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Abstract

Pion-deuteron elastic scattering is studied using a field
.theofy of pions andxnucleons. By treating the nuélebns iﬁ this
mahnerf the do&ble-counfing problem usually associaied with pion
jmultiple-scaitering is avoided.

The pion-deuteron T-matrix is written as a series expansion
‘in tefms of opsrators between one-nucleon states. The first two-
_te:mé in the series are examined. The first term yields the
usﬁal'éingle-scattering contribution to the T-matrix. The second
term:ip thé.series can be expressed as a sum of twenty terms. By
making; an on~shell approximat;on and a static approximation
where physically sensiblé, the mégnithdes of the twenty terms:
ére'_comparei.\ The-dominant term is similar to thé conventional
double scéttering term resulting from the geheralized impulse
 approximation, There are also four other terms whose magnitude
.cannot Selevaluated_ without doing humerical‘ studies with a

particular field theoretic potential.
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1 Introduction

In the next few ysars many experimants will be perform2d at
the meson'factdries which will wuse the picn as a proka of
nﬁ:lear structure, The pion isga particularly useful tool to
investigate nuclz2ar structure, Since it comes in three charge
states, it can participate in charge exchange and double charge
zxchange scattaring vhich will ‘hopefully further the
understanding of nuclear states.' Alsc, since the pion can be
absorbed of emitt2d by a nucleon, pion-nucleus absorption
axperiments can be useful probes cf higher mcmentum components
in puclear wavaefunctions,

Since the interaction of the pion with the nucleus 1is
rather weak for pion kinetic energies below about 100 MevV, the
clastic scattering of low energy pions can be utilised in a
manner similar to a2lactron scattering., However, since pions and
e¢lectrons interact with nucleons via different types of forces,
elastic pion scattaring and eslectron scattering can perhaps be
used as complementary methods.

The simplest way to tr=at pion-nucleus scattering is to use
the single-scattering approximatioh, i.e., tc assume that the
pion scattefs from only ona2 nucleon in the nuclesus, However, if
elastic pion scattering is ever to be usefﬁl in extracfing
details of nuclsar structure using the single-scattering
approximation , it is n=2cessary to obtain an estimate of the
tefms naglected by taking the single-scattering approximation,

| The generaiized impulse approximaticn [Chew and Goldberger

(1952) ] 2xpress2s tha elastic scattering of a projectile on a
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nucleus as 1 sum of tarams, the first threze of which are single-
scattering, double-scattering, and binding corrections. Double-
scattering describas th2 process where the projectile scatters
from one nucleon, then propocgates to another nucleon and
scatters again befors lszaving the nucleus., Binding corrections
describe the effect of the nuclear potential on the projactile-
nuc leon scattering.

If this approach is wused to describe pion-nuclehs
scattering, a problsm arisess, Since the pion is thought of as
mediatiné the nuclear force, the projectile scattering from the
nucleons is identical to tha particls being exchanged between
these nucleons as a part of the nuclear force., Thus it is not
cle;r to what =2axtant the binding corrections are already
included in the double-scattering term of the generalized
impulse approximition, This is usually referred to as the
“double-counting problenm",

This thesis avoids the double-counting problem by
constructing a field theory of picns and nucleons. The nucleons
are assumed to be composa2d of a bare nucleon core surrounded by
a cloud of physical pions. By treating the nucleons in this
manner, no doudble-counting will occur since all the pions
. involved in the process are acccunted f&r'explicitly. |

The approa:h us2l in this thesis follows a method used by
Pendleton (1963) . ‘The case chosen 1is elastic picn-deuteron
scattering., The leut2ron was chosen as the target since it is
tha simplest nuclaus in which double-scattering and binding
corrections can b3 non-zaro, Since it contains only two

nucleons, the properties of its wavefunction are perhaps the



best known of any nucleus,

In chaptar 2 tha2 pion, nuclzon and pion-nucleon scattering
states are defined along with the basic operators us2d in
describing the szattaring. In chapter 3 approximate two-nucleon
states which can be written in terms cf one-nucleon operators
are introduc2d. Thes2 states are used to write the pion-deuteron
T-natrix as a series expansion in terms of cperators between
~one-nucleon states. In chapter f the first two.terms of the
series are calculat=d and aft2r making som2 approximations, are
compared to th2 singla- and double-scattering terms resulting
from the generalized impulse approximation. Chapter 5 consists

of a summary of thes ra2sults,



In this section some of the operators and states which will
be used in déé:ribing pion-deuteron scattering will be intro-
duced. The zaro- andl on2-nuzl=on states will be developed in a
manoner similar to that used by‘ Chew and Low(1956) and Wick
{1955) in describing pion-nucleon scattering, The two-nucleon
states will be treated using a methcd first developed by Heitler
and London(1927) to Jdescribs the hydrdgen molecule and later
applied to nucleon-nucleon, problems by Cutkosky(1958) and
Pendleton (1963).

fhe fundamental dynamical variables for the system of pions
and nuclszons are assumed to bes boson annihilation and creation

operators k and ﬂ' and fermion annihilation and creztion

opaerators a and aJr . These operators satisfy the usual
commutation and anticommutation rules. That is, the boson

operators satisfy

o] = (k'] = o

o | e
[k,m'] =6 : (2. 1)

and the fermion operators satisfy

{a,b} = {af,bf} =0

(a,b"} = b {2.2)

In addition the boson and fermion operators will commute. The

delta functions above are actually products of Kroenecker delta
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functions of spin and iscspin with Dirac delta functicns of
gomentum. The bcson field quanta will e iéentifieé. with
physical piéns and the ferrion field quanta will be identified
vith bare nucleons and antinucleons.

It will e ‘assuméd that a Hamiltcniah car be ccnstructed
using the fundamental dynamical variakles and having eicenstates
corresponding to physical nuclecrs, fion-nuclecn =scattering
states, deuterons, etc. These states will also te eigenétates ctf

)

the Laryon nunker operatcr B .,

2.1 Physical States ¥ith Baryon Kumker Zero

e mimar e e aras ecameer Gratch o UL A P e -

The state vectors correspcndirg tc barycn rumber 2€rc will
be mescn states or the physical vacuum state. The ©Eescn state
{k> represents a mescn with gquantum numlters (spin, iscsrin,

moméntum, etc,) lahélled by k. It satisfies

H|k> = E, [k> (2.3)
Plk> = k]k> (2.4)
Blk> =0 _ (2.5)
Ey = Yik[%+m, =  (2.6)

where P is the mcmentum ogperator, B is the barycn runber
cperatcr and L ic the mass of the pion. The speeé cf ligkt and
h are taken to ke one in the akcve equaticns., The plysical

vacuum state J]0> is defined Lty

H|0> 0 (2.7)

i}
o
-—
[\
[
@
~

Blo>



It alsc satisfies

k|0> =0 (2.9)

alo> =0 (2.10)

As stated akove it will ke assumed that the boscn field
quanta are physical pions. That is, the physical mescn state k>
can ke thought of as resulting frcm the acticn c¢f the ' meson

creaticn operator k+ on the physical vacuum state (0>

kTo> = x> (2. 11)

The Hamiltcnian will therefore be written in the feorem

H = Zk Ek k’rk +V (2.12)
wvhere V is an oparator describing the meson-meson and meson-
nucleon interaction._The summation over k in the above equation
denotes a sum ovar all ths meson quantum.numbérs as well as an
integral over the meson momentum. (In 'subsection 3.2.3 a
.different splitting of H will be introduced. That splitting will
be more useful in separating the nucléon energy rart of H ffom

the nucleon interaction part of H.)
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The state vectors corresponding tc barycn number one will
be either physicial ons-nucleon states or pion-nucleon scattaring
states, As both ara2 of great importance in discussing pion-

deuteron scattering, they will be treated in some2 detail.

The physical one-nucleon state |A> describes a physical
nucleon with quantum numbers (spin, isospin, momentum etc.)

labelled by A. It satisfies

H|A> = E, |A> - (2.13)
P|A> = 5A|A> ‘2.1&)
B|A> = +1]A> (2.15)
- r (2.16)
B, k,[7+M | ( )

wvhere M is the observed nucieon‘masé.

A - physical ons-nucleon creation operator A+is defined as
follows., In the Chew-Low theory [Chew and Low(1956) ] the
physical one-nucleon creation operator is written as the product
of a bare nuclson crzation operator and an operator wﬁich
produces a "cloud" of pions., The pion <clcud creation operator
can be writtan as a sum of products of pion crgation operators,

In the present treatm2nt the physical nucleon creation
operator is constructa2d in a more general manner, The operator
is written as a linear combination of the prcducts of nucleon

core creation oparators and meson cloud creation operators:



AT = 1 oacm) Atwt (2.17)
The nucleon core creation cperatcrA+ is simply a prccévct cf tare
nucleon and antinuclecn creation operators with tctal baryon

number one:

BA"[0> = +1 AT[o> (2.18)

Obvicusly if AT is to satisfy the agove equation it must ccntair
an odd nﬁmber cf bare nuclecr and antiruclecn creaticr
cperatcrs., The meson clcud operator n+ ccnsists cf é prcdect of
meson cfeation operators, (

The.summation in equaticn (2.17) is cver‘all nycleon core
creaticn operators and meson cloud creation operatcrs suliect tc
the ‘condition that the total charge ard mcrmentur cf each term
rust be equal to the charge and momentum of the state |Ad.

The coefficients a(AM) in the linear ccrbiraticn %ill be
the wave functicn of the physicai'nutleon in the Fcck sgpace cf
the cores and physical mescns,

From the form of equation (2.17) and the commutaticn ané
anticommutation relations of equaticns (2.1) and (Z.2) it can be

seen that physical nucleon‘operators A,B,etc, otey tke fcllcwirg

anticommutation relaticnss

a8 = ity =0 (2.19)

However, the expressicn for [A,ET} will be very complicated

tecause cf the necessity of anticommuting the fprcducts of the
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annihilation operators with the Frcducts cf ‘the creation
cperatcrs in the expressions for A and ', The calculeticrs
necessary to evaluate this commutatcr are dcne irn an apprcxinate

manner in Appendix B.

The rpion-pucle2on =scattering state [AkD represents a state
composed of a - physical nuclecn with quanturnm nurlkers
asymptctically latelled Lty A and a mescn with quantum numbers
asymgtctically labelled by k, obeying either outgcing wave (+
sign) or incoming wave (- sign) btcundary conditicns. Since only
cutgcing wvave states will normally‘he dealt with, rfpion-nuclecr
scattering states withcut + or - subscripts ¥ill be assumed to
satisfy outgoing wave Dboundary conditions. The fpion-nuclecn

scattering state |Ak> satisfies

H]Ak>, ='(EA+Ek)|Ak>i (2. 20)
Plak>, = (k,*k) |Ak>, (2.21)
B|Ak>i = +1|Ak>i (2.22)

where EA and E, are as given previcusly.

Wick (1955) has shcwn that the pion-nucleon scattering state
can be expressed solely in terms «cf the Eamiltcrnian, meson
creaticn cperators, and physical nucléon creaticn crerators.,
Wick wrote the pion-nucleon scattering state as a state
consisting of a free wmesocn and a fhysical ©nuclecn -plus a

ccattered state
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k> = kT|a> |AK> : (2.23) .

An  explicit expressicn for the =scattered state |Aki;can Le
cbtained by substituting equation (2.23) intc the eigenvalue

equation for H for the scattering state, equation (2.20)

(H-E,-E) |Ak>_ + HK [A> - (B, +E K [A> = 0 (2.20)

Equaticn (2.24) is simplified by writing

mctlas = xfujas + mxT1as (2.25)

QSing the explicit form of the Hamiltonian, equaticn {2.12), the

commutator in the akove expressicn teccmes

t t t
[Hk']]A> = B, k'|A> + [V,k']|A> (2.26)
By substituting equations (2,12), (2.25), and (2.26) intc equa-

tion (2.24) the fcllowing equaticn is cbtained

| | A |
(H-E,-E) [Ak>_ + [V,k']]A> = 0 ) (2.27)

An expression for the scattered state |[Ak>, is cttained Ly
inverting the ofperatcr (H-gA-Ek) and imposirg cutgcing wave
toundary conditions

S R
|Ak>_ = (B,+E, -livie) T [V,K ] |A> (2. 28)
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Using Fendleton's notaticn for the vertex cperatcr

[Vk] = [V,k']
(2.29)

) = v’
the outgoing wave pion-nuclecn scattering state is written

lAk> = k+|A> + (EA+Ek—l-I+ie)-1[«Vk]|A> {2.30)

1t should ke noted that equation {2.30) is writter dinccrrectly

ty Pendleton, the cperatcr [Vk] Lkeing replaced by [kv]

2.3 States With Baryon Number Two

The physical two-nucleon state, dencted by |AB>, represents
two physicai nuclesons with quantum numbers asymptotically

labelled by A anil B, It satisfies

H|AB> = (E,*Ep) |AB> (2.31)
plas = (k) [AB> ~ (2.32)
B|AB> = +2|AB> (2.33)

2.3.2 The Deuteron State and the Pion-Deuteron Scattering State

The physical deutercn state is represented 1ty the state

vector |P> . It satisfies

|0> = Ep|0> (2.34)
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3
v
"
-
)
v

. D (2.35)
Blo> = +2|p>
’ (2036)
E, = k + M
D =D D ' (2.37)

where i, is the olserved deutercn rest rass.

The _pion-deutéron scattering state |Dk> represents a state
composed of a physical deutercn with quartun ntmbers
asymptctically 1labelled by D and a meson with quantur nunlters
asymptotically 1lakelled Lty k. As with the ficn-nvcleon
scattering state,the ¢ subscript refers to either cutgcing cr
incoming wave toundary ccnditicns and a state with nc subscript
will be assumed to satisfy outgoing wave louncary ccndéiticns,

The pion-deuteron scattering state |Dk> satisfies

Hlvk>t = (ED+Ek)le>i - (2.38)
PIDk>, = (kpk) [ D>, (2.39)
B[ k>, = +2| k>, (2.40)

where ED and Ek are as given previcusly,

By writing the pion-deuteron scattering state ss
o> = kT[> + |0 2.4

and using exactly the same rprocedure as was used fcllcwirg
equation (2.23), the analcgcus result is cttained fcr tke picr-

deutercn scattering state

. ] —1 N .
lpk> = ko> + (Ey#Ey-Heie) (VK] |0> (2.42)
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2.4 The S-matrix and the T-matrix

o m— e S S G B v MBS e DD AL WD AR W e S s ww e

The scattering operatcr S is defired in gereral as
sly; (0> = [y . (0)> | (2.43)

where (0)> is the time inderendent factcr cf the asymptotic

| Yin
limit of the state vector a 1long time befcre scattering,
satisfying incoming wave boundéry conditions ané | wout(0)> is
the time independént factor c¢f the asymptctic liuitlcf the state
vectcr a long time after scattering, satisfying cutgcing wave
toundary conditions, .

Pcr picn-nuclecn scattering equation (2.43) can ke writter

as
S|Bm>_ =.|Bm>+_ (2.44)
or, using the fact that S is unitary
+<Bm|§ - _<Bm| (2.45)

The S-matrix for pion-nucleon scattering is defiredé as

wn
It

B, A L<Bm{s|Ak>,

_<_Bm|/\k>+ ) (2.46)

Ly use of equation (2.45). Using equation (2.30) fcr |En);ané

the similar equation for |Bm>_
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le>_ = m+|B> ; (EB+Em-H—ie)-1[Vm]|B> (2.47)
if.fcllows,that
|Bm>_ = |Bm>, ‘ {(EB+Em-H-ie)'1-(EB+Em-H+ie)'1}[Vm]|B> (Z.48)
Using the identity
(Eg+E -H-ie) " = (EB+Em-H+ie)'1 + 2ni6 (E+E -H) (2.149)

eguaticn (2.48) can be written

|Bm>_ = [Bm>  + 2nis(EB+Em—H)[Vm]|B> (2.50)

Substituting this into equation (2,.46), the expressicn fcr the

S-patrix becomes

[92]
i

B, AK ,<Bm|Ak> - ZniG(EB+Em-EA'Ek)<BI[mV]IAk>+

) - 2mi8 (Ey+E _-E,-E,)<B| [nV][Ak>, (2.51)

Bm, Ak

It should be noted that the Kronecker delta functicn GBm,Ak is 8
shorthand notation for the prcduct cf Krcnecker delta functions
cf all the quantum numbers of the states |Em> ané |AkD> as well
as a delta functicn of mcomentus,

The general expression for the S-matrix is
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where I refers to the initial state, P refers tc the final state
and 1T is the T-matrix. Thus, comparing equaticns (2.51) arc

FI
(2.52), the T-matrix for pion-nuclecn scatterirg can be written

T = <B|[mV] |Ak>+ ' (2.53)

Bm, Ak

Similarily, using equaticn (2.42) fcr |Dk> ané tke ccrres-
ponding egquation for |Dk> , the T-patrix fcr picn-decteron
scattering can be wuwritten

TD'm,Dk = <D'»I[mV]|Dk>+ (2. 54)

The objective now is to calculate the right hané side cf
eq. (2.54) ., To do this, the deutercn state ard the ficn-decterce
scattering state will ke expanded in terms cf a rarticular set

of two-nucleon states introduced in the next chapter.
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In order to proceed from this ¢fcint, a «ccrrlete =<set of
sfates with barycn npumber two 1is introduced. Rather than
choosing physical two-nucleon states which cannot readily te
expressed in terms of cne-nuclecr creaticn cperatcrs, a set cf
states 1is constructed explicitly in terms of cne;nuclecn
creation operators and Erescn creaticn creratcrs fcllcuing a
rethcd used by Cutkosky(1958) and btased on the work cf Feitler
and London (1927). These states will be called Cutkcsky states,

Since Cutkosky states are written in terms cf phkysical
nucleon and meson creaticn cperatcrs, matrix elements between
these states will be able to te reduced to matrix elements
tetween one-nucleon states, Thus, by -using these =states tc
expand the rpion-deuteron T-matrix, it will Le ©possiltle tc
'express the T-matrix entirely in ,teims cf cne-nuclecn matrizx

elements.

‘The simplest Cutkosky state is that which consists cf twc
nucleons with no mesons present, This state, callec an uneycited
Cutkcsky state and dencted by |AB}, is defined by

|AB} A*B*|0> | (3.1)

it satisfies

"

P|AB} = (k,+kg) [AB} (3.2)

'B|AB} = +2|AB} (3.3)
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However, unlikz th2 physical two-nucleon state |[AB>, the
Cutkosky state |AB} is not an eigenstat2 of the Hamiltonian.,
This is. shown =xplicitly in -equation (3.44). Using the
definition of the state |AB} and the fact that physical nucleon
oparators anticommut2, it is obvious that the state |AB} is
antisymmetric

|aB} = -|BA} ‘ . (3.4)

Singly excited Cutkosky states, i.e. those in whkich ar

extra meson is present, are defired by
. ot ooyt
|ask} = kA8 0> + (ar) (B [0> + AT (BR) |0~ (3.5)
These states satisfy

BlABK) = (kyHogHO [ABKY (3.6)

B|ABK} = +2|ABK} S (3. 7)

These states ar2 not eigenstates of the Hamiltonian-as is shown
in equation (3.46). |

The genaral 2xcitad Cutkosky state with baryon number two,
|{ABM}, where M represents a product cf mescn orerators, can be
defined in a similar mannsr but it will not be needed in the
single- and double-scattering calculations, General Cutkdsky
states (eithar excit2d or unexcited) will be denoted by (U]}, |V}
., W} etc, |

One of the fundamental assumptions of this method is that

the set of all Cutkosky states form a complete set. In other
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words, it is assumed that any physical state with taryon runker
two can be expressed as a linear ccmkinaticr cf the states 10},
In particuiar a physical two-nucleon state should e atle to Le

written as
|AB> = ‘AB} + 2z XMlABM} : (3.8)

where the coefficients are tc¢ be determireé. - Fcr tke

Y
calculations to bé dcne it is hoped thkat equaticn (3.8) ¥ill
converge gquickly. Since the deuteron is rather weakly tcurnd, a
good approximation to the deutercn state shéuld be able to be
cbtained just by taking the noninteracting term ané tte terms ir
the summation in equaticn (3.8) fcr which M ccrtairs cnly cne
rescn cperator (i.e. singly excited states)..

~ As the Cutkosky states defined aktcve are rct crthcgonal,

crthenermal Cutkceky states, denoted ty (U), V), |F®) €etc., 3re

defined (following Pendletcn(1963)) by the equaticn
lw) = ¢ Fuwlu} (3.9)

The summation in aquation (3.9) runs over all two-nucleon
Cutkosky states. The orthconormal states are introduced for
computational convenience. Using the orthcnormal states the unit

operator can be writtan in the forn

1=1: |u)(u| | (3.10)

which will be wused in the calculation of matrix elements
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invoelved in single- and double-scattering expressions. Equation
(3.10) is not true if the «complete set cf states is not
orthonormal,

Using equation (3.10) and the orthcnormality of the states
defined in equation (3.9), an expression for the matrix F is

derived as follows.

8
wv

1]

(v|w .

=5z FF_ {x|u} ' (2. 1)
Xv uw
Cefining the matrix G by the equation

s+ 6 = {x|u} : (3.12)
Xu

Xu

eéquaticn (3.11) can be written

*

s =t F*F +F G F (3. 13)

wv uv. uw XV Xu uw

writing the above equation in matrix form yields the equation

1=FF+FGF (3. 14)
vhere the adjoint of the &@atrix F is defined by F$;=qu .

Equaticn (3.14) can be solved for rTr. The solutiocn is

F'F = (o)™t (3.15)

The abcve equation can be solved for F. By chcosing F tc be

Hermitian a solution can be wuwritten
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2 . .. (3.16)

a0

ooésw

.
F=(1+G)”2=1—%G+

The expaﬂsion using the binomial theorem will be usad to
calculate approximations toc . It will be shcwn that for single-
and double-scattering calculaticns, no more than the first two
terms in the 2xpansion will be needed. For example, by taking
the first two terms only, the state |AB) may be written

3 1.
|AB) =5|AB} -5 |ut{u]aB} (3.17)

P
U

It will be useful to define an creratcr 4 as fcllcus
t . _ ' '
K'lu) =|uk) | (3.18)

This operator is not <easily expressed in terms «c¢f r[physical
puclecn and meson creation operators. Taking the first twc terms

only in eq. (3.16) it follows that

K+|AB) = |ABK)
‘ -3 - 1 ' 7

= ZIABk} 5 glU}{UIABk} (3.19)
Because of the seccnd term in the alove equaticn, the

relationship tetween k" ana rhysical nucleon and mescn creaticr

cperatcrs is very complicated.
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In order tc evaluate the pion-deuteron TI-matrix, the
deuteron state and the pion-deutercr scattering state will e
exéanded in terms of the orthcncrral Cutkcsky states, This the.
T-matrix will be written in terms of .mafrix €lements letweer
orthonormal Cutkosky states. Using equaticns (3.9), (3.12), and
(3.16) these matrix elements can be written in terms of matrix
elements tetvween nonorthonormal Cutkcsky states, The purpcse of
this section is tc evaluate Cutkosky matrix €lements ené presert
meson operator identities which will frcve tc Dbe usefui in

evaluating and simplifying these matrix elements,

3.2.1 Cperator Identities

The meson operator identities will only ke statecé Lere, the
proofs breing 1left tc Aprpendix A, The first identity cives ar
expression for the computator of a fprcduct c¢f nmescn creation
operators H+ and a product of meson annihilation operatcrs Q. It

will be written in two forms

o ,Q1 = -2y [[e 1100Q,x 11/n(R)! (3.20)
or @i = I [[r,M 11{[Q,r 11/a®)} (2.21)
vhere

(ORI CoTI C700 PP L PO (3. 22)

e 1] = (et (3.23)

h(R)=n=numter of creratcrs in R

R represents a [product of meson annihilation cperators. The
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prime cn the summation in equation (3.20) indicates tlkat tke
unit operator‘ is to bte excluded frcr the sum cver all R. When
R=1 the nested commutator of equation (3.22) is defined to te
just nt,

The’ next three identities will te useful in rescvin¢ meéscr

operators from one nuclecn matrix elements, Thesce identities are

r|A> = —(H+Er—EA-ie)—l[rV]|A> , {3.24)
r@i-g) L = (H+Er—E)—1r - (H+Er—E)_1[rV](H-E)_1 (2.25)
rlak> = 8 |A4> - (H+Er~EA—Ek-i€)-1[rV]|A> A {3.26)

wvhere r is a meson annihilaticn cperatcr and vhere E , E an¢

‘A’

Ek have been defined previously. The proofs of these identities

are given in Appendix A.

The matrix 2lements between Cutkosky states are evaluated
in Appendix B. Aside fron ‘the general result for the matrix
element {AB|CD}, oniy those.maﬁrix elements which will be needed
to calculate single- and double-scattering will Le presented
below, The simplest matrix element is that between two une xcited
Cutkosky states, |AB} and |CD}. It can be written

(ABcD} = pZo <alQfr|c><B|RTQ|D>/n(R) tn(@) !

t +
V' —z_ <BlQ'R[Cc><A|R'Q|D>/n(R) In(Q)! -
R,Q Qx| | | (3.27)

+ + v
where R and Q rapresent products of meson annihilation
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operators, The wunit ofperator is included ir the above
sumsaticns. Equation (3.27) 1is not an exact result. Tlke tersms
neglected akove are thcse in which the ccre <creratcrs in a
garticular term cf the product AE are equal tc thke ccre
operators in a particular term cf the prcduct CD but the core
cperater from A is not equal to the core operator frcm C cr tte
core operator from [, This type cf terr.can be thcught <cf as
describing the exchange of one or more pairs of tare nuclecrs
and antinucleons Letween nucleons in the initial state tc fornm
the nucieoné in the final state. A more complete explanaticn cf
the above is given in Apgpendix B.

The abcve expansion of a Cutkosky matrix element will tLe
called a meson exchange series. The series is crdered by the
number of mesons exchanged, i.e,, by the total numler of =mescr
operators in the product QTR. The n mescn excharge ccntribution
to a matrix element will be denoted by a hrackeﬁeé Superscrirt
D |

Thus the zero meson exchange contritution tc tke ratrix

element {AE|CD]} is

(0)

{aB|cp} <A|c><B|D> -<B|C><A|D>

6AB,CD : ( )

This can be represented diagramatically as
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The one-meson exchange contribution is

. | | -1 -1

N + antisym.

This is represented diagramatically as

B o— D
/4
A -d- C

The terms in equation (3.29) r2presented by 'antisym.® are those
necessary to mike the righ£ hand side of the equation
antisymmetric with respect to exchange of A and B or C and L.
The meson annihilation and cra2ation operators have been removed
from eguation (3.29) Ly us= éf aquation (3.25). The solid lines
represent physical nuclzons and the dotted 1lines represent
mesons, The diagrams are drawn with the initial state on the
‘right and the final state on the left, For example, the first
diagram fgr {AB[CD}(1> corresponds to a nucleon in state D
emitting a meson in state q and becoming a nucleon in state B.
The meson is then absorkted by a nuclecn in state C becoming a
nucleon in state A. There is no rule for obtaining the energy
denomiﬂators from inspection of the diagram since the same
diagram can reprzsent different matrix elements with different
snergy denominators,

If one or both of the Cu;kosky states are excited the

results are

a0k} (® =0 (3. 30)
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- -1
{ABICDk}(l) = I <Al[Vq]|Ck><B|[qV]|D>(EC+Ek+Eq—EA) 1(EB+Eq—ED)

V]

, =1 -1
+1 <A][qule><Bi[Vq]|D>(EC+Ek—Eq-EA+1e) (Eg-E ~Ep)
+ antisym.
B O
- Kq\\ D B ot D
= . . i
A ‘“\\\ C A (( C ,
\k \\ (-1031)
\k
: (0) _
{ABp|CDK} " = 6kp6AB,CD
Pocmmee e e k
A C
{aB ICDk}(l) = & {ABlCD}(l) + other terms.
P---mmm——— - k
. v F— D | (3.33)
= ,/q
A —— C

The other terms in equation (3.33) are those in which <three

distinct mesons, p, k, andl q, are present

The matrix elements of the vertex operator between Cutkosky

states are given by
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{AB\[mv]ICD}(O) = GAC<Bl[mV]|D> 4+ antisym.

meo ok (2. 35
N /
B . -D
A C
(a8 | [uv] ook} P = z <a|[av]|c><s] [Vql(H+Eq—*r:,3)’1[mV]IDk>(EA+Eq—'r:C)'l
! . .
+1 <A|[qV][Ck><B|[Vq](H+Eq—EB)—1[mV]]D>(EA+Eq—EC—Ek—1e)
PR | -1
+3 <A|[Vq]|c><Bl[mv](H+Eq-ED-Ek-1e) [qV]IDk>(EC+Eq—EA)
-1 -1
+1 <A|[Vq]ICk><B|[mv](H+Eq—ED) [qV]|D>(EC+Ek+Eq-EA)
+ antisyni. o '
m /k -
N\ ’ N
N 4 Y
B S —s D B ———cgmm=o—— D
N + N
= q A q\
A o C A Q-&\ C
‘ Mk
m\\ ///k \‘1(\ )
N
, et .. om0
B V] D * B - D (3. 36)
¥ 1, 7q : :
A < C A-" “‘(_' C
\\
s m
(0) 1 (0)
{ABp| [mv]|CDK} " = Sip {AB| [mv]|CD} + antisym.
ms
Poe e cm k
-~ B % D
= (23.37)
A c

The heavy solid line indicates that the intermediate state is to

be summed over a complete set of states with baryon number one,
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That is, to evaluatz ths matrix =lements in equation (3.36), a
conplete set of states with baryon numb2r one must be insarted
into the s=2coni matrix elsmant for eachbtéfm. Note that in the
diagrams drawn, tﬁe ordering of vertic2s has no significancs 1if
the vertices ar2 not diractly connected by either a dotted line
or a solid line. For example, in the first diagram for equation
(3.36), the v=rticess respresanting the emission of the meson g
and the absorption of the meson k are not directly ccnnected and
thué they ne2d not be drawn as occuring at the same instant,
In writing matrix elements of <the Hamiltonian, it will

prove to be useful to write the Hamiltonian as

H=H +H' ' (3. 38)
[e] .
where Ho is defined by
H_|AB} = '(EA+EB)IAB} | (3.39)
HOIABk} = (E,+E_+E, ) [ABK} . (3.90)

with similar relations for multiply excited Cutkcsky states. The

above equations can b= written generally as

HO|U} = Eulu} ' (3.41)

for any Cutkosky state |U}.

Using equation (3.41), it follows that

{UIHOIW} = -2—\(Eu+Ew) {u]|w} | (3.42) |
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As is shown below, the remainder H' has the very important

rroperty of having no zaro-meson exchange contributions to its

matrix elements. This separation of H will be useful when
zvaluating approximations to the pion-deuteron T-matrix,.

Th2 matrix elements of the Hawmiltcnian between Cutkosky

states are given below., Note that the diagrams are drawn for the

matrix elements of H' only.

: 0 _1
{ABlHlCD}( ) - > (EA+EB+EC+ED)6AB,CD

(3.43)
(1 _1 an (1)
{aBlujcp}*™ = 3 (EA¢EB+EC+ED){AB|CD} 1
1 ‘ oy
+3 1% <A|[qV]lC><B|[Vq]|D>(EA+Eq Eq)
-1
+-% z <A|[Vq]|C><B[[qV]|D>(EC+Eq—EA)
+ antisym.
(3. 44)
B D B P D
AN + /
- q\ ’(,q
A —o— C A d C

{ABIHICDk}(O) =0 (3.45)
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3 (1)

-1 (1)
{AB|H]CDk = 5 (B, +E+E C+ED+Ek){AB|CDk}
+ & <al[vallc><s| [qv]|Dic> a; (B)
: . -1 . (-1
+3 <A| [vq]|c><B| [VK] (a,(E) (H+Eq—ED—1e) -a,(B) (WHE, Eptic) ) [qV] | D>
. -1 . -1 .
+ 1 <A|[qV]|C><B] [Va] (H-E-E ~ie) ~(H+E ~Eg+ie) [Vk]|D> a, ()
+ antisym.
/’lk . //k
/
B /,cL D , BT —=———0pD
= 7 q ,’q
A & C A — - C
A
/
/
B Cgmmsact D . (3. 46)
+ q .
A X C

P e e et e k
B o D (3.47)
= / :
A <22 c
The factors ai(E) i=1,.s.,4 1in equation (3.46) represent

functions of the energies of the particles invclved. The other
terms in equation (3.47) ara those containing three mesons p, k,
and the exchanged meson q.

Matrix elements batween orthonormal Cutkosky states can be
calculated in terms of the above matrix elements using equations
(3.9), (3.11), and (3.16). One important result is the matrix
2lement of the Hamiltonian between twq orthonormal Cutkosky
states. From equations (3.38) and (3.42) it is evident that the
matrix elemants of H between nonorthonormal states may be

written
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Do

qululwy = 5 (BHE) S+ G ) + (U[H'[W) (3.48)

wvhere Gu is dafinad by equation (3.11). Using equations (3.9)

w

and (3.16) it follows that

(VIH|x) = % oy F’:W (146) _ (E +E) wa'+ (v|H']x)
1 - -4 '
=7 olu (146) 0 (146) o (E +E ) (1+6) f (v]a'|x)
=E 6§+ (V[H'|®) (3.49)

v VX

Thas q} is diagonal in the orthcnormal Cutkosky states and H'

has no zero meson exchange contribution to its matrix element.

o ——— o a— — —— e T e A s e o e e e e e s S S e W T e G ——— — "

 Tha pion-deuteron T-matrix given by equaticn (2.54) can be
¢valuated by inserting complete sets of orthoncrmal Cutkosky
states and evaiuatingAthe rzsulting matrix elements using the
expressions given in sections 3.1 and 3.2. In order to proceed
from this point it is necessary to express (v 'and (UIDk>,
where JU) is an orthonormal Cutkosky state, in terms of known
deuteron \wavefunctions. This 1is done in the next two

subsections,

3.3.1 The Deuteron State Vector

—— e S e m D TP e P S e e g D G —

The deuteron state vector |P> can be expanded in terms of

" the orthonormal Cutkosky statas using equation (3.9)

0> = zluy|o> o (3. 50)



N
where (U)D> is the d2ut2ron wavefunction in "the orthonormal
Cutkosky represéntation. The conmplete deuferon wavefunction
(U] D> incorporates tha ma2son dsgrees of freedom implicitly.
However, known deuteron wavefunctions dc nct include all these
degrees‘of freedom, Thus an exprzssion for ~the exact deuteron
wvavefunction is needed in terms of an aprrcximate deuteron
wavefunction whizh hopefully is known.— This expression should
take into account explicitly the meson degrees cf freedom in the
complete deuteron wav2function,

At this point, projecticn cperatcrs are defined for the
unexcited and =2%xcita2d orthonormal Cutkosky states, These
projection operators are denoted by P and P' respectively. A
state vector |DO> is dafined which satisfies the following

gquations

PHP|D > EDIDO} (3.51)

P'[0,> = 0 . : (3.52)

By writing the d=2uteron state vector as

o> = |vo> + |vl> . (3.53)
ah expression can be obtained for the remainder |Dl>. Using the
fact that P+P'=1, the eigenvalue equation for H for the deuteron

state may be written

(P+P')H(P+P") |D> = ED|D> (3.54)
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Using equdtions (3.51)-(3.53) the above equation can be written
ulvl> + P'HP|D > = Ep|D,> ' (3.55)

By inverting thz oparator (H-ED) an expression is obtained for
mf. Thus from equation (3.53) the deuteron state vector may be

written
|0> = {1—(11—ED)—1P'HP}|DO> (3.56)

Using equation (3.38) ths operator (H-—ED)*-1 may be expanded to
give the following exprassion for {D>

“lprup}|0,> (3.57)

0> = {1—n§O[(HO—ED)'1H' ]n(HO-ED)
The above equation 2xpressas the exact deuteron state vector in
terms of an approximate desutercn state vector satisfying
zquations (3.51) and (3.52). Since matrix elements of H' do not
have any zero-meson 2xchange terams, the above expression can be
evaluated to any order of meson exchapge. Ncte that since Ho is

diagonal in the orthonormal Cutkosky states

PIHP = PIHIP (3. 58)

One might wish to identify (U|D°> with the conventional
deateron wavefunction in @momentum space. Although this is a

rather arbitrary assumption, it does s2em reasonable. The



33
conventional deuteron wavefuncticn describes a systenm composed
of only two nuclzons, the mesons not taken into account
axplicitly. The unexcited orthoncrmal Cutkosky states correspond
To orthonormal states which, 1in the <zero-meson exchange
approximation,.consist of two ncninteracting nucleons with no
mesons explicitly present. The  properties of |UO> stated in
zquations (3.52) and (3.53) thus ccrrespond to the ‘desired
properties of the conventional deuteron wavefunction. That is,
|Do> is not coupled to states «ccnsisting c¢f nmcre thén two
ﬁucleons. (in tha z2ro-meson exchange approximation) and |UO> is
an eigenstate with the correct eigenvalua of the Hamiltonian in
the reduced spac2 of the unaxcited orthonormal Cutkosky states.,

Using equation (3.57) diagrams can be drawn relating the
deuteron state |D>‘to thz2 approximate deuteron state |90> . For

example (cp|D> can be drawn as

— 7o M o,
C

- U

o O

The first term. above represents 'the zero-meson exchange
contribution and thz terms neglected represent multiple-meson
e¢xchange contributions, The cne-mescn exchange ccntribution
vanishes, |

The one-meson exchange approximation to- (CDk|D> can be

drawn as ke K~
A Y - A Y
L ) o ()0
o] B I N R T N S
k-
) A

+ ¢ L4
.
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The pion-deuteron scattering state vectcr can be exranded

in terms of the orthonormal Cutkosky states using equation (3.9)

|ok> = £|w) (U] Dk> | (3.59)

Since the wavefunction GHDk> is nect knoﬁn, equation (3.59) 1is
written in the form of a series, the first term of which is
obtained from the impulse apprcximaticn, The impulse
approximation assuma2s that the scattzring takes place so rapidly
that it <can be approximated by a pion scattering from a free
nucleon, Thus ths amplitude for finding a particular pion-two-
nucleon state in the decomposition of the pion-deuteron
scattering state is approximated by the amplitude for finding
that two-nucleon state 1in the decompcsiticn of the deutearon
state,

Thus equation (3.59) can be written
|ok> = z|uk) (U|D> + |S> (3.60)
where the first term represents the impulse approximation to the

state |Dk> and |S> represants the remainder. Using the operator

deefined in eq. (3.18), equation'(3.60) can be written

| x> = zK*lu)(u|D> + |S> (3.61)

or in shortened notation
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|0k> = K+|D> + |S> (3.62)

whefe the presence of the unit operator has Leen assunmed.

An expression fer |S> can be obtained from the eigenvalue
equation for H for the pion-deuteron scattering state, equation
(2.38) , by substituting for |Dk> from equation (3.62) giving the

equation

t, |
(H-E) |S> = (-HK +E K ) |0> (3.63)
where

Eg = Ep + Ey (3. 64)

By inverting GLES) with outgoing wave boundary conditions, the

expression for |S> becomes
|S> = (ES—H+is)—1(HK+—ESK1‘)|D> | (3.65)
Using equation (3.38) and writing
(Es—u+ie)'1 = n"gfo[(ES—Hoﬁe)"]H' ]“(ES—Ho‘rie)'l (3.66)
the‘pion-deuteron scattering stéte may be written
1o = KT [0> + F((E - _+1e) M ] (E_~u do) tak e H 10> 3067
, n=0 s O s O

This may be put in a more convenient form by noting that
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(HKf—ESK+)|D>

t t T t
H'K' |D> +H K 0> -E, K" |D> -E K" |0>

ot t + +
H'K D> + 5 (B, EIK [U) (U] D> -K'H|D> -E K" |D>

H'KT|D> tI K+H0]U)(UID> —K+H|D>
‘ (3.68)

'kt - K+H')|D>

Thus the pion-deuteron scattering state may be written

| D> = K*|D> + T [(ES—Ho+ie)_1H']n(ES—Ho+ie)—l(H'K+-K+H')lD> (3.69)
n=0

The state |D> is known from section 3.3.1 and thus the pion-
deuteron scattering state can be evaluated in terms of the
approximate deuteron statéIDO> wvhose wavefuﬁction is assumed to
be knowﬁ.

The above equation appears to resemble the expression feor
the pion-deuteron scattering state derived in section 2.3.2.
ﬁowever they are quite different, Equation (2.42) separates the
. plon-deuteron state into an asymptctically free state and a
scattering state. That type of expansion 1is nct fparticularly
useful 'for obtaining approximation§ to the pion-deuteron state.
On the other hand, aquation (3.62) contains more than Jjust the
asymptotically free state. It alsoc ccntains the interaction of
the meson k with the nucieons in the Cutkosky‘ state |U). :Fcr
example, the state KWAB> . 1in the =zero - meson exchange
approximation, is equal to the state |ABk} which according to
equation (3.5) contains the interaction of the meson k with both
physical nucleons A and B. Thus the expansion of equation (3.69)

should be useful in approximating 'the pioh-deuteron state.
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3.3.3 The Pion-D2utaron T-matrix

Having obtained expressions fcr the deuteron state and the
pion—deuterdn scattaring state in the previous two subsections,
the pion-dzutszron T-matrix can be written solely in terms of
matrix elements betwean Cutkosky states and approximate deuteron
wavefunctions, Using =2quations (2.54), (3.57) and (3.69) the T-
matrix becomes

T = <D'| 1-PH'P' Y. [(H - )—1H']n(H -—ED)'-1 [mV]}x
?P'm,Dk o n=0"" o ED o
+ w ' -1,,n ey L gtk
= H E -H +ie) ~(H'K' -K'H")px
x{K + Lol (B -H +ie) 17 (B -H +ie)

=3 —1'11 "lll
x {l_néo[(HO—ED) H'] (HO—ED) P'H P}|D°> (3.70)

The ébove expression is exact. No approximaticns have been made
in writing the aboveiequation; in order to evaluate the T-matrix
many assumptions will be made. The infinite series will all be
truncated to take into accbunt nc more than cne-mescn exchange
terms for the T-matrix. In the next chapter the zero- and one-

meson exchange terms of the T-matrix will be calculated and

discussed.



38

The expression for thz picn-deuteron T-matrix is ‘evaluated
by inserting complate sats of orthonormal Cutkosky states into
zgquation (3.70) then writing the resulting matrix elements as
meson exchange series.’

There is only ons zero-meson exchange term in equationA

(3.70). It can be written

( ' t (4. 1)
Toon ok = Ly Dol 0 @] KTy € wlo >
Using equation {3.52), the above equation can be written
(o) _‘1 ' .
TD'm,Uk % ZA,B,C,D<DOIAB) (ABI.[mV] | cok) (0) (CDIDO>‘ (4.2)

The normalization factor of 1/4 takes into account the fact that
|AB} =- |BA} and |CD} =~ |DC}. Using the equaticns of section
3,1 and 3.2.2,

(ABI[mV]lCDk)(o) zu,w F;fZ; {UI[mV][W}(o) FéféDk

() ©.3)

" {AB] [mV] | CDK}

Using equations (3.35) and (4.3), equaticn (4.2) can be written

(o)

)
Tprm, o T ZA,B’C<DOlAB) <Al [mv]]ck> (cB|D > 6.8
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The above equation is drawn below,

o
>

¢
o
o

U —U

BEquation (4.4) <can be rewritten in terms of the
conventional d=zuteron momentum space wavefunction and pion
nacleon T-matrica2s. This is done in Appendix D, The result in

the laboratory frame is expressed below

TI(‘O) (_l_(_vl ,El_; 0’_15_; M' :M) s (_lSD"*zn_—l(.)
{(4.5)

+1 ' M'* 1 M ,
‘ = 1|3 by (er5Uem)e, ()Y AT 16 (ky tmek)

2,27=-1 AN AN}

The wavefunction¢g (<) is just the component of the conventional
deuteron wavafunction with total spin prcjecticn M and total
nucleon spin projection & , The T-matrices TEI.’2 and Tz?z,
represent averages over nucleon spin corientaticns of pion-pfoton
and pion-neutron T-matrices, fespectively._ The explicit
expressions for ¢ZI ), TE?Q and TE?Q are given in. Appendix D.

Thus the <zero-meson exchange contribution to the T-matrix
corresponds to the'usual single scattering ccntributicn to pion-
deuteron elastic scattering, A fairly extensive numerical study

of this contribution has teen performed by McMillan and Landau

(1974),

A\
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The one-meson exchange ccntributicn to the gpicn-deuteron T-

matrix given in 2quation (3.70) can be written

~ .

1 ' Troy (1)
Té';,vk = EU’W<Dolu)(U|[mV]K |w) (w|vo>
' -1
-l iy <Dolwwlw 10 ® | mvIk 1w @ @l > & -2y
’ excited "

' R |
+ Ty Lol v [0 kT [ P @lo > Eg-pgrie)

- @' vy ] [av1K |0 © xlre [y P wlo > (e B )~
-bU,W X o o v X D
excited (4.6)

The fourth term above can be rewritten by noting

t -1 ey Lkt
K (EX - EU) Ix) = - (ES - EX + ie) K |X) (4.7)

The third and fourth terms in equatich (4.6) can now ke combined

~ to give the following expression for the T-matrix

(1) _ ' + (1)
TD'm,Uk = XU,w(DOIU) (UI [mV]K IW) (W‘DO>
~ Ly x ~<D;|U)(U|H'|X>(l)<xlImV]K+IW)(°)<WIUO>(EX—ED.)'1
’ excited ]

+ Low ZX<D;IU)(U‘[mV]lX)(o)(Xlﬁ'KTIW)(l)(WIDO>(ES-EX+16)—1

- Lo Ix <v;[u><u|[mv]K*IX)(°)(x|u'Iw)(l)(WIDO>(ESfEX+ie)‘;

unexcited (4. 8)

Using equation (3.,52) th2 sums over the states jU} and (W]} may

be rewritten yielding
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Té}r)n,vk -1 ZABCD<D;|AB) (cn|p0> x {(AB[ [mv] | cok) ¢V
- ZX ' v(ABIH'|X)(1)(X[[mV]|CDk)(°)(EX—ED,)—1
excited
+ Zx (AB|[mV]lX)(O)(X H'lCDk)(l)(ES—Ex+ie)—1

)(0) )

(x]u' [cpy

ZX (AB| [mV] | Xk

unexcited

(ES—EX+ie)'l}

(4.9)
Aé explained in the previous section, the factor of 1/4 is a
normalization factor resulting from the antisymmetry of the
Cutkosky states.

To proceed, tha wmatrix elemants between the orthonormal
Cutkosky states are expressed in terms cf wmatrix elements
between the non-orthonormal states., ‘The zero-ﬁeson exchange
matrix elements in equation (4.,9) are easily expressad in terms
of the non-orthonormal statas as was done in equation (4.3). The
same technique. can te wused for the cn2-mescn exchange matrix
clements of H', since matrix elements of H' do not have any
zero=-meson exchange contributions. However, since matrix
elements of tﬁe vertax operator do have zero-meson exchange
contributiohs, it 1is more complicated tc express the ona-meson
exchange matrix elzment of the . vertex operator between
orthonormal states in terms of wmatrix e2lements between non-
orthonormal states,

Using eguation (3.9) the matrix element of the vertex

operator may be writtan

(aB| [mv] |cok) = T Fy ap (01 0VIIWY Foo oy (4.10)
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the on2-meson exchange contributicn tc the abcve matrix 2lement
is obtained by writing each of the three matrix elements on the
right hand sidé as a sum c¢f zero- and cne-meson exchange
contributions thazn taking thoss2 products thch yield a net one-

meson exchange, That is,

(aB] [mv] |cpk) (V) = Low F;(Z; (o] v Jwp P Fv(qo()mk

%(1).
* Ly FU,(AJ)a (o] fmv | FIET?Z:Dk

e | (4. 11)
* dy,u FU,(X])S (v (o] [ ¢ Fsgfgznk

Using equations (3.12) and (3.16), it fcllows that

(o) _

Fou = Suw ,

1)y _ 1 (1) - .
Fu,w = -3 {u|w} (4.12)

Thus equation (4.11) becomes

(AB| [mV] | cDK) @ _ {AB| [mv] | CcDk} (1

-%Z {ABlU}(l) {Ul[mV]|CDk}(o)

v ' (4.13)
"% I a8] [mv]|w} (@ qucpkr P

W
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From the above discussion, it follows that

(1)

==7 (1)
U'm Dk 4 “ABCD

<D;|AB)(QD|DO> {{AB][mV][CDk}
- %-Zh{ABIU}(l){UI[mV]|CDk}(O>
_.% ZU{AB|[mV][U}(o){U|CDk}(l)

- ZU - {aBl|H' IU}(l){UI[mV]lCDk}(O)(E

excited

Bpn)
+ Z {AB[[mv]IU}(°){U]H ]CDk}(l)(ED E,~Ey +1e)”t

- ZU {AB|[mV]|Uk}(O){U|H lCD}(l)(ED+E -E +1e) }
unexcited ' (4.14)

In order to evaluate th2 T-matrix as expressed above, it
-will be necessary to truncate the summations over the
intermediate states |U}. This will be done byA disregarding all
terms in which more than three mesons are present, That is, the
only terms retained in the above summations willvbe those which
‘contain the 4initial and final mesons, 1lakelled by k and m
respectively, and éne exchanged meson; labelled by q.

When truncating the above summations, one must ke careful
to include all terms which contain three mesons. For example} in
the second and third terms, the summation should include those
states {U} which are singly excited as well as unexcited
. Cutkosky states, If JUJ=|FGp} in the second term, then by using
eyuation (3.37) it follows that

(aB|rep) P (rop | [mv] ook} @ = (as|Fcrr P (ve| [mv] | coi} ¢

4.15)
+ terms with 4 mesons present

similarily, if |U)=|FGp} in the third term, then by using
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¢quation (3.33) it follows that
. : 1
{AB[[mv]chp}(°){FcpICDk}(l) = {ABI[mV]IFGk}(O){FG‘CD}( )
+ terms with 4 mesons present
When |U}=|{FGp} in the fourth term using equation (3.37) will
give - ()-
. 1 ’ o)
{ABlH'IFGp}(l){FGpI[mV]lCDk}(o) = {ABIH'JFGk}(.){FGl[mV]lCD} . 17)
+ terms with 4 mesons present
The fifth term will also have some terms coming from |U}=|FGp]}
since by ﬁsing equation (3.47)

{AB|[mV]IFGp}(°){Fcp|H'|CDk}(1) = {ABI[mV]|FGk}(o) {FG|H'|CD}(1)
(4.18)
+ terms with 4 mesons present :
Noté that the part of the fifth term written above exactly
cancels the sixth term of equation (4.14),

Thus, keeping only those terms containing three mesons, the

T-matrix in equation (4.,14) can be written

(1)

_1 (1)
om0 ™ % Lanco }

<D;|AB)(CD|DO> {{ABl[mV]ICDk

e G{ABIFG}(l){FGl[mV]ICDk}(o)

!
&=

[
&

Ie é{AB]FGk}(l){FGI[mV]ICD}(O) . |

_-'% ZF,G{ABI[mV]lFG}(O){FGICDk}(l)

!
&=

Ip G{AB][mv][Fck}(°){Fc|cn}(l)

-1 (4.19)

N

ZF G{AB|H'|FGk}(1){FG|[mV]ICD}(O)(EF+EG+Ek—ED,)

+
N

ZF G{ABI[mv]IFG}(°){FG|H'ICDk}(l)(ED+Ek—EF-EG+ie)'1}
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The T-matrix can now be wxpressed in terms of one-nucleon
matrix elements using th: equaticns of subsections 3.2.2 and

302.3., The final result can be written in the form

1) + . + -

Tovm, ok = Taife ¥ Taies * Tsame T Tsame (4.20)

The terms on the right hand side of the above equation are
expressed in terms of one-nuclecn matrix elements in Appendix C.

Thg terms denoted by'TZiff represant fprocesses where the
initial meson \is absorﬁed on one nucleon of the deuteron, the
final meson is emitted by the other nuclecn of tha deuteron, and
the exchangsd meson is esmitted by the first nucleon and absorbed
by the second nucleon. The subscript "diff" indicates that the
initial and final m2sons are absorbed and emitted by different
nucleons. There are four terms represented by T:iﬁf as Ithe
exchanged meson =an b2 emitted before or after the initial meson
is absorbed and then can be absorbed cn the second nucleon
either beforz or after the final meson is emitted. One of the

+ .
four terms of Tdiff is drawn below.

I/k
! M) 7 M D
__0_ B ’/,O—(-;—C( pl L.O
A _Fgq’d cl —
J - v
m

The single solid 1lines denote physical nucleons and the
dashed lines denote m2sons. The double solid lines denote the
deuteron. The diagram  is drawn with the initial state on the
1eft and the final state on the right, The diaqram drawn above

corresponds to the second term in equaticn (C.2).
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The terms denoted by T;iff are similar to the terms Qenoted

by Tziff gxcept that the terms ofﬂgiff have the exchanged meson
émitted by the.second nucleon and absorbed by the first nucleon.
As above, theraz arz four terms represented by T;_ﬁEf and one of

these terms is drawn below.

. P
0| [B ‘D_D_.__D___

:U_‘A 7> qF"\ —2 ¢

D

The diagram corrasponds to the second term of equation (C.3)

-+
The terms denot=1 by T .

represent processes where the
final meson is emitted by the same nuclecn which absorbs the
initial meson anl tha exchanged meson is emitted by the first

nucleon and absorbed by the second nuclecn. There are six terms

4

represented by Tsame corresponding to the Six different
orderings of the absorption of the initial meson and the

emission of the 2xchangad and final mesons, One of the six terms

of T+ is drawn below.
same .
\m k”/
N 7/
S AERNTIR A AN
B e D 0
\_/

The diagram corrasponids to the fourth term of equation (C.4).

The terms denot2d by T;ahe are similar to the terms denoted

by T:ame except that the terms cf T; have the exchanged meson

ame

emitted by the s2cond nucleon and absorbed by the first nucleon.

As above, there are six terms regpresentad by T;ame and on=z of
these terms is drawn below.\T | ,/k
D! M MNP P
_Of B N D _D_Q.
A q\c cl I
J . v
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The diagram corrasponis to the fourth term of equation (C.5).

It is worthwhile at this gcint to outline the
approximatibns which haﬁa bzen made in expressing the pion-
deunteron T-matrix in the form given by equation (4.20) and
Appendix C.

ﬁhen matrix elements ketwean Cutkosky states were eﬁalpated
in!subsections 3.2.2 and 3.2.3, all <core =eaxchange terms were
reglected., That is, all terms which cculd nct be expreséed in
terms of one-nucleon matrix elements were aséumed to be
negligible, Also, the expressions for the matrix elements of the
Hamiltonian and the vertex operator neglected the meson-meson
interaction, V'; and any terms in V which were not linear in the
meson creation or anﬁihilation operators,

A major assumption made in writing equaticn (84.20) was the
neglecting of all terms in which more than three mesons were
present. This was done firstly by taking the cne-meson exchange
approximation to all terms in the T-matrix as given by equation
(3.67) and secondly Lty truncating all the summations over
intermediate states such that only three mesons were present in
the final expression for the Tfmatrix.

There is another major assumption which must be made if
2quation (4,20) is to be identified with tﬁe picn-deuteron T-
matrix., One must assume that when the deuteron state vector is
written as in equation (3.53), then the ccnventional deuteron
uavefqnction in momentum space corresponds'to

It is very difficult; without specifying Vv, tc draw any
conclusions about the onz-meson exchange approximation to the T-

matrix when it is written as in equation (4.20). If one has some
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potential Vv then, 1in principle, {equation (4. 20) could be
evaluated numerically. However, this will not be done here.
Instead, in the next s:sction, some further arproximations will

be made which will snable one to draw some conclusions without

doing any numerical calculaticns.

4,3 The Static on=-Sh=211 Approximation

In a calculation of the tyre done in the previous sections,
it 1is useful to g2t some idea of the relative sizes of the
varioué terms in equation (4.20)., In  order to do this, sone
approximations will be wmade.

The first approximation will be‘to assume that the kinetic
energy of the nucleons in the deuteron is small compared to the
total energy of the incoming pion, Also, assume that the kinetic
2pergy of the deuteron is small' compared tc the pion total -
energy. These assumptions will be called the  static
approximation. . |
It is also nscessary to obtain an approximation to the

pion-nucleon T-matrix. Using equaticns (2.42) and (3.24), the

. . L}
pion-nucleon T-matrix as given by egquation (2.53) can be written

-1
= - V1(H-E -E, -ie) ~[Vk]]|A>
Tpq,Ak <B| [qV] (H-E,~E,

-<B| [Vk] (H+E, -E+ie) ~[qV]
Bach matrix elament above can be simplified by inserting a
conplete set of one-nuclcon states and fpion-nucleon scattering

states and truncating the summation by neglecting all scattering
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states. With this assumption the T-matrix can te written

T -Lg<Bl [avl|e><c| [vk]|A> (B~

Bq,Ak - Bte)™!

A
(4.22)

-Z <B|[Vk]lG><G|[qV]]A> (E+E, -E +ie)

Ey

This can be reprasented diagramatically as follows

7k sk ' sk
V4 / 7
Vd ) G / v
B * A = B——p—F—A+ B—Gr—p—i
// ,/ //
q/ q” _ q/”

One. further assumption is necessary to simplify the terms
represented by Td FE ;nd T:ame. Most of the ten terms represented
by Tdiff and 1game are prorortional | to a factor of
(Eﬁﬁa_%fﬁkﬁkj—l (or a similar term with G interchanged with
zither B or D). The appreximaticn made here is to assume that
the scattering involving the four particles in thé above energy
denominator takes place on-shell, i.e. assume that energy is
conserved in the scattering., This is equivalent tévneglecting’
the principal value inteyral when the energy denominator above
is split in the folléwing manner

-1
-F —F - = - - 4,23
(EB+E E -E -ig) niG(EB+E E ) + P(E +E E ( )

D 'k k)
Making use of th=2ss approximations tbe terms represented by

+
ndT beco e
dlffa o
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These

aiff T
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+ 1 ' ' '
came = 3 ZABCDq<Do|AB)(CD|DO>4 X
ED_ZM
X { -mi<A] [mV]]Cq><B| [qV]|Dk> G(EB+Eq—ED—Ek) (2 - e, )
- 4mi ] <a|[Vq]|G><G| [mv]]c><B] [qV]|Dk> G(EB+Eq—ED—Ek)(—E;—") X
x (E +E —F,+ie)™t
G q A
i ' ED_ZM '
+ =5 Lg<Alval|c><8| [v]]G><G| [qv] [Dk> SEGHETEYE) ()
x‘(E HE ~E, +ie) T
C q A
+ =5 ZG<A|[Vq][C><B|[qY]le><G][mV]|D> 6(EB+Eq—EG—Ek)(—E;——) x
x (E +E -E +i€)—1
C q A
| S |
- ZG<A|[Vq]|c><B|[qv]|G><G|[mv]|Dk> (EC+Eq—EA+1a) (EB+Eq—EG—1€)
' -1 -1
- XG<A[[Vq]Ic><B|[mv]IGk><G|[qv]|D> (EHE B tie)  (EGHE ~E-ie) }
(4.24)
terms can be represented diagfamatically as below
-k _ sk
. /
/ (M) [} /
D! KW____ .4 D pr o~ poi
0 ] / D 0 B q, D
— a1 cl A 6. ¢ [—
U r U J 7 J
m/ m,’
q -vm.\\ ’,/’k m ﬂ N m\\‘/(k
Dl 'D'
0118 Gﬁ; 5] [P0 Ol (B .G 51 1 2o
\_/
a\\ ,,/k f} m\\\ y kf\
D' D p D! S
Yo | (5 : 5] | ‘o rEErptera a1l I
1 {a o CJ—“ —*—bA s cl —
~ \_/
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The first two tarms result from Tgiff and the other four

+

result from Tsame.

In the static aprroximaticn (E)-2M) is just the
binding energy of th2 deuteron (abopt 2.2 MeV). Thus, making use
of equation (4,22) and assuming all matrix elements of the form
AAJ[VQ 53> , <G|[mV]IC> stc., are of the same order of magnitude,
it follows that the second, third and fcurth terms are about two
orders of magnitude swmaller than the first term (assuming an
incident pion kinetic energy of 50 M2V or greater). It is not
obvious that the fifth and sixth terms are small compared to the
first term, This could only be investigated if cne did numerical
calculations with son2 potentiaL Ve

When simplifying ferms represthed by T;ﬁsf and T, it
is not valid to makz both the static approximation and the on-
shell appfoximation. The energy dencminatcr asscciated with most
of these terms is proportional to (E;Ja—%fﬂkﬁ&ﬂ—l (or a similar
term with G interchanged with either B or D). Since the energies
in the above =2nergy desnominator are total energies, not just
kinetic energies, it follows that the energy c¢f the nucleon
after absorbing the m2sons k and g will be about 300 MeV greater
than the energy of the nuclecn befcre the interacticn. Thus the
static approximation will not be made when dealing with these
terms. |

Making only tha on-sheall approximation, the terms

represented by,T(1iff and Tsmma can be written
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T

v
<D |AB) (CD|D >
same Ol : | 0

-1
) zAncnq

X {I%-<Aq|[mV]|C><B|[Vq]|Dk> S(EB—Eq_ED—Ek)

+

: 1

= I <&| [qV]|C><6] [mV] |D><B| [Va] |Gk> 6 (By-E ~E-E,) (BB -Ey¥ie) -
: L

w% ZG <Al[qV]|C><B|[mV]]G><G|[Vq]|Dk> 5(EG—Eq—ED-Ek)(EC_.q_EAfle)

e | PR |
Xc <A|[qV]lC><B|.[Vq]lG><G| [mV] | Dk> (ECd-Eq-EA+1€) (Eg-E ~Eq i€)

-1 -1
_):G <A|[qv]|c><B|[mv]'lck><cl[Vq]|D> (EC—Eq—EA+ie) (EG—Eq—ED—ie) }

(4.25)
These terms can be represented diagramaiically as follouws
k,” mty 7k
D! & () v n! DA
_04 B “a\ p| |—O _0 | [B >3] | .0
B N Xy cl [ R 9>, cl |
LJ xmfAl \_/ LJ - \J
/
N\ 7/ N
\ ks \ ks
N ¢ / f} RO rW
D! h (2500 N T D
LU B G‘,“/\ 5] [ %o 01 [B X p| |9
Tl Tl T la v Cl [
\ LJ \J - \J
w .
o (Ll Mo
.__O_ B G ~ D ___0__
The first three terus of equation (4.25) will be small

compared to the corresponding terms in equation (4.24)

nuc leon

momentum of about U400 Mev/c for the nuclecns

3ince

since the

kinatic enargy of over 300 MeVv will yield a relative

in the deuteron.

the Jdeuta2ron wavefunction is very small for such large
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relative moﬁentum, the first three terss cf equaticn (u.25). can
te neglected in ccroparison to the first term of equation (4.24),
As in equation (U.24) the size cf the last twc terms cf equation
(4.25) can cnly be estimated numerically given some pctential V.

Thus making an on-shell afpfrrcximaticn arnd a static

apprcximation where physically sensitle, the dorminant ters cf

(D .
D' Dk can ke wvwritten

1 : .

‘éll)n Dk i ZABCD <D lAB) (CDID ><A|[mV]qu><BI[qV]IDk> 8 (E +Eq E Ek)

~

{4.26)
In writing this equation it has been acssumed that the binding
energy cf the deuteron 1is negligible <compared tc the tctal
enerqgy of the incoming ©fpion. The above equaticn can be

represented diagramatically as below

- //k
o [ i D
01 [B ’ D Q.
A /q C ——
# U
¢

In addiéion to the term given ip equaticr (4.26) there %ill te
the 1last two terms of toth eguatiéns (4.24) ard {4.,25) whose
contributions can cnly be evaluated numerically.

The aﬁove eqdafion can Le written in terms cf the
conventicnal deuteron momentum space wavefuncticn and ficr
nucleon T-matrices, This is dcne ir Afpperdix D. The result in

the laboratory frame is expressed below

(1) (kD,,m, 0,k; M',M) 5(50v'ﬁ_“.—_1.<.)

(U.27)

*
_ M' 1
- L Jd3xd3q byr (ra—5(em)) 43 () Tyy, 6k k)
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The T-matrix T,,, T2presents an avarage over nucleon spins and
pion ahd nucleon isospins of a product of twc fpion nucleson T-
matrices, - The explicit =xpression for TQ.Q is given in Appendix
L. Equation (4,27) agrees with the double-scattering result

obtained by Pendletoh(1963).
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5 Zonclusions

Using a field theory approach, the picn-deuteron elastic
scattering T-matrix was zxpanded in'a meson exchange series and
the first two terms of this serizs ware examined. The reason for
using this approach was to avoid the dcuble-counting ptdblems
usually aéso:iatad with multiple sceattaring corrections‘in pion-
deuteron scattering,. |

In section 4,1, the first term in the expansion of the T-
matrix (called the zero-meson exchange term) was evaluated. This
term was shown to b2 the usual single-scattering apppoximation
to the T-matrix (equation (4.5))..

In section 4,2, the next order of terms in the expansion
(called the one-meson exchange term) was evaluated., Keeping only
those terms containing ons exchanged meson and the initial and
final mesons, the T-matrix was expressed as a sum of twenty
terms, each written as products of matrix elements of the vertex
operator between one-nuclecn states (equation (4.21)).

In ordsr to g2t an indicatioh as to which of these twenty
‘terms were important, an on-shell apprcximation was made as well
as a static approximation where physicélly sensible, With these
approximations, ‘the on:s-meson exchange contributicn to the T~
matrix was writtan in a form which facilitated comparison of the
magnitudes of the various terms in the expression for the T-
matrix (equations (4,25) and (u.zs)).

Assuming an incident pion kinetic energy cf S50 Mev, it was
shown that one of thes terms was about two orders of magnitude

greater than most of the remaining terms. This term was shown to
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be similar to the conventional dcuble-scattering term resulting
from the genzralized impulse approximation, There were four
additional terms whose magnitude cculd nct be easily comparad to
the doubla-scattaring term. These four terms represented single-
scattering processes with a mescn exchanged between the nucleons
2ither before or after tha scattering. The size of these terms
could only be‘evaluated numerically wusing a particulat field
theoretic potential V,

Pendleton(1963) has calculated the dcuble-scattaring
cont;ibufion (equation (4,28)) for a pion kinetic energy of 142
MeV, Carlson(1970) has calculated the‘double—scattering contri-
butions at pion kinatic energies ranging from 61 to 300 MeV. It
would perhaps be worthwhilé to calculate other terms contained
in either section 4.2 or 4.3. Using a Cheu-Low‘Hamiltonian [Chew
and Low (1956) ], numerical results could be obtained which could

be _compared with the doub1e~séattering contribution usually

calculated.
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APPENDIX A Meson Operatcr Identities

The identity for the commutator of a procduct of @mescr
creation operators 'y and a fprcduct c¢cf rwmescr destrycticn

cperatcrs Q is
+ ' t + v .
[ ,Q] = -Ip [[r,M ]1LIQ,x ]J/H(R)- (2.1

It can be proved by induction on the numker of operatcrs ir the

product Q.

Let M+ te an arbitrary prcduct cf mescr creaticr cperators

and let Q0=q. Then

fa'] = 5 (e 1{a,r']

-z ([5H ) [ 1/ .2

Thus equation (A.1) is valid for n(Q)=1.

Assume the identity is true fcr arbitrary C. It rust row Le
cshown that the identity is true fecr Qk. The prccf c¢f this %ill
te done only fcr . the case k¢C. The proof for keQ will te
outlined only as it is conceptuallf similar tc the case k¢Q_
althcugh it is wmore complicated algebraiéally. For k¢C tke prcct
proéeeds as follows. |

Using the relation
Q] = h,Qlk + [ LKkJQ + [[k,n'],0] (1.3

and assuming equation (A.1) is true for Q, the comrutatcr
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[M*,Qk] may be written

', k]

ﬁ' [leM 11000, Tk/n(R) !
+ 3 e o em@ !

R

o U
AR O (e

Cenoting by R, thcse products R which dc nct ccrntain k  and

defining 51=R0k, equaticn (A.4) can be written

-1 ax] = IR ITCRL ETCRE

+ oM QK]+ 2" [[s,4 1100k, 11 /n(s ) (2.5)
1 1

The dcuble vprime c¢n the summation indicates that tte unit
operator and single mescn cperatcrs are e3xcluéeé from tte
summations., The factor of rdslfd'ccmes from the fact that there
are n(ga distinguishable ways of placing k in a given ©[product
Ro.,

Relabelling the =sums in equation (2.5) yielés the desired
result. Thus equation (A.1) has Lke€en shcwn, by irducticn, to be
true for a set Q containing an arbitrary numlter of cperatcrs rc
two of which are identical and an arbitrary set WM.

Tc rrove equation (A.1) in general it is assumec¢ that it is
true for [MTJ&j] where keQ, Then it is shcwn that it is.trce'for
Dﬂ}ij+1] . Using the fcllowing identity

j+l]

a3t = L ad e o+ ke + ety Q) (A.6)

an equation similar to equation (A.4) can ke written. 1Tiker the

sums over R are separated intc sums cver En where Fn ccntairs
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the cperator k exactly n times. [enote Lty S, the prccéuct ct tte
operators not equal tc k in Rn. By writing the sums cver Rn as
sums cver £ with the n cperators k explicitly written ir tlke

o

nested commutators, it is a matter cf straightfcrsard manipula-

tion tc prove that e2quation (A.1) is true for IMTJ&j+1] if it is

true for [MTJuQ]. Thus equaticon (A.1) is truve fcr any M and C.
The identities involving meson annihilation <cperetcrs,
equations (3,24)- (3.26), can be prcved as fcllcus, Sirce the omne

nucleon state is an eigenstate of B it follows that

r(H—EA)lA> =0 (2.7)
From equaticn (2. 12)

[x,H] = Er + (xV] (2. 8)

Thus equaticn (A.7) can ke written

(H-E,)z|A> + Erla> + [xV]|A> = 0 | (2.9)
Inverting the operator GLEA+Er) the desired jdertity is cbtained

. -1
rla> = -(H+Er—EA—1€) [xv]]A> (2.10)

When ¢two or more mesch cperatcrs are t¢ be remcveé, tte
computator of a meson annihilation operator with (H-E)-% %ill be

needed., Using equatidn (A.8), r(H-EF) may te written
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r(H-E) = (H-E+E )r + [rV] SR LER R

dultiplying on the =right by (H-E)-!' and cr the 1left .ty

(H—E+Er)-l, the desired result is olktained

r(H—E)_l = (H+Er-E)—1 - (H+Er—1::)'1 [rV] (H-E)"1 (2. 12)

The +third cperator identity dis wvused 1ir remcving mescn
annihilation operatcrs fror matrix elements inveolving picr-

nucleon scattering states. From equaticn (2.12) it fcllcws that

[rk',u] = (Er—Ek)rk+ - r[Vk] + [oVIk! (2. 13)

Using this identity the equation

fgf(ﬂ-ﬁc)lc> =,O | | (2.14) |
may be written
(H+Er—EC—Ek)rk+lC> - r[vk]|c> + [rV].k+|C‘> =0 . (2.15)
bow, since
(HE_~EE) 8 [0 = (-EQ)|C> =0 (2. 16)

the following result can be cttained frcr equaticr (2.14)
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¥ ' -1
rk' |c> - (H+E_-E~E, ~ic) r[vk]]c> | (A.17)
= _|c> - (H+E_-E-E —ie)_l[rv]k+|C>

kr k

Outgcing wave bcundary conditions are imposed whken invertirg

GHEfJ%-Ek). Using the definiticon ¢f the fion nucleon scatterirg

state and equation (A.12) and (A.17) the desired identity may be

written

rlck> = 8, _|c> - (H+E ~E-E —ie)_l[rV]ICk> (A. 18)

krl C 'k
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The simplest Cutkcsky matrix element is that which gives
the overlap of two unexcited Cutkcsky states |AB)} and |CD].
Using the definition of Cutkosky states-this metrix e€lement nmay .

te written

{AB|CD} = <o|BAp+D*|o> | (E. 1)

Using equation (2.16) the oferatcrs 3, E, C, ané L nmay te

written

A= J a (AR)AK
A,K

B= J b (BL)BL
B,L

¢t = 7 ccamet
C,M -

ot = J aomo’n’ : (E. 2)
D,N

Using these expressicns for the physical nuclecn cperatcrs, the
patrix element can be written

tytot

{aBlecpy = § 1 ) Xa*(AK)b*(BL)c(CM)d(UN)<0|BLAKC N | o> (B.3)

AK B,L C,M D,N

In order tc express {AB|CD} as products of cne nuclecn
matrix elements the terms in the surmation in equaticn (E.3) are
separated into four types, The first tyre c¢f term ccnsists of

_those- terms in the summation in which DC#BA° (In all statements
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in this appendix regarding the wequality or inequality «cf
products of tare nuclecpn cr antinuclecn cperatcrs, the crdering
cf the crerators will be ignored. To ke completely accurate ‘tte
foregoing inequality should Le writtern DC#xBA but since the
signs have no effect on the classification of terms, tley will
te omitted.) These terms do nct ccntribute t¢ the summaticn
since at least one of the operators in ¢ is not in gTat (Er
vice versa) and thus will anticcrnoute with all the cperatcrs in
BA (cx Cﬂﬂ.) making the term zero by annihilating cn the vacuus
state.

The second type of term consists of those terms in tkhe
summation in which (C=A and D=B, The gquadrurle su#uaticn cver all
these terms will be abbreviated Z(Acgm)' The thiré type cf tern
consists of those terms in the suimaticn in which C=B and D=A,
The quadrugle summation over all these terms will le aklreviated
.Z(MLAD)' If a term in equation (B.3) is toc be ncr-2erc then it
can be shown that no twc operators‘in A and B or in C and D car
be identical., 1If, for example, the cperatcrs acA and beB are

identical then the matrix element on the right hané¢ side cf

equation (B.3) can ke written

<o|...ba...lo> = <o|...ab...|o> (E. 14)
Eut since a aﬂd b anticormute

<o|...ba...|o> = -<o0|...ab...|o> (E.5)

‘thus proving that the cperatcrs inA apd B ecr in C anéd D myst te
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distinct if the term is tc te ncn-zerc., Thus fcr LCL-zeIC terms
cf the seccnd type C and B will have no operetors in commcr ncr
will A and p. Similarily, for ncn-zerc terms ¢f the third type A
and C will have nc cperators in'common nor will B an¢ D.

The fourth +type <cf ters ccrsists ¢f the remairder cf the
terms in equation (B.3), i.e. those terms for which CD=AB tut
which are neither of the second ¢r third tyre. These terms can
be thocught c¢f as  describing +the exchange of ltare nuclecr-
antinﬁcleon pairs Ltetween the physical pnuclecr ccres cf and o'
to fcfm the physical nucleocn cores A+ and B+._These terms shculd
have little effect for two reascns, Firstly, althcugh the masses
cf the bare nuclecné are not known, it will te assume¢ tkat tkte
btare nucleon-antinucleon pair will have a sufficiently large
mass that these terms can be thought of as descriting sktert
range forces which will not te significant fcr medium energy
scattering. Secondly, these termé will only arise when at 1least
two of the nucleon cores consist cf three cr ncre bare ntcleons
and antinucleons, It will be assumed £hat the wavefuncticn cf
the physical nucleon will be =srall in that pfart cf the Fock
space representing three or more bare nucleons ané antinuclecrs.
Thué inlall calculations of Cutkcsky ratrix elements these ‘core
exéhange' terms will be neglected.

With the atove arquments, equaticn (B.é) car be written

(igncring ccre exchange terms) as

{aB|cD} = } <o|BLAKCTM+D+N+|o>
(AC,BD)
(E. 6)

+ <o|BLAKC M DN 0>
(BC,AD)

‘where each term ip the susmaticns is tc be gultiplied byzf(AK)

kY
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etc. Since [L,K)=0 and {A,B}=0 this can be writter as

<o|AKBLC+M+D+N+lo> + ) <o|BLAKC+M*DfN*|o>

(AC,BD) (BC,AD)

{AB|cD}

<o|AKC+LM+BD+N+|o> -3 <o|BLc+KM*AD+N+|o>
(AC,BD) (BC,AD) (B.7)

the second equality resulting from the fact that fcr terss cf
the second type'{BJﬂ}=0 and fcr terms cf the third tjpe’{AJﬂ@=0.

Using equation {(3.21) this can be written as

(aB[cp} = § <o AkcT e, 11112, £ 1180 o> /n () !
R (AC,BD) |

-7 3 <o|BLe (e, 111K, £ 17408 0> /n () !

R (BC,AD) (E. 8)

In order tc exfress the abcve ratrix elesert in terms cf
one nucleon matrix elements, the unit operater is inserted

between the nested commutators, The unit creratcr can be written

1=3 EQ'|o><o|EQ/n(@ !n(E)! | (E.9)
E,Q ~

wvhere ¢ is a product cf mescn annihilaticn creratcrs and E is a
rroduct cf bare nucleon and antinucleon annihilaticn <cperators

satisfying the conditicn

BE o> = +1E7|o> (8. 10)

where B is the baryon number operator., Terms in which E is the



67
unit cfperatcr are also tc be included in equation (E.9).

Thus the matrix element {AB|CD] ray be writter

{AB|cD}

3 <ol AkCT [ [x, 1 11ETQ" [o><o| QT [, 71180 N [05 /n(R) !
£,Q,R (AC,BD) '

x n(Q)!n(E)!

-7 ) <o|BLCT[[x, 1111 Q" [o><o| EQ [k, 114D o5 /n(R) !
E,Q,R (BC,AD) '

x n(Q)!n(E)! (E. 11)

Now, all terms in which E#1 will vanish., For example, ir tte
first term if E+#1 then it either has an cperatcr ir ccmmon with
A (in which case the operator is in ¢t which causes the patrix
element to vanish tkecause c¢f the anticoasrutaticn <¢f identical
operatcrs) or it does not have an operator in commcn witk A (ih
which case this operator will anticcerzute with A ard annihilate
cn the vacuum state), A similar arqument holds for the seccré
term of equation (B.11)..

4 comrutes with[[f&ﬁ]] since Hr,MT” ccntains cnly

Also, Q
meson creation operators, Similarily Q ccmmutes with both

Iﬁur+]J and [Ugrf]]. Since r}0>=0 for any meson snnikilaticr

operator,
[[r,17]]]o> = RM' |o0>
, + t -
<o [[L,r"]] = <o|LR (E. 12)
<ol [[K,rT]] = <o|kr’

Thus equation (B.11) can be written
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{aBlep} = § ¥ ‘<o|AKQ+RC+M+|o><o|BLR+QD+N+|0>/n(R)!n(Q)!
Q,R (AC,BD) | (E. 13)

-y <o|BLQ+RC+M+|o><o[AKR+QD+N+lo>/n(R)!n(Q)!
Q,R (BC,AD)

The restrictions c¢cn the summaticns in the abcve equaticn can now
te remcved without affecting the result. That is, terrs in wtich
CD AB will te zero as will all terms in which C#4A ard D#B. cr B#C
and A#D. Also, terms of the third type can te addec tc tike first
summation (since they will be zerc) and terms c¢f the seccnd tyre
can be added to the second summation (since they Qill te zerc).
Terms of the second and third type in which A=B=C=D will cancel
tetween the first and ;second summation. Ferformring these
summations, the overlap matrix elerent can be written
{aB|CD} = } <A|Q+RlC><B|R+Q|D>/n(R)!n(Q)!

R,Q (E. 14)

- 7 <lQrle<alrfe]p>/m@ n@ !
R,Q

Thus the matrix element Letweer two vurexciteé Cutkesky
states has been written as a sum of products cf ratrix elements
of physical one nucleon states. The only approximaticn in this

result is that core exchange terrs have kecen igncred, .

B.2 Unexcited Interacticn PFatrix Elements

Interaction wmatrix elerents are rmatrix elements cf tte
Hamiltonian, H, or the vertex operator, [mV], evaluated between
Cutkosky states. The matrix element of the Eémiltonian will te
evaluated first as it uses all the ideas nrecessary fc evalvate
ratrix elements of the vertex operator.

Using the definiticn of Cutkésky states the ratrix element
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of the Hamiltonian lketween unexcited states car be written
{AB|H|CD} = <olBAHC+D+|o> (E. 15)

Tﬁe general method used is tc ccnmu£e H t¢ the right fpast either
¢’ or D' and then serarate the resulting <Cutkcsky smatrix
clements into one nucleon wmatrix elements fcllcwirg the methods
cf the preceding secticn, Since the final result shculd te
symﬁetric with respect tc initial andﬂfinal states the rrocess
should be repeated commuting H with either A; or E. Tﬁe final.
result will be the average of the twc resuvlts cbtained abcve,

.1.

Using the fact that C and £+ anticommute

‘ tint tot
HC+D+|0> = cTuot-pMuc’) o> - (1,07 1c" o> + [,c"ID" [o> - HC'D' |o> (B, 16)

Since C+|0> and D+|O> are eigenstates of the Hamiltcnian

Tt E. 17
(C+HD+—D+HC+)|0> = (EG+ER)CD | o> ( )
Lefining
= L E kfk
Hp = By (E.18)
k
the last three terms of equaticn (B.16) can be uritten
ot typt t ot
- [H,D']C {o> + [H,C ]D |o> - HC' D |o>

e e+ e [ (E.19)

t + t

= HHC*D+|o> + D an*|o> -C H“D*|o> + VC+D+|0> +D VC+|0> - C+VD+|0>

The terms in#olving HTr in equation (E.19) will cancel as can tLe

verified by writing ct ana o explicitly and evalvating those
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terms.
Thus the matrix element of the Hamiltonian can te written
(aBlu|cp} = (EGHEL) {AB|CD} + <oIBAVCTD1'|o>
+ <o|BAD+vc*|o> - <o[BAC+VD+|o> (8- 20)
Using the notaticn c¢f equations -(B.2) a typical term cf the

three matrix elements involving V is

Tt

<o l BLAKVC M D+N+ I o> + <o I BLAKD+N1-VC+M+ l o> - <o I BLAKC+M+VU+N+ I o> (B.21)

%
where the ccefficients a (AK) etc. have teen omitted.
To proceed, V is written as a sur cf five terms., V can be

written in terms c¢f the fundamental dynamical varialkles as

oot
V= ’ st Tv(V,W,S,T)V Ws'T | (B.22)

where V+ and W are either unit operators or are prcducts cf cdd

numbers of kare nucleon and antinuclecn cgerators ané:ﬁ

end T
are grcducts of meéon cperators, The ccefficierts v(V,W,S,T) %ill
depenq uron the type of interaction chosen, Ncw, the surm ir
zquation (B.22) is kroken up intc five terms, The first tern,
V', ccnsists of all those terms in which VU=W=1 . Tkese will tLe
terms describing the meson-meson interacticn, The <cther four
terms are denoted bj Ve, vg, VE and Vg. vg consists cf all thcse
terms in which W=C and vg ccnsists cf all thcse terms in which
W=D » v; consists cf those terms in which W is partly centaireé

in ¢ and partly contained in D while vg ccnsists c¢f thcse terms

in which ( contains some bare nucleon or antinuclecn cperatcrs
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rot in C or?D .

Thus, uriting

_ ' (K] 1y [ e
v.- VIV VT Ve Y | (E.23)
some simplifications can Lke rmade immediaiely ir the matria
elements involving V., The first matrix element ipvclving Vv in
equation (B.21) becomes
<o srAkve M o' |o> = <o|BLARV' chfofat | 0>
+ <o|BLAK(VY+vi DN o> + <o|BLAKV}' €N | 0> (B« 28)

The matrix element involving vg will vanish since at least cre
of the annihilation operatcrs icp W will articconoute with 231l tle

cperaters in ¢" and »" and annihilate on the vacuur state. Since
t _ + _ _
vi'C o> = VD' |o> = o (E.25)

the matrix element involvirg VE uilllnct be able tc be exrressed
as products of cne-nucleon matrix elements. vsince tiis omatrix
element only appears when either ct cr Df(cr bcth) ccntain
three cr more bare nucleon and antinucleon ofperators, this
matrix element will Le neglected cn the basis that the nucleon
cores are primarily composed of single tare nuclecns.

The second matrix element in equaticr (B.21) beccnes

ooty t

<°lBLAKD+N VC'M |o> = <o|BLAKD+N+V'CfM+Io> + <0|BLAKD1-N+V(':'C+MT|0> {E. 26)

The matrix element invelving v: will vanish fcr the same reason
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as in equation (B.,24) and the matrix element irvclving Vg uiil
vanish as a result cf equation (E.25). Since C+ anc DJr cannct
have any operators in cosmcn (otherwise the matrix element would
vanish as a result of the anticommutation of icdentical tare
nﬂcleon operators) VS cannct cqntain ary tersms ir shich W=C .

Thus the matrix element involving V% will vanish,

D
By similar arquments

<o|BLAKC+M+VU+N+|o> = <o|BLAKC+M+V'D+N+|o> + <o]BLAKC*M+v6'D+N+|o> (E.27)

Thus the matrix elements invelvirg V can be vwritten

tot t

<o |BrAR(vy '+ DN o> + <o |BLAKD N (v +v7) P [0

+ <o BLAK (v} +v ) M DTN o: - <ol BLARC™! (vr vy D N | 0>

ottt

- <o|BLARV'C'M'D'N |o>- ) (E.28)

The terms in the above equation containing va can te written

tot, t

- <o|BLAK(Vé'+V')D+N C'M |o> + <o|BLAKD+N+(Vé'+V')C+M+|o>

(B.29)
- - <o|BLAKD+[Vé'+V',N+]C+M+|o>
In writing the abcve equation use has teen made of the fact that
since each term in vg ccntains an ever numker of trare nucleér
and antinucleon cperatcrs and since W canncf .ccntain any
cperatcrs which are in D, then [D,vg]go.

Now since e€ach term of ‘S+V' ccntains mescr arnihilation

cperatcrs, equaticn (3.20) is used to write

v 0] = <2 (e 1Y 1/ | (E. 30)
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+ +
- ;'<o|BLAK[[r,U+N+]][[Vé'+V',r ]]CTM |o>/n(R)! {E.31)
R
Using methods identical to thcse wused in evaluaticn c¢f tle
cverlar matrix element, the aktove expression carn be wriitten
-5z <o]AKP+QRD+N+]o><o|BLQ+P[(Vé'+V')R]C+M+|o>
R Q,P '
+I' % <o|BLP+QRD+N+|o><olAKQ+P[(Vé'+V')R]C+M+i0> (E.32)

R Q,P

each term being divided by n(Q)!n(P)!. The Gereralized vertex

cperatcrs [ VR] and. [RV] are defined by

[VR] = [[V,r 11/n(R)}

.I.

[RV] = [VR]

Performing the sums over A,B, etc. and using the fact tthat

(B.33)

[(vé'+v')R]C+M*|o>==[VR]C+M+|°> | (E. 34)

the above expression can be written

- T <A|P+QR|D><B‘Q+P[VR]|C>/n(Q)!n(P)!
R Q,P _

+ 5t <s|eTqr|p><alQtR[VR] [c>/n(@) tn(@) ! (E.35)

R Q,P

Similarily the terms invclving VB yield the exgressicn
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AN <A|P+QRlC><BlQ+P[VR]|D>/n(Q)!n(P)!

R Q,P
-z' <B|P+QR|C><AIQ P[VR]|D>/n(Q) !n(P)!
R Q,P
Ey defining
H =1t aleforle<slo’e v [po/n@ eyt
AC,BVD ~ o 0%y n(Q):n(P). (E.37)

-the Bamiltonian matrix element can te written

(AB[1|CD} = (E+E,){AB|CD} + H H i

- + -
AC,BVD BC,AVD BD,AVC HAD,BVC

- {AB|v'|cD} + term involving 2% (E.38)

In order to make the derivaticr symmetrical with resgect to
initial and final states the whole procedure 1is repcated

starting with the analcque of equaticr (B.16)

<OIBAH = <OI(BHA-'AHB) - <olA[B’H] + <OlB[A,H] - '<O|BAH (E.39)

Using the same method the result is cbtaired
{AB|H|CD} = (E,+E;){AB|CD} + H

- + - H
avc,Bp ~ Hpvc,ap T Mpvp,ac T Mawp,sc

- {AB]V'|CD} + term involving vg' (E.40)
where

Have,Bp = E' ZP<A|[RV]PTQIC><B|R+QfPlD>/n(P)!n(Q)! (E.41)

The final expressicn for the Hamiltcrian matrix element is
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1

(AB|H|CD} = Z(E,+E+EE) (AB[CD} + (Hyo gyp * Hyyp ac = Mpc,avp ™ Mavp,Be

A
- H - H - {AB|V'|CD}
+ Hep ave + Have,sp T YAD,BVC BvC,AD) ~ { [v']

+ term involving VI'{’

(E.U42)

The expressicn for the Cutkosky matrix element cf the
vertex operator, [mV], fcllcus the akcve derivation startirg at
equaticn (B.20) with V¥V replaced ty [mV]. The seccrd and third
;atrix elements in equation (E.20) will not Lte present in this
derivation which will resﬁlt in the unit cperatér being inéluded
in all the summations of the resulting expressicn (tke unit
operator is included because equaticn {(3.21) is vused rather than
equaticn (3.20)). Since the energy terms come from manipuletices
preceding equation (B,20) the result fcr the vertex crerator
will nct include these terms.

Thus the final expressicn .fci the natrix element cf the

vertex crerator (erV] is

v

+
v BD,AVC AVC,BD

+
AVD, BC

v A

Mmbwnw}%%w‘ +V

AC,BVD BVD,AC 'BC,AVD

) N . 11
- VAD,BVC - VBVC,AD) - {ABI[mv']JCD} + term involving &:th;)

vhere VAC,BVD = ) <A|P*QR|05<B[Q+p[mVR]|D>/n(P)!n(Q)1 (E.LY)
_ R,Q,P
and Vave.Bp = ) <A|[mRV]P'Q|C><B|R'Q P|D>/n(P) ! !n(Q)! (E.u5)
’ ’Q!P .

Matrix elements between excited Cutkosky states irvclve
"some additional complicaticns, HEcwever the lasic metlod cf
expanding these matrix elements iptc matrix elements cf one
nuclecn sfates is the same as for the unexcited Cutkcsky states.

The overlap matrix element calculated here will be between
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two singly excited Cutkosky =states. <Since this calculaticn
<xhibits all the ccmplicating' features of overlap onmetrix
clements between excited states, thel cverlatg uafrix elenment
tetween any Cutkcsky =states can te calculateé usinc metkcecs
tased on the following calculaticns,

Using the definition cf singly excited Cutkcsky states the

matrix element can ke written

<o]BAmk+C+ ¥

D |o> + <o|BAm(Ck):D+|o> + <0|BAmC+(Dk):|°>

{ABm|CDk}

+ <°lB(Am)sk+C+D+l°> + <o[B(Am)s(Ck)zD+|o> + <o|B(Am)SC+(Dk)Z]o>

t oot
<o|(Bm)SAkTC+D+|o> + <o|(Bm)sA(Ck)ZD+lo> + <o|(Bm)SAC (Dk)s|o>

{B.U6)

+

The first matrix element c¢pn the richt hard side c¢f the altove
equaticn can be written

.f.

<o|BAmk'cD o> = ka<o|BAC+D+|o> + <o|B[A,k+]C+[m,D+]|o>

(R.U7)
+ <o|B[A,k 1 [m, ¢TI0 o> + <o| [B,kT1aCT [m,01]|0> + <o| (B,k™A[m,cT1DT|0>

and matrix elements involving only one meson operatcr can be

written, for example,
t.t
<oIBAm(Ck)SD [o> = <o|BA(Ck)Z[m,D+]|o> + <o|BA[m,(Ck):]D+|o> {B.48)

Thus every matrix element in equation (E.46) can le written as

<0|FI?F+FWO> where the orferatcrs .FT (i=1,e4e,4) can all be
1°2°3°4 i
expressed in the form v
' + +. t T
F,' = L £ (PDFM (B. 49)

F,M
and F+ and uf satisfy equations (2.18)-(2.18).
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Thus all patrix elements resulting from equaticn (E.46) ty
using equations (E.47) and (B.48) and similar equaticrs can be
expanded in terms of one nucleon matrix e€lements usirg tte
tecniques of section B.1. The <resultirng e3xpressicn can be
written
‘ - + : + t
{ABm|cDk} = &, {aB|cD} + ] <A|Q'R|c>{-§, <B|R'Q|D> + <Bm|R Q|Dk>
km R,Q km
+ <BmlR+[k+,Q][D> + <B[[R+,m]Q]Dk> + <B|[R+,m][k+,Q]|D>}
+ 1 <anla'®le> + <al @, mIrT|c>3 (< [RTQlnie + <8R k" 01 p>)
R,Q

+ antisym. (E.50)

The sign of the summations in the abcve equaticn is determined
by ncting that the expressions will te antisymmetric with
respect to exchange c¢f A and B cr € and D. When‘the pa trix
elements are siwmplified in the akove equation Lty use cf
equations (3,24)-(3.26), the S-functict in the summaticns will
vanish and all the terms in equation }E.SO) will te altle to te
written as matrix elements invclving cre nuclecr states and/or

rion-nuclecn scattering states and vertex operators.

E.4 Fxcited Interaction Matrix Elerments

The interacticn matrix element calculated here will be
between a singly excited Cutkcsky =state and an uneycited
Cutkcsky state, The more complicated matrix elements ¥ill not be
given here since they are not used in the «calculaticns c¢f tthe

pion-deuteron T-matrix., However the methcd of evalvating them is
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similar to the techniques used Lelcw ard in SgctiCt B.3.

Using the definiticn of Cutkosky states the matrix elerert
of the BHamiltonian Lketveen an excited arnd an urescited state can
te written

{AB|H|cDK} = -<o|BaHCT DK 0> + <o|BAH(Ck)+D+|o> + <o|BAHc+(Dk)*|o> (B.51)

The seccnd and third terms above can ke evaluated using the
methods of section B.2. The results are

.t _ 1 .+
<o|BAH(Ck) ‘D' |o> = (B, FELHE HE 4E ) <o|BA(CK) D' |o>

+% 7' ¥ <a]or|ck><B|Q MVR] D> /n(Q) tn()
R Q,M
L v Tt + :
+5 1 L <a|rR'QM[ck><B| [RVIM Q[D>/n(Q) In(i) ! (B.52)
R Q,M. ‘
+ antisym.

P

t, ot
<o|BAHC+(Dk)+|o> = %(EAfEB+EC+ED+Ek)<o|BAc (Dk) o>

+Ep <A|M*QR|C><B|Q+M[VR]|Dk>/n(Q)!n(M)!
2
R Q.M
+-% A <A|R+Q+M|C><Bl[RV]MTQle>/n(Q)!n(M)!
+ antisym.
The first term in eguaticn (E.51) can ke written
<o|BaHC'D Kk o> = <o|B[A, K THCTD 0> + <o|[B,k+]AHc+D*|o>
+ Ek<o|BAk+C+D+|o> + <olBA[Vk]C+D+|o>

(E. S4)

All the atove terms can be evaluated using the methcds cf the

previcus sections. The c¢nly differences are that the enercy tern

. . 1
[ - -— n
in the first two matrix elements akcve beccres Z(EA+EB]ﬁJEC+Hﬂ
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and there are extra matrix elements invclving [Vk] sirce
t . t
<o| [A,k'JH = (E,-E) <o|[A,k'] = <o|A[VK] (B.55)

The final result for the Hamiltonian matrix e€lement is

- 1 -
{AB|H|CDKk} = S(E,+E+E +EFE) ) {AB]CDK}

gr 7 <autor|cks<slQtuivr] o> + <a|rfQ|cio<B| (Rv]TQ|D>
R Q,M ,
+ <A|M+QR|c><B|Q*M[VR]|Dk> + <A|R+Q*M|c><Bl[RV]M Q|pk>

1
+t5

- <A|k+M+QR[C><BlQ+M[VR]lD> - <A|k+R+Q+MlC><B|[RV]M+Q|D>

- <A|M+QR|C><Blk+Q+M[VR]|D> - <A1R+Q+Mlc><B|k+[Rv]M+Q|D>

—-%<AIM+QR|C><B|Q+M[VkR]|D> -%<AlR+Q+MlC><B|[RVk]M+Q|D>

.f.
+-% ) —<A|M+QR|C><B|Q*M[VkR]|D> <a|RTQ|c><B| [RvK]M Q| D>
R Q,M ‘

(B.56)
+ antisym. '

Although it appears as though the last two terms will cive zerc
meson exchange'terms, these terms will cancel with scme c¢f the
cne mescn exchange terms.

The derivation for the =matrix elements cf the vertex
cperatcr [mV] between excited énd unexcited or exciteé Cutkcsky
states will not e given here as it car be evaluvated using the

techniques of section B.2,

&
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In section 4,2, the T-matrix in the one-meson exchange

approximation was written as below

(1) R - +
TD'm,Dk = Taiee + Typee + Teame T Tsame {(C.1)

The terms on the right hand <cide of the above equation are

written in terms of one-nucleon matrix elements in the following

2quations,
+ '
T =1
diff = 2 ZABCD <DOIAB) (CDIDO> X
FGq

x ( <A|[mv]|F><F|[vq]|c><B| [Vk]|G><G| [qV] D> a, (E)
+<A| [mV] |F><F]| [Vq] |c><B| [qV] | G><G| [VK] D> a, (E)
+<A| [Vq] |F><F| [mv] | c><B] [Vk]|6><G] [qV] [D> a,(E)

+<A| [vq] [F><F| [mv] |c><B| [qv]]G><C] [VK][D> a,(E) ) ©.2)

- 1 t
Taies =5 Lygep <0, 14B)(CD[D > x
FGq

x ( <A|[mv]|F><F|[qv]|c>%B|[ij|G><G|[Vq]lD> ag (E)
+<A| [mV] |F><F| [qV]|Cc><B]| [Vq] |G><G]| [Vk] |D> a (E)
+<A| [qV]|F><F]| [mv] |c><B] [VK] |G><G] [Vq] |D> a, (E)

+<A| [qV]|F><F| [mV]|C><B| [Va]|G><C| [VK][D> ag(E) ) (€.3)



™t . ly
same 2 “ABCD
FGq

Lo
<DO|AB)(CD|DO> x

x ( <A|[Vq]|C><B| [VK]|F><F|[qV] [6><G] [mV] |D>
+<a| (va |><n] (qv] [Fo<F] (v [ o><c] (] >
+<A| [Vq] | c><B| [mV] | F><F| [VK]|6><G] [qV] [D>
+<A|[Vq]|C><B|[mV]|F><F][qV]|G><G|[Vk]|D>
+<a| [Va] |c><B] [aV] | F><F] [mV] |G><c| [vi] | D>

+<A| [vq] |c><B] [vk] | F><F| [uv] | 6><G| [qV] | D>

. =1y
same 2 EABCD
FGq

]
<D _|aB)(cD|D > x
o o

ag (E)

10®)

1168

a..(E)

12

ay3(E)

ay,(E)

x (ea|[av]|c><B| K] [><F| [va] [><F| V] [0 a5 (@)

+<a] [av] |c><B] [Va] | P><F| [Vic] |G2<c] [mv] | >
+<A|[qv]|c><B|[ﬁV]|F><F|[Vk]|G><F|[Vq]|D>
+<a| [av] | <] [av] |2><F | [va) [o><c | (v o>
+<A| [av] |c><B] [vq] |F><F| [mv]| G><c| [Vk] D>
+<A| [qV]|c><B| [Vk] |F><F] [mV] |6><G| [Vq] |D>

where

LA (B) = ——— (.l - MUAPIA )
1 vl(v2+v3) v, v3(v1+v2+v3+v5)

2v. +v

a,(®) = - v +i )? v v v,)
V1ValVa Tyl Y TV s
am:-__l_.__(.l__ 1™ )
3 vl(v2+v3) v, v3(vl+v2+v3+v4)

216 (F)
ay7(E)
a;g(E)
19(®)

20¢E)

[

) (C.4)

(C.5)

(c.6)

(c.7m

(c.8)



2v1+v4

a,(E) = +
4 vlv3(v2+v3)(vl+v2+v3+v4) . ' (C.9)
aS(E) = - ——%_;v—‘)— (Cc.10)
MAZAPIAE!
a (E) = 1 < 2v1+v5 . vl-vz—v3> C.11)
6 . Vl(v2+v3)(v1+v2+v3+v5) Vv, v,
_ 1 ' (C.12)
a,(E) = —mM™———
7 vlvz(v2+v3) ' '
) - - 1 . . ( 2v1+v4 . vl—vz—v3) (C.13)
8 v, (v2+v3) (vl+v2+v3+v4) vy v,
) = 1 < 1 ity ) | (C.14)
9 vl(v2+v3) v, v3(v1+v2+v3+v4)
a, () = X < 1 vyt ) , (C.15)
10 V4V, v, (V2+v3)(v1+v2+v3+v4)
ail(E) = - ——1_,,7)‘ ( 2 4 ivzﬁvi:vi ) ) (C.16)
vy vty V2 V3TV Vg
Us | (C.17)
a., (E) = _ C.
;2 _ vlv3(v2+v3)(vl+v2+v3+v5) _
R | ’ - c.18
a13(E) v ( )

1V2Y3
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1
a. , (E) = (c.19)
14 V1v2V3
1
a,.(E) —_— (C.20)
15 v1v2(v2+v3) ,
816(E) - 1 < 3V1+'V2"|‘Y3+2V4 N 2V1+’V4>
v (vytvg) (vytvivady,) vy o A .
(c.21)
a. (E) = = ——t | (c,22
17 v1v3(v2+v3) »22)
’ 2y 42 v -
ajg(B) = - = T )% - < vy t2vatvg V1TV,
1V 13 (Vv tvgtvg) vy v,
(€.23)
1
a,.(E) = (C.24)
19 V1v2v3
1
a,.(E) = :
2 C,25
0 vlvzv3 ( )

The energy functions Vq,...,V5; are obtained as outlined
below. . If the vertex involving the mescn n (the final emitted
‘meson) is removzl from 2ach diagram, then all diagrams will

appear similar to the diagran belov.

— |4

B2 3 )
S

o,

Cf
>
—0
(@]

C
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The energy function is givan by

Vi = Bpy ~EBpy | (c.26)

wvhere the indices i are as specified in the diagram akove and

where

E sum of energy of particles going into vertex i

Ii

and EFi sum of energy of particles coming from vertex 1i.

Note that since time is assumed to ~ be increasing tcwards the
left in the above diagram,'EFi corresponds to the energy cf the

rarticles to the left of the vertex i and EI ccrresgcends tc the

i
energy cf the particles to the right of the vertex i,

Since the functions Vis Vo and vy can vanish, a term -ie
cshould be added tc each of these energy denominaters., This will

insure that the meson at each of these vertices wwill cbhey the

apprcpriate boundary ccnditions.
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APPENDIX D

D.1 The Deuteron HWavefunction

The deuteron wavefunction (ABth is related to the
conventional deuteron momentum space wavefunction of McMillan

and Landau(1974) in the follcwing way

(A_BIDO> = /E_-XO(TA’TB) § (_15_0_5_) ¢ (_K_’OA’OB:M) (E' 1)
where K=k, +k; (C.2)
- 2 A B
and M is the projection of the deauteron spin. The function is

the singlet isospin function as given by Blatt and Weisskopf
(1952) . The quantities 1 and ¢ represent the isospin and spin,
reSpectiéely, of the nuclecns.

It will prove to be <convenient to separate the spin
functions from the abkove deuterocn wavefunction. Thus the
wavefunction will be written

=z, & O X, ,(0,,0,) D.U
¢(£,UA,OB,M) =L, ¢y (K) #101942% (D. )
where X1y 2T the triplet spin functions as given by Blatt and

Weisskopf (1952) and

| Ly MRl M
M0 =T 0 T, @ by + W ) Y, R ] (0.5)
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The functions ﬁmﬁk) are spheric#l harmcnics of the unit ' vector
R and the cozsfficient in the last term is thé conventional
Clebsch-Gordan coefficient. The functicns U and W are the S and
b state momentum space wavefunctions wused by McMillan and

Landau (1974) .,

In section 4,1 the picn-deuteron single-scattering T-matrix
is written

r(0)

[
D'm,Dk = ZA,B,C<DQIAB) <A| [mV]]Ck> (CBIDO? (D.6)

Delta functions of momenﬁum can be extracted from the pion-
deateron and the pion-nucleon T-matrices, By explicitly writing
the above summation as a’product of sums cver spin and 1isospin
and an integial over momsntum, the above egqudtion can be writteh

T(O)(D'm,vk) ) (Ev,+mfgv;k).

+5 +3
3k d3k_d3 "|AB)T (Am,Ck
) ) a3k, a3k d%k, <D ' [AB)T( )

1
-4

TA,TB,TC=—% 019329¢"
(D.7)
x (CB[D > § (kytm-kq k)
Usingv equations (D.1) and (D.4) and using the resulting delta
functions to e2liminat2 two of the integrals, equation (D.7) can

be expressed in the latoratory frame as
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0
TIE )(Evvm; 0,k; M',M) 8 (k+m-k)
+1 oK '
M M
= 1 la¥ ap, (eem) 60 8 k)
2,07 =-1 ‘ .
+ ' +5 .
x 2 TX L SRR X Gty Oz L M 00X (9,0
40T T A% %2
T(k »I; k Ops0c3 TA,Tm,TC,Tk) (C. 8)
where kR =x+kn (C.9)
- D. 10
k.=« ( )

The sums over isospin can now be done and the final result

written in the fornm

18 e oms 0,k M) 8 (gm0

1 x ‘ (C.11)
1)
- 7 lade o Gedaem) el (o (T HIg Y6 G )
2,8"=-1
wvhere
L) ' . T = 1,)
T, %, y(0,,0 )X, (o ,GB)TL(EA,EJEC,k,OA,OC,TA cFH T T
L' GA,(,B,OC__,E X100 90980 %1,. 4% (1: '
and where ng,ls the same quantity with T, = T, =~

1
~ A— C 2
T

It should be noted that the pion-nucleon

-matrix in
equation (L. 12) refers to the labcratory frame. This can be

related to the pion-nuclezon T-matrix in the pion-nucleon cM

frame using equation (B.7) of McMillan and Landau(1974).



D.3 Double-Scattering

——— i o — ——— — - - ——— i —

In section 4.2 the pion-deuteron doutle-scattering T-matrix

is written

Té,l?n o= I <o |aB) <A [mv]]cq><B] [qV]|Dk>(CD|D_>8 (E+E —E-E\)
‘ ? A,B,C,D,q

(C.13)
Using the same techniques as in section D.2, the above equatio

can be written

P um 0,k MM 6k, tmek)
L poms 0k kpytmk
(D.14)

+1 ¥

- 3,43, M Lo M _
" g:_l.Jd calq o, (cra-kCem) 600 Ty, 8Ckptmk)

where .
B +4 A )
Torg=™ 2 L xo(TA’TB)Xo(TC’TD) g g XU"(GA,OB) Xlz(oc’qD
T, T ,
A’ B_ D. 15
TC,Tg=-% oC,OD—-% | ( )
+1 |
x _Zl TL(E‘A’E;,I—(C’B‘; GA’UC; TA,TCaTm,Tq) TL'(}SB,_Q_; ED,B_’ OB,OD’ TB,TD,Tq’T
“q
and
k,= xkta-R (C.16)
ky=x+k-4 (D.17)

ke =k =x (1:.18)

As stated in the previous section; the pion-nucleon T-
matrices in the laboratory frame <can be related to the T-
pion-nuc}eon CM frame using equation (B.7) cf
HcMillan and Lanlau(1974),

matrices in the
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