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ABSTRACT

The problem of a.particle‘in two'adjéceqt one-
dimensional rectangular.potential_"boxes" is an exactly solu-
ble representative of a class of two-minima problems of con-
siderable physical interest which have not been solved
exactly. It therefore affords a valuable opportunity for a
critical examination of the extent of.applicability of per-
turbation theory methods to such problems, An exact im-
plicit solution of the problem is obtained, and is reduced to
explicit approximate form in two important special cases.,
These approximations are'reproduced by perturbation theory
methods, and their ranges of validity are demonstrated by
comparison with the exact solution. The application of the
model to a physical system is demonstfated by using the iden-
tical two-boi problem as a basis for calculation of some con-

stants of the ammonia moleculs.
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1.

ON THE QUANTUM MECHANICAL PROBLEM OF A
PARTICLE IN TWO POTENTIAL MINIMA

I. INTRODUCTION

The problem of a particle in two potential minima
is of extensive interest in theoretical physicé since it pro-
vides a model for many physical systems. The éimple.one-
dimensional case in which the minima are rectahgalar in shape
serves as a prototype by which we-may understand many pheno-

'mena connected with metallic conductiont

2

, van der Waals
forcesZ, the stability of hydrogen-like ions?, and the vibra-
tion spectra of certain polyatomic molecules;. -Ebr this
reason many authors, including those mentioned in the foot-
notes, have discusséd the model with a view to its physical

- significance.

1M.F, Manning and M.E, Bell, Rev.Mod.Phys, 12, 215 (1940).

2g, Dushman, "Elements of Quantum Mechanics", (Wiley),
pp. 214-218, and references given there.
Dushman's approximation to the energy splittin% is incorrect
(compare his_equation (3) with our equation (26a) for c:=o
and A= ), since he fails to consider the phase shift of
the eigenfunction. '

3See Part V below, where the present model is applied to the
ammonia. inversion spectrum,
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It is felt, however, that none of the published.
discussioné have taken full advantage of the possibilities
of the problem in illustrating many mathematical methods
which are constghtly used in quantum mechanics., On the one
hand, the problem is dne of few non-trivial examples'which
may be solved by exact methods. On the other hand the solu-
tion may be carried out, with certain significant limitations,
by means of perturbation theory. '.The complete knowledge ob-
tained by the direct solution may then be emplo&ed to illus-
trate the nature of the perturbation theoretical resﬁltsl.
'The pedagogic utility of the discussion is enhanced by the
necessity of using wave-functions of the continuum, and of

dealing with a type of perturbation theory that is not

generally discussed in the literature.

1p.M. Morse and E.C.G. Stuckelberg, Helv.Phys.Acta, 4,

337, (1931), make. this kind of illustration using a model
for ammonia, However, they consider a less general case,
and their model is more complicated,

¢



PLATE 1 The Two-box Potential Function Voo,

A and an example of an Energy Level
System for Problem C.
BOX A —~ — B8ox aj
2 ’Q 2b : 2¢ — !
¥e)
E.g I G A e EB!
T T AU
U & ——m— ]
N EBO
- Y — ] \
b e —— —— |
. : |
| | | » | |
REGION 1 ; REGION 2 REGION 3 { REGION 4 l REGION S
Legend: ————The levels of problems A and B are drawn in the appropnafe Box

——-—-~The Econ of problems A and B are drawn in the appropriate BOX
The levels of problem C according 1o equations (23) and (24)

%



II. DIRECT SOLUTION

1, FORMULATION OF THE PROBLEM

We consider the problem of the one-dimensional
motion of a particle of mass m subject to a potential
Vi(xy shown in Plate I, and seek its bound energy levels
together with the corresponding eigenfunctions. V(x)
vanishes outside two potentialn "hoxes" A and B( Vxy=0O
- in regions 1, 3, and 5) and has ‘the constant values -U and
-AU inside boxes A and B respectively ( Vo =-'U in re-
gion 2, Vx)= -};U in region 4).

We shall first solve the general problem in im-
plicit form and then consider the explicit solutions of the
following sbecial cases:

Problem A, in which the width of box B is zero
( =0 ) or the depth of box B is zero ( A=0) and only
box A is present.

Problem B, in which the width of box A is zero,
and only box B is present.

Probleﬁ C, in,which the distance 2% between the
boxes is large.

Problem D, in which box B is much shallovver than

box A (A is small compared to unity).

3.
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2, SOLUTION OF THE PROBLEM IN IMPLICIT FORM

The eigenfunctions ptxy satisfy the equation
a2q/ax + wWie-vrle =0, (1)
which is the Schrédinger equation multiplied by
-y = - 8TAU/K. (2)

It q>~. is the expression for a bound state (E < O ) eigen-

function in the 4¥W region, the solutions of equation (1)

are

Qi = AL cosai(xs &) dov &= 2,4,

" ' - (3)

CQX = ﬂLQBx-\- ‘3;2501 _ *01 i=1,3 8, .
where

st'\‘K(E*U) = o > 0 *0'('E>—-U, (4)

Ky = '\/Y\(Ef_?\v) = °'~', (4v)

(‘5 =V—KE >°\-?Y E<o; (46)
so that o :

x*+ =RV | % (2= AKU. (5}
The R. , W: , and $; are constants to be determined together
with a condition for eigenvalues by the boundary conditions
at infinity (where ¢ must not be infinite) and at the
‘boundaries of the boxes (where ¢ and its first derivative
cp‘ must be eontinuous): The conditions at infinitsr require
that 3, and A shall vanish, so that equations (3) may be

rewritten with some changeé in the constants as
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P, = F\(o%&(Q-S\QB(’HQ) (6a)
Py = A cosx (x+8) (6b)
_ A cosa (O 8) Q-(H""M N p®lx-
- e .
cp v+ Yga [ vt ] (6c)
3
' B cosat (c+ &) G(x~a=-25) -B(x-a-2b)
RN L + e 1 (e
Q. = BCOSOU(X-CL-Z.\:—(_-S')' (6e)
@ = Bcosea (8 Q-G(X—a-zb-zc\ (62)

%
where the first three and the last three expreésiéms"make up
functions which are continuous at the boundaries of boxes A
and B respectively. The two forms of (¢, have been chosen
to emphasize the smetrical way in which the two boxes occur
in the problen.
Applying the condition that ¢’ shall be eontinuous

at the boundaries of box A to the first three of equations

(6) we obtain

(3/0( =. Ia.vxok(Q-S\ (7a)

B/ = 12 fanaiars) (70)

which determine % and . as functions of « and (3, and

consequently (in virtue of equations (4)) as implicit functions
of E. Thus elimination of $ between equations (7a} and

(7b) yields for ¥y :

¥ - B*- ot + 24 cok 20a B} (0 - han o )( B+ X cokaq) (8a)
R KU wWv o .
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Similarly we obtain from the last three of equations (6}

B/’ = Kanet! (c- 8) ’ (7¢)
' . LY ] ' :
(;/0( = | _%'1 fan & (C*S) : (7d)

N - p2- '? ;:‘:'p coX 2C =(G~u'xan:":)£§;+ o' cokx'C) .(8b)
If we now insist that the two forms of @5 in
equations (6¢c) and (6d). represent the same function we ob~-
tain the condition - .
\‘A \&q = Ez‘ , (9)
where

T = e-?0° - (10)

Bquation (9} is clearly a condition for eigenvalues since in
accordance Wit_p equations (4), (8), and (10) it is an im-
plicit equation in € and the constants o, b ,- c, YV, and
A of the potential energy function. If the values of &
satiéfying equation (9) for a parti_c'ular set of values of
the constants are found, say by ﬁumerical methods, -then Xﬂ
and ¥a may be found from equations (8),and & and S may
be found from equations (7). " Thus the equations we have
found give us complete information aﬁout both the eigenvalues

and the eigenfunctions in implicit form.

3., PROBLEM A, THE SINGLE-BOX A CASE

If ¢ or A is zero and box A alone is present,

‘it is clear that the eigenfunction in the whole region to



PLATE T A rough sketch of Y, as a Function of E
for the case in which 4< 32/uozU/h <9

4 ¥

E=0

Ym

The Zeros of Y. are the Single-box Levels
Notice that the slope Y, is Negative at each Zero
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the right of box A may be represented by the function ¢ of
equation (6c). The condition that ¢ shall not be infinite

at xz=+c0 now implies that.

%= O , (1)
which with eq_uationé (8a) and (4) is the condition for eigen-
values,

¥, has been roughly sketched in PlateIl as a
function of E for the case in which V 1lies in the range
4< B2PEUMR < 9 . ¥a(€) is real only for E<O and
is pbsitive for all E' =-U , approaching @ as E—-o© ,
Inlthe'region of bound energy levels ('—U< € <0 ) its zeros

are separated by infinite -discontinuities at the pointsJ_-

Eomn = v\"‘\r:'/SZ}kOLz } M=, 2,3 - _ (12}

As € increases, the sign of Y, changes fi'om - to + at
each 'El.,‘v\ and from + to - at each zero. The zeros )
when placed in increasing order, are alternately zeros of
thé first and second factors of *,‘ in equation (8a). |

| The elgenfunctlons (Pq corresponding to the bound
levels of problem A may be obtained by setting \‘« =0 in

equation (7B} and eliminating (@ by means of equation (7a}:

. 2
S =A%/2« (13)

9

1A-s"\3—.—’°°, each zero approaches the €wm which lies im-
mediately above it. Thus the Eew may be though of as the
levels of an infinitely deep box with base at -V ,

2In order to avoid extra notation we shall use the symbols

o, (& to denote either the functions of € defined in
equations (4) or the special values of the functlons corres-’
ponding to.eigenvalues of B ,
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where { is an even .or odd integer according as the first or
. second factor of Na in equation (8a) vanishes. Substi-
tution of equation (13} into equations (6) after setting
¥a = O in equation (6c) shows that the bound state eigen-

functions are alterﬁately multiples of the even and odd func-

tions : ( K
Atrta
Pay = COSaa 0_0 T )
Qaz = COSAX (14a)
Qs = oS o~ B
(a3 =
9
and
: (X 4
Do = - SMaQ QO >
Piy=  siax

(14v)
- O x-ad :

)
according as the first or second factor of -‘&‘ vanishes,

q)'ts"' SMmRG @

In both cases it may be shown that

+00 _

x“((): dx = a+ \/Q . (15a}
which determines’ the normalizing factor. For later use we
Iobserve with the help of equation (8a} that for the even
functions

cos?aa = A*/(&24(3*)= x2/WV | (315p)
and for the odd functions | |
S'MzoLCL - '&"/(a("q— GL) - c‘_l/ KU . (150)
The eigenfunctions of problem A for the continuum-
of free enérgy states ( EY O ) must also be found since we
will requiré é complete set of eigenfunctions in applying

perturbation theory. ' Setting
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X = AvE >0 Yov >0, (16)
we find tpat outside box A, ¢ no longer has the exponential
forin of expression (35 but ﬁhat it has the oscillatory form
Ateshk(x+S) . Thus the condition that ¢ shall be .
bounded at infinity is automatically fulfilled and we need
impose only the four continuity conditions at the boundaries
of the box. It is clear that equation (l)‘ and the con-
tinuity conditions are satisfied for every, E > O by the

following linearly independent pair of functions CP]; and (95;

of which the first is even and the second is odd:

Qf =t == cosk (x- )

0y, = ' cesk (a+ §Y)
" Jr CosARA

Co0sa X

(17)

")
q);z:_ I cos k (a+D SAX

v sSMmaa

Q= J)__-_W— Cosk (x + &%) :

where $ and S  are determined by the equations

X TanwXk(a+ &) = afanaax
Ik (a4 &) z-acstaa (18)

3

and where ® and 4k are defined in equations (4) end (16).
Further, we obtain a complete set of eigenfunctions by in-
cluding only the CPI- , Since for given E , any three solu-
tions of the second order differential equation (1) and the
boundary conditions are linearly dependent.

The factor. \//T in equations (17] has been chosen
to make the CPf(- normalized to "delta-functions" (see Appen-

-

dix A}o
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4, PROBLEM B, THE SINGLE-BOX B CASE

It is clear from the symmetrical way in which boxes
A and B enter the problem that all the results derived in
section 3 for préblem A may be transformed into corresponding

results for problem B by making the following substitutions:
A — c
V———— AU
& — &K

X ———>» %X -a-2b-c

X—— g
and leaving all other quantities unchanged.

We shall denote by q)B the bound-state eigenfunc-~

tions found in this way from equations (14}).

5. PROBLEM C, IN WHICH THE TWO BOXES ARE FAR APART

We return now to the two-box problem and consider
the case in which the distance &% between the two boxes is
large. For arbitrarily large b , € (see equation (10)) is
correspondingly small, Hence the value of a¥; is
arbitrarily close to zeré. It follows that every two-box
level E is arbitrarily close to a level €, of problem A
or B (a zero of ¥a or ¥a ). Indeed; for sufficiently large

b, every such € may be approximated by a solution of the

equation

[Xaled + (e-EIVEI] [ $alED v (E-BIY(E)] = € (19)
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where
¥\ = % B (20a}
= b 20b
XQ AE ’ ( )
€ =Z(e)= g 2VHED - (200)

Two possible cases now present themselves, In the
first case, which we shall call "non-degenerate", €. is a
level of one single-box problem but néi; of the other, | In
the second case, which we shall call "degenerate", E. is a
level. of both single-box problemsl. Sinee equation (9} is
symmetric in xq and “s' we need only discuss those cases in
which E, = ét\ - is a level of problem A ( Ya(Ea) = O ).

In the non-degenerate case equation (19) becomes

E-E 2 ¢2/ ¥a |
N = .Z. : - )
Vo1 ¥5 + 4 €2¥/¥

(21)

where the functions and derivatives are evaluated at E - g, .
The sign in the denominator must agree with the sign of ¥,

in order that Aw E = Eq o When b is so large that

b

2> > | 4e*N/Nal (22)

J'In our si:ecial use of the word "degenerate" we refer to &
case in which there is a simultaneous level of two different
problems rather than one in which there is more than one

linearly independent eigenfunction belonging to a single
level of the same problem.
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the approximation reduces to

E-Eq = €/ %%, (23)%

In the degenerate case we merely set ‘&A =¥,=0

in equation (19) and obtain

E'En = te :\/‘&'A%n | (24)

The derivative ‘L;(E..) may be found by differen-
tiating the expression (8a) using eqﬁations (4) and (5) and

the faect that N, (éq\=0. . The result is
[} _ 2 2 2 .
Na(Ba) = —K2U (1+6a)/ 223> . (258)
Similarly for a level Eg of problem B,
! 2 12 2
Yolze) = - WAV + )/ 2737, (25b)
The last two equatidns show that the derivatives ‘é.\' and ‘A.’,
which appear in equations (23) and (24} are always negati{re.

Hence the sign of " E-€4 1in equation (23) is always opposite

to that of Yg(Ea) and the right hand side of equation (24)

lcondition (22) ensures that € . is much closer to E, than
to the nearest level E. of problem B; 1i.e., there.is no
approximate degeneracy. Eliminating ‘€ between equations
(22) and (23), we have

|E - €4 << \ ¥a/4¥Xel .
so that even if Ey is so close to E; that

\LQ kEf\) + (E%‘ Eq)xé (.Ea) ~ \‘l‘! (Eg)= O R

'and _
Xa/¥y = Eq - Eq

we have
|E -Eal << | EB"'EA\/A;
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is always real. |

Stated-in words, equation (24) implies that any
level which is common to both single-box problems (or to the
two-bbx problem when the boxes are iﬁfiﬁitely far apart) be-
comes split into two levels when the boxes are a large but
finite distance apart. One of these levels lies above and
the other lies below the original level, both by the same
amount of order € . On the other hand, eéuation (23) im-
plies that each level whidh does not apprqach a level of
‘problem B as b —» oo , differs from the corresponding problem
A level E, only by an amount of order €? , and lies -above
or below E, 1n accordance with the following rule:

The level is "repelled" by the "closest" level of
the other single-box proﬁlem, where we define the problem B
level which is "closest" to- €4 t0 be that level which is
nof separated ffom. Eqn by an Ex. of problem B (analagous
to the Eon of problem A given by equation (12)).

If the original level E, lies "equally close" to
of problem B), equation (23) shows that since’ XQ(E,,,,.\)-_-OO R
the-problem.C level E 6oincides with E, at least to tefms
of order €*. Moreover, when we write the exact equation
(9) in the form \‘g = éz/\‘e , it is clear that E coin-
cides exactly with E, , since \A;\(Ea\= o .

The above results are illustrated by the sketched-
in levels.in Plate I, where the boxes should be farther apart

than they are in the sketch. The lowest level lies below
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Bao - since it is "repelled" by the higher level €, , and
similarly the next lowest level lies below €4, sSince it is
"repelled" by €4, . The third level-coincides with Eg,
since the latter coincides with E&,,2 of problem B. The
highest levels lie above and below the coincident levels €a,
and EBgq, .

Making use of equations (8) and (25) we rewrite
equations (23) and (24) in expli@it form in order to compare
these results with those of perturbation theory. Thus for

degenerate levels we have:

E-E. = 2eax @ .
a = X :
RUJ A1+ Ga) ( 1+ BC) > (26&?
and for non-degenerate levels:
E‘E“ T e 2&1 A&z(}i .(26b)

KU (1*Ba)(3%- «?+2a'Bcotzac)
We shall now discuss the eigenfunctions of problem

C.- Again we need only discuss those caées~in which thé
problem C level € lies close to a problemiAllevel'é‘ . Iﬁ
these cases the values oOF § determined by.equationsw(7é)
and (7b) differ little from those given by expression (13),
and the first three of equations (6) differ little from
equations (14). Thus in the neighborhood of fhe box.Eo
which the ﬁnpérturbed level belongs, the two-box eigenfuneQ
tion differs little from the corresponding single-box eigén-
function.

| To determine the nature of the perturbed eigenfun;-
tion near box B we find the ratio \®/Al of the amplitudes of

the oscillatory parts of the eigehfunctions inside the two



15.
boxes. First we equate expressions (6c) and (6d) at x:=a
and eliminate & by means of equation (9); then we simpli-

fy by means of equations (5), (7), and (8} to givé;

= [Ba| (1+Xa) Cosa(ar$) \ [ | < |
B = = [0 wda
\R/R) o | (13Xa) coss(+8) | ~ WX, s'-vye(x\ '. (27)

In the non-degenerate case we may use equation (9)

t i 1

- to glve \‘“ ~ € /\(3

so that ' .
~ &€ vl G

“which shows that the ratio of amplitudes of the eigenfunction
in the regions.of boxes B and A is of order ¢ eand hence
the chance of finding the particlg near'box B is of order ¢?
compared to the chance. of finding it near box A.

In our solution of problem C by.perturbation theory,
we shali take the problem A eigenfunction q% to be the un-
perturbed eigenfunction correspohding to the perturbed eigen-
function.f? belonging to the problem C level E . It is
clear from equations (14) and (28) that both § end ¢Pa are
of order € hear box B, Thus the difference Q-{s Dbetween
the perturbed and unperturbed waﬁe-function is of the same
order of size as the unperturbed wave-function itself; e
fact which will be very troublesome in our application of
perturbation theory.

In the degenerate case we obtain with the help of

equation (24):

o = (E-EXa(En) = v €4 0le (29a}
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and similarly:

o= t enfye/¥L . | (290)

. Further, since expressions (8) are almost zero, we obtain

"with the help of equations (.5):

| smzaa | & 2a0/KWVU | | sin2o'C| 2 203 /KAU (30)
Substituting equations (29) and (30) into equation (27) and
then substituting (25) into the result, we obtain finally:

||++Gccl ) . (31)

whieh directly shows that in the degenerate case the ratio of

|®/A| =

amplitudes of the problem C eigenfunctioﬁ in the rsgions of
the two boxes is of order unity, irrespectively of how far
apart the boxes are or of how small the function becomes in
the region between the boxes.

It is clear from previous arguments that if @,
and {q are the problem A and problem B eigenfunctions
(given by equations (14) and their analogues for problem B)
which belong to €. , the eigenfunctions (@ belonging to
the two problem C levels which are close to Ea must both
be approximated by constant multiples of @, and @, near
the appropriate boxes. Thus equation (31) tells us that
apart from an arbitrary multiplicative constant, each ¢
must approximate the normalized single-box eigenfunctio-ns

near the corresponding boxes:

Q) ~ (p“/,\/ou—\/p near box A, (32a)
end = - QP = Py /,‘/C'f /G near box B, (32b)-
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But since .q)“ and QB are of order & near their oppdsite
boxes, 1t is clear from these equations that CP mey be ap-

proximaped everywhere by the sum or difference of the

normalized ¢, and @

O Duffasrfe £t Qffcri/p . (320)

Finally the ratio Fa/Ps  of the probability of
finding the particle near box A to that of finding it near
box B may be approximated by means of equations (1l5a), (32a),

and" (32b). We find:

+0 "cO'_’ |
[V Qe [\ @k L\ (33)
Pa \ax Vo Jf\ cn /o] :

6. PROBLEM D, IN WHICH ONE BOX IS SHALLOW

In prbbl'em D, where we suppose that A is small
(box B is shallow) and b is arbitrary , We o_btain ‘an explicit
approximate expression for the eigenvalues by considering the
fact that equation (9A)" defiﬁes E. as a many-valued function
of A . It is clear that for e'ver,;y levél E, of problem
A, there is a branch of this function which approaches E,
as x—; 0. But each of these branches may be expanded in

a series of the form

de W/(d*E
E - E + A Smm— o g— . - a» e
" °"‘\) eh 2 ( A 's‘.fZ.* , (34}

which implies that E-Eg may be determined to any order

of accuracy in A , provided A is sufficiently small, The

range of application of these series will be discussed later
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(see Part IV).

The coefficients of A and A* in the above ex~-
pansion have been determined from equation (9) by partial
differentiatioq (see Appendix B) in order to compare the
direct result of equation (34) with that of perturbation

theory. They are:
e: ({5, = €rar (€™M 2K ivpay (358)

an@
) A"E ) 2-4(“' ‘ )
e I R Ve A PN
e[ @) e - e N 2%)
: : aso
where E., denotes expression (35a), the primes denote dif-

ferentiation with respect to € , and all the functions are

evaluated at €= €, .,



IIT. PERTURBATION THEORY SOLUTION

1l. STANDARD PERTURBATION:THEORY TREATMENT OF PROBLEM D

In solving problem D we shall make use of the re-
sults of the.usual kind of perturbation theory whiéh is found
in most books on quantum meohanicsl.. In order to apply the
standard theory, the perturbation of the Hamiltonian gpefator
must be expressible as a power series in some parameter such
that the perturbation vanishes when the‘parameter-is'zero.

Let '\R(x) and VY, (x) be the potential fgnctionS'

of problems A and B respectively:

. . -V &ov Ixl<s
\J {n) = {
* O Yo \xiza | (36a)
Yo () = A—\Tu(x\ | (36p)
where | | ‘
- v -U Yor |x-a-2b-¢| <C »y
al¥) = { O &ov \n-a-2b-C| >C , (36¢)

lAlthough most texts do not consider the case in which the un-

. perturbed problem has a continuous spectrum, their discus-
sions may easily be generalized with the help of equations
(81) and (82) of Appendix A, to give the results stated in
equations (43)-(45).

Application of the theory to our problem is simplified
by the fact that the bound states are not degenerate, that
all the eigenfunctions considered are real, and that the
perturbation operator is simply proportional to the expan-
sion parameter (see equation (36b)).
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LY

Let W,y > "Hata) » 8nd Wi be the Hamiltonian opera-

tors of problems A, B, and D respectively:

Hos — & :sz v V.o, | (372)
v at
Hos=cam * Va | . (370)
1 L8 .y
H o=- w oxz N, + Vts . (37¢c)
so that clearly _
H = H\ v V, o (38}

In view .of eqﬁations (38) and. (36b) and the fact'
that A is small for problem D, it is clear that we may take
problem A as the unperturbed problem, N. &as the ‘perturbing
~ operator, and A as the _expénsi_on parameter. Accordingly,
We suppose that if box B is sufficiently shallow ( Als suf-.
ficiently small), there is a normalized bound-state eigen-
function cp of problem C corresponding to each normalized

bound-staté eigénfunction

Doz Q. fJa- 78 (39)

of problem A belongihg to the eigenvalue Egn=E, |, such
that @ and the eigenvalue € +to which it ;oelongs are ex-

pressible as power series in A of the form

CP?CPo* AQ v A*Q, v - - - (40}

E=Eo">\E.*>\lEL"‘- . (41)

We find the coefficients of these series from stan-

dard perturbation theory , expressed in terms of "matrix
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elements" of the form

+® a+2btR¢

Vs, ’\ Qy 9, Y, dx 'U\ Qo d= 5 boe 0,0, kol (42)

aslb

Thus, E.

1]

]

| Voo @ (° Voi O +Voi 95
oot | (Ttolaa,

=E_:£L . \ Vok *Va’i Ak 45
~ Eo-€ €,- Eg : "' '
'whefe the summations are over all the bound states of the un-
perturbed problem whose eigenvalues &, differ from €&, .

' The values of €, and €, are calculated in Appen-
dix C. The. calculation of E, is a straightforward integra-
tion. In calculating €, -, the range of integration in N
equation (45) is first extended from -« %0 s+ , and then
contour integration is employed. Investigation of the poles
of the integrand shows that therse are terms from the integral
which exactly cancel_out the térms of the summation, and the
balance of the integral involves only the constants & and

® of the level En . Thus it is shown that the results

of perturbation theory agree exactly with the directly ob-

tained results of equations (35).

2. SPECIAL PERTURBATION THEORY TREATMENT OF PROBLEM C

When the distance 2% between the boxes is in-

finite, N0) reduces to WVa()  for all finite X , and
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problem C reduces to problem A. If, however, we had initial-
ly chosen the origiﬁ of the x coordinate at the centre of
box B, the two-box problem would have reduced to problem B
when b= . Accordinély we assume that as b—® , every
eigenvalue & approaches an eigenvalue E., of problem A or
B. = Further, if E., is a "non-degenerate" single-box level,
say of problem A, we assume that the normalized eigenfunction

@ Dbelonging to & has the form

Qusy e Qu(xy + Yix,®) (46}
where CQ.‘\ is the normalized problem A eigenfunction belonging
to- Bo=x E, , and Vix,b) is a function whose maximum
- numerical value approaches zero as - b—= (i.e., \V ap~-
proaches zero mifoml§ in x .as b—> ). " On the other
hand, if €&, 1is a "degenerate" single-béx level, we assume

that

QUad) = RQalt) + 8@, (x,b) + VOO k) | (47)
where R Q4 +8(Q, is a linear combination of the problem
A and problem B eigenfunctions belonging to €. , and Y ap-
proaches zero uniformly as b —» . -

We may now use perturbation theory to solve problem
C approximately if we assume that for every single-box eigen-
value Eo = €o | (say of problem A), there is an eigenvalue’
€ of problem C which is expressible as a power series in the

parameter €  (defined in equation (20)) of the form

E=tot+t €&, + e*E, ¢+ - - - (48}
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It By is a "nén—degenerate" level we may substi-..
tute equations (46} a.Lnd-(48) i;'lto the Schrédinger equation
for problem C .to obtain:

(Har V)(Qo+ ¥) = (Bor @B M €N Qo) ()

. in which we may regard Ve as a perturbing operator; Y - as
the perturbation of the wavefunétion, and l( €€, v c*E, *.““)
as the perturbation of the energy level. _

| In this i)roblem, however, we cannot employ standard
perturbation theory, for alﬁhough the perturbing operator .
'\In(x,e\ vanishes when the expansion pareameter € = 0 , it
is not expressible as a power series in € . Moreover, the
function Y " need not be exi)ressible as a power series in € .

We need only assume that the function

qj = \\l/é ' (50)
:is bounded as €— O .,

Rewriting the identity (49) with the help of
\;\“ Q(s = E(S CQ(,

)

we find that

(€€ v € B e ==Y Qo+t W) = (Ma-EMW + No( Qe W) |, (51)
Multiplying both sides of this identity by . , integrating
over all x , and dividing by € , we obtain the id-entity -
in ¢ :

‘oo voo
(& v etar =) Qy(auihes € Qu@p)an . (522)
- -

Since ® and VY are of order € (or less) near box B (see

equations (14) and (50)), and E, is independent of € , we



24,

£ind on takling limits as ¢ —Q that the first order correc-

tion €, +vanishes:

B.= O . ’ ~ (52b)

In order to determine E, , we set €£,2=0 in
'equat.ion (52a) and divide again by € . We 'find that as
E——*O,

e“'\ Vo Qp(QtV) —> €, (53)

Now W may be expressed in terms of the unperturbed eigen-
functions in the form (see Appendix A): _
- : o - : _
V= Lavde v l@eeieqanan . oo
Thus we find on substitution of squations (50) and (54) into
equation (53}, that in a notaﬁion similar to that of equation
(42) above: | .
®
€ Ny + € | (4N + 4iVE) dk — €, (55
where a iran_ishing term of the form &~ EOK@'V("‘(‘ Ihas been -
neglected. |
In order to obtain an explicit expression for €.,
we would have to.find explicit e_xpress:i.ons for the Ckﬁ . We
attempt to find the asymptotic values of.the Cyﬁ by substi-
tuting equation (54) into equation (51), setting -€,=0 ,
mulf;iplying by Qﬁ , integrating over all x , dividing by

€ , and using equation (81) of Appendix A. We find then,
that

(Bq-Ex)qE —> Vi *K\%Nilfz QN )X (57)
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Thus the Cxﬁ approach the solutions of a pair of simultaneous
integral equations, which we have been unable to solve ex:abtly.
We may 'che_ck fhe validity of our result by finding
the first two _coefficients of the expansions of the Cs,fz in

powers of A

O s Yo Y AR+ Ngqp e -—- . 5B

. Substituting equations (58) and (36b) into the relationship
(57), and equatipg the first two powers of. A on either

side, we obtain in the notation of equation (42):

Ao —> O, (598)

(Eo-Ex)qfu— €~ -io . | | (59Db)

Equations (36b), (55), (58) and (59) now tell us that to the
second order in A : ' |
W = T (T 2
X7 & - 'V'o V- /e
Er = AVp + N X (Vi0/6) + NV io )Ak,(éo)

° E(\ - Ex
Comparing this result with equations given in Appendix C, we

find our resﬁlt to be in agreement with that of the last
section.

In the special but important case that £, is.a
degenerate single-box level » We are rewarded with greéter
success. Substituting equations (47) and (48) into the

Schr&di_nger equation for problem C, we find:
HIRQa+ B Qo+ W) = (B, + €B, « ~=-)(AQa+B e+ q)).( 61)

Substituting Wa+Ng for W , multiplying by Qs » inte-

grating over all % , dividing by ¢ , and taking limits as
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€ — 0, we obtain:

*

+ &0

\ QAQ&V dx ~ RE, \ (S)ﬁz dx = O (62a)

Similarly, using He.*vn for H ;and multiplying by cpm

we obbtain:
4 ®

e \ Qu@Vydr - BE, \3}:&'

But from equations (14), (15b), (15c) and their analogues for

"

0 (62b)

problem B, we find that

+00 400 ' |

\ Qa @ Na dx = \ Qud Vg dx = + 2843 € /HUVA .(63)
- 00 ~00 .

Accordingly, with equation (15a) and its analogue, the condi-
tion for simultaneous solutions of equations.(62) takes the

form

-(a+V/B)E, | t2ad'Q/KIUNY
=© (62)
t 20x'G/KAUNR, ~ (ca/0)E, ,
which yields two possible solutions for &, :
' £ = & . 2o (32 .
. KU A (1epa) (W) (65)

This reéu}t agrees exactly with equation (26a).

Finally we obtain from equations (62), (63), and

(65), the ratio _
S e |
Y L (e

which agrees with equation (31). It is clear that we could
also derive equation (33) from our perturbation theory re-

sults, using the same arguments as before. "
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PLATE TO ‘ The Eigenvalues of Problem C

os a function of A

e

Single- box levels .
——-—-—- Single-box Eoco,n : N
Double-box Levels
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IV. DISCUSSION

' The directly obtained results for the eigenvalues‘

of the two-box problem are illustrated in Plates III and IV.
| Plate III is a sketeh of the eigenvalues € ‘as-a many-
valued function of A for the case in which problem A has
three levels 'Ea;':. Ea, , and €4, , and box B is.élightly
_narrower than:box A, The horizqntal dashed lines represent
the problem A_eigenvalues, whiie the sloping dashed liﬁes re-
.present the problem B eigenvalues., Similarly the dot-dashed
lines represent the infinities Eewm of ¥, and ¥, . The
heavy lines represent the two-box levels themselves. In
accordance with equation (9}, it is clear that if & is not
infinite ( € is not zero), g is zero if and ohly ir X,
is infinité, and vice versa, Ascofdingly the heavy curves .
must cross the discontinuous curves at the encircled points,
which mark the intersections of the single-box levels with
“the Eioqﬂ , and can cross the discontiﬁuous curves only at
these points.

The approximate results obtained by both direct

and perturbation theory methods for problem C, in which b is
large, are illustrated by the fact that in this case the
heavy curves closely follow the dashed curves. In éccoré

dance with equations (23) and (24), and equations (52b) and



PLATE TW X=e«a as a function of € for the
case in which av/KU =3-5, showing the
approximations to the first order in €
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(55), the heavy curves lie farther (at distances of order € )
from the nearest dashed curves near the points of intersec-
tion of two dashed curves (the points where "degenerate"
single-box levels occur), than at other points (where the
~ distances from the dashed curves are of order €% ),

The approximate results obtained by the two methods
for problem D, in whidh A is'smail, are illustrated by the
behaviour of the fhree curves which.follOW' Eao 5 €ar , and
Baz  Dbefore their first turning points. It is clear that
" when b is large, the curves turn so sharply that the series
(34) and (41) cannot be expected to be valid beyond the first
turning point of each curve, and certainly the approximations
-given by the first two terms of the series will not be valid
beyond these points. Further, since the coefficients of
the series depend upon b , and the curves must pass through
thé encircled points regardless of the value of b , it is
clear that the series can never be valid beyond the first
encircled point of each curve, and that the approximations
to the second order in A can never be trusted beyond the
first turning points. _

Platé Iv shows the behaviour of the levels of a
two-box problem in which both boxes are identical ( A=|. and

(=Q ), as functions of € , and thereby illustrates the
results of equations (26a) and (65). In order to show
numerical results, the dimensionless constant +/a*WU is

given the value 3-S5, and the dimensionless quantity

X = k& = «/Q”V\\E*-V) is used instead of E ,
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The continuous curves represent the exact values

of X ., 1In accordance with equations (4), (9), and (20c¢),

each continuous curve has an equation of the form

\x’--‘/‘1 ~2XYcok 22X \é‘
12.25 '

= &€ (68a)

where

yzoa = 4 1225-%% (68b)
and Y. is the value of ¥y at one of the single-box levels
(where €=0 ),
The dashed curves represent the approximations to
the exact curves in accordance with eduations (26a) and (65),
and the approximation

ol x= KAE. . .
A X oy . (69)

obtained from equation (4a).

The range of applicability of the approximation for
the lower levels is surprisingly large. For the lowest
level, for instance, the approximation is valid from e:=o
t0o €= 0:4 . The value of Y. for this curve is |

33 , and hence we find from equation (20¢), that the
value of b/ for the point of departure is
Sa=-Reme o4 | (70
2Ys )
that is, the approximation is valid for values. of b between

infinity and ov4a !



PLATE ¥ Comparison of the -Square Well Model  and
Mannings Model with the Ammonia Spectrum
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V. APPLICATION OF THE MODEL TO THE
AMMONIA INVERSION SPECTRUM

In order to illustrate.the wvalue of the two-box
prbblem as.a prototype model for a physical system, we shall
use it to calculate some of the constants of the ammonia
molecule, Many authorsl have pointed out that the motion
of ﬁhe NIz molecule which contributes to the inversion spec-
truﬁ is that in which the nitrogen atom moves back and forth
through the triangle formed by the three hydrogen atoms.
There ié an equilibrium position for the nitrogen atom on
either side of the triangle, and a potential barrier with a
maximum in the plane of the triangle which the nitrogen atom
must traverse, |

It has been shown? that.although the molecule ié-
three dimensidnal, the method of normal coordinates mey be
used, and hence the levels of the inversion spectrum cloéely
approximete the levels of a one-dimensional two-minimum pro-
blen, Many authors have used this fact to estimate some
constants of the ammonia molecule. Manning3, for ihstance,

assumed a poﬁential function similar to that shown on the

right-hand side of Plate V, and by assuming a reduced mass

1¢. Herzberg, "Infrared and Raman Spectra", (Van Nostrand),
- pp. 221 to 224, and references given thers.

2N. Rosen and P,M., Morse, Phys.Rev.42, 210, (1932).
>M.F. Manning, Jour.of Chem.Phys. 3, 136, (1935).
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Mi 4.0 x 107 en, énd fitting the lowest three levels of
his niodel to those found from thg ammor_xia spectrum, he deter-
mined the "equilibrium height of the NH3 pyré.mid" l(half the
separation of the minima), the height‘ of the "potential hump™"
between the minima, and the asymptotic value of the potential
function at lar'ge distances from the minima, He then calcu-
iated .some of the higher levels and found' them to be in good
agfeeme'nt ‘with those of ammonia, |

| In our calculations we first assume a two-box poten-
.tial function of the type discussed above, in which both
boxes are identical. Then, ‘by using the same reduced mass
and .making the same fit as Manning, we determine the constants,
.Q , o , andVU , Our numerical method is first to use
g;ra-phical methods to 'determine the values of X = ot and

Y = (s&', for the two lowest levels of the single-box problem
for various values of M=z a*KU . Then, assuming the
approximation (26a) to be valid, we notice that if AE is
the splitting of one of these levels when thé~boxe3'are a

distance 2% apart, then

€ . (BE/2)K*VU (1r (a)

Zdz(.,z _’ (71)
or '
<2KAE (Y)Y
é = 4,)(2.\/1 . (72)

But if Xo and X, are the values of X for the first two

single-box levels, we have

X* -x* = a*W(E, -E.) | (73)
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and hence
€ = L% M1 vy) (74)
E\’Eo 4)(2):2- :
'_'I‘hu.s,. by using the ratios AE/( E.-E.) aé found from the

"lowest two ammonia levels, we calculate € for each level,

and then find the two corresponding values of

b . . A € - (75)
- _2‘;7' . .

By trying different M‘s and inter?olating, we find one for
which the two ratios b/a are equal. Finally, using this
™M and the assumed u , we calculate a, b, anda U .,

| We find that our value for the "equilibrium height
of the NH3 pyramid® ( &+b ] agrees very well with Manning's,
and that our value for the height of the "potential hump"
agrees fdirly Weil; but we find no higher bound-levels.
Therefore we next assume a potential function, as shown on
the left-hand side of Plate V. . After'finding the necessary
" equations for this probleﬁ, and making numerical calculations
similar to thosé of .the last paragraph, we go oﬁ to calculate
higher levels,

The results of our calculations are shown ip the

following table and are illustrated in Plate V.
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(ewz)
Manning Square Well NHz
o+ 0 o o -
o= 0.83 0.83 - 0.66
1+ 935 - 936 932.4
1- 961 961 968.1
2+ 1610 1640 1597.5
2~ 1870 2170 1910
3t 2360 2650 2380
3= 2840 3290 2861
Shapes of Potential Functions
Manning - Square Wells Square Wells
With Infinite
Sides
Widths of | '
Boxes (24) - 0.28 & 0.36 &
Separation
. of Boxes - 0.44 & 0.41 &
12n)
Equilibrium - ; -
Height of 0.37 & 0.36 & 0.38 &
Pyramid - _
Height of -1 1
Potential 2071 em™ ™ 1640 cm” 1650 em~1
Hump
Vi | 45100 em-1 1640 cm-1 o
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APPENDIX A. NORMALIZATION OF THE EIGENFUNCTIOI\TS
OF THE CONTINUUM

It is well known that we may choose normalized pro-
blem A eigenfunctions CQ(, and th (equations (14), (15) and
(17)) such that a large class of functions }u) may' be.ex-

pressed in the form
b = T qgun + | (qiagon+ qgqiondh | (76)
¢ °

where the 9, and cbz are functions of p and 4

given by:

+ 0 . ' )
Yo = \&cx)cpom Ax , (77a)
: ~00
: + 0o
(770)
%« [tmggman . |
_ -
Conversely, if arbitrary functions %(5 and ‘kﬁ are chosen
to define a function *tx) by means of equation (7@), then
equations (77) necessarily hold. Substituting equation (76)

*

into equation (77b), we obtain for arbitrary 9o > Yy o
and %;\ , |
[+ -]

a5 ) 84 32%% 0 (o qe © qp ek Ax )

But s:L_nce Q@Qt ' vanlshes at © Xx:t® , we know from the

orthogonality theorem for eigenfunctions that

lFor exaniple, E.C. Kemble, "Fundamental Prlnciples of

Quantum Mechanics", Ch, VI, where the 1ntegra1;ion is
carried out over & rather than X .
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XQX%Q@A* = 0 , (79)

and hence equation (78) may be written

) « 00 00
t - . .' s \
Wy o \@rernarapand . (80)
-» .
Further, since QQ and Qﬁ are respectively even and odd

functions of x , it follows that for arbitréry CX(H,

00 ® . .
| o \ Qi qK)dkth= O (81)
00 (s .

Therefors, since the Cw are arbitrary functions, equation

(80) implies that

\;‘?;} \ﬁﬁ.c},(k'wh'dx : (k) (82)

which in turn implies that in the symbolism of delta-functions,

[Top 0p v = S8 (@)

Knowing that equation (82) holds for suitably nor-

malized Qf; , Wwe may start with unnormalized functions, say

@ = cosk (x+4*) for Xsa (84)
and derive the normalizing factors as follows: ' '
"Choose a particular k» o , and a nu.mbexl D such
that O<Aa<k . ILet }(1(') be defined by the equations
' 0 Yov \k'-kl >4
bk ’i \ Lee  1M-ki<a (85)
Then, if (}  is the normalizing factor for CQ § » we find

on substituting” Y(&) for 08()4) and Cﬁ({)ﬁ for (_P,} in
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equation (82) and dropping the ¢ signs,

400 i hth .
\ CyQy \ Qe @y dkdw =} (86)
- X-a - i
Thus ‘since oa
T (x;8) = Cy <9u\ Cu Qe A X
k-a - (87)
is an even function of x , equation (86) implies that
2\ I.(L,A’Ax s\ (88)
. o
for all AsQ , and consequently,
= N = |
2L 2l frhst (69)
But we shall show that
L= W/2 (90)
and hence that '
Cy = VAT : (91)

To prove equation (90) we notice that for every

real number & ,

(8
1.‘“' \ T (x,4) Ax = 9] | (92)

ASO °
since 1 approaches zero and the path of integration is of

fihite length. Hence equation (89) implies that

A=0 ‘S
Now we choose in such a way that

Cosk(§e3) = 0, (94a)

sk (R4SY v (94b)
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Subst-ituting equation (84) into equation (86), changing the
variable of integration 'té Y= x-% , and expanding the tri-
gonométric functions with the help of -equaltioﬁs (94), we find

that Ko '

’ax-“'\v\ H amds + k) coakyl ak'd
3 \:o\ -\ as M.\kg\,ms“m q) coakiy] k' dy
(95)
where _
PO = Gy Sk (838) | (96a)
G = C coskil8e8) (96b)

Integrating by parts in equation (95) eand tising the formulae

(]
\o SIMAX 5B X Ax = ‘EM athb ov Q< b<a | (97a)

x v
and - :
\ i X cos\axA‘ - O fox v<ca<hH (970
- e x % }o-r O<b<«a '
we obtain
= T abthea) - S [ahem a2l - qukea) fog 2258 |
' ' (98)

oo ’L’A )‘, A . k\ A 'A
*\c&s\v\k%\ g——M ;}: » DAXY ;&l]‘\h %
o k- ¥ % .
But in accordance with equations (94) and (97), we find that
the first term approaches 1\'(;/2, as O—>0 , and the second
term vanishes since q,(k«8) = and ¢lk-8) mnmust be of
order A . Finally , er find that we may ihterehange the
. a
order of integration in the last term, since S 10%3& Ax
(]

exists, Hence the last term vanishes also, and

A=

\_:Liw« I="TC,\1‘/2— . (99)
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APPENDIX B. DERIVATION OF EQUATIONS (35a) AND (35b)

\'

From equation .('9.), we have
‘ E .22 =2
g = ;L(\ = - %(Xng € )/-:;E-(x“xo:-é ) , (100)

which w1th equations (4), (8), (9), and (20} becomes ,
2 .
g &( F-3% :% )/("'”‘ + X3 % - \d“-as) (101)

and € = Ea y
= (€Y A%a¥a Yas

€€, ’
(c.f. equations (4b) and

.Hence for A:=O
(102)

Setting E<€, and X=Ti(

(4c)) in equation (8b) we obtain
(A¥o)po = AGY/ WU(1-
Hence with equations (20a) and (25a) we obtain equation (35a)

-1)/2\/\(\~(1,a) ‘ (104)

Y (103)

E; = erar (&

To obtain E, we differentiate equation (101)

e 28 L (B8, (2 2E) e 22) (a05)

A A%

For A=O0 we find

(28", - (% 3¥a)/ 232X (106)
(R, = -ex/avey , won

glm
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and )
28 . 2E /AN, - (N )/ A (108

where all the expressions are to be evaluated at €=€a and
A=0 ', Substituting into equation (105) we find with
the help of equation (102) that

(&9,.. . 2¢, s 2€, (2% N/“e

€8, D A
ver2 (/e - %é/fﬁ)-%a"/{ﬁlzm

2, ‘
Finally, we find %%\- from equation (4b) and 3’:‘__;‘.; * from

(109)

"equation (8b), set o' =;<; , and use equations (35a) and (109)
to obtain equation (35b).
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APPENDIX C. CALCUIATION OF THE COEFFICIENTS E, AND
E, BY MEANS OF EQUATIONS (43) AND (45}

We find E, from equations (14), (15), and (42):

a+2bt2(¢
€, = Vep = -[Var/KU (a«r\/(s)lg 20000, (110)

a+2h
On evaluating the integral, we find that equation (110) agrees
exactly with equation (35a).
To find E, , we first use equations (14), (15),

and (42) to calculate the matrix elements
QeAbtC

Vo [Ud“/HU,,/(m\/(s)(a*/(" )]& GO | (1)l

Q+2Y, )

" from which we obtain _
xr ' / 2((+ I) .- . 2
V(:[»l = eed'Ap [e ¢ c-nl/xz(w(s‘) (leQali+(a) (112)

Similarly we use equations (14), (15), (17), and (42) to find

the matrix elements
’ a+2bt2(
\J - (x-a)
N f = [UN/J’[T KU- (a*‘/ﬁﬂ\ 5 ¢ cosk (x+%')dx (113)
av2lh °
Writing the cosine function in exponential form, and using

the equation

Bo-Ex = = (o) (hodp)/K , - 114)

lIn this equation o’ represents the value of &) for
€= E(.'l . ’
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we obtain

Vc,ﬁ/(EP-Ek) = N(T+ T4 s #th"' T:) 1 (115)
where

N €laipU/aT(npa)

. (116)
Ty = 22O [y e,
(117)
Tzud = T\(’k) ,
' (118)
To(k) = (1- é‘*"‘)/(m;@’w-;(»)‘ -
’ (119)
+ A 229 +83) ¢ ae(a
oo = KR B i i), (220)
and | Ts:(m = T:\"‘) . | (121)

From equations (118} and (121}, and the fact that T, is an
even function of /\( , the integral in equation (45) takes the

form

~

T.:: N\(l_’\',-& T3+T:fT;)Jj‘

(122)

We now évaluéte the integral in the last equation
by means of contoup integration. Choosing the contour which
runs along the real axis from -W to +W (where
R >0 ) and then around the semi-circle in the upper half-
plane from +Q to -\WR , we find that the integral '

around the semi-circle approaches zero as R — o , Hence

T = 2TiN (Sum of residues of the inte--
~grand at its poles in the (123)
upper half-plane.) )
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T, and Vi have poles at ,b.=,;(,- only. The :

residuve of AT, . is

e A LR s,
\ 31 e_ . (./ (5 A"“‘f’ (124)
= (2p¢+)e p/,:(s'*

while that of V4 1is
EPYIS1 € TETEOR
= (- Q'A‘.‘“)/;p’

Adding R, and R, and multiplying by 2w.N , we find that

(125)

the contribution of Ty and Ty to T 1is exactly equal to
the first term of equation (35h).
In order to evaluate the residues of Ta . and Ta ,

we find from equations (18) that

ezik(cu.s‘) . (& +a) Q";“i (k-o) . (126}

f(k_o()ezzda (h*‘*) )

and hence that

iklars?) ik(asrs) "
e’ e = =28V /(K ate 2iktcot ama) (127}

= Z/xn(gk)
Equation (127) tells us that Tg +T, has a pole corres-
.ponding to each level E, (i.e., for k=i ) as well as

to B4 | )1.:4(& ). The residue at k:;(s' is-

‘RA(A(J’) ziez.ltk[g ik-())(_rlz/(’“ ‘(,)3(1(-4(5)\‘;(%‘) %-EE* i ) (128)

Evaluating this residue with the help of equations (4) and
'(25a), we find that in accordance with equation (112),

ZTWaN Qatap)- ’—{I;(b’/(efec’) (129)
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Thus every term of equation (45) which arises from a discrete
level Ey 1is cancelled by an equal and opposite term which

arises from the continuum levels.

Finally we evaluate the residue of Ty +T,  at
A = ¢ |
rps {6/
4 0 = 2 Kt ak k=4(s (130)
where ) ' ’ '
b= (kspp oo 20 p[erihepe 2 (as1)
Using the equation _ _ _
a*¥ vy d €y \? ' de
SRR NS ERNE D , . (132)

we obtain with the help of equations (4):

R4(i(§) - €r ( Q_"“P(-|)z i ZKB/(i - 1(:/2. an
vrLiszpee ™/ 001/ /3.0 (wpady |

But on substituting l«:;\(s in equation (133) we find with

{133)

the help of equation (35a) that 2T N'\hu(z) is exactly

the second term in equation (35b).
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