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Abstract

We investigate the low energy magnetic relaxation characteristics of the “iron eight”
(Feg) molecular magnet. Each molecule in this material contains a cluster of eight Fe3*
ions surrounded by organic ligands. The molecules arrange themselves into a regular
lattice with triclinic symmetry. At sufficiently low energies, the electronic spins of the
Fe3* ions lock together into a “quantum rotator” with spin S = 10.

We derive a low energy effective Hamiltonian for this system, valid for temperatures
less than T, ~ 360 mK, where T, is the temperature at which the F'eg system crosses
over into a “quantum regime” where relaxation characteristics become temperature in-
dependent. We show that in this regime the dominant environmental coupling is to the
environmental spin bath in the molecule. We show how to explicitly calculate these cou-
plings, given crystallographic information about the molecule, and do this for Feg. We
use this information to calculate the linewidth, topological decoherence and orthogonal-
ity blocking parameters. All of these quantities are shown to exhibit an isotope effect.
We demonstrate that orthogonality blocking in F'eg is significant and suppresses coherent
tunneling.

We then use our low energy effective Hamiltonian to calculate the single-molecule
relaxation rate in the presence of an external magnetic field with both AC and DC
components by solving the Landau-Zener problem in the presence of a nuclear spin bath.
Both sawtooth and sinusoidal AC fields are analyzed. This single-molecule relaxation
rate is then used as input into a master equation in order to take into account the many-
molecule nature of the full system. Our results are then compared to quantum regime

relaxation experiments performed on the Feg system.
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Chapter 1

Introduction and Overview

Component sizes in commercially available semiconductor structures have been halving
rather steadily every eighteen months or so since the early 1950s. This decrease in size,
know as Moore’s Law (named for Gordon Moore, one of the founders of Intel), is tracked
by concommitant halvings in price and energy consumption and doublings of processor
speed (see figures 1.1, 1.2 and 1.3) [1, 2, 3].

This continued shrinkage is producing much excitement and consternation in the
high-tech world, for a very simple reason-it is clearly not sustainable. Naively one could

say that this is because device sizes are limited to be larger than atomic length scales,
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Figure 1.1: The number of atoms needed to represent one bit of information as a function
of calendar year. Extrapolation of the trend suggests that the one atom per bit level is
reached in about the year 2020. Adapted from [1].
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which are on the order of Angstroms—at current shrinkage rates this barrier will be met
in approximately 20 years. However it is not yet clear that the limitation on computing
speed cannot be overcome in the near-term (10-30 years) with more efficient computer
architecture—for example, stacking transistors horizontally [4], or even more exotic solu-

tions such as the recent IBM SMASH proposal [5].
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Figure 1.2: Clock speed (Hz) vs. calendar year. Adapted from [1].

Physicists have long been thinking about what will happen when component sizes
become mesoscopic; that is, much larger than atomic length scales, but small enough
so that at least in part they must be treated quantum mechanically [6, 7, 8, 9]. This
line of thought has produced many extremely startling predictions. It is now well known
that standard models of computation, based on the universal computing model or Turing
model [10], contain an implicit assumption. This assumption is that the physical system
which encodes and manipulates information evolves according to the classical laws of
physics. This assumption can break down when components become “small enough”.
For example, quantum effects in mesoscopic normal metal rings [11], superconducting

structures [12, 13] and in molecular magnets [14, 15, 16, 17] have been observed.
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If one rewrites computer science with quantum mechanics implicitly included from
the outset it turns out that the range of tasks that computing machines can perform
is increased. The most famous example of this is the solution of the factoring problem
[1, 19] using a “quantum computer” (which is a theoretical machine which has the capa-
bility of storing and manipulating coherent two level systems (quantum bits, or qubits))
in polynomial time, as opposed to superpolynomial time with classical computers. In
addition to this, it is quite obvious that a quantum computer could in an analog fash-
ion solve many important quantum mechanical problems, some of which are exceedingly
important (such as pharmaceutical design), which are completely unsolvable using even

the fastest imaginable classical supercomputers.
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Figure 1.3: Energy (pico-Joules) dissipated per logical operation as a function of calendar
year. The 1 KT lcvel is indicated by a dashed line. Adapted from [1].

These theoretical musings are now coming face to face with some very real physical
problems, as engineers undertake to build quantum devices. If one wants to construct
a quantum computer, there are several aspects of mesoscale condensed matter physics

that must be understood wholly and completely. The most important of these is the
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process known as decoherence, which involves the transferral of phase information from
a quantum bit into an environment (such as nuclear spins [20] or phonons [21, 22]).
Decoherence is anathema to quantum computation (and interesting also from a purely
theoretical perspective), and yet how it works in practice, quantitatively, is still not
satisfactorily understood.

There exists a class of mesoscopic systems where an attempt can be made at a quan-
titative theory of decoherence. These are the so-called “molecular magnets”. One of
these materials, which we will refer to throughout as “iron-eight” (F'eg), is particularly
well suited to a quantitative study of decoherence due to localized environmental modes,
and in particular nuclear spins. The development of this quantitative theory as a tool to
be used in future investigations of mesoscale systems in the context of developing solid

state quantum bits provides the main motivation for the work presented in this thesis.

1.1 An Introduction to Feg

Feg was first synthesized in 1984 by Wieghardt et.al. [23]. This material, with the rather

imposing chemical formula
{[(tacn)sFeg(uz — O)a(pe — OH)19) Bry - HyO}®[Br - 8H,0]° (1.1)

where tacn = 1,4, 7 triazacyclonane, was the first oligomer with greater than three Fe3*
ions per unit cell ever characterized. X-ray crystallography studies performed on this
material indicated that six of the Fe?t ions were bonded to amine ligands FeN3O3 and
the remaining two were surrounded by a distorted octahedral array of 6 O atoms. The
iron ions are coupled via 12 us— hydroxo bridges and two p3— oxo bridges. Three views
of the unit cell are presented here, in figures 1.4, 1.5 and 1.6. The positions of the ions

shown here were obtained from the Cambridge Crystallographic Database [24], which

contains the original X-ray data obtained by Weighardt et.al. [23].
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Figure 1.4: A 2-D projection view of the Feg unit cell onto the y — z plane. Distances
shown are in Angstroms. Legend: Red, iron; Purple, bromine; Light Blue, oxygen; Green,
nitrogen; Yellow, carbon; and Dark Blue Crosses, hydrogen. Note the central magnetic

core, surrounded by a shield of organic species.
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The amine groups are cyclic and hydrophobic. The Br atoms are bonded electro-
statically to NH® and OH®. The space group of the material is P1 (triclinic), with
lattice parameters ¢ = 10.522, b = 14.05 and ¢ = 15.00 Angstroms with unit cell angles
“a = 89.90, # = 109.65 and y = 109.27 [23]. The molecular weight of the substance per
unit cell is 2250. The lattice structure is of the AB type, with the cation and anion in

(1.1) occupying the A and B sites respectively (this is simply a distorted NaCl structure).

1.1.1 Giant Spins and Quantum Environments

Experimental interest in the low temperature magnetic characterization of Feg surpris-
ingly did not arise until much later [18]. However in the experimental lull between 1984
and 1993 much theoretical work was being done that would lay the groundwork for un-
derstanding the low-energy magnetic nature of this substance.

There are two basic themes that needed to be developed to understand the experi-
mental results that would later appear. The first of these is the understanding of the
dynamics of “giant spins”, that is systems that have large spin quantum number. One of
the most obvious systems that can be thought of as a giant spin is a single isolated ferro-
magnetic grain, well below its Curie temperature. All the electronic spins lock together,
and one could think of this object as a single degree of freedom, albeit with spin quantum
number as large as S = 10®. The interesting thing about these systems, and one of the
main motivations for their early study, is that here we have an adjustable paLra.meter (S)
which as it is increased should cause the system to go from being quantum mechanical
(say for S = 1/2) to being classical (say S = 10®) in a way that we can study with some
intimacy.

Two papers that would prove to be important in this respect were those of Van

Hemmen and Suto [25] and Enz and Shilling [26], both in 1986. These discussed the

dynamics of giant spins in the WKB approximation. In particular, the problem of how
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large spin objects tunnel between energetic minima was treated.

The second basic theme that needed to be developed was an understanding of the
effects of “environments” on the dynamics of the degrees of freedom to which they couple.
It was shown by Feynman and Vernon [21] that if there exist environmental couplings that
are weak, in the sense that their effect can be treated in second-order perturbation theory,
one can model their effects by coupling the interesting degree of freedom to an oscillator
bath. In a solid at low energies, it is usually the case that delocalized modes, such as
phonons and photons, can be mapped to oscillator baths. This is because low energy
modes have long wavelengths and therefore their overlap with the localized interesting
degree of freedom is small.

Various aspects of the dynamics of a central degree of freedom coupled to oscillator
baths have been investigated [22]. Perhaps the most famous of these is the treatment
by Leggett et.al. of the so-called spin-boson problem [27]. In the spin-boson problem,
the central degree of freedom is a two-state system (a spin). This is then coupled to an
oscillator bath and the dynamics of the central spin are then extracted. It is possible to
obtain analytic results for certain choices of parameters in the spin-boson Hamiltonian,

but in general dynamical solutions are difficult to obtain.

1.1.2 A Related System is Characterized

In 1991 a substance that would turn out to be related to Feg underwent low temperature
magnetic characterization [28]. This substance is usually called Mnjs-acetate, or simply

Mmny2, and has chemical formula
[Mn12(CH3COO)16(H20)4012] . 20H3COOH . 4H20 (12)

Crystals of this substance were known [29, 30] to have tetragonal symmetry of spatial

group I4 with unit cell parameters a = 17.3 Angstroms and b = 12.39 Angstroms. The
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total molecular weight per unit cell is 2060. X-ray crystallography was performed [30]
on this substance, and the atomic positions stored in the Cambridge Crystallographic
Database. This data is presented in figures 1.7, 1.8 and 1.9. We see that there are
two “rings” of manganese atoms. The inner ring consists of four Mn** ions with spin
S = 3/2, while the outer ring consists of eight Mn3* ions with spin S = 2. It was

|

|

proposed that all these ions couple to each other primarily via superexchange through
mediating oxo-bridges [30].
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Figure 1.7: Projection of the Mn;, unit cell onto the £ — y plane. Here we are looking
down the easy axis of the crystal. The axes scales are in Angstroms. Legend: Red,
manganese; Purple, oxygen; Yellow, carbon; Dark Blue Crosses, hydrogen. Note the
inner and outer “rings” of manganese ions.
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Figure 1.8: Projection of the Mn,5 unit cell onto the z — z plane.
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The 1991 paper of Caneschi et.al. described results of AC susceptibility, high field
magnetization and EPR measurements on crystals of Mn;, which indicated that each
Mn;y molecule had an S = 10 groundstate. A mechanism was described whereby the
twelve manganese ions in each unit cell lock together via superexchange at low temper-
atures into a giant spin. In this material an easy axis was observed, and was explained
as being due to crystal anisotropy and/or spin-orbit coupling effects. These results pro-
duced much excitement, as here we have what seems to be (in zero external magnetic
field and in a low-energy limit) a two state system (|S = +10 > and |S = —10 >, corre-
spondinging in a semi-classical picture to the giant spin pointing parallel/antiparallel to
the easy axis respectively) whose dynamics should demonstrate quantum effects of some
kind (as S is in the fuzzy mesoscale region). An analysis of what was known of Mn;, and
some other molecular magnets was performed in 1993 by Sessoli et.al. [31] and provides

an excellent review.

1.1.3 Magnetic Characterization of Feg

In 1993 a comprehensive characterization of the magnetic properties of Fleg at low tem-
peratures was performed by Delfs et.al. [18]. In this study, AC and DC susceptibility,
magnetization as a function of external field and EPR studies were performed which
indicated that Feg had, like Mn,, a spin 10 groundstate.

This paper described its results in terms of a unit cell containing eight S = 5/2
Fe** ions which couple to each other via exchange and superexchange via oxygen and
hydroxo bridges. At temperatures less than T" ~ 20 K these lock together into a spin
complex with S = 10. Because of spin-orbit couplings and crystal field anisotropies the
spectrum of the spin 10 rotator is split into 10 doublets and one singlet, with m, = +10
being nearly degenerate lowest energy states corresponding in a semi-classical picture

to the central spin object pointing “up” or “down” along the easy axis selected by the
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anisotropy in the spin Hamiltonian (a rough first approximation to this spin Hamiltonian
is given by H = —DS2, where D is a measure of the strength of the various anisotropies
in the crystal [32, 33, 34]-see chapter 2 for a comprehensive treatment of the low energy
effective Hamiltonian for this system). The parameter D was reported to be on the order

of D ~ 0.3K [18].

1.1.4 Results in the Quantum Regime

The low temperature magnetic characterizations of Feg and Mn,, led to a flood of im-
portant results, both from theorists and from the experimental community. Theorists
were presented with a truly mesoscopic problem with a growing number of experimental
results, and experimentalists had access to systems where they could directly measure
macroscopic quantum effects. The study of Mn;, produced much work on the macro-
scopic quantum tunneling of the central spin of each molecule [35, 36, 37, 38]. Arguably
the most important early experimental result was that of Thomas et.al. [17] in 1996,
which presented clear-cut evidence for incoherent macroscopic tunneling of the magne-
tization in Mn,, (see figure 1.10). Even more astonishing were results obtained in 1997
on the Feg system which clearly demonstrates the existence of a regime where magnetic
relaxation rates become temperature independent-the so-called quantum regime (see fig-
ure 1.11) [14]. The authors attribute relaxation below T ~ 360 mK to be due to purely
quantum mechanical tunneling between groundstates of the Feg molecules in the crystals
measured.

Results of magnetic relaxation measurements on these systems for the most part
was amenable to analysis within existing theoretical frameworks [40-48]. In particular
a framework had been constructed by Prokofiev and Stamp [41, 45, 46, 47] to explain

the physics of relaxation in molecular magnets. In the models of Prokofiev and Stamp,

each molecular magnet is treated as a giant spin which couples to various environments,
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Figure 1.10: Magnetization steps in the hysteresis curve of Mn;,. From [17].
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Figure 1.11: This data shows the log of the relaxation time vs. 1/T in Feg. At high
temperatures thermal activation is observed, while for ' <~ 360 mK relaxation becomes
temperature independent. Figure obtained from [14].
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the most important of which it is argued are localized modes, such as nuclear spins
and magnetic impurities. Note that localized modes such as these can not in general
be mapped to oscillator baths as the coupling strengths are not in general small (for
example, contact hyperfine couplings in rare earths can be as large as 1 K [48]). They
show that the relaxation characteristics of giant spins in condensed matter systems should
be strongly influenced by these localized modes, and hardly influenced at all by oscillator
baths (such as phonons). In the quantum regime demonstrated to exist in Fleg, the
temperature independence is evidence that the phonon bath is not playing a significant
role in relaxation.

But here was a curious thing. The fact that the Feg crystals were relaxing at all
in the quantum regime was quite strange, for the following réason. The bare tunneling
amplitude between the groundstates of the Feg molecules was estimated (by exactly
diagonalizing phenomenological spin Hamiltonians whose parameters were extracted from
various experiments) to be A ~ 1078 K [45]; and yet the scale of the dipolar interaction
between different molecules can quite eaéily be estimated to be of the order of ~ 0.5 K.
This means that in a crystal of molecules, only an extremely tiny fraction of molecules
could ever be in resonance, and therefore their dynamics should be frozen.

A resolution of this difficulty was proposed in 1997 by Prokofiev and Stamp, and
the proposed mechanism involved the nuclear spins present in the Feg crystal [15]. At
temperatures lower than ~ 360 mK, there exists only one source of dynamics in the
system, and that is the nuclear spin bath. These typically do not freeze out until pK
temperatures and so at mK they are effectively in a high-temperature limit. The rate
at which the nuclei in Feg perform so-called T, flips [64, 65, 66], where the overall
magnetization of a pair does not change, was estimated by these authors tobe ~ 1 kHz —

1 M Hz. The effect of these flips is to cause a time-varying magnetic field to be generated

at each central spin, which was postulated to immensely increase the “resonance window”
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and therefore allow the crystal to relax.

The mechanism works like this. At the beginning of relaxation, all molecules sit in a
combination of the dipolar fields caused by all other molecules in the crystal and the time-
varying magnetic fields caused by the nuclei present. There will be a small number of
molecules that can be brought to resonance by the time-varying magnetic fields generated
by the 75 flipping nuclei. When one of these molecules tunnels, it rearranges the dipolar
field configuration in the sample. This can bring other molecules to resonance, and so
the crystal relaxes.

This theory contained certain testable predictions about the relaxation characteristics
one should see if the hypotheses were correct. One of these was that the relaxation of
Feg in its quantum regime should be square root in time.

Although relaxation data existed up to this point that was taken as a function of
time, the presence of the square root temporal dependence was not realized until after
Stamp and Prokofiev looked for confirmation of their theory. At this point it was real-
ized that earlier data did in fact follow a square root temporal relaxation. Subsequent
measurements vindicated the idea, not only in Feg but also in Mn,,.

The observation of the square root temporal dependence in Mn;, was not understood
until quite recently [?]. The prediction of a square root relaxation rate depends quite
clearly on the system that is relaxating being in a quantum regime-that is, the presence
of thermally occupied higher levels destroys the square root. This seemed to contradict
the fact that the relaxation characteristics in Mn,, were clearly temperature dependent
down to at least 60 mK. The resolution of this difficulty is that Mn;, crystals contain
“rogue” species of Mn,, that relax at different rates. Because of this it is possible that in
certain temperature regimes one species of Mn;, is in its quantum regime and relaxes as

a square root whereas the rest don’t relax at all (see [63] for a discussion of this point).

In the next section we shall take a close look at relaxation experiments, as they
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provide tantalizing glimpses of unresolved puzzles, some of which will be resolved in later

chapters.

1.2 An Introduction to Relaxation Experiments

The general strategy for performing a relaxation experiment on a molecular magnetic
crystal is quite straightforward [49]. One takes a sample of the material and cools it
down to some temperature T in some static field #H over some time t;. The initial
magnetization of the sample is measured using a SQUID magnetometer array. The static
field H is then abruptly changed to some new field, which is in general time dependent
H(t), and the magnetization of the sample (M) is then measured as a function of time.
This gives us a quantity M (T, t,, H H (t),t) which tells us about how the crystal, initially
prepared using {ﬁ, 1o}, relaxes in the presence of the field H (t) at the temperature T

Several such experiments have been performed of late [49-63]. We shall focus our at-
tention on those using the Feg system, as this material has generated a wealth of excellent
experimental data deep into the so-called “quantum regime”—the region where relaxation
characteristics become completely independent of temperature (this happens in Feg for
temperatures lower than T, ~ 360 mK; see figure 1.11) [14]. The other heavily studied
molecular magnet (Mn,,) is similar in many ways in its relaxation characteristics. How-
ever, there is an important difference-the relaxation characteristics of Mn,, show clear
temperature dependence down to the lowest temperatures investigated (T' ~ 60 mK)
[17]. In this thesis we have chosen to focus our efforts on understanding the physics of
the quantum regime.

Now as we have described the experiment above, there are four basic parameters that

we can play with in order to customize a particular relaxation experiment—the tempera-

ture at which it is performed (7T'), the static field in which it is cooled H, the time over
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which it is cooled ¢ty and the time-dependent field applied during relaxation H (t). Our
strategy in this chapter will be to simply present the experimental situation in each par-
ticular case that we will review (that is, we will state what the parameters {T, to, H H (1)}
are) and then give the results. No theoretical justification or explanation will be presented

here—we shall make this the task of the remainder of the thesis.

1.2.1 DC Field Relaxation in Polarized Fleg

The first class of experiment that we will review was historically the first to be performed,
perhaps because it is the simplest [18, 50]. In these experiments, the Feg samples are
cooled slowly from room temperature to the quantum regime in a large static bias field
72, applied along the easy axis of the crystal (see chapter 2 for information about the
crystal symmetry in Feg). This has the effect of preparing the crystal in an initially
polarized state. Once the initial magnetization has been measured, the large static bias
field is removed, and a smaller DC bias field H in applied to the crystal along its easy
axis. The magnetization as a function of time is then measured. Shown in figures 1.12
and 1.13 are results for M (t) for two different crystals in different experiments of this
type. Note the unusual square-root relaxation characteristic. Also included here is a
similar experiment performed on the Mn;; molecular magnet (figure 1.14) [58]. The
relaxation for this material is also square-root in time, albeit with a strong temperature

dependence.

1.2.2 DC Relaxation of Annealed Crystals

A second class of experiments involve a different method of preparation of the sample

under study. Instead of slowly lowering the temperature down into the quantum regime

we may instead rapidly quench the temperature over a time o that is so small that the
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Figure 1.12: Relaxation of the magnetization measured at H = 0 after first saturating
in a field of H = 3.5 T 2. As indicated in figure 1.11, the curves superimpose for
T < 360 mK. Shown in the inset are relaxation characteristics in the quantum regime
for some H # 0, applied along the easy (%) axis. Figure from [50].
thermal distribution of molecular magnetization is frozen into the initial state of the
crystal [49]. That is, the elevated temperature of the molecular ensemble before the
quench enables a thermal distribution of the magnetic moments of the molecules. The
state of the crystal after the quench retains this distribution initially, before it begins to
relax. This procedure is called annealing. The initial magnetization of the sample can be
arbitrarily chosen in this scenario, depending only on the pre-quench temperature and
static field H. Note that the first type of experiment considered is a limiting case of this
one.

After the sample is quenched and the initial magnetization is measured, a longitudinal

DC field is applied either against or in the direction of the magnetization, and the function

M (t) is measured. Presented in figure 1.15 are results from this type of experiment.
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Figure 1.13: Short time relaxation of a single crystal of Feg, measured at 150mK. Here
several different DC bias fields H were applied along the easy axis of the crystal. Note
that the data is plotted against square root t. The inset shows the slope of each of these
lines as functions of the DC bias field. Figure from [55].

1.2.3 Hole Digging and the Time-Dependent Internal Longitudinal Bias Dis-

tribution

It has been proposed that the DC relaxation of the magnetization M(ﬁ, t) can be related
to the time-dependent distribution of internal bias fields in the sample [15, 51, 49]. In
chapter 6 we shall review the current DC theory and supplant this with our AC results.
The basic idea is that the relaxation characteristic M(H,t) is seen experimentally to
be square root in time for short times. The “relaxation rate” qu”(ﬁ), defined via
M(H,t) ~ 1 - \/qurt(ﬁ)t can then be measured. The assumption then is that the
internal distribution of longitudinal biases P(&,t) (where ¢ is the longitudinal bias field)
is proportional to the relaxation rate P(£,t) ~ T S(m(ﬁ ) where the field H is applied at
time t.

Shown in figure 1.16 is the relaxation rate [sqre(H;) of a sample that was prepared in
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Figure 1.14: Here we include some data from a different kind of molecular magnet, the
Mmn, system. Here we again see the clear square-root relaxation characteristic. However
in this case the relaxation rates are temperature dependent. Figure from [57].

an initially polarized state. In figure 1.17 the evolution of these rates over time is shown.
Note that as the sample evolves, there appears a “hole” in the relaxation rates near zero
internal bias. Shown in figure 1.18 is the evolving relaxation rate spectrum of a sample
that was initially annealed such that M(0) ~ 0.2. Again we see evidence of a hole being
dug near zero bias in this distribution.

This hole in the annealed samples has an interesting feature. If samples are annealed

to |M(0) < 0.5| there is found an intrinsic hole width of approximately 0.8 mT (see figure

1.19). Stamp and Prokofiev suggested that this intrinsic linewidth was due to nuclear

spins [20]. We present a framework in chapter 3 for calculating the linewidth due to

the nuclei and demonstrate that our result agrees quantitatively with these experimental
|

results, supporting the contention that nuclear broadening is responsible for this intrinsic

hole.
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Figure 1.15: Here is data from an experiment on an Feg sample that was annealed in zero
field, giving it zero initial magnetization. The sample was then exposed to longitudinal
DC fields of various magnitudes. We see here relaxation away from M = 0, in the
direction of the applied field, with the same square root temporal dependence as in the
initially polarized case. From [49].

1.2.4 AC Relaxation of Annealed Crystals

The final kind of relaxation experiment that we shall review differs from the previous type
in that the field applied during relaxation contains a periodic time-dependent component,
applied in the direction of the easy-axis of the crystal [51]. The beauty of this type of
experiment is that it is possible to measure extremely small relaxation rates, which
presents us with a useful probe of much of the physics of these systems. In addition,
there now exists a quantitative theory of how molecular magnets respond to this kind of

perturbation, which we shall develop in the later chapters.

1.2.5 Extraction of Tunneling Matrix Elements

Shown in figures 1.20 and 1.21 are quantities extracted from AC relaxation measure-
ments, which are related to the tunneling matrix elements of the single-molecule effective

Hamiltonian of Feg (we shall show exactly how they are related in chapter 6). What is
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Figure 1.16: Field dependence of short time square root relaxation rates I'yp¢(H,). The
initial distribution is labelled with M, = —0.998 Mg whereas the others are distributions

obtained by thermal annealing. The latter are distorted at higher fields by nearest
neighbour lattice effects. Figure from [49].
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Figure 1.17: Quantum hole-digging. For each point, the sample was first saturated in
a field of -1.4 T at a temperature of T ~ 2 K and then cooled to 40 mK. The sample
was then allowed to relax for times ty. After this time had elapsed, a DC field H, was

applied, and I'y,; was measured. Note the rapid decrease in relaxation rate near H, = 0.
Figure from [49].
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Figure 1.18: Quantum hole digging, as in figure 1.17, but now for a sample that has
been annealed to M;, = —0.2 M,. The resulting evolution shows a very narrow hole (see
inset). Near zero bias the hole develops very rapidly although the rest of the distribution
hardly changes at all. Figure from [49).
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Figure 1.19: Here is plotted the difference between the relaxation rates at t = 0 () and
at to = 165 ([gy), for several different amounts of annealing. Note that for |M;,| < 0.5
the hole width becomes independent of |M;,|, with an intrinsic width of ~ 0.8 mT.
Figure from [49).
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actually measured here is simply the magnetization as a function of time, M(t) as per
usual, in the presence of a longitudinal sawtooth AC field of amplitude A and frequency
w, a longitudinal DC bias field H,Z, and a static transverse DC field H=Hzg+ Hyj.
The authors find that M(t) ~ exp [-T't], ie. the relaxation is exponential, with a rate T
that is a function of the applied longitudinal AC field, the transverse DC field and the
longitudinal DC field. They then define their quantity A in the figures shown via the
following relation;

_FAw
o7

A? (1.3)

Note that as advertised we are not going to try to justify this relation theoretically just

yet—there will be much on this later.

100
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Figure 1.20: The quantity A here is related to the relaxation rate of the crystal’s magne-
tization via (1.3). Here it is shown as a function of the magnitude of the transverse DC

field |H| = \/H2 + H? for several orientations of this field ¢ = tan™'(H,/H,). In this
case the longitudinal DC field was taken to be zero (H, = 0). Figure from [51].
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Figure 1.21: The quantity A shown for ¢ = 0, as a function of ]ﬁ] Shown here are results
for three different values of H,. The lowest curve was obtained for H, = 0; the middle
curve for H, = 0.22T, and the upper curve for H, = 0.44T. In terms of the energy level
structure of the Feg molecule’s spin Hamiltonian presented in chapter 1, these applied
fields correspond to resonance situations between | —S > |+S5 >, |-S > [+S5~1 >
and | — S > |+ S5 — 2 > respectively. Notice that a parity effect is observed. Figure

from [51].
1.3 Thesis Overview

Our goal will be to work up to a quantitative theory of AC relaxation in Feg crystals.
In order to do this we shall need to develop several key concepts.

We begin in chapter two with an analysis of the problem of deriving an effective
Hamiltonian for a single Feg molecule.

In chapter three we calculate the hyperfine couplings between a central spin object
and all the nuclei in the molecule. Using this information we calculate all the decoherence

parameters introduced by Prokofiev and Stamp in their theory of the spin bath. We show
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that there should exist measurable isotope effects in F'eg and give quantitative predictions
of the linewidth due to nuclear spins in an Feg crystal with arbitrary isotopic content.

In chapter four we introduce and develop some of the machinery of the Landau-
Zener problem. This involves using a time-dependent Hamiltonian to extract transition
probabilities between states of the central object of interest.

Chapter five is the heart of the thesis, and contains an extension of the Landau-Zener
problem in which nuclear spins are included. We use the results of this calculation to
find a single-molecule relaxation rate in the presence of an external magnetic field with
both AC and DC components.

Chapter six then uses this general single-molecule relaxation rate as the input to a
master equation so as to model the temporal evolution of a crystal of F'eg molecules. We
extract time-dependent relaxation characteristics from our theory and compare these to
experimental results.

We conclude our analysis in chapter seven with a summary of results and the current

outlook for our theory of AC relaxation.




Chapter 2

Effective Hamiltonians

In this chapter we derive a low energy effective Hamiltonian for a single isolated Feg
molecule. We begin by listing all terms found in the Hamiltonian of a single free Fe3* ion.
We then describe how these will be modified by placing the Fe3* ions into a crystalline
environment, following the treatment of Abragam and Pryce [67] (see also [68, 69]). This
leads to a single ion “spin Hamiltonian”. We then build up the F'eg Hamiltonian by
introducing exchange/superexchange terms between the Fe3t ions and terms coming
from both the nuclear spin environment [20] and phonon [70] and photon [71] oscillator
baths.

This “bare” description of the Feg molecule, containing eight single ion Fe* terms,
exchange/superexchange couplings between these and the various environments is then
investigated. The exchange/superexchange coupling energies are much larger than all
other energy scales [72, 73]. This suggests the hypothesis that at low energies these
couplings lock the electronic spins together into a “giant spin” [20]. We assume that this
is the case and write down a “giant spin Hamiltonian” that we postulate could in principle
be derived from the bare Hamiltonian in a similar manner to how the single ion spin
Hamiltonians were derived from their bare descriptions, ie. by finding the “giant spin”
ground state of the system and performing perturbation theory around it to eliminate
all the electronic spin degrees of freedom but one.

We then proceed to the investigation of the properties of general giant spin Hamilto-

nians in the absence of environmental couplings. We calculate tunneling matrix elements

29
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for Hamiltonians with various symmetries using instanton [74, 75], WKB [25, 26], per-
turbation theory [70] and exact diagonalization methods.

We conclude by returning to the specific case of the Feg giant spin Hamiltonian. The
giant spin possesses two preferred directions due to crystal anisotropy which are identified,
in zero external field, with the £2 directions (states |S = +10 > and |S = —10 >). At
temperatures much lower than the difference in energies between | + 9 > and | + 10 >
states (~ 5 K) only the | £10 > states have significant thermal populations. This allows
us to derive a final effective description where the central spin object is treated as a two

level (| £ 10 >) system, following the treatment of Tupitsyn et.al. [74].

2.1 The Fe?*t Free Ion Hamiltonian

We shall begin our analysis of the complicated Feg system (whose structure was shown
in the introductory chapter) by concentrating our attention on the iron ions. We shall
begin by studying a general Hamiltonian for a free Fe3* ion. This treatment follows that
of [69].

The dominant term in this description is the Coulomb interaction amongst the elec-
trons (here there are N, of them) and between the electrons and nuclear charge Ze

=y (L -2 5 2 CRY
Jj=1 J j<k=1"'7Jk

The next most important term is the magnetic interaction between the orbital angular
momentum l_; and the electronic spin 3}

Vis = Zajklj A + bl - 5 + ¢k - Sk (2.2)
gk

where a;k, bjr and cj; are constants. Next comes the direct interaction between spins

. .3 3 = SN - S
VSS = Z 8.7 Sk _ (TJk SJZ)(TJk Sk) (23)
jk

3
ik Tik r
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Weaker still are the terms

I —8)-T  3(7%- 8 I
Vv = 20nliBlin [E{(k ik) 4 (7% - 3k5 T * 3} _3_5 r4) (5 - f)] (2.4)

k Tk Tk

where the term in curly brackets is the dipole-dipole interaction between the nuclear and
electronic moments and the last term is the so-called anomalous hyperfine term which
comes about from the overlap of the wavefunction of s electrons with the nucleus and

_eQ IT+1)  3(7- 1)
o= 2I(21 — 1) [Ek: I ,;,f; ] (2:5)

which represents the electrostatic interaction between the nuclear quadrupole moment Q)
and the gradient of the electric field due to the electrons. Interaction with an external

magnetic field produces the terms
Vi = ZMB(I-;c +25)-H (2.6)
k

and

-

Vi = —gnptnH - T (2.7)

corresponding to the interactions with the electrons and nucleus respectively. The total

free ion Hamiltonian is now just the sum of these;
H=Vr+Vig+Vss+Vn+Vo+Vug+V, (2.8)

Orders of magnitude of these may be obtained from optical spectra and are, for Fe®*
Ve ~5-10° K, V5 ~100—-300 K, Vgs ~1—2 K, Vy ~ 1-200 mK and Vg ~ 1-2 mK
[76).

We see that Vr is by far the dominant term in this expression. If we neglect all

terms but this one, then L and § (the total angular momentum and spin of the ion)

commute with Vz. This means that we may in this approximation label the states of
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the free ion with the quantum numbers L, L,, S, S,, J and J,. Since the filled inner
shells have S = L = J = 0 we may describe the ion by referring only to the state
of the partially filled outer 3d shell. It is known that the Vi term in Fe3*t leads to a
groundstate that is an orbital singlet ®Ss/, [77], where we use the standard notation that
the superscript refers to the spin multiplicity 25 + 1, the capital script letter refers to
the total angular momentum of the ion (§ — 0, P — 1, D — 2, etc.) and the subscript
refers to the total angular momentum J. This state may be obtained via the use of
Hund’s first two rules [78]-we first maximize the total spin by filling up five d orbitals
with s = +1/2 electrons (giving total spin 5/2) and then maximize the orbital angular
momentum (L =2+ 1+ 0+ (—1) 4+ (—2) = 0). Note that for all half-filled shells (here

we have 5 d electrons out of a possible 10) we get an orbital singlet for the groundstate.

2.2 The Effect of the Crystalline Environment

In general, when a transition metal ion is placed in a crystalline environment, the first
question that must be resolved is the question of the nature of the bonding between the
ion and the ligands. This is because the dominant new term that must be dealt with
comes from the electrostatic interaction between the ion’s d shell electrons and all the
charged matter in the molecule. If this bonding is mostly ionic, then one can make the
approximation that the ion sits in an electrostatic field coming predominantly from its
nearest neighbours, which are treated as point charges. This is the so-called crystal field
[79] approximation. Although it is crude, it is often a useful starting point for under-
standing the effect of the Coulombic interaction between the ion and its environment.
A little more sophisticated is the ligand field [80] approximation. In this treatment al-
lowance is made for the direct overlap of the ion’s d shell electrons with the ligands, ie.

an attempt to deal with covalency is presented. Better yet are molecular orbital [81)
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methods, which use as their starting points the orbitals of each of the ligands and ions
and the interactions between these.

Now in our specific case we are interested only in the low energy properties of the
Fe*t jon. The free ion groundstate is, as mentioned, an orbital singlet 6S;/,. What
will be the effect of the inclusion of the Coulombic environment on this groundstate and
the low-lying excited states? In order to answer this question we need only to know the
relative strengths of the “on-site” Coulomb terms Vr and the “off-site” Coulomb terms
Ve. The strength of this coupling in several materials containing Fe3* ions has been
determined, with these ranging from Vi ~ 17000 — 23000 K [82]; however V¢ has not
been measured in Feg. Fortunately there a way to know what the relative magnitude of
these are without a direct measurement. If Vi > V> then the groundstate of the ion will
remain %Ss)5, as the electric field cannot split a singlet. If we are in the opposite limit
Ve > Vi then the Fe®* ions will go into a “spin-paired” state with spin S = 1/2 (ie.
Hund’s rules are modified). Since it is known experimentally that the Fe3* ions are in
fact in a S = 5/2 state we infer that we are in the limit Vp > V, which is in accord
with the crystal field strengths reported for other materials with Fe3* centers.

We see that the experimentally observed fact that the Fe3* ions have spin S = 5/2
simplifies our task tremendously. This is because this is prima facie evidence that the
groundstate of the Fe3* ions, even in the molecular environment, is ®S;/,. More precisely,
this is evidence that the groundstate of the Hamiltonian H = Vg 4V, where V¢ includes
all Coulombic terms coming from the interaction of the ion With the ligand environment,
is an orbital singlet ;.

Now the tack that we shall choose in what follows is this. Since the Coulombic
environment does not split the groundstate here, but does affect the excited ionic states

(the nearest state is a G state [165] in the free ion), and since we are not in the position

to quantitatively account for its effects anyway (this would require a molecular orbital
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approach, and even these do not always work [83]), we shall adopt the crystal field
paradigm in dealing with charges external to the ion. In this picture the excited states of
the Fe* free ion are split by the crystal field, with some orbitals being favoured above
others because of their spatial dependence and relative positioning in the molecule. In
our case the F'e3* ions all have six nearest neighbours arranged in a distorted octahedral
shape. This allows us in principle to calculate the splittings of the excited states. We
shall not do this however—as we shall see, the magnitude of these will only quantitatively

change the results of the arguments to come.

2.3 The Single Ion Effective Hamiltonian

We now want to consider the effect of the free ion terms Vig+ Vss+ Vy + Vg + Vg + V}.
What we shall do is follow the treatment of Abragam and Pryce [67], calculating their
effect perturbatively on the 685/2 groundstate of H = Vg + V. The first step in this
treatment is to rewrite these perturbations in terms of total single ion spin and angular
momentum operators S and L. This will be permissible as long as there is no significant
chemical bonding between the iron ions and their surroundings, which as we saw in the
preceding is supported by the S = 5/2 nature of the ions. This has been done; we repeat
this process here (for a detailed explanation of the steps outlined here, see [68]). Our

terms transform as follows;

Vis = A E . g
Vos o[£ -8+ -5 - LLw+ 1s(s +1)]
= p[J(L°1° + 1P1)5,55 - SL(L+ 1SS +1)] (29)

The effective spin-orbit coupling parameter A for free Fe atoms is measured to be 138K

[84] and is expected to be slightly smaller for Fe®* ions. The parameter p is difficult to




Chapter 2. Effective Hamiltonians 35

calculate [85] but is expected to be much smaller than A [86]. We also have
]. = pud -
VN“")gnNﬂﬂn<—> [(L-S)+§L(L+1 EE I')——g WL - 1)
26 D3] - gangrnrs () (3 )

Vo 51—(%?1—9_1_) <T1—3> [3(5 D)? + g(E D) - L(L+1)I(I+ 1)] (2.10)

where for the iron group

(20 —1) — 45
S@2I—1)(2l+3)(2L —1)

£= n = +2S¢ (2.11)

(the sign of n depends on whether the d shell is less or more than half filled) and

< > /ds—ow (A (2.12)

where ¢ () is the spin density of the outer core d electrons. The factor x comes from
the polarization of the core s-electrons due to the d electrons and will lead to the contact

hyperfine interaction in ®” Fe. The terms proportional to the external field are

Va=gnpinH - T | (2.13)

Putting all these together we get the perturbation term

-

p)L-§ -

Uy

Hi=0- p(L-8)? + pgH - (L + 25)

1
2
+gupinP (L 1) — &

= -o

T—=(L-§

Uy

W f)——L - s*]+gnu,,ﬁ.f(2.14)

=

where P = 2pug <Ti3 .

2.3.1 First Order Perturbation Theory

We want to use (2.14) to perturb our groundstate out of the S/, state. In the first order

perturbation we find that the only terms that contribute are ones that don’t contain L,
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because < 0|L|0 >= 0 for an orbital singlet, except for the term < 0|L;L; + L;L;|0 >=
%L(L + 1)d;; + l;; where l;; = 0. As well, we have in this case that £ = 2/21 and n = 0.

Thus the terms we get from first order perturbation from 655/2 are

2 — - — —
Hy = —gupinP(56° + 21%)Salp + 2upH - S+ gupnH - T (2.15)

2.3.2 Second Order Perturbation Theory

In the second order we have to calculate all the terms coming from

5 < 0|Hi|n >< n|H;|0 >

B~ B(0) (2.16)

n#0
where n labels the excited orbital states. Where these excited states lie, ie. the exact
values of E(n), are functions of the details of the crystal field splitting and as such we
shall not attempt to calculate them exactly. We may obtain order of magnitude estimates
for these by comparing to existing materials that contain Fe®* centers. In these cases
the energy of the first excited state E(1) is in the range 17000 — 23000 K [82], which is

extremely large corripared to the scale in which we are interested. Defining the tensors

< 0|L%|n >< n|LP|0 >

AP =%

a0 B - EQ)
4P — _1e® < 0|Lsln >< n|LPL, + L,L7|0 > W% = 0
2 22 E(n) — E(0) !
osri _ P 5 < 0|LeLP + LPLe|n >< n|L7L? + L°L|0 > (217
4 770 E(n) — E(0)

gives, upon collecting terms, an effective Hamiltonian

Hs = T°%S5,545,85 + psg** HoSp + D*PS4S5 + Gutin A% Sols + gniin R Holg

(2.18)
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where we have defined
g% =2(8% — A*P) | D% = N2\ _ p|of
A% = _P k5% + -27-laﬁ + 2N — ;)\uaﬂ , R =1-2Pugh*
(2.19)

The meaning of these terms is as follows [87]. g? is the so-called “spectroscopic splitting
factor”. It is anisotropic in general, containing reference to the higher lying orbital
states. D is a measure of the splitting of the ground state and contains reference to
both the spin orbit coupling and the spin-spin contribution in an asymmetrical crystal
field. A®? represents the hyperfine couplings between the nucleus and the electronic spin.
This term is made up of contributions from overlap of s electrons with the nucleus (),
an orbital contribution {*# and a spin-orbit contribution AA*?. In the expression for the
coupling between the nuclear spin and an external field we see that there is an anisotropic

component which can be of the same order of magnitude as the direct contribution.

2.3.3 Higher Orders Perturbation Theory

It is clear that performing third and higher order perturbation theory will produce terms
of higher spin multiplicity in the spin Hamiltonian [25]. Terms in the spin Hamiltonian
up to 25 order in the spin operators S;, S, and S, are in general possible. In the case of
the Fe3* ion this means that all terms up to fifth order must be considered in a general

treatment; we can write this general fifth order spin Hamiltonian in the form
Hpepr = G02030405(F) G G G SoiSas + 9P 1upSaHps
+ gnbin [A*Sals + R Holp) (2.20)

where the Sy, can be any of S;, Sy, S, or the identity 1, the prefactor G can be a

function of magnetic field, and we have explicitly separated out the Zeeman term. We
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only keep to first order in terms containing the nuclear spin I.

The terms in the single ion spin Hamiltonian must inherit any symmetry that the
crystalline electric field possesses, which reduces the total number of possible terms.
Unfortunately in our case the F'e3* ions do not sit in positions of high symmetry. However
the symmetry is close to being cubic-the nearest neighbours of the Fe3* are distributed
in a distorted octahedral fashion. To give a concrete example of how the crystal field
symmetry selects specific terms out of the general 25 order spin Hamiltonian, consider
the case of an Fe®t ion in a cubic crystal field. This case has been previously treated,

with resulting spin Hamiltonian [77]
Hg%e = % (S2+ S5+ 52) + 9°°upSals + 91(S3H, + S3H, + S2H,)
+ 92(S%+ SSH, + SSH.,) + gupn [A?Sals + R Halg|
+ g5 [So(SE+ S H, + S,(St + S3H, + S.(S2 + Sy) Hy) (2.21)
(compare to (2.20). It is found that the constants g;, g and gs are always very small

and therefore the terms proportional to these are usually neglected [77]. Typical values

for a range from 0.1 mK to 3 mK [88].

A Useful Approximation

Measurements of ¢g°? in other insulating materials containing Fe3* support the following
approximation [89]. We take the tensor g®? to be isotropic and furthermore that g*P =
g = 2, the spin-only value. The justification for doing this comes from the L = 0 nature
of the groundstate-perturbations of the spin levels coming from crystal field and/or

spin-orbit coupling will be very small and therefore a spin-only approximation for g°? is

justified.
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2.4 The Single Molecule Effective Hamiltonian

We now want to consider the Hamiltonian of an entire F'eg molecule. We label the spin
Hamiltonian (2.20) H, for the p** iron ion (there are eight of these). Now because each
sits in a distinct crystal field, with different principle axes, it is very difficult (although
in principle possible) to write down the specific terms for each ion. For example, if we
were to make the approximation that the crystal field for each is exactly cubic and kept

only the two dominant terms in (2.21), ie.
HES: ~ ¢ (St+S;+S2) +gupH- S (2.22)

then we immediately run into the following technical problem. The axes, as defined by
the local crystal fields for each Fe3t, are different. This means that if we fix the axes
such that for one of the ions (2.22) is correct, then in writing down all the other single
ion spin Hamiltonians we have to rotéte the axes through some (albeit known) angles
from the “natural” basis picked out by the crystal field. This has the effect of hiding the
symmetry explicit in (2.22), and bringing us back to a general type of description like
(2.20).

We shall therefore at this stage write the collection of eight iron single ion spin
Hamiltonians as

8

8
H = Z H;‘ea+ = Z [Gglalalalal (H) Sgl 522523854525 + g:u’BSp ~H + gnp/-"'n [Apaﬂsglg
p=1

p=1

+ RFH,IE)| | (2.23)

where for all quantities the label p points to the p* iron ion.
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2.4.1 Inclusion of Exchange and Superexchange Terms

It is known that there exist exchange and superexchange couplings between the iron ions.
In general these couplings can be anisotropic, leading to a general expression of the form

He, =Y J&ﬂggsg (2.24)

p<q

where the sums over p, q are over the ions 1..8 and the labels a, § refer to épatial directions
z,y,2. Exact diagonalization studies on this term have been performed, with results
compared to EPR and susceptibility measurements performed on Feg [18]. The model
used in these calculations assumes that the couplings are isotropic, although it is not
clear that this has to be the case (Dzyaloskinski-Morya interactions, for example, are
excluded in the isotropic case [90]). The pathways, as well as the magnitude of the
coupling strengths extracted from fits to experiment, are shown in figure 2.1. Note that
the coupling energies extracted are far larger than the single-ion anisotropy terms—as we
have seen, the terms in the single ion spin Hamiltonian are typically on the order of mK,

while the energies extracted by Delfs et.al. [18] are in the tens to hundreds of Kelvin.

2.4.2 “Offsite” Dipolar and Quadrupolar Contributions

The electronic state of each Fe** ion will couple via dipole-dipole interactions with all the
other dipoles present in the molecule. This includes the other Fe3" electronic spins and
all the nuclear spins in the molecule. As well, all nuclei in the system with spins I > 1/2
will have an electric quadrupole moment which couples to inhomogeneous electric fields
in the molecule. It will turn out that these céntributions will be quite important in the
chapters that follow. As such we shall go over the derivation of these terms carefully.
The general interaction between the electronic and nuclear degrees of freedom may be

split into two parts [64]. The first of these, the electrostatic interaction between nuclear

and electronic charges, will be considered first. The second part, the magnetic coupling
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Figure 2.1: Exchange pathways in Feg in the isotropic model of Delfs et.al. [18]. Fits
to susceptibility data give Jj» ~ 35K, Ji3 ~ 180K, Jy5 ~ 22K and J35 ~ 52K, with all
couplings antiferromagnetic.
between the moments of the nuclei and the magnetic fields generated by the spin and
orbital currents of the electrons, will be dealt with later.

The standard derivation [64] of the form of the electrostatic couplings begins by

describing the nuclei and electronic clouds as classical charge distributions p,(r,) and

pe(re) with mutual electrostatic energy

E = // pe Te pn Tn d"'edrn (225)

|Tn - Tel

This expression may be simplified by expanding the Coulomb potential in terms of spher-

ical harmonics. After some algebra one can show that this energy is the expectation value
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of the Hamiltonian

elec - Z AmB (226)
where
AP = | 2T ZRIY'” 0;, @;) (2.27)
! 20+ 1 v
B = Z r7EDym (6, ¢5) (2.28)
! 2l+ 1+ s

Here N, and N, are the number of protons per nucleus and electrons respectively,
{R;,©;,®;} and {r;,0;,#;} are the polar coordinates of the i** proton and i** electron
respectively and Y™ are the standard spherical harmonics.
The general expression (2.26) may be further simplified by the following observations.
It is well-known that stationary nuclear states have well-defined parities, implying that
the expectation values of terms A]" odd in [ are zero. That this is in fact true has been
confirmed experimentally to a high degree of precision with the ! = 1 (electric dipole)
term {64]. This leaves us with a sum over even [, which can be manipulated further. The
[ = 0 (monopole) term can be seen to be constant, and can therefore be omitted from
consideration. As well, it is seen experimentally that the strength of the terms in the
series decrease rapidly with increasing [. In fact, direct contributions from the [ = 4 term
are so weak that they have never been seen in NMR studies in solids. We may therefore
omit all terms with [ > 2, leaving only the electric quadrupolar term
2
Hg= ) ApBp™ (2.29)
m=—2

The tensors appearing in (2.29) can be recast in a more useful form. One can show

(64, 91] that the Hamiltonian (2.29) produces the same matrix elements in the nuclear
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spin subspace as the form

al eQk a
2_: OAs 1)V’° Ik, (2.30)
where N is the total number of nuclei,
o a2vk
VE = g (2.31)

where V¥ is the potential at the k** nucleus due to the charge distribution in the molecule,

3 —~2
5(121}5 + IZIE) — It Gap (2.32)

and Q) is the electric quadrupole moment of the k** nucleus, which is a measure of the
nonspherical distribution of charge inside the nucleus. @ is zero for all nuclear spins
with Iy = 1/2 and is typically on the order of 1 — 10 - 10724 ¢m?. In Feg, the nuclei

A

that have non-zero electric quadrupole moments are the two species of bromine " Br and
81Br, N and 0.

The description (2.30) accounts for all electrostatic effects between electronic and
nuclear charge distributions in the molecule. We now turn to the second part of the
electron-nucleus interaction, the magnetic couplings. We have already used the fact that
stationary nuclear states have a fixed parity to eliminate certain terms in the multipole
expansion of the electrostatic coupling. We may perform a similar trick here by noting
that the magnetic field feels the opposite parity effect of the electric field (since they are
axial and polar vectors respectively). This means that all even orders of the multipole
expansion of the magnetic structure of the nucleus have to be zero. Similarly to the
electrostatic case, the strength of the contributions of higher order terms in the expansion
fall off extremely rapidly with increasing [; as previously, no evidence of [ = 3 (magnetic
octopolar) terms has ever been directly seen by NMR in bulk matter.

This makes our job considerably easier from the start, as we can treat the general

nucleus as a magnetic dipole without loss of generality, and the interaction of the magnetic
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field generated by the electrons and any magnetic dipole can easily be dealt with. One

finds an interaction Hamiltonian of the form [64]

Hynag = Mogﬂﬂ IZ kZ: gnkﬂn [S T = 3(5, - #u) (T, - ,:lk)] (2.33)
1 k=1

where we have used our isotropic g approximation, the sum over electronic spins is over
the eight Fe** sites and the sum over nuclear sites is over all possible nuclear sites (N is
the number of spins in the ligand bath; accounting for the possibility of up to eight > Fe
nuclei gives k = 1..N + 8). We do not include the “self-coupling” term here where the
electronic spin interacts with a 5? F'e nucleus on the same site, as this term is included in
the single ion spin Hamiltonian derived earlier (it is a “contact” term). g, and p, are
the nuclear g-factor of the k** nucleus and nuclear magneton respectively. It is possible

to rewrite this term by defining a matrix

~2 A~ A A A
1- 37‘11“ '—37'lkz7'lky —3T1kzTikz

- togpp 1 . ) L
MUC (Tl ) dn 7"3 —3T[kzrlky 1- 3Tl2ky _3le:yrlkz (234)
lk

s P 22
—3FikaTike —3TikyTikz 1 — 37,

This allows us to write (2.33) in the simple form

8 N48 P

Humag =D D gnibia My So 15 (2.35)

=1 k=1
where « and ( are again spatial labels z, y or z. Note that one may calculate exactly
the values of these terms, as they depend only on the relative locations of the nuclei and
the iron ions which are known from crystallographic data (this will turn out to be quite
important in later chapters, particularly chapters 3 and 5).

Together with the term derived earlier (2.30) we have a complete description of the

“offsite” (ie. not including on-site contact hyperfine interactions) electromagnetic inter-

action of all the nuclei with all the electronic spins in the Feg molecule. We may write
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the final description of this nuclear-electronic coupling in the form

N
+8 er

8
_ . L
H=3 5hmt, o s + 2 gumMiy S. 15 (2.36)

=1
2.4.3 Intra-Nuclear Spin Couplings
A similar analysis may be performed on the electromagnetic couplings between the nuclei

themselves. As was indicated in the previous section, by far the dominant contribution

to this effect comes from dipole-dipole interactions of the form

2
r = T

where g,, and g,, are the nuclear g-factors for the [ and k species of nuclei.

2.4.4 Couplings of the Nuclear Bath to External Magnetic Fields

We shall assume that the nuclei in the ligand bath couple to an applied external magnetic

field in the standard Zeeman way; that is,

Hey = Egnk;u'nf;c ) ﬁea}t (238)
k

2.4.5 Coupling to Phonons

Both the super-exchange/exchange and nuclear spin couplings are local in the sense that
their ranges do not extend outside of a given molecule; it is enough to treat their effects
on a “per molecule” basis. In this section we shall, following the treatment given in [92],
introduce couplings of a single molecule with phonon fields which at low energies have
long wavelengths and as such owe their properties to the details of the crystal lattice.
The presence of phonons in the crystal can be dealt with by introducing strain and

rotation fields which are written respectively as [92]

1 1
Cay =5 (atty + Oyua) Way = 5 (Oatty — Oytia)
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where

1/2
A 1
alf) = Z l2Nka,\l s’ [a’“'\ +a’°’\]

are the displacements at 7 caused by a phonon field whose creation/annihilation operators
are given by {al,, axx} and e{V) is the magnitude of the polarization vector. \ labels the
branch and includes in general both optical and acoustic phonons. M is the mass of the
unit cell and N is the total number of unit cells.

These local strains and rotations cause there to be introduced into the Hamiltonian
terms mediated by the phonons. For example, imagine the effect of a local rotation
of a particular spin on the D;;S;S; term in (2.20), and in particular on the D,,S,S,

component;
S, = Sy + WSy + wyySy (2.39)
and
D..S? = D, (S? + w2, + wiwee{Se, Sa} + wey {S:, S,}) (2.40)

In general one can show [92] that the spin orbit interaction leads to an effective

coupling between the ionic spins and the phonon fields of the form

1/2
f g yvi(d
ZZ}\:IX; [2Nqu :| q [a’é‘/\‘/q‘/\(sl) - anVq‘,\(Sl)] (241)
where
Va(S) = BypSS! + (& x @) - Si (242)

Here §q>‘ is the polarization vector of the phonon involved. The terms Bg % can in principle

be calculated from knowledge of the crystal symmetry and have been estimated to be

~ 0.01 mK for the Mn;, material [93]. One must keep in mind that in order to do
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this one must use the symmetries appropriate for the individual ions and not the full
symmetry of the crystal. The term linear in S arises from treating the spin as being
locked to the lattice due to spin-orbit effects. This term is likely to be much smaller than

the B,g terms (see [92] for a discussion of this point).

2.4.6 Coupling to Photons

The coupling to the photon field is taken to be of magnetic dipolar origin [94]. The

magnetic field due to the photon field can be written

- o o 27rhé2 vz Lo
B,=VxA=) [V@k,\] e (ck,\ + cik,\) (V X ,;,\) (2.43)
A

where V is the volume of the sample, {cL,, ck»} are the creation/annihilation operators
for the photon field and 5,;,\ is the polarization vector for the {E, A} mode. The coupling

to the electronic spins is then straightforward and is given by

Hyy =Y gusB,- S (2.44)
=1 .

2.4.7 Bringing all the Terms Together—-The Bare Feg Hamiltonian

The description of the systems under scrutiny given in the previous section contains seven
terms, namely (2.23), (2.24), (2.36), (2.37), (2.38), (2.41) and (2.44). Explicitly we have,

for our effective Hamiltonian, an expression of the form

Q) TayT a3z T oy

8
H = Z [Ggrezesases(F) 52 5P SP SR, ST, + gunS, - H

8
+ Gnhin [APPSEIE + RPPHLIB|| + Y JRPSES)

p<g=1

+ Nis 28: Maﬂsl Ik + er VkaﬂIk
- Onp By D4 B 6Ik(2lk _ 1) aff

k=1
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Holty, - Imdne 7. T = 3L - ) (T, LA
+ 1 Z [ k= 3(L - Pu) Iy - Ta) ] + Egnkun k- Hegt
T I<k=1 Tik k=1

1/2
ZZZ l2NquA] q[ )\ qA Sl) aq,\V/\ Sl ] +ZQILBB Sl (245)

ar I=1 I=1

Let us review what we know about each term in this expression. The first term is a sum
over all the single ion Fe3* spin Hamiltonians. In order ﬁo evaluate the coupling energies
Gpra293*4%5 we could do the following. First, we identify the symmetry of the crystalline
field surrounding each iron ion. This reduces the number of non-zero couplings (as we saw
in the exactly cubic case in (2.22)). We then pick a set of axes, aligned so as to simplify
the spin Hamiltonian of one of the ions. Next we determine the angles necessary to rotate
each iron ion from the axes chosen by its local crystal field to our chosen basis and apply
these rotations. This procedure allows us to approximately evaluate the Gp**2*2®4s for
Fég. We do not know for certain what the magnitudes of these couplings are, although
as mentioned earlier for Fe3* in a cubic field they are typically in the mK range [77].
We shall not explicitly perform this task for a reason that will soon be made clear. This
term also contains couplings between the electronic spin and external field, which we
have approximated as being isotropic (g®® ~ g = 2), the “contact” interaction between
the nuclear and electronic spin and the interaction between the external field and the
nuclear spin. These two last will not in general be isotropic.

The second term is the exchange/superexchange term coupling the electronic wave-
functions of the iron ions. Extracting quantitative predictions about how large the J:qﬂ
are is a difficult task and has yet to be performed satisfactorily [18]. It is not known
whether the anisotropicity here is important. As we mentioned earlier, preliminary in-
vestigations indicate that these couplings are in the tens to hundreds of Kelvin [18].

The third, fourth and fifth terms are the non-local coupling between nuclear spins

and Fe3* electronic spins, nuclear-nuclear dipole interactions and nuclear spin-external
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field coupling respectively. All of the quantities in these term are either known or can
be calculated (we do this explicitly for all the nuclei in the molecule in chapter 3). The
coupling energies here are found to be bounded above by ~ 5 mK.

The sixth term is the phonon-electronic spin coupling. Here the only term that we
do not know is the value of the B,g terms in (1.21), although these have been estimated
to be on the order of 0.01 mK in Mn;, [93]. The seventh and final term is the dipolar
magneto-optical coupling. Here the photon field in the material will be changed to a
renormalized (by optical phonons) “polariton” field and therefore the frequencies @y are

not known exactly, although methods to approximate these are available [95].

2.5 Exchange/Superexchange and the Giant Spin Picture

As was discussed in the introductory chapter, the low-energy phenomenology of the Feg
system indicates that somehow the electronic spins “lock together” into some ﬁxed—spin
object. Because the exchange/superexchange coupling energies are much larger than all
the other energy scales in our Hamiltonian (2.45), we are presented with a mechanism
whereby we can understand how this can happen. In a numerical diagonalization study
performed in [18], it was suggested that the groundstate of the Hamiltonian (2.24) is
given by a state where six of the Fe3* align parallel to each other while the other
two align themselves anti-parallel, giving a “quantum rotator” with excess spin of S =
6-5/2—2-5/2 = 10. Because the J,‘c"lﬂ are large, there exists a sizeable gap to excitations
out of this ground state, whose magnitude these authors suggest is on the order of
AFE ~ 30K.

This locking together of the electronic spins profoundly affects the ultimate form of

the low-energy effective descriptibn. To begin with, as excitations from the ground state

are energetically inaccessible as long as kT < AE (we will ultimately be interested in
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the mK range so this is reasonable), we may consider the term in our effective description
(2.24) to be simply a constant which we henceforth remove from consideration. Note that
this does not mean that the dynamics of the electronic spins are frozen—it is simply that
the effective degree of freedom that they represent is, for kgT' <« AFE, a single collective
“quantum rotator” or “giant spin” which is still very much a dynamical quantity.

Now it is quite a difficult matter to actually derive an effective description in terms
of this new collective degree of freedom from the Hamiltonian (2.45). In order to do
this one would have to first determine the ground state of the electronic spins and then
perform perturbations out of this ground state in a similar way done for the single ion
case. Instead what we shall do is, following [74], make the following hypothesis.

We simply assume that the exchange/superexchange couplings lock the electronic
spins together into a quantum rotator or “giant spin” S with S = 10, where six (two) of
the electronic spins point parallel (antiparallel) to the direction of S, as indicated by [18].
This we refer to as the giant spin hypothesis. We then, as a corollary to this hypothesis,

rewrite (2.45) in the form

8 8

H = (i Sasl Sasz _..Sm20 + gﬂBﬁ . Z S"p + Z Gnpbin [Apaﬂsglg + RpaﬂHaIg]
p=1 p=1
S [i MEPSLIE 4+ — 9k _ykas ]
k=1 Li=1 Inbin ik Sap GIk(QIk - 1) ob
popsl Gudng [7 7 a7 . N
T - Lt [Il Ty = 3(L - ) (I - f,k)] + Y netindi - Heat
T i<k=1 Tik =1
8 h 1/2 ' . ‘o 8 . .
T v % E [m] q [aq,\Vi,\(Sz) - aq,\V,;,\(Sz)] + Z:lguBB7 - S (2.46)

where Saij =Sz, Sy, S, or the identity. What we have done here is replace the sum over
single-ion spin Hamiltonians and the exchange/superexchange terms with a giant spin

Hamiltonian Hgg = G %20 Sai, Sa‘.z...Sa,.m. As we discussed in the single ion case, the

spin Hamiltonian can contain in general terms up to 25* order in spin operators, which
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in this case is 20" order. We can however reduce the total number of terms signiﬁcantly
in the case of F'eg, because the giant spin Hamiltonian must contain the symmetry of the
full crystalline lattice, which in the case of Feg is triclinic [23]. Note however that we
are not going to derive any of these terms. As we saw in the introductory chapter much
effort has been expended in trying to measure what the relevant couplings G are,
Unfortunately because there are so many of these, even after the crystal symmetry has
been taken -into account, most have been ignored as their magnitudes decrease quickly
with increasing order in S;. This is however quite dangerous as these small ignored
terms can contribute greatly to the physics, in particular to the magnitude of tunneling
amplitudes between different [mg > states of the giant spin (twenty one of which, ranging
for S =10 from | — 10 > to | + 10 >) [25].

The remaining terms are identical to their forms in (2.45). The only difference is that

now we must remember that each individual electronic spin is locked to the giant spin.

2.6 Investigation of the Giant Spin Hamiltonian in the Absence of Environ-

mental Couplings
If we completely neglect all environments in (2.46) and fix § = 5, 5, we obtain

H =G0 S, S, .S, +gupH-S (2.47)

Mg

We are going to digress somewhat at this point from our focus on Feg. We will in what
follows consider all possible crystal symmetries and not just the F'eg triclinic symmetry.
This we do because there are other similar molecular magnets (Mn12, for example) that
may have giant spin descriptions of this sort that possess different crystal symmetries

(for Mn,2 this is tetragonal [28]) and for this reason it is worthwhile to say some general

things about the description (2.47).
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Now as we discussed earlier, the spin Hamiltonian can contain terms up to 25 order
in the spin variables. It is however difficult to keep all of these terms in our description for
large S, and furthermore it is not clear that all of these terms can be directly measured
anyway. What is usually done is that only the lowest order terms in S consistent with the
crystal symmetry are kept, and all higher order terms are thrown away. In what follows
we shall follow this tack. We emphasize however that even if the higher order terms are
“small” they can still significantly affect the physics, in particular the amplitudes of the

tunneling matrix elements between states of the giant spin.

2.6.1 Exact Solution for Tunneling Matrix Elements via Diagonalization

We shall begin our study of (2.47) by exactly‘diagonalizing some particular subsets of it
and thereby extracting tunneling matrix elements as functions of {G}, |S| and H. Our
plan of attack is as follows. We begin in each case by choosing one of the seven crystal
symmetries so as to determine the allowed form of {G}. In the specific cases of the
tetragonal, orthorhombic and hexagonal syétems we then diagonalize a truncated version
of the resultant Hamiltonian for a range of externally applied DC fields, for central spin
values |S| = 1, 10 and 15. In each of these cases we assume the existence of an easy axis
which we identify with the z axis. We calculate the tunnelling splittings between the two
lowest lying states (| +S > and | — S >), corresponding to the giant spin pointing in the

+2 directions, which we then plot as functions of the parameters in the bare Hamiltonian.

The Cubic System

A crystal with underlying cubic symmetry possesses a spin Hamiltonian obeying the

symmetries

[S: =Sy Sy—= =S , [Se—=S: S:—> =S , [Sy—=S:. S — -85
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This restricts the allowed terms in the spin Hamiltonian. If we only include the two

lowest order terms obeying these symmetries the giant spin Hamiltonian can be written

[96]
H=-D(St+58)+S) +E(SS+SE+ S +3052525?) + gusS-H ~ (2.48)

The case of cubic crystal symmetry is somewhat anomalous in that it is the only case
we shall encounter where an axis (easy or hard) is not singled out by the crystal field—as
we see from the symmetry requirements, all three axes in the crystal are equivalent. We
shall not say more about this crystal symmetry. However, it is worth noting that the
physics of cubic molecular magnets should be particularly entertaini_ng because of the

lack of an easy/hard axis.

The Tetragonal System

In systems with tetragonal symmetry, the symmetries
[Sz =Sy Sy— -85 ,[S:— -5} (2.49)

must be preserved (see figure 2.2). Keeping only the lowest order terms gives a spin

Hamiltonian of the form
H=-DS?+ay(S% +8%) +gusS- H (2.50)

Shown in figures 2.3 and 2.4 are results of exact diagonalization of (2.50) for a variety of
parameter regimes. Note that in zero external field, if |S" | is odd the tunneling splitting
between the two lowest levels here is zero. This is known as Kramer’s degeneracy [47, 97],

and it arises here because there exists no path by which our Hamiltonian can connect

the states |S > and | — S > if S is odd.
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Figure 2.2: All of the unit cells (after Ashcroft and Mermin [138]). (i) Cubic, (ii) Tetrag-
onal, (iii) Orthorhombic, (iv) Monoclinic, (v) Triclinic, (vi) Hexagonal and (vii) Trigonal.

The Orthorhombic System
In systems with orthorhombic symmetry, the symmetries
[Sz: = =Sz Sy ——-S, S.——-5,] (2.51)

must be preserved (figure 2.2). Keeping only the lowest order terms leads to the Hamil-

tonian
H=-DS?+0a,(S%+5%) +gusS-H (2.52)

Shown in figures 2.5 and 2.6 are results of exact diagonalization of (2.52) for a variety of

parameter regimes.




Chapter 2. Effective Hamiltonians 55

0.0 0.0

|
boooL
e o
.
1
o
(=1
\

-3.0 -10.0
05 0.

[=d
=}
=}
nd
2}

0.0 0.0

-10.0 +
-10.0

-15. -20.
00 .5 00O

.0 0 .0 0.5

Figure 2.3: Variation of Ag_g with as/D for four different |S| values (clockwise from
top left, |§| =2, 6, 10, and 14); tetragonal symmetry. On the z axis is plotted a,S2?/D
and on the y axis log;, Ag_gs. Here we have taken the external field to be zero.
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Figure 2.4: Variation of Ag_g with H,/D for a4S?/D = 0.25 for four different lg | values
(clockwise from top left, |.S_" | =2, 5, 10, and 15); tetragonal symmetry. On the z axis is
plotted H,/DS? and on the y axis log;q As,-s.
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The Monoclinic System

Systems with monoclinic symmetry contain as a special case the orthorhombic symmetry.
Because of this the spin Hamiltonian for these systems must contain the orthorhombic

symmetries. In addition we shall have quartic terms, giving

H=-DS5*+ ay (Si + Sz) + a§+)5’i + aﬁ_)Sf +gupS-H (2.53)

The Triclinic System

Triclinic symmetry is obtained via a distortion of monoclinic symmetry. As such the
description of the triclinic case must contain the symmetry of the monoclinic case. In

addition, we pick up a diagonal quartic spin term;

H=-DS? - DySt + ay (5% + %) + 0{" 54 + {78 + gupS- A (2.54)

The Trigonal System

In systems with trigonal symmetry, rotations around the body diagonal are three-fold

symmetric.

H=-DS?+03{S:, 8% + 5%} + gupS- H (2.55)

The Hexagonal System
In systems with hexagonal symmetry, the symmetries
[S: = e8], [S, 2 eS|, [S. - —5.] (2.56)
must be preserved. This implies, keeping only the lowest order spin terms, a Hamiltonian
H=-DS? + as (Sg + SS) +gupS-H (2.57)

Shown in figures 2.7 and 2.8 are results of exact diagonalization of (2.57) for a variety of

parameter regimes.
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Figure 2.5: Variation of Ag_g with ap/D for four different |S| values (clockwise from
top left, |S| =2, 5, 10, and 15); orthorhombic symmetry. On the z axis is plotted ay/D
and on the y axis log,; As _s. Here we have taken the external field to be zero.

0.0

0.0

-5.0 L L L L . -10.0 L . L
00 05 10 15 20 25 30 0.0 0.5 1.0 15 20
0.0 0.0
-5.0
-100
-10.0
-15.0 ! -20.0
0.0 05 1.0 0.0 0.5

Figure 2.6: Variation of Ag_g with H,/D for aa/D = 0.25 for four different |§ | values

(clockwise from top left, |§ | =2, 5, 10, and 15); orthorhombic symmetry. On the z axis
is plotted H,/DS? and on the y axis log;y As —s.
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Figure 2.7: Variation of Ag_g with ag/D for four different |S| values (clockwise from
top left, |S| =2, 6, 10, and 14); hexagonal symmetry. On the z axis is plotted aS*/D
and on the y axis log,y Ag s. Here we have taken the external field to be zero.
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Figure 2.8: Variation of Ag_g with H,/D for a5S*/D = 0.25 for four different |§ | values
(clockwise from top left, |§| =2, 5, 10, and 15); hexagonal symmetry. On the z axis is
plotted H;/DS? and on the y axis log,q Ag —s.
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2.6.2 Tunneling Matrix Elements via Perturbation Theory

The calculation of tunneling matrix elements via perturbation theory in the terms that
break the easy axis symmetry (2 <> —2) is quite straightforward as long as there is only
one such term in the Hamiltonian. For these cases we shall just state the results, all of

which have been previously calculated elsewhere [70].

Hamiltonian As_s

’

5 (25)!
—DS? + oy (52 + 52) 45-113152-(1[()5—1)!]2
af/?(25)!
—-DS? + oy (S +52 ) 45—2DS/42‘1([(S)/2—1)!]2
ad/3(2s)!
—DS? + 05 (S + S°) 45—3D5f3—1([(s)/3—1)!12

-DS?+ H, (S++5-) D? }{if(22§g-1)!]

25/3
2 3 3 oy " (25)!
“DSZ + a3 {Sza (S+ + S—)} Dzs/a—1635/3—-2[(5/3_1)!]2

Table 2.1: Perturbation theory results for some simple Hamiltonians, from [70].

When the number of symmetry breaking terms in the Hamiltonian is increased, the
solution for A using perturbation theory becomes a little more complicated. This is

because of the competition between these terms in deciding which are the preferred

paths between the low lying states.
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2.6.3 Tunneling Matrix Elements via WKB Methods

It has been shown [25, 26] that the Hamiltonian
H = -DS? + o (S% + 5*) (2.58)

leads to

Ags_s= (2.59)

D

s

DS (QakSk‘2)2S/k
as long as 0;S*¥ < DS? and the ambient energy F is such that E < DS2.

2.6.4 Tunneling Matrix Elements via Instanton Techniques

The final approximate method of solution for tunneling matrix elements in spin Hamil-
tonians that we shall consider involves using instanton techniques. We will explicitly
perform one such calculation in section (2.8), obtaining the following form for an or-

thorhombic (ie. easy-axis easy-plane) Hamiltonian (see (2.52))

26

AS,—S = 7_;53/2(D - 2a2)3/4a§/4 exp [—S

D=2 ] (2.60)

Qg .

The same type of procedure may be followed in principle with any spin Hamiltonian
that possesses well-defined semi-classical trajectories between its minima. However in
practice one runs up against problems with all but the easiest quadratic spin terms. We
believe that it is possible to derive forms similar to (2.60) but have left this task to future

investigations [98].

2.6.5 Comparison of Approximate Methods to Exact Solutions

In order to give some idea about how effective these different approximation schemes

actually are, we now compare the results of the preceding sections to the exact results

for the tetragonal and orthorhombic crystal symmetries. Shown in figure 2.9 is the
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304 |

Figure 2.9: Comparison of perturbation theory, WKB results and instanton results to the
exact solution for the tunneling splitting between the two lowest levels of the Hamiltonian
of orthorhombic symmetry with S=10. Plotted on the horizontal axis is a3/D, and on
the vertical axis log;y As—s. Legend: Black, exact solution; Green, instanton solution;

Red, perturbation theory and Blue, WKB.
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Figure 2.10: Comparison of perturbation theory and WKB results to the exact solution
for the tunneling splitting between the two lowest levels of the Hamiltonian of tetragonal
symmetry with S=10. Plotted on the horizontal axis is a4S?/D, and on the vertical axis
log,o As,-s. Legend: Yellow, exact solution; Red, perturbation theory and Green, WKB.



Chapter 2. Effective Hamiltonians 62

comparison for the orthorhombic case. Here we see that, as we could have expected,
the instanton solution fails quite spectacularly if ay/D is small. This is simply because
when we calculated our instanton action we assumed that the fluctuations around the
semi-classical paths were small, which of course they aren’t if ap/D is small. When
ao/D is large, the instanton solution is quite good. The WKB solution we see is quite
bad. It turns out that the functional form in ay/D is correct but the prefactor is not.
Perturbation theory works quite well for the entire range of ap/D < 0.5 studied.

We next turn our attention to the tetragonal case, shown in figure 2.10. Here we see a
similar story. The WKB solution gets the functional form correct but again the prefactor

is wrong. Perturbation theory works quite well in the small oy/D regime.

2.7 Back to the Full Hamiltonian—Separation of Tunneling Energy Scale Us-

ing an Instanton Technique

As was discussed in the introduction and to a lesser degree in section (2.6), it is simply not
feasible to measure ail of the non-zero components of the tensor G120 experimentally.
Because of this what is usually done is that the lower order terms in -S; allowed by crystal
symmetry are kept and the rest of the terms thrown away. The coeflicients of the kept
terms are then used to fit experimental data.

In the case of the Feg spin Hamiltonian, the form that we shall adopt is
Hgs = G®1+%n8; .S, = —DS? + E(S% + S2) + C(S* + S%) (2.61)

This form, with D = 0.292K, E = 0.046K and C = —2.1-107%K, is good enough to
accurately fit both the period of the “Aharonov-Bohm” oscillations and magnitude of
the tunneling splitting [51] in recent experiments. Note however that it is clear that a

large number of terms have simply been chopped off the “true” spin Hamiltonian (for

example, even the quartic diagonal spin term has not been included).
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The effects of thermal phonons and polaritons at low enough temperatures can be
completely neglected [20]. This is because processes involving these bosbnic modes scale
like their respective densities in the crystal, which are vanishingly small at low tempera-
tures. If we are in the “quantum regime” demonstrated by Sangregorio et.al. [14] we are
at temperatures less than ~ 360 mK, and therefore kgT < DS [20]. We therefore write

the quantum regime Hamiltonian in the form

H = -DS?+E(S2+8%)+C(S* +5%) +gugH - S

8 ’ N

+ 3 Gnyhtn [APPSEIE + RPPHLIE + 3 gooptnH - I
p:l k=1

+ %8 [28: MEBSLIE 4 — €9k yhas ]
= lzlgnkﬂn Ik Paip GIk(2Ik—1) aB
Bokig SN Gndn [ 7 arf s (T

+ oy S (L B = 30 - ) (T - )] (2.62)
ar S21 ik

There still remains one feature of (2.62) that we can take advantage of in order to simplify
it. An examination of the relative strengths of the terms in (2.63) reveals that the largest
term is the single-molecule anisotropy term DS? in the spin Hamiltonian which is of the
order of 29 K. All the other terms are small compared to this. We therefore see that
if all ambient energies (primarily the lattice temperature and external field) are much
less than the gap to the first excited level D(S? — (S — 1)?) the giant spin will only be
able to access the two lowest energy levels S, = £5. At this low energy scale we shall
define our final low energy effective description, within which the giant spin is mapped
to a two-level system parametrized by a Pauli matrix 7, where 7, = X1 corresponds to
S, = £S5 respectively. This description will be valid in the quantum regime T' < 360 mK
(14].

There is another case of interest where this mapping may be performed. If an external

longitudinal field H, is applied to the system, the effect is to bias the wells drawn in
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Figure 2.11: Z-projection of spin versus energy from Hgg for the Fleg system. The region
of validity of the mapping to a two-state system is the region where excited states are
forbidden (this region in shaded grey in the above).

figure 2.11. If the applied field is strong enough, it can bring to resonance one of our
original states and a higher-energy state on the other side of the barrier (for example,
the application of a positive H, could lead to a resonance condition between |+ 10 > and
| — 9 >). In this case, the dominant tunneling dynamics in the system still involve only
two levels. However, one must exercise caution here, as the lower-lying states (in this

example, | — 10 >) are connected to the two primary states by several mechanisms, most

importantly phonon emission taking | — 9 > to | — 10 >. Because of this complication,
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in what follows we shall explicitly consider only the case where the externally applied
longitudinal field is such that H, < DS and only the two levels | £ S > are involved,
keeping in mind that in certain circumstances we may be able to generalize our results
to larger values of H,.

The dynamics of 7 in this regime are solely the product of tunneling from |S >+
| =S >. This observation leads to a natural separation of contributions coming from
terms in (2.63) that are diagonal in S, (and therefore are not involved in tunneling events)
and terms that are not diagonal in S, (and therefore coming into play only when the
giant spin tunnels). This separation is helpful because it will turn out (we will show this)
that the time scale for tunneling physics = A~! is much smaller than the time between
tunneling events = Q5! [20]. To see why this separation is helpful, consider the following
argument.

Let us imagine a likely trajectory for the excess spin S(t), assuming an initial condition
corresponding to S (0) = +S 2. We assume that the time between tunneling events is
much longer than the time over which tunneling occurs. We therefore expect the central
spin to evolve dynamically in a similar way to that shown in figure 2.12. This “separation
of scales” allows one to consider the effective description separately in two different
regimes; one in the regions between tunneling events and one during the tunneling. The
regime between tunneling events we shall refer to as the “diagonal” region (as only terms
diagonal in S enter into play) and the contribution of these terms to the final effective
description we can simply read off our equation (2.63). We find under these circumstances

that the diagonal contribution can be written

5 A 8 N+8 A
H® = o#, Zl [(i)pgn,,un lA”"’I}; + kzl My I}s‘” + gupSH.?,
pP= =
8 ; N L. N eQ -
pef 1 17 ncbtnH - I AT A,
+ pglgnp;u'nR a,@+kz=:1.g kﬂH k+/§l61k(2lk_1) af
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2
+ o > g’“f’“ [It Ty — 3L - P ) (L - ﬁk)] (2.63)
Ar (% Tik

where (%), is shorthand for the direction in which the p** ionic spin is pointing (see
figure 2.1). Our labelling system has (+), = 1 for ionic spins {p;} = 1,2,4,5,6 and 8
and (&), = —1 for spins {p;} = 3 and 7 when the central spin is “up” (that is, 7, = +1)
with signs reversed if the central spin is “down”.

We may rewrite this in the form

147
D _ 2
= (5)

8

~(le) T N..(1) > 1-17, S ~(2c) . T N~(2) 7
S L N & + (50 [T e
k=1

=1 p=1 k=1
i eQk
SH.# Vkaﬂlk
+ gppSH,?, + kg [+—-—————61k(21k ) af
2
4 Mot )y gnlgnk [Iz Ty = 31 - Fu) Uk - flk)] (2.64)
ar 5 Tk
where
—(1lc 5 Z [0
T = 2 Gy (£)p [A + RPH, | (2.65)
. o 2
71(120) - Egnpﬂn(i)l’ [_Ap + RpaﬂHa] (2.66)
. - 5 9 z
7}(61) = ’YIE:? + §gn,,l£nHﬂ = §gnkﬂ'n LZ Mpkﬁ - Z M;’f +H’ (2.67)
€{p+} re{p,}
o a5 5 .
T =8 + 5 = 20, pin !_ > M+ ¥ M+ HP (2:68)
pe{pt} pe{pi}

The notation here is such that the 3** component of the expressions on the right corre-
sponds to the 8t component of the vector on the left.

One can think of the expression (2.64) in the following way. There are two electronic

spin configurations (1,2) that correspond to before (1) and after (2) the central spin
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complex flips. In each of these configurations, each nuclear spin in the system feels a

magnetic field coming from the ionic spins and the externally applied field. In the above

expression, these fields are represented by "y'k , "y',(clc), '7',(62) and ¥ "(2 ). The sign changes in
going from '7,(c ) 5 'y,(f) and 7 "(lc) — f'y',(fc) come from the fact that the central spin object

has reversed its direction along the easy axis.
One may write (2.64) in a more transparent fashion by defining unit vectors
S(1) , (2 (1) (2
=10, 70 0 T D00 '
6" + 7| Ve — |

for k labelling the ligand spins £ = 1..N and

—(2 (1 —(2
mkzu A ks (2.70)
(1 (2 ’ (1 —(2 :
1789 + 529 1739 — 729

for k labelling the possible 5" Fe nuclear spins k = N + 1..N + 8. We also define energies

- (2
wp = Telgmunl¥? = 721, wib = Lelgapal 7 + 57 (2.71)
for ligand spins £ = 1..N and

—4(26) |

(2
wll = | L\ gny i |78 — 7Y , = [Tkl gn )7 + 729 (2.72)

for " Fe spins k = N + 1..N + 8. With these we can write

N+8 w.L -

H> = % [71'“ mk+5w||1k°lk] + gupSH.,T,
k=1
N

+

eQk kaB 1k Pol% <= niIn,
|4 I I — 3(I; - 7)) (I
=1 [GIk 21, - 1) Iaﬂl t sz 3 [ % — 30 - Fu) (I - Tzk)]

bl

(2.73)

This form is similar to that derived by Prokofiev and Stamp [20]. It differs in two respects.

Firstly, it shows explicitly what the energies wu, wi- and unit vectors i, [, are in terms

of parameters in the higher energy descriptions (and allows us to calculate these-we shall
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-S>

[+S> [+S>

Figure 2.12: Typical evolution of the projection of the excess spin S (t) along the easy-axis.
We see two regimes; one where S evolves without tunneling (diagonal in 7), and one where
S tunnels from | + S > | — S > (off-diagonal in 7). Note the separation of scales; the
time between tunneling events is much greater than the tunneling time.

do this in the next chapter). Secondly, it includes the effect of quadrupolar couplings
between higher spin nuclei in the ligand bath and electric field gradients in the molecule.

The “off-diagonal” contribution to the effective Hamiltonian is somewhat harder to

extract, and a different approach will be required.

2.8 Off-Diagonal Terms and the Instanton Method

A method has been developed by Tupitsyn et.al. [74] that allows the extraction of the
“off-diagonal” terms in the effective Hamiltonian, ie. those that act when the central spin
object tunnels. Two objections have recently been raised which question the validity

of this method [101]). In this section we shall review the method and point out the

objections.
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2.8.1 Review of the Method of Tupitsyn et.al.

In the effective description (2.63) we have reduced the Hilbert space of the central degree
of freedom down to dimension D = 2. These states are collective objects of the form
S = > S;; that is, they are formed of electronic spins that have locked together. In the
approach to the Feg molecule that we have adopted, we have chosen a model where all
the electronic spins lock together such that each lies parallel or antiparallel to the easy
axis. We shall in what follows treat this collective state as a spin 10 quantum rotator,
pointing out when this description must be modified because of the “true” eight spin
nature of the object.

The states | > and |3 > are collective states with o = |+ S > and 8 = | — S >,
ie. referring to the central spin “pointing in the up/down directions”. The transition

amplitude between these states can be defined to be

Lap(t) = /

|a>

%> D(0, 6) exp (- /0 “dr (Lo(r) + LN(T))) (2.74)

where Lo(7) and Ly(7) are the Lagrangians corresponding to the bare spin Hamiltonian

plus the external field term
Hy=-DS?+ E(S2 +S2)+C(S* +5*) +gus §- H (2.75)

and the contributions from the nuclear spins respectively. The spherical angles 8 and ¢

are introduced so as to characterize S in the standard way; that is,
S; = |S|cospsing , S,=|S|singsind , S, =|S|cosf (2.76)

If we assume that the “bounce time” between minima ;' is much smaller than the
time between transitions Ay, the evolution operator connecting the two minima will be

given by

(BYP) = Talt) ,  (a#B,9" <t< AT (277)
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where HV? is the non-diagonal part of the effective Hamiltonian that we are looking for.
This means that in order to calculate HV? it suffices to calculate T'y4(t), and this we

can attempt to do by solving for the instanton (semiclassical) solutions of (2.74).

2.8.2 The Tunneling Lagrangian

In the calculation that follows we shall explicitly use the easy-axis easy-plane spin Hamil-

tonian, vis.
Hy = —~(D ~ 2E)S? + 4ES? (2.78)

However, the tactics we employ here can be used for any spin Hamiltonian admitting
clearly defined semiclassical paths between the minima | > and |3 >. Note that this
spin Hamiltonian is equivalent to the one experimentally obtained for Feg if the quartic
spin terms in this latter are neglected. Using the relationship S? = SZ 4+ 52 + 57 we can

show that (2.78) is equivalent to
Hy=-DS? + E(S2 + 52) (2.79)

This truncation is performed simply for convenience, as inclusion of the quartic terms
makes the analytic calculations that follow very difficult. As we discussed earlier in
this chapter, the “true” spin Hamiltonian contains many terms that are inaccessible
experimentally, and therefore dropping the quartic term simply emphasizes the point
that in using a form like (2.78) we really are using a phenomenological description-the
effect of dropping higher order terms on the amplitude of tunneling matrix elements
can be drastic [164]. This being said, what is important in this case is the instanton

trajectory, and this is not expected to be strongly affected by higher order terms [74].

For the easy-axis easy-plane model (2.78) one can show that the equations of motion
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are
i Osin @ + 4ES sin?0sin2¢ = 0 (2.80)

and

D —-2F
4F

$sinf — i4ES( + cos® ¢) sin 20 = 0 (2.81)

Solutions of the classical equations of motion are simply

_ z ) -1 D - 2E
o= Ul sinh 1B (2.82)
and
. 1 D -2F
= si = — Q=14 i inh™* 2.
6(t) = sin8(t) coshet E S sinh [2 sinh 1B (2.83)

where 1 = £ labels rotations clockwise and counter-clockwise in the easy plane. Now in
the standard treatment, one assumes that the classical equations of motion are attractors
in the sense that a small perturbation away from these costs action. If this is true then
one can perform a gaussian integration over small fluctuations away from the classical
equations of motion in the manner suggested by Tupitsyn et.al. [74].

However it was recently pointed out by Unruh [101] that if we perturb the variable ¢

in the equation of motion (2.81) we obtain

. D-2F
6¢ = —8ESsin(2sinh ™
¢ 8E S sin(2 sinh 1B

)cosf 6¢ - (2.84)

Now we see that as long as cosf > 0 any perturbation of ¢ is attracted to the classical
solution. However we see from our solutions that cosf changes sign at § = 7 /2. Thus it
would appear that at this point the variable ¢ is pushed away from its stable point. If

this is true it brings into question the validity of the gaussian integration technique.
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2.8.3 An Assumption is Made

In what follows we shall make the assumption that we may perform gaussian integrations
over small fluctuations in ¢ around the solutions of the classical equations of motion. As

Unruh has pointed out [101] it is not clear that this assumption holds even in the limit

D-2F

&~ < l-the case treated by Tupitsyn et.al. [74]. Furthermore in our case we

where
have that Qf;—E = 2.67. That this number is large means the potential that holds ¢
close to the classical solutions is not very steep, so that the assumption that gaussian
integrations can be performed is questionable (however our results of comparing the exact

solution to the instanton solution for the tunneling amplitude show good agreement in

this case-see figures 2.9, 6.1 and 6.2).

The Formal Calculation
Explicitly the Lagrangians appearing in (2.74) are

Ly = —iS¢fsinb + (D — 2E)S?sin? 0 + 4ES?sin? 6 cos® ¢

— S(Hgsin@cos¢ + H,sinfsin¢ + H, cos0)

and

8 N
Ly = Y Gngbtn [APPSEIG + RPPHLIG) + Y g itnH - I
1

= k=1

N [8
MeBgp [k eQx kaf gk
" lfz_:l p=1gnkﬂn pk Salp + 61 (21, — 1)V of

2 N
§ Mok Iudn [Il_Ik_3(Il.flk)(1k.,a,k)] (2.85)
AT k2 Tik

We shall assume that the instanton bounce time Q! is such that ;' < T5', where

T, ! is the time scale over which the nuclear-nuclear flip-flop processes mediated by the

last term in the above expression occur. In this limit, the nuclear-nuclear term provides
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a static bias field acting on each nucleus and therefore we can rewrite our Langrangian

in the form

8 N
Ly = 3 Gnghtn [APPS2IS + RPPHPIE) + 3" go oy - I

p=1 k=1
+ f} i G i MEPSPTE + — 2k _ykas (2.86)
Sla™ T T 6L (21— 1) of '

where now the static field at each nucleus is given by the sum of the external field plus
some contribution from the nuclear-nuclear term.

In our model, each electronic spin is locked to the central spin. This means that

l

—

S, = (i),,ﬁ'—%' (2.87)
S|
and therefore

8 N 8

Z gnpUnApaﬂSgIg + Z Z gnk/‘nM:kﬂSgI[l; -

p=1 k=1p=1

Sa Apaﬂ IP Apaﬂ /4 al Ik Maﬂ af
1 GnpHin E B~ Z Ig +Egnk“n ] Z pk Z M

€{ry} pE{p} k=1 €{p1} re{ps}

(2.88)

2.8.4 Solution for the Free Instanton Trajectory

We assume that fluctuations in the variable ¢ are small in our model. This will only
strictly be true for 4E/(D — 2E) large (see figure 2.9). In our case we have seen that
4E/(D — 2F) ~ 0.37. Looking back to our comparison of the exact solution with the
instanton solution for orthorhombic symmetry we see that in this regime the instanton
solution is off by about a factor of two from the exact one in the determination of Ay.

Nevertheless we shall adopt this method in this case. Doing this allows us to perform

a Gaussian integration over ¢. This will leave us with an effective description in terms
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of only one path-valued parameter 6(7) which is the angle between S and the z axis
during the instanton trajectory. In the case where the giant spin is not coupled to the
environmental spins and there is no external magnetic field it is known that this effective

description reduces to (here we include only terms that affect the equations of motion)

[75]
S? . —
Leff(g) = Zﬁgz + Dsin’ 6 (289)

where we have defined E = 4EY,|S,]> and D = (D - 2E) Y, |5,|2, following [75]. The

classical equation of motion is readily found from (2.89) and is

0 = sinf(r) = 1/ cosh(Qp7) ,Q ==VED (2.90)

2
There are two things worth noting here. First is that the form of the instanton after
the gaussian integrations have been performed is the same as the bare classical form
with renormalized €)y. Second is that the parameters D and E depend on the fact
that we are really dealing with an eight spin object. In the case of a spin 10 object,
E = 2ES? = 200E, while for us E = 2E¥,|5,|? = E - 8 - 25/4 = 100E; likewise for D.
Substituting this extremal trajectory into the effective Lagrangian and integrating over
T gives for the instanton action

D -2F
4F

Aeff=A0+i’l77TS , Ag=2S

where 7 = =+ corresponds to clockwise and counterclockwise paths respectively. Note

that neither the Haldane phase nwS nor Ay depends on the eight spin nature of the

collective central spin [75].
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2.8.5 Inclusion of the External Magnetic Field and the Nuclear Spins

We now make the assumption that the applied magnetic field and the couplings to the

environmental spins are weak. Specifically we require that

Il 1 7
Wi, Wi, |H |
— << 1 <<l ,— <x1 2.91
Qo " Qo " Qo ( )

It is known [74] that the modifications to the instanton trajectory calculated above (2.90)
coming from the external field and the spin bath first appear to second order in an
expansion in powers of £/ where £ is one of w,lcl, wi or the external field magnitude
|H|. This means that if we are only interested in first-order corrections due to these
effects (which we are) we can neglect these and use the trajectory (2.90) in the presence
of the external field and the spin bath (as long, of course, as the conditions (2.91) hold).
It must be noted here that the validity of this approach has been questioned [101]-
in particular the assumption that the trajectory of the central spin responds to second
order in the external fields.
Substitution of the extremal trajectory into the general effective lagrangian and inte-
grating over 7 yields the following effective action,
N+8
Aes = Ao +inmS —inAg -H+n Y A% - Ii (2.92)
k=1
where Ay is the contribution due to the external magnetic field A and the fl‘fv p terms

are the contribution due to the presence of the environmental spins. Explicitly these are

2
;S TIkB (2.93)

B = ron || £ - ] -oP2E | 2 iz > iz |

€{p1} pE{p} €{p1} pe{p,}

(2.94)
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for £ = 1..N representing the ligand nuclear spins and

/D —2F
APY8 _ pzf3
1 n A

for k = N + 1..N + 8 representing the 3" Fe ions. In both cases the 3% component of

- St
Ayp = (i)k4—QOgnkﬂn

(2.95)

the tensors on the left hand sides are identified with the 3% component of the vectors
on the right hand side. These expressions should be compared to equations (2.27) and
(2.28) in [20], noting of course that here the hard direction is the x direction whilst in
[20] it is the y direction. Aside from this the only differences here are that the terms due
to the presence of the nuclear spins have been explicitly written in terms of parameters
in a higher energy Hamiltonian and the nuclear spins can have arbitrary spin numbers.

The tunneling splitting in zero field A, is given in this instanton picture by

[3A
A() = QO 2—7‘_0 exp(—AO) (296)

As we have seen earlier, this expression for Ay is off by approximately a factor of two
from the exact solution for (D — 2E)/4E ~ 0.37 (figure 2.9).
As discussed previously, for times 5! << t << Ag!, the relationship between the

transition amplitude and the off-diagonal part of the effective Hamiltonian is

HND = % (7-T4(¢) + hec.) (2.97)
where
FlT(t) = itAo Z exp(—Aeff) (298)
n==

and 7_ is a Pauli lowering operator in the subspace of the two-level Neel vector. Using
our expression (2.92) for A.f; and the criteria (2.91) allows us to write the off-diagonal

part of the effective Hamiltonian as

N48
HNP = 2A07_cos(®—1 Y AN p-Ix) + he. (2.99)
k=1
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where

®=nS—Ay-H (2.100)

2.9 The Final Single Molecule Effective Hamiltonian

As a result of all the above considerations we find that the form of the single molecule

effective Hamiltonian is

NA8 [, . 7 N+8 .
H =) [“;—Ik - 50)ka lk] + gupSH, %, + 20¢7_cos(® — 1 Y AX - Ix) + hc.
k=1 k=1

- er ka u 2 = = =
— ﬂ k Olu’n gmgnk . _ I LA I A 2 1 1
Z [GIk CL-1)" Iaﬂ] t ar sz =) I+ B = 3(L - ) (T - )| (2.101)

At this point we reiterate that objections as to the validity of the instanton calculation
have been raised [101]. The term that is affected is the off-diagonal constribution. We
shall find later on that the predictions that we obtain from the use of this term match

both exact diagonalization and experimental results extremely well in the low field regime

that we are considering. We treat this as evidence (but certainly not proof) that the

approximations made in the instanton calculation are valid.




Chapter 3

Nuclear Spin Couplings in Feg and the Isotope Effect

Here we present our results for the quantities ”'y',(c? and f'y',(jg) (for definitions see (2.67) and
(2.68)) in Feg, which represent the dipolar fields due to the Fe®* ions at the k* nuclear
spin before and after the central spin complex tunnels respectively. We are going to do
this using two different methods. The first will treat each Fe3* ion in the molecule as a
point magnetic dipole (and as such we call this the “point dipole approximation”). The
second method we shall use is to model the actual spatial spin distribution near the iron
ions by using previously calculated Hartree-Fock wavefunctions for free Fe3* ions. This
“spreading out” of the magnetic dipole changes the values for the fields at the nuclei.

These fields (and therefore f‘y',(cl) and '7,(92)) are then used to calculate the dipolar coupling
energies w,lcl and wi. The conversion of field units to energy units is calculated using the
dipole-dipole interaction using known nuclear g-factors and assuming that the Fe3* g
factor is isotropic and equal to 2.

We then use {w,lcl} and {wgi}, together with known contact hyperfine couplings due
to the presence of 5" Fe3t ions, to calculate the orthogonality blocking parameter «, the
topological decoherence parameter A and the full linewidth of the nuclear spins W for
arbitrary isotopic concentration. We find that all these quantities show a significant

isotope effect.
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3.1 Units and Constants

We choose to work in the SI system of units. We therefore have that

Ho -7 N '
21 — .
in 0 T (3.1)
The Bohr Magneton is
o3 J
up = 0.9271203 - 10 T (3.2)
and the nuclear magneton is
J MH
tn = 0.505038 - 1072% = = 7.622462 z (3.3)
T T
The proton and electronic iron g-factors are
gpr =5.58510 , gpe=2 (3.4)

Here we have assumed an isotropic spin-only g-factor for the electronic spin of the Fe3*
ions [7].

The unit conversion factors we shall use are

20.837 GHz =1 K =1.3807-10"% J = 0.695045 cm™' =8.617-107° eV  (3.5)

3.2 The Point Dipole Approximation

Here we begin the problem of calculating the magnetic fields created by the iron ions.
The tack we use here is to treat the iron ions as point dipoles. This is a “first order”
approach which will only be useful if the spatial extent of the iron wavefunctions is much
less than the distance between the iron ions and the protons. We will attempt a more

careful treatment in the following section and compare its results to those obtained using

the point dipole approximation.
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3.2.1 Magnetic Field at 7 due to a “Point Dipole” at 0

The field at 7 due to a point dipole at the origin is

() =~ = 307 )7 (3.

where m is the magnetic dipole moment of the dipole at the origin, which in our case is

M = greftBS = greftBSS (3.7)
Therefore we find that
D P
) = — 4 EE [8 —3(3 - 7)7] (3.8)
which is equivalent to
1
() =4.636 =< [3(§ - 7)F — 5] T (3.9)

G

where 7 is measured in Angstroms.

3.2.2 Magnetic Field at 7, due to Eight “Point Dipoles” at 7z, ,

Define the vector joining the p** nucleus and j* iron ion to be 7,; = 7, — 7;. Then the
total field at the p** nucleus due to the eight iron ions in the point dipole approximation

is

[3(8; - 7pj)Pp; — 8] T (3.10)

where again distances are measured in Angstroms.

3.2.3 Isotopic Concentrations, Nuclear g-factors and Quadrupolar Moments

in Feg

In table 3.1 we present information on the properties of the various nuclei that can be
found in the Feg molecule. The nuclear magnetic moments are equal to gu,|I| and are

listed in units of nuclear magnetons.
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Species | Concentration | |I| | Nuclear Moment [1,] | Quadrupole Moment Q [10~24cm?]
H 99.98 1/2 2.79255 0
H 0.02 1 0.857354 0.00273
12c 98.88 0 0 0
BC 1.12 1/2 0.70225 0
uN 99.62 1 0.40365 0.02
BN 0.38 1/2 -0.2830 0
180 99.757 0 | 0 0
170 0.039 5/2 -1.8935 -0.005
180 0.204 0 0 0

% Fe 91.068 0 0 0
5 Fe 2.20 1/2 0.05 0
" Br 50.56 3/2 2.10576 0.335
81Br 49.47 3/2 2.2696 0.280

Table 3.1: Nuclear spin information for nuclei occuring in Feg. From [48].

The isotopic concentrations shown in table 3.1 are the “naturally occuring” concen-
trations. It is quite possible to alter these concentrations and as such in what follows we
shall treat the general case where the particular isotopic concentrations in the material

may be varied.

3.2.4 Definition and Evaluation of 7,&”, f'y',(f), wL' and wi

(1)

¥~ and '7,?) are the dipolar fields (in Tesla) at the point 7 before/after the central spin

flips respectively, for all nuclei k = 1..N + 8 (see (2.67) and (2.68)). Note that in the

absence of an externally applied magnetic field we have "y',(cz) = —'7,9) (the field due to the

central spin cluster just flips its direction when the central object tunnels).
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The energy of interaction of the nuclear dipole at 7 with the external field is

Ue = gntindi - Te

. 1+17, = (1) 1-— ~(2)
- 9 [gmu'nIk * Yk ] + T [gn/lnIk Yk ]
= 22500+ + 2L G - 37 (3.11)
As before we take
=(1) | =(2) =(1) =2
. Vet Ve N e
g = OO be = 0 @ (3.12)
V& | Ve’ — T |
Wl = Telgntnl 7 = 721, wit = 1 klgnpal 7 + 72 (3.13)

which gives an interaction term of the form (compare to (2.73))

1 A

Uy = %Ik my + —-—w Ik lk (314)

3.2.5 Contact Hyperfine Coupling Energies for 5" Fe3*

There is another contribution due to contact hyperfine interactions due to the presence
of any 5 Fe nuclei in the material. As was discussed in chapter 2, this coupling is of the

form (see (2.61))
Uf = Gn pn AP*P S I (3.15)

We are going to make the approximation in what follows that the off-diagonal elements

of the tensor AP*# are zero. This gives the form

Uy =wy I+ Sp (3.16)

where S’;, and I_;, are the electronic and nuclear spin of the p™* 57Fe ion respectively.

Similarly to what we did with the dipolar term we write, with .S_",(,l) and 5';?) the pth
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electronic spin before and after the central spin flips respectively,

P P
1+7, [ .» a1 1-17, ~ a0
= 5 [wpl,, . Sz(, )] [w;Ip . SI(, )]
(Uc — o — R — -
= 3 [, - (S0 + §@) + 7., - (8 — )] (3.17)
Define
S0 4 5@ . o _ 5@
=m0 b g g (3.18)
1Sp” + Sp”| 1Sp" — Sp’|
wlle = |Lwe|S - SP| ) wio = |L|ws|SM + SP (3.19)
Then we may write the interaction term in the form
wy© 2 ~c T cT jec
Uy = -1, g+ wlLy - (3.20)

The value of the field at the nucleus of a free 5" Fe3* ion due to polarization of the s
electrons by the outer shell 3d electrons has been previously calculated and was found to
be H, ~ 63 T [99]. If we take the nuclear g-factor of the 5" Fe ion to be g = 0.05 [166],

this gives a zero field longitudinal contact hyperfine coupling of
wle~48 MHz Vp (3.21)

These completely overwhelm the dipolar coupling energies w,lclz No1.N+s ad Wisn i1 vis
as the dipolar fields at the iron nuclei are on the order of 300 — 800 gauss (see table 3.10).

Because of this, it is easiest to think about the “diagonal” effects of the nuclear spins
in the following way. All nuclear spins in the molecule £k = 1..N + 8 are involved in
dipole-dipole interactions via (3.14). However, the 5" Fe nuclei k = N + 1..N + 8 also

are involved in contact hyperfine interactions which absolutely swamp the dipole-dipole
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interactions of the " Fe nuclei. Therefore the interaction term in our Hamiltonian is

N+8 w_L . # R ’
U= |25 i+ Zoply - Iy (3.22)
k=1 2 2

where it is understood that the terms for k = 1..N are the dipole-dipole terms (3.14) but

the terms for £k = N + 1..N + 8 are contact terms from (3.20).

3.2.6 Calculation of w,lcl and wi from Knowledge of Atomic Positions

In the Feg molecule, we know where all the atoms are in the molecule. This allows us
to calculate what the parameters w) and wi are, for k = 1..N, via the use of (3.10)
and (3.13) together with the knowledge of the directions in which the central spin object
points in the two lowest lying energy levels | + 10 > and | — 10 >. This last is calculated
as follows.

The central spin Hamiltonian for Feg, when truncated to terms of quartic order or

less in S, can be written in the presence of an external field H in the form
Hy=-DS?+E (82~ S2) +C(S} +S*) + gupH - § (3.23)

as discussed in chapter 2. Here we take D = 0.292K, F = 0.046K and C = —-2.9.
107K in keeping with the findings of Wernsdorfer et.al. [51]. If we write S in spherical
coordinates S; — Ssinfsing, S, = Scos¢sinf and S, — S cosf and substitute these
into (3.23) it is then a simple exercise to find the angles (4, ¢) and therefore the quantities
§; for all the electronic spins in the molecule as functions of H. We assume that the
individual electronic spins are locked to the direction in which the effective central spin
is pointing, with relative signs given by taking | + 10 > and | — 10 > to correspond

to the Fe** spins being {1,1,4,7, 1,7, 4,1} and {1, 4,1,4,4,4, 1,4} respectively, where

the labelling 1 — 8 corresponds to that in table 3.2. All coordinate positions are in

Angstroms.
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We present information on the zero field values of the le in the following manner. We
label all the nuclei in the molecule such that the hydrogen atoms are tagged 1..120, the
bromines 121..128, the nitrogens 129..146, the irons 147..154, the carbons 155..190 and
the oxygens 191..213 (the positions of each of these are given in section‘ 2.5). For each
nucleus there are a variety of possible isotopes. Shown in figure (3.1) are the values for
the zero field w,lcl shown as functions of nucleus label for 'H, ®Br, 14N, 5 Fe, 3C and
170).

This information is presented in a different manner in figures (3.2) through (3.13).
In these figures we bin the hyperfine values, in each case assuming that the isotope in
question represents 100% of the element in question (for example, in figure (3.2) we

assume a 100% concentration of ' H).

3.2.7 Calculation of the Orthogonality Blocking Parameter «

The Prokof’ev and Stamp theory [20] contains a parameter x which is defined to be

N+8 '
k=—In [H cos ﬂk] (3.24)
k=1
where
cos 26 = —AR) - A (3.25)

Since we know what the fields ‘y‘,(cl) and ’7122) are, we may calculate the §; and then . If

the nuclear spin in question is a 5" F'e then because the contact hyperfine field is so much

larger than the dipolar field (63 7" and ~ 0.3 — 0.8 T respectively) we can take
cos 26, = -5 . 5@ (3.26)

Note that for all nuclei §; is a strong function of the externally applied DC magnetic

field. Shown in figures 3.14 and 3.15 is « as a function of a DC field applied in the z
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Nuclear Label X y | z |

Fel 5.737857 | .064911 | 1.58115
Fe2 6.912112 | -2.210346 | 3.04665
Fe3 6.656427 | 3.323106 | .33915

Fe4 5.327499 | 2.408451 | 3.17265
Feb 5.198078 | -2.412666 | -3.16665
Fe6 3.616621 | 2.196296 | -2.98815
Fe7 3.888089 | -3.321701 | -.29265

Fe8 4.848748 | -.043695 | -1.54365

Table 3.2: Positions of the iron ions, units in Angstoms.

120.0 T T T T T T ¥

90.0 r 5

Z

60.0 - 4

w_k||, [MH.

30.0 0l 4
l ot ’ i
‘ ]\“ “‘n',\ !
0.0 WA AL AT ‘|H HH‘““H'I |l|"l£il!£||||h’£ll ki ‘ﬂ.;|||.'llf".:i:.-;i",
60

~o 30 90 120 150 180 210
Nucleus Label

Figure 3.1: w,L' for all nuclei in Feg. Labeling is as indicated in the text. The dots
represent values for 2H (labels 1..120), 8 Br (labels 121..128), and >N (labels 129..146).
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-

LU Nt

0.0 5.0 10.0 15.0 20.0
w_k|| [MHz], Binned in 0.1 MHz steps

Figure 3.2: 'H, emphasizing low end of the spectrum.

WL 1]

30.0 60.0 90.0 120.0
w_k|| [MHz], Binned in 0.1 MHz steps

Figure 3.3: 1H, high end of the spectrum.
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AL L]

0.0 5.0 100
w_k|| [MHz], Binned in 0.1 MHz steps

Figure 3.4: 2H, low end of spectrum.

) [N -

0.0 20.0 40.0
w_k|| {MHZz], Binned in 0.1 MHz steps

Figure 3.5: 2H, entire spectrum.
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Number

0 1
0.0 5.0 10.0
w_k|| [MHz], Binned in 0.1 MHz steps

Figure 3.6: " Br, entire spectrum.

0
0.0 5.0 10.0
w_k|| [MHz], Binned in 0.1 MHz steps

Figure 3.7: 8! Br, entire spectrum.
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1

0
0.0 5.0 10.0
w_k|| [MHz], Binned in 0.1 MHz steps

Figure 3.8: N, entire spectrum.
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|

0
0.0 5.0 10.0
w_k|| [MHZz], Binned in 0.1 MHz steps

Figure 3.9: N, entire spectrum.
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w_k|| [MHz], Binned in 0.001 MHz steps

Figure 3.10: %" Fe, entire spectrum.

0 1
0.0 5.0 10.0
w_k|| [MHZz], Binned in 0.1 MHz steps

Figure 3.11: 13C, entire spectrum.
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w_k||, [MHz], Binned in 0.1 MHz steps

Figure 3.13: 170, entire spectrum.

0. 5.0 10.0 15.0 20.0
w_k||, [MHZ], Binned in 0.1 MHz steps
Figure 3.12: 170, low end of spectrum.
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direction for an Feg molecule with 100% concentrations of ' H, 8! Br, 14N, 3" Fe, 13C and
70. We shall call this material FeZ*®®. Note that the contribution to « from the presence

of 5 Fe is minimal because the minima of S don’t change much as functions of field.

500.0 T

~—— Total
Hydrogen

—— Bromine

------------ Nitrogen
Carbon

3000 | |~ Oxygen
-—— lron-57

400.0

Kappa

200.0

100.0

o =

0.0 <
0.0 05 1.0

H_x [Tesla]

Figure 3.14: The orthogonality blocking parameter k over a large range of external fields
applied in the z direction for the Feg*** material.

3.2.8 Calculation of E;

The quantity Ej is related to the spread in energy space due to the presence of many
nuclear spins. From (3.14) we see that in the absence of quadrupolar or contact in-
teractions and in zero external magnetic field the k** nuclear spin has 27 + 1 equally
spaced energy levels between :I:w,lc| /2. In the presence of an applied field the situation is
similar. The variance in the distribution of the energy levels for this nucleus is defined

to be 0> =< E? > — < E >? where E is the energy of the nucleus. If we make the

approximation that the probability of each level being occupied is identical (effectively
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Figure 3.15: The parameter « for small values of external field applied in the z direction
for the Feg**® material.

an infinite spin temperature approximation) then < £ >= 0 and

27+1 ” 27141 2] _ 2(7/ _ 1) 2
2 2 2
= <FE B = _—
7 Z P 2I+1 T ,zzl ( 21 )
= 2
Here p; = ﬁ is the probability of the i** energy level of the nucleus being occupied.

The total variance of the distribution of all nuclear levels is then given by the central

limit theorem as
N
=Y o} (3.28)
k=1

where N is the total number of nuclear spins. In the case of Feg this gives

o7
k7gBr

SERICIES P CHIES

kIH k793r
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52 (k) +5 2 (b )+ 2 (k)

ks1 kiay kisy

1gr
TR S
+ Z (wkwc ) +B Z (wkwo )+ Z ( Wkst e )
k13 k17 k 57 pe
+ ¥ ( . ) » (3.29)
k57Fe ‘
The relation between the halfwidth of the distribution W, Ey and & is found via
6—62/25'2 — 8_262/Eg — 6—62/W2 (330)
or
Ei = 45% = 2W? (3.31)
The full width of the distribution is
W = 2W = V2E, (3.32)

The width W is of course a function of the isotopic concentration in a particular Feg
sample. For example, if we pick the easiest case where we have 100% concentrations of
YH, ®Br, "N, %0, % Fe and '?C (we shall call this material Feg,) then we find, in zero

external field in the point dipole approximation, that

120 9
3wl T =71887.545 [MH2)?
k1

leZI

Z by, © = 7027 [MHZP
k7gB =1
2 18 | 9 0
< D, Wk, = 1818184 [MH2]| (3.33)

kia =1

which gives

Ey=268.6 MHz , W =3798 MHz=18.23 mK (3.34)
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What we have calculated here is an intrinsic linewidth due to spreading caused by the
presence of the nuclear spins in the molecule. Note that these numbers are sensitive to
which isotopic concentrations we choose for our molecule. This should lead to a clear
isotope effect in this intrinsic linewidth which is easy to calculate using our formalism
(it just amounts to changing the spin and nuclear moments for the new isotopes). For
example, if we replace all the hydrogen nuclei by deuterium (we shall call this material

Fegp), which has I =1 and g = 0.857354 p,,, we find that

120 120 2
kz_lw’“ﬂ ”3 kz_lw’“H ( 2.79255 (3:35)
1g= 2y=
which gives
Ey=69.06 MHz , W =97.67T MHz = 4.687T mK (3.36)

Note as well that because w,|c| is a function of external magnetic field (because the minima

of § are), the linewidth Ej is also a function of external magnetic field. Shown in figure
3.16 is the intrinsic linewidth as a function of a field applied in the z direction due to
specific isotopes for 100% concentrations of these isotopes (in other words, if the isotope
is 'H we are assuming that all the hydrogens are 'H; if the isotope is 3'Br then we
assume all the bromines are 3 Br, etc.). |

The addition of °" Fe to the mix significantly changes the value of the linewidth. This
is because the contact hyperfine coupling energies wi are large. Let us define the material
5 Feg to be identical to Feg, in every way except that every irén ion is a *"Fe ion; ie.
100% concentrations of ' H, “Br, N, 5" Fe, 12C and '%0. Then the contribution to the
zero-field linewidth coming from the contact terms is, via (3.29),

8 9 8
S Wi ~ 2304 MHZ? = 18432 MHZ? (3.37)
k=1

k=1 .

which is a significant fraction of the contribution from the protons (see (3.33)). Addition
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Figure 3.16: Intrinsic linewidth W due to particular isotopes as a function of H, for
100% concentrations of these isotopes. Note that w,‘cl and therefore W drops slowly with
field. This effect comes about because as the external field is raised, the two minima of
the central spin complex are forced closer together (no longer are they antiparallel). The
curve shown as “total” is the total result for a material containing 100% of the isotopes
shown.

of this term gives the linewidth
Ey=301.0 MHz , W =425.6 MHz = 2043 mK (3.38)

which is 1.12 times the linewidth for Feg,.

3.2.9 Calculation of Topological Decoherence Parameters ffﬁ, p and X

If we assume for the moment that there are no %" Fe nuclei in our molecule, then we
can see from (2.89) that all parameters can be calculated in the expression for A",i,,D.
In addition, if we assume that the contact interaction is of the form (3.16) then we can
calculate the general form for /_1"1“\, p- Furthermore, we see that these are not functions of
the external magnetic field, unlike the orthogonality blocking parameters. Because the

coupling energies wy are much less than the energy scale 2, all of the A",i,, p turn out to
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Figure 3.17: Intrinsic linewidth W as a function of H, for Fleg., Fesp and 57 Fes.

be small (see figure 3.18).
The topological decoherence parameter A [20] is given in this limit by

1 N48
A=o Y 1A%l (3.39)
2 k=1 '
This is found to be A = 4.45-107%, A\ = 8.87-107% and A = 1.38-1073 for the Fes,, 5" Feg
and Fegp materials respectively. Note that these are extremely small! A is roughly the

number of nuclear spins flipped per central spin tunneling event.

3.3 Using Free Fe?* Hartree-Fock Wavefunctions to Model Actual Spin Dis-

tributions

In this section we attempt to do a little better than the point dipole approximation. Here
what we shall do is instead of treating the magnetic dipole nature of the Fe3* ion as a
point we shall assume that it is “spread out” in a way dictated by the spatial spread of

the Fe3t wavefunction.
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Figure 3.18: Binned topological decoherence parameters |A % p| for all nuclei, assuming
100% concentrations of (clockwise from bottom left) LH, Br, 4N, 170, 3C and 5 Fe,
using the point dipole approximation. The bin width here is 0.0001; plotted on the z
axis is | A% ¥,p| and on the y axis “number of nuclei”. Note that the contribution to | A% Xl
from 37 Fe is almost entirely from the contact interaction.

Specifically, we are interested in the five 3d electrons in the Fe®* ion (its electronic
configuration is of course [Ar]3d®). In a free Fe3* ion, these five d electrons are spin-
aligned due to the Hund’s rule which asks for maximized spin angular momentum giving

a total spin of 5/2. We can write down what the field at a point 7 is due to a Fe** ion

at the origin; it is

5
o7 = Mo 37 N S N S S N
7(f) - 4771=Z1/d rwj( )1/11( )I 7—,l|3 m; |F_,,—.f|2(m1 [T T])(T T)] (340)
where
1.
m = gFe,uBS—'gFe,U'BE (3.41)

because the spin of each d electron is one half. Here the sum over j is over the five d
electrons, and the integration 7 is over all space. We assume that the wavefunctions

;(7') are properly normalized.
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Since the total angular momentum of the Fe3* in its ground state is zero, the spin
of the d electrons is distributed spherically and therefore we can approximate (3.40) by

the expression

97 = 2 [ ) s |~ - = D= 7)| (342

e

where () represents the spin distribution around the iron ion.
The wavefunction (7 ) for a free Fe** ion has been previously calculated using a
Hartree-Fock approach [100]. We can fit the numerical results of this calculation using

the form
W(r) = (A+ Br + Cr¥)r2exp (—r/d) (3.43)
where
A= —60.786097 ,B = 68.94202—;— ,C = —22.48757% ,d= 02827454 (3.44)

This is the form we shall use in the following. Note that it is not exactly correct as
immersion in the crystal will change the electronic distributions and therefore the spin
distribution. However it is clear that using the free Hartree-Fock wavefunction here will
give more realistic results than the point dipole approximation (it remains to see how
different these are).

The integrations in (3.42) are handled as follows. Instead of trying to do these ana-
lytically, we shall do them numerically using the following technique. We pick P points
out of the [¢(r)|? distribution to represent one iron ion wavefunction. This will be exact
as P — oco. Then _

P
0~ e p S [ g AN ) (3.45)
Convergence is reached for P ~ 80 for all nuclei (the closer to an iron nucleus a proton

is, the larger number of points are required for convergence). If the point dipole ap-

proximation were exact, then P = 1 would suffice (one point). Shown in figure (3.20)
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1s{ | \

Figure 3.19: Hartree-Fock results for the free Fe3* wavefunction.

is a comparison of the w,'cl values obtained using the point dipole approximation and

the Hartree-Fock method, using the Fef*®® material (100% 'H, 8 Br, N, 170, 13C and
S7Fe). We find that the lower energy nuclei are not affected by the change to the Hartree-
Fock wavefunction. Only the higher energy nuclei are affected significantly. This however
could be meaningful for several quantities of interest, primarily the intrinsic linewidth W
which is sensitive to the higher energy couplings. Shown in figures (3.21) through (3.32)

are the binned hyperfine values obtained using the Hartree-Fock wavefunction—these are

the HF analogues of figures (3.2) through (3.13).
We may recalculate x for the new fields generated in this approach. Shown in figures

(3.33) and (3.34) are the analogues of figures (3.14) and (3.15), using the Hartree-Fock
We may repeat our calcula-

wavefunctions instead of the point dipole approximation.
tions for the intrinsic linewidth as well. With our new field values the numbers for Feg,
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w_k||, [MHz]

Nucleus Label

Figure 3.20: Comparison of point dipole and Hartree-Fock methods; zero field w,lc' values
in Feg**. The Hartree-Fock results are shown as dots.

are, in zero external field using the Hartree-Fock wavefunction approximation,
120

kH '

5 9~ I 2
9 Y wy, =T121[MH]?

kgr=1
2 18 2
3 2 wh~ =180.93[M Hz]? (3.46)
kn=1
which gives
Ey=2589MHz , W=3662MHz=17.57TmK (3.47)

Note that the values obtained are quite close to those obtained using the point dipole
approximation. Note however that this did not have to be the case, as some of the

larger w,lcl increased and some decreased in going from the point dipole to Hartree-Fock

approximations.
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I
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Figure 3.21: 'H, Hartree-Fock, emphasizing low end of the spectrum.

11—l

0.0 40.0 80.0 120.0
w_kil MHz, Binned in 0.1 MHz steps

Figure 3.22: 'H, Hartree-Fock, high end of the spectrum.
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L

0.0 4.0 8.0 12.0 16.0 20.0
w_kil, MHz, Binned in 0.1 MHz steps

Figure 3.23: 2H, Hartree-Fock, low end of spectrum.

L

0.0 10.0 20.0 30.0 40.0 50.0
w_kll, MHz, Binned in 0.1 MHz steps

Figure 3.24: 2H, Hartree-Fock, entire spectrum.
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Figure 3.25:
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Br, Hartree-Fock, entire spectrum.
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Figure 3.26: 8 Br, Hartree-Fock, entire spectrum.
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Figure 3.27: N, Hartree-Fock, entire spectrum.
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w_kll, MHz, Binnedin 0.1 MHz steps

Figure 3.28: N, Hartree-Fock, entire spectrum.
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Figure 3.29: 5" Fe, Hartree-Fock, entire spectrum.

1' | |
0 L
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w_kll, MHz, Binned in 0.1 MHz steps

Figure 3.30: 3C, Hartree-Fock, entire spectrum.
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Figure 3.31: 70, Hartree-Fock, low end of spectrum.
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Figure 3.32: 70O, Hartree-Fock, entire spectrum.
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Figure 3.33: The orthogonality blocking parameter s as a function of H, in the
Hartree-Fock wavefunction picture.
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Figure 3.34: The orthogonality blocking parameter x as a function of H, in the
Hartree-Fock wavefunction picture, focusing on small fields.
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As before, we can redo this calculation with any isotopic concentration. Here we treat

the case where all protons are replaced by deuterium. This gives

120 120 2
3 S D-007352 4
o Chn T3 2a Yk \ 7379255 (3.48)
H= D=
which gives
Ey=6832MHz , W=296.62 MHz = 4.676 mK (3.49)

which is very close to the point dipole result.

Similarly to what we did in the point dipole case we compute the intrinsic linewidth
W as a function of H, for the three materials Feg,, Fegp and 5" Feg and show the results
in figure (3.35).

We conclude by recalculating the topological decoherence parameters. Using our new

field values we find that A = 4.23-107°, 8.73-107° , and 1.35- 1072 for the Fes,, %" Feg

and Fegp materials respectively. Values for |1¢T’fv pl are shown in figure 3.36.
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Figure 3.35: Intrinsic linewidth W as a function of H, for Fes,, Fegp and % Feg in the
Hartree-Fock picture.
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Figure 3.36: Binned topological decoherence parameters |A ~.p| for all nuclei, assuming
100% concentrations of (clockwise from bottom left) 1H, ™ Br, 4N, 170, 3¢ and SFe,
using the Hartree Fock approximation. The bin width here is 0.0001; plotted on the z
axis is |A% p| and on the y axis “number of nuclei”. Note that the contribution to IX’&, ol
from 57 Fe is almost entirely from the contact interaction.
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3.4 Tables of Nuclear Positions, Fields at Nuclei and Hyperfine Coupling

Energies

In what follows we shall be coﬁsidering only the case where the external magnetic field
is zero for clarity of presentation. In these tables we indicate the locations of each ion
in the molecule, presented in Cartesian coordinates (x,y,z) in Angstroms. As well we
present the magnitude of the field at each nucleus due to the eight iron spins (note that
in zero external field this magnitude is the same for both configurations of the central spin
complex) both for the point dipole approximation and the Hartree-Fock approximation.
We also present the hyperfine coupling energies W/U for both point dipole and Hartree-Fock

cases (wj is zero when the external field is zero).

Here we have chosen the following isotopes in order to convert from field to energy

units: 'H, ®Br, YN, Fe, 3C, and '70O.
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Nuclear | x y z  |JFO [T | W [MHZ] | |FD) [T] | Wl [MHZ]
Label (PD) | (PD) | (HF) | (HF)
H1 10.8 | 3.58 | 1.92 .0509 2.167 .0521 2.22
H2 9.38 | 2.12 | 1.38 161 6.854 152 6.476
H3 96 | 261 | -.66 112 4.757 112 4.76
H4 103 | 43 | -.173 .0422 1.797 0415 1.772
H5 9.07 | 5.17 | -1.88 0978 4.168 .0943 4.016
H6 7.29 | 4.78 | -2.37 284 12.055 .298 12.676
H7 8.03| 6.8 | -1.13 .0556 2.365 0577 2.46
HS8 9.54 | 6.61 | -.0732 .0242 1.026 .0246 1.052
H9 952 | 718 | 2.03 0277 1.175 0274 1.172
H10 8.24 | 6.26 | 2.61 .0988 4.209 101 4.292
H11 9.94 | 5.34 | 3.62 .054 2.301 .054 2.304
H12 10.6 | 5.61 | 2.36 .0347 1.477 .0345 1.472
H13 3.4 | 5.03 | 3.38 15 6.383 .149 6.344
H14 3.68 | 4.34 | 4.85 .256 10.939 251 10.708
H15 5.91 596 | 5.19 106 4.532 104 4.444
H16 5.79 | 5.65 | 3.57 | .2 8.519 2 8.532
H17 7.62 1 427 | 7.01 .0927 3.945 .0924 3.944
H18 5.88 | 4.07 | 6.59 179 7.632 183 7.824
H19 10.8 | -.193 | 5.82 .0807 3.436 .0821 3.504
H20 10.2 | -1.76 | 6.24 .109 4.626 109 4.628
H21 11 |-2.19| 44 .0924 3.938 .0924 3.944
H22 10.3 | -1.09 | 3.45 137 5.832 136 5.776
H23 6.01 | 1.8 7.08 .186 7.915 189 8.056
H24 7.02 | 1.88 | 6.14 .249 10.634 .249 10.628
H25 2.87 | .67 5.39 195 8.311 201 8.58
H26 3.72 1 235 | 5.84 321 13.67 326 13.88
H27 1.63 | 2.12 | 3.77 A1 4.68 108 4.592
H28 2.01 1 981 | 2.96 109 4.656 107 4.572
H29 6.79 | -2.16 | -5.9 307 13.088 326 13.94
H30 7.63 | -.505 | -5.25 195 8.328 192 8.196

Table 3.3: Data for Hydrogen.
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Nuclear | x y z | |FO[T] | Wl [MHZ] | |70 [T] | Wl [MHZ]
Label (P.D.) (P.D.) (H.F.) (H.F.)
H31 8.61 |-1.06 | -2.96 104 4.423 101 4.316
H32 8.83 |-2.19|-3.93 118 5.023 118 5.032
H33 6.52 | -4.3 | -5.18 277 11.756 277 11.784
H34 6.88 | -5.19 | -3.84 153 6.517 148 6.312
H35 4.57 {-5.64 | -3.71 194 8.255 .19 8.1
H36 4.24 | -5.96 | -5.37 | .0985 4.201 0971 4.136
H37 4.52 | -3.93 | -6.69 174 7.418 178 7.568
H38 2.79 | -4.09 | -7.02 .0938 4.004 .0962 4.1
H39 3.43 | -1.79 | -6.2 234 9.961 232 9.884
H40 4.47 | -1.73 | -7.13 179 7.632 .186 7.924
H41 4.21 | 5.46 -3 163 6.943 .156 6.664
H42 3.44 | 5.64 | -4.65 131 5.581 127 5.404
H43 303 | .862 | -3.45 145 6.198 144 6.136
H44 -.515 | 1.95 | 4.2 .0924 3.938 .0919 3.916
H45 385 | 1.99 -6 116 4.964 115 4.916
H46 -312 | .338 | -5.82 .0798 3.4 .0807 3.44
H47 1.19 | -7.11 | -2.18 0331 1.409 .0326 1.392
H48 406 | -6.44 | -1.32 0274 1.169 0272 1.16
H49 0679 | -5.37 | -3.3 042 1.785 .0425 1.812
H50 1.72 | -5.16 | -3.29 124 5.287 118 5.048
H51 1.75 | -6.92 | .851 0333 1.423 0321 1.372
H52 3.39 | -5.77 | 1.73 193 8.218 .18 7.676
H53 6.48 | -3.94 | 6.51 21 8.967 221 9.436
H54 8.07 | -3.5 | 6.48 186 7.915 199 8.492
H55 8.47 |-1.16 | 7.11 14 5.949 138 5.904
H56 6.89 | -1.24 | 5.94 364 15.498 368 15.716
H57 3.61 | 1.38 | -5.96 361 15.383 387 16.488
H58 201 | 1.26 | -7.1 137 5.862 14 0.96
H59 23 | 354 | -6.3 188 8.014 184 7.856
H60 3.84 | 3.65 | -6.53 195 8.302 192 8.188

Table 3.4: Data for Hydrogen.




Chapter 3. Nuclear Spin Couplings in Feg and the Isotope Effect

Nuclear | x y z | |FO[T) | Wl [MHZ] | |7V [T] | w!l [MHZ]
Label (P.D) | (PD) | (HF) | (HF)
H61 623 | -2.88 | .611 .08 3.407 0718 3.056
H62 1.95 | -1.71 | .255 251 10.708 232 9.884
H63 1.75 | -4.88 | 2.25 129 5.505 132 5.612
H64 617 | -5.23 | .629 .0481 2.05 .0439 1.868
H65 8.72 |-5.09| 3.6 137 5.85 131 2.604
H66 9.24 | -4.12 | 5.09 .165 7.021 171 7.284
H67 6.92 | -5.64 | 4.83 131 5.57 129 9.52
H68 6.26 | -5.47 | 3.17 163 6.965 157 6.708
H69 1.1 | 4.07 | -4.8 .16 6.83 154 6.572
H70 1.72 | 4.94 | -3.24 142 6.053 .139 5.916
H71 272 | -2.64 | -1.92 .0859 3.662 0828 3.532
H72 -208 | -4.22 | -1.48 .0453 1.927 .0446 1.904
H73 8.05 | -.671| 4.23 .622 26.468 .629 26.844
H74 7.98 | -2.98 | 2.43 1.82 77.829 1.87 79.864
H75 5.76 | -3.43 | 3.78 1.08 46.004 1.04 44.464
H76 7.86 | 3.23 | 1.98 1.12 47.703 1.16 49.468
H77 7.11 | 2.81 | -1.02 2.44 103.95 2.65 113.492
H78 6.67 | 5.16 | .275 758 32.286 779 33.22
H79 3.8 | 286 | 24 1.12 47.649 1.02 43.636
H80 7.07 | 3.95 | 4.32 432 18.397 439 18.688
H81 4.83 | 935 | 4.13 877 37.415 823 35.084
H8&2 5.68 | -.979 | -4.05 943 40.203 833 35.512
H83 3.09 | -3.76 | -4.2 079 24.676 .047 23.344
H84 6.76 | -3.06 | -2.37 934 39.825 903 38.492
H85 2.49 | 701 | -4.22 647 27.551 .64 27.288
H86 4.9 3.6 |-3.77 765 32.557 772 32.876
H&7 2.54 | 2.85 | -2.31 2.09 89.109 1.55 66.084
H88 3.73 | -5.2 | -.498 12 30.655 .631 26.856
H89 2.7 |-2.96 | -1.82 1.24 53.006 1.34 07.224
H90 3.8 1-299 | 1.29 2.06 87.885 2.74 116.536

Table 3.5: Data for Hydrogen.
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Nuclear | x y z | O [T) | Wl [MHZ] | |70 [T] | Wl [MHZ]
Label (PD.) | (PD) | (HF) | (HF)
H91 8.78 | .0423 | 5.01 231 9.837 .242 10.316
H92 792 2.02 3.9 403 17.188 .406 17.348
H93 5.34 | -1.03 | 3.83 .542 23.124 D575 24.52
H94 6.2 | -4.09 | 1.14 371 15.776 354 15.064
H95 8.76 | 3.34 | 2.78 303 12.891 293 12.54
H96 3.29 | .719 | 1.14 187 7.979 182 7.756
H97 7.21 | 3.45 |-1.76 934 39.767 1.16 49.388
H98 79 | -.733 | 1.32 432 18.425 415 17.656
H99 7.15 | 6.11 | .465 181 7.7 172 7.32
H100 |5.05| 3.95 | 1.35 1.16 49.5 1.23 52.368
H101 | 2.81{ 3.16 | 2.39 .242 10.279 .246 10.492
H102 | 2.66 | .832 |-1.47 .556 23.686 .544 23.176
H103 | 585 | 1.45 |-3.24 638 27.153 622 26.464
H104 | 2.57 | -2.02 | -3.9 392 16.747 .38 16.208
H105 {599 | -.381 | -4.76 .396 16.94 .42 17.892
H106 | 7.21| -.719 |-1.14 185 7.888 193 8.208
H107 | 299 | -4.75 | -5.18 15 6.398 152 6.488
H108 | 545 -3.95 | -1.35 1.17 49.671 1.19 50.76
| H109 | 7.68 | -3.16 | -2.34 .249 10.567 .23 9.792
‘ H110 | 4.29 | 4.05 |-1.14 378 16.101 387 16.488
H111 | 1.72 | -.0423 | -5.01 227 9.663 226 9.652
‘ H112 | 797 | 792 | 7.83 .0219 - .934 0222 948
| H113 | 253 | 6.18 | 7.14 0427 1.817 .0427 1.824
H114 |6.65| 6.66 | 9.57 .0265 1.133 .027 1.152
H115 |3.35 | -6.11 | -.465 182 7.795 187 7.992
H116 | 7.55 | 5.74 | 10.6 0242 1.033 0246 1.048
H117 | 1.73 | -3.34 | -2.78 291 12.401 3 12.828
H118 [2.95| 836 | 4.44 0227 969 .0229 976
H119 | 3.85 | 7.44 | 5.43 .0389 1.662 .0396 1.688
H120 | 9.69 | -.874 24 0877 3.742 .0891 3.804

Table 3.6: Data for Hydrogen.
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Nuclear | x y z | AV [T) | Wl [MHZ] | |79 [T] | Wl [MHZ]
Label (P.D.) (P.D.) (HF.) | (HF)
Brl |10.2| 265 | 5.67 | .0521 2.215 0537 2.293
Br2 |3.37) -2.3 | 4.91 137 5.856 142 6.063
Br3 | 52 | 7.11 | 7.43 | .0289 1.23 0298 1.273
Brd | .265|-2.64 | -5.66 | .0516 2.201 0535 2.279
Br5 |7.09| 228 | -4.91 14 5.957 145 6.167
Br6 | 7.64|-4.75].0737 | .091 3.878 0943 4.015
Br7 [1.06] 1.08 | -26 | .0816 3.481 .0844 3.604
Br§ | 3.7 | 5.53 | .2 0734 3.132 076 3.243

Table 3.7: Data for Bromine.
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Nuclear | x y z | [FYT] | Wl [MHZ) | || [T] | !l [MHZ]
Label (PD) | (PD) | (HF) | (HF)
N1 8.562|-1.05| 5.1 0547 2.332 .053 2.26
N2 8.73 | -3.03 | 3.35 .0891 3.796 .0849 3.62
N3 6.48 | -3.78 | 4.49 112 4.765 .108 4.61
N4 8.87 1 3.76 | 1.97 .0486 2.073 .0479 2.04
Nb5 8.09 | 3.55 | -.923 138 5.892 14 5.95
N6 7.75 | 5.71 | .515 0333 1.419 .0392 1.67
N7 3.45 1 3.02 | 3.18 0917 3.908 .0807 3.44
N8 6.55 | 4.24 | 4.89 .05625 2.242 0577 2.46
N9 4.83 | 1.44 | 4.98 13 5.026 132 9.63
- N10 5.7 | -1.4 | -4.92 13 5.033 136 5.78
N11 3.96 | -4.13 | -4.86 0582 2.476 0525 2.24
N12 7 |-3.14 | -3.23 .0929 3.964 .0884 3.77
N13 2.01  1.12 | -5.06 .0568 2.423 .0638 2.72
N14 4.07 | 3.86 | -4.4 1 4.283 .0896 3.82
N15 1771 292 | -3.2 .0927 3.947 .083 3.54
N16 2.73 | -5.67 | -.426 .0342 1.459 045 1.92
N17 1.7 | -3.67 | -1.94 0532 2.268 0605 2.58
N18 248 1 -3.44 | 983 .146 6.228 145 6.18

Table 3.8: Data for Nitrogen.
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Nuclear | x y z | |V [T) | W [MHZ] | |7V [T) | Wl [MHz)
Label (P.D) | (PD) | (HF) | (HF)
C1 10 | -1.15 | 5.49 0352 1.499 0357 1.52
C2 10.2 | -1.83 | 4.1 .0422 1.797 .0441 1.88
C3 8.52 | -4.37| 4.1 .0659 2.807 .069 . 2.94
C4 6.95 | -4.98 | 4.11 .0638 2.72 0615 2.62
C5 7.21 (-3.19 | 6.03 .0833 3.533 .0805 3.43
C6 7.76 | -1.57 | 6.15 0762 3.254 0758 3.23
C7 9.72 1 3.16 | 1.34 035 1.487 035 1.49
C8 9.51 | 3.41 | -.168 035 1.491 0342 1.46
C9 8.22 | 4.94 | -1.55 .0633 2.703 .0615 2.62
C10 8.46 | 6.13 | -.569 0217 925 0221 941
C11 8.82 | 6.22 2 .0206 878 0213 908
C12 9.69 | 5.27 | 2.58 .0194 .829 .0198 .844
C13 3.94 | 4.46 | 3.98 0837 3.572 .0819 3.49
C14 559 | 5.22 | 44 .0598 2.553 0615 2.62
C15 6.6 | 3.79 | 6.3 .0507 2.162 0518 2.21
C16 6.18 | 2.13 | 6.23 .0812 3.456 .0821 3.9
C17 3.43 | 1.57 | 5.12 .0936 3.993 .0919 3.92
C18 245 | 1.85 | 3.65 0521 2.224 0495 2.11
C19 7.07 | -1.45 | -5.07 | .0919 3.915 .088 3.75
C20 8.09 | -1.88 | -3.72 .0521 2.216 .0528 2.25
C21 6.36 | -4.53 | -4.28 0851 3.631 0821 3.5
C22 4.7 |-5.22 | -4.55 .0568 2.416 0577 2.46
C23 3.83 | -3.64 | -6.35 .0507 2.162 .0488 2.08
C24 4.26 | -2.07 | -6.27 | .0758 3.233 0795 3.39
C25 2.73 | 1.66 | -6.12 0753 3.205 0748 3.19
C26 3.2 | 3.26 | -5.96 .0805 3.432 0823 3.51
C27 3.5 | 496 | -3.95 | .0643 2.739 0643 2.74
C28 382 | 1.66 | -4.01 0432 1.835 0418 1.78
C29 1.88 | 4.27 | -3.84 | .0666 2.837 .0687 2.93
C30 49 | 1.26 | -5.37 | .0361 1.536 038 1.62
C31 1.25 1-6.23 | -1.68 .0153 .652 .0147 627
C32 1.13 | -5.13 | -2.69 0253 1.081 .0249 1.06
C33 645 1 -3.34 | -1.37 | .0298 1.273 .0307 1.31
C34 14 |-2.74 | .183 0551 2.348 .0558 2.38
C35 1.68 | -4.91 | 1.25 0425 1.814 .0434 1.85
C36 2.44 1 -5.92 | 938 0333 1.424 0331 1.41

Table 3.9: Data for Carbon.
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Nuclear | x y z | [T | Wl [MHZ] | |V [T] | Wl [MHZ]
Label (PD) | (PD) | (HF) | (ILF)
FE1 5.72 | .0651 | 1.58 | .00729 311 00729 311
FE2 6.9 | -2.21 | 3.05 00467 199 00467 .199
FE3 6.65 | 3.34 | .339 .003 128 .003 128
FE4 531 | 2.41 | 3.18 | .00793 338 00793 338
FE5 5.19 | -243 |-3.17| .00779 332 00779 332
FE6 3.61 2.2 1-299 1 .00467 199 00467 .199
FE7 3.89 | -3.33 |-.293| .00293 125 00293 125
FES8 4.84 | -.0439 | -1.55 | .00737 314 00737 314

Table 3.10: Data for Iron.
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Chapter 3.

Nuclear Spin Couplings in Feg and the Isotope Effect

Nuclear | x y z | VT | Wl [MHZ) | |7 [T] | ! [MHZ]
Label (P.D) | (PD) | (HF) | (HF)
01 6.9 | 1.68 | 3.29 .746 31.831 .699 29.8
02 54 |-1.44 2.99 798 34.036 877 37.4
03 5.57 | -3.6 | 1.31 233 10.783 .249 10.6
04 4.14 | 682 | 1.88 .544 23.202 018 22.1
05 7.59 | -.53 | 2.12 608 25.926 671 28.6
06 5.8 | 3.68 | 1.76 1.2 51.071 1.06 45
o7 6.14 | 1.37 | .185 .969 41.303 931 39.7
08 45 |-1.34-.115 973 41.493 978 41.7
09 3 503 | -2.03 .633 26.96 612 26.1
010 5.13 | 1.44 | -2.94 783 33.367 887 37.8
O11 3.65 | -1.68 | -3.24 798 33.975 877 37.4
012 6.5 |-.649 | -1.85 471 20.113 483 20.6
013 4.74 | -3.71 | -1.76 1.14 48.459 1.15 49.2
014 4.94 | 3.55 | -1.29 .239 10.154 251 10.7
0100 | 898 | 816 | 7.79 0121 .516 012 512
020 1.58 | 6.01 | 7.14 .0246 1.046 0258 1.1
030 -1.02 | 6.85 | 5.61 012 51 0116 493
040 11.4 | 7.23 | 9.35 | .00868 37 .00901 .384
050 6.85 | 6.23 | 10.6 0155 662 .0153 651
060 3.6 | 8.15 | 4.43 0182 775 0174 741
070 9.32 | 5.56 | 10.5 0139 .593 0134 D71
080 1.11 | 8.53 | 4.67 0115 492 0116 .496
090 896 | -1.17 | .278 101 4.302 .0973 4.15

Table 3.11: Data for Oxygen.
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Chapter 4

An Introduction to the Generalized Landau-Zener Problem

An introduction to the standard Landau-Zener problem is presented. Three methods of
solution are considered; one involves solving directly for the wavefunctions of the two-level
system, the second is a perturbation expansion in the tunneling term and the third uses
a complex analysis technique usually referred to as Dychne’s formula. We demonstrate
that it is possible to solve a more general version of the simple Landau-Zener Hamiltonian

and present the solutions (see [102] for a complementary analysis).

4.1 Imntroduction to and Exact Solution of the Landau-Zener Problem
Consider a two-level system (TLS) with time-dependent Hamiltonian
H(t)=vto,+Ad, (4.1)

where {6} are the Pauli matrices. This rather generic effective description was first
considered by Landau [103], Zener [104] and Stuckelberg [105]. Landau and Stuckelberg
used this Hamiltonian to model the evolution of two atoms scattering off each other, while
Zener used it to model the evolution of the electronic states of a bi-atomic molecule. It
has since been used in a large number of different contexts; chemical reaction kinetics
[106], biophysics [107], examination of the solar neutrino puzzle [108], aspects of nuclear
magnetic resonance [109], behaviour of atoms in photon fields [110], surface scattering
[111], electric breakdown in solids [112] and many more. The reason for its wide usage

is evident. There are many real physical systems that for one reason or another can be
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modeled as twollevel systems—either they really are two level systems (for example, the
spin Hilbert space of a spin 1/2 particle) or they can be mapped to one (for example,
the O(DS) low energy effective Hamiltonian derived in chapter 2). It is often useful to
know how these systems respond to an externally applied time-dependent perturbation.
It is clear that the simplest effective description of a two level system coupled to a time
dependent perturbation is that given in (4.1). We have sketched the energy levels of this

Hamiltonian as functions of time in figure 4.1.

) 20 )

/\\] \\ //

/ \\
s
3

Figure 4.1: Energy levels of the Landau-Zener Hamiltonian. Shown are both the eigen-
states of 6,, which are linear in time, and the eigenstates of H(t), E.(t) = £(A2+v%2)1/2,

One of the most useful features of the description (4.1) is that one can solve it exactly,
in the sense that one can solve for the wavefunctions explicitly as functions of time. In
order get a feel for the model, we shall outline in the following how these wavefunctions

are extracted.

Insertion of (4.1) into the Schrodinger equation (we choose a system of units such
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that = 1)
z’di Vel | P (4.2)
B\ Py
yields
’I;d;bta = ’Ut’(/)a -+ Awb
1%—” — Aty — vtthy (4.3)

eliminating v, allows us to write
y + (V2 + A2 —iv) 4, = 0 (4.4)

where overdots denote derivatives with respect to ¢. This is the equation for a parabolic

cylinder function. It has two solutions which may be written

1 :
(EQ) = —W | a2 (—'Lth) (4.5)
1

where W is the Whittaker function [113]. If we consider the asymptotic forms of these

solutions as t — —oo, we find that

R

S == S (4.6)

This indicates that the choice of one of the two solutions is equivalent to the choice of
an initial condition on the wavefunction 1,. The analysis of the other wavefunction 1,

proceeds in an identical manner; solving

Yo+ (V8 + A% +iv) =0 (4.7)
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gives two solutions

Wy i, (ivt?) (4.8)
which have deep past asymptotics

o R

&P == 0 (4.9)

This is consistent with our interpretation of the choice of one of these being equivalent
to the choice of initial conditions. That is, preparation of the system in state 1, at time
t = —oo requires that we use solutions (") and wéz). Similarly, preparation in the state
W, requires the use of (2 and "

Finding the transition probabilities is now a straightforward exercise. The probability
of finding the system in state 1, at time ¢ given that it started in state ¥, = | 7> at

time ¢t = —o0 is simply

2
1 :
Pr(t) = WDWF = | =Wy e o (-i0f?) (4.10)

eSS

This solution is plotted in figure 4.2. As t — +oo (4.10) asymptotically approaches

A2

Pi(t > 00)=1—€""v ' (4.11)

and therefore the probability to make a transition is

xA2

(4.12)

Pﬂ_(t — OO) =e v
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/\ \/\ VA .\/‘\v"vﬁ\"
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Figure 4.2: Transition probability (4.10) as a function of ¢ (in units of A) . Here we have
taken A?/v = 0.63, 1 and 5 for the solid, dotted and dashed lines respectively.

4.1.1 Alternate Method of Solution for the Transition Probability

I. All Orders Perturbation Expansion

It is also possible to solve for the transition probabilities without first finding the wave-

functions [104]. Consider the amplitude

Agsp =< b|U(ty,t:)]a > (4.13)
where |

Uty 1) = Te il HO (4.14)

is the time evolution operator (7" meaning “time ordered”) and a, b can be either “up” or
“down” (6, = %1, respectively). Splitting the Hamiltonian into diagonal and off-diagonal
(in &) parts H(t) = Hy(t) + Ha allows us to rewrite the evolution operator in the more

convenient form [71]

—1 tf T)dT —1 Y H T
Ulty, tr) = ¢ Ju” HaDdrp =i f,] Had (4.15)

where

g i ¢ )dT —1 t T)dT
HA(t) =€ ftl Ha(r)d HAe ft,v Hy(r)d (416)
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Expansion of the time-ordered exponential yields

> . tf tn t2 ifoo dTvTé ~
Aay = Z(—z)”/ dtn/ dtor.. / dt, < ble' i 4% NG,
n=0 t; t; t;
R et . ot .
ez b1 drvTéd, Aa'z . el ftlz dTvTé, Aa_zez f_; dTvTé; la > (417)

Let us assume that a = b, and furthermore that |a >= | 1> (the solution for |a >= | |>
is similar, differing only in an overall phase factor). Inspection of (4.17) shows that in
~ this case only paths with n even contribute, and furthermore that the inner product in
g-space is easy to perform. Explicitly we find

. o0 t ton t - 2n i
ATT =e¥ E AZn /tf dth /t ’ dt2n_1 .. A i dtle_“’ Zi:l(_l)]t? (418)
n=0 —h i d

1

where ¢ is an uninteresting phase. One sees that all of the time integrals may now be
performed if we take ¢, = —oo and t; = +o00; otherwise we are stuck. That is, it seems
as thvough this approach gives us less information than the solution for the wavefunctions
performed in the preceding section; this is somewhat strange, as usually if a problem is
solvable in terms of known special functions in one representation it is usually solvable
in all of them. In any case, we shall now take ¢; = —oo and ¢t; = 4+c0. In this case the

integrations over the time set {t;} can be performed explicitly, giving

X1 (A"
Ay =€ — | — 4.19
n=er S () 19
with subsequent probability
7rA2
Py=1-|Ay[* =€ ™ (4.20)

as before.
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4.1.2 Alternate Method of Solution for the Transition Probability

II. Dychne’s Formula

The final method that we shall review for extracting results from (4.1) was first suggested
by Landau [114] but later became known as Dychne’s formula [?]. This method uses
arguments from the theory of complex analysis in order to extract transition amplitudes
from two level time dependent Hamiltonians such as the Landau Zener model (4.1). We
shall not give a detailed analysis of this method, but just present its basic result.

We begin by defining the standard rotation matrix

| cosf/2 —sinf/2
R= (4.21)
sinfl/2  cos@/2
which, if 8 is a function of time, can diagonalize the general Hamiltonian
. . Vi) A®)
H=V({t)6, + A(t)6, = (4.22)
Alt) =V)
giving
E_(t) 0
RHR' = (4.23)
0 E. (t) .
where

. (t) = +/A2(8) + V(1) (4.24)

are the adiabatic energy levels. In the case of the simple Landau Zener Hamiltonian, we

find that
EL(t) = £VA2 + 022 - (4.25)

The result of Landau and Dychne states that the probability for making a transition

from one eigenstate of &, to the other if the Hamiltonian is evolved over the range
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—00 < t < 00 is approximately

P,_,, = e 2Imélt) (4.26)
“where

£(t) =2 / ‘Br)dr (4.27)

and t. is the zero of E(t) in the upper half plane that is closest to the real axis. Note
that this requires that we analytically continue the time variable throughout the complex
plane. The error in this expression comes from the neglect of the contribution of all the
other zeroes of E(t) in the upper half complex plane which are omitted here. Genefally
speaking, one can tell whether or not this method will give useful results by looking at the
structure of the zeroes of E(t). If there are many closely spaced zeroes in E(t) off the real
axis, then the contributions from subdominant terms will grow and this method will fail.
For example, in the case of the simple Landau Zener model, there are only two points in
the complex time plane where E(t) vanishes, namely ¢, = +iA/,/v, and only on of these
is in the upper half plane. Because of this we expect that in this case the results obtained
using Dychne’s formula should be exact. This result is interesting as it provides insight
into the reasons why this model is exactly solvable and many other similar models are
not—for example, changing the time dependence from linear to say cubic in Vj|(t) causes
the methods used in the preceding chapters to fail to produce exact results. This is most
probably related to the existence of now two zeroes of E(t) in the upper half plane which
introduce errors into the formula (4.26). It is quite likely that there is a deep connection
here between the theory of special functions and issues in complex analysis. However,

we do not choose to pursue this avenue at the present time—we shall only mention it in

passing.
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Let us now apply Dychne’s formula to the Landau Zener Hamiltonian. We ﬁnd that
t A2

£(t) = 2/ VA? 4 0272dr = tVA2 + 042+ —In (vt + VA2 + UQtQ) (4.28)
v

and therefore

A%x

Im é(tc) = m

(4.29)

and

A2

Py =e T (4.30)

which agrees with our previous exact results.

4.1.3 Analysis of the Transition Formula

We now wish to step back from the preceding technical exercise and draw some conclu-
sions from this analysis. From the outset it should have been clear that the presence of
the tunneling term Ad, in the Hamiltonian would mix the two states that we are calling
1ap. Furthermore one expects that the dimensionless parameter A?/v should be impor-
tant in the final transition expression. Both these suspicions, as we have seen (4.12),
turn out to be justified. What else can we say about this solution?

Perhaps the key point here is that as we are dealing with a two-level system the equa-
tions for the wavefunctions have to be second order homogeneous differential equations.
For the specific Hamiltonian that we were working with (4.1) this differential equation
turned out to be one that is a well-studied specific case of the hypergeometric equa-
tion. This allowed us to write down general solutions. Supplanting these solutions with
information about the asymptotic behaviour of the system then gave us the specific tran-

sition probabilities that we were after. This realization suggests that there exists a class

of two level time dependent Hamiltonians whose wavefunctions are obtainable in terms
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of known special functions, and that this class is that whose Schrodinger equation can
be mapped to the hypergeometric equation. The full determination of what is required
of the Hamiltonian in order for it to belong to this class is a difficult task. We shall in

the following demonstrate the method for some specific cases.

4.1.4 Generalization of the Two-Level Landau-Zener Problem

I. Exact Solution for A(t) ~ V}(¢)

Let us now consider a more general case of (4.1), namely [102]
H(t) = Vj(t)5. + A(t)6, (4.31)

We may perform the same type of analysis as we did in section 5.1. The Schrodinger

equation
z‘di ( Ve ) = H(t) ( Ve ) (4.32)
"\ ¥
yields
di),
e _ i, + A,
d,
S = At~ Vi (1.33)
eliminating v, allows us to write
A . A
Wy — Z?/)b-i— <V||2+A2—Z [V” -—V||—A—}>1/Jb=(] (4.34)

where again the overdot represents a time derivative. As before, we have to supplant this

equation with a specification of the initial conditions; here we shall assume that

[u(t = —o0)|* =1 (4.35)
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ie. that the system has been prepared in state v, in the deep past.
The equation (4.34) cannot be solved with known special functions for general Vj(¢)
and A(t). However, it is possible to recast it in a form that allows solution for quite a

few interesting specific cases. We map
t— z(t) (4.36)

where the only requirement we have at this stage being that the map is onto, ie. 1 — 1.

With differentiation with respect to z denoted by primes, (4.34) becomes

[V+A2 il, A

¥y -+ [; ] by + e L A” by =0 (4.37)

We now choose the mapping such that
= A®) (4.38)

We then find that

I3

7

" Vi , A
¢b+[1+§—gl‘/n ||AH¢b—0 (4.39)

Writing our equation in this form highlights the fact that if }j and A are constant

multiples of each other, ie.
Vi = kA (4.40)
with x constant, then (4.39) reduces to
Gy + (L+57) 9, =0 (4.41)

Define v2 = 1 + k?; then

Yy(2) = coe™* + 1€ : (4.42)
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is the general solution of (4.41). In order to determine the normalization constants we
require the following. Firstly, we want the solution for the probability to be bounded

everywhere by 1; explicitly,
[0s]? = |co|® + |c1|? + chere®™ + clepe ™ < 1 (4.43)

As well, we know the solution for ¥}, = 0 with our initial condition is simply

[0s? = |co|® + |er]? + chere®™ + cieoe™ ™ = cos?(z2) (4.44)
These fix the constants to be ¢g = ¢; = 1/2, and
[45(2)]? = cos?(yz2) (4.45)

In terms of our original parameters this transition probability is written

by (£) 2 = cos [(1 +r2)72 t A(T)df} (4.46)

This result has been derived previously by different methods [115]. We may pause now
and ask how this exact solution compares to that obtained using Dychne’s formula. In

this particular case, we find that

Bx(t) = £,/A%(t) + V(1) = £V1 + &2|A(1)] (4.47)

and that the zeroes of F(t) are simply the zeroes of A(t) (where, of course, we analyti-
cally continue the time ¢ throughout the entire complex plane). The transition probability

from Dychne’s formula is then

Py, =<| [U(—00, +00)| +>rs ¢~ 4VTFRTm [ |a(n)ldr (4.48)

where . is the zero of A(¢) closest to the real axis in the upper half plane.
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Let us solve for the transition probabilities for some specific potentials using our exact

result. One that occurs quite regularly in this type of problem is a “pulse” potential that

looks like
A
A(t) = 4.4
( cosh wt (4.49)
The indefinite integral of A(t) is
t A
/ A(r)dr = = tan™' (sinh wt) + ¢, (4.50)

To be consistent with our initial condition (4.35) we take ¢; = An/2w. The transition

probability from our exact result is then

_ |¢b(t)|2 = cos? [(1 + /@2)1/2_2_ [tan—l(sinh wt) + gH (4.51)

The t — oo asymptotic of (4.51) is
o [Am 5
Py = cos [_w V1+k J ) (4.52)

If we were to try to use Dychne’s formula for this case, we would find that it fails. This
is because since our energy levels are asymptotically approaching zero as t — oo, there
is no zero of E(t) that is closest to the real axis and therefore one cannot find a unique
tc. This breakdown of Dychne’s formula in this regime has been noted previously [102].

Our exact solution is qiiite interesting. We see that the ¢ — oo transition probability
may be varied between zero and one by altering an external parameter (A or w). A train
of such pulses with these varied could be used as “quantum logic gates”. The reason
that this particular application is interesting is that there is absolutely no source of
decoherence present in this system—-phase coherence is sustained throughout the evolution
of the system simply because there is nothing coupled to the two level system that can
remove it. We shall not say anything further about this potential application; some

embellishment of this basic idea may be found in recent reviews [102].



Chapter 4. An Introduction to the Generalized Landau-Zener Problem 135~

Figure 4.3: Transition probabilities for the pulse potential.
Another potential of interest is the following one;
AR)=0 , |t|>t
A(t) = Asinw(t +ty) t| < to (4.53)
where we fix ¢y = nw/2w. Here we find that for |t| < o
2 2 2124
[¥s(t)]° = cos® [(1 4 k%) = [cosw(t + to) — 1] (4.54)

with dynamics frozen for |t| > t;. This solution is shown in figure (4.4). Note that here
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we also have a tunable switching effect, this time also depending on the value of n that

we pick.

Figure 4.4: Transition probabilities for the sinusoidal potential.
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4.1.5 Generalization of the Two-Level Landau-Zener Problem

II. Exact Solution by Mapping to Riemann’s Differential Equation

There is a similar approach to the solution of (4.31) that generates solutions for a different

class of functions Vj|(t) and A(t). Let us take the mapping

2(t) = —;—[tanh wt +1] (4.55)
Then (4.31) becomes
P TN 1 Vi+Aar g AV -
- _= == = (4.
wb-f-[z—i_z—l A]¢b+z(z—1) 4w2z(z—1)+2w A Yo = (4.56)

which is suspiciously close to Riemann’s differential equation (RDE) [113]. We have been
able to map this equation into the RDE in two specific cases, which we shall review.

Let us take

Vji(t) = Atanhwt Aft) = (A* + AQ)I/QL

4.
cosh wt (4.57)

As functions of z, these are

Vi) = A2z —1) ,  Alz) = (A% + AH)Y22,/2(1 - 2) (4.58)

This models some scenario where the tunneling between the two states is externally
enhanced near ¢ = 0 and killed for [¢| >> 1 while the two levels are crossed. Insertion of

these into (4.56) yields

w171 1 ' 1 k k
Z |z _ 2 A% = .
¢b+2[z+z—1J¢b+z(z—l)[ z+z—1 1}% 0 (4:59)

where
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This is a specific case of the RDE. Its solutions are
vy = 2%(z — 1) [C’F[a, byc;z) + D' Fll4+a—c,1+b—¢2—c z]] (4.61)
where C and D are constants chosen such that |1,(z = 0)|2 = 0. In order to determine

what the constants «, v, a,b and c are, we refer to Abramowitz and Stegun [113]. Using

their nomenclature,

l—a—a =1/2 , 1—y—v=1/2

aa =k , BB =-A

’y*y':k , a+b:1+a—a/+’y—71
c=l4+a—a (4.62)

In terms of our original parameters we find that

1
o = 5(1 + 2140’L) y Y = —A()Z
1 1
——_4A —Z—4 A
a 5 1 s b 5 + 1
14+ 4A4
c=1+ % (4.63)

and our general solution becomes

A : 1 1 3
Q/}b = z(1+2A01)/2(Z - 1)—A01 CF[§ - Al, 5 + Al; 5 + 2A0’I;; Z]

| 1
+ Dy UHADRE[ 940 — A —24gi + Ay 5 — 240i; 7] (4.64)

The condition
[y(z = 0)[* =0 (4.65)

gives D = 0. The solution that we require is the ¢ — 0o asymptotic; this corresponds to

the z — 1 limit. Near z = 1 we find that

I'(2 4+ 2400)0(3 + 2401)

hy(z =1) = €°C (4.66)

L(1+2A400 + A)D(1 + 2401 — Ay)
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Using the reflection formulae

1 - 1 e
(= + (= — ) =
(2+zy) (2 o)

T(1+iy)D(1 —iy) =

cosh 7y
Ty
sinh 7y

(4.67)

we find that

|ho]? =

C2e¥40(1 4 16 A2) [ cos? mA; } (4.68)

4(4A% + A?) " cosh? 24,7
As we require that the probability be bounded above by one we take

4(4A2% + A?)
e?m4o(1 + 16 A3)

C*= (4.69)

which gives, in terms of our original parameters, the final transition probability

cos? Ar
w

t—soo)f=1— —u
e = oo = 1= 2o

(4.70)

We emphasize that this result is ezact. To the best of our knowledge, this result has not
been published previously. This solution is sketched in figure (4.5).

If we try to compare this exact result to that obtained from Dychne’s formula, we
encounter another interesting conundrum. In order to obtain closed form solutions
for Dychne’s formula, one has to be able to obtain the indefinite integral of E(t) =

VHQ(t) + A2(t). Now it is evident that the presence of the square root will make the set
of V}|(t) and A(t) that can be dealt with quite small. The present case is an example
of a Hamiltonian that produces time-dependent energy eigenstates that do not produce
closed form solutions to this integration. This line of thought is quite interesting, as it
seems to relate the integrability of square root functions to the solution of second order
differential equations. It is plausible that progress could be made in the study of these

kinds of indefinite integrals via the connection that has been established here to the

hypergeometric equation.
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Figure 4.5: Transition probability P, for the pulse/ramp scenario. Plotted is A7 /w on
the z axis and An/w on the y axis.

There is another case where we can map exactly to the RDE, and that is for the

parameter set
Vi(t) = Atanhwt Aty =A (4.71)

This is similar to the previous example, except that the tunneling term is constant for

all time. The procedure is identical to that done explicitly in the preceeding; we shall
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Figure 4.6: Transition probability Py, for the ramp scenario. Plotted on the z axis is

A
A/w and on the y axis .

just state the result. We find that

sinh? 4z
[

4.72
sinh® Z(A? + A2)1/2 (4.72)

|9(t — 00)|* =

Note that for A/A << 1, this reduces to the standard Landau-Zener result (4.12). This

is another new exact result. This solution is shown in graphical form in figure (4.6).




Chapter 5

The Landau-Zener Problem in the Presence of a Spin Bath

At temperatures 7' < 360 mK thermal occupation of all but the two lowest lying levels in
the F'eg molecular magnet is vanishingly small (see figure 1.11 for experimental evidence
of this and chapter 2 for theoretical justification). This means, as discussed in chapter
2, that in this “quantum regime” the central spin complex of the Feg molecular magnet
can be described by a two level system. In the presence of an externally applied time-
dependent magnetic field, the Hamiltonian of an isolated molecule is of the generalized
Landau-Zener form (4.31) with the added complication that the central two level degree
of freedom is coupled to an environmental spin bath. In this chapter we solve for the
transition probability between 7, eigenstates of the central spin object in the presence of
an external AC field. We use this general result to calculate the one-molecule relaxation
rate for any system with a Hamiltonian of the form (5.6). We then calculate the one-

molecule relaxation rates for the specific case of the Feg system.

5.1 The Addition of an Environment to the Landau-Zener Problem: General

Considerations

Whenever we study a condensed matter system, there is of necessity a distinction made
between a (perhaps collective) degree of freedom and “everything else”. When we write
down an evolution operator (such as (4.31)) for this interesting degree of freedom without
considering the “everything else” of the system we run the risk of misunderstanding what

is actually happening inside the material. While the exact solution of toy models such

142




Chapter 5. The Landau-Zener Problem in the Presence of a Spin Bath 143

as (4.31) may perhaps be pleasing to the aesthetic sense, it does little to further physical
understanding. It is not even clear that questions of principle in quantum mechanics
may be settled via the use of toy models such as these.

As we discussed at length in chapter 2, there exist standard ways of obtaining realistic
effective Hamiltonians for some condensed matter systems. These effective descriptions,
no matter what the material under study, always require us to specify a subset of the total
information contained in them to be the “degrees of freedom of interest”, while relegating
all the “uninteresting degrees of freedom” to an environment [20, 21, 22, 74, 75]. This
split, while not necessary in principle, is usually necessary to make the study of the
system tractable (for, as we have seen, realistic effective Hamiltonians are complicated
objects!).

The consequences of this (artificial) distinction between system and environment are
still not fully understood. Some of the ramifications, both physical and philosophical,
were addressed in previous chapters and in earlier classic works [74, 20, 21, 22]. In this
section, however, we shall consider some of the technical problems that arise due to the

inclusion of an environment.

5.2 The Quantum Regime Effective Hamiltonian: Inclusion of a Spin Envi-

ronment

The form of the low energy effective Hamiltonian for the Feg molecular magnet was
derived in chapter 2. We may ask how this Hamiltonian is changed by the application
of an external time-dependent magnetic field. Looking back to (2.101) we see that there |
are four terms that will be affected; one due to direct interaction of the field with the

nuclear spins (wjmy) ; one due to the field acting on the nuclear spins coming from

the central spin whose minima are functions of the external field (w,'clfk); and two due
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to the interaction of the field with the central spin (the diagonal term ~ 7,H, and the
off-diagonal terms in the phase ®).
The first of these is

Wi = 1 Tklgnettn (D +72) = Tlgmopn (G + 72 + @) + HE+95Y) (5.1

where we have defined the fields
’71(9{92) = Gn, i LZ M;kﬁsg(l,z) _ Z Mskﬂsg(m) (5_2)
€{pr} pe{p,}
to be those due to the central spin before/after the central spin flips respectively at the
k*" nucleus, t is the time at which the flip occured and Q5" is the tunneling time for the
central spin complex. If we assume that Q3! is much less than the timescale over which

the externally applied field changes, then we find that

Wi (t) 2 | Tlgu, in (352 + 754 + 2H (1)) (5.3)
This assumption also leads to w,IJZk being time independent, since

il = |kl gy tin () = A7) = Telgne i (04 — 748 + H) — H(t+95) = wily (5.4)

Also we find that in general the phase ® becomes time dependent if the external field
contains transverse components that vary with time. In the particular case of the easy-
axis easy-plane Hamiltonian in the limit studied in chapter 2 (that is, the DC bias field
|H| <« Qo and 4E/(D — 2E) not too small (so that the instanton calculation is valid, see

chapter 2)) we find that

mS? ks TSgup H

b =75 - Q y

H, +

mS%gup TSgup
- ®(t) =75 + —th— H
() = 5 +i"= 22, (1) - T2,



file:///h/9nMikS

Chapter 5. The Landau-Zener Problem in the Presence of a Spin Bath 145

Together with the obvious diagonal coupling to the external field we find that in the
presence of a general external time-dependent field the one-molecule effective Hamiltonian

is

N8 T L #
H(t) = > l-—zf—fk-mk(t) —wka zk}+ gupSH,(t)%,
k=1

N+8
+ 2Aq7_cos (<I>(t) —iy AXp- Ik> + h.c.
k=1

N eQx kg 1k ,U«O,U% I 9n, 7 7 =, =2
+ Z[mv o) + 4 > T e =3 (R vue) (B )

(5.6)

where the notation is the same as that introduced in chapter 2. From this point onwards
we shall drop all g-factors and magnetons for reasons of notational simplicity. Whenever
confusion may arise we shall explicitly include them.

This expression is still quite complicated; however, one notes that it has the form of
a generalized Landau-Zener Hamiltonian which has been coupled to a spin environment.
Note that the phonon bath does not enter into the quantum regime effective description,
for reasons detailed in chapter 2 (although of course the oscillator bath is present when
relaxation becomes temperature dependent—a proper treatment of these baths is under
construction. Note that there are several (often conflicting) treatments of oscillator baths
in this context [116, 117]).

We shall now simplify the expression (5.6) by restricting our attention to the following
two kinds of externally applied field. In all that follows we shall be considering this
external field to be either a longitudinal sinusoidal field plus a static component in an

arbitrary direction

HS(t) = (Acoswt +€) 2+ H, ¢+ H, § - (5.7)
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or a longitudinally applied sawtooth field plus a static component in an arbitrary direction

me = (25 (o 2] (- 2) ) -

m n=-—0oo

+ H, 2+ H, § (5.8)

Note that we have chosen to use the notation that the longitudinal component of the
externally applied field is denoted by H, — £. Now because neither of these two fields
have time-dependent transverse components, we find that the phase ® remains time
independent. This simplifies our expression somewhat. To emphasize the relation of our
effective Hamiltonian to the simpler Landau-Zener models studied previously, we rewrite

it in the form

H(t) = §(t) + ()7, + A7_ + hec. (5.9)
where
. 1 .
§t) = O+ [ L= 3 (T i) (- 7] (5.10)
i<k ik
Vi) =T+ H.(t) (5.11)
R N+8 _ .
A = 2Aq cos <<I> -5y ANp- Ik> (5.12)
k=1
and we have defined
A N+8 N+8 kL N er -
t) = - — V"] 5.1
) ng 2:: 2 +§[6Ik(21k—1) aﬂ:l (5.13)
and
N+8 N+8
T=> Ti=3 Ll (5.14)
k=1 =1 2

Note that ¢(t), VH(t), A and E’&D are all operators in the {I;} (environmental spin)

subspaces. ‘
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5.3 General AC Field Solution in Fast Passage

We understand from looking at the effective description (5.9) that it will not be possible to
compute the transition probabilities from the solution of a simple second-order differential
equation. This is because all the environmental spins are dynamic and coupled to the
central degree of freedom, vastly increasing the Hilbert space, and requiring the solution
of (for a bath of N spin I nuclei) a (21 + 1)¥* order differential equation which proves
to be quite ifnpossible in practice. We therefore must look for a different method of
solution.

Consider the perturbation expansion presented in section 4.1.1. We saw in the simple
case presented there that there exists a natural perturbation parameter A%/v, which is
small if the time it takes the external field to sweep through the resonance is much smaller
than the “bounce time” A~!. We see explicitly in this case that if the sWeep velocity is
large enough, it is sufficient to calculate only to first order in this quantity.

Let us set up this perturbation expansion for our effective description. As we indicated
earlier, our externally applied field will be either sinusoidal or a sawtooth function. Often
we shall find that analytic results are easier to obtain with the latter. Whenever possible
we shall solve for interesting quantities for both shapes.

Before we proceed with our technical investigation, let us pause and consider what
the dynamics of the central spin complex should look like. When calculating the time
evolution of this collective degree of freedom we can either calculate the evolution am-
plitude from our initial time (say, t = 0) to our final time ¢ or we can choose a “coarse
graining” time ¢, < t and only evolve the system from ¢ = 0 to .. After this shorter-time
evolution, we calculate probabilities and piece together a series of these, assuming that

each piece is independent of the other pieces. Now in the usual case of a model like (4.31)

it is clearly not permissible to do this, as the dynamics of the central degree of freedom
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at any particular time interfere (in the quantum mechanical sense) with dynamics at all
other times. Another way of saying this is that it is necessary to calculate the evolution
amplitude over the entire time range of interest-there is no decoherence (loss of phase
information) in this system.

However, the coupling to the environmental spin bath in (5.9) changes this story. Be-
cause the spin bath is dynamically active, both because of its internal dynamics (coming
from the nuclear dipole-dipole term in the Hamiltonian) and its response to the dynamics
of the central spin moments, it absorbs phase information from the central spin complex
[64, 167]. This has the effect of decorrelating successive sweeps of the AC field through
resonance-while the evolution of the entire system is of course unitary, the evolution of
the central spin degree of freedom is not. One can understand why this should be so from
the following argument. During each sweep of the AC field through resonance, the central
spin configuration can flip, and in so doing it can flip or rearrange the distribution of the
environmental spins. This rearranges the density matrix of the spin environment, which
can in general contain off-diagonal terms. Now as the sweeping field moves off-resonance,
the nuclear spin-spin relaxation mechanism tries to equilibrate the environmental spin
set. If the sweeping frequency is larger than ~ I'y, where I'y is the energy range over
which the nuclei sweep due to nuclear dipole-dipole interactions, by the time the sweeping
field comes back to a resonance the off-diagonal spin bath elements will still be present
(note that the energy scale Iy is roughly Ty ~ v/NTy ! for an ensemble of N nuclei,
where T; ! is the standard spin-spin relaxation time). This means that for high enough
sweeping frequencies one cannot neglect quantum correlations between successive passes
of the field. In this case one could invoke methods from the so-called Floquet theory [118].
However, if [y is much larger than w, then the spin bath does have time to equilibrate

itself between passes of the field, and we can therefore neglect all quantum correlations

between successive passes, treating each sweep as being “decorrelated from its history”.
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This consideration presents us With a natural “coarse graining time”, the time it
takes for one full sweep through a resonance by the AC field (which is ¢, = 7/w for
both the sinusoidal and. sawtooth fields). If the timescale for the readjustment of the
density matrix of the system (which is ¢, = 1/I'g) is such that ¢,/t. < 1 then this coarse
graining procedure is justified. Typically in magnetic insulators at mK temperatures
Ty' ~ 10* — 105H 2 [48, 64]. In the specific case of Fes we can calculate T'g (see table
5.2); we find that I'y ~ 3 — 13M Hz, depending on the nuclear spin isotopes present.
This gives us an approximate gauge of the highest frequencies that we can apply before
the coarse graining approximation breaks down. For a sinusoidal sweep, #,/t. =~ 7y /w,

which gives
w<nly<~10 MHz (5.15)

In the experiments that have been performed to date on the Feg and Mn,, materials, the
sweeping frequencies are much less than this; in the Feg experiments these frequencies
were in the range 0.01 — 5 Hz [51]. We shall therefore use the coarse graining approx-
imation in what follows. It is worth noting here that this point gives ample warning
that temporal quantum coherence of the central degree of freedom in. this system on
timescales of the order of ¢, will be difficult to maintain, as the nuclear spin bath has
ample time to both absorb phase information from the central spin and bias the system
between sweeps of the AC field—and therefore processes mediated by the AC field will
most likely be incoherent in the sense that each sweep through resonance is decorrelated

from all other such sweeps.

5.3.1 A List of Approximations Invoked in the Calculations That Follow

For the sake of clarity we shall list in this subsection all the approximations that we shall

be making in the sections that follow. Whenever one of these is invoked, we shall refer
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the reader to the following list.
(i) The coarse graining approxzimation. This approximation is described in some detail

in the preceding section. To recap, whenever the condition
w < 7wl

is met, one can neglect quantum mechanical correlations between successive sweeps of
the AC field. This is because the internal dynamics of the spin bath mediated by nuclear-
nuclear terms in the Hamiltonian carry phase information away from the central spin.
(i) The fast passage limit. The justification for taking this limit was presented in the
preceding section. Formally in this limit we consider only the regime where
A2

—_— 1
Aw<<

where A and w are the amplitude and frequency of the sweeping field respectively.
(11i) Nuclear spins with a given polarization group M- are in thermal equilibrium at

a polarization group temperature By = 0. The “polarization group” of our set of N + 8
nuclear spins is defined to be [20]

N+8

M=> I,

k=1
We note that this quantity explicitly depends on which axes of quantization we pick for
the nuclear spins. What we choose to do in this work is to pick the axes of quantization of
the nuclear spins to be such that 2, = ﬁ/,(cl) - that is, the z direction for the k** nuclear spin
corresponds to the direction of the field at the spin when the central spin complex is in its
+7, eigenstate. Because the internal field due to the iron spins is quite inhomogeneous,
these axes will only be mutually aligned in the case where the external field H is much

larger than the internal fields (which we have seen in chapter 3 are in the 0.01 — 0.26

Tesla range).
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5.3.2 General Strategy for Calculating Relaxation Rates

The core of the calculation of the one-molecule relaxation rate is the calculation of the
transition probability between the 7, eigenstates of the central spin complex during one
sweep of the AC field. Before we begin to attack this problem, we shall explicitly describe
the general strategy that shall be used to calculate these probabilities and hence the one-
molecule relaxation rates.

QQualitatively the situation that we have to deal with is similar to that examined in
the previous sections dealing with the simple Landau-Zener transition. The big difference
here is that the Hilbert space of the system now contains not one two level system but
a two level system plus the full Hilbert space of the environment. This means that
when we calculate the transition amplitudes (and then the probabilities) between the
7, eigenstates, we also have to explicitly include the effects of the other N + 8 systems.
Formally we can see how this is done by noting the following. For the Hamiltonian (5.6)
the amplitude to go from some initial 7, eigenstate | > to some final 7, eigenstate |5 >

during a single sweep of the AC field can be written
Agfﬂ =< f| < If|eifocH(T)dT|Ii > |a > (5.16)

where we have defined |I* > and |I/ > to be the initial and final states of the spin bath
respectively. Let us take a moment and explicitly detail the formalism that we shall use
in order to describe the spin bath states.

In a general molecular magnet there can be many species of environmental spins
included in the effective Hamiltonian. For example in Feg we have 120 protons, 18
nitrogens, 8 bromines, 8 irons, 36 carbons and 23 oxygens. Our formalism must be able
to handle these different species. To this end we shall define the following notation. The

symbol

N¥ (5.17)
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represents the number of environmental spins of spin s and species p. The k¥ spin of
the subset N¥ is labeled k, = 1..N¥. The total number of spins in the spin bath is

N =3, NE. As an example, consider the Fes, material. Here we have that
Nfj,=120 , N)Y=18 , Nj;=38 (5.18)

With this notation the spin bath states |[I' > and |I/ > can be written in the form

NE , , ‘
11> = H{ II I, >} =[{I5, > 8lf, > .. ® Ly >}

po ku=1 7

H ku=1 22

N
> = H{ I 17, >} =[1{1, > elt, > ..® |1}, >}

The transition probability is then simply
P = AJIAY, (5.19)

This expression for the “per sweep” transition probability contains explicit reference to
the initial and final states of the spin bath. Now in any actual experiment performed on
these materials, what is actually measured is a relaxation rate. In the calculation of this
rate we will have to specify the distribution and characteristics of the initial and final
spin bath states during a sweep of the external AC field.

Now because of reasons elaborated in the preceding section, the strategy that we shall
use in specifying the form of the initial states of the spin bath is the following. We shall
define the set of states |M, > to be all the allowed spin bath states with polarization
group M, in the p' subset of nuclear spins. That is, we explicitly treat each species of
nuclear spin separately, defining a polarization group for each. We shall see later that
in this calculation all the environmental spin subspaces separate; this means that it is

permissible here to treat each species as being independent of all the other species. We

define the number of states in the polarization group M, to be Cp;,. We have then
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p = 1..Cy, states with
N¢§
Z Iy,. = M,
ku=1
which we label
N§
\M?2>= ¢ 11 15, > (5.20)
ky=1
Because this notation may at first sight appear confusing, let us explain here again what
each of the symbols represent. The state IM,’: > is a particular state which is a member
of the set of states |M, >. The states |M, > have particular polarization groups M,
fixed for each species. For example, imagine a fictitious material with 2 protons and 2
nitrogen atoms. We begin by fixing (say) My = 0 and My = 1. Then the states |M, >
are the set of particular states MF with polarization group M,,. So in this example we

could label our states
My >=|+1/2,-1/2> | |Mj{>=|-1/2,+1/2 >
and
My >=11,0> , |M}>=10,1>

the former of which constitute the set |My > and the latter the set |My >.
Because of our approximation (#i7) in the previous section we may define a density

matrix for the spin state set |M,, > of the form

e P Bk P > < MP| — |ME >< M} (5.21)

B 1
PM, = 2w, (Bu,) Zum, (Bum,)

with partition function

c)\/lﬂ

2, (Bu,) = Y e o Cyy, - (5.22)

=1
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These definitions allow us to write down the transition probability for the central spin
complex in the form

Pos = Y ] [Ws, Pag’] (5.23)

APG p

where the sum is over all possible configurations of All Polarization Groups (APG) and
Py =Tr {pMu 3 P;{,} (5.24)
|15 >
where we have summed over all final spin bath states for our transition probability (any
state of the spin bath is acceptable as a final state). Here the ensemble average over all
possible configurations of all polarization group states APG is normalized such that

>, W, =1

APG n

For a single species spin 1/2 bath,

1 N

M= =%
oN N—M
2

(5.25)

The way this works is as follows. Each particular molecule begins its quantum mechanical
evolution in one of the nuclear spin states ], |M, >. The probability of its making a
transition from central spin state |o > to central spin state |§ > is then I, PO]Z“. The
relaxation rate which we are after will involve contributions from all molecules in the
crystal, which will of course be in different polarization groups. Therefore in order to
extract the quantity of interest we need to perform an ensemble average over all these
contributions. This ensemble average is given by (5.23).

We can write the expression (5.24) in a simpler form by explicitly summing over all
final spin bath states, using the completeness relation 2> |[I/ >< I'| = 1. Performing

the sum gives

PO%;L =Ty {pM“ < a’e—ifocH(T)dTlﬂ S < ,Bleifoc H(T)drla >} (5.26)
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in order to finish our job, we need to translate this transition probability into a relaxation
rate. We can do this by noting that since this is a “per sweep” transition probability,
the relaxation rate can be obtained by dividing this quantity by the time for one sweep
(which is of course simply the coarse-graining time ¢.). Furthermore, we may without
loss of generality here choose |@ >= | 1> and |§ >= | |>. Therefore the one-molecule

relaxation rate, with the molecule’s polarization group state initially [T, |M,, >, is
1 . pte . pte
ik = T {ow, <1l IO ot H0 45 ) (5.27)
4
and the final ensemble averaged relaxation rate is, from (5.23),

= Z H [WM#TA}i] (5.28)

APG n
We now turn to the explicit evaluation of this quantity.
5.3.3 Processing of the Transition Amplitude

In this subsection we shall recast the transition amplitude (5.16) in a new form that is

easier to deal with. We begin with our original definition
) . . fte .
A =< B < Pt 7D S 1o > (5.29)

This form is correct to all orders in A. As it is our wish to do perturbation theory in

this flipping term we may rewrite this in the form

i d te tn t2 i [ ar T [ drH,
A, = Zi”/ dtn/ dtn_l.../ dty < B] < I Jun 4710 pp iy T HD)
= 0 0

i th—1 T T .ty .
e N LTV LRSI (5.30)

*

HAG

where Hy(t) contains all terms in the Hamiltonian diagonal in the 7 representation

Hy(t) = §(t) + Vy(8)7. (5.31)
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and Ha contains all off-diagonal terms
Hy =A%+ he. (5.32)

This amplitude can be thought of as a sum over diagrams containing n “blips” (see figure

(5.1a)).

(a)

()

Figure 5.1: Transition amplitude as a train of blips.

Taking | >= | 1> and |8 >=| |> we find that the leading order diagram contains

only one blip (see figure (5.1b). This leading order term is simply
i te i [*drHy(r i [ | ;
Al = 2/ dty <) | < F]eda THO g o [0 i) 15 | 4 (5.33)
0

Now it turns out that the presence of the nuclear dipole-dipole term in Hy(t) introduces
unnecessary complications into our calculation. This is because it couples the subspaces
of all the environmental spins; that is, one cannot consider each environmental spiﬁ
subspace separately if this term is explicitly present. However we may use the following
physical argument to rewrite this term in a different way. The nuclear dipole-dipole term
has the effect of causing a time-varying random field acting on the central spin, coming

from the fast nuclear-nuclear dynamics in the bath. The transverse components of this

field may be absorbed into the already existing transverse terms in the Hamiltonian. As
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long as these latter are much larger than the amplitude of the nuclear-nuclear noise ~ Iy
we may neglect them—we shall assume this is the case for now and then explicitly show
in section 5.6 that this holds. The longitudinal terms, however, may not be so absorbed.
This is because the energy scale that we must compare these to is Ay, which is much
smaller than T'y.

Therefore we shall replace our microscopic and deterministic description with an
equivalent stochastic form, following [20]. In this stochastic version the internal dynamics
of the spin bath are replaced by a randomly varying time-dependent field acting on the
central spin complex which models the dynamics generated by the original nuclear dipole-
dipole term and each environmental spin subspace is assumed to be decoupled from all
others. In terms of our Hamiltonian this entails replacing the intra-nuclear term in (5.10)
with a term 0£(¢)7,, where 0€(t) represents the longitudinal component of the fluctuating

nuclear-nuclear bias field. Explicitly we have that

Ht) = §(t) + Vy{t)7 + A7 + hc. —

Ht) = {(t)+ (V) +06(t)) 72 + Ar_ + hee. (5.34)
We have denoted this new stochastic Hamiltonian via an overbar; that is, we write H(t)
for the original Hamiltonian and H(t) for the stochastic approximation.

Because our new Hamiltonian now contains this stochastic term, we shall use a slightly

different notation for the amplitude, writing
A =i [ <1 < PO g RO s

with the overbar reminding us that we are now using H (¢) to evolve the system, and not
H(t).

With this choice, the inner product in the 7 subspace can be taken, yielding

Aif = z/ dt, < [|eHds TCO=FOY i [ arilen b i, (5.35)
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where we have defined
F(r) = VH(T) +6&(1) = Y+Acosw'r—|—§+5§(7') (5.36)

Here we have chosen for the sake of concreteness the sinusoidal form for the sweeping field.
For the sake of notational simplicity we shall separate terms in é that are time-dependent

from those that aren’t, writing

+ ~
) = Z [Ck + Acos lezk] (5.37)
where
=(1) | =(2) N
ks T Vks N eQx kaf rk
_ g i ___ %k _yhapy .
Ch 5 + (€2 + H,4 + H, k+z[61k 2Ik_1)V o3 (5.38)
 N+8
¢= k (5.39)
k=1

and the time-dependent piece is the Zeeman interaction between the external AC field

and the nuclear spin. We find that, after performing the 7 integrals in the exponents,
A—%i _ ./tc dtleisinwtl Zu%[Mi#—NIf“] < Ifl [{C T- —&Htc—11) —Slnwtl—f drdg( )] .
0

i {{+THE 0+ Bsinwti+ [ Mf(ﬂ]

A*e | > (5.40)

We have defined the initial and final polarization groups of the u'* species to be
My, = Z ] , My = Z ng (5.41)
k=1 k=1 ,

Because we are always in the limit that

Sgpp

1 5.42
Ngnpin > (5:42)

we can drop the direct field-nucleus interaction ~ A term from our expression.
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Because all the environmental spin spaces are independent in H(t) we may separate

each contribution. Rewriting the cosine coming from the flip term as a sum of exponen-

tials
. N+48 N  N48 -
A= 2A0 (o0 <q) -1 Z A{,cv,D . Ik:) = AO Z elhq) H ehAN,D'Ik
k=1 h=+1 k=1
we find that

A = aoi | " gty (F e =L drds )+ drdes (4t
0

N+8 PN kT g A L .
S e ] < II{|6’L{Ck—Tk}(tc—t1)ehAfv’D.Ikel{Ck‘}‘Tk}tlII]:: > (5.43)
h=x=1 k=1

where |I{ > (|I] >) is the initial (final) state of the k™ nuclear spin and 8¢;; is the (time
dependent) nuclear-nuclear longitudinal bias field acting during the transition from |I* >
to |I/ >. This is the form of the transition amplitude that is best suited for using as

input into the calculation of the transition probability.

5.3.4 Processing of the Transition Probability

(i) The Formal Expression

The next step on our journey towards the final one-molecule relaxation rate is the com-
putation of the transition probability from the result (5.43). As we noted in our intro-
duction of the problem, the transition probability from the state | 1> ®|I* > to the state

| 4> ®|I > with Hamiltonian H(t) is simply
of _ piftopif

Now in our case we are working with the transformed Hamiltonian H (t). Does this change

this expression? Looking at the form of our transition amplitude (5.43) we realize that

it contains explicit mention of the time-varying random field 6¢£(¢). This field has to be
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averaged over in the final expression for the transition probability. This means that if we

use H(t), the expression for the transition probability becomes

Pif = [ Dloti(0)Plos () A5 A (5.45)

where we have explicitly included a functional average over the fluctuating bias field.

Using our result (5.43) we find that this transition probability is

24 (ginw sinw 2 4r L _
Ti - AQ/ dt1/ dtQ/D 6€zf ’P[(Sé‘lf( )] [ (sinwt — t2) 2ft1 A7t (7)+E(t tz)]

N+8

Z e (hq) —-mo* ) H < III —l{Ck+Tk}t2emA-'?V*’D-fke_i{gk.—’fk}(tc_tz)|Il{ >
hom==1 k=1
< ]I{|ei{<fk—Tk}(tc—tl)ehjfv,u'ﬁcei{fk+'fk}t1|[Ii > (5.46)

To translate this into the form PTAf“ we sum over all final states of the spin bath (using
the completeness relation) and restrict the set of initial spin bath states to be those with

polarization group M, giving

Az/ dtl/ dth TA smwt1—sinwt2)+§(t1_t2)]
. . —2i [*2 g7 . 1
> elh?—me) / D [561\/[#@)] P&, (t))e 2 [, 2 drd€n, (1) y L

ISI < Mpkle G+ T i}tz mAY fke—i{ﬁk—‘fk}(tl—tz)ehf‘fzkb,o'fkei{fk+"fk}t1|Mpk >
7
k=1

(5.47)

where |MP* > is the initial state of the k% nuclear spin in the p** spin bath state having
polarization group M,, and 6y, is the fluctuating longitudinal bias term coming from

the nuclear spins in the M, polarization group.
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5.3.5 Processing of the Transition Probability
(ii) Averaging over the Randomly Fluctuating 7, Noise

We see from the preceding that the contributions from the effective nuclear-nuclear term
in our Hamiltonian H(¢) coming from the u** species are wholly described by the expres-

sion
| (800, (0)] Pl (1)) 260w (5.48)

In order to explicitly evaluate this contribution we first need to specify the probability
functional P[0&y,(t)]. We assume that this random process is gaussian and therefore

take
P [5€M (t)] — e——%fdmfdsztS{Mu‘(51)KM“(51—32)5§M#(32) (549)

where the quantity Kjs, can be understood in terms of the following. The probability

functional is defined so that the average of any operator over it is simply

< A(Sw, (1) >= [ DI56w, ()} Al6En, (B]P3EM, (1) (5.50)
It follows therefore that the autocorrelation function of the noise is

< B, (51)361, (52) >= [ DL€, ()56as, (50)880, (s)e H 400 o8 00K, o1t 0

(5.51)
The formal solution to this equation is [119]
< (561\4#(81)(561\/1“(82) >= K;Ii (81 — 82) (552)

where K;[i 1s defined by

/ds'KMﬂ(sl — s')K;ﬁ(s' ~ 89) = 8(81 — 52) (5.53)
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In our case, we are interested in a noise functional 6&y, () which changes by roughly
dwyy, in a time T5 /N (this quantity is related to the spread in energy space of the M fth
polarization group I's,~simply I'y;, = vV Ni'dwyy, ). It then diffuses in energy space with
diffusion constant

Né‘(apr)Q A?w#

2
where we have defined A}, = FTM‘i This now allows us to find out what K/ (s; — s2) is

for our problem. This is because

< (8, (51) = 8€u,(52)) > = < (B, (51))> > + < (6601, (52))? > —2 < S, (51)06ns, (55) >

= 2Dsey, 51— 52| = Ajy, |51 — 59

and therefore

Ay
< 06, (51)08m, (s2) >= Kjy, (51— 52) = 5 Usal + so = Is1 = s2]) + 8644, (0) (5.56)

We now introduce the characteristic functional ®[Q)y,| dual to our probability functional

B[Qu, (1) / Do, (¢ ot J dtQar, (66, (t)fp[gf a, (1)

[5fM“ /DQM,L ~1 Qi (036, (0 [QM,L( )] (5.57)
For a gaussian probability functional it follows that
@[QM (t)] — eifdsQM#(s)éfMﬂ(s)e—%fdsl fdszQM,‘ (51)K;IL (s1—52)Qn,, (s2) (558)
7

The quantity that we are trying to evaluate (5.48) is simply ®[—2]. Because we know

what K ;,i(sl — $9) is from physical grounds, we may now write

/,’D [(SfMu (t)] ,P[(SSMM (t)]e—Zi ft‘f dré€n, (1) _ (I)[—Q]

A,
—2zf ds5§Mu(s f dsy sldSo (|s1|+|s2|—]s1—s2])+T3, (5(51 s2)

(5.59)

(5.55)
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Performing the s integrals gives
—9; ftz dréen, (1) —&-‘i(t —t )3_1—\2 (ta—t )2
| D[S, (8)] Plstas, (t)]e™™ I 700D = g7t (o (5.60)
We find therefore that

A3
PM“ _ AZ /tc dit, /t“ dt2ei[%(sinwt1—sinwt2)+§(t1—t2)]e——A;[’i(tz—tl)s—T%lu(tz*tl)Q
0 0
Z i (h®=—ma”) 1

hym=%1 peEMP Cwm,

n
s ~ ~ - - - - - - - N
pk| ,—i{Ch+ T2 ;mAKy oIy —i{le—Ti}tr—t2) JRAY, pody i{Cu+Ti}ta | pypk
< M# e e D ke e "N pke M# >
k=1

(5.61)

Note that since Ay, < Ty, (that is, Lpg, > T{l) for the systems under consideration,

we can always drop the cubic term in (¢, — ¢3) in the above expression. We therefore find

that
M, 2 —(smwtl sinwta)+E€(t1— tz)] ‘F?w (52*t1)2 i(h®—md*) -
P g [, [ el T S o)
7 L 2
hym==1 peME CMu

NE . A . L

H < Mpk;|e—i{§k+'i'k}t2€mA§;]*:D-Ike—i{gk—'rk}(tl—iz)ehAﬁy’DJk6i{Ck+Tk}tl|Mpk: >

i 1

ku=1

(5.62)

5.4 Solution Without Spin Bath

The expression (5.62) is still quite opaque. In order to see how one extracts meaningful
results, we shall see how to resolve it in the situation where the spin bath is absent. Here
the Hamiltonians H(t) and H(¢) are identical and ¢ = T, = A"f\,’D = I'py = 0. Since

[T8 < ME|ME >=1 and P/l — Py, we may write (5.62) as

te ic . .
PTi — Ag/o dtl/o dtze [%(smwtl—smwtzﬂ-f(n tz)] Z ez(hd)—md) ) (563)
h,m=-=+1
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The sums over {h,m} collapse, and we have
te te 24 0o :
PN — QASI COS‘I>|2/ dtl/ dtzez[%(smwtl—smwtz)+§(t1—t2)] (564)
0 0

These integrals can now be performed, with result

2.2
Py = AOZ | cos @2 [Jfg (%) + &2 (%A—)] (5.65)

w

where J and £ are the Anger and Weber functions respectively [113]. This result,

normalized to the transition probability for the standard Landau-Zener process

©o _ A’m  Al|cos®’m

P == o (5.66)
1s
PTJr _ TA 2 2A 2 2A
= T () 22 (5] (567

This quantity is a function only of A/w and &/w. We have plotted it as a function of £/w
for three fixed values of A/w in the figures that follow.

Note that similar transition amplitudes have been calculated previously for related
problems [115, 120, 121]. Perhaps the most closely related problem for which a published

solution exists is for the Hamiltonian [115]

E— Acoswt A
H = (5.68)
Ao £
The published result is the transition probability over one entire cycle of the field, which

is a time which is double that of the coarse-graining time we are using, and it is given by

24 '
P, = 20" g2 (—) .
Lis w? E\w (5.69)

where J,(z) is a pu'* order Bessel function.
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We may also solve this problem for the case of a sawtooth field. In this case we have

that

tc/2

te/2 T Au
Py = 4A2]cosdf? / L / / dtyeil A2 -B) e —2)] (5.70)
. —te/2 —te/2

These integrals may be performed, giving error functions [113] which can be easily plotted.
This result, again normalized to PT(E), is compared to the results obtained from the
sinusoidal perturbation in the figures that follow.

Note that what we have calculated here is the transition probability for one sweep.
Because we do not have the spin bath to absorb phase information from the central
spin we cannot really claim to have calculated a “relaxation rate”, as each sweep of the

field here is correlated (in the quantum mechanical sense) and this calculation implicitly

assumes a decorrelation.
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Figure 5.2: Transition probability normalized to the standard Landau-Zener transition
probability PN/PT(E) plotted against 2£/w for 24/w = 0.1. The top (bottom) graph is
for the sinusoidal (sawtooth) perturbation.
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Figure 5.3: Transition probability normalized to the standard Landau-Zener transition
probability PN/PT(E) plotted against 2 /w for 24 /w = 10. The top (bottom) graph is for
the sinusoidal (sawtooth) perturbation.
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Figure 5.4: Transition probability normalized to the standard Landau-Zener transition
probability P/ PT(E) plotted against 2¢/w for 24/w = 500. The top (bottom) graph is
for the sinusoidal (sawtooth) perturbation.
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5.5 Solution For a Spin Bath with no Quadrupolar Contribution

If the spin bath contains only spin 1/2 nuclei, or if the contribution due to the electric
quadrupolar term is omitted from the Hamiltonian, then the expression (5.62) simplifies
considerably. In this section we shall calculate the full general relaxation rate produced
by the effective Hamiltonian (5.6) in the limit where the terms representing the electric

quadrupolar effects are taken to zero. Formally what we shall do is take

Qk—>0

It shall turn out in what follows that our choice of a sinusoidal sweeping field intro-
duces technical difficulties in evaluating integrals when the spin bath is included. For
this reason we shall in this section consider only the sawtooth perturbation (5.8). With

y p
this applied field (5.62) can be written
pMe _ A2 /2w d /2w d i 4% (t1—t2)2 +£(tr1—t2)] , Ty, (1 —12)? i(h®—m®*)
b /2 h /2 2t ‘ ¢ Z ¢
-7 /2w —7 /2w hym==41
o

2) R ¢
Z H < ;\[pkle Ik,ltz mAN b Ikue_”k IL,L(tl—tz)ehAN‘fD-Iku Ty Lkt lMplc >
m

MIL peMp ku_l

(5.71)

5.5.1 Pure Orthogonality Blocking

In order to get a feel for how this calculation will go in the general case, let’s start off with
a particularly interesting limit—that of pure orthogonality blocking (for the deﬁnipions of
orthogonality blocking, topological decoherence and degeneracy blocking we refer the
reader to [20]). In this case we take the topological decoherence terms fﬁi’,‘ p to be zero.

The reason that this limit is particularly simple is that without these terms, we may take

the axes of quantization of each of the nuclear spins to be such that ﬁ/,gi) = 2 without
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having to worry about the effect that these rotations have on the form of the /flf\}‘

find in this limit that

Bt = 3ol [ an [ dpyel o eso] T

—7 /2w -7 /2w

1 Ny 7O, (t—t2) 72 1 (t1—t2)
_ —i72), _
it Z H e ’Yk“ kpzlli—t2 < Mﬁkle ’Yk# kplt1—12 |M5k >

CMu PGME k#:I

170

p- We

(5.72)

where we have used notation such that I ., means the z state of the kft" spin, normalized

such that —1 < I, < 1. Note that we must be careful here, as the conversion from field

to energy units contains a factor of |I_;C| We now choose, without loss of generality,

(2 A .
’y,(w) = Cyz + 1T

where

co = —W,(ci)|cos 26k, ¢ = W’(Ci)l sin 20,
with
~(1) ;},(2)

cos Qﬁk“ = Yk, Tk,

Changing variables to

1)+t

XZCU(tl—tz) y Y =w

allows us to write

2
P = Ag| cos @ /M2 dY /Oo Il Xy eix] - e

w? —-7/2

NE ), o)
1 T ik x k|~ ] X |2 rpk
o Yo I e e < MPFlem o T | M2* >

My, peM] ku=1

(5.73)

(5.74)

(5.75)

(5.76)

| (5.77)

Here we have extended the limits on the X integral. This will be permissible as long as

['p, > w (which we assume here), as the gaussian term cuts off the large X contributions.
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Similarly if |f7,(€i)| < V' N§T'y, (which we shall see is also the case-see table 5.2 and tables
2.3-2.11) we may expand the inner product to quadratic order in X, giving

,?(2)
< MPF|e™ = X | MPE >

7w X2 72\
1—-iX < M}j’“|7“ Iy, | MPF > -5 < M| (7 ' Iku) |MPE >
(5.78)

. 172
=1+iXI,,—*
w

X252 (1 1. 2 2
cos 23, — ?— 28n 220, 5 + cos” 2B, I,

52 X252 2
. k .
ZXIkuz—;]L COSQﬂk“——4w2L— sin? 2ﬂk”’ (1——%)

=e (5.79)
Insertion of this into (5.72) yields
2
M _ AZ| cos D|? /71'/2 v /oo dXei[%Xy+5X]e_PTA§&XZ
1R w2 —n)2 _
”(Z)I |~(2)|2 12
NE 21XI,C‘“—”—cos B ——E-—sm22ﬂkﬂ (1——’“%)
— > (5.80)
Mu peMp k=1
where we have used the fact that |fy,c | = ]7k2)| (ie. the magnitude of the field acting on

the k% nuclear spin before/after the central spin complex flips is the same). Defining the

quantities

N¥ J2 |
=23 Iy 7" cos? B, , P}, = ZWPM 26k, ( ’;) (5.81)

ku=1 kﬂzl

we can write this as

2

2 2 poox2
=M, AO|COSQ)| 7/ 2AXY+§-/\ S X2 1 ixaL_Z flp
pipe — SHes 0P 1 17 le-pw L5 g

—7'('/ M‘,, pEMﬁ

W
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The Sum Over Initial States |[M? >

We are now going to perform the sum over the initial states |[M? >. Before we begin, let
us take a close look at the expression (5.82). We see that both €)' and p;, are functions
of the particular state that the spin bath is in. Now what we are going to do now is to

replace p%u with its average value; that is, we take

1 &, ?
P = = S |7V)Psin? 26, (1 - 2 (5.83)
4/4:“:1 2
Since
. 1 2 17, +1
o= (-1 =-2L 5.84
Fu fﬁ%“é?:(“ ) =3 I, (5:84)
the average value of p7, is simply
50, -1 N oy .
P =~ 3 |7V sin? 264, (5.85)
241, =,

The approximation of neglecting the width of the distribution of numbers {p,,, } is justified
whenever this width is much less than I'y;, (which is certainly the case here). With this

approximation the sum in question becomes
1 X%, _
e Y el (5.86)

In order to clarify the procedure that we shall adopt in what follows, let us imagine how |
we would proceed in a specific case. As a typical example, let us consider how to deal
with the protons in Fleg.

In this situation, there are an enormous number of possible states because Ny (and
therefore C My ) is large. In Feg there are 120 protons per molecule. This means that there

are 2'2% ~ 10% states in 2Ny + 1 = 241 polarization groups. The M polarization group

contains Ny choose |My — Ny|/2 states, each of which contribute to the sum (5.86). In
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addition, we note that the values that €] can take are bounded. So the situation that we
must deal with is one where we have an extraordinary number of states squashed into
a bounded energy range. It is natural in this situation to convert the sum over initial
states into an integral over €/’

Now because of the exceedingly large number of states available to the spin bath,
we may invoke the central limit theorem in order to supply an appropriate weighting
function for the integration. That is, as we increase N¥, the numbers that we get for €
for each particular state of the spin bath will begin to approximate a gaussian distribution

centered at some value €)™ with some width W(M,,). In this limit we find that

oM, N
i > 1| cos” (5.87)
3 k=1

eiw" —
Now the width W(M,) is a little trickier to dealt with. In general it is apparent that this
quantity has its maximum for M,, = 0 and monotonically decreases to zero for |M,,| = N¥.
How it does this will in general be a function of how the fields W,(Ci)l are distributed.
It turns out, however, that to a good approximation we can consider this width to be
independent of M,,. There are two factors that make this approximation reasonable. The
first is that the number of states available in a given polarization group M, (which, for
spin 1/2 nuclei, is simply NV choose |N — M|/2), fall off sharply for |M,| >~ +/N¥. This
means that the behaviour of W(M,,)) for |M,| > v/N¥ will be irrelevant, simply because
there aren’t enough states in these higher polarization groups to make any difference in
the final relaxation rate. The second factor is that for |M,] < V/N¥, the width W(M,)
will be roughly of the form |

| M|

W(M,) ~ (1 -

)wm#) LM < NE < N# (5.88)

for N¥ large. The zero polarization group width we get from the central limit theorem;
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it is simply
2 &)

w(0,) — TNT El 1% | cos” Bi (5.89)
Note that to be consistent here we must also take Iy, — T, for the same reason that
we took W(M,) = W(0,). We shall hold off on using these approximations for the time
being. We can make excellent progress in evaluating our expressions with unspecified
Ca,, ef/f“ and W(M,,). Until we reach the point where we need to have explicit forms for
these we shall just leave them as functions of the polarization group.

Using the gaussian weighting allows us to rewrite our sum in the form

o .
_x%d X _ X%} 1 00 _(‘#‘; )2 kx
e "o —— Z e o =e "oz —/ de’l‘e 2WE(Mu) o' g
CM,L pEMﬁ \/ZWW(MM) -0
Muo w2y 2403
oy S TR T g g2
=¥ e e (5.90)

Substitution of (5.90) into the expression for the transition probability (5.82) yields

2 2 7_‘_/2 00 ’ EMP' W2(M;L)/2+P% +F12\,1
su, _ Aglcos P A xy+Ex] ix i X2
P ==t Ay [ axel Jex e -
(5.91)

Evaluation of the Ensemble Average Over Polarization Groups

Examination of Pff * reveals the following useful fact. Because the energy spreads in the

different polarization groups overlap considerably, ie.

W(M,)
VNI

we may approximate the ensemble average over all polarization groups by integrations.

< \WR(M,) /2 + g3, + T3, (5.92)

Formally this is done by taking

1 ©o A2 u
ST W, — 11 [\/W/_m dM,e Mu/"‘Ns} (5.93)

APG p n
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where we have extended the integration limits (the gaussian cuts off the large M contri-

butions). From (5.28) we have

Py = > T [WuPy]

APG 1
A2l cos ®|? [r/2 0 oA
— OI I / dY/ dXel[EXY—*-%X]
w? —7)2 o0
0 g Me WO 73S [W2<Mu>/2+p%ﬂ+%]
1 —M2/2NE | /nE ¢ - = e
o dMe "#/ " s e s e w?
27rNs —00

(5.94)

where we have written eiw“ explicitly as a function of M, using (5.87). In order to perform
the integrals over the set { M, } we now invoke our W(M,,) — W(0,) approximation. The

integrals over the set {M,} are then easily performed, giving

2 2 /2 ‘ o0 . s 2
P = AZ| cos D| / / dY/ dX el BXY+EX] Yy x2 (5.95)

w? —7/2

where we have defined the full energy width

W2 =3 [WA0,) + T2, + o2, ] (5.96)

u

where all these quantities are evaluated for the zero polarization group spin set for each

species.

Evaluation of the X and Y Integrals

The X integral can now be performed, yielding

_ Af|cos ®|? /TF/2

Pf=—— dy
t VIwW  Jorj2 P

w? [(24Y  €\°
— <ﬁ + ;) } (5.97)

Changing variables to

7 = — <ﬂ + é) (5.98)

2w

W W
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allows us to write our relaxation rate in the final form

W Adlcos®® 12+ o
T W VTA Uz ¢ (5.99)
where
+A+¢
= .1
o= (5.100)

Evaluation of the Relaxation Rate in Various Interesting Limits

In the limit where |A]| > /€2 + W? we recover our old large A result, which is of course

independent of M,

1 AZ| cos @|?

1 (5.101)
If |A] <« /€% + W? then the relaxation rate becomes
. AZ|cos®|? £2 ‘
T = ——O—l\/wl—exp I:_4W2] (5102)

Discussion of Results:

I. Pure Orthogonality Blocking

The general result (5.99) produces two limiting cases (5.101, 5.102) that are both quite
interesting. The first of these (5.101), valid for large A, tells us that in this limit orthog-
onality blocking effects do not affect the relazation rate at all. How can we explain this
physically?

In order to understand the result, we shall present a graphical depiction of how
orthogonality blocking works in a molecular magnet. The central spin complex, a two-

level system, begins its evolution in some 7, eigenstate which we choose without loss of

generality to be | 1>. Now for all the time that it remains in this state the nuclear spins
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feel its dipolar field. The k£** nuclear spin initially is exposed to this field which we have
called V.

We saw previously that because of the nature of pure orthogonality blocking we could
choose the axis of quantization of the k¥ nuclear spin freely and for convenience chose
the z axis to be parallel to the direction of f?’,(cl). Physically what this means is that for
this choice of basis the £** nuclear spin feels only a longitudinal field as long as the central
spin complex remains in its initial state | 1>.

Now when the central spin complex tunnels to the other 7, eigenstate | {>, the k"
nuclear spin feels a different field ’?,(CQ) which contains transverse components. This means,
of course, that the k% nuclear spin will precess in the new field 7/&2)-

The diagram that we are evaluating in order to solve for the transition probability is
the one shown in figure 5.5. We see that this process contains a length of time t; — ¢,
where the central spin complex is in the state | }>. During this length of time the k'
nuclear spin precesses in the field 719-

Now what does this have to do with our large A result (5.101)? Let us go back to
an earlier expression (5.95) and look closely at the integrals involved. In particular, let
us examine the Y integration. Notice that there is only one term under the integration
that is a function of Y. This term may be isolated and is

/2 A W AX
dy sy _ YT ( ) 5.103
/—7(/2 ¢ AX - w ( )

Now if A/w is “large enough”, we see that this expression will begin to approximate a
delta function in X. How large is large enough? Looking back to the expression (5.95)

we see that the X integral is now of the form

% AXN ey w2y
/_oo dXZ—; sin (—w—) geXem X’ (5.104)
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Figure 5.5: Depiction of the precession of the k** nuclear spin during a “blip”. The
central spin is shown in black, with a schematic nuclear spin underneath. This nuclear
spin feels a field 7,9) for times t < t;, which we choose to be the axis of quantization.

After the central spin flips at ¢; the nuclear spin feels a different field "y',(f) which contains

in general transverse components. This causes a precession of the nuclear spin. After the
central spin flips back, the nuclear spin will be in a state that has less than full overlap
with its original state.

Changing variables to Z = AX/w allows us to write
00 inz . 2
r / dz%ezize—%” (5.105)

Now here is the crux of the matter. If A is much bigger than £ and W, then the terms in
the exponentials grow slowly compared to the % term and we can neglect them, allowing
for easy solution of (5.105). Moreover, we see that because these quantities drop out of
the expression all references to the nuclear spins disappear! What has happened?

We see that this expression is dominated by small values of Z. But Z is nothing but

Z = AX/w = A(t; — t3). Therefore contributions only come from t; — t3 <~ %. We

see then that large A reduces the length of time that the central spin stays in the “blip”
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and therefore the length of time that the nuclear spins can precess in the field f'y',(f). This
is the physical reason why orthogonality blocking does not affect our large A relaxation
rate-the processes involved are completely dominated by short blips and therefore the
nuclear spins don’t have time to precess out of their initial states.

Let us now turn our attention to the other limiting case that we have worked out,
that for small A (5.102). What we have found is that the relaxation rate falls off like
a gaussian with applied bias £. This seemingly contradicts results obtained for A = 0
where the relaxation rate was found to be exponential with bias [20]

1= A e | (5.106)
§o
where & is an energy scale in the Prokofi’ev and Stamp theory [20] such that Ty < & < W
(W is the full energy width of the nuclear spin distribution—in our case we shall find that
it is W ~ 100 —400M H z depending on the choice of isotopes in the Fleg). Why it is that
our result seemingly disagrees with this earlier result can be traced to a subtle difference
in the way that our expression (5.102) and the expression (5.106) were calculated.

When A = 0 there is an additional constraint when we calculate the transition prob-
ability for the central spin, and that is that when the central spin complex tunnels
|, M >— | |, M > it is necessary in order to conserve energy that M = —M. That
is, the total energy of the central spin plus the environmental spins has to be the same
before and after a flip and therefore the environmental spins cannot go into any M they
want. Now in the calculation of (5.106) this constraint, which is explicitly used in the
calculation of the transition probability, is responsible for the exponential dependence on
external bias.

In our case we have not explicitly put in any such constraint. Instead we have al-

lowed in our expression for the transition probability | 1, M >— | |, M > for any M.

The energy constraint here of course still exists (it is implicit in the expression for the
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transition probability) but it is of a slightly different nature than when A = 0. This
is because when A # 0 the Hamiltonian is explicitly time-dependent and therefore the
system of central spin plus nuclear spins does not in general conserve energy—energy may
be exchanged with the external field. Moreover, our expression (5.102) is not valid for
A = 0 because we are in the fast passage limit AZ < Aw.

So it appears that the exponential dependence on bias (5.106) arises solely because
of the explicit addition of an energy constraint. Now in a molecular magnet, one can ask
if this constraint is realistic. The answer here is that it is not. In these materials, there
are dynamic external dipolar fields coming from all the other molecules in the crystal (in
addition to any externally applied fields of the type that we are discussing). In terms
of the structure of the transition probabilities we see that each individual molecular
magnet will have an explicitly time-dependent field acting on it from a external source.
This means that in calculating the one-molecule relaxation rates it is crucial to not put
in any artificial energy constraints on the central spin plus nuclear spin system.

Let us now summarize our point of view on the discrepancy between our result and the
A = 0 result. The exponential dependence on bias found previously [74, 20] is a limiting
case that is not relevant for a real molecular magnet, arising because of the addition
of an explicit energy constraint. Our result, arising from an explicitly time-dependent
Hamiltonian, is the description that is relevant for molecular magnets even in the absence
of an externally applied time-varying field because of the presence of time-varying internal

dipolar fields which can exchange energy with the one-molecule system.

5.5.2 The General Case; Inclusion of Topological Decoherence

We now turn our attention to the more general case, including the contributions due
to the topological decoherence terms A”f\, p- The inclusion of these terms increases the

technical difficulties involved in evaluating the trace over the spin bath for the following
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reason. The basis in which the A‘ﬁv p are calculated is that of the spin Hamiltonian for
the problem. That is, the axes of quantization of the nuclear spins cannot be chosen
arbitrarily without properly rotating the A";,’D into this new basis. In order to get a
concrete feel for why this presents a problem, let us consider the specific case of the
easy-axis easy-plane spin Hamiltonian discussed at length in chapter 2. For molecules

with this symmetry we showed that (2.73)

- 7S D—-F < z
Afp = 100 Iretin LZ -2 M Yo LZ M- Y Mp,f”

€{p1} pe{p} €{p+} pe{p,}
(5.107)
for ligand nuclear spins £ = 1..N and
- Smu”c D-F
Ak =" g P 5.108
N,D = 40, [?/ ? oF :c} ( )

for any 5" Fe in the material. By splitting the real and imaginary parts of these we can

write
A = aliy + e, (5.109)
where
= |ReA% | | = [ImA%, | (5.110)
and
X k ReAI;V’D = k ImAI]CV’D _
= —; , Ty = (5.111)

for all nuclear spins £k = 1..N + 8. Now as we did previously, we choose the axes of

quantization to be such that ’y,(cl) = z and 5’1&2) = —co0s 20,2 + sin 2,2 for all k. Then

we see that since these new axes do not in general correspond to those of the spin
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Hamiltonian, it is necessary to rotate the topological decoherence terms into these new
bases. These rotations yield in general new topological decoherence terms

A%y = oAb+ iaPnk (5.112)

in terms of which we may write

/2w /2w Aw 2 ; *
H Az/ dt / dt26[7" t1—t2)?+E(t1—t2)] Z (i(ho—me*)
/2w /2w hm=ct1
H 6_F%’! (t1—t2)? z 1‘1 e”‘mzi'yk [(t1—t2)
u My peMp ku=1
< Mpk:’ema kI, —imalP nk- Ty g=ilta— —t2)77 Iy ehak) ~fk“+ihafc2)fz’2°~fk#|Mpk
B b

(5.113)

Note that now that we have topological decoherence effects it is necessary to include all
the nuclei (and therefore the product over species p) here because the sum over m, h

doesn’t commute with the product over nuclei. Changing variables to

Aty +1t
Xewlti—t) . V= _(%T_Q) (5.114)
allows us to write
H 07r Af2w dy/°° A XY +EX] T i(h®—md*)
wA —A/2w -0 h,m==%1
I | & I e
I Mﬂ pE]\/[p k=1

-(2)

" 1) (2)
Ikﬂe—z—L IkﬂAehak n] IL +1hak nZ I‘“# I]\/[pk (5115)

_ (2
< Mpklemak n1 Ik imay,

where we have taken the limits on the X integral to infinity as before.




Chapter 5. The Landau-Zener Problem in the Presence of a Spin Bath 183

Evaluation of the Inner Product over Spin Bath States

As we saw previously in the case of pure orthogonality blocking, because the gaussian
term (in X) coming from the average over the nuclear-nuclear bias field cuts off large
X contributions to the expression (5.115), we may expand the orthogonality blocking
term inside the spin inner product to quadratic order in X. As well, we shall restrict
our attention to the case when all the |ak 2)| < 1, which is again the physical limit
for the materials in which we are interested. This allows us to expand the topological

decoherence terms inside the inner product to quadratic order in a,(ci’Q) as well. Keeping

only up to quadratic in X, a,(ct’Q) or products thereof allows us to write the environmental

spin inner product in the form

«(2)
< ]\4plclema,c n1 ]’m z'mafc )n’; ]k“6 1 IkuXeha( )nk Ik +zhak n2 I’“u ]A/[pk

+(2) 2 +(2) 2
X )
~1—iX < M”’“|7k“ e IMPF >~ < MY (7’““ -Ik“) | MPE >

+ < MPF| (mAY p - T+ Ay b - Ii) [ M2 >
+; <Mpk|<[ F Ik] +[gffN,D-ﬁ]2) |MPE >
+mh < MPF| (A7 o - Ie] [ Ay p - Ii] [ M2F >

The 71 T
—zX<M”’“|< [;;VD-Ik]{w“ -Ik#}+h{w Iy,

[AI:ND Ik]) |ME* >
(5.116)

We shall present results for these terms one by one and then combine the results after

we are finished. We have that
< MIM| (mAS b - Ik + hAY - Ti) | MPF >

=< M| (m+ h) o i, - I, —i(m — h)aP i, - L, |MPF >

= (m + h) a,(gt)ﬁlkuzlkﬂz — z(m - h)a,(f)ﬁgkuzlkpz (5117)
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The next term is

Mpk| ([ "N D Ik] + [A‘]rc}}VDI_;C:r) |M£k >

2 - 2 ~ =
=2 < M| [afjj (P, - I, )? — agf} (o, - I, )2] | MR >

2 A 2I% — I,g#z ’
=2 [agct) |:(1 - n%kuz)(—u—él—__) + 7 lk zIkuz
2 X 212 — 7 |
—of? !(1 - ngk,‘z)iu—él—ﬂ I (5.118)

Next we have

<Mpk|[ rN,D Ik] [ATND I]|Mpk

2 N =g ~ e . ~ fd ~ =
=< Mﬁk| [a,(ct) (Aak, - e, )* + a,(i) (g, - I, )? + za,(ci)agl) [nlk# Ty, g, .]k“]] |M£k >

212 — I?
1)2 ~ kuz
= al(cu) I:(l - n%k#z)—(-#él—u) + lkuzIkuz}
2 2
2)? (2Iu — 1§ 2)
+O‘/I(c#) I:(l ngk#z) 4 : Qk#zjlguz
‘*‘Ik#za&)aﬁ) (ﬁQk#zﬁlk“y - ﬁZkuyﬁlk“x) (5.119)
And finally

~(2) 7

<Mpk,< [ AN b Ik] {%—'fku

=(1)
Vi, | cos 20y A (@),
_-—_—I b | ~ a IZ“Z [a,(ci)nlk“z(m +h) — za,(ci)n%#z(m — h)]

+h Ik [AITCND ]k]) | MEF >

4 ak# (m + h’)ﬁlkug - iak“ (m — h)ﬁQkuz} .

()] o
+|7'(w | sin 26y, [(213 —I,E#Z) { (1) 2)
w

I,. R : R
—1 1; {oz,(c )(m — h)fk,y — za,(gi) (m + h)ngk“y}} (5.120)
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We now substitute these results into the expression for the transition probability, giving

2

H _ 07r Y/ dX eiXY+5x] Z (i(h®—m®*)
wA —AJ2w b1
Tu g 1 X% ; - ;
H -0 X i Z X ooz g(mth)ps1u —iX par]—i(m—h)[p3zu —iX pazu ]+ (1+mh)p21u — (1-mh)p2zy
1 M# PEME
(5.121)
where we have defined
s 2 2 NE
N @)? IEE-I;,) 15 1) (24 . . .
Py = Z aiu) (1- n%k‘”z)——ﬂ[l—“z + 5 Z Ik”zal(g#)al(gu) (nZku:cnlkuy - nZk#ynlku:c)
ku=1 k=1
2 (212_113 z) 1 N 2) /A ~ ~ ~
Py = Z Qy 2) anuz)—LZ——E— + 5 Z Ik#za;(gi)a;(gu) (an#xnlk,‘y - n?kuynlk#z)
k=1 k=1
P3tp = Z Ik,‘zagc?ﬁlk”z
k=1
Ps2u = D Ik,‘zal(ci)'fhk,‘z
ku=1
Yk (212 - Il? z) o Ik z o |
Paiy = Z l u| Sn25ku —IL"—LL—#al(ci)nlkul'_ 2# a.gci) Qk#y
ku=1 L |
Yk (212~ 1}.) (). Li: 1. |
Pazy = Z ! “Ism2ﬂk# ——Ma,&z) Nok,e + —o a,(cl)nlkuy (5.122)
ky=1 L 4 2 . ]
~and
Pap = Zpaﬂu (5123)
m

In other words, if there is a p subscript on one of these quantities then it refers to
the species pu. For example, p;1, is the quantity defined above for the specific subset
of nuclear spins in species p. If this subscript is not there then it refers to the sum

over all species—for example, po; is the sum over the contributions from all the species

Pa1 = 2o, P21p-
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The Large A Limit

Now there is a limit here where this simplifies considerably, and that is when A is much
larger than all the other energy scales in this expression. In this case, the integral
over Y gives a delta function in X, for reasons identical to those discussed in the pure

orthogonality blocking case. This allows us to write

2A07r

H wA

Z i(h®— m@*)H Z [ (m—}-h)pglﬂ—i(m—h)p32u+(1+mh)p21u—(1—mh)p22u]
— CM P
m,h==%1 © peM}

(5.124)

The Sum Over States in the Mﬁh Polarization Group

All four quantities po1,, p2ou, P31y and psa, depend explicitly on the state of the spin
bath via their dependence on the set {/;,.}. At this stage of the calculation we wish to
perform the sum over the states in the Mﬁh polarization group. In order to do this we

define the quantities

_ % QIE-IL.) 1M 2
Pip = Z ak ”1k z)—uz—'ﬂ"— +3 5 Nﬁ Z | k“)al(c )(n2k znlkuy - n?kuynlkua:)l
k=1 5 ku=1
LI, —1) X 1M
— 1 1
= % Z &l(c“) (1- %Icuz) + §N_ﬁ Z Ial(c“)al(c)('n@kuznlkuy _an#ynlkuz)’
ky=1 5 ku=1
— i (2‘[2 - j]? z) 1M
p22p, - Z ak an Z)ﬁ—L + = 5 NZ Z ’akﬂ Oél(c )(an#znlk#y - n?k ynlk#:l?)l
k=1 5 k=1
L(5I,—1) X e M, X e, o
= u__1u2___ Z al(cu) (1- ngk#z) + EN_"‘L Z ’a;(cu)a;(cu) (P2k,2M1k,y — Pok,yMik,s) ]
k,=1 S ku=1
Wy, = an Lz Mky — Nok,yMik,z)|
k =1
M, X
P3ty = Z |ak nlk“zl , P = N £y |C¥k n2kuz|

Ny ku=1 Ns k,=1
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1 N{ ) 1 N¥ @
%% = — oy Nk, , Wsay = E oy Mok, » 5.125
St vV N¥ k§1| Fu TR | i VvV N§ ku=1| b T2 | ( )

For reasons identical to those given in the section on pure orthogonality blocking we may

now change the sum over states to an integration; explicitly we take

_1_ Z e(m‘i'h)Pam—i(m—h)pszy+(1+mh)021u—(1—mh)922# —
M, peM]
—(p31,—F31,)° —(p32, —F32,)°
ZP31p " P3lp) Z1P82u —P32p)
1 /oo d W 1 * d w2,
T P31.€ H = P32,€ #
V2rnWsyy, J-oo V21 Wiy, o0
—(p%l —h21y) —(pgz —P22u)
2w22# 2W22#

1 oo 1 oo
L [y = [ a
\/271'W2u /—oo Pa1uc vV 27FW2M —00 P22uc
exp [(m + h)ps1, — i(m — h)psgy + (L 4+ mh)par, — (1 — mh)pog,]  (5.126)

Note that the reason that these integrations can be taken to be independent is because
we are only keeping to quadratic order in |ax|. These gaussian integrations are easily

performed, giving

1

e(mt+h)ps1n—i(m=h)psa.+(1+mh)p21, —(1-mh)p22, _
CM“ peME

exp (1 +mh) (W3, + par| — (1= mh) [Wi, + pas| + (m+ h)pssy, — i(m — h) ]

(5.127)

Inserting these results into (5.124) gives us

2
HPTI\L[;L — 2AO7T Z ei(h@—m@*)
1 wA m =41

exp [(1+mh) [Wh + pn| — (1 — mh) [Wh + pna] + (m + h)pay — i(m — h) o]

(5.128)
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Evaluation of the Ensemble Average Over Polarization Groups

Our expression for [], PTAf“ depends explicitly on the set {M,} via the quantities pa,
P22, P31 and Psa. In order to perform the ensemble average over the set {M,} we perform
the same calculation as was introduced in the section on pure orthogonality blocking;

namely we take

1 oo 2 1o NH
> 1IWu, — H [\/W/_oo dM#e‘M#/QNS] (5.129)

APG u

Substitution of this into the expression for the relaxation rate

=S I [Ww B (5.130)

T APG p
gives
2A? . « 1 00 2 p
] i(hd—m®*) / dM..e—M2/2N
T A m7hZ:i16 ];[ I:\/ 27TNsu -0 g
exp [(1+mh) [W3 + o | — (1= mh) [W5, + pas| + (m + B)ps1 — i(m — h)pso]
(5.131)
Performing the {M,} integrals gives
2A2 , - 1
P TO > ' h®=m®) exp | (1 4+ mh) [ng ( } Z ak nlk .)
m,h==x1 k=1
(5L, —1)] & o2 1
(1o |, + SO 52 o, g] exp [5 [+ W)Wy — i(m — B W]
kp=1 .
(5.132)
We can now perform the {m, h} sums. The result can be written
4N2
= —A—O [e’\l cosh 2¢; 4+ ™2 cos 2(/)0] (5.133)
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where we have defined

LG5I, —1) « X 2
A =4W5 + % > > al(cu) (1- n%k#z)
Boky=1
_ 2 Iu 2)2
Ap = 4W5; + ZZa (1 —ny,.)

Defining new phases

2
and
o 1 —1 A1
¢ = 3 cosh (e cosh 2@1)
we write

b = ¢y + iy
in terms of which the expression (5.133) can be written

. A2|cos )
T = —-————
A
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(5.134)

(5.135)

(5.136)

(5.137)

which is identical to the result without topological decoherence except that the phase ®

has been renormalized by the interaction with the nucles. This is exactly what we would

expect to have happen here. Note that the inclusion of topological decoherence does not

change the result that in the large A limit orthogonality blocking effects disappear.

General Solution for Arbitrary A

Now let us attack the arbitrary A case, starting with (5.121). The strategy that we will

use in this most general case is as follows.
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1. First, we perform the sum over states in M?¥, by converting this sum to a set of

integrals over quantities that are functions of the set {p € M?2}; explicitly we take

—Z—>-

M# pEMp
- —5 2 _ s 2
1 /oo p (pB;th_,afzily_,) 1 0o . (paiwu 3:325)
= P31,€ " Y P32,€ »
27{.VI/31M -0 V 27TW32# —00
—(Pgl —P21y) . —(P%Q —P22p)
2W2E 1 2w2
" 2u

1 0
— d € _—-—'/ d €
V21 Wy, /—oo Pan V21 Wy, J—c0 P2

1 o B 1 o0 - 1 0 i
T /_oo dpa1u0(pary — P41u)— /_oo dps2ud(pazy — pmﬂﬁ /_Oo dp1,0(p1, — Pry)

(e ey
\/2_W / delie™ 0 (5.138)
T

As we have seen previously, taking all these integrations to be independent is justified as
long as we only keep to quadratic order in our small parameters. Note that the widths of
the three distributions {p1,}, {pa1,} and {psa,} are all quadratic in small parameters and
therefore have been dropped (because these appear in quartic order in small parameters
after the integrations), effectively replacing integrations over gaussians with integrations
over delta functions.

2. Next we perform the ensemble average over polarization groups M,,. Explicitly we

take

1 e 2 u
S I W, — H { NS /_ N dMue‘Mu/QNS] (5.139)

APG n

3. Next we integrate over the variable X, which represents the “blip length”.
4. We then perform the sums over {m, h}.
5. Finally, we change variables from Y — Z. This gives us our final answer.

Let us perform all five of these steps explicitly, starting with (5.121);

M, _ 2A07T Af2w

HPT WA

dY/°° dX XY +EX] ) (i(h®—m®*)
—A/2w —o0 mh=+1
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r2 poox2,2

M R 4 . . .
H e—j/iw X2 1 er—u];———Q—‘iw 1 e(m+h)[p31#—sz41“]—z(m—h)[p32#—sz42,L]+(1+mh)p21,L—(l—mh)ngu
2 Cu, peEME

(5.140)

In order to complete step 1. we must calculate the following;

ek xZp? A
1 elX 4 —Tzl’i e(m-i—h)[Pslu —iXparu]—i(m—h)|pazy —iX paz2u]+(14+mh)pa1, —(1—mh)paz, -

CMF‘ peM}

—(p31y ﬁ31g)2 1 o —(p32££_ﬁ32g)2
2W31“ - / dp32ﬂe 2W32“
vV 2’/TW32H

-0

1 /00 d
—— P31,
vV 27TW31N —00 #

2 _
_(/721 _921#)
2

W2#

2 _
_(P22 —p22p)
2
2W2ﬂ

1 [e%s) 1 [o's]
—_ d e _ / d e
V2rWs, /—oo P2iu V2rWs, /-0 Pa2u

1 00 ) 1 o ) ) N —
V2T /—oo AP0 (Pav = Paru) V21 /_oo dpa2,6(pazy — /342#)72_; /_oo dp1u6(P1u — Prp)

1 (el‘_eMﬂ)Q
e

[T gete D X T
V2T W(M,) /_oo '
exp [(m + h) [p31y — 1X par] — i(m — h) [pagy — 1 X pagu] + (1 + mh)pa1, — (1 — mh)paa,,]

X2p%

(5.141)

Evaluating these integrals and inserting the results into (5.140) gives

5M,, 2A%m Al o xy+&x i(h®—md*
I = =22 ay [~ axelrsx] g gheome)
In

—A/2w mh=+1

X? 1% X ,
II [exp [—;5 <F%@ + Pt ) i = iXpau(m + h) — (m— h)X ﬁm}
s

exp [(1+mh) (W3, + por) — (1 — mh) (Wi + ) + (m + B)psy — i(m. — h)sa]

(5.142)

We now move on to step 2. The relaxation rate is written (5.28)

7'_1 = Z H [WMuTJCIi] —

APG u
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2 w
205 (A2 dy /°° dX XY +5x] > pih®—ma*)
A —-A/ 2w —00 mh=+1

1 oo 2 o
dM,,eMu/2Ns
]‘;‘[ [\/QWNf /-00 g
X2 Wi X .
exp [-F (F?\/IM + ﬁ%u + QM“) + Zzﬁi\/{“ — ZXﬁzllu(m +h) — (m — h)Xﬁ42ﬂ}

exp [(1 +mh) Wiy + par) = (1 — mh)(Wi, + pag) + (m + h)psy — i(m — h)ﬁ32]]

(5.143)

Performing the integrations over {M,} gives

2 A/2w 00 . . . .
1= 288 2y [* axelrin] ¥ gtemme) oy [(1 +mh)52l (1= mh) AQ]

A J-ajw —c0 1 2
w2x? AW MW
exp [— +14X [(m + h) i) +i(m — h) 1} H (5.144)
where W, Ay and )\, are as previously and
Wo
A3 = —2W. .145
5= Wy (5145)
W,
Ay = wg Wi (5.146)
We now perform step 3., the integration over the blip length X. This gives
2027l /2y /2w A A
-1 _ dY i(h®—md*) 1 h AL 1 —mh 22
’ WA s m;ﬂ lexp | (14 mh)r = (1= mh) 5
w? ¢ AW Ak
- Y+ = — = ' .
exp { e [ +2+ (m + h) » i(m — h) » (‘5 147)

We next perform step 4., the sums over {m, h}. This gives

2027 2y rAf2w w2 £, w ¢
e -\ h |2 — (Y 4+ =
T WA onss dY [exp [)\1 Az — 4W2(Y + w) ] cos [ o1+ /\3W( + w)]
2
£ e Aqw 3 -
+ exp [—)\2 + A3 — ] —(Y += ) } cos [2(,00 + _I/IT(Y + ;) (5.148)
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Finally, step 5. is a change of variables

2y d (5.149)

7 =
2W w

which allows us to write this in the form

7! = 2?7_34 Z? dze %’ [e’\“’\g cosh [2¢1 + 2X3Z] + 21X cos [20 + 2/\4Z]]
(5.150)
where
Z, = (i‘;; f) (5.151)
Defining new phases
$o(Z) = %cos_1 [e"b“z cos [2pg + 2/\42]] (5.152)
and
$.(Z) = %cosh_1 [e’\l_’\g cosh [2¢1 + 2)\3Z]] (5.153)
we write
3(Z) = ¢o(Z) + i1 (Z) (5.154)
in terms of which our final relaxation rate may be written
= ﬁ‘i f dZe %" \cosé(Z)f (5.155)

Evaluation of the General Relaxation Rate in the Small A Limit

When A is large the general relaxation rate reduces to that for pure topological decoher-

ence (5.137). When A becomes small, however, we expect to see some interplay between
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orthogonality blocking and topological decoherence effects. In this limit we may rewrite

the relaxation rate in the form

AZ (Z=27Y L Zo+Z
“1z\/_TOA|Z+—Z_|e( : )|cos®(+)|2
=( &
cos<I><2W

AQ 2
el
We see from (5.156) that there is a seemingly unusual dependence upon the external

T

(5.156)

VTW 4W?

DC bias field when both orthogonality blocking and topological decoherence effects are
present. However the reason for this form is evident. As in the case of pure orthogonality
blocking, we see that there exists a gaussian profile with external bias. As well, the
topological phase term has acquired a longitudinal bias dependence. This last occurs
because the axes of quantization of each of the k£ nuclear spins that we have chosen, that
is 2 = ’y,(cl) and Z = W, do not in general correspond with the axes of the
central spin Hamiltonian, which are also the axes with which the topological decoherence
terms are described. When we calculate the values for the topological decoherence terms
/T’fv D, these are by definition off-diagonal in the axes of the spin Hamiltonian. But when
these are rotated into the axes defined by the orthogonality blocking parameters they
acquire, in general, longitudinal components. It is these longitudinal components, coming
from this mismatch of preferred axes, that gives rise to the presence of a longitudinal
bias term in the topological phase in (5.155) and (5.156). When orthogonality blocking

effects disappear, such as we found happens in the large A limit, this rotation of axes is

not necessary and this effect is not present (5.137).

5.6 The General Single Molecule Relaxation Rate in Feg

We now wish to evaluate the quantities entering into (5.155) for the specific case of the

Feg molecular magnet. We will begin by evaluating the contributions that arise from
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Quantity Definition
Wo N_+8 ZI]cV +18 wk
I ”is 21y, oy (w’U o wO)Q
o} S S YR 1) P sin® 2,
W2(0) Sy e [T 1) cos? i,
w2 T3+ p2 + W2(0)

Table 5.1: Quantities coming from orthogonality and degeneracy blocking.

orthogonality and degenefacy blocking effects, namely p?, T2 and W(0). How these
quantities are defined, in terms of the more fundamental quantities in the theory, is
repeated for convenience in table 5.1. In table 5.2 we present zero field values for I
and wy for the three species Feg,, Fegp and ° Feg. The quantities p; and W(0) will be
functions of any external bias field present, both because of the field magnitudes ||
and their changing directions, imbodied in the orthogonality blocking parameters .
Shown in figures 5.6 through 5.11 are p;, W(0) and I'y as functions of an external static
transverse magnetic flield oriented along the z direction (as defined by the central spin

Hamiltonian) in the Feg molecular magnet, for various species. In figure 5.12 is shown

the full width W for the three varieties Feg,, Fegp and 3" Feg.
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Feg Fesp S Feg
Iy 10.64 3.22 12.96
| Wo 8.32 2.93 10.04

Table 5.2: Zero external field values for I'y and wq for the three species shown. Units are
in MHz.

We now consider the terms owing their existence only to topological decoherence
effects. These terms, unlike the ones dealt with in the preceding, are not strong functions
of an externally applied transverse field (although there is a small dependence, since the
application of an external field shifts the minima of the central spin object, thereby
changing the phase that it accumulates in tunneling from | 1> to | |> or viceversa).-
Therefore it is enough to calculate their values in zero transverse field. The definitions of
A1 and A, are repeated in table 5.3. Contributions to these from different nuclear species
are shown in table 5.4. Values for A\; and ), for the three varieties Feg,, Fegp and " Feg

are shown in table 5.5.

Quantity Definition
|
|
|

N 1) 2 L(5I,—1) <N 1)2 .
| Al > [Nig [Zkﬂzl |C¥1(gu)n1kuz|] + "LG”—*) 2k Ofi(c,‘) (1- ”%k#z)]
} N 2) 2 L(5I,—1) <N 2)2 .
o | X, [Ni o T | L A S nékuz)}

Table 5.3: Quantities coming solely from topological decoherence effects.

o
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External Field Hx [ T]

Figure 5.6: pi, (dashed) and W(0,) (solid) for u =' H.

= lH 7937‘ 14N 130 170 57Fe

A, | 1.45-1076 ] 0.06-107° | 0.03-107° | 0.66-10¢ | 0.11-107¢ | 0.18 - 10~

Ao, | 12.8-107%10.13-1075 ] 0.13-107% | 0.61-107% | 0.31-107% | 0.60 - 10~°

Table 5.4: Zero field values of the topological decoherence terms for species in Feg.

Finally, we consider terms that arise from the interplay of orthogonality blocking,
degeneracy blocking and topological decoherence. These quantities are listed in table
5.6. These of course will be functions of any external transverse field because of the
presence of the orthogonality blocking terms. Shown in figure 5.13 are A3 and )4 as
functions of H, for Fes,, Fegp and ° Fes.

The “bare” phase ® = ¢y + 1 is uniquely defined by the choice of a central spin
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Figure 5.7: py, (dashed) and W(0,) (solid) for u =" Br.
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Figure 5.8: py, (dashed) and W(0,) (solid) for x =" N.
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Figure 5.9: p;, (dashed) and W(0,) (solid) for u =7 Fe.
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Figure 5.10: py, (dashed) and W(0,) (solid) for u ='7 O.
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Figure 5.11: p;, (dashed) and W(0,) (solid) for p =3 C.
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Figure 5.12: Full width W for Fes, (dotted), Fegp (dashed) and *" Feg (solid).
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Feg* FCSD 57F63
A 1.54-107% [ 0.53-107% | 1.72-107°
A2 13.06-107% | 4.16-107¢ | 13.66 - 10~

Table 5.5: Topological decoherence terms for three varieties of Fes.

Quantity Definition
N W (1) A
Az 2p 2k=1 N}W Iak# Ptz
NE Wo @)
Ay > Ek:=1 N;W |ak# n2/cuzl

Table 5.6: Quantities that come about due to interplay between orthogonality blocking,
degeneracy blocking and topological decoherence effects.

Hamiltonian. In our case we have chosen to use the spin Hamiltonian
H=-DS?+ E(S% + S%)+ C(S% + S%) (5.157)

where D = 0.292K, E = 0.046K and C = —2.9- 10-°K. The bare tunneling splitting
between nearly degenerate ground states |+ 10 > can be found via exact diagonalization

(see chapter 2) and is

Ay~ 3.9-107°K (5.158)

Truncating the quartic spin term gives us an “easy-axis easy-plane” spin Hamiltonian




Chapter 5. The Landau-Zener Problem in the Presence of a Spin Bath 202

0.0005 | 0.001 .

0.0000 ' 0.000 .
0.0 0.1 0.2 0.0 0.1 0.2

Hx [T} Hx[T]

Figure 5.13: A3 (left) and A4 (right) for the three varieties Feg. (dotted), Fegp (dashed)
and " Feg (solid).

which gives bare phases

mSgupH, S*rgusH,

:7[‘5——-———————— y g
Yo ¥1 9F

G (5.159)

Looking back at our general expression for the single molecule relaxation rate (5.155),
we see that we have now calculated all of the parameters in this expression. Fixing the

spin Hamiltonian gives a single molecule AC relaxation rate with no free parameters.

5.6.1 Effect of the Nuclear Spin Environment on the Large A Single Molecule

Relaxation Rate in Feg

Shown in figure (5.14) are plots of two quantities. The first is the quantity A = vV Ar~1!

calculated without the addition of any nuclear spins; that is,
A = Ayl cos D| (5.160)

The second is the quantity A, with the addition of nuclei to the effective Hamiltonian;

that is,

A = Ag|cos B| (5.161)
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We see that the phase renormalization ® — & coming from the nuclei causes a tiny
smoothing of the “nodes” seen in A calculated using the bare spin Hamiltonian. Fur-
thermore, because we know how this renormalization depends on the nuclear spins we
can predict the shape of this smoothing effect. This being said, it is obvious in this
particular material that this effect is extremely weak, because of the small values of the
topdlogical decoherence parameters.

One should note that what we are calculating here is the single molecule relaxation
rate. If we were to include many molecules, as is the case in a real crystal, we would
have to include the effects of the transverse dipolar fields in ® (ie. H, and Hy don’t only
come from the external field; there are also internal dipolar fields of this kind). This is
the basic reason why the data shown in figures 1.20 and 1.21 is so “smoothed”—this effect
comes about because of non-zero H, in the phase ® coming from internal dipolar fields

(we shall treat the multi-molecule case in the next chapter).

5.7 Summary and Discussion of Results

In this chapter we began with the full effective Hamiltonian (5.6) for a general molecular
magnet in an external time dependent field. We derived a formal expression for the one-
molecule relaxation rate in such a system, and solved it for the special case of a sawtooth
external field in the absence of quadrupolar couplings to the nuclei. The general one-

molecule relaxation rate in this case was found to be

Ag Z+ —Z2

_1__ e

 TAJz

where needed definitions may be found in (5.151) and the equations that directly follow,

cos B(Z) (5.162)

2
" |

(5.134), (5.135), (5.145) and (5.146).

This form for the relaxation rate simplifies in the limit that the sweeping amplitude

is greater than both the energy width W and any external bias & In this limit the
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_1 1 -O 1 1. L
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.14: Presented here are (1) the bare result Ag|cos ®| (the lower curve) and (2)
the large A result with nuclear spins Ag|cos®| (the middle curve) plotted in units of
Kelvin. Note the logarithmic vertical scale. The horizontal axis is H, in Tesla—here we
have ¢ =0 (H, = 0).

relaxation rate can be written

o A2lcosd?

P (5.163)

where the nuclear spins have caused a renormalization of the Berry phase ® — & in a
way that we can calculate with no free parameters (once the positions of the nuclei are
fixed). Note that in this case orthogonality blocking does not affect the relaxation rate
at all. We saw in the case of the Feg system that this phase renormalization corrﬁng
from the nuclear spins was slight. However this need not be the case in general. We may
draw some far reaching conclusions from this result— basically that the presence of spin

environments that couple to magnetic degrees of freedom “randomize” the central Berry

phase term, destroying Aharonov-Bohm type oscillations. This is hardly surprising. This
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being said, we have shown quantitatively herein just how it happens and how to calculate

the effects of a spin environment on this kind of topological decoherence.

|W + £| we find that

2

When the amplitude of the sweeping field is much smaller than the total energy spread
2 2
= = exp [ 3 } (5.164)

(¢
N e cos¢><ﬁ>

There are two things to note here. One is that the form for the one-molecule relaxation

rate is gaussian, not exponential as is reported in the literature. We have explained the
reasons behind this discrepancy and the reasons why we believe the gaussian form is more
appropriate to the physics of molecular magnets. The second thing here is that there is
an explicit interplay between topological decoherence and orthogonality blocking effects
here which manifests itself in a £ dependent Berry phase. However, we have shown that
for the specific case of Feg, the oscillations in £ coming from this term are far too small
to be seen. Again, we do not expect this to hold in the general case-it is quite possible
that in systems that have large amounts of topological decoherence coming from a spin
bath the oscillations in 771(£) will be apparent (these could be measured in a similar
manner to recent experiments performed on Feg which extract just this quantity).
We compared our general large A relaxation rate with that of the simple no-environment

spin Hamiltonian (5.157). We found that the nuclear spins smooth out the cusps near

the nodes in the relaxation rate. The effect of the nuclel considered is rather small in

Feg; however, this need not be the case in general.




Chapter 6

AC Relaxation in a Crystal of Molecular Magnets

In this chapter we use the results obtained in the previous chapter to investigate what
form the relaxation of the magnetization in a crystal of molecular magnets takes. In
essence what we shall do is insert the one-molecule relaxation rate calculated in chapter
5 (5.155) into a master equation [15, 167] and solve it in various limits. In particular
we shall be concerned with short-time relaxation in the presence of an external sawtooth

field of arbitrary amplitude.

6.1 Preamble

The results derived in the previous section are single-molecule relaxation rates. In other
words, in their derivation we have omitted completely from consideration all effects com-
ing from intra-molecular terms in the full crystal Hamiltonian. The full Hamiltonian of
a crystal of molecular magnets may be written in the form

H=3 Hi+3 Vy (6.1)

i i<j

where H; is the single-molecule Hamiltonian for the :** molecule (including external fields)
and V;; gives the total interaction between the i and j molecules. This interaction
will be dominated by magnetic dipolar interactions between off-site magnetic atoms.
Now when we attempt to calculate the relaxation characteristics of the entire crystal,
we see that it is not enough to know the single-molecule reléxation rates—there are other

important terms in the crystal Hamiltonian.

206
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In order to get a feel for the physics going on inside one of these crystals during a
relaxation experiment, let’s attempt to qualitatively describe this relaxation first before
dealing directly with (6.1). This qualitative treatment will follow the course of the
standard experiments of this type that are currently being performed on these systems
(see chapter 1).

There are two standard ways of initially preparing thesé materials before their relax-
ation characteristics are measured. The first of these involves placing the sample in a
large (5-8 T) DC magnetic field aligned along the 2 axis of the crystal at some high tem-
perature, and then cooling the sample down slowly to the mK regime. This technique
has the effect of preparing the material in an initially polarized state-all the magnetic
ions will be such that each molecule will be in the “up” state at the beginning of the ex-
periment. The second way to prepare the sample is to place the crystal in a smaller (0-5
T) % axis magnetic field at a high temperature, and then quench the system’s tempera-
ture very quickly down to the mK regime. This has the effect of giving the crystal some
less than full initial magnetization (which is a function of the strength of the original DC
field) while making sure that there are no significant off-site correlations at the beginning
of the experiment (why this consideration is important will soon become apparent!).

Let’s begin our qualitative ponderings with some generally applicable remarks. In
either of the above cases, each molecule in the sample will feel some bias field coming
from the sum over the contributions of all the other molecules. These bias fields will
have some distribution over the crystal, whose details depend on the sample shape. Now
if the longitudinal (ie., along the 3-axis) bias on any particular molecule is much bigger
than the “resonance window” given by our single-molecule relaxation rate (5.155), this
molecule will be frozen in its original state. It is completely unable to relax! We note in

passing that if we remove the effects of nuclear spins from our single-molecule relaxation

rate, the resonance window shrinks down to encompass only external biases & < Ag.
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Because the vaiues of the bare tunneling matrix elements in these materials are small
(typically < 107%K), any significant longitudinal bias distribution will freeze the entire
crystal. Typically the initial bias distribution in these materials varies over a range
of ~ 0.1 —1 K, orders of magnitude larger than A,! Because significant short-time
relaxation is seen experimentally in both Feg and Mny,, we infer that the nuclear spins
are actually crucial to the physics here [20, 51, 49].

Now let’s imagine what will happen as the crystal starts to relax. We now have
to specify the type of field applied during the relaxation process. There are two main
possibilities for which experimental results have been obtained; either we apply a DC
field in any direction, or we apply a longitudinal AC field. Now regardless of the form of
the applied field, the following considerations apply. We have imagined that there exists
a distribution of longitudinal biases in the crystal. Now there will be some fraction of the
crystal for whom the bias is smaller than their resonance window (which is a function
of the applied field through (5.155)). This fraction is able to relax. When one of these
molecules does relax (by tunneling to the “down” state) it rearranges the distribution
of bias fields over the crystal. This is because instead of contributing an “up” to the
total internal field it now contributes a “down”. We see therefore that the internal field
distribution will evolve in time in a peculiar way-all molecules that are inside the bias
window will begin to flip, and will “dig a hole” in the bias distribution near zero bias,
sending their weight out into the distribution’s wings. This will slow down the relaxation,
as there are less and less molecules available in the resonance window as time progresses.

As we have seen in chapter 1, this effect has recently been observed in Feg [51]. Now in

terms of a quantitative theory, what does this mean? ‘
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6.2 The Generalized Master Equation

There is one characteristic here that is apparent, and that is that as the crystal starts
to relax, correlations between different sites begin to develop. That is, the relaxation of
the crystal is strongly dependent on its history. It has been suggested [15] that these
correlations may be dealt with similarly to the way that correlations in spin glasses are
treated, namely by the definition of a series of many-molecule distribution functions
which are related via an expression of the BBGKY type. We shall in what follows use
this technique and see what results we can obtain and which remain élusive.

We begin by writing the magnetization of a crystal of molecular magnets in the form
M(t) = Z/dﬁM(F, 1) = Z/dﬁ(QPT(F,ﬁ,t) ~1) (6.2)

where P (7, ’}-2, t) is the normalized probability of the central spin complex at site 7 to be
“up” (ie. in state |S, = +5)) and in a DC bias field H at time ¢.

To obtain a solution for P;(7, H, t) we shall proceed in the following manner. We noted
in the previous chapter that for frequencies lower than the nuclear T, energy scale >~ T’y
each pass of the AC field through resonance is decorrelated from all other such passes.
This means that we may calculate the transition probability for a single pass and by
simply dividing this by the pefiod of the ac field obtain a single-molecule relaxation rate
7 YA, w; H). Knowledge of this rate allows us to write a kinetic or “master” equation

of the form [15, 20]

(6.3)

where P is a 2-molecule distribution function, ie. the joint probability of two molecules
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having the characteristics implied by their arguments. Vp(7— 7 ) represents the DC bias
at 7 coming from the molecule at site 7, which as we have mentioned is due to magnetic
dipolar interactions. We have not explicitly written out the higher order multimolecular
terms P®) P®  etc., representing these by an ellipsis (...). As the crystal relaxes, the
influence of these higher order terms will begin to be significant. However, in the initial
stages of relaxation, we shall assume that these can be neglected. This approximation will
only hold for some limited time from the preparation of the initial state and it remains

to be shown that this time is long enough to be significant.

6.3 Short Time Dynamics

In the early stages of the relaxation of a crystal of molecular magnets, there will be two
dominant contributions to the physics. The first of these is given by the first term on
the right-hand side of (6.3), and corresponds to “local” relaxation. If we were to neglect
all terms but this first one we would find that the relaxation would be linear in time.
Another way of saying this is that if all of the molecules relaxed independently of each
other, then the total relaxation of the crystal has to be exponential (and therefore linear

at short times). Defining the quantities

M7 H,t) = Py(F H,t) — PR H, ), MH,t) =S M7 H,t) M(t):/dﬁM(ﬁ,t)

allows us to write

in the form

M#H,t) = -7 (A, w; HYM (T, 1) (6.5)
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Now if this is the whole story (ie. we neglect all corrections to this) this is easily solved,

giving
M(H,t) = M(H,0)e t/m(Aw) (6.6)
and therefore
M(t) = / dHM (H, 0)e~/ ™A (6.7)

which has short time behaviour

M) ~1— t/dﬁ M(H,0) 7Y (A, w; H) (6.8)
which, as we have claimed, is linear in time.

Now we turn to the leading sub-dominant term in (6.3). How do we incorporate the
leading corrections to the local term, and what effect will this have on the relaxation
characteristics?

As the crystal begins to relax, the internal bias distribution (and therefore M(H,t))
will change in time in a way that one can calculate analytically in an ellipsoidal crystal
(see Appendix A). This redistribution of biases is exactly the effect that the leading
correction term in (6.3) has on the relaxation. We can therefore take into account the
leading corrections by simply inserting the form derived in Appendix A for M (72, t)
into the local term (6.5). This gives us the following equation for the relaxation rate,.

incorporating both the local relaxation and the first corrections to it;
M(t) = - / dH (A, w; H) M(H, 1) (6.9)

where M (#,t) is the (evolving) distribution of biases derived in Appendix A and 7~ (A,w; H)

is the general single-molecule relaxation rate derived in the previous chapter (5.155).
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6.3.1 Strongly Annealed Samples and the Large A Limit

As we have seen earlier when the external sweeping amplitude is large enough to sweep
all molecules through resonance, ie. when A > H, + Wp, the relaxation rate simplifies
considerably. We have also seen that in the F'eg material topological decoherence effects
.are minimal. If we ignore these we find that the relaxation rate can be written in the

form

A2 |cos ®(H,, H,)|
YA, H,, H,) = 0"3051(4 1)l (6.10)

Let us now consider the experimentally relevant case of strong annealing, where the initial
magnetization M (ty) < Mp, the saturated magnetization. In this situation the initial

magnetization distribution over the applied field is gaussian (see [200] and refs. therein)

3/2
M(H  ty) = (W,%QUVI—)) M (to) exp {—%l:%z(ﬁn — H)) (6.11)

The half-width Wp (M) is directly measured in experiments [] and is much larger than £,
for F'egs. Note that the observation that Wp is a function of M and is directly extractable
from experiment is due to work by Stamp and Tupitsyn [198].

Plugging (6.10) and (6.11) into (6.9) allows us to solve for M (t). We find that

M(t) = M(ty) exp [T ac(H, M)i] (6.12)

where the relaxation rate is

. 2A2
Tac(H, M) = m / dH, / dH, |cos ®(H,, H,)|
—2 0)2 042
exp [—Wg o7 [(Ho — HY)? + (Hy — HY)?] (6.13)

Now as we have stressed throughout this document, our analysis depends on the choice

of a particular spin Hamiltonian (for Fes this was the easy-axis easy-plane Hamiltonian).
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The choice of the parameters in the spin Hamiltonian strongly affects the dependence
of the tunneling matrix element on external transverse fields. _This is relevant here as
the dependence on H, and H, in the relaxation rate changes if we use a different spin
Hamiltonian as we saw in chapter 2. In addition, in deriving our relaxation rate (6.9),
we have assumed the instanton calculation which of course is not exact. In order to
extract the correct tunneling amplitude as a function of external field, we have to exactly
diagonalize the spin Hamiltonian plus the external field. That is, the correct expression
takes our Ag|cos ®(H,, Hy)| to |A(H,, Hy)| extracted by exact diagonalization.

There is a specific case Wher(; we can get around the first difficulty, and that is
near the nodes of the tunneling amplitude-this case has been treated independenﬂy by
Stamp and Tupitsyn [198, 200] and we will review their results in the following section.
In this case the tunneling amplitude will be extracted by exact diagonalization and
therefore comparing our results to theirs allows us to gauge the accuracy of our instanton
approximation.

In the case where the spin Hamiltonian is the easy-axis easy-plane model we have

seen that, in the limit being considered,
2rSgpp(Hy + Hg?)

0

1
|cos ®(H,, H,)|* = 3 [cos [2%5 —

] + cosh {SnguB({ﬂ + HQ)H

(6.14)

where we have split the transverse fields into two contributions, one from externally

applied fields H)  and one from internal transverse fields H,,. Integrating over the
internal fields H, , gives us our internal dipolar field-averaged relaxation rate

3 Aj 50 0y

Pac(H, M) == |cos B(HY, HY))|

(6.15)

where

2

lcos @(HQ,HS)‘ =

27rSguBH3] N

0
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$472¢2,.2 W2 (ur) SQ HO
et cosh [——%H (6.16)
The relaxation rates (6.15) are shown in figure 6.1 for several values of Wp(M).

6.3.2 General Solution Near the Nodes

Stamp and Tupitsyn [200, 199] have demonstrated that near the nodes of |A(H,, Hy)|2
one can expand |A(H,, H,)| around its zeroes, as |A(H,, H,)| = Agcosh Z, where for

the Feg biaxial symmetry
Z =, + ity = [(Hy/F,) +i(Hy — H™)/F] (6.17)

(see [200] for complete details of this calculation). The “periods” F, and F, vary slowly
with H, and H,, and so we expand as F,(H;) = F;(0) + F;(0)"H?/2 + .... We can thus

solve for the AC relaxation rate around the n‘ “nodal field” H'™;

TG (Y, 0) = 28 [0, (M) + (02 + )] (6.18)
Cu(M) = %QW;%(M) |[F 2 (HE) + F2(0)] (6.19)

This is a parabolic increase around minima with values exactly proportional to the inde-
pendently measurable W3 (M).

Choosing a specific form for the Feg spin Hamiltonian (such as the easy-axis easy-
plane model we have been considering) allows us to use (6.13) to plot FAC(ﬁi()), M) over
the whole range of ﬁﬁ for different values of M (see figure 6.2). By varying M, the

field angle § = sin_l(HS/Hg) and ‘HLO‘, AC relaxation measurements ought to obtain

information about the giant spin Hamiltonian inaccessible to ESR experiments [200].
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Figure 6.1: Top figure: Logio A* vs. H, for § = sin™'(H2/H{) = 0. Curves are, from
bottom to top, Wp = 0,10, 20,30 and 50 mT. Bottom figure: Same, but with § = 1°.
Note that these results are obtained from our relaxation rate which was derived assuming
the instanton approximation for the tunneling amplitude.
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Chapter 7

Summary and Outlook

In this thesis we have presented a quantitative theory of the physics of magnetic relaxation
in the presence of time-dependent external fields in crystals of molecular magnets. In
so doing we have achieved considerable insight into the effect of spin environments on
the quantum dynamics of mesoscale magnetic moments. This research produced several
interesting results, which we reproduce here.

We used the standard Prokof’ev and Stamp theory [15, 20, 122}, together with the
crystallographic structure of the Feg molecular magnet, to extract quantitative values for
the topological decoherence {a,(cm)} and orthogonality blocking {8} parameters for this
material. We found that topological decoherence effects were minimal (‘a,(cl’Q)l ~ 1073)
but that orthogonality blocking was significant. We found that the primary source of the
orthogonality blocking came from the large number of protons in the organic matter in
the Feg molecule. In terms of the value k = — In[[I; cos f¢] in the Prokof’ev and Stamp
theory, we find that x quickly rises with transverse field, reaching x ~ 1 for transverse
field magnitude of |H| ~ 110 gauss in Fes, (see figures 3.14 and 3.15). All quantities
that are functions of the hyperfine couplings were found to exhibit a significant isotope
effect. In particular, A\, x and the nuclear spin linewidth W all depend on the isotopic
concentration in an Feg sample.

Fitting the shape of oscillations in tunneling amplitude to our derived relaxation rate,
we found that internal dipolar transverse fields in F'eg are on the order of \/Hg%THg ~

0.03K ~ 30 gauss. This means that even in the absence of any external transverse fields
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Kk ~ 0.09 in Feg,, which is just large enough to cause significant decoherence [15, 20, 122],
erasing any hope of seeing macroscopic quantum coherence in Fleg,.

We derived an expression for the single-molecule relaxation rate in any molecular
magnetic substance with an effective Hamiltonian of the form (5.6) being acted upon by
a sawtooth AC field, which is given by

-1 A 7+ —z2 5 2
:\/7_rA : dZe “"|cos ®(Z)] (7.1)

T

where

+A ¢
oW

with & the longitudinal bias, W the total energy spread available to the molecule, and A
the amplitude of the field. Ay is the bare tunneling matrix element of the spin Hamilto-
nian part of (5.6) and 5(Z ) is the Berry phase of the central spin complex, renormalized
by the interaction with the nuclear spins.

This expression may be interpreted in the following way. The effect of the nuclear
spins is both to broaden the linewidth W of the molecule and to renormalize the Berry
phase ® — ®(Z). The first of these effects comes about from orthogonality blocking and
degeneracy blocking. The second comes about primarily from topological decoherence,
although the Z dependence of ® is due to an interplay between topological decoherence
and orthogonality blocking. In the limit where A is much bigger than |[W + &|, the

linewidth W becomes irrelevant, and all orthogonality blocking effects disappear, giving

o A2| cos ®|?

1 (7.3)
In the opposite limit A < |W + £| we find that
1 A 2 5 2
T = NG exp [_W} | cos @(&/2W))| (7.4)
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ie. the relaxation is gaussian, with an unusual bias dependent Berry phase. We showed
that in F'eg, because the topological decoherence effects are so small, this peculiar feature
is overpowered by the gaussian and it is permissible to take ®(£/2W) — ®. This gaussian
dependence disagrees with previously quoted results which find the relaxation to be
exponential in bias [15, 20, 122]. We believe that the reason for this disparity is that in
the calculation leading to the exponential bias dependence the authors added an energy
constraint which is unphysical for these systems (see chapter 6 for a discussion of this
point).

We used our single molecule relaxation rates as input into a master equation in
order to take into account the crystalline nature of the real material [15, 167]. We
studied several specific cases and found the following general observations. If the sweeping
amplitude of the field is larger than the total longitudinal bias available to the molecules
A > |W + &+ Ep| the relaxation is linear at short times. When the swéeping amplitude
A < |W + £ + Ep| the relaxation is initially linear, turning over to square root at later
times. This occurs for both Lorentzian and gaussian initial longitudinal bias profiles.

We used these general results in the specific case of AC measurements performed on

Feg [39]. In this case we are in the large A limit, giving linear relaxation
A2|cos |2
M(t) ~ M(0)(1 — LA——lt) (7.5)
where ® is the renormalized Berry phase, averaged over the transverse internal dipolar
fields (7.11). We then fit this relaxation rate to the experimental data. We found the
following interesting results.
Our derived expression for the tunneling amplitude produces results which quantita—
tively match those fund using exact diagonalization techniques for transverse fields less

than ~ 0.5 T. This provides evidence that the instanton calculation is valid here. Our

expression also qualitatively agrees with experimental results.
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In addition to these results, our research produced several new results related to the
central problem investigated here. In chapter 2 we showed how the WKB, perturbation
theory and instanton methods for calculating tunneling splittings in spin Hamiltonians for
selected Bravais lattice symmetries compare to exact results obtained via diagonalization.
We found that the standard WKB result’s prefactor [25, 26] (corresponding to the first
correction ~ A in the WKB expansion) disagrees with the exact result in each case
studied.

In chapter 3 we extended the work of Tupitsyn, Prokofiev and Stamp on the effective
Hamiltonian of a central spin system [74, 75, 15, 20, 122] to allow for the calculation of
the parameters {a!"®} and {Bk} in real systems. As well, we included in our derivations
the effect of electric quadrupolar terms coming from nuclei with spins greater than 1/2.

In chapter 4 we proposed a classification scheme for all exactly solvable time depen-
dent generalized Landau-Zener Hamiltonians. Our proposal is that if the equation for
the wavefunction can be mapped to Riemann’s equation then the problem is solvable.
We presented two such mappings, along with exact results for the transition probabilities
in each case.

This concludes the presentation of our results. In conclusion, we would like to point
out some avenues for future research related to this work.

It will be quite straightforward at this point to perform investigations on molecular
magnets other than the seminal Feg, using the methods developed herein. This will
give us a new quantitative tool with which to study decoherence and relaxation in these
materials.

In terms of the mathematical physics side of this work, there were many tantalizing
relations between the theory of special functions and integral and differential equations

glimpsed which may be of interest; we have noted these in the text whenever one occured.

The problem of how to treat multiple crossings coherently in the presence of a spin bath
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(ie. when our coarse graining approximation breaks down), or the related problem of how
to go beyond the fast-passage approximation, remain works in progress. The resolution
of the conflicting results obtained with the inclusion of an oscillator bath, necessary
in the O(DS?) effective description, have to be addressed in order to understand the

thermal/quantum crossover. The inclusion of the quadrupolar terms in the transition

probability may provide many hours of gruesome enjoyment.




Appendix A

Bias Distribution in a Dilute Solution of Dipoles

In this appendix, we derive a general expression for the bias distribution inside a crystal
of molecular magnets. The general arguments that we will use have been publlished
previously [123]. It is however worthwhile to understand how the formulae quoted in the
text arise, and that shall be the purpose of this exposition.

We begin by presenting the following question. Given an ensemble of dipoles in a
crystal of arbitrary shape, what will be the probability that the total dipolar field at
some site 7 has the value #? Basically we can just write down the general solution to
this problem; it is a sum over all possible ways of obtaining this value with the spins
we’ve got,

P ) :/%ﬁ...ig\ié(ﬁ—Zﬁ(ﬁ—f)) (A1)
Here each site 7; # 7'in the crystal can either have a spin pointing “up” or a spin pointing

“down”, ie. in the *+2Z directions. The dipolar field is taken to be

-, Epv - N T
H(ri—r):l—ﬁ;'g(dﬁ—?)r( - 7)) (A.2)

where v is a unit cell volume, Ep is the dipolar field scale, and a?,;i is the direction that
the ‘" spin is pointing.

We now specialize our treatment to the case of an ellipsoidal sample. In this case the

7 dependence drops out of P(7, 7—2), and we can write
- dry, diy ., .~ o
P#H) = /ﬁlﬁa(% ~ S A2 (A.3)
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Writing the delta function out as an exponential gives

— d7'1 df"N _2_4 H(F)Y
P(H) = o0 e i (A.4)
This can be rewritten as
%e—imﬁ)-" (A.5)

We note that the contribution from H (7;) flips sign depending on the sign of J;i . There-
fore we can write the preceding as

27r /dY mYH/dTT -—zH'rTYH/dTl (7 (A.6)

{1} 41
where we have subdivided the total number of spins NV into two subsets, those that are
up ({1}) and those that are down ({l}). We now note that because we are only allowing
the spins in our solution to point in the +2 directions we have a symmetry here that we

can exploit; the solution for P(#) has to be of the form
P(H) = 6(H, = 0)§(H, = 0)P(H,) (A7)

That is, the final solution in this idealized case has the probability for the transverse
fields to be zero. We therefore recast our expression (A.6) into an expression for P(H,),
ie. the probability of being in a longitudinal bias H,;

A7 , dr
) v =Y / ATt il (7)Y / b iH (.
P(H 27r /d e H H

{1} {4}

We can perform these integrations;

dr CHHPY = dar +iH, (7)Y
e = 1- / S(-e )

_ - / d6sin 0 / drr? (1 — XY Eov=3cos?0)/r?) - (p g)
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Changing variables to z = 1/r® gives
1-Z / df sin 6 / g+ Bor(i-3cos® 0z (A.10)

This can be broken up into two parts, like this

1——/ d9$1n0/ = 1—cosYEDv(1—3cos 0)x )iz(smYEDv(l—?»cos 0)x ))

(A.11)
The leftmost integral is easy to do. We find that
T " dosing [~ (1 - cosYE 29
—/ sin / —:;2—( — cos Y Epv(l — 3 cos )x)

2 Y
= —E—P—M/ dfsin 0|1 — 3 cos? 4|

872 Epv|Y|
= — A12
9v/30 (_ )

The second one is a little trickier. We write it as follows;

+427

/ d9s1n9/ —smYEDv(l —3cos?0)z

:i:z27r
= / df smﬁ/ = s1n <YED’U(1 ~3cos’f)z ) Y Epv(1 — 3cos® 9):10)
(A.13)
The reason we can do this is that the term we have added is equal to zero, as
/7r d6sin B(1 — 3 cos? §) = 0 (A.14)
0

and the apparently divergent integral over x contains a cutoff which we’ve suppressed
here (besides, the divergence of this term is only logarithmic). With this new expression

we find, defining

b=YEpv(l — 3cos’h) (A.15)




Appendix A. Bias Distribution in a Dilute Solution of Dipoles 225

that

| M AT in (b) — b

11,‘2

= b(Ci(Ab) — In(A) + 1 —In(b) — ) (A.16)

and the whole expression is

+1Y Epv2
w/ dfsin §(1 — 3 cos® 6)

(Ci(AYEDU(l —3c0s?0)) —In(A) +1 —~InY Epu(l — 3cos?f) — 'y)

Y
= j:Z—EDM—W/ dfsin 0(1 — 3 cos® )

(Ci(AY Epu(1 — 3cos? 6)) — In (Y Epv(1 — 3cos?6))) (A.17)

The leftmost term is

:I:Z—YEL%/ dfsinf(1 — 3 cos? 6) (CZ(AYED'U(l — 3cos’ 9))

i|Y|Epvn?8
= A S A18
750 (A.18)

The rightmost term is

M/ dfsin (1 — 3 cos? 6) <1H(AYEDU(1 — 3 cos’ 9))
Y Epuor 8 . 4 >
= 0 (3 9\/§Re(tanh V3) + 9\/§m (A.19)

Collecting our results, we find that

dF | imy
éeizH(r))

= 1—pY[1+1+iFiK] ,{Y >0}

= 14+pY[1F1+i+iK] ,{Y <0}

(A.20)
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where we have defined

T 2T 872 Epv
K=-——"Retanh™*v/3 |, = A.21
Going back to our original expression for P(£) we see that
1 oo .
P(H,) = -—~/ dY e#Y T[[1— p¥ [—i + K] [ [1 = pY [2 + i — iK]]
2w Jo
) o
1 o 4
+ —/ dY e T[[L + pY [2 — i — K T[[1 + pY [-+i + iK]]
27 - 00
0 !
(A.22)
This can be written
P(H,) = j;/wdygﬂHﬁU%NermKﬁvmeﬂﬂhﬂw4%WMN
‘ 27 Jo
ii/wdyg%ﬂHﬁ%PﬂW—MﬁmKﬁﬂNk~%U4NrNﬁYNN
21 Jo
(A.23)

where N;, N, are the numbers of up/down spins respectively. As well, we have assumed
that €2 is large enough so that we can rewrite the sums as exponentials. Performing the
integrals gives

'M 1
7 (H,+ E)?+1?

P(H,) = (A.24)

where we have defined
Et)=p(K-1)N1-M) , T(t)=27pN(1l- M) (A.25)

where M = w is the magnetization of the sample.
Now in order to write our full P(#), we have to include the H, and H, dependence
which we’ve seen is in the ideal case very simple. In a real material, the delta functions

in this dependence will be spread somewhat. For this reason we are going to replace the
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delta functions with gaussians, whose width will be much smaller than the energy scale
Ep of the longitudinal distribution. Because we have a z > y symmetry here, we shall

choose the transverse widths to be the same. This gives, for our final result,

P(H) =

| 1 H? + H?
LM ! —y} (A.26)

T (H,+ B2 +T227W3 P [“ oW,

where, as we have mentioned, Wy, < Ep is the width of the transverse field distribu-

tion.




Appendix B

Time Evolution of Nuclear Spin States

In this appendix we shall show how the nuclear spin states evolve over time due to their
coupling with the central spin complex in a molecular magnet. We shall assume the same
conditions as were presented in chapter 6, and furthermore we shall assume that we are
in the large A limit.

We may write down a master equation for the flow of the one-molecule system in the
space |S, M > where |S > is the two-level state of the central spin and |M > is the state

of the spin environment of the form

PSM = —Psm Z s-»s Mom' T Z Tg —>s YNy Y (B.1)
s M’
where Pg s is the normalized probability of being in state |S, M > and 7 s MM’ is

the transition rate from state |S, M > to state ]S ,M' >. Now as we exphcn:ly showed in
chapter 6, these relaxation rates do not select for any particular state of the central spin
system. That is, the rate of flow | 1>— | |> is identical to the rate of flow | {>— | >

in the central spin space. This means that we can take

! =73 =r! (B.2)

S—)S Mo M S —8,M— M’ NI—)]\/[

and write our master equation in the form

PM:_2PMZ M M +2Z M NV (B.3)
M

where we have defined

Py =3 Psu (B.4)
3
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We can further simplify this expression by looking closely at the structure of the transition
probabilities in chapter 6. We see that these also do not select for specific spin bath states.

That is,

71 =7} (B.5)

M—M M =M

for all {M, M'}. This means that the master equation simplifies even more. We can

write it in the form
Py = —QPMZT;_)M/ +2ETA‘41_)M,PMI (B.6)
M’ M

Knowing the functional form of 7! . for arbitrary {M, M '} allows us to solve this
equation numerically (it is simply a system of M linear equations). If we simply assume

that TA_/[l_> , is not a strong function of M’ then our master equation becomes

M

-1
. T
P]V[ = -—ZPM’T];[l + 2% (B?)

» and C is the total number of spin bath states. This is readily

-1 _ -1
where 7o) =3, 70

solved; in the limit that C > 1 the solution is
Py(t) ~ — Py (0)e 2t (B.8)

together with the constraint that -, Pp(t) = 1. What this means is that the different
spin bath states will reach a steady state solution where Py, = P, for all {M, M'} in a
time on the order of 75, which is simply the total large A transition rate divided by the
average number of nuclear spin flips that occur per sweep.

Shown in figure B.1 is a numerical solution of (B.3) showing the convergence of the

spectral weights of the various nuclear spin states for a general system with T]L}L =

7_—1

M M
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Figure B.1: Here we see a system with seven environmental spin states initially prepared
in one of them evolving via (B.3).
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