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Abstract 

Motivated by a well established body of theoretical work on the nonlinear Meissner state 

electrodynamics of type II superconductors, we have developed a high sensitivity ac sus-

ceptometer to measure the magnetic field dependence of the penetration depth A in single 

crystal YBa2Cu 3G'7_ f5. The susceptometer is capable of measuring changes in the pen­

etration depth in typical sized crystals to within a few tenths of an Angstrom. This 

represents a significant increase in the resolution of such a device, and offers increased 

functionality over superconducting microwave resonators in its ability to measure AA as 

a function of field as well as temperature. In addition, we have developed appropriate 

procedures to ensure that our field dependent measurements remained free of unwanted 

magnetic flux penetration into the sample, and that subsequent results represented the 

intrinsic nonlinear Meissner response of the sample. This has allowed us to test present 

ideas about the nature of high temperature superconductivity through an accurate com­

parison of A A (if) measurements with theory. 

In particular, the theory predicts that a d-wave superconductor will exhibit a field 

dependent penetration depth that is linear in field near T = 0 and crosses over to a weak 

quadratic field dependence with increased temperature. Furthermore, the magnitude 

of this effect should depend on the direction of the applied field with an anisotropy 

that reflects the symmetry of both the superconducting order parameter and the crystal 

structure. 

Measurements presented in this thesis were made on three high quality single crystals 

of YBa2Cu307_fj. In all cases, the field dependence of the penetration depth could not be 

described in full by the theory of the Nonlinear Meissner Effect. The anisotropy seen in 
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A\(H) may be a result of the orthorhombic crystal structure and the strong anisotropy in 

the zero temperature, in-plane penetration depth AQii(0), and as such may be consistent 

with theory. However,theory also predicts a strong suppression of AX(H) with increasing 

temperature, in stark constast to the measurements which show a small increase. 

We believe the dx2_y2 symmetry of YBa2Cu3C>7_<5 to be well established by other 

experiments, and do not think that our results represent evidence contrary to this fact. 

Rather, it is our contention that present theories of the Nonlinear Meissner Effect simply 

do not describe in full the nonlinear behaviour of the penetration depth in a d-wave 

superconductor. Our results are also compared with a very recent idea of a field induced 

gap suppression in a d-wave superconductor; this theory showed some success in its 

ability to correctly predict the direction in which AX(H) evolves with temperature. We 

also show that there is evidence for a possible c-axis contribution to AX(H). Overall, at 

present there appears to be no single theory that can explain the field dependence of the 

penetration depth measured here for Y E ^ C ^ O y - a . 
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Preface 

In the fall of 1992, S.K. Y ip and J.A. Sauls published a paper entitled Nonlinear Meissner 

Effect in CuO Superconductors. It was a theory paper proposing experiments based on 

the nonlinear effects of an applied magnetic field on the Meissner state supercurrent that 

would differentiate between s-wave and d-wave superconductors.1 This is discussed at 

much greater length in Chapter 3, along with the several theoretical ideas that have 

built on the original work. Throughout the entire thesis I reserve the term the Nonlinear 

Meissner Effect (NLME) to refer specifically to the Yip and Sauls theory and all the 

subsequent extensions of this theory as described in Chapter 3. The unifying concept 

between these theories is the quasi-particle energy shift as the origin for nonlinearities 

that arise in Meissner state electrodynamics. Of course, it is entirely accurate to say 

that any field dependent Meissner state penetration depth is by definition a nonlinear 

Meissner effect, and there is another theory (to be discussed in Chapter 6) that suggests 

a different mechanism (from Yip and Sauls) for how it could come about. As it stands, 

there is no clear explanation for the AA(iJ) we have measured in Y B a 2 C u 3 0 7 _ , $ in this 

thesis, so I let the original theory remain as the Nonlinear Meissner Effect and leave it 

for future researchers in this area to decide who ultimately gets this title. 

In Chapters 1 and 2, I review basic concepts of superconductivity, introduce the high-

Tc compound Y B C O , and discuss the linear local electrodynamics that should precede the 

topic of nonlinear electrodynamics. This will certainly be a review for many people who 
1 The debate over the symmetry of the pairing state in the cuprate superconductors was still raging 

at that time, and the theory of Y i p and Sauls showed that a shift in quasi-particle energies due to the 
applied magnetic field would give rise to a field dependent penetration depth (among other things) that 
would be depend uniquely on the nature of the pairing. 
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read this thesis, but I hope it will give those unfamiliar with the topic a reasonable feel for 

what superconductivity is all about. With regard to the introduction in Chapter 1,1 tried 

hard not to sound like every other introduction I have ever read about superconductivity. 

But the truth of the matter is that superconductivity in itself is far more interesting than 

the history of our knowledge of it, and there is precious little that one can do to spice this 

up. So I didn't. One might also notice in these two chapters that I exclusively showed 

microwave data originating from our lab. My primary reason for doing this: a souvenir. 

I want to keep for myself some account of what my friends were up to in the lab. This 

may appear to be rather unscientific, but I am vindicated by the fact that this data 

also happens to represent some of the best measurements of the linear, low frequency 

electrodynamics in high-Tc superconductors. Any reader serious about this subject will 

find the field well documented within the few references I present. 

Chapters 4 and 5 described the ac susceptometer and the measurement techniques 

used in this thesis. This represents only the pleasant details of success that followed 

a very long struggle to develop an instrument sensitive enough to measure very small 

changes in the penetration depth as a function of magnetic field. There were in fact 

four versions of the ac susceptometer built over a four year period. It also took another 

year after that to work the kinks out of the experiment and to get some good data. By 

this time, the original impetus for studying the Nonlinear Meissner Effect had passed; 

several other experiments had convincingly shown that the cuprates were indeed d-wave 

superconductors. However, the superconducting mechanism is still not known for these 

materials, so any experiment that can provide any information about the way they behave 

is certainly worth doing. I look forward to seeing how it all turns out one day. 
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Chapter 1 

Introduction 

When telling a story, it is generally easiest to just start at the beginning. For supercon­

ductivity, the story began in 1911 with Heike Kamerlingh-Onnes, who discovered that 

the dc electrical resistance of mercury sharply dropped to zero at some critical tempera­

ture Tc [1]. This perfect conductivity may be the most well known and most sought after 

property of a superconductor, but it alone does not define superconductivity; a supercon­

ductor also exhibits perfect diamagnetism in the presence of a small magnetic field. This 

property was discovered by W. Meissner and R. Ochsenfeld in 1933 [2]; known as the 

Meissner Effect it distinguishes superconductivity as a phenomena quite disparate from 

just the absence of electrical resistance. In 1935, the brothers Fritz and Heinz London 

were able to set down two equations that describe the macroscopic electrodynamics of 

superconductors [3], and despite the fact that they were derived from purely classical 

considerations, there exists in the London Equations a subtle suggestion that supercon­

ductivity is in fact a quantum phenomenon. Twenty-two years later John Bardeen, Leon 

Cooper and J. Robert Schrieffer showed this to be true, and provided a microscopic 

explanation of conventional superconductivity (BCS theory) [4] that was based on the 

instability at the Fermi Surface caused by phonon mediated attraction between electrons. 

The nearly fifty years between the first observation of superconductivity and the 

development of a successful theory to explain it epitomizes human resolve to learn the 

secrets of an often reticent universe. It also seems that the greater the mystery the more 

intent we become on discovery, and if the Nobel Prize can be used as a measure of that 

1 



Chapter 1. Introduction 2 

intrigue then there is little doubt that superconductivity has always caught our attention. 

In 1913, Kamerling-Onnes received the award (for his work on low temperature physics 

including superconductivity), as eventually did Bardeen, Cooper and Schrieffer in 1972. 

The following year it was Brian Josephson and Ivar Giaever for their work on tunneling in 

superconductors [5, 6], and in 1987, J. Georg Bednorz and K . Alexander Miiller became 

Nobel recipients for their discovery, just one year prior, of superconductivity at 35 K in 

the compound La2_ x Ba x Cu04 [7]. 

This discovery touched off an explosion of research in the area of high temperature 

superconductivity. Before 1986, the highest known Tc was 23 K in the compound Nb 3 Ge, 

but by the start of 1987 superconductivity was discovered above 90 K in YBa2Cu 307_,5, 

and by the following year at temperatures in excess of 100 K in compounds such as 

B i 2 S r 2 C a 2 C u 3 O i o and T l 2 B a 2 C a C u 2 0 8 . 1 These high temperature superconductors are 

all characterized by the presence of CuG"2 planes, which has garnered them a more suc­

cinct name, the cuprates. It is in fact a cuprate, HgBa2Ca2Cu308+f5, that presently holds 

the record for the highest Tc, about 160 K under pressure, and while the push to find 

compounds with even higher transition temperatures has presently stalled, a massive 

experimental and theoretical research effort to understand the cuprates still continues. 

Much has been learned about these materials in the last fourteen years - in some aspects 

they show the conventional traits of BCS superconductivity, while in others they appear 

to be quite unconventional - but a successful explanation for how they come to super-

conduct is still missing. The greatest certainty right now is that once again our curiosity 

has been captured by the strange phenomena of superconductivity. 

1See the handbook by Poole [8] for an extensive reference on superconducting materials, and their 
transition temperatures and other physical parameters. 
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1.1 Superconductivity Basics 

Perfect diamagnetism implies that the ground state of a superconductor in a magnetic 

field is one where the magnetic field in the interior of the superconductor is equal to zero. 

This is achieved by currents that flow just inside the surface of the superconductor and 

produce a magnetic field that precisely cancels the applied field within the bulk of the 

material. The length scale over which these currents exist, and the total field is driven to 

zero, is set by a material specific parameter known as the penetration depth A. Another 

important length scale is the coherence length f, which can be thought of as the size of 

the wavepacket o f the superconducting charge carriers (after Pippard [9]), or in a related 

notion as the length over which the ordered state of superconductivity reaches its full 

value (after Ginzburg and Landau [10]). The size of the coherence length is also specific 

to a given superconductor. 

The phenomenological theory of Ginzburg and Landau expresses the free energy of a 

superconductor in terms of a complex order parameter that has a magnitude related to 

the density of superconducting electrons. The Ginzburg-Landau parameter re = A/£ sets 

the dividing line between two distinct types of superconductor: a superconductor with K 

less than l/y/2 is considered type I; type II if K > l / \ / 2 . For a type I superconductor in 

a magnetic field, it is energetically unfavorable to remain in the superconducting state 

when the field reaches some thermodynamic critical value Hc, and the system exits the 

flux free Meissner state and becomes normal. 2 In contrast, a type II superconductor finds 

it can keep a lower energy by letting the field enter its bulk slowly, starting at a lower 

critical field Hc\ < Hc, and is only driven normal at some upper critical field Jf c 2 > Hc. 

A type II superconductor is said to be in the mixed or vortex state when Hc\ < H < i f c 2 , 

and the field enters the sample in tubes or vortices of quantized flux $ 0 = h/2e. The 

2 This discussion ignores shape dependent effects of real superconductors. 
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Figure 1.1: The phase diagram, H versus T, for type I (left) and type II (right) super­
conductors. 

phase diagram, magnetic field versus temperature, for both types of superconductor is 

shown in Figure 1.1. 

The factor 2e in the flux quantum points to the fact that electron pairs actually com­

prise the superconducting charge carriers. This charge quantity, well known from BCS 

theory, is also apparent in the tunneling effects predicted by B.D. Josephson [5]. He 

showed that the superconducting current that would tunnel through a barrier (junction) 

between two superconductors was given by j = j c s in (A0) , where A 0 is the phase differ­

ence between the two. If, in addition, there is a voltage V applied across the junction, 

the current oscillates at a frequency that is proportional to the charge of this electron 

pair and is given by u = 2eV/h. 

Prior to BCS, pairing was hinted at experimentally by far-infrared and specific heat 

measurements. Results from these experiments could only be consistent with one another 

if the former was considered to be a measure of the energy needed to break apart a pair 

of electrons and the latter a measure of the energy per single constituent of a broken 
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pair [11, pp. 8-9]. At about that same time, Cooper [12] was able to show theoretically 

that two electrons, in the presence of a Fermi-sea of other electrons, would in fact form 

a bound pair (or Cooper pair) for any finite attractive interaction. In a generalization of 

Cooper's idea, BCS theory [4] had each electron playing the dual role of (1) restricting 

the available momentum states to the other electrons, i.e. being a part of the Fermi-sea, 

and (2) participating in a bound state as part of the N/2 set of Cooper pairs 3 that form 

to lower the energy of the system. A BCS wave function describing the entire state is 

constructed from N/2 two-electron wavefunctions, each of which must be antisymmetric 

(as is the overall wavefunction) to comply with the Pauli exclusion principle. The main 

consequence of BCS pairing is the formation of an energy gap A*, and an excitation 

spectrum Ek = yt\ + A | , where the energy Ek is referenced with respect to the Fermi 

surface (which corresponds to efc = 0). 

In the original theory, the attractive potential required for pairing arises from electron 

interactions with the lattice. This had been shown by the isotope effect [13], which was 

a correlation between Tc and isotope mass for a given element, and suggestively linked 

superconductivity with phonons. BCS also chose the two-electron wavefunctions to be 

a singlet state (i.e. opposite spins for the pair) and the energy gap to be isotropic (i.e. 

independent of k, see Figure 3.1). This theory, with few modifications, was sufficient to 

describe all known superconductors until the 1980's. 

1.2 Y B C O and High Temperature Superconductivity 

The crystal structure of the most studied high-Tc compound, YBa2Cu307_,5 (YBCO), 

is shown in Figure 1.2, and displays the sheets of copper and oxygen (Cu0 2 planes) 

that are common to all the cuprates. The superconductivity occurs in these sheets, and 

3 The coherence length from B C S theory can be thought of as the spatial extent of the Cooper pairs. 
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Figure 1.2: The lattice structure of Y B a 2 C u 3 0 7 (courtesy of R. Liang). The planes (or 
sheets) of C u 0 2 are formed by the copper sites Cu(2) and oxygen sites 0(2) and 0(3). 
The CuO chains are comprised of sites Cu(l) and 0(1). The chain and plane layers 
are separated by the BaO layer containing the apical oxygen site 0(4); adjacent plane 
layers are separated by a layer of Yttrium. The 0(1) oxygens dope the C u 0 2 layers 
with holes by changing the oxidation state of the Cu(2) coppers from Cu2+ to Cu3+. 
A minimum occupation of 0(1) sites is required for hole doping of the layers (and hence 
superconductivity) to occur. Below this, all Cu(2) coppers are in Cu2+ state, and their 
unpaired spins order antiferromagnetically. 
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can often be treated as a 2-dimensional phenomenon. Unique to Y B C O are the chain 

layers of copper and oxygen (CuO) that run along the b-axis. The presence of these 

chains is often an added complication to sorting out the physics behind high temperature 

superconductivity. However, this material has its own merits, and unlike most cuprates, 

such as the commonly studied Bi 2 Sr 2 CaiCu20 y (BSCCO), the cations (Y, Ba, and Cu in 

this case) have a fixed ratio and do not substitute for each other. This allows one.to grow 

very high purity samples of Y B C O that have exceptionally good crystalline qualities, and 

this ultimately provides an advantage to which Y B C O owes its popularity. 

Another common feature of the cuprate superconductors is that they are often formed 

by the doping of a parent compound that is initially an insulating antiferromagnet. For 

example, in the original high-Tc compound, La 2 _ x Ba x Cu04 discovered by Bednorz and 

Miiller, L a 2 C u 0 4 is doped with Ba and first becomes superconducting at a concentration 

of x = 0.05 [8]. The generic phase diagram (temperature versus doping concentration) for 

the cuprates is shown in Figure 1.3: the transition temperature of the antiferromagnetic 

phase (AF) drops quickly with doping; farther along, the superconducting phase (SC) 

appears and has a peak transition temperature at some optimal doping level. The dashed 

line in Figure 1.3 identifies a region known as the pseudogap (PG), which is associated 

with a sort of pre-pairing of electrons that occurs well before the onset of superconduc­

tivity [14]. The remainder of the phase diagram is labelled as the normal state (N), in 

analogy with conventional superconductivity, where a normal (well understood) metal 

exists at temperatures above Tc. In the cuprates, however, the normal state is far from 

being normal; in particular, it exhibits a linear resistivity along the a and 6-axes that 

exists over a very large temperature range, and a c-axis resistivity that appears to be 

anything but metallic [15]. 

The triumph of BCS theory came about partially through a good understanding of 

the normal state properties of conventional superconductors, and it is clear that a similar 
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understanding of the cuprate phase diagram will also, be crucial to the determination of 

the mechanism for high temperature superconductivity. Also, from this point of view, the 

puzzle of superconductivity is more correctly seen as a sub-problem of the larger issue of 

systems of stongly correlated electons. For conventional superconductivity, the normal 

metallic state could be understood as a Fermi-liquid - a collection of quasiparticles, 

subject to the Pauli exclusion principle, that behave essentially as independent electrons 

albeit with an effective mass m* not necessarily equal to the bare electron mass. However, 

it is becoming clear in condensed matter physics that a collection of electrons in a solid 

more often than not behaves in a manner that is much, much different from just the 

sum of its parts. The cuprate phase diagram is a prime example of this. As the single 

doping parameter is tuned, the system passes through a rich array of very different types 

of behaviour: antiferromagnetic insulator, strange metal, superconductor. 
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In several cuprates, including Y B C O , the doping level is determined by the oxygen 

content (as discussed in the caption of Figure 1.2), and can be altered subsequent to 

crystal growth. For example, in Y B C O , whose stoichiometry can be equivalently written 

as YBa2Cu306+ x, the oxygen content in the chain layer can be set to a specific level by 

annealing at an appropriate temperature and oxygen partial pressure [16]. Superconduc­

tivity first appears at x ~ 0.33 [8], and optimal doping at x ~ 0.91 gives a maximum Tc of 

93.7 K [17]. At x = 1, there are no oxygen vacancies in the chains, as shown Figure 1.2, 

the Tc is about 88 K and the system is said to be slightly overdoped. There is also a 

structural change with doping, the Y B C O lattice goes from tetragonal to orthorhombic 

at x ~ 0.3. 

In terms of the superconducting state, some very important facts about the cuprates 

have been learned so far. The observation of the 2e flux quantum $ G , the presence 

of the ac Josephson effect and the results of several other experiments have all provided 

conclusive evidence for the usual formation of Cooper pairs in a spin singlet state [18] [11, 

p. 374]. The form of the orbital part of the pairing wave function remained a contentious 

issue for quite some time, but there is now almost universal consensus that the cuprates 

exhibit d-wave pairing and not the s-wave pairing of conventional superconductors.4 

In particular, the cuprate pairing state (or order-parameter) has dx2_y2 symmetry, and 

changes sign in the a6-plane as cos 29, where 6 is measured from the axes; this is quite 

unlike the conventional s-wave state which is isotropic. 

The strongest evidence for the dx2_y2 state came from Josephson junction experi­

ments, which directly reflect the sign change in the order parameter. Most notable were 

the double junction rings comprised of single sections of conventional and cuprate su­

perconductor [19], and the bi and tri-crystal junctions comprised of single cuprate rings 

4 The names for the different pairing states have been adopted from analogy with the well known 
electronic orbital symmetries of hydrogen. 
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Figure 1.4: The temperature dependence of A in an s-wave (Pbo.95Sno.05) and d-wave 
( Y B a 2 C u 3 06.95) superconductor (from Hardy et al. [22]). 

that had two (and three) sections with different crystalline orientation [20]. For each of 

these experiments, the characteristics of the flux within the ring could only be explained 

if the phase of the cuprate order-parameter had the dx2_y2 symmetry. 

Slightly less direct evidence for d-wave pairing can also be found in experiments that 

measure the energy gap of the superconductor through its excitations.5 The energy gap 

reflects the symmetry of the pairing state, so for an s-wave superconductor the gap is 

finite and isotropic, and quite distinct from the d-wave gap which goes to zero at four 

nodes at angles 9 = (2n + 1)TT/4 (see Figure 3.1). A consequence of these nodes is the 

existence of low lying states in the excitation spectrum. The measurements by Hardy et 

al. [22] of the temperature dependence of the penetration depth in Y B C O provided some 

of the first evidence for the presence of these nodes. Their results are shown in Figure 1.4 

5 A very thorough review of the different experimental tests of the pairing symmetry in cuprate 
superconductors can be found in Reference [21]. 

http://Pbo.95Sno.05
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for both YBa 2 Cu3 06.95 and the conventional superconductor Pbo.95Sno.05- In both su-

percondutors, A increases with temperature signaling a reduction in its ability to screen 

fields as Cooper pairs are lost to the excitations. However, the temperature dependence 

of A A is significantly different between the two. In Pbo.95Sno.05 the response is thermally 

activated going as e - A / T (a consequence of the finite gap), while in Y B a 2 C u 3 0 6 . 9 5 the 

low lying states are accessible at all temperatures, which gives rise to the characteristic 

linear AA(T) of a d-wave superconductor. 

http://Pbo.95Sno.05-
http://Pbo.95Sno.05


Chapter 2 

Microwave Electrodynamics of Superconductors 

The hallmark properties of superconductivity are a vanishing dc resistivity and an essen­

tially perfect diamagnetism, so it is of little surprise that research on the electrodynamics 

of superconductors has always been important. In particular, the response to low fre­

quency fields is a good probe of the superconducting energy gap and its excitations, 

which ultimately provides information on the pairing state of the electrons. This is of 

great importance in the high-Tc superconductors where the mechanism for pairing is still 

unknown. In this case, it also turns out that the properties of these materials create 

particular difficulties for other research methods traditionally used to study excitations 

in superconductors. For example, tunneling measurements are made difficult by a short 

coherence length, and the high temperatures involved introduce strong phonon contribu­

tions to the thermal conductivity, ultrasonic attenuation, and heat capacity [23]. On the 

other hand, with respect to charge transport, the small coherence length ensures local 

electrodynamics1 (which makes interpretation of results rather straight forward), and the 

presence of phonons is not of immediate experimental concern. This leaves a niche in the 

high-Tc research effort that has been particularly well filled by microwave measurements 

using cavity perturbation. 

In this Chapter, a quick review will be given of the low frequency, local, linear elec­

trodynamics needed to understand the basics of the microwave measurements; some data 
1 I n certain directions the coherence length can become quite large, and nonlocal effects may become 

important at very low temperatures (see Section 3.4.2). For the ensuing discussion, however, only the 
local limit will be considered. 

12 
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from the literature will also be shown. This serves several purposes in this thesis. It gives 

a suitable background for the nonlinear electrodynamics to be described in Chapter 3, 

and by showcasing the success of the microwave research effort, provides a credible basis 

for pushing ahead and looking at the higher order nonlinear effects. To a certain degree, 

it also provides a yardstick by which experimental progress on the Nonlinear Meissner 

effect can be gauged. 

2.1 Electrodynamics at a Conducting Boundary 

Maxwell's equations written as 

V-D = p V x £ = - — 
dt 

V-B = 0 VxH = — + J 
dt 

(2.1) 

are sufficient to describe linear macroscopic electromagnetic phenomena. Electromagnetic 

fields in homogeneous, linear media with conductivity a and zero free charge (p = 0) are 

governed by the following wave equations 

„, „ d2E 8E 

„2„ d2B OB , , 
v B = + ar ( 2- 2 ) 

„2 T d2J 8J 
v 3 = + 

which are easily derived from Equations 2.1 along with the empirical relations J = aE, 

D = eE, and B = pH. The coefficients e and p are the permittivity and permeability 

respectively and, like a are specific to the given medium and independent of E and B 

at low excitation levels. 
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For harmonically oscillating fields, the coefficients of the two terms on the right hand 

side of Equations 2.2 become —fMJ2e and ipioo. For a good conductor, o » eto up to 

optical frequencies (u ~ 27r X 10 1 4 Hz), so that in the microwave range (u ~ 2TT X 10 1 0 Hz) 

it is a very good approximation to ignore the first term allowing Equations 2.2 to be 

rewritten in the form 

V 2 B = ipoooB (2.3) 
The solution of this differential equation depends in detail on the boundary conditions 

present. A simple, but very informative case to present is that of a semi-infinite conductor 

in a uniform applied magnetic field of amplitude B 0 . If the conductor is considered to 

occupy the positive z half-space, and the direction of B is chosen along the y-axis, then 

by Equation 2.3 the field inside the conductor will depend on z as 

B = Boe-i" 3 (2.4) 

with the complex propagation constant 7 = y/ipjujo. The amplitude of the electric field 

E and current density J have an identical dependence on z inside the conductor, but 

with direction parallel to the x-axis. 

From Equation 2.4 it is clear that a finite real component of 7 will lead to an ex­

ponential decay of the applied fields (and current density) within the conductor. This 

will be shown explicitly in the following section for a good conductor, as well as for a 

superconductor. However, it is convenient for the purpose at hand to first develop the 

concept of a surface impedance Zs. By analogy with the familiar impedance (Z — V/I) 

experienced by a current flowing through the bulk of a wire, Zs is associated with cur­

rents that, because of the spatial damping described by Equation 2.4, only flow near the 

surface of the conductor. Here, the definition of impedance is the ratio of the tangen­

tial electric and magnetic fields at the surface of the material [24], so for the geometry 

specified above, Zs = ~E0x/YL0y. This may be re-written in terms of o and u> by replacing 
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E 0 with J 0 / a and recognizing that in this case dH/dz = J, and therefore by integration 

H 0 = Jo/7- Substitution gives a useful definition for the surface impedance: 

Zs~~o =
 H ~ M 

7 lifjw 
a = V " 

Separating Zs into real and imaginary parts gives 

Zs = Rs + i Xs ^ 

-
and defines a surface resistance Rs and a surface reactance Xs that respectively charac­

terize energy loss and energy storage in the surface current. 

2.2 C o m p l e x C o n d u c t i v i t y - T h e D r u d e M o d e l 

To fully unveil the behavior of electromagnetic fields inside a conductor, n and o must be 

known. Most metals are only weakly magnetic, so it is suitable to replace u. with u,0 except 

in the case where the material is ferromagnetic. A useful form for the conductivity can 

be developed through the simple Drude Model, which considers the equation of motion 

of an electron in an applied electric field: 

mv = —mv/r — eE (2.7) 

The damping term —mv/r characterizes the electrical resistance through r , the relax­

ation time or scattering time, which is the average interval between scattering events for 

the electron within the conductor. Solving Equation 2.7 for a steady state driving force 

—eEelu)t, noting that the total current density J — —env where n is the electron density, 

gives 

ne 2 r 1 — icur „ 
J = 7T—2~1. E 2 - 8 

m 1 + UJZTZ ' 
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The complex conductivity is identified as 

a(uj) = cri - %o2 = o0-~—5-5- (2.9) 

with real and imaginary parts 

1 + L L ^ T 2 

cur 
a 2 = ff«rrn ( 2 - n ) 

and a dc conductivity o0 = ne2r/m. 

Two relevant concepts, the skin depth in normal metals and the penetration depth 

in superconductors, fall neatly from the Drude Model conductivity with the appropriate 

choice of r. For normal metals, dc resistivity measurements show typical relaxation times 

of order 1 0 - 1 4 - 1 0 - 1 3 seconds [25, p. 10]. At microwave frequencies then, w r < l and 

o ~ ox is predominantly real. Recognizing that \fi = (i + l ) / \ / 2 , the magnetic field 

inside the metal, from Equation 2.4, becomes 

B = B0e-z/se-iz/s 

(2.12) 

and it is clear that the amplitude of the field decays exponentially from the surface on a 

length scale given by the skin depth 5, where 

In a normal metal the surface resistance and reactance are equal: 

(2.13) 

Rs -Xs - v ̂ = — ^ 
At low temperatures, where in some metals r can become a few orders of magnitude 

larger, UT is no longer insignificant and the contribution from o2 cannot be ignored. In 
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the extreme case of a superconductor, zero dc resistivity and the existence of permanent 

currents implies perfect conductivity, ie. r ^ oo. In this case, 

ne2
 /7T „ , % i ° = — (y(u)--\ (2.15) m V2 coy J 

and is purely imaginary at finite frequency.2 Substitution into Equations 2.3 and 2.4 

gives the familiar screening equation from the London brothers [3] 

V 2 B - - ^ B (2.16) 

along with its solution 

B = B 0 e " 2 / A (2.17) 

The field decays exponentially with the frequency independent length scale of the London 

penetration depth A, where 

/ 
\ = J j 2.18 

V Vone2 

Substituting a = —ine2/mu) into the Equation 2.6 shows of course that Rs = 0 and all 

the energy associated with the surface current is stored in the reactance 
X, = = PowX 2.19 V ne1 

It is important to realize that the Drude Model was used here primarily as pedagogical 

tool - it was useful in developing the idea of a complex conductivity and for highlighting 

two important limiting cases at microwave frequencies, the normal metal (real o) and 

the superconductor (imaginary a). In general, the conductivity a(u>) is more complicated 

than the Drude form. However, the results in Equations 2.12 to 2.14 will still hold for 

a metal of purely real conductivity ai(co), and similarly, Equations 2.16 to 2.19 will 

adequately describe the electrodynamics of a superconductor if it has a purely imaginary 

conductivity a^iu). 
2 The delta function at zero frequency arises naturally from taking the limit as T - 4 oo and noting 

that the area under the a\ curve remains constant. It can also be shown as the necessary consequence 
of satisfying the Kramers-Kronig relation [11, 24]. 
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2.3 The Two Fluid Model for Superconductivity 

That a superconductor can carry an electrical current without dissipation is only strictly 

true at zero frequency. This may seem to contradict the derivation of Equation 2.16, 

which is known to aptly describe the Meissner state screening of both dc and low fre­

quency ac magnetic fields in a superconductor, and yet was arrived at here through the 

assumption of an infinite r, ie. zero resistance. However, superconductor electrodynam­

ics are not fully characterized by a purely imaginary conductivity. Not all the charge 

carriers are 'superconducting', and those that are not tend to behave much as the charge 

carriers do in a normal metal. This is summarized in a two fluid model where the total 

charge density n is separated into two parts, a superfluid of density ns and a normal 

fluid of density nn, such that n = ns + nn at all temperatures. Above the transition 

temperature nn = n, while below Tc there is a proportional decrease in nn as ns builds 

up and becomes equal to n at zero temperature. 

The total conductivity is the superposition of the normal fluid and superfluid con­

ductivities, so assuming (for now) the Drude Model form for the conductivity of each 

component, o at finite frequency (dropping the (^-function at u = 0) is given as 

The important result here is that the superfluid contributes only to a2, while in general 

the normal fluid will contribute to both o\ and o2. If, again, interest is limited to the 

microwave range where LOT 1, then the real (imaginary) component of the conductivity 

depends only on nn (ns). In general then, without reference to any specific model of ox, 

the low frequency conductivity of a superconductor in the two fluid model is expected to 

have the form 

(2.20) 

a = ai(u,T, nn(T)) -io2(co, ns(T)) (2.21) 
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Here, <Ti depends in some way on frequency, a scattering time (that will also depend on 

other parameters), and the temperature dependent normal fluid density, while at low 

frequencies <72 retains the form e2ns(T)/mu> previously mentioned, where ns(T)/m is a 

well defined experimental quantity. 

The propagation constant can be written as 

7 = ^p0uj(iai + cr 2) (2.22) 

and the surface impedance 

» ° U { W I ~ ° 2 ) (2.23) 
\ l o\ + o\ 

Well below the transition temperature, ns S> nn and the imaginary part of the conduc­

tivity dominates, <r2 o~\. In this limit 7 ~ yjp0wo2, and if UT <C 1 as well, then the 

pertinent length scale for the decay of the magnetic field inside the sample is just the 

London penetration depth A, as expected. From Equation 2.23 the components of the 

surface impedance in this regime are easily shown to be 

Rs — 
(2.24) 

V ^2 

2.4 Microwave Cavity Perturbation: Basic Technique and High-T c Results 

The generic configuration of a resonant cavity measurement on a single crystal supercon­

ductor is show in Figure 2.1. Here, the sample is introduced into the cavity on a thin 

sapphire plate, and the resonant mode within the cavity is chosen such that the sample 

sits predominantly in a uniform magnetic field. This also helps to avoid exposure of the 

sapphire plate to electric fields, which in turn limits the signal from the dielectric re­

sponse of the sapphire. The perturbation of the resonant frequency f0 and quality factor 



Chapter 2. Microwave Electrodynamics of Superconductors 20 

Figure 2.1: The microwave cavity resonator. 

Q0 of the unloaded cavity is controlled by the surface impedance of the sample. 

Energy loss in the cavity is governed by the value of 1/Q, so it is very straightforward 

that any additional losses from the surface resistance of the sample will be proportional 

to the shift in 1/Q: 

A ( l / Q ) oc RS 

A change in the effective volume of the cavity due to the diamagneic shielding of the 

sample will result in a shift in resonant frequency proportional to the effective volume of 

the sample Vs: 

A / = / - /„ oc V, 

For a thin platelet sample, Vs ~ V — 2.4A(T), where V is the geometrical sample vol­

ume, A its surface area, and A(T) its temperature dependent penetration depth. The 

absolute value of X(T) is difficult to measure reliably, because the first term in Vs is so 

dominant, and it is not possible to measure V and A / with sufficient accuracy. However, 
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a subsequent frequency shift A / ' due to a change in sample temperature allows precision 

measurements of AA(T) : 

A / ' = / (T 2 ) - / ( X i ) oc A(T 2) - A(7\) = AA(T) 

A knowledge of A A and Rs as a function of temperature can be combined with a known 

value of A 0 (measured by a different technique) and through Equations 2.24 provide 

a complete picture of the sample's conductivity throughout the superconducting state. 

Interpreting <j through the two-fluid model allows one to then build up a picture of the 

superconducting condensate ns and its excitations nn. 

Some microwave data on Y B C O are shown below. In Figure 2.2 measurements of 

the penetration depth are shown for all three crystallographic directions and shows the 

strong anisotropy of the high-Tc materials [26]. 

T(K) T(K) 

Figure 2.2: The anisotropy of the penetration depth in Y B a 2 C u 3 0 6 . 9 5 (from Hossieni et 
al. [26]). Left graph: AA(T) . Right graph: the superfluid density fraction A 2 (0)/A 2 (T). 

In Figure 2.3, the real part of the conductivity ox is shown as a function of temperature 

(left panel) and as a function of frequency (right panel). The peak seen at about 25 K 
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(for the low frequency data) is a result of competition between the decreasing normal 

fluid density nn and an increase in quasi-particle lifetime r . The data fits quite well to 

the Drude model below 20 K , and the narrow width of about 9 GHz indicates a very long 

r, which is a result of the very high quality of the samples. 

Figure 2.3: The microwave conductivity ox of Y B a 2 C u 3 0 6 . 9 9 3 (from Hossieni et al. [27]). 
Left graph: as a function of temperature. Right graph: as a function of frequency. 



Chapter 3 

The Nonlinear Meissner Effect 

In high-Tc superconductors, experiments studying the energy gap and its symmetry, and 

therefore the symmetry of the pairing state, have always been of central importance. 

However, for some time after the discovery of these materials, experiments produced 

conflicting results and left much debate as to whether or not the pairing state had the 

conventional s-wave symmetry of BCS theory. Yip and Sauls [28] proposed experiments 

based on the nonlinear effects of an applied magnetic field on the Meissner state super-

current that would differentiate between s-wave and d-wave superconductors (the d-wave 

state with dx2_y2 symmetry having long been the favoured alternative to s-wave for the 

cuprates.) This debate has now been largely settled by a number of other experiments 

[19, 20, 29], which have left little doubt that for HTSC's the pairing state exhibits a 

predominantly dx2_y2 symmetry [21]. However, the nonlinear Meissner effect (NLME) 

remains experimentally undertested, although there has been a considerable amount of 

theoretical work (see Section 3.4). 

The N L M E leads to a field dependent penetration depth and magnetization, and for 

a dx2_y2 gap these effects depend on the orientation of the field relative to the nodes. As 

we shall see later in this chapter, theory predicts that at sufficiently low temperatures 

there is a linear field dependence of A of the form 

AA(if) = aA \H\ /H0 

where a is equal to unity for fields along a node in the energy gap and l/\/2 when fields 

are along an antinode; the quantity H 0 is a characteristic field of order the thermodynamic 

23 



Chapter 3. The Nonlinear Meissner Effect 24 

critical field [30]. In contrast, a superconductor with a conventional gap would show an 

H 2 dependence of AA, with a thermally activated prefactor and with no anisotropy with 

respect to field direction. This is the real heart of the Yip and Sauls theory: nonlinearities 

in the Meissner state screening currents behave quite differently for a superconductor with 

an isotropic s-wave gap versus one with a dx2_y2 gap. Furthermore, the theory offers the 

prospect of using electrodynamic measurements as a probe to determine the positions of 

the nodes in the gap. This is the main reason researchers have remained interested in 

this theory. 

In this Chapter, the fundamental ideas of the Yip and Sauls theory of the Nonlinear 

Meissner Effect will be presented. We begin with the linear London equations, and from 

there describe in general how nonlinearities (in the supercurrent) lead to a field dependent 

penetration depth. The N L M E theory considers the energy shift in the quasiparticle 

excitation spectrum in the presence of superfluid flow as the source of this nonlinearity. 

There is now in the literature a large and varied body of other theoretical work that all 

start with this main premise (from Yip and Sauls) and expand on the various aspects of 

the original theory. The pertinent details of these theories will also be described here, 

and an overview of the experimental situation will also be given. 

3.1 T h e L i n e a r L o n d o n E q u a t i o n 

Ignoring the damping term in Equation 2.7, the free acceleration of an electron in an 

applied electric field leads directly to the first London equation: 

8 4 = - E (3.1) 
at m 

where the relation between the charge current and velocity is linear, J — —env. Taking 

the curl of both sides of Equation 3.1 and substituting Faraday's Law V x E = — B gives 
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the relation between the current density and the magnetic field in a superconductor: 

As the Londons noticed, the existence of the Meissner effect requires that this equation 

hold for time dependent fields as well as the trivial static case, and this requires that the 

term in brackets be identically zero. This gives the second London equation: 

„ ~r ne2 „ 
V x J = B (3.3) 

m 

This equation combined with Ampere's Law V x B = fj,0J returns Equation 2.16, namely 

V 2 £? = B/X2, that governs the shielding of magnetic fields within a superconductor. 

A relation between the current density J and vector potential A is obtained by 

substituting B = V x A into the second London equation, which gives 

2 

J = A 3.4 
m 

or 

v = - A (3.5) 
m 

Interestingly enough, Equation 3.4 summarizes the London equations in a single compact 

form: taking its time derivative gives Equation 3.1, while its curl returns Equation 3.3. 

To have B = 0 inside the superconductor, one must choose the London gauge V • A — 0. 

Now, the vector potential also has the form of Equation 2.16, as does v. 

V2v = (3.6) 

The superfluid velocity decays exponentially from the surface of the superconductor on 

the length scale of the penetration depth. 

Even more interesting, however, is that this simple treatment of the Meissner state 

phenomenon alludes to the underlying quantum nature of superconductivity [11, p. 5]. 
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Given that the canonical momentum p = mv — eA, Equation 3.5 implies that the 

net momentum of the superfluid is always zero. This prompted Fritz London to note, 

prior to BCS theory, that the long range order in the average momentum cannot be 

the result of some mechanism which could be constructed by classical mechanics [31, 

p. 146]. Of course, London's assertion was correct, superconductivity is a macroscopic 

quantum state. The zero net momentum subsequently implies that the fundamental 

relation linking the charge flow in a superconductor to an applied field is between v and 

A via Equation 3.5. Only in the low field limit, is the linear relation between J and A 

of Equation 3.4 valid. 

3.2 The Nonlinear London Equation 

In general, the supercurrent Js need not be a linear in superfluid velocity vs and may 

include higher order terms such that 

Js = -ensvs(l - a\v8\ - (3v2

s - ...) (3.7) 

Here, the notation of the two-fluid model (Section 2.3) has again been adopted with the 

quantity ns referring to the zero-field, temperature dependent superfluid density. The 

supercurrent is related to the vector potential through Ampere's Law, V x (V x A) = 

p0Js, which becomes 

V 2 A = -fjL0 Js 

under the London gauge. Substituting for A (from Equation 3.5) on the left hand side and 

for Js (from Equation 3.7) on the right gives the following nonlinear (London) equation 

for the superfluid velocity: 
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Re-writing this as 

V 2 * s = ^lf.Vs (3.9) 
m 

with ns = n s ( l — a \vs\ — fiv2 — ...) and comparing to Equation 3.6, it is clear that the 

penetration depth now depends on the super-fluid velocity: 

1 u0nse2 

y m 

In words, the effect of a finite vs is to reduce the overall superfluid density with a 

consequent increase in the penetration depth. Or equivalently, an applied field breaks 

pairs, which reduces the ability of the superconductor to screen the field and results 

in a larger penetration depth. To determine the field dependence of A, one first seeks 

the appropriate form of Equation 3.7 for Js and then solves Equation 3.8. This is the 

approach taken by Yip and Sauls [28] (and later by Xu , Yip , and Sauls [30]) in their 

seminal work on the Nonlinear Meissner Effect. 

3.3 T h e Y i p a n d Sau l s T h e o r y 

The theory of the Nonlinear Meissner Effect considers first that a shift in quasparticle 

energy occurs in finite field due to the induced superfluid velocity vs. This energy shift 

is given as Pf • vs, where pf is the Fermi momentum.1 The total supercurrent is then 

determined by the sum in momentum over all the shifted quasiparticle states. As first 

shown in Ref. [28], this can be written as 

Js = -eNf J d2s n{s) vf {Pf • vs + 2 d£[f(E + pf • vs)}} (3.11) 

where Nf is the total density of states at the Fermi level, n(s) is the angle-resolved density 

of states at a point s on the Fermi surface normalized to unity, Vf is the s-dependent Fermi 

1 Thi s idea first came from John Bardeen [32], who considered that the excitations in a superconductor 
are relative to the momentum of the condensate, analogous to the situation in superfluid helium. 
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velocity, / is the Fermi function, and E = y £ 2 4- | A(s ) | 2 is the BCS excitation energy for 

a superconductor with gap A(s). Equation 3.11 is the specific form of Equation 3.7 as 

determined by the Yip and Sauls theory. The first term is the unperturbed supercurrent 

of the total condensate, namely Js = — envs; the second term, represents changes in 

Js due to excitations. In the linear limit (vs —>• 0), it accounts for the temperature 

dependence of the superfluid density, whereby n is reduced to ns(T) at T ^ 0, and when 

vs is finite, it also gives the nonlinearities that arise in the supercurrent. 

In the linear limit, the temperature dependence of ns depends on the symmetry 

of the gap. This is reflected in measurements of AA(T) shown in Figure 1.4; the full 

gap of an s-wave superconductor will produce a much different AA(T) than a d-wave 

superconductor, where the gap goes to zero along four nodal lines. The symmetry of 

the gap also determines the nature of the nonlinear terms in Js and therefore the field 

dependence of A as well. However, in this case an anisotropy in the gap will also produce 

a similar anisotropy in AX(H), and as a result the field dependent measurements should 

provide more direct information on the pairing state itself. 

Yip and Sauls worked this out for two pertinent cases: the isotropic s-wave gap of 

conventional superconductivity and the dx2_y2 gap, which was the leading candidate for 

proposed unconventional superconductivity in the high-Tc materials. A diagram of these 

two gap functions is shown in Figure 3.1 along with schematic description of the Nonlinear 

Meissner Effect, which complements the following discussion. 

For the conventional gap, Equation 3.11 becomes 

For a flat superconducting slab with a field H applied parallel to the its surface, the 

magnitude of the supercurrent at the surface is proportional to the field in the linear 

limit, Js = H/X oc v s . For the nonlinear case, the leading order correction in A will be 

(3.12) 
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quadratic in H. The exact form2 is 

H 
A(T, H) = A(T) 1 + 3/3{T) (3.13) 

lH0 t 

where H0 = 2cvc/e\(T) is of order the thermodynamic critical field Hc, and the critical 

velocity vc = A(T)/pf. At low temperatures, the coefficient P(T) ~ exp(—A/T), so 

the consequence of the finite gap is that the Nonlinear Meissner Effect in conventional 

superconductors becomes very weak once one is well below Tc and disappears as T —> 0. 

For the unconventional superconductor, Yip and Sauls treat the problem as being es­

sentially 2D. As a result, the dx2_y2 gap in the xy-plane can be written as A = A 0 |cos 29\, 

where A G is the gap maximum and 9 is the angle measured from the rr-axis. At T = 0, 

Equation 3.11 becomes 

Js = -ens(T)vs 

V0 

(3.14) 

and one expects, therefore, a penetration depth that is linear in field. The exact form is 

A(T,fT) = A ( T ) | l + a S | (3.15) 

Here, H0 = 2>cv0/2e\(T) ~ Hc and v0 = pA0/p*f where p = l / A 0 d ( A / d ^ ) is the angular 

slope of the nodes in the gap, A 0 is the gap maximum, and p*j is the Fermi momentum 

at the nodes. The coefficient a is independent of temperature and in particular does not 

disappear at zero temperature, which is a consequence of there being nodes in the gap. 

The reason for the different N L M E in s-wave and d-wave superconductors is abun­

dantly clear from Panels III and IV in Figure 3.1. In finite field, the energy levels are 

shifted by the amount pf • vs, which means that states on opposite sides of the Fermi 

surface will be shifted in opposite directions. Excitation states that have a momentum 

component counter-moving (co-moving) to the superfluid velocity vs are shifted to lower 

2 The precise details for solving the nonlinear London equation for the both the s-wave and the d-wave 
case can be found in Appendix A . 
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II 

III 

IV 

Figure 3.1: Diagram showing the origin of the N L M E in s-wave (left side) and d-wave 
(right side) superconductors. I. The conventional isotropic gap and the unconventional 
dx2_y2 gap. II. The density of states at T, H = 0. A l l excited states above the Fermi 
energy (dashed line) are unoccupied. III. The density of states at T = 0, H ^ 0 at 
opposing points (nodes) on the s-wave (d-wave) Fermi surface (for clarity in the d-wave 
picture, the view has been expanded around the nodes). Co-moving states are shifted up 
in energy by +pj • vs, counter-moving states are shifted down by — pf • vs. Quasiparticle 
backflow current (NLME) is present for d-wave, but not s-wave. IV. The density of 
states at T, H ^ 0. Thermal excitations lead to a finite N L M E in the s-wave case, and 
weaken the effect at low fields in the d-wave case. 
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(higher) energies. The counter-moving states are now energetically favoured for popula­

tion over the co-moving states, and as a result thermal or field-induced excitations give 

rise to a quasiparticle current that opposes the supercurrent. This backflow current, as 

it is often called [30], is the microscopic origin of the N L M E , the source of nonlinearity 

in Js. In an s-wave superconductor, the quasiparticle states are still separated from the 

condensate by a finite energy gap, so a field dependent A can only occur in finite tempera­

ture. In the d-wave case, where the gap is zero at the node, part of the co-moving branch 

of the condensate is always shifted to higher energy than some of the counter-moving 

excitation states. This results in a N L M E that persists to zero temperature. At finite 

temperature, the linear A (if) of a d-wave superconductor actually turns over to a weak 

quadratic field dependence at low fields, but this is distinguishable from s-wave in that 

the effect goes as 1/T. 

Another interesting feature of the d-wave N L M E is its anisotropy with respect to 

the direction of vs. Consider the two special situations shown in Figure 3.2, where the 

superfluid velocity is directed either along a node (left panel) or antinode (right panel) 

in momentum space. When vs is along a node, the only states that contribute to the 

backflow current occupy a small wedge within the angle $ c = pfVs/fj,/A0 centred about 

the node on the opposite side of the Fermi surface. When vs is along an antinode, 

there will be two nodes that contribute to the backflow current. However, in this case 

the energy shift is a factor of \/2 less than above for a given \vs\, and the wedge of 

contributing states is defined by the smaller angle dc/-y/2 about each node. Furthermore, 

the backflow current at each node is no longer antiparallel to vs, and the component along 

this direction is only l / \ / 2 of the total current. The overall effect is that the coefficient 

a from Equation 3.15 differs by a factor l / \ / 2 between the two cases: 

H 11 node (3.16) 
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Figure 3.2: The quasiparticle backflow currents at T = 0 for vs parallel the node (left) 
and antinode (right) of a d ^ g a p (after X u et al. [30]). The wedge of states contributing 
to the backflow current is less when vs is along an antinode. 

X(T,H) = X(T) 1 + J_\H\ 
V2H0 

, H11 antinode (3.17) 

It is this anisotropy that allows the possibility of determining the position of the nodes 

by measuring AX(H) for different field orientations. In general, the coefficient a = 

(l/2\/2) Y^i=±i |cos# + Zsin#|3 where 9 is the angle between vs and an antinode [33]. 

If vs is not directed along a node or an antinode (ie. 9 ^ rnr/A), there will be a finite 

component of the total quasiparticle backflow current that is perpendicular to the super-

fluid velocity. This results in another interesting manifestation of the N L M E in d-wave 

superconductors, the formation of a transverse magnetic moment in the superconducting 

sample. As mentioned above, when vs is along a node (9 = TT/4) the backflow current is 

directly opposite to it. When vs is along an antinode (9 = 0) there will be two identical 

backflow 'jets' contributing to this current, but their perpendicular components exactly 

cancel each other and the net result is still a strictly antiparallel backflow current. How­

ever, at all other orientations a perpendicular component will survive, and this gives rise 

to a transverse magnetic moment M± (and thus a magnetic torque r = M±_ x JJLQH) 
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that is also dependent on 9, the relative orientation of v„ with respect to the antinodes. 

At T = 0 the magnitude of M± is quadratic in H, so r oc H 3 , and both r and M± vary 

as |sin0cos# (cosf? — sin#)| over the range 0 < 9 < 7r/2 [30, 34]. 

For a dx2_y2 superconductor, the crystal axes in the ab-plane coincide with the antin-

odal directions in momentum space shown in Figure 3.2. For a field applied in the 

ab-plane of a thin slab shaped superconductor, the superfluid velocity vs of the in-plane 

screening current will be perpendicular to H. As a result, and to recap the basics of 

the Yip and Sauls theory, measurements of A, M x , or r in high-Tc single crystals as a 

function of field strength and its relative orientation to the crystal axes in the afr-plane 

should reveal the underlying anisotropy of the superconducting gap in these materials. 

For example, in YBa 2 Cu307_ ,5 , ignoring its orthorhombicity and assuming Aa& ~ 1500A 

and H0 ~ 2.5 x 104 gauss, a field of 250 gauss (~ i f c l ) will produce a A A ~ llA if it is 

applied along the crystal axes, and ~ 15A if the field is at 45° to this direction [30]. 

3.4 Extensions of the Y i p and Sauls Theory 

The promise that a bulk measurement, of the magnetic moment for example, could be 

used to trace out the symmetry of the underlying order parameter of a high-T c supercon­

ductor has kept many researchers interested in the Yip and Sauls theory of the Nonlinear 

Meissner Effect. Unfortunately, this sort of node spectroscopy, as it was dubbed by Zutic 

and Vails [35], has been extremely difficult to realize in the lab, and only a brief summary 

(Section 3.5) will be needed to cover all of the published experimental work to date. In 

relative contrast to this situation, the theoretical front has flourished. Spurred on in 

part to explain the apparent failure of experiments to observe the basic N L M E , there 

have been several efforts to build upon the original theory and incorporate other effects 

(such as those of impurities, nonlocality, orthorhombicity, etc.) that may be present in 
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the unconventional high-Tc superconductors. The details of much of this work will be 

described below with a specific emphasis on the field dependence of A, which is most 

pertinent to this thesis. 

3.4.1 Finite Temperature and Impurity Scattering 

The effects of finite temperature and impurity scattering are briefly discussed in the 

original paper [28], but were first thoroughly explored by Stojkovic and Vails [34] and 

subsequently by X u , Yip , and Sauls [30]. As mentioned in the previous section, the field 

dependence of the dx2_y2 penetration depth shows a cross-over from linear to quadratic 

behaviour when T ^ 0. This effect can be visualized, in a very simple way, by considering 

what is happening in Panel IV (right side) of Figure 3.1 if the field is being increased 

from zero at some fixed finite temperature. At small H (or vs) the thermal excitations 

would be nearly equally shared by both the co-moving and counter-moving quasiparticle 

branches. As the field increases and the branches separate, the thermal excitations 

begin to reside more and more in the counter-moving branch; the result being an H2 

dependence in A (similar to the s-wave case). This continues with increasing field until 

the counter-moving quasiparticle branch starts to overlap with the still occupied states in 

the co-moving condensate branch, recovering the effect depicted in Panel III. This cross­

over will take place when the thermal energy kBT is of order the energy shift pj • vs, so 

for a given T there will be some field H? above which the linear X(H) is recovered. Below 

the cross-over field HT, where pj-vs <C kBT, the supercurrent from Equation 3.11 can be 

expanded in a power series in pjvs that has a leading order correction term (pfVs)/TA0. 

As a result, in this limit X(H) is weakly quadratic and decreases with temperature as 

1/T. Similarly, the field effects on r and M_L are reduced with temperature [28, 30, 34]. 

Numerical results for AA(iJ ) and T(9) at various temperatures are shown in Figure 3.3. 

A result of this cross-over is that the signature linear X(H) of a d-wave superconductor 
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Figure 3.3: Thermal effects on X(H) and T(0) for a d-wave supercondcutor (from X u 
et al. [30]). Top graph: The change in penetration depth versus the normalized field 
H/H0 for several normalized temperatures T / T c ; the arrows indicate the cross-over field. 
Bottom Graph: The torque versus 9 at a fixed field of 400G for the same temperatures. 
|r | decreases with increasing T/Tc. 

may not be observable if the temperature is not low enough. The reason being that the 

applied fields are limited to values below Hci (to remain in the Meissner state), and may 

not be arbitrarily increased to recover the linear behaviour. 

The effects of impurities are considered in a similar manner to that of finite tem­

perature: there is an energy scale e* associated with the impurity scattering that sets a 

cross-over field when of order pf -vs. The result is again that X(H) crosses-over to weaker, 
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Figure 3.4: Impurity effects on A (if) for a d-wave superconductor at temperature 
T/Tc = 0.04 (from X u et al. [30]). AA versus H/H0 shows a cross-over (denoted by 
the arrows) that increases with impurity concentration, T/Tco. 

quadratic dependence at low fields; the cross-over field increases with impurity concen­

tration r / T C 0 as shown in Figure 3.4. However, for impurity levels typical in the high 

quality YBa 2Cu3C ,7_ (5 single crystals grown by Ruixing Liang at U B C , T/Tc0 ~ 0.0002 

and this effect should be quite small [30]. Results showing a similar reduction in M± 

with impurity concentration were obtained in Ref. [34]. 

Work by Dahm and Scalapino [36, 37] has concentrated almost exclusively on the 

high temperature limit of the N L M E for the dx2_y2 gap. Here Pf • vs <C kBT and the 

field dependence of the penetration depth can be expressed as 

A A ( T , H ) = A ( T ) ^ ( £ ) 2 (3.18) 

The temperature and impurity dependence of the coefficient 3 are shown in Figure 3.5. 

At low temperatures 3 goes as 1/T as previously mentioned. This divergence in 3(T) is 

usually cut off by the cross-over to the linear A (if), but impurity scattering will have a 

similar effect and it was also shown that this can cause the quadratic field dependence to 
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Figure 3.5: Temperature dependence of the nonlinear coefficient /? (from Dahm and 
Scalapino [36, 37]). Left graph: p (= be) versus normalized temperature for fields along 
the antinodes (bx) and nodes (bxy) contrasted by the isotropic s-wave case. Right graph: 
P versus normalized temperature for different impurity concentrations. 

persist to zero temperature. It was suggested by Dahm and Scalapino that the resulting 

peak in P(T) at T = 0 is as much a signature of a dxi_y2 gap as is the linear X(H), and 

whereas the latter can be masked by impurity scattering and nonlocal effects the former 

is a much more robust indicator of the d-wave N L M E [37]. However, if again one assumes 

A o 6 ~ 1500A and H0 ~ 2.5 x 104 gauss for Y B a 2 C u 3 0 7 _ , 5 and takes a modest value of 

P = 6, then an applied field of 250 gauss only gives A A ~ 0.5A. This pushes the required 

experimental resolution up by another order of magnitude, and is probably inaccessible 

even with the state-of-the-art measurement technique to be presented in this thesis! 

3.4.2 Nonlocality 

High-T c superconductors, being extreme Type II with A > (, have generally been as­

sumed to follow local electrodynamics. The coherence length is much smaller than the 

penetration depth, which characterizes spatial variations of the fields within the sample, 
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so as a result the Cooper pairs behave essentially as point particles reacting to the local 

value of the field only. The coherence length is given by BCS theory as £ 0 = hvf/nAo, 

and it was essentially taken for granted that this definition was valid for the cuprates as 

well, using the gap maximum for A 0 . In 1997, Kosztin and Leggett [38] made the seem­

ingly simple observation that a coherence length should actually take on the anisotropy 

of the gap by generalizing the above definition to £ 0 ( fc) = hvf/n/\(k). This would imply 

that near the gap nodes £ 0 » A 0 , and the Cooper pairs in this region would be objects 

extending well beyond spatial variations in the field and could be expected to behave 

nonlocally. From this idea Kosztin and Leggett were able to show that the linear tem­

perature dependence of the penetration depth in a d-wave superconductor would become 

quadratic in T at low T. In fact, quadratic behaviour is often seen in AA(T) measure­

ments (Ref. [23] for example), and previously has been attributed solely to the effect of 

impurity scattering [39]. 

Incorporating this idea along with the energy shift Pj • vs in the quasiparticle states, 

L i et al. [33, 40] were able to arrive at a form for the penetration depth in a dx2_y2 

superconductor that included both nonlocal and nonlinear effects. Following the method 

laid out in Ref. [11, Appendix 3] for finding the exact solution of A via Fourier analysis, 

they write the general penetration depth as 

where JC(q,vs,T) is the coefficient relating the qth Fourier component of the current 

inside the superconductor to that of the vector potential. The exact form of IC(q, vs, T) 

is not given here, but by writing JC(q, vs, T) = c/(4ir\2

0) + 5JC(q, vs, T) L i et al. were able 

to treat the nonlinear, nonlocal effects as a small perturbation and separate them from 

A 

(3.19) 
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the T = 0 linear, local response in Equation 3.19. This expression reduces exactly to 

the nonlocal result of Kosztin and Leggett [38] if the vs dependence is ignored and gives 

the linear X(H) of Yip and Sauls [28] if the q dependence is ignored [33]. The effect of 

nonlocality on X(H) is shown in Figure 3.6. Here H is considered to be along the c-axis 

(the effect is strongest in this regime) and the supercurrent flows at some angle 9 to 

the a-axis. At low fields, the nonlocal effects dominate, which washes out the linear field 

dependence and reduces the expected l/y/2 anisotropy in AX(H). L i et al. [33] proposed, 

in fact, that nonlocality might actually make the N L M E unobservable, arguing that the 

cross-over field between the nonlocal and nonlinear regimes would be roughly equal to the 

lower critical field Hc\, and as a result, one would always run into the vortex state before 

detecting the signature linear AX(H) of the N L M E . When the field is applied in the 

ab-plane, L i et al. [40] still estimate this cross-over to be ~ Hci. However, their estimate 

for the latter quantity is much smaller than what has been experimentally determined 

for that geometry [41], and as a result one must be cautious about accepting their claim. 

0.016 

V . V I W U.UI J U . U L U 0 003 ' i 1 I 

H/H °'5n i 0 K !-5* 2 -0t 

Figure 3.6: Nonlocal effects on X(H) for a d-wave superconductor, with H applied along 
the c-axis (from L i et al. [40]). Left graph: Normalized change in penetration depth 
versus normalized field (labeled top to bottom). Right graph: The angular dependence 
of the normalized change in penetration depth for T=0. 
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3.4.3 Or thorhombic i ty and An iso t ropy 

The C u 0 2 planes in most cuprate superconductors are actually orthorhombic rather 

than tetragonal, and in the YBa2Cu307_«5 system there is a further anisotropy because 

of the conducting CuO chains in the b-direction [42]. The presence of this orthorhombic 

distortion means that the symmetry of the system cannot in fact be purely s-wave or 

purely d-wave. For the high-Tc superconductors where a predominant dx2_y2 character 

has been well established, one would then expect orthorhombicity to lead to a state such 

as d + s or d + is. The s-component, if present, is considered to be quite small, and 

in the former case leads to shift of the gap nodes away from 7r/4, while the latter case 

it will produce a small finite gap resulting in deep 'quasinodes' at 7r /4. Extensive work 

has been done by Zutic and Vails [35, 43, 44] to calculate the effects of mixed symmetry 

on the transverse magnet moment. Halterman and Vails [45] expanded this work to the 

pure p-wave state to motivate measurements of Mj_ in Sr 2Ru04. More recently however, 

they returned to the high-Tc system and worked out the effects of orthorhombicity and 

anisotropy on the field dependence of the penetration depth [46, 47] at T = 0. 

Their results for Y B C O like orthorhombicity (assuming d + s symmetry) are shown 

in Figure 3.7, where the normalized AX(H) (which is essentially just the coefficient a 

from Equation 3.15) is plotted against the angle ip that the applied field makes with 

the a-axis. Two parameters are needed to characterize the effect here: A = A a /Ab, the 

anisotropy of the in plane penetration depth, and the angle 4> that the Fermi velocity 

(at a node) forms with the crystal axis. In the tetragonal limit of the standard Yip and 

Sauls theory, A = 1 and 4> = 7r/4, and the coefficient a varies between a value of l / \ / 2 for 

fields along an antinode and unity for fields along a node. The effects of orthorhombicity 

and anisotropy will alter this in general, as can be seen in Figure 3.7. 

This result is of great consesquence to the interpretation of measurements of AA(T, H) 
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Figure 3.7: The effect of YBCO-type orthorhombicity on the angular dependence of 
AX(H) (from Ffalterman and Vails [46]). Left graph: Normalized A A versus the angle 
ip for A = 1.0 (tetragonal), 1.1,1.2,1.3,1.4,1.5 with <f> = 7r/4. The tetragonal limit (bold 
curve) gives the l / \ / 2 variation from Yip and Sauls. Right graph: As above, but with 
fixed A = 1.3 and variable <f> = TV/4 ± rar/80 with n = - 3 , - 2 , - 1 , 0 , 1 , 2,3 (bottom to 
top at ip — 0)-

made for different orientations of the field in the afe-plane. Consider first the low field 

linear limit, where the effective penetration depth with respect to the angle ip is just 

Xun = K sin 2 ip + Xb cos2 ip. At ip = 45° a measurement of AA(T) would see the average 

temperature dependence of A A Q and AA;,, as expected. One might then expect that for 

the N L M E with H is along the nodes, a measurement of A A 4 5 ( i f ) would simply be \/2 

times the average of AXa(H) and AAj( i f ) . While this is true for a tetragonal crystal, it 

is not true in general. For something like YBa 2Cu307_,5 , Figure 3.7 shows that it may 

be incorrect to interpret these measurements in such a simple fashion. 

3.4.4 Ha rmon i c Genera t ion and Intermodulat ion 

As will be discussed in Chapter 4, the quantity an ac susceptometer actually measures 

is the magnetic moment m of the sample. To extract the penetration depth from such 
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a measurement, one must first appropriately model m in terms of A. For thin platelets 

of single crystal Y B a 2 C u 3 0 7 _ 5 , this is done be treating the sample as a thin slab. The 

magnetic moment of a slab shaped superconductor of thickness i > A in a field H can 

be written as m = —H(V — 2AX), where V is its volume and A its area. It is clear from 

this that a field dependent penetration depth will lead to a nonlinear magnetic moment. 

Furthermore, if H(t) is sinusoidal then m(t) will acquire higher harmonic components, 

and if the applied field has the form H(t) = Hi(cos(cuit) + cos(u>2t)), the nonlinearity of 

the material would give rise to intermodulation products, most notably the third order 

intermodulation terms at frequencies 2u>x — u>2 and 2u>2 — (See Appendix B for a 

more complete treatment of this model.) With this in mind, Dahm and Scalapino [37] 

proposed that as a possible alternative one could probe the third harmonic response of the 

superfluid for the existence of the low temperature peak in /3(T), which is a signature of 

the d-wave N L M E (see Section 3.4.1). They also suggested that intermodulation could 

be used for the same purpose. Their proposals were partly intended to motivate the 

search for the N L M E in high-Tc thin films, since microwave filter circuits made from 

these thin films were already tested for harmonic generation and intermodulation as a 

routine characterization of their performance. (In fact, much of the work by Dahm and 

Scalapino [36], was motivated by modeling the behaviour of such filters assuming a field 

dependence of A given by the Y i p and Sauls theory.) 

Zutic and Vails [44] examined harmonic generation in the transverse magnetic moment 

M± within the context of the N L M E . They discussed how ac measurements could be 

performed so as to enhance and maximize the nonlinear signal expected from the Yip 

and Sauls theory. In particular, they found it would be most favourable to measure the 

third harmonic of M±_ if there was little or no superimposed dc field, and the second 

harmonic if the superimposed dc field was larger than or equal magnitude to the ac field. 
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3.5 Overview of Exper imen ta l Resul ts on the N L M E 

Experimental studies of nonlinear electrodynamics in superconductors date back to mea­

surements of the magnetic field dependence of the microwave surface impedance of tin 

by Pippard in 1950 [48]. Spiewak in 1958 measured an H2 dependence in the surface 

reactance (and hence A) of single crystal wires of tin [49], which Bardeen suggested could 

possibly be explained by his idea of a counterflow of normal fluid [32].3 Garfunkel built 

on this idea, and tried to try to explain a host of experiments done on conventional 

superconductors in the 1960's [50] by means of a quasiparticle energy shift, p • v. Of 

course, Y i p and Sauls based their theory of the Nonlinear Meissner Effect on this idea as 

well. 

3.5.1 Single Crysta ls 

The scattered results that predate the Yip and Sauls theory are not of much interest 

here. This is primarily because the work was done exclusively on type I conventional 

superconductors where the local electrodynamics of the N L M E are not valid. The one 

exception is a measurement by Sridhar et al. [51] on a YBa 2Cu307_,5 single crystal in 

1989. They observed a quadratic field dependence in A that increased with temperature 

in a manner that the authors interpreted as being consistent with conventional BCS 

superconductivity. In fact, their observations of AA(T) and HC\(T) also appeared to 

be consistent with an s-wave description, which is now known to be incorrect for the 

cuprates. Sample quality of high-Tc superconductors in 1989 was generally not good 

enough to reveal much of what is known today about the intrinsic behavior of these 

materials, and it is most certain that the crystals used here (by virtue of their AA(T)) 

were also of poor quality. As a result, these early measurements on AA(-fif) can no longer 

3 Even though Bardeen did not expand on this idea himself, it is quite interesting to see that the point 
of creation for the idea of a N L M E was a couple of sentences from his 1958 paper. 
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be regarded as meaningful. 

The first specific study of the N L M E came in 1995/96, when Maeda et al. [52] pub­

lished results for AX(H) in the high-Tc compounds Bi 2 Cu2CaCu20 y , YBa 2Cu 307_,$, and 

T l 2 Ba2CaCu 2 O y . Work in the same group was also done on the electron-doped cuprate 

Ndi.84Ceo.i6Cu04 [53], as well as the conventional type II superconductor V 3 S i [54]. In 

the three hole-doped high-Tc materials, the behaviour of AX(H) appeared to be qualita­

tively consistent with several aspects of the Yip and Sauls theory. These are: (1) at low 

temperatures there was a linear field dependence in AA, (2) the linear behaviour in this 

regime crosses over to quadratic at low fields, and (3) the temperature dependence of the 

coefficients of both the linear and quadratic terms, as well as the temperature depen­

dence of the cross-over field between the two regimes, were all consistent in form with the 

theory. However, despite the seeming success of these results, there are several points of 

contention that must be raised. First, the resolution of the experiment was only ~ 20 A, 

and the size of the effect quoted here was typically an order of magnitude larger than the 

zero temperature prediction [30] of 10 — 15 A over the entire field range up to H&. Next, 

the lowest temperature at which these experiments were carried out was 10 K , where as 

the theory would suggest that the linear AX(H) could not be seen above 2 K [30]. And 

lastly, the measurement geometry used here had the applied fields perpendicular to the 

plane of the crystals, resulting in a large demagnetizing effect that could easily drive flux 

into the sample along its edges. Independent measurements on YBa2Cu3C>6.95 (by Tony 

Carrington [55] and our group [56]) several years later confirmed that, at least for the 

Y B C O system, Maeda's result were certainly due to some extrinsic effect and could not 

be representative of the N L M E . While this finding does not necessarily negate his results 

on B i 2 C u 2 C a C u 2 O y or T l 2 B a 2 C a C u 2 O y , it does give cause for skepticism. 

The results for Ndi. 8 4Ce 0.i6CuO4 and V 3 S i were also claimed to be consistent with the 

N L M E for a dx2_y2 and s-wave superconductor respectively. However, similar concerns 
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exist here; primarily, that the measurement geometry used results in a large demagne­

tizing effect which could lead to flux entering the sample at its edges. For example, the 

results for V 3 S i were 20 times larger than prediction [30], and may actually be an ex­

trinsic signal associated with flux entry. It has been shown experimentally [56, 57], and 

will be discussed in detail in Chapter 5, that even in the case where the demagnetizing 

effects are small and the field levels are very low, data can still be contaminated by flux 

entry. Another concern is that data was only taken at temperatures as low as 7 K , and 

given that Tc is around 20 K for both materials this may not be sufficiently low to make 

a stringent test the N L M E . 

The measurements of AX(H) in YBa 2 Cu30 6 .95 by Carrington [55] and Bidinosti [56] 

from 1999 are shown in Figure 3.8. Both groups developed precision measurement tech­

niques that had a resolution of about 5X ~ 0.1 A for a crystal area of 1 — 2 mm 2 and with 

the field applied in the plane of the sample. This represented a very significant advance 

in the experimental study of the N L M E : the ability to make in-plane measurements min­

imized possible problems associated with a large demagnetizing factor and allowed the 

possibility of examining AX(H) as a function of field direction, which is the main tenet 

of the Yip and Sauls theory. Also, there was an increase in resolution4 by a factor of 

~ 200 with these new techniques. Both groups measured a AX(H) at ~ 1.2 K that 

agreed well with the theory (at that temperature), in stark contrast with the results of 

Reference [52] that were much too large. However, both groups also noted that AX(H) 

increased with temperature (see, for example, the data from Carrington et al. [55] in 

Figure 3.8) which does not agree with the N L M E . Bidinosti et al. [56] also found further 

discrepancy with theory in their measurements on the angular dependence of AX(H). 

4 The actual improvement in sensitivity is much higher, because the effective volume of the super­
conductor will scale with the demagnetizing factor. For example, in Reference [52] the typical crystal 
volume was 1 x 1 x 0.3 m m 3 giving a typical demagnetizing factor 1/(1 — N) ~ 25; the quoted resolution 
here was 20 A. Therefore, these high precision measurements (where 1/(1 — JV) ~ 1) actually offer a 
sensitivity greater by a factor of ~ 20/0.1 x 25 ~ 5000. 
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T [R] DC Field (Oe) 

Figure 3.8: Precision measurements of A\(H) in YBa 2 Cu 3 06 .95 . Left: AA 0 )& at 1.4 K 
with theoretical fits for 0 K (dashed line) and 1 K (solid line); temperature evolution of 
dX/dH (from Carrington et al. [55]). Right: A A a (circles) and AA(, (squares) at 1.2 K 
with theoretical fits; A A ± 4 5 (diamonds, triangles) at 1.2 K with theoretical prediction 
(dashed line), and average of curves in top panel (solid line) (from Bidinosti et al. [56]). 

Here, it was found that the field dependencies of A for fields applied ±45° to the crystal 

axes (ie. H roughly parallel the nodes), were exactly the average of the results for fields 

along the crystal axes (ie. H parallel antinodes). The enhancement expected in the 

nodal direction was not seen and, ignoring the possible effects of orthorhombicity, it was 

concluded that N L M E of Yip and Sauls was suppressed by a factor of the order of 10 or 

larger. (In light of the subsequent work by Haltermann and Vails [46, 47] discussed in 

Section 3.4.3, this conclusion will be re-examined in Chapter 6 along with a full analysis 
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of all our measurements.) 

A complementary experimental test of the N L M E has been carried out by a group at 

the University of Minnesota on the angular dependence of the transverse magnetization 

Mj_. In this experiment, on which they have worked since 1994, the sample is rotated in 

fixed field while measurements of the magnetic moment are made in the direction per­

pendicular to the field (the predicted angular depedence of Mj_ is the same as r shown 

in Figure 3.3). Early results for L U B ^ C U S O T ^ did not support a pure d-wave pairing 

state, but measurements were dominated by the geometric demagnetization factor and 

trapped flux [58]. Subsequently, efforts were made to alleviate the problems associated 

with sample geometry[59], and improved measurements of Mj_ for a disk shaped single 

crystal of Y B a 2 C u 3 0 6 . 9 5 were published by Bhattacharya et al. [60] in 1999. Within their 

experimental uncertainty, they did not observe the 4-fold symmetry in Mj_ expected for 

the N L M E in a dx2_y2 superconductor, and concluded a 30% suppression in the theoreti­

cal prediction. While one cannot easily compare the sensitivity of the M x measurements 

to AA(H) measurements, results from both types of experiment should ultimately com­

plement each other under a single consistent explanation. At the moment, there is at 

least a consistent observation (between the precision measurements of Carrington [55], 

Bidinosti [56] and Bhattacharya [60]) that for single crystal YBa2Cu306.95 the Nonlinear 

Meissner Effect, if present, is a much weaker effect than predicted. 

3.5.2 Thin Films 

There has also been research done on the nonlinear electrodynamics in high-T,. thin films 

and thin film devices, which, for the sake of completeness, should be mentioned here as 

well. Theoretically, the use of thin films has been proposed for the direct study of the 

N L M E [30, 37], however it has been more typical to investigate nonlinearities in thin 

films from a very practical point of view. This leads to the opposite approach where 
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the behaviour of a certain thin film device is modelled on the supposed existence of the 

N L M E . For example, this has been done for microstrip resonators [36, 61, 62] and disk 

resonators [63]. Experimentally, the situation is somewhat similar in that the emphasis 

of most research is to characterize a certain device or thin film material, rather than to 

explore the fundamental intrinsic properties of the material itself. A notable exception 

is the work on THz nonlinear transmission in B S C C O films by Orenstein et al. [64], 

which was intended as a direct study of the N L M E . They concluded that the nonlinear 

transmission was a result of an intrinsic, supervelocity induced, pairbreaking mechanism. 

However, they did not see the expected l / \ / 2 anisotropy of the Yip and Sauls theory, 

which leaves some doubt as to whether this could be the mechanism responsible for their 

results. 

A survey of some other pertinent experiments is as follows. Willemsen et al. [65] ob­

served 2:1 behaviour5 in the intermodulation products of T B C C O and Y B C O microstrip 

resonators at temperatures between 25 and 77 K . They noted that 2:1 behaviour can arise 

from a linear X(H), but they concluded that it would be unlikely at these elevated temper­

atures for this to have come from the N L M E . They suggested weak links as the possible 

origin for the nonlinearity, which has support from other measurements performed on 

T B C C O films [66]. On the other hand, Booth et al.. [67] saw 3:1 behaviour in Y B C O 

transmission lines, and Classen et al. [68] measured a quadratic dependence of A on the 

current density in Y B C O films at 77 K . They found the effect to be larger than could be 

explained by either BCS theory or the N L M E , and suggested planar defects as the pos­

sible source of the nonlinearity. More recently, there has been some direct research into 

the origin of the nonlinear electrodynamic response of Y B C O films: one study concluded 

that it was vortices in weak links, as well as lattice distortions in grains and at grain 

5See, for example, the analagous situation for a slab superconductor worked out in Section B.2 of 
Appendix B. The definitions of 2:1 and 3:1 behaviour are also given here. 
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boundaries that were responsible [69]; another study cited only vortices in weak links 

as the most important source of nonlinearity [70]. This all goes to suggest that at the 

present thin films are probably not as useful as single crystals for studying the Nonlinear 

Meissner Effect. In many ways, the situation here is reminiscent of early temperature 

dependent measurements, where high-Tc thin films still tended to show a T 2 dependence 

in A A at low temperatures, while single crystal quality had already sufficiently progressed 

so as to exhibit the linear AA(T) intrinsic to a dx2_y2 superconductor [24].6 As a result, 

one is hard pressed not to conclude that the intrinsic nonlinear response of high-Tc ma­

terials will first be sorted out in single crystals, and that research on the N L M E must 

focus on this avenue. 

6Eventually, thin Aim quality did improve and began to show this characteristic as well. 



Chapter 4 

A C Susceptibility and the A C Susceptometer 

As mentioned in Chapter 2, microwave cavity perturbation has proven to be a popular 

and successful technique for studying the electrodynamics of high-Tc superconductors [24, 

71]. However, high precision measurements of the surface resistance and magnetic field 

penetration depth in these materials usually requires the use of high Q superconducting 

resonators, which then limits experiments to low microwave power and zero dc field. The 

growing body of theoretical work described in Chapter 3 has provided strong impetus to 

study the nonlinear electrodynamic response of superconductors in the Meissner state, 

thereby pushing researchers to develop techniques that can operate in finite magnetic field 

and yet maintain the high sensitivity of cavity perturbation. Recently, three different 

experimental approaches have been taken to meet this difficult challenge: a SQUID 

susceptometer [60], a tunnel diode oscillator [55], and the ac susceptometer designed and 

built by Walter Hardy and myself [56, 57] as the research apparatus used in this thesis. 

The use of ac techniques to study superconductor electrodymanics dates back to 

Shoenberg in 1937 [72], and the simplicity of ac susceptibility measurements naturally 

lends itself to the study of high-Tc materials [73], particularly the strong diamagnetism 

associated with their superconductivity. However, to the best of our knowledge, no ac 

susceptometer (prior to this one) has had the resolution necessary to detect the small 

changes in the penetration depth in single crystals that are relevant to the interesting 

physics. This chapter describes in detail the principles of the technique, the design of 

our high precision ac susceptometer, and the method in which it is used to measure AA 

50 
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as a function of temperature and magnetic field. 

4.1 Pr inc ip les of the Technique 

The macroscopic magnetic field in the presence of a material of magnetization M is given 

as B = Ho (H + M). In general, M is a function of H, and the two are related through 

the magnetic susceptibility x- For linear media in a dc field this relationship is simply 

M , . 
X = j; (4.1) 

For nonlinear media or in the case where one applies a time dependent field a more 

relevant definition is 

*=dH <"> 
where x is n o w referred to as the differential or ac susceptibility. 

Consider the latter case where a sample is in a periodic external magnetic field H (t) = 

Hdc + H\elu)t. In response to the field, the sample will develop a periodic magnetization 

M(t), which can be expressed as a Fourier series 
oo 

M(t) = HX^2 MneinuJt (4.3) 
n=0 

From the definition of the ac susceptibility in Equation 4.2, 

dM _ dM(t) (dHj^y1 

dH dt \ dt J 
oo 

= £ n M n e i ( B - 1 ) w 7 # i . (4.4) 
71=1 

Each coefficient nMn/Hi is identified as Xn = Xn~ *Xn> the complex magnetic suscepti­

bility of the nth harmonic, and will be given by 

Xn = M(t) cos nut dt 

(4.5) 

Xn = y_" M(t) sin nut dt 
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The fundamental component of the magnetization M(t) = H\(xxcosuit + x'i sinut) 

has a real part in-phase with the applied field H(t) and an imaginary part that is 90° 

out-of-phase with H (t). This attaches very obvious physical meaning to the fundamental 

susceptibility: x'i corresponds to the inductive response (energy storage) of the sample, 

and x'i corresponds to losses (energy dissipation) in the sample. The higher harmonics 

are generally associated with hysteresis and nonlinearity in the magnetization [74]. 

For example, a superconductor in the full Meissner state will have a magnetization 

that is of equal amplitude but opposite direction to that of the applied field. From 

Equation 4.5 this gives X'I = — 1 a n d Xi = 0 reflecting the perfect diamagnetism and 

perfect conductivity of the material. In the normal state (neglecting core diamagnetism 

and the real conductivity), the external field will completely penetrate the sample, and 

Xi = Xi = 0. At intermediate temperatures x'i will be a negative number (> —1), and 

Xi will be a small positive number reflecting ac losses [75]. 

A typical experimental set-up for measuring ac susceptibilities is shown in Figure 4.1. 

In general, the ac susceptometer is comprised of a set of co-axial coils: a primary coil 

to produce a small ac magnetic field, a dc coil to produce a superimposed dc magnetic 

field, and a pair of secondary coils across which an induced voltage signal is detected. 

The secondary coils are wound as identically as possible and connected in series with 

opposite polarity, so that in the absence of a sample the total voltage across the pair 

will be close to zero. With a sample present, this coarse voltage compensation leads to 

an output signal that is directly proportional to the time rate of change of the sample's 

magnetization: 

v(t) cc dM/dt 

The voltage compensation circuit is present to null out any inherent voltage imbalances 

(for example due to coil imperfections), but more importantly to remove the bulk signal 
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of the sample itself thereby allowing precise measurements on very small changes in its 

magnetization or susceptibility. For the research done in this thesis, focusing on the 

N L M E in YBa 2 Cu 3 07- ,5 , it is most essential to directly relate the voltage measured at 

the lock-in amplifier to a change in penetration depth A rather than M or x- The manner 

in which this is done will be discussed in Section 4.4. 

dc Power Supply Reference 

Function Generator 

dc Coil 

Primary Coil 

Sample -

Air-

Input 

C 2> 

Lock-in Amplifier 

Voltage 
Compensation 
Circuit 

Secondary coils in 
series opposition 

1 1 

Figure 4.1: The general experimental set-up for ac susceptibility measurements. 
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4.2 Design and Construction of the ac Susceptometer 

The first step towards achieving good resolution with an ac susceptometer is to have a 

high degree of symmetry in the arrangement of the coils with respect to each other and 

their immediate surroundings. This is shown in Figure 4.2: the center of the primary 

coil coincides with the center of the dc magnet, the two inner secondary coils are spaced 

symmetrically about this center point, and all coils share the same central axis. In 

addition, the copper flange that holds the primary coil has been made with a central 

bore that resembles the sample aperture in the dc coil form. These steps ensure that 

each secondary coil will see the same applied field, and therefore produce induced voltages 

of equal magnitude that cancel in the absence of a sample. It should be noted that the 

skin depth in the copper at 12 kHz and 4 K is about 70 pm, which is much smaller than 

the dimensions of the components themselves. 

To measure AA as a function of temperature, the sample is thermally isolated from 

the rest of the apparatus by mounting it on a slender sapphire plate in vacuum (see 

Figure 4.2). This is a popular and widely used technique [76]. A small quantity of Dow 

Corning high vacuum grease is used to hold the sample in place. The plate, which is 

0.1 mm thick, roughly 0.8 mm wide and 2.5 cm long, is held in place on a sapphire block, 

also with vacuum grease. A 220 Q chip resistor and a Cernox™ resistor [77] mounted on 

the underside of this block act as sample heater and thermometer respectively. A thin 

quartz tube forms the thermal break between the sample system and a copper base that 

is in contact with the helium bath at Tg = 1.2 or 4.2 K . 

A much more problematic aspect of the susceptometer design concerned the ablity 

to make measurements of A A as a function of field. As Figure 4.2 clearly shows, it is 

not possible to avoid exposing certain parts of the apparatus to the exciting fields. It 

was important, therefore, to use only nonmagnetic materials in the construction of the 
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copper flange 

primary coil 

secondary coils 

sapphire 
coil form 
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copper coil 
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Figure 4.2: The ac susceptometer design. The ac susceptometer is constructed only 
from materials with very small magnetic susceptibilities. The sample is shown fully ex­
tracted from the secondary coil; the dashed outline shows the sample in the measurement 
position. 
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susceptometer to limit any field dependent background. To this end the following steps 

were taken: copper was used for all metallic parts in the region of the coils, the copper 

parts were etched with nitric acid after machining to remove any contamination from steel 

tools, and the primary and secondary coils were wound from high purity wire on a high 

purity sapphire form (specific details are given below in Section 4.2.1). However, at the 

level of sensitivity required for our measurements, these steps alone did not sufficiently 

suppress a field dependent background signal, and to overcome this problem a custom 

made retractable sample holder was developed. The mechanism providing the linear 

motion was an adaptation of a compound linear spring [78], and is described in greater 

detail in Section 4.2.2. A range of motion of about 1.7 cm was enough to fully extract the 

sample from the ac susceptometer. At this distance the magnetic coupling of the sample 

to the system is reduced by over five orders of magnitude to a level not detectable above 

the noise. This allows an immediate determination of the background signal which can 

then be properly subtracted from the data. 

4.2.1 The ac Coil Set 

Important details of the ac coil set are shown in Figure 4.3, which gives a schematic view 

of its construction, along with the field profile of the primary coil. Here the copper flange, 

shown in full in Figure 4.2, is shown cut away. Stycast 1266 epoxy was used to butt join 

the sapphire form to the copper flange and to hold all coil windings in place. The coil 

form, precision ground from very high quality sapphire [79], is 0.64 cm in diameter, has 

a central bore of 0.32 cm to accept the sample, and two grooves, 0.76 mm deep and 

0.50 cm wide, in which the secondary coils were wound. A picture of the actual piece 

with the secondary coils in place is shown in Figure 4.4. High purity niobium wire [80] 

was used for these coils with the idea that a) any contaminants within the wire would be 

magnetically shielded by the Meissner state screening of the niobium and b) the applied 
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Centimeters from centre of primary coil 

Figure 4.3: The construction of the ac coil set. (A) sapphire coil form; (B) copper flange; 
(C) Faraday shield 

fields to be used in this experiment would not be large enough to disrupt this Meissner 

state. Immediately covering the sapphire coil form is a Faraday shield, which reduces the 

capacitive coupling between the primary and secondary coils. The shield was constructed 

from the same high purity copper wire [80] used for the primary coil, and was made by 

winding a single layer on a large diameter teflon form and setting it in 1266 epoxy. Before 

the epoxy fully cures, this coil is cut perpendicular to the windings and freed from the 

form to leave a fairly flexible sheet of parallel wires electrically insulated from each other. 

The sheet is epoxied around the sapphire form such that the wires run along the length 

of the form; silver epoxy electrically grounds the Faraday shield inside a groove in the 

copper flange. The primary coil is a continuous winding of 4 layers sitting directly on 

top of the Faraday shield. The first and fourth layers have windings only on either end; a 

mylar spacer supports the second and third layers which are complete. The field profile 

of such a coil design is both symmetric about the secondary coils and homogeneous over 

their length. 



Chapter 4. AC Susceptibility and the AC Susceptometer 58 

Figure 4.4: Secondary coils wound on the sapphire coil form. The coil leads, protected 
inside a teflon tube, extend from the coil form. 

4.2.2 The Retractable Sample Stage 

The motion of the sample stage must be very linear to successfully extract (and replace) 

the sample from within the small bore of the sapphire coil form. The low operating 

temperature of the apparatus (1.2 or 4.2 K) presents the further difficulty of increased 

friction, which makes the use of sliding parts a poor design choice. Both these concerns 

were overcome by the designing of a retractable stage based on the principles of the 

compound linear spring [78] shown in Figure 4.5. The diagram shows a side view of the 

spring; the two slabs A and B are connected to each other and to a base stand by two 

sets of flexures. When A is pushed horizontally it travels in that direction confined to 

a single plane. There is no vertical translation of A as the bending of the two sets of 

flexures exactly compensates for the other, and there is no rotation since the flexures run 

the entire width of the slabs. 

A photograph of the retractable sample stage is shown in Figure 4.6 held in a vice; 

the wall of the vacuum pot (which bolts to the bottom of the dc magnet in Figure 4.2) 

has been removed to expose the compound spring. The spring sits on its side to provide 
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Figure 4.5: Diagram of a compound linear spring. 

linear motion in the vertical direction. The main parts of the spring are labelled as per 

Figure 4.5. Holes were drilled out of the brass components of the spring to remove excess 

weight. The flexures are 0.4 mm thick strips of stainless steel foil soldered into the edges 

of the thin brass plates. The motion comes from a brass rod that pushes at the centre of 

the copper base on which the sample stage sits; in this way the presence of the spring is 

really just to constrain the motion of the stage to a straight line. A simple lever actuated 

from outside the dewar is what moves the push-rod. Also in view in the photograph 

are: the sample stage (showing the sapphire sample block and thermometer, the quartz 

tube and the copper ring and base from Figure 4.2), heavy braids of copper wire to 

thermally connect the copper base to the helium bath, a feed-through for the electronics, 

and a copper bellows to maintain vacuum inside the pot while allowing movement of the 

push-rod. 

4.3 E lec t ron ic C i r cu i t r y 

The method of voltage compensation and detection is shown in the circuit diagram in 

Fig. 4.7. The current through the primary coil is driven by a Hewlett-Packard 3324A 

function generator via a 100 Q, resistor, which dominates any small resistance changes 
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Figure 4.6: The retractable sample holder; the components of the compound linear spring 
are labeled as per Figure 4.5. (1) sapphire mounting block (thermometer is chip in view); 
(2) quartz tube (white bands are string tying down electrical leads); (3) copper ring 
(sapphire base out of view); (4) copper base; (5) flexures; (6) copper braid; (7) push rod; 
(8) electrical feed through; (9) bellows; (10) lever 
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in the primary circuit, thereby providing a relatively constant current. Also in series 

with the primary coil are a small resistor and a small inductor across which voltages 

V; and V 0 , in- and out-of-phase with the drive current respectively, are picked off to be 

used for voltage compensation. Each of these voltages is input to an Electro Scientific 

Industries D T 72A decade transformer (not shown), which can provide seven orders 

of voltage resolution. The output voltages, V{ and V0, from the decade transformers 

provide the final fine compensation needed to null the signal from the sample's bulk 

magnetization and any other imbalances due to small imperfections in the winding of 

the coils. The compensation voltages are injected into the secondary circuit across the 

16 Q resistor via two small ferrite core transformers and two 420 Q resistors. These 

large resistors are present to dominate the resistance of the leads which change with 

cryogen level and would otherwise result in a substantial drift signal. The remaining 

components in series with the secondary coils are a 62 nF capacitor and a shielded toroidal 

transformer. The susceptometer is operated at 12 kHz, the resonant frequency of the 

secondary coils/capacitor combination, used to remove the large inductive impedance 

of the coils from the circuit. The cooled transformer provides very low noise voltage 

amplification of the signal before it goes to a Princeton Applied Research 119 preamp. 

The transformer is wound on an amorphous metal core [81] and magnetically shielded 

inside a superconducting can. As many electrical components as possible were housed at 

liquid helium temperatures to limit thermal noise. The remaining components at room 

temperature were mounted on an aluminum bed thermally regulated by a water bath 

and housed inside a styrofoam container to provide further stability. 

It is important to note that current flowing in the secondary coils can substantially 

alter the field applied by the primary. Such effects are largely avoided by the combination 

of using a high impedance amplifier and working close to a null in the voltage presented 

to the amplifier. The largest off-null signal is incurred during calibration (see Section 4.4) 
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Figure 4.7: The circuit diagram of the ac susceptometer. 

where the full magnetic volume of the sample is detected. This results in a reduction in 

the primary field of approximately Vs/Vc x XL/Zs, the ratio of the sample to pick-up coil 

volumes times the ratio of the pick-up coil reactance to secondary circuit impedance, and 

is about 1 % for a large YBa 2Cu 307_ 15 single crystal (Vs ~ 2 mm 2 x 0.1 mm). The use of 

a series resonance as opposed to a parallel resonance to tune out the reactive impedance 

of the secondary coils is imperative; a parallel resonance would result in a large current 

flowing in the secondary with the consequence that the total applied field would be much 

larger than the primary H (and of opposite sign). Of course, resonating the secondary 

coils also changes the phase of the signal, but this is taken care of by the in situ phase 

setting and calibration process described below. 
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4.4 C a l i b r a t i o n a n d P h a s e S e t t i n g 

The signal from the preamp is detected using a Stanford Research Systems SR850 lock-in 

amplifier, which has two outputs, X and Y , for simultaneous measurements in quadrature. 

The most accurate and convenient way to set the phase of the lock-in is to use the large 

diamagnetic signal of the superconducting sample itself. With the sample held at base 

temperature, either 1.2 or 4.2 K , and with zero applied dc field the output signal is nulled 

using the decade transformers. The amplitude of the 12 kHz ac field is typically no more 

than 2.5 gauss peak, and at this very low temperature, field amplitude and frequency 

there are no losses in the superconductor. The sample is then heated above its transition 

temperature Tc. At 12 kHz the sample thickness t is much less than the normal state skin 

depth 8 and therefore the net signal vsn of the sample going from the superconducting 

state into the normal state is due entirely to the non-dissipative Meissner screening of 

the sample. (It should be noted that the same signal vsn is found if one just extracts the 

sample from the ac susceptometer while it is at the base temperature.) The phase of the 

lock-in is adjusted so that the entire magnitude of vsn appears in only one output, say 

output Y , which is then taken to be the inductive response of the sample (stored energy). 

Output X will then measure any losses. Under the conditions the desired research is to 

be done, losses in the sample are unmeasurable, and the following discussion focuses on 

the inductive response only. 

Typically, single crystals of Y B a 2 C u 3 0 7 _ ( 5 grow as very thin platelets. In the mea­

surement geometry used here, the applied fields lie in the plane of the crystal and the 

experiment can be reasonably well approximated by the classic problem of a flat slab 

superconductor in a parallel magnetic field. The well known solution for the magnetic 

moment of such a sample is m = —HV [1 — (2A/i) tanh(£/2A)], where H is the applied 
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field, V the sample volume, and A the magnetic field penetration depth [11]. (Devel­

opment of this model and its limitations are discussed in Appendix B.) The induced 

voltage across the secondary coils is proportional to the time rate of change of m and so, 

to within a constant 1/k, the lock-in will measure a change in voltage from the nulled 

position of 

Y = \ [A2 tanh(t/2A 2) - Aj tanh(*/2Ai)] (4.6) 

where Ai is the low temperature, zero dc field penetration depth ( ~ A 0, the T,H = 0 

value) and A 2 is the penetration depth after changing the sample conditions. Now, if the 

sample is heated above Tc, as was done when setting the phase, then A 2 —> oo, Y = vsn, 

and only a knowledge of t and Ao is needed to determine the calibration constant k. For 

YBa 2 Cu 3 07_,5 crystals, where A 0 ~ 1500 A is generally much less than half the sample 

thickness, k reduces to the particularly simple form 

k = (t - 2\0)/2vsn ~ t/2vsn (4.7) 

Clearly, a sample of larger area A will allow better resolution, since vsn oc V = At. Notice 

also, that if A 2 << t/2, which is true until very close to T c , then Equation 4.6 reduces to 

the very simple relationship 

A A = kY (4.8) 

For convenience, all measurements shown in this thesis will be converted to an equivalent 

AA and quoted in units of Angstroms. 

A more general calibration for a slab shaped superconductor that also includes losses 

associated with the normal fluid response in a superconductor is discussed in Section B . l 

of Appendix B. Other calibration techniques for samples of different shapes are discussed 

in References [82, 83]. 



Chapter 5 

Characterization of the A C Susceptometer 

For the newly constructed susceptometer, it was of course desirable to perform a number 

of test experiments to see if meaningful physics research could be done with it. Making 

measurements as a function of temperature was rather trivial and results for AA(T) of 

a YBa 2 Cu 3 07_ ( 5 sample could easily be checked against the penetration depth measure­

ments done on the same sample in our lab using superconducting microwave resonators. 

For field dependent measurements the story was quite different. There did not exist any 

reliable AX(H) measurements on high quality single crystals at the time this apparatus 

was constructed, so no external checks could be made. There was also the added problem 

that high-Tc superconductors generally have a a very small critical field Hc\. This meant 

that the very quantity under investigation, AA( i f ) in the Meissner state, was naturally 

cut-off at some rather low field (see Figure 1.1). Furthermore this cut-off, due to the 

entry of vortices into the sample, is strongly dependent on the sample material, shape, 

temperature, and orientation within the applied field. As a result a very large part of 

this thesis work went towards characterizing these types of measurements. As will be 

shown in this chapter, we have been successful in developing the appropriate criteria by 

which the intrinsic field dependence of the Meissner state penetration can be measured. 

5.1 Measurements as a Function of Temperature 

Automated measurements of AA(T) were made with the temperature controller (Con-

ductus LTC-20) and lock-in (SR850) under computer control. The peak drive field was 

65 
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fixed at 2.5 Oersted.1 Control experiments were done with only the sapphire sample plate 

and the equivalent amount of vacuum grease required to hold the sample to the plate. No 

signal from the magnetic susceptibilities of these materials was detected above the noise 

of the system.2 However, as can be seen in Figure 5.1 there is the development of a small 

radiative signal as the temperature is raised above 50 K. This signal is associated with 

slight radiative heating of the ac coil set; the temperature dependence of this signal is ob­

served to vary as ~ T 5 when the base temperature is 1.2 K and ~ T 7 when TB = 4.2 K, 

suggesting some overall process that at least includes the T 4 of the Stefan-Boltzman 

radiation law. At present, a more in depth characterization and understanding of this 

effect is not a pressing concern. For the work to be done here, the thermal conductivity 

of the sapphire coil form and its contact to the copper flange is sufficient to reduce this 

effect to a negligible level. For example, heating from TB = 1.2 K (4.2 K) to about 80 K, 

the radiative signal is equivalent to about a 6 A (0.6 A) change in A for an averaged 

sized crystal, but the penetration depth of the sample itself will have typically doubled, 

a change of order 103 A. 

A collection of representative data of AA(T) for YBa2Cu307_(> is shown in Figure 5.2 

and highlights the capabilities of this ac susceptometer and some of the physics that can 

be studied with it. The bottom left inset shows low temperature data measured with 

the ac susceptometer (12 kHz) alongside data on the same sample taken in a supercon­

ducting microwave cavity (1 GHz). It is clear from this plot that the former technique 

can achieve a resolution comparable to the microwave methods using superconducting 

cavities. The main graph summarizes the entire superconducting phase of YBa2Cu307_,s 

through a plot of superfluid density fraction (A0/A(T))2 versus temperature. (Note: A(T) 

*A lower drive field of 0.4 Oersted is used near Tc to avoid prematurely driving a sample normal. 
2 One searches for this at low temperature, where the 1/T dependence of the Curie Law [25] would 

be most noticeable. 
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Figure 5.1: Temperature dependent signal of the empty sample holder with the ac sus­
ceptometer at 1.2 K (circles) and 4.2 K (triangles). Radiative signal shows dependence 
greater than T 4 . Inset: at low temperature, no magnetic signal from the sapphire plate 
and vacuum grease is detected. 

cannot be determined directly, only AA(T); a value for Ao was taken from infrared mea­

surements [84].) In the top right inset, data near Tc is plotted log-log as A(t) versus the 

reduced temperature t = (1 — T/Tc) for the purpose of extracting a critical exponent. 

The data show a slope of —0.30 nearer T c and —0.36 slightly farther from Tc. The av­

erage slope of —0.33 ± 0.03 (solid line) is similar to what has been seen in microwave 

measurements [85] and may suggest that the critical behavior of the superfluid density 

at 12 kHz follows the 3D X Y universality class [86]. 
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Temperature (K) 

Figure 5.2: Various presentations of AA(T) data for YBa 2 Cu307_,5. Bottom left inset: 
comparison with results from 1 GHz cavity. Main graph: full temperature dependence 
of superfluid density fraction. Top right inset: critical behavior near Tc. 

5.2 Measurements as a Function of Magnetic Field 

Making measurements of A\(H) is somewhat more complicated than measurements of 

the temperature dependence. First, there is always a background signal and often a drift 

signal that must be subtracted from the raw data. Second, there are several considera­

tions that need to be taken into account before the corrected signal can be deemed the 

true intrinsic field dependence of the sample's penetration depth. These points will be 

discussed in detail in the following sections. The general method for collecting the data 

is described next. 

Measurements of AX(H) are made by stepping the dc magnet current in small incre­

ments through successive cycles from positive to negative fields (using a Hewlett-Packard 
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6628A power supply under computer control), the peak amplitude of the ac field being 

kept at 2.5 Oersted. A Hewlett-Packard 3478A multimeter polls the current at each 

step, and for efficient signal averaging the outputs of the SR850 are read through an 

A / D converter (Advantech PCL-812PG interface card) directly mounted in one of the 

computer's expansion slots. Data collection at each current setting follows a 0.2 second 

pause to allow the dc field to come to equilibrium. Data from the initial loop is not 

kept as it may show hysteresis dissimilar to the subsequent loops. To limit the effects 

of a drift signal due to dropping cryogen levels, the amount of averaging at each field 

increment is kept short, ~ 0.5 seconds, and is compensated for by repeating the cycles 

many times, typically 40. This repetition also has the advantage that any drift signal can 

be reliably fit as a function of time and subtracted out. The field dependent background, 

which is determined by a similar run with the sample extracted from the susceptometer, 

is also subtracted from the data. Provided the signal gain of the system does not change, 

a single background run can be used for several data runs. The gain of the system is 

monitored between runs by repeating the calibration process mentioned in Section 4.4. 

Control experiments show no detectable field dependent signal from the sapphire sample 

plate or the vacuum grease used to hold the sample. 

5.2.1 Drift and Magnetic Field Dependent Background 

A complete set of sample data collected in the manner described above is shown in 

Figure 5.3. The data is the inductive response (Y output on the lock-in) of the system; 

data from the loss channel (X output on the lock-in) is not shown here. The oscillations 

are hysteresis loops as they are swept out in time. A clear voltage drift can be seen in 

the raw data in the top graph; a numerical fit to the drift at each point is shown by 

the dashed line. This fit is calculated by determining the change between corresponding 

points in adjacent loops; this change is determined for the two points on either side of 
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Time (seconds) 

Figure 5.3: Top graph: raw data showing a drift signal; the dashed line is a numerical 
fit to the drift. Bottom graph: data with drift subtracted out. 

the point in question as well, and an average is taken. The bottom graph of Figure 5.3 

shows the data with the drift signal subtracted out. An average hysteresis loop can now 

be determined from this data. 

Data is also collected with the sample extracted from the susceptometer to obtain the 

magnetic field dependent background signal. The averaged hysteresis loops for the sample 

data from Figure 5.3 and its background run are shown in the left graph of Figure 5.4; 

the two loops are offset vertically for clarity. Subtracting the background loop from the 

other gives the field dependent response of the sample itself, which is shown in the right 

graph of Figure 5.4. As was the case for this particular crystal (YBa 2Cu3 06.993 at 40 K ) , 
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Figure 5.4: Left graph: averaged hysteresis loops for a sample run (solid line) and its 
background run (dashed line). Right graph: the field dependent response of the sample 
once the background is subtracted out. 

the sample response is often hidden within a background that is larger by more than an 

order of magnitude. Given the amount of care taken to avoid such background signals, 

this fact underlines just how difficult it is to make this type of measurement. 

5.2.2 Sample Hysteresis: Edge Effects 

For a type II superconductor, such as Y E ^ C ^ O ? - , ? , the corrected data (background 

subtracted out) should not be immediately identified as AX(H) since it may contain 

signals associated with flux entry and flux motion within the sample. The ac suscep­

tometer is sensitive only to an overall magnetic moment; it cannot see directly if vortices 

are present in the sample. However, if certain precautions are taken and close attention 

paid to the data, one can be certain that the sample did not enter the mixed state as 

the dc field was increased and that such results will indeed represent the intrinsic field 

dependence of the Meissner state penetration depth. 

First, it was found by experiment that any sharp edges or corners on the sample must 
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be removed (for example by careful polishing). Even in the measurement geometry used 

here, where the fields are applied in the plane of the crystal and demagnetizing effects are 

small, field entry at the sharp edges of an as-grown crystal can drastically affect results. 

In particular, removing the edges of the crystal had a dramatic effect on the nonlinear 

response, and Figure 5.5 shows the importance of this procedure. Measurements of the 

inductive response of an YBa2Cu3 06.95 single crystal at 60 K are shown for fields ±45° 

to the b-axis in the aft-plane; the data is the average sample response at each magnitude 

of the applied dc field. A response that differs for the two orientations (top graph) 

clearly breaks the symmetry of the situation (a rectangular sample with edges aligned 

with the orthorhombic axes) and can be attributable only to some extrinsic effect. The 

sharp edges of the crystal were then removed by abrasion on a 0.1 micron grit diamond 

polishing pad [87]; a picture of the polished crystal 3 is also shown in Figure 5.5. After 

polishing, the inductive response agrees for both directions (bottom graph) as it must 

for a rectangular orthorhombic crystal. Also note the order of magnitude reduction in 

signal, which was observed to be insensitive to further polishing of the edges. One should 

take note of the ±0.1 A resolution4 achieved in these measurements. 

5.2.3 Sample Hysteresis: Bulk Field of First Flux Entry 

Clearly, the applied dc field should never be allowed to exceed the field of first flux entry 

H* of the bulk sample. Hysteresis in the sample response due to flux pinning and/or a 

3 This is crystal Y C B , as named in Chapter 6. 
4 The resolution in emu is given by 8m = (2A8\)H x 10 3, where A is the area of the crys­

tal (~ 2 x 1 0 - 6 m 2 ) , SX is the quoted resolution for the penetration depth (~ 1 0 - 1 1 m), H is 
the ac field (~ 2.5 x 10~4/uo A / m ) , and 10 3 is the conversion from SI units. This gives 8m ~ 
8 x 1 0 - 1 2 emu. To achieve this resolution a total of 80 seconds averaging time was used per field 
value. For comparison, the Oxford Instruments' Magnetic Properties Probe has an R M S noise base of 
2 x 1 0 - 8 emu when operating at 1000 Hz with a 1 Oe drive field and using a 3 second time constant 
(see www.oxinst.com/ri/measure/maglabprobes.htm). To directly compare the systems, one must scale 
signal-to-noise with respect to frequency, drive field, and square root of averaging time. 

http://www.oxinst.com/ri/measure/maglabprobes.htm
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Figure 5.5: The inductive response at 60 K for H applied ±45° to the b-axis (see inset). 
Top graph: results for as-grown crystal. Bottom graph: results after polishing the edges 
of the crystal. Also shown is the shape of an edge before and after polishing. A picture 
of the actual YBa 2 Cu3 06.95 single crystal with polished edges is shown at the right. 

surface barrier is a tell-tale sign that H* has been exceeded. Even in the highest quality 

single crystals, this hysteresis is expected. This can be seen in Figure 5.6 where both the 

inductive response and the loss response of a high purity Y B a 2 C u 3 06.993 single crystal 

show strong hysteresis. The inductive response here still reflects the diamagnetic moment 

of the sample; plotted using the calibration constant of Equation 4.7, an increased signal 

in Angstroms corresponds to a decrease in the diamagnetic volume of the sample and can 

be visualized simply as an increase in some effective penetration depth. The loss response 
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is associated with dissipation due to flux entry and flux motion within the sample. 

The inset in Figure 5.6 shows data from the first two loops of the inductive response 

of the sample immediately after it had been cooled below Tc in zero field. The first points 

on the initial loop are indicated by the connected solid line. It is clear that the initial 

field response of the sample is very different here; it shows a weak monotonic increase 

with increasing field. However, after the applied field has exceeded H* ~ 35 Oersted for 

the first time, the subsequent field response of the sample shows a strong decrease as the 

field first increases (in either direction) away from zero. This is a signature of flux being 

trapped in the sample due to a surface barrier; the flux having entered the sample when 

the applied field was in one direction does not completely exit the sample until a reverse 

field of sufficient magnitude is applied to drive it out. 

Depending on sample geometry and the presence of a surface barrier, H* may not be 

equal to the lower critical field Hc\. Looking again at the main graph in Figure 5.6, there 

is a sharp upturn in the sample response at ~ 35 Oersted, denoted as H* the field of 

first flux entry. As the field is decreased from the maximum value the sample response is 

relatively flat until a sharp downturn at ~ 22 Oersted, denoted as Hex the field at which 

the flux starts to exit the sample. The interpretation of this is that a surface barrier, 

characterized by the field Hb = (H* — Hex)/2, prevents flux from entering (exiting) the 

sample at exactly the lower critical field Hc\ as the field is increased (decreased) [88]. 

The value of Hb, calculated from the experimental values of H* and Hex, is roughly 

7 Oersted, and looking at Figure 5.6, this agrees well with the notion that Hb should also 

be the reverse field required to fully drive the flux out of the sample [88]. The discussion 

above also implies that H* = Hci + Hb and Hex = Hci — Hb, and that an experimental 

estimate of the in-plane lower critical field can be made using Hc\ = (H* + Hex)/2. For 

this sample then the in-plane Hci at 77 K is approximately 28 Oersted, which is almost 

a factor of 2 smaller than what has been reported elsewhere for the slightly less oxygen 
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Figure 5.6: Hysteretic response of YBa 2Cu 306 .993 at 77 K; arrows indicate direction 
of field sweep. Both the inductive response (circles) and loss response (triangles) are 
hysteretic when the field of first flux entry H* is exceeded. Inset: the initial hysteresis 
loop (solid line) of the inductive response. 

doped material YBa 2 Cu 3 06 .95 [41]. 

Because H* may not equal Hci, and because one cannot necessarily depend upon 

published values of the latter, it is absolutely imperative that an in situ determination 

of H* is made for each sample and at each temperature where one hopes to measure the 

N L M E . This process is summarized in Figure 5.7, which shows the results for the field 

dependent inductive response of YBa2Cu306.993 at 40 K for several different maximum dc 

fields. For this sample, the area A enclosed by the hysteresis loops is roughly proportional 
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Figure 5.7: The magnetic field dependence of the inductive response of Y B a 2 C u 3 0 7 _ j 
at 40 K . Hysteresis is present when the field of first flux entry H* is exceeded. Inset: 
the square root of the area A of the hysteresis loop versus maximum applied field. The 
dashed lines are to guide the eye. 

to H2 at high fields. A plot of the square root of the area versus maximum applied 

field (inset of Figure 5.7) shows that hysteresis effects have a well defined onset, about 

180 oersted at 40 K for this sample. A l l measurements where the maximum field is kept 

safely below this level show no hysteresis within the resolution of the experiment and have 

the same field dependence. This means the sample did remain in the Meissner state, and 

that the results are indeed a true measurement of A A (if). To further corroborate this 

finding, it should be noted that the loss signal, which usually tracks the inductive response 

when the area of its hysteresis loop is finite, is zero when A is zero. 
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Figure 5.8: AX(H) of Y B ^ C u a O r - a at 4.2 K . Top Graph: results for zero field cooling 
(ZFC). Bottom Graph: results for various field cooled (FC) preparations plotted as 
FC-ZFC. 

5.2.4 Cooling Sample in Small Fields 

Before each run the sample is heated above Tc and cooled in zero field to limit the presence 

of trapped flux. To achieve zero field, mu-metal foil is wrapped around the dewar, which 

shields the earth's field, BE ~ 0.5 gauss, to within 0.01 gauss (the resolution of our 

gaussmeter). However, because one might still question the extent to which even a very 

small amount of trapped flux might influence the data, repeat measurements were done 

with various field cooled (FC) preparations of the sample. The results for the inductive 

response of the sample, averaged for each absolute dc field value, are shown as AX(H) 

in Figure 5.8. In addition to a zero field cooled (ZFC) measurement, the sample was 

measured after being field cooled in the earth's field, as well as in fields of magnitude 
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~ 4.5 gauss in directions both parallel and perpendicular to the plane of the crystal. It is 

clear from the bottom graph of Figure 5.8 that cooling in small fields does not contribute 

at all to the field response of the sample, which we believe has been correctly identified 

in the top graph as the intrinsic field dependence of the penetration depth A X ( H ) . 



C h a p t e r 6 

R e s u l t s a n d D i s c u s s i o n 

Measurements of AX(H) were made on three single crystals of YBa 2 Cu 3 0 7 _,5 . Their 

characteristics are summarized in Table 6.1, which also notes the type of crucible in which 

the crystal was grown. Crucibles made of BaZr03 (BZO) offer higher quality crystals 

than ones grown in yttria-stabilized zirconia crucibles (YSZ), which tend to corrode in 

the crystal melt [89, 17] and lead to lower purity and poorer crystalline quality. For the 

experiment to have adequate resolution, it was important that the samples had large 

aft-plane dimensions; as it turned out, crystals of area significantly less than l x l mm 2 

did not allow for meaningful results. This requirement severely limited the number of 

samples that were suitable for this measurement, and quite often one was forced to choose 

a sample with less than ideal qualities. For example, Y P L was heavily twinned, and so 

could not be used to study the possible anisotropy in the N L M E . Data from the large, 

detwinned samples, Y C B and Y C C , were used in the specific analysis and discussion of 

Name Stoichiometry TC(K) Twinning a x b x c (mm3) Crucible 
Y C B Y B a 2 C u 3 0 6 . 9 5 91.8 detwinned 1.0 x 1.9 x 0.056 YSZ 
Y C C Y B a 2 C u 3 0 6 . 9 9 3 88.9 detwinned 1.9 x 1.1 x 0.128 BZO 
Y P L Y B a 2 C u 3 0 6 . 9 2 93.4 twinned 1.1 x 0.8 x 0.017 YSZ 

Table 6.1: List of single crystals used for AX(H) measurements. The table details for 
each crystal the stoichiometry, transition temperature, presence of twin boundaries, di­
mensions, and crucible type in which it was grown. 

79 
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the Nonlinear Meissner Effect. Data from Y P L was useful in the discussion on possible c-

axis effects, and was useful as well for the discussion on the intrinsic limit of nonlinearities 

in thin film high-Tc devices. 

6.1 S o m e P r e l i m i n a r y E x p e r i m e n t s 

As a first check of the theory, early measurements were made on conventional supercon­

ductors to see if the field dependence of A would follow (Equation 3.13): 

where the coefficient 8 oc e _ A / r at low temperature. Some AX(H) data for polycrystalline 

Pbo.95Sno.05 is shown in Figure 6.1. A summary of these results, along with results 

for polycrystalline Niobium, are also shown plotted as In/? versus 1/T, where 8 is the 

coefficient from a quadratic fit to the data. Measurements of AA versus temperature for 

Pbo.95Sno.05 (see Figure 1.4) show the thermally activated e _ A / r behaviour expected for 

an s-wave superconductor. However, it is clear from Figure 6.1, that AX(H) measured for 

these samples does not disappear as T —> 0. At higher temperatures, it appears that the 

effect is thermally activated and can be fit with a reasonable choice of the energy gap1, 

but this does not persist to low temperatures, and so does not agree with the prediction 

of Yip and Sauls [28, 30]. This may be due, in part, to the polycrystalline nature of 

the samples. However, measurements on single crystal niobium (type II) gave a similar 

result. Impurities could be playing a role here, but it is most likely that the dominant 

effect comes from flux entry at sharp edges and surface irregularities. Both Pbo.95Sno.05 

and Nb are very soft materials, and as a result, a satisfactory preparation of the edges 

and surfaces of the samples could not be achieved. 

x For Pb, the energy gap A is roughly 15.5 K [25]; this should be similar for Pbo.95Sno.05- For Nb, 
A ~ 17.5 K [25]. 

http://Pbo.95Sno.05
http://Pbo.95Sno.05
http://Pbo.95Sno.05
http://Pbo.95Sno.05-
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0.9 

Figure 6.1: Left graph: AX(H) for polycrystalline Pbo.95Sno.05. Solid lines are fits to 
the data. Right graph: Coefficient P(T) for polycrystalline Pbo.95Sno.05 (circles) and Nb 
(squares). Solid lines are fits to data at high temperature with slopes of-17 K and -19 K , 
respectively; dashed lines to distinguish data points only. 

A possible alternative to these superconductors could be one of the A-15 compounds, 

such as NbaGe or VaSi. These materials have relatively high T c 's, which is certainly an 

advantage if one wants to observe thermally activated behaviour. More importantly for 

this experiment, they are mechanically hard and brittle [90], and therefore more suitable 

to the polishing and other crystal preparation that needs to be done. As mentioned in 

Chapter 3, measurements of AX(H) in V 3 S i have been made [54], but they were far from 

conclusive, and the very important test of the Yip and Sauls theory on a conventional 

type II superconductor has yet to be been done. 

The importance of removing any sharp edges on the sample was discussed in Sec­

tion 5.2.2, and cannot be overstated. In that section, data was presented for Y C B at 

60 K (see Figure 5.5) which showed the very dramatic effect sharp edges had on field 

http://Pbo.95Sno.05
http://Pbo.95Sno.05
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Temperature (K) DC Field (Oe) 

Figure 6.2: Changes in A A a ( T ) and AXa(H) due to polishing edges of crystal Y C B . 
Results are shown for the crystal as it was grown (solid line), and after being polished 
once (open circles) and twice (filled circles). 

dependent measurements made at 45° to the crystal axes; there was an order of magni­

tude reduction in the signal once the edges were polished off.2 In Figure 6.2, more data 

related to the polishing of the crystal edges are shown for the purpose of highlighting 

two other important facts. First, for AA(T) , there is little change from the as-grown 

result, especially at low temperature, which we take as evidence that the sample was not 

damaged by the polishing process. Second, for AA(ff) , a reduction is seen after the first 

polish (indicating that some edge effect did contaminate the as-grown result), but more 

importantly, a subsequent polish did not bring further change in AA( i f ) . As a result, one 

can be confident that sharp edges were responsible for the difference seen in the as-grown 

data, and furthermore a single polish to remove the sharp edges is sufficient to avoid this 

extrinsic signal related to flux entry. 

2 For fields along the crystal axes, the effect is not so dramatic. For example, AXA(H) for Y C B at 
60 K showed a 30% reduction after polishing the edges (see Figure 6.2). 
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6.2 Tests of the Nonlinear Meissner Effect 

Measurements of A A (if) from both Y C B and Y C C are compared with several key as­

pects of the N L M E theory. For both samples, results show definite disagreement with 

prediction, and therefore the observed field dependence of A in Y B a 2 C u 3 0 7 _ j cannot be 

the sole consequence of the Nonlinear Meissner Effect. 

6.2.1 The Evolution of A A ( i i ) at Low Temperature 

The Yip and Sauls theory predicts that the linear field dependence of A in a d-wave 

superconductor should crossover to a weaker quadratic dependence at low fields when 

T ^ 0, and furthermore, that the crossover field between these two regimes increases 

with increased temperature. To explore this prediction, A A a ( i f ) for Y C B and Y C C at 

1.2, 4.2 and 7.0 K has been plotted in Figure 6.3 alongside the theoretical curves for 

those temperatures. To produce the curves, we have used the method from L i et al. [33] 

outlined in Section 3.4.2. Considering only the local limit (for now), Equation 3.19 can 

be written [91] as 

AA(T, H) = ^J2 u2 [in (ez + 1) + In ( e - + l )] (6.1) 
4 ^° i=±i 

where z = u x y/2HA0/H0T, u = |cos# + Zsin0|, and 9 is the direction of the field 

with respect to an antinode.3 The energy scale A 0 (related to the gap maximum) is 

extracted from measurements of the temperature dependence of A for each crystal by 

fitting Equation 6.1 with H — 0 to the slope of A A a ( T ) at low temperature. For example, 

for Y C B d A A a / d T ~ 5 A /K , and using the literature value A 0 = 1600 A [84] gives 

A 0 = 220 K . The characteristic field H0 is then determined by finding the best fit of 
3It is easy to see that as T 0, Equation 6.1 reduces to the Yip and Sauls result AA = a\0H/H0, 

where a = (l/2\/2) J 3 j _ ± 1 |cos# + Zsin0|3. In the limit H -> 0, Equation 6.1 reduces to the well 
known result AA = ln(2)A o r /A Q for the temperature dependence of the penetration depth in a d-wave 
superconductor [39]. 
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Figure 6.3: The evolution of AXa(H) with temperature: 1.2 K (circles), 4.2 K (squares), 
7.0 K (triangles). Theoretical curves: 1.2 K (solid line), 4.2 K (dashed line), 7.0 K (dotted 
line). 

Equation 6.1 to the AXa(H) data at T = 1.2 K . For Y C B and Y C C , HQ was found to 

be 2.0 and 2.7 T respectively. With all the parameters chosen, the theoretical curves 

at 4.2 and 7.0 K are then calculated to see the expected evolution of the N L M E with 

temperature. 

The values of A 0 and H0 are close to the estimates (200 K and 2.5 T) made by Yip and 

Sauls [28, 30], which initially suggests that at 1.2 K these results could be the predicted 

N L M E . However, there are clear discrepancies that can be seen in Figure 6.3. First, the 

data for Y C C does not fit the theory very well at 1.2 K; it appears to be more quadratic 

in shape, a fact which will be discussed further along in Section 6.2.3. More importantly, 

however, data for both crystals show a small increase in AXa(H) with temperature,4 

which is in stark contrast with the strong suppression predicted by theory. The inclusion 

of nonlocal effects does not account for this difference. As discussed in Section 3.4.2, 

4This was seen in all other measurement directions as well. 
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nonlocality actually leads to a greater suppression of A A (if) with temperature, which 

justifies the original assumption that it could be ignored for the sake of this analysis. 

6.2.2 Anisotropy at Low Temperature 

The N L M E also predicts a \/2 anisotropy in the linear A A (if) when the field is applied 

along a node as opposed to an antinode (see Equations 3.16 and 3.17). To examine this, 

AX(H) was measured with the field along the a and b crystal axes, as well as ±45° to 

these axes, which for a tetragonal crystal will be the nodal direction. The data is shown 

in Figure 6.4 along with theoretical fits. The top panels show the results for the a and 

b directions, while bottom panels show the 45° results (data was averaged for the two 

directions here). The inset in the bottom left panel gives the angular dependence of the 

prefactor a and is there to show that small uncertainty in sample orientation would not 

introduce any significant error. 

The fit parameters for the a(b) direction were found using the method outlined above. 

For Y C B , these are A 0 = 220(150) K and Ha = 2.0(1.9) T, and for Y C C , A 0 = 230(215) K 

and H0 = 2.7(1.8) T. This is important to point out, because one might naively assume 

that the magnitude of AX(H) would track the value of A 0 and would therefore be smaller 

in the b direction, as is seen for Y C B . For Y C C , however, AX(H) is larger in the b 

direction, and one must keep in mind that the phenomenon is also governed by an energy 

scale A 0 and a characteristic field H0. There is consistency between the two samples in 

as far as A c , A 0 and H0 are all smaller for the b direction. 

For the 45° direction, the parameter A 0 was determined from the slope of A A 4 5 ( T ) , 

while H0 was taken to be the average of the a and b values. Two curves are plotted along 

with the A A 4 5 ( i i ) data in Figure 6.4. The solid line is the theoretical curve produced 

using the parameters for the 45° direction, but assuming that H is still along an antinode. 

As such, the solid curve represents the average of the a and b response, and appears to 
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DC Field (Oe) DC Field (Oe) 

Figure 6.4: The anisotropy in AX(H) at 1.2 K . Data: A A a (circles), A A 6 (squares), 
and A A 4 5 (triangles). Theoretical curves: along antinodes (solid lines) and along nodes 
(dashed lines). The inset shows how a varies with field orientation with respect to an 
antinode. 

fit the data quite well. In contrast, the dashed line, which is the theoretical response for 

H along a node, suggests that there should be a much stronger effect in this direction. 

It appears that the predicted anisotropy is not present, and this fact was previously 

considered [56] to be the strongest evidence against the Yip and Sauls theory. 

However, as noted in Section 3.4.3 the effects of orthorhombicity and an anisotropy 

in A 0 could produce a similar result [46, 47], whereby one would see a A\^(H) that 

looks to be the average of A\a>b(H). In an orthorhombic system, in the linear (low field) 
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limit, A at the 45° direction will still be the average of A a i 6 , but the nonlinear response 

need not behave with an average characteristic field.5 The upshot of this is that in a 

YBCO-like system there is in general an anisotropy in the characteristic field (due to 

orthorhombicity and anisotropic A 0 ) , as well as the anisotropy in the nonlinear response 

(due to the N L M E ) , and the possibility arises where these two anisotropics conspire to 

give an average in the nonlinear response for fields along a node. Haltermann et al. [46] 

have shown that for YBa 2 Cu306.95, which has an anisotropy factor A = A a/A(, ~ 1.6 [84], 

this will happen if the Fermi velocity at a node makes an angle (j> ~ TT/4 with respect to 

the crystal axes. They contend, therefore, that the apparent lack of the \/2 anisotropy 

in AX(H) is quite consistent with the N L M E in Y B C O . However, for a given A, the 

overall anisotropy in A A (if) is quite sensitive to the value of <fi (see Figure 3.7), and 

it remains to be seen whether this delicate balance (between orthorhombicity and the 

N L M E ) can really account for the fact that no enhancement is seen in A A 4 5 ( f f ) for both 

Y C B (YBa 2 Cu 3 06 .95) and Y C C (YBa 2 Cu 3 0 6 .993)-

In a very recent preprint, Haltermann et al. [47] have specifically re-analyzed the 

AA(i f ) data of Y C B (shown in Figures 3.8 and 6.4, and published in Reference [56]). 

Assuming an anisotropy A ~ 1.5, they found that the high field slope of the data could be 

fit in the three directions using H0 = 0.566 T and <j> = 7r/4+7r/17. However, this analysis 

cannot account for the increase that was seen in AA(i f ) with increased temperature. At 

the moment then, one can only say that effects of orthorhombicity may explain the 

apparent lack of anisotropy in the measurements of A A (if) in Y B C O . 

5This is why, for both samples, the value of A 0 determined for the 45° direction was in fact the 
average of A 0 in the a and b directions. This also means that the assumption above to use an average 
H0 in the 45° direction was tantamount to assuming the crystals to be tetragonal, which they are not. 
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6.2.3 Quadratic AX(H): The Dahm and Scalapino Regime 

It is clear from Figures 6.3 and 6.4 that AX(H) for sample Y C C is not well fit by a linear 

term that crosses over to quadratic at low fields (as is the prediction of the N L M E at 

the low temperatures). On the other hand, the data can be quite well fit to a quadratic 

field dependence (of the form A A = kH2) over the entire temperature range, 1.2 to 77 K , 

where data was taken. As an example, the left panel of Figure 6.5 shows A A * , plotted 

versus (H/Hmax)2 for a wide variety of temperatures, where Hmax is the maximum field 

at which the measurements were taken. This begs the question, whether by 1.2 K the 

linear field dependence of the N L M E has already been obscured by the thermal effects 

discussed in Section 3.4.1. 

The N L M E predicts that for a given temperature AA(JTT) crosses over to a quadratic 

field dependence below a field HT — (T/A0)H0 [30], which suggests that for A C ~ 200 K 

and H0 ~ 2.0 T (average values from Section 6.2.2) the cross-over at 1.2 K is HT ~ 

120 Oe. This value is a significant fraction of the field range used at 1.2 K; for measure­

ments at 4.2 K and higher, HT 3> Hmax and theory would suggest that the signature 

linear AX(H) of a dxi_V2 superconductor should not be seen at all at these temperatures. 

Experimentally, one is restricted to fields less than Hc\, and cannot arbitrarily apply 

H ^> HT to recover A A oc However, data can be analyzed in this high temperature 

range (mvf-vs <C kBT <C kBTc) using the work of Dahm and Scalapino [36, 37] described 

in Section 3.4.1. Their main prediction of an upturn in the quadratic coefficient /3(T) at 

low temperatures is a signature of dX2_Y2 superconductivity as well, and should provide 

an equally stringent test of the N L M E . 

Using Equation 3.18: 
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Figure 6.5: The quadratic field dependence of AA( i f ) in Y C C . Left panel: AA;, versus 
(H/Hmax)2 for several temperatures (Hmax shown in parenthesis); data offset for clarity. 
Right panel: coefficient B(T/TC) from 1.2 to 77 K in the directions shown on plot; lines 
are to distinguish the data points only. 

the coefficient 8(T) can be determined from the fit parameter k via the relation: 

2H2 

m = MT)k ( 6 , 2 ) 

where the characteristic field Ha is taken to be 2.5 T [30]. The values of B are plotted 

versus T/Tc in the right panel of Figure 6.5 for the a, b, and 45° direction, and were 

calculated using constant values of 1600, 1000, and 1300 A for A in the three directions 

respectively. The decision to ignore the temperature dependence in H0 and A is not 

critical in this analysis, because at low temperatures, where one is looking for an upturn 

in 8(T), these parameters vary little and negligible error will be introduced by this 

assumption. 

It is obvious from Figure 6.5 that there is no upturn in B(T) as T —» 0. There is 

also a huge discrepancy in the magnitude of the coefficient; the values for Y C C are two 

orders of magnitude larger than the prediction [36, 37], which is easily noted by a visual 
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comparison with Figure 3.5. This, again, suggests that the Yip and Sauls mechanism is 

not the origin of the field dependence of the penetration depth in Y B C O . 

6.3 Alternative Origins for a Field Dependent Penetration Depth 

6.3.1 Field Induced Suppression of the Energy Gap 

Very recently, J.R. Cooper [92] has developed an empirical model to try to explain the 

published AX(H) data for high-Tc superconductors. His model differs from the Yip and 

Sauls theory in that the energy shift mVf • vs, due to the superfluid velocity vs, actually 

destroys the superconductivity around the nodes of the dX2_Y2 gap (see Figure 6.6). In 

the original N L M E theory, the low lying quasiparticles states around the nodes are only 

considered to be shifted in energy, but otherwise remain unaltered (see Figure 3.1). 

The premise of Cooper's idea is straightforward, and well understood from conventional 

superconductivity [11, p. 125]: a critical (or depairing) velocity occurs when the superfluid 

velocity vs = A0/mVf, and at this point the energy gap goes to zero and superconductivity 

is destroyed. Generalizing this to a dX2_Y2 gap, one expects the energy gap to be pushed 

to zero when the condition mv; • vs > A(k) is satisfied. This will first happen around 

the nodes, as shown in Figure 6.6. 

The gist of Cooper's model may be expressed as follows. For a dX2_Y2 gap, A(k) — 

A0 |cos 26\ varies linearly with angle near a node. One expects, therefore, that the gap 

will be suppressed over a small angle 66 oc mvfVs/A0 about the node (see Figure 6.6). 

Furthermore, the linear density of states near a node implies that the loss in superfluid 

density ns due to the suppressed gap would be proportional to 56. For small perturbations 

5ns\s also proportional to SX. Therefore, at small fields 5X oc 58 oc vs, and again one 

arrives at a linear field dependence in the penetration depth, although by a different 

mechanism than that of the Yip and Sauls theory. 
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Figure 6.6: Field induced suppression of the energy gap (from Cooper [92]). In zero field 
(dashed line), the dX2_Y2 gap has a node at 45°; in finite field (solid line), the gap is zero 
around the node for some angle 88 proportional to the field. 

The form given by Cooper for the field dependence of A (with the field along an 

antinode) is 
c*A(T) \H\ 

AX(H) (6.3) ns(T) HC(T) 

where HC(T) is the thermodynamic critical field and a is a constant ~ 0.2. The same 

anisotropy exists here as in the N L M E (ignoring orthorhombicity); for fields applied along 

a node, there should be a \fl enhancement in AX(H). However, the results of the two 

theories differ greatly in the limit mvf • vs <C kBT <C kBTc; in this regime, the N L M E 

crosses over to a weak quadratic AX(H), while the linear field dependence of Equation 6.3 

remains for this model. To account for impurity scattering and other effects that occur 

at zero field, it was also argued [92] that the linear field dependence \H\ in Equation 6.3 

should be replaced by the empirical expression y/H2 + El - H„ where H, is a measure 

of the other pair-breaking processes and serves to cut off the linear dependence at low 
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fields. The final form of AA(if), to which fits of the data can be made, is 

Data for the sample Y C B have been fit to Cooper's model over a wide temperature 

range. The results are shown in Figure 6.7. The main graph shows data at 1.2 and 10 K 

along with their best fits to the theory; for the sake of clarity, the remaining data at other 

temperatures was not displayed. A typical value of if* = 55 ± 10 Oe was found to fit the 

low temperature data quite well, and reflects the good quality of the crystal [92]. The 

values of the temperature dependent coefficient CT from the data fitting are shown in the 

top graph in Figure 6.7, along with a theoretical curve CT = a\(T)/ns(T)Hc(T) using a 

reasonable value of Hc(0) = 2.0 T for the critical field. This value gave the most suitable 

fit of CT with theory, and only reconfirms what was found in Section 6.2.1, that for Y C B 

the characteristic field (for a linear A A (if)) is of order two Tesla. This agreement of the 

magnitude of CT with the theory is not to be taken as confirmation that the model is 

correct. The most significant fact here is that Cooper's model appears to have a much 

better feel for the temperature dependence of A A (if) than does the N L M E . 

A similar analysis was also done with the Y C C data. The values of if, found here were 

much larger than for Y C B ; typically, a few hundred Oersted at the lower temperatures. 

It is clear from Equation 6.4 that if, needs to be much larger than the maximum applied 

field to recover the quadratic A A (if) seen in Y C C . This sample is of very high purity, 

and X-ray diffraction measurements showed it to be of exceptional crystalline quality, two 

facts which seem incompatible with a large if,. However, a routine etching procedure6 to 

prepare the sample surface revealed a higher than average density of etch pits. These pits 

are associated with spiral defects, which are more common in thick crystals like Y C C , 

and it is possible that this is the source of scattering reflected in the large values of if *. 
6 Y B C O samples are commonly etched in a 0.5% Br/ethanol solution, prior to measurement, to remove 

flux stains on their surface that are remnants of the crystal growth. 
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Figure 6.7: Fits of AXa(H) for Y C B to Cooper's model. Main graph: data at 1.2 K 
(circles) and 10 K (squares) with theoretical fits. Top graph: values of coefficient CT 

with fit to theory. 

However, one must keep in mind that the effects of scattering (the difference between 

Equations 6.3 and 6.4) were added to this theory by hand, and one must be careful not to 

read too much into these results at the moment. To re-iterate, the most important result 

here is that Cooper's model, in its present form, can at least account for the evolution of 

AX(H) with temperature. 
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6.3.2 c-axis Contribution to AX(H) 

The simple slab approximation (see Appendix B) used to model platelet shaped crystals 

in this thesis ignores the penetration depth of the return currents flowing along the 

edges of the sample parallel to its thickness. For Y B C O platelets, this direction is along 

the c-axis, and the contribution of these currents to the measured AA(T, H) is roughly 

t/w x AA C (T , H). The ratio of sample thickness to width, t/w, tends to be quite small 

for Y B C O , usually much less than 0.1. On the other hand, AA C (T , H) may be quite 

large. It is very possible than that a c-axis contribution to our measurements of the field 

dependent penetration depth could be obscuring the N L M E . 

To see if this idea is justified, data for A\(H) has been plotted in Figures 6.8 and 6.9 

for all three samples, each of which has a different thickness (see Table 6). The data is 

shown in three panels (from left to right) to display the evolution of the AX(H) from 

the thinnest sample (YPL) to the thickest (YCC), with the thickness of each sample 

given in microns. It is clear from just a quick glance at the data that Y P L exhibits a 

significantly lower signal 7 at both low temperature (Figure 6.8) and high temperature 

(Figures 6.9). Comparison between the Y C B and Y C C measurements cannot be done so 

hastily. The data shown for these two crystals in Figure 6.8 is for the a-directipn, and 

here the contribution from the c-axis goes as t/a. Y C C is roughly twice as thick as Y C B , 

and about twice as long in the a-direction, giving the same ratio t/a for both samples. 

As a result, one expects the same contribution from AXC(H), and assuming AXa(H) is 

the same for both crystals, there should be no difference in the overall AX(H). This is 

the result seen in the measurements. The data shown in Figure 6.9 is for the 6-direction, 

and Y C C being only half as long in this direction should have a c-axis contribution here 

that is four times as large as for Y C B . This is consistent with the data in as far as Y C C 
7The resolution is less for YPL because of its smaller surface area in the afc-plane. It is a twinned 

sample, so specific comparisons with the other samples in the a and 6-directions will not be made. 
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and 10 K (squares). Data for Y C B and Y C C is for the a-direction. 

20 40 0 
DC Field (Oe) 

Figure 6.9: High temperature comparison of AX(H) between all samples: 60 K (filled 
circles) and 70 K (open squares). Data for Y C B and Y C C is for the b-direction. 
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shows a larger overall AX(H) in the 6-direction than does Y C B . This is also seen in the 

low temperature data (for example, the 1.2 K data shown in Figure 6.4). 

So, there does appear to be reasonable experimental evidence to support the notion 

of a c-axis contribution to the measurements of A\(H). How might this affect the anal­

ysis of the N L M E in Section 6.2? At present, there is no theory for nonlinear Meissner 

screening in the c-direction, so there is no straightforward answer. It can only be said 

that AXC(H), if present, will result in an apparent N L M E that is too large. At 1.2 K , 

AX(H) does agree quantitatively with the Yip and Sauls theory. However, the strongest 

evidence against this theory at the moment is that it predicts A A (if) to weaken with 

temperature, quite contrary to experiment. It was shown in Figure 2.2 that the tempera­

ture dependence of the c-axis penetration depth remained quite flat at low temperatures, 

before increasing at a rate much greater than the AXat0(T), and one must wonder if 

something similar might not be happening in the field dependence as well. This scenario 

is depicted in Figure 6.10 for the Dahm and Scalapino regime, where the N L M E predicts 

a quadratic field dependence that falls off as 1/T. To give qualitative agreement with 

the experimental results in Figure 6.5, the nonlinear c-axis response must rise sharply 

(as the N L M E decreases) and then taper off. Of course, this is completely speculative, 

and such a perfect interplay seems quite unlikely. Still, measurements to extract AXC(H) 

should be possible (by cleaving the sample into several pieces to multiply up the c-axis 

contribution, as described in Reference [26]), and would go a very long way in sorting 

out the A A ( i i ) measurements made in this thesis. 
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Temperature 

Figure 6.10: Hypothesized scenario of c-axis contributions to AA(ff) : the N L M E is 
obscurred by AXC(H). 

6.4 The Intrinsic Limit of Intermodulation and Harmonic Generation in 

high-Tc Devices 

As mentioned in Section 3.5.2, there is a significant research effort in the area of nonlinear 

electrodynamics in high-Tc thin films. The great majority of this work is concerned 

with the practical consequences of nonlinearities in electrical devices, such as microwave 

filters, that can be made from these thin films. Nonlinearities can give rise to unwanted 

effects due to intermodulation or harmonic generation. For example, in a filter circuit, 

intermodulation between different frequencies within the band width of the filter can 

produce spurious signals that are also inside the pass band. From this point of view, 

one would like to suppress the nonlinear behaviour in the thin films, which at some 

point is ultimately limited by the intrinsic behaviour of the thin film material itself. At 
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present, it appears that extrinsic effects, such as vortices in weak links, are the origin 

of the nonlinearity (see Section 3.5.2). Presumably, with improved techniques for film 

growth and processing, these defects will be avoidable and thin films could eventually 

reach single crystal quality. In this regard, the measurements of A A (if) in this thesis 

also represent an important initial study on the intrinsic limit of intermodulation and 

harmonic generation in Y B C O thin film devices. 

Booth et al. [67] studied the geometry dependence of nonlinear effects in micowave 

transmission lines they fabricated from Y B C O thin films. These devices were found to 

exhibit third harmonic power generation that scaled with geometry and could therefore 

be characterized by a single geometry-independent parameter J0. Their analysis was 

based on the work of Dahm and Scalapino [36], which considers the origin of the 3:1 

behaviour8 to be a nonlinear penetration depth of the form 

where J is the supercurrent density in the film. Assuming no particular mechanism for 

the J dependent penetration depth, the parameter J0 is just the nonlinear scaling current 

density and depends only on the thin film material. Booth et al. [67] found an average 

value of J0 = 3.0 x 107 A / c m 2 for their Y B C O thin films at 77 K . 

From Ampere's Law, the current density in a superconductor is J = H/A, so Equa­

tion 6.5 can be written in terms of H as 

with H0(T) — X(T)J0. A quadratic field dependence was seen in our measurements of 

AA( i f ) , especially in the sample Y C C . Fitting our data to Equation 6.6 allows for a direct 

comparison with the results for thin films. Using a reasonable value of A (77 K) = 2500 A, 
8See Appendix B for the definition of 3:1 and 2:1 behaviour. 

(6.5) 

(6.6) 
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data for Y C C and Y C B give an average H0(77 K) = 0.09 T or JQ = 2.9 x 107 A / c m 2 . 

This seems to be surprising; J0 for the crystals is slightly less than the 3.0 x 107 A / c m 2 

seen in the films. However, we know that the crystals have a much higher crystallinity 

and much weaker pinning [24], so the fact that the nonlinear effects are comparable to 

thin films simply indicates that effects other than crystallinity come into play, possibly 

the c-axis. If the same analysis is applied to Y P L , where AA(fJ) at high temperatures 

could not be measured above the resolution of 0.3 A (see Figure 6.9), one arrives at a 

conservative value of H0(77 K) = 0.18 T or J0 = 5.7 x 107 A / c m 2 . This is a factor of 

two larger than what was seen in the films, which means that nonlinear effects in devices 

will be suppressed by a factor of four if Y B C O films can be made to the same quality as 

single crystals. 
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Conclusion 

Measurements of the nonlinear Meissner state electrodynamics provide a good testing 

ground for present ideas about high temperature superconductivity; in particular, there 

exist very distinct predictions for the magnetic field dependence of the penetration depth 

in a d-wave superconductor. These nonlinearities, however, cannot not be induced to 

arbitrarily large magnitude, because one is cutoff by the vortex state which occurs at 

relatively low fields in these materials. As a result, such measurements require an instru­

ment that is capable of resolving very small changes in the sample's magnetic moment. 

In this thesis, a high precision ac susceptometer was developed that is capable of mea­

suring the change in the penetration depth of a typical sized YBa 2Cu307_,5 single crystal 

to within a few tenths of an Angstrom. Measurements can also be made as a function of 

temperature with a similar resolution, which allows for a useful characterization of the 

sample in the linear limit. 

It is critical that the sample remain in the Meissner state during these measurements 

for there to be any meaningful comparison of the results with theory. We have identified 

several keys steps that must be taken to ensure that this happens. First, the sharp edges 

of the sample must be polished round. Even in geometries where the demagnetization 

factor is small, the field at a sharp edge on a sample can become much larger than the 

applied field and flux may prematurely enter the sample here. Second, the bulk field of 

first flux entry H* should be identified for each sample at each measurement temperature; 

this allows one to have confidence that subsequent field dependent measurements were 

100 
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done completely in the Meissner state. We have shown that this can be done by moni­

toring the hysteresis of both the inductive and loss response of the sample as a function 

of the maximum applied field. Due to pinning and a surface barrier, the hysteresis loops 

show a finite area if flux enters the sample. The onset of this behaviour, at H*, is quite 

distinct, and can therefore be avoided once it has been identified. Other groups have 

not kept such stringent control over these concerns, and as a result the measurements 

presented in this thesis represent, in our opinion, the most convincingly intrinsic data on 

the field dependence of the penetration depth in YBa 2Cu307_,5. 

Measurements of AA(iT) were made on three high quality samples of single crystal 

YBa 2 Cu307_(j . Results for the two detwinned crystals, Y C B and Y C C , were used for 

direct comparison with the theory of the Nonlinear Meissner Effect. The temperature 

dependence of AX(H) and its anisotropy with respect to field orientation in the aft-plane 

both disagree with the basic theory of Yip and Sauls. The anisotropy can be reconciled 

within the greater context of the N L M E if one includes the effects of orthorhombicity. 

However, the temperature dependence remains in stark contrast with all aspects of the 

theory. Limiting the discussion to the low temperature data (where the signatures of the 

N L M E should be most pronounced), AX(H) is seen to increase slightly with temperature. 

If this data is interpreted in the low temperature limit of the N L M E , where kT <C 

mvf • vs <C kBTc, it disagrees with the prediction of a strong suppression in the linear 

field dependence and a cross-over to a weak quadratic dependence as temperature is 

increased. On the other hand, if the data is interpreted in the hight temperature limit, 

mvf • vs <C kT <C kBTc, then the data fails to show a quadratic field dependence that 

increases with decreasing temperature. Furthermore, the size of the measured effect is 

roughly two orders of magnitude larger than what theory predicts in this regime. Overall, 

this has led us to conclude that the mechanism suggested by Yip and Sauls in the theory 

of the Nonlinear Meissner Effect cannot be sole origin of the field dependent penetration 
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depth measured here in Y B ^ C u s O y - a . 

A possible explanation for the temperature dependence seen in A A (77) is that the 

quasi-particle states are not simply shifted in energy, but rather that the energy shift 

destroys the superconductivity around the nodes in the gap. This field induced suppres­

sion of the gap predicts a linear field dependence in A that increases in temperature. 

The agreement with the existing data is not that good in several regards, but the theory 

does predict the direction of the temperature dependence correctly. However, as for the 

standard N L M E theory, one cannot consider this theory to be the sole explanation for 

our measurements of A A (if). 

We have also shown that there exists the distinct possibility of a c-axis contribution 

to our data. Differences between the magnitude of A A (if) in all three crystals is quali­

tatively consistent with the presence of a measurable A A c ( i f ) . Therefore, the possibility 

exists that this signal is obscuring the observation of the N L M E in our measurements. 

We suggest that further studies are made whereby A A c ( i f ) is determined directly by 

measuring A A (if) before and after cleaving the sample. 
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Appendix A 

Solutions to the Nonlinear London Equation 

In general one seeks a solution to the differential equation (Equation 3.8) 

v,(l -a\vs\ - fiv2

s - ...) 
m 

with the appropriate boundary conditions. For the semi-infinite superconductor (occu­

pying the positive z half-space) in an uniform applied field H, this reduces to an equation 

general method [93] for solving a differential equation of the form y" — f(y) is as follows: 

multiply by y to give y'dy = f(y)dy, and following integration \y2 = /f(y)dy + C. 

Rearranging for y and intergrating for a second time gives the appropriate solution sub­

ject to the boundary conditions. The pertinent details of this calculation for both the 

s-wave and d-wave case are given below. 

A . l s-wave Superconductor 

From Equation 3.12 for the nonlinear current in an s-wave superconductor, the nonlinear 

London equation for the semi-infinite slab becomes 

of the form v"s = A 2f(vs) with v's = eH/c at the surface and v's = vs = 0 as z -> oo. The 

(A.l) 

The first integration gives 

(A.2) 
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where the constant of integration C must obviously be equal to zero to satisfy the con­

dition that va goes to zero deep inside the superconductor. Rearranging for v's gives 

dz = -~vs 
1 -

3v 
4v2 (A.3) 

where only the negative root is chosen (as vs must decay), and, in the limit of small 

vs, the term ^Jl - Bv2/2v2 has been approximated as (1 - Bv2/4v2). Integrating for the 

second time and rearranging for vs gives 

Bv' 
+ 1 -

Bv7 

02z/X 
-1/2 

(A.4) 4v2 ' ^ 4v2 

where v is the superfluid velocity at the surface. The magnetic field inside the sample is 

given by 

cdv* 
e dz 

cv 3v2 

a2z/X 3f_ 
4V2 

-3/2 

(A.5) 
eX V Av2J 

At z = 0, the boundary condition requires that the field at the surface of the supercon­

ductor is H = -(cv/eX) (1 - 8v2/4v2), which gives v ~ -(eXH/c) (1 - 8(eXH/cvc)2) for 

small v and the final solution can be written as 

-, -3/2 

H(z) ~ He2z/x 
BH2 

H2 + 1 
BH2, 

H2 

02z/X (A.6) 

where the constant H0 = 2cvc/eX. It is clear that in the limit H —>• 0 the solution to the 

linear London equation, H(z) = He~z/X, is recovered. 

In the original work on the N L M E [28, 30], the penetration depth is defined by the 

initial rate of decay of the magnetic field inside the sample, and is given as A - 1 = 

—H-1 dH(z)/dz\z=0. For a volume exclusion experiment, a more appropriate definition 

is A = H~l /0°° H(z) dz, and is the one used in this thesis. Using Equation A.6, the former 



J 
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definition gives a field dependent penetration depth, 

\{T,H) = A(T) j l + 3/?(T) 

while the latter definition gives the result 

\(T,H) = \(T){I + P(T) 

H 

H 

(A.7) 

H„ 
(A.8) 

which is a factor of three smaller than the Yip and Sauls value. However, it is shown in 

Appendix B that an ac measurement (of a quadratic X ( H ) ) will result in a signal that 

is three times as large as a dc measurement. Therefore, the expected coefficient from a 

measurement such as ours will be numerically equivalent to the Y i p and Sauls value. 

A .2 d-wave Superconductor 

From Equation 3.14 for the nonlinear current in an dX2_Y2 superconductor, the nonlinear 

London equation for the semi-infinite slab becomes1 

d2vs 1 

The first integral gives 

dz 2 

dvs 

dz 

= Y2vs 

1 
= --vx 

I I -

(A.9) 

(A.10) 
A""V" 3v0 

and upon integrating again, the superfluid velocity is 

«, = - — ( l - t a n h 2 ( Z ) ) ( A . l l ) 

where Z = t a n h - 1 yl — 2av/3v0 + z/2X and v is the value of vs at the surface. Using the 

identity tanh(a; + y) = (tanh(x) + tanh(y))/(l + tanh(a;) tanh(y)), this can be rearranged 
1This equation is only strictly true for fields applied along a node or antinode where there is no 

component of the backflow current perpendicular to vs. A slightly more general solution to the nonlinear 
London equation (for any orientation of the field in the plane of a dx2_y2 superconductor) can be found 
in Appendix B of Reference [30]. 
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to give 

OLV 

3 v „ 

(A.12) 

Taking the derivative ^dvs/dz gives the magnetic field inside the sample as 

H { z ) = cv i1 ~ ̂ ) s i * h ( * A ) + y / T l g c o s h ( , / A ) 
e A fe + ( l - «»M*/A) + v/l -gs inhlz /A)] 2 

and from this the boundary condition H(0) — H — (cv/eX)yjl — 2av/3v0 is found. In 

the limit of small H, the boundary condition can be written as H ~ (cu/eA)(l — av/3v0) 

or v ~ (eXH/c)(l + aeXH/3cv0), and field inside the sample becomes 

7f (z) ~ He~zlx 1 + 2cM ( l - e - / A ) (A.14) 

where 7f0 = 3cv0/2eX. Again, the linear London equation is recovered in the limit H —> 0. 

Using Equation A.14, the differential definition of the penetration depth gives 

A (T , f f ) = A(T) jl +J | i j (A.15) 

while the integral definition gives the result 

A(r,/f) = A(r) | i + | f f l | (A.i6) 

For a d-wave superconductor then, the integral penetration depth is a factor of two smaller 

than the Yip and Sauls result. In this case, Appendix B shows that an ac measurement 

(of the linear X(H)) will result in a signal that is two times as large as a dc measurement. 

Again the coefficient we would measure in our apparatus is numerically equivalent to the 

Yip and Sauls value. 



Appendix B 

Magnetic Moment of a Flat Slab in a Parallel Field 

Consider a conducting slab of thickness t in a parallel uniform magnetic field BQ. If the z 

direction is taken to be along the thickness of the slab, with z = ±t/2 defining the edges 

of the slab, then in light of Equation 2.4 the field inside the slab must vary as 

B(z) = C(e^z-t^ + e^z+t/2^) 

subject to the boundary condition B(±t/2) = B0. A little algebra determines the coeffi­

cient C and the field inside the slab can be shown to be 

B(z) = £ 0 c o s h (7z)/cosh (7^/2) (B.l) 

The magnetization M of the slab can be written as M = B/fi0 — H, where for this 

geometry H is a constant equal to B0/p0. The magnetic moment is given as m = J MdV, 

and substituting from above is equal to 

m J(B-B0)/fi0dV 

AB0 [V 2  

— / (cosh (72;)/cosh ht/2) - 1) dz 
Ho J-t/2 

= - — ( l - 2 / 7 t t a n h ( 7 t / 2 ) ) (B.2) 

where V is the sample volume and A its cross-sectional area. This is identical to the 

result quoted in Chapter 4, except that it has been generalized to the case where the 

propagation constant 7 is complex. 
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B . l General Calibration of the ac Susceptometer 

For completeness, a general expression for the ac susceptometer signal that includes losses 

due to the normal fluid response is developed here. Losses associated with the mixed 

state are not covered by this analysis. As a practical matter, at / = 12 kHz, the losses 

in single crystals of YBa 2 Cu307_ ,5 are very small except in a narrow region around T c , 

and the simple relationship of Equation 4.8 to determine A A remains valid until a few 

tenths of a Kelvin below T c . As the sample goes through Tc , the contribution from o\ 

cannot be ignored and the full solution given below must be used to extract A and 5. 

As discussed in Section 2.3, a superconductor has a complex conductivity o — a\—io2 

and the behavior of a magnetic field at its surface is characterized by the propagation 

constant 7 = y / l / A 2 + 2i/82. At sufficiently low frequency u, and assuming local elec­

trodynamics, 5 = ^2fp0uo\ and A = ^\/p0ua2. In the superconducting state, A is just 

the penetration depth of the magnetic field and 8 characterizes losses associated with o\ 

(the normal fluid). Above T c , A diverges with the disappearance of a2 (the superfluid) 

and S is just the normal state skin depth. 

To develop a general expression for the ac susceptometer signal that includes losses 

due to the normal fluid response, one starts again with the signal voltage proportional 

to dm/dt. A change in the sample's moment A m is detected as the voltage 

Av(t) = \ieiutAm 
k 

where 1/fc is the calibration constant to be determined. If changes are measured from 

the base temperature, zero dc field, setting then 

Av(t) = i (zcos (ut) - sin (ut)) [2A 0/ttanh (t/2Xa) - 2/72<tanh {^2t/2)] 

using the definition of m from Equation B.2 and letting 71 = l / A ^ T ) ~ 1/A 0, noting 

that at low frequencies,the loss in the superconductor is negligible so the propagation 
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constant at the initial point 71 is the reciprocal of the penetration depth at this point 

Ai(T), which is essentially just the zero temperature penetration depth A c. Now, after 

absorbing the constant term (—2/t) into l//c, the real part of the voltage signal can be 

written as 

Av(t) = ^ cos (tut) Im [I/72 tanh (*72/2)] 

+ \ s i n (cut) {Re [I/72 tanh (£72/2)] - A0 tanh (t/2X0)} 

The first term is in-phase with the drive field, but remembering that v(t) oc dm/dt it 

is clear that this term represents the out-of-phase response of the sample, which is due 

to dissipation. The second term represents the inductive response of the sample. The 

voltages measured by the two channels of the lock-in will be 

X = ^ I m [ l / 7 2 tanh (t72/2)] (B.3) 

Y = ^ {Re [1/72 tanh (t72/2)] - A0 tanh (t/2A0)} (B.4) k 

Equations B.3 and B.4 are a generalization of Equation 4.6 and must be solved simultane­

ously to extract A and 5. The phase setting and calibration follow exactly the discussion 

in Section 4.4, and given the same conditions on A0 and i , the calibration constant k is 

still given by Equation 4.7. 

B . 2 T h e N o n l i n e a r M a g n e t i c M o m e n t 

Well below Tc and at the low frequency (12 kHz) of the ac susceptometer, losses are 

negligible in a superconductor and one can ignore the contribution of o~\ to the magnetic 

moment. Furthermore, for the average sized YBa 2 Cu307_5 single crystal A(T) will be 
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much smaller than the crystal thickness t. This is the limit in which all N L M E experi­

ments were done, and in this regime the magnetic moment can be written as 

where A is a function of H. The magnetic moment is calculated below for an applied 

field of the form H(t) = H + Hicos(ut), a dc field superimposed by a single tone ac 

field,such as that used in the ac susceptometer. Also, for the purpose of developing the 

idea of intermodulation, the moment is magnetic moment is worked out for a field with 

two tones of the form H(t) = Hi ( cos^ t ) + cos(uj2t)). This will be done for the case of 

both linear and quadratic changes in A with H. 

Case 1: The linear X(H) 

Consider the penetration depth of Equation 3.15, X(H) = A {1 + a \H\ /H0}. For a dc 

field plus single tone, the magnetic moment (in the region H > Hi) is 

The last coefficient in the cos(u;7j) term is the quantity that would be measured by the 

technique used in this thesis. Notice that it is a factor of 2 larger than the corresponding 

dc term. One could also measure the coefficient of the second harmonic cos(2a;i) with the 

ac susceptometer, however sweeping the magnitude of Hi rather than H0 would present 

its own set of experimental difficulties and the expected signal here would only be half 

of what will be seen at the fundamental. 

m = -H(V - 2AX) 

m 

(B.5) 

OiAXH\ 
H0 

cos(2ut) 
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For a field with two tones of equal magnitude, H(t) = Hi (cos(a>i£) + cos(u2t)), one 

can write 

\H(t)\ = 2#i-|cos(w0t)| x |cos(wrft)| 

where u>i =-u)0 — cod and 6̂ 2 = LO0 + u>d- In this form, each absolute value term can be 

written in a Fourier series, which then allows one to write m as an expansion of cosine 

terms. The final result is given below, rewritten in terms of the original variables uj\ and 

co2; only the fundamental, third order intermodualtion, and third harmonic terms are 

shown respectively. 

m ~ —Hi V — 2AX —— cos(wit), cos(a;2t) 
\ 9irH0 J 

256aAXH? ,,n . . ,,n . . _ . 
' cos((2tui — oJ2)t), cos((2u>2 — u>i)t) (B.6) 

45TTH0 

64aAXH2 

45irHn 

cos(3u>it), cos(3uj2t) 

The coefficients of the third order products are quadratic in Hi, this is referred to as 

2 : 1 behaviour. 

Case 2: The quadratic X(H) 

Consider the penetration depth of Equation 3.13, A(JFJ) = A {1 + 3(T)H2/H2}. For a dc 

field plus single tone, the magnetic moment is 

f 28AXH2 38AXH2\ 
m = -H V - 2AX 

H2 m 
rr n A , QBAXH2 30AXH2\ . , , s -Hi \V - 2AX - ^ _ _ L j cos{ut) (B.7) 

38AXHH2

 t n . 3AXHf ,n , 
+ H 2 cos(2a;t) + cos(3a;i) 
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The third coefficient in the cos(o;7;) term is the quantity that would be measured by the 

technique used in this thesis. Here, it is a factor of 3 larger than the corresponding dc 

term. Again, there is no apparent advantage to measuring the nonlinear effects at higher 

harmonics. 

For a field with two tones of equal magnitude, the fundamental, third order inter­

modulation, and third harmonic terms of the magnetic moment are 

m = -Hi (v - 2AX - ^ H * 1 ) c o s ( w x * ) > C 0 S M 

3BAXH3 

1 1 cos((2a;1 - u;2)£), cos((2w2 - Ui)t) (B.8) 2H2 

(3AXH\ 

o 

3 
cos(3u;i£), COS ( 3 O> 2 T; ) 

2HI 

Here the third order products show 3 : 1 behaviour; their coefficients are cubic in Hi. 


