) gives
HC(0)=1.0kG, compared with 1.28kG in NbSe, (Schwall, et al

1976).

4,4 THE SPECIFIC HEAT OF LiXNb82

This section presents specific heat data for eleven LiXNbS2
samples. The data are. given in order of increasing x. Unless
stated otherwise, the data were measured using the resistor
sample thermometer, 12 bit A/D converter, and the method of
section 3.4. The specific heat of each sample is plotted as
c/T as a function of T? in figures 22 to 33. The error bars
on some of the data represent efror calculations similar to
those of section 3.4.3, and include random errors only. The
coefficients of the linear (4) and cubic (B) terms in (1-4)
were determined by least squares fits as described in
section 3.4.4. The results are summarized at the end of the

section in table II.

Comments on the individual samples.

X=.13

This was a stage 2 sample. There is a slightly larger
than usual uncertainty in the value of x for this sample
(x=.13+.01). This is because of é problem during the
disﬁharge of the cell. For a time of about 1 day near
the end of the discharge, the coulometer was not

connected and the cell current ‘was not integrated. The x
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value was obtained, with the accuracy stated above, by
estimating the lost charge. This same x value is
obtained in other cells discharged to the same voltage.
The specific heat (figure 22) was measured using the
thermocouple sample thermometef and 8 bit A/D, which is
the reason for the large scatter in the data. The least
squares fit to determine y and B uses the data between
2.67 and 7K.

Xx=.16

This sample was also stage 2. Note the large slope of
the c¢/T vs T? plot, and the relatively low temperature
(=7K) at which the specific heat begins to deviate from
its cubic behavior (figure 23). The small superleak
mentioned in section 3.4.3 was present in this run. The
four points at lowest temperature were taken with the
bath superfluid, and therefore with a high residual gas
pressure in the cryostat. Because of this, they contain
a large positive systematic error; and their deviation
from the line is not considered significant. They were
not used in the fit made to determine 4 and B, which
extends from 2.73 to 7K.

X=.23

This and all remaining samples are stage 1. The specific
heat jump at 3.1K is due to a superconducting transition
(figure 24). A fit from 3.2 to 7K was used to determine

vy and 8.
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x=.25

This sample was measured using the thermocouple and 8
bit converter, and the data is therefore of rather poor
quality (figure 25). There is a superconducting
transition at 3.1K. That the specific heat anomaly is
truly due to superconductivity was confirmed by a
magnetic susceptibility measurement to be described in
chapter 7. This was performed on a small piece of the
specific heat sample, which was broken off (in the.
glo?ebox) after the specific heat measurement.

x=,30

Here again the 4 lowest temperature points were taken
with the superleak present. The apparent rise in
specific heat below 2.8K (figure 26) is not significant.
v and B were determined from a fit between 2.8 and 6K.
This sample has an unusually high g value. The discharge
of the cell used to prepare this sample was unusual. It
was held at 2.730V (in the stage 2 voltage range) for 3
days, then the voltage was lowered to 2.670V and final
equilibration took place.

X=,32

This was intended as a repeat of the x=.,30 run. The
x=,30 and .32 samples were both prepared by discharging
cells to the same voltage (2.670V). The reason for the
8% difference in x is not completely clear. It is
possible that it is related to the unusual mode of

discharge of the x=.30 cell., If part of the cathode
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material became disconnected while the cell was at
2.730V, it would have been 'left behind' in the stage 2
phase, resulting in the lower overall x value. X-ray
diffraction measurements were performed on both the
x=,30 and .32 samples, however, and neither one shows
any stage 2 LibeSZ, or NbS, Bragg peaks. If the x=.30
sample contains more than a few percent of stage 2, it
must be either highly disordered or in the form of very
fine particlés (=100A or less). Another possible reason
for the different x values is the difference in
electrochemical behavior in this region between 'fresh
and.'aged‘ NbS, (section 2.3).

The specific heat results for the x=.32 sample are
shown in figure 27. A fit from 2.8 to 7K was used to
determine v and 8.

x=,35

This sample was prepared and measured by D.Li using the
author's.apparatus. Good specific heat data are
available only between 2.8 and 7K (figure 28). All of
the data were fit to determine v and §8.

X=,41

This was the first sample measured using the resistor
sample thermometer. Rather thaﬁ the 4 terminal bridge of
.section 3.3.3, a.simple 2 terminal AC Wheatstone bridge
was used to measure the thermometer resistance. The
detector was a PAR 129 lockin amplifier. This

arrangement was noisier than the 4 terminal bridge used
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in later measurements, and this is reflected in the
scatter in the data (figure 29). A fit from 2.6 to 7.5K
was used to determine 5 and .

x=.50

The specific heat data are shown in figure 30. A fit
between 2.8 and 8K was used to determine 4 and 8.
These data were taken using the thermocouple sample
thermometer and 8 bit converter (figure 31). 4 and 8
were found using a fit between 2.8 and 8.2K.

x=1.00
The results are shown in figure 32, The interpretation
of these data is complicated by the fact that the sample
had a very low thermal conductivity, which resulted in
large systematic errors below about 6K. The low
conductivity caused the thermal decays to be highly
non-exponential, as shown in figure 33 for the 2.73K
measurement. As discussed in section 3.4.2, the
difference 6(t) between the sample and reference block

temperatures should decay according to

® -t/T
o(t) = £ 6_e n (4-13)
(t) 2210

Values of r, and 6,/6, determined from a fit to the data

are used to calculate the specific heat. Since Tos1<<T 1,

>1
simply dropping the first few data points is sufficient
to isolate the n=1 term in (3-12). For this measurement,

however, 6,/6,=.13, and by the time the n=1 term is
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isolated the signal level is only about 5 times the
noise. (Measurements on all other samples had
.5%6,/6,<1.) As a result, the uncertainties in the
fitted parameters 6, and 7, are unusually large for this
sample, resulting in a large random error in the
specific heat (#40%). In addition, a low thermal
conductivity sample will enhance the systematic error
due to residual gas. Because of this, the apparent
upturn in the specific heat below 6K is not believed to
be significant. At 7K and above, the sample's thermal
conductivity was high enough that accurate specific heat
measurements could be made. (For example, at 8K,
8,/60=.9)

The coefficients y and B .as detefmined from a fit
to the data between 7 and 10K, are 1.3mJ/mole-K? and
.18mJ/mole-K*, respectively. This fit is shown as the

solid line in figure 32. The data are also consistent
with y=0, and B=.19mJ/mole-K* (the dashed line). The
rigid band charge transfer model (section 1.3) predicts
v=0 for this sample, since the dz? band should be full,
and the samplebshould be a semiconductor. The low,
strongly temperature dependent thermal conductivity is
‘also consistent with a semiconducting sample.

No superconducting transition or other specific
heat anomalies were observed in this sample, although
because of the poor quality of the data below 6K, it

would have been difficult to observe such an anomaly
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éven if it did occur. There is no reason to expect
Li,NbS, to be a superconductor.
If more accurate measurements of the specific heat
of Li{NbS, are ever required, they could perhaps be made
by mixing the powder sample with a known amount of a
thermal contact agent such as vacuum grease. Because of
the high reactivity of the samples, the chemical
compatibility of the contact agent with lithium would
have to be checked.
The values of v and f for all the samples are listed in
table II. The table also contains details of the sample
preparation conditions, the sample masses, and the masses of
Cry-Con grease used to attach the samples. y and § are shown
as functions of x in figqures 34 and 35, respectively. The
interpretation of these results is the subject of the

following three chapters.



Table II
Specific Heat results for Li,NbS, samples

The table includes x, the equilibrium voltages of the electrochemical cells used to
prepare the samples, the masses of the samples and the grease used to mount them, the
specific heat coefficients y and 8, and the superconducting transition temperature, T,..
Where no T, was observed, T, is shown as being lower than the lowest temperature at
which measurements were made.

X stage cell NbS,; sample grease v ( mJ ) B ( mJ ) Te (K)
voltage batch mass mass 2 b
) (mg) (mg) mole-K mole-K
0 - - DD9 231 4.8  19.3:1.5 0.31:0.04 5.7
.13£.01 2 2.760 DD9 124 3 10.9[*10 0.70+0.06 2.7
P r
.16 2 2.755 DD12 111 5 13.1[19-2 1.32(%- 0> <2.0
y S
.23 1 2.710 DDl2 117 3 11.6 (%02 0.55/*-03 3.1
y o y
.25 1 2.707 Dp9 106 1.5 10.3[7°0 0.66(7 93 3.1
-1 -
.30 1 2.670 DD12 117 6 9.4(%9-0 0.96|*-0° <1.8
.32 1  2.670 DD12 98 7 11.4[f2'3 0.36|"- 02 <2.8
.35 1 2.640 DD12 129 7 10.6(19-2 0.29(*-23 <2.8
.41 1 2.600 DD9 143 6 6.0+0.3 0.36:0.01 <2.6
.50 1 2.500 DD12 103 2 5.8+0.2 0.187+.005  <2.8
.68 1 2.350 DD9 201 2.8 4.8+0.3 0.24+.01 <2.8
+1.0 none
1.00 1 1.900 DD9 155 4 ,,1-3[-1.3] 0.18:.01  _ 0ome

tETT
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5. THE ELECTRONIC SPECIFIC ‘HEAT

5.1 INTRODUCTION

This_chapter begins with a short introduction to the théory
of the electronic specific heat of metals. In section 5.3,
the effect of intercalation on the electronic specific heat
is discussed in terms of the rigid band charge transfer
model. The electronic density of states calculated by Doran
et al. (1978) is used to predict the electronic specific
heat of LibeS2 as a function of x. The theoretical
predictions are compared with the data in section 5.4.

In disordered systems, it is possible for there to be a
linear term in the low temperature specific heat which is
not of electronic origin (Anderson et al. 1972). In a
disordered solid such as a glass, some atoms or groups of
atoms may be in positions were they have access to two
closely separated potential energy minima. A distribution of
these 'tunneling states' is responsible for the linear
specific heat. The magnitude of this linear term is
generally rather small. Typical glasses have linear specific
heats which are of order 100 times smaller than the
electronic specific heats of metals such as LibeS2
(Hunklinger et al. 1975, for example). There is disorder in
LibeSZ, most significantly that due to the arrangement of
the lithium atoms in the interlayer sites. As is discussed
further in sections 6.2 and 6.6.1, the lithium is believed

to lie on the octahedral sites in the interlayer gaps, and
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for most values of x is distributed at random among these
sites. The lithium-lithium interaction is believed to be
small compared to the energy required for a lithium atom to
hop from one site to the next. Therefore, in spite of the
disorder, lithium atoms (except perhaps a few near defects,
or possibly at phase boundaries or domain walls if these
exist) should be in deep, single potential energy minima.
The linear specific heat due to lattice disorder is probably
much smaller than in glasses, and we can be reasonably sure
that the measured linear specific heat is electronic in

origin,

5.2 THE ELECTRONIC SPECIFIC HEAT OF A METAL

Consider a system of independent electrons with a aensity of
states in energy given by N(e). At temperature T, the
occupation of»these states is given by the Fermi-Dirac
distribution
1
f(e) = e(e'“)/kBT _

(5-1)

where u is the chemical potential of the electrons. The
total electronic energy at temperature T is therefore given

by

U = [ eN(e)f(e)de (5-2)

- 00

From this, it is possible to derive the well known

expression for the electronic specific heat of a metal (see,
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for example, Ashcroft and Mermin 1976, chapter 2).

Co1=(23U/2T) =(m?/3)k 2TN(ep) (5-3) .

where €q is the Fermi energy.
In a real metal, this must be corrected for the
electron-phonon interaction. Instead of (5-3) we have

.cel=(1+x)(w2/3)szTN(eF) (5-4)

where A is the electron-phonon coupling constant??. The
linear specific heat coefficient y (see equation 1-3) is

7=(1+k)(w2/3)kB2N(eF) (5-5)

5.3 THE ELECTRONIC SPECIFIC HEAT IN THE RIGID BAND CHARGE

TRANSFER MODEL

An introductory discussion of the figid band charge transfer
(RBCT) model has been given in section 1-3. As was mentioned
there, the Fermi level in NbS, lies in the center of the
half-filled dz? band. According to RBCT, as x is increased
in LibeSZ, the electrons donated by the intercalated
lithium progressively fill the band, until it is completely

full at x=1. As x increases, e, moves up through the dz?

F
band, and N(eF) changes, eventually falling to zero at x=1.
Although X may also change on intercalation, the dominant
factor affecting the electronic specific heat is expected to

be N(eF). The behavior of the electronic specific heat

coefficient v should therefore directly reflect the

22 This is also called the mass enhancement factor.
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structure of the dz? band density of states. In this
section, a calculated density of states is used with RBCT to
predict v(x).

Wexler and Wooley (1976) méde band structure
calculations for NbS, and several other layered compounds
using the layer method. The results are in reasonable
agreement with those calculated for some of the layered
compounds (but not for NbS,) by Mattheis (1973), who used an
augmented plane wave method. Doran et al. (1978) made a
tight-binding fit to Wexler and Wooley's bands and usea this
to calculate the density of states of NbS,. The fit to the
bands is shown in figure 36. The labels on the horizontal
axis of figure 36 refer to points of high symmetry in the
hexagonal Brillouin zone (figure 37). Figure 38 shows the
calculated density of states for the dz? band. The density
of states given by Doran et al., has been multiplied by two
to account for electron spin, and the energies have been
converted from Rydberg units to electron volts
(1 Ryd=13.6eV).

Some comments should be made at this point. The weak
splitting of the two dz? sub-bands disappears at the top
face of the Brillouin zone (the plane containing A,H,and L
in figure 37). This is due to the same symmetry of the unit
cell which causes the geometrical structure factor of (00/)
Bragg peaks to be zero for / odd (section 2.3, appendix 1).
Because of this, the Fermi surface can be 'unfolded' into a

doubled zone, as is done in figure 37, In stage two LibeSZ
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this symmetry disappears, and some sub-band splitting will
occur even at the zone boundary. THis is the only
topological change in the bands to be expected in any of the
intercalation compounds, unless lithium ordering occurs.
Ordering in the interlayer gaps would result in a larger
unit cell and further band splitting, although this
splitting would probably be weak. The splitting due to
staging is also expected to be weak, since it is due to
interlayer interactions, and it should not have a large
effect on the density of states.

Another point concerns the shape of the dz? band
density of states. The Fermi level lies on the side of an
extremely sharp peak in the density of states. Because of
this, the calculated N(eF) should not be considered to be

very precise. A slight change in e_ would change N(eF)

F
drastically. There is also a 'shoulder' (van Hove
singularity) in the density of states at e-ep=.27eV. This
shoulder is due to the saddle point in the lower sub-band at
I'. Although the exact size and location of the shoulder
depend on the details of the calculation, its existence does
not.

The next step is to treat Li NbS, in the RBCT model by
adding electrons to the dz? band. Consider the Fermi energy
to be a function of x. With N(e) expressed in units of

states per unit energy per formula unit, the assumption of

complete charge transfer means that
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ep(x)
x = [ N(e) de (5-6)
ep(0)
This integral equation has been used to calculate N(eF(x))
as a function of x. The results are shown in figure 39. The

electronic specific heat coefficient vy is given simply by

7(x)=(1+))(ﬂ2/3)kB2N(eF(x)) (5-7)

5.4 DISCUSSION

To use (5-7) to fit the v(x) data we need, in principle, to
know A as a function of x. Given the lack of any information
which would allow the independent determination of A, we
will proceed by making the assumption that it is constant.
One way of assigning a numerical value to A is to use the
values of v and N(eF) at x=0. These are 19.3%1.5 mJ/mole-K?
and 2.94 states/eV-formula unit, respectively, giving A=1.8
using (5-7). This is in reasonable agreement with the value
of 1.94+(10 to 20%) which Aoki et al. (1983) have calculated
from NMR relaxation time and specific heat measurements.

The curve obtained by the use of (5-7) and A=1.8 is
shown in figure 40, along with the data. A curve for A=1.2
is also included. The general features of the data and the
calculated curves agree reasonably well. Because of the
approximate nature of the band calculations, exact agreement

should not be expected anyway. Variations in A as a function
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of x are also possible, and could contribute to the

differences between the data and the calculated curves. (As

we shall see in Chapter 6, the specific heat data also imply
significant changes in the phonon spectra as a function of

X.)

Several conclusions can be drawn from the data:

1. v tends to a value near zero at x=1. This supports the
hypothesis of complete charge transfer, that is, each
intercalated lithium atom donates one electron to the
NbS, bands.

2. Use of the dz? bands of the NbS, host gives reasonable
agreement with the Libesz data. There is no evidence
that intercalation leads to either major changes in the
dz? band, or to band overlap in this material.

3. The shoulder in the specific heat data at x=.4 indicates
that this is the value of x for which the Fermi level of
LibeSZ érosses the saddle point in the Li NbS, dz?
band. If we assume a completely rigid band (that is, the
Libesz dz? band is exactly the same as the NbS, dz?
band), this puts the following constraint on the density
of states of NbS,

s

f N(e) de = .4 states/formula unit. - (5-8)
€ F .

Here €p and eg are the Fermi energy of NbS, and the

energy of the saddle point, respectively. Note that this

result does not depend on any assumptions concerning A.



6. THE LATTICE SPECIFIC HEAT

6.1 INTRODUCTION

This chapter is concerned with the specific heat due to
lattice vibrations (phonons). The well known fact that the
phonon specific heat of a three dimensional solid is
proportional to T?® at sufficiently low temperatures has
already been mentioned. The theory which explains this will
be briefly reviewed in section 6.3. The T3 behavior occurs
at temperatures so low that only long wavelength acoustic
phonons can be thermally excited. Because these are ordinary
sound waves, the specific heat can be calculated using
continuum elasticity theory. This allows a discussion of the
specific heat data in terms of the macroscopic elastic
‘constants of LibeSZ (section 6.4).

In section 6.5, the question of deviations from T3 is
addressed. The mechanisms which cause these deviations as
the temperature is raised are discussed. It is possible to -
make a rough theoretical estimate of the temperature above
which significant deviations from T® begin to occur, and
this is found to be in agreement with the data.

In section 6.6, we take a different approach which
sheds further light on the problem. Simple one dimensional
lattice-dynamical models are used to iﬁvestigate possible
effects of lithium intercalation on the elastic behavior.
These models are also used to describe the effects of

staging. Section 6.7 concludes the chapter.
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Before beginning a discussion of the specific heat
which includes only vibrational motion, we recall that one
of the most important features of LibeSZ is that, at least
near room temperature,vthe intercalated lithium is highly
mobile in the host. The internal energy of the system
depends on how the lithium is distributed among the sites in
the interlayer gaps, because of lithium-lithium interactions
and elastic energy effects (J.R.Dahn, D.C.Dahn, and Haering
1982). The equilibrium configuration of the lithium atoms
is, in general, a function of temperature. We might
therefore expect a term in the specific heat which is
related to the changes in lithium configuration as a
function of temperature. The following section (6.2) will
show, however, that at the temperatures used in this'study,
motion of lithium between sites will have essentially
stopped. The specific heat at these temperatures is
therefore due only to the thermally excited vibrational
motion of a crystal.in which each lithium is 'frozen' on one

particular site.

6.2 MOBILITY OF INTERCALATED LITHIUM

It is clear that lithium is free to move about in the
interlayer gaps of intercalated layered compounds at room
temperature, since intercalation is.not possible otherwise.
Neutron diffraction studies of LiXTiSZ (J.R.Dahn et al.
1980) show that intercalated lithium spends most of its time

localized in the octahedral sites in the interlayer gaps.
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Because the local environment of the lithium is very
similar, this is also expected to be true in LibeSZ. The
accepted point of view of lithium motion between sites
involves occasional thermally activated 'hops' over a

potential energy barrier. As is well known, the time ™

between hops in such a situation is given by

rh=AeE/kBT (6-1)

where E is the energy barrier and A is a constant. Direct
evidence for this picture comes from the NMR measurements on
LixTiS2 made by Kleinberg (1982) and Silbernagel (1975).
From the temperature dependence of the 7Li linewidth,
Kleinberg was able to evaluate the constants A and E and
found A=1.9.10"''s and E=.291eV (E/kb=3370K). Similar values
of A and E should occur in LibeSZ.

Using for convenience the approximate values E=.3eV and
A=10-'' allows a calculation of T, as a function of
temperature, the results of which are shown in table III.
Since the temperature.corresponding to a given value of ™
depends only logarithmically on A, it need not be accurately
known. The temperatures do depend strongly on E, however,
and since E was measured on LixTisz, the values in the table
must be considered to be only approximate. It is clear that
at’ the temperatures of the specific heat measurements,
lithium hopping will be frozen out, and the configurational
degrees of freedom will not contribute to the specific heat.

So far it has been shown that at low temperatures the

intercalated lithium will be fixed in one particular
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Table II1I

Hopping time as a function of temperature.

IDLQ T(K)
10-¢ 302
10-3 188

1 ' 137
103 101
106 ' 89
10° 76

configuration; nothing has been said about the nature of
that configuration. This is an important point, since phase
transitions may occur on cooling. As an example, the phase
diagram of LibeSZ is expected to qualitatively resemble one
calculated using the 'spring and plate' model (J.R.Dahn,
D.C.Dahn, and Haering 1982; see also Safran 1980, and
Millman and Kirczenow 1983). This is a lattice gas model
which includes in the Hamiltonian the elastic energy
associated with the expansion of the host lattice on
intercaiation. The phase diagram for staging is shown in
figure 41. Clearly, if the system remains in thermodynamic
equilibrium; there is a possibility that some samples will

change stage on cooling. Another possibility is that phase
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Staging phase diagram for a typical
intercalation compound according to the
model of Dahn, Dahn, and Haering (1982).
The integers represent regions of pure
stages; the shaded areas are phase
mixtures. The model allows for phases of
higher stage, although these are not
included in the diagram.
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transitions involving in-plane lithium ordering may occur.

The question of what configuration is frozen in as the
temperature is lowered can be addressed using a simple
theory first used by Bragg and Williams (1934) in their
classic paper on atomic ordering in quenched alloys.
Consider an intercalation compound at temperature T, in
which the lithium atoms happen to be in a configuration
which is the equilibrium state at another temperature 6. We
assume that the system relaxes to equilibrium at T with a
time constant 7, which we assume is of order The That is, we
write

dG/dt=—(9—T)/r=-(9—T)/‘rh (6-2)

If we now assume the intercalation compound is being cooled
at a constant rate 4T/dt=-r,

dG/dT=(9—T)/7hr (6-3)

An analytic expression for the solution of this equation can
be easily obtained, but it is rather unwieldy. As pointed
out by Bragg and Williams there is a simple approximate
solution which is good enough for our pufposes. As long

as rhr<<1, 6-T will be small, and the solution is
essentially 6=T. As T is lowered, 2% begins to increase
rapidly. At first, we still have dG/del, and the solution
is

6=T+rr, (6-4)

At still lower temperatures, LTy becomes large enough that

the approximation of (6-4) breaks down, and after this 6§
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remains essentially constant as T is decreased further. This
point where 6 'decouples' from T occurs roughly at the point
where d6/dT=0 in (6-4), that is, when

dt rAE

n
ar kgl

eE/kpT _ 1 (6-5)

Temperatures calculated from (6-5) for various cqoling rates
are shown in table IV.

The precooling from room temperature to liquid nitrogen
temperature before a specific heat experiment takes 3 to 4
hours, so that the cooling rate is about 0.1 K/s. The
LibeS2 samples should therefore ené up in a state
characteristic of equilibrium at about 120K (assuming
E=.3eV). Note that the cooling rate does not have a large
effect on this temperature.

This calculation shows that the low temperature staging
and ordering phase transitions predicted by equilibrium
lattice gas models of intercalation compounds (J.R.Dahn,
D.C.Dahh, and Haering 1982, and references therein) will not
actually occur at temperatures below about 100K, no matter
how slow a cooling rate is used. Since the exact phase
diagram and E value for Libesz are not known, these
calculations do not provide an unambiguous answer to the
question of whether or not some Libesz samples changed
stage on cooling. If the samples remained in thermal
’equilibrium down to T=0, the spring and plate model
indicates that all the samples would be phase mixtures of

the staged structures at x=1/3,1/2, etc.(figure 41). The
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Table I

Decoupling temperature for various cooling rates.

Cooling Rate (K/s) Decoupling Temperature (K)
100 154
1 | 129
0.1 120
0.001 104

arguments of this section do make it clear that this extreme

type of phase separation will not occur.

6.3 PHONON SPECIFIC HEAT

In this section the theory of low temperature lattice
specific heat will be briefly reviewed. This theory is based
on the well known quantum theory of the harmonic lattice
(see, for example, Ashcroft ana Mermin 1976, chapter 23).
The lattice specific heat depends on the dispersion
relations wS(E) of phonon modes. (Here s is a branch index
and kK is the phonon wave vector.) Most rigorously, the
specific heat ¢ is given by a sum over the disc;ete set of
phonon modes. In a macroscopic crystal, however, the allowed
phonon wavevectors are very close togethef, and the sum may

be replaced by an integral in the usual way. This leads to
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the following expression for the specific heat per mole;

= 9_ -6
vy T 9

where V is the molar volume, and the integral is taken over
the Brillouin zone.
This general relation can be simplified for low

temperatures, since the Bose-Einstein occupation factor

(ehws (k) /kpT _ 1y-1

1Y)

becomes vanishingly small for hw(ﬁ)>>kBT. At low enough

temperatures in a three dimensional material only the three

acoustic phonon branches, for which w(k)»0 as k-0, make a

significant contribution to c. The following simplifications

in (6-6) may then be made:

1. Optical phonon modes may be ignored.

2. At very low temperatufes, only the very long wavelength
portion of the acoustic phonon dispersion curves will be
important. In this region, the phonon dispersion
relation is linear, and we can use

wg(R)=v (R)k (6-7)

where k is the magnitude of k, R is a unit vector in the
direction of k, and vs(k) is the velocity of sound in
that direction.

3. Since the integrand is vanishingly small except near

k=0, we may take the integral in (6-6) to be over all of
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k-space.
These simplifications lead to

an hvg (k)k

Sy 2
c \ oT g f(2ﬂ)3 (éhvs(k)k/kBT R (6-8)

-

The integral will be rewritten in spherical coordinates.

Taking dk=k2dkdQ (Q is the solid angle);

Y i fvg (k) k?

= v
c =YV T g J dQ é VR (e‘flVS(R)k/kBT T 1 (6-9)

Making the change of variables y=hvs(k)k/kBT in the k

integration gives

3
y® dy
6-10)
5 (

Since the definite integral over y is just #/15, carrying

out the derivative with respect to T yields

TrkBVT3 dQ
c= —— 3 f ——— (6-11)
308° s (vg(K))

1f 1/v?® is defined to be the average over mode index s and

solid angle of the inverse cubed sound velocity,that is

1 _ 1 do 1 (6-12)
v T3 aw
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then ¢ is given by

3
2 k,T
c = Ej..k v (_Ei) (6-13)
5 B hv
The phonon specific heat coefficient f is given by
c 2?2 1\3
T? 5 Ahv

These relations hold at temperatures low enough that the
only phonons which have a significant probability of being
thermally excited are the long wavelength acoustic phonons
which satisfy the linear dipersion relation (6-7).

The well-known Debye formula was devised to describe
the specific heat over the entire temperature range from T=0
up. It is often used to fit data at intermediate
temperatures where (6-13) fails. However, it fits the data
for layered compounds very poorly, primarily because, as we
shall see, their phonon dispersion relations are highly
anisotropic. In spite of this, specific heat data even on
layered compounds are often presented in terms of an
effective Debye temperature, and in order to define this it
will be useful to briefly review Debye theory. The Debye
formula is derived by setting wS(E)=vk in (6-6) and taking
the integration not over the Brillouin zone, but over a

sphere in k-space which contains the same number of allowed
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phonon wave vectors?3, This condition on the size of the
sphere specifies its radius, the Debye wavenumber kD. The
Debyevfrequency wn and temperature 6D are given by

kBG

D=th=hka (6-15)

The result for the molar specific heat is

86./T
T 3 D yuey dy
c = INkp| 7 i (6-16)

where N, is Avogadro's number. In the limit T»0, this

becomes
4 3
= lg“ N, ky (% ) (6-17)
D
and the coefficient § is
L
_ 127 NAkB
g = ——gg;——— (6-18)
D

Since the definition (6-15) of OD in terms of the Debye
sphere does not make sense for layered compounds, effective
Debye temperatures for these materials are defined in terms

of the low temperature limits (6-17) and (6-18).

Note that both the sound velocity and the distance from
the origin to the zone boundary are assumed to be isotropic.
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6.4 THE PHONON SPECIFIC HEAT OF LibeSZ IN THE ELASTIC

CONTINUUM (T3) LIMIT

As we have just seen, the cubic specific heat coefficient 8
can be related to an 'average' sound velocity v and a Debye
temperature 6, by means of equations (6-14) and (6-18),
respectively. Using the measured B values (figure 35), v and
fn have been calculated for the LibeSZ samples and are
shown in figures 42 and 43, respectively. Clearly, there are
1ar§e changes in the lattice dynamics as a function of x.

In this section, an elastic continuum model will be
used to discuss the specific heat in terms of the elastic
constants of Li NbS,. To show how § depends on the elastic
constants, a value for NbS, will be calculated. Materials of
hexagonal symmetry have 5 independent elastic stiffness
constants, which are, in the standard abbreviated subscript
notation, c,,, C33, Cuu, Cee=(C13-C12)/2, and c,; (Auld
1973). To the author's knowledge, the elastic constants of
- NbS, have not been measured. McMullen and Irwin (1984) have
recently fit Raman spectra for NbS, with a simple ‘
4-parameter valence force model. In principle, elastic
constants can be calculated from these inter-atomic forces,
but because of‘the simplicity of the model and the limited
amount of data used'in the fit it is not clear that the
values would be reliable.

More extensive data are available for several related
compounds, however, and these are listed in table V. The

values for all three compounds in the table are similar, and
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Table V

Elastic constants for some layered transition metal
dichalcogenides with the 2H structure. The values in the
table are in units of 10'°N/m?2.

Elastic Compound

* 1- * %
Constant TaSe, NbSe, MoS,
Ci 19.6 to 12.4 10.8 17.4
Ciys 5.3 4.6 5.2
Cuu 1.74 1.9 1.9
Cee 5.5 to 5.4 4.6 7.3
Ci3 1.34 to .76 =1, 2.3

* Feldman (1982)
+ Feldman (1976, 1982); Jericho et al. (1980)
** Feldman (1976, 1982)

the same may be expected of NbS,. For the purposes‘of this
illustration the elastic constants of NbSe, will be used.
Most of the NbSe, constants in the table were deduced from
inelastic neutron scattering data by Feldman (1976). Jericho
et al. have measured c,,; ultrasonically. In Feldman's 1976
work c{a could not be specified very accurately; it was
given as between +3.1 and -0.2 in units of 10'°N/m?. A more
sophisticated analysis involving an atomic force model
(Feldman 1982) gives c,;; between 1.34 and 0.76 in the same

units, for TaSe,. This result should be approximately
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applicable for NbSe, as well, and so for the following
calculations c,3=1.0-10'°N/m? will be used.

To calculate B from the elastic constants we first find
the sound velocity as a function of the direction of
propagation, then calculate the average of the inverse cube
of the velocity (equation 6-12). The sound velocities in a
hexagonal crystal are functions only of the angle 6 between
the c-axis and the direction of propagation. The velocities

of the three acoustic modes are (Auld 1973)

‘vi1(8) = { c,:5in28 + c33c0828 + cuy

; . p i
- ((c11-Cuy)s8in?6+(cyy-C33)cos20) 2+(cystcyy) Zsin? 8}2/(2p0) 7

v2(8) = {(Ceesin?e + cuucos?8)/p}> (6-19)

v3(8) = { c1:5in%8 + c33c08%0 + cyuy

, . 1 1
+ ((c11-cuy)sin?6+(cyy-c33)cos20)?+(c,steyy) ?sin? 812/ (20)*

In these equations, p is the density (4.6g/cm® for NbS,).
Polar plots of the inverse sound velocities as a function of
6 are given in figure 44. Mode 1 is a quasi-shear wave. At
=0 it becomes a pure shear (transverse) wave propagating
along the c-axis, with atomic displacements in the basal
plane. This is an example of what is called a 'rigid layer’'

shear mode. Since intralayer bonding forces are much
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stronger than the interlayer ones, this acoustic wave
involves essentially rigid layers vibratiné as units. At
6=n/2, mode 1 again is a pure shear wave, now propagating in
the Basal plane with the atomic displacements along the
c-axis. That this is also essentially a rigid layer shear
mode (at least for long wavelength) is clear from figure 45.
The fact that mode 1 is a rigid layer shear wave at.both 6=0
and 7/2, results in its sound velocity being vc,./p in both
those directions. c,: is the elastic constant associated
with 'rigid layer' shear. Since mode 1 is the mode with the
lowest sound velocity it makes the largest contribution to
the specific heat.

Mode 2 is a pure shear wave for all 6, polarized in the
direction normal to both the c-axis and the direction of
propagation. It is a rigid layer shear wave at 6=0, but at
6=n/2 it involves shearing of the layers themselves (elastic
constant cg¢). Mode 3 is a quasi-longitudinal wave, which
becomes pdte longitudinal at 6=0 and =n/2.

Because the sound velocity is a function only of 6,

equation (6-12) for the average inverse cube velocity

becomes
n/2
}_=1: :)3: 7 sin6 de (6-20)
v? 3 s=1 v; (8)

The integral for the pure shear wave (mode 2) can be
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Acoustic mode 1 at 6=n/2. The curved
lines represent the NbS layers. The
parallelogram would be @ rectangle in the
undistorted material, and indicates the
nature of the strains associated with the
wave.
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evaluated easily and is

w2 3/2
; §in® de _ _p = 4,910 !'! s3/m® (6-21)
0 v3(8) Ces Cu%/Z

The numerical value was calculated using NbSe, elastic
constants and the density of NbS,. The integrals for the
other two modes were calculated numerically, and are
9.21-10"‘53/m3 for mode-1 and 1.50-10"'"'s?®/m?® for mode 3.
The average of these is 1/v3=5,21.10""'s3/m3?®, which, when
used in (6-14) gives f=.22mJ/mole-K®. The experimental value
for NbS, is .31x.04mJ/mole-K*, which is 30% higher. This is
reasonable agreement, considering the calculations were made
using the elastic constants of NbSe,, a closely related, but
different, material. The difference in f indicates that NbS,
has somewhat softer elastic constants than NbSe,?®. The
corresponding calculated and experimental Debye temperatures
are 206K and 187%7K, reépectively.

Now the effect of intercalation on the specific heat
can be considered in this elastic continuum limit. Of the
five elastic constants, there are two, c3;3; and c,,, which
depend primarily on interlayer forces. c;; is associated

with compression along the c-axis, and c,, is associated

McMullen and Irwin's (1984) fit to the Raman spectra does
not seem to agree with this conclusion. For example, the fit
implies c44=2.5-10'°N/m?, which is stiffer than NbSe,.
However, this discrepancy may not be significant, since the
elastic constants depend on the model used to fit the Raman
data.
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with rigid layer shear. These two elastic constants are
expected to change significantly as x in Libesz is varied.

Of these two interlayer elastic constants, c,, plays a
much larger role in determining the low temperature specific
heat. In the ca;culation above the contribution to 8 from
mode 1, which depends mainly on c44, is much larger than the
contributions from the other modes. Another illustration of
the importance of c¢,, comes from a numerical calculation of
the derivatives of f with respect to the c¢'s. These are, in
units of 10-'°m?J/N-mole-K*,

6ﬁ/ac11=—.42
08/9c33=-1.52
9B8/03c,4=-7.91
3B8/0Cse=—1.47
0B8/9c,3=+1.05
9B8/0c,, 1is much larger than the others.

To roughly estimate the size of the changes in c,,
which are required to explain the-data, $ was calculated for
several values of c,,. The results are shown in figure 46. A
similar plot was also made for c;;. As can be seen from the
plot, the range of B values covered by the Li NbS, data (.18
to 1.32 mJ/mole—K“) corresponds to changes of c,, of about a
factor of 10, provided the other elastic constants are fixed
at their NbSe, values. Much larger fractional changes in c;;
(about a factor of 20) would be required.

In addition, the simple 'spring and plate' elastic

model to'be presented later in this chapter (section 6.6.2)
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shows that c;; should increase ménotonically as a function
of x in LibeSZ. Basically, the argument is that since the
interlayer gaps expand on intercalation, the lithium must be
pushing the layers apart. Intercalated lithium atoms can be
thought of as compressed springs which act against the
original NbS, interlayer forces to separate the layers.
Since we are adding more interlayer springs as X increases,
C33 must also increase. The LiXNbS2 samples with x between
.12 and .5, however, have f§ values higher than at x=0. This
indicates an intercalation induced reduction in whichever
elastic constant is primarily responsible for the variations
in 8. The elastic constant primarily responsible for the
changes in B is therefore almost certainly cyy.

Another point concerning c;; can be made here, although
it is not essential to the argument that the data reflect
the behavior of c,,. Elastic stability conditions may be
derived from the requirement that the elastic energy must be
a positive definite function of the strains. If it is not,
there will be some strain for which the elastic energy is
negative, and the crystal will spontaneously distort. This
argument leads to the conditions (Born and Huang 1954,
Feldman 1976)

ci3>c?;3/cq, - (6-22)

c33>2cis/(ci*cy2) (6-23)

There are no restrictions on c,,, except, of course, that it
must be positive. The stability conditions can be evaluated

using the NbSe, elastic constants. In units of 10'°N/m?,
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using c,3=1.0 as in the specific heat calculations yields
€33>.09 and c;3>.16, respectively. If the maximum c,; (3.1)
consistent with Feldman's (1976) estimates is used we get
€33>.89 and c;3>1.5, respectively. To explain the data in
terms of c;; alone would require it to take on a value of
about .3 in the x=.16 sample, which might result in a
violation of the stability criteria, depending on the actual
value of c;;. The lattice distortions that would result from
this have not been observed in either LibeSZ (chapter 2),

or in Li_NbSe, (D.C.Dahn and Haering 1982).

6.5 BEYOND THE ELASTIC CONTINUUM LIMIT

This section will show how, as the temperature rises, the
phonon specific heat begins to deviate from its iow
temperature T® behavior. The reasons for this will be
explained, and approximate calculations of the temperature
at which significant deviations set in will be made. An
understanding of fhe deviations from T3 is important, since
it
1. allows us to be confident fhat the experiments'have
truly found the low temperature limit, and
2. provides some additional insight into the mechanism for
changes in the specific heat on intercalation,
supporting the conclusion that c4, is primarily
responsible. -
Deviations from T?® behavior at higher T come about

because the phonon dispersion curves are linear only in the
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very long wavelength limit, and because they are truncated
at the Bri}louin zone boundaries. (At higher T we can no
longer make the approximation that the integral in (6-6)
extends over all of k-space.) Phonon dispersion curves for
2H-NbSe, have been measured at room temperature by inelastic
neutron scattering (Moncton et al. 1977) and are shown in
figure 47. The dispersion curves for NbS, and its
intercalation compounds should be similar. The labelling of
the different phonon branches is that of Moncton et al. The
long wévelength parts of branches Z; and Ag correspond to
acoustic mode 1 of the previous section. (the rigid layer
shear mode), with propagation along the a and c axes,
respectively. Note that at point A on the zone boundary
there is no splitting between the A; acoustic and Ag optical
shear branches; or between the A, and A, longitudinal
branches. This is because of the symmetry of the two layer
high unit cell. We could think of the A and A; branches as
an acoustic branch in the double zone, which has simply been
folded over. In a stage 2 intercalation compound the
symmetry is broken and a small gap should appear at the zone
boundary.

Looking further at the dispersion curves of figure 47,
we notice two features that may cause the first deviations
from T3 as the temperature is raised. One of these is the
relatively low energy of the top of the Ag,As branch. The

other is the anomalous upward curvature of the Z,; branch.
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This upward curvature can be explained in terms of
forces associated with bending of the layers, as was first
demonstrated in theoretical studies of the specific heat of
graphite (Komatsu 1955, Bowman and Krumhansl 1958). Acoustic
waves propagating in the basal plane with atomic
displacements along the c-axis, although they are basically
shear waves, also involve bending of the layers (see
figure 45 in the previous section). Since the layers are
stiff and c,, is small, the energy due to bending the layers
can be significant, especially at short wavelengths. The
layer bending energy density is proportional to the square
of the layer curvature, that is, it is proportional to
(ézu/ayz)z, where u is the atomic displacement associated
with the wave, and.y is a coordinate along the direction of
propagation. The shear elastic energy is c,,4,(3du/dy)?. It can
be shown (Komatsu 1955) that when the potential energy is a
sum of layer bending and shear terms, the dispersion
relation.for waves is

pw?=cy kZ+bk"® (6-24)
where b is a positive constant. The second term is due to
the layer bending forces. This explains the upward curvature
of the Z; phonon branch. The value b can be estimated
graphically from figure 47, and is approximately
4.10-'*m*/s2,

To estimate the temperatures at which the bk*® term and
the truncation of the Ag,A; mode will cause deviations from

T3 in the specific heat, we first recall (6-6), the general
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expression for the phonon specific heat. This involved

integrals of the form
Aug (K)

I1f we assume for the moment an isotropic elastic material

(as in the Debye model), this becomes

27k *hvk ,
I dk (6-26)
éhvk/kBT -1

I1f we define z=hvk/kBT, then the integrand is proportional
to z3/(e%-1). This function is the same as the black body
radiation spectfum (Rittel 1969, p256, for example) and has
its maximum value at z=3. It drops to zero at large z, and
has half its peak value at z=5.5. What this means is that
the specific heat is qQuite sensitive to phonons with
energies up to about 5 times kgT. The general conclusion
that the specific heat is sensitive to phonon energies up to
several times kBT is expected to be true even for
anisotropic materials.

It is now possible to produce rough estimates of the
temperatures at which the two different effects being
considered will cause deviations from T? in the specific

heat. The top of the A¢,As branch occurs at a phonon energy

%w of order %KyYc,,/p(27/c), where c is the height of the two
layer unit cell. As we have just seen, deviations from T3
will occur when this phonon energy becomes less than about

SRBT. If Tt is defined as the temperature above which this
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c-axis truncation causes deviations from T3®, we have

N

T, = 5—% = % (6-27)
Similarly, we can define T, as the temperature above which
the bk® term in the dispersion relation for the layer
bending (Z;) branch causes deviations from T3. This caa be
estimated by sefting Skab equal to the energy af which the
two terms c,.k? and bk® in the dispersion relation (6-24)
are equal. This gives

A Cyy
T, = =
b SkB

(6-28)

2]

For cnu=1.9-10‘6N/m2, the value.used for the
calculation of B for NbS,, we get Tt=16K and Tb=30K. The
estimates of of Tt and Tb are very approximate, but we can
see that both mechanisms are probably important. This is
unlike the case of graphite, where Tb appears to be

significantly lower than T_ (Komatsu 1955). To compare these

t

estimates with the data, the quantity T will be used.

10%
This is defined as the temperature at which the lattice
specific heat data deviate by 10% from BT3. The results are
given in table VI.

The value for NbS, (16t1K) is reasonably close to the

estimated temperatures T, and Tb‘ This suggests that the

t
explanation of the deviations from T3 given above is
correct.

The TlO% data also show that there is a strong

correlation between high f values (which we believe to be
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Table VI

g and T109 for the Libe52 samples.

Cd

X B(mJ/mole-K*) T10%(K)
0 .31 161
.13 ‘ .7 9.5%1
.16 1.32 9.5+.5
.23 .55 13£.5
.25 .66 9+2
.30 .96 9+.5
.32 .36 162
.35 .29 Insufficient.data
.41 .36 29
.50 .19 215
.68 .24 13+£1.5
1.00 .18 1542

due to low c,,'s), and low T10%. This is what is expected on

the basis of the equations (6-27 and 6-28) for T, and T,.

Taking another numerical example, the value of g for the
x=.16 sample implies a c,, value of about 0.2:10'°N/m?. This

yields Tt=5K and T, =3K. T was 9.51+.5K. Again, this is

b 10%
reasonable agreement, considering the roughness of the

theoretical estimates.
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An interesting feature to note is that because of the

different ways that T, and Tb depend on c,4, the plate

t
bending mechanism will become relatively more important as
cuuvis lowered. This suggests that the specific heat vs
temperature curves of different LibeSZ samples will have
different shapes. This is unlike simple Debye theory, where
the specific heats of different materials all fall on one
universal curve if they are plotted as a function of T/GD.
The present LibeSZ data for higher temperatures (above 10K)
are not, unfortunately, of sufficient quantity or quality to
allow a satisfactory test of this result.

A more complete discussion of the specific heat above
the T? regime would best be based on a detailed atomic force,
conétant model such as those used by Wakabayashi and Nicklow
(1979), or Feldman (1982). Such models attempt to fit the
entire phonpn spectrum, and allow calculation of the
specific heat at arbitrary temperatures directly from the
general expression (6-6). At present, because of the limited
high temperature specific heat data, and the lack of other
measurements of the phonon spectra, the effort involved in

such an approach would not appear to be justified.

6.6 SIMPLE MICROSCOPIC MODELS

So far in this chapter, the approach to lattice dynamics has
been primarily through an elastic continuum approximation.
To complement this view, and to gain some further insight

into the specific heat of Libesz, it is useful to consider
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some simple microscopic dynamical models.

6.6.1 VIBRATIONAL MOTION OF A SINGLE INTERCALATED

LITHIUM ION

When one lithium ion is inserted into a site
between the layers of a NbS, crystal, we expect the
appearance of three new vibrational modes, because of
the three new degrees of freedom associated with motion
of the lithium ion about the center of its three
dimensional site. These new modes are localized

" vibrational modes involving the lithium as well as
neighboring sulfur and niobium atoms (see Pryce 1969,
for example). However, because the mass of lithium is so
small compared to the other atoms in the compound, the
amplitude of vibration of the lithium will be very much
larger than that of the surrounding hgavy'atoms. The
approximate frequency of the localized modes can
therefore be calculated assuming the surrbunding NbS,
layers are fixed; To model the forces on the lithium, we
assume it is connected to the fixed rigid layers by
springs. A reasonable valué for the spring constant Gc
associated with lithium motion in the c-axis direction
is 160 N/m. This will come ouf of the 'spring and plate’
model calculations in the next section. The vibrational
frequency of the mode where the lithium motion is along
the c-axis is then

¢C=¢Gc/m (6-29)
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where m is the mass of a lithium atom. Numerical values
are wc=1.o10‘“s“ and ﬁwc/kB=900K, so that this
vibrational mode will clearly not contribute to the low
temperature specific heat.

The spring constant G, associated with motion
parallel to the layers can be estimated from the fact
that there is a potential energy barrier of order .3eV
high between adjacent lithium sites (Kleinberg 1982).
Assuming the lithium atom sits in a harmonic potential
well of depth .3eV and width equal to half the distance
between sites yields Ga=4N/m2. This yields an in-plane
vibrational fregquency

=/C /m=7 . 13g-1 -
wa—VGa/m—z 10'°s (6-30)

which is equivalent to a temperature of 140K. This is
also much too high to be seen in the low temperature
specific heat.

In the discussion above, it was assumed that the
lithium atom was in a 'typical' site, and that the only
forces on it were those associated with localizing it on
its site (that is, those due to interaction with the
host layers). The situation may be somewhat more
complicated.

Staged intercalation compounds are generally
believed to posess a domain or island structure as
proposed by Daumas and Herold (1969). Within each domain
there is a well defined staging sequence, but globally

there are guest atoms in every interlayer gap. As an
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example, a stage 2 LibeS2 crystal would have lithium in
gaps 1,3,5, etc. in some domains and in gaps 2,4,6, etc.
in the others. Kaluarachchi and Frindt (1983) have found
that the domain size is of order 130A in AgXTiSZ. At the
boundaries between the staging domains, the host layers
must bend, and this raises the possibility that some of
the lithium sites are significantly distorted. Lithium
atoms in these sites would have different vibrational
frequencies than the others, and we cannot rule out the
possibility that they would contribute to the low
temperature specific heat.

Another complication arises from the fact that
intercalated lithium atoms interact with each other.
There is some evidence that this interaction is
felatively weak. Lattice gas model fits to
electrochemical data on LixTisz-(J.R.Dahn, D.C.Dahn, and
Haering 1982) used a repulsive nearest-neighbor
lithium-lithium interaction of 50meV, which is small
compared to the .3eV barrier between sites. Because of
this, it may be that the effect of lithiumflithium
interaction on the vibrational frequencies is small. On
the other hand, the lithium-lithium interaction is the
driving force for the lithium ordering transitions which
occur in LixTaSZ (J.R.Dahn and McKinnon 1984), and
probably in 'fresh' Li NbS, (section 2.3), and it cannot
be completely ignored. A wide range of unusual elastic

behavior is possible in systems where there is a
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competition between a periodic background potential (in
this case due to the NbS, layers) and an interparticle
interaction. (For discussions of one dimensional systems
of this type see, for example, Von Hohneyen et al. 1981,
Sharma and Bergerson 1984, and references therein.) One
possibility in the case of LibeS2 is that for lithium
concentrations near but not equal to values such as
x=1/3 where ordering occurs, the lithium configuration
in each gap may consist of ordered two dimensional
regions separated by discommensurations (domain walls).
There could be soft modes associated with these domain
walls. Further theoretical and experimental work is
needed to determine if any such soft modes actually

exist in LibeSZ.

6.6.2 ONE DIMENSIONAL MODELS

The basic model to be used in this section is a one
dimensional infinite- chain of masses M separated by
springs of spring constant K. The model will be used to
describe rigid layer longitudinal modes, so each mass
can be thought of as representing an entire NbS, layer.
K represents the interlayer forces (figure 48). Since
both M and K are both probortional to the area of the
layer and because the vibrational frequencies depend
only on their ratio K/M, the layer area is arbitrary.
For convenience, we will take the area to be the base of

a unit cell, so that M is just the mass of one NbS,
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M EZ~"7 G/2 T

K — m c¢/J/2
G/2 )L

M =2 T
K§ 6/2
M ///1/// L

Figure 48: Definition of terms used in the
one-dimensional 'spring and plate’
model (see text).
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unit. We also take the system to lie along the z axis.
The distance between masses is c¢c/2, because the unit
cell is two layers high. The dispersion relation for

waves in this system is well known, and is

w = 2‘/—1‘% |sin &2 (6-31)
where k and w are the wavenumber and frequency,
respectively. The spring constant k is related to c3; by

K=y/3c,;a2/c (6-32)
where ¢ and a are the lattice parameters. The NbSe,
value c33=4.6-10'°N/m? gives K=7.4 N/m. The same
equations apply for vibrations normal to the z-axis
(rigid layer shear waves), except that K is then
V3c,.a?/c.

To deal with the longitudinal rigid layer waves of
intercalated material, it is bossible to use the 'spring
and plate' model of intercalation (J.R.Dahn 1982;

J.R.Dahn, D.C.Dahn, and Haering 1982) In this model the
host material is again considered to be a system of
rigid plates joined by springs of strength K. The
equilibrium length of these 'host springs' is taken to
be the host layer spacing c,/2. Intercalation is
modelled by the insertion of 'lithium springs' of
strength G and length cL/2>c°/2. In LibeSZ, there are x
lithium springs for each host spring. Balancing the

forces of the springs yields an equation for the c-axis
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of the intercalation compound as a function of x.

c(x) - co _

x -
¢, - Co x+K/G (6-33)

With appropriate values of c. and K/G, this equation

L
gives a c-axis expansion in approximate agreement with
experimental results for many intercalation compounds. A
rough fit to the LibeS2 lattice expansion data requires
K/G=.2. The most striking success of the spring and
plate model has been its use in statistical mechanical
lattice gas models of intercalation compounds. These
models can be used to calculate the voltage v(x) of
intercalation cells, but fit the data for systems such
as LixTisz, LibeSez, and Libesz very poorly unless the
elastic energy associated with the lattice expansion
(6-33) is included in the Hamiltonian. The elastic
energy also provides a mechanism which produces staging.
To use the spring and plate model to discuss
vibrational modes, consider first the case of Li,NbS,.
According to the model, each pair of adjacent layefs is
now separated by two springs in parallel, with spring
constants K and G. This is equivalent to one spring with
spring constant Keff=K+G. The lithium ion of mass m is
placed in the center of this effective spring, dividing

it into two springs each of strength??®

The spring constant G, of the previous section is 4K g
or about 160 N/m,
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ZKeff' The dispersion relation for this system has two
branches, corresponding to the + and - signs in
o “Kegs
W
mM

(m + M i/m2+M2+2mM cos(ke(1l)/2) ) (6-34)

where c(1) is the c-axis of Li;NbS,. The - branch is an
acoustic branch. Using the fact that m/M=.045 is small,

we can justify the use of the approximate relation

Kegf
M

sinksélll (6-35)

in which the mass of the lithium has been ignored.
For the optical (+) branch, the same approximation
results in | ‘

w=2;/Keff/m (6-36)

As might be expected, the frequency is the same as that
of a single lithium vibrating between stationary layers.
The new modes associated with the lithium degrees of
freedom are contained in this optical branch. The
optical branch is at too high a frequency to contribute
to the low temperature specific heat, and it will
therefore be ignored in the rest of this discussion.

Since only the acoustic mode is important, we can,
as we have just seen, ignore the lithium mass and say
that the only effects of intercalation are to alter the
spring constant from K to Kefg and to expand the c-axis.
(0f these, the first is far more important.) This

approach will now be used to discuss LibeS2 with x<1,.
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For stage one compounds, the spring constant
between each layer is Kegg=K+xG, and the dispersion
relation is just

Keff
M

sin

w= 2

ke (%) -37
—CTI (6-37)

where c(x) is the height of the two layer unit cell of
LibeSZ.

A stage two compound may be modelled by alternating
springs of strength K (empty gaps) and Keff=K+2xG (full
gaps), where x is the overall lithium concentration. The
dispersion relations are

K+K

eff 1 -
w? = __g———-t ﬁ/k2+Kéff+2KKeff cos ke(x) (6-38)

Here again there is an optical and an acoustic branch.
In figure 49, dispersion relations representing
NbS,, stage 2 Li.jsNbsz, and stage 1 Li.3Nsz are shown,
The dispersion relations for the stage 1 compounds have

been 'folded over' into the smallef one dimensional
Brillouin zone of the stage 2 compound. We see that the
initial slope of the stage two curve lies between that
of the x=0 and stage 1 curves, in spite of the lowering
of part of the acoustic branch due to the gap at the
zone boundary. This is a general result, and indicates
that in the spring and plate model the contribution to
the specific heat from the rigid layer longitudinal mode
(elastic constant c;3;) will be a monotonically .

decreasing function of x, even when staging is taken
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w/VK/M

Figure 49:

k/(r/e(x))

Model dispersion relations for the

longitudinal mode propagating along the

c-axis in Li_NbS, .

Included are curves

representinngbS2 (lower solid lines),
stage 2 Li 15NbS2 (dotted lines), and

3NbS2 (upper solid lines).

stage 1 Li
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into account.

6.7 DISCUSSION

The simple theoretical arguments put forward in this chapter
indicate that the elastic constant c,, and the rigid layer
shear modes associated with it are primarily responsible for
the differences in the specific heat coefficients‘ﬁ of the
different LibeSZ samples. The extra vibrational modes due
to the addition of lithium are at freqguencies too high to'
contribute to the specific heat. Looking ét the data again
in this light, it is possible to draw the following
conclusions:
1. In the samples with x<.3, c4, was significantly smaller
than in pure NbS,. Most of thé c-axis expansion which
. takes place on intercalation happens at low x
(figure 7). By x=.3, the expansion is almost complete,
and if we assume the expansion is all in the interlayer
gaps, the gaps have ‘expanded by about 15%. Intercalation
and gap expansion appear to greatly reduce the
interlayer shear forces that were present in the pure
host.

It is interesting to note that the sample with the
highest 8 (lowest c,,) was stage 2 (x=.16). This is
surprising, since only half of the interlayer gaps
contain lithium and are expanded. ;fvthe shear forces
between two layers depend only on the lithium.

concentration in the gap between them, we would expect
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cyy for stage 2 to be between the values for x=0 and
stage 1. That this is not so seems to imply that the
shear forces across an interlayer gap are sensitive not
only to the lithium in that gap, but also to the lithium
in neighboring gaps. It is possible that charge transfer
has something to do with this. Another possibility has
been mentioned in section 6.6.1; there may be soft modes
associated with Daumas-Herold staging domain boundaries.
As x approaches 1, the lattice stiffens up again. At
x=1, B is actually smaller than x=0, indicating c,4 is
greater than in the pure host. A rough calculation shows
that it may be possible to explain the stiffening at
large x by assuming shear stresses are transmitted from
one NbS, layer to the next through the intervening layer
of lithium, From the activation energy for lithium
hopping between sites it was estimated (section 6.6.1)
that an efféctive spring constant for in-plane motion of
a lithium atom near the center of its site is 4 N/m. If
we consider this as being due to two 'springs', one
connecting the lithium ion to each of the two adjacent
layers, the spring constant of each is 2 N/m. These
springs are joined end to end at the lithium atom, and
are therefore equivalent to a single spring of strength
1 N/m connecting the layers. If we assume these springs
are the only interlayer shear forces, the elastic

constant c,, is given by

Cay=2cGx/V3a? (6-39)
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where ¢ and a are the dimensions of the unit cell and G
is the spring constant (1 N/m) per lithium. For Li,NbS,
this yields c44=1.3+10'°N/m?, Although this is smaller
than the value of about 2.5:10'°N/m? implied by the
specific heat data, it is at least of the right order of
magnitude, and indicates that lithium contributes to the
interlayer shear forces.

B, and therefore c,,, do not appear to be smoothly
varying functions of x for the set of samples studied.
In particular, the samples at x=.16 and .30 have higher
g values than the‘samples near them in x. These two
samples were both prepared from NbS, from batch DD12,
shortly after that batch was grown. As mentioned in
chapter 2; freshly prepared and aged DD12 material
behaved differently electrochemically. Cells made from
fresh material showed two small peaks in -dx/dV near
2.67V, which may be due to lithium ordering. Recall that
2.67V is also the voltage used for preparation of the
x=.30 (fresh) and x=.32 (aged) specific heat samples.
Since all of the specific heat samples except for x=.16
and .30 (which were anomalous) and x=.50 (which was
prepared at a voltage far from the extra dx/dv peaks)
were made from relatively old NbS,, it seems likely that
whatever aging effect caused changes in the
electrochemistry also caused changes in the specific
heat. If the aging effect is due to loss of sulfur and

subsequent intercalation of excess niobium into the
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interlayer gaps, this might serve to help bind the
layers together and reduce the specific heat. The
presence of lithium ordering might itself influence the
specific heat. It should be noted that both the x=.3 and
x=,16 samples had compositions near values where
ordering might be expected, since the x=.16 sample was
stage 2 and therefore had a lithium concentration near
x=1/3 in the filled gaps. The effects of aging obviously

need to be investigated further.



7. SUPERCONDUCTIVITY

7.1 INTRODUCTION

Specific heat anomalies due to superconductivity were
observed in only three of the samples, NbS, (TC=5.7K),

NbS, (3.1K), and Li NbS, (3.1K). The data are

Li o3 .25
reproduced here (table VII), together with the electronic
specific heat coefficient . It is, of course, likely that
at least some of the other samples were superconductors, but
with Tc's below the temperatures at which the measurements
were made. These minimum temperatures are also listed in the
table. Some results related to superconductivity in the NbS,
sample have already been presented in section 4.3.

Because of the reduction in'N(eF),'the density of
electron states at the Fermi level, which is due to charge
transfer into the dz? band, the general result that
superconductivity is eventually destroyed at large x is to
be expected. Some of the results, however, clearly cannot be
explained on the basis of rigid band charge transfer alone.
The stage 2 samples at x=.12 and .16 did not exhibit
superconductivity; even though the .16 sample was measured
down to 2.0K. This is surprising, since the y values for the
stage two samples are roughly equal to those of the
superconducting sampies, indicating that they have about the
same N(eF). A similar situation occurs for the stage one

samples at x=.30, .32 and .35, These all had vy values

comparable to the superconducting samples, but did not have

174
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Table VII

Superconducting transition temperatures and electronic
specific heat coefficients for the Li NbS, samples. Where no
transition was observed, T _ is listed"as being lower than
the lowest temperature at %hich measurements were made.

X T (K) v(mJ/mole-K*)
0 5.7 19.3
.13 <2.7 10.9
.16 <2.0 13.1
.23 3.1 11.6
.25 3.1 10.3
.30 <1.8 9.4
.32 <2.8 11.4
.35 <2.8 10.6
.41 <2.6 6.0
.50 <2.8 5.8
.68 <2.8 4.8
1.00 None observed 1.3

superconducting transitions. This puzzling state of affairs
will be discussed further at the end of this chapfer.

In the next section, a Meissner effect measurement on
one of the LibeS2 samples is described. This verifies that

the specific heat anomalies observed were truly due to
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superconductivity. In section 7.3, the present results will
be compared with previous data (McEwan 1983, McEwan and

Sienko 1982).

7.2 MEISSNER EFFECT MEASUREMENT

A magnetic measurement was made on a piece of the Li NbS,

25
sample?®, The cryostat used (R.H.Dee and J.F.Carolan,
unpublished) contains two identical, oppositely wound,
superconducting coils in series. The sample was placed in
the center of one of these pickup coils, and a piece of pure
indium for calibration purposes in the other. The coils are
connected to an RF-SQUID, which, together with its
associated electronics, produces an output signal
proportional to the total magnetic flux through the pickup
circuit. The arrangement is insensitive to uniform magnetic
fields, because’the coils are oppositely wound. Whenever
either the sample or the indium standard becomes
superconducting, it expells magnetic flux (Meissner effect),
and produces a signal. Transitions in the sample and indium
can be distinguished because the flux change signals are of
opposite sign. Thermometry for the experiment was provided
by an Allen-Bradley carbon resistor which had previously
been célibrated in the specific heat system by comparison

with the germanium thermometers. The magnetic field in the

vicinity of the sample could be varied by means of a

26The experiment was performed by J.Beis and the author
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solenoid surrounding the pickup coil assembly. The fields
used were of order a few gauss or less.

Data taken during a temperature sweep are shdwn in
figure 50. The transitions due to both the sample and indium
can be seen. There is also a slowly varying background,
presumably due to paramagnetism in some of the components of
the pickup coil - sample holder assembly. The indium
transition is measured at 3.403K. The accepted value is
3.404K (Weast 1970), which provides a check on the
thermometer calibration.

The transition of the Li.ZSNbS2 sample occurred over
the range 3.31 to 2.93K, with 50% of maximum flux expulsion
at 3.20K. The calorimetrically measured transition was
centered at about 3.1K. The slightly higher magnetic
transition is not surprizing, if the width of the
transitions is due to inhomogenieties in the sample., This is
because a reasonably complete Meissner effect can be seen,
even if a significant part of the sample is still normal.
All that is necessary to block magnetic flux is that
superconducting regions somewhere in the sample extend all
the way across a cross-section  perpendicular to the field.
The calorimetrically measured transition, on the other hand,
is sensitive to the bulk of the sample.

Similar temperature scans were made in several.
dif%erent low magnetic fields, going both up and down in
temperature. The transition_température and width were both

independent of the sweep direction and the field. (The
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(Arbitrary Units)

Magnetic Flux

]

Figure 50:

| ] 1
200 300 400
Thermometer Resistance ()

Meissner effect data on a Li 2 NbS2 sample.
The horizontal axis is the réséstance of
the carbon resistor used as a sample
thermometer. The temperatures of important
features have been calculated:

a- Indium transition at 3.403 K.

b- 3.31 K: transition in sample 107 complete.
c- 3.20 K: transition in sample 507% complete.
d- 2.94 K: transition in sample 907 complete.

The dashed line is the estimated background.
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solenoid was not calibrated, but the fields used were
between zero and a few gauss. The small applied magnetic
field was used only to provide some flux to be expelled at
the transition. To avoid depressing the transition
temperature, the fields used must be much less than the
critical field. Fields of a few gauss are expected to
satisfy this condition, and the fact that the transition was
independent of field, for fields of this magnitude, shows

that this is indeed the case.)

7.3 COMPARISON WITH PREVIOUS WORK

The superconducting transition temperature of Libesz has
been measured by McEwan and Sienko (McEwan 1983, McEwan and
Sienko 1982). The results are shown in figure 51. Thé
samples were prepared by high temperature reaction, and for
Xx<.13 are phase mixtures of the 2H and 3R crystal types.
Samples which were phase mixtures sometimes showed two
separate transitions, and this is why the figure has- two
Tc's for some values of x. LibeSZ prepared by room
temperature intercalation is 2H at all x, and so it is not
possible to directly compare the results for x<.,13,

For x2.13, however, McEwan and Sienko's samples were
puré 2H, and in principle should have had the séme
properties as room temperature prepared material. For x
between .13 and .17, McEwan and Sienko's samples exhibited
(007) Bragg peaks in x-ray diffaction. Although they did not

realize this, this line indicates that these samples were
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" Figure 51: Tc as a function of x for a series of

LiXNbS2 samples prepared at high temperatures
(McEwan 1983). For samples where no TC was

observed, the symbol T indicates the lowest

temperature measured.
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stage 2, or stage 2-stage 1 phase mixtures (section 2.3).
Their result that T, in the stage 2 region is lower than in
the stage 1 region near x=.25 agrees with the results of the
present study.

As McEwan and Sienko increased x above .17, they first
passed through a region where the presence of two Tc's
probably indicates a stage 2-stage 1 phase mixture. Near
x=,25, close to the low x limit of the stage 1 phase, they
observed one transition at about 3.2K, also in agreement
with the present work, Between x=.30 and .35, however,
McEwan and Sienko's T, values remain in the 3.2 to 3.5K
range, while in this work, the x=.30, .32 and .35 samples
showed no superconductivity. This disagreement is not
significant, since as mentioned in chapter 2 in relation to
lattice parameter data, McEwan and Sienko's x Qalues appear

to be too high (by about .05 or more) in this region.

7.4 DISCUSSION

In the BCS theory of superconductivity, (Bardeen, Cooper,

and Schrieffer 1957), T, is given by

_ h<w> -1

B F

where <w> is an average phonon frequency, V is the strength
of the phonon mediated effective interaction, and N(eF) is
the density of states at the Fermi level. Based on this
equation, McEwan argued (qualitatively), that if <w> and Vv

remain constant on intercalation, the rigid band charge
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transfer model implies that T, should be a monotonically
decreasjng function of x. This argument is correct as far as
it goes. Although the BCS eqguation for T, does not give
accurate numerical values, it does correctly identify the
general trends. (For a recent review of the theory of Tc,
see Allen and Mitrovic 1982.) As N(eF) decreases due to
charge transfer and band filling, Tc should drop.

Unlike more accurate equations for Tc, the BCS equation
displays the dependence of T, on N(eF) explicitly. It is
therefore possible to use it, together with rigid band
charge transfer, to calculate numerical values for TC in
Li NbS;. Values for V and <w> can be estimated from data on
NbS,. Using N(eF) from the calculation of Doran, et al
(1976), and setting ﬁ<w>/kB=6D, allows V to be determined by
solving (7-1) with T equal to the observed value of 5.7K.
In chapter 5, values of N(eF) as a function of x were
obtained using the rigid band charge transfer assumption.
Putting these values into the BCS equation (7-1) gives the
results shown in figure 52. _

The results calculated using rigid band charge transfer
and the BCS equation do not agree with any of the data. The
lack of precise numerical agreement is not serious, since
there is no reason to expect it anyway. What is significant
is that although the calculation predicts a T, which
decreases almost monotonically as a function of x, McEwan
and Sienko's data show a rapid drop at low x, followed by a

recovefy between x=.1 and .3. McEwan (1983) has explained
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0.0 0.2 0.4 0.6 0.8
X in LiXPQbS;2

Figure 52: T_ as a function of x, using the rigid
‘ band charge transfer model and the BCS
equation for TC (7-1).
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the depression of T, between x=,02 and .3 in terms of a
hypothetical charge density wave which is present only in
this composition range. Near x=1/7, some form of lithium
ordering along the c-axis with period 7c is supposed to play
a role, causing, for example, the lack of any TC in their
x=.15 sample. There are serious problems with this
explanation, however. First of all, McEwan searched for
evidence of the CDW in the resistivity and magnetic
susceptibility, and found none. McEwan also argues that
Thompson's empirical relation for CDW transition
temperatures in layered transition metal dichalcogenides
(Thompson 1975) predicts that a CDW should occur. The
Thompson relation is based on the c/a ratio of the
crystallographic unit cell. It was not originally intended
for use in intercalation compounds. Considering the drastic
changes in the Fermi surface that will be produced by
intercalation and charge transfer, there is no real reason
to expect that the Thompson relation will apply to
intercalation compounds. CDW's are now generally believed to
be related to Fermi surface nesting (Wilson, et al 1975,
Friend and Jerome 1979), and although there may well be a
simple relation between Fermi surface geometry and unit cell
.geometry within a group of materials with similar
structureé, this will probably break down as sbon as’
intercalation raises the Fermi level. Even if a CDW does
bccur, it must be a relatively low amplitude, low

temperature one, similar to that in NbSe,. Otherwise it
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should have been easily observable., In NbSe,, the charge
density wave transition temperature T, is 33K and T, is
7.2K. Data on the pressure dependence of Tc (Berthier, et al
1976) gives an idea of the magnitude of the effect that the
CDW has on TC. The application of pressure decreases T, and
increases Tes until at 36kbar T, disappears and T, is 8.2K.
Further increase in the pressure has little effect on Tc'
This can be understood by saying that the CDW opens gaps on
the Fermi 5urface, reducing N(eF) and depressing Té (from
8.2 to 7.2K). Destroying the CDW with pressure then raises
T.- The fractional depression of T, (=12%) by the CDW in
NbSe, is much smaller than the 50% differences between Tc's
in Libesé near x=.13 and .25. It may not be possible for a
very weak CDW to produce the T, variations observed.
McEwan's evidence for the c-axis lithium ordering is the
presence of the (007) Bragg peak, and, as we have seen in
section 2.3, this is actually due to a simple stage 2
structpre; Ordering along the c-axis with period 7c¢ would
give rise to (0,0,1/7) and related peaks, not (007) ones.

A correct and complete explanation of the behavior of
T. as a function of x is not available at present. As we
have seen, the rigid band charge transfer model alone cénnot
explain the data. The behavior of T, as a function of x
should be influenced as well by the large changes in the
phonon modes which are caused by intercalation (chapter 6).

The BCS equation tends to overemphasize the importance

of the density of states and in any case is valid only in
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the limit of weak electron phonon coupling (A<<1). Since
NbS, and its intercalation compounds have the coupling
constant A approximately equal to 1.8 (chapter 5), we are
clearly in the regime of 'strong coupling' superconductivity
and should really be using a different equation for Tc.

The most widely used such equation is the 'modified

McMillan equation' (McMillan 1968, Allen and Mitrovic 1982).

This is
hw -1.04(1+2)
T = —log exp 7-2
c ¥ (7-2)
l.ZkB A-u (1+0.62 )
where wlog is a logarithmic average phonon frequency, and u*
is an adjustable parameter of order .1 which represents

Coulomb repulsion. This equation was used by Aoki, et al,
(1983) to discuss superconductivity in NbS, intercalated
with organic molecules. Another approach which works well
for many materials with 1.2<A<2.4 and .1su*s.15 (the usual
range) is the empirical relation of Leavens and Carbotte
(1974)

Tc=0.1477A (7-3)

where A is the area under the electron-phonon coupling

spectrum a?F(w), that is

A= fa?’F(w) dw (7-4)
0 .

The interaction spectrum a?F(w) is a dimensionless measure
of the effectiveness of phonons of frequency w in scattering
electrons between different points on the Fermi surface. It

can be obtained from tunneling experiments. The structure in
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a’F(w) generally bears a close resemblance to the phonon
density of states. The coupling constant A (also known as
the mass enhancement factor), can be related to the

interaction spectrum by
A = 2 f d_w (IZF((D) (7-5)
O w

for isotropic materials (Allen and Mitrovic 1982).

Although there is insufficient information to actually
use the T_ equations (7-2) or (7-3), they do indicate that
the phonons and electron-phonon coupling are extremely
important in determining T.. It is clear from the lattice
specific heat data that intercalation produces large changes
in~the phonon spectra, although the low fregency acoustic
phonons important in the specific heat are not necessarily
the most important in determining T..

The mechanism for the T, variations in LibeS2 might be
revealed by measurements of phonon spectra by tunneling or
inelastic neutron scattering. It is not clear, however, that

samples of suffient guality to allow these measurements

could be prepared using the present methods.



8. CONCLUSION

8.1 SUMMARY OF THIS THESIS

Most of this thesis 1is concerned with measurements of the
low temperature specific heat of Libesz. This is the first
low temperature specific heat study of lithium intercalation
in a layered transition metal dichalcogenide.

Sample preparation was carried out by intercalating
lithium into NbS, in electrochemical cells. Electrochemical
and x-ray diffraction measurements were ﬁsed to study the
structure of LibeSZ. Stage 2 and stage 3 phases were
identified for the first time. In addition, there is some
preliminary electrochemical evidence for in-plane lithium
ordering near x=1/3. The extra peaks in -dx/dV which suggest
ordering were seen only in electrochemical cells made from
freshly prepared NbS,. The changes in electrochemical
behavior may happen because of sulfur loss during storage.

A cryostat suitable for specific heat measurements on
small samples of air sensitive compounds was built. It, and
the experimental procedure, were described in chapter 3.
Measurements were made on NbS, and eleven LibeSZ samples,
covering the range 0<x<1,

The original reason for doing this work was to test the
rigid band charge transfer model of the electronic
properties of intercalation compounds. The results for the
electronic specific heat are consistent with complete charge
transfer from the intercalated lithium atoms to the bands of

188
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the NbS, host. Because the electronic specific heat of
Libesz is determined by the filling of the original NbS,
bands, the data provide information on the electronic
density of states of NbS,. In particular, a shoulder in the
density of states predicted by earlier band structure
calculations was reflected in the data, and its position was
determined.

There were also large changes in the phonon specific
heat as a function of x. In chapter 6, we showed that the
configurational degrees of freedom of the lithium will not
contribute to the low temperature specific heat, since
lithium motion will be 'frozen out' at temperatures below
about 100 K. Simple models of the vibrational motion of
intercalated lithium show that the new vibrational modes due
to the addition of lithium are at high frequencies, and will
not be seen in the specific heat. Because of this, the data
could be discussed in terms of an elastic continuum model of
lattice vibrations. The results suggest that. intercalation
induced changes in the elastic constant c¢,, associated with
rigid layer shear are primarily responsible for the changes
in phonon specific heat as a function of x. For x less than
about .3, c,, is significantly lower than in pure NbS,,
indicating that.small lithium concentrations between the
layers weaken the interlayer shear forces. At higher x, c,q
increases again, and by x=1 is larger than in NbS,. This
suggests that the bonding in Li;NbS, is more three

dimensional than in NbS,.
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Superconductivity in LibeSZ is discussed briefly in
chapter 7. It is shown that the variations in N(eF) due to
rigid band charge transfer are not sufficient to explain the
available data. Intercalation induced changes in the phonon
spectrum and the electron-phonon interaction must also be

involved.

8.2 SUGGESTIONS FOR FUTURE WORK

The electronic specific heat of LibeS2 is now reasonably
well understood in terms of rigid band charge transfer. The
electronic specific heat of other intercalation systems
might be of interest. For example TiS,, which has an empty
dz? band and is either a semiconductor or semimetal, becomes
metallic on ihtercalation. Li TiS, would show an electronic
specific heat which would increase with x. This might be a
good system in which to make detailed comparisons between
the data and the predictions of band theorists, since very
detailed and supposedly accurate calculations- are available
for both TiS, and Li,TiS, (Umrigar, et al 1983, McCanny
1979).

A class of intercalation hosts for which simple rigid
band charge transfer will not work at all are MoS, and
beMo1_YSZ (0O<y<1). These compounds undergo structural phase
transitions when lithium is added. Py and Haering (1983)
suggest that the transition is driven by the electronic
energy. Electronic specific heat measurements on samples

with lithium concentrations near the value at which the
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transition occurs could improve our understanding of this
process.

The lattice specific heat data show that there is
probably a softening of the shear elastic constant c44 in
samples with 0<x<.3., It is of interest to know whether this
is typical of all lithium intercalated transition metal
dichalcogenides, or is peculiar to LibeSZ.

As seen in chapters 2 and 6, aging the NbS, seems to
have had an effect on the electrochemical properties and
lattice specific heat of LibeS2 prepared from it. We have
suggested that this may be due to loss of sulfur. It may be
possible to test this hypothesis directly by preparing the
non-stoichiometric compound Nb1+ysz, with a small well
controlled amount y of excess niobium, and then
intercalating this with lithium. (It may not, however, be
possible to get this to grow in the 2H phase - see Fisher
and Sienko 1980.) Another, rather time consuming, approach
would be to start with the stoichiometric compound. and make
a systemaﬁic study of the effects of aging and storage
conditions on the electrochemical properties.

A series of specific heat measurements on samples
prepared from 'fresh' NbS, would be of interest. By 'fresh’
NbS,, we mean material which shows the extra peaks in
-dx/dv, ‘and which yields specific heat samples which behave
like the x=.30 and .16 samples in the present study. It is
not yet clear whether the high g values of the x=.30 and .16

samples are related to lithium ordering which was not
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present in the other samples, or to the presence of
interlayer excess niobium itself. 'Fresh' samples might, in
the first case, show peaks in f at x values corresponding to
the ordered states, or, in the second case, they might have
higher g values thrbughout the low x range.

The interpretation of the phonon specific heat data in
terms of intercalation induced changes in the elastic
constant c,, suggests a possible application for Libesz or
related intercalation compounds. Layered materials, chiefly
graphite and MoS,, are widely used as solid lubricants.
Their lubricating ability is related to the fact that
because of the relatively weak interlayer interactions, the
layers can slide over one another in response to a
mechanical force. When some powdered MoS,, for example, is
placed between two sliding surfaces, layer slipping allows
it to spread into a smooth lubricating film. A low value of
cyy means that the interlayer shear forces are weak, and
that layer slipping can occur easily. If we assume that the
other elastic constants have values close to the ones we
used for NbS,, the specific heat results for Li_16NbSZ imply
that it had c,4=~.2-10'°N/m?. For comparison, graphite and
MoS, have C,4~.4-10'°N/m? and 1.9:10'°N/m?, respectively
(Wakabayashi and Nicklow 1979, Feldman 1976). It is
possible, therefore, that LiXNbSZ with 0<x<.4 may be a
superior solid lubricant for critical applications,.and its
lubricating properties should be investigated. Although the

presence of reactive lithium might seem to rule out the
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practical use of LiXNbSZ; solid lubricants are often used
mixed with grease or oil, and this might be sufficient to
protect the intercalation compound from air. It may also be
that layer compounds intercalated with other, less reactive,
species will show similar behavior.

As mentioned in chapter 7, the superconducting
properties of LiXNbsz remain something of an enigma. It
should be pointed out that the superconducting transition
temperature of LibeSez varies as a function of x in a way
that is very different than for Li NbS, (McEwan 1983).
McEwan's measurements on LibeSez were made on samples
prepared at high temperatures. The samples had the 2H
_structure, and the presence of (007) and (009) Bragg peaks
in the x-ray diffraction patterns for some of the samples
indicates the presence of a stage 2 phase similar to that in
LibeSZ, and in LiXNbSe2 prepared by electrochemical
intercalation (D.C.Dahn and R.R.Haering 1982). The band
structure of NbSe, is very similar. to that of NbS, (Wexler
and Wooley 1976). In spite of the fact that its host band
structure and staging behavior are almost identical to those
of Libesz, TC for LiXNbSe2 is a smooth monotonically
decreasing function of x. The reasons for the drastically
“different Tc(x) behavior in these two compounds is an

intriquing problem to be solved by future research.
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APPENDIX 1: INTENSITIES OF X-RAY BRAGG PEAKS FOR STAGE TWO

Li NbS,

The purpose of this appendix is to briefly outline a
calculation of the Bragg peak intensifies for stage 2
LibeS?, to present the results, and to compare them with
measurements on Li.14NbSZ made using an electrochemical cell
with a beryllium x-ray window. Portions of this data have
already been presented in figure 6(d). The hexagonal lattice
parameters were c=12.35 A and a=3.330 A.

To calculate the intensities we need to know the
positions of the atoms in the unit cell. Atom positions will
be given in terms of the three basis vectors ¢, a,, and a,.
¢ has length ¢ and lies in the difection'normal to the
1éyers. a; and a, both have length a, lie in a plane
parallel to the layers, and make an angle of 120° with each
other. In the notation to be used (p,qg,r) indicates a
position pa,+qda,+rc. Picking the origin to lie halfway
between the two niobium atoms in the unit cell (that is, at
one of the octahedral sites in the gap), the atom positions
for the 2H-NbS, structure are (see figure 2):

Nb at +(0,0,-1/4)

S at *(1/3,2/3,z), +*(1/3,2/3,1/2-2)
where z is defined in figure A1-1. These atom positions lead
to a structure factor of zero for (00/) Bragg reflections
with / odd. The exact value of z for NbS, is not known, but,
as in most of the 2H transition metal dichalcogenides, it is

approximately 1/8 (Hulliger 1976). The extinction of (00/)
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peaks with !/ odd does not depend on the value of z.

To get atom positions for stage 2 LibeSZ, we start by
taking z=1/8 in pure NbS,. We then make the assumption that
the change in the c-axis in going from NbS, to stage 2
LibeSZ is due entirely to the expansion of only one of the
two interlayer gaps in the unit cell (we choose the one at
the origin). This is shown schematically in figure A1-1.
Since the scattering factor of lithium is very low, the
inclusion of the lithium in the calculation makes little
difference in the results. The most important factor
determining the intensities is the gap expansion. For
completeness, however, we will include the intercalated
lithium, and will assume it lies in the octahedral sites in
the expanded gap. There is not a lithium atom in every unit
cell, so for the purposes of the intensity calculation we
takevthe scattering factor at the lithium site to be 2x
times the scattering factor of a lithium atom. Here x is the
overall value in LibeSZ. Since every second gap is. empty,
the concentration in the filled gaps is 2x. In terms of the
expanded unit cell, the atom positions in stage 2 LibeS2
are:

Nb at +(0,0,-.257)

S at +(1/3,2/3,.136), +(1/3,2/3,.379)

2x Li at (0,0,0)

Starting with these atom positions, the integrated

intensities of the peaks were calculated using a computer
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Projections onto a (110) plane of the
unit cells of

b- stage 2 LibeS
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(not to scale)
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program written by R.Marselais?’. The program begins by
calculating the structure factor F in the usual way. Atomic
scattering factors from Ibers and Hamilton (1974) were used.
The measurements were made with a Philips PW1050/70 vertical
goniometer, which uses the Bragg-Brentano pseudofocusing
geometry shown in figure A1-2. For a goniometer with an
angular divergence § of the incident beam, and a diffracted
beam monochromator, the integrated intensity of a Bragg peak

centered at angle 26 is (for a thick sample)

(Al-1)

2 2
I = Iom|F|26[ L+cos.28cos 2{]

sinbsinZ¢

where I, is a constant, m is the multiplicity of the
reflection, and the angles 6 and ¢ are defined in the
figure. The results of calculations using (A1-1) are listed
in table A1-I for peaks at angles 26<90°. They are in the
column labelled 'standard intensity'.

In our diffactometer, § is not constant because of a
Philips PW1386/50 automatic divergence slit, which instead
of providing a beam of constant divergence as would a fixed
slit, keeps the illuminated area of the sample approximately
constant. In addition, when using an x-ray cell, the
intensities must be corrected for absorption in the
beryllium window. Corrections for these effects have been
discussed by Py and Haering (1983) and J.R.Dahn (1982), and
are included in the computer program. The corrected

27XBAT:SPECTRUM.S



204

line source

Radius of curvature = R

Figure Al-2: The Bragg-Brentano focusing geometry.

In most diffractometers the sample is
flat, not curved. Because the sample
dimensions are much less than R, the
focusing condition is still approximately
satisfied, hence pseudofocusing.
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intensities are also included in the table, as are the
diffaction angles 26 calculated for copper Ka radiation.

Detailed comparison of all the intensities with
experiment was not done. This would be difficult because of
preferred orientation effects (the calculation aésumes
random orientation in the powder sample), and in any case we
are primarily interested in.the (00!) peaks, especially
those with [ odd. Calculated and observed relative
integrated intensities for the (OOIf lines are given in
table A1-11. Preferrred orientation should have an equal
effect on all of the lines in this group. The agreement
between calculated and experimental values is reasonably
good. The calculation shows why, of all the (00/) peaks with
! odd, only fhe (007) and (009) peaks have been observed in
stage 2 LibeS2 and stage 2 LibeSe2 (this work, McEwan
1983, D.C.Dahn and Haering 1982).

The (009) peak was considerably wider than the other
observed (00/) peaks. The full width at half maximum of the
(009) peak was =.7° in 26, while the (008) peak, for
example, was .3° wide. This indicates some disorder in the
staging sequence. It can be shown (J.R.Dahn 1982), that
staging disorder broadens the (00/) lines with / odd much
more than those with [ even.

The experimental (10/) lines had relative intensities
in qualitative agreement with the calculation. Since these
lines depend strongly on the stacking sequence of the NbS,

layers, this agreement indicates that the host stacking
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sequence is not affected by intercalation (that is, it is

still BaB-CaC in the notation of section 1.2).
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Table A1-1

Calculated integrated intensities and angles for stage 2
LiXNbSZ (see text).

Standard Corrected
26 Intensity Intensity
k1 (degrees) (relative) (relative)
0 1 7.15 0.74 0.07
0 2 14.34 100.00 48.08
0 3 21.57 0.40 0.39
0 4 28.90 1.78 2,71
0 0 30.98 20.76 34.85
0 1 31.84 7.87 13.73
0 -1 31.84 8.54 14.90
0 2 34.29 31.58 61.04
0 -2 34.29 31.21 60.32
0 5 36.35 0.07 0.14
0 3 38.07 8.89 19.78
0 -3 38.07 0.82 1.82
0 4 42.88 27.49 71.52
0 -4 42,88 38.44 100.00
0 6 43.97 4.00 . 10.75
0 5 48.49 6.42 19.56
0 -5 48.49 0.33 1.00
0 7 51.79 0.82 2.71
0 6 54.76 7.95 - 28.16
0 -6 54.76 B.75 31.01
1 0 55.11 24,21 86.46
i 1 55.65 0.03 : 0.12
1 2 57.26 15.23 57.00
1 3 59.87 0.16 0.63
0 8 59.88 5.27 20.82
0 -7 61.58 2.21 9.04
1 4 63.42 1.55 6.58
0 0 64.58 2.59 11.21
0 1 65.07 0.89 3.90
0 -1 65.07 0.81 3.54
0 2 66.54 4,34 19.42
0 -2 66.54 4,38 19.64
1 5 67.83 0.07 0.33
0 9 68.32 0.58 2.69
0 3 68.95 0.11 0.53
0 -3 68.95 1.39 6.48
0 8 68.96 3.25 15,17
0 -8 68.96 0.86 4.04
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Table A1-I (Continued)

Standard Corrected

26 Intensity - Intensity

(degrees) (relative) - (relative)
72.26 7.77 38.24
72.26 5.59 27.53
73.04 5.18 25.81
76.43 ) 0.08 0.42
76.43 1.62 8.48
76.89 0.07 0.40
76.89 1.61 8.47
77.20 1.04 5.53
79.02 1.40 7.58
81.43 2.77 15.50
81.43 2,51 14.07
85.48 1.81 10.63
85.48 1.31 7.70
85.77 11.81 69.62
86.67 0.11 0.64
87.26 0.87 5.21
89.93 2.19 13.51
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Table A1-1I1

Integrated (00/) intensities for stage 2 Li _NbS,. The (007)
peak was not observed because its position Coincided with a
beryllium Bragg peak originating in the cell window. The -
(002) peak may have been partially obstructed by the cell
case.

Calculated

Corrected Intensity Observed Intensity
Peak (relative to (008)) (relative to (008))
(001) | 0.35 out of range
(002) | © o230 150
(003) : 1.9 not observed
(004) 13. 12
(005) 0.67 not observed
(006) 51 70
(007) 13 obscured by Be
(008) 100 - 100
(009) 13 15
(0010) 27 20

(0011) 3.0 not observed



APPENDIX 2: SOLUTION OF THE HEAT FLOW EQUATIONS

This Appendix contains the solution of the heat flow problem
for a relaxation time heat capacity measurement in which the
sample's thermal conductivity is finite. Some of the results
are given in Bachmann, et al (1972), but it will be useful
to outline the derivation here. Also, in the cryostat used
in this work, the heat capacity of the wires which support
the sample platform is very small compared to the heat
capacities of the sample and the platform. This leads to a
useful simplification of the resulting equations, which is
also discussed.

Consider the system of figure A2-1, If the thermal
conductivity of the platform is high enough that it is
always essentially isothermal, and if there is no heat loss
from the sample's edges, the temperature in the sample wiil
be a function only of z, the coordinate normal to the plane
of the platform. In this case, we have a one-dimensional
heat flow problem.

It is convenient to work in terms of a relative
temperature

6(z,t)=T(z,t)-T, (A2-1)
where T, is the temperature of the block. The heat equation
for an inhomogenedus system is then (Carslaw and Jaeger

1959)

& K(z)-age@,t)] - s(2)%(z,0) (A2-2)
where s(z) is the heat capacity per unit length and K(z) is

210
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R

Reference Block (T,)

" Figure A2-1: Model system for heat flow calculations.
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the (1D) thermal conductivity. The thermal diffusivity
K(z)/s(z) is constant in each of the three parts of the

system and can be described by

s(z)/K(z)=Cw/kwL2 O<z<L
s(z)/K(z)=Cpl/kpll2 L<z<z, (A2-3)
s(z)/K(z)=CS/kSl2 20<Z<Z

where the C's and k's are, respectively, the appropriate
heat capacities and thermal conductances of the parts.

At z=0, the temperature is fixed at the block
temperature, and at z=z, there is no heat flow, so the
boundary conditions are '

6(0,t)=0 (A2-4)
06(z,,t)/0z=0 (A2-5)
At the internal boundaries z=L,z, we require that the heat
flow be continuous:
K(z) 86(z,t)/dz continuous at z=z,,L (A2—6)
;f there is no thermal contact resistance at either of the
boundaries, we also have
6(z,t) continuous at z=z,,L : (A2-7)
The case of a non-zero thermal boundary resistance (e.g. a
poor grease joint) has been treated by Bachmann, et al
(1972).

To solve (A2-2), we begin by separating variables

6(z,t)=¢(z)y(t) (A2-8)
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Then, defining the separation constant as -1/7,

1 d m)d_@] dy

s(z) dz dz dt 1
= = - — (A2-9)
¢ Y T
which gives
vit)=e /7 (A2-10)
and
d [g<z>éé} +82) 4 - (A2-11)
dz dz T

Equation (A2-11) and the boundary conditions define a
Sturm-Liouville system. The eigenfunction solutions will be
called ¢ and the corresponding eigenvalues The Using the
homogeniety of the boundary conditions, it can be shown that
the. eigenfunctions are orthogonal with respect to s(z), that

is ,

z,

fs(2)¢n(z)¢m(z)dz=0; m#n (A2-12)
0 .

(Strictly speaking, we must also require s(z) and K(z) to be
continuous; for this reason (A2-3) should be considered only
an approximation to the actual s(z) and K(z) which change
rapidly but continuously at z=1 and z=2z,.)

The next step is to find the L The following form



satisfies (A2-11) and the boundary conditions;

- 1 . < <
¢, (2z) sin) z 0<z<L

= ' <z<
¢,(z) = a cosy z + b cosy_ L<z<z,
¢n(z) = d cosun(z1-z) zo5z<z,

where

2_
(knL) —Cw/kwfn

2_
(7n1) —Cpl/kplr

2
(u 1)2=C_/k 7
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(A2-13)

(A2-14)

and a, b, and d are constants to be determined from the

internal matching conditions (A2-6) and (A2-7). These

conditions yield the equations

i = 1 +
51anL a 51n7nL b c057nL

d cosunl a sinyn(L+l) + b cosyn(L+l)

knkwL cosan = a7nkpll cosynL - b7nkpll 51n7nL

du k.1 sinup 1 = ay k_,!/ cosyn(L+l)

pl
- bynkpll sin 7n(L+l)

(A2-15)

We will be interested in the case k_ >« (or 7d+0), so the

pl

problem can be simplified by expanding the right hand sides

of these equations to order 7n2‘ Doing this and solving the

first three equations for a, b, and d gives

a =~ vy L 51nan + (ankwlfn/Cpl) cosan
~ 3 —_— 2 - 2 2
b = 51anL(1 7nL/2) (knL kwlTn/Cp1)7n cosan

d = 51nan/cosunl

(A2-16)
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Substituting these into the fourth equation of (A2-15) and
dropping terms of order 7% gives the eigenvalue equation

'(Cw/knL) cotknL + (Cs/unl) tanunl + Cpl = 0 (A2-17).

which is valid in the limit kpiém. (This equation can also
be derived by taking kp1=cD at the start of the problem, that
is, taking the sample platform to be isothermal. In this
case, the internal matching condition (A2-6) is meaningless
and must be replaced by a heat balance equation for the

platform, which then reduces directly to (A2-17).)

Therefore, the eigenfunctions ¢, are given by

= af <z<

¢n sxnxnz 0<z<L

¢, = sinan L<z<z, (A2-18)
¢, = sind L cosun(z,-z)/cosunl z,<z<z,

where u_ and X\ are defined in terms of 7 by (A2-14) and 7

is the nth

solution of the eigenvalue equation (A2-17).
The solution to the entire time-dependent heat flow

problem is then

6(z,t) = = A ¢ _(z) e t/™n (A2-19)
n=lnn

where the coefficients A, are determined by the initial
conditions. In the case of a relaxation time heat capacity
measurement, we take t=0 to be the time the sample heater is
switched off. Heat has been supplied to the sample platform

at a rate P for t<0. Thus the initial condition is
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6(z,0)=60=P/kw L<z<z, (A2-20)

6(z,0)=0z/L 0<z<L

So, since the ¢n form an orthogonal basis,

? dz s(z)e(z,0)¢n(z)
A =2 (A2-21)

z 2
J dz s(z){¢n(z)}
0

Evaluating the integrals and using (A2-14) and (A2-17) gives

290Cw -~ CW C l "'1
A_ = (1+tan?y 1 + —(l+cot?r L) + —£= )

2T 2,2
CSAnL 51nan CS CS

(A2-22)

which, together with (a2-14), (A2-17), (A2-18), and (a2-19),
completely specifies the solution.

Bachmann, et al (1973) outline a method of data
analysis which is based on a numerical solution of equations
(A2-17) and(A2-22) with n=1. It uses as input data the

values of Cw' k C

v’ 7., and A,¢,(L)/6,. Cpl and C, must

pl’
be known beforehand:; the other values can be determined from

a fit to the thermal decay data. (A,¢,(L) is available from
the data because the temperature is measured at the
platform, that is, at z=L.)

In the cryostat used for this work, however, the wire
heat capacity C. is not accurately known. It is, however,
much smaller than either the platform heat capacity Cpl or
the sample heat capacity Cs' Rough estimates also show that

Cw/kwn:()\,L)2 is typically about .02, and that CS/Cw is of
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order 100. It is therefore useful to examine the equations
in the limit where Cy and A\,L are small. Setting tanX;L=\,L

in (A2-22), and using the fact that Cy<<Cgq» gives

A;sini,L _ ZkWT1

= (A2-23)
8o Cs(l+tan2u11) + kle + Cpl

Treating the eigenvalue equation (A2-17) the same way and

solving for Cg gives
CS=(kwT1-Cpl)u1l/tanu1l (A2-24)
Substituting this into (A2-23) gives

(A2-25)
A,sinX,L 2kwT1

6o uil(cotu,1l + tanuil) (k 11 - Cpl) + k, 1t Cpl

Section 3.4.2 describes how (A2-24) and (A2-25) were used in

analysis of LibeS2 specific heat data. In the notation used

there, A,sin),L is 4,.



