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ABSTRACT 

The o p t i c a l absorption l i n e is-,^ - 2p Q at the absorption 

spectrum of arsenic doped s i l i c o n has been studied f o r various arsenic 
-i c o 

concentrations at four temperatures. The concentrations are ,9 x 10 cm~°, 

1.7 x 1 0 1 5 cm - 3, 4.0 x 1 0 1 5 cm - 3 and 1.5 x 1 0 1 6 cm - 3, the temperatures 

are 4.2°K, 53°K, 77°K, and 90°K. Spectrometer broadening was accounted 

fo r i n the observed line-widths. There was observed two temperature 

independent broadening mechanisms, concentration and s t r a i n broadening. 

Two temperature dependent broadening mechanisms were observed, phonon 

broadening and the s t a t i s t i c a l Stark effect. The five, broadening mechanisms 

are believed to account f o r the t o t a l line-width through the use of 

the Voigt analysis half-breadth method. 

A s h i f t of the peak position with temperature was noted and 

a possible explanation presented. 
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CHAPTER 1  

INTRODUCTION 

The electron (holes), associated with the unionized group I I I 

(group V) impurities i n s i l i c o n , are o p t i c a l l y active. These electrons 

(holes) w i l l absorb photons i n the f a r infrared region of the electro­

magnetic spectrum, i n making t r a n s i t i o n s to excited states. The absorption 

spectrum,thus obtained, resembles i n many respects the absorption spectrum 

of a hydrogen atom imbedded i n a d i e l e c t r i c medium. 

Investigations of the absorption line-widths i n boron doped-

s i l i c o n have been carried out previously (E. Burstein et a l 1956, K. 

Colbow 1963). Broadening of the line-width was observed and found to be 

temperature and impurity concentration dependent. I t has now been 

observed that the spectral line-widths of arsenic-doped s i l i c o n exhibit 

s i m i l a r effects. The l i n e broadening i s also temperature and concentration 

dependent. I t i s found that the analysis of the line-width broadening 

can be performed i n a manner analagous to that proposed by K. Colbow 

(1963) f o r boron-doped s i l i c o n absorption l i n e s . 

In Chapter I, Section I I I the effect of f i n i t e spectrometer 

s l i t s i s discussed and shown to contribute to the broadening of the 

observed absorption l i n e s . This i s cal l e d spectrometer broadening. The 

effect of the l a t t i c e vibrations on the electronic states leads to a 

" l i f e t i m e e f f e c t " (Nishikawa and Barrie 1962), which contributes to the 

broadening. This effect i s discussed i n Chapter I I I , Section V, but 

f a i l s to explain the rapid r i s e i n half-width with temperature. The 

theory of s t a t i s t i c a l Stark broadening (K. Colbow 1963) i s employed to 

explain the rapid r i s e i n half-width (Chapter I I , Section I I ) with 
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temperature. The theory of the s t a t i s t i c a l Stark broadening (K. Colbow 

1963) i s employed to explain the rapid r i s e i n half-width (Chapter I I I 

Section I I ) with temperature. There are two broadening mechanisms, 

which are assumed to be temperature independent, v i z . , concentration 

broadening, and s t r a i n broadening. The concentration broadening i s due 

to the interaction of neighbouring impurities, and the s t r a i n broadening 

i s due to the removal of c r y s t a l symmetry by dislocations i n the c r y s t a l . 

The theory of W. Baltensperger (1953) i s used to describe the concentration 

broadening (Chapter I I I , Section 3). The s t r a i n broadening i s explained 

i n Chapter I I I , Section 4. 

Besides, broadening of the absorption line-width a s h i f t of 

the centre of the peak with temperature was observed. These results 

w i l l be presented i n Chapter I I I Section 6. 
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CHAPTER II 

1. Apparatus and Experimental Procedure 

A model 83 Perkin Elmer spectrometer, r e f i t t e d with a Bausch and 

Lomb grating, was used to disperse the radiation from a globar source. The 

grating has t h i r t y grooves per millimeter and i s blazed at t h i r t y microns 

i n the f i r s t order. The t h e o r e t i c a l l i n e a r dispersion at the exit s l i t s 

was calculated to be 0.12 microns per millimeter. Experimentally, the 

resolution of the instrument was observed to be 0.3 microns f o r one m i l l i ­

meter s l i t s . Second or higher order radiation was l i m i t e d to less than 

three per cent of the t o t a l signal strength by using sooted mirrors and 

restrahlen plates of l i t h i u m f l u o r i d e . Light from the globar was chopped 

at 13 cycles/sec before the entrance s l i t of the monochromlator. 3 thermo­

couple "detector was used. The amplified signal was displayed on a Brown 

strip-chart recorder. 

The spectrometer was calibrated with reference to the known atmospheric 

water vapour absorption spectrum. Data for the water vapour spectrum was 

taken from L. R.Blaine et a l 1962. During an experiment, the spectrometer 

was flushed with dry nitrogen gas to remove the absorption of the atmospheric 

water vapour. 

A metal dewar, designed f o r mounting two samples, was used to cool 

the samples. Either sample could be placed i n the l i g h t path of the 

spectrometer by a ninety degree rotation of the sample mount. The dewar 

consisted of an outer l i q u i d nitrogen jacket and an inner helium container, 

to which the sample mount was attached. The light, beam, passed through 

ports o f cesium iodide, which could he removed to allow mounting of the 

samples. 
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A wire saw was used to cut samples from s i l i c o n ingots of different 

arsenic dopings. The samples were polished with carborundum abrasive of 

successively f i n e r grades; the lubricant used was water. A f i n a l mirror 

l i k e f i n i s h was obtained by using a cloth covered polishing wheel and a 

0.2 micron aluminum oxide suspension i n water as the abrasive. 

In preparation f o r a run, the samples were cleaned i n a degreasing 

solution agitated by an ultrasonic viabrator. The f i n a l wash was i n 

alcohol. A mixture of s i l v e r dust and Apiezon grease was used to make 

thermal contact to the copper sample mount. The samples were clamped 

i n place c a r e f u l l y to avoid strains. An i n t r i n s i c and a doped sample were 

mounted for the purpose of measuring t h e i r r e l a t i v e absorption, from which 

the absorption c o e f f i c i e n t of the doped sample could be determined. 

The concentration of the arsenic impurity was determined by room 

temperature r e s i s t i v i t y measurements. The r e s i s t i v i t i e s (and corresponding 

concentrations of the arsenic impurity) of the f i v e samples used are 0.41-fi-

cm. (1.5 x 1 0 1 6 / c c ) , 1.3X1-cm. (4 x 1 0 1 5 / c c ) , 2.8_ri-em (1.7 x 1 0 1 5 / c c ) , 

5_n_-cm. (.9 x 1 0 1 5 / c c ) , and 1,300A.-cm. ( i n t r i n s i c ) . The thickness 

of the samples varied from .5 cm. f o r the 5.n.-cm. sample to .003 cm. f o r 

the 0.41.n.-cm. sample. 

The following l i q u i d s at t h e i r b o i l i n g points were used as 

coolants; helium 4.2°K, nitrogen 77°K, and oxygen 90°K. A temperature of 

53 i 3°K was achieved by pumping on the l i q u i d nitrogen. 

The absorption, due to the Is-^ - 2p Q (Figure l ) t r a n s i t i o n i n 

arsenic-doped s i l i c o n , was studied for the four concentrations and at 

the four temperatures aforementioned. The absorption i n the doped sample 

was measured r e l a t i v e to the absorption i n the i n t r i n s i c sample. 
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Energy Conduction Band State 
Mev 
0 . . 
1.2 — 5p± 
1.9 4p+, 5 P o 

2.9 . : 3 p l ' 
3.6 4p 0 

. 5.2 • . ; 3 P o 

6.1 — 2pl 

11.1 v ' 
14.1 /v 

30.9 l s 3 

32.9 l s g 

53.5 : : — . l s x 

Experimental Theoretical 

FIG. 1. Energy l e v e l diagram f o r arsenic doped-silicon. Theoretical 
predictions due to Kohn and Luttinger. Experimental results 
are due to Bichard and Giles 1962, except f o r the l s 2 , I S 3 
due to P. Ottensmeyer (unpublished) The 2§ states are 
predicted to l i e below the 2p Q state from experimental 
evidence. 
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2. Calculation of the Absorption Coefficient 

In general, when interference effects can be neglected, the 

f r a c t i o n a l transmission of monochromatic radiation of wave number k through 

a specimen of thickness d and surface r e f l e c t i v i t y R i s 

(T.S. Moss 1959) 

T =• (1 - R) 'exp(-^d) n_i 
I - R2- e x p ( -x^d) 

where ^ = c< (k) i s the absorption c o e f f i c i e n t at wave number k. For an 

i n t r i n s i c sample (<x = o i n the range of k of i n t e r e s t ) , the transmission 

becomes 

Hence, the transmission of a doped sample r e l a t i v e to that of an i n t r i n s i c 

sample i s given by 

X — ( i - R * j e x P ( - * d ) I X _ 3 

i ; I — R 2 e x p ( - ^ ^ d ) 

The surface r e f l e c t i v i t y , R was assumed to be the same for both the i n t r i n s i c 

and the arsenic-doped s i l i c o n . For the i n t r i n s i c sample, using Eq. ( I I - 2 ) , 

a value of 0.31 i 0.03 was determined f o r the r e f l e c t i v i t y . This agrees 

with the value obtained by Bichard and Giles (1962). Within experimental 

error the r e f l e c t i v i t y remained constant over the energy and temperature 

range studied. Using t h i s value of r e f l e c t i v i t y and Eq. ( I I - 3 ) , the graphs 

of absorption c o e f f i c i e n t versus energy of Fig. (2) were obtained f o r the 

l s ^ - 2p Q t r a n s i t i o n . 
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41.5 42.0 42.5 43.0 (xltT^ev^ 
FIG. 2(b). The o b s e r v e d l s i * - a b s o r p t i o n of the arsenic-doped s i l i c o n , 
impurity concentration I. 7xio*-''5/cc. 



41.5 42.0 42; 5 43.0 (xIO"°ev. ) 
FIG. 2(c). The observed/s;-̂ /=b„j gabsorption of the arsenic-doped s i l i c o n , 
impurity concentration 4.0xiti /cc. 
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40 

FIG.2(d). The observed /s,;?/̂  absorption of the arsenic-doped s i l i c o n , 
impurity concentration I.5xI0^/cc. . 
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I t should be noted that f o r some concentrations the 53 K absorption 

peak has a higher absorption c o e f f i c i e n t than the 4.2°K peak. This arises 

due to the electrons, thermally populating the excited states, being excited 

to the conduction band, and giving r i s e to a constant absorption background 

for the energy range studied. The absorption cross section for the excited 

states i s found to be of the order of 10-15 cm^, consistent with the above 

interpretation. 

3. Spectrometer Broadening 

The true shape of the impurity absorption l i n e s i s broadened 

by spectrometer broadening. This i s due to the f i n i t e width of the spectro­

meter s l i t s , and i s accounted f o r i n the following discussion. 

The p r o f i l e of an absorption l i n e , broadened by two independent 

effects, i s expressed by the convolution i n t e g r a l (Unsold 1955) 

Here f'(x) and f ' ( x ) are the p r o f i l e s that the l i n e would assume i f only 

one of the broadening effects was present. A l l functions f ( x ) , f ' ( x ) , and 

f ' ( x ) denote i n t e n s i t i e s , and x i s the distance from the centre of the l i n e 

i n terms of frequency or wavenumber. 

I f the p r o f i l e s f'(x) and f''(x) can be approximated by Gaussian 
functions, then by Eq. (II—4) f ( x ) i s a Gaussian, of the form, 
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where C and (3^ a r e constants. The parameters fix , @x' , and f^z are 

related by the equation, 

& = fr'V P/." H-6 

The half-widths f o r Gaussian functions are equal to 1.665 fix and s a t i s f y 

a s i m i l a r r e l a t i o n . 

S i m i l a r l y f o r the functions f ( x ) , f M (x) f i t t e d by Lorentzian 

functions, f(x) w i l l have the form, 

I I - 7 

where C and @t are constants. The parameters , @/ , and .•($/• 

are related by the equation, 

(3, = &/ + 

The half-widths, which f o r Lorentzian functions are equal to 2 ^/ , 

s a t i s f y a s i m i l a r r e l a t i o n . 

To obtain the spectrometer s l i t function f'(x) the two water 

vapour absorption l i n e s at 315.03 cm - 1 and 335.16 cm--1- were used. On 

extrapolation to zero s l i t width the two water vapour absorption l i n e s 

were found to have zero half-width. The observed broadening of these 

l i n e s , due to the f i n i t e s l i t width of 1.0 mm, i s the spectrometer s l i t 

function. A l l runs were done with a 1.0 mm slit-.rwidth.. The s l i t function 

at 344 cm~l, the position of the l s ^ - 2p 0 absorption l i n e , was obtained 

by extrapolation of the data at 315 cm - 1 and 335 cm - 1. 
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The observed absorption l i n e p r o f i l e s of the arsenic-doped 

s i l i c o n and the p r o f i l e s of the water vapour absorption were found to be 

neither Lorentzian nor Gaussian; consequently, they were f i t t e d to a Voigt 

function (H.G. Van de Hulst and J.J.M. Reesirtick). These functions are 

defined as the convolution in t e g r a l between a Gaussian and Lorentzian 

function. They may be used to f i t any p r o f i l e which l i e s between a 

Lorentzian and a Gaussian curve. I f the observed l i n e shape and the 

spectrometer s l i t function are both taken to be Voigt functions, then, 

the true l i n e p r o f i l e i s also a Voigt function Eq. (II - 4 ) . 

One may thus write, 

the observed l i n e shape 

I I - 9 

the s l i t function 

11-10 

the true l i n e shape 

11-11 

where M, M', and M'' are constants. The Voigt function parameters (S/ 

and @z s a t i s f y the r e l a t i o n s , 

11-13 

11-12 
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The parameters f o r the s l i t function and the observed l i n e shape were 

calculated using the tables of H. C. Van de Hulst and J.J.M. Reesinick 

(K. Golbow, Ph.D. thesis 1962) 

The parameters for the two water vapour absorption l i n e s were 

the same within experimental error, 

P, = .060 ± .01 Pk = 0.020 ± .005 11-14 

Hence, these were the parameters used f o r the s l i t function at 344-cm~^. 

To obtain the parameters for the true l i n e shape, one must use the re l a t i o n s , 

Eq. (11-12) and Eq. (11-13). The values of the parameter p\2 for the 

observed l i n e shapes were within error the same as p a , giving a 

l&x equal to zero. Thus, the true l i n e shape i n a l l cases i s pure 

Lorentzian, and i t s half-width may be obtained from the r e l a t i o n , 

A = 2 0 , " = . 2(P,-e/J / 11-15 

which accounts for the spectrometer broadening. In Fig. 3 the temperature 

dependence of the true absorption l i n e half-widths i s given.for four 

impurity concentrations. The mean of the two curves with impurity concentra­

tions of 1.7 x 1 0 1 5 cm - 3 and 9.0 x 1 0 1 4 (Fig. 3) w i l l be referred to as 

corresponding to an impurity concentration of 1.0 x 10l5 cm-3^ i n -£he 

following analysis of broadening. 
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0 10 20 30 40 50 60 70 80, 90 T °K 
FIG.3. The temperature dependence of the true absorption l i n e (ISj_2P 0) 
half-width of arsenic-doped s i l i c o n . The impurity concentrations Nn 
are I. 5xI0 I 6cm-3 ;4. OxIO^cnr 3,1. 7xI0 I 5cm - 3,9.0 xI0 I4 c r n- 3,and zero 
concentrat ion(extrapolate d). 
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CHAPTER I I I 

1. Introduction to Analysis of Broadening 

I t i s proposed that there are four s p e c i f i c mechanisms which 

broaden the absorption l i n e s of arsenic-doped s i l i c o n ; concentration 

broadening, due to the presence of neighbouring arsenic impurities; phonon 

broadening, introduced through phonon-electron interaction; s t r a i n broadening, 

caused by dislocations modifying the c r y s t a l structure; and, s t a t i s t i c a l 

Stark broadening produced by the e l e c t r i c f i e l d set up at unionized impurity 

s i t e s by ionized impurities. 

In order to separate the magnitude of each of the above effects, 

the following assumptions are made. Each mechanism i s assumed independent 

of any other. The l i n e shape produced by each of the four interactions i s 

assumed to be Lorentzian. Under these -assumptions, simple addition of these 

contributing half-widths w i l l give the half-width of the true l i n e shape 

(Eq. I I - 4 , 11-13). 

To obtain the phonon and s t r a i n broadening contribution, the 

half-widths f o r each temperature were extrapolated to zero concentration of 

impurities (Fig. 4). The values of half-width at zero concentration represent 

only the s t r a i n and phonon broadening. The l i n e width at zero concentration 

i s that attributed to only one impurity atom. Hence, the s t a t i s t i c a l 

Stark broadening and concentration broadening i s zero, since, they both 

depend on the effect of many impurity atoms. In Fig. 5, a plot of zero 

concentration half-widths versus temperature i s given. The s t r a i n broadening 

i s assumed temperature and impurity concentration independent and i s 
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represented by a dashed l i n e . This i s explained i n section 4. The 

remaining temperature dependent broadening, due to electron-phonon 

interaction i s explained i n section 5. 

To obtain the concentration and s t a t i s t i c a l Stark broadening, 

the phonon and s t r a i n broadening (zero concentration half-widths) con­

t r i b u t i o n to the true half-width were subtracted. The remaining h a l f -

width versus temperature (Fig. 6) represents s t a t i s t i c a l Stark and con­

centration broadening. At 0°K (Fig. 6 ) , the half-width f o r a given 

impurity concentration i s due only to concentration broadening; since, 

there are no ionized impurities at 0°K, hence no s t a t i s t i c a l Stark effect. 

The concentration broadening half-width i s assumed temperature ^independent 

and i s represented by a dashed l i n e . Concentration broadening i s explained 

i n section 3. The remaining half-width due to the s t a t i s t i c a l Stark 

effect i s now explained. 

2. S t a t i s t i c a l Stark Broadening 

( i ) E ffect of Ionized Impurities 

A semiconductor with a random d i s t r i b u t i o n of ionized and 

N D - Ni neutral donor impurities per cm3 w i l l have an e l e c t r i c f i e l d 

at. an absorping neutral impurity s i t e dependent on the number and position 

of the surrounding ionized impurities. Broadening of the resultant 

absorption l i n e s may thus be caused by f i r s t order Stark s p l i t t i n g or 

second order Stark s h i f t s . 

Let us suppose that the d i s t r i b u t i o n of i n t e n s i t y of absorption 

fo r one neutral impurity which i s i n an e l e c t r i c f i e l d F i s given by I ( F , C O 



3 4 5 6 7 8 9 10 I I 12 
N n. Concentration ofc.arsenic impurity (xIO /cm3) 

IS 14 

FIG.4. Extrapolation of the half-widths at four temperatures 4.2°K.,53°K.,77°K. , and. 90°K. 
to zero concentration;:half-width, (half-width , log., scale) -



Strain.Broadening 

J I I j -J J _ 
0 10 20 30 40 50 60 70 80 T°K. 

FIG.5. Extrapolated zero concentration half-widths represent phonon 
and s t r a i n broadening . Phonon broadening found by subtracting 
s t r a i n portion. 
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FIG.6. Half-width minus'zero concentration half-width (extrapolated). 
Dashed l i n e s represent concentration broadening ; remainder i s i.Lr 
s t a t i s t i c a l Stark broadening. Concentration broadening starts at an 
impurity concentration of 4.0xI0* 5cm - 3. 
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then i n order to obtain the t o t a l intensity d i s t r i b u t i o n i n the Stark 

broadened l i n e one must integrate o v e r : a l l such di s t r i b u t i o n s weighted 

by the p r o b a b i l i t y of the d i s t r i b u t i o n occuring 

. I ( A c o ) doo = d^jl(^co)W(F)ciF. .;.III-1 
o 

Here W(F) i s the f i e l d strength pro b a b i l i t y function which has been 

studied by Holtsmark (1919, 1924) and others i n connection with gravitational 

problems and pressure i n gas. Each component of the s t a t i s t i c a l l y Stark 

broadened absorption l i n e w i l l be treated as a sharp l i n e . l(F,co ) w i l l 

be replaced by a delta function and thus W(F) w i l l give d i r e c t l y the l i n e 

shape I ( ^ co ) due to s t a t i s t i c a l Stark broadening. 

The problem i s finding the pro b a b i l i t y of a frequency displacement 

^ to l y i n g between ^ do and £>.<JO + CJAW . As j u s t i f i e d by K. Golbow, 

(Ph.D. Thesis 1962) Only the upper l e v e l i n the t r a n s i t i o n w i l l be considered 

as displaced either by the l i n e a r or quadratic Stark effect. 

Now the probability of a certain frequency displacement due to 

the surrounding impurities i s related to the pro b a b i l i t y ;of a certain 

e l e c t r i c f i e l d at the absorbing impurity. This depends on the probability 

of finding another Impurity at a distance r from the absorbing impurity. 

Since I(F,co ) i n Eq. ( I l l - l ) i s taken to be a delta function, the probability 

function f o r a frequency displacement between £\ CO and ^ c o + d^CO w i l l 

give d i r e c t l y the desired l i n e shape of the absorption l i n e . 

The p r o b a b i l i t y function f o r a frequency displacement using the 

simple approximation of considering only the effect of the nearest ionized 
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neighbour to a neutral impurity s i t e was shown by Konrad Colbow (1962) 

to be : 

for a l i n e a r Stark s p l i t t i n g (^co - S F AdA> = S FL ) 

I(Au>) - |fj (3faAu>)(&teo/AoS)3/*ex.p[-(&<sJo/AoJJi/:i2 IH-2 

f o r a quadratic Stark s h i f t (z \ co= tF \ , AOk-'t Fo* ) 

I ( A W ) $ (3/9*to)(A w 6 / A ^ e x p [ - ( A ^ / c w j ^ ] I n _ 3 

Here the f i e l d at the neutral impurity s i t e i s given by F = («/ ^ ) r 

and t and s are both constants. The f i e l d at the mean spacing r Q defined 

by 

(</7T/3)r0
3 - l/A/L III-4 

i s given by 
Fa = (e/vrre)r:* n i _ 5 

For the l i n e a r Stark s p l i t t i n g two peaks corresponding to positive 

and negative s are obtained from Eq. IX-2. Depending on the s p e c i f i c energy 

l e v e l structure, the t associated with quadratic Stark s h i f t can be either 

positive or negative for any given energy l e v e l . This nearest neighbour 

approximation i s the binary form of the Holtsmark theory. 

In the work of Holtsmark (1919, 1924) and others the in t e n s i t y . 

d i s t r i b u t i o n due to the co-operative:effect of many ions has been obtained. 

Review a r t i c l e s on t h i s f i e l d have been written by Chandrasekhar (1943), 

Breene J r . (1957), and Margeneau and Lewis 1959). 

The f i e l d F at the neutral impurity s i t e i s written as the vector 

sum of the f i e l d s of the many ionized impurities surrounding i t 
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The d i s t r i b u t i o n function W(F) calculation i s carried out i n a configuration 

space of 3N dimensions. 

Holtsmark obtains the function 

o 

V/37T O-H^^t 0/211 (3s-man 

I /• V2>$> 0^(1 + 5"' /0 7 (3 "3/V /• /3 3 <3~3-f • • -J (9 /arje. 

where (3 = F/^o 

In the Binary theory F 0 was defined by 

= 2£>c> ( e/y7re)A/c> */3 

The many ion calculation gives nearly the same parameter. 
2/3 

Fo - Z-6/(e/v,v<z) A/c m_9 

( i i ) The Effect of Screening 

When the c r y s t a l , contains Ni ionized impurities per cm3, there 

w i l l also be an equal number n = Ni of free electrons, the influence of 

which has been neglected so far. The free electrons screen the e l e c t r i c 

f i e l d of the ionized impurities seen by the neutral impurities. The effect 

of these free electrons may be approximated by using a screened coulomb 

potential of the form 

U = (e/vn-e) jr er,x
 111-10 
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Here *X i s the Debye-Huckel (1923) screening length. In c l a s s i c a l s t a t i s t i c s 

k being the Boltzmann constant. 

D i f f e r e n t i a t i n g the expression f o r U i n Eq. ( I l l - 1 0 ) one obtains 

the screened coulomb f i e l d 

F= (er>L'tft+fcUer'* ' ra-12 

This replaces the simple coulomb f i e l d i n the nearest neighbour approximation. 

Using the same approach as Ecker (1957) to simplify the problem, F has 

been approximated by 

^_(ec/V7rer 3 if r < X In_13 

J o , if r > X 

Ecker has calculated ther: f i e l d d i s t r i b u t i o n W( @ ) Fig. 7 which i s applicable 

to a neutral impurity s i t e for various screening parameters cf . The screening 

parameter, being related to'X by 

111-14 

has the physical meaning of giving the number of ionized impurities within 

the Debye radius. As 'A. goes to i n f i n i t y Ecker's curve f o r <f = oo becomes 

Holtsmark's d i s t r i b u t i o n . From these curves one can obtain the half-width 

hi ( c3 ) of the f i e l d d i s t r i b u t i o n f o r various screening parameters cf . 

These have been obtained i n Fig. 8. The dependence of screening parameter, cf , 

on temperature for three concentrations of impurities i s shown i n Fig. 9. 

The screening parameter was calculated using Eq. (111-14) and F i g . 10. 





FIG.8. Half-width of the f i e l d d i s t r i b u t i o n h(£), as a function of 
screening parameter 6 ,(logarithmic scale ). 
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Temperature. (°K) 

FIG.9. S c r e e n i n g p a r a m e t e r , ^ , v s . t e m p e r a t u r e f o r a r s e n i c c o n c e n t r a t i o n s 
o f i ) I . 0 x l 0 1 5 c m . " 3 , i i ) 4. OxlO^cm-S, and i i i ) 1 . 5 x l O l 6cm-3. 
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0 10 20 30 40 50 60 70 80 90(T.°K.) 

FIG.10. Distr i b u t i o n of electrons among (a) the ground state, (b) the 
conduction band, and (c) the excited states. The arsenic concentrations 
are I ) I.Oxlol5 c m-3, 2) 4 .0xl0 l 5cm-3, and 3)1.5xlO l 6cm- 3. 
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which describes the variation of n with temperature and impurity concentration. 

( i i i ) Temperature Dependence of the Half-width due to the Linear and the 

Quadratic Stark Effect. 

For the l i n e a r Stark effect 

A u J = s F = s F 0 ( 3 111-15 

and hence i n units of frequency, the h a l f width of I( ZS.CO ) i s given by 

/?,(AOo)= S Fo h(6) 111-16 

For the quadratic Stark effect 

A 6 0 = tF Z= * F o f 3 * 111-17 

and hence i n units of frequency, the half-width of l ( A6o ) i s given by 

hK(*u>) = t F0*h%(B) H i - i s 

Taking f o r s i l i c o n the d i e l e c t r i c constant £ / £ 0 = 12 one finds using 
Eq. I l l - 9 

/= = .:W(e/v7r6)Ni = 3-/3 x 10 A/i voit^-1

 m_i9 

where i s i n units of cm - 3. 

Using Eq. I I I - ( l 6 , 18, 19) and Fig. 8 and 9 the curves for 
hi(o«o)/a a n d : h 2 ( /uo )/t 

as a function of temperature for three impurity 

concentrations have been calculated (Fig. 11 and Fig. 12). This temperature 

dependence must be compared with the temperature dependence of the h a l f -

width of the observed s t a t i s t i c a l Stark broadening (Fig. 6)L I t i s seen that 
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FIG.II. Half-widths i n units of the strength parameter s vs. temperature 
for the l i n e a r Stark effect f o r three arsenic concentrations N D . 
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I I I I I 1 1 ; I I 

0 10 20 30 40 50 60 70 80 
Temperature (°K) 

FIG.12. Half -widths i n units of the strength parameter t vs. temperature 
f o r the quadratic Stark e f f e c t , f o r three arsenic concentrations N . 
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the quadratic Stark effect's temperature dependence compares more favorably 

with the observed than does the l i n e a r Stark effect's. 

I t should be noted that only q u a l i t a t i v e comparisons can be made, 

due to uncertainty i n the walidity of the extrapolation of the screening 

parameter cf (Fig. $). I t i s assumed that the h ( (3 ) obtained through the 

extrapolation does not deviate much from the true value of h ( (3 ). 

I t i s interesting to make one quantitative comparison. The 

experimentally observed s t a t i s t i c a l Stark broadening increases i n the 

r a t i o of 1:3.6:11 f o r respectively the concentrations 1 x lO^- 5, 4 x 1 0 ^ 

and 1.5 x l O * 6 impurities/cc at 75°K. The th e o r e t i c a l curves of s t a t i s t i c a l 

Stark broadening yieldr the increase i n the r a t i o of 1:1;8:3;0 for the 

l i n e a r Stark effect and 1:3.2:9.4 f o r the quadratic Stark effect under the 

same conditions. This again'indicates that the quadratic Stark effect i s 

responsible f o r the s t a t i s t i c a l Stark broadening. 

Since the effec t i v e mass Hamiltonian i s invariant under inversion 

and there are no accidental degeneracies such as the 2s, 2p degeneracies 

i n hydrogen, the f i r s t order Stark effect vanishes. However, the f u l l 

Hamiltonian of the impurity problem has only tetrahedral symmetry and i s 

not invariant under inversion. As a r e s u l t , i f the effec t i v e mass theory 

i s seriously i n error, states belonging to the representations T]_, T2 

and r 8 can have an appreciable f i r s t order Stark effect. This might 

possibly be of significance only f o r the acceptor ground state ( P 8) 

i n s i l i c o n (Kohn 1957). Hence one can say, on. the basis of theory,and 

the observed experimental evidence, that only the quadratic Stark broadening 

occurs i n the broadening of donor impurity l e v e l s due to the s t a t i s t i c a l Stark 

effect. ; 



33 

3. Concentration- Broadening 

For low impurity concentrations the impurity electron wave functions 

of one impurity atom are not affected by the presence of other impurity 

atoms. However, above a certain impurity concentration the wavefunctions 

overlap appreciabley forming impurity bands. Baltensperger (1953) has 

predicted the concentrations f o r the formation of these bands. 

For computing the edges of the l s, 2 S and 2p bands, Baltensperger 

used a simple hydrogenic model i n conjunction with the c e l l u l a r method. 

The medium i s characterized by the eff e c t i v e mass m of a conduction 

electron, and by the d i e l e c t r i c constant ~K. This involves assuming the 

v a l i d i t y of the eff e c t i v e mass Schroedinger equation 

(^/Z^)v2f + ( e y / C r + Ey,)Y = O n i - 2 0 

within a sphere of radius rs related to the density of impurities ND by 

(w/<?)r/~ I/A/D M _ 2 1 

The general solution of Eq. III-2Q has the form 

'$rni'vrv = R-n^(r) ^ ^ C O d 5 ) 111-22 

the hydrogen eigenf unctions. The energy i s given by 

E n = -rr^^f/7jC'K7L = -ef/ZKdUrt 111-23 
i 

where, i n the c e l l u l a r method, n i s to be determined by boundary conditions, 

a* i s the eff e c t i v e Bohr radius. 

Since, with increasing impurity concentration, the 2p wavefunctions 

overlap before the Is wavefunctions do (Fig. 13) the concentration broadening 
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of the t r a n s i t i o n studied w i l l begin at the concentration for;which the 

2p wavefunctions overlap. Baltensperger (Fig. 13) gives the onset of 2p 

concentration broadening, as occuring at 

rs - /z a* I I 1 - 2 4 

Using the observed ionization energy of 11.1 raev. (Bichard and 

Giles 1962), K = 12 f o r s i l i c o n , and n = 2 i n Eq. (111-23), a value of a* 

for the 2p Bohr orbits was found to be 13A°. From Eq. (111-24) and 

Eq. (111-21), the onset of concentration broadening occurs at an impurity 

concentration of 6 x lO-"-** cm - 3. I f one had calculated a* from 

a*= l i'/Ve^ m _ 2 5 

thfc value now obtained f o r the c r i t i c a l concentration would be greater 

than 6 x 1 0 1 6 cm - 3; The observed onset of concentration broadening oceured 

between concentrations of 5 x lO-^ cm - 3 and 1 x 1 0 ^ em - 3 (Fig.. 6) which 

i s i n closer agreement with the former t h e o r e t i c a l estimate. The l a t t e r 

method, for calculating a , was not used since i t did not lead to the 

correct ionization energies. 

Baltensperger assumes that the impurities form a regular close 

packed l a t t i c e , to f a c i l i t a t e tiis calculations. A more reasonable arrange­

ment of the impurities might be a random one. K. Golbow (1963) has shown 

that a random arrangement of impurities decreases the eff e c t i v e radius by 

a factor of 0.7. Also iru.this"case the c r i t i c a l concentration becomes 
16 —3 

2 x 1 0 i D cm" , i n better agreement with the observations. 
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4. Strain Broadening 

For arsenic-doped s i l i c o n the o p t i c a l l y active excited l e v e l s 

belong to the vector representation T;L of the tetrahedr&l group. They are 

threefold degenerate i n the absense of strains. For a shear s t r a i n s, 

a r i s i n g from i n t e r n a l dislocations, the degeneracy of the l e v e l s are s p l i t 

(Kohn 1957) by an amount 

A E =- s e in-26 
Hence, S i s the shear s t r a i n and, €^ the shear deformation potential of 

s i l i c o n . The shear s t r a i n i s given by Kohn as 

S = (frZ)x lO~aCrrx.j U I _ 2 7 

where n i s the disloc a t i o n density per cm2. 

For the ground state the f i r s t order s h i f t vanishes from general 

symmetry considerations. The second order energy s h i f t is)given by 

<fE®= - s a e y ^ IH-28 

where A = 1 0 - 3 ev (Kohh 1957). 

The s i l i c o n used has a dislocation density of 5 x 10^ giving 

r i s e to a s t r a i n of 2 x 10 -^. Using a shear deformation po t e n t i a l , calculated 

to be 11 2 l (Wilson, D.K. and Feher 1961), gives a s p l i t t i n g of 12 x 10 6 ev. 

and a negligble ground state s h i f t . The.strain broadening w i l l be of the 

order of .022 mev. This value was subtracted from the zero concentration 

half-width. The remainder i s due to phonon broadening. 

5. Phonon Broadening 

Consider the electron of a hydrogen-like impurity atom, being 

excited from the ground state=* to an excited state £ . This electron may 
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return d i r e c t l y to the ground state by radiating a photon. However, there 

Is a prob a b i l i t y that the electron can be excited to another state 'A. by 

the absorption or emission of a phonon, and return to the ground state v i a 

phonon emission. This mode of de-excitation decreases the l i f e t i m e of the 

excited state £ , and hence contributes to the energy half-width. This 

i s c a l l e d phonon broadening. 

The theory of Nishikawa (1962) gives the zero phonon half-width 

broadening of an excited state 0 due to another excited state 7i as 

r= (e^ T - l ) 

r :T p <Tx 

^ 111-29 

111-30 
111-31 

and 
T c - tvyeiy/ak HI-32 

i s the c h a r a c t e r i s t i c temperature, above which the half-width starts 

increasing 

9&QL)=Jdr* Fpfc)* F*(r)eVP . 1 1 1 - 3 3 

F(r) being the eigenf unction of the unperturbed electronic Hamiltonian, 

which w i l l be approximated by simple hydrogenic functions. 

The other parameters have the following meaning: 

= wave number vector of the phonon 

V = sound v e l o c i t y i n s i l i c o n = 8.3 x 10^ em sec--*-

€ = deformation potential constant = 15 ev 
— 3 

J> = density of s i l i c o n = 2.33 g cm 

k = Boltzmann's constant = 1.38 x 10 - 1 1^ erg d e g - 1 
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For the t r a n s i t i o n studied, the ground state! s l i f e t i m e i s long 

compared to the excited staters' l i f e t i m e , allowing one to neglect the ground 

statets contribution to the half-width. I t i s seen from Fig. 14, that the ' 

half-width of the l s ^ - 2p Q t r a n s i t i o n starts increasing at 'a temperature of 

25 i 5°K. From Eq. (111-29, 30, 31, and 32) t h i s phonon broadening can be 

attributed to a state l y i n g 3 mev below the 2p Q state. Neither an experi­

mentally observed l i n e , nor a t h e o r e t i c a l l y predicted l i n e l i e s i n t h i s 

region. I t i s predicted from the effective mass theory (Kohn 1957) that 

a 2s state l i e s 2.1 mev above the 2p£State. The same theory predicts the Is 

state to l i e at 2 9 l l mev; whereas, the Is state has been observed to l i e 

at 53.5 mev, a depression of 24.5 mev. Corrections to the effective mass. 

theory have been made by Kohn (1957), which depress the Is l e v e l to agree 

with the observed energy. I t i s proposed that i f the same•correction 

were applied to the 2s state, a depression of approximately 5.1 mev would 

be reasonable. Consequently, the 2s l e v e l , l y i n g 3 mev below the 2p 0 l e v e l 

would be i n agreement with experiment and theory. For the purpose of 

Simp l i c i t y , the 2sx, 2s2, and 2s3 are considered as a s i x f o l d degenerate 

2s state at 14.1mev. 

From Eq. (111-30,32) the c r i t i c a l temperatures associated with 

the excited states 2p* ( l l . l mev) and 2s (14.1 mev) are respectively 26°K 

and 58°K. A l l other states s t a r t contributing at higher temperatures. In 

Fig. 14 the calculated contributions of the 2s and 2pl states to the h a l f -

width of the lS]_ - 2p Q t r a n s i t i o n are plotted vs temperature. The sum of 

these contributions i s i n qua l i t a t i v e agreement with the observed results to 

80°K. At 80°K, the multiphonon processes and the higher excited states 

contribute to the observed half-width. Qualitative agreement between the 

theory of Nishikawa and the results i s good. 
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Temperature (°K.) 

FIG. 14. Extrapolated zero concentration half-widths, with s t r a i n 
broadening removed represents, the phonon broadening of the 
l s i — 2p 0 absorption l i n e . The 2s and 2p 0 contributions are 
given from theory 
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40 

A s h i f t of the centre of the peak with temperature to higher energies 

! Was observed. The results indicated that the s h i f t was concentration 

independent over the impurity concentration range,9 x 10^ to 4 x 10^ cm - 3. 

The s h i f t f o r each concentration (..9 x lO^"5 cm - 3, 1.7 x 1 0 1 5 cm"3 and 

4.0 x l O l 5 cm-3) was determined r e l a t i v e to the peak position observed at 

4.2°K f o r the three temperatures, 53°K, 77°K, and 90°K (Fig. 15). I t i s 

assumed that the 4.2°K peak position i s independent of the impurity concentra­

t i o n . To minimize the p o s s i b i l i t y of any errors i n the observed s h i f t 

for one impurity concentration, consecutive runs at the four temperatures 

were carried out under i d e n t i c a l conditions. 

A possible explanation of the temperature dependent s h i f t of 

peak position might be contained i n the electron-phonon interaction as 

given i n the theory of Nishikawa and Barrie (1962). 
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FIG. 15. S h i f t of peak position with temperature r e l a t i v e to the position 
o f peak at 4.2°K 
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CHAPTER IV  

Conclusion 

The study of the arsenic-doped s i l i c o n l i n e widths, carried out 

in t h i s t h e s i s , show that fcur effects contribute s i g n i f i c a n t l y to the true 

half-widths after l i n e d i s t o r t i o n by the f i n i t e spectrometer s l i t width i s 

accounted for. The four e f f e c t s , contributing s i g n i f i c a n t l y , to the h a l f -

widths, are, s t a t i s t i c a l Stark broadening, phonon broadening, concentration 

broadening, and broadening due to inte r n a l strains. To the approximation 

that the absorption l i n e s (corrected f o r spectrometer broadening) have 

lorentzian p r o f i l e s , the half-widths are just the sums of the widths for the 

four independent broadening mechanisms whfen each i s considered by i t s e l f . 

In a semiconductor, containing a random d i s t r i b u t i o n of neutral 

and ionized impurities, different absbrMngiimpufitiefe:Lwill::he i n different 

e l e c t r i c f i e l d s due to the surrounding ionized impurities. From theory 

(Kohn 1957)these f i e l d s W(F) should be expected to give r i s e to appreciable 

second-order Stark s h i f t s ( da E = ~t / r A ) o f the excited states, resulting 

i n a broadening of the t o t a l absorption l i n e s . The contribution to the 

half-width from t h i s effect,was obtained from a knowledge of the f i e l d 

strength p r o b a b i l i t y function #('F). Ecker (1957) computed W(F) including 

the effect of screening by mobile charge c a r r i e r s . From an extrapolation 

of h i s results and the calculated temperature dependence of the ionized 

impurity concentration, the calculated quadratic Stark broadening was 

shown to be ch a r a c t e r i s t i c of the rapid r i s e of the half-width above 50°K. 
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At very low impurity concentrations, an essential contribution 

to the half-width i s expected to resul t from the f i n i t e l i f e t i m e of the 
i 

excited state due to the electron-phonon interactions. Theoretical calculations 

show that the half-width f o r t h i s process i s given by 

The calculated value of / 0 depends on the choice of the chara c t e r i s t i c 

temperature TGl The best agreement between t h i s theory and the data was 

obtained f o r Tc = 26°K and /f0 = 7.0 x 10-5 ev. For these values the theory 

suggests that the l i f e t i m e of the state responsible for the absorption l i n e 

i s mostly influenced by a state about 3.0 x 10~ 3 ev.below i t . For t h i s 

reason the 2S state, which i s t h e o r e t i c a l l y predicted to be 2.3 mev aboye: 

the 2po state, i s believed to l i e 3.0 x.10 - 3 ev below the 2p 0 state.. At 

higher temperatures, the 2s state doesn't f u l l y account f o r the phonon 

broadening. The electron-phonon interaction of the other excited states 

and the multiphonon processes are believed to contribute to broadening at 

higher temperatures. 

In addition, an assumed temperature independent contribution 

to the half-width of 2.2 x 10"^ ev can be expected from int e r n a l strains due 

to dislocations, (corresponding to a dislocation density of about 5 x 10 4 

d i s l o c a t i o n l i n e s per cm2). 

A c e l l u l a r c a l c u l a t i o n , when modified to f i t the assumption of 

a random d i s t r i b u t i o n of impurities, gives an order of magnitude estimater 

for the onset of concentration broadening at low temperatures. Broadening of 

a 2p state i s predicted to st a r t at about 2 x 10^6 impurities per em3, i f 

one replaces the mean spacing ( r s ) between impurities by an effective 
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mean spacing of 0,7 and takes a* equal to 13 °A. This value of a* 

gives the experimental binding energy of 11.1 x 1 0 s 3 ev f o r t h i s state. 

A concentration independent s h i f t i n peak position to higher 

energies was observed with increasing temperature. I t i s proposed that the 

electron-phonon interaction, considered i n the theory of Nishikawa and 

Barrie (1962) to explain phonon broadening, could possibly account f o r t h i s 

s h i f t , i f the temperature dependent electron-phonon interaction matrix-

elements were evaluated. (This w i l l be presented i n a fo r t h coming paper 

i n C. J. P.). 



45 

Appendix A: D i s t r i b u t i o n of Electrons f o r an N Type Semiconductor. 

In order to calculate the electron d i s t r i b u t i o n we assume that 

the number of acceptor impurities and free holes i s n e g l i g i b l e . There are 

N N donor impurities and each impurity can accept one electron of either 

spin or no electron at a l l . 

The density of electrons ( S h i f r i n 1944) i n energy state q i s 

given by 

- V W> %% ^f>l(EF-B% )/kT]J/+Z p e^L(EF-Es))kTj A_T 

and the density of free c a r r i e r s i s given by 

nnf. = A/c e%p{(EF-Ec)jAT A-2(a) 

= ?s e * p * T A- 2(b) 

assuming that ( E F - E C)/KT » 1. For n < 0.4 N £ f o r A-2(a) 

(Smith 1958) t h i s approximation holds, as i n the case f o r calculations i n 

t h i s thesis. Ep i s the Fermi l e v e l , E c i s the energy of the lowest l e v e l 

i n the conduction band, E q i s the q th energy l e v e l of the impurity 

spectrum, q^ i s the degeneracy of the q t h l e v e l , E c i s the energy of 

the lowest l e v e l i n the conduction band .'..-

The density of states i n the conduction band N C i s given by 

A/c = 2™/*7nrrtcA-S (lwkT)*'x A-3 
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where the energy surfaces i n s i l i c o n are described by e l l i p s o i d s of 

revolution, with e f f e c t i v e electron masses being m L and m̂ , . Mc i s the 

number of equivalent minima i n the conduction band. 

To calculate nf, we eliminate Zs e /<• p ["#<.- ̂ /kT*] between 

A -2(b) and A-I obtaining 

r)% = NDfy e*.f>[(£r-E%)/AT\l^/?>f A - 4 

^ v f f% ex.pE(£/r-F%)/'ATJ 

From A-2(a) eif>(EF/£T) = (Ttf/Nc)zX/>( £C/AT) 

A - 5 7 i % = fay**) j , e*/>L(&-Ft)/ATj • 

Since -7?̂  + T)f = A/& 

r?f

z expL-E%lkT]exp[Ec/kT]+-/Vcv)f-^N0±0 A_6 

Take E c = o as o r i g i n and solving f o r nf 

- 7if* z y% e *f>E-E% /kTJ 

We now know the number of free c a r r i e r s . 

The bound electrons w i l l be given by 

A-8 
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For the excited states, Boltzmann s t a t i s t i c s also apply i n the temperature 

range used ( J> 60°K. )• 

The p r o b a b i l i t y that a state at an energy E q and of degeneracy i s 

occupied at temperature T i s 

P% - 4f%e*/>CE%/*Tj 

Summing over a l l bound states that are occupied, gives 

therefore, 

and 

A-9 

A-10 

A - l l 

A-12 

s 

The series expansion was l i m i t e d to a few terms. The unwanted terms were 

eliminated through the c r i t e r i a 

72s- - (Gz-fyz.ytTJ » / A_13 
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