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Abstract

The electronic energy band structures of two highly conducting,
anisotropic solids have been calculated using the extended Hiickel method.
One-, two-, and three-dimensional models of the organic charge transfer
salt tetrathiofulvalinium tetracyanoquinodimethan (TTF-TCNQ) and of the
inorganic polymer polysulphur nitride (SN)x have been studied.

The results indicate that the band structure of TTF-TCNQ is well
described by a tight-binding, one-dimensional model in which interactions
between stacks of molecules are neglected. The Fermi surface is seen to
consist of extremely flat electron and hole surfaces, the nature of which
is inconclusive in predicting a Fermi-surface-related instability
leading to a Peierls distortion.

A one-dimensional model of (SN)x predicts metallic behaviour as
the Fermi energy is found to lie at é symmetry-induced point of degeneracy
where two bands cross. The single chain is highly unstable against a
symmetry-reducing distortion; however, three-dimensional interchain inter-
actions appear to stabilize the structure. Consequently, the Fermi surface
is that of a semimetal with electron and hole pockets. The essential
features of the band structure can be explained by a simple tight-binding
model involving SN molecular anti-bonding = orbitals. Differences in the
reported crystal structures used in the calculation are seen to have no

qualitative effect,.
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Chapter 1: Quasi-One-Dimensional Metals

1.1 Introduction

One of the most significant developments in solid state physics in
recent years has been the dicovery that certain organic solids with a
high degree of anisotropy exhibit metallic properties. The importance of
these "quasi-one-dimensional' materials is that they provide a direct
experimental check of the theory which has been worked out for various
one-dimensional (1-D) models.

Of particular interest are the charge transfer salts of tetracyano-
quinodimethan (TCNQ) which have the highest electrical conductivity of
any known organic salts. The large planar TCNQ molecule is a good accep-
tor with the extra electron occupying, unpaired, a w-orbital (i.e. a wave-
function which is odd under reflection through the molecular plane). This
feature, together with the arrangement of the molecules face-to-face in
stacks imparts a strong 1-D character to the electronic properties.

An impetus to the research effort in this field was provided by
Coleman et al. (1973) who reported measurements on'tetrathiofulvalinium
tetracyanoquinodimethan (TTF-TCNQ). They observed a metallic conductivity
from room temperature down to 58K where it became anomalously high, or in
their words, superconducting. Below 58K, a sharpAdrop in the conductivity
indicating a phase transition to an insulating state was observed. Further
work by various groups has confirmed the metallic properties and the metal-
‘insulator transition, but has not duplicated the extremely high conduc-
tivity. The work on TTF-TCNQ has spawned a whole host of organic solids

with similar properties; however, TTF-TCNQ remains the prototype, and



consequently the most studied.

| A good deal of the interest in 1-D conductors stems from the concept
of a high temperature superconductor first introduced by Little (1964).
While attention has been focussed on the TCNQ salts in this regard, other
quasi-1-D systems have also been investigated. One, the inorganic polymer
polysulphur nitride ((SN)x) which was known to have a high conductivity,
has recently been shown by Greene et al. (1975) to undergo a superconduc-
ting transition at about 0.3K. (SN)x is, in some respects, quite similar
to TTF-TCNQ; it differs,_though, in that it does not have a metal-insula-
tor transition. |

Superconducting or not, quasi-1-D materials are of fundamental

inferest as novel, relatively unstudied systems. This thesis concerns it-
self with a study of the two different examples already mentioned, TTF-TCNQ
and (SN)x. Some exp;rimental results and several theoretical concepts
are presented in the remainder of this chapter. Chapter 2 deals with
TTF-TCNQ and Chapter 3 with (SN)x. Finally, in Chapter 4, the results of
the calculations are discussed, and a comparison of the two systems is

made.

1.2 TTF-TCNQ: An Organic Metal

In TTF-TCNQ the two constituent molecules are stacked on separate
chains which interact weakly in comparison to the intrachain coupling,
resulting in conduction primarily along the chain axis. Because TTF is a
good donor, a charge of & one electron per TTF is transferred to the TCNQ.
 Each chain thus carries a net charge so that in a simple 1-D band picture
TTF-TCNQ is expected to be a metal.

Typical room temperature conductivities parallel to the chain axis



are og% ~ 300 - 1000 (Q—c:m)_1 (Tiedje, 1975; Schafer et al., 1974;

Etemad et al.,1975). As the temperature is lowered, o" increases approx-

il

RT" At 53K, a sudden drop occurs,

imately as T2 to a peak value of 10 - 15 ¢
signifying a phase transition to semiconducting state. Below 53K, ol
decreases smoothly down to 38K, where another sharp drop occurs, marking

another phase transition. The room temperature transverse conductivity,

1

ORT? is only about 1.4 (Q—cm)-l with a 58K peak of three times this figure.

The anisotropy ol /oL is thus greater than 300.

Various other experiments have confirmed one or both transitions:
magnetoresistance (Tiedje et al.,1975), thermal conductivity (Salamon et
al., 1975), specific heat (Craven et al., 1974), magnetic susceptibility
(Tomkiewicz et al., 1974), and the thermoelectric power (Chaikin et al.,
1973). The experimental conclusion is that TTF-TCNQ is a metal above 53K

and a small gap semiconductor below.

1.3 (SN)x: A Polymeric Superconductor

(SN)x has been known to be highly conducting singe the experiments
of Goehring (1956). It is only with the recent interest in the quasi-1-D
solids that (SN)x has again become subject to experiment. The structure
is similar to that of TTF-TCNQ, consisting of parallel chains of atoms.
The room temperatufe conductivity parallel to the chain direction is
GQ% n 1000 (Q—cm)_1 (Hsu and Labes, 1974; Greene et al., 1975); with de-
creasing temperature o' increases until the onset ofvsuperconductivity
at 0.26K. The transverse conductivity, OL, is much lower, the anisotropy
ot/ ranging from 50 - 1000. It should be stressed that no metal-

insulator transition is observed. An important feature of the macroscopic

crystal structure relevant to any discussion of the anisotropy is the



crystallization of (SN)x into "bundles of fibers'", with fiber diameters of

0
about 1000 A. The cffect of this fibrous structure on the transverse

properties is not clear.

1.4 One-Dimensional Theories

The phrase 'one-dimensional metal' is in one sense a paradox, since
a 1-D non-interacting electron gas in a periodic potential cannot be a
conductor. This was shown by Peierls (1955), and can be illustrated by a
siﬁple example which is sketched in Fig. 1. Consider a chain of atoms
with one atom per unit cell, and lattice spacing a; if, in the tight-
binding approximation, each atom contributes one electron to the conduc-
tion band, the band is exactly half-filled, with Fermi wavevector
kF = w/2a. In this case the band is clearly metallic. However, a dimer-

“izafion of the chain reduces the symmetry by doubling the lattice spacing
'J 't§z2a, which shifts the Brillouin Zone boundary to k = kF' A gap opens up
at kF’ thereby reducing the electronic energy and making the metalli;
chain unstable against such a periodic deformation, or Peierls distortion,
- 5f wavevector ( = 2kF' This instability is not confined to a half-filled
band, but will occur for any degree of band—filling.‘

When electron-phonon interactions-are included, the same symﬁetry-
reducing transition may occur as the manifestation of an effect first
predicted by Kohn (1959). Physically this effect arises from the fact
fhat electrons near the Fermi surface with k = iF can be scattered in an
energy conserving process by phonons with wavevector'a = -2KV_A5'1 - iF’
the first derivative of the dielectric function divergés, reflecting a

sudden change in the ability of the electron gas to screen the lattice:
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Figure 1. Effect of a Peierls distortion. (a) Tight-binding energy band.
for the linear chain with interatomic spacing a. (b) The bands
for the chain in which the atoms have dimerized to double the
lattice parameter to Z2a.

vibration. The resultant kink in the phonon energy is known as the Kohn
anomaly. In the case when the phonon frequency goes to zero, the lattice
vibration becomes a permanent (Peierls) distortion with wavevector 2?}.
The strength of the effect depends on how much of the Fermi surface can
bé connected by the wavevector 2?% (or‘how well the Fermi surface nests).

In 2- or 3-D, the effect is a weak one; in 1-D however, the anomaly is



pronounced since the Fermi surface consists of two singular points at kF’
and the nesting is perfect.

A discussion of the Fermi surface instability within mean field
theory has been given by Rice and Strassler (1973). They consider a linear
chain with a half-filled tight-binding band. The (Frdhlich) Hamiltonian
is written as,

+
H-—-?;e,,_cpcp‘ Zﬂwqrbq'bar f'%;%'f](‘i mcp(b ') (1)

N

Here the b's and c¢'s are the usual operators for the unperturbed phonons
of energy huh and Bloch electrons of.energy Ep respectively; N is the
number of ions in the chain, and g(gq) is the electron-phonon coupling
constant. The screened phonon frequencies, Sa, of the coupled electron-

phonon system are given by,
z .
R = wt -X(,T)o?
9 . 2, }? (?) (2)
where the susceptibility x(q,T) is defined as,

_ W <1 £ - fp- B
_%(?.T) = VA ~§ el:-?-ps:’ | (3)

fp is the Fermi distribution function.
Defining a dimensionless parameter A = hmq /2g2N(G) in which g =
: 0
glgo = ZkF) and N(0) is the density of states at the Fermi level, the

phonon frequency Qq is found to be,
0

~

4,= Q:)“%Z) | “)

-2\
RT, = 2.28€, 2 | (5)

where



Thus qu approaches zero logarithmically as T approaches the critical
temperature TC.

Below Tc’ Rice and Strassler view the linear chain as a condensed
phonon state of wavevector qq such that the expectation values <bq> =
<b; >= (Nu/2)6q,q0, where u is a dimensionless amplitude. In this case an
energy gap of magnitude 2A(T) appears in the electronic energy spectrum

-2X

at p = k.. From a zero temperature value A(0) = de_e , the gap de-
: p F gap

g
creases, vanishipg finally at the Tc given by (5). In the framework of
this model, then, the high temperature metal undergoes a second order
phase transition to-a low temperature insulator.

It has been argued that the Kohn anomaly does not always lead to an
insulating state. Frohlich (1954) considered a system with the Hamiltonian
given by (1) and argued that superconductivity might result in the fol-
iowing manner. When an external field is applied the electrons are dis-

: ‘ﬁiaced in k-space with a velocity V- If the macroscopically occupied
latticé>vibration with.wavevector 2kF moves with the electrons, a super-.
 1;ttice'of periodicity 21r/2kF exists in the frame of the electrons.

. Cbnsequenfly; eﬁergy gaps will appear at the displaced Fermi surface as
in Fig. 2.

At 1ow.temperatures the lower band is completely filled, and as long
és the two bands do not overlap no scattering can occur; this gives rise
to a supercurrent. In the crystal frame the electronic energy is
E(k) + hkFVs. When ‘hkpvs becomes greater than half the gap, A, the free
energy 1is lowered by electrons being scattered int§ the conduction band,
thereby introducing a resistance and'decreasingvthe supercurrent. The
coupled electron-phonon mode described here is known as a Frohlich mode.

Bardeen (1973) has suggested that the Frdhlich mode might be a mechanism
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Figure 2. Shift of the electronic energy gap in an electric field
when the lattice distortion moves with the current.

for the high conductivity in TTF-TCNQ.

Unfortunately, mean field theory is inaccurate in describing 1-D
systems due to fluctuations of the order parameter. Landau and Lifshitz
(1969) have shown that for a system with short range forces, fluctuations
prohibit a phase transition except at zero temperature.

Lee, Rice, and Anderson (1973) have included fluctuations in a 1-D
model using the correlation length, £, as the order parameter in a genera-
lized Landau theory. They find that for T § TC (TC being the mean field
transition temperature), £(T) becomes large, increasing exponentially
with temperature. Although g(T) diverges only at T = 0, it is large
enough so that with a weak 3-D coupling a 3-D transition can occur at
T = i/4 Tc' The effect of the fluctuations on the eleétronic density of
. states is to change the well-defined gap which exists at T = 0 to a
"pseudo-gap'; that is, an energy interval in which the density of states

is nearly zero. This result would then have some influence on the Kohn

anomaly.



One-dimensional models are unrealistic in the sense that they ignore
thé finite, if small, interchain interactions that are present in real
systems. Horovitz, Gutfreund, and Weger (HGW,1975) have included inter-
chain effects in the model described by (1) with nearest-neighbour

tight-binding of the form,

E(p%) ==& Cos pyc
(6)

g
s, [+ 50 *“@i?)z] i §p.= % pe for 50

parallel to the chain, and

I

E(pwp )= &(p,) =‘—'lz€o-(cos ape + €os apz) )

transverse to the chain. Here €ps. Pp are the Fermi energy and wavevector

for a single chain, €, is an energy parameter = n is the ratio of

€p»
the interchain to the intrachain coupling (n<<1), and o is a measure

of the Band-filling. For a half-filled band (o = 0) the Fermi surface
appears effectively flat to the wavevector aﬁ = (ﬂ/a,ZpF,n/a); that is

to say, the Fermi wavevector nests perfectly for ao' This implies a

giant Kohn amomaly at as. When the band is other than half-filled, the
wavevectors connecting the Fermi surface do not have the same q, component,
resulting in a smearing of the Kohn anomaly. There exists a critical

value e of the interchain coupling strength such that for n > e the

Peierls transition is suppressed; for example, at T = O, Ne =

3.5 /Tc(n=0)/eo|a| s TC again denoting the mean field transition temper-
~ature. It is interesting to note that for a = 0, the interchain coupling

does not: affect the instability.

~

A transition at 51 = (O,2pF,O) can also occur if n < né = f Tc(n=0)/eo.



In fact, an instability will exist at any q, for which the electron-

10

phonon coupling parameter A(a) is a maximum. If there is no strong depen-

dence on qi_, however, the 3'= 5; instability will be favoured for
those values of the interchain cgupling for which 5 } n ;.: TC/Eb; it
is roughly in this région that fluctuation effects are small.

When fluctuations are included in a treatment of the instability
at 35, HGW find a temperature characteristic of the system, Tb = neo/4;
for a phase transitiqn to occur it is required that the real transition
temperature be E;Tb. Further, 1-D mean field théories are found to be
appropriate in the region,

H oo < , < 720('1=0)
g, e (peo) 27 3/50 Tt

where Tg is the mean field Tc for a = aé.

1.5 Energy Band Calculation

In this section the method used in calculating the energy bands is

‘outlined. A linear combination of atomic orbitals (LCAO) method is used

(8)

for (SN)x because of the covalent bonding nature of the constituents. The

same method in which the atomic orbitals are replaced by molecular orbit-

als is used for TTF-TCNQ. .
. . >
The electronic wavefunction, Wi(r) is expanded as a linear combin-

ation of Bloch orbitals,

where

(9)

(10)
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.Here ¢i(;-- ﬁﬁ - ;i) is the i'th atomic orbital centered at position
T, in the unit cell with postion vector ﬁ%, and N is the number of unit
cells in the crystal. Substitution of (9) into the SchrSdinger equation
leads eventually to the set of coupled linear equations,

' —>

4
det | H(R) - g(/?),s’(/?)/= 0

Z’H —E(k)Z',S'

(11)

. >
for the energies e(i) and the coefficients a?. The matrix elements Hij

and S, are given by,
4 @)= 8T Cautr - RIIKlg (22 )
= Eei?'é:"/,:;
a?) 1P (o2 B R g (7-7) >
P, |

The integrals h?j were calculated using the semiempirical extended

A

Hlickel method (EHM) of Hoffman (1963). In this approximation the term h?j

is scaled with the overlap s?j as follows:

gb o‘f L-‘-‘J)m::o
I"J g | a - (13)
M S
- '%.'K(EL'-*EJ')S‘-j other wise
" K is the phenomenological Wolfsberg-Helmholtz parémeter which is varied
to give the best fit to experiment. Usually K is taken to be 1.75, a

value which was used in our calculation. ei'is the experimentally deter-



mined ionization potential for orbital i. If n orbitals per unit cell
aré included, the energy bands are obtained by solving the n x n eigen-
value equation (11) for each wavevector.

The EHM allows the full symmetry of the crystal to be incorporated
correctly. While the mefhod is somewhat crude, it is expected to give
energy differences such as bandwidths quite well. In addition, its sim-

plicity leads to an easy interpretation of the energy eigenvectors. The

EHM has béen used in similar calculations by several authors: MSCubbin

and Manne (1968) and Fleming and Falk (1973) for polyethylene, Kortela

and Manne (1974) for graphite, and Berlinsky et al. (1974) for TTF-TCNQ.

12



Chapter 2: TTF-TCNQ

2.1 Crystal Structure

The crystal structure as reported by Kistenmacher et al. (1974) is

shown in Fig. 3; molecular coordinates are given in table 1. The dominant:

feature is the segregated chains of TTF and TCNQ molecules stacked in a
monoclinic lattice. Neighbouring chains along the c-axis are related by
a screw axis symmetry operation: a rotation of 180° about an axis midway
between the' chains, together with a translation of b/2 along the axis
takes one chain into the other. A unit cell thus contains two TTF and
two TCNQ molecules. The space group of the structure is P21/c, the
symmetry elements of which are a center of inversion at each molecular

site and the screw axis.

2.2 One-Dimensional TTF-TCNQ

The stacking arrangement of the structure, together with the
obsérved anisotropy in the conductivity point to a model in which there
are interactions only along the chain and not between the chains. That
this firstAappréximation is indeed a good one is borne out later when
interchain coupling is taken.into account.

A part of this section is based on the work of Berlinsky, Carolan
'and Weiler (BCW, 1974) since it is a necessary prelude to what follows.
”BCW have used the EHM to calculate the molecular orbitals (MO's) for both
TTF® and TCNQ molecules, with the result that the highest occupied MO
on each molecule is a w-orbital. The symmetry of these MO's is such that

the TTF' wavefunction is even and the TCNQ wavefunction odd under

13
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Q1 F4 A “Q F
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. Figure 3. Crystal structure of TTF-TCNQ. TTF and TCNQ are labelled F and Q
respectively, while the numbers indicate those molecules whose
coordinates are given in Table 1; 1,3,4,6 are in the same unit
cell and 2 and 5 are in the cell displaced by B. (a) View perpen-
dicular to the chain axis. The solid circles indicate those atoms
positioned above a plane which passes through the center of the
molecule and which is parallel to the 3d-€ plane. (b) Side view
along the a-axis.
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reflection through planes bisecting the molecules along their short
dimension and normal to the molecular plane. An important consequence
of this result is that the TTF-TCNQ overlap along the a-axis is identi-
cally zero, thus greatly diminishing interchain effects. Following the
'BCW argument that it is valid to identify these MO;s.with fhe valence
and conduction bands in the solid, we take them as the basis functions
féf our enefgy Band calculation. It should be pointed out that the a-axis
overlap is zero iny for those wavefunctions calculated for isolated
molecules. Inclusion of the crystal field reduces the MO symmetry,resul-
ting in a finite overlap. This can be séen in Fig. 3 where the atoms
ﬁarked S1 and 82 are situated in different environments. The size and ef-
fect of a non-zero a-axis overlap is not known.
In the 1-D approximation, the calculation reduces to that for the
' linear atomic chain of lattice constant b and one orbitai per unit cell.

,ll?We write the wavefunction as, '
knb Sy
@k (») = /— EL" ! @5.(?—!‘!5) - L 4)

' 'where N is the number of molecules in the chain and ¢i(? - ng) is an MO

© centered at the n'th site. The subscript i=For Q, which will here-
»i after denote TTF and TCNQ respectlvely The energy for band i is then

g1ven by,

2;;; il m}kb( (P- mb)lH’cpc(r nb))

€ = ;
' lc(mm)ké(% r- mm%(?—nfp

'li:  "‘ f 2;

(15)

n
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Including only nearest-neighbour interactions gives,

g = SO PMHIGED) L 2 eos kb (P+E)IH] 0:(?))
i [+2coskb<{g; (R+B)] 9, (7))

(16)

Since <¢i(;'+ 6)[¢i(?j> =0 << 1, the denominator can be expanded to

get,

£; = {(cpd(?)[H/cp‘;(?D +2 coskb <@, (?4--5’)/!-//@-(?)7}{/"20;— c,oskb} an

Making use of the Hickel approximation and retaining only terms to first

.order in ;5 we finally have,
)
6(‘-‘- Ei + l'éi coskb . (18)

where ei is the ionization potential of molecule i, and t, = (K - 1)8201'
The Fermi level intersects both bands, with the consequence that the
Fermi wavevector determines the amount of filling of each band, or
equivalently, the degree of charge transfer. Grobman et al. (1974) inter-
preted their photoemission data as indicating a charge transfer of about
one electron per TTF donor. If this is the case'the band is half-filled

and €0 = sO; All calculations were therefore initially performed for a

F Q
half-filled band model. Using the BCW estimate that eg = -7.5 eV, to-

gether with the calculated overlap integrals o_ = -9.3x10_3 and o, =

F Q

2.0x10_2, one obtains tF = 0.05 eV and tQ = -0.11 eV, or bandwidths of

0.20 and 0744 eV for the F and Q bands. The fact that tr and tQ are op-
Hposite in sign is significant since it means that the bands must cross,
and hence interact in the presence of F-Q coupling.

‘ More recently, evidence for a Peierls distortion has been provided

by an X-ray analysis of the crystal structure by Denoyer et al. (1975).

Below 40K they observe a 3-D superlattice with dimensions 2a x 3.7b x nc
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(n unknown). In the context of 1-D F aﬁd Q bands the new lattice parameter
3.7b implies a Fermi wavevector kF = m/3.7b, which corresponds to a near-
lly quarter-filled Q band. The ionization potentials were accordingly
changed to ag = -7.58 eV and 38 = -7.35 eV. The proposed band structure

is presented in Fig. 4a for an undistorted chain and in Fig. 4b for a

chain with a distortion wavelength of 4b.

ENERGY (V)

h 4

=
O
e
o}
x

- (a) (b)

Figure 4. (a) One-dimensional energy bands for a charge transfer of
0.5 electrons per TTF molecule. (b) The effect of a Peierls
distortion of wavelength 4b on the bands of (a),



The density of states for the cosine band i is, per molecule,

DL(E)Z

The total density of states is then simply the sum D(e)

as shown in Fig. 5.

D(e) !

T/4t>-(e-€°)*

= Dp(e) + DQ(E)

l
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1
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Figurc 5. Density of states for the two non-interacting bands in

Fig. da. E

F is the Fermi energy.



2.3 Three-Dimensional TTF-TCNQ
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Before considering the three-dimensional band structure it might be

instructive to look at the 2-D case in which we include interactions

between chains of like molecules. The equal-energy planes perpendicular

to the b-axis of the 1-D problem disappear to be replaced by lines of

equal energy normal to the b- and c-axes. Each of the doubly degenerate

bands in Fig. 4a is split by the interchain coupling. The 4 x 4 secular

determinant in (11) assumes a block diagonal form,

11 11 12 ~ 12

21~ Y21 22 22 _
-H - €S H

Hyzs - €545 Hyy

33 33 34

eS

- €S

34

44

= 0 (20)

where, if only nearest neighbour overlaps, g;, on neighbouring chains are

included,
> o>
S11 = 822 =1 + ZGFcosk b
> >
S = S = 1 + 20,cosk'b
33 44 Q 2 3
* ! -ik-.c ik
812 = 821 oF(l + e ) +)(1 + e . )
_ * 1 ik-c ik-b
834 = 843 cQ(l + (1 + e )
H11 H22 €p + 2KeF chosk b
(o] >
H33 = H44 SQ + 2KeQ chosk b
- * . Og
le = H21 = KeF 515
H. =H,_ =KeO s
34~ 143 €Q “34

(21)
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The resulting energy bands are approximately given by the expressions,

E=&ix A& (22)

where, 0
E=&; +,Z(K-f)£z007- cos £§
kb

AE; = Y (k- /}5 0" eos os—[-

’°‘$

In the region of the band crossing the bands will appear as in Fig. 6.

—n

< -
<% ENERGY-

7 bt

Figure 6. Energy bands along k_ in the region of the band crossing in the
2-D case. y

The points at which the Fermi level intersects the bands are determined
. !

by the magnitude of the splittings Ei' Since(Ii << 1, the bands are ex-

tremely flat. The deviation of the Fermi wavevector from k, = 7w /4b will

b
then be small, wo we may write it as,
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k,_-b=zrg(7’{‘“(§), gl (23)

Using equations (22) gives,

(1) =20 (Er ) 2 & (K2 |
]—‘g = o7 \g7 il Y e 0.,,:, eos \ 7 ,Z.él-l.OS"ﬂ (24)
A cross-section of the Fermi surface in the b-c plane is sketched in
Fig. 7. The surfaces have been labelled F or Q depending on which band
the Fermi surface crosses. It is readily apparent as indicated by the
arrows that the portion of the Fermi surface in the upper half of the zone
nests perfectly with the portion in the lower half. One would thus expect
the 2-D model of TTF-TCNQ as outlined here to be unstable against a dis-
tortion of wavevector § = (qa,qb,qC) = (r/oa,n/2b,0), wifh a A 1 deter- -
mining the periodicity in the a-direction. From the discussion of HGW, o
would be that value maximizing the electron-phonon coupling constant A(a).
A 2-D model for TTF-TCNQ is not really valid since the interaction
energy between F and Q chains is roughly of the same magnitude as that
for the FfF and Q-Q couplings. When F-Q interactions are added the degen-
eracies at the crossover points are lifted and some small curvature in
the 3 x ¢ direction is added to the equal energy lines. Fig. 8 indicates
what happens to the bands in the crossover region in a direction parallel
to the b-axis. Whether or not an energy gap occurs depends on the strength
of the F-Q coupling. |
The important interchain overlaps (from BCW) are presented in Table 2,
With these overlaps, the terms in the secular determinant not given'by

(21) ‘are,

3.2
1+ e

S
* *

' .ik-b ik.D
_ ~-ik-b ik
S31 % S42 = S13 = Syp 7 opgle e )
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Figure 7. Cross-section of the Fermi surface in the B-¢ plane. The vertical
scale represents the deviation (in units of m/b) of the surface

from the planes kb = n/4b and kb
wavevectors.

-n/4b. Arrows show the nesting
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Table 1. Molecular coordinates in TTF-TCNQ for those molecules shown in
Fig,3. In the coordinate system used,the lattice vectors are,
in & units: & = (12.298,0,0), B = (0,3.819,0), ¢ = (-4.61,0,17.883).

X Y z
1 6.149 0 0
2 6.149 3.819 0
3 3.843 1.910 8.942
4 | 12.208 0 0
5 12.298 3.819 0
6 | 9.992 1.910 8.942

‘Téblé 2. Overlap integrals S?. between MO's centered on the molecules
’ listed in Table 1 aAd shown in Fig. 3. (taken from Berlinsky
et al., 1974). '

1 2 3 4 5 6
AT T 2.0x107%  -3.0x107% 0 1.4x107%  1.8x1077
| f”;f;:>2 2,0x107% 1 3.0x107% —1.4x1074 0 3.3x10°%
S | -ezoox10™t Zzoxiot 1 1.7x10°%  3.4x107% 0
14 0 -1.4x107% 1.7x107® 1 29.3x107°  4.8x107°
5 | 1.4x107 o 3.4x107’ -9.3x1073 1 4.8x107°
6 | 1.8x1077  3.3x107° 0 ' 4.8x107°  4.8x107° 1
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Figure 8. Effect of the F-Q coupling on the bands in Fig. 6.
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The energy bands in various directions in the Brillouin Zone (Fig. 17)
are shown in Fig. 9. The most striking frature of the bands is that they
are very nearly flat, demonstrating the 1-D nature of TTF-TCNQ. A further
corroboration of this observation. is the appearance of the density of
states which has been calculated for 5246 wavevectors in the Zone. The
histogram plotted in Fig. 10 is nearly identical to the sketch in Fig. 5.
The inset of Fig. 10 shows the density of states calculated for a finer
mesh of wavevectors near the band crossing. The small peaks on either side

.of the dip arise from the mutual repulsion of the bands while the dip it-

~self is due to the gap opened up in most directions.
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Figure 9. Three-dimensional energy bands along several directions in the
Brillouin Zone which is shown in Fig. 17.
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Figure 10. Histogram of the density of states for the 3-D band structure.
Inset: density of states near the Fermi level.
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The crossover region along the I'Z direction is shown in expanded
scale in Fig. 11. To picture the Fermi surface it is convenient to view
the bands throughout the Brillouin Zone as a large number of curves similar
to the ones along I'Z. Because of the flatness of the bands the top of the
valence band, ev(ka,kc), and the bottom of the conduction band, Ec(ka’kc)f
will deviate only slightly in energy through the Zone. Since the indirect
overlap of the bands is very small, the Fermi level lies very close to
Ev and €.> intersecting both bands, only one band, or neithef band, cre-
ating hole and electron surfaces. It must be pointed out that because
the overlap of the bands is small the shape of the Fermi surface is quite
sensitive to even small changes in the bands. In addition a precise deter-
mination of the Fermi energy is difficult and probably not meaningful,
given the inaccuracies inherent in the method of calculation. Nevertheless,
in order to gain a qualititive idea of the Fermi surface a Fermi energy
was guessed (EF = -7,51 eV) using the calculated band structure.

Cross—éections of the Fermi surface in several planes are shown in
fig; 12; as expected the surface consists of a very flat electron and
hole pocket in each half of the Zone. While the value EF = -7.51 eV 1is
likely a little too low, a slightly higher energy would not make any
qualitative difference, decreasing the size of the electron surface some-
what and increasing the hole surface. In any case, the extremely small
degree of curvature in the surfaces makes it possible for different nest-
ing vectors to connect various combinations of electron and hole surfaces.
One of these possibilities is the wavevector with the component q, = n/2b
linking a hole surface with an electron surface in the opposite half of

the Zone. However, it is not apparent why the observed distortion is

(n/a,n/2b,n/nc).
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Figure 12. (a) Superimposed cross-sections of the electron and hole surfaces

in two different planes parallel to kb = 0.
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Figure 12. (b) Cross-section of the Fermi surface in the k,1 = 0 plane.
' Shown are the electron and hole contours in the“upper half of
the zone. The vertical scale is in units of w/b



Chapter 3: (SN)x

- 3.1 Crystal Structure

Two determinatioﬁs of the (SN)x crystal structure h?ve'recently be-
come available. The results of the first, an electron diffraction study
by Boudeulle (1974), are shown in Fig. 13 and are used in the calculations
presented in the remainder of the chapter. A later report by Cohen et al.
(1975) based on X-ray diffraction measurements gives a somewhat different
structure (see Appendix) in which the lattice constants are nearly the
same but the.atomic bond éngles are different from those of Boudeulle.

Calculations incorporating the Coheﬁ data are presented in the Appen-
dix. Despite the difference in crystal structure the results are essen-
tially the same. Thus, the fact that the electron diffraction method is
less reliable is of little consequence in our study.

The crystal structure of (SN)x reseﬁbles that of TTF-TCNQ; in fact;
tﬁe sbaée group P21/c is the same. Sulphur and nitrogen atoms stack along
the b-axis forming alternating short (1.58 R) and long (1.72 X) SN bonds
such that four atoms per chain are included in the'unit cell. Nearest-
bheighbouring chains_in the c-direction ére related by inversion and are

~thus inequivalent, giving a total of eight atoms per unit cell. The atomic

coordinates are listed in Table 3.

3.2 Oné—Dimensional Band Structure

"~ As in the preceding discussion of TTF-TCNQ, we first consider the

‘>cése of isolated chains. The wavefunction Wk(r) is written as,

31



© Figure 13. (a) Projection of the crystal structure of (SN)x onto a plane
: perpendicular to the chain axis. The sulphur and nitrogen-
atoms have been labelled Si and Ni’ i=1,2,3,4 depending on
the position in the unit cell. '

32



- Figure 13.
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(b) Perspective drawing of a side view of the crystal struc-

ture. The solid rods indicate the bonds along the chain and
rods represent the most important interchain

the open
overlaps discussed in §3.3.



- Table 3. Atomic coordinates in the (SN)x unit cell for the Boudeulle
structure. In the coordinate system used, the lattice vectors
are, in 8 units: & = (4.12,0,0), B = (0,4.43,0), and

€ = (-2.55,0,7.20). The b-axis is the chain axis.

X Y z
S ~1.20 4 1.74 1.20
S, -0.08 -0.48 2.40
S3 1.20 -1.74 -1.20
Sy 0.08 0.48 ~2.40
Ny ~0.90 0.20 1.05
Ny -0.38 - -2.02 2.55
N3 0.90 -0.21 | -1.05
Ny 0.38 2.02 -2.55
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.k (Rm+F) »
g () =,/'—:\‘T_Z e d ¢; z,l}(?) (26)
J m

Here N is the number of unit cells, ﬁﬁ is the coordinate of the center of
the m'th cell, ?} is the coordinate with respect to the center of the cell
of the j'th orbital, and wj(?) is an atomic Slater orbital. W?(F) was sub-

stituted into the Hlickel formula using the constants €rs = -26.0, gzp =

-13.4 eV, with Slater exponent 1.95 for nitrogen, and €3¢ = -20.0, ¢

-11.0 eV with Slater exponents 2.122 and 1.827 for sulphur.

3p

Inclusion of the sulphur 3d orbitals in the basis set was found to
result in a narrowing of the bands near the Fermi level with no other
qualitative changes in the band structure. In some of the Hlckel calcula-
tions mentioned in §1.5 the value K = 2.0 for the Wolfsberg-Helmholtz
constant was found to lead to better results that the more popular value
K = 1.75. An increased K produces broader bands, an effect opposite to
the inclusion of the 3d states. Thus it was felt that we were safe in tak-
ing K-= 1.75 and neglecting the 3d orbitals in our calculation.

Since the single chain unit cell consists of four atoms, (SN)Z, the
energies for each k-value are obtained by solving a 16 x 16 eigenvalue
equation. Fig. 14a shows the energy bands which result. Since the (SN)2
unit has 22 valence electrons, the 11 léwest bands will be exactly filled
at T = 0. Ordinarily one would then expect (SN)x to be an insulator. How-
ever, the‘screw axis symmetry of the crystal structure requires pairs of
bands to be degenerate at the Zone boundary; since an odd number of bands
afe filled there is no gap at the Zone boundary. The density of states for
-tﬁe highest occupied and lowest uhoccupied bands is shown in Fig. 15 (cf.

Fig. 5).
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(a) (b)

Figure 14. Energy bands for an isolated (SN)x chain. (a) For the observed
structure. The symmetry labels are defined in the text while
the dashed line represents the Fermi level. (b) For the
distorted structure shown in Fig. 16.
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Figure 15. Density of states for the two bands straddling the Fermi
energy in Fig. 14a.

Because the chains are nearly planar, the labels ¢ or m may be used
to indicate orbitals which are approximately symmetric or anti-symmetric
upon reflection through this plane. The bands in which the k = 0 orbitals
have a node along the short SN bond are labelled by *, and ' labels a
k = 0 orbital with a node on the long SN bond. These results agree with
the calculation of Pérry and Thomas (1975) who used a slightly different
version of the EHM,

It is obvious that since the degeneéracy at the Zone boundary is due
to the screw axis symmetry, any distortion of the chain which breaks the

symmetry will open a gap at the Fermi level. One example of such a
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distortion is illustrated in Fig. 16 (note that the size of the unit cell

remains unchanged).

undistorted distorted
1 i
| |
°, 0
| o !
[ I | 1
1— Il O —{ I ©
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Figure 16. Distortion which breaks the screw axis symmetry.
The effect of such a distortion in which the short bondlength is changed
0
by 0.1 A is demonstrated in Fig. 14b. We conclude, therefore, that because

of this instability (SN)x should be a semiconductor.

3.3 Three-Dimensional Band Structure

Boudeulle has pointed out that some of the S-S and N-N distances
between atoms on different chains are less than twice the Van der Waals
radii for sulphur and nitrogen. The interchain coupling should then be
relatively large, implying that the 1-D approximation is not very good.
Since there are two chains per unit cell, the 1-D bands are doubly degen-
erate, the degeneracy being removed by the interchain coupling. The split-

ting of the bands shifts the Fermi level away from the Zone boundary, while



hybridization hetween the bands causes a splitting were the bands should
Cross.

A full 3-D band structure taking into account an (SN)2 unit on one
chain in a unit cell with 20 neighbouring (SN)2 units (two on the same
chain and three on cach of six surrounding chains) has been calculated
and is shown-along scveral symmetry directions of the Brillouin Zone (Fig.
17) in Fig. 18. The lines and planes of degeneracies which arise are the
result of the screw axis and time reversal symmetry. The important feature
in Fig. 18 is the crossing of the bands in TZ and YC directions while
there are gaps in all the other directions. The crossings are accidental
~degeneracies and are allowed because the wavefunctions of the crossing
bands transform differently under the screw axis symmetry operation.

An accurate detcermination of the Fermi level is not easily obtained.
Qualitatively, however, it is not difficult to visualize the appearance
of the Fermi surface. The crossings along TI'Z and YC occur at different
energies sb that the Fermi level intersects the bands at points other than
the degenerate points. One thus expects a Fermi surface consisting of an
electron pocket near the crossing along YC and a hole pocket near the cros-
sing on TZ, leading us to describe (SN)x as a semimetal.

It is gratifying to note that our results agree qualitatively with
the more sophisticated relativistic OPW calculations of Rudge (1975). The
most important feature of Rudge's that is not present in our results is
the lower band in the ZE direction rising across the Fermi level, creating
a hole pocket near point E. Illis conclusion reinforces ours that (SN)x is
a semimetal.

The 3-D band structure is obtained from a 32 x 32 eigenvalue equation

‘that is cumbersome to work with. A simplified treatment can be made by
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>

Figure 17.

Brillouin zone associated with the crystal structures of (SN)x
and TTF-TCNQ. Symmetry dictates two-fold degeneracies in the
band structure throughout the top and bottom zone faces and
along the lines AE and BD. CY is not a line of degeneracy.
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Figure 18.
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Three-dimensional band structure in those directions indicated
in Fig. 17 as obtained from the extended Hlickel calculation.
Only the four bands closest to the Fermi level are shown. The
dashed line marks the approximate position of the Fermi energy.
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noting that the highest occupied and lowest unoccupied bands in the 1-D
calculation (Fig. 14a) look very much like simple tight-binding (cosine)»
bands. The k = 0 wavefunction symmetries indicated in Fig. 14a suggest
that a suitable basis for such a calculation might be a n* SN molecular
orbital. There are four such SN molecules per unit cell leading us to
consider a 4 x 4 model Hamiltonian. An important simplification of the
matrix can be obtained by a closer examination of the crystal structure.
(Table 2 and Fig. 13). The molecule labelled S N, is considerably farther

11

away from molecules labelled S N4 in its own and in neighbouring cells

4
than from those labelled SZNZ and SSNS' Taking symmetry into account, it
should be a good approximation to neglect matrix elements along the anti-
diagonal; the validity of this approximation is confirmed by a calculation

of the overlaps. The Hamiltonian then takes the form (if the energy of

the SN MO is taken to be 0),

H = | 27)

Expansion of the corresponding secular determinant gives a characteristic

equation of the form, .
84 - Zaez +8 =0 ' (28)

with. roots,

€=i/0.i (12‘8 (29)
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where,

i

2 2 2
20 = 2ful + o1+ [sy]

™
1

2 2 '
[61] [8o] + Jul* - 28165 - u*2sys,

Quantitative results for this model can be obtained by examination
of the wavefunctions coming out of the band structure calculation. The r*

SN MO which is suggested has the form,
Vo= dg - Ay (30)

The ﬁost important interactions involving these MO's are then:
(1) t: the m-interaction between neérest-neighbéuring molecuies on
the same chain.
(ii) tyra m-interaction with a bond length of 3.10 X betweén an

atom S1 and the atom 83 in the cell displaced by (3 - 3).

0
(iii) t2: a g-interaction with bond length 2,81 A between atoms

N1 and N3 in the same unit cell.

| (iv) t,: a g-interaction between S, and S, in the cell displaced by B.
3 3 P

1

Including symmetry-equivalent interactions gives for the matrix

elements the expressions,

. >
o= t(1 + e R
> o > >
- . oik- (3-B) -ik-B
81 = tpe . e + t, + t3e+ ) 22 (31)
5, = tle—l . (a+c) . tzeli'(b_c) + tge

The parameters t,t;,t,,t; can be calculated using the Hickel formula

v,1(13) and the SN MO. One then finds that t = 0.45 eV, t; = -0.22 eV,
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t, = -0.06 eV, and t3 = 0.56 eV. Since these are only approximate values,

we have chosen a set of parameters (t = 0.45 eV, t1 = -0.19 eV, t2 = -0.05
eV, and t3 = 0.42 eV) which better reproduce the band structure of Fig. 18;
these tight-binding curves ére presented in Fig. 19.
Two important features of the band structure are readily apparent
from equation (29):
(i) When o2 =8, ¢ = + Jo and the band structure exhibits a two-fold
degeneracy. The directions in f-space for which this éccurs are.
exactly those for which symmetry dictates degeneracies.

(ii) An accidental degeneracy occurs when B = 0. Then ¢ = 0 and the

bands cross at the Fermi level. B = 0 when

u? = 8,63 (32)

Taking the real and imaginary parts of the equation gives two equations,
the solution of which defines a curve in f—space, which, with the para-
meters chosen extends from (0,0.8w/b,0) to (n/a,0.57/b.0.33n/a). The simple
form of the energy bands described by (29) means that all band crossings
occur at the Fermi level. The conclusion of this oversimplified model
therefore is that (SN)x is a zero-gap semiconductor.

A sophistication of this model to include non-zero terms along the
anti-diagonal and interactions with other bands would remove the acciden-
tal degeneracy at tht Fermi level. One would expect the small splittings

yt6 ¢ause'indirect overlaps of the bands, thereby c;eating a Fermi surface
of a semimetal with electron and hole pockets. This conclusion agrees with
that éf the more complex Hilickel calculation.

| Since a density of states calculation incorporating.thé full Hiickel

treatment proved to be unfeasible, the tight-binding bands were used as
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Figure 19. Band structure analogous to that of Fig. 18 resulting from
the tight-binding calculation.
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they represent the energy bands reasonably well. Fig. 20 shows the results,
and while the details of the plot -are not believable, the overall features
should be correct. The lack of resemblance to the 1-D density of states
in Fig. 15 is an indication of the dispersion of the bands in directions
transverse to the chain axis and clearly demonstrates the need for a 3-D
model of (SN)x.

Other authors who have calculated the band structure and the methods
they have used are:

(1) Rajan and Falicov (1975), ab initio.

(ii) Kamimura et al. (1975), semi-empirical.

(iiij Schlliter et al. (1975), pseudopotential.
The feature these calculations have in common is a Fermi level which inter-
sects overlapping ¢ and 7 bands, differing in this regard from our results.
A possible explanation of the situation (Weiler) is.that these methods
overestimate the splitting of low-lying o bands in the solid, pushing
them up in energy and causing them to mix with the 7 bands. The use of

the EHM for (SN)x thus seems to be partly justified.
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.Figure 20. Density of states for the 3-D tight-binding calculation.
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'Chapter 4: Discussion

In the preceding two chapters we have considered the electronic energy
spectra of two outwardly similar systems. What we‘can conclude is that
both TTF-TCNQ are semimetals, in agreement with experiment. Both materi-
als also exhibit similar anisotropy in electrical conductivity and optic-
al properties. Why then is it that TTF-TCNQ undergoes a Peierls transition
to a semiconducting state while (SN)x not only does not show this feature
but actually becomes superconducting?

To underscore the similarity let us take a closer look at the (SN)x
crystal structure in the framework of our calculation. If one believes
the simple tight-binding MO treatment, then a single (SN)x chain (type-I)
can be looked upon as consisting of two inequivalent (type-II) chains,
each contributing one SN "molecule' to the unit cell. The two '"molecules",
although structurally identical, might b¢ labelled F and Q since they give
rise to separate bands ( the two with the degeneracy at the Fermi level
in Fig. 14a). Régarding the second type-II chain in the same manner, one
has two F and Q "molecules' per unit cell. In the 1-D approximation of
§3.2, the two bands are doubly degenerate. Thus, in this picture, the (SN)x
model is completely analogous to TTF-TCNQ except for differences in the
intermolecular distances.

The difference between the two solids is immediately apparent when
the ihterchain interactions are turned on. The effect is seen dramatically
in the magnitude of the splittings of the degenerate bands. In (SN)x, the

ratio of the splitting to the 1-D bandwidth is about 0.3 as compared to
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a ratio of < 0.03 in TTF-TCNQ. Further, bandwidths (in terms of the band-
width along T'Z) in directions transverse to I'Z range up to 0.1 for (SN)x,
but are less than 0.01 for TTF-TCNQ. It seems, therefore, that the sup-

" pression of the Peierls transition in (SN)x must be attributed to the
strong interchain coupling.

HGW explain the occurrence of a Peierls transition in TTF-TCNQ in
terms of their results (see §1.4).'From specific heat and electrical éon—
ductivity data they obtain a value of the interchain coupling n = 0.1,
which falls into the region given by (8) in which avl—D mean field theory
approach to the Peierls transition is valid. Whether or not this explana-
tion is Corréct is not clear since our MO calculation gives a maximum
n = 0.015 for two neighbouring TCNQ chains. Further, the HGW model fails
to describe TTF-TCNQ as a two-component system with crossing bands inter-
acting at the Fermi level to create a Fermi surface which diffgrs from
the one resulting from equations (6) and (7). However, the actual shape
of the surface is likely not very important at temperatures near the ob-
éefved,TC = 60K, inklight of the small dispersion of the energy bands
_ transverse to the chain direction. Thus our calculation does not preclude
the Peierls instaBility with wavevector a = (ﬁ/a,ZpF,ﬂ/c) which HGW con-
clude is favoured to occur.

As the band structure in Fig. 9 shows, TTF-TCNQ is well explained
by a 1-D model and consequently the observed anisotropies in the electronic
: prqpérties'are not surprising. Similar observétions for (SN)x which initially
: ied to its being classified as a quasi-1-D material are inconsistent with
the‘band structure in which 3-D effects are important. One must conclude,
therefore, that the observed anisotropy is due in most part to the fibrous

nature of the crystal,
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Appendix: (SN)x Band Structure for the Penn
Crystal Structure

The structure of (SN)x reported by Cohen et al. (1975) of the
University of Pennsylvania group differs from thaf 6f Boudeulle in two
ways (although the lattice parameters are virtually identical). Firstly,
the intrachain bonding angles are different, resulting in S-N bond dis-
tances which are élmost equal (1.59 and 1.63 R astcompared to Boudeulle's
'1.58 and 1.72 X) and in chains which are very nearly planai as ;hown in
‘FigL‘Al. Secondly, inequivalent chains are translated with respect to each
'dihei‘by about 1 R along the b-axis as compared to those in the Boudeulle
structure. Table Al lists the coordinates of the atoms in the unit cell.

‘ The.caiculations of Chapter 3 have been repeated using the Penn data.
”H;ioﬁ: Oyera11, the bands resemble those of Fig. 18; the differences in
':ciéiail Whiéh are evidenf are an increased bandwidth along TZ and a smal-

lér band splitting which pushes the Fermi wavevector back out to the zone
bouﬁdéry. The implication, therefore, is that in the Penn structure the
~intrachain coupling is greater than in the Boudeulle structure while the
vinterchain coupling decreases.

The tight-binding approximation to the band structure introduced in
§3.3 has also been applied in this case. Because of the change in the

b;ieiafive position of the inequivalent éhains,_different interactions become
“_ihﬁéftant and the greaily simplifying feature that elements on the anti-
Jdiégpnal.are zero does not appeér. Thus no expression such as (28)'can be
~written down and the 4 x 4 Hamiltonianimust‘be diagoﬁalized nuﬁerically.

If the energy of the SN MO's is taken to he zero, then the Hamiltonian
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Figure Al. View down the b-axis of the crystal structure of (SN)x from
the data of Cohen et al. (1975).
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ENERGY (eV)

Figure A2. Three-dimensional band ‘structure obtained by the extended
' ‘Hilckel method incorporating the Penn crystal structure.




is,

0o- (A1)

The matrix elements are given by,

> >
a = 2tjcosk-a

.
B = to(l + e_ik'b) .

u = tge"ﬂz'g + tuei - (a-B) (A2)
\ - tge-ﬂi-é 'ty -ik. (a+c)

§ = ts(l + eiﬁ'g)

where the ti's represeﬁt the following interactions:
(i) t;: a.o-interaction between two S; atoms in cells displaced by a.
(ii) t,: the ihteraction between molecules on the same chain,
(iii) t3: a o-interaction between an S; and the S3 in the cell
translated by b.
(iv) ty: a m-interaction between an S; and the S3 in the cell dis-
placed by‘g - a.
(v) tg: a o-interaction between an S; and the S; in the cell trans-
lated by 3,
With the parameters t; = 0.02 eV, t, = -0.57 eV, t3 = 0.25 eV, t, = —0.06

eV, and tg = 0.04 eV, the enargy bands depicted in Fig. A3 again bear a
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: stibng similarity to those in Fig. A2,
The conclusion to be drawn from this calculation incorporating the

" Penn structure is the same as that of §3.3: (SN)x is a semimetal.

~ Table Al. Atomic coordinates in the (SN)x unit cell for the Penn structure.
- In the coordinate system employed, the lattice vectors are, in
R units: & = (4.15,0,0), B = (0,4.44,0), and € = (-2.57,0,7.19).

X Y z

-1.143 1.275 1.119
0.143 - -0.945 2.475
1.143 -1.275 -1.119
0.145 0.945 ~2.475
-1.043 o307 1279

| .”_-0.é431 o f_., '_¥2.5é6A - 2.315

"f'1f§43 S oser 1,279
0,243 2526 | -2.315
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* Figure A3. Tight-binding analogue of Fig.

A2,



