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ABSTRACT

One of the existing methods of calculating the characters ’
of irreducible representations of space groups and double space
groups is described in some detail, and applied to the case of
the non-symmorphic space group Dig (14;/amd) (which is the
space group of crystals of white tin).

A complete list of the characters of irreducible represen-
tations of this space group and the corresponding double group

is given. Some useful relations involving the characters are

also included.
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CHAPTER 1

Introduction

It is a well known fact that representations of space-
groups play an essential part in the theoretical description
of many solid state phenomena. The theof} of lattice vibrations,
and that of electron band structure are probably the two most
important examples of this fact. In the latter case the ex-
istence of the elecfronic spin necessitates dealing with the
representations of double space groups in addition to those of
space groups,

Although the general theory of the irreducible represen-
tations of space groups was given by Seitz (1936) more fhan
twenty years ago, and the characters for the space groups 0&',
Ohg and 0h5 (single, body—centéred and face~centered cubic
lattices) were calculated soon after by Bouckaert, Smoluchowski
and Wigner (1936), there are many non-trivial space groups for
which this has not yet been done.

The work on irreducible representations of double space
groups was started only a few years ago, by Elliott (1954),.

The list of space groups for which the characters of irre-

ducible representations have been calculated and published is

given'in the following table:



Space Group

ol (Pm3m)

0 (Fu3m)

0,7 (Fd3m)

03 (Im3m)

sz (F43m)

Dgh (P63/mme)

DS (P3521)

CGV (C6m0)

Typical Crystal Structure

Simple cubic

FPace-centered cubic -

Diamond

Body-centered cubic

Zincbhlende

Hexagonal close packed

Tellurium

Graphite

Wurzite

Reference

L. Bouckaert,
R. Smoluchowski, and
E. Wigner, Phys. Rev.
50 58 (1936).

* R.J. Elliott,
Phys. Rev. 96, 280

Bouckaert, Smoluchowski
and Wigner, ibid.
(D) Elliott, ibid.

C. Herring, J. Franklin
Inst, 233, 525 (1942).

W. D8ring and V. Zehler,
Ann, Physik 13, 214
(1953).

(D) Elliott, ibid.

Bouckaert, Smoluchowski
and Wigner, ibid.
(D) Elliott, ibid.

R.H. Parmenter, Phys.
Rev. 100, 573 (1955).
G. Dresselhaus Phys.
Rev. 100 580 (1955)
(D) Parmenter, ibid.
(D) Dresselhaus, ibid.

Herring, ibid.
(D) Elliott, ibid.

Yu.A. Firsov, J. Exptl.
Theoret. Phys. (USSR)
32, 1350 (1957).

S Firsov, ibid.

J.L. Carter, Ph.D.
Thesis, Cornell Uni-
versity, February 1953
(unpublished).

(D) J.C. Slonczewski,

- Ph.D. Thesis, Rutgers

University, June 1955
(unpublished).

R.C. Casella, Phys.
Rev. 114, 1514 (1959).
(D) dasella ibid.
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Space Group Typical Crystal Structure Reference

G. Dresselhaus, Phys.
Rev. 105, 135 (1957).
(D) Dresselhaus, ibid.

*
(D) means that the characters of the double space group
are given in the reference in question.

In this thesis we outline a method, first used by Herring
(1942) of calculating the characters of the irreducible re-
presentations of a space group, and apply it to the case of
the space group Dég (in which white tin crystalizes). We also
adapt the method to the case of double space groups, and apply
it to the double space group Dig T.

Ve éhall now turn to a brief summéry éf the contents of
the remaining chapters.

In the first part of Chapter II we introduce the concept
of space group and discuss some properties of space groups.

In the last part we discuss the space group D;i.

In the first part of Chapter IIl1, after having introduced
the irreducible representations of a lattice, we define the
concept of the Brillouin zone (B-Z). We then give the defi-
nition of the group Gk of a vector k and outline the method of
finding its irreducible representations when k ends inside or
on the surface of the B-Z., The concepts of the kernel TE of a
representation and factor group GE/TE are introduced. Finally

we outline the method to comstruct an irreducible represen-

tation of a space group G from a given irreducible represen-~
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tation of a group Gk. In the remaining part of the chapter
we abply the theory previously described to the case of Dig.
We examine the groups Gk of vectors k inside and on. the
surface of the B;Z of Dig and we give their tables of charac~
ters. We also consider points on lines of symmetry in order
to give the so called '"compatibility relations" for the group
in question. |

In Chapter IV we introduce the concept of double space
group and discuss its properties, and we construct the tables”.
of characters of the double space group Dii +L . _ j?”l

Some compatibility tables are included.



CHAPTER 11

Space Groups and Their Properties

-Discussion of a Special Case (Space Group Di%, White Tin)

I1.1 Let us consider the linear inhomogeneous trans-

formations of the form:

"

R=R<+E - . IL1.1
where 7 and T are position vectors of a point, R is abreal
orthogonal three-dimensional matrix and t is a real three-
"dimensional vector. The real orthogonal matrix R can be 1nte¥-
preted as either a proper or improper rotation according as
det(R) is +1 or -1 reépectively. Improper rotations are the
inversion and operations representing a rotation followed b&

an inversion. The vector t can be interprefed as a trans-
lation, so that the transformation II.1l.1 can be looked upon

as a proper or improper rotation R followed by a translation ?.
Using Seitz' symbolism we will denote the transformation I1.1.1
'by (Rit).

The product of two inhomogeneous transformations is given

by:

(R[E)(s]t)=(Rs|R E' E] 11.1.2
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The inverse of a transformation (R |t) is:
(RIE) = (R]-RE) 11.1.3
and the conjugate of (R|t) is:
(s|t )y (RIE)(s|t) = (S'RS|s"RE 48 L -6 E) I1.1.4

From the definition of the multiplication II1.1.2, of the in-~
verse of an element 1I.1.3 and from the existence of the
identity (E | 0) it follows that the set ® of all real non-
singular inhomogeneous transformations (R [ t) is a group.

A subgroup Rgq of ® is the set of all "pure" rotations
(R | 0). Such subgroup is the group R; of all the three-
dimensional orthogonal matrices. Another subgroup of ® is
the set of all "pure" translations (E |t) in the group. Such
subgroup is an invariant subgroup of & . A crystallographic
space group G is a special kind of subgroup of ® . A crystal-
lographic space group G is in fact a discrete subgroup of (28
such that its pure translations are primitive and constitute
an invariant subgroup of G; the primitive translations are

pure translations of the form:

kE\\?M):(E\MJ.}‘M,t,+m3t',) - 1I.1.5

Here nj, ngp and ng are integers and t;, tg and tjz are three

linearly independent translations, called basic primitive



translations.

From the fact that the primitive translations of a space
group G from an invariant subgroup of G, it follows that if
(R|t) is an element of G then; whenever (E |t,) is a primitive
translation, (E | Rt,) is also a primitive translation of G. 1In

fact:
EIRE)=(RIE)(ER R E)T I1.1.6

Equation II.1.6 imposes some restrictions on both rotations
and translations of a space group.: The rotational parts R of
the elements (R | t) of a space group can only be proper ro-
tationé through integral multiples of 60° and 90° and improper
rotations which are products of the mentioned rotations with
the inversion. There are only 32 groups of rotations satis-

fying these conditions, they are called point groups. The

periodic structure generated by the primitive translations in

a space group is called Bravais lattice. Eq. 1I1.1.6 means

that the lattice in a Sspace group must be invariant under the
operations of the associd£ed point group. . The consequence is
that only 14 lattices can exist, (see Koster, 1957).

| A lattiée and a point group do not specify completely a
- space group. In fact a non-primitive translation 7 may appear
in a space group but only in combination with a rotation other
than the identity. We can therefore say that the most general

element in a space group has the form:
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(R T (R)+t) I1.1.7

where ?(R) is either zero or a non-primitive translation and

t is a primitive translation. Since only primitive trans-

lations are associated with the identity rotation, T(E) = 0.
Depending on whether the vector 7t (R) is.zero for every R,

or is not zero for some R a space group is called symmorphic

or non-symmorphic. A symmorphic space group contains the

entire point group as a subgroup. A non-symmorphic space group
does not contain the entire point group as a subgroup. How~-
ever, for any space group G the factor group G/T is isomorphic
to the point group P of all the‘rotational parts of the

operators of G.

II.1.8

—Ho
~

Such point group P is said to belong to G. Examples of sym-
morphic space groups are 0& (simple cubic), 03 (body-~centered
cubic), Téa (zincblende structure). Examples of non-symmorphic
space groups are Og'(diamond structure), Dé% (hexagonal close-
packed).

From the definition of space group of a crystal as a
group of transformations under which the crystal is invariant
and whose pure translations form an invariant subgroup it

follows that one can define a smallest volume, called unit cell,

from which the entire crystal can be reproduced by translation



through the primitive translations. A unit cell can be defined
in several ways. The simplest way is to take as a unit cell
the parallelopiped with edges tl, ty and t;. But such a unit
cell haé the disadvantage that it does not necess#rily go into
itself under the operétions of the point group which leaves the
lattice invariant. A uﬁit celi which has the symmetry of the

point group P is called symmetricéunit cell and can be defined

in the following way: it is the volume enclosed and bounded
by the planes which form the.perpendicular bisectors of all
lines that extend from a given lattice point to all the re-
maining lattiée points in the crystal.

| A concept which plays an importantvrole in the theory of
1rredﬁcib1e representétions of a épace group is that of re-
éiprocal lattice. |

If t;, t, and t,; are the three basic'primitiye.trans-

lations of a lattice T, then the basic primitive trénslations
bl’ b, and b3 of its reciprocal lattice are defined by the |

relations:
Y - , - -
{bj=2w55$ (b5=1,23) I1.1.9

An important property of the reciprocal lattice corre-
sponding to a given direct lattice is that it is invariant
under the same point group operations under which the direct
lattice is invariant. This means that if tj and kj are
primitive translations in the direct and reciprocal lattice

respectively, and R is a rotation belonging to the point group



which leaves the direct lattice invariant, Rt; and RkJ are
again primitive translations of the direct and reciprocal

lattice respectively. It follows:

RE ‘I-, 220 x (Lv\teger')

I1.1.10

EL'RIj =1 x({,ml‘cgu‘] |

11.2 As we said in the introduction, we intend to study
the 1rreducib1é representations ofrthe space group Dii (white
tin), therefore we will devote the rest of this chépter to an
analysis of its structure.

The space lattice of white tin (Fig. I) is body-centered

t t
(— S

oz

associated'with each lattice point, as shown in Fig. II.

tetragonal with a basis of two atoms at (0,0,0),

$2

O—

Fig. I Crystal Structure of White Tin
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Fig. II Atomic positions in the unit cell of the whitel
tin structure projected on the plane z=0 through the atom in
the center of the cell. The symbols in parentheses denote
the height of the atoms with respect to the plane z=0. For
example, (-s,s) at the upper left corner indicates that
along the edge of the cell perpendicular to the ‘plane z=0,

there is an atom at z=s and another at z=-s8.

Each atom has four nearest neighbours and twelve next

nearest‘neighbours. The lattice constants are:
] [+
2s = 3.17 A 2t = 5.82 A .

19
The white tin space group is D4h . Its point group is

Di‘. Dii is not a symmorphic space group. In fact it con-

tains non-primitive translations in association with some of

the elements of DJ’. All elements of Di’ which are also

elements of the subgroup Dyy have no non-primitive trans-
lations associated with them. However, the remaining elements

of the point gréup DJ’ occur in combination with a non-primitive



-]2-

translation.

The following operations belong to Dg,:

E identity

S4ps S;; rotation through + 7/2 about the z-axis

followed by a reflection through the

plane z=0.
Co, rotation through 7 about the z-axis
CZx’ Czy rotations through 7 about the xand y-axis

Gaxy’<5d§y reflections through the planes x=y and x=-y.

The above operations appear in the space group in the form
(R |t,;) where R is a rotation belonging to Dyq and t, is a
primitive translation of the body-centered tetraéonal lattice.

The remaining operations of D;‘are:

I inversion
Cyz>s C;é rotation through * #/2 about the z-axis
Coxys Cozy rotations through 7 about the two lines

x=y 2=0 , x==-y 2z=0

On reflection through the plane z=0
Onrxz 2 obyz reflections through the vertical planes

y=0, x=0 .

These operations appear in the space group with the non-primi-

tive translation T

| %’:%(Eﬁ),s%-l’ 11.2.1



We have said that white tin has a body-centered - .
tetragonal lattice. This type of Bravais lattice can be
regarded as generated by three of the eight vectors ex-
tending from the center to the corners of a rectangular solid
‘with a square basis.

Using the coordinate system indicated in Figs. I and I1I,

the three basic primitive tramslations can be taken to be:

‘('T'
(¥}
:j
-
o §
+
[7a3

=i

Kyt
[ ¥}
:§
—
o
!
wn
rX

11.2.2

E:ﬁt?-Sk

Since s < {2 t, the symmetrical unit cell of white tin

is as shown in Fig. III.

Fig. II1I Symmetriéhl Unit Cell for White Tin

To find the reciprocal lattice of the b-c tetragonal

lattice we use the relationship II.1.9 where fi, ?é and ?5
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are given by 1I1.2.2 and by, by and bz are the unknowns. Solv- A

ing these three systems of equations one finds:

b (i)
E:%(t&)-ﬂg; 11.2.3
b T T

ot

These are the primitive translations in a b-c tetragonal
lattice with lattice constants Y2r/t, 2w/t and 2r/s. Since
t>s, then {Zr/s > {2r/t. From this last relationship it
follows that the symmetrical unit cell in the reciprocal
lattice has a diffeﬁgnt shape from that in the direct lattice.

Fig, IV (see Kostef}1957)Hrz

<

Fig. IV Symmetrical Unit Cell for the Reciprocal Lattice
of White Tin
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CHAPTER I1I1I

Irreducible Representations of Space Groups

Irreducible Representations of the Space Group Diﬁ

I1I.1 It is well known (see, for example, Lomont, 1959)
that there exists a systematic procedure for finding all the
irreducible representations of a group G if all the irreducible
representations of an invariant subgroup H of G are given.

This procedure was specialized to the case of space groups
by Seitz (1936). However, he reétricted himself to general
considerations. Bouckaert, Smoluchowski and Wigner (1936) were
the first to apply the general theory to specific space groups.

The role of the invariant subgroup H of G when Giis a |
space group, is played by the subgroup of primitive trans-:.
lations T. Therefore in order to apply the general procedure
mentioned above, we have first to discuss the irreducible
representations of T.

The lattice T is an abelian group, therefore all its
irreducible representations are one~-dimensional. Iys represen-
tations (see Lomont) are of the form

i k-F '
r3 II1.1.1

—

where k is a real vector and t is a translation of T.
From the definition of reciprocal lattice we know that if

Kq is a vector of the reciprocal lattice, then E’t = integer{i@“

1
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To obtain one—to-one'correspondence between the k-vectors
and the irreducible representations of T, one introduces the
concept of the Brillouih zone (B-Z). The B-Z is the symmetri-
cal unit cell in the reciprocal lattice and it has the
following properties.

To each point inside the B-Z corresponds a different
irreducible representation of the group of pure translations.
In fact,two points in the interior of the B-Z cannot differ by
a primitive translation of the reciprocal lattice. Not to
every point on the surface of the B-Z corresponds a different
irreducible representation of the group of pure translations.
In fact, every point on the surface is equivalent to at least
one other point on the surface. To each point K =k + E; .
outside the B-2 corfesponds the same representation of the
group of pure translations which corresponds to the point §
inside the B-Z or on its surface.

After having found in this way all the irreducible re-
presentafions of: the group of pure translations, we can now
proceed to applying the systematic procedure for finding the
irreducible representations of the space group.

The first step in this procedure is to define for each
irreducible representation of the group of pure translations
(which means for each k in the B-Z) a group G¥ called the

"group of the wave vector k". This group GK is defined as



—

the set of all . .. elements (R|{t) of G such that RE==k+—E§

—>

where Kq is a reciprocal lattice vector. This subgroup of G
is itself a space group and of course contains T. Hence, T is
also an invariant subgroup of . GK,

The second step consists in finding all the irreducible
representationsvof Gk which have the property that the matrices
representing pure translations are unit matrices multiplied by
a factor of the form eiE'Ei Here t is any translation in T.
Such representations are called "small" or '"allowable" re-
presentations of Gk.

For points inside the B-Z the only value of Kq for which
RE.= §'+-Ea is ﬁ; = 0. If PX is the point group belonging fo
G¥ and [ (R) is an irreducible representation of Pk, then an

allowable representation of Gk_is given (see Koster, 1957) by:

r(Rit)z e TQR) I11.1.2
where (RIt) belongs to Gk.
For points on the surface of the B~Z one must distinguish
between symmorphic and non-symmorphic space groups.
For a k-vector on the surface of the B-Z of a symmorphic
space group Eiq> II1.1.2 is still valid. But it is not valid
for a non-symmorphic space group. In fact, let us consider

/

two elements (RJI ' + t') and (Ril T + t") of a group Gk

when G is a non-symmorphic space gfoup. Here 7' and T are

non-primitive translations and t' and t" are elements of T.
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Their product is (RjRile T RyET 4 o t').
Multiplying the matrices representing the two elements

and using 111.1.2 we . obtain:

| | | | | ck.(vek
PR IT ) (R T b)ee”

I11.1.3

The matrix representing the product is:

y v LR RERRE) LK (TE :
PR R R w"+ R ETensb)s e TF TH e )F’(R}-R;)

1™ = = P -
LR k-(t"" blf-t"’t" )

e ! Ry R;)

it

111.1.4

u
© «
x|
+
N
B
45
[ o
\il
o -
x}
—
o~
-
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Because for a non-symmorphic space group eiE3'€L is not, in
general, equal to unity, it follows that when a vector k is : -
on the surface of the B-Z, €iq: III.1.2 doeé not give the
allowable representations of Gk. Therefore a special procedure
must be used.. .But before we go into details about this special
procedure, we describe the final step for finding the irre-
ducible representations of the space group G from the allow=-
able representations of GK,

There ‘is a well known theorem according to which it is
possible to construct a representation of a group G from a
given representation of the subgroup H of G.

The way of constructing a representation of G from a
given representation of H is as follows. -

Let g and h be the order of G and H-'respectively. And

let us consider the left cosets of H. If A;, Ag ... A, and

g
By, By ... By are the elements of G and H respectively, such

il

cosets will be: A;H, A,H, ... ApH with n = g/h. The product
of these n cosets with an arbitrary but fixed element A of G
will be again a set of n cosets which is a permutation of

the original set. 1If then one associates with each element

A of G the corresponding permutation matrix, one obtains a
representation of the group G by permutation matrices. Such
matrices have the property that in each row and each column
there is only one element different from zefo and this element
- is equal to unity.

Now, let us consider an arbitrary but fixed element A
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of G and an element A; of G which characterizes a coset of H.
Their product.will be an element of G belonging to a coset,
say the 1-th coset of H:AA; = A3Bgx. Here By is a fixed
element of H once A, Aj and A; have been fixed. Then we
associate with the element A a matrix whose i-~-th, 1l-th element
is the element By of the subgroup H. From what we said pre-~
viously it follows that in each row and each column of the
matrix representing the element A there is only one element
different from zero. Finally we replace in the matrix so ob=
tained the elements By of H by the matrices corresponding to
these elements in the given representation of H. 1In this way
one gets a representation of G from a given representation of H.

If G is a space group and H is one of its subgroups Gk,
one obtains by this method from a given allowable represen-
tation of a subgroup Gk a representation of G. Such represen-
- tation of G can be proved to be irreducible. Moreover, all
the irreducible representations of G will be obtained in this
way (for details, see Lomont).

A method for finding the allowable representations of a
group Gk of a non-gsymmorphic space group when the vector k is
on the surface of the B-Z has been given by Herringsu)fThe
same method is applicable to vectors k ending inside the B-Z,)
He studied the non-symmorphic space groups: the space group OZ
(diamond structure) and the space group Deﬁ (close-packed
hexagonal). We will first explain his method and then we will

apply it to the space group Diﬁ .
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I1If (E|t) is an element of ¥ such that k- T = 2rx (integer),
‘then any element (RjIt;)(E 1 t) of G* will be represented, in an
allowable representation, by the same matrix as the element
(R;lty). The set of primitive translations which satisfy the
condition Eﬁ€’= 2rx (integer) constitutes a subgroup of T. This
subgroup is called the kernel of the representation of-Gk and
will be denoted by Tk. Instead of considering the group Gk,
Herring considered the factor group Gk/TE, Since we are looking
for those represéntations of G¥ which have the property of being
allowable, the elements of Gk/Tk which correspond to the cosets

of Gk consisting of only primitive translations must also be

represented by unit matrices multiplied by el t

We now proceed to describing a method of finding the
tables of characters of irreducible representations of the
various groups Gk/Tk according as the vector k ends in a "point

. of symmetry", on a "line of symmetry" or in a general point of
the boundary of the B-Z. But first of all let us give some
definitions. .

We will say that a point on the boundary of the B-Z is a

"point of symmetry" if the group G¥ of the vector k ending in

it contains more elements than the group Gk',of any neighbour-

ing vector k'.

A "line of symmetry" is a line such that all the vectors k'
terminating on it have the same group Gk' which contains more

elements than the Gk" of any k" near the line but not on it.

Points on the surface of the B-Z which are not points of




symmetry and which do not belong to a line of symmetry have
a group Gk containing a reflection or a glide reflection in
addition to the translation group. '

Let us now find the tables of characters for the group Gk/rk
of a point of symmetry.

The eiements of the factor group are cosets of the form
(R | t)TX where T can be 0 (a non~primitive translation T ) or
a primitive translation not belonging to the kermel ( T plus
a primitive translation not belonging to Tk). From now on we
will indicate a coset (R | t)TK simply by (R] t). These cosets
(being elements of Gk/Tk) are divided into classes. As usual,
we will say that two cosets (Rlvt) and (S | t') belong to the
same class if there exists another coset (U | t") of GE/TE such

that:

Ut (RIE) (U]E") = (s 1] IIL.1.5

To find the characters of the various classes we will

use Burnside's theorem (qu. I1I1.1.10 below) and the condition

S hilX| g 111.1.6

where h, is the number of elements in the i-th class, . is

its character and g is the order of the group GX/TE, But let

us first derive Burnside's equations which give the characters
of the various classes C; in a group G of elements Ajf'”ﬁéf a

class Cy have hy elements: Cy = (A{D,Aéiﬁ... Agj). It is

known (see Lomont 1959) that every product C;Cy of two classes



of a group G can be decomposed into a sum of classes, i.e.,
C. C“ :i a'l:kb CL 11101.7

Since the matrix representing the class C; commutes with all
the matrices representing the elements A of G, it follows

from Schur's lemma that M(C4) = %;I, where 74 is a propogtionr
ality factor and I, is the unit matrix of dimension n. There-

fore from 111.1.7 we obtaih:

("h s (”hl ) Ykt "k ~)

or

1

On the other hand in a representation of dimension n, the
character of M(C;) is #;n and since the character of M(C,)

must also be equal to the sum of the characters of the

i
matrices of the elements Aii) Aéi),... Ag' it follows:
Wa”bzkixi
or
&C%u.
,/rh =T II;[.]..Q

Combining YII1.,1.8 and 111.1.9 we obtain:
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L;X; ) &k%n - i e _l‘;_‘.xi. 111.1.,10
v v Lz ~

where n is the character of the identity element. Eqs. I11I1.1.10
are Burnside's equations.

It is not always necessary to consider and solve the
complete set of equations I1I1X1.1.6 and I11.1.10 to find the
table of characters of a group ck/TE, 1In fact, let (E ltl) be
a primitive translation not belonging to Tk; if it happens

that for two cosets A' and A" belonging to the same class Cj
(Elt)A = A" I11.1,11

then the character of the class Cj is zero.
The proof of this statement is as follows. From III.1l.11

one gets:

XETE )% = X5 171.1.12

We are looking for those representations of Gk fof which the
natrices correéponding to pure translations (E | t) are of the
form eiﬁ‘g}n. In other words X% (E |ty) # O, therefore III.1,12
gives xj = 0,

When such cases occur, the number of equations to be

solved is evidently reduced.



From the way the tables of characters are constructed
one can conclude that all the irreducible representations
found are allowable irreducible representations of Gk/Tk.

Now, let us consider a vector k' ending on a symmetry
line of the surface of the B-Z. A symmetry line goeé always
through a point of symmetry. We define the kernel Tk'}of

the group Gk as Eﬁ approaches the point of symmetry E: Tk'is
the set of all primitive translatijons t' such that eiﬁw'iﬁ
as k'- K. Again one can construct the classes of o' /1%’ ag
k'—K and find their characters by means of 11¥.1.6, III.1.10
and III.1,12, Thé tables so obtained are the limits of the
characters of Gk'/Tk' as k'— K.

Finally, for a general point on the surface of the B-Z
there can be at most two irreducible representations of a

group Gk. These are one-dimensional representations and can

be constructed by inspection, (Herring 1942).

As We said previously, from the allowable representations
of the various groups Gk one can construct all the irreducible
representations of the space group G. If q is the dimension
of an allowable representation of Gk, g is the order of the
point group P belonging to G and r is the order of the point
group Pk belonging to Gk, then the dimension of the correspond-
ing representation of G 1s(g/r)q. .

Of course it is desirable to have a criterion to check

whether all the allowable representations of a group Gk and

&



26—

hencé all the irreducible representations of the space group G
.'cqrresponding to the vectof k have been found. D8ring and Zehler
(1953) stated that.the following condition must be satisfied:

- For each group Gk the sum of the squares of the dimensions
~offits allowable representations'must be equal to the order of

'° the point_group_Pk.

I11.2 ©- Aslhaé_ﬁéen said, thé Briliouin zone of a
lattice is the sjmmetrical unit cell of‘its~reciproca1 lattice.
The B-Z of the bédy—cehteréd tetragonal lattice, which is the
4h , has beén given in Fig. IV,
There, points and lines of symmetry have been indicated.

. lattice of the spdcé group D19
As we said previously, the representations of a group Gk
with k inside the B~Z are given by II1.1.2. But if one wants
to write the tables of characters for points inside the B-Z,
one can also consider for each vector k the factor group Gk/Tk
and, applying the same rules as for points on the surface of
thé B-Z, find all its allowable representations.

We will give tables of characters for representations of
the various groups Gk with the end point of the vector k
wandering inside and on the surface of the B-Z,.

We will start considering the groups of vectors k with
the end point inside the B-Z,.

For a "general" vector k inside the B—Z, the group Gk
contains only primitive translations and ™ consists of Jjust

one element ;’=-0. The representation of Gk is a one by one

representation. The irreducible representation of Dii
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corresponding to K is 16 by 16 because the order of the point
group Délbelonging to Dig is 16.

[(0,0,0). When k = 0, G is the entire space group G
and the kernel is the entire group of translations. Therefore
Gr/Tr = G/T. We knowlthat for'any space group G the factor
group G/T is isomorphic to the point group P belonging to G.
In case of the space group Dii , G/T is isomorphic to the point
group Di’. Since all irreducible representations of Di’are
known, all irreducible representations of G/T are also known
and they are allowable representations. See Table I.

A(O,kX,O). This is a general poinf on the y-axis which
is a line of symmetry for the B-Z. The point group P2 is sz.
We will give the limit characters as A-[" and as A — X .

As A(O,ky,o)—oIT(0,0,0) the kernel T® 1is the group of
all translations and G¥/T is isomorphic to the group Co.

As A — X(0,7/VZt,0) the kernel T® contains all the
primitive translations n151+n255+n3¥3 with ny+ny=even. The
limiting character of an operation (R | t) will simply be the
character of the same operationin in an irreducible represen-
tation of the point group C, times the limit of eiK'? as
A -+ X. See Table II.

Z(kx,ky,O). This is the general point along the line of

symmetry kx=ky, k,=0. The point group r% is Coy-

For £ - [" and Z —» M(r/{2t,r/{2t,0) the remarks made
for A—T and A — X are also valid here. See Table III.

A(Ozogkz). This is a general point of the line of
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symmetry x=y=0., The point group P " is Cyy: As A-T,
the kernel T'\ is the whole group of translations and thg
factor group G"/T is isomorphic to C,, . See Table IV.

Let us consider now the points on the boundary of the B-Z.

X(0,7/V2t,0). This is the intersection of the y-axis with

the face y=r/V2t of the B-Z. The group X is D The kernel TX

2hn’
contains all the primitive translations n1€1+n2€§+n3€§ with
ny+ng=even and ng=any integer. i

Since X is one of the most interesting points on the
surface of the B-Z, we will explain in detail the process of
finding the irreducible representations of the factor group
cX /X,

The elements of Gx/Tx are:

(E10), (E1ty), (Coyl 0), (Coyl ty), (Caxl 0), (Cox! t1),
(Cayl 0), (Cayl ty), (I 1T), (L1T+ty), (O 1T), (o} | T +ty),

(xz1T), (quzrt+t1)’ (G}yz'r): (Svyzlv-+tl), where the

rotational parts are elements of D,,, T is given by 11.2.1,
?1 is given by 1I.2.2 and representé all primitive trans-
lations not belonging to X,

To find the classes of GX/Tx one uses Eq. III.1.5. Only
elements with the same rotational part can belong to the same
class. 1In fact, let (S| tg) and (R | tg) be two different

" elements of GX/TX, then using Eq. III.1.5 it follows:
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(ﬂtsy1(R]tluslh):(yirsdtd(ns\gts§tk)
111.2.1
A(sRs|sR 457 -5 ES)

But in GX/TX all the rotational parts of the elements commute,

therefore:
(L)' (R ]t ) (s |bs) = (R RS+ 5 b7 ). I11.2.2

The classes of GX/TX are found to be:

16
Cy 1 (E | 0)
Cy 1 (E | ty)
Cq 2 (Cy,1 O,t3)
Cy 2 (Cox | 0,¢t4)
C; 1 (Czyl 0)
Ce 1 (Cayl ty)
Cq 2 (X |v, 7 +ty)
Cg 2 (O, T 5 T +tg)
o 2 (Comz! T ,t’+t1)
C10 2 (Gbyzl’v yT +t)
From IIX1.1.12 it follows that the characters of 03, 04,
07, 08, Cg, C10 are zero. Using I1I.1,6, III.1.7, and

111.1.10 we can find.'Xl, Xz, X5 X6’
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[%e ]+ 1%+ ] %]+ %l = 16 I11.2.3

If n i8 the dimension of an allowable irreducible represen-
tation of GX/TX, the character ¥, of (E |0) is: X, = n, and

i—X.':Eol = wp
14

the character of (E | ty) is ne i.e., X9 = =n,

From 0205 = 06 it follows:

L——-M)—}—f:% or "Xs—i')(.‘

m
On the other hand: CiCs; = C, , therefore:

X X o ) or e L X

3R

So. we have:
X1:/V\— ) Xz:-’w ) X‘_:i’/\’\-’ ] XG':"_".M/

From Eq. 1I11.2.3 it follows:

%2+(-%)2+ (tm)z+(;4~)z=l€ Le, m=2

So we have the two solutions: x1=x5=~x2=-x6=2 and -
X1=X6=—xz=-x5=2 . For all the characters of GX/Tx see
Table V.

M(r/VZt,m/VZt,0). This is the intersection of the '

line ky=k,, kz=0 with the line kx=kyww/{§%. The group PH

y’



is Dz . The kernel TV contains all the primitive trans-

lations ni¥i+n2€é+nszé with n;+ng+ng=even. The rotational
parts of the elements in . G¥/™ do not commute, therefore it
is possible that cosets with different rotational parts belong

to the same class., For example, the presence of C,,, CZ; ’

-1
8440 Sgz in D' makes (Cgyl 0), (Cgyl 0), (Cayl tp), (Cayl t3)
belong to the same class., For the table of characters
of ¢¥/T™ gee Table VI.

| N(r/212%t,7/2V2%t,v/28). The coordinates of this point

are given by the solution of the following system of equations:

1
W o Tt T
A R T

1

-~

3

v
L

S
=27
AR

The group PN is Czh. The kernel TN contains all the primitive
translations n1€i+nzgé+n3€é where n; is Even, and ng and ng
can be any integer. See Table VII.

W(0,r/V2t,k;). This is a general point on the line k, =0,

ky@n/fﬁi, which is a symmetry line on the boundary of the B-Z.
The group P' is C, . As W — X(0,7/(Zt,0) the kernel contains
all primitive translations n1€i+né¥é+n3?é with n,+ng=even,
See Table VIII,

V(r/{2t,r/V2t,k,). This is a general point on the




line kxwky=w/f2%, which is a line of symmetry of the B-Z.
The point group Pv is c4v. As V — M(r/(Zt,r//2t,0) the
kxernel TV contains all the primitive translations
n1;i+néfé+néfé vith ny+ny+ng=even. See Table IX.
Y(ky,7w/V2t,0). This is a general point on the ( .. .-

1ine ky=r/{2t, k;=0, which is a symmetry line on the boundary
of the B-Z. The group PY is C,,.
. AS Y — X(0,w/VZt,0) the kernel contains all the primitive :
) frahslations n1t1+p2t2+n3t3 with n1+n2=evgp and ng any integer.
As Y —~ M(w/fﬁt 7/V2%t,0) the kernel contains all the
primitive translations n1t1+n2t2+n3t3 with n1+n2+n3=even.
vSee Table X. |
| The reason why'we have consideredilimit representations
of groups GX of vectors k with their end—poiﬂt on a symmetry
line, (as for examplé the representatibns‘of G2 as A > 7
';aﬁa A - X), is that they are necessary for constructing
qtﬁe so-called compatibility relations, which are of importahce 
in physical applications. What the term "compatibility" means,
is explained beleow.
First we give ﬁithout proof some statements on continuity
propertiésiof representations, {usg#: nﬁ*ﬁum4mM§h,§°‘*“
"On a line of Symmetry the representation rk or 6¥ is a
.cohtinuous function of k. |
If a line of symmetry terminates in a point k of higher

k

' syﬁmetry, the group G~ is a subgroup of Gka.

1f, among the natrices of a representation ko of Gk°,
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one considers only the.matrices of those elements of Gk°

which occur also in G, we get a representation rksiﬂ’of Gk
which is‘called by Lomont a ''subduced" representation of GK.
And, of course, as k ko the representation rko subduces

a limit representation Fk'°k° of Gk. This subduced

linit representation of Gk is in general decomposable into

a direct sum of allowable irreducible limit representations
k.

o

of G

Lot I11.2.4

nege
[4

"ko is

1f c£k° is different from zero the representationl',‘_k
said to be "compatible" with the representation r‘ko.
Compatibility tables follow the tables of characters.
Since each compatibility table refers to a fixed point of
symmetry ko, no special symbols for limit representations

are necessary (that is, we would write Fk instead off“k"ko).
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TABLE ‘' 1 Characters of allowable representations -

of the group of r.

(El0) | ! | I T
(Coe €0 | 7) I T R S B
(WY R
(€ .Cy 10) I T T T
(CaxysCazylT) Y T A R
(1) R T T T TR S
(Sua- Sz lo) R R T ) BN B
(o | T T T B B
(Cowe »Ouyal®) 1 -1 1 40 -1
(owy sSuz,0) 1 -1 b0 -l

TABLE 1I Characters of allowable representations

of the group of A.

AP) AL AR AC) | AN AK

(e10) | 1 | x ! |

(€,,10] | - | : l -

(celz) l L . .

(Cuyal®) 1 A | A
(R1t)<(elt, (Rl



TABLE 111

Characters of allowable representations

of the group of I,

z,(r)

(efo) . 1
(Coyl®) 1
(oul®)
(G ld 1
(R{Eelt)

TABLE 1V

£,(r)

Z,r)

AL T A CVRE 1V B AT

Characters of allowable representations

of the group of A.

(€l o]

(CQZICJLIT)
(Cal 0}
%oz 1 Soyz

7)
0)

( dxy' M;y

Alr)

!

AT

AY ALY A7)



TABLE V

=36=

-

Characters of allowable representations -

of . the group of X .
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TABLE VI Characters of allowable representations

of the group.of M .

; 4
(elo) 1 1 2 2
(E1t) -2 -2 -2 -
(C“ ir T+t ) 0 0 0 0
(C._,[o) 2 1 -2 -1
( 12|t) -1 1.1 2
(Cox 0 0 0 0
( wlt wlmt) 0 0 2 -2
(Canyl¥). (Cony| T #ts) 0 0 2 2
( T Hl:) 0 0 0 0
(S4a.$ ulo ) 0 0 0 0
(o [, T+ 0 0 0 0
(Oonz ) Opy | 7% ) 0 0 0 0
(Sduy ' Cazy| ©) 2 -1 0 0
(o leys Sazy ]t -1 1 0 0



TABLE VII

TABLE VIII

(€lo]
(Elt,

e p—

vy 2

Ca|0 )
'OQ,EIT't*h)

G, l't,'c+t1)

-38-

Characters of allowable representations

of the group of N .

Characters of allowable representations

of the group of W .

W, (%)

O O O NP
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TABLE IX Characters of allowable representations

of the group of V .

( 2
(elt,) -l - -] | 2
CuzsCialT) L - L : 0
(CuzsCoalT+ty) 4 L L L 0
(C.el0) | | ! T
(Caa[1,) . | | L
(% xa Oy | T) L L - L 0
(Svazs TuyeTeti] -L -l b L 0
(Cuxy +Calzy|0) T | | 0
Oy + T2 1) | I -| 0

TABLE X Characters of allowable representations

of the group of Y .

(£10) ?
(Elt,) ©2
(C.a]ort,) 0
(Gllt,t+h) 0

(G;,zlt,t}t‘)

(]
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TABLE XI Compatibility relations between [Cand A,% , A .

r n n n n L n nonon

A1 ‘Az A' A1 A,‘A“ A; Ah As A!. AR YA

1 2

2, L, Ik, I, z, z, I, I-1I,

N A AL A AL A AL A, A,

TABLE XII Compatibility relations between X and A, W, Y.
X - X
A,"' A 3 A,“’ A A
W, W
1
Y, Y,
TABLE XIII

Compatibility relations between M and I, v, v.

M1 . Ml M, I\/‘l'
Lef,  I0Y, X, Tel
VWY vy

% 7, Y, Y,
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CHAPTER 1V

Double Space Groups; Their Properties and Representations

Irreducible Representations of the Double Space Group Digf

IV.1 It is well known that under a rotation R of the co-
ordinate system to which a physical system is referred, a wave
function y of the system behaves differently depending on
whether *ris dnly a function of the spatial coordinates x, y
and z, or is also a function of the spin coordinate s.

The operator OR corresponding to the rotation R is a
point transformation if the wave function y depends only upon
the cartesian coordinates of the particles in the system. But
if v depends also upon the spin of the particles in the systen,

then the operator OR is split into two factors. Namely:
O =y =P iv.1.1

Here PR affects only the position coﬁrdinates in the wave
function of the given systen, UR affects only the spin co-
ordinate s. In the specific case of a crystal one is interested
in wave functions describing electrons in the crystal or, re-
ducing the N-electron problem to the l-electron problem, in
l-electron wave functions. Therefore the spin coordinate s can
only be +1 or -1;

Hence the matrix ug(R) representing the operator Up must
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be a two by two matrix:

w,(R)= B
o )'. w(®)

w(R)

-IJI

'Uk(ﬂ)hh:

1,

Actually, as is well known, two matrices * u,(a,p,y) operating
in the spin space correspond to a-rotation R with Euler's
angles @, ¢ and y. These matrices are unitary and unimodular

(see for example Wigner, 1959). They are:

_%e_t_ Y gf_ oY
2 wo%et -2 44'»\«% et
U (o py)e| . . . IV.1.2
Lek _v wr
e A %e, 2 e%ﬁ 7. % 2t

Considering both the spatial coordinates and the spin co=~
ordinates we can say that to each rotation R correspond two

direct product matrices:

t, (R)x P(R) IV.1.3

To the imversion I in the product space correspond the

two direct product matrices:

. tu (E) «P(1) 1v.1.4
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4
therefore, to an improper rotation IR, which we know is the
product of a proper rotation R wifh inversion I, will

correspond the .two matrices:

t U, (R)x P(IR) IV.1.5

Since we are not interested in the dependence of the
wave functions on spatial coordinates, we can assume the
electron being at the origin of the coordinate system. Hence
the group UZ of all unitary unimodular two-dimensional matrices
u, is a representation, which is irreducible, of the group Rg
. of all real three-dimensional rotations. And since to each

element of R, there correspond two elements in U, it is

3
customary to say that U2 is a double valued representation of R3.

What has been said for the group R, can be repeated for the

3
group R of all real non-singular inhomogeneous transformatiohs
(R1t). As we said in Chapter II, Section II.1, the group R4
of pure rotations is a subgroup of G{ . If now we let the two
matrices (X uy(R)| 0) of U, correspond to an element R of Ry and
- the two matrices Ci_uz(R)|€3 correspond to an element (R | t)

of R, we will say that the set U2 of matrices (* u,(R)|t) and
(t ug (R)[ 0) is a double valued representation of R . The
multiplication of two elements (ug(Rj) | t;) and (ug(Rg)| tg) of

Uz is defined by:

E) = [y ROV, (R | ReE, <8 IV.1.6

(U (R, (Ua(R,)



Let us consider now a space group G which we know is a
discrete subgroup of ® . Since U, is a double ;alued re-
presentation of ® , to each element of-G correspond two
matrices in %42. The set of matrices of 142 corresponding to
the elements of G is a subgroup G+ of %(2. It is then possible
to define a double space group in the following way: the
""double" group GT of a space group G is an abstract group
wvhose elements have the same multiplication table as the
matrices of %lz corresponding to the subgroup G of & .

Rules which help to find the structure of a double space
group from the known structure of the corresponding space group
were obtained by Elliott (1954). They were obtained by
f:geheralizdhg'the rules derived by Opechowski (1940) for double
point. groups. We shall state them again.
| It is well known that to a class Cn of conjugate elements
in R3 theré correspond two different classes C; and C; in Uy.

(A class C, of conjugate eélements in R, is made up of all

3
rotations through an angle 27/n about all the possible axes).
Exception to this rule is the class of rotations through an
angle 7. To such a class in 83 corresponds only one class in Ué.

That the elements of C; and Cg do not belong to a same
class of U, means simply that there is no element § of U, such
that 7; f = 7; where 7; and vy, are elements of C; and C;
respectively corresponding to v, in C,.

Let us consider now the group ® whose elements have the

form (R|t). To a class ‘ﬁh of conjugate elements in (& there



correspond, in general, two different classes %5 and %, in Us.
Since in the group‘u2 there is no element § which satisfies
the relation y; £ = ¢ yn" » there is no rotational part § of
an element of qu which would satisfy the same relation. 1In
other words the translations-z do not affect the determination
of classes in U,.

Again an exception to this rule is the class 62 of
whose elements represent a rotation through v followed by a
translation.

We said previously that to a class Cz of R3 corresponds
always only ome class C, = Cj in Up. In other words there
exists an element § of Uy such that yé.§ = £ 7; is satisfied.
. As Opechowski (1940) has pointed out §f is a rotation through .

In the case of the group ® we can say that to a class
€9 of (1 corresponds only one class 8é = f; in (Ul if there

is an element ( §f 5] t) such that

AT ARITSL 1V.1.6

where (yé}\t) and (y;|'F) are the elements corresponding to
(v | £') of ‘éz in {gé and G j respectively.
From Eq. IV.1.5 it follows that two conditions must be

satisfied:

ot

L& RV : (E-£)F=(E-g)F v.1.7
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Both conditions are satisfied in the case of the group ® .

In fact @ contains all the elements with any real‘non-singular
three~-dimensional matrix and any real three-~dimensional vector,
and therefore it contains also an element satisfying the con-
ditions given by Eq. IV.1.6. |

We can theréfore conclude that to a class ﬁé of &,
corresponds always only one class in ‘U,.

Let us consider now a space group G. From the properties
of the group R it follows:

1) To each class of G whose elements have a rotational
part different from a tﬁofold rotation correspond always two
classes of G* .

2) To a class ‘62 of G corresponds only one class ‘Cfé a ‘5'2'
of GT if there is a-transformation (%,| t) with §, either a
twofold rotation about an axis perpendicular to at least one
of the axes of the rotations in the elements of i:z or a
reflection in a plane containing at least one of théhﬁghtioned
axes and with t satisfying the relation (E— fz)?= (E-«yé)—t-:o.

As far as irreducible representations of a double space
group are concerned,'it is possible to state a few rules
similar to those existing for double poiht groups.

3) Each irreducible representation of G is also an
irreducible representation of G~r . _

The proof is just the same as that given by Opechowski
for double point groups. If, as Opechowski did, we call

-r
"specific" irreducible representation of a double space group G
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" an irreducible representation of G+ which is not an irreducible
representation of G, we can say exactly as Opechowski did for
the double point groups:

4) A Hilecessary and sufficient condition for an irreducible
representation of G.r being a specific irreducible represen-

" tation of G+ is that the character,different from zero, of any
element (R |t)' of G T be equal and of opposite sign to the
chéracter of the element (R |t)". The proof runs exactly the
same way as for the double point groups.

From 4) two rules follow:

4a) When to a class of a space group G correspond two
classes in the double space group GT , in a specific irre-
ducible représentatiog of G Tthe two classes have characters
which are equal in absolute value but of opposite sign.

4b) When to a class €, of a space group G corresponds
only one class 'ﬁé in G.T, in a specific irreducible represen-

tation of G | the class ‘Gé has character zero.

IV.2 Using the previous rules to define the classes of
a double space group and some of their characters, and using

Z &;lxﬁlz = order of the double space group, and

hox: hexy =7 @(zwﬁiiz we can get the tables
IX.E ‘XOE %E

of characters for the double space group Digf . See Tables

XIV to XXIIXI. In the tables we will denote the two classes
of Fhe double group of a vector k corresponding to a clags (R t)
of the simple group of éhq vectorlﬁ by (R(t) and (R[t).

(According to the notation introduced in the text, one would.
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e

use (RIt)" and (RIt)" )

‘% st

The wave functions of electrons, when one considers also
their spins, are linear combinations of products of spatial
functions with spin functions, Since a spin function trans-
forms as D%, a total function transforms as the direct product
of a single group representation with Dé' This direct product
can be decomposed in terms of the specific representations of
the double group. 1In D% the character of a roetation through-
an angle 2¢/n is 2 cos w/n.

We will give a table of the direct products of the single
group representations with‘D% for each point. Some compatibility

tables are included.



TABLE XIV
of the double group of [ .
T
(Elo) 2
(Elo) 1
(Cuar Cial 7] T
€z €3l 7] T
(Cea» Cudf 0) 0
(Cuxs Cays Con » Coy ] 0
(Caxy s Cuzy+Cony» Casy 0
(1)) 2
(1) 2
(S42-502]0) 7
(Sua s S0al0] V7
(03, . 5 ) 0
(Ovsz »Ouys »Sxn » Soya [7) 0
(Satey = Ty » Sany » olizy|0) 0

[ xD’i :I—;xD"z :r"11
rs xD*, :r‘b"Dli : l_u

-49-

[eDy= M oF

rc 'D,i:r:, ’Dii:r‘u

ﬁ)bmooo‘ﬁj"’q

3

O O O

Characters of the épecific representations

oo T
9 2
2 9
g T 7
T V7
0 0
0 0
0 0]
) -2
2 2
-7 7
VT -7
0 0
0 0
0 0

[—; XD{ :P,XDA“.:I—:“

r ‘D’; :l':‘ [



TABLE XV Characters of the specific representations

of the double group of A .

Afr) B, (x)

m
o
[ )
ro

.
)
. o
\
'
[
~

Cay-Cyyl0) 0 0
(o .Gy l¥) 0 0
(9,2 50yal7) 0 0
(R|t)=(E]t,] X (RIE)

A1xDi:A“b‘i :AJFD% :Au'D’i :Ar

TABLE XVI Characters of the specific representations

of the double group of Z .

2(r) Z,m)
(E10) 1 2
Elo) -1 2
(Cany » Cony [ ) D 0
(5.6, |7) 0 0
(Tatny + Saey [9) 0 0
(RIE)x(€]x) -X(R]E)

7, xDy =%, ¥D, L #Dy <, 2D, <L,



TABLE XVII

Characters of the specific representations

of the double group of N .

(€l0) 2 2
(€ |0) -2 )
(C,,,,C,:',I'C}' yZ N
(Cu- Tl g m
(Cee . C.a0) 0 0
(Oyxe +Soys > Soxz » Ovye | T 0 0
(Sury »Tazy > Sauy =‘-’d;,l°) 0 0



TABLE XVIII Characters of the specific representations

of the double group of X.

X, X,
(elo) 2 2
(E]o) -2 2
gy 2 .
(E |t 2 2
(C.a.Coa]0st,) 0 0
(Cin s Cix]0rty) 0 0
(ST o’ o
(1 | v, vty 0 0
(T]v,7et) 0 0
(Gt.»gllt:t*t') 0 0
CORISICININS 2 2
(Ourz|T4E) +(CuealT) 2 2
(o‘vn,c‘v“ T:,*nh) 0 0




~53~ . W

TABLE XIX Characters of the specific representations

of the double group of M .

My
(€lo) L
(E|o) L
(el L
(El®) .
(Cya-CuzlT o) 0
(Coa. C3JE. T 0
(C‘,, Ctzlo) 0
(o Eu 1) :
(Cax »CaysCax . Coy 0. E,) 0

—
<t
v
<
+
-
()

Vel
-
~
w
<+
~N
~O
-
——
o

Cary+ Cagy )+ (Cary . Cay |7 #11)

( .
(GJW > Sdzy éolxy » Oolzy lo)
(

G-'olxy > GO‘?Y ’Gohy 2 G&;Y!r‘)

o O O O

M"D’i :I.\'\‘xb% :MS"D’i :M“nb,i =M,



5y .

TABLE XX Characters of the specific representations
of the double grdup of N .
Ng N Ny
(]0) P | l

TABLE XXI

Elo

() (Tt
(Cazyl®) » (Ciz, v o 1)
(Satey 10)(Taay | b4)

(R1t) (eIt

N,xD" :Nx.bi; :N‘»N‘

of the double

(¢1o)

(Elo)

(Caz 10) +(Caalts)
(dvul't')»(&wzl""* L)
(Coye %) (Toyalvety)

(R1E)«(elt)

W, Dy = W, Wy + WA, + W
3

Characters of the specific

group of W ,

W)

representations

W, (%) W, (¥)

% (R]E)



TABLE XXIIX Characters of the specific representations

of the double group of V .

4
A

Ve (M) V(M)

(e10) g 2

(€ ]o) -2 -2
(c“!,t;'alv) | V7o T
(Coa . Clal®) S VZ'i
(c . Coal0) 0 0
(Ovxa > Ouye > Suxe > Suye | 7 0 0
(o;,w + gy »Solxy » Syzy |0) 0 0
(R]t)x(e]k) | -X(R1t)



TABLE XXIII

TABLE XXIV
y M
AR A,
e s
A¢ A,

TABLE XXV
M= 2,02,

—56= ‘

Characters of the specific representations

of the double group of Y .

VM) K (M) Y 0, (M) 0= Y (M

1 I | |

-| -] -1 -

el b | | - | -1

l$+ 1} L -L L -L

o Tt ) -L L L L
) -X(R]t)

Compatibility relations between ™ and A, Z,/\,

s M ,
A

Zg Zr

N¢ A,

Compatibility relations between M and £, V, Y.

; Mf—o \/‘1\\/7 ; MS—.yz.y!oy".yf
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