A
LABORATORY
and
CLINICAL STUDY
On

VITREOUS FIUGROFHOTOMETRY
 by

LPANG, KIAN tong
B. Sc., The University of Toronto, 1983
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in
THE FACULTY OF GRADUATE STUDIES
Department of Physics
We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
April 1986
(c) Pang, Kin Ting, 1986

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of PHYSICS

The University of British Columbia 1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date $30^{\circ n}$ April 1986

Abstract

The optical, electronic sensoring and data acquisition systems were assembled and the software developed for a vitreous fluorophotometer which was then calibrated and used to quantify the integrity of the blood-retinal barrier in a pilot study of diabetic retinopathy and multiple sclerosis compared to normal controls.

Breakdown of the blood-retinal barrier was quantified by measuring fluorescence in the vitreous at standard time intervals over one hour following intravenous injection of sodium fluorescein. The plasma dye concentration was measured throughout the procedure. Leakage was expressed as a penetration ratio of the average concentration at 3 mm from the retina to the total plasma dye concentration. The results from diabetic subjects showing well defined stages of retinopathy severity demonstrated the proper functioning of the instrument by shoving values in approximate agreement with retinopathy severity, thus confirming the findings of previous observers.

Of 16 multiple sclerosis subjects, results showed no significant difference between activity categories or level of current activity. Abnormally high penetration ratio vas associated vith active periphlebitis. A new finding was the presence of abnormally high leakage in 2 subjects showing no ocular signs of disease. Subjects without or with inactive periphlebitis showed breakdown of the blood-retinal barrier comparable in severity to diabetic subjects showing no or mild retinopathy. The vitreous diffusion constant of the dye for normal controls and multiple sclerosis subjects was not significantly different from that in water.

TABLE OF CONTENTS

ABSTRACT 11
LIST OF TABLES v
LIST OF FIGURES vii
ACKNOWLEDGEMENT ix
Chapter I
INTRODUCTION 1
1.1 Vitreous Fluorophotometry 1
1.2 Blood-Retinal Barrier 3
1.3 Applications 4
1.4 Multiple Sclerosis 4
1.5 Aim 6
Chapter II
THEORY AND ALGORITHMS 7
2.1 Systematic Errore 8
2.2 Theory 12
2.3 The C-V Group 18
2.4 The L-A Group 21
2.5 Other Methods 24
Chapter III
THE APPARATUS 27
3.1 Sodium Fluorescein 27
3. 2 The Hardvare 30
3. 3 Other Material 39
3. 4 The Software 42
Chapter IV
CALIBRATIONS AND PROTOCOL 57
4.1 Instrument Preparation 57
4.2 Subject Preparation 63
4.3 Blood-Plasma Preparation 67
Chapter V
ANALYSIS AND DISCUSSION 68
5.1 Classifications 68
5. 2 F -Numbers 70
5.3 Intra-ocular Lengths 72
5.4 Plasma Curve-fits 75
5.5 LLoD 77
5.6 Autofluorescence 78
5.7 Profiles 82
5. 8 Diffusion Constant 89
5.9 Penetration Ratio 95
5.10 LUND. BAS Results 104
5.11 Other Parameters 106
Chapter VI
CONCLUSION 109
APPENDIX A
COMPUTER PROGRAMMES 111
A. 1 DAS. PRN 111
A. 2 SCANMENU. BAS 113
A. 3 VITSCAN. BAS 114
A. 4 PLASCAN. BAS 116
A. 5 BATCHRUN. BAS 117
A. 6 REDUCE. BAS 118
A. 7 B/G. BAS 119
A. 8 MINUS. BAS 120
A. 9 SUDATA. BAS 120
A. 10 BLOOD. BAS 123
A. 11 C/Vaz. bas 127
A. 12 SLOPES. BAS 130
A. 13 PLOT. BAS 133
A. 14 DRAW. BAS 135
A. 15 LUND. BAS 137
A. 16 File Formats 140
A. 17 Sample CONSENT FORM 142
APPENDIX B
material used 143
B. 1 Electronics 143
B. 2 Equipment 144
B. 3 Model Eye 145
APPENDIX C
CALIBRATION RESULTS 146
C. 1 Pod-DAS 146
C. 2 Logarithmic Amplifier 148
C. 3 pH Dependence 149
C. 4 R/M-Log Amp-DAS 151
C. 5 Attenuation 153
C. 6 Performance Data 156
C. 7 Model Eye Scan Profile 157
APPENDIX D
GLOSSARY 158
APPENDIX E
abBREVIATIONS USED 160
REFERENCES 162

LIST DFTABLES

1. Average F-numbers using a
Gullstrands emmetropic model eye. 17
2. Distribution of subjects. 68
3. Detail subject classifications. 69
4. Average F-numbers and their S.D. 71
5. Average lengtha of the intra-ocular media. 72
6. Significance levels for intra-ocular lengths tests. 74
7. Results of linear, least-squares fit of axial length, and lens thickness in mm to the subjects's age. 74
8. Plasma fits. 75
9. Effect of the first blood sampling time, t:i. 77
10. Average LLoDs and S. D. B. 77
11. Lens autofluorescence, S.D. vs age. 80
12. Autofluorescence, S.D. vs DRP states. 80
13. Autofluorescence, S.D. vs MS states. 81
14. D averaged over all measurement scans. 90
15. Tests of D vs age and duration. 91
16. Diffusion constant, D by sex-disease states. 91
17. PR3 averaged over all 55-70 minute scans, after background subtraction only. 96
18. PR3 Average +/- S. D. of the various groups. 98
19. Significance level to reject H^{\bullet} between diabetic and normal groups. 100
20. Significance level to reject $H^{\mathbf{0}}$ between MS and normal groups. 101
21. Significance level to reject H^{*} between diabetic and MS states. 102
22. Results of LUND. BAS. 105
23. Electronic components of blue circuit board of the DAS.. 143
24. Results of Pod calibrations. 147
25. Results of Log Amp test. 148
26. Water and buffer sample differences. 149
27. Calibration results of the $R / M-\log A m p-D A S$. 152
28. Concentration and gradients of attenuated samples. 155
29. Performance characteristics of the VF system. 156

LIST OFFIGURES

1. The "diamond" is the intersection of the beam and the probe. 2
2. Diamond dimensions and effecte. 8
3. Diamond displacement with slit lamp translation. 16
4. Variation of F with slit lamp movement. 17
5. Different acanning axes. 19
6. Structural formula of Sodium Fluorescein. 27
7. Excitation and de-excitation peaks of fluorescein in blood. 28
8. BLOCK Diagram of the VITREOUS FLUOROPHOTOMETER. 31
9. The Slit Lamp. 32
10. Excitor filter holder-slide and intensity monitor. 34
11. Pod asembly and circuit. 35
12. Pin diagram of the blue circuit board in the DAS. 36
13. Filter transmission profiles. 40
14. Filter Overlap. 41
15. FLOWCHART for REDUCE. BAS. 48
16. Overhead view of the angles at which the slit lamp vas set for LEFT eye scans. 62
17. Localizing techniques. 64
18. Flowchart of the scanning procedure 66
19. Plot of F -number results. 71
20. Intra-ocular lengthe. 73
21. Autofluorescence. 79
22. Bolus effects. 83
23. Sample profiles. 84
24. Comparison of MS profiles. 87
25. Comparison of diabetic subjects' profiles. 88
26. Overall comparizon. 89
27. Diffusion constant vs age. 93
28. Diffusion constant vs duration. 94
29. Penetration Ratio. 97
30. Cross-section of the model eye. 145
31. Calibration curve of the Pod-DAS. 146
32. Performance of the Log Amp. 149
33. pH dependence. 150
34. Calibration curve for $R / M-L o g ~ A m p-D A S$. 151
35. Refraction at sample cell surfaces. 153
36. Attenuation in sample solutions. 154
37. Model eye sample profile. 157

ACKNOWLEDGEMENT

```
LAMENT
"Pangs of hunger, Pang?..."
No!
Pangs of loneliness.
Pangs of being different;
Pangs of behaving differently.
Pangs of being misunderstood.
Pangs of having different ideas;
Pangs of having different ideals.
Pangs of being misunderstood.
Panga of being in a different world.
Pangs of wanting to be the same; yet,
Pangs of needing to be understood to be different.
Pangs of being misunderstood.
Pangs of alvays different interpretations.
Pangs of very different experiences;
Pangs of a different upbringing;
Pangs of being misunderstood.
Pangs of a small vorld; but,
We are of this one world.
It hurts.
```

My Father's hopes are my reality.
Thank you, my FRIENDS.
Art thou for something rare and profitable?
Wouldst thou see a truth within a fable?

```
From "A Pilgrim's Progress"
                                    by John Bunyan.
```


I. INTRODUCTION

1.1 Vitreoue Fluorophotometry

Vitreous Fluorophotometry (VF) is a clinical research technique first described by Maurice in 1963 [1]. Its objective is to provide a non-Invasive, standardized, reproducible procedure for examining the integrity of the blood-retinal barrier. Initial uses included the investigation of diabetic retinopathy (DRP), a retinal vascular disease which can cause blindness. Several other retinal vascular diseases have subsequently been investigated.

VF is a method of sampling the vitreous close to the retina to assess the state of intactness of the tissue. In the procedure, a fluorescent dye called sodium fluorescein is injected intravenously into a subject and its entry into the vitreous is measured by projecting a beam of light into the vitreous compartment and monitoring the resulting fluorescence. A profile of the amount of fluorescence is established by scanning along the axis of the eye. By relating the intensity of fluorescence to the amount of dye present at each position along a scan, the total mass of fluorescein that has entered the vitreous is then a measure of the permeability of the blood-retinal barrier.

The basic components of the fluorophotometer are:
a) A source of focussed light to excite the dye.
b) A probe to detect the amount of fluoreacence.
c) A photomultiplier/radiometer system to convert the signals.
d) A data acquiaition system to store the converted signals.

The light source usually employed is a tungsten bulb that can be varied in intensity. Its output into the eye is directed through a focuseing system of lenses, and a slit.

The probe consists of a fibre optic conduit that is placed at the focus of the slit-lamp microscope objective [2]. It is positioned at an angle to the beam so that it is focussed on a crosssection of the beam, detecting the fluorescence from the intersecting" volume called the "diamond". (See Figure 1.)

The fibre optic probe conducts the collected light to a radiometric detection system which then outputs to a data acquisition system. Recording and/ar data-storing device(s) then store the converted signals.

Figure 1. The "diamond" is the intersection of the beam and the probe.

1.2 Blood-Retinal Barrier

In the human eye, there are two barriers to the transfer of molecules into and out of the vitreous and aqueous media. These are the blood-aqueous barrier ($B A B$) and the blood-retinal barrier (BRB). The BRB is a situation of restricted permeability between the blood and the retina. It functions at the level of the retinal pigment epithelium (RPE) and the retinal vessels. Restricted permeability serves to maintain the regulated physical and chemical environment of the retinal neural tiseues, i.e., homeostasis of the retina.

The RPE, considered the outer BRB [3], forms a uniform, continuous, single layer of cells united laterally by zonulae occludens. (See Appendix D.) The retinal veasela forming the inner BRB [3], are lined by a continuous layer of non-fenestrated endothelial cells which are joined near their luminal aurfaces by zonulae occludens, a junctional complex in which there is complete fusion of the outer leaflet of neighbouring cell membranes. The integrity or "tightness" of the BRB may be compromised by disease processes which affect any of its components - the RPE, the retinal capillaries, arteries and veins.

In the present study, VF instrumentation and analysis techniques were developed and applied to an investigation of the BRB in multiple sclerosis (MS), an application that had not previously been investigated. The results were compared to normal controls and graded severities of DRP.
1.3 Applicatione

In VF studies of diabetes mellitus, researchers found abnormal leakage of dye even when there vas no visible DRP [4,5]. This suggested that VF would be useful to detect the onset of the breakdown of the BRB. Diabetic persons with well established DRP showed large amounts of the dye in the vitreous. These results implied that VF could possibly be used to monitor the leakage component of subclinical retinopathy progression to severe stages.

The technique has since been used to study other retinal vascular diseases, for example, hypertension and pars planitis [6], and the effects of drugs such as sulindac which has recently been found to be effective in reversing abnormal early leakage in diabetes [7].

Abstract

1.4 Multiple Sclerosis

The limited understanding of the disease processes in MS arises from the lack of good correlations between relapses and disease progression. This imposes difficulty in the development of an effective treatment.

The perivenular cell infiltrate in the cerebrum that has been described as an early event in the formation of an MS plaque [8], appears aimilar to the retinal perivenular infiltrate found in the eye. In laboratory studies of tissue preparations (immunoperoxidase), it was found that there was abnormal retinal venous permeability in areas with and without viaible periphlebitis [9], and that such effects were much more frequent and extensive than previously considered. Engell and Andersen [10] estimated that almost all MS patients
would develop retinal periphlebitis at some point in their lifetime. If this is correct, it can be expected that following the onset of periphlebitis, there is breakdown of the BRB (to molecules much larger than fluorescein) which persists despite clinical and histopathologic resolution of the lesions.

Clinically, retinal periphlebitis in MS may affect one, several or all of the retinal veins and appears either as an active lesion with patches of fluffy white haziness surrounding the veins or as an inactive venous sclerosis when there is halo sheathing. The course is mild, asymptomatic and transient with activity lasting weeks, months or up to two years. Resolution leaves no sequelae or else replacement sclerosis. Inflammatory activity can be confirmed clinically by fluorescein angiography photography which shows leakage, whereas inactive venous sclerosis shows no leakage [11,12]. Photographic information, however, is limited by the sensitivity of the emulsion and would not show a subtle breakdown of the BRB that might persist after resolution of inflammation.

A significant proportion of MS patients with active periphlebitis also show abnormal brain scans when compared to those with inactive periphlebitis [13]. An explicit relationship between the activity at the two sites - the BRB and the blood-brain barrier with regards to relapses and disease progression has not been investigated.

1. 5 Aim

The objectives of this study are the following:
(1) To use VF as a sensitive system to study possible BRB changes in MS cases showing active and inactive periphlebitis with regard to quantitative differences in leakage. A parallel study on persons with diabetes is conducted as a control on the performance of the VF system.
(2) To document the frequency and severity of leakage in relation to the clinical grading of the certainty of the diagnosis, and in relation to the the standard cinnical activity categories with the aim of establishing relationships between the ocular and central nervous system activities, particularly relapses and disease progression.
(3) To assess the utility of the procedure as a non-invasive technique in the diagnosis of MS, and as an indirect monitoring method of grading the central nervous system activity.

In this chapter, the details of the VF technique are elaborated. The algorithms proposed by two groups of investigators were closely followed in this experiment in order to compare results. The methods of these two groups are detailed in the following sections.

The first section explains the "systematic errors" inherent in each VF scan. These errors arise from the limitations of the measuring instruments, as well as from the complex optical, biological syatem of the human eye. Thereafter, there is an explanation of the earlier, more basic models used in analysis.

The second set of sections discusses the two more elaborate methods of analysis that vere used in this study. The algorithm to accommodate the "systematic errors" was proposed by J.G. Cunha-Vaz and co-workers and is referred to as "The C-V Group".** The state of the BRB is then embodied in a single number called the Penetration Ratio. "The L-A Group" described a more mathematically involved solution to find the Permeability and Diffusion coefficients. This algorithm is due to H. Lund-Andersen and co-workers.

In the development of the VF system, alterations to the protocol and the algorithm necessarily occur because of differences in procedures and instrumentation. Some modifications to the methods of the two groups are discussed in Section 2.5.

[^0]2.1 Systematic Errors

Figure 1 shows that the "diamond" is of finite dimensions. As It is moved across an interface from a compartment of high dye concentration into a compartment without dye, a non-zero signal is obtained from the empty compartment. One such interface is at the choriod-retina (CR) and the vitreous, where this non-zero signal effect is especially significant during the first few minutes after the introduction of fluorescein into the blood.

This "false" signal is due to the depth or length of the diamond as illustrated below. It persists for some distance into the dye-free compartment. This effect is sometimes called the "tailings" or "spread function" due to the associated peak because its strength depends on the peak signal at the interface [14].

$$
\begin{aligned}
& V=\frac{\theta_{1} 25 x x^{2} d}{\sin \left(\theta_{1}+\theta_{2}\right)} \\
& D=\frac{d+\cos \theta_{2}+3+\cos \theta_{1}}{\sin \left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$

b. The "tailings" due to the
choroid-retinal peak $[18]$.
b. The "tailings" due to the
choroid-retinal peak $[18]$.
a. Estimates of Axial Resolution and diamond volume.

Figure 2. Diamond dimensions and effects.

There are other sources of "false" signals, especially very close to the retina. One effect is halation [15]. When focussed on the retina, the edges of the slit are not distinct. This is due to the transparent depth of the retina (about 0.5 mm), and to scattering. There is also a possible dependence on retinal pigmentation [16].

There may be signals from light reflected off the walls of the vitreous cavity although it is unlikely that, away from the retina, the reflected light intensity can be sufficiently high, or be in the direction of the probe. This is also apparent from the relative volumes of the diamond and the vitreal cavity.

As tailings are strongest near the retina, the solution is to consider data that are collected at a more remote point where the spread function is small. However, the retina and its associated CR peak must always be included in any scan as they constitute a reference zero-position by which displacement can be measured.

The distance from the retina within which data cannot be accepted depends on the dimensions of the diamond. The in vivo axial resolution (AR) is defined as the distance from the CR peak where the signal is a small fraction of the peak [14]. The fraction chosen must not be so small that the signal is at the noise level of the detector. A practical definition of $A R$ is the ratio of the signal at a fixed distance from the retina to the CR peak signal [17].

Figure 2a estimates the $A R$ and the volume of the diamond. They depend on the angle between the directions of the excitation beam and probe, the width of the slit, and the diameter of the probe. These parameters must be varied until an optimized AR is attained [18].

Reducing the slit width and/or using a smaller probe diameter need not necessarily result in better ARs, as a reduction of either or both reduces the amount of fluorescence detected. The noise of the detection system then limits the reduction that is possible. However, It is necessary to have aignals distinctly above the noise levels so that the data can be analyzed with greater confidence. Also, a small slit width cannot be measured (i.e., calibrated) with precision. (Refer to Sections 3.2, 4.1 and Figure 17.)

Increasing the angle shown in Figure $2 a$ improves the $A R$ and reduces the volume of the diamond. However, this angle is limited by the diameter to which the pupil of the eye can be dilated. The cornea's curvature and its varying thickness also distort the finite beam and slit, thereby reducing the probe's focus on the beam. The formulae in Figure $2 a$ are therefore approximations as the in vivo dimensions of the diamond cannot be measured directly.

The maximum dilation diameter of the pupil varies among subjects. When the pupil cannot be dilated to a minimum acceptable diameter, the procedure cannot be used. The power of the convex cornea curvature, however, can be offset by a plano-concave lens placed on the cornea. The plane surface of the lens provides a "window" to view the fundus. (See Figure 3.)

Figure 3 also shows the importance of AR. The angle between the beam and the probe in the vitreous varies during a scan. The AR changes with it. (See Figure 2a.) The AR is larger in the posterior vitreous than in the anterior segments. As the larger $A R$ near the $C R$ causes more severe tailings, its optimization is thus vital to the
instrument's performance.
Many biological substances (tissues) are known to be autofluorescent. They fluoresce at certain incident wavelengths. The crystalline lens and the cornea (as vell as the retina) are autofluorescent. They give off false signals in their vicinity (i.e., tailings), as vell as absorb part of the excitation beam which must pass through them.

The autofluorescence of the crystalline lens is unavoidable when the vitreous is to be acanned. It depends on the age of the subject as well as the disease process [19]. Cataracts (or opacities) In the lens also cause loss of input intensity, which limits the application of VF to eyes with clear media.

In the later scans, there is usually a high concentration of dye in the anterior chamber which can cause a loss of incident light due to absorption, or stray aignals from scattering. However, the expected levels of fluorescein in the aqueous at 60 minutes after injection are sufficiently small that they do not attenuate the excitation beam appreciably. (See Appendix C.5.)

Other sources of error are related to the apparatus. In Section 3.1, where the properties of fluorescein are discussed, the problem of filter overlap will be mentioned. Problems in the radiometric system such as dark current noise due to random photon events in the photomultiplier tube (PMT) are minimized by constantly checking instrument zero adjustments.

All the above sources of variation are affected by the intensity of the excitation beam, which affects the amount of scattering
and therefore autofluorescence, tailings, and AR. Hence, optimization of the apparatus involves the adjustment of all parameters which contribute to the quality of the data acquisition.
2.2 Theory

The permeability of the $B R B$ is related to the diffusion of the dye across it. Concentration differences and electric potentials are some of the forces driving the diffusion phenomenon. In the first two hours after the infection of the dye, passive diffusion governs its penetration through the BRB from the blood into the vitreous [20,21]. This means that Fick's Law, in which a concentration gradient is the driving force, can be applied. Hence, to measure the permeability of the BRB, the change in the blood-dye concentration over time must be known. The concentrations of dye on both sides of $B R B$ may then be related by a proportionality constant which represents the permeability.

The simplest mathematical model is that of a plane retina [22]. The equivalent one-dimensional problem is

$$
\begin{equation*}
D * d^{e} c(r, t) / d r^{e}=d c(r, t) / d t \text {. } \tag{1}
\end{equation*}
$$

where the concentration, $c, i s$ position-dependent and time-dependent. r is the distance from the middle of the vitreous. D is the diffusion coefficient which is assumed to the independent of c, and hence, may alternatively be called the diffusion constant.

The assumptions of such a model are that (a) fluorescein can only diffuse towards the middle of the vitreous after penetrating the

BRB plane, (i.e., a one-directional transport process); and, (b) the boundary conditions, vhich are:
(2)
(3)

$$
\begin{aligned}
d c(\theta, t) / d r & =0 \\
D * d c(a, t) / d r & =P^{I} c^{p}(t),
\end{aligned}
$$

where the retina is at a distance a from the mid-vitreous, and c^{p} is the concentration of fluorescein in the blood at time t. Like D, the diffusion constant, P^{1}, the "permeability coefficient" is independent of c, and is referred to as the permeability index [23]. The solution to Eq. 1, using Eqs. 2 and 3 is
(4)

pi relates the total amount of dye in the blood available to penetrate the $B R B$ at the post-injection (p.i.) time, t, to the total amount in the vitreous at t. Mathematically, the numerator is the area under the concentration profile (taken at t) between the midvitreous and the retina. The denominator is the area under the plasma-fluorescein concentration profile up to t.

Several problems arise in solving Eq. 4. The processes at vork at the $B R B$ are not simple. It has been established that active transport phenomena" drive solutes against concentration gradients [20,21]. The forces driving these active transport processes are, in fact, greater than those for passive diffusion by about 31 times.

They come into effect after the first two hours p.i. Unless these outward active processes are to be studied the last scan is usually taken at approximately one hour p.i.

The time taken for the dye to reach the eye depends on the site of injection, e.g., the dye appears at the retina 10 s sooner when it is injected into a carotid artery than when it is injected into a peripheral vein in the arm [24,25]. Injecting the dye slowly or quickly also affects the time of appearance at the BRB and the profile of the bolus which is attenuated even after a fast intravenous injection due to mixing vith blood.

Venous blood samples are dravn throughout the procedure to obtain the plasma profile. The first sample is usually taken after several minutes p.i. and the number of samples required depends on the method of solving the integral, e.g. more samples are needed within the 60 minutes if the area is found using the trapezoidal rule. Assumptions must also be made about the profile between 0 and $t^{(1)}$, the first sampling time when the latter method is used [26].

Curve-fitting techniques may be used in solving the plasma integral. In pharmacokinetic studies [27], it has been found that the time-course of fluorescein in the blood is best approximated by a two-compartment model of mixing. This requires a mode of curvefitting a sum of two negative exponentials to the data $[28,29]$ which includes a fast and a slow decay in the levels of fluorescein in the blood. (Refer to Section 3.1.)

The integral in the numerator in Eq. 4 assumes in its lower limit, that dye penetrating the $B A B$ and dye penetrating the BRB have
not mixed within one hour p.i. [27] Tailings of the CR peak restrict the upper limit of the integral as previously mentioned. However, it can be expected that most of the fluorescein in the vitreous is in the vicinity of the retina as will be explained.

Attenuation of the excitation source by fluorescein in the anterior chamber was briefly mentioned in the previous section. Because of its small volume, the dye quickly fills the anterior chamber by way of the iris and ciliary body. Assuming a uniform distribution (because of its small volume), the attenuation may be expressed in the form of the Beer-Lambert law:

```
c(measured) = c(true) * exp( - b * cA * d ).
```

This assumes that only the concentration, c^{A}, in the aqueous chamber
 segment of the vitreous ladjacent next to the posterior surface of the lens) and lens autofluorescence are not included. b is the attenuation (or extinction) coefficient [18]. This attenuation is less than 10% for $c^{A}<1000 \mathrm{ng} . \mathrm{ml}^{-1}$ at the one hour scan. (See Appendix C.5.)

Figure 3 below shows how rays are refracted at the interfaces in the eye. As the diamond is moved anteriorly along the optical axis, the angles of incidence change at the various surfaces so that $A R$ is also position-dependent.

Figure 3 also demontrates that a 1 -mm translation of the slit lamp does not correspondingly produce a 1-mm diamond displacement in the medium in which it is focussed. It is thus necessary to translate

Figure 3. Diamond dieplecement vith slit lamp translation.
slit lamp translations to displacements of the diamond since the latter are not directly measurable.

Slit lamp translations, d are related to diamond displacements, x, by [30]

$$
\mathbf{x}=F * d .
$$

The "F-number" represents the effects of refraction at each interface. Fitself depends on x. Table 1 and Figure 4 shov the results for a model eye by Krogsaa, et al [30]. Note that F is different in the compartments because there are'fewer interfaces to traverse as the diamond is moved towards the cornea. Also, F>1 in all cases demonstrating the power of the ocular system.

Compartment	Model Eye Distances in mm	Slit Lamp Movements in mm	F-number
Aqueous Chamber	3.60	2.49	1.45
Crystalline Lens	3.60	2.20	1.64
Vitreous Chamber	16.97	11.75	1.44

Table 1. Average F-numbers using a Gullstrands emmetropic model eye. [30]

SLIT LAMP TRANSLATIONS

Figure 4. Variation of F vith slit lamp movement. [30]
2.3 The C-V Group

A simple vay to quantify the permeability of the BRB is to measure the amount of fluorescein in the posterior vitreous segment. Hovever, different instruments with different sensitivities and ARs, measure different strengths of CR tailings. Therefore, a number that quantifies the permeability must be independent of instrument differences.

To offset errors due to CR peak tailings, a background, preinjection scan is subtracted from all other post-injection (p.i.) scans. Lens autofluorescence is also eliminated by this subtraction.

The subtraction is carried out by aligning "landmarks" such as the lens and CR peaks of each scan. This method, hovever, does not consider possible shifts in the $C R$ peak position with time, i.e., the CR peak may not be the true position of the retina in the later scans.

As fluorescein is continuously removed from the blood, a point may be reached when the signal from the posterior vitreous is greater than that from the $C R$ (in high leakage cases). That is, the CR peak appears in front of the retina. Also, due to different fixation or scanning axes, the diatances between peaks may vary.

An alternative method is to align only the retinal position. The retina may be located visually at the start of each scan. This assumes that the starting points of each scan are at the same location on the retina. The macula, for example, may be used as such a starting landmark. An advantage of this method is that errors due to different alignments (shown in Figure $5 b$) are smaller near the $C R$.

Figure 5. Different scanning axes.

Hovever, the data collected from the anterior half of the eye may no longer be analyzed with confidence.

The difficulty in this method is the accuracy with which the $C R$ can be located due to halation, scattering, and the centring of a small slit on a larger probe.

In order to account for the possible effects of $C R$ tailings in the later scans, a "bolus" scan is made vithin 3 to 5 minutes p.i. The dye is not expected to have penetrated the $B R B$ (in most cases) vithin the first 10 minutes p.i. The bolus scan then provides the strength of the CR tailings at specified distances from the retina after the background has been subtracted.

The distance from the retina at which calculations are done is usually the $3-m m$ point. It is expected that the ARs of most instruments are smaller than this [31]. Thus, $C R$ tailings should not be
very significant at this point. Any point where the tailings are not substantial can be chosen. However, to study leakage from the BRB, it is important to scan close to the retina. Therefore, 3 mm from the latter is a suitable choice (after AR considerations).

The CR tailings are subtracted from later measurement scans** only if the former are significant. Ishimoto, et al [32], suggested a criterion for this bolus CR correction with a recommendation for implementation if
(6)
(CR Peak value)/(3-mm Vitreous value) > 10.

The above equation was based on the commercial Fluorotron Master fluorophotometer. The condition may be different for other instruments.

The measurement scans are taken at specified time intervals before the outward transport processes become significant. After alignment and background subtraction, (and bolus CR correction, if necessary), the average value of the dye concentration around the 3mm position is found [32]. The result is divided by the plasma integral up to the p.i. time of the scan. The final result is called the penetration ratio, PR3, of units, s^{-1}.

The advantage of using PR3 instead of P^{2} in Eq. 4, is that the 3-mm value from the retina may be used for comparison between different patients and instruments. There are no problems of $C R$ tailings, and it is not required to integrate very close to the CR.
+- All scans other than the pre-injection and bolus scans are referred to as measurement scans.

The averaging is carried out between the $2-\mathrm{mm}$ and the $4-\mathrm{mm}$ points [32]. This reduces errors usually caused by random fluctuations in the data which can persist, even after subtraction, for a penetration ratio at the $3-\mathrm{mm}$ point, PR3*. The averaging also diminishes the errors due to the alignment problems mentioned before.
2.4 The L-A Group

Much of the scanning and data-correction techniques used by this group are the same as that of the C-V Group (by virtue of similar instrumentation). However, instead of using PR3 or Pi, a more elaborate, mathematical model of the transport of fluorescein in the eye is constructed to estimate the vitreous diffusion constant, D, and the permeability constant, P, of the BRB [33].

The analysis involves solving the diffusion equation,

$$
\begin{equation*}
\nabla \cdot(D \nabla c)=\partial c / \partial t, \tag{7}
\end{equation*}
$$

as a boundary-value problem directly. The difficulty in such an approach is that fluorescein is being continuously removed from circulation. This means that the transport problem is a "transient" one.

Several assumptions of the previously mentioned plane-retina model of the C-Y group apply to this model. (1) Dye from the BAB and from the $B R B$ have not mixed uniformly at 60 minutes p.i. (2) The retina is assumed to be spherical with radius of curvature a so that the diffusion is radially inward, towards the centre of the vitreous chamber [23]. Furthermore, if D is independent of c, then

Eq. 7 reduces to an r-dependence only:
(8)
$(D / r) \cdot\left\{2 \partial / \partial r+r \partial^{2} / \partial r^{2}\right\} c(r, t)=\partial c(r, t) / \partial t$,
for $0 \leq r \leq a$.

Due to symmetry, the boundary condition is
(9)

$$
\partial c(\theta, t) / \partial r=0 .
$$

The initial condition is

$$
c(r, 0)=0 ; \quad \text { for } \quad 0 \leq r \leq a
$$

Thus far, the model assumes that the concentrations on both sides of the $B R B$ are related through a proportionality constant, P which represents the permeability of the entire $B R B$. P makes no reference to the location of breakdown within the $B R B$ (inner or outer). Thus, at any time, t, the amount of dye available for diffusion tovards the mid-vitreous, depends on the amount of dye $c(a, t)$ that has already penetrated the BRB. But $c(a, t)$ depends on $c^{p}(t)$ by assumption. The barrier condition is then

$$
\begin{align*}
- & D \partial c(a, t) / \partial r=P \cdot\left\{c(a, t)-c^{p}(t)\right\}, \tag{11}\\
& \{1+(D / P) \cdot \partial / \partial r\} c(a, t)=c^{p}(t) . \tag{12}
\end{align*}
$$

Using the method of Laplace transforms, the solution is

$$
\begin{equation*}
c^{\prime}(r, s)=c^{\prime}(s) \cdot F^{\prime}(r, s) . \tag{13}
\end{equation*}
$$

where

$$
u(r)=a P / r \int D, \quad \text { for } \quad 0 \leq r \leq a,
$$

$$
F^{\prime}(r, s)=\frac{u(r) \sinh v(r, s)}{s \sinh v(a, s)+\sqrt{s} \cosh v(a, s)} .
$$

$$
v(r, s)=r f(s / D), \text { for } \quad 0 \leq r \leq a \text {. }
$$

$$
\text { 도 }=u(a)-\sqrt{D / a} .
$$

s is the transform variable; prime implies the transformed functions.
Transforming back to t-space, a slowly-convergent series results for small t [33]. Hovever, if Eq. 14 is expanded for large real part of s, and then inverted, the approximate solution to Eq. 7 is

$$
\begin{equation*}
c(r, t)=\int_{\Gamma}^{\tau-1} c^{\theta}(t-\tau) F(r, \tau) d \tau \tag{18}
\end{equation*}
$$

where

$$
\begin{gather*}
F(r, T)=u(r) \cdot 1\left(\exp \left(-M(-1)^{2}\right)-\exp \left(-M(1)^{2}\right)\right) / \mathcal{V}(\tau \pi) \tag{19}\\
-\Phi \cdot \exp \left(\Phi^{2} \tau\right) \cdot\{\exp (2 g(\tau) M(-1)) \cdot \operatorname{erfc}(g(\tau)+M(-1)) \\
-\exp (2 g(\tau) M(1)) \cdot \operatorname{erfc}(g(\tau)+M(1))\}\},
\end{gather*}
$$

and

$$
\begin{equation*}
M(j)=M(r, T, j)=(a-j r) /\left(2 f\left(D_{T}\right)\right), j=-1,1 \tag{20}
\end{equation*}
$$

$$
\begin{gather*}
g(\tau)=\Phi \sqrt{5} \tau \tag{21}\\
\operatorname{erfc}(x)=(2 / \sqrt{\pi}) \int_{\mu=x}^{\mu} \exp \left(-\mu^{2}\right) d \mu \tag{22}
\end{gather*}
$$

Eq. 22 is the complementary error function.
Eq. 18 may then be used as the theoretical solution in a nonlinear curve-fitting calculation to the experimental data. The goodness of fit may be tested by

$$
\begin{equation*}
S^{2}=\sum_{n=1}^{n}\left(c^{*}(r(k), t)-c(r(k), t)\right\}^{2} \cdot \delta(k)^{2}, \tag{23}
\end{equation*}
$$

where

```
                                \delta(k)}\mp@subsup{)}{}{2}=\operatorname{max}{\mp@subsup{\Omega}{}{2},\mp@subsup{c}{}{*}(r(k),t\mp@subsup{)}{}{2}
```

serves as a 'veighting factor', and, $\Omega=$ lovest concentration that can be detected.
$c^{*}(r(k), t)$ is the concentration measured at (a-r(k)) mm from the retina, of the scan taken at time t. The index k represents the order of the data-points along the axis of a scan. Non-linear curvefitting is then carried out by the Marquardt algorithm [34]. A search through the parameter space of P and D is done and the best fit is determined when S^{2} is a minimum for one set of P and D values.
2.5 Other Methods

The algorithms used by other groups of investigators are usually variations of those discussed above. For example, Eq. 19 may be simplified for computational purposes [23]. Most modifications, hovever, arise owing to differences in instrumentation which necessitate differences in protocol and algorithm.

Different methods have been proposed for the bolus CR peak correction mentioned in Section 2.3. Since many investigators use the Fluorotron Master, one method of correction suggested for this apparatus vas to multiply the bolus profile (between 2 and 4 mm from the retina) by the ratio of the $C R$ peaks of the measurement and the bolus scans [15]. The modified bolus profile was then subtracted from the measurement scan. This seems reasonable as tailings depend on the peaks causing them.

Bursell, et al [35] argued that this algorithm over-corrected
the errors due to tailings because the $C R$ peak values included fluorescence from the vitreous because of the finite diamond. (See Figures 1 and 2.) The correcting ratio should in fact be slightly smaller than that betveen CR peaks. However, the variations of the dimensions of the diamond in vivo cannot be determined, and the appropriate correction factor is unknown.

It has been found that retinal blood flow increased by 40 to 70% in the transition from light to darkness [36]. Although this is not likely to affect most scans, except possibly the bolus and the plasma integral, some investigators use more intense sources of excitation such as xenon flash tubes to attain signal levels vell above the dark current noise so that room lighting need only be dimmed and not completely turned off [37].

For instruments that scan continuously, i.e., collect data continuously along the scanning path, the signals from adjacent positions overlap because of the finite diamond. The methods used in "smoothing" the signals (integral and curve-fitting methods) are then important [38]. In other instruments that employ the "spot" method using "chopped" or flash excitation sources, data are collected at specific points along the scanning axis, e.g. at every 1 mm interval. These two methods of data collection determined by characteristics such as AR also determine whether PR3 or PR3* is to be employed.

To compare the results obtained by various fluorophotometers, a set of instrument characteristics is used to describe each instrument's capabilities. This set of performance data includes parameters such as angle between the beam and the probe directions, $A R$,
filter overlap, lover limit of detection (LLoD), reproducibility (R) and error of measurement (EOM).

The in vivo LloD may be defined as the lovest detected for detectable) concentration plus twice its standard deviation [32]. Practically, it means that, for example, at the mid-vitreous of a background scan, the LLOD is the average value of the concentration detected in that region plus twice the standard deviation of that average.

The sensitivity of the detection system is defined as the ability of the detection system to differentiate changes in adjacent concentration volumes. It is invariably dependent on the diamond and the ambient concentration. (See Appendix C.6.)
R and EoM also have the same dependences. Their definitions are:

EoM $=1$ c(measured)/c(true)) -1 ; $R=$ standard deviation of repeated measurements.

The problem with these definitions is that the in vivo "true" concentrations cannot be determined.

エエエ．THE APPARATUS

3．1 Sodium Fluorescein
Sodium fluorescein was first synthesized from resorcinol and phthalic anhydride in 1872 ［39］．It is a very weak dibasic acid with a molecular veight of 376.27 ．Its solubility is increased as a sodium salt．

RESORCINOLPHTHALEIN SODIUM－ $\mathrm{C}_{2} . \mathrm{H}_{1} \cdot \mathrm{O}_{5} \mathrm{Na}_{2}$

Figure 6．Structural formula of Sodium Fluorescein［40］．

Its suitability as an indicator in ophthalmological research is due to the fact that the peak excitation vavelength（490nm）is diffe－ rent from the peak emission wavelength（520nm）．In addition，the de－ excitation time is short：approximately 4ns．Hence，vith a suitable combination of filters to separate the two vavelengths of light，the concentration may be deduced from the amount of fluorescence．

Figure 7. Excitation (1) and de-excitation (2, 3, 4) peaks of fluorescein in blood [25].

The choice of filter combinations, however, is made difficult by the fact that the ranges of excitation and emission wavelengths shift towards the red end of the spectrum when fluorescein is measured in blood compared to measurements in water solutions [41]. This effect may be caused by multiple scattering, absorption and autofluorescence of the tissues that are scanned. The optimum "cross-over" point for the filter combination should be about 525 nm .

Fluorescein diffuses readily from the blood into all extracellular fluids except across the retina (BRB), and the brain (bloodbrain barrier). As it is a weak acid, it does not bind with (or stain) normal vital tissues, and is highly fluorescent in alkaline media. In aqueous solution, about 80% of incident light is converted to fluorescent radiation $\{39,40\}$. However, the dye only returns approximately 26% fluorescence vhen dissolved in blood. This loss is due to binding to proteins (serum albumin) and red blood cell
membranes. Another effect is quenching by the haemoglobin. The absorption spectrum of haemoglobin is about identical to that of fluorescein. This can be demonstrated in severely anaemic patients where there is a stronger fluorescence as proportinately less of the dose is quenched by the haemoglobin. By means of equilibrium dialysis or ultra-filtration [40], it is estimated that between 50 to 84% of fluorescein is bound. It is however, the unbound fluorescein (17\%) that diffuses across cellular membranes and the BRB if it is disrupted. This effect must be taken into account when analyzing plasma scans.

Fluorescein has low toxicity which is probably due to its inability to bind with vital tissues [39]. In animal experiments, lethal doses vere at 2 to 3 grammes per kilogramme body weight. In this VF study and other investigations on human subjects, the dose administered is calculated at $14 \mathrm{mg} \cdot \mathrm{kg}^{-1}$ body veight using pharmaceutically prepared ampoules of 25% concentration ($2.5 \mathrm{mg} \cdot \mathrm{ml}^{-1}$).

Fluoreacein is well tolerated but there are occasional side effects such as transient nausea or vomiting immediately after injection. Yellowish tinting of the skin lasts for several hours after injection and the urine is yellow for about two days. Allergic reactions are rare. (See Appendix A.17.)

Other important dependences of its fluorescent property are on the pH , concentration and temperature. Only in an alkaline medium is its fluorescent property enhanced [39,40]. It was found that pH 7.4 is the level at which the dye fluoresces most efficiently [42]. This is approximately the pH of the cellular fluids of the body which
varies little. Importantly, the pH of the calibration sample solutions as well as the buffer for diluting plasma samples must be specially prepared.

The dependence on the ambient concentration is a result of scattering of the incident beam at the focus of the probe. At high concentrations, the excitation beam cannot penetrate the volume of dye. Attenuation of the incident beam causes loss of signal at the detector. In this study, the upper limit is about $0.01 \mathrm{mg} . \mathrm{ml}^{-1}$.
3.2 The Haxdwaxe

This section describes the instrumentation and the modifications that were made to the instruments. Figure 8 shows the block diagram of the VF system assembled for this study. (Appendix B. 2)

The principal component of the fluorophotometer is the slit lamp microscope. (Figure 9.) The built-in pover supply (from mains) vith specific intensity settings was replaced by a regulated d.c. supply because random variations in beam intensity vere found to occur. These fluctuations were believed to arise from variations of the line voltage when the number of users increased (i.e., unregulated line).

In order to continuously monitor the intensity, a photovoltaic cell vas placed along the path of the beam before it vas focussed through the slit and prism system. This cell, placed close to the bulb, did not block the beam's path. This method of monitoring lamp intensity, which is dependent on optical alignment, was compared vith another method which monitors the intensity of the output of the slit

Figure 8. BLOCK Diagram of the VITREOUS FLUOROPHOTOMETER

1. Fixation lamp
2. Hruby lens
3. Hruby lens guide rail
4. Forehead rest
5. Chin rest
6. Knob for chin rest height adjustment
7. Arm clamping screws
8. Grip bar
9. Cord for fixation lamp
10. Socket for fixation lamp cord
11. Gear box cover
12. Zoom lever
13. Slit tilting ring
14. Filter slide
15. Slit rotation knob
16. Aperture diaphragm
17. Coaxial knob for slit control and rotation
18. Socket for slit lamp housing
19. Knob for height adjustment of microscope slit lamp assembly
20. Lever for cross-slide motion, coarse and fine, of the table
21. Power cord
22. Main switch and control for secondary voltage output
23. Pilot lamp
24. Cross-slide table
25. Base plate
26. Swivel arm connecting microscope and slit lamp assembly to cross: slide table

Figure 9. The Slit Lamp.
(From NIKON Zoom-Photo Slit Lamp Microscope
Bench Type Instructions Manual)
illumination using a photocell.
Testing showed that the latter method was more sensitive to variations in beam intensity. At high intensities (i.e., running high currents through the filament), fluctuations were noted when used on the a.c. mains. These fluctuations were reduced (halved) when the regulated supply vas installed.

It should be noted that these intensity fluctuations appear as variations in the signal about an average because the system is continuously exciting and detecting the fluorescence in overlapping volumes (because of the diamond). (Refer to Section 2.5.) Therefore, provided that the intensity of the bulb does not vary significantly from the ame average value during each scan, the fluorescence fluctuations can be interpreted as deviations about an average concentration at any position in the scan.

It was also found that maintaining a constant, high intensity illumination vas difficult because the high currents (and temperatures) cause the bulb intenaity to fall continuously. Stable high intensities could only be attained after a "warming-up" period usually about 30 minutes. However, excessive, long periods at high intensities caused a reduction in the lifetime of the bulb.

The configuration to monitor the intensity employs the unused side of the excitor filter holder-slide. A small solar cell vas glued to a microscope cover-glass. The assembly was, in turn, glued to a washer that fitted into the slide. This method does not monitor the beam during a scan because the chip cuts off the beam when it is in operation.

Intensity checks are carried out immediately prior to scanning. The output of the solar cell is measured on an LED voltmeter. The intensity output is always adjusted to the value (on the voltmeter) at which calibrations vere carried out.

Slit lamp translations are measured by constructing a potentiometer with a 10 -turn rotary potentiometer/resistor. Fitted with a gear on its shaft, the pot is held by an arm attached to the grip bar of the slit lamp. (See Figures 8 and 9.) The assembly is referred to as the Pod.

The gear rests on a rack which is mechanically coupled to the body of the slit lamp. When the rack moves with the slit lamp during a scan, the Pod produces the analogue voltage signals which are read by the microcomputer. (See Figure 8.)

The most important modification to the slit lamp concerns the oculars or eye-pieces. One ocular is replaced by a special adaptor with a fibre optic conduit at the focal plane of the microscope objective. The fibre optic collects the fluorescence from the diamond and conducts the light to the Photo-Multiplier Tube (PMT).

Figure 10. Excitor filter holder-slide and intensity monitor.

Figure 11. Pod assembly and circuit.

An electronic shutter and the barrier (green) filter are placed betveen the output of the fibre optic conduit and the PMT. (See Figures 8.) The PMT then relays to the radiometer (R / M) whose output voltage varies linearly with the amount of input fluorescent light.

The R / M has several exponent settings, including an AUTOadjusting exponent option. The AUTO setting, which keeps outputs between 0 and +100 mV , was found to be unstable at the "cross-over" points where output voltages greater than +100 mV were scaled down. Hence, the R / M is set in the (most sensitive) 0-exponent range.

To offset high R / M outputs when high concentrations are scanned, a logarithmic amplifier (called LOG AMP in Figure 8) is used. The Log Amp was calibrated in conjunction vith the Data Acquisition System (DAS). This is to ensure that the amplification of small input signals is such that its outputs remain logarithmic.

Figure 12. Pin diagram of the blue circuit board in the DAS. C3* is 3 C2-capacitors in series.
Unused S/H pins are not shown.
Offset trimpots, R1, for A are not shown.
(See Appendix B. 1 for part numbers.)

The outputs of the Pod and the Log Amp are connected to the DAS. Two circuit-boards comprise in the DAS. A 15-V power supply (white) board produces the necessary power for the components on the principal (blue) board. The latter circuit is shown in Figure 12. (Part numbers are given in Appendix B.1.)

The Pod and Log Amp outputs are connected to the inputs of two operational amplifiers (A) which are each followed by a sample-andhold chip (S/H). The outputs from the latter are then connected to two channels of an 8-channel analogue multiplexer (MUX) which is an electronic switching device. The other six channels, that are not used are grounded. The MUX selects one output of the S / H after the other, passing the signal onto the next chip.

The next chip is an 8-bit Analogue-to-Digital Converter (ADC) which is the principal component of the DAS. Its purpose is to convert the analogue inputs, held steady by the $5 / \mathrm{Hs}$, to the digital format that the microcomputer understands. As it can only convert one input at the time, the $5 / \mathrm{Hs}$ become necessary for maintaining those input voltages until the MUX selects them for the ADC.

The output of the ADC goes out on a ribbon cable to the microcomputer. The cable also carries the sequence of instructions from the computer to the various DAS components in order to properly organize the conversion of the signals.

Besides powering the As, the MUX and the $5 / \mathrm{Hs}$, the $+/-15-\mathrm{V}$ supply also operates the shutter in the PMT. The latter opens when the voltage is changed from -15 to +15 V , and closes when the polarity is reversed. The shutter movements are co-ordinated with the
activation of the DAS by a mechanical toggle switch called Switch A on the front face of the DAS box.

Lastly, the $+5 V$ logic level required in CMOS digital electronics [43] is obtained by connecting the $+15-\mathrm{v}$ line to a voltage regulator chip, (P2 in Figure 12). The +5 V output also provides the voltage drop across the Pod circuit. It is also, in turn, connected to another voltage regulator-reference chip, P1 to produce the 2.5 V required for the ADC reference.

The microcomputer is the 8-bit, 64-K Osborne 1 with CPM operating system. Its main advantages are its parallel and serial ports. The disadvantage of this machine is that it is configured with three memory banks. Bank \#1 contains the usual transient programming area, while Bank \#2 partially shadows it. All ports are accessible from Bank \#2 only [44,45]. Bank \#3 is video memory.

As the Osborne controls the DAS directly through the parallel port, considerations such as the transition time between bank had to be taken into account during programming in order to optimize the data acquisition. Although the ingenuity of the electronic design of this configuration did not go unappreciated, the time required to understand and work with it could have been put to better use.

The last component in the system is a dot-matrix printer that produces the hard-copy results. It is also accessed through the parallel port (by Centronics communication protocol). As no printout is ever required until all scanning has been completed, there is no competition for the port between the printer and the DAS.

```
3.3 Other Material
```

Two contact lenses are used during scanning. One is a hydrophilic soft contact lens which is fitted first. Its purpose is to alleviate the discomfort of the second lens without using repeated instillation of topical anaesthetic. The second lens (Luman lens) is plano-concave to offset the power of the cornea. It is made of a mildly pliable plastic, and provides the "window" for viewing the fundus.

The soft lens is attached to the cornea by the surface tension of tears and the hard lens attached to the soft lens by the surface tension of viscous methyl-cellulose. Saline solution was tried but did not hold the Luma ${ }^{R}$ lens in position. It also caused irritation in some subjects.

The two band-pass filters used are Spectrotech SE4 and SB5. Their transmission profiles and overlap are shown in Figures 13 and 14. Their cut-off wavelengths are in accordance with specifications for fluorescein in water. (Refer to Section 3.1.) The SE4 excitation filter passes wavelengths between 453 and 493 nm only. Similarly, only the main emission peaks between 509 and 612 nm are transmitted by the SB5 barrier filter.

The smaller (blue) SE4 is mounted in the holder-slide which also holds the intensity monitoring chip. It is inserted into the path of the beam before scanning. The larger green filter (SBS) is placed between the output of the fibre optic and the electronic shutter above the PMT. Its large aperture ensures that all signals from the conduit pass through it before activating the PMT.

Figure 13. Filter transmission profiles. E2 and BB wers used.
Y is the yellow filter.

Figure 14. Filter Overlap.
E2 and BB were used.

A model eye was also constructed. Its purpose was to calibrate slit lamp translations. However, the calibrations were made with a more precise micrometer translation stage fixed on an optical bench. (Refer to Section 4.1.) The model eye is also used as a sample cell (for plasma scanning). A cross-sectional profile is shown in Appendix B. 3.
3. 4 The Soxtwaxe

Most programmes were vritten in Microsoft BASIC (MBASIC). Although a compiled version called CBASIC was available, MBASIC was chosen because it had many built-in functions for file and string manipulation. The one exception was the programme for the control of the DAS. Written in 8080 Assembly Language codes [46], its "listings" file is called DAS. PRN. Certain programming "habits" were developed because of restrictions (and economy) in the use of memory space. For example, many of the MBASIC statements written were concatenated, as is allowed by the language. "Free" variables were re-used wherever possible. (Refer to Appendix A for all programme listings.)

Specific subroutines are called from menu programmes. The first such menu, SCANMENU. BAS directs control to one of three subprogrammes for scanning and filing. These are VITSCAN. BAS and PLASCAN. BAS which are stored on the disk in Drive B, and a subroutine (in SCANMENU. BAS itself,) called SUBJECT DATA ENTRY. A subroutine, when called, is merged above SCANMENU. BAS in the memory bank. When a scan is ended, control is returned to the menu.

Prompts to operate the data acquisition vere written into this
set of subroutines to enhance "user-friendliness". NO and YES responses are indicated by hitting the ESC and ANY (other) key respectively. This association is appropriate as the ESC key is located at the upper left corner of the keyboard and has little probability of being mistakenly activated, especially when lights are dimmed during scanning.

A version called DAS.ASM was first prepared using the specification sheets of the various electronic components in the DAS as guides [43]. It was then assembled by the 8080 two-pass assembler provided with the Osborne 1 , producing the listings, DAS.PRN as shown in Appendix A.1. Note that the left four hexadecimal (hex) numbers denote the memory addresses (in Banks \#1 and \#2) of the machine language codes given by the next 2 to 6 hex digits. Entry and exit loops to Bank \#2 are clearly marked.

The port status test is executed only on the first entry where, if necessary, the port-controlling, Peripheral Interface Adaptor, MC6821, is re-configured to suit the DAS.

The strategy of this subroutine is simple. After preparing the port, poll Svitch A until the toggle is up. Tell the S / Hs to sample their inputs simultaneously, then hold them. Ascertain that the ADC is not busy. Next, order the MUX to switch on and the ADC to begin digitizing the pod-S/H output. When the conversion is done, store the result at a specific address (D1D2 hex) in memory. Make sure the ADC. is ready. Nov order the MUX and ADC to do the same for the $R / M-\log$ Amp-S/H output. This time, store the ansver at D1D4 hex. Test the interrupt status line (Switch A) and put the result at D1D0 hex. Go
back to the MBASIC calling subroutine.
When SCANMENU. BAS is loaded, it reserves the area above DICF hex for the machine language code numbers (from DAS. PRN), and the abovementioned results after each call. The machine language codes are loaded only if one of the first two subprogrammes is called. They are placed into the reserved memory by the DATA-READ-POKE sequence of commands, starting at memory address D1D6 hex.

If VITSCAN. BAS is loaded, a checklist of the VF system is immediately displayed and the first call to DAS.PRN is immediately made; usually to measure the various intra-ocular distances. VITSCAN . BAS marks a position by sounding a "beep" when any key is depressed. When "landmarking" is ended, it displays the difference between positions corresponding to consecutive beeps, then asks whether to repeat landmarking or continue on to scanning.

Before scanning begins, a prompt to ascertain the eye to be scanned is given: ESC for the right eye; ANY (other) key for the left. Once ansvered, a set of "SCANNING INSTRUCTIONS" is displayed. Switch A is toggled up to initialize the DAS in a 3-second loop. (This delay time may be varied by software to suit the time constant of the DAS.)

The digitized outputs of the Pod and the Log Amp are displayed in (approximately) the first second of this delay loop, after vhich, the screen is blanked. The remaining time of the loop is for "dark. adaptation" by the subject and the system to reduce the noise picked up by the PMT.

A "beep" sounds to mark the position of the retina (vhere every
scan must begin), as vell as to cue the user to begin scanning. Control toggles back and forth between Banks \#1 and \#2. After each return from DAS.PRN, the abovementioned specified addresses are PEEKed. The data are transferred to elements of two 2×1600 arrays (depending on the eye being scanned). Switch A is tested to ascertain that the scan is to continue or to stop.

The maximum time available for scanning before the arrays are filled is approximately 25s. If they are used up, VITSCAN. BAS automatically exits from the scanning loop to flash You are out of memory...". Alternatively, Switch A may be toggled down to end. a scan.

Upon leaving the scanning loop, VITSCAN. BAS goes into a plotting and filing subroutine. Left-eye data are filed on the disk in the left drive; right-eye on the right. In this vay, a one-diskette-per-subject-eye system of data storage is maintained. This flexiblity allows for both eyes of one subject to be tested, or, tro subjects to be examined within the same period by assigning one diskette to one subject-eye. (As many subjects as time restrictions allov may be examined, but only the diskette in the LOGGED drive may be changed a quirk of MBASIC.)

An interrupt is included to enable an "ABORT" during plotting and filing. It is activated by depressing any key. Two prompts to confirm the "ABORT" appear. An positive response produces another. prompt to continue scanning. A negative reply returns control to the position vithin the plotting and filing. subroutine vhere the interrupt vas activated.

The temporary file that stores the data is renamed when the plotting and filing subroutine has been completed and it is confirmed that the data is to be saved. The filename is entered when the response is affirmative; otherwise, the temporary data file is overvritten or erased later. Files are named by the p.i. time. For example, the 3 -minute p.i. bolus scan is named 3 . DAT where the filetype, ". DAT", is automatically juxtaposed to the "3" entered.

The prompt to continue scanning appears next. If scanning is to be continued, there is a choice to begin again at SYSTEMS CHECKS or at SCANNING INSTRUCTIONS. If the scanning mode is to be terminated, control is returned to SCANMENU.BAS.

In the plasma scanning option, similar calls to DAS. PRN are made. No plotting loop is required in this case as the slit lamp is fixed in position. (See Section 4.3.) The arrays used are smaller: two arrays of 1000 elements. An averaging subroutine is immediately entered vhen the scanning loop is exited. A similar interrupt capability is also installed.

The results of the averaging and the standard deviations are displayed. The time of the blood sampling in minutes p.i. is then entered. Three 55-element arrays are used to hold the results of each plasma sample scanned. At the end of scanning, the arrays are filed in PLASMA. DAT in the appropriate subject-eye diskette.

The SUBJECT DATA ENTRY subroutine is usually called after VITSCAN. BAS and PLASCAN. BAS have been executed. This subroutine is used to enter pertinent subject information: name, age, eye that vas scanned, date, lengths of intra-ocular distances recorded by both the
slit lamp and ultra-sound scans, volume of dye that vas injected, comments, and observations. The last category is used to enter notes on a particular scan or the subject's medical history. All information entered is filed in SUBJECT. DAT in the appropriate diskette.

At the end of an examination period, there should be a SUBJECT . DAT file, a PLASMA.DAT file, and the scanning. DAT files on a subject-eye diskette. All other non-. DAT files are erased. For later analysis, a working copy of the data diskette is always made.

The second menu routine is BATCHRUN. BAS. It allows the execution of individual subprogrammes, or a specified sequence of subprogrammes. On activation, a menu shows all the subprogrammes with brief descriptions of their purposes. The order of the subprogrammes to be run is entered and confirmed. The file directory of the data diskette next appears, and the files to be analyzed are then entered.

After printer status and paper supply have been checked, execution is begun by CHAIN MERGEing the first subprogramme in the sequence. Control is then transferred to the task. On completion, the next subprogramme in the sequence is loaded over the first, and so on until the series is completed. The following describes the subprogrammes and their tasks.

REDUCE. BAS averages the raw data in each. DAT file, reducing the number of data-points from a possible maximum of 2×1600 per file to a possible averaged maximum of 3×256 - Pod output, averaged R / M. output and its standard deviation. The algorithm, although slov because of memory space restrictions, is not difficult to follow. A flowchart is shown in Figure 15.

Figure 15. FLOWCHART for REDUCE. BAS.

Basically, REDUCE. BAS considers the scatter of the R / M outputs at each Pod output. It sets an interval within which all R / M outputs are included in the averaging. This interval is dependent on the result of the averaging of the Pod output before it. Hence, the averaging process is carried out point by point in ascending order of Pod output from the posterior vitreous to the cornea. The results are zeroed by the retinal position (at the "beep") and converted to concentration units before being stored in a . AVG file with the same p.i. time filename.

After a resultant. AVG file has been entered, the associated . Dat file is destroyed. This action frees diskette space for later files. This is the reason for creating a working copy of the original data diskette.

This technique of data reduction or "smoothing" was chosen over the usual methods such as curve-fitting because of the method of scanning. Also, as mentioned before, this $V F$ system is a timeaveraging DAS as opposed to the "spot" system [38]. It is "backwardbiased", as it is dependent on the average of the previous Pod position because of the capacitive time constant (approximately 2.2s) in the electronics.

Several background scans are usually made. They are. DAT files identified as "0", "00", "000", etc. B/G.BAS contains a background-file-testing loop to ascertain that multiple pre-injection scans vere made. If the loop finds several such scans, B/G. BAS takes these already averaged background scans, aligns by the location of retinal position) and averages over all of them to produce one final 0.AVG
file. All other background. DAT and. AVG files are then deleted to free diskette space. If only one background scan was made, B/G. BAS returns to BATCHRUN. BAS to the next subprogramme in the series. MINUS. BAS subtracts the final 0.AYG file from all other .AVG files. Two sets of results are produced by two types of alignment:
a) by matching the positions of the retina as they were marked on each scan (at the beep); or,
b) by searching out and matching the $C R$ peaks.

Subtraction is then carried out after each alignment. The results by (a) and (b) are filed in. RET and. CRP files respectively. Again the filenames are the p.i. times of scan.

SUDATA.BAS prints out the subject and scanning data. A formatted output of the information in the SUBJECT.DAT file is produced. The F-numbers (in Section 2.2) are calculated and printed. The routine reads through every. AVG, . RET and. CRP file, compiling the concentrations at a set of specified points in each profile. These points are the retina, the $C R$, lens and corneal peaks, the minima and the centres of the vitreous and the aqueous chambers, and points (that are in the vitreous chamber only) which are 0, 3, 6, 9, 12, 15... $m m$ from the retina. At the end of compilation, SUDATA.BAS calculates, when appropriate, the performance specifications: LLoD, $A R$ and R.

BLOOD. BAS is the curve-fitting subprogramme that calculates the areas under the plasma profile. PLASMA. DAT is read, and the data are converted to concentration units with a constant that accounts for buffer dilution and the unbound fluorescein factor - 17% (See

Section 3.1 and [47].)
To calculate this constant, it is assumed that after centrifuging, all the red blood cells have been removed to one end of the haematocrit but that the fluorescein is homogeneously distributed throughout the plasma. If $c^{9}(t)$ is the plasma fluorescein concentration at sampling time, t, and only 17% is available to penetrate the BRB at all times, the area under the plasma-fluorescein profile is given by
(28)

$$
I(t)=0.17 \int_{\ldots .0}^{+-1} c^{2}(\tau) d \tau
$$

If $X \mathrm{ml}$ of each spun sample is diluted vith Y ml of buffer, then the resultant concentration, $c^{\circ}(t)$, measured by the slit lamp is given by

$$
\begin{equation*}
c^{D}(t)=X * e^{3}(t) /\{X+Y\} . \tag{29}
\end{equation*}
$$

Eq. 28 becomes
(30)

$$
I(t)=0.17\{1+Y / X\} \int_{-\infty}^{+-1} e^{p}(\tau) d \tau
$$

The factor before the integral depends on the amount of free fluorescein (17%), and the volumes of plasma sample and the buffer used in the dilution process. Note that any amounts of X and Y may be used.

A set of four polynomials of order 2 is fitted to the data,
i.e., (2+1)-parameter curve-fitting [34]. The polynomials are:
0) $y=A+B * x+C * x^{2}$;

1) $y=A+B * \log x+C *(\log x)^{2} ;$

$$
\begin{aligned}
\text { 2) } y & =A * \exp \left\{B * x+C * x^{2}\right\} ; \\
\text { and, 3) } y & =A+B / x+C / x^{2}
\end{aligned}
$$

They vere chosen to approximate the removal of the dye from the blood. The difficulty in producing a fast and efficient algorithm in a non-linear fit to the sum of tro negative exponentials (expected of the fast and slow decays of the tro-compartment model mentioned in Section 2.2 and [28]) forced such a method for estimating the plasma integral. It is also difficult to justify such a non-linear fit to a fey data-points only: (Refer to Sections 4.2 and 4.3.)

Areas under the best fit are calulated as follows - (1) the integration lover limit is $t=0.5$ minutes p.i. (2) The upper limits are the measurement scans' p.i. times (given by the filenames).(3) The area from 0 to 0.5 minutes is approximated by the area of a right-angle triangle with base 0.5 and height equal to the value of the best fit at 0.5. (Refer to Section 2.2.) Plots with the fits superimposed on the rav data are produced. The goodness of fit is determined by the reduced chi-square of each fit.

At the end of the four fits, the one vith the lovest reduced chi-square is chosen. Its code number (0-3) is entered in a PLASMA. FIT file, followed by the coefficients (A, B and C) and their calculated errors, the upper limits of each integration, the areas up to those limits, and their errors.

C/VAZ. BAS follows closely the algorithm of Section 2.3. This subprogramme uses . RET and. CRP files only. When . RET files are used, all profiles are aligned for subtraction by the positions of the retina as marked at the beginning of each scan. Similarly, . CRP
files are aligned by the $C R$ peaks before any subtraction.
The bolus. RET file and a measurement. RET file are read simultaneously. The permeability indices, P^{1} (of Section 2.2) and the penetration ratios, PR3 (of Section 2.3), as well as PR3* are calculated for each profile. The $C R$ correction condition, the left-hand side of Eq. 6, is also calculated.

Two types of bolus correction are undertaken. The first involves subtraction of the bolus from the measurement scan vithout applying the $C R$ bolus ratio. (Refer to Section 2.5.) A plot of the results between 0 and 11 mm from the retina is produced, followed by calculations of ${ }^{1}$, PR3 and PR3*. For the second type pf correction, the subtraction is repeated but with the bolus profile modified by the CR bolus ratio. A plot is produced, and the three parameters calculated. The procedure is carried out for the. CRP files uith the same p.1. times.

If more than 10 non-negative points exist within the posterior half of the vitreous chamber after each subtraction, C/VAZ. BAS files them in . CV\# files on the data diskette. The files are named vith the same p.i. time filenames, but, with the following filetypes:
.CV1 "unaltered bolus subtraction of . RET files"; .CV2 "modified bolus subtraction of .RET files"; .CV3 "unaltered bolus subtraction of .CRP files"; .CV4 "modified bolus subtraction of .CRP files".

If many measurement scans are made, the data diskette can run out of storage space. To prevent this from halting the calculations, C/VAZ. BAS contains an error-trapping subroutine vhich automatically
files the . CV\# files on the diskette which contains the MBASIC programmes in the other drive. By studying the plots produced by C/VAZ - BAS, some of the. CV\# files can be deleted. The. CV\# files on the programme diskette can then be transferred back onto the data diskette.

SLOPES. BAS checks the results of C/VAZ. BAS by curve-fitting at the . AVG-file level, using the same set of (2+1)-parameter functions as those in BLOOD. BAS. Only vitreous data are considered in the curve-fitting. A vitreous profile is divided into three sections: posterior, mid-, and anterior vitreous. The four functions are fitted to one section at a time. The fit with the lovest reduced chi-square is chosen to represent that section in all later calculations.

When all the best fits have been calculated for each section, SLOPES. BAS uses them to estimate the following:
a) the concentrations after background subtraction, $c(x, t)$.
b) the penetration ratios, $\mathrm{PR} 3 *$, before and after bolus subtraction.
c) the gradients, $C^{9}(x, t)$.
d) the diffusion constants, D.

The values chosen for x are 3 and 9 mm from the retina, as vell as 3mm from the posterior surface of the lens. PR3* is found at the $3-\mathrm{mm}$ point from the retina and the lens without $C R$ bolus correction. Alignment is by RET only.

D is approximated by converting the diffusion equation, Eq. 1 , into a difference equation $[34,48]$. This approximation uses the calculations at the $3-\mathrm{mm}$ and $9-\mathrm{mm}$ points. It is
(31)

$$
c(9, t) / t=D=1 c^{0}(9, t)-c^{0}(3, t) 1 /(9-3)
$$

t is in minutes p.i. Solving for D,
(32) $D=c(9, t) * t^{-1} * 10^{-3} /\left\{c^{0}(9, t)-c^{0}(3, t)\right\} \mathrm{cm}^{2} s^{-1}$.

The 10^{-3} factor appears when converting to centimetres and seconds. These values of PR3* and D may be used as initial estimates for LUND. BAS curve-fitting as well as checking the solutions of RET C/VAZ. BAS.

PLOT.BAS is an earlier version of SUDATA.BAS. It produces individual scaled-down plots of any. AVG, .RET or . CRP file. All the information gathered by SUDATA.BAS is also collected and printed below each plot. Comparison of data and plots by inspection is difficult.

DRAW. BAS is the plotting subprogramme that complements SUDATA . BAS. This subprogramme uses the first entered file to produce semilog plots recorded data-point by data-point. All subsequent plots are scaled and superimposed on the first plot. Its principal advantage is that it can superimpose the profiles from different subjects as vell as producing "fully stretched" profiles. Limited by the lass of clarity when too many files are superimposed, the routine provides a means for easy comparisons of the profiles from different subjects, and the evolution of fluorescein profile of one subject.

The last routine vritten was LUND. BAS. The algorithm is that. stated in Section 2.4. The routine - largely translated from the FORTRAN subroutines in Bevington [34] - uses the Marquardt gradientexpansion method of non-linear curve-fitting. Although it is able to
read data from any file(-type), LUND. BAS is usually run on data from . CV\# files.

The following are required at each run:
a) chosen file from which data are read.
b) interval within which data are to be fitted.
c) initial estimate of P, and its step increment.
d) initial estimate of D, and its step increment.

The chosen interval is usually between 1.5 and 6 mm from the retina. Initial P and D values depend on the expectations of the results for the particular subject i.e., the results of C/VAZ. BAS and SLOPES. BAS. Increments are usually 10% of the initial estimates.

The subprogramme tests the fit by calculating a reduced chisquare rather than the S^{2} of Eq. 23 in Section 2. 4. The weights are the S.D. of the data as calculated by REDUCE. BAS (or othera), 1.e., at each Pod position. It is also possible to use the LLoD (if known) in Eq. 24.

The reduced chi-square for the initial values entered is found. The subprogramme then goes on to find better fits by varying P and D by the increments entered. After each fit, a new reduced chi-square is found. If it is smaller, the subprogramme can be terminated. If not, it is used to determine the direction to vary D and P for the next fit. The search can only be terminated in three ways - (1) hardware interrupt (abort) or, (2) overflow errors (division-byzero), (3) reduced chi-square less than 2. As poor initial estimates may result in slow convergence and long computing time, this subprogramme is only used in overnight runs.

In this chapter, the calibrations of various components of the VF system and the preparation of subjects for scanning are described. The results of the former are given in Appendix C.

As the $A D C$ is an 8-bit converter for a maximum input of $5 V$, one digit increment of its output 256 "Osborne/DAS" units - 0 to 255 - is $a+19-m \vee$ change of input voltage. All calibrations must be in ranges that are expected during a scan. The gains at every stage in the DAS must be carefully adjusted so that the full range of the $A D C$ can be used. In this way, the sensitivity of the $V F$ system is optimized.
4.1 Instrument Preparatyon

The operational amplifier (A) receiving the Pod output, and the S/H vere offset and zeroed. The gain was adjusted to approximately 12. This allowed a net displacement of the slit lamp of approximately 22 $m m$. The focus of the probe in the vitreous chamber however, vas displaced more than this value because of the F-numbers (in Section 2.2).

The Pod (or slit lamp translation) vas calibrated by placing the slit lamp microscope assembly on an optical bench on which a micrometer translation stage was fixed. The micrometer was used to displace the slit lamp in precise, 0.025-in increments. The result of each displacement vas recorded from the computer monitor. A linear least-squares fit vas carried out on the data collected. Only the slope of the fit is required as the zero position changes with each
scan. (See Appendix C.1.)
As the Log Amp and the DAS are both capable of amplifying any input signal their gains have to be adjusted in tandem allowing low pre-injection scan signals to be differentiated from noise but not allowing high concentration signals to be amplified to greater than the maximum $5 V$ that the $A D C$ can convert.

The first step was to ascertain the range over which the Log Amp remained logarithmic. At low voltage inputs, the Log Amp did not maintain its function, because it was performing close to "zero" at 1 $\mathrm{m} V$ (the logarithm of 0 was of course not defined). For input values up to 10 V , the Log Amp performed satisfactorily.

Other conditions were:
a) R / M set at D-exponent outputs a maximum signal of about 10 V for a maximum concentration of about $100000 \mathrm{ng} \cdot \mathrm{ml}^{-1}$;
b) Log $A m p$ output in the range of 0 to $5 V$ for the $A D C$ using 1 mV to 10 V as the input range from the R / M to the Log Amp.

The Log Amp vas adjusted so that its output vas logarithmic in the range of input voltages. (See Appendix C.2.) The operational amplifier to which the output of the Log Amp was connected, was then adjusted to a gain of 1 .

Samples of various concentrations of sodium fluorescein vere freshly made at each calibration because solutions lose their fluorescence efficiency over long storage periods. As the pH of the solvent affects its efficiency, the appropriate buffer solution (pH 7.4, discussed in Section 3.1) vas also prepared.

A pH meter vas calibrated at 20 C and pH 7.0 using a standard pH
7.0 solution. The Sorensen's Phosphate buffer solution at pH 7.4 vas then made up as follows -
a) Prepare a 0.907% weight by volume (or, 0.067 moles) solution of monobasic potassium phosphate in demineralized distilled water. Solution "A".
b) Prepare a 2.39% weight by volume (or, 0.067 moles) solution of sodium phosphate in demineralized distilled water. - Solution "B". c) To get 100 ml of a pH 7.4 buffer solution, for example, mix 19.7 ml of A and 80.3 ml of B, 1.e., $m i x$ in $A: B$ volume ratio of $1: 4.076$. As an alternative, once the pH meter was calibrated, the pH 7.0 buffer concentrate, (the standard used to calibrate the pH meter) vas used as a "base" to make the pH 7.4 buffer. This method was possible because the concentrate was made from sodium phosphate. Hence, by adding potassium phosphate to the solution at pH 7.0 , a pH 7.4 buffer vas obtained. This method was used to prepare the large volume of the pH 7.4 solution that vas required for the sample concentrations needed for calibration, and also for diluting plasma samples from blood taken during scanning.

Sample concentrations were made by a dilution method.
a) Weigh an empty test-tube with seal in place.
b) Add an amount of sodium fluorescein powder, then weigh again.
c) Fill the test-tube with the pH 7.4 buffer and veigh again.

The first prepared sample was a "master solution" from which all. other samples vere derived. Its concentration vas estimated by assuming that the mass and volume of sodium fluorescein were negligible compared to the mass and volume of added buffer. The
concentration of the master solution was then

```
c^a}={(b)-(a)}/{(c)-(b)} ng.ml-1
```

where (a), (b) and (c) are the results of the stages mentioned before. The mass of the dissolved salts was also assumed to be negligible.

The following procedure was used to make other samples:
a) Weigh an empty test-tube with its seal.
b) Draw a small volume of c^{n} with a 1 -ml tuberculin syringe, place it in the test-tube and weigh it.
c) Add buffer then weigh again.

The concentration of the new solution was
$c=c^{n} *\{(b)-(c)\} /\{(c)-(a)\} n g \cdot m 1^{-1} \cdot$
where (a), (b) and (c) are the results of the steps discussed immediately above. Other samples vere made by varying the volumes of c^{n} and the buffer in order to prepare concentrations between 5 and 9000 ng. ml^{-1}. Note that the error due to the mass of the fluorescein became less with greater dilution.

The prepared concentrations vere placed in several sample cells (cuvettes) which were clamped in front of the slit lamp. Each cell was scanned through its $1-c m$ depth. This was carried out to study the effects of attenuation. (See Appendix C.S.) The peak in each concen-. tration profile vas used to find the $R / M-\log$ Amp-DAS calibration curve. The reason for this vas explained in Figure 2.

The R / M output increased linearly with the concentration that
is scanned but not the output of the Log Amp. Hence, the calibration equation vas expected to be an exponential that translates the Osborne/DAS units to concentration values. The curve-fitting functions used were those in BLOOD.BAS. (Refer to Section 3.4.) The best fit was the one with minimum reduced chi-square. The mathematical solution is given in Appendix C. 4.

Other slit lamp calibrations included slit dimensions, angle between excitation beam and probe, and the intensity of the beam. The slit size used was $2 \times 0.1 \mathrm{~mm}$. As the length did not affect the $A R$ (in Figure 2), this magnitude was chosen to provide better visibility when focussing at the retina.

The width of the slit was defined by the rulings on a red blood cell counter (or hemacytometer). The vertical and horizontal lines formed a grid of $1 \mathrm{~mm}^{2}$ with subdivisions of $1 / 400 \mathrm{~mm}^{2}$. The slit was focussed on the grid. The microscope oculars vere adjusted to the maximum (35X) magnification and the slit vidth adjusted to the desired size. The slit-adjustment knobs vere then secured to prevent accidental reset.

Slit-lamp intensity, monitored by the solar-cell chip, was set at a chip output voltage of $141+/-1 \mathrm{mV}$ which was the lamp "intensity" used to carry out the concentration calibrations. All scans had to be made at this LED voltmeter reading. The output had to be checked before and after each scan to ascertain that the excita-. tion beam did not fluctuate significantly during scanning.

When the angle between the directions of the probe and the excitation beam vas maximum, the AR was at a minimum. Using the
average depths and refractive indices of the model eye - Gullstrands schematic eye [30], this angle was found to be approximately 16°. (Other investigators' instruments are usually set at 140. [31])

The entire slit lamp (objectives and bulb housing) vas rotated, then locked at 8° from the translation axis of the slit lamp assembly. This latter adjustment could be changed for particular subject to overcome iris clipping or specular reflection off the plane surface of the Lumar Lens onto the probe.

To test the suitability of all instrument adjustments, a scan of the model eye was carried out. Different concentrations vere used in the various compartments. The profile is shown in Appendix C.7.

Figure 16. Overhead viev of the angles at which the slit lamp was set for LEFT eye scans.
4. 2 Subject Preparation

A subject is given a CONSENT FORM (shown in Appendix A.17) to read and sign. The attendant ophthalmologist answers additional questions the subject may have and countersigns the form. The age and the weight of the subject are noted and the latter used to calculate the amount of sodium fluorescein for injection (at $14 \mathrm{mg} . \mathrm{kg}^{-1}$ body weight).

The pupils are dilated using drops of tropicamide 1% and phenylephrine 5%, repeated after 10 minutes. After a 30 -minute vaiting period for the drugs to take effect, the pupil diameter is measured. If it is 7 mm or larger, the scanning procedure is started. If the dilation is still inadequate for scanning after additional tropicamide and phenylephrine, the procedure is cancelled.

The subject's seated position is explained and tried. The slit lamp and chin rest are adjusted to the subject's height to minimize discomfort during the scanning. The sterilized soft-contact lens is then fitted to the left eye, then the sterilized Luma ${ }^{R}$ Lens is mounted with a drop of methyl-cellulose. Each mounting is checked for trapped air bubbles. The subject then places his/her head in position on the slit lamp assembly with instruction to press the forehead against the headband.

The first scan for "landmarking" uses unfiltered light to localize the surface positions of the retina, the posterior and anterior lens, and posterior cornea (along the optic axis). The depth or thickness of each section is displayed and noted (in Osborne /DAS units) by the programme, VITSCAN. BAS. The measurements are
usually done three times to check reproducibility.

The retina is marked by two methods. One way is to centre the smaller, 0.1 mm slit on the larger, 0. 45 mm diameter probe. However, the effects of scattering (halation) makes this method difficult. Another method consists of placing the left edge of the slit on the right edge of the probe; then the right edge of the slit on the left edge of the probe. The two results are later averaged to "define" the retinal position. Both methods are used within the three measurements.

Figure 17. Localizing techniques.

Other surfaces are marked by the contrast at the interfaces. For example, at the posterior surface of the lens, a sharp demarcation is seen as there is autofluorescence and scattering from within the lens tissue, and reflection at the interface between the lens and the "dark" vitreous volume. (Refer to Section 2.1.) The smaller depth of the anterior chamber makes the measuring of that
compartment more difficult.

The pre-injection scan(s) are done immediately after the length measurements are completed. The probe is first focussed on the retina, and slit intensity is checked. The blue excitation filter is slid into the path of the beam; Switch A is toggled up. Scanning is started at the "beep", and at the end of each scan, the visual plot is studied for signs of clipping or subject movement. Up to four background scans can be made. (Refer to Section 3.4.)

When background scanning is completed, the Luma lens is removed and the subject brought to the photography room where the fluorescein is injected and photographs of both maculae and optic discs are taken. The injection is given by a registered nurse who also advises the subject of the dye's possible immediate effects (nausea), and delayed effects such as yellow-coloured urine. The dye is injected quickly. Two stopwatches are started when the syringe is half-emptied. The photography is usually completed 55 to 70 a after the injection.

The bolus scan is the critical scan as there is a maximum time interval within vhich it must be made. (Refer to the theory in Section 2.3.) The protocol requires a 3 -minute p.i. bolus scan. However, events such as instrument intensity re-adjustments may delay this scan. A bolus is never accepted past 7 minutes p.i. Other "bolus" scans are taken to study the early changes in the levels of plasma. fluorescein, and, therefore, CR bolus tailings. Plotting and filing usually take up to 90 s.

Immediately after bolus scanning and the removal of the Luman
lens, a blood sample is collected. A finger is pricked with a sterile lancet and approximately 0.1 ml of blood is collected in a heparinized capillary tube (haematocrit). The p.i. time is noted when half the tube is filled. Another sampling is done at about 15 minutes p.i.

The first measurement scan is taken around 30 minutes p.i. Other scans can also be taken for reproducibility studies. The third blood sample is taken after the Luma Lens has been removed. This procedure is repeated around 60 minutes p.i. The soft lens is also removed as scanning with the slit lamp is ended after the 1 -hour measurement scan(s).

The last parts of the examination are monochromatic nerve-fibre photography and ultrasound measurements of intra-ocular distances. The latter is used to compare against the distances of the various segments of the eye measured by the slit lamp. The ultrasound results are also used to scale the profiles collected, and to calculate the F-numbers for the optics in this VF system.

START		Read and sign CONSENT Form. Answer questions.
-30	min.p.i.	Dilate pupils with tropicamide.
-5	min.p.i.	Mount lenses. Measure intra-ocular distances.
		Background scanning.
0	min.p.i.	Injection and photography.
3-7	min.p.i	Bolus scanning and blood sampling.
15	min.	Blood sampling.
28-33	min.p.i	Measurement scanning and blood sampling.
55-65	min. p.i	Measurement scanning and blood sampling.
		Nerve-fibre photography; Ultrasound scanning.
-		Plasma-fluorescein scanning.

Figure 18. Flowchart of the scanning procedure.
4.3 B1ood-p1asma preparation

The four blood samples collected are centrifuged immediately after the ultra-sound measurements have been made. The speed is set at 2000 rpm for approximately 12 minutes. This adequately separates the red blood cells.

2 ml of pH 7.4 buffer solution are measured out by a volumetric pipette and placed in each of five (cuvette) dry sample cells. One cell is used as the background sample. 0.01 ml are dravn from each haematocrit using a $0.025-m 1$ pipette and emptied into each cell. The constant outside the integral in Eq. 30 is then 34.17. The cells are then scanned by the slit lamp.

Each cell is placed so that no light is reflected off any of its surfaces onto the probe. The probe is positioned visually, in such a way that it is not facussed on air bubbles on the inner surfaces of the cells. The focus of the probe is slightly behind the inner front wall of each cell. This is due to possible attenuation of the incident beam owing to the high concentrations. Also, from Figure 2b, the probe must be totally included in the sample volume.

The first sample to be scanned is always the background cell. It is scanned once only. Samples with fluorescein can be scanned more than once by varying the position of the probe's focus slightly each time. Also, plasma fluorescein samples are usually scanned in chronological order of their p.i. times.

SUBJECT DATA ENTRY is usually executed last.
V. ANALYSIS AND DISCUSSエロN
5.1 Classifications

The procedure was completed on the following sample population:

TYPE	NUMBER	AGE RANGE
MALE Diabetic	$10+2$	$21-64$
FEMALE Diabetic	5	$18-57$
MALE Normal	4	$27-38$
MALE MS	3	$32-39$
FEMALE MS	13	$20-59$
TOTAL	$35+2$	

Table 2. Distribution of subjects.

Two male diabetic subjects vere recalled at one and three months after their first scans to study the reproducibility. The tvo sets of results for these two subjects vere averaged in the folloving analysis. Only three blood samples were taken from the first two male and the first two female diabetic subjects on whom the procedure was carried out.

Whenever possible each parameter studied was classified and tested on the basis of disease (MS or diabetes), age, and sex. Only left eyes vere scanned because of the time restriction for the bolus. scans i.e., a one-eye design [49].

Diabetics with non-proliferative retinopathy vere separated into three groups according to the severity of capillary disease as
shown by fundus photography and fluorescein angiography. Group $D(1)$ consisted of subjects vith no or early DRP (0 to 5 microaneurysms); group $D(2)$, subjects vith mild to moderate non-proliferative DRP, and group $D(3)$, subjects with severe non-proliferative DRP.

DISEASE STATES	NUMBER
D(1) - Diabetic with zero to early DRP (0 - 5 microaneurysms).	$\begin{aligned} & 7 M \\ & 1 F \end{aligned}$
D(2) - Diabetic with mild to moderate DRP.	$\begin{aligned} & 1 M \\ & 2 F \end{aligned}$
D(3) - Diabetic vith severe DRP.	$\begin{aligned} & 2 M \\ & 2 F \end{aligned}$
TOTAL DIABETIC SUBJECTS AVAILABLE	10M: 5F
MS(1) : stable recovering from relapse	$\begin{aligned} & 2 M: 3 F \\ & 1 M: 2 F \end{aligned}$
MS(2) : slovly progressive in relapse	$\begin{aligned} & 0 M: 4 F \\ & 0 M: 4 F \end{aligned}$
TOTAL NUMBER of MS subjects AVAILABLE	3M: 13 F
```MS(3) : benign relapsing-remitting```	$\begin{aligned} & 1 M: 1 F \\ & 1 M: 6 F \end{aligned}$
MS(4) : relapsing-progressive chronic progressive	$\begin{aligned} & 1 M: 5 F \\ & 0 M: 1 F \end{aligned}$
TOTAL NUMBER of MS subjects AVAILABLE	$3 \mathrm{M}: 13 \mathrm{~F}$
MS(5) : no periphlebitis	$2 \mathrm{M}: 5 \mathrm{~F}$
MS(6) : active periphlebitis	$0 M: 2 F$
MS(7) : inactive periphlebitis	1M:3F
TOTAL NUMBER of MS subjects AVAILABLE	3M: 10F

Table 3. Detail subject classifications.

MS subjects vere grouped for analysis in three ways. The first vas by the activity of MS at the time of the scans. The subdivisions comprised MS(1) - subjects vho vere either stable or recovering from a relapse or had recovered completely from a recent relapse at the time of scanning and MS(2) - subjects who vere either in slow progression or in relapse. The second was by the standard clinical activity categories of MS as reported in case records. The subjects vere again subdivided into two sections - MS(3) and MS(4). MS(3) included those classified as benign (only one attack) or relapaingremitting (almost complete recovery from each attack). MS(4) subjects were classified as relapsing-progressive, or chronic-progressive. The third grouping separated the subjects according to the absence or presence of either active or inactive retinal periphlebitis. These vere called MS(5), MS(6) and MS(7) respectively. As not all subjects vere examined for these states, the sample size for this grouping vas reduced.
5.2 F-Numbers

The $F$-numbers in Section 2.2 , vere calculated by SUDATA. BAS for each subject. The average and standard deviation were found for each intra-ocular compartment and tested against the averages from Gullstrands emmetropic model eye in Table 1 . The results vere calculated using the data from 34 subjects only. Three subjects (from Table 3). vere excluded because they did not have the ultra-sound scans. As Fnumbers are characteristics of the system, the subjects vere not separated into age, sex or disease states.

MEDIUM	AYERAGE	S.D.
Aqueous	1.735	0.359
Lens	1.511	$\therefore$
Vitreous	1.245	0.157
		0.089

Table 4. Average F-numbers and their S.D.

Since 34 measurements vere made, the mean values in Table 4 vere tested against those in Table 1 using a normal( 0,1 ) distribution test. A $P=1 \%$ level of significance was imposed. The results showed that the $F$-numbers from Table 1 vere not applicable to this $V F$ system: the F -numbers in the two tables were significantly different. Hence, the Luma contact lens (which replaces the Goldmann contact lens in Lund-Andersen's calculations) changes the $F$-numbers significantly.


Figure 19. Plot of F-number results.
5.3 エntraーocular Lengths

The averages for the vitreous and aqueous chamber depths, the lens thickness and the total axial length as measured by ultrasound for male and female subjects are shown below. The sample sizes were 17 in each group.

AGE RANGE	SEX	VITREQUS	LENS	AQUEOUS	AXIAL	NUMBER	
$16-20$	$F$	15.76	3.38	4.45	23.59	3	
$21-30$	$M$	17.96	3.67	3.60	25.23	7	
	$F$	16.24	3.38	3.96	23.58	6	
$31-40$	$M$	15.44	3.81	3.56	23.81	9	
	F	15.94	3.96	3.42	23.31	2	
$51-50$	$F$	16.13	3.84	3.48	23.46	2	
$61-65$	F	14.45	4.32	3.22	21.99	2	
TOTAL							

Table 5. Average lengths of the intra-ocular media (in mm).

Although the sample sizes vere small, and the various disease states vere not taken into account, the above table suggests either that axial length decreases with age, or, that the lens thickens with age. [50] Linear least-squares fits were done on each treatment. The null hypothesis, $H^{*}$, in each case was that the slope of the straight line was zero. The alternative hypothesis, $H^{a}$, for the axial length test was that it decreased with age; (i.e. a negative slope): while for the lens, it thickened with age (i.e. a positive slope). The levels of significance ( $P$ ) at which $H^{*}$ vould be rejected vere found in a $t(17-2)$ test. The results are shown in the Table 6.



Figure 20. Intra-ocular Lengths.

TEST	MALE	FEMALE
Lens vs Age	$\begin{gathered} <1 \% \\ 3.79+1-0.35 \end{gathered}$	$\begin{gathered} <1 \% \\ 3.72+/-0.55 \end{gathered}$
Axial vs Age	$\begin{gathered} <5 \% \\ 24.31+1-1.65 \end{gathered}$	$\begin{gathered} <2.5 \% \\ 23.16+1-1.05 \end{gathered}$

Table 6. Significance levels (P) for intra-ocular lengths tests. Average +/- S. D. (mm) calculated from Table 5.

MALE	FEMALE
$\begin{gathered} L=26.79-0.07 * A \\ r=0.45 \end{gathered}$	$\begin{gathered} \mathrm{L}=24.49-0.04 * A \\ \Gamma=0.52 \end{gathered}$
$\begin{gathered} T=3.11+0.02 * A \\ r=0.59 \end{gathered}$	$\begin{gathered} T=2.76+0.03 * A \\ r=0.72 \end{gathered}$

Table 7. Results of linear, least-squares fit of axial length (L), and lens thickness (T) in mm to the subject's age (A in yrs). $r=$ linear correlation coefficient.

Hence, it would seem that the crystalline lens thickened vith. age. The spread of the data vas significant when comparing case by case. This is observed in the low value of the linear correlation coefficients, $r$ of the fits in Table 7.
5.4 Plasma Curveーfits

The four ( $2+1$ )-parameter fitting polynomials in BLOOD. BAS can be reduced to two. The fits to the $35+2$ cases in Table 2 showed that most plasma profiles vere (as expected) best described by the logarithmic or the exponential forms. The simple parabola was a poor fit for what was expected to be a fast exponential-decay-type behaviour of the two-compartment model. It produced a minimum between $t=30$ and $t=60$ minutes p.i. in almost all cases. The one that was accepted had a minimum that vas situated in the neighbourhood of $t=60$ minutes p.i.

Fit \#3, the second-order polynomial in $1 / t$, usually rose from negative values to a maximum in $0.5<t<t(1), ~ t h e ~ f i r s t . ~ s a m p l i n g ~$ time. This resulted in negative areas upon integration. Such results vere rejected even though the reduced chi-square might have been the smallest among the fits.

| SUBJECT TYPE | FIT FUNCTION |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\# 0$ | $\# 1$ | $\# 2$ | $\# 3$ |  |
| Male Diabetic | 0 | 6 | 4 | 2 | 12 |
| Female Diabetic | 0 | 3 | 1 | 1 | 5 |
| Male Normal | 0 | 3 | 1 | 0 | 4 |
| Male MS | 0 | 3 | 0 | 0 | 3 |
| Female MS | 1 | 7 | 3 | 2 | 13 |
| TOTAL | 1 | 22 | 9 | 5 | 37 |

Table 8. Plasma fits.

Testing the above table in a two-vay classification without interaction at $P=5 \%$ shows that the types of disease (rows) did not have significant effect on which function was the best fit. There was significant difference betveen the type of best-fit functions: function $\# 1$ vas significantly the most probable result.

As mentioned before, the amount of dye in the blood rises from zero at $t=0$ (injection) to a maximum in less than one minute then begins to fall. The area depends on the fit which is defined by the number of samples collected. The more samples taken within the onehour p.i. interval, the better defined the fit. Hovever, with only four samples, (or less in 4 diabetic subjects), the area between $t=0$ and $t: /$ may have significant effect on the integration. Hence, the effect of the time at which the first blood sample was taken on the resulting fit was investigated. The treatments were the intervals containing t'". The replications $[51,52]$ were the fitting functions. Sex vas not considered.

At $P=10 \%$, $t^{\prime \prime}$ did not have a significant effect; the types of fit were significant (as shown before). There did not seem to be any interaction between the types of disease and t's.

The above results imply that the curve-fitting in BLOOD. BAS may be shortened to save running and printing time: the first and the last function(s) may be omitted from consideration. Table 9 shows the distribution of the $35+2$ fits in the $t^{\prime \prime \prime}$ intervals. Note that. these intervals were arbitrarily chosen.


Table 9. Effect of the first blood sampling time, t‘". $M=M S ; D=$ Diabetic; $N=$ Normal
S. S LLOD

TYPE	AVERAGE	S.D.	NUMBER
Male Diabetic	4.32	1.25	$10+2$
Female Diabetic	4.57	1.84	5
Male Mormal	3.99	0.68	4
Male MS	4.62	3.19	3
Female MS	4.51	2.10	13
FIMAL	4.41	1.72	$35+2$

Table 10. Average LLoDs and S.D.s. (ng. $\mathrm{ml}^{-1}$ )

The LLoD was calculated from the background scans (0. AVG files) in the interval between 8 and 10 mm from the retina. Specifically, the in vivo LLoD is defined in this study as the average concentration in the interval plus twice the root-mean-square value of the standard deviations of the data collected in that interval.

An analysis of variance at $P=25 \%$ showed that the types of disease did not affect the averages in each treatment. This was expected because the pre-injection scans were dye-free. Hence, the average LLoD was equivalent to a concentration of 4.41 +/- 1.72 ng.ml-1. This value compares favourably with the in vitro LLoD of approximately 5 ng.ml-1 that was estimated during concentration calibrations, and as stated in [14].
S.G Autofュuorescence

Plots of lens autofluorescence vs age of subject, and duration of disease are shown on the next page. Least-squares straight-line fits vere found for each disease category. $t(n-2)$ tests on the slopes of the fits vere performed on $H^{*}$ : the slope vas 0 in each case; and on $H^{a}$ : the slope vas positive in each case. Table 11 shows the results of the tests againat age only.

These results imply that lens autofluorescence increased with age [19,35]. Also, the averages, intercepts and approximately equal slopes of the fits suggested that lens autofluorescence vas higher. and occurred earlier in the diabetic subjects than the normal and MS subjects. Hovever, this trend vas not clearly defined betveen the MS and the normal subjects as the slopes were different.

b. LENS AUTOFLUORESCENCE vS DURATION


Figure 21. Autofluorescence.

	DIABETIC	NORMAL	MS
Sample size, $n$	15	4	16
Correlation, $r$	0.65	0.93	0.84
Average age (yrs)	30.2	32.0	37.9
Average reading	121.8	55.4	69.4
Standard Deviation	83.8	20.4	43.4
Slope (ng.ml-1. $\mathrm{yr}^{-1}$ )	4.11	4.20	2.93
Intercept (ng.m1-1)	-2.32	-78.0	-41.7
P(reject $H^{\bullet}$ )	$1 \%$	$5 \%$	$1 \%$

Table 11. Lens autofluorescence, S.D. (ng. ml-i) vs age.

The duration of diabetes did not have a significant effect on lens autofluorescence ( $P>25 \%$ ), and was not included. Autofluorescence versus state of DRP was tested.

	$D(1)$	$D(2)$	$D(3)$
Number	8	3	4
Average	69.94	184.9	178.3
S.D.	35.36	73.7	104.0

Table 12. Autofluorescence, S.D. (ng. $\mathrm{ml}^{-1}$ ) vs DRP states.
t-tests on differences showed that $D(1)$ and $D(2), D(1)$ and $D(3)$ were significantly different $(P=10 \%)$; while $D(2)$ and $D(3)$ were not $(P>25 \%)$. Note that the S. D. $s$ were sizeable fractions of the averages, i.e., there vas a large variation from case to case. (An analysis of variance at $P=2.5 \%$ showed that at least two of the means vere not the same.)

One conclusion is that lens autofluorescence increased
significantly with progression from no DRP to severe DRP [19,35]. These results partly explain the low correlation coefficient, $r=0.65$, for the curve-fitting in Table 11. Diabetic subjects between the age of 18 and 27 years with severe DRP reduced the goodness of the straight-line fit. Hovever, it has not been explicitly shown that the increase in lens autofluorescence is due to the thickening of the lens vith age. This requires a much larger sample size of normal subjects spanning a large age range.

MS STATES	AVERAGE	S.D.	NUMBER
MS (1)	69.96	48.93	8
MS (2)	68.85	40.45	8
MS (3)	47.38	27.69	9
MS (4)	97.71	44.93	7
MS (5)	69.74	54.35	7
$M$ MS(6)	73.03	49.66	3

Table 13. Autofluorescence, S.D. (ng.mi-1) vs MS states.

There was no significant difference between the means of MS(1) and MS(2), or that of MS(5), MS(6) and MS(7), (P>25\%). Hovever, the means of $M S(3)$ and $M S(4)$ were significantly different ( $P=2.5 \%$ ). Note the large S.D.

Although the trend of increasing autofluorescence vith age was. seen in Table 11, the classification in terms of graded severity of recent clinical activity did not show trends similar to the cases with diabetes. The distribution of those older subjects among the MS
groups had "biased" the results. No trends were observed except that autofluorescence was higher than for normals.

The trends established thus far are in accord with other researchers' findings. Hovever, comparing average readings, the values here are much lower than from [35]. One possible reason for this is that the instrument characteristics and calibrations were different. For example, the angle between beam and probe was different. However, it is more likely that alignment errors were the cause of the differences.
5.7 Proxiles

The effects of $C R$ tailings vere studied in a $D(1)$ subject. (Figure 22.) Some of the scanning problems discussed in Section 2.1 are demonstrated in these profiles.

The excitation beam in the 2 -minute scan was probably partially clipped by the iris as suggested by the plateau shown within the first 2 mm from the retina. The tailings however, coincide with the 4-minute scan for distances greater than 2 mm from the retina.

The 4-minute scan peaked at about the position of the retina that was located visually. Note that the tailings at this time persisted vell into the vitreous where, for this subject at this p.i. time, no dye was expected to have penetrated.

The 6 -minute profile shows the difficulty in visually locating the retina. The peak is approximately 1 mm anterior to the retina. This particular bolus alignment error can be corrected by setting the zero at the $C R$ peaks, but for later measurement scans the actual


Figure 22. Bolus effects.
position of the retina by $C R$ peaks can not be clearly defined in practice or in theory.

Figures $23 a-23 g$ show the evolution of the dye profile in the posterior vitreous of subjects in various classifications. Note that the vertical log scales are different. The important points are as follows -
a) the prominance of the bolus profiles and $C R$ peaks.
b) the change of slope vith time about 3 mm .
c) alignment and peak shifts anteriorly.
d) the difference in the concentrations farther from the retina.

The profiles of the normal (Figure 23a) are "noisier" than


Figure 23. Sample profiles.

e. Stable MS.
f. Relapsing MS.

f. Liquefied vitreous.

Figure 23. Sample profiles (continued).
others as one might expect from the lower concentrations of dye. All profiles more or less coincide at 6 mm unlike for others, especially the $D(3)$ and the MS cases in Figures 23f,g.

The special case of the female, MS subject with the liquefied vitreous in Figure $23 g$ is vorth noting. The gradient of the 1 -hour profile (at the posterior vitreous) is small compared to the bolus at various positions from the retina. The 60-minute $C R$ peak is thus not vell defined. Hovever, as the profile about the 3 -mm point was "flat", misalignment should not produce large errors in this special case. However, regardless of the state of the vitreous, Figure $23 g$ shows that a large amount of dye had indeed entered the posterior vitreous through the BRB.

Figure $24 a$ compares the 1 -hour scans of two stable, MS subjects' profiles. The male, MS(4) profile is very similar in slope and magnitude to the MS(3), female subject. Both are elevated above the normal subject's profile. The plateau between 2 and 3 mm is probably due to movement by the subject during the scan [32]. The male subject had no periphlebitis; the female subject vas not examined for this.

Figure $24 b$ compares the 1 -hour scans of two female, MS subjects, vith active and inactive periphlebitis respectively. The latter subject vas the person vith the liquefied vitreous. Both belonged to the MS(2) and the MS(4) groups. Note that the MS profiles are clearly above the normal.

Figures 25a,b, c compare a male and a female diabetic person's 1-hour profiles in the $D(1), D(2)$ and $D(3)$ groups respectively. The magnitude of leakage (vertical axis) is progressively greater from

a. Relapsing-Remitting vs Relapsing-Progressive.

b. Relapsing-Progressive vs liquefied vitreous.

Figure 24. Comparison of MS profiles.
(Refer to Table 14 for number codes.)
$D(1)$ to $D(3)$. This demonstrates good correspondence with clinical grading of severity of DRP. The differences in the magnitude of leakage in Figure 25a of $D(1)$ profiles may have been accentuated by poor control of diabetes in one case despite the presence of less than 5 microaneurysms. The leakage is similar to that of a normal subject vhen there is good control of diabetes.

Figure 26 compares the 1 -hour scans of the following subjects:
a) a male subject in the MS(1), MS(4) and MS(5) groups.
b) a female subject in the MS(2), MS(4) and MS(6) groups.
c) a female subject in the $D(1)$ group.
d). a female subject in the $D(2)$ group.
e) a male subject in the $D(3)$ group.

These illustrations of profiles are intended to demonstrate


Figure 25. Comparison of diabetic subjects' profiles.


Figure 26. Oyerall comparison. (Refer to Table 14 for number codes.)
different magnitudes of leakage vithin MS and diabetes. Profiles provide qualitative comparisons of the integrity of the BRB - such as visibly different gradients (at some point), or, that one lies above or below the other. In the calculations of PRJ or $P$, the division by the results of the plasma integral may produce quite different quantitative descriptions of the BRB.
5. 8 Dif土usion Constant

The diffusion constant, $D$ vas calculated by SLOPES.BAS. Table 14 gives the results of averaging over all measurement scans made. Note that $D$ and all calculations pertaining to it are alvays given in units of $10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.

Least-squares fits to $D=A+B *$ (age), and $D=X+Y *(d u r a t i o n)$. vere carried out on each disease group vith $H^{*}:$ slope $=0$, and, $H^{A}$ : slope < 0 or $>0$, i.e., one-sided t-tests depending on the coefficient, $B$ or $Y$ of the fits.

AGE	DIABETIC	NORMAL	MS
18	4.44 (F1)		
19	0.85 (F3)		
20			4.42 (F235)
21	3.73 (M1)		
22	3.69 (M1)		1.35 (F23?)
	9.78 (M1)		
23	0.55 (M1)		
25			5.18 (F135)
26	2.94 (F3)		
27		7.38 (M)	17.13 (F135)
28	7.18 (M1)		
	2.54 (M3)		
29	5.22 (M1)		
30	1.84 (F2)		6.42 (F13?)
31	6.02 (M1)	6.72 (M)	
32		4.12 (M)	3.62 (M137)
35	3.58 (M2)		7.11 (M145)
			9.33 (F236)
37			5.22 (F247)
38		15.15 (M)	4.34 (F246)
39			11.49 (M135)
44			29.90*(F247)
49			8.72 (F247)
56			27.59 (F135)
57	2.69 (F2)		
59			18.68 (F145)
			13.13 (F24?)
64	2.31 (M3)		
average	3.83	8.34	10.86
S. D.	2. 44	4.75	8.49
NUMBER	10M: 5F	$4 \mathrm{M}: 0 \mathrm{~F}$	3M: 13F

Table 14. D averaged over all measurement scans. CODES : (XA) for diabetics; (XBCD) for MS where
$X=$ Male or Female
$A=1,2,3$ for $D(1), D(2), D(3)$ respectively;
$B=1,2$ for $M S(1), \mathrm{MS}(2)$ respeotively;
$C=3,4$ for MS(3), MS(4) respectively;
and, $\quad D=5,6,7$ for MS(5), MS(6), MS(7) respectively. $D=$ ? means subject not examined.

* is the subject with liquefied vitreous.

	DIABETIC	NORMAL	MS	TOTAL
Sample Size	15	4	16	35
Coefficient, A	4.82	-16.06	-4.96	-1.08
Coefficient, B	-0.03	0.76	0.42	0.25
Correlation, r	0.18	0.73	0.62	0.46
P(reject He)	$>25 \%$	$25 \%$	$1 \%$	$<0.5 \%$
Sample Size	13		9	
Coefficient, X	5.84	4.61		
Coefficient, Y	-0.22	0.14		
Correlation, $r$	0.53	$5 \%$		
P(reject He)	$5 \%$			

Table 15. Tests of $D$ vs age and duration.

	AVERAGE +/- S.D.		NUMBER	P
D(1)	5.08	2.73	8	25\%
D (2)	2.70	0.87	3	2. $5 \%$
D(3)	2.16	0.91	4	0. 5\%
Male Diabetic	4.46	2.67	10	10\%
Female Diabetic	2.55	1.33	5	$0.5 \%$
DIABETIC AVERAGE	3.83	2. 44	15	0. $5 \%$
Male Normal	8.34	4.75	4	25\%
MS (1)	12.15	8.33	8	5\%
MS (2)	9.58	9.01	8	25\%
MS(3)	9.61	8.25	9	25\%
MS (4)	12.47	9.17	7	10\%
MS(5)	13.08	8.50	7	5\%
MS (6)	6.84	2.50	2	> 25\%
MS(7)	11.87	12.21	4	25\%
Male MS	7.41	3. 94	3	> $25 \%$
Female MS	11.66	9.15	13	2. 5\%
MS AVERAGE	19.86	8.49	16	2. $5 \%$
FINAL AVERAGE	7.56	6.90	35	9\%

Table 16. Diffusion constant, D by sex-disease states.

The results in Tables 14 and 15 shov that $D$ tended to increase with age, This result was dominated by the larger MS sample with numerically more older subjects. Also, the B-coefficient for diabetic subjects was negative but not significantly so. Others had also noted this trend but vere unable to prove it statistically [53]. The tests of $D$ against the duration of diabetes (Table 15) were inconclusive because the sample sizes vere small, and the $Y$-coefficients for diabetes and MS were of opposite signs, showing opposite trends. This may be due to intra-group variation in severity. Larger samples of each disease state are needed to establish the existence of any trend. Note the significant scatter of data as the correlation coefficients, $r$, are not close to 1. (Figure 27.)

The extreme right column in Table 16 shows the results of the tests for
$H^{*}$ : average $D$ in each group $=D^{*}$.
where $D^{\prime \prime}=6$ [20] is the diffusion constant of the dye in vater. Despite the large spread of the data in each group, one notable result was that the $D$ 's for diabetics were significantly lower than $D^{\prime \prime}$, for this sample. The reason for this is not known. Similarly, the explanation for the $D(2)$ and the $D(3)$ averages being half that of $D(1)$ is not apparent. It should be noted that the $D(1)$ sample was twice the size of $D(2)$ or $D(3)$.

In contrast, the average $D$ for $M S$ subjects was significantly. higher than $D^{\prime \prime}$. As stated before, the high values came from most of the older, MS subjects, notably, the female, MS subject vith liquefied vitreous who had the highest value. This result may be due to


Figure 27. Diffusion ocnstant vs age.
the effect of mechanical mixing on the difference equation, Eq. 32.
Other tests on the results in Table 16 showed that the value of $D$ for $D(1)$ was significantly different from those of $D(2)$ and $D(3)$ ( $P<5 \%$ ). There was no significant difference betveen $D(2)$ and $D(3)$ ( $\mathrm{P}>25 \%$ ).

Betveen MS(1) and MS(2), MS(3) and MS(4), and MS(5), MS(6) and MS(7), there vas no difference ( $P>25 \%$ ). These results were due to the large spread of data in each group with high values distributed throughout all groups.

The diffusion coefficient in the normal eye was found by others to be
a) $13.3+/-6.8$ and $11.9+/-5.4$ (Chahal, et al. [23]),
b) $13.2+/-4.3$ (Ogura, et al. [531),
c) $\quad 7.4$ +/- 3.4 (Lund-Andersen, et al. [54]).


Figure 28. Diffusion constant vs duration.

For diabetic eyes, $D=9.6+/-2.0[54]$. Note that the large S.D.s allow for much overlap.

Comparing these results to those in Tables 15 and 16 , for $P=5 \%$, there vas no difference between the average found here and those derived by others for normals. Individual results in Table 15 vere within the range in (c); but, somevhat lower than those values in (a) and (b).

Comparing the averages of any diabetic group, or, of individual cases, all vere found to be significantly lover ( $P<0.5 \%$ ) than the value stated by Lund-Andersen, et al [54].

Many of the $D$ values for MS subjects were within the quoted values for normal and diabetic persons. The exception was the liquefied vitreous case for which $D$ was higher than all others. $D$ values vere also elevated for several older MS subjects. No explanation in terms of clinical activity is known. (Refer to Table 14.)

The results of $D$ in Table 14 vere derived for profiles aligned by RET only. Misalignment might account for some of the extreme values. As the average over all measurement scans vas used, this should alleviate the alignment errors. Also, no correlation was seen between $D$ and the PR3 values studied below.
5. 9 Penetration Ratio

Recall that PRJ (in units of $\operatorname{*RO}^{-1} \mathrm{~s}^{-1}$ ) was calculated in two methods of alignment by the programme, C/VAZ. BAS: by RET, and, by CRP. (Refer to Section 3.4.) The results are presented in Table 17. In some cases, PR3 was more than halved when the alignment was changed from RET to CRP; in others, it remained approximately the same. These changes are evidence of the difficulty of locating the retina by sight.

A case in point was the 22 -year old, MS subject whose 1 -hour, PR3 value vas 48.2 by RET - the highest of all MS subjects; vhile, by CRP, it fell to 13.1. Her fluorescein profile at 1 -hour p.i. shoved that the $C R$ peak vas more than 2 mm from the located zero position. Although she vas not examined for the presence or activity of periphlebitis, her profiles were not distinctly different from other MS subjects in the $M S(2)$ and $M S(3)$ groups, but, vere vhen compared to the MS(6) category.

Another notevorthy result is that of the 32 -year old normal vho. is the brother of the 35 -year old, MS subject. His PR3 values vere about 3 times that of other normals. His sister, vho, at the time of scanning, vas in relapse, had lover PR3 values than his (in either


Table 17. PR3 averaged over all 55-70 minute scans, after background subtraction only. CODES : (XA) for diabetics; (XBCD) for MS

## where

$X=$ Male or Female
$A=1,2,3$ for $D(1), D(2), D(3)$ respectively;
$B=1,2$ for MS(1), MS(2) respectively;
$C=3,4$ for MS(3), MS(4) respectively;
and, $D=5,6,7$ for MS(5), MS(6), MS(7) respectively.
$D=$ ? means subject not examined.

- is the subject with liquefied vitreous.


Figure 29. Penetration Ratio.
alignment)! This anomaly might have been due to improper instrument calibrations (settings) at that time; othervise, it cannot be explained. This subject (and his sister) vill have to be recalled for further testing. His reading vas omitted from analysis. (Note that other data such as $F$-number calculations vere still admissible.)

The results of atatistical-inference testing vere anticipated by ranking PR3 results in ascending order (by RET and by CRP separately) for MS subjects. The first noticeable point was that all MS(6) subjects had higher values. The case of (F247), the subject vith the liquefied vitreous, also had a high PR3. All other MS clas-. sifications vere distributed throughout the order vith no obvious "clustering". This implied that there vas no detected difference between MS(1) and MS(2), MS(3) and MS(4), MS(5) and MS(7).

The highest PR3 results calculated was that of a 22-year ald, male, $D(3)$ subject. Although he has severe DRP, his reading vas about 10 times higher than other $D(3)$ subjects which may be an intragroup variation. The l-hour profile shoved indisputable, elevated levels of dye in the vitreous. His PR3 value was also omitted from all testing.

The ordering of diabetic $P R 3$ results shoved that the results of the $D(3)$ group vere consistently the highest values. Cases with obviously high amounts of leakage vere clearly detected (and detectable) by this fluorophotometer. This "justifies" the omission of the above $D(3)$ case because the other $D(3)$ results, taken individually or together, were already significantly higher than those of the other two diabetic groups.

GROUP	RET			CRP		
	MEAN +/- S. D.		*	MEAN +/- S.D.		*
D(1)	12.6	10.5	8	15.9	8.9	8
D(2)	18.0	10.4	3	15.3	8.4	3
D(3)	192.3	88.3	3	77.7	22.1	3
NORMAL	10.0	4.8	3	9.3	6.4	3
MS(1)	12.5	9.9	8	7.7	5.4	8
MS (2)	19.6	12.0	7	17.6	9.4	8
MS (3)	16.0	9.7	8	11.0	5.9	9
MS (4)	15.6	13.4	7	14.8	12.1	7
MS (5)	12.8	9.3	7	9.1	5.8	7
MS (6)	31.1	8.3	2	25.8	10.8	2
MS (7)	14.4	12.2	4	14.1	11.6	4

Table 18. PR3 Average +/- S.D. of the various groups.

The $D(1)$ and $D(2)$ classifications, like the MS(1), MS(2), and MS(3), MS(4) groups, did not distinctly separate out in either the RET or the CRP sorts. This could imply that intra-group and intergroup fluctuations vere significant. Poor alignment and/or an algorithm not optimized for such calculations could also have prevented the appearance of any expected order.

PR3* results by SLOPES. BAS ordered in the same manner as those by RET. This was expected because SLOPES. BAS was written to approximate RET results by curve-fitting. (Refer to Section 3.4.) The order for the $D(3)$ group was exactly the same but the PR3 values were about $10 \%$ greater than the PR3* values. On average, however, PR3* values were neither always greater than nor always lower than PR3 (by the sign test at $P=5 \%$ ). PR3* results from SLOPES. BAS could then be used to check C/VAZ. BAS's RET PR3 results. Either set of results could be consistently used to represent the penetration ratio when only alignment by RET was considered; computing time could be shortened by choosing to run one of the two programmes only.

It is observed from Tables 17 and 18, that most individual and average results of diabetic and MS subjects were higher than those of the normals, despite the large S.D.s. Although age-matching tests between the members of each group vere not possible because of the small sample sizes, such trends demonstrated that differences between groups and indivduals existed (for this gample) and vere detected! Tests of the significance of the differences between the PR3 means between any two groups vere carried out. Analysis of variance vas used to test
$H^{*}$ : the means of any 2 groups vere the same,
i.e. their difference vas 0 , against
$H^{\wedge}$ : the means of any 2 groups vere different,
i.e. their difference was not 0 .

The $P\left(r e j e c t ~ H^{\circ}\right)$ are shown in the respective tables below. The entries in the upper triangles are for RET alignment. Those in the lower triangles are for CRP alignment.

		BY RET			
		NORM	$D(1)$	$D(2)$	$D(3)$
B	NORM	$* * * *$	$>25$	$>25$	2.5
$Y$	$D(1)$	$>25$	$* * *$	$>25$	$<.5$
$C$	$D(2)$	$>25$	$>25$	$* * *$	5
$R$		1	$<.5$	2.5	$* * *$

Table 19. Significance level (\%) to reject $H^{\bullet}$ between diabetic and normal groups.

In the above table, only the $D(3)$ group was clearly and significantly different from all other groups. But, the results in $D(1)$ and $D(2)$ ranged from 1.4 to 30 , and 6.5 to 32.7 for RET and CRP respectively. These indicate that breakdown of the $B R B$ had already occurred and vas detected in subjects without signs of DRP but vere at the early stages [4,5].

The only significant difference for the groups in Table 20a below is that between MS(1) and MS(2) in CRP. In Table 20b, MS(6) is
significantly different from MS(5) and normal but not from MS(7). Betveen other groups, there is no significant difference. Table 18 shows the large S.D.s of these groups.

(a)		gY RET				
		NORMAL	MS(1)	MS(2)	MS(3)	MS(4)
	NORMAL	*****	> 25	25	> 25	> 25
Y	MS(1)	> 25	****	25	*****	****
	MS(2)	25	2.5	****	*****	*****
R	MS(3)	> 25	*****	****	*****	> 25
	MS(4)	> 25	****	****	> 25	****


(b)		BY RET			
		NORMAL	MS (5)	MS (6)	MS(7)
B	NORMAL	*****	$>25$	5	$>25$
	MS (5)	$>25$	*****	5	$>25$
CRP	MS(6)	25	2.5	****	25
	MS(7)	$>25$	$>25$	$>25$	****

Table 20. Significance level (\%) to reject $H^{*}$ between MS and normal groups.

One reason for the great dispersion of data in MS(7) is the placement of the case of the liquefied vitreous. Her classifications, place her into the respective categories, but it is not clear if her results should be included at all because of her unique case. When

MS(7) is tested vithout it, against MS(6) in RET, P falls to $2.5 \%$ from $25 \%$. All other comparisons remain the same.

From the averages and S.D.s in Table 18, it is easy to see that between the two diseases, there is no significant difference between $D(1)-D(2), M S(1)-M S(2)$ and MS(3)-MS(4) classifications when comparing within or between these groups. $D(3)$ is, of course, very much greater then all other groups. The only set which is "internally" significantly distinct is the MS(5)-MS(6)-MS(7) set. Hence, it is tested against $D(1)$ and $D(2)$ only.

	$M S(5)$	$M S(6)$	$M S(7)$	
$R$	$D(1)$	$>25$	10	$>25$
$E$	$D(2)$	$>25$	25	$>25$
$T$	$D(1)$	$>25$	25	$>25$
$R$	$D(2)$	25	$>25$	$>25$

Table 21. Significance level (\%) to reject $H^{\bullet}$ between diabetic and MS states.

There is no significant difference (at $P=5 \%$ ) between $D(1), D(2)$ and all MS groups. If these treatments and results are correct. there is no significant difference between an MS subject's PR3 and that of a diabetic vith nil to moderate DRP, or a normal. However, individual variations in PR3 values (Table 17) should be noted.

The results are similar when the $C R$ bolus corrections are applied, vith and vithout the correcting peak-to-peak ratio. (See

Section 2.3.) It is hence not possible to study the effects of applying these corrections.

The results thus far indicate the problems that are inherent in the $V F$ technique. Assuming no instrumental errors, the difficulties in the positioning of the retina and the alignment of profiles in analysis reduce the certainty of the PR 3 results.

The above results and tests show that MS(1) and MS(2), and MS(3) and MS(4) cannot be differentiated. This is due to the large variations within each group. It does not mean that the $V F$ technique is not applicable to MS as the subjects in MS(6), with active periphlebitis, were discernible from others of the MS(5) and MS(7) groups as was the case for diabetes where the severity of leakage also corresponded to the severity of DRP.

Comparing the results for normals in Table 17 to other investigators' results, vhich are from 3.5 to 5.3 [32], it is seen that the PR3 values calculated here are within or above this range. No comparisons are available for MS PR3. However, abnormal leakage vas seen in some MS subjects other than the two with active periphlebitis. (Refer to Table 17.) These elevated PR3 values cannot be explained by retinal vasculature appearance (photographs and clinical examination). They imply that the VF system may be useful as a sensitive technique to detect subclinical activity. Hovever, the present study only included a small sample of subjects and is not able to relate. the clinical gradings of activity of MS or the current activity at the time of the procedure.
5. 10 LUND. BAS Results

LUND. BAS vas not tested on all subject. Firstly, the gradientexpansion algorithm is slow (on this computer), and is dependent on the initializing estimates of $P$ and $D$. Convergence is slov if any of the input values are far from the "true" values. (Refer to Section 3.4 and $[33,34]$.) Secondly, the conditions set to halt calculations vhen the reduced chi-square value begins to diverge from a minimum, or is less than 1, are not amply stringent in terms of convergence to a final solution set. The programme outputs the residues of the final, best fit but plot outputs to visually check the answers are not (yet) available.

Several outputs were returned on this subprogramme for three subjects tested. They were the 27 - and 38 -year old normals, and the 38 -year old MS subject in relapse. (See Table 17.)

Table 22 shovs the case-by-case results. The units of $P$ are
 that vere between 1.5 mm from the retina and the mid-vitreous vere accepted for curve-fitting to Eq. 18 (Section 2.4). The number of data-points that was accepted and fitted in each case is shown in the extreme right column. The results of $P$ values from other investigators for normals and diabetic subjects are also included.

In comparison vith published results, the ones obtained in this study are just within the range or less than those in the references. The diffusion constants, $D$, also follov the same trends vhen compared to those calculated in the previous section. Again, the large S.D.s of the quoted results should be noted.


Table 22. Results of LUND. BAS. * means unavailable.

If the algorithm of LUND. BAS is to be the adopted method by vhich different investigators compare $P$ and $D$ values, it is apparent. that the computational conditions on the reduced chi-square in LUND . BAS must be more restrictive and selective. Double-checking with output plots must also be implemented.
5.11 Dther Parameters

PI, the 1 permeability index was also calculated by C/VAZ. BAS. (Refer to Section 3.4.) The results vere, hovever, not useful. They often turned out negative and were rejected. This failure vas probably due to the algorithm itself. The necessity to integrate very close to the retina or to find an approximation ven integrating in that region was machine-(AR-)dependent [32].

Another penetration ratio not metioned thus far is that of the BAB. This result was not investigated because the source of leakage was the iris and ciliary body. The diamond does not scan close to the source of leakage and the models used in the algorithms employed here are not applicable. Another point is that misalignment errors are greater farther away from the retina. (See Figure 5.) Hence, a "PR3" cannot be calculated for the BAB. These conclusions were borne out by SLOPES. BAS which includes such a calculation at 3 mm from the posterior surface of the lens. No correlations in any of the groups vere found.

Two other performance parameters vere calculated from subject data. The first vas the in vivo reproducibility ( $R$ ). The definition in Eq. 27 in Section 2.5 was changed as this parameter was calculated from two sources. One way to test $R$ is to take scans within 3 minutes of one another; the averages about certain regions of each profile are found. $R$ is then defined as:

$$
R=100 * 1 a\left(x, t^{2}\right)-a\left(x, t^{2}\right) \mid /\left\{a\left(x, t^{2}\right)+a\left(x, t^{2}\right)\right\} \%,
$$

where $a\left(x, t^{\prime}\right)$ is the average about $x$ of the $t^{i}$-minute p.i. profile. $R$
is simply half the deviation from the average divided by the average. The alternative is to use the S.D. in the numerator, but as there are only two entries at each calculation, this was thought to be unnecessary. Note that small R-values imply good reproducibility.

The region about the mid-vitreous of measurement scans taken at $t>55$ minutes p.i. vas selected. The $3-m m$ interval vas not used because of the influence of tailings or large dye concentrations at later p.i. times, when there is leakage. Further, no mixing was expected at the mid-vitreous at these times.

Only CRP-aligned profiles were considered owing to the problems in locating the retina surface. However, the final $R$ was the average from all scans made after 55 minutes p.i. for which another scan was made within 3 minutes from the first. $R$ is a systems characteristic, and no tests were made against disease classifications. etc.

Taking all the above into consideration, the reproducibility vas estimated in averaging over 25 cases, to be

$$
R=19.0+/-12.7 \%
$$

The other method of estimating $R$ is to replace $a(x, t)$ in the above formula vith the calculated values of $D$ or PR3, or any calculated characteristics. The conditions that the numbers must be from $t$ > 55 minutes p.i. and within 3 minutes of one another still hold. The number found by replacing vith PR3 by CRP vas

$$
R=15.8+/-14.2 \% .
$$

The last parameter considered was the axial resolution (AR) alluded to in Section 2.1. It vas here defined as the ratio of the concentrations at 3 mm to the $C R$ peak of the bolus scan after the pre-
injection scan had been subtracted. This definition allowed only CRPaligned profiles to be used. Also, diseased eyes were excluded oving to possible bolus effects. Note that not all bolus scans were made at exactly 3 minutes p.i. Depending on the subjects, bolus scans vere made betreen 2 and 7 minutes p.i.

Averaged over the three normals,

$$
A R=0.032+1-0.026 .
$$

The performance of the assembled vitreous fluorophotometer was in close agreement with the data that describe the type of light detection system used in this study．Hardware and software designed to interface the light detection system with a microcomputer provided the signal conversion，data analysis and storage capabilities．

The inherent limitation of the optical system was the depen－ dence on a plano－concave contact lens for scanning the vitreous chamber．Discomfort caused by this lens from sequential measurements was largely overcome by using a combination of a bandage soft contact lens and a plastic Luman lens in place of the glass Goldmann lens used by other investigators．The effect of substituting the lenses was a different set of $F$－numbers which vere re－calculated by measu－ ring intraocular distances using ultrasound．

The most outstanding problem was locating the same reference points along each scan for the purpose of alignment，reduction of data and subtraction in the subsequent analysis．The method used to lessen the effects of alignment errors was to average about an inter－ val along the profile instead of selecting a specific point for comparison．The effectiveness of this algorithm however could not be determined because precise in vivo data on vitreous concentration could not be obtained．

The correction algorithm for the choriod－retinal bolus tailing effects used in the Fluorotron ${ }^{2}$ Master did not improve the separation between groups vhen applied to the fluorophotometer assembled for

## this study.

The penetration ratios in the 15 diabetic subjects were found to increase progressively with the severity of retinopathy (3 gradings), in agreement vith published reports. However, there vas significant dispersion of results about the averages in each group.

In the sample of 16 multiple sclerosis subjects, the penetration ratios vere not significantly different between the two groups that represented standard clinical activity categories or the two groups that represented current activity categories. The usefulness of vitreous fluorophotometry as a non-invasive test for monitoring central nervous system activity could not be ascertained because of the small sample sizes. Abnormal leakage was found in 4 of 15 cases with normal vitreous and either minimal or no evidence of retinal periphlebitis activity (2). The penetration ratios in active periphlebitis vere elevated (3-4 times normal control). Abnormal leakage in the absence of active periphlebitis has not previously been recorded. An elevated penetration ratio was also found in one case vith vitreous liquefaction.

Almost all subjects in the diabetes sample, irrespective of retinopathy severity, showed vitreous diffusion constants significantly less than the diffusion constant of sodium fluorescein in vater. In the multiple sclerosis sample and controls, the diffusion constants in the vitreous and in water vere not significantly different. The diffusion constant in the vitreous was 2-4 times greater than the value for vater in 4 older multiple sclerosis subjects and 5 times greater in the case with vitreous liquefaction.

## COMPUTER PROGFAMMES

## A. 1 DAS.PRN




## A. 2 SCANMENU. BAS

	WIDTH 32 : CLEAR, bHDICF : REM Updated 200186
110	DEFSTR A
120	DEFIMT I-N
130	d=r++.+.....' : PRIMT A : PRINT "SCan MENU" : PRINT A : PRIMT
140	RESET : PRIMT "(0) Run VITREOUS SCANNEMG programme" : PRIMT
150	PRIYT '(1) Run PLASMA SCANNiNG orogramme' : PRINT
160	PRINT * (2) Run SUBjECT Data EnTRy programme* : PRIMT
170	PRINT : PRINT "Enter ANY OTHER number to EXIT. - PRINT
180	PRINT "Which orogramme do you vish to run "; : INPUT II
190	If (II>2) THEN END ELSE PRINT
200	IF (II=2) GOTO 520
210	PRINT "Loading assemoly-language subroutine, DAS."
220	Data : $\mathrm{HAF}, 3 \mathrm{HJA}, 3 \mathrm{HDE}, \mathrm{SHEF}, 3 \mathrm{HFE}, 2,3 \mathrm{HCO}$
230	
240	DATA 8H32, $3,3 \mathrm{H} 29,3 \mathrm{H} 3 \mathrm{E}, 3 \mathrm{H} 2 \mathrm{E}, 3 \mathrm{H} 2, \mathrm{i}, 3 \mathrm{H} 29$
250	
260	
270	DATA 8HJE, 2, 8H32, 3HDE, 3HEF, 3HC9
280	
290	DATA sH3A, 2, 3H29, shl7, sHDA, 8 , 3HD2
300	DATA SH3A, O, 3H29, 3H2F, 3H77
310	DATA 3H3E. 3H23, 3H32, 2, 3H29, 3HCY
328	DATA sHF3. 3HDJ, 0, dH3E, 0, sin32, 8, sHEF
330	DATA \&H32, SHDO, 3HDI, SHCD, \&HDG, 3HDI
340	
350	DATA \& $\mathrm{CC3}$, 3H3日. SHD2
360	
370	DATA 3H3E, 3H13, 3H32, 2, 3 H 25
380	DATA 3 H21, 8 HD $4,3 H D 1,3 H 3 \mathrm{E}, 3 \mathrm{H} 33$
390	DATA 8H32, 2, 8H29, 3HCD, 1, \&HD2
400	DATA s $\mathrm{i} 21,8 \mathrm{HD} 2,3 \mathrm{HD1,8H3E}, \mathrm{3H23}$
410	DATA : $832,2,8 \mathrm{H} 2 \mathrm{~g}, \mathrm{BHCD}, 1,3 \mathrm{HD2}$
428	DATA 3H3A, 2, sh29,3H17, 8H17,3HD2, \&H63, \&HD2
430	DATA 3H3E, SHFO. SH32, 3HDD. 3HD1
440	
450	FOR I=1 TO 151
460	READ J : K=3HDIDS+I : POKE K, J
470	NEXT I
480	
490	IF (II=1) GOTO 510
500	Chaik merge eb:vitscan". 1010, all
510	Chain merge "b:plascan",1010,all
520	DIM AA(22), X (8)
530	
540	PRINT :SUQJECT DATA" : PRINT A : PRINT
550	PRINT "Enter the falloving --->* : PRINT
560	LINE INPUT 'Suoject's NAME $\rightarrow$ '; AA (0) : PRINT
570	LINE INPUT 'Sudject's AGE --> *;AA(1) : PRINT
580	LINE INPUT - Scan EyE --> ; AA 2 ) : PRINT
590	LINE INPUT - Scap DATE -> : AA(3) : PRİTT : PRINT
600	FOR $\mathrm{I}=0$ TO 5 STEP 3
610	PRINT Enter the *;
620	IF (I<>0) G0TO 640
630	
640	PRINT PULTRA-SCUND scan resuits (in mm) ---> : PRINT
650	PRINT TAB(10); If yo ultea-sound taken, enter 0."
660	PRINT : PRLNT *VITREOUS ---> * : INPUT X(I)
670	PRINT : PRINT - LENS ---> '; : IMPUT X(I-1)
688	PRINT : PRINT - ADUECUS ---> : : INPUT X (I*2)
690	PRINT : PRINT : PRINT : PRINT
700	HEXT I
710	PRIMT *Amount of $\overline{\text { cluorescein injected vas }}$ :
720	IMPUT X(6) : PRINT : PRiNT : PRINT : PRINT
730	PRINT 'Enter any remarks, COMmEnts or observations -->' : PRIMT
740	PRINT TAB(10);"Press netunk to exit." : PRINT : İ3
750	LINE INPUT "Enter -> ";A
760	IF ( $A=*$ ) GGTO 780
773	$\mathrm{I}=\mathrm{I}+1$ : AASİ=A : 0070750
780	PRINT : PRINT : PRINT 'The above is to be filed in'
798	PRIMT : PRINT TAB(10); ${ }^{\text {a }}$ for the LEFT Drive"
800	PRINT TAB(10);'g for the RIGHT Drive ";
810	A=INPUTS(1) : PRINT : PRINT : KEY=0
820	
830	IF ( $\mathrm{KEY}=0$ ) GOTO 980
840	IF $A={ }^{\prime} \mathrm{b}^{\prime \prime}$ THEN $A=\mathrm{B}^{\prime \prime}$
850	If $A={ }^{\text {a }}$ * THEN $A={ }^{\text {a }}$ *



```
970 FOR K=J TO M
880 IF N=1 THEN PRINT (1,X(K) ELSE PRINT (L,AA(K)
890 NEXT K
900 N=N+1
910 ON N GaTa 920,930,940
 M=6 : GOTO 870
 J=4 : M=I : GOTO 870
 PRINT : PRINT *SUBJECT.DAT has been completed."
 ERASE AA,X
 PRINT : PRINT : PRINT : PRINT Do NOT forget to COPY onta a run
 Diskette beiore BATCHRUN :!*
970 PRINT : PRIHT : GOTO 130
980 PRINT : PRINT : PRINT *GAD Entry :l: Please try again.*
990 PRINT : PRINT : GOTO 780
```


## A. 3 VITSCAN.BAS

```
1000 REM Updated 040285
010 DIM IX(1600),IY(1600),ML(9)
1020 A=*+++++++++++++++++* : PRINT : PRINT : PRINT A
1030 PRINT 'YITREOUS SCANNING* : PRINT A : PRINT : PRINT
1040 PRINT 'SYSTEMS CHECKS" : PRINT "=s============"
1050 PRINT '(1) All equipment ON.' : PRINT "(2) All cables connectèd."
1060 PRINT '(3) Sriteh A LOM." : PRINT "(4) VOLTMETER/Intenaity detector ON."
1070 PRINT (5) Intenaity = 141 +1- 1* : PRINT - (6) HV = 739*
1080 PRINT "(7) R/H exp = 0' : PRINT "(8) R/M-DAS output = 0"
1090 PRINT "(9) Sritch A HIGH to begin." : PRINT
1100 K=&HD21A : IP=&HDZ33 : PRINT : PRINT "LANDMARK SCANNING"
1110 PRINT : CALL K : A=INKEYS : JM=-1
1120 CALL IP : PRINT 'Intensity =`;PEEK(sHD1D4);
1130 K=PEEK(SHDID2) : PRINT TAB(30);'Pod =';K
1140 IF (INKEYS=") GOTO 1160
1150 JM=JM+1 : IX(JM)=K : PRINT CHRS(7);
1160 IF (PEEK(8HDIDO)<>240) GOTO 1120
1170 IF JM<1 THEN GOTO 1250 ELSE PRINT
1180 IF JH>8 THEN JH=B
1190 FOR K=1 TO JM
1200 I=K-1 ; NL(I)=IX(K)-IX(I)
1210 PRINT TAB(10);"Mark";K;'- Mark";I;"=0;ML(I)
1220 NEXT K
1230 PRINT : PRINT "Total LENGTH =";IX(JM)-IX(0) : PRINT
1240 PRINT "IMPORTAHT: WRITE dovn thege numbers." : PRINT
12S0 PRINT : PRINT 'LANDHARKIng vill NOT be Repeated, OK?" : GOSUB 1730
1260 IF (A=CHRS(27)) GOTO 1100
1270 A=INKEY' : PRINT : PRINT *Which EYE 1a to be scanned?" : PRINT
1280 PRINT : Enter : ESC for the RIGHT eye,"
1290 PRINT TAB(16);"ANY for the LEFT eye. "; : A=INPUTS(1) : PRINT : PRINT
1300 IF A=CHRS(27) THEN JJ=1 ELSE JJ=0
1310 IF JJ=0 THEN PRINT "LEFT"; ELSE PRIMT "RIGHT';
1320 PRINT " Eye vill be scanned." : PRINT : PRINT
1330 PRINT "SCAMNING INSTRUCTIONS" : PRINT ":====3=====0====3===3*
1340. PRINT '(1) Scan STEADILY (from the RETINA each time)." : PRINT
1350 PRINT "(2) Wait for the BEEP before atarting." : PRINT
1360 PRINT "(3) Svitch A to HIGH to BEGIM scanning." : PRINT
1370 K=3HD21A : IP=8HD233 : CALL K
1380 FOR I=0 TO 120
1390 CALL IP : IM=PEEK(SHDID2)
1400 IF I<S0 THEN PRINT 'Pod =';IM, 'RetIna =';PEEK(8HDID4)
1410 IF I=S0 THEN PRINT CHRS(26)
1420 HEXT I
1430 I=-1 : PRINT CHRS(7);
1440 IF I= 1599 THEN GOTO 1470 ELSE I=I+1
1450 CALL IP : IX(I)=PEEK(SHDID2) : IY(I)=PEEK(SHDID4)
1460 IF (PEEK(&HDIDO)<>240) GOTO 1440 ELSE GOTO 1480
1470 PRINT -You are out of MEMORY. Sviteh A to LOW." : PRIMT
1480 H=I : GOSUE 1770 : PRINT : PRINT
1490 IF (KO<>0) GOTO 1590
1500 PRIMT * Is the scan to be SAVEA%" : GOSUB 1730 : PRINT
```

```
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670 PRIMT "Do you vish to return to the SCAN MENU?" : GOSUB }173
1680 IF (A=CHRS(27)) GOTO }159
1690 ERASE IX,IY,ML
1700 ON ERROR GOTO O
1710 CLOSE : GOTO 130
1720 REM Prompt options display.
1730 A=INKEYS : PRINT : PRINT TAB(5); "Enter : ANY KEY for YES"
1740 PRINT TAB(17);"ESC for NO "; : A=INPUTS(1)
1750 PRINT : PRINT : PRINT : RETURN
1760 REM Subroutine for video-plotting.
1770 WIDTH }12
1700 K=155 :W=0: : =20!/(K-W) : IR=IX(N) : LL=IX(0)-10 : K0=0
1790 IF LL<0 THEK LL=0
1800 IF (IR-LL)<50 THEN U=11 ELSE U=1251/(IR-LL)
1810 PRINT CHRS(26);CHRS(27)+")";CHRS(27)+"=*+CHRS(54)+CHRS(36);
1820 PRINT " Pregs *;CHRS(27)+"(";"ANY*;CHRS(27)+")*;
1830 PRIMT * KEY to ABORT thim SCAH at ony time." : A=INKEYS
1840 FOR I=0 TO 20
1850 PRINT CHRS(27)*"=n+CHR$(32*I)-CHRS(32):
18G0 IF (I=0 OR I=5 OR I=10 OR I=15 OR I=20) THEN PRINT ***; ELSE PRINT *I";
1870 NEXT I
1880 FOR I=0 TO 125
1890 PRINT CHRS(27)****+CHRS(53)*CHRS(33*I);
1900 IF (INKEY&<>**) GOTO 2180
 IF (IMKEY今<>"*) GOTO 2180
 NEXT I
IF JJ=0 THEN AA= 'A:" ELSE AA="B:"
OPEN *O", 3, AA+"TEM.DAT" : PRIMT %3, IM : A=INKEYs
 PRINT CHRS(27)**=*+CHRS(54)*CHRS(32);LL; : M=0
 PRINT CHRS(27)**=*+CHRS(54)*CHRS(150);IR;
 FOR I=0 TO N
 IF (INKEYS<>**) GOTO 2210
 IF (IY(I)=128 OR IY(I)=127) GOTO 20S0
 IP=CINT((IX(I)-LL)*U) : K=CINT((IY(I)-W)*0)
 PRINT 33,IX(I): PRINT 3,IY(I): K=M*I
 IF (IP>124 OR K>20) GOTO 2050
 IF (IP<0 OR K<0) GOTO 2050
 PRINT CHRS(27)*"=**CHRS(52-K)*CHRS(33+IP);"**
 NEXT I
 IP=IM-LL : K=CINT(IP*U) : PRINT CHRS(27)**(*;
 PRINT CHRS(27)*****CHRS(34)*CHRS(35);N;"paire vere entered.*
 PRINT CHRS(27) +"= '+CHRS(53)*CHRS(33+K);"R";
 IF (JM<0) GOTO 2150
 FOR I=0 TO JM
 IP=IP+HL(I) : K=CINT(IP*U)
 IF (K<0 OR K>124) GOTO 2140
 PRIHT CHRS(27)**=**CHRS(53)*CHRS(33*K);"!";
 NEXT I
 A=IHKEYS : PRINT CHRS(27)*"= * CHRS(54)*CHRS(40);
 PRINT "Press ANY key to return to PROMPT mode."; : A=INPUTS(1)
70 CLOSE
 PRINT : PRINT : PRINT CHRS(27).*(* : PRINT
 OO HIDTH 52
2200 RETURN
2210 PRINT CHRS(27)+"コ"+CHRS(35)+CHRS(35);
2220 PRINT "Please CONFIRH that you vant this ecan ABORTEDI!"
2230 GOSUB 1730 : PRINT : ATT=INKEYS : ATT=INKEYS
2240 IF (A=CHRS(27)) GOTO 1990
2250 KO=1 : GOTO 2170
```

1000 REM Updated 180186
1010 DIM IX(1200), TY(1200), L(256),V(256), S(256), X(55), Y(55), Z(55)
$1020 \mathrm{~A}=++\cdots++\cdots+\cdots+++^{\prime}$ : PRINT : PRINT $A$ : KEY=-1
1030 PRINT "PLASMA SCAMNING" : PRINT A : PRINT : PRINT

1050 PRINT - (1) Aim PROBE vith WHITE light." : PRINT
1060 PRINT : (2) Adjust cell for NO REFLECTION. : : PRINT
1070 PRINT '(3) Move PROBE until Juat behind glase surface." : PRINT
1080 PRINT '(4) Fix the POD position.' : PRINT
1090 PRINT *(5) Svitch a to HIGH to BEGIN scanning."
$1100 \mathrm{~K}=\mathrm{BHD} 21 \mathrm{~A}: \mathrm{IP}=8 \mathrm{HD} 233$ : CALL $\mathrm{K}:$ PRINT CHRS(26);
1110 FOR I=0 TO 99
1120 CALL IP : K=PEEK(\&HD1D2) : K=PEEK(8HD1D4)
1130 NEXT I
$1140 \mathrm{I}=-1$ : PRINT CHRS(7);
1150 IF $\mathrm{I}=1199$ THEN GOTO 1100 ELSE $\mathrm{I}=\mathrm{I}+1$
$1160 \operatorname{CALL}$ IP : IX(I)=PEEK(SHDID2) : IY(I)=PEEK(SHD1D4)
1170 IF (PEEK(8HDIDO)<>240) GOTO 1150 ELSE GOTO 1190
1180 PRINT 'You ore out of menory. Svitch a to LOW.' : PRINT
1190 NK = I : PRINT "AVERAGING begine." : PRINT : PRINT
1200 PRINT TAB(5); 'Press ANY key to interrupt." : PRINT : PRINT
1210 FOR J=0 TO 255
$1220 \mathrm{~L}(\mathrm{~J})=0: V(\mathrm{~J})=01: \mathrm{S}(\mathrm{J})=01: \mathrm{A}=\mathrm{INKEYS}$
1230 NEXT J
1240 FOR J=0 TO NN
1250 I=IX(J) : MMIIY(J)
1260 IF (INKEYSく>" ${ }^{\circ}$ ) GDTO 1450
1270 IF ( $M M=127$ OR $M M=128$ ) GOTO 1290
$1280 \quad L(I)=L(I)+1: V(I)=V(I)+M M: S(I)=S(I)+M M^{\wedge} 2$
1290 NEXT J
$1300 \mathrm{~J}=-1: J M=0: K S=0$
1310 FOR I $=0$ TO 255
1320 MM=L(I) : KS $=K S+M M$
1330 IF (INKEYSく>"•) GOTO 1450
1340 IF (MM<2) GOTO 1390
$1350 \mathrm{~J}=\mathrm{J}+1$ : $\mathrm{V}(\mathrm{J})=\mathrm{V}(\mathrm{I}) / \mathrm{MM}: \mathrm{L}(\mathrm{J})=\mathrm{I}$
$1360 \quad S(J)=(S(I)-K M \cdot Y(J) \wedge 2) /(M A-1)$
1378 IF ( $M$ (M<JM) GOTO 1398
$1380 \quad \mathrm{JH}=\mathrm{MA}: \mathrm{H}=\mathrm{J}$
1390 NEXT I
$1400 \mathrm{KEY}=\mathrm{KEY}+1: Y(K E Y)=Y(H): Z(K E Y)=S 0 R(S(M))$

1420 PRINT TAB(10);"for";JM;'out of";KS;'pointa." : PRINT
1430 PRINT : PRINT "What is the Sample TIME (in min. P.I.) ";
1440 INPUT X(KEY) : PRINT : PRINT : GOTO 1460
1450 PRINT TAB(S);"Averaging interrupted $11^{\circ}:$ PRINT : PRINT
1460 PRINT : PRINT •Is SCANHING to be CONTINUEd?* : GOSUB 1720
1470 IF (A<>CHRS(27)) GOTO 1040
1480 PRINT : PRINT "Waa the acan for (0) BOTH eyea ?"
1490 PRINT TAB(18);'(1) LEFT Only $\mathbf{2 0}^{\circ}$ : PRINT TAB(18);'(2) RIGHT only :
1500 INPUT KM : PRINT : PRINT
1510 IF $K M=2$ THEN $J=1$ ELSE $J=0$
1520 A $=$ ": PLASMA. DAT" : PRIMT "The PLASMA deta ere:" : PRINT
1530 IF $j=0$ THEN OPEM ${ }^{\circ} 0^{*}, 12, A^{*}+A$ ELSE OPEM ${ }^{\circ} 0^{*}, * 2, \theta^{*}+A$
1540 FOR I=0 TO KEY
PRINT \#2, X(I) : PRINT 2, Y(I) : PRINT \#2, Z(I)

1578 NEXT I
1580 CLOSE : J=J-1 : PRINT : PRINT
1590 IF ( $K M=0$ AND $J=1$ ) GOTO 1530
1600 PRINT *Plasma everages have been filed." : PRINT
1610 PRIHT "The files in Drive $A$ are :" : PRIMT : FILES 'A:•.."
1620 PRINT : PRINT : PRINT "The files in Drive B are :
1630 PRIHT : FILES •B:•.." : PRINT : PRINT : PRINT
1640 PRINT "Do you have another set of samples to do?" : GOSUB 1720
1650 IF $A=$ CHRS(27) THEN COTO 1690 ELSE RESET
1660 PRINT : PRINT *Enter ANY key after changing LOGGED diakette.•
1670 A=INPUTS(1) : RESET : PRINT : PRINT
1680 GOTO 1020
1690 ERASE IX,IY,L, V, S, X, Y, Z
1700 PRINT : PRINT : PRINT : PRINT
1710 CLOSE : GOTO 130
1720 A=INKEYs : PRINT : PRINT TAB(5):"Enter : ANY KEY for YES"
1730 PRINT TAB(17); ${ }^{\bullet E S C}$ for $N 0$ : : A=INPUTS(1) : PRINT : PRINT : PRIRT
1740 RETUR


## A.G REDUCE.BAS

```
010 REM Updated 21alag
A=*+*++++* ; PRINT A : PRINT ©REDUCE ; PRINT
1020 DIM I(256),IX(4000), IY(4000), IS(256),Y(256),W(256)
1030 DEF FNCONC(X)=EXP(-109. 339*SQR(11915.9+X/.114441))
1040 ON ERROR GOTO 1790
1050 A="..............
1070 FOR K=8 TO 255
1080 I(K)=0 : IS(K)=0
1090 NEXT K
1100 JCO=255 : JCR=0 : OPEN "I', #1, 回:* AN(LT)**.DAT" : INPUT :1,N : K=-1
1110 IF EOF(1)<>0 THEN GOTO 1160 ELSE K=K+1
1120 INPUT :1,J : INPUT 1,IY(K) : I(J)=I(J)+1
1130 IF J>JCR THEN JCR=J
1140 IF J<JCO THEN .JCO=J
1150 IX(K)=J : GOTO 1110
1160 CLOSE 1 : JVL=0 : IMA=K : NUM=-1 : JMY=0
1170 FOR K=JCO TO JCR
1180 IF (I(K)<2) GOTO 1630
 PRINT "For X =";K;', there are";I(K);"points." : PRINT
 IMAX=0 ; IMIN=255: J=-1 : JLE=I(K) : U=01 : Y=01 : KP=0
 FOR KX=JMY TO IMA
 IF (KP=1 OR IX(KK)<=K) GOTD 1240
 KP=1 : IMY=KK
 IF IX(KK)<>K THEN GOTO 1290 ELSE JAL=IY(KK)
 IF J=(JLE-1) THEN GOTO 1300 ELSE J=J & 1
 IS(JAL)=IS(JAL)+1 : U=U+JAL : V=V+JAL^2
 IF JAL>ImAX THEN ImAK= JAL
 IF JAL<IMIN THEN IMIN=JAL
 NEXT KK
 IF KP=1 THEN JMY=IMY ELSE JMV=KK
 KK=IMAX-IMIN : PRINT "MAX =";IMAX, "HIN =*;IMIN,"MAX-MIN =*;KK
 IF KK<7 THEN GOTO 1530 ELSE JLE=0
 IF JVL=0 THEN P=U/(J+1)
 FOR KK=IMIN TO IMAX
 IF (IS(KK)=0) GOTO 1430
 PRINT " For Y =';KK:',";TAB(1B);"there ore';IS(KK);'pointe."
 IF (IS(KK)<JLE) GOTO 1430
 IF IS(KK)>JLE THEN KJ=2SS
 CO=ABS(CINT(KK-P))
 IF (ICO>KJ) GOTO 1420
 KJ=ICD : IMY = KK
 JLE=IS(KK)
 NEKT KK
 KKaIMY : PRINT : PRINT *Estymate uged is";KK ; V=0t : U=0! : ILE=a
 ICO=KK+5 : ICR=KK-5 : KK=CINT(KK-P)
 IF KK>5 THEN ICR=CINT(P)
 IF KK<-5 THEN ICO=CINT(P)
 FOR KK=IMIN TO IMAX
 IF (KK>ICO OR KK<ICR) GOTO 1510
 JLE=JLE+IS(KK) : VaV*IS(KK)*KK^2 : U=U*KX•IS(KK)
 NEXT KK
 PRINT : PRINT 'Upper Bound =*;ICO,"Lover Bound =";ICR
 J=U/JLE : PRINT : PRINT TAB(10);"No, of pointe used =';JLE;"of";[(K)
 FOR KK=IMIN TO IMAX
 I5(KK)=0
 HEXT KK
 IF JLE<2 THEN GOTO 1630 ELSE V=(V-JLE*U^2)/(JLE-1)
 IF V=01 THEN V=11
 IF V<Q: THEN Y=ABS(V)
 NUM=NUM+1: }V=SOR(V):I(NUM)=K:Y(NUM)=U:W(NUM)=
 PRINT : PRINT '(*;AN(LT);') Ang :";K,U;"+/-*;Y
 JVL=1 : P=U : PRIMT A
 NEXT K
 OPEN 'O",*2,'B:'+AN(LT)+".AVG* : PRINT "FIIIng ';AN(LT);'.AVG*
 FOR K=0 TO NUM
 KK=I(K)-N : U=FNCONC(Y(K)) : V=FNCONC(N(K))
 PRINT #2,KK : PRINT 2,U : PRINT :2,V
 next K
 CLOSE : AA=*B:`*AN(LT)**.DAT*
 NAME AA AS "B:TEM.TER"
 PRINT : PRINT AN(LT);".DAT has been renamed.*
 KILL '日:TEM.TEM"
 PRINT : PRINT AN(LT);'.DAT has been erabed.* : PRINT A
1740 HEXT LT
1750 ERASE I, IX, IY, IS, Y, W
```

1760 ON ERROR GOTO
1770 CLOSE : GOTO 150
1780 REM Error subroutine to print positions vhere errors occur.
1790 IF NERR $>10$ THEN END ELSE NERR $=$ NERR +1
1800 LPRINT *REDUCE Error Code ";ERR;"In Loop *;LT;"at Line *"ERL
1810 RESURE HEXT

## A. 7 B/G.BAS

1000 REM Updated 210186
1010 DIM X(3,256),Y(3,255),2(3,256),L(4),H(256),C(256), D(256)
1020 PRINT "+++" : PRINT "B/G" : PRINT *++*" : PRINT : NK = $=1$
1030 FOR $I=0$ TO KO
1040 IF VAL(AN(I)) $=0$ THEN $N H=N N+1$
1050 NEXT I
1060 IF ( $N \mathrm{~N}=0$ ) GOTO 1570
1070 FOR $I=0$ TO 255
$1080 \quad M(I)=0: C(I)=01: D(I)=01$
1090 NEXT I
1100 ON ERROR GOTO 1610 : XMIN=2551
1110 FOR $N=0$ TO NN
1120 ON N GOTO 1140, 1150
$1130 \quad A=40$ : GOTO 1160
$1140 \quad A=" 90 ":$ GOTO 1160
$1150 \quad A=9000^{\circ}$
1160 OPEN "I', 1, 'B: " $+A^{\prime \cdot}$. AYG" : $I=-1$
1170 PRINT : PRINT TAB(10); Reading ';A;".AVG" : PRINT
$1180 \mathrm{I}=\mathrm{I}+1$ : INPUT $1, \mathrm{X}(\mathrm{N}, \mathrm{I})$ : INPUT $\# 1, \mathrm{Y}(\mathrm{N}, \mathrm{I})$ : INPUT $1, Z(\mathrm{~N}, \mathrm{I})$
IF $\mathrm{X}(\mathrm{N}, \mathrm{I})<\mathrm{XHIN}$ THEN XHIN=X(N, I$)$
IF (EOF(1)=0) GOTO 1180
$1200 \quad$ IF $(\operatorname{EOF}(1)=0$.
1220 NEXT N
1230 PRINT : XHIN=ABS(XHIN) : PRINT TAB(10);"MIn = ${ }^{\circ}$; XHIN : PRINT
1240 FOR $I=0$ TO $\mathrm{H}-1$
1250 FOR J=0 TO L(I)
$1250 \quad K=\operatorname{CINT}(X(1, J)+X M I N): C(K)=C(K)+Y(I, J)$
$1270 \quad D(K)=D(K) \cdot Z(I, J) \wedge 2: H(K)=A(K)+1$
1280 NEXT J
1290 NEXT
$1300 \mathrm{~K}=-1$
1310 FOR $I=0$ TO 255
1320 IF $\mathrm{H}(\mathrm{I})=0$ THEN GOTO 1350 ELSE $\mathrm{K}=\mathrm{K} \cdot 1$
1338 IF $\mathrm{K}(\mathrm{I})=1$ THEN $\mathrm{J}=2$ ELSE $\mathrm{J}=\mathrm{H}(\mathrm{I})$
$1340 \quad C(K)=C(I) / M(I): D(K)=S Q R(D(I) /(J-1)): M(K)=I-X M I N$
1350 NEXT I
1360 OPEN "O', 2, "B:B/G.DAT"
1370 FOR I=0 TO K
1380 PRINT :2, $\mathrm{H}(\mathrm{I})$ : PRINT *2.C(I) : PRINT 2. $\mathrm{D}(\mathrm{I})$
1390 NEXT I
1400 CLOSE
1410 KILL ${ }^{-B: 0 . A V G *}$
1420 mame "g:b/g. dat" as *B:0.avg*
1430 FOR I=1 TO NN
1440 ON I GOTO 1450, 1470, 1490
1450 KILL "B:00.AVG"
1460 GOTO 1500
1470 KILL ${ }^{18: \theta 00 . A V G " ~}$
1480 GOTO 1500
1490 KILL ${ }^{-8: 0000 . A V G " ~}$
1500 NEXT I
$1510 \mathrm{H}=0$ : $\mathrm{AN}(\mathrm{N})=$ " $\mathrm{\theta}^{\circ}$
1520 FOR I=1 TO KO
1530 IF (Val(an(I))=0) G0TO 1550
$1540 \quad H=N+1: A N(N)=A N(1)$
1550 NEXT I
1550 MO=N
1570 ERASE X, Y, Z, L, M, C, D
1530 PRINT -B/G - average completed and filed. " : PRINT
1590 ON ERROR GOTO 0
1600 CLOSE : GOTO 150
1610 If (ERL=1160 AND ERR=53) THEN RESUME 1230
1620 IF HERR 10 THEM END ELSE NEPR=MERR +1
1630 LPRINT *B/G ERROR Code "*ERR; " in Line *;ERL
1648 RESUME nEXt

1000 REM Updated 210186
1010 DIM X(2,256),Y(2,256),Z(2,256),M(2),N(2)
1020 A= $\ldots+\ldots$ : PRINT $A$ : PRINT "MIMUS" : PRINT A : PRINT
1030 ON ERROR GOTO 1350
1040 FOR LT=0 TO MO
1050 IF LT $=0$ THEN $I=0$ ELSE $I=1$
1060 OPEN •I*, s1, •B:* $+A N(L T){ }^{*} \cdot$. AVG* : $K=-1 ; U=01$
$1070 \mathrm{~K}=\mathrm{K}+1$ : INPUT $1, \mathrm{X}(\mathrm{I}, \mathrm{K})$ : IMPUT $1, \mathrm{Y}(\mathrm{I}, \mathrm{K})$
1080 INPUT $1, P: Z(I, K)=P \wedge 2$
$1090 \operatorname{IF}(X(I, K)>20$ OR $Y(I, K)<H)$ GOTO 1110
$1100 \quad U=Y(I, K): W(I)=X(I, X)$
1110 IF EOF(1)<>0 THEN CLOSE ELSE GOTD 1070
$1120 \quad \mathrm{H}(\mathrm{I})=\mathrm{K}$
1130 IF (LT=0) GOTO 1300
$1140 \quad \mathrm{~J}=0$ : $\mathrm{ICR}=8$ : $\mathrm{ICO}=0$
1150 IF $\mathrm{J}=0$ THEN $A={ }^{\circ}$. RET* ELSE $A={ }^{\prime}$.CRP*

1170 FOR $\mathrm{K}=0$ TO $\mathrm{A}(\mathrm{I})$
$1180 \quad J K Y=X(I, K)-I C R$
1190 IF (JMY>JVL) GOTO 1270
$1200 \quad$ FOR JCR=JAL TO M( $\theta)$
$\mathrm{JLE}=\mathrm{X}(0, \mathrm{JCR})-\mathrm{ICD}$
IF JMY<>JLE THEN GOTO 1250 ELSE $\mathrm{JCO}=3 \mathrm{CO}+1$
$U=Y(I, K)-Y(0, J C R): V=S O R(Z(I, K)+Z(0, J C R)): P=J M V$

hext jca
NEXT K
PRIMT : PRINT TAB(10);AH(LT)+A;' has'; JCO+1;'data-seta.' CLOSE : $\mathrm{J}=\mathrm{J}+1$ : $\mathrm{ICR}=\mathrm{W}(\mathrm{I})$ : $\mathrm{ICO}=\mathrm{W}(\theta)$ IF ( $\mathrm{J}=1$ ) GOTO 1150
1300 NEXT LT
1310 ERASE X,Y, $Z, \mathrm{H}, \mathrm{H}$
1320 ON ERROR GOTO 0 : PRINT : PRIMT
1330 CLOSE : GOTO 150
1340 REM Error subroutine to print positions vhere erfors occur.
1350 IF NERR>10 THEN END ELSE HERR=NERR-1
1360 LPRIMT "MINUS ERROR COde "';ERR;'in Loop "; LT;'at Line =";ERL
1370 RESUME MEXT

## A. 9 SUDATA.BAS

1000 REM Updated 070386	
1010	DIM XN(3), B (3), C(3)
1020	A=***.........* : AA=*SUBJECT DATA* : PRINT
1030	PRINT A : PRIMT AA : PRINT A : PRINT
1240	LPRIMT SPC(27)CARS(14);AA : LPRINT : LPRINT
1050	OPEY "I', 1, "9: SUaject. dat' : LPRINT : LPRINT
1060	INPUT \#1, AM : LPRIMT SPC:30)*Mame : $\cdot$;AM : LPRINT
1070	
1080	INPUT -1, A : LPRINT SPC(30)" Eye : "iA : LPRINT
1090	INPUT $1 . A$ : LPRIKT SPC(30)*Date : * A : LPRINT : LPRINT
1100	INPUT $1 . \mathrm{XN}(0)$ : IKPUT $11 . \mathrm{XH}(1)$ : IMPUT $1 . \mathrm{XN}(2)$
1110	INPUT 1, $3(0)$ : INPUT $1, \mathrm{~B}(1)$ : INPUT $1,3(2)$
1120	$C(0)=B(0) / X N(0): C(1)=B(1) / X N(1): C(2)=B(2) / X N(2)$
1130	INPUT *1, AQ : 00=250:*0日 : LPRIMT SPC(18)"FLLORESCETN injected";
1140	GOSU3 1370 ; LPRINT : LPRINT
1150	LPRINT SPC(10)"Scaiing by Luna-Andersen's F-numbers :
1160	Q0=.13812•XN(0) : GOSUB 1330 : GOSUB 1390 : PP=00
1170	0Q =. 15731*XN(1) : GOSUB 1340 : GUSUB 1390 : PPP=PP+Q0
1180	$0 \mathrm{C}=.13508 \cdot \mathrm{XN}(2)$ : GOSUS 1350 : GOSUA 1390 : 00=PP+60
1190	GOSUB 1360 : GOSU3 1390 : LPRINT : LPRINT
1200	LPRINT SPC(10)*Ultra-sound reaults :
1210	$0 \mathrm{O}=\mathrm{B}(0)$ : GOSUB 1330 : GOSUB 1390 : $\mathrm{PP}=\mathrm{QO}$
1220	QQ=8(1) : GOSUB 1340 : GOSU3 1390 : PP=pp+G0
1230	$0 \mathrm{O}=3(2)$ : GOSUB 1350 : COSU3 1390 : 00=PP+00
1240	GOSUB 1360 : G05U 1390 : LPRINT : LPRINT
1250	LPRINT SPC(10)'Recalculated F-numbers : ${ }^{\text {c }}$

```
1260 QO=C(0)/PSCALE : GOSUS 13S0 : LPRINT
1270 CG=C(1)/PSCALE : GOSUB 1340 : LPRINT
280 G0=C(2)/PSCALE : GOSUB 1350 : LPRINT : LPRINT : LPRINT
290 LPRIMT SPC(10)"REMARKS & COMMENTS :";CHRs(27);CHRS(58)
300 IF (EOF(1)<>0) GOTO 1320
310 INPUT #1,A : LPRIHT SPC(20)A : GOTO 1300
320 CLOSE : LPRINT CHRS(18);CHRS(12); : GOTO 1400
330 LPRIMT SPC(22)"Yitreous Chamber*; : GOTO 1370
340 LPRIMT SPC(34)*Lens*; : GOTO 1370
1350 LPRINT SPC(23)*Aqueous Chamoer'; : GOTO 1370
1360 . LPRINT SPC(41)*--.-----* : LPRINT SPC(26)'Axial Length";
370 LPRINT " ";CHRs(247);" ";
1380 LPRINT USING 't***.to*';QQ; : RETURN
1390 LPRIMT * ma" : RETURN
1400 DEF FNSL(J,?)=C(J*1)*(P-KN(J))*B(J)
140 ON ERROR GOTO 2770
1420 XN(1)=XN(1)+XN(0) ; XN(2)=XN(2)+XN(1)
1430 B(1)=B(1)-B(0): B(2)=3(2)-B(1)
1440 XMV=XN(0)/2 : XMA=(XN(L) +XN(2))/2 : XL=XMV-10!
 YL=KMV-10! : PRINT : PRINT : KEY=0 : I=MQ-i : KZ=0
 DIM SX(20,I),5Y(20,I),SZ(20,I)
 LPRINT : LPRINT : LPRINT : LPRINT : LPRIMT
 ON KEY GOTO 1500, 1510,2580
 AF=*.RET" : GOTO 1520
 AF='.CRP"
FOR I=KZ TO MO
1530 SY(0,I)=-10! : SY(2,I)=1E-22 : SY(3,I)=-10! : IM=9
1540 SY(4,I)=SY(2,I) : SY(6,I)=-10!': ZP=255! : YP=2P
1550 PP=0! : PT=0! : PD=0! : PZ=0! : QT=01 : QD=0! : QZ=0!
1560 JJ=-1 : PRINT TAB(10);",Reading *;AN(I);AF;".....";
1570 OPEM "I', %3,'9:'-AN(I)-AF
1580 IMPUT #3, PX : IMPUT #3,a : IMPUT *3,
1590 JJ=JJ+1 : WP=ABS(PX-XMY) : VP=ABS(XMA-PX)
1600 IF (PX<XL QR PX>YL) GOTO 1620
 PT=PT+1! : PD=PD+Q: PZ=PZ*R^2
 PT=PT+1! : PD=PD+Q
 SX(1,I)=PX•C(0) : SY(1,I)=G : SZ(1,I)=R : YP=4P
 IF (VP>ZP) GOT0 i6atu
 SX(5,I)=FNSL(1,PX) : SY(5,I)=0 : SZ(5,I)=R : ZP=VP
 IF (PX>XMY OR Q<SY(0,I)) GOTO 1680
 SX(0,I)=PX*C(0) : SY(0,I)=0:SZ(0,I)=8
 IF (PX<0! QR PX>XN(0) OR Q>SY(2,I)) GOTO 1700
 SX(2,I)=PX*C(0):SY(2,I)=0:SZ(2,I)=R
 IF (PX<XMY OR PX>XH(1) QR Q<SY(3,I)) GOTO 1730
 IF PX<=XN(0) THEY SX(3,I)=PX•C(0) ELSE SX(3,I)=FNSL(0, PX)
 SY(O.I)=0 : SZ(3,I)=R
 IF (PX<XN(:) OR PX>XN(2) OR Q>SY(4,I)) GOTO 1750
 SX(4,I)=FNSL(1,PX) : SY(4,I)=C : SZ(4,5)=R
 IF (PX<XMA OR Q<SY(E,i)) GOTO :770
 SX(6,I)=FNSL(1,PX) : SY(6,5)=0 : SZ(6,I)=R
 IF PX>XN(0) THEN GOTO 1830 ELSE 0Q=C(0)\cdotPX
 IF (00>3.5 OR QQ<2.5) GOTO 1800
 QT=QT+1! : QD=0D+Q : QZ=0Z*R^2
 IF (00<PP) GOTO 1930
 IM=IM+1 : SX(IM,I)=00 : SY(IM,I)=0
 SZ(IM,I)=R : PP=PF*3!
 IF (EOF(3)=0) GOTO 1580
 CLOSE : PRINT * done :" : PRINT
 IF (PT=01) GOTO 1900
 SX(9,I)=XMV•C(0) : SY(9,I)=PD/PT : SZ(9,I)=PT
 IF (PZ<=0!) GCTO 1910
 SZ(7,I)=SOR(PZ/PT) : SX(7,I)=PT
 SY(7,I)=2!*ABS(SZ(7,I)) : GOTO 1920
 SX(9,I)=0! : SY(9,I)=0! : SZ(9,I)=0!
 SX(7,I)=0! : SY(7,I)=0! : SZ(7,I)=0!
 IF (GT=0!) GOTO 1940
 SZ(8,5)=0T : SY(8,F)=0D/aT : SX(8,I)=3! : GOTO 1950
 SX(8,I)=0! : SY(8,I)=0! : SZ(B,I)=0!
 nEXT I
 LPRINT CHRS(18);SPC(20)"Name : ";AM;" [SUBJECT DATA -";
 KEY+2;"]
 LPRINT : LPRIMT SPC(10)*(*;KEY-1;") For ';CHRS(14);
 AF;CiRS(20);
1980 LPRINT " files :";CHRS(27);CHRS(58) : LPRINT
1990 LPRINT SPC(10)"The Choroid-Retinal Peak"; : J=0 : GOSUB 2590
```

2000	LPRIMT *Tid-Vitreous"; : J=1 : GOSUB 2590
2010	LPRINT *Vitreous Minimum*; : J=2 : GOSUB 2590
2020	IF KEI=0 Then LPRIMT (Autoiluorescence) ':
2030	LPRINT "Lens Peak"; : $J=3$ : GOSUS 2590
2040	LPRINT *Aquequs Minimum*; : j=4 : GCSUB 2590
2050	L.PRINT *Mid-Aqueous"; : J=5 : GOSU3 2590
2060	LPRINT "Corneal Peak"; : J=6 : GCSUB 2590
2070	LPRINT "values closest to the $3-, 5-1{ }^{\text {-mm }}$, etc., are :
2080	GESU8 2710
2090	FOR $\mathrm{J}=10$ Io in
2100	gasua 2600
2110	NEXT J
2120	LPRINT CHAS(27);CARS(58);
2130	if (KEY=0) Gato 2260
2140	LPRINT SPC(10)"The Axiai Regolution-Ratio are :*
2150	GUSU3 2800 : LPRINT SPC(10)*At $3 \mathrm{mm*}$;
2160	
2170	FOR I=KZ TO Ma
2180	LPRIMT SFC(25); : PD=VAL(AN(I)) : LPRIMT USING "\#\#\#.**PD;
2150	$P D=S Y(11, i) / S Y(0, i): ~ P T=S Y(B, I) / S Y(0, \Sigma)$
2200	
2210	LFRIMT SPC(21); : L?RINT USIMG ****.***;PT;
2220	IF I<M@ THEN LPRINT ELSE LPRINT CHRS(13);
2230	NEXT I
2240	
2250	
2260	LPRIMT SPC(13)'The Lover Limit of Detection (or Sensitivity)
2270	LPRINT SPC(15; Average about Mid-Vitreous * 255*;
2280	LFRIMT CHRS(27);CiRs(83);Cins(1);"rms";CiRs(27);Cins(84);   ", are : "
2290	GOSUB 2800 : LPRINT *Flucrescein Equivalent (ng/mi)*;
2300	
2310	FOR I $=K 2$ TO Ma
2320	LPRINT SPC(25); : PT=YAL(AN(I)) : LPRIMT USIHG ***.**PT;
2330	LFRIMT SPC(25): : PT=SY(7,I)-SY(1,KZ) : LPRINT USIMG  
2340	
2350	IF I<MQ THEN LPRINT ELSE LPRINT CARs(13);
2360	NEXT I
2370	LPRINT SPC(20)CHRS(27);CHRS(45);CHRS(1);SPC(75);
2380	LPPINT CHRS(27);CHRS(45);CHRS(0); CHRS(27);CHRS(58)
2390	LPRIMT SPC(10)"The Reproducibility Percentages are : "
2400	GOSUB 2800 : LPRINT SPC(10)*Percent*;SPC(10)*Abour*;
2410	LPRIMT CHRS(27)CHRS(45);CHRS(0) : JJ=0
2420	FOR J=8 70 9
2430	FOR I=2 TO ME
2440	IF (SY(J,I-1)=0:) GOTO 2520
2450	PD=VAL(AN(I)) : PT=VAL(AN(5-1))
2450	IF (PD-PT)>4! THEN GOTO 2520 ELSE JJ=JJ+1
2470	LPRINT SPC(21); : LPRINT USING *t****PT;
2480	LPRINT * -*: LPRINT USING ****.**PD;
2490	PD=100:-(SY(J, I)-SY(J, I-1) /SY(J, I-1)
2500	LPRINT SPC(22); : LPRINT USING ****.**;PD;
2510	LPRINT SPC(g); : LPRINT USING *if.f*;SX(J.ら-1)
2520	NEXT I
2530	IF (J=9 AND JJ=0) THEN LPRIST SPC(3S)*Mo Yalue can be calculated!
2540	NEXT ${ }^{\text {S }}$
2550	KE? KEY-1 : K2=1 : GOTD 2470
2550	ERASE XN, $3, C, S X, S Y, S 2$
2570	LPRIHE CHRS(27);CHRS(65);CHRS(12);CHRS(27);CHRS(50);CHRS(18);
2580	CLOSE : ON ERROR GOTO 0 : GOTO 150
2590	LPRINT - values are :" : $\mathrm{KW}=0$ : GOSU3 2710
2600	FOR I=KZ TO M0
25i0	LPRINT SPC(25); : PDaval(AN(I)) : LPRINT USING "ft***PD;
2520	LPRINT SPC(20); : LPRIMT USING *****.t**; SY(J, I)
2630	LPRIRT * +/-*; : LPRINT USING '\#t\%.\#\#*; SZ(J.I);
2540	LPRINT SPC(22): : LPRIMT USING ***.***SX (J, 工);
2550	IF I<>MO THEN LPRINT
25003	NEXT I
2673	
2680	LPRINT SPC(90)CHRS(27);CH2̃ (45); CHRs (0)
2590	IF $3<10$ THEN LPRINT CaRs(27); CHRs(58);SPC(10)"The *;
2700	RETURN

```
270 GOSUB 2800 : LPRINT 'Concentration */- S.E. (ng/ml)";
2720 ON KW GOTO 2740
2730 LPRINT SPC(i0)"Distance from Retina (mm)*; : GOTO 2750
LPRINT SPC(10)"Numider of paints entered";
LPRIMT CHRN(27);CHRS(45);CHRS(0)
2760 RETURN
2770 LPRINT "INFO EnRCR Code *;ENR;"at Line ";ERL;
2780 IF NERR>10 THEN RESLME 2560 ELSE NERR=NERR-1
2790 RESUME NEXT
2800 LTRINT CHRS(15);SPC(20)CARS(27);CHRS(45);CHRS(1);
2810 LPRINT *P.I. Time (min)";SPC(10);
2820 RETURM
```


## A． 10 BLDOD．BAS

1000 REM Updated 200186
1010 A＝＊＊＊＊＊＊：PRINi A ：PRINT＊3LDOD＊：PRINT A ：PRIN
1020 DIM $A F(6), \mp X(135)$, IY（135），T（55），Y（56），W（55），X（5）
1030 DIM Z（5），FR（11），C（4，8）， $\mathrm{Z}(4,4,20), \mathrm{F}(4,10)$
1040 DEF FNCSNC（X）＝34．17•EXP（－109．，339＋ラ曰R（1：915．9＋K／．114441））
1050 DEF FNIP（X）＝CINT（．218315•（LDG（X）－109．339）＾2－232．536）
1060 ON ERROR GOTO J－Z0 ： $\mathrm{M}=-1$
1070 GPEN＂I＊，3，＂3：SUBJECT．DAT＂：INPUT＊3，AF（5）
1080 PRiliT TAB（i0）；Xame ：＂；AF（S）：CLOSE ：PRINT ：PRINT
1090 FOR $\mathrm{K}=1$ TO M
$1100 \quad H P=V A L(A N(K))$
1110 IF（HP＝0！）GOTO 1130
$1120 \quad M=M+1: F R(M)=n{ }^{2}$
1130 NEXT K



1170 IF $\operatorname{T}(\mathrm{NLK}) \times \mathrm{HP}$ THEN HP＝T（SUM）

1：50 IF EOEi2）＜＞才 THEN GLESE ELEE JGTO ：iGe
1200 IF（HP＞100！）GOTO 1220

$1220 \mathrm{Gu}=2!/ 3!: I Y(134)=15: \mathrm{KC}=132$
1230 F $\mathrm{HR} \mathrm{K}=0$ T0 KC
1240 IX $(K)=1+C E N T(K * G U$
1250 NEKT ？
1260 FOR $K=0$－0 3
$1270 \quad C(K, 6)=0!: C(K, 7)=99$
1290 NEXT K
1290 DEF $\operatorname{FHFP}(J, T)=C(J, 3)+C(J, 2) * T * C(J, 4) * T^{\wedge} 2$
1300 DEF $\operatorname{FNFQ}(J, T)=C(J, 1) \cdot(T-.2 S) \wedge 2$
1310 IX（133）＝CINT（FR（M））：KX＝0 ：KY＝0 ：I＝0 ：GOSUB 3160
 ：GOSUB 3118
1330 FOR K＝0 TO NUM
$1340 \mathrm{GU}=\mathrm{T}(\mathrm{K}):$ GOSUB $3500: K K=\kappa K+1$
1350 NEXT K
1360 tosuß 2960 ：$E=1!/ 48!: D=C(J, 4) \cdot E-C(J, 0) / 4!$
1370 GV＝C（J，2）／2！：GU＝C（J，4）／3！：HP＝C（J，3）／4！
1380 FOR $K=0$ TO M
$1390 \quad F=F R(K): H S(J, K)=D+F+(C(J, 0)+G V \cdot F+G U * F \wedge Z)$
$1400 \quad F Q(J, X)=F N F Q(J, F) \cdot H P \cdot F^{\wedge} 4 \cdot C(J, 5) \cdot\left(E \cdot F^{\wedge} 3 / 3!\right)^{\wedge} 2 \cdot(F N F P(J, F))^{\wedge} 2 / 4$
1410 GUSU3 3570
1420 IF HS（J，K）$<=0$ ！THEN $C(J, 7)=i \operatorname{S}(J, ~ K)$
1430 NEXT K
1440 LPRINT CHRS（12）
1450 FOR K＝1 TD KC
1460 HP＝FNFP（J，K）：GOSUB 2370
1470 NEXT K
1480 SOSUB $2490: K X=2: K Y=0: J=1$
$: A F(J)={ }^{*} A-B-\log (t)-C+[\log (t)] \wedge 2^{*}$
1490 GCSUZ 3i60 ：GU＝C（J，刀）－C（J，2）：GOSLA $3030: K K=0: \operatorname{GOSU3} 3110$
1500 FOR K＝0 TO NU
1510 GU＝LOG（T（K））：GESUB 3500 ：$K K=K K+1$
1523 NEXT K

$1540 \mathrm{~B}=\mathrm{C}(\mathrm{J}, 2) * \mathrm{AP}-\mathrm{C}(J, 4)=0-C(J, 0) / 4!$
1550 ron $\mathrm{K}=0 \mathrm{TO} \mathrm{M}$
$1560 \quad E=F A(K): G U=L C G(E)-1!: \quad H S(J, K)=B+(F N F P(J, G U)+C(J, 4)) \bullet E$
$1570 \quad F G(J, K)=F \operatorname{HFG}(J, \Sigma) * C(J, 3) *(B i P+E * G U)^{\wedge} 2 * C(J, 5) *(E *(G U \wedge 2 * 1!)-D)^{\wedge} 2$

```
15a0 GU=GU-1! : FG(J,K)=FQ(J,K)-^FMFF(j,GU))^2/4! : GOSU3 3570
```



```
1620 NEKT K
1610 LP星隹 GהRS(12)
1620 FOR K=1 T0 KC
1530 GU=LCG(K) : HP=FNFP(J,GU) : GCSLB 2370
1640 MEXT K
1650 GUSU3 2450 : KX=0 : KY=1 : J=2 : AF(J)=`A*exp(a•\tau+CPt^2)`
```



```
1670 a=. Ј.C(J.0) : Gasu3 3030 : GGSUa 3110
1680 DEF FNFE(J,T)=a-EXP(C(J,2) T T+C(J,4)•T^2)
1650 TOR K=0 T0 %UM
1700 KK=KK+1 : DW=2!-FNFEUS,T(K))-Y(K) : GOSUa 3510
1713 NEXT K
17こ0 UOSUZ 2S60 : E=FNFE(J,:!) : A=E/2! : G=FNFE(J,.5) : GU=G*:G
```



```
1740 KY=2 : G=C(j,よ)/C(J,J)^2 : #=2! こ(J,4)
1750 J=(G•C(j,3)+C(J,5)*(C(J,2)*H)^2)*E^2
1750 FOR %=0 T0 M
1770 L=CINT(FR(K)) : :RS(J,X)=GU : FQ(J,K)=GV
1780 FOR N=K゙Y TO L
1790 F=FNFE(J,N) : HS(J,K)=HS(J,K)+E+F : HP=N^2
```



```
18i0 FO(J,K)=FQ(J,K)+D+CO : D=CO : E=F
HEXT Y
 GOSUB 3570 : KY=L•1 : GU=HS(J,K) : GY=F口(J,K)
 IF GU<=0! THEN C(J,7)=GU
1850 NEXT K
1870 FOR K=1 TO KC
1880 HP=2!•FHFE(J,K) : GOSU3 2370
1850 NEXT :
1500 GOSUa 2490 : KX=1 : KY=0 : J=3 : AF(J)="A - 3/t * C/t^2"
 : Gu5uz j150
```



```
1920 FOR K=0 IT NUM
1930 KK=KK-1 : GUL=1!/T(K) : G0SUS 3500
1940 NEKT :
1953 GJSU日 2960 : 3=LSG(2!)-.5 : HP=C(J,2)•B-C(J, J)/4!-3!•C(J,4)
 : PRINT
1960 =0, %=0 % % % %
1970 E=FN(K) : GU=LCG(E) : GV=1!/E
 : HS(J,K)=HP*C(J, D) © E-C(J, 2) •GU-C(J,4)*GV
```



```
1990 FQ(J,R)=FQ(J,K)*.25*(FNFP(J,GV)^^2 : GCSUB 3570
2000 IF HS(J,K)<=0! THEN C(J,7)=HS(J,K)
2010 NEIT K
2020 LPRINT CHRS(12)
2030 FOR K=1 TO KC
2040 GU=1:/K : HP=FNFP(J,GU) : GOSUA 2370
2050 NEXT K
2060 GOSUB 2490 : GU=1D+22 : LPRINT CaRs(18) : PRINT : PRINT
2070 PRINT "The Reduced CHI`2 of the FITs are;" : PRINT
2080 FOR J=0 TO 3
20¢0 PRIMT : PRINT *(*;J•1;")",C(J,6);" ";SGN(C(J,7))
2100 IF (C(J,7)<=0! QR C(J,5)=>GU) GOTO 2:20
2110 GU=C(J,5) : K=J
2120 NEKT J
21こ0 PRIMT : PRINT 'The jEST Eit vas * : PRIMT
 : PRINT ' f = ";AF(O) : PRIMT
2140 LPRINT SPC(20)*NAME : ";AF(5);" (Plasma Integration)" : LPRIMT
2150 LPRINT : LPRINT : LPREMT SPC(i0)CHANS(27);CARs(45);CHRS(1);
 C:%Rs(14);
2160 LPRIMT "PLASMA FLUCÑEミCE:Y *;CMN゙S(20);"Resuits';
```



```
2170 LPRINT : LPRINT : LPRINT GFC(20)CHins(27);CiRs(i5);CãS(i);
 "Time (min)";
2190 LPRINT SPC(:0)*Concentration (ng/ab)*;CARS(27);CARS(4S);C:%Rs(0)
2150 LPOIMT Ciñ(27);CHAS(S8); : KP=1i
2200 FOR J=0 T0 NUM
2210 DW=T(J) : BW=Y(J) : CN=W(J) : LPRINT SPC(27); : GESU3 2420
 : LPRINT
2220 NEXT J
2230 LPRINT : LPRINT : LPRINT SPC(10)CHRS(14);"The BEST fit vas m>*
2240 LPRINT : LPRINT SPC(12)CHRS(14);'f = ";AF(K);"."
2250 0PEN "O", #3,*3:PLA5MA.FIT" : PRINT #3, %
2260 FOR J=0 TO 5 STEP 2
2270 PRINT #3,C(K,J) : GU=SER(ABS(C(K,J+1))) : PRIMT #3, UU
2280 NEXT J
```

```
2908FOR J=8 T0 M
2300 PRINT 13,FR(J) : PRIMT t3,H5(K,J) : PRIMT *3,FQ(K,J)
2310 NEKT J
2320 ERASE AF,IX,IY,T,X,Y,Z,Y,FR.C.HS, FG
2330 ON ERROR GOTO % : LPRIMT CHRs(27);CHRS(58);
2340 CLESE
2350 KILL 'g:PLASMA.DAT'
2350 Є0T0 :58
2370 IF HP>100: THEN GOTO 2400 ELSE IY(K)=0
2380 IF (K<IX(133) AND HP<0!) THEX C(J,7)=HP
2390 RETURN
2400 IY(K)=FNIP(HP)
2410 RETURN
2420 LPRIMT USNNG *#%.##";DW;
2430 LPRINT SPC(KP);
2450 LPRINT " -/-";
2460 LPRINT USSMG '**.t***^MA^";CA;
2470 RETLRM
2400 REM Subroutine for printer-plotting.
2450 GOSUB S030 : LPRINT CHRS(15);CH゙\s(27);CHÃs(49);
2500 LPRIMT SPC(20)*/ertical (LOG) Scaie = X 10 ng/ml/10 div.";
2510 LPRINT SPC(10)"Horizontal Scaie =';IY(134):'min / 10 div."
2520 FOR : }=0\mathrm{ -0 % 0
2530 KY=50-# : HP=KY/S: : N=0 : L=-1 : LPRINT CriRs(10);
 CHRs(13):CaRS(9);
 2540 IF ((HP-FIX(HP))=0) G0TD 2560
2550 LPRINT CHRS(S);Giñs(124); : G0T0 2600
2550 IF (K=1S OR K=25 OR K=35 OR K=45 OR K=5) GOT0 2550
2570 IF K=0 THEY LPRINT "ng/ml *"; ELSE LPRINT CHRS(9);"*";
 G0TO 2500
```




```
 600 FOR KZ=0 iO NUM
 610 IF FNIP(Y(KZ))=KY THEM L=KZ
 *20 NENT K2
650 if (L=-!) 0070 27:0
640 FCa :Z=0 T0 NUM
650 IF FNIP(Y(KZ))<>KY THEN GGTO 2690 ELSE RX=1-CINT(T(KZ))
If KX=| THEX KX=1 ELSE KX=KX-K
```



```
 N=CIMT(T(KZ))-1
 NEOT :Z
 N=0 : LPRINT CHRS(13);CHRS(9);CHRS(9);
 FOR KZ=0 TO KC
 IF IY(KZ)<>KY THEN GOTO 2760 ELSE KX=IX(KZ)
 IF KX=0 THEN KX=1 ELSE KX=RX-K
 IF KX<>0 THEN LPRINT SPC(KX-1)CHRS(249);
 H=IXIK2,
 NEXT KZ
 MEXT K
 LPRINT CHRS(10);CHRS(13);CHRS(9);CHRS(9);" ';
 FOR K=0 TO 9
 LPRINT ..",
 FOR N=0 TO a
 LPRINT '-';
 NEXT N
 NEX: %
 LPRINT "." : KY=2*IY(134) : LPGINT CHRS(9);CARS(9);0;
 FOR K=1 TU 4
 LPRINT SPC(16)KY*K;
 NEXT K
2890 LPRINT SPC(17)*min";CHRs(27);CHANs(S8);
 CaRs(27);CHas(65);GiRs(12);
2900 LPRINT G:RS(27);CHRS(50) : LPRINT : LPRINT SPG(41)`CHI^2 = ';
2910 CN=C(J.G) : GOSUB 2460 : LPRIMT
2920 IF KK>3 THEN C(J,6)=C(J,6)/(KK-3)
2930 LPRIMT SPC(33)"Reduced CHI^2 = "; : CN=C(J.G)
2940 GOSUB 24E0 : LPRINT CARS(12)
2950 RETURN
2960 LPRINT CHRS(18) : LPRINT : LPRINT SPC(10)CHRS(27);
 CMRs(4S);CHRS(1);
2970 LPRINT *RESULTS Of INTEUNATION';CHRS(27);CHAR5(45);Ciñs(0)
2980 LPRINT CHAS(27);CARS(58) : LPRINT SPC(15)CHRs(27);
 CHRS(45):CHRS(1);
2950 LPRINI 'For 0 < t < T min. AREA ./- S.E. (min*ng/ml)";
3000 LPRINT SPC(6)"Percent (%)";CHRS(27);CHRS(45);CiRS(0)
3010 RETURN
3020 REM Subroutine for printing curve-fitting coefficients.
```



3040 LPRINT SPC（20）＂MAME ：＂AF（5）；＂（Plasma integration）＂：LPRINT
 ＂）Fitting $=0 \underset{\ddagger}{f}=\mathrm{AF}(j)$
3060 LمRIMT SPC（25）＊A＝＊：ヨW＝C（J，0）：CW＝SER（ABSiC（J，1））） ：GUSUB 2440
3070 LPRINT ：LPRIMT SPC（25）＊ $3=*: 3 W=C i J, 2): C H=S G R(A D S(C(J, 3)))$

3090 C＇月 $=$ SER（ABS（C（J，S）））：GUSUB 2440 ：LPREMT ：LPRIHT ：LPRITT
3100 RETURN
3110 LPRINT Cت̈Rs（27）：Cïns（58）：LPRIYT SPC（20）CäRs（27）； Chins（45）；CHRS（i）；
3120 LFRINT Time（min）Data（ng／ml）（Fit－Datad Percent（\％）＂；
3130 LRRINT CHRS（27）；Cins（45）；CARs（0）；Lins（15）
3i40 RETURN
3150 REM Subrautine for curve－fitting to order 2.
3160 FOR K＝0 TO 4
$3170 \quad X(K)=0!: Z(K)=0!$
3180 NEXT K
3190 FOR $K=0$ IO NUM
3200 ON KX GOTO 3220． 3230
$32: 0 \quad \mathrm{HP}=\mathrm{T}(\mathrm{K})$ ：GOTO 3240
3220 HP＝1！／T（K）：G0TO 3240
$3230 \quad \mathrm{HP}=\operatorname{LOG}(\mathrm{T}(\mathrm{K}))$
3240 ON KY GOTO 3260
3250 GV＝Y（K）：GU＝1：／W（K）＾2 ：GCTO 3200
3250 IF（Y（K）＜＝0！）GOTO 3350
$G V=\operatorname{LOG}(Y(K)) ; G U=(Y(K) / W(K)) \wedge 2$
$Z(4)=G U: Z(3)=G V * G U$
FGR $K=0$ TO 4
$X(N)=X(H)-Z(4): Z(4)=Z(4) \cdot H P$
NEXT Y
FOR $\mathrm{N}=0$ TO 2
$Z(N)=Z(N)+Z(3): Z(3)=Z(3) \cdot H P$
NEXT 4
3350 SEXT $\boldsymbol{x}$
$3360: A P=X(1) / K(0): G U=X(2) / X(1): G Y=X(3) / X(2): B=X(4) / X(3)$
：G＝GU－Ğ
$3370 \mathrm{D}=1: / \mathrm{GV}-1: / \mathrm{GL}: \mathrm{E}=1: / \mathrm{HP}-1: / \mathrm{GU}: \mathrm{Z}(3)=\mathrm{G} \cdot \mathrm{D}-\mathrm{B}-\mathrm{GV}) \cdot \mathrm{E}$
$3380 \mathrm{~F}=\mathrm{Z}(0) / \mathrm{X}(1)-2(1) / \mathrm{X}(2)$
$: C(J, 4)=(F \cdot 1-(2(2) / X(3)-2(1) / X(2)) \cdot E) / Z(3)$
$3 ラ=0 \subset(J, j)=(F-C(J, \dot{4}) \cdot G) / E: C(J, 2)=Z(\partial) / X(1)-C(J, 2) / H P-E(J, i) \cdot G U$ ：F＝B－GU
$3400 H=(B \cdot(G J-H P) / G U+H P-G V-G \cdot H P / G V) \wedge 2: C J=9-G V$
$3410 C(J, 2)=C O \wedge 2 / X(0)-2!\cdot$ RP＾$^{2} \cdot C O \cdot F / X(2)$
$3422 C(J, 1)=C(J, 1) \cdot(H P \cdot F) \wedge 2 / X(2)-2!\cdot H P \cdot G \cdot C O /(X(0) \cdot G V) \cdot(H P \cdot G) \wedge 2 \cdot B / X(3)$
$3430 C(J, 1)=\left(C(J, 1)+2!* i P^{\wedge} 2 \bullet F \cdot G / X(2)\right) / H: C C=X(4) / X(2)-X(2) / X(0)$
: G=GY-ה?
$3440 \subset(J, 3)=(F / G U)^{\wedge} 2 / X(0)+C D \wedge 2 /(X(3) \cdot G V)+3 \cdot G \wedge 2 / X(3)-2!*$ $F \cdot C D * \operatorname{HP} /(G U * X(3))$
$3450 C(J, 3)=(C(J, 3) \cdot 2!\cdot G \cdot F \cdot i i P / X(3)-2!\cdot C D \cdot G / X(3)) / H: F=G V-G U$ －CO＝GU－HP
$3460 C(J, 5)=(F \cdot X(1) / X(3))^{\wedge} 2 / X(0) \cdot G^{\wedge} 2 /(X(3) \cdot G V) \cdot E \cdot(C Q / G U)^{\wedge} 2 / X(3)$
$347 \partial \mathrm{C}(\mathrm{J}, \mathrm{S})=(\mathrm{C}(\mathrm{J}, \mathrm{S})-2!*(G-C O)+F \cdot H P \cdot X(1) / X(3) \wedge 2-2!\cdot G \cdot C O /(G U * X(3))) / H$
3480 ลЕI！ 2 N
3490 REx Suaroutine for printing deviations．
3500 DW＝$\overline{\mathrm{F}} \mathrm{MFF}(\mathrm{j}, \mathrm{Ui})-\mathrm{O}(\mathrm{K})$


$35 こ 0$ LPR土LT SPC（7）；：CW＝：00：•DW／Y（ï）：GCSUB 2460
3540 L．PSIMT ：C（J，Б）＝C（J，5）＊iDW／W（K））＾2
3550 ลЕごニN
3560 REM Subroutine for printing resuit of integration of fit．
 ：DW＝FR（K）


3600 הETURN
36：0 REM Error subroutine
3620 IF NERR $\operatorname{IO}$ THEN EKD ELSE KERR＝NENR－1

3640 RESUME NEXT

## A. 11 C/VAZ.BAS

1000 REM Updated 120386
1010 DIH AE(2),H(2),R(256),S(255),U(256),T(10), O(6), ZH(2)
1020 DIM X(2,256),Y(2,256),Z(2,256),W(2),TG(2),O(2),P(2),US(3)
1030 A $=$ +**** : PRINT : PRINT A : PRINT "C/VAZ" : PRINT A
1040 OK ERROR GOTD 3460
1050 OPEN "I*, *3, "B:SUBJECT. DAT" : INPUT *3, AW

> : PRINT TAB(10);"Name ; ";AW

1068 INPUT 13,4 : INPUT $13, A$ : IMPUT $13, A$
1070 INPUT 13, 日(0) : INPUT 13, (1) : IMPUT 13, Q(2)
1080 INPUT 13, US(0): INPUT ©3, US(1) : INPUT 13 , US(2)
1090 INPUT 13, NW : $Q(5)=250!\cdot W W$ : SS=US(0)/0(0)
1100 CLOSE : $N C=1: Q(3)=(U S(0) \cdot U S(1)+U S(2)) / 2$ !
$1110 \mathrm{KP}=0$ : $\mathrm{NC}=\mathrm{NC}-1$ : $\mathrm{J}=-1: \mathrm{KC}=0$
$120 \mathrm{AE}(0)=\mathrm{AN}(1): 00=\operatorname{VAL}(A E(0)): \operatorname{AE}(1)=\mathrm{AN}(\mathrm{NC}): \operatorname{PP}=\operatorname{VAL}(\mathrm{AE}(1))$
1130 OPE. "I", 2, "B:PLASMA.FIT" : INPUT \#2,I
1140 FOR $\mathrm{I}=0$ TO 5
150 INPUT $2 . \mathrm{CV}$
1160 NEXT I
1170 INPUT $2, Y Y$ : INPUT $2, \mathrm{CW}$ : IMPUT $\# 2, \mathrm{CV}$
1180 IF ( $Y Y=00$ OR $Y Y=P P$ ) THEN $j=J+i$ ELSE EOTO 1170
$1190 \quad \mathrm{O}(\mathrm{J})=60!\cdot \mathrm{CN}: \mathrm{CV}=60!\cdot \mathrm{CY}: \mathrm{P}(\mathrm{J})=\mathrm{CY} \mathrm{C}^{2}$
IF $\mathrm{J}=1$ THEM CLLSE ELSE GOTO 1170
210 LPRIMT CHRs(27);CHRs(65);CHRS(12); CHRS(27);CARS(53);
1220 GOSU3 1910 : PP=O(3) : PRINT
1230 LPRINT SPCial "Centre of Retinal Curvature";
1240 GOSU3 1950 : LPRINT : PRINT
1250 LPRINT SPCi19)"FLUCRESCEIN Used =';0(5);" mg .'
1250 LPRINT : LPRINT : LPRIMT
1270 LPRINT SPC(5)CARS(14);'(";RIGHTS(STRs(KC+1),1); -) ALIGNMENT by ';
1280 IF KC=0 THEK LPRINT 'RETIMA" ELSE LPRINT "C/R PEAK"
1290 IF KC=0 THEN AP=". RET" ELSE AP=". CRP"
1300 FOR I=O TO 1

1320 L=-1 : $T T=0$ ! : RR=1E-22 : XX=RR : PRINT TAB(10);
'Reading '; A : PRINT
LaL-1 : IMPUT \#1.R(L) : X(I,L)=R(L) : INPUT \#1, S(L)
$Y(I, L)=S(L): I N P U T: 1, Y Y: U(L)=Y Y^{\wedge} 2: Z(I, L)=U(L)$ $00=5 S * R(L): Q Q=A B S(00-3!): P P=A B S(00)$
IF (EQ>RR) GOTO 1380
$R R=00: W W=S(L)$
IF (PP>XX) GOTO 1400
$X X=P P$ : $W(I)=S(L): T G(I)=U(L)$
IF (OO>3! OR S(L)<TT) GOTO 1420
$T T=S(L): 2 H(I)=R(L)$ IF (EDF(1)=0) GOTO 1330
CLOSE : LPRINT CARS(18) : LPRIMT SPC(20)"File : ";
LPRINT CaRS(14);AE(I)-AP;CHRS(20);" has'; L+1;"data-sets."
LPRINT : $N(I)=L$ : KEY=0 : GOSUB 2810
NEXT I
EQ=W(0)/WW : LPRINT CHRS(18) : LPRINT SPC(S)CHRS(14);
LPRINT ${ }^{-C / R ~ C O R R E C T I O N ~ C O N D I T I O N ' ; C H R S(20) ; " ~=' ; ~}$
GOSía 2020 : PP=1! : 00=0! : WW=1! : GOTO 1570
$W W=W(1) / W(0): X X=T G(1) / W(1)^{\wedge} 2+T G(0) / W(0)^{\wedge} 2: T T=0!$
FOR $K=0$ TO $N(0)$
$Y Y=Y(0, K): Y(0, K)=Y Y \cdot W W$
IF $(S S \cdot X(0, K)>3!$ OR $Y(0, K)<T T)$ GOTO 1550
$\mathrm{T} T=Y(\theta, K): Z H(\theta)=X(\theta, K)$
NEXT K
$C E=W W \cdot S E R(X X): P P=W W$
GOSUB 1910 : LPRINT SPC(6)CHRS(14);
LPRINT "For a C/R Ratio";CHRs(20);" =";
GCSUB 2000 : LPRINT CHRS(18
IF KC=0 Then GOSUB 2100 ELSE GOSUB 2050
LPRINT SPC(10)CHRS(14);AE(1);CHRS(20);"-minute minus "; LPRINT CHRS(14);AE(D);CiRs(20);"-minute scan leaves'; LPRINT L-1;"data-sets." : LPRINT
$I=1$ : GOSUB 2210 : JS=0
FOR $\mathrm{K}=0$ TO L
IF ( $\mathrm{R}(\mathrm{K})>0(3))$ GOTO 1650
IF ( $R(K)>0$ ! AND $S(K)>0!$ ) THEN J5=J5•1 NEXT X
IF (J5>11) GOTO 1720
PRINT CARS(18);SPC(16)*On1y';15;
"data-sets $=>$ no file vas created."
1710 GOTO 1840

```
1720 IF WW=1! THEN K=0 ElSE K=1
1730 KEY=2*KC*1 : AA='.CV**RIGHTS(STRS(K*REY),1)
1740 A=*B:"+AE(I)*AA
750 OPEN *O*,13,A
1760 FOR K=0 TO L
1770 IF (R(K)>0(3)) GOTO 1810
1780 IF (R(K)<01 OR S(K)<=0! OR U(K)<=0!) GOTO 1800
 OO=SCR(U(K)) : PRINT :3,R(K) : PRINT (3,S(K) : PRINT 13,OD
 NEXT X
 CLOSE : LPRINT CHRS(18);5PC(10)J5;'data-sets yere geved in ":
 LPRINT CHRS(14);A : LPRINT : LPRINT : LPRINT
 LPRIMT SPC(25):Deleted : Yes [1 Na [J"
 IF WHF1! THEN GOTO 1500 ELSE KC=KC.1
 IF (KC=1) GOTO 1210
 IF (NC<MO) GOTO 1110
 ERASE AE, Y, R, S,U,T, Q, ZH, X,Y,Z,W,TG, O,P,US
 LPRINT CHRS(27);CHRS(S8);CHRS(27);CHRS(65);CHRS(12);
 ON ERRCR SOTO 0 : LPRINT C#̈Rs(27);CHRS(S0)
 CLOSE : GOTO 150
 KP=KP+1
 LPRINT CHRS(12);CHRS(18);SPC(25)*NANE : ";AW;
 * (c/vaz -';KP;'j"
 LPRINT : LPRINT
 RETURN
 LPRINT " ':CHRS(247);' ":
 LPRINT USING ***,t#ft**;PP;
 LPRINT " mm from the nETINA.*
 RETURN
 LPRINT SPC(40); : LPRINT USING **.t****;OD; : LPRINT SPC(20);
 IF PP=-2.2E-22 THEN GOSU3 3360 ELSE LPRINT USING
 *******AAMA";PP
 LPRINT - -/-";
 IF QG=-2.2E-22 THEN GOSLB 3360 ELSE LPRIMT USIMG
 'A#,***#"AAA";00
 RETURN
REM Subrautine to (re-order and) subtract data-gets.
 FOR J=0 T0 1
 FOR K=0 TO Y(J)
 X(J,K)=X(j,K)-ZH(J)
 NEXT K
 NEXT J
 L=-1 : M=0
 FOR K=0 TO N(1)
 IF (X(1,K)>X(0,M(0))) GOTO 2190
 FOR }\textrm{j}=\textrm{M}\mathrm{ TO N(0)
 IF X(1,K)<>X(0,J) THEN GOTO 2170 EL.SE L=L+1
 S(L)=Y(1,K)-Y(0,J) : R(L)=X(1,K):U(L)=Z(1,K)*Z(0,J)
 M=J+1 : GOTO 2180
 NEXT J
 NEXT K
 RETURN
 REM Subroutine for printer-plot.
 LPRINT CHRS(15) : LPRINT CHRS(27);CHINS(49);
 LPRINT SPC(25)'Yertical (LOG) Scale a X 10 / 10 div.";
 LPRINT SPC(10)*Horizontal Scale = 1 ma/ 10 div.";
PJ=01 : RR=Q(0)+0(1) : QQ=RR+Q(2)
FOR K=0 TO L
 IF (R(X)>0(0)) GCTO 2280
 R(K)=SS*R(K) : YY=R(K) : GOTO 2330
 IF (R(K)>RR) GOTO 2300
 R(K)=US(1)*(R(K)-Q(0))/Q(1)*YY : OO=R(K) : GOT0 2340
 IF (R(K)>0日) GOTO 2320
 R(K)=US(2)*(R(K)-RR)/Q(2)+00 : TT=R(K) : GOTO 2340
 R(K)=PSCALE*(R(K)-gQ)•TT
 IF (R(K)<Q(3) AND S(K)>PJ) THEN PJ=S(K)
 NEXT K
 JY=0
 IF PJ>.8364 THEN JY=CINT(.018315*(LOG(PJ)*109.339)^2-212.586)
 OR K=0 TO 30
 j=30-K : YY=I/5! : 日=0 : LPRINT CHRS(10);CHRS(13);CHRS(9);
 IF ((YY-FIX(YY))=0!) GOTO 2410
 LPRINT CHRS(9);CHRs(124); : GOTO 2460
 IF (X=S OR K=15 OR K=25) GOTO 2440
 IF K=0 THEM LPRINT "ng/ml *"; ELSE LPRINT CHRS(9);**";
 GOTO 2460
 LPRINT - 10*;CHRS(27);CHRs(83);CHRS(0);INT(J/10);
 LPRINT CHRS(27);CHRS(84);" *";
 IF (J>JY) GOTO 2570
```

```
2470
2480
2490
2500
2510
2520
2530
2540
2550
2550
2570
2580
2590
260
26:0
2620
2630
2640
2650
2680
2670
2680
2690
2700
2710
2720
2740
2750
2760
2770
278
2790
2800 LP
2910
2820
2830
2840 IF KEY=1 THEN OC=R(K) ELSE OO=SS*R(K)
2850 IF OC>6.5 THEN GOTO 3010 ELSE GO=ABS(3!-00)
2860 IF (00>TT) GOTO 2880
2870 TT=00 : KT=K
2880
2890
2900
2910
2920
2930
2930
2940
2950
2960
2970
2970
2980
2990
3000
3010 FOR K=2 TO G
3020 T(K)=-9.
3040 IF KEY=1 THEN PP=1! ELSE PP=5S
3050 IF J5=>0 THEN T(2)=R(J5) &PP
3060 IF KL=>0 THEN T(3)=R(KL) *PP
3070 IF KK=>0 THEN T(4) #R(KK) &PF
3080 IF KO=>0 THEN T(5)=R(KO) &PP
30S0 IF KT=>0 THEN T(}6)=R(KT)\bulletP
3100 LPRIXT SPC(10)CHRS(27);CHRS{45);CHRS(1);"PERMEABILITY *
3110 LPRINT COEFFICIENT & PENETRATICN RATIO*;
3120 LPRINT CORSS(27);CHRS(45);CARS(0);CORSS(27);CHRS(58)
3130 LPRINT : YY=P(I)/O(I)*2 : LPRINT SPC(15)*Mean PENMEABILITY ";
3140 LPRINT "COEFFICIENT (cm"; : J5=1 : GOSUB 3j00 : G0=-2.2E+22
3:50 LPRINT SPC(JJ)*is *; : PP=.32*T(0)/(O(I)*Q(3)^2)
3160 IF (T(0)<>0!) THEN EQ=PP-SQR(T(1)/T(0)^2*YY+4!-Q(4)/0(3)^2)
3170 GOSU3 2000 : LPRINT : LPRINT SPC(15)*Mean PENETRATION
 RATIO (";
```

```
3180 GOSU3 3500 : LPRIMT SpC(30)*is *;
3190 IF (KR=0) G0T0 3210
 PP=T(7)/(O(I)*KR): GQ=PP•SCR(T(8)/T(7)^2+YY) : GOTO 3220
 PP:-2.2E-22 : EE=PP
 gCSUL3 2000 : LPRPMT
 LPRLNT SPC(15)PPEMETRATION RATIO (/8), defined at*;
 IF (KT<0) GOTO 3270
 J5=5 : GOSUB 3330 : PP=5(KT)/O(I) : LPRINT SPC(30)*is ";
 GQ=A3S(PP)•SER(YY*U(KT:/S(KT)^2) : GCSUa 2000 : G0T0 3230
 gosue 3360 : gCSua 3340 : GOSUG 3360 : LPRINT **/-';
 : G0Su3 3360
3280 LPRINT : LPRIMT : LPRINT : LPRINT
3290 RETUNM
3300 LPRIMT "/a), dpfined from'; : J5=J5*1
3310 IF T(JS)<01 THEN GCSUB 336a ELSE LPRIMT T(J5);
3320 LPRIMT 'to": : JS=J5*1
33`0 IF T(J5)<0! THEN GOSUB 3360 ELSE LPRIMT T(J5)
3340 LPRINT 'л!."
3350 RETURM
3360 LPRIMT " **.**** ';
3370 RETURM
3280 F0, K=0 T0 9
3390 T(K)=0!
3400 NEX: K
3410 RETURN
3420 LPRINT ' ecncentration ';C:̇Rs(247);' ';
3430 LPRIMT USING ***.t###fAAM";PP; : LPRIYT * ng/ml."
3440 RETURN
3450 REM Subrautine for error printing.
346J IF (ERR<>EL) GOTO 3450
3470 CLCSE : A=`A:'*AE(I)*AA
3480 RESLME 17SO
3490 IF MERR>10 THEM RESUME 1970 ELSE MERR=NERR-1
3500 LPRIN: "C/VAZ ERRCR Cace f";ERR;'in Line f';ERL
3510 RESUME MEKT
```


## A. 12 SLDPES.BAS

```
1000 REM Updated 090386
1010 DIM T(5),W(5),B(4),E(4),P(13),S(13),U(13),C(13,3),
 D(13,3),Q(13,4),M(13,3)
1020 DIM X(200),Y(200),Z(200),O(13,9),R(13,9),G(13,6).
 F(13,6),H(13,3),Y(4, 5)
1030 A=*++*+*' : PRINT : PRINT A : PRINT *SLOPES* : PRINT A : PRIHT
1040 ON ERROR GOTO 2510 : YERR=A
1050 OPEM 'I', 13. 'g:SUBJECT.DAT' : IMPUT 13.AE
1060 PRINT TAB(1a);",yame : ';AE : PRIMT
1070 IMPUT %3,A : INPUT 13, A : IMPUT %3,A
1080 IMPUT 13.00 : IMPUT #3.SS : IMPUT #3.pP
1090 INPUT %3,PP : IMPUT t3, aR
1100 CLCSE : B(J)=RR/3:+PP : G(0)=PP/3: : SC=PP/G0
1110 B(1)=2!-B(0) : B(2)=PP-31 : SL=RR/SS
120 FOR I=0 TO MO
1130 P(I)=VAL(AN(I))
1140 NEXT I
1150 OPEY 'I',#2,'9:PLASMA.FIT* : IMPUT %2.I : J=1
1160 FOR I=0 TO 5
1170 INPUT 12, YV
1180 NEXT I
1190 IMPUT {2,yY : INPUT $2,5S : INPUT %2, PP
1200 IF (YY<>P(J)) GOTO 1220
1210 S(J)=601•SS : U(J)=6010PP : J=J*1
1220 IF EOF(2)<>0 THEN CLOSE ELSE GOTO 1190
1230 FOR I=0 TO MO
1240 A**S:'*AM(I)**.AVG* : OPEM *I*, #2,A : PRINT
1250 JJ=-1 : BS=01 : CC=01 : SS=01 : SG=31.B(0) : 5D=SG/SC
1260 IF (EOF(2)<>0 OR JJ=199 OR S5*>B(3)) GOTO 1350
```

```
1270
1280
1290
1290
300
1310
1320
1330
1348
1350
1360
1370
1380
1390
0
1410
1420
1430
1440
1450
450
1470
1480
480
1490
1500
1510
151
1520
1530
1548
550
1550
1560
1570
1580
1590
1600
1510
1610
1620
1530
1640
1650 GOSUB 2240 : LPRINT SPC(25)CHRS(14);"REDUCED CHI*2*
1660 LPRIMT CHRS(15) : GOSUB 2300
1670 FOR I=0 TO MO
1680 PP=P(I) : GOSUB 2430 : LPRINT * *;
1690 FOR J=Q TO 2
1700 CD=H(I,J) : GOSUB 2490 : LPRINT * - ';INT(O(I,J));
 --0;N(I,j);SPC(4);
 NEXT J
 CPRINT * FINT(O(I, 3))
 NEXT I
LPRINT CHRS(18) : LPRINT SPC(25)CHRS(14)'CONCENTRATION";
 LPRINT CHRS(20);" - [ng. al"; : A="-1"
 GOSUS 2270 : LPRINT * 1* : II*0 : GOSUB 2350
 FOR I=0 TO MO
 PP=P(I) : GOSUB 2430
 FOR J=0. TO 2
 IF (I=0) GOTO 1820
 C(I,J)=C(I,J)-C(0,J):D(I,J)=D(I,J)*D(0,J)
 PP=C(I,J) : OQ=S@R(ARS(D(I,J))) : GOSUB 2460
 NEXT J
 LPRIMT
 NEXT I
II=0:L_L\:XX=0: : YY=01
 LPRINT CHRS(18) : LPRINT SPC(20)CHRS(14);"PENETRATION RATIO*;
 LPRIHT CHRS(20);* - { *"; : A="-1*
 GOSU8 2270 : LPRINT * I* : GOSUB 2350
 FOR I=L TO MO
 PP=P(I) : GOSUB 2430: EB=(U(I)/S(I))^2 : K=0
 IF (II=0) GOTO 1940
 XX=C(1,K) : YY=D(1,X)
 OO=C(I,K)-KX : PP=00/S(I)
 OQ=ABS(PP)*S@R((D (I,K)+YY)/00^2*BG) : GOSUB 2460
 IF (K=2) GOTO 1980
 LPRINT SPC(28); : K=2 : GOTO 1940
 LPRINT
```

```
1990
 EXT I
2000 II=II-1 : La2
2010 IF (II=1) GOTO t870
2020 LPRIMT CHRS(18) : LPRINT SPC(27)CHAS(14):PGRADIENT*;
2030 LPRIMT CHRs(20);' - [ngral*; : A='-1' ; GOSUB 227a
2040 LPRINT •.nm*; : GOSUB 2270 : LPRINT • J* : GUSUB 2280
2050 FOR I=0 TO MO
 PP=P(I) : GOSUB 2430
 FOR J=O TO 2
 PP=G(I.J) : OG=SOR(ASS(F(I,J))) : GOSUB 2460
 NEXT I
 LPRINT
 MEXT I
 LPRIYT C:FRG(18) : LPRIYT SPC(1S)C:HRS(14);'DIFFUSIOM CCNSTANT";
 LPRIMT CHRs(20);* - [c='; : A=`2" : GOSUB 2270
 LPRIMT 's"; : A*"-1" : GOSUC 2270 ; LPRIMT * 1* : GOSUB 2280
FOR I=1 T0 :C
 PP=P(I) : GOSUB 2430 : 00=G(I.,)-5(I. 0)
 LPRIMT SPC(28); : PP=C(I,1)/(1000.PP.C0)
 GO=D(I,\)/C(I,1)^2*.25/P(I)^2*(F(I,1)*F(I, 0))/C0^2
 QQ=PP=5GR(ABS(c0)) : GOSUB 2460 : LPRINT
 MEXT I
```



```
 aN ERROR GOTO 0 : LPRIMT CMRs(12);CMRg(27);CHRs(Sa)
 CLOSE : GUTD 150
LPRINT CHRs(12);C:ARS(18);CaRs(27);CaRs(55);CARS(12);
 CHRs(27):CiRs(50):
2258 LPRIMT SPC(23)-YARE : ";AE:" (SLOPES - RETina 1"
 : LPRIXT : LPRIMT
2250 RETURM
2270 LPRINT CHRs(27);CHRS(83);CARS(0);
2280 LPRINT A;CNRS(27);CHRs(84);
2290 RETURH
2300 LPRIMT SPC(2J)C:RR(27);CHRs(45);CHRS(1);'TIME (ה1n)";
2310 LPRINT SPC(5)POOSTERICR YITRECUS';SPC(9)"MID-YTSTEOUS';
2320 LPRIMT SPC(G)'ANTERIOR VITREOUS';SPC(7)'POINTA';
```



```
 RETURN
 LPRIMT CARS(27):CHRs(58):EPC(35)"after *:
```



```
 Lporyt * subtrac:ien'
 LPRIMT GARS(15) : LPRINT SPC(20)CHRs(27);CHRS(45);CHRS(1):
 TTME (mia)";
 LPRIMT GRC(S)•POSTERIOR YITREOUS (3 ma/R)*;
 LPRIMT SPC(S)•MID-YITREDUS (9 תw/R)";
 LPRIMT FPC(S)"AMTERIOR YITREOUS (3 ma/L)";
 CHRS(27);CHRS(45);CARs(0)
 RETURM
2420
2430 LPRINT SPC(22);
2440 LPRINT USIYG * t*.t*;PP; : LPRINT SPC(4);
2450 RETURM
2460 LPRIMT SPC(5);
2470 L~PIMT USIEF "%t.###AAA*;PP;
2480 LPRIST * /-';
2490 LPRINT USIMG '#4.tetAAAA";g0;
2500 RETURM
2510 IF YERR>10 THEH RESUAE 2210 ELSE YERR=MERR+1
2520 LPRIMT 'sLOPES ERRDR Code ";ERR;'In Line ';ERL
2530 RESUME MEXT
2540 FOR K=0 TJ 4
2550 T(K)=01:W(K)=01
2560 NEXT X
2570 FOR K=: TO JJ
2580 IF (X(K)>E(J-1)) GaTD 27J0
2590 IF (X(K)<E(J) OR Y(K)<=\partial|) G0TO 2720
2500 ax KK GaTD 2520,2620,2640
2510 8B=X(K) : CC=Y(K) : OD=Z(K)^2 : GOTO 2550
ZB=LCG(X(K)) : CC=Y(K) : OD=Z(K)^2 ; OOTO 2550
BBxX(K) : CE=LCG(Y(X)) : DD=(Z(X)/Y(X))^2 : GOTO 2550
EB*X(K) : CC=1!/Y(K) : DD=(Z(K)/Y(K)^2)^2
W(4)=1:/DD : W(3)=W(4) -CC
FOR La TO 4
 T(L)=T(L)+W(4):Y(4)=W(4)\cdot0B
 MEXT L
 FOR L=0 T0 2
 W(L)=W(L)\cdotW(3): Y(3)=W(3)\cdotBB
 MEXT L
 HEXT IS
```

2730	$B B=T(1) / T(0): C C=T(2) / T(1): D D=T(3) / T(2): E E=T(4) / T(3)$
2740	FF=CC-DD : GG=1!/DD-1!/CC : HH=11/日B-1!/CC
2750	OOFFF*GG-HH*(EE-DD) : $P P=W(0) / T(1)-W(1) / T(2)$
2750	$Q Q=(P P \cdot G G-(W(2) / T(3)-W(1) / T(2)) \bullet H H) / W(3): ~ V(K K, 4)=Q G$
2770	
2780	$V(\mathrm{KK}, 2)=S S$ : PP=EE-CC : $\mathrm{TT}=(\mathrm{EE} \cdot(\mathrm{CC}-\mathrm{BE}) / \mathrm{CC}+\mathrm{BB}-\mathrm{DD}-\mathrm{FF} \cdot \mathrm{BB} / \mathrm{DD}) \wedge 2$
2790	$U U=E E-D C$ : $Q 0=U U \wedge 2 / T(0)-2!\cdot U U * P P \cdot 日 8 \wedge 2 / T(2)$
2890	
2810	
2820	$\mathrm{UU}=\mathrm{T}(4) / T(2)-\mathrm{T}(2) / T(0): F F=D D-38$
2830	$R R=(P P / C C) \wedge 2 / T(0) * U U \wedge 2 /(T(3) * D D)+E E \cdot F F \wedge 2 / T(3)$
2840	
2850	$R R=(R R-2!* U U * F / T(3)) / T T$ : V(KK, 3) $=R R$
2860	PP=DD-CC : UU=CC-3B : SS= (PP:T(1)/T(3))^2/T(0)
2870	SS=SS-FF^2/(T(3) - DD) +EE•(UU/CC)^2/T(3)
2880	
2890	
2900	If KK<>2 THEN RETURN
2910	$V(K K, \partial)=\operatorname{EXP}(V(K K, \theta)): V(K K, 1)=Y(K K, 1) \cdot V(K K, \theta) \wedge 2$
2920	RETURN
2930	ON KK GOTO 2950.3080. 2940
2940	CC=PP : EE=1! : FF=2! CC $^{\text {: GOTO } 2960}$
2950	$C C=L O G(P P): ~ E E=1!/ P P$ : $F F=2!* C C * E E$
2960	$B B=Y(K X, \partial)+Y(K K, 2) \cdot C C+V(K X, 4) \cdot C C \wedge 2$
2970	IF $\mathrm{KK}=3$ THEN $\mathrm{BB}=1!/ 8 \mathrm{~B}$
2980	IF II $=0$ THEN RETURN
2998	$D D=V(K K, 1)+Y(K K, 3) \cdot C C \wedge 2+V(K K, 5) \cdot C C \wedge 4$
3000	$G G=V(K K, 2) \cdot E E \cdot V(K K, 4) \bullet F F: H H=V(K K, 3) \bullet E E \wedge 2+Y(K K, 5) \bullet F F^{\wedge} 2$
3010	ON KK GOTO 3030, 3070, 3040
3020	EE=41.Y(KK.5) : RETURN
3038	FF=EE* (-GE+FF) : EE=EE^2*(HH+41*V(KK, 5) -EE^2) : RETURN
3040	
3050	
3050	
3070	RETUR
3080	$C C=P P: ~ B B=V(K K, 0) \cdot E \operatorname{EP}(V(K K, 2) \cdot C C+V(K K, 4) \cdot C C \wedge 2)$
3090	IF II $=0$ THEN RETURH
3100	$D D=V(K K, 1) *(B B / Y(K K, 0) 1 \wedge 2 * V(K K, 3) *(C C * B 8) \wedge 2+Y(K K, 5) *(B 8 * C C \wedge 2) \wedge 2$
3110	$\mathrm{FF}=\mathrm{V}(\mathrm{KK}, 2)+21 \cdot V(\mathrm{KK}, 4) \cdot \mathrm{CC}: \mathrm{GG}=\mathrm{BB} \cdot \mathrm{FF}$
3120	
3130	
3140	
3150	RETURN

## A. 13 PLOT.BAS

```
1000 REM Updated 210186
1010 DIM L(255),M(256),H(3),SX(15),SY(15),SZ(15),B(3)
1020 A=*+++++++++" : PRINT : PRIMT A : PRINT *PLOT MENU: : PRINT A
1030 PRINT : PRIMT TAB(10);"the files in Drive B are:"
 : FILES'3:•.**
 PRINT : PRINT : PRINT TAB(10);"FILE TYPE' : PRINT TAB(10);A
1040
1050 PRIMT *(0). AVG files -> Averaged rav data"
1060 PRINT "(1). RET Illes -> Retina-aligned, b/g-subtracted"
1070 PRINT "(2).CRP fileg -> CRPeak-aligned, b/g-subtracted*
1080 PRIMT : PRINT : PRINT *Which type do you vish to plot ";
1090 INPUT I : PRINT : PRINT : PRINT "Choose fram:*
1100 IF (I<3) GOTO 1130
1:10 PRINT : PRINT : PRINT "gAD ENTRY: Please try again."
1120 PRINT : PRINT : PRINT : GOTO }102
1130 ON I GOTO 1150,1150
1140 AF**.AVG" ! KZ=0 : FILES "B:^.AVG" : GOTO 1170
1150 AF=*.RET' : KZ=1 : FILES 'B:*.RET" : GOTO 1170
1150 AF=".CRP* : KZ=1 : FILES 'B:^.CRP*
1170 PRIMT : PRINT : MQa-1 : PRINT "PRESS RETURN TO EXIT.' : PRINT
1180 LINE INPUT 'Filename -> ';A
1190 IF (A="') GOTO 1210
1200 MO=HO+1 : AN(MO)=A : GOTO 1180
```

```
210 OPEN 'T",月1,"3:SU&JECT.DAT"
1220 INPUT 11,AK : INPUT $1,A : INPUT $1, A : INPUT $1,A
1230 INPUT 1,H(0) : INPUT 11,M(1) : INPUT 1,.\(2)
$240 INPUT 11, a(0) : INPUT $1,3(1) : IMPUT $1,3(2)
250 CLOSE : N(1)=N(1)+N(0):N(2)=N(2)+N(1):MY=N(0)\2
1260 MA=(H(1)*H(2)\2 : PRINT : PRINT : PRINT
70 FOR I=0 TO 2
1280 9(I)=日(I)/N(I)
1290 NEXT I
1300 FOR I=KZ TO MO
1310 SY(2)=-101: SY(3)=1E+22: SY(4)=-101: SY(5)=SY(3)
 SY(6)=-10
 J3=-1 : PRINT TAB(10);`Reading e;AN(I)
 OPEN "I', *3,"B:"+AM(I)-AF : PP=01 : IM=6
 INPUT &3,P : IMPUT 13,0 : INPUT 1J,R : K=CIMT(P) : JJaJJ+1
 IF (K<>AY) GOTO 1370
 SX(0)=P : SY(0)=0 : SZ(0)=R
 IF (K<>MA) GOTO 1390
 SX(1)=P : SY(1)=0 : S2(1)=R
 IF (K>AY OR Q<SY(2)) GOTO 1410
 SX(2)=P : SY(2)=0 : SZ(2)=R
 IF (X<0 OR K>N(0) OR C>SY(3)) GOTO 14j0
 SX(3)=P : SY(3)=0 : SZ(3)=R
 IF (K<AY OR K>MA OR O<SY(4)) GOTO 14S0
 SX(4)=P : SY(4)=0 : SZ(4)=R
 IF (K<N(1) OR K>N(2) OR Q>SY(5)) GOTO 1470
 SX(5)=P : SY(5)=0: SZ(5)=R
 F (K<MA OR Q<SY(6)) GOTO 1490
 5X(6)=P : SY(6)=0 : SZ(5)=R
 IF K>N(0) THEN GOTO 1530 ELSE QQ=8(0)•P
 IF (OO<PP) GOTO 1520
 IN=IM+1 : SX(IM)=0Q : SY(IM)=0 : SZ(IN)=R : PP=PP.3!
 P=3.333*B(0)*P+11!: X=P : GOTO 1580
 IF (K>N(1)) GOTD 1550
 P=3.333.日(1)*(P-K(0))+X : Y=P : GOTO 1580
 IF (K>N(2)) GOTO 1570
 P=3.333•日(2)*(P-N(1))+Y : Z=P : GOTO 1580
 P=.32•(P-K(2))*2
 L(JJ)=CIMT(P)
 IF Q<=.8364 THEN H(JJ)=0 ELSE
 M(JJ)=CIMT(.318315•(LOG(0) -109.339)^2-212.586)
 IF EDF(3)<>0 THEN CLOSE ELSE GOTO 1340
 LPRINT CHRS(18);SPC(20)*NAKE : ";AM;" [PLOT]" : LPRINT
 LPRIMT : LPRINT : LPRINT SPC(20)CHRS(14);AN(I);CHRS(20);
 LPRIMT '-minute PROFILE has';JJ+1;*data-gets,'
 LPRINT SPC(30)*gtored in ";AN(I)*AF;" ." : LPRINT
 LPRIMT CHRS(15) : LPRIMT CHRS(27);CHRS(49)
 LPRINT SPC(25)*Vertical (LOG) Scale = X 10 ng/ml per 10 diy.";
 LPRIMT SPC(7)PHorizontal Seale = 3 ma per 10 div."
 FOR J=0 to 40
 KK=40-J : PaKK/51 : LL=0 : LPRINT CHRS(10);CHRS(13);CHRS(9);
 IF ((P-FIX(P))=01) GOTO 1720
 LPRINT CHRS(9):CHRS(124); : GOTO 1770
 IF (KK=5 OR KK=15 OR KX=2S OR KK=35) GOTO 1750
 IF J=0 THEN LPRIMT "ng/ml **; ELSE LPRINT CHRS(9);"*";
 GOTO 1770
 LPRINT * 10':CHRS(27);CHRS(83);CHR5(0);KK\10;
 LPRINT CMRS(27);CHRS(84);" "';
 FOR K=0 TO JJ
 IF (H(K)<>KK OR L(K)>110) GOTO 1820
 IF L(K)=0 THEN MM=1 ELSE MM=L(K)-LL
 IF MA=0 THEN GOTO 1810 ELSE LPRINT SPC(MM-1)CHRS(249);
 LL=L(K)
 NEXT K
 MEXT J
 LPRINT : LPRINT CHRs(9);CHRs(9);" "; : LL=0
 MM=CINT(.3333*B(0)*H(0))+11
 FOR J=0 TO 10
 IF (100J)=MM THEN GOSUS 2380 ELSE LPRINT "*";
 FOR K=0 TO 8
 KK=1003+K+1
 IF KK=hm THEN GOSUS 2380 ELSE LPRIHT •-";
 NEXT K
 NEXT J
 IF MM=110 THEN LPRINT *A* ELSE LPRINT "**
 LPRINT CHRS(9);CHRs(9);"-3*;SPC(9)•R*;SPC(19)*6*;SPC(18);'12*;
 LPRINT SPC(18)'18*;SPC(18)*24*;SPC(18)"ma* : LPRINT : LPRIMT
```

```
1960
1970
1980
1990
2200 FRASE L, M,N,SX,SY,SZ, 3
2210 LPRIMT CHRS(27);CHRS(65);CHRS(12);CHRS(27);CHRS(50);CHRS(18);
2220 CLOSE : GOTO 150
2230 LPRINT SPC(60)"The data are stored in ";
2240 RETURM
2250 KK=0 : GOTO 2330
2260 KK=1 : LPRINT SPC(40): : G0TO 2280
2270 LPRINT SPC(10);
```



```
2290 IF (KK=1) GOTO 2320
2300 LPRINT : LPRINT SPC(20);
2310 RETURN
2320 LPRINT SPC(20);
```



```
2340 LPRINT * *-*;
2350 LPRINT USING *it. ffit***AAA*;2
2360 IF KK=1 THEN LPRINT ELSE GOTO 2270
2370 RETURN
2380 LPRINT *A*; : LL*LL+1
2390 MM*CINT(.3333*B(LL)*(H(LL)-N(LL-1)))*MM
2400 RETURN
```


## A. 14 DRAW.BAS

```
1000 REM Updated 250185
1010 DIM X(256),Y(256),N(4),Z(4)
1020 A= '++++* : PRIKT A : PRINT *DRAW* : PRINT A : II=0
1030 ON ERROR GOTO }197
1040 LPRINT CHRS(15);CHRS(27);CHRS(49);CHRS(27);CHRS(79); : MO=1:
1060 FOR J=0 TO MO
1070 OPEH *I*,*1. "B:SUBJECT.DAT* : INPUT #1,AAA
1080 PRIMT : PRINT TAB(15); Name : ;AAA : PRINT : PRINT
1090 INPUT 11,A : IMPUT 1, A : INPUT $1,A
1100 INPUT 1, KK : INPUT 1.MM : INPUT 1,LL : INPUT &1, EE
1110 CLOSE : PRINT The files in Drive B are:" : PRINT
```

```
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1250
1270
1280
1290
1300
1300
1310
1320
1330
1330
1350
1360
1370
1380
1390
1400
1410
1420
1420
1430
1440
1450
1450
1460
1470
1480
1480
1490
1500
1520
1530
1540
1550
1550
1560
1570
1580
1590
1590
1600
1610
1620
1620
1630
1640
1650
1650
1660
1670
1680
1690
690
1700
1710
1720
1720
1730
1740
750 LPRIMT CHRS(27);CHRS(65);CHRS(12);CHRS(27);CHRS(50);
1760 LPRIMT CHRS(27);CARS(58) : PRINT : PRIMT : A=INKEYS
1770 PRINT TAB(10); 'Start a NEW plot? (N) "; : A=INPUTS(1)
1780 IF (A=*Y* OR A='Y') THEN PRIMT ELSE GOTO 1800
1790 PRINT : PRINT : PRINT : J=0 : GOTO 1040
1800 ON ERROR GOTD 0
1810 ERASE X,Y,H,Z
1820 CLOSE : GOTO 150
$830 LPRINT SPC(80)*[";RIGHTS(STRS(J),1);"] m*;AN(J);
1840 LPRINT " Prafile for ";AAA;CHRS(13);" "; : HC=1
1850 RETURN
1860 FOR LY=1 T0 120
1870 IF RIGHTS(STRS(LY),1)="O" THEN LPRINT "**; ELSE LPRINT *-*;
1880 NEXT LV
1890 LY=LY +1
```


A. 15 LUND.BAS

1008	REM Updated 180286
1010	DIM X 100 ), Y(100), Z (100), O(100), P(2),0(2),R(2)
1020	DIM S(2, 2), T(2), U(2), Y(2,2), i(2), PY(3), PLO(3)
1030	
1040	
1050	ON ERROR GOTO 3270 : MERR=0
1060	OPEN 'I', 1, '9: SUBJECT. DAT' : INPUT $11 . A A$
1078	INPUT 1.A : INPUT $1, A$ : INPUT $1, A$
1080	IMPUT $1, X(8):$ IMPUT $1, Y(0):$ IMPUT $11, X(2)$
1090	INPUT \$1.Y(0) : INPUT \$1,Y(1) : INPUT $1 . Y(2)$
1100	CLOSE : RAD $=(Y(0)+Y(1)+Y(2)) / 2!: S C=Y(0) / X(0)$
1110	
1120	FOR I=0 TO 5
1130	INPUT +2, PO: I=I\2
1140	IF (I=0 OR I=2 OR I= ${ }^{\text {) }}$ ) THEN PG(J)=P0
1150	NEXT I
1160	CLOSE
1170	PRINT The files in Drive B are :
1180	FILES 'B:*.* : PRINT : PRINT
1190	PRINT TAB(5); Enter RETURN to exit.* : PRINT
1200	PRIHT TAB(5): Enter . to CHANGE diskette.* : PRINT : PRINT
1210	
1220	IF AE<>". " THEN GOTO 1250 ELSE PRINT
1230	RESET : PRINT 'Replace diskette NOW; enter ANY key when ready.';
1240	A=INPUTs(1) : PRINT : RESET : GOTO 0060
1250	IF (AEく>*) GOTO 1290
1250	ERASE O, P, Q, R, S, T, U, Y, W, X, Y, Z, PG, PLO
1270	ON ERROR GOTO : LPRINT CHRS(12);CHRS(27); CHRs(58);
1280	CLOSE : GOTO 150
1290	GOSUB 2340 : PRINT : PRIMT Enter the LEFT linit '; : INPUT PL
1300	PRIMT Enter the RIGHT liait : : INPIJT RP. : PRINT : PRIMT
1310	IF ( $R P<=P L$ QR RP>RAD) THEH RP=RAD
1320	LPRINT SPC(10)*Analyzing file : $;$ CHRS(14);AE;CHRS(20);
1330	
1340	A=*IMITIAL ESTIMATES of" : PRINT "Enter the ";A
1350	LPRINT SPC(19)A : A"Permeability Coefficient P (ca/s) =
1350	PRINT A; : INPUT $P(\theta)$ : LPRINT SPC(20)A;P(0)
1370	
1380	INPUT R(O) : LPRINT SPC(21)A;R(0) : LPRINT SPC(22)*and*
1390	$A=$ "Diffusion coefficient $D\left(\mathrm{~cm}^{*}+\mathrm{ASD} \cdot \mathrm{*} / \mathrm{s}\right)=$ *
1400	PRIMT *Diffusion coeficicient $D\left(C m^{\wedge} 2 / s\right)={ }^{*}$;
1410	INPUT P(1) : LPRINT SPC(22)A; P(1)
1420	
1430	PRINT "Increment of $D$ to be uged (cm^2/g) $=^{\circ}$;
1448	INPUT R(1) : LPRINT SPC(2a)A;R(1) : LPRINT : PRINT
1450	FOR I=0 TO 2
1460	IF I=0 THEN $P Q^{\prime}=6001$ ELSE $P 0=60001$
1470	$P(I)=P(I) * P \theta: R(I)=R(I) * P 0$
1480	HEXT 1

```
1490 PRIKT : II=-1 : PP=.001 : AAA=RIGHTS(AE, 3)
1500 IF LEFTS(AAA, 2)<>足V' THEM PO=SC ELSE PO=1:
1510 OPEN "I*,#3,"9:'+AE
1520 IF II>99 THEN SOTO 1560 EL5E II=II*1
1530 IMPUT *3,X(II) : X(II)=P0-X(II) : IMPUT *3,Y(II)
 : INPUT 13,z(II)
1540 IF X(II)<0! THEN II=II-1
1550 IF (EOF(3)=0) GOTO 1520
1560 CLOSE : J=II : II=-1
1570 FOR K=0 TO J
1580 IF (X(K)=>RP) GOTO 1620
590 If (Y(K)<=0! OR X(X)<PL) GOTO 1620
600 II=II=1 : X(II)=RAD-X(K) : Y(II)=Y(K) : Z(II)=Z(K)^2
610 PRINT II*1;') ';X(II);TAB(18);Y(II);"*/-";Z(K)
1620 MEXT K
1630 PRIMT : PRINT TAB(10):II*1;"pointg vere entered." : PRINT
1640 PRIMT : LPRINT SPC(30)II*1;'points vere read.'
1650 FOR J=0 TO 1
1650 T(J)=0!
1670 FOR K=0 TO J
 S(J,K)=0!
 NEXT X
 NEXT J
 00=0! : J=LEN(AE)-4 : TT=VAL(LEFTS(AE,J))
 FOR I=0 TO II
 GOSUB 2450 : O(I)=WW : 21=Y(I)-WW : 00=00+21^2/Z(I)
 FOR j=8 TO 1
 UL=P(J):P(J)=U1*R(J) : GOSUB 2450 : U2=WW : P(J)=U1-R(J)
 GOSUB 2450 : U(J)a.5*(U2-WW)/R(J) : P(J)=U1
 NEXT J
 FOR J=0 TO 1
 T(J)=T(J)-2I•U(J)/Z(I)
 FOR {=0 TO J
 S(J,K)=S(J,K)*U(J)*U(K)/Z(I)
 MEXT K
 NEXT J
 HEXT I
 00=00/(II-2) : LPRINT SPC(30)"=> FIRST CHI";ASO;" =';00
 FOR j=0 TO 1
 FOR K=0 TO J
 S(K,J)=S(J,K)
 HEXT K
 NEXT J
 FOR J=0 TO 1
 FOR K=0 TO !
 Y(J,K)=S(J,K)/SGR(S(J,J) & S(K,K))
 NEXT K
 V(J.J)=11+PP
 NEXT J
 GOSUB 2790
 FOR J=0 TO 1
 W(J)=P(J)
 FOR K=0 TO 1
 W(J)aW(J)+T(K)*V{J,K)/SGR{S(J,J)*S(K,K))
 MEXT K
 mEXT I
 GOSUB 2400 : SS=01 : LPRINT
 LPRIMT SPC(14)CHRS(27);CHRS(45);CHRS(1);'S/No.";
 LPRINT SPC(8)"Reading*;SPC(11)"Fit *1*;SPC(11)'Fit 12*;
 LPRINT CHRS(27);CARS(45);CHRS(0)
 FOR I=0 TO II
 LPRINT SPC(15); : LPRINT USING **&';I:
 LPRIHT SPC(10); : LPRINT USIMG *##.**&';Y(I);
 LPRINT SPC(10); : LPRINT USING ***.****";O(I);
 GOSUB 24S0 : LPRIMT SPC(120); : LPRINT USING '**,***s*;|W
 O(I)=WW: 55=5S*(Y(I)-WW)^2/Z(I)
 NEXT I
 SS=SS/(II-2) : GOSUB 2400 : LPRINT : PLO(KP)=SS
 LPRIMT SPC(こ0)*#> SECCND CHI*;ASQ;" =";SS
 IF (CO=\SS OR KP=2) GOTO 2190
 PP=10!*PP : KP=KP+1 : GOTO 1910
 FOR J=0 TO 1
 P(J)=w(J) : Q(J)*SaR(V(J,J)/S(J,J))
 NEXT J
 PP=PP/10! : P1=P(0)/600! : P2=0(01/600! : LPRINT
 LPRINT SPC(12)'The BEST Fit Values are:*
 LPRINT SPC(13)'PERHEABILITY COEFFICIENT =';
 LPRINT USING *:#.f*fA^AA";PI; : LPRINT * */-";
 LPRINT USING '##.###^A^";P2; : LPRINT "ca/s ."
```

```
2270 P1=P(1)/6000: : P2=0(1)/6000!
2290 LPRINT SPC(16)"DIFFUSION CCEFFICIENT =';
2290 LPPRINT USING 'tf.t*AAAA";P1: : LPRINT " */-';
2300 LPRINT USING '##.###^A^";P2; : LPRINT "Cm";ASD;'/s ."
2310 LPRIMT SPC(20)"vith Reduced CHI';ASO;* =';S5;CHRS(12)
2320 IF (SS>2:) GOTO 1910 ELSE GOTO 1170
2330 REM Subroutine to print page title.
2340 LPRIMT CHRS(18);CHRs(27);CHRS(65);CHRs(12);CHRS(27);CHRS(50);
2350 LPRINT SPC(25)"NAME : ";AA;" (LUND I"
2350 LPRINT : LPRINT SPC(15)'Radius of retinal curvature ';
CHRS(247);" ":
 LPRINT USING 't|.f###';RAD: : LPRINT - me ." : LPRINT
 : LPRINT
2380 RETURN
2390 REM Subroutine for exchanging curve-fitting parameters, P(I).
2400 FOR J=0 TO 1
2410 SWAP P(J),W(J)
2420 NEXT J
2430 RETURN
2440 REM Subroutine for calculating function, O(I).
2450 P0=SQR(P(1)) : P1=P(0)/P0-P0/RAD : P6=P(0)*RAD/(X(I)*P0)
2460 P2=.56419*P5 : P3=P5*P1 : PS=.5/P0 : P4=P5*(RAD-X(I))
2470 PS=PS.(RAD*X(I)) : P6=P3.EXP(2:•P1*P4) : P7=P3*EXP(2:•P1.PS)
2480 WW=0! : T2=0! : N=INT(TT)
2490 FOR JI=1 TO s
2500 TU=JI : GOSUQ 2590 : T1=1:/SGR(TU)
2510 OF=P2*T1*(EXP(-P4^2/TU)-EXP(-PS^2/TU)
2520 QD=EXP(TU•P1^2) : P3=P1/T1: Q1=P3•T1•P4
2530 GOSUB 2710 : QF=0F-PG.0E•0D : Q1=P3+T1•PS
2540 GOSUB 27:0 : OF=QF+P7•QE•OD : QF=TP•QF
2550 WW=WW+(T2+0F)/2! : T2=0F
2560 NEXT II
2570 RETURN
2580 REM Subroutine for calculating plasma value, TP.
2550 T1=TT-TU
2600 IF T1=0! THEN TP=0: ELSE GOTO 2520
2510 RETURM
2620 ON KK GOTO 2640,2520,2650
2630 GOTO 2663
2640 T1=LOG(T1) : EOTO 260́0
 T1=1:/T1
 TP=PB(a) - PG(1) -T1 - PB(2) - T1^2
 RETURN
 TP=PG(0)•EXP(PB(1)\bulletT1*PB(2)•T1^2)
 RETURN
2700 REM Subroutine for calculating error function, oE.
2710 01=01/50! : OE=0! : 02=1! : 04=01/2!
2720 FOR K=1 TO 50
2730 SK=K : PO=(SK•Q1)^2 : P0=EXF(-P0)
2740 6E=0E*04*(02*PO) : 02:P0
750 NEXT X
2750 0E=1!-1.12838.OE
2770 RETURN
2780 REM Subroutine to inverting matrix, V(I,J), and find det., ©0
2790 DIM IA(2),JA(2)
2800 00=1!
2810 FOR K=0 TO L
2820 01=0!
2830 FOR I=K TO 1
2840 FOR j=K TO 1
2850 IF (ABS(O1)>ABS(Y(I,J))) GOTO 2870
 O1=Y(I,J): [A(K)=I : JA(K)=J
 MEXT J
 NEXT I
 IF (01<>0!) GOTO 2910
 00=0! : GOTO 3250
 IF (IA(K)<K) GOTO 2830
 IF (IA(K)=K) GOTO 2960
 FOR J=0 TO 1
 SI=V(K,J):V(K,J)=V(IA(K),J):V(IA(K),J)=-S1
 NEXT J
 IF (JA(K)<K) GOTC 2830
 IF (JA(K)=K) GOTO 3010
 FOR I=0 TO 1
 SI=V(I,K) : V(I,K)=V(I,JA(K)) : V(I,JA(K))=-SI
 NEXT I
 FOR I=0 TO I
```

```
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120 V(K,K)=1!/01 : 00=00*01
3130 NEXT K
3140 FOR J=0 TO 1
3150 K=1-J
3150 IF (IA(K)<=K) GOTO 2200
3170 FOR I=0 TO 1
3180 SI=V(I,K) :V(I,K)=-V(I,IA(K)) : V(I,IA(K))=S1
3190 NEXT I
3200 IF (JA(K)<=K) GOTO 3240
3210 FOR I=0 TO 1
 SI=V(K,I) : V(K,I) =-V(JA(K),I) : Y(JA(K),I)=SI
 MEXT I
 NEXT J
 ERASE IA,JA
 RETURN
3270 IF NERR>10 THEN RESUME 1260 ELSE NERR=NERR+1
3280 PRINT C&RS(7);"ERROR Code ";ERR;"in Line *"ERL
3290 RESUME NEXT
```

A. 1G File Formats

[^1]d)Created by : PLASCAN. aAS
Format : (1) Background sample time (set $=0$ ).(2) Background average (in DAS units).(3) Backgraund standard deviation (in DAS units).(4) Blood gampling time (in minutes p.i.).
(5) Average fluoreacence reading (in DAS unita).
(6) Standard deviation (in DAS unita).
(7) Repeat (4), (5), (6),.........................
e) FilenameCreated by : BLOOD.3AS
Format : (1) Best-fit function's code number
(2) A coefficient.
(3) Error of $A$.
(4) B coefficient.
(5) Error of B .
(6) C coefficient.
(7) Error of $C$.
(8) Measurement p.i. time (in ainutes p.i.)
(9) Area up to (8) (in ng. mil- .ain).
(10) Error of (9) (in ng. al ${ }^{-1}$.min).
(11) Repeat (8), (9), (10),...........
f) Filenames ..... ? 2. CY?
Created by Lumd. gas
Format : (1) Position from Retina (in ma)
(2) Average concentration (in ng. m1-1).
(3) Standard deviation of (2) (in ng. in (2) $^{-1}$
(4) Repeat (1), (2), (3),

# THE UNIVERSITY OF BRITISH COLUMBIA <br> VANCOUVER. B.C. CANADA V5Z SN9 

## FACULTY OF MEDICINE

DEPARTMENT OF OPHTHALMOLOGY
2sso WILLOW STREET
TELEPHONE 173-54W1 LOCAL 2431

## CONSENT_FORM

The Develogment of a Vitregug Fluorghotometer for Studying Alterations in the 3 leod Retinal gatrier

Dr. I. S. Begg; Dr. T. 'Cox; Dr. D.A. Balzarini; Mr Pang K.T.
A study is being carried out to measure the abnormal leakage from retinal blood vessels which indicate cell damage in the early stages of disease prior to visible retinal changes. In most patients and normal subjects, the measurements will be carried out following fluorescein angiography (photography) wich is a customary diagnostic procedure frequently used in cinimal practice to visualize damage to the retinal structure, and to indicate disease severity which is useful in prognosis and in planning treatment. The measurement of fluorescein leakage is made in a fablow-up procedure called VITREOUS FLUOROPHOTOMETRY at several time intervals folloving the angiography. The vitreous cavity of the eye is scanned by the light beam (of an adapted clinical microscope, ) vinch is directed into the eye through a contact lens. The scan of an eye takes about 30 seconds vith minimal discomfort. After each scan, a finger-prick blood sample is taken to measure plasma fluorescein. There are no side effects related to these measurements. The injected fluorescein dye colours the skin slightly yellov for about 4 hours, and urine for about 24 hours. About $4 \%$ of patients experience brief spells of nausea. Serious allergic reactions are rare and have not been encountered in over some 20000 fluorescein angiograms done in the Department of Ophthalmology, UBC.

The results of the tests and the personal medical records will be kept confidential by using a eode number for each patient.

The entire procedure, vith repeated scanning, takes about 90 minutes.

The test may only be carried out with your signed consent and the underatanding that you may decline to participate, or withdrav at any time during measurement vithout jeopardizing any routine medical treatment.

CgNSENT for the procedure and acknoviedgement of receizt of a cogy of the consent form.

MATERIAL USED

B. 1 Electronics


Table 23. Electronic components of blue circuit board of the DAS. (See Figure 12.)

## B. 2 Equipment

1. LOGARITHAIC AAPLIFIER Model E97 (Built by the Electranic Shap, Department of Physica).
2. 15-4 100-mA POWER SUPPLY (designed by the Electronic Shop, Department of Phyaica).
3. GAMMA SCIENTIFIC DIGITAL RADIOMETER Model DR-2.
4. GAMMA SCIENTIFIC PHOTOMULTIPLIER DETECTOR Model D-47A.
5. Gamma sciemtific scanning photometric microscope eyepiece nodel 700-10-30X (Left acular).
6. GAMMA SCIEMTIFIC SCANNIMG PhOTOMETRIC MICROSCOPE EYEPIECE Model 700-10-34A (Right ocular vith fibre optic).
7. Modified hikon zoom-photo slit lamp microscope.
8. 2-V VOLTMETER (built by Stephen CLARK to nomitor the lamp intensity).
9. A MODEL EYE built to required specifications by the Machine Shop. Departaent of Physics).
10. SPECTROTECH FILTERS:
a. SE4 - excitor filter.
b. SBS - barrier filter.
11. KEPCO POYER SUPPLY Model RMK 09-S (for glit lamp).
12. OSBORNE 1 64X Ricroconputer.
13. OKIDATA MICROLINE 192 Dot Matrix Printer.
14. HAYES SMARTMODEM 308 (for commieating vith UBCNet).
15. FISHER ACCUMET Expanded Scale Research pH metER Model 320 (for preparing and measuring buffer pH).
16. IEC CENTRIFUGE Model CENTRA-4 (for apinning blood aamplea).
17. HAMILTOM MICROLITER 702 Aicropipette (for seasuring out plasma sasples).
18. SONOMETRIC Ultrasonic Digital Biometric Ruler Model DBR 400 (for aesaring intra-ocular lengths).
19. COntact lenses:
. Plano Permalensr hydrophilie Contact Lens (soft lens). b. COOPER VISION Plano-concave Hard Plastic Lena.
20. RED TIP HEPARIMIZED MICRO-HEMATOCRIT CAPILLARY TUBES (for collecting blood samples).
21. FUNDUSCEIN Fluorescein Sodium 25\% Ampoulea (for intravenous injections).
22. nETHOCEL 2X Sterile (vater-based, highly viscous methylcellulose for holding the hard lens in place, and, to provide the optical continuity betveen interfaces).
23. CYCOLGYL $1 \%$ CYclopentolate Hydrochloride for dilating the pupil. and anaesthetizing the cornes).
24. A 8 a Fluorescein Sodium povder (for asking calibration solutions).
25. HONOPAN 200 g Balance (for preparing calibration solutions).


Figure 30. Cross-section of the model eye.

The cross-section of the model eye is shown below. The middle component is made of lucite (or plexiglass). All other components are of aluminium. All dimensions are in mm . The assembly is held together by four bolts (horizontal dash lines).

CALIBRATIGN RESULTS
C. 1 Pod-DAS

The least-squares fit was to the straight line,

$$
Y=A+B * X
$$

by setting

$$
\begin{aligned}
& X=\text { Osborne/DAS units, and } \\
& Y=\text { translation in } m m .
\end{aligned}
$$

The gradient of the fit was found to be
0.095919 +/-
0.000070 mm per DAS unit.

The correlation coefficient was 0.999.

CALIERATIONS OF SLIT LAMP TRANSLATION


Figure 31. Calibration curve of the Pod-DAS.

DISPLACEMENT	OUTPUT/DIFFERENCE	
0	8	
1	16	8
2	23	7
3	31	8
4	38	7
5	45	7
6	52	7
7	59	7
8	66	7
9	73	7
10	80	7
11	86	6
12	93	7
13	100	7
14	107	7
15	113	6
16	120	7
17	127	7
18	133	6
19	139	6
20	146	7
21	152	6
22	159	7
23	165	6
24	172	7
25	178	6
26	185	7
27	191	6
29	197	6
30	203	6
31	209	6
32	215	6
33	228	6
34		7

Table 24. Results of Pod calibrations.

The data under the DISPLACEMENT column are multiples of 0.635 mm , i.e. the pod was advanced $1 / 40^{\mathrm{th}}$ of an inch at a time.

## C. 2 Logarithmic Amplifer

The least-squares fit was to a logarithmic function,

$$
Y=A+B * \log X
$$

where input voltages, $X$ vere in $m V$ and output voltages, $Y$ vere in $V$. The correlation coefficient of this fit was 0.997.

INPUT VOLTAGE (mV)	
1.2	0.40
1.5	0.50
2.1	0.65
2.4	0.70
2.5	0.73
4.5	1.00
5.7	1.11
7.9	1.25
11.2	1.40
17.5	1.61
23.4	1.73
32.2	1.87
46.8	2.04
57.5	2.12
70.0	2.22
99.8	2.37
109.0	2.42
180.0	2.63
224.0	2.73
343.0	2.79
400.0	3.99
489.0	3.08
590.0	3.16
778.0	3.28
878.0	3.33
1000.0	3.38
1245.0	3.50
1574.0	3.60
1923.0	3.75
2230.0	3.91
3142.0	4.02
4085.0	4.12
5091.0	4.20
6000.0	4.38
7000.0	
9000.0	

Table 25. Results of Log Amp teat.


Figure 32. Performance of the Log Amp.
C. 3 PH Dependence

Water		Buffer	
$X$	$Y$	$X$	$Y$
6.7	35.5	12.4	70
47	82	39	100
67	97	47.5	103
78	112	69.5	115
105	105	84	118
115	105	103	126
195	120	142	143
630	152	410	154
1830	172	870	179
3250	202	1220	178
3400	193	4850	219
8900	205	9258	228

Table 26. Water and buffer sample differences.

To test the pH dependence mentioned in Section 3.1, two sets of sample solutions vere prepared. The first set vas made vith demineralized distilled vater; the second set vas made with the pH 7.4 Sorensen's buffer solution. (See Section 4.1.) Note that the buffer set was not the final calibration set given belov in Appendix C. 4.

The results of linear least-squares fit, of concentrations, $X$ (ng.m1-1) to DAS outputs, Y (Osborne/DAS units), vere:

$$
\begin{aligned}
& Y=-7.354+24.449 * \ln X \quad \text { for vater samples, } \\
& Y=13.347+23.897 * \ln X \quad \text { for buffer sample. }
\end{aligned}
$$

The correlation coefficients vere both 0.99. The slopes of the tro fits vere not significantly different for a $t(12-2)$ test ( $P=5 \%$ ). The "intercepts" vere significantly different ( $\mathrm{P}=0.5 \%$ ) Hence, buffer samples produced higher outputs than vater.


Figure 33. pH dependence.
C. $4 \mathrm{R} / \mathrm{M}$-Log Amp-DAS

Fits to two functions vere done. They vere:
a) $X=A+B * \log Y+C *(\log Y)^{2}$, and,
b)
$Y=A * \exp \left(B * X+C * X^{2}\right)$,
vhere
$X$ = Osborne/DAS averaged result, and, $\mathrm{Y}=$ sample concentration in ng.m1-1.

Fit (a) vas inverted, and then compared to fit (b) at every Osborne/DAS output. Fit (a) was chosen because it produced smaller deviations (especially at the lover concentrations). The reduced chi-square was 2.765. The coefficients vere $A=4.47039+/-1.65113$, $B=25.0257+/-0.73117$, and, $C=0.11444+/-0.06722$.

The resulting equation on inverting fit (a), was

$$
Y=\exp (A A+\sqrt{X / C C+B B}),
$$

where $A A=-109.339, B B=11915.9$, and, $C C=0.11444$.

RADIOMETER/LOG AMP CALIERATIONS


Figure 34. Calibration curve for R/M-Log Amp-DAS.

X	$Y$	Fit-Y	\%
6357.47	231.34	1.07	0.46
5487.33	227.51	0.92	0.40
2143.54	204.83	-1.67	-0. 82
719.50	174.66	-0.61	-0. 35
313.79	152.80	-0.68	-0. 45
143.01	134.50	-3.01	-2. 24
30.41	90.26	1.00	1.11
30.41	90.58	0.68	0.75
29.87	87.95	2.85	3.24
29.87	90.09	0.71	0.79
20.42	80.17	0.84	1.05
20.42	80.25	0.76	0.94
13.78	70.08	0.81	1.16
13.78	70.37	0.53	0.75
7.52	58. 24	-2.81	-4. 82
7.52	57.32	-1.89	-3.30

Table 27. Calibration results of the R/M-Log Amp-DAS.

Note that several scans were made at the lower concentrations. This was to "weight" the lower part of the calibration curve during curve-fitting. The reason for doing this was to "improve" the calibration curve in this region so that $P M T$ and $R / M$ noise during the calibration procedure vould not adversely affect the curve-fitting process.
C. 5 Attenuation

The effects of the attenuation was studied during the calibrations of the $R / M-L o g ~ A m p-D A S$. Scans through the sample cells holding various sample concentrations were made.

Figure 36 shows two samples where attenuation effects were seen. The peak was the position when the entire diamond was in the solution. Attenuation effects were studied by re-zeroing the translation axis of each scan at the peak; then estimating the \{negative) slope (if it existed).

Refraction caused the displacement of the slit lamp to be different from the diamond, like the $F$-numbers (in Figure 3). The conversion is given below.


Figure 35. Refraction at sample cell surfaces.

Consider a profile where significant attenuation was observed. The negative, concentration-dependent slope, $B(c)$, in the semi-log plot is found (from Eq. 5, Section 2.2) to be


Figure 36. Attenuation in sample solutions.

$$
c=A(c)-B(c) * X,
$$

where $c$ and $X$ are the concentration and translation respectively. $A(c)$ is a "constant". $B(c)$ represents the decrease in log-concentration per unit increase in the distance the probe focus "penetrates". When $B(c)$ is small, there is little attenuation. Hence, an estimate of the concentration at which $B(C)$ is small approximates the lower limit above which attenuation should be taken into consideration. The table below gives the results of the straight-line fits to the profiles and their respective correlation coefficients.

$\mathrm{c} \mathrm{ng} \cdot \mathrm{ml}^{-1}$	$\mathrm{~B}(\mathrm{c}) \mathrm{mm}^{-1}$	r
9493	0.289	0.994
6357	0.240	0.999
5487	0.182	0.999
2143	0.055	0.982

Table 28. Concentration and gradients of attenuated samples.

A least-squares fit to

$$
B(c)=A A+B B * C
$$

was made. The results were

$$
A A=1.08 * 10^{-3} \text { and } B B=3.25 * 10^{-5} ; r=0.97 .
$$

Hence, for $B(c)=0, c=-33 \mathrm{ng} \cdot \mathrm{ml}^{-1}$ :
From Eq. 5, for a mean aqueous chamber depth of $d(=X)=3.5 \mathrm{~mm}$,
at $c^{A}=1000 \mathrm{ng} \cdot \mathrm{ml}^{-1}, \quad B\left(C^{a}\right)=0.034$,
attenuation < $12 \%$;
and, at $c^{A}=100 \mathrm{ng} \cdot \mathrm{ml}^{-1}, \quad B\left(C^{A}\right)=0.0043$, attenuation < $2 \%$.

```
C.G Performance Data
```

CHARACTERISTIC/PARAMETER		UNITS
Slit width	0.1	mm
Slit height	2	mm
Probe diameter	0.45	mm
Beam-Probe angle	16	-
Lamp intensity monitor	141(1)	mV
Filter overlap at 502.9nm	0.5	\%
Max. slit lamp displacement	24.5	mm
Max. in vitro concentration	6000	ng. ml ${ }^{-1}$
AR in vitro	3	mm
AR ratio in vivo on Normals	0.032	
LLod in vivo	4.4	$\mathrm{ng} \cdot \mathrm{ml}^{-1}$
Sensitivity at $20 \mathrm{ng} \cdot \mathrm{ml}^{-1}$	0.77	$\mathrm{ng} \cdot \mathrm{ml}^{-1} 0 \mathrm{sb}^{-1}$
Sensitivity at $2000 \mathrm{ng} . \mathrm{ml}^{-1}$	85.16	ng. $\mathrm{ml}^{-1} \mathrm{Osb}{ }^{-1}$
EoM at $20 \mathrm{ng} \cdot \mathrm{ml}^{-1}$	-0.03	
EoM at $2000 \mathrm{ng} . \mathrm{ml}^{-1}$	0.06	
$R$ in vivo	19	\%
No. of data-points in 10 s	800	pairs

Table 29. Performance characteristics of the VF system.
Sensitivity and EoM are in vitro estimates using the calibrations in Appendix C. 4.
Note: Sensitivity is defined as gradient of calibration curve at given concentration.


Figure 37. Model eye sample profile.

## APPENDIXD

## GLロSSARY

BLOOD-RETINAL BARRIER - The barrier that separates the retinal
neural tissues from the blood.
BOLUS - A concentrated mass of pharmaceutical preparartion
given intravenously for diagnostic purposes;
a mass of scattering material.

CHOROID - The network of small blood vessels immediately behind the retina.

DIABETIC RETINOPATHY - A non-inflammatory disease of the retina due to diabetes which can lead to blindness.
ENDOTHELIUM - The layer of epithelial cells that lines the
cavities of the heart and of the blood and lymph
vessels, and the serous cavities of the body.

EPITHELIUM - The covering of the internal and external surfaces of the body, including the lining of vessels and other small cavities. It consists of cells joined by small amounts of cementing substances.

EMMETROPIC - When rays entering the eye parallel to the optic axis are brought to focus exactly at the retina.

FENESTRATED - Pierced vith one or more openings.
FUNDUS - That part of the back of the eye furthest from the pupil.
HAEMOGLOBIN - The red pigment of the blood carried by the red blood cells; is composed of globin (a protein) and haem (an iron compound); is the means of oxygen transport.

HAEMACYTOMETER - Instrument for counting blood corpuscles.
HEMATOCRIT - Volume \% of erythrocytes in whole blood. Originally applied to the apparatus of measurement.

[^2]| HOMEOSTASIS - The primary function of most organs; the processes of maintaining constant physical and chemical conditions within the body despite external changes. |
| :---: |
| HYPERTENSION - High blood pressure secondary to specific disease, or, essential. |
| INFILTRATE - To penetrate the interstices of a tissue. Material deposited by infiltration. |
| JUNCTIONAL COMPLEX - The intercellular arrangement between the adjacent columnar epithelial cells. |
| LESION - Any pathological or traumatic discontinuity of tissue or loss of function of a part. |
| $\begin{gathered} \text { LUMINAL SURFACES - Surfaces of the cavity or channel } \\ \text { vithin a tube or tubular organ. } \end{gathered}$ |
| MACULA - Usually the retinal macula. In general, any area that is distinguishable from its surrounding by colour, etc. |
| MICROANEURYSM - Bulge at the veak point in the wall of an artery. |
| MULTIPLE SCLEROSIS - A chronic central nervous system disease in which the nerve fibres lose their protective myelin sheaths and their ability to conduct impulses. |
| OPTIC DISC - The intraocular portion of the optic nerve formed by fibres converging from the retina and appearing as a pink to white disc. |
| PERIPHLEBITIS - Inflammation of the tissues around a vein, or of the external coat of a vein. |
| PLASMA - Sticky, pale amber liquid with faint, sickly smell; the medium in which vital substances are transported to all body tissues; a solution in water of salts, proteins, glucose, etc. |
| SEQUELA - Any lesion or affection following or caused by an attack of disease. |
| ZONULAE OCCLUDENS - That portion of the junctional complex of columnar epithelial cells, just beneath the free surface, where the intercellular space is obliterated. It extends completely around the cell perimeter. Also called "tight junctions". |

```
APPENDIXE
 AEBREVIATIDNS USED
\begin{tabular}{|c|c|}
\hline A & Operational Amplifier; Figure 12. \\
\hline ADC & Analogue-to-Digital Converter; Figure 12. \\
\hline AR & Axial Resolution. \\
\hline AVG & Averaged data (by RET); filetype. \\
\hline BAB & Blood-Aqueous Barrier. \\
\hline BRB & Blood-Retinal Barrier. \\
\hline b & attenuation or extinction coefficient; Eq. 5. \\
\hline CR & Choroid-Retina(1). \\
\hline CRP
c & Alignment by \(C R\) peaks; filetype. concentration (ng. \(\mathrm{ml}^{-1}\)); superscripts for various uses. \\
\hline D & Diffusion constant; superscript, \(W\) means in water. \\
\hline DAS & Data Acquisition System. \\
\hline DAT & (Raw) Data (filetype). \\
\hline DRP & Diabetic Retinopathy. \\
\hline DVM & Digital VoltMeter; Figure 8. \\
\hline d & Usually depth, or distance, or displacement. \\
\hline EoM & Error of Measurement. \\
\hline \(\mathrm{H}^{\bullet}\) & Null Hypothesis. \\
\hline \(\mathrm{H}^{\mathrm{a}}\) hex & \begin{tabular}{l}
Alternative Hypothesis. \\
hexadecimal (base-16) number(ing).
\end{tabular} \\
\hline LLod & Lower Limit of Detection. \\
\hline Log Amp & Logarithmic Amplifier. \\
\hline MS & Multiple Sclerosis. \\
\hline MUX & MUltipleXer (analogue electronic switch); Figure 12. \\
\hline P & Probability of Type I error - rejecting a true \(\mathrm{H}^{*}\); Permeability constant; permeability index if with superscript I. \\
\hline PMT & PhotoMultiplier Tube. \\
\hline PR3 & Penetration Ratio averaged about 3 mm from retina. \\
\hline \[
\begin{aligned}
& \text { PR3* } \\
& \text { p.i. }
\end{aligned}
\] & Penetration Ratio at 3 mm from retina. post-injection. \\
\hline
\end{tabular}
```

```
R Reproducibility; Eq. 27.
RET
RPE
R/M RadioMeter.
 Alignment by visually pin-pointed RETinae; filetype.
 Retinal Pigment Epithelium.
S.D. Standard Deviation.
S/H Sample-and-Hold electronic chip; Figure 12.
t(i) First blood sampling time.
VF Vitreous Fluorophotometry (Fluorophotometric).
```

1. D.M. Maurice: "A New Objective Fluorophotometer", Exp. Eye Res., 2, 33 (1963).
2. S.R. Waltman, H.E. Kaufman: "A New Objective Slit Lamp Fluorophotometer", Inves. Ophth., 9, 247 (1970).
3. J.G. Cunha-Vaz: "Sites and Functions of the Blood-Retinal Barriers", in The Blood-Retinal_Barriers, J.G. Cunha-Vaz, ed., Plenum Press, N.Y. (1980).
4. J.G. Cunha-Vaz, J.R. Faria de Abreu, A.J. Campos, G.M. Figo: "Early Breakdown of the Blood-Retinal Barrier in Diabetes", Brit. J. Ophth., 59, 649 (1975).
5. T.C. Prager, H. H. Chu, C.A. Garcia, R.E. Anderson, J. B. Field, E.A. Orzeck, J.P. Comstock: "The Use of Vitreous Fluorophotometry to Distinguish betveen Diabetics with and without Observable Retinopathy: Effect of Vitreous Abnormalities on the Measurement", Inves. Ophth. Vis. Sci., 24, 57 (1983).
6. J.G. Cunha-Vaz, R. Zeimer, P. Mahlberg, H. Tessler: "Vitreous Fluorophotometry Studies in Pars Planitis", in Retinal 1 Diseases, Grune \& Stratton, Inc., N.Y. (1985), pp. 53-7.
7. J.G. Cunha-Yaz, C.C. Mota, E.C. Leite, J.R. Abreu, M. A. Ruas: "Effect of Sulindac on the Permeability of the BloodRetinal Barrier in Early Diabetic Retinopathy", Arch. Ophth., 103, 1307 (1985).
8. T. Engell, O.A. Jensen, L. Klinken: "Periphlebitis retinae in multiple sclerosis. A histopathological study of two cases", Acta Ophthal., 63, 83 (1985).
9. A.C. Arnold, J.S. Pepose, R.S. Hepler, R.Y. Foos: "Retinal Periphlebitis and Retinitis in Multiple Sclerosis: 1. Pathologic Characteristics", Ophthal., 91, 255 (1984).
10. T. Engell, P.K. Andersen: "The Frequency of Periphlebitis Retinae in Multiple Sclerosis", Acta Neurol. Scand., 65, 601 (1982).
11. B.R. Younge: "Fluorescein Angiograpghy and Retinal Venous Sheathing in Multiple Sclerosis", Can. J. Ophth., 11. 31 (1976).
12. C.R. Bamford, J.P. Ganley, W.A. Sibley, J.F. Laguna: "Uveitis, Perivenous Sheathing and Multiple Sclerosis", Neurology, 28, 119 (1978).
13. T. Engell, A. Hudberg, A. Uhrenholdt: "Multiple Sclerosis: Periphlebitis Retinalis et Cerebro-Spinalis - A Correlation between Periphlebitis Retinalis and Abnormal Technetium Brain Scintigraphy", Acta Neural. Scand., 69, 293 (1984).
14. R.C. Zeimer, N.P. Blair, J.G. Cunha-Vaz: "Vitreous Fluorophotometry for Clinical Research: I. Description and Evaluation of a New Fluorophotometer", Arch. Ophth., 101, 1753 (1983).
15. J.R. Gray, M.A. Mosier, B.M. Ishimoto: "Optimized Protocol for Fluorotron ${ }^{\text {R Master }}$ ", presented at the International Meeting on Ocular Fluorophotometry, Paris, France (1982).
16. T.C. Prager, D.J. Wilson, G.D. Avery, J.H. Merritt, C.A. Garcia, G. Hopen, R.E. Anderson: "Vitreous Fluorophotometry: Identification of Sources of Variability", Inves. Ophth. Vis. Sci., 21, 854 (1981).
17. J.G. Cunha-Vaz: "Vitreous Fluorophotometry: Techniques, Methodology and Clinical Applications", handout from Amer. Acad. Ophth. instruction course.
18. R.C. Zeimer, J.G. Cunha-Vaz, M.E. Johnson: "Studies on the Technique of Vitreous Fluorophotometry", Inves. Ophth. Vis. Sci., 22, 668 (1982).
19. J.A. van Best, L. Vrij, J.A. Oosterhuis: "Lens Transmission of Blue-Green Light in Diabetic Patients as Measured by Autofluorophotometry", Inves. Ophth. Vis. Sci., 26, 532 (1985).
20. J.G. Cunha-Vaz, D.M. Maurice: "The Active Transport of Fluorescein by the Retinal Vessels and the Retinan, J. Physiol., 191, 467 (1967).
21. N. P. Blair, R.C. Zeimer, M.M. Rusin, J.G. Cunha-Vaz: "Outward Transport of Fluorescein from the Vitreous in Normal Human Subjects", Arch. Ophth., 101, 1117 (1983).
22. B. Krogsaa, H. Lund-Andersen, J. Mehlsen, L. Sestoft, J. Larsen: "The Blood-Retinal Barrier Permeability in Diabetic Patients", Acta Ophth., 59, 689 (1981).
23. P.S. Chahal, P.J. Chowienczyk, E.M. Kohner: "Measurement of Blood-Retinal Permeability: A Reproducibility Study in Normal Eyes", Inves. Ophth. Vis. Sci., 26, 977 (1985).
24. J.Z. Winkelman, R.J. Zappia, A.J. Gay: "Human Arm to Retina Circulation Timen, Arch. Ophth., 86, 626 (1971).
25. G.N. Wise, C.T. Dollery, P. Henkind: The_Retinal Circulation, Harper \& Row, N. Y. (1971), pp. 146-9.
26. H. Lund-Andersen, B. Krogsaa, J. Larsen, E. Scherfig, L. Sestoft: "Fluorophotometric Evaluation of the Vitreous Body in the Development of Diabetic Retinopathy", in Retinal_Diseases, J.G. Cunha-Vaz, ed., Grune \& Stratton, Inc., N. Y. (1985), pp. 9-13.
27. J.G. Cunha-Vaz, R.C. Zeimer, N.P. Blair: "Ocular Fuorophotometry", I.S.O.F. Quarterly, 1, 6 (April 1984).
28. B. P. Conway: "An Analysis of Vitreous Fluorophotometry", in Retinall_Diseases, J.G. Cunha-Vaz, ed., Grune \& Stratton, Inc., N.Y. (1985), pp. 59-66.
29. R.C. Zeimer, N.P. Blair, J.G. Cunha-Vaz: "Vitreous Fluorophotometry for Clinical Research: II. Method of Data Acquisition and Processing", Arch. Ophth., 101, 1757 (1983).
30. B. Krogsaa, H. Fledelius, J. Larsen, H. Lund-Andersen: "Photometric Oculometry. I.: An Analysis of the Optical Principles in Slit-Lamp Fluorophotometry", Acta Ophth., 62, 274 (1984).
31. R.C. Zeimer, J.G. Cunha-Vaz: "Evaluation and Comparison of Commercial Vitreous Fluorophotometers", Inves. Ophth. Vis. Sci., 21, 865 (1981).
32. B.M. Ishimoto, R.C. Zeimer, J.G. Cunha-Vaz, M.M. Rusin: "Data Analysis and Presentation in Vitreous Fluorophotometry", I.S.O.F. Quarterly, 2, 1 (Sept. 1985).
33. J. Larsen. H. Lund-Andersen, B. Krogsaa: "Transient Transport Across the Blood-Retina Barrier", Bull. Math. Biol., 45, 749 (1983).
34. P.R. Bevington: Data_Reduction_and_Error_Analysis_for the_Physical_Sciences, MacGrav-Hill, N. Y. (1969), pp. 235-42.
35. S-E. Bursell, F.C. Delori, A. Yoshida, J.S. Parker, G.D. Collas, J.W. McMeel: "Vitreous Fluorophotometric Evaluation of Diabetics"; Inves. Ophth. Vis. Sci., 25, 703 (1984).
36. G.T. Feke, R. Zuckerman, G. J. Green, J. J. Weiter: "Response of Human Retinal Blood Flow to Light and Dark", Inves. Ophth. Vis. Sci., 24, 136 (1983).
37. R.F. Brubaker, R.L. Coakes: "Use of a Xenon Flash Tube as the Excitation Source in a New Slit-Lamp Fluorophotometer", Amer. J. Ophth., 86, 474 (1978).
38. E.M. Kohner, A.R. Alderson: "Vitreous Fluorophotometry", Trans. Ophth. Soc. U.K., 101, 446 (1981).
39. D.M. Maurice: "The Use of Fluorescein in Ophthalmological Research", Inves. Ophth., 6, 464 (1967).
40. D.W. Hill: "The Techniques of Fluorescence Retinography", in The_William_MacKenzie_Centenary_Symposium_on_The Ocular_Circulation_in_Health_and_Disease, J. S. Cant, ed., Kimpton, London, U.K. (1969), p. 53.
41. F. Delori, I. Ben-Sira, C. Trempe: "Fluorescein Angiography with an Optimized Filter Combination", Am. J. Ophth., 82, 559 (1976).
42. N.P. Blair, M.M. Rusin, E. Shakin: "The Effect of pH on the Transfer of Fluorescein across the BloodRetinal Barrier", Inves. Ophth. Vis. Sci., 26, 1133 (1985).
43. P. Horovitz, W. Hill: The_Art_of Electronics, Cambridge U. Press, N.Y. (1980).
44. T. Hogan, M. Iannamico: OSBORNE_1_Technical_Manual, Osborne Computer Corp., CA. (1982), Part No. 2F00153-01.
 Osborne Computer Corp., CA. (1981).
45. A. R. Miller: $8080 / Z=80$ Assembly_Language: Technigues_for Improved_Programming, Wiley, N.Y. (1981).
46. R.C. Zeimer, N.P. Blair, J.G. Cunha-Vaz: "Pharmacokinetic Interpretation of Vitreous Fluorophotometry", Inves. Ophth. Vis. Sci., 24, 1374 (1983).
47. G.F. Carrier, C.E. Pearson: Partial Differential Equations Theory and Technigue, Academic Press, Inc., N. Y. (1976), pp. 257-81.
48. W.A. Ray, D.M. O'Day: "Statistical Analysis of Multi-Eye Data in Ophthalmic Research", Inves. Ophth. Vis. Sci., 26, 1186 (1985).
49. S. N. Markovitz, J.D. Morin: "The Ratio of Lens Thickness to Axial Length for Biometric Standardization in Angle-Closure Glaucoman, Amer. J. Ophth., 99, 400 (1985).
50. G. W. Snedecor, W.G. Cochran: Statistical_Methods, 6th ed., The Iowa State U. Press, IA. (1967).
51. R.E. Walpole: Introduction_to_Statistics, 3rd ed., MacMillan, N.Y. (1982).
52. Y. Ogura, Y. Tsukahara, I. Saito, T. Kondo: "Estimation of the Permeability of the Blood-Retinal Barrier in Normal Individuals", Inves. Ophth. Vis. Sci., 26, 969 (1985).
53. H. Lund-Andersen, B. Krogsaa, M. la Cour, J. Larsen: "Quantitative Vitreous Fluorophotometry Applying a Mathematical Model of the Eyen, Inves. Ophth. Vis. Sci., 26, 698 (1985).

[^0]:    "-----..- Group" refers to a general geographical distribution of the various investigators, and is also used to distinguish between those using one method of analysis and those using the other.

[^1]:    a)

    Filenames : ??. DAT
    Created by : VITSCAN. BAS
    Format : (1) Pod "zero" position at beep (in DAS units).
    (2) Pod position (in DAS units).
    (3) R/M-Log Amp reading (in DAS units).
    (4) Repeat (2), (3),..............................
    b) Filenames
    ??. AVG ; ??. RET ; ??. CRP
    Created by : reduce. ans
    Format : (1) Retina-zeroed Pod position (in DAS units).
    (2) Averaged $\log A m p$ output (in ng.mi-1).
    (3) Standard deviation of (2) (in ng.mi-i).
    (4) Repeat (1), (2), (3),.........................
    e) Filename : SUBJECT. DAT

    Created by : SCAMEEMU. bas
    Format : (1) Subject's name.
    (2) Subject's age.
    (3) Eye scanned.
    (4) Date of scan.
    (5) Vitreal length (in DAS units).
    (6) Lens thickness (in DAS unita).
    (7) Aqueaus depth (in DAS units).
    (8) Ultra-gound vitreal length (in ma).
    (9) Ultra-gound lens thicknese (in mm).
    (10) Ultra-gound aqueous depth (in nim).
    (11) Fluorescein injected (in al).
    (12) Coments and observations.
    (13) Repeat if necesaary, (12).

[^2]:    Many of the above descriptions vere summarized from "The Penguin Medical Encyclopedia" by Peter Wingate (U.K. 1976), or, from the "Dorland's Illustrated Medical Dictionary", 26th ed., published by W.B. Saunders Co., (Toronto, 1981).

