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ABSTRACT 

The problem of a particle in two adjacent one-
dimensional rectangular, potential "boxes" i s an exactly solu
ble representative of a class of two-minima problems of con
siderable physical interest which have not been solved 
exactly.. It therefore affords a valuable opportunity for a 
c r i t i c a l examination of the extent of applicability of per
turbation theory methods to such problems. An exact im
p l i c i t solution of the problem is obtained, and i s reduced to 
explicit approximate form in two important special cases. 
These approximations are reproduced by perturbation theory 
methods, and their ranges of validity are demonstrated by 
comparison with the exact solution. The application of the 
model to a physical system i s demonstrated by using the iden
t i c a l two-box problem as a basis for calculation of some con
stants of the ammonia molecule. 
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1. 

ON THE QUANTUM MECHANICAL PROBLEM OF A 
PARTICLE IN TWO POTENTIAL MINIMA 

I. INTRODUCTION 

The problem of a particle i n two potential ininima 
is of extensive interest i n theoretical physics since i t pro
vides a model for many physical systems. The simple one-
dimensional case in which the minima are rectangular in shape 
serves as. a prototype by which we may understand many pheno
mena conneoted with metallic conduction3", van der Waals 
forces^, the sta b i l i t y of hydrogen-like ions 2, and the vibra
tion spectra of certain polyatomic molecules^. For this 
reason many authors, including those mentioned in the foot
notes, have discussed the model with a view to i t s physical 
significance. 

Manning and M.E. Bell , Rev.Mod.Phys. 12, 215 (1940). 
^S, Dushman., "Elements of Quantum Mechanics", (Wiley), 

pp. 214-218, and references given there. 
Dushman1s approximation to the energy sp l i t t i n g i s incorrect 
(compare his_ equation ( 3 ) with our equation (26a) for c = o» 
and \- 1 ), since he f a i l s to consider the phase shift of 
the eigenfunction. 

^See Part V below, where the present model i s applied to the 
ammonia-inversion spectrum. 
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I t i s f e l t , however, t h a t none o f the p u b l i s h e d 

d i s c u s s i o n s have taken f u l l advantage o f 'the p o s s i b i l i t i e s 

o f the problem i n i l l u s t r a t i n g many mathematical methods 

which are c o n s t a n t l y used i n quantum mechanics. On the one 

hand, the problem i s one o f few n o n - t r i v i a l examples whioh 

may be s o l v e d by exact methods. On the o t h e r hand the s o l u 

t i o n may be c a r r i e d out, w i t h c e r t a i n s i g n i f i c a n t l i m i t a t i o n s , 

by means o f p e r t u r b a t i o n theory. The complete knowledge ob

t a i n e d by the d i r e c t s o l u t i o n may then be employed t o i l l u s 

t r a t e the nature of the p e r t u r b a t i o n t h e o r e t i c a l r e s u l t s ^ * 

The pedagogic u t i l i t y o f the d i s c u s s i o n i s enhanced by the 

n e c e s s i t y o f u s i n g wave-functions o f the continuum, and o f 

d e a l i n g w i t h a type o f p e r t u r b a t i o n theory t h a t i s not 

g e n e r a l l y d i s c u s s e d i n the l i t e r a t u r e . 

P.M. Morse and E..C.G. S t u c k e l b e r g , Helv.Phys.Acta, 4 , 
337, (1931)i make.this k i n d o f i l l u s t r a t i o n u s i n g a model 
f o r ammonia. However, they c o n s i d e r a l e s s g e n e r a l case, 
and t h e i r model i s more complicated. 



PLATE I T h e Two-box Tbtential Function Voo, 
^ and an example of an E n e r g y Level 

System -for Problem C 

REGION 1 

EM, 

BOX A 
2b 

REGION 2 REGION 3 

BOX 6 
2C — 

REGION A REGION 5 

Legend: •The levels of problems A a n d B are d r a w n in the appropriate B O X 
•The Eoo.n °f problems A and B are drawn in the appropr ia te B o x 
- T h e levels of p rob lem C a c c o r d i n g -to e q u a t i o n s ( 2 3 ) a n d ( 2 4 ) 
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II. DIRECT SOLUTION 

1. . ITOHMUXATION OF THE PROBLEM 
We consider the problem of the one-dimensional 

motion of a particle of mass jx subject to a potential 
V u ^ shown i n Plate I, and seek i t s bound energy levels 
together with the corresponding eigenfunctions. Vex) 

vanishes outside two potential "boxes" A and B ( V(x^=o 

i n regions 1, 2> and J5) and has the constant values -1? and 
- inside boxes A and B respectively ( V(x) «-U i n re
gion 2, V w = -\vj i n region 4). 

We shall f i r s t solve the general problem i n im
p l i c i t form and then consider the explicit solutions of the 
following special cases: 

Problem A, in which the width of box B i s zero 
( C-O ) or the depth of box B i s zero ( \-0 ) and only 
box A is present. 

Problem B, in which the width of box A is zero, 
and only box B. i s present. 

Problem C, in. which the distance 2,t» between the 
boxes i s large. 

Problem D, in which box B i s much shallower than 
box A ( X i s small compared to unity). 



2. SOLUTION OP THE PROBLEM IN IMPLICIT FORM 
The eigenf unctions cflx) satisfy the equation 

which i s the Schrodinger equation multiplied by 

« - S-ir 2-^/^. (2) 
If ^ is the expression for a bound state ( 6 < O ) eigen-
function i n the region, the solutions of equation (1) 
are 

(3) 

where 

p . V 7 ^ > 0 V ° - e < o ; ( 4 o ) 

so that 

The r \ i , ^ , and are constants to be determined together 
with a condition for eigenvalues by the boundary, conditions 
at i n f i n i t y (where (p must not be infinite) and at the 
boundaries of the boxes (where <p and i t s f i r s t derivative 
<f' must be continuous). The conditions at i n f i n i t y require 
that ^, and fts shall vanish, so that equations (3) may be 
rewritten with some changes in the constants as 
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cp, - ^ o ^ U - ^ e 1 J
 ( 6 a ) 

Cpz •= t\ Cos a . 

r _ t\ cose* Co.* ^ r (S(x-a^) 0 ( ^ ^ - a n 

(6b) 

(6c) 

1 = i , ^ L e .1 (6d) 

<D - & cos*' ( x-a-zb- c -?,') •• 
(be) 

where the f i r s t three and the last three expressions make up 
functions which are continuous at the boundaries of boxes A 
and B respectively. The two forms of cp_ have been chosen . 
to emphasize the symmetrical way in which the two boxes occur 
in the problem. 

Applying" the condition that <p' shall be ©ontinuous 
at the boundaries of box A to the f i r s t three of equations 
(6) we obtain 

P/ot = W-Ua**) t ( 7b) 

which determine % and as functions of <x and (I, and 
consequently (in virtue of equations ( 4 ) ) as implicit functions 
of E . . Thus elimination of & between equations (7a)1 and 
(7b) yields for %^ : 

* r S ^ J = VS XT • 



Similarly we obtain from the last three of equations (6) 

(3/*' « *a.woc' ( c - } ( 7 c ) 

= _LL*JL w c c * C ) - f ( 7 d ) 

I f we now in s i s t that the two forms of <P3 i n 
equations (6c) and (6d) represent the same function we ob
tain the condition 

^ - 1 * ) (9) 

where 
e = e'*P* ( 1 0 ) 

Equation (9) i s clearly a condition for eigenvalues.since i n 
accordance with equations (4) , ( 8 ) , and (10) i t i s an im
p l i c i t equation in E and the constants a. , b , c , ^ , and 
X of the potential energy function. If the values of E-
satisfying equation (9) for a particular set of values of 
the constants are found, say by numerical methods, then ^ 
and may be found from equations (8), and ^ and may 

be found from equations (7). Thus the equations we have 
found' give us complete information about both the eigenvalues 
and the eigenfunctions i n implicit form. 

3. PROBLEM A, THE SINGLE-BOX A CASE 
If c or ^ i s zero and box A alone i s present, 

i t i s clear that the eigenfunction in the whole region to 



P L A T E H A r o u g h s k e t c h o f tK as a Funct ion of E 
•for the c a s e i n w h i c h A< 32yja2\J/h <9 

T h e Z e r o s o f XA a r e t h e S i n g l e - b o x L e v e l s 

Notice t h a t t h e s l o p e is N e g a t i v e a t e a c h Z e r o 



the right of box A may be represented by the function cp_ of 
equation (6c). The condition that <P shall not be i n f i n i t e 
at xs+co now implies that 

^ - O , (11) 

whioh with equations ( 8 a ) and (4) i s the condition for eigen
values. 

^ has been roughly sketched in Plate II as a 

function of E for the case in whioh V l i e s in the range 
Af< S2}Lo< zTJ/£: < 9 . (̂y(e') i s real only for E<0 and 

i s positive for a l l E , approaching •<*> as E-*--co . 
In the region of bound energy levels (-\J< g ) i t s zeros 
are separated by i n f i n i t e discontinuities at the points-1-

E » , w = . * v _ . i ) 2 > 3 , ( 12) 

A s . E increases, the sign of ^ changes from - to * at 
each Eto,vv.

 a n < i from •*- to - at each zero. The zeros, 
when placed in increasing order, are alternately zeros of 
the f i r s t and second factors of ^ i n equation ( 8 a ) . 

The eigenfunctions ({^ corresponding to the bound 
levels of problem A may be obtained by setting ^ = O i n 
equation (71») and eliminating (_. by means of equation ( 7 a ) : 

•̂As "vl—>PO 
each zero approaches the E.OD,W which l i e s im

mediately above i t . Thus the may be though of as the 
levels of an i n f i n i t e l y deep box with base at - V . 

fcIn order to avoid extra notation we shall use the symbols 
(i to denote either the functions of E. defined i n 

equations (4) or the special values of the functions corres
ponding to eigenvalues of EL . 
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where X i s an even or odd integer according as the f i r s t or 
second factor of ^ in equation (8a) vanishes. Substi
tution of equation (13) into equations (6) after setting 
^ _ O in equation (6c) shows that the bound state eigen-
functions are alternately multiples of the even and odd func
tions 

<fc* = c o s * * (14a) 

and 
0>(x -vcO 

<M v ' * * x (14b) 

) 

according as the f i r s t or second factor of %\ vanishes. 
In both cases i t may be shown that 

,•00 

which determines the normalizing factor. For later use we 
observe with the help of equation (8a) that for the even 
functions 

cos2-** -. °cV(** + (32} - oĉ /tAV > ( 1 5 d ) 

and for the odd functions 

The eigenfunctions of problem A for the continuum 
of free energy states ( E > O) must also be found since we 
w i l l require a complete set of eigenfunctions in applying 
perturbation theory. Setting 
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we find that outside box A , (p no longer has the exponential 
form of expression (3) but that i t has the oscillatory form 
R w s V U i - ^ . Thus the condition that cp shall be 
bounded at i n f i n i t y is automatically f u l f i l l e d and we need 
impose only the four continuity conditions at the boundaries 
of the box. It is clear that equation (1) and the con
tinuity conditions are satisfied for every, E > O by the 
following linearly independent pair of functions and 
of which the f i r s t i s even and the second i s odd: 

•J "XT 

(17) 

where $>* and are determined by the equations 

and where <x and -U are defined i n equations (4) and ( 1 6 ) . 

Further, we obtain a complete set of eigenfunctions by i n 
cluding only the Cf)£ , since for given E , any three solu
tions of the second order differential equation (1) and the 
boundary conditions are linearly dependent. 

The factor. \//TF i n equations ( 1 7 ) has been chosen 
to make the normalized to "delta-functions" (see Appen
dix A). 



10. 

4. PROBLEM B, THE SINGLE-BOX B CASE 
It i s clear from the symmetrical way i n which boxes 

A and B enter the problem that a l l the results derived i n 
seotion 3 for problem A may be transformed into corresponding 
results for problem B by making the following substitutions: 

<x »- c 
"VJ *v 

a, *~ tx' 
x >- x - zfe - c 
% %• 

\—- ^ 
and leaving a l l other quantities unchanged. 

We shall denote by C B̂ the bound-state eigenfunc-
tions found in this way from equations (14). 

5. PROBLEM C, IN WHICH THE TWO BOXES ARE FAR APART 
We return now to the two-box problem and consider 

the oase in which the distance £Y> between the two boxes i s 
large. For arbitrarily large b , e (see equation (10)) i s 
correspondingly small. Hence the value of i s . 
arbi t r a r i l y close to zero. It follows that every two-box 
level E. i s arbi t r a r i l y close to a level E 0 of problem A 
or B (a zero of or ). Indeed, for sufficiently large 
V> , every such E may be approximated by a solution of the 
equation 



where 

11. 

^ = > (20a) 

d6 
2 V-KE. b> (20c) 

Two possible cases now present themselves. In the 
f i r s t case, which we shall c a l l "non-degenerate", E e i s a 
level of one single-box problem but not of the other. In 
the second case, which we shall call."degenerate", E o i s a 
level of both single-bos problems-1-. Since equation (9); i s 
symmetric in and ^tj,(we need only discuss those cases in 
which E „ = E i \ i s a level of problem A ( Vft (e^ - O J. 

In the "non-degenerate case equation (19) becomes 

where the functions and derivatives are evaluated at E - . 

The sign i n the denominator must agree with the sign of ^ 
in order that JUw*. E r • When b i s so large that 

In our special use of the word "degenerate" we refer to a 
case i n which there i s a simultaneous level of two different 
problems rather than one in which t.here i s more than one 
linearly independent eigenfunction belonging to a single 
level of the same problem. 
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the approximation reduces to 

E - e A = < L Z / < \ . ( 2 3 ) 1 

In the degenerate case we merely set ^ = ̂  = O 
in equation (19) and obtain 

E - V . W J W ( 2 4 ) 

The derivative H^ER) may be found by differen
tiating the expression (8a) using equations (4) and (5) and 
the fact that ^ ( E ^ = 0. The result i s 

Similarly for a level E a of problem B, 

- VS»\V(^(icV2oc ' * f 3 a . (25b) 

The last two equations show that the derivatives ^ and 
which appear in equations (23) and (24) are always negative. 
Hence the sign of ' E-E<* i n equation (23) i s always opposite 
to that of ^&(e<^ and the right hand side of equation (24) 

^Condition (22) ensures that E . . i s much closer to E f l than 
to the nearest level E f t of problem B; i.e., there.is no 
approximate degeneracy. Eliminating e between equations 
(22) and (23), we have 

| E - E f t \ « W * / 4 ^ v 

so that even i f E t t is so close to E ^ that 

X * E „ ^ 4 UO * ^U*)= O , 
and 

we have 
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is always real. 

Stated in words, equation (24) implies that any 
level which i s common to both single-box problems (or to the 
two-box problem when the boxes are i n f i n i t e l y far apart) be
comes s p l i t into two levels when the boxes are a large but 
f i n i t e distance apart. One of these levels l i e s above and 
the other l i e s below the original level, both by the same 
amount of order £ . On the other hand, equation (23) im
plies that each level which does not approach a level of 
problem B as t» —*. oo , differs from the corresponding problem 
A level -U only by an amount of order , and l i e s above 
or below in accordance with the following rule: 

The level i s "repelled" by the "closest" level of 
the other single-box problem, where we define the problem B* 

level which i s "closest" to• E * to be that level which i s 
not separated from E^ by an E«>|A of problem B (analagous 
to the Ea>,w of problem A given by equation (12)). 

If the original level l i e s "equally close" to 
two problem B levels (i.e., i f i t coincides with an E_,,n 

of problem B ), equation (23) shows that since ^oCEeo.^sCo , 
the problem C level E coincides with E*. at least to terms 
of order €_2 . Moreover, when we write the exact equation 
(9) in the form , i t i s clear that E, coin

cides exactly with , since " o^ l ^ " 8 O . 
The above results are illustrated by the sketched-

in levels.in Plate I, where the boxes should be farther apart 
than they are in the sketch. The lowest level l i e s below 
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Ec^o since i t is "repelled" by the higher level E f t o , and 
similarly the next lowest level l i e s below E a o since i t i s 
"repelled" by E«^ . The third level-coincides with E„ t 

since the latter coincides with Ea,, of problem B. The 
highest levels l i e above and below the coincident levels 
and • 

Making use of equations (8) and (2.5) we rewrite 
equations (23) and (24) in explicit form in order to compare 
these results with those of perturbation theory. Thus for 
degenerate levels we have: 

E - E, - + —-===L== 
' ^/TTrrc^TTiTrjrr * { 2 6 a ) 

and for non-degenerate levels: 

E . £ = 2 f c z \«*CV ,(26b) 

We shall now discuss the eigenfunctions of problem 
C. Again we need only discuss those cases in which the 
problem C level E l i e s close to a problem A level E^ . In 
these cases the values of & determined by equations (7a) 
and (7b) di f f e r l i t t l e from those given by expression (13), 
and the f i r s t three of equations (6) d i f f e r l i t t l e from 
equations (14). Thus in the neighborhood of the box to 
which the unperturbed level belongs, the two-box eigenfunc
tion differs l i t t l e from the corresponding single-box eigen-
function. 

To determine the nature of the perturbed eigenfunc-
tion near box B we find the ratio \ fc/Rl of the amplitudes of 
the oscillatory parts of the eigenfunctions inside the' two 
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boxes. First we equate expressions ( 6 0 ) and ( 6 d ) at "x=<\ 
and eliminate fe by means of equation (9); then we simpli
fy by means of equations ( 5 ) , (7), and (8$ to give:. 

In the non-degenerate case we may use equation (9) 
t 0 g i v e s/ ~ ^ 1 /V 

so that 

which shows that the ratio of amplitudes of the eigenfunction 
in the regions of boxes B. and A i s of order 6 and henoe 
the chance of finding the particle near box B i s of order e * 
compared to the chance, of finding i t near box A. 

In our solution of problem 0 by perturbation theory, 
we shall take the problem A eigenf unction C|>A to be the un
perturbed eigenfunction corresponding to the perturbed eigen-
function dO belonging to the problem C level E . It i s 
clear from equations (14) and (28) that both <̂  and <j>A are 
of order £ hear box B.. Thus the difference between 
the perturbed and unperturbed wave-function i s of the same 
order of size as the unperturbed wave-function i t s e l f ; a 
fact whioh w i l l be very troublesome i n our application of 
perturbation theory. 

In the degenerate case we obtain with the help of 
equation (24): 

» U - E ^ A C E * ) « t € Ai/̂ T . (29a) 
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and similarly: 

Further, since expressions (8) are almost zero, we obtain 

with the help of equations [5): 

1 V,nZ*o. I « 2*0/tVU , \ S»YV£*'C\ «2ot'p/rtAU (30) 

Substituting equations (29) and (30) into equation (27) and 
then substituting (23) into the result, we obtain f i n a l l y : 

which directly shows that in the degenerate case the ratio of 
amplitudes of the problem C eigenfunction i n the regions of 
the two boxes, i s of order unity, irrespectively of how far 
apart the boxes are or of how small the function becomes in 
the region between the boxes. 

It i s clear from previous arguments that i f <pR 

and are the problem A and problem B eigenfunctions 
(given by equations (14) and their analogues for problem B) 
which belong to , the eigenf unctions tp belonging to 
the two problem C levels which are close to E<* must both 
be approximated by constant multiples of and <Pa near 
the appropriate boxes.. Thus equation (31) t e l l s us that 
apart from an arbitrary multiplicative constant, each <p 
must approximate the normalized single-box eigenfunctions 
near the corresponding boxes: 

C{ « (pA/^a+ \/Q> near box A, (32a) 

and CP « *HPH/VC + I/O near box B. (32b) 
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But since <^ and <$B are of order e near their opposite 
boxes, i t i s clear from these equations that. <p may be ap
proximated everywhere by the sum or difference of the 
normalized and : 

Finally the ratio Pn/PB of the probability of 
finding the particle near box A to that of finding i t near 
box B may be approximated by means of equations (15a), (52a), 
and"(32b). We find: 

i+eo 
( 3 3 ) 

" \ f i *-«_JZ : i = I 

6. PROBLEM D, IN WHICH ONE BOX IS SHALLOW 
In problem D, where we suppose that X i s small 

(box B is shallow! and b i s arbitrary, we obtain an explicit 
approximate expression for the eigenvalues by considering the 
fact that equation (9) defines E. as a many-valued function 
of X . It i s clear that for every level E n of problem 
A, there is a branch of this function which approaches E H 

as \—> o » But each of these branches may be expanded in 
a series of the form 

which implies that may be determined to any order 
of accuracy in X , provided X is sufficiently small. The 
range of application of these series w i l l be discussed later 
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(see P a r t I V ) . 

The c o e f f i c i e n t s o f A. and * z i n the above ex

pansion have been determined from equation (9) by p a r t i a l 

d i f f e r e n t i a t i o n (see Appendix B) i n order to compare the 

d i r e c t r e s u l t o f equation '(34) w i t h t h a t o f p e r t u r b a t i o n 

theory. They a r e : 

e « = l | f U = £*<* z(e'^ C-0/2K(.*(>M (33a) 

and 

where E , denotes e x p r e s s i o n ( 3 5 a ) , the primes denote d i f 

f e r e n t i a t i o n w i t h r e s p e c t to E , and a l l the f u n c t i o n s are 

e v a l u a t e d a t E= E A . 
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III. PERTURBATION THEORY SOLUTION 

1. STANDARD PERTURBATION-THEORY TREATMENT OF PROBLEM D" 
In solving problem D we shall make use of the re

sults of the usual kind of perturbation theory which is found 
in most books on quantum mechanics^. In order to apply the 
standard theory, the perturbation of the Hamiltonian operator 
must be expressible as a power series in some parameter such 
that the perturbation vanishes when the parameter- i s zero. 

Let V«^(*} a n d V B (x) be the potential functions 
of problems A and B respectively: 

V * U ^ * 1 v (36a) 

V a U ^ = \ V B ( x ] (36b) 

where 
V , ( x ) s ) (36c) I O 

Although most texts do not consider the case in which the un
perturbed problem has a continuous spectrum, their discus
sions may easily be generalized with the help of equations 
(81) and (82) of Appendix A, to give the results stated i n 
equations (43)-(45). 

Application of the theory to our problem is simplified 
by the fact that the bound states are not degenerate, that 
a l l the eigenfunctions considered are real, and that the 
perturbation operator i s simply proportional to the expan
sion parameter (see equation (36b)). 
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•k6* H ^ U ^ » ' , and Ulxi be the Hamiltonian opera
tors of problems A, B, and D respectively: 

• v » • l 3 7 a ) 

* V„ , (37b) 

so that clearly 
(38) 

In view of equations (38) and (36b) and the fact 
that X is small for problem D, i t i s clear that we may take 
problem A as the unperturbed problem, "V Q as the perturbing 
operator, and X as the expansion parameter. Accordingly, -
we suppose that i f box B is sufficiently shallow ( A i s suf- . 
fi c i e n t l y small), there i s a normalized bound-state eigen-
function cp of problem G corresponding to each normalized 
bound-state eigenfunction 

.<Pi» = < U j a * i/p (39) 

of problem A belonging to the eigenvalue E^ « E R , such 
that (p and the eigenvalue E to which i t belongs are ex
pressible as power series in X of the form 

<P* <P» * *<P. * A*<fc. v - - - , (40) 
E = E 0 v XE, a ' E . v - - ~ . (41) 

We find the coefficients of these series from stan
dard perturbation theory, expressed in terms of "matrix 
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elements" of the form 

Thus, E. * , 

e - r V o V , f vcA • Vo^ n (45) 

where the summations are over a l l the bound states of the un
perturbed problem, whose eigenvalues E^' differ from E ^ • 

The values of E, and E ^ are calculated in Appen
dix C. The. calculation of E, i s a straightforward integra
tion. In calculating E t , the range of integration i n 
equation (45) is f i r s t extended from -«> to •»» , and then 
contour integration is employed. Investigation of the poles 
of the integrand shows that there are terms from the integral 
which exactly cancel out the terms of the summation, and the 
balance of the integral involves only the constants <* and 
(i of the level . Thus i t i s shown that the results 

of perturbation theory agree exactly with the directly ob
tained results of equations (35)* 

2 . SPECIAL PERTURBATION THEORY TREATMENT OP PROBLEM C 
When the distance 2.̂  between the boxes is i n 

f i n i t e , VU) reduces to V ^ M . for a l l f i n i t e , and 
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problem 0 reduces to problem A. I f , however, we had i n i t i a l 

l y chosen the o r i g i n of the x. c o o r d i n a t e a t the c e n t r e o f 

box B, the two-box problem would have reduced to problem B 

when VJ=OO . A c c o r d i n g l y we assume t h a t as •)»—»<» } every 

eigenvalue E approaches an eigenvalue o f problem A o r 

B. ' F u r t h e r , i f E„ i s a "non-degenerate" s i n g l e - b o x l e v e l , 

say o f problem A, we assume t h a t the normalized e i g e n f u n o t i o n 

b e l o n g i n g to E has the form 

where i s the normalized problem A e i g e n f u n o t i o n b e l o n g i n g 

to- E c - E p , and ^VUjb) i s a f u n c t i o n whose maximum 

numer i c a l v a l u e approaches zero as b—»•«> ( i . e . , ^ ap

proaches zero u n i f o r m l y i n \ . as b —* co ), On the o t h e r 

hand, i f E , i s a "degenerate" s i n g l e - b o x l e v e l , we assume 

t h a t 

(S}M\ .= R<J«U) * + , (47) 

where F\ i s a l i n e a r combination of the problem 

A and problem B e i g e n f u n c t i o n s b e l o n g i n g to E . , and ap

proaches zero u n i f o r m l y as b — » oo . 

We may now use p e r t u r b a t i o n theory t o s o l v e problem 

C approximately i f we assume t h a t f o r every s i n g l e - b o x e i g e n 

v a l u e E„ =• E^ (say o f problem A ) , there i s an e i g e n v a l u e 

E o f problem C which i s e x p r e s s i b l e as a power s e r i e s i n the 

parameter ( d e f i n e d i n equation (20)) o f the form 

E - t 0 + e t , e x E x • - - - # (48) 
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If £.<«, is a "non-degenerate" level we may substi-. 
tute equations (46) and (48) into the Schrodinger equation 
for problem C to obtain: 

in which we may regard "V* as a perturbing operator; ^ as 
the perturbation of the wavefunction, and 
as the perturbation of the energy level. 

In this problem, however, we cannot employ standard 
perturbation theory, for although the perturbing operator 
V^("v,fe.^ vanishes when the expansion parameter 6 = 0 , i t 
is not expressible as a power series in € . Moreover, the 
function need not be expressible as a power, series i-n 6. . 
We need only assume that the function 

* « * / « (50) 

i s bounded as fe—*• O . 

Rewriting the identity (49) with the help of 

we find that 

Multiplying both sides of this identity by , integrating 
over a l l x , and dividing by e , we obtain the identity 
i n fe : 

. + 00 •« 

U. •fcE**---M<M<Mr)Axt t'A ̂ V . ^ ^ ^ A x . (52a) 

Since and \ are of order fe (or less) near box B (see 
equations (14) and ( 5 0 ) ) , and E, is independent of £ , we 
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find on taking limits as fc—*0 that the f i r s t order correc

tion E, vanishes: 

E l s 0 • (52b) 

In order to determine E 2 , we set E, - O i n 
equation (52a) and divide again by €. . We "find that as 

Now *V may be expressed in terms of the unperturbed eigen-
functions in the form (see Appendix A): 

«v = Z % ^ v fe % +% <?») A . (5*J 

Thus we find on substitution of equations (50) and (54) into 
equation (53), that in a notation similar to that of equation 
(42) above: 

° 
where a vanishing term of the form fc."' ^^^'"Vp 1^ h a s been 
neglected. 

In order to obtain an explicit expression for E z , 
we would have to.find explicit expressions for the . We 
attempt to find the asymptotic values of the cy^ by substi
tuting equation (54) into equation (51)» setting -E,*0 t 

multiplying by <^ , integrating over a l l X , dividing by 
fc. , and using equation (81) of Appendix A. We find then, 
that 
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Thus the «y£ approach the solutions of a pair of simultaneous 
integral equations, which we have been unable to solve exactly. 

We may check the validity of our result by finding 
the f i r s t two coefficients of the expansions of the c^j* i n 
powers of \ : 

V * + *1h * tf<y&f • 1581 

Substituting equations (58) and (36b) into the relationship 
( 3 7 ) , and equating the f i r s t two powers of. * on either 
side, we obtain in the notation of equation ( 4 2 ) : 

<tf. • o , ^ ( w a ) 

te<rExY*li * e " . (59b) 
Equations ( 3 6 b ) , ( 5 5 ) , (58) and (59) now t e l l us that to the 
second order in X : 

Comparing this result with equations given i n Appendix C, we 
find our result to be in agreement with that of the last 
section. 

In the special but important case that E-o is-a 
degenerate single-box level, we are rewarded with greater 
success. Substituting equations (47) and (48) into the 
Schrddinger equation for problem C, we find: 

Substituting H ^ v V ^ for H , multiplying by dOft , inte
grating over a l l x j dividing by fe , and taking limits as 
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O. we obtain: 

- OO 

62a) 

Similarly, using H8. *V„ for H > and multiplying by ((>, 
we obtain: 

. \ CO t o o 

(62b) 
- 0 0 ' - C D 

But from equations (14), (15b), (15c) and their analogues for 

problem B,. we find that 

<M*V*A* * \ <M»v«4x - •-2** ,pe/«\jyx .(63) 
-00 •'-On 

Accordingly, with equation (15a) and i t s analogue, the condi
tion for simultaneous solutions of equations.(62) takes the 
form 

which yields two possible solutions for E, : 

(62) 

This result agrees exactly with equation (26a). 

Finally we obtain from equations (62), (63), and 
(65), the ratio 

(65) 

1 *» V T 7 ( ^ . (67) 
which agrees with equation (31). I t i s clear that we could 
also derive equation (33) from our perturbation theory re
sults, using the same arguments as before. 



P L A T E H I ' T h e Eigenvalues of Problem C 
as a function of \ 
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17. DISCUSSION 

The directly obtained results for the eigenvalues 
of the two-box problem are illustrated in Plates III and IV. 
Plate III i s a sketch of the eigenvalues £ as a many-
valued function of X for the case i n which problem A has 
three levels , Eft, , and e Q l , and box B i s slightly 
narrower than box A. The horizontal dashed lines represent 
the problem A eigenvalues, while the sloping dashed lines re
present the problem B eigenvalues. Similarly the dot-dashed 
lines represent the i n f i n i t i e s &<»,*v of and ^ . The 

heavy lines represent the two-box levels themselves. In 
accordance with equation ( 9 ) , i t i s clear that i f V» i s not 
in f i n i t e ( Z. i s not zero), ^ i s zero i f and only i f ^ 
is i n f i n i t e , and vice versa. Accordingly the heavy curves . 
must cross the discontinuous curves at the encircled points, 
which mark the intersections of the single-box. levels with 
the A , a n d can cross the discontinuous curves only at 
these points. 

The approximate results obtained by both direct 
and perturbation theory methods for problem C, in which V» i s 
large, are illustrated by the fact that i n this case the 
heavy curves closely follow the dashed curves. In accor
dance with equations (23) and (24), and equations (52b) and 



P L A T E X = « a as a func t ion of € for fhe 
case in which a V K U =3-5, showing the 
approximations to the f irst order in €. 
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( 6 ^ ) , the heavy curves l i e farther (at distances of order £ ) 
from the nearest dashed curves near the points of intersec
tion of two dashed curves (the points where "degenerate" 
single-box: levels occur), than at other points (where the 
distances from the dashed curves are of order € 2 ). 

The approximate results obtained by the two methods 
for problem D, in which X i s small, are illustrated by the 
behaviour of the three curves whioh follow , , and 

before their f i r s t turning points. It i s clear that 
when V> i s large ; the curves turn so sharply that the series 
(34) and (41) cannot be expected to be valid beyond the f i r s t 
turning point- of each curve, and certainly the approximations 
given by the f i r s t two terms of the series w i l l not be valid 
beyond these points. Further, since the coefficients of 
the series depend upon b , and the curves must pass through 
the encircled points regardless of the value of t» , i t i s 
clear that the series can never be valid beyond the f i r s t 
encircled point of each curve, and that the approximations 
to the second order in \ can never be trusted beyond the 
f i r s t turning points. 

Plate IV shows the behaviour of the levels of a 
two-box problem in which both boxes are identical ( A- I and 
C* <X ), as functions of £ , and thereby illustrates the 
results of equations (26a) and ( 6 5 ) . In order to show 
numerical results, the dimensionless constant Va 1 W i s 
given the value 3*5 , and the dimensionless quantity 
X * <xci = V a l ^ is used instead of EL. . 
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The continuous curves r e p r e s e n t the exact v a l u e s 

o f * . I n accordance w i t h equations (4)» (9), and (20c), 

each continuous curve has an equation o f the form 

1 i z . z s I • * * ». (68a) 

where 

y _ Q,CK •= V 1 2 - 2 - - * 2 , (68b) 

and y0 . i s the v a l u e o f y a t one o f the s i n g l e - b o x l e v e l s 

(where €. * o ). 

The dashed curves r e p r e s e n t the approximations to 

the exact curves i n accordance w i t h equations (26a) and (65), 

and the approximation 

2 * > • (69) 

obtained from e q u a t i o n (4a). 

The range of a p p l i c a b i l i t y o f the approximation f o r 

the lower l e v e l s i s s u r p r i s i n g l y l a r g e . For the lowest 

l e v e l , f o r i n s t a n c e , the approximation i s v a l i d from fcro 

to i « 0 < ^ • The value o f y<> f o r t h i s curve i s 

% 3 - 3 , and hence we f i n d from e q u a t i o n (20c), t h a t the 

value o f b/a. f o r the p o i n t o f departure i s 

V o . = - C l * (70) 

t h a t i s , the approximation i s v a l i d f o r values, of b between 

i n f i n i t y and O\4-0il 



P L A T E C o m p a r i s o n o f -the S q u a r e Well Model and 

M a n n i n g ' s Mode l w i t h the Ammonia Spectrum 
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V. APPLICATION OF THE MODEL TO THE 
AMMONIA INVERSION SPECTRUM 

In order to illustrate.the value of the two-box 
problem as a prototype model for a physical system, we shall 
use i t to calculate some of the constants of the ammonia 
molecule. Many authors 1 have pointed out that the motion 
of the NH3 molecule which contributes to the inversion spec
trum i s that in which the nitrogen atom moves back and forth 
through the triangle formed by the three hydrogen atoms. 
There i s an equilibrium position for-the nitrogen atom on 
either side of the triangle, and a potential barrier with a 
maximum in the plane of the triangle which the nitrogen atom 
must traverse. 

It has been shown2 that although the molecule i s 
three dimensional, the method of normal coordinates may be 
used, and hence the levels of the inversion spectrum closely 
approximate the levels of a one-dimensional two-minimum pro
blem. Many authors have used this fact to estimate some 
constants of the ammonia molecule. Manning^, for instance, 

assumed a potential function similar to that shown on the 
right-hand side of Plate V, and by assuming a reduced mass 
1G. Herzberg, "Infrared and Raman Spectra", (Van Nostrand), 

pp. 221 to 224, and references given there. 
2N* Rosen and P.M. Morse, Phys.Rev.42, 210, (1932). 
M̂.F. Manning, Jour.of Chem.Phys. 3, 136, (1935). 
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/x r ^ . ( P O * to gtrij and f i t t i n g the lowest three l e v e l s o f 

h i s model to those found from the ammonia spectrum, he. d e t e r 

mined the " e q u i l i b r i u m h e i g h t o f the N R 3 pyramid" ( h a l f the 

s e p a r a t i o n o f the minima), the h e i g h t o f the " p o t e n t i a l hump" 

between the minima, and the asymptotic v a l u e o f the p o t e n t i a l 

f u n c t i o n a t l a r g e d i s t a n c e s from the minima. He then c a l c u 

l a t e d some of the higher l e v e l s and found them t o be i n good 

agreement w i t h those of ammonia. 

I n our c a l c u l a t i o n s we f i r s t assume a two-box poten

t i a l f u n c t i o n o f the type d i s c u s s e d above, i n which both 

boxes are i d e n t i c a l . Then, by u s i n g the same reduced mass 

and making the same f i t as Manning, we determine the c o n s t a n t s , 

0. , b , a n d V . Our n u m e r i c a l method i s f i r s t to use 

g r a p h i c a l methods t o determine the v a l u e s of X * oca and 

Y s ^A- f o r the two lowest l e v e l s o f the s i n g l e - b o x problem 

f o r v a r i o u s v a l u e s o f 1*1 a o.zWtT . Then, assuming the 

approximation (26a) to be v a l i d , we n o t i c e t h a t i f A£ i s 

the s p l i t t i n g o f one o f these l e v e l s when the boxes are a 

d i s t a n c e 2 b a p a r t , then 

€ - z^c3- ' (71) 

o r 

eCz Y\ &E ( 1+yV ( 7 2 ) 

But i f * o and X , are the v a l u e s of X f o r the f i r s t two 

s i n g l e - b o x l e v e l s , we have 

X , * - * o X = a . l * ( E , - E O , (73) 
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and hence 

6 * A £ (74) 

Thus, by using the ratios AE/(E,-E«,) a s found from the 
lowest two ammonia levels, we calculate £ for each level, 
and then find the two corresponding values of 

b _ _ H f e
 (-75) 

By trying different fVs and interpolating, we find one for 
which the two ratios b/a. are equal. Finally, using this 
1*1 and the assumed , we calculate a, b , and U . 

We find that our value for the "equilibrium height 
of. the. NĤ  pyramid" ( a* b ) agrees very well with Manning*s, 
and that our value for the height of the "potential hump" 
agrees f a i r l y well; but we find no higher bound7levels. 
Therefore we next assume a potential function, as shown on 
the left-hand side of Plate V. After finding the necessary 
equations for this problem, and making numerical calculations 
similar to those of the last paragraph, we go on to calculate 
higher levels. 

The results of our calculations are shown in the 
following table and are illustrated in Plate V. 
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Levels 
(cm:') 

Manning Square Well NH3-

0+ 0 0 0 
o- 0.83 0.83 0.66 

1 + 936 932.4 
1- 961 961 968.1 
2+ 1610 1640 1597.5 
2" 1870 2170 1910 

3 + 2360 2650 2380 
3" 2840 3290 2861 

Shapes of Potential Functions 

-

Manning Square Wells Square Wells 
With Infinite 

Sides 
Widths of 
Boxes (2 a.) _ 0.28 A 0.36 A 
Separation 
.of Boxes 

<.2.fe) 
- 0.44 A 0.41 A 

Equilibrium 
Height of 
Pyramid 

0.37 1 O.36 A 0.38 A 

Height of 
Potential 
Hump 

2071 cm"1 1640 cm"1 1650 cm""1 

45100 cnr 1 1640 cm"1 
0 0 
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APPENDIX A . NORMALIZATION OF THE EIGENFUNCTIONS 
OF THE CONTINUUM 

I t i s w e l l known t h a t we may choose n o r m a l i z e d p r o 

blem A e i g e n f unc t ions and <fy£ (equat ions (14 ) , (15) and 

(17)) such t h a t a l a r g e c l a s s of. f u n c t i o n s be ex

pressed i n the form 
00 — 

^ * C * \ + ̂ i ^ ^ , ( 7 6 ) 

where the c y o and O j ^ t are f u n c t i o n s o f p and j( 

g i v e n b y : 
r+oo 

) - 0 0 

<V£ - (TuKjjmAx . l 7 7 b ) 

C o n v e r s e l y , i f a r b i t r a r y f u n c t i o n s ^ and ^ are chosen 

t o d e f i n e a f u n c t i o n by means o f e q u a t i o n (7&), then 

equat ions (77) n e c e s s a r i l y h o l d . S u b s t i t u t i n g e q u a t i o n (76) 

i n t o e q u a t i o n (77b), we o b t a i n f o r a r b i t r a r y o^^ , , 

and ^ 

' - 0 0 V 

But s i n c e ^ ^ j f c vanishes a t ' x = ± co , we know from the 

o r t h o g o n a l i t y theorem f o r e i g e n f u n c t i o n s t h a t 

"'"For example, E . C . Kemble, "Fundamental P r i n c i p l e s o f 
Quantum M e c h a n i c s " , Ch. 7 1 , where the i n t e g r a t i o n i s 
c a r r i e d out over E. r a t h e r than -V • 
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(79) 

and hence eq u a t i o n (73) may be w r i t t e n 

•Vv • (80) 

-co Jo 

F u r t h e r , s i n c e and a r e r e s p e c t i v e l y even and odd 

f u n c t i o n s o f * , i t f o l l o w s t h a t f o r a r b i t r a r y <j,(V), 
C\* pK'̂ uoav*- o ' (8D ' 
' - C O ) 0 

T h e r e f o r e , s i n c e the ^ are a r b i t r a r y f u n c t i o n s , e q u a t i o n 

(80) i m p l i e s t h a t 

\ < W \ ^ M ^ ^ * . <fcW , (82) 
' - co & 

which i n t u r n i m p l i e s t h a t i n the symbolism o f d e l t a - f u n c t i o n s , 

P̂ - A> , t u - w M (83) 
•00 

Knowing t h a t equation (82) holds f o r s u i t a b l y nor

m a l i z e d tyfc , we may s t a r t w i t h unnormalized f u n c t i o n s , say 

tyj = <Lo<*k (* + f o r x > a (84) 

and d e r i v e the n o r m a l i z i n g f a c t o r s as f o l l o w s : 

Choose a p a r t i c u l a r A. > O , and a number L\ such 

t h a t 0<A<>k . Let be d e f i n e d by the equations 

y 6v t V - M * . A 

Then, i f C£ i s the n o r m a l i z i n g f a c t o r f o r , we f i n d 

on s u b s t i t u t i n g \{k) f o r <fyU<) and C J (fjj f o r CJ)j{ i n 
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equation (82) and dropping the t signs, 
"VCO , U+ A 

\ C v ^ v A cV<¥k' < ^ * i « I . -(86) 

Thus since A 

(87) 

i s an even function of x , equation (86) implies that 
.00 

2. \ X U,A> A x = I 
' 0 

(88) 

f o r a l l A>o » and consequently, 

2 L « 2 \ r<U » i . (89) 
A-*0 )o 

But we s h a l l show that 

and hence that 

To prove equation (90) we notice that f o r every 

r e a l number ^ , 

4̂ 0 - Q (92) 

since I approaches zero and the path of integration i s of 

f i n i t e length. Hence equation (89) implies that 

L *' • (93) 

Now we choose $ i n such a way that 

(94a) 

t94b) 
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Substituting equation ( 8 4 ) into equation (8 .6) , changing the " 
variable of integration to ^ = * - < s , and expanding the t r i 
gonometric functions with the help of equations ( 9 4 ) , we find 
that „ 5, 

S V * (93) 

where 

PIV) c V v U A * * * ) , ( 9 6 a ) 

O^V) c c v c*sVl*+S) _ ( 9 6 b ) 

Integrating by parts in equation (95) and using the formulae 

[ s " f t \ v , ^ x Ax * - I J L ^ ^ ^o<Y><a, (97a) 

and 

* I * ^ 0 < b < < x ;
 V*/D/ 

we obtain 

( 9 8 ) 

But in accordance with equations J94) and (9?)» we find that 
the f i r s t term approaches ~^^fz as L\ —*0 , and the second 
term vanishes since qjOk*&) and fyU^-a) must be of 
order L\ . Finally, v/e find that we may interchange the 
order of integration i n the last term, since ^ ̂ • <J f' x ̂ x 

exists. Hence the last term vanishes also, and 

I- fe 1 5 ^ C * / z . (99) 
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APPENDIX B. DERIVATION OF EQUATIONS (35a) AMD (35b) 

V 

From eq u a t i o n ( 9 ) , we have 

- ^ v n / ^ w ^ ) , ( 1 0 0 ) 

which w i t h equations (4), (8), (9), and (20) becomes 

" e ' - i H ^ - ^ ^ V C ^ ^ ^ - ' ^ W ) . (io!! 

Hence f o r N S O and E = E * , 

E, - (£V***TJj\«^ ( 1 0 2) 
S e t t i n g E * 6 A and <X.'* 1(V ( c . f . equations (4b) and 

(4c)) i n equation (8b) we o b t a i n 

( N^V - o = ^ ^ v ( » - e ^ ) # . ( 1 0 3 ) 

Hence w i t h equations (20a) and (25a) we o b t a i n e q u a t i o n (35a) 

E, - fc*** ( e * ^ - \ ) / 2 Y \ { \ « V * ) ^ ( 1 0 4 ) 

To o b t a i n E 2
 w © d i f f e r e n t i a t e e q uation (101): 

E "*0 • («X+C^UV«W).c»5) 
For \= O we f i n d 

* - , 1 1 0 7 1 
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and 

where a l l the expressions are to be evaluated at £ = e» and 
N * 0 . Substituting into equation (105) we find with 
the help of equation (102) that 

<*%., * . . { - « . 

Finally, we find from equation (4b) and from 
equation (8b), set OI'-A^ , and use equations (35a) and (109) 

to obtain equation (35b). 
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APPENDIX C. CALCULATION OP THE COEFFICIENTS E, AND 
Ei BY MEANS OF EQUATIONS (43) AND (45) 

We f i n d E, from equations (14), (15), and (42): 

E , = , - [ V o c V w C a ^ / ^ L - ^ - ) ^ (110) 

On evaluating the i n t e g r a l , we f i n d that equation (110) agrees 

exactly with equation (35a). 

To f i n d E z , we f i r s t use equations. (14), (15), 

and (42) to calculate the matrix elements 

from which we obtain . 

Y<£, r ( S ( ^ / [ ^ Z ( ^ C ^ ] / K M ^ ^ ) ^ K ( ^ l + ^ ) (112) 

S i m i l a r l y we use equations (14), (15), (17), and (42) to f i n d 

the matrix elements 

Writing the cosine function i n exponential form, and using 

the equation 

(114) 

I n t h i s equation ot' represents the value of oUej f o r 
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we obtain 

where 
N = V/ATT Y 

T,U0 = T»t-*0 

(116) 

(117) 

(118) 

(119) 

and 

T \ U ) - - Ci - e 4 ( i C ) / ( JUw^CU-; (> ) 2 

I* - ' \ / ( ^ ) ( JU- . - ^ \ (120) 

Vik) , Xjl-Jc) . ( 1 2 1 ) 

From equations (118) and (121), and the fact that T , i s an 
even function of h , the integral in equation (45) takes the 
form 

X -_ ti W a r , , T , 4 T ; V T ; ) ^ , (122) 

We now evaluate the integral in the last equation 
by means of contour integration. Choosing the contour which 
runs along the real axis from - ft. to + ̂ . (where 
ft > O ) and then around the semi-circle in the upper half-
plane from + ft. to - ̂  , we find that the integral 
around the semi-circle approaches zero as R —• a> . Hence 

X - ZW*l4 (Sum of residues of the inte-• 
grand at i t s poles i n the (123) 
upper half-plane.) 
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T\ and T-s have poles at / L - ^ n > only. The : 

residue of 3>T, i s 

while that of i s 

* = ' P (125) 

Adding ft, and and multiplying by 21*;. IV* , we find that 
the contribution of T, and T 3 to X i s exactly equal to 
the f i r s t term of equation (35k). 

In order to evaluate the residues of T** • and TA* i 

we find from equations (18) that 

^kt****) CJk^) ^ . . p . ( 1 26) 

and hence that 

e +Q. = -2*^/Lkr*\^**<-ol*<*) (127) 

Equation (127) t e l l s us that * T \ ~ has a pole corres

ponding to each level (i.e., for -V = XQf ) as well as 
to E P ( A*.=-;̂  ). The.residue at k.- + ̂ ' i s 

V^H*""^"^^^^ . , (128) 
Evaluating this residue with the help of equations (4) and 

>e with equation (112), 

W/(e»-eo') (129) 
(25a), we find that i n accordance with equation (112), 
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Thus every term of equation (45) whioh arises from a discrete 
level i s cancelled by an equal and opposite term which 
arises from the continuum levels. 

Finally we evaluate the residue of " V • T V at 

<W -i[W(tiVl 
where 

V k ) ( k tip)' Vil^/zl&^'PKi'l* ( W ) 

(130) 

Using the equation 

we obtain with the help of equations (4): 

But on substituting X = A(b in equation (133) we find with 
the help of equation (35a) that 2ir;NRA(Jk^) i s exactly 
the second term in equation (35b). 

(133) 
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