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ABSTRACT

In this thesis detailed calculations are given showing
the equivalence of Siegert's derivation of the nuclear
resonance scattering formula, and Hu's derivation of the
gsame formula, Although at first glance it appears that Hu
has given a solution to the problem using an entirely
different formalism, we have shown thet no matter what the
final expression for the resonance scattering cross section
may be, it must be the same in the case of Siegert's
calculation and that of Ning Hu, provided,of-course, that
no more or less arbitrary approximations are introduced into

the calculations,.
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INTRODUCTION

There are several derivations of the Brelt-Wigner
dispersion formula for nuclear resonance scattering, These
derivations can be divided into two groups: those using
fima-dependent wave functions, and those using time-
independent wave functions, Among the derivations belonging
to the latter group we mention, in particular, those by
Siegert‘l), Breit(z), Wigner(a), Feshbach and collaborators(4)
ang Ning Huls). ‘

Although the interdependence of the above derivations
has been partly cleared up by the authors themselves, there
are certain points which seem to require further investigation,

In this thesis detailed calculations are given of a
oritical comparison of Ning Hu's and Siegert's work. A

oritical investigation of Ning Hu's results seemed

particularly desirable because his regonance scattering

(1) - Siegert .~ Physical Review, 56, 750, 1939
(2) - Breit - Physical Review, 58, 506, 1940
. 58,1068, 1940
(3) - Wigner -~ Physical Review, 70, 15, 1946
(4) - Peshbach, Peaslee,
- and Weisskopf - Physical Review, 71, 145, 1947
(6) - Ning Hu -~ Physical Review, 74, 131, 1948



II

formula‘differed from the usual one, and because the author
himself attributed this difference to the fact that his
"formulae rest on a much more solid basis than other
theoretical derivations hitherto given", It turns out:

(a) that the difference is due to a trivial error ih the
calculation,

(b) that Ning Hu's derivation is exactly equivalent* to
Siegert's derivation, which 1s, at first view, not obvious,
"After our work had been completed a brief "Erratum"
was published by Ning Hu in Physical'Review(S) in which he
concedes more or less statement (a) and fétracts his above
quoted sentence, However, he does not make any new statement

about the relation of his derivation to the previously
published ones,

In Section I of this thesis we shall give a brief
outline of the calcoulations presented by Siegert and Hu
together with a short note on some general properties of
the "scattering matrix" used by Ning Hu in his calculation,
The equivelence of Siegert's derivation and Hu's derivation
is proved in Section II, In Section ITI we discuss more
explicitly the relation of Hu's expression for the

"scattering matrix" to Siegert's formulae,

¥ . By stating that Hu's derivation is exactly equivalent
to Siegert's, we do not say that Hu's paper does not go

beyond Siegert's results in other respects, This is so

even 1f we ignore the fact that Hu's calculation is made for

arbitrary 1 (angular momentum), whereas Siegert confines his

attention to the case 1 = O,

(6) - Ning Hu - Physical Review - 75, 1449, 1949



ON THE DERIVATION OF THE NUCLEAR RESONANCE SCATTERING
FORMULA
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PRELIMINARY CONSIDERATIONS

In this section we confine our attention to those
aspects of Siegert's and Hu's calculations whioch are of
direct interest in Sections II and III. PFor convenience we
have also added a short note on some genez:al properties of

the Bcattering matrix".

(1) Siegert's Calculation

If¢ is the solution of the radial part of the
Schroedinger Wave Equation for the case 1 = 0, where 1 is
the angular momentum of the incident particle, then P, = ry

must be & solution of the equation

; '
E;gf(E-'V)pe:O ooooooaoo(l)

where the primes on P, denote differentiation with respect
to r,
E is the energy of the inecident particle

an@ V 2 V(r) for r«<a



Va0 forr>a
where & may be regarded as the "nuclear radius".

The asymptotioc solution of the wave equation may be

. written as

pez%sinkr}Reiu..........(z)

where R end I are functions of k and
K° = 20E/BY .t i e e e e e ae e e e (B)
The scattering oross section is then given by
¢ = arfr/zl® ... ()
R/I may be expressed in terms of the wave funotion; Pa>-

evaluated at the nuclear radius, a,

R/I = pgla) cos ka - pi(a) sin ka [k

o—-lika (5)
Pele) « 1kp,(a)

The author then lgoks for singularities of the oross
section ériéing from the venishing of the denominator., The
eigenvalues of the wave equation and hence the energy values
for which the denominator vanishes, are given by the

golutions of the equation

'52 : ' » o
Ep‘ﬁ 7‘ (wn"v)pn :Oooooooo.(ﬁ)

with the boundary conditions
pn =0atr=0 )
‘ )000000000(7)
Ph - dkyfpyy = 0 atr=a )

where P, (r) is the wave funotion corresponding to the energy
Wy of the compound nucleus characterized by

kﬁzzmwn/'ﬁz................(8)



To obtain R/I in the neighbourhood of a singularity, Wp,
one multiplies equation (1) by Pp and equation (6) by Pe

and on subtraction obtains

2 .
n —
§;“¢ﬂpe - Pebn) f Wy - Elfppfe = 0 o ¢ ¢ v o . (9)
Integrating (9) from O to & and using the boundary conditions
(7), the author obtains

ps(a) - 1kpo(a) = (W, - E)
_z_—_'

)
= ( jpnpear ; i ﬂe(a)pn(a);‘ (10)
om Pala (™ k{ky )

Now assuming the eigenvalue W, is not degenerate, then

in the limit a8 B w-» Wy, fg --» fn

(8) - 1kpg(a) --;»(W - B) ((= A )
pe e n , Ipzdr { i ¢%(a) ;. . o (11)
)

= pn( ) (4 .

Por the numerator of R/I we have in the limit as E ;5}.Wh
Pe(a) cos ka - pi(a) sin ka /k ;§>. |
Pn(a) (cos k,a - 1 sin k,a)
& Pnla) e=1¥n® L ... .. (12)
Thus in the limit, R/I becomes

R/I = 1 £2/2m p2(a) o~*1kn® 4 p(m). . . . (13)
Wo =B [plar 4 1 pE(a)
' 2ky

where f£(E) is a regular function in the surrounding of Wy
end gives rise to the "potential scattering",

In order to express the scattering croés section in more

familiar terms, Siegert derives, from the Schroedinger Wave



Equation, (1), and its complex conjugate, the relation

52 . -
pn(a) = ———-———L¢n ® o o o o o o (14)
En f ¥
where Wy = Bp = 2¥n o v v v v o s o s o o 0 o o oo o (1B)
2

with En and ¥n both real,
Now for sufficiently small values of ¥.we can multiply
Pn by & suitable constant, A, of modulus one, so as to make
AP, real neer r = a. Then if we assﬁme thatathe major
contribution to the integral in the denominator of (13)
occuré for r very nearly equal to a, we may write
]Ag)n =]:l¢nrdrA...........(16)
Mala) = [pa(e) o0 £5/2) L
where $a is a’phase determined entirely from the properties
of the compound state, |
This assumption means that the nuclear eigenfunction
takes on values appreciably different from zero, only near
the nuclear radius, The validity of such an assumption is,
of course, guestionable,. _
From equations (13), (16), and (17) it follows that
RfI :. 1 B /2m Ipn(aﬂ 18n
- B [f ar 4 1fpaa)ff P22 £ 3E)
2k,

and by virtue of equation (14) the second term in the

¢ 2£(E) (18)

denominator is very much less than the first snd hence one

obtains the well known one level formula



. - 2
¢ = W ¥n i3 4w | . a9

2

That the eigenvalues and eigenfunctions given by the:
boundary condition characterize a long lived compound
nucleus may be shown by the following arguement: If the
levels are narrow, and therefore the escape of a particle
from the nucleus is a rare event, then the state of the
compound nucleus will undergo very little change if we
prevent the escape of the particle altogether, It is
obvious that (7) is equivalent to prevenfing thé escape
of the particle, since in the limit as k -y kp, I ;} 0,
and hence we have no stream of incident parficles. Therefore,
there can be no scattered beam, so that there actually are

no particles escaping from the nuclsus,

(2) Some General Properties of the Scattering Matrix

The "scattering matrix", originally introduced by
' Wheeler(v), has been used by several authors -~ Wheeler,
Wigner, Breit, Heisenberg, and others, The first three

named physicists have used the maetrix only to solve

collision problens, ‘Heﬁeenberg, however, has attempted,
through use of the "S-Matrix", to set up a future, divergenie

free, theory of elementagzﬁpérticles. According to his idea

(7) - Wheeler, Physical Review, 52, 1107, 1937



the "S" function should play a role in the future theory
analdgéus to the part played by the Hamiltonian in the
preseht quantum theory, It has been shown by Heisenberg,
Kramers, Mpller, and others, that from the "scattering matrix"
one may obtain all observable quantities, However, in
obtaining the energy levels of the system from the "scattering
matrix", one must proceed with the utmost caution, since for
a long range potential we are 1éd, in some cases, to redundant
energy values, (8)

The relation of the "scattering matrix" (which in the
considered case reduces to a éingleAelement) to the
asymptotic form of the wave function is as follows: Consider
a noﬁ-relativistic particle in a central field of force.

The Schroedinger Wave Equation is, in this case,

2 ~ R
L8 4 P - /2(»%;1),;,4 Virlg = 0. . (20)
r

where A is the angular momentum of the patticle, If we set
p = r¢, then the asymptotic solution of the wave equation
is given by
P = sin (kr FAe(k)) o000 .. (R1)
where ¢\d‘t\is the phase shift due to the interaction potential,
Equation (21) may be rewritten, aside from a factor, as
p = e-ikr _ S,.e(k) ellr | . . .. .. (22)
where Sg(k) = e21U (k) S =3

is the "scattering matrix",

(8) Josf, Helvetica Physice Acta, 20, 256, 1947 -~ In this
paper Jost discusses the conditions under which
redundant energy values may occur,



Since Ag(Y)is a real and odd function of k - this is
‘reedily seen from equations (20) and (2l) - we have the
relations

S(k)S(=kK) T 1 4 ¢ o o ¢ o o 0 o o s o (24)
8(x)s*(x) = 1 c e e e s s s e e e (25)

For the casek = 0, the expression for the scattering
oross section of the particle by the central field of force
follows immediately from equation (22):

< = 4\1"3(1{)-1 2

21k

According to the suggestion of Kramers and Heisenberg,

® [ [ ] L ] ¢ e ] [ ] L (26)

we may continue the wave equation, and hence the "S" function,
into the complex "k-plane", The stationary states of the
system are then given by the negative imaginairy values of k
which make S(k) = O. In this case, P, defined by (22)
becomes

p - e-‘kn\r - S&"i‘kn‘) e\kn‘r
and 1£ 8 (-1i(ky|) = O, p-certainly gatigfies the condition
necessary for it to represent a closed state (provided §
does not vanish identiocally)., ‘

There are, of course, many other genersl properties of
the “scattering-matrix“ which could be guoted, however,
since this thesis dealé'only with a non-relativistic
scattering probdem, further general considerations will not

be necessary,



(3) - Hu's Calculation

As Hu has pointed out, if the S function has simple
poles, it follows that we may write for S(k)

s(x) = (k- k;)(kj Xn)
(k - kp)(k £ Xp)

$ B(k) ... (27)

where k = kp is a singularity of S(k) and is related to the
‘nuclear energy level, W,, by W, = ﬁf.kz = Bp - iff
2m - 2
and f(k) is a regular function of k,
Substituting (27) into (26) one obtains the usual one

level formula

o : 4n Kn . 1 : £(k 2
~ f £x)| (28)

(Bn - B) - 1% Iy f 1
2

which is the same as Siegert's formule, equation (19).

That S(k),in a certain approximation, has the above form
may be shown as follows: From equation (24) one sees that
12 k = -K 18 a pole of the "S" function, them k = K is a
zero of S(k)., Now if we can show that (aSfdk)y, - ¢ # O,
it fo;loWg at once that the singularity of the "S" function
at k = -K is a pole of the first order, ’

Consider the agsymptotic form of the wave function*

p = bleMET Los(k) o1KT) L, L L. ... (29)

where b is a function of k

% We have here slightly generalized Hu's calculation, in
that he asgsumes b = 1 from the start.



Now if k = K is a zero of S(k), then

fr = bgeiET
By substitution of (29) into the expression
; ofapar) ¢ v} ) .
)k =K
fe(a®pjaxar)y - g f 105 4 Kpp(ap/an)y - g

one easily shows that

-21kb2(aS/ak), - g = Pgla®p/amir), . g - (4fy/ar)(ap/aK) g

FAPE o« v v vt v e .. (30)

Now from consideration of the Schroedinger Wave Equation

it follows that _
| e | o |
ib2(asfax)y = ¢ = [ pRar - 1_f(a) .. (31)
2K

where r = a is the range of the potentiel, V(r).

If Pg(r) is very nearly real at r = a and in a
neighbourhood thereof, andmif the major contribution to the
integrel in (31) ocours in this region, then (dS/dk)y = g
eannot equal zero, Thus the pole of S(k) at k = ~K must be
of the first order, From equations (24), (25), and the
conclusion drawn from the above, it follows that indeed S(k)
has the form given by (27),

It i1s worth while to point out that the assumption
under which Ning Hu's resonance scattering formﬁla holds 1is
identical with that under which Siegert's holds, (Compare
above discussion with comments connected with equations

(16) and (17) in Siegert's derivation. )
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II ~ Proof of the Equivalence of Siegert's and Ning Hu's

Derivetions

For the sake of simplicity we confine our attention to
the case 1 = 0, where 1 is the angular momentum of the
incident particle, If we denote by 65 the scattering cross
section given by Siegert and 6y the scattering cross section

given by Hu, we have, as stated in the previous section

65
[ 3

40 \R/I\zo LA A I A A (52"’8‘)

_4“\S(k)-lzooocooco.o(52—b)
2ik

In order to find the resonance maxima of the cross
gection, both authors look, as we have seen, for singularities
of the right hand side of (32) as a function of complex k.
Evidently the resonance part of the cross section will be,
in both cases, exactly the same if the moduli of the residues
of R(k)/I(k) amd of S(k)/21ik are equal, provided the
singularities of these two expressions are poles of the first
order,

Now both authors assume that the behaviour of the
incident particle "inside" the nucleus is described by the

equation

2
EZE}'] * (Wn-V)‘pn:Q.........(SZ)

where f,(r) is the wave function corresponding to an energy

of the compound nucleﬁs, characterized by

kg: BmWn/ﬁz.......-...o(54)
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and they both assume that
Po(r) = bpet¥n® forr=za.. ... ... . (35)

where a is the '"nuclear redius", armd by, is a complex
amplitude,

It is thus almost obvious that the residues are indeed
equal, The formal proof of this equality'is ag follows:

From the relation S(k)S(-k) = 1, one derives, on the
asgumption that the pole of S(k) at k = k, 18 of the first

order, the relation

Residue S(k)y m g, ® -1/(88/aK)y o Ly .+ . (36)
That this equation is valid is easily seen from the
following arguement: If k = k, is a pole of S(k), we may
expand S(k) in a Laurent series about k = k,, valid at least
in the neighbourhood of the pole |

S(k) = a_l
(k - kp)

f e f aj(k-kp) f ... (37)

Now if k = k, is a zero fo S(k), then we may expand S(k) in
a Taylor series about k = k,, velid in the neighbourhood of
k

S(k) = al(k-k,) f silk-k)% 4 . in.... (38)
By virtue of (24), if k¥ = ky is a singularity of S(k), then
certainly k = ~ky is a zero of S(k). Thus we may rewrite
(38) as

S(k) = sf(kfkn) ¢ al(kfk)? £ eenaen, (39)
with k in (39) equal to -k in (37). Thus from (24), (37),

(89), end the remark just made, we have
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S(K)S(-k) = -ala] f(-as] # e.jal)(k - k) # e.ee... (40)
Now since this holds in a neighbourhood of k # k,, it must
also hold at the point k, itself, We have, therefore,
B.18] = =l ¢ .0 e 00 o000 (41)
But &) = (ds/dk) Zoky and since a_j is egual to residue
S(k)y - kp® equaetion (36) follows,
Thus Residue S(k}/Rik = - 1 . 1 (42)

(4S) 21k

(@K)y oy

On the other hand, from equation (13) of our outline
of Siegert's celculation and equation (35) of this section

it follows, on the same assumption
2

Residue R/I = - by e 1 ... . (483)
foPnar { 4 pn(a)
2k
Now since the Schroedinger . operator . is even in k,

it is obvious from equation (31) that
2 o _ 2 2
by (a8/dkly o o = Ppir £ 1 fnla) ... (44)
| 2kp

Thus by substituting (44) into (43) and comparing the
resulting equation with (42), one sees that the two residues
are indeed equal,

We have thus shown that whatever the final expression
for the resonance scattering cross section may be, it must
be the same in the case of Siegert's calculation and that of
Ning Hu, provided, of course, that no more or less arbitrary

approximations are introduced into the calculations,
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Actually, as was stated in Section I, both Siegert and Ning
Hu do introduce certain aspproximations, but the approximations
are identical in both cases, so that the final result is the
same, if we correct the trivial error in Ning Hu's.

caloulation, which we have mentioned in the introduction,

Il

A Purther Digcussion of the Relation between Siegert's

Formulae and those of Ning Hu

In view of the arguement presented in Section II it is
certainly evident that Siegert's derivation and Hu's
derivation are fully equivalent, However, we can make the
interdependence of these two derivations even more explicit
in the following simple mauner,

We may rewrite the singular part of equation (18) of . our

gummary of Siegert's paper as

- ; | |2 1Sn
R/I = 1 . Pn(a)! e 2 (45)
ka0 [Clpal®ar 4 tlpara) PP 00® £
2y

Now making an approximation identicel to that made in
obtaining (19) from (18) - i.e. that §, is very nearly real
in the region of major contribution to the integral in the
denominator of (45) - we see that the second term in the
denominator is very much iess that the first, Thus combining

(45) with (14), one obtains

R/T = o2m/B _ ¥n ,  oife (46)

(- ) (kg f K
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end from (15) one sees that

R e Y70 A 't
Thus (46) becomes
R/I = a1l k) e (48)
RNow
2x |R = |2k(kp - Xy
k‘ /Il ‘=7i?n:—;§?l‘ e o o o o s o o o oo (49)
and sinoce

2k(ky - k) = (k } k) (k - Xp) - (k } ¥p) (k - k) (50)
and

| (x - Xp) (& £ xn) | = ke fEm)| oo ... (51)
then

2k|R/1|

(k f kp)(k = K) = (k4 Eg)(k = kp)
(k - kp)(k £ Xp)

| (k £ kp)(k - kp)

(k - ky)(k § kp)

l‘ 000060(52)

Now it follows from (32) that
ex|r/r| = |sm) -] ... ... (83)
We see, therefore, that Ning Hu's expression (27) for S(k)

S(k) = (k- kp)(k ¢ kp)
(k ¢ k) (k ~ kp)

is indeed compatible with equation (52) which was here derived
frop Siegert's theory without any arbitrary assumption,
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