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ABSTRACT 

In this theBis detailed calculations are given showing 

the equivalence of Siegert 's derivation of the nuclear 

resonance scattering formula, and Hu's derivation of the 

same formula. Although at f i r s t glance i t appears that Hu 

has given a solution to the problem using an entirely 

different formalism, we have shown that no matter what the 

f ina l expression for the resonance scattering cross section 

may be, i t must be the same in the case of Siegert 's 

calculation and that of Mng Hu, provided,of course, that 

no more or less arbitrary approximations are introduced into 

the calculations. 
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I 

IHTRODUCTIOH 

There are several derivations of the Breit-Wigner 
dispersion formula for nuclear resonance scattering. These 
derivations can be divided into two groups: those using 
time-dependent wave functions; and those using time-
independent wave functions. Among the derivations belonging 
to the l a t t e r group we mention, i n p a r t i c u l a r , those by 
Si e g e r t * 1 * , B r e i t * 2 * , Wigner^ 3*, Feshbaoh and c o l l a b o r a t o r s f 4 ) 

ang King H u ^ . 
Although the interdependence of the above derivations 

has been p a r t l y cleared up by the authors themselves, there 
are certain points whioh seem to require further i n v e s t i g a t i o n . 

In t h i s thesis detailed calculations are given of a 
o r i t i o a l comparison of King Hu's and Siegert's work. A 
o r l t i c a l i nvestigation of King Hu's r e s u l t s seemed 
p a r t i c u l a r l y desirable beoause h i s resonanoe scattering  
(1) - Siegert - Physioal Review, 56, 760, 1939 
(2) - Breit - Physical Review, 58, 506, 1940 

58,1068, 1940 
(3) - Wigner - Physioal Review, 70, 15, 1946 
(4) - Feshbaoh, Peaslee, 

and Welsskopf - Physioal Review, 71, 145, 1947 
(5) - King Hu - Physioal Review, 74, 131, 1948 
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formula differed from the usual one, and beoause the author 

himself attributed this difference to the fact that h is 

"formulae rest on a much more so l id basis than other 

theoretical derivations hitherto given". It turns out: 

fa) that the difference i s due to a t r i v i a l error i n the 

calculat ion. 

fb) that King Hu's derivation i s exactly equivalent*" to 

Siegert 's derivation, which i s , at f i r s t view, not obvious. 

After our work had been oompleted a br ief "Erratum" 

was published by King Hu in Physical Review^6) i n which he 

concedes more or less statement fa) and retracts his above 

quoted sentence. However, he does not make any new statement 

about the re la t ion of his derivation to the previously 

published ones. 

In Section I of th is thesis we sha l l give a br ie f 

outline of the calculations presented by Siegert and Hu 

together with a short note on some general properties of 

the "scattering matrix" used by King Hu i n his calculat ion. 

The equivalence of Siegert 's derivation and Hu's derivation 

i s proved i n Section I I . In Section I I I we discuss more 

e x p l i c i t l y the relat ion of Hu's expression for the 

"scattering matrix" to Siegert 's formulae.  

* - By stating that Hu's derivation i s exactly equivalent 
to Siegert 's , we do not say that Hu's paper does not go 

beyond Siegert 's results in other respects. This i s so 
even i f we ignore the fact that Hu's oaloulation i s made for 
arbitrary 1 (angular momentum), whereas Siegert oonfines his 
attention to the case 1 = 0 . 

(6) - King Hu - Physical Review - 75, 1449, 1949 
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ON THE DERIVATION OF THE NUCLEAR RESONANCE SCATTERING 
FORMULA 

I PRELIMINARY CONSIDERATIONS 

In t h i s section we confine our attention to those 
aspects of Siegert's and Hu's calculations which are of 
di r e c t i n t erest i n Sections I I and I I I , For convenience we 
have also added a short note on some general properties of 
the S c a t t e r i n g matrix". 

(1) Siegert's Calculation 

I f <t> i s the solu t i o n of the r a d i a l part of the 
Sohroedinger Wave Equation f o r the case 1=0, where 1 i s 
the angular momentum of the inoident p a r t i o l e , then pe s r if 

must be a solution of the equation 

/ 'OS - = 0 (1) 
where the primes on p e denote d i f f e r e n t i a t i o n with respeot 
to r , 
E i s the energy of the inoident p a r t i c l e 
and V = V(r) for r < a 
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V • 0 for r > a 
where a may be regarded as the "nuclear radius". 

The asymptotic solution of the wave equation may be 
written as 

Pe s I s i n kr / R e i l E r (2) 
k" 

where R and I are funotions of k and 
k 2 = 2mE/n2 (3) 

The scattering cross section i s then given by 
<T = 4 i r | R / l \ 2 (4) 

R/I may be expressed i n terms of the wave function, pet 

evaluated at the nuolear radius, a, 

R/I = pQ(&) 0 0 8 k a * PH6-) s i n k a /* 
e - i k a ( 5) 

p e(a) - i k p e ( a ) 

The author then looks f o r s i n g u l a r i t i e s of the cross 
section a r i s i n g from the vanishing of the denominator. The 
eigenvalues of the wave equation and hence the energy values 
for which the denominator vanishes, are given by the 
solutions of the equation 

n 2 

A / <wn - V) 0n = o (6) 
with the boundary conditions 

pn r 0 at r s 0 ) 
) (7) 

pl - i k j 3 p n = 0 at r = a ) 
where P n(r) i s the wave funotion corresponding to the energy 
Wn of the compound nucleus characterized by 

k 2 = 2mWN/E2 (8) 
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To obtain R/I i n the neighbourhood of a s i n g u l a r i t y , Wn, 
one m u l t i p l i e s equation f l ) by pn and equation (6) by pe 

and on subtraction obtains 

§ J ( W e - PSPn> / <wn - E>PnPe s 0 (9) 

Integrating (9) from 0 to a and using the boundary conditions 
(7), the author obtains 

fl'(a) - ifcCL(a) s (Wn - E) ( ) 

How assuming the eigenvalue Wn i s not degenerate, then 
i n the l i m i t as E Wn, 0e — ^ pn 

P — • / 1 « W • . . d l ) 
= * » ( a , l **n 1 

For the numerator of R/I we have i n the l i m i t as E —>-Wn 

P e(a) cos ka - P e(a) s i n ka /k 
P n(a) (oos kjja - i s i n k^a) 
n pn(&) e - l k n a

 ( 1 Z ) 

Thus i n the l i m i t , R/I becomes 

R/I e 1 n8/2m ft2(a) e ~ 2 1 k n a / f (B) , . . . (13) 

^ 2k n 

where f(E) i s a regular funotion i n the surrounding of Wn 

and gives r i s e to tha "potential scattering". 

In order to express the scattering oross section i n more 

f a m i l i a r terms, Siegert derives, from the Sohroedinger Wave 
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Equation, (1), and i t s complex conjugate, the re la t ion 
8 

2m JU a> Y r*i ,* i 2 

J« I I L I 4 R ( 1 4 ) 

*n 79 A H 
where Wn = - ijfn (15) 

2 
with E n and >« both r e a l . 

How for suff ic ient ly small values of tf„we can multiply 

p n by a suitable oonstant, A, of modulus one, so as to make 

Apn real near r a a. Then i f we assume that^ihe major 

contribution to the integral in the denominator of (13) 

occurs for r very nearly equal to a, we may write 

/ l 2 0 2dr = jfyafar (16) 

W*) « |fa(aj| e ^ W V8> ( 1 7 ) 

where S « i s a phase determined entirely from the properties 

of the oompound state. 

This assumption means that the nuclear eigenfunotion 

takes on values appreciably different from zero, only near 

the nuclear radius. The va l i d i t y of suoh an assumption i s , 

of oourse, questionable. 

Prom equations (13), (16), and (17) i t follows that 
R/I «" 1 H2/2m | p n ( a f e 1 *" / f(E) (18) 

2 *n 
and by virtue of equation (14) the second term i n the 

denominator i s very much less than the f i r s t end hence one 

obtains the well known one l e v e l formula 
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2 
4"i» e / f(E) (19) 

2 

That the eigenvalues and eigenfunotions given by the 

boundary oondition characterize a long l ived oompound 

nucleus may be shown by the following arguement: I f the 

levels are narrow, and therefore the escape of a par t ic le 

from the nucleus i s a rare event, then the state of the 

oompound nuoleus w i l l undergo very l i t t l e change i f we 

prevent the escape of the par t ic le altogether. It i s 

obvious that (7) i s equivalent to preventing the escape 

of the pa r t i c le , since i n the l i m i t as k k n , I 0, 

and hence we have no stream of incident pa r t i c les . Therefore, 

there can be no scattered beam, so that there actually are 

no par t ic les escaping from the nuoleus. 

(2) Some General Properties of the Scattering Matrix 

The "scattering matrix", o r ig ina l ly introduced by 
(rt \ 

Wheeler' has been used by several authors - Wheeler, 

Wigner, Bre i t , Heisenberg, and others. The f i r s t three 

named physioists have used the matrix only to solve 

c o l l i s i o n problems. Heisenberg, however, has attempted, 

through use of the "S-Matrix", to set up a future, divergence 

free, theory of elementary par t ic les . According to his idea 

(7) - Wheeler, Physical Review, 52, 1107, 1937 
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the "S" function should play a role i n the future theory 

analogous to the part played by the Hamiltonian i n the 

present quantum theory. It has been shown by Heisenberg, 

Kramers, M i l l e r , and others, that from the "scattering matrix" 

one may obtain a l l observable quantities. However, i n 

obtaining the energy levels of the system from the "scattering 

matrix", one must proceed with the utmost caution, since for 

a long range potential we are led , i n some cases, to redundant 

energy values. 

The re la t ion of the "scattering matrix" (which i n the 

considered case reduces to a single element) to the 

asymptotic form of the wave funotion i s as follows: Consider 

a non-rela t ivis t io par t ic le i n a central f i e l d of force. 

The Sohroedinger Wave Equation i s , i n this oase, 

1**^) / k V - X(A j 1 U / V W - 0 . . (20) 

r 2 

where X i s the angular momentum of the pajrblole. I f we set 

p a r ^ , then the asymptotio solution of the wave equation 

i s given by 

p = s in (kr { \ t ( l L ) ) (21) 

where <yO*Hs "tae phase shift due to the interaction potent ia l . 

Equation (21) may be rewritten, aside from a factor, as 

p * e - i k r - S^(k) e i k r (22) 

where S^(k) = e 2 1 ^ 1 ^ (23) 

i s the "scattering matrix".  
(8) Jost, Helvetica Physica Acta, 20, 256, 1947 - In th i s 

paper Jost discusses the conditions under which 
redundant energy values may occur. 
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Since flrO^is a r e a l and odd function of k - t h i s i s 
rea d i l y seen from equations (20) and (21) - we have the 
rel a t i o n s 

S(k)S(-k) = 1 (24) 
S(k)S*(k) = 1 (25) 

For the caseXr 0, the expression for the scattering 
cross section of the p a r t i c l e by the central f i e l d of force 
follows immediately from equation (22): 

<r = ^ l s ( k ) - i l 2

 ( 2 6 ) 

I 2ik \ 
According to the suggestion of Kramers and Heisenberg, 

we may continue the wave equation, and henee the "S" function, 
into the complex "k-plane". The stationary states of the 
system are then given by the negative imaginairy values of k 
which make S(k) s 0. In t h i s case, 0, defined by (22) 
becomes 

P - e -Unlr _ S^(-Hk n \ ) e ^ r . 
and i f S (-i|k n|) = 0, p c e r t a i n l y s a t i s f i e s the condition 
necessary for i t to represent a closed state (provided p 

does not vanish i d e n t i c a l l y ) . 
There are, of oourse, many other general properties of 

the "sc a t t e r i n g matrix" which could be quoted, however, 
since t h i s thesis deals only with a n o n - r e l a t i v i s t i o 
scattering problem, further general considerations w i l l not 
be necessary. 
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(S) - Hu's Calculation 

As Hu has pointed out, i f the S function has simple 

poles, i t follows that we may write for S(k) 

(k - k n ) (k / 4 ) 

where k = k n i s a singulari ty of S(k) and i s related to the 

nuclear energy l e v e l , W n, by Wn a n 2 .2 s E n - i 
2m* * n 2 

and f(k) i s a regular funotion of k. 

Substituting (27) into (26) one obtains the usual one 

l eve l formula 

^ = 4 1 T • 1 ' / *Oc)( (28) 
(E n - E) - i i« kn / k£ 

2 

which i s the same as Siegert 's formula, equation (19). 

That S(k) , in a oertain approximation, has the above form 

may be shown as follows: Prom equation (24) one sees that 

i f k s -E i s a pole of the "S" function, then k = K i s a 

zero of S(k). How i f we can show that (dS/dk)jj. - K f 0, 

i t follows' at once that the s ingulari ty of the "S" funotion 

at k s -K i s a pole of the f i r s t order. 

Consider the asymptotic form of the wave function* 
P = b ( e - i l c r - S(k) e i k r ) (29) 

where b i s a funotion of k 

* We have here s l igh t ly generalized Hu's calculat ion, i n 
that he assumes b = 1 from the s tar t . 
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Now i f k s K i s a zero of S ( k ) , then 

By substitution of (29) into the expression 

loTE ( rWi^) / i ^ j i ) 
( L )k r K 

d 20/dkdr) k = K / i / i K ^ ( d p / d k ) k = K 

one easi ly shows that 

-2iKb|(dS/dk) k - E = ^ ( d 2 ^ / d k d r ) k = K - (d^g/dr) ( d p / d k ) ^ 

/ i p | . . (30) 

Now from consideration of the Schroedinger Wave Equation 

i t follows that 

i b f (dS/dk) k - K a fj^T ~ L. 0^a) • • <31) 
2K 

where r = a i s the range of the potent ial , V( r ) . 

I f i s very nearly real at r = a and i n a 

neighbourhood thereof, and i f the major contribution to the 

integral i n (31) ocours i n th i s region, then (dS/dk) k » E 

cannot equal zero. Thus the pole of S(k) at k s -K must be 

of the f i r s t order. Prom equations (24), (25), and the 

conclusion drawn from the above, i t follows that indeed S(k) 

has the form given by (27). 

I t i s worth while to point out that the assumption 

under whioh Ning Hu's resonance scattering formula holds i s 

ident ical with that under whioh Siegert 's holds. (Compare 

above discussion with comments connected with equations 

(16) and (17) in Siegert 's derivation.) 
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I I - Proof of the Equivalence of Siegert 1 s and Ning Hu'3 
Derivations 

For the sake of s impl ic i ty we confine our attention to 

the case 1 « 0, where 1 i s the angular momentum of the 

inoident pa r t i c l e . I f we denote by rf^ the scattering cross 

section given by Siegert and (T̂  the scattering cross section 

given by Hu, we have, as stated i n the previous section 

rfT* = 4 H \ R / I \ (32-a) 

s 4<U S(k) - 1 \z (32_b) 
\ 2ik \ 

In order to find the resonance maxima of the cross 

section, both authors look, as we have seen, for s ingular i t ies 

of the right hand side of (32) as a funotion of complex k. 

Evidently the resonance part of the cross section w i l l be, 

i n both cases, exactly the same i f the moduli of the residues 

of R(k)/I(k) and of S(k)/2ik are equal, provided the 

s ingular i t ies of these two expressions are poles of the f i r s t 

order* 

Now both authors assume that the behaviour of the 

incident part icle "inside" the nucleus i s described by the 

equation 

| ^ P n / fWn - V) J2)n = 0 (33) 

2m 

where 0n(r) i s the wave function corresponding to an energy 

of the compound nucleus, characterized by 
k£ = 2m¥n/E2 (34) 
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and they both assume that 

pn(r) - b n e i k n r for r s a (35) 

where & i s the "nuclear radius", and b n i s a complex 

amplitude. 

I t i s thus almost obvious that the residues are Indeed 

equal. The formal proof of th is equality i s as follows; 

Prom the re la t ion S(k)S(-k) = 1, one derives, on the 

assumption that the pole of S(k) at k = k^ i s of the f i r s t 

order, the relat ion 

Residue S (k ) k B ^ s - l / f a s / d k ) ^ s ^ • . (36) 

That this equation i s va l id i s easily seen from the 

following arguement: I f k = k D i s a pole of S(k), we may 

expand S(k) i n a Laurent series about k s i n , va l id at least 

i n the neighbourhood of the pole 

S(k) = a_i f a j a i f ] £ „ k n ) / ( 3 7 ) 

(k - k n) 

Now i f k s k. i s a zero fo S(k), then we may expand S(k) i n 

a Taylor series about k = k , , va l id i n the neighbourhood of 

K 
S(k) = a{(k ~ k . ) / a£(k - k . ) 2 / (38) 

By virtue of (24), i f k * k n i s a singulari ty of S(k), then 

certainly k = - k n i s a zero of S(k). Thus we may rewrite 

(38) as 

S(k) = a{(k / k n ) / al(k / k ^ ) 2 / (39) 

with k in (39) equal to -k in (37). Thus from (24), (37), 

(39) , and the remark just made, we have 
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SOt)S(-k) = -eu ia i / ( - aa i / a _ 1 a j ) ( k - k n ) / (40) 

low since th i s holds i n a neighbourhood of k = S^, i t must 

also hold at the point 1% i t s e l f . We have, therefore, 

a^a* = -1 (41) 

But a£ = (dS/dk) k r-tjj » s i n c e a - l i s e 9 u a l *° residue 
S ( k ) k . j , , equation (36) follows. 

Thus Residue S(k)/2ik = - 1 ]_ 

On the other hand, from equation (13) of our outline 

of Siegert 1 s oalculation and equation (35) of th is section 

i t follows, on the same assumption 

Residue R/I s - bj . _1 . . . . (43) 
£ j & r / i flg(a) 2 * 

21% 

Wow since the Schroedinger operator i s even i n k, 

i t i s obvious from equation (31) that 

ib*(dS/dk) k „ ^ * jZ^dr / i ^ 0 . . . (44) 

2k n 

Thus by substituting (44) into (43) and comparing the 

result ing equation with (42), one sees that the two residues 

are indeed equal. 

We have thus shown that whatever the f i n a l expression 

for the resonance scattering oross section may be, i t must 

be the same i n the case of Siegert 1 s calculation and that of 

King Hu, provided, of course, that no more or less arbitrary 

approximations are introduced into the calculations. 
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Actual ly, as was stated i n Section I , both Siegert and King 

Hu do introduce certain approximations, but the approximations 

are ident ica l i n both oases, so that the f i n a l result i s the 

same, i f we correot the t r i v i a l error i n King Hu's 

calculation, which we have mentioned i n the introduction. 

I l l A Further Discussion of the Relation between Siegert 's  

Formulae and those of King Hu 

In view of the arguement presented i n Section I I i t i s 

certainly evident that Siegert 's derivation and Hu's 

derivation are ful ly equivalent. However, we can make the 

interdependence of these two derivations even more expl io i t 

i n the following simple manner. 

We may rewrite the singular part of equation (18) of our 

summary of Siegert 's paper as 

k |2 î *» r>(a) 1 e (45) 
2 2 * (-o. I 12 j 12 2 i (k n a 

k n - k J e Ipnl dr / i |pD(a) 1 e n r z 
2 * n 

How making an approximation identioal to that made i n 

obtaining (19) from (18) - i.e. that 0n i s very nearly real 

i n the region of major contribution to the integral i n the 

denominator of (45) - we see that the second term i n the 

denominator i s very much less that the f i r s t . Thus oombining 

(45) with (14), one obtains 

R/I r 2m/n2 . _ e i l l . . . . (46) 
(4 - k 2 ) ( k n j. k£) 
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and from (15) one sees that 
k#

n* - k* = iY„2m/n2 (47) 
Thus (46) beoomes 

R/I = - i e 1 (kn - kn) (48) 
.2 ,2 fen - k 

Now 
2t|R/il = lat(fcn- ift) i ( 4 9 ) 

I (k •» kg}) I 
and sinoe 

2 * 0 % - k n) * ( k / k n H k - k n ) - (k / *£)(k - k„) (50) 
and 

| (k - k n ) ( k / k n ) | = |(k - k n ) ( k / kn)| (51) 
then 

2k[R/l( = | (k / k n) (k - k D) - (k / kp) (k - k D) I 

I (k - k n) (k / kj) * 
= U * i ( B 8 ) 

I (k - kn)(k / kj) I 

Now i t follows from (32) that 
2kJR/l| = Js(k) - l ( (53) 

We see, therefore, that Ning Hu's expression (27) for S(k) 
S(k) = (k - kn) (k / kD) 

(k / k j )(k - kn) 
i s indeed compatible with equation (52) which was here derived 
fro£ S i e g e r t 1 s theory without any a r b i t r a r y assumption. 
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