$$
\begin{aligned}
& L E 3 B 7 \\
& 19+9 A 8 \\
& D_{28} D_{3} \\
& C_{09} .1
\end{aligned}
$$

6.5
 THE DECAY SGHEME OF ZN

by

PHILIP NORMAN DAYKIN

A THESIS SUBARITTED IN PARTIAL FULRIIMENT OF THE REQUIRAMEITIS FOR THH DEGRBE OF
 MASTER OF ARTS
 IN THE DEPARTMENT OF

PHYSICS:

ABSTRACT

65
Radiations from Zn have been stadied by means of a thin lens beta ray apectrometer. A spiral baffle was used to separate positrons from negatrons. The gamma ray apectrum in the energy range above 100 kev was found to consist of one gamma ray at 1.11 mev and annihilation radiation at 0.51 mev. One pasitron group was found with maximum energy at 0.327 mev. No internal conversion electrons were found. A decay scheme has been proposed in whish Zn decays either by K-capture to a 1.11 mev excited state of Cu or by 65 positron emission to the ground state of Cu .

ACKNOTLEDGEMENT

This researeh was carried out with the ald of a Nationail Research Council Scholarship.

Introduction
Rediations from the Zn^{65}
Rediations from the Zn_{n} nucleus have been stadied 65 by several methods. The samplea of Zn ased have been produced by the following reactions:

Ga (K-decay) Zn
(2)

Barnes and Valley investigated radiations from copper bombardea by protons, using absorption and cloud chamber techniques. They reported an activity with a half life of about 7 months; cansisting of both positiron and negatron emission in the ratio of $2: 1$ and gamma radiation with ax gama tio positron ratio of about 60. Absorption measurements in aluminum indicated an end point of 0.7 mev for the position group. Through the $\mathrm{Cu}(\mathrm{p}, \mathrm{n}) \mathrm{Zn}$ reaction 63 65 both Zn and Zn could be produced from the two stable $63 \quad 65$ isotopes $\mathrm{Cu}_{\text {a }}$ and Cu by proton bombardment. Ifvingood and Seaborg , however, found a similar actirity in an isotope of zinc produced by deuteron bombardment of zinc. 64 They identified the reaction as $\mathrm{Zn}^{64}(\mathrm{~d}, \mathrm{p}) \mathrm{Zn}^{65}$ Since $62 \quad 63$ there is no stable isotope Zn , from which Zn could similarly be produced, they assigned the activity to $\mathrm{Z}_{\mathrm{n}}{ }^{65}$.

Dolsasso et al
also investigated the radiations from copper bombarded by protons, by absorption measurements In aluminum. The absorption curve was separated into three components which were identified as: one positron group, one internal conversion electron and one gamma ray. The The lowest end paint only was reported at 0.55 mev. This value could be assigned to either the positron group or the internal conversion electron. Fairly intense X-radiation found by them was attributed to both the K-capture and internal conversion processes.

Livingood and Seaborg ${ }^{(3)}$ reported X-rays appropriate approximately to the CuE K_{α} line. Previously Alvarez ${ }^{(5)}$ had showed that there was ho large difference in the absorption of these X-rays in nickel and copper. Livingood and Seaborg concluded from this that the X-rays wee from an element of atomic number less than that of zinc, and assigned them to the CuK_{α} line. The K-capture process for the decay $\mathrm{Zn}^{65} \rightarrow \mathrm{Cu}{ }^{65}$ was therefore postulated.

They used magnetic separation of the particles and gama rays and confirmed the high ratio of gamma rays to particles. Their absorption measurements in aluminum indicate one γ-ray at 1.0 mev and a weak annihilation radiation at. 0.5 mev . The half life was given as $250{ }^{4} 5$ days. Perrier Santangelo and Segre ${ }^{(6)}$ reported a half life of 245 days for a. Zn isotope obtained from copper which had been bombarded by both protons and deuterons.

Since the CuK C_{c} X-rays could arise from either K-capture process, or internal conversion of gamma rays from the excited Cu^{65}; coincidence stadies are required. Good and peacock (7) investigated X-ray γ-ray and $\beta^{+} \gamma$-roy coincidences:. They concluded that 54% of the K-capture precess leads to the ground state of cu^{65}, while 46% leads to the 1.14 mev ${ }^{(11)}$ excited state, and 2.2% of the disintegrations go by positron emission directly to the ground statie. Watase, Itoh and Takeda (8) also found some evidence by X-ray \mathfrak{X}-ray coincidence that some part of the K-capture process goes to the ground state. The Table of Isotopes (${ }^{(1)}$ lists 0.4 mer for the β^{4} end (9)
point from cloud chamber measuremente and 0.32 mev , using a beta ray spectrometer ${ }^{(19)}$. The existence of internal conysersi version electrons is also listed from the work of Livingood and Seaborg ${ }^{(3)}$, but no energies are given.

For the gamma ray enerfies, $1.14 \mathrm{mev} \pm 3 \%$ was reported by Deutsch, Roberts and Elifott ${ }^{(11)}$ and L.IImev $\pm 0.5 \%$ by Jensen, Laslett and Pratt. , both from spectrometer studies: The latter found a weak annililition radiation at 0.51 mev.
\rightarrow The existence of both K-capture and positron emission with the former process highly favored is reasonably certain. At least one γ-ray has been found at 1.11 mev and at least one β^{\dagger}-group with end point at 0.32 mev , both by spectrometer methods. In view of the mork of Good and Feacock, there should be a weaker $\beta^{ \pm}$-group witi higher end polnt energy. The presence of internal conversion electrons has not been

(4)

confirmed by spectrometer methods, and the energies are therefore not known with any certainty.

In view of these uncertainties it was deemed advisable to repeat the apectrometer study of the gama ray spectrum, and further, to investigate bath positron and negatron spectra; separately. The isotope used was obtained by the $\mathrm{Zn}_{\mathrm{n}}(\mathrm{n}, \gamma) \mathrm{Zn}_{\mathrm{n}}$ reaction from the Chalf River Laboratories of the National Research Council.

Equipment

Spectrometier

The spectrometer is of the thin lens type whieh has (13)
been used in previous researches in this laboratory and elsewhere $(14,15,16)$. A diagram of the spectrometer is shown in figure I - Eleetrons from the source are selected by the baffie B and focussed by the magnetic field on the thin window of the beta ray counter. The baffles A, C, D, and F are added to reduce scattered radiation and prevent direct radiation from reaching the counter. For atudy of pasition apectra an additionsl spiral baffie was inserted between C and the field
coils. Deutsch et al have calculated the pitch of the focussed electrons in their spiral path through the spectrometer. The baffle shown in figure 2 is based on these calculations. Since the pitch is almost a constant for paths

Figure 1. Diagram of the spectrometer.

Figure 2. Spiral baffle used with the spectrometer for studying positron spectra.
having different radii, radial baffle plates of constant pitch may be used. Flectrons of either sign may be selected by choosing the direction of the magnet coil current; this baffle transmitted 75% of the focussed electrons with one direction of coil current while it reduced the count to background with the opposite dizection. The loss of 25% transmission caused by insertion of the baffle must be attributed to a difference between the pitch of the baffle plates and that of the electrons, since the geometric cross section of the plates is much less than 25% of the spectrometer cross section.

Plate I. Assembled spectrometer.

Plate I shows the assembled spectrometer. The axis of the finstrument is aligned with the magnetic meridian and the vertical component of the earth's magnetic field is effectively cancelled by a current through the pair of compensating coils surrounding the instrament. The effect of the remaining axial component may be found by reversing the masket coil ourrent (with the spiral baffle removed) (12). It was found that, with the present resolution of 3 to 4% obtained with this spectrometer, no effect could be observed. By use of non-ferromagnetic materials throughout, proportionality between the momentum of the focussed electrons and coll current is therefore preserved.
(14)

Deutsch et al have shown the relation between spherical aberration and mean coil radius. Spherical aberration may be minimized by operating with the largest radius permitted by the momentum of the electrons being studied. The magnet coil is therefore wound in four layers having separate terminals, so that the inner layers may be disconnected.

Counters

The thin window Geiger counter, sketched in figure 3, was designed to use a minimum of wax seals. Unstable operation peculiar to wax sealed counters has been experienced in this laboratory. Anode wire and filling tube are brought through the brass envelope with Kovar seals, which are
(8)

Figure 3. Counter construction
soft soldered to the envelope. All other soldered joints are hard soldered and coated with soit enfelepe solder. The usual filling tube tap was omitted; the tube was sealed off after a satisfactory filling was obtained.

2
The mica window, $2.8 \mathrm{mg} / \mathrm{cm}$, thick, was sealed between the flanges using Cenco Plicene, a wax insoluble in alcohol, with the following technique. Plicene, dissolved in turpentine was painted smoothly on both Planges and allowed to dry. these were then beated to melt the wax and the mica dropped on the counter; air bubbles were pressed out with a rubber tube and the outer flange bolted to the first.

The counter desctibed has operated satisfactorily during the present work.

Amplifiers

The laboratory arrangement required the use of a ten foot pulse cable to carry counter pulses to the scalar. To avoid direct loading of the counter by the cable, a cathode follower was connected to the counter with short leads, as shown in figure 4. The cable connected to the cathode is approximately matched at tits output end by the 100 ohm resistor. The following preamplifier is a two stage grounded grid triode amplifier, each stage of which is preceded by a cathode follower. The three volt pulses obtained from the cathode follower are sufficient to saturate the preamplifier, Whose output consists of sixty volt pulses of equal amplitude. The scalar discriminator was set at 15 volts to eliminate stray pickup and noise, and then the counting rate was independent of diacriminator bias fluctuations. Counter plateaus obtained with this counter and circuit are shown in figure 5 .

Figure 4. Sohematic of cathode follower and preamplifier.

Figure 5. Counting rate of pulses from preamplifier of amplitude greater than 15 volts.

Regulators

Magnet Current Regulator

The regulator is the same as used in previous research-
\square except for the following modifications. The D. C. power is taken from the building supply, whose negatite terminal is grounded, instead of from the "floating" generator supply. The A. C. error voltage ta then taken between the standart resistor and ground. This modification required anth additional state of A. C. amplification to obtain both error signal inversion and increased voltage gain. The driver stage was modified so that it operated as a tetrode with normal Bias for all blas settings of the fype 6AS7 control tubes. Blas control for the latiter was: obtained from a 100,000 ohm potientiometer donnected across the driver B supply, with the movable arm grounded; the negative bias supply was then not required.

Magnet curment was determined as before by setting the dial box potentiometer. Stability was 0.01% at 10 amperes and 0.1% at 1 ampere with this arrangement.

Compensating Coil Current Regulator

The current aarried by the pair of compensating field cinis is regulated against line voitage variations by the use of two ballast tubes (type CRC876) in series with the 10 ohm
field coils. Since these operate normally with 1.7 amperes, whereas only 1 ampere is required for field compensation, the excess current was shunted by the coils through a rheostat. Current regulation of 0.25% per volt wes obtained, which value Is gufficient for normal hourly line voltage variations.

Experimental Technigue

Arrangement of Sources

A diagram of the source arrangement is shown in Pigure 6. For gamma ray apectra the active material is inserted into the brass oup from the outside. A screw cap holds this firmly in place. Sufficient brass is left between the active material and the radiator to absorb the beta rays. The radiator, a thin diac of lead or uranfum oxide is cemented to the front face.

For beta ray apectra, filings from the active material were cemented with collodion to a thin disc of mica, which fita dinto the brass cup. The brass is removed from immedfately behind the mica to reduce reflections of beta rays. Owing to the low specific activity of the $2 n^{65}$, the deposit could not be msde as thin ag was desireds sufficient was added to produce roughly twice background count in the spectrometer.

(13)

Figure 6. Arrangement of sources. A, Gamms ray gource. B, Beta ray source.

Gelibretion

The spectrometer was calibrated directiy in terms of dial box potentiometer reading, which is proportional to the momentum of the focussed electrons: Photoelectrons ejected from the F ghell of lead by the 0.607 mev gamma ray of radium were used. This energy value was obtained by Ozeroff from a: similar apectrometer calibrated in terms of the f line of thorium B. The momentum of the photoelectrons was obtained by aubtracting the binding energy $(0.0875 m e v)$ of the K shell . The calibration curves in figure 7 show that both resolution and transmission are improved by using only the magnet coils of large radif. Below are Ilated the calibration correspond-

Ing to peak values and the resolution for each coil combination used.

Cowls in series	Width at half maximum	Calibration in gauss-cm. per volt
4 coils	4%	9600
3 outer	3.6\%	6600
2 auter	3.5\%	4090
1 outer	3.4\%	1915

Figure 7. Calibration curves.

The compensating current, I_{c}, had to be adjusted for maximom peak intensity with each coil combination. Presumably, the difference is due to silght misaligment of the separate coil axes in the horizantai plane. The resolue tion passibly could be improved for the outer cofl alone by realignment of the spectrometer axis with the outer coil axis, in the vertical plane(14 , but this was not attompted because the outer coil alone was insufficient for most energies.

Experimental Results

Gamma Ray Spectrum

The gamma ray spectrum is shown in figure 8. Compton background, obtained with the radiator removed, is dotted under the main curve; the differenoe gives the phataeleetrons ejected from the radiatior. Several radiators and magnet coils were tried both to obtain high peak intensity and resolution and to eliminate spurious peaks. The two peaks obtained with lead radiators show that little is geined by using a radiator thicker than $50 \mathrm{mg} / \mathrm{cm}^{2}$. Several amall peaks appear on the main curve obtained by using the lead radiator. Theae could be interpreted either as apurious peaks arising from unusually large statistical deviations or as photoelectron peaks from weak gamma raye. To remove the ambiguity, the region containing these peaks was repeated with the uranium radiator.

Since the binding energy of the uranium K-shell is 27.5 kev higher than that of the lead K-aheli, a photoelectron peak obtained with the lead radiator must reappear when the urantim radiatior is used, but at 27.5 kev lower energy. Only one such peak satisfied this condition. This peak is indicated in figure 8 at 0.26 rolts.

The Compton background seemed rather excessive. It was shown that the high intensity was due to the large source area required the low specific activity. A lead cylinder 2 cm . long and 2 cm . in diameter, with a conical hole drilled to fit over the radiator, riduced the Compton background to $\frac{1}{2}$ but left the photoelectron peak unchanged. The work however was not repeated since repetition was not considered worthwhile for a faction of 2. It la therefore recommended that smali sources of high specific activity, when available, be placed directiy behind the radiator; and the lead cylinder baffle be used only when necessary, since additional scattering is undoubtedly produced by its: use.

Gamma Ray Energies

The gamma ray energies were obtained by adding the K ghell binding energies, 115 kev for uranium and 87.5 kev for lead (17), to the phatoelectron peaks. These are tabulated below. The center of the phatoelectron peak was chosen generaily, except in the case of the $100 \mathrm{mg} / \mathrm{cm}^{2}$ lead radiator. Since this had a definite flat top, the high energy end of

Gamma Ray	Radiator	Coils		Ey in Mev
(1)	$\mathrm{U}, 80 \mathrm{mg} / \mathrm{cm}^{2}$	4 coils	0.51	
	$\mathrm{U}, 80$	2 outer	0.508	
(2)	$\mathrm{Pb}, 50$	4 coils	1.107	
	$\mathrm{~Pb}, 100$	4 coils	1.104	
	$\mathrm{U}, 80$	4 coils	1.109	
	$\mathrm{U}, 80$	2 outer	1.109	

Positron Spectrum

The positron spectrum, shown in figure 9, was obtained from the beta ray source with the magnet current reversed; the spiral baffle effectively removed negative particles. The counter was shielded feom other sources (including a 500 millicurie radium source in a second spectrometer in an edjoining room) with 15 cm . of lead. Background was reduced to io countis per minute. The source thickness required to obtain twice background count was $130 \mathrm{mg} / \mathrm{cm}^{2}$.

The Fermi plot of the positron spectrum, shown in figure 10, was obtained by use of the following approximations. The Bermi relation is giten by

$$
F=\left[\frac{\mathbb{N}^{2}}{\eta^{2}}\right]^{\frac{x}{2}}=F_{\max }-E
$$

Figure 9. Positron spectrum of Zn

where η - momentum of electron in units of $m_{0} c$

$$
N \text { - relative number of electrons with momentum } \eta
$$

and

$$
\begin{aligned}
f(z, \eta) & =\eta^{2 s} e^{\pi y}|\Gamma(1+s+i y)|^{2} \\
\text { where } s & =\sqrt{1-(z / 137)^{2}}-1 \\
y & =\frac{z \cdot \sqrt{I+\eta^{2}}}{137 \eta}
\end{aligned}
$$

The approximation discussed concerns the expansion of the gamma function. This was expanded in a Taylor series, to the first power of 5 only. By a second approximation to the first power, the expression

$$
\left|\Gamma^{\prime}(1+s+i y)\right|^{2} \approx 1+s\left\{\frac{\Gamma^{\prime}(1+i i y)}{\left.\Gamma^{(1}+i y\right)}-\frac{\Gamma^{\prime}(1-i y)}{\Gamma(1-i y)}\right\}
$$

The expression in brackets was expanded in series, using a well known expansion for $\frac{\Gamma^{\prime}(Z)}{\Gamma^{\prime}(Z)}$ - The series involved, of the form $\sum_{n=1}^{\infty} \frac{1}{n\left(n^{2}+y^{2}\right)}$, was approximated by $\int_{1}^{\infty} \frac{d n}{n\left(n^{2}+y^{2}\right)}$. The result used in the calculations is

$$
\left|\Gamma^{\prime}(1+s+1 y)\right|^{2} \simeq \frac{\pi y}{\sinh \pi y}\left\{1-a s \gamma+s \log \left(1+y^{2}\right)\right\}
$$

A commonly used approximate expansion for this gamma function Is

$$
\frac{\pi y}{\sinh \pi y}\left\{I+0.4(\alpha z)^{2}\right\}
$$

This formula can be obtained from ours by two further approximations.

The Fermi plot of the positron spectrum indicates one postron group with end point at 0.327 mev, with a standard deviation of 0.0037 mev for the 14 pointe used.

Internal Conversion HIectrons

A negatron spectrum was attempted, using the beta rey source. Particular attention was paid to the low energy end in a search for internal conversion lines. None were found, but a distribution was obtained which was identified as a Comption distribution. The existence of Compton electrons is attributed to the high eurfitee density of the source ($130 \mathrm{mg} / \mathrm{cm}^{2}$) and to the relatively intense 1.11 mev gamma radiation.

Conclusions

The average values of the gamma ray energies, taken to the number of valid significant figures, are: 0.51 mev and 1.11 mev. The 0.51 mev radiation is identified with annihilation radiation. These resulta are similar, within 1\%, to those reported by Jensen et al . The gamma ray energy is $\frac{3}{}(11)$ Iower than that reported by Deutsch, Robetts and Elifott

The end point of the positron group is 0.327 mev.

This value is 2% higher than that reported by Peacock from spectrometer measurements, and is considerably less than all values reported from cloud chamber and absorption $(2,4,9)$
measurements

Decay Scheme

The following decay scheme based on these results is propased.

The K-capture process is energetically possible if the energy difference between the initial and final states Is less than the rest energy of the electron. This condition is satisfied by the decay scheme. The statement made in the introduction- that a second β^{\dagger}-group of higher end point energy was required the results: of Good and Peacock is therefore incorrect. According to their results there is a second K-capture process, approximately equally favored, 65 leading to the ground atate of Cu . They further concluded that. 2% of all disintegrations go by positron emission directly to the ground atate. Therefore, if only one 3^{+}-
group exists, the ratio of gamma to positron emission would be approximately 25. Barnes and Valley (, however, reported a ratio of 60. Further, the reported presence of internal conversion electrons: has not been confirmed.

It would be possible to estimate the mass of Zn^{65}, assuming that the position emission leads to the ground state. However, owing to the conflicting results, further work with a source of much higher specific activity is recommended, to determine first the decay scheme with greater certainty.

(22)

ACKNOWLEDCEEMEWNTS

Acknowledgement is gratefully made to Dr. K. C. Mann under whose direction the project wes established and carried out.

The Kational Research Council made this work possible by a Grant-in-fid to Dr. K. C. Mann in addition to a Studentship granted to the author.

The author wishes to thank Dr. J. B. Warren for making available the zinc isotope used and Dr. A. van der Ziel for his valuable discussions on the current regulator.

The author extends his gratitude to Mr. A. J. Fraser, for his useful adzice on the machine work connected with the counter and baffle construction, and to Mr . A. Wm. Pye for construsting the counter filling systeme.

References:

I. G. T. Seaborg and I. Perlman

$$
\text { Rev. Mod. Physics; 20, 597, } 1948
$$

2. S. W. Barnes and G. Valley

Phys. Rev., 53, 946(A), 1938
3. J. J. Livingood and G. T. Seaborg Fhys. Rev. 55, 459, 1939
4. L. A. Delazaso, L. N. Ridenour, R. Shear and If. G. White. Phys. Rev., 55, 113, 1939
5. L. W. Alvarez

Phys. Rev., 54, 486, 1938
6. C. Perrier, M. Santangelo and E. Segre Phys. Ret., 53, 104, 1938
7. W. M. Good and W. C. Beacock

Phys. Ret., 69, 680, 1946
8. Y. Watase, Z. Itoh and E. Takeda

Proc: Physico-Math. Soc., Japan, 22, 90, 1940
9. L. A. Dubridge

Private communication to G. T. Seaborg
10. W. C. Peacock
pIutonium Profect Report, Mon. $N-432$, 56, Dec. 1947. (probably restricted circulation)
11. M. Deutsch, A. Roberts and L. G. Elifott Phys. Rev., 61, 389(A), 1942
12. E. N. Jensen, I. J. Laslett and W. W. Pratt Phys. Rev., 75, 458, 1949
13. (a) P. Lindenfeld M. A. Thesis, University of British Columbia, 1948
(b) F. Mathews M. A. Thesis, University of British Columbia, 1948
(c) M.J. Ozeroff M. A. Thesis, University of British Columbia, 1948
14. M. Deutach, I. G. EIIIott and Re D. Evans R. S. I., 15, 178, 1944

(24)

15. W. Rall and R. G. Wilkinson Phys. Rev., 21, 321, 1947
16. I. C. Miller and L. F. Curtis J. Research, Nat. Bur. Stds., 38, 359, 1947
17. International Critical Tables, 6, 35, 1929
