
A Panoply of Quantum Algorithms

by

Bartholomew Furrow

B.Sc., Queen’s University, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Physics)

The University Of British Columbia

September, 2006

c© 2006, Bartholomew Furrow

Abstract

This thesis’ aim is to explore improvements to, and applications of, a funda-
mental quantum algorithm invented by Grover[1]. Grover’s algorithm is a
basic tool that can be applied to a large number of problems in computer sci-
ence, creating quantum algorithms that are polynomially faster than fastest
known and fastest possible classical algorithms that solve the same prob-
lems. Our goal in this thesis is to make these techniques readily accessible
to those without a strong background in quantum physics: we achieve this
by providing a set of tools, each of which makes use of Grover’s algorithm
or similar techniques, that can be used as subroutines in many quantum
algorithms.

The tools we provide are carefully constructed: they are easy to use, and
they are asymptotically faster than the best tools previously available. The
tools that we supersede include algorithms by Boyer, Brassard, Høyer and
Tapp[2], Buhrman, Cleve, de Witt and Zalka[3] and Dürr and Høyer[4].

After creating our tools, we create several new quantum algorithms,
each of which is faster than the fastest known classical algorithm that ac-
complishes the same aim, and some of which are faster than the fastest
possible classical algorithm. These algorithms come from graph theory, com-
putational geometry and dynamic programming. We discuss a breadth-first
search that is faster than Θ(edges) (the classical limit) in a dense graph,
maximum-points-on-a-line in Θ(N3/2 lg N) (faster than the fastest classi-
cal algorithm known), as well as several other algorithms that are similarly
illustrative of solutions in some class of problem.

Through these new algorithms we illustrate the use of our tools, working
to encourage their use and the study of quantum algorithms in general.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . vii

1 Introduction . 1
1.1 A Brief History of Quantum Computing 3

1.1.1 Fundamental Work . 3
1.1.2 Exponential Speedups 4
1.1.3 Grover’s Algorithm and BBHT 5
1.1.4 Algorithms Using BBHT 6

1.2 Conventions, Notation, and Notes 7
1.3 Capabilities of our Theoretical Quantum Computer 8
1.4 New Material Presented in this Thesis 9

2 Grover’s Algorithm and Amplitude Amplification 11
2.1 Grover’s Algorithm . 11
2.2 BBHT . 15
2.3 Amplitude Amplification . 16
2.4 BCWZ . 17
2.5 Inside an Iteration: Properties of F 19
2.6 Summary . 20

3 Tools . 21
3.1 Finding a Solution to F, findsol 21
3.2 Minimum Finding, minfind 22
3.3 Finding all x that Satisfy F, findall 23

iii

3.4 Finding a Minimal d Objects of Different Types, mindiff . . . 24

4 Applications in Graph Theory 27
4.1 Breadth-First Search, BFS . 28
4.2 Depth-First Search, DFS . 30
4.3 Single-Source Shortest Paths with Negative Edge Weights,

SPNW . 31
4.4 All-Pairs Shortest Paths with Negative Edge Weights, APSP 33
4.5 Improvements to Existing Quantum Graph Algorithms 35

4.5.1 Query Complexity . 35
4.5.2 Single-Source Shortest Paths 36
4.5.3 Bipartite Matching . 41

5 Applications in Computational Geometry and Dynamic Pro-
gramming . 46
5.1 Computational Geometry Algorithms 46

5.1.1 Maximum Points on a Line, maxpoints 46
5.1.2 Maximum Points on a Line: Z

d 47
5.1.3 Maximum Points on a Line: R

2 48
5.2 Dynamic Programming Algorithms 49

5.2.1 Coin Changer, coinchange 49
5.2.2 Maximum Subarray Sum, subarray-sum 50

6 Summary and Conclusions . 52
6.1 Future Directions . 54

A BBHT: Running Time and Probability of Failure 56

Bibliography . 60

iv

List of Tables

6.1 Section 3.1’s findsol compared to classical and quantum al-
ternatives . 52

6.2 Section 3.2-3.4’s algorithms minfind, findall and mindiff com-
pared to classical and quantum alternatives 53

6.3 Chapter 4’s algorithms BFS, DFS, SPNW and APSP, com-
pared to classical and quantum alternatives 53

6.4 Section 4.5’s algorithms, single-source shortest paths and bi-
partite matching, compared to classical and quantum alter-
natives . 54

6.5 Chapter 5’s algorithms, maxpoints, coinchange and subarray-
sum, compared to classical and quantum alternatives 55

A.1 Probability of failure and expected running time for BBHT . 59

v

List of Figures

2.1 Starting state for Grover’s algorithm: N = 6, q = 1 13
2.2 One Grover iteration: N = 6, q = 1 14

4.1 (a) A non-maximum matching. (b) An augmenting path. (c)
A new matching . 42

4.2 (a) A non-maximum matching. (b) Partway through bipartite
matching. (c) Another step. (d) A new matching 45

vi

Acknowledgements

The author, being a neophyte to the art of writing scientific papers, would
particularly like to thank his advisor, Bill Unruh, for being an excellent
font of advice and encouragement, as well as being very supportive of the
author’s choice of topic. He would also like to thank his second reader,
David Kirkpatrick, for a series of excellent suggestions and no small number
of corrections. He would like to thank Yury Kholondyrev, Matthew Chan
and others involved in the UBC programming team for some early ideas of
problems to tackle, and plenty of practice explaining himself; and finally he
would like to thank Dürr and Høyer, authors of [4], for being the first to
show him an exciting field, full of potential.

vii

1. Introduction

The field of quantum algorithms is very young, with the very notion of
quantum computation having been introduced in the early 1980s[5, 6, 7].
This thesis’ aim is to make the study of quantum algorithms easily accessible
to those without a strong background in quantum physics; we will achieve
this by providing a set of tools that can be used as subroutines in many
quantum algorithms. Great care is taken in the construction of these tools,
which are both easy to use and technologically superior to those that are
currently available, featuring asymptotically faster running times.

We will accomplish this aim in three steps, firming up work that has
already been done and introducing new algorithms along the way. Our
first step is to investigate the properties of two quantum search algorithms:
the BBHT algorithm and the BCWZ algorithm. With BBHT we devote
considerable effort to discovering its probability of error, which had not
previously been done; we make use of the result in Chapter 3.

As quantum searches, BBHT and BCWZ take a function F (x), with x
taking the values {0, . . . , N − 1} and F (x) taking the values 0 and 1, and
find a (typically rare) element of the domain x such that F (x) = 1. We call
this a “solution” for F . Equivalently, we can say that F is the characteristic
function for some subset of {0, . . . , N − 1}, and quantum search algorithms’
goal is to find some element of that subset.

We will frequently make reference to F, N and M in this section: F
refers to a function whose solutions we are trying to find, N is the size
of its domain, and M is the number of solutions (equivalently: F refers
to the characteristic function of some subset, M is the cardinality of that
subset, and F ’s domain is {0, . . . , N − 1}). The two algorithms we will
examine, BBHT and BCWZ, while both quantum searches, are different in
methodology and in their properties: BBHT runs faster than BCWZ when
M is large (when there are multiple solutions), and BCWZ runs faster than
BBHT when we require a high probability of success. We discuss what it
means for these algorithms to fail, as well as the probability with which that
happens, below.

The BBHT algorithm[2] was invented by Michel Boyer, Gilles Brassard,

1

Peter Høyer, and Alain Tapp in 1996. It performs a quantum search in
Θ(
√

N/M) time,1 making the assumption that at least one solution exists.
Since we often do not know a priori if solutions exist, however, BBHT has
limited utility. It is easy to modify BBHT so that, instead of assuming
that solutions exist, it gives up after a certain point; but this gives it some
probability of failure, a chance that it might fail to find a solution when one
exists. That modification, not original to this paper[8, 9], is required for
most uses of BBHT; in Chapter 2 we are the first to analyze it in depth,
calculating its probability of failure and rederiving its running time.

The BCWZ algorithm[3] was the invention of Harry Buhrman, Richard
Cleve, Roland de Wolf and Christoph Zalka in 1999. Like BBHT, it per-
forms a quantum search; it also accepts a parameter ǫ, an upper-bound on
the probability of failure that we are willing to tolerate. Given that param-
eter, BCWZ runs in Θ(

√
N lg ǫ−1) time. The advantage of BCWZ is that

the dependence of the running time on the probability of failure ǫ scales
as
√

lg ǫ−1: if one were to search with BBHT instead of BCWZ, trying
it multiple times to reduce the probability of failure, one would arrive at
Θ(
√

N/M lg ǫ−1) time. We re-derive BCWZ in Chapter 2, showing a little
more detail than the authors did in their original derivation.

Our second step is the introduction of our new tools, founded on BBHT
and BCWZ, that perform various kinds of quantum searches. We combine
these two, yielding a superior search algorithm that shares the best features
of both: the fast running time of BBHT when there are many solutions to
be found, and the fast running time of BCWZ when we want a very low
probability of failure. Using this improved algorithm, we then derive a new
procedure for finding the minimum of a function G(x), based on that of Dürr
and Høyer[4]; we also analyze the complexity for finding all M solutions to
a function F, and introduce a tool, mindiff, that will be useful for solving
problems in graph theory. We do all this in Chapter 3.

Our third objective is to use these tools, showing their application to
be straightforward. We invent several new quantum algorithms, each of
which is polynomially faster than the fastest known classical algorithm that
achieves the same goal, and some of which are polynomially faster than
the fastest possible classical algorithm that achieves the same goal. Our
new algorithms solve problems that come from the areas of dynamic pro-
gramming, computational geometry, and graph theory. A summary of those
speedups can be found in Chapter 6; perhaps our most impressive result is
a dynamic programming algorithm that speeds up a problem that has an

1See Section 1.2 for an explanation of O, Θ, Ω notation.

2

Θ(N3) classical solution2 to Θ(N2) quantumly.
We also look at quantum algorithms by Dürr, Heiligman, Høyer &

Mhalla[8] and Ambainis & Špalek[9], examining how they deal with failure
in BBHT. We improve their algorithms by factors of order log N by replacing
their use of the BBHT search algorithm with our improved BBHT/BCWZ
combination.

Through these steps we hope to introduce the field of quantum algo-
rithms to as broad an audience as possible; there are many exciting prob-
lems that remain to be solved, and we hope that this thesis will motivate
and aid in such research.

1.1 A Brief History of Quantum Computing

1.1.1 Fundamental Work

Our chronicle begins in the years 1980-1982, with work done independently
by Yuri Manin and Richard Feynman[5, 6]. Both researchers considered
the problem of simulating the natural world using standard computers, and
both came to the conclusion that it was impossible to do efficiently: sim-
ulating quantum mechanics with a classical computer would require work
exponential in the number of particles being simulated. Feynman observed
that if one had a computer whose basic operations were quantum mechanical
in nature—what he was the first to call a quantum computer—one could,
presumably, simulate a quantum system while only doing work polynomial
in the number of particles. What this means is that quantum physics it-
self is somehow exponentially more powerful than a classical computer; and
that something capable of harnessing quantum physics’ strengths might be
similarly powerful.

In the early 1930s, a great deal of work was done on the notion of ef-
fective computation: what exactly computers can and cannot do. Several
independent approaches were taken, pursued in work by Church, Turing and
Kleene[11, 12, 13]; ultimately they all came to equivalent conclusions about
computers’ abilities, in some sense launching the formal study of computer
science. A quantum analog to these conclusions was described in 1985 by
David Deutsch, where he stated[14]: “Every finitely realizable physical sys-
tem can be perfectly simulated by a universal model computing machine
operating by finite means.” In the same paper he introduced such a “uni-
versal model computing machine,” and thus launched the formal study of

2There is also a Θ(N3 lg lg N

lg N
) algorithm due to Tamaki[10].

3

quantum computing.
There has been a great deal of study devoted to probabilistic algorithms:

algorithms that employ randomness as part of their logic. Randomness per-
meates the algorithms in this thesis, since the procedures on which they are
based involve operations on and measurements of quantum systems. Every
algorithm presented here has some probability of failure: some probability
that it will run, terminate, and return an incorrect response. There are
different ways of dealing with this; we can repeat the algorithms, or parts
of them, to reduce the probability of failure: this gives us a relationship be-
tween probability of failure and running time. Throughout this paper, the
analyses of our algorithms’ running times will frequently include the symbol
ǫ, indicating how much slower our algorithms become as we require lower
and lower probabilities of failure.

1.1.2 Exponential Speedups

Although this thesis focusses on on quantum algorithms that offer poly-
nomial speedups over their classical (non-quantum) equivalents, we digress
briefly here to discuss some early quantum algorithms that are exponentially
faster than their classical counterparts—being either faster than the fastest
possible classical algorithm to solve the same problem, or faster than the
fastest known classical algorithm. These are, of course, what has made the
field of quantum algorithms so exciting.

An early quantum algorithm was invented by Dan Simon in 1994[15].
Simon’s algorithm solved an artificial problem, one whose solution lacked
obvious application; however he was able to show that a quantum algo-
rithm would solve it exponentially more rapidly than any classical algorithm
could. Moreover, Simon’s algorithm laid the groundwork for Peter Shor’s
subsequent development of quantum factoring.

In 1994, Peter Shor published an algorithm that solved two important
problems in number theory, both of which are generally believed to be super-
polynomial on a classical computer: prime factorization, and the discrete log
problem[16]. This algorithm is perhaps the best-known product of quantum
computing: because it performs factoring in polynomial time, it could in
principle be used to crack modern cryptosystems, such as RSA.

This section, regrettably, contains the last mention of exponential speed-
ups in this thesis. While the study of exponential speedups is exciting, thus
far results have been hard to come by, and generalize poorly. Thus one can
factor, and do useful things with factoring, but one can not solve more than
one or two similar problems. We will instead focus on polynomial speedups

4

brought by Grover’s algorithm, a very general tool that can be used to solve
a seemingly huge number of problems either faster than they can be solved
classically, or faster than the fastest known classical solution.

1.1.3 Grover’s Algorithm and BBHT

We will be comparatively brief in this section, since Chapter 2 expands on
many of the developments we will discuss here.

With the exponential improvements over the fastest known classical al-
gorithms offered by Simon and Shor, it is natural to ask whether quantum
computers provide exponential speedups in general; one could ask if there is
some general methodology, exponentially faster on quantum computers than
on classical computers, for seeking solutions to some class of problems. In
1994, Charles Bennett, Ethan Bernstein, Gilles Brassard and Umesh Vazi-
rani looked at searching spaces of size N, and concluded that an unstructured
search for a unique solution would not be faster than Ω(

√
N) on a quan-

tum computer, as opposed to Θ(N) on a classical computer[17]. They did
not have an algorithm that would achieve this quadratic speedup, but their
lower bound would prove prophetic.

In 1996, Lov Grover introduced an algorithm for what he called “search-
ing for a needle in a haystack”: given (for example) a phone book with N
randomly-ordered entries, Grover’s algorithm could find a particular name
in Θ(

√
N) accesses to the book[1]. Classically this would take Θ(N) ac-

cesses: we would have to look at each entry of the phone book individually
(note that we do not normally build phone books this way: traditionally
they are alphabetized, allowing for a much more efficient search).

Grover’s algorithm has potential applications that range far further than
lookups in poorly-designed phonebooks, but in its original form it is quite
limited: while it could find Mr. Zloklikovits in Vancouver without difficulty,
it would have a great deal more difficulty with finding an arbitrary one of
the many McDonald’s restaurants[18]. Grover, although he did discuss it,
did not go into detail about what would happen in the case where there
was more than one needle in the haystack; and so his algorithm needed
modification.

We now discuss two different enhancements to Grover’s algorithm: the
BBHT algorithm and the BCWZ algorithm. Both of them accomplish
Grover’s original goal, quickly finding a needle in a haystack; and both
work even if there are multiple needles, finding one at random. BBHT is
faster than BCWZ when there are many solutions to be found, while BCWZ
is faster when a high probability of success is required.

5

Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp published
the BBHT algorithm in 1996[2]. Consider Grover’s phone book example, and
our difficulty with finding any one of the M different McDonald’s restau-
rants. Boyer, Brassard, Høyer and Tapp constructed an algorithm that
would find a random McDonald’s, after performing Θ(

√
N/M) accesses to

the phone book. More generally, the BBHT algorithm solves the following
problem: given a function F (“is this entry a McDonald’s?”) that maps
the domain {0, . . . , N − 1} (the phonebook) to {0, 1}, find any x such that
F (x) = 1 (find a McDonald’s). The applications for this are very broad, as
we shall see throughout this thesis. It is also worth noting that BBHT may
fail; there is some probability that, even if a solution (needle, McDonald’s)
exists, BBHT will not find one. We will discuss this further in Chapter 2.

Harry Buhrman, Richard Cleve, Ronald de Wolf and Christof Zalka pub-
lished the BCWZ algorithm in 1999[3]. Their algorithm used a technique
known as amplitude amplification, invented by Brassard and Høyer and fur-
ther explored by Brassard, Høyer, Mosca and Tapp, which we will discuss
in Chapter 2. The BCWZ algorithm solves the same problem as BBHT;
but unlike BBHT, BCWZ’s speed does not increase with the number of so-
lutions. Like BBHT, it may fail to find a solution when one exists; BCWZ,
however, is designed to minimize that probability in an efficient manner.

1.1.4 Algorithms Using BBHT

Shortly after the publication of BBHT, Christoph Dürr and Peter Høyer,
also in 1996, demonstrated a use for the algorithm: minimum finding[4].
Given some function G that maps the domain {0, . . . , N − 1} onto some
totally ordered set, Dürr and Høyer’s minimum-finding algorithm finds any
x such that G(x) is minimal, after Θ(

√
N) calls to G.

BBHT also provides many speedups in graph theory. Christoph Dürr,
Mark Heiligman, Peter Høyer and Mehdi Mhalla wrote the first paper on
the topic, which gave quantum solutions to several classic graph problems[8].
The algorithms that they gave are polynomially faster than their classical
counterparts. We will examine their algorithm for finding shortest paths in
weighted graphs in Section 4.5.2.

Another paper speeding up graph problems was written by Ambainis
and Špalek; they also addressed classic graph problems[9]. We will examine
their algorithm for maximum bipartite matching in Section 4.5.3, speeding
it up slightly. They also addressed problems similar to bipartite matching,
such as maximum flow in integer networks, which we will not examine.

6

1.2 Conventions, Notation, and Notes

There are a few things that we need to discuss for those unfamiliar with
the procedures of algorithmic analysis. We create several new algorithms in
this thesis, and for each of them we are interested in analyzing its running
time: how long it takes to compute a solution. Since our algorithms have
randomness in them, we will be interested in the expected time it takes
to run our algorithms on some input. Since any given problem can have
a very large number of possible inputs, so we use a common formalism in
complexity analysis:

For any problem, consider the set of all possible inputs and group them
together by their size. For any given size, take the worst possible input of
that size (the input that causes our algorithm to have the slowest expected
running time). Now we have a mapping from input size to time; that tells
us how fast our algorithm is as a function of input size, but this function
may be erratic or hard to analyze. We need a mechanism for comparing
these functions, so we can say that one algorithm is “faster” or “slower”
than another. To do so, we compare these functions against well-behaved
benchmark functions, such as N, N2, N lg N, and 2N .

Consider such a well-behaved benchmark function, b(N), and a function
f(N) that indicates (as discussed above) the worst-case expected running
time of some algorithm on input of size N . We say that f(N) is O(b(N))
if, for some constant c, f(N) < cb(N) for all N ; this indicates that our
algorithm’s running time is no slower than b(N). We say that f(N) is
Ω(b(N)) if, for some constant c, f(N) > cb(N) for all N, indicating that
our algorithm’s running time is no faster than b(N). Finally, we say that
f(N) is Θ(b(N)) if it is both O(b(N)) and Ω(b(N)), which indicates that
our algorithm’s running time goes approximately as b(N).

This formalism is convenient for many reasons, not the least of which is
that it allows us to dispense with constants and lower-order terms. 2N2 +
10000 is Θ(N2), as is 5N2 + 50. This lets us dispense with many concerns
about machine-specific issues: is division slower than addition? As long as
it’s only slower by a constant factor, it doesn’t matter.

Following the convention found in Cormen et al.’s book[19], we assume
that basic arithmetic and addressing conventions take constant time. This
is consistent with other papers on quantum algorithms: see for example
[1, 2, 3, 4, 8, 9].

A note on terminology: we frequently use the term “classical” to refer to
algorithms that are designed for a classical model of computing. While this
is a standard term, it is perhaps unfortunate: in computer science literature,

7

a classical algorithm is one that has proven its worth and stood the test of
time. Euclid’s and Dijkstra’s algorithms are perhaps the best examples,
being algorithms in common use that were invented hundreds of years ago.
We attempt to maintain some of this usage by using the term “classic” to
refer to such algorithms.

Finally, wherever the character ‘z’ appears on its own in this document,
it is pronounced “zed.”

1.3 Capabilities of our Theoretical Quantum

Computer

This thesis’ algorithms are designed based on certain assumptions about
what sort of machine they will be run on; we discuss those here. Fun-
damentally, we take our machine to be equivalent to a “universal model
computing machine” by Deutsch’s definition[14]. That assumption alone is
insufficient, however, to let us analyze our algorithms: any classical com-
puter is equivalent to a Turing Machine, but there are many operations that
are asymptotically faster if one has a standard personal computer using
C++.

As such, we assume throughout the paper that the computer on which
our algorithms are running is fundamentally very similar to a modern per-
sonal computer: specifically that it follows the RAM model outlined by
Cormen et al.[19]. To add to that model the sort of capabilities that we
associate with an idealized quantum computer, we first say that all our bits
are qubits, and make the assumption that we do not have to concern our-
selves with decoherence (that the qubits will stay at whatever value they are
given); furthermore, that an arbitrary number of qubits can be entangled
together. While the assumption that decoherence will not be an issue is
perhaps unrealistic, we hope that our algorithms can be appropriately mod-
ified, that error correction codes will be sufficiently sophisticated, or that,
while not arbitrary, decoherence times will be long enough for many of our
algorithms to work.

Our processor should be capable of quantum operations. In particular,
it should be capable of some universal set of quantum logic gates as outlined
in Nielsen and Chuang’s text[20]. A universal set of quantum logic gates is
capable of simulating an arbitrary quantum gate, though the operations in
this thesis only require basic arithmetic operations, Hadamard gates, and
single-qubit gates.

We require that our random-access memory be accessible in superpo-

8

sition: this means that if we pass a linear combination of number states
to our RAM-accessor, such as3 (|0〉 + |2〉 + |5〉)/

√
3, it can extract all the

appropriate memory entries in parallel. To illustrate this, let us define the
operator M, which retrieves qubits from memory. To access the 5th qubit
in memory, we would perform the following operation: M|5〉|0〉. This would
give us |5〉|a〉, where a is the content of the 5th qubit in memory. The result
would be entangled with the original qubit, still sitting in the 5th slot of
memory. By accessing memory in superposition, we mean performing the
operation M(|5〉 + |2〉)|0〉/

√
2 and getting the result (|5〉|a〉 + |2〉|b〉)/

√
2,

where b is the content of the 2nd qubit in memory.
Other papers on quantum algorithms[8, 9] choose to focus on analyz-

ing the number of queries to some oracle their quantum algorithms take,
eschewing the analysis of running time. We will discuss this further in Sec-
tion 4.5.1; our results can be similarly analysed, and for the most part our
running times are equal to our query complexities. In some algorithms, par-
ticularly that of Section 4.5.2, there is a difference; it is because of such
differences that we feel running time is a better measure than query com-
plexity of algorithms’ performance, despite a large degree of uncertainty
about exactly how quantum computers will be implemented in the future
(and what unknown factors will appear in running times).

1.4 New Material Presented in this Thesis

This section is intended to be a quick reference, providing ready access to
material that is original to this thesis. We will list this material in the order
in which it appears. Recall that F refers to a function whose solution we
are trying to find, N refers to the size of F ’s domain, and M refers to the
number of solutions.

Our analysis of BBHT’s probability of failure (Section 2.2 and appendix
A) is original, and is one of the most important contributions of this thesis;
also original is our detailed presentation of BCWZ (Section 2.4).

Section 3.1’s findsol is original, and is perhaps the most important con-
tribution of this thesis; also original is its application in Section 3.3, findall.
Section 3.2’s minfind is Dürr and Høyer’s[4], modified to take advantage of
findsol’s capabilities (they used an unmodified BBHT, and aborted it after
Θ(

√
N) time). Section 3.4’s mindiff comes from Dürr, Heiligman, Høyer and

3This notation will be defined and discussed in Section 2.1. Intuitively, |5〉 indicates a
series of qubits (each of which is indicated by ai|0〉 + bi|1〉) set to |0〉 . . . |0〉|1〉|0〉|1〉, the
binary representation of 5.

9

Mhalla’s similar algorithm[8], though we provide several of the algorithm’s
specifics that did not impact its query complexity, and were thus not studied
by the original authors (see Section 4.5.1).

The algorithms in Sections 4.1 and 4.2 (BFS and DFS) are our own,
although Ambainis and Špalek have an almost-identical algorithm[9] for
breadth-first search that used BBHT instead of findsol.

The algorithm in Section 4.3 (SPNW) is our own, as is Section 4.4’s
APSP. Our improvements to Dürr, Heiligman, Høyer and Mhalla’s single-
source shortest paths[8] and Ambainis and Špalek’s bipartite matching[9]
algorithms are original (see Section 4.5), and we add some additional detail
to DHHM’s single-source shortest paths.

The algorithms in Chapter 5, maxpoints, coinchange and subarray-sum
are all original, though they are based on classical algorithms that are not
original to this thesis.

10

2. Grover’s Algorithm and

Amplitude Amplification

2.1 Grover’s Algorithm

To describe Grover’s algorithm, we will use Grover’s original metaphor:
needle-finding. Grover’s algorithm is a procedure to find a “needle” in a
“haystack.” More precisely, given a function F, with value 0 except at
some unique q (the “needle”) for which F (q) = 1, acting on the domain
{0, . . . , N − 1} (“haystack”), Grover’s algorithm finds the needle q. In this
section we will explain the physics of Grover’s algorithm, taking the needle
always to be the integer q.

First we need to define some notation. A qubit is a two-state system,
and so we will represent the two states as |0〉 and |1〉. One qubit’s state,
then, can be written as a|0〉+ b|1〉, where a and b are complex numbers such
that |a|2 + |b|2 = 1. If we have two qubits, A and B, their joint state can
be written as c|0〉A|0〉B + d|0〉A|1〉B + e|1〉A|0〉B + f |1〉A|1〉B . We change
notation here to write this as c|00〉+d|01〉+e|10〉+f |11〉, and finally change
notation one more time to write the above as c|0〉+d|1〉+ e|2〉+f |3〉.4 Note
that we started by writing our qubits separately, and ended by representing
the qubit-string (or “qudit” as it is sometimes known) as an integer. We
will consistently use this final notation throughout the paper. We will use
Roman characters and integers to represent eigenstates of the number basis
(such as |i〉 and |3〉), and Greek characters to represent arbitrary states.

To implement Grover’s algorithm, we assume that we have implemented
F as a quantum black box F . For these purposes, this means that we can
pass a state |i〉 into F , and end up with F|i〉 ≡ (−1)F (i)|i〉. Because quantum
physics is linear, we can evaluate F (0), . . . , F (N − 1) “simultaneously” by
implementing F and passing in |Ψ〉 ≡ (|0〉 + |1〉 + . . . + |N − 1〉) /

√
N .

4There is clearly an ambiguity whenever we write |0〉 or |1〉, since each could represent
the state of a single qubit or the state |00 . . . 000〉 (respectively |00 . . . 001〉) of some number
of qubits. We hope which is meant will be clear from context.

11

The first step in Grover’s algorithm is to put our system |φ〉 into the
following starting state, which we will refer to as |Ψ〉 all throughout this
chapter:

|Ψ〉 =
1√
N

|0〉 +
1√
N

|1〉 + . . . +
1√
N

|q〉 + . . . +
1√
N

|N − 1〉 (2.1)

Grover’s algorithm works by gradually nudging the amplitude on the |q〉
term toward 1, and simultaneously nudging the other amplitudes toward
0. The last step of the algorithm is measurement: since |q〉’s amplitude is
now near 1, it is likely that our measurement’s result will be q. This series
of nudges is called amplitude amplification on |φ〉 (our notation for “our
current state”).

We begin our discussion of Grover iterations with a diagram of the vector
space in which we will sit. Our starting state is |Ψ〉, the even superposition
of all possible inputs; our desired state is |q〉. Considering the span of those
two vectors, which is two-dimensional, we can now construct Figure 2.1.

The first step in Grover’s algorithm is to take our initial state |Ψ〉 and
apply F to it. Revisiting our definition of F , we realize that this simply
reflects our state about the vertical axis. That is the first step in a Grover
iteration; the second step is to reflect about our initial state, |Ψ〉 (we will
call the operator that does this J , and provide its details later). We can see
the results of this process in Figure 2.2.

It is easy to see from Figures 2.1 and 2.2 that a single iteration increases
the angle between the current state |φ〉 and the vertical axis by 2θ. θ was
defined in Figure 2.1 to be the angle between the vertical axis and |Ψ〉, our
starting state; since the probability of measuring |q〉 in our starting state is
1
N , sin2(θ) = 1

N and thus θ = sin−1
(

1√
N

)
.

We are still missing a few details, but we can now write Grover’s algo-
rithm as the following procedure:

1. Create the black box F such that F|i〉 = (−1)F (i)|i〉.

2. Let the state of our system be called |φ〉. Initialize |φ〉 to |Ψ〉 ≡
(|0〉 + |1〉 + . . . + |N − 1〉) /

√
N .

3. Let θ ≡ sin−1
(

1√
N

)
. Let α = θ.

4. Repeat the following, until α + 2θ > π
2 :

(a) Apply F to |φ〉, followed by J , the reflection about the starting
state |Ψ〉.

12

θ

Ψ

0 + 2 + 3 + 4 + 5
5

1

Figure 2.1: Starting state for Grover’s algorithm: N = 6, q = 1. θ is defined
to be the angle between |Ψ〉 and the vertical axis. Note that the vertical
axis has no |1〉 term, and is thus orthogonal to the horizontal axis.

(b) Let α = α + 2θ.

5. Measure |φ〉 in the number basis; call the result x.

6. If F (x) = 1, return x. Otherwise go to step 1.

The “goto” in step 6 is necessary because θ may be such that α never
exactly reaches π

2 , the point at which x would necessarily equal q. This
means that every time we run through steps 1–6, there is some probability
of “failure”—measuring the wrong x. Since we never measure unless our
current angle from the vertical axis is ≥ π

6 —if the angle is less, we will do
another Grover iteration—this probability is ≤ 2

3 , and so in the worst case
the number of times we repeat the body of the algorithm has expectation 3.

We still lack two major details: we have not discussed the implementa-
tion of J ; and while we have a procedure, we would like to know how long
it takes (how often step 4 will repeat for given N). Implementing J is a

13

φ0 = Ψφ1

φ2

0 + 2 + 3 + 4 + 5
5

1

Figure 2.2: One Grover iteration: N = 6, q = 1.

matter of combining a few quantum gates. J ’s purpose is to reflect about
|Ψ〉, our initial state; to implement it, we can switch bases so that |Ψ〉 = |0〉,
and then reflect about |0〉. We leave the details to Grover’s original paper[1].

Finally, we need a running time. For starting states with a large number
of solutions (θ > π

6), we effectively choose a random input and check it
against F, for which the expected number of applications of F is a constant.
For θ ≤ π

6 , we perform at least one Grover iteration. We first note that our
number of iterations is ≤ π

2θ . Since θ ≥ sin θ in that range, we have our

number of iterations ≤ π
2 sin θ = π

√
N

2 . We can take a lower bound similarly,

and arrive at Θ(
√

N) iterations through step 4, and thus Θ(
√

N) calls to F .
As for running time that comes from sources other than the calls to F,

we have Θ(
√

N) calls to J . J is a Θ(1) operation, and thus takes no more
time than F (which must be Ω(1)). One detail of J is that it only works on
an integer number of qubits: executing it leaves us with entanglement over

14

states that are not in the domain of F, and can thus break Grover’s. To
deal with that we can simply extend the domain of F to the nearest power
of 2, defining F (x) = 0 for x not in the original domain. This increases N
by a factor of two at most, and thus leaves us with the same asymptotic
performance.

2.2 BBHT

Grover’s algorithm has a major disadvantage, which is that it is designed
for the one-needle case: where F (x) = 1 for only one x. It has the problem
that every Grover iteration increases |φ〉’s angle from the vertical axis by 2θ;
after about π

4θ iterations, each iteration reduces the probability of obtaining
the correct result.

When the number of solutions M is known, Grover’s algorithm is easy
to adapt. Recall that θ, the angle between the vertical axis and our starting

state, was initially sin−1
√

1
N . Since we now have M possible solutions,

the probability that measuring |Ψ〉 would give one of the solutions is M
N ;

therefore the projection of |Ψ〉 onto the horizontal axis, sin2 θ, must equal
M
N . Thus we have that θ = sin−1

√
M
N ; aside from noting that change, we

can proceed normally with Grover’s algorithm, obtaining a random solution
when it terminates. If the number of solutions is not known, however, then
neither is θ; and Grover’s algorithm as written will not consistently offer us
a quadratic speedup.

The BBHT algorithm[2] solves the needle-finding problem when the
number of solutions is not known. The concepts it makes use of were intro-
duced in Section 2.1, and so we begin by presenting Boyer, Brassard, Høyer
and Tapp’s algorithm, slightly modified for our purposes:

1. Create the black box F such that F|i〉 = (−1)F (i)|i〉.

2. Initialize m = 1 and set λ = 1.31.5

3. While m ≤ 2
√

N, repeat the following unless instructed to return:

(a) Let the state of our system be called |φ〉. Initialize |φ〉 to |Ψ〉, the
equal superposition of all states.

(b) Choose an integer j uniformly at random such that 0 ≤ j < m.

5This choice was made to minimize the running time of BBHT under a certain approx-
imation (see Appendix A): any number strictly between 1 and 2 would work.

15

(c) Apply j Grover iterations JF to |φ〉.
(d) Measure |φ〉 in the number basis, and call the result x.

(e) If F (x) = 1, return x; otherwise, set m to λm.

4. Return false.

Note that we return the special value false if no solution has been found
after a sufficiently large number of iterations through step 3. Since M is
unknown, it is possible that M = 0 and there are no solutions; thus it is
important to give up at some point if no solution has yet been found. That
is a modification we have made from the original algorithm: we allow our
algorithm to give up if there is probably no solution, which also introduces
the possibility of failure (which we explore below); it may give up too soon.

Intuitively, BBHT works by trying several different numbers of Grover
iterations, which (depending on how many iterations there were) will yield
different probabilities of success for different values of M . The algorithm as
a whole will fail with probability < .5M−.93, and its total number of calls
to F has an expectation of Θ(

√
N/M); we prove this in Appendix A.

BBHT is simple and powerful: given a binary function F and its domain,
it finds x so that F (x) = 1 if such an x exists, returns false if it does not,
and requires no additional information. Its one disadvantage is that it may
fail, returning false incorrectly. BBHT is the primary tool used by Dürr,
Heiligman, Høyer and Mhalla[8] and Ambainis and Špalek[9] in constructing
their algorithms; we use it in combination with BCWZ (see Section 2.4) to
ameliorate the effects of failure on running time.

2.3 Amplitude Amplification

Amplitude amplification generically refers to any process where one takes
some state a|φ〉 + b|χ〉 and selectively increases the magnitude of one of its
amplitudes, a or b. Grover’s algorithm is an amplitude amplification process:
we start off with an even superposition of all input states, and amplify the
amplitude of the states that satisfy some function F .

An amplitude amplification process is a search, much like Grover’s algo-
rithm or BBHT. Like Grover’s algorithm, an amplitude amplification process
starts in some state |β〉, gradually amplifies the amplitude of the terms we
are interested in through a process much like a Grover iteration, and then
terminates by measuring the state.

In Section 2.4 we will make use of an algorithm called exact search, an
amplitude amplification process invented by Brassard and Høyer[21]. One of

16

the difficulties with Grover’s algorithm is that it does not necessarily succeed
on the first try, even if we know M ; because the probability of measuring
a correct answer is sin2((2m + 1)θ) after m Grover iterations, there may
not be some integer number of iterations that would guarantee success. If
we allow modifications to our Grover iterations, however, we can decrease
the amount by which our angle increases, and make our required number
of iterations an integer. Brassard and Høyer’s exact search does just that,
accepting a parameter M1 > 0 and, if M1 is the number of solutions to the
given function F, returning a random such solution in Θ(

√
N/M1) calls to

F . If M1 is not the number of solutions to F, it will terminate in Θ(
√

N/M1)
calls to F, and return either a solution or false.

Exact search’s strength does not come from the fact that it never fails
if the guess for M is right; after all, if M is known then it is easy to adapt
Grover’s algorithm to try until it succeeds. Its strength is that if we try
exact search for a given M1 and it fails, then the function definitively does
not have exactly M solutions. We will find this to be useful in Section 2.4,
when we explore the BCWZ algorithm.

Amplitude amplification has a number of other uses, such as working
with heuristics to solve difficult decision problems; we will not explore those
uses here. Suffice it to say that it is a useful procedure in general, and
worthy of exploration in its own right.

2.4 BCWZ

The BCWZ algorithm, invented by Buhrman, Cleve, de Wolf and Zalka[3],
is another general search algorithm; but where BBHT is speedy when there
are many solutions, BCWZ deals well with errors.

Let us examine how we typically deal with errors classically. Consider
a function G that finds a solution to some problem. If a solution exists, G
finds that solution with probability 1 − p; otherwise it simply returns false.
Suppose that we suspect there are no solutions: given that G is our only
tool, how can we be sure to within a probability of ǫ that no solution exists?

The solution is to keep trying G until the probability is less than ǫ that,
if a solution existed, it was not found. Since the probability that G fails to
find a solution when one exists is p, if we try r times then the probability
that we fail is pr. Since we want pr = ǫ, we have r = log(ǫ)/ log(p). We
thus need to repeat G Ω(lg ǫ−1) times before we can be confident that our
probability of failure is less than ǫ.

The BBHT algorithm, which we discussed in Section 2.2, has all of the

17

properties that we assigned to G. If it finds a solution, we know immediately;
if it fails to find one, or if there is none, it will claim no solution exists. It
fails with some probability p if there is a solution; so if we want to ensure
that a function F has no solutions (and be right with probability 1 − ǫ) we
must try BBHT Ω(lg ǫ−1) times.

BCWZ does better than that, and (as we will see) reduces our error-
dependence to Θ(

√
lg ǫ−1). We have already introduced the ideas that we

need, and so we will begin by writing out the algorithm. Note that step 1
has a logarithm taken in base 1.5; our choice of 1.5 is not entirely arbitrary,
but is important to the analysis of the algorithm. Our ultimate requirement
is that our logarithm’s base X is such that 0.61logX ǫ−1

< ǫ for all ǫ in (0, 1),
and so we could have taken any base in the range (1, 1.6].

1. Let M0 =
⌈
log1.5 ǫ−1

⌉
.

2. Apply exact search, taking its “guess” for M, M1, to be all integers in
[1,M0]. If a result other than false is ever returned, return it.

3. Repeat the following steps M0 times unless instructed to return:

(a) Let the state of our system be called |φ〉. Initialize |φ〉 to |Ψ〉, the
even superposition of states.

(b) Choose an integer j uniformly at random such that 0 ≤ j <√
N/M0.

(c) Apply j Grover iterations JF to |φ〉.
(d) Measure |φ〉 in the number basis, and call the result x.

(e) If F (x) = 1, return x.

4. Return false.

After step 2, we can be sure that M = 0 or M > M0; consequently,√
N/M0 >

√
N/M . We found in our analysis of BBHT (see Appendix

A) that every time we go through a series of steps such as steps 3 above, we
have probability at least 0.39 of finding a solution if one exists. So either
M < M0, and we are guaranteed to find a solution in step 2 (the probability
of failure is 0); or we arrive at step 3, and after each iteration our proba-
bility of failure is reduced by a factor of 0.61. Our probability of failure for
M > M0 is thus 0.61log1.5 ǫ−1

< ǫ. As for running time, our number of calls
to F is bounded by:

M0∑

M1=1

Θ(
√

N/M) + M0Θ
√

N/M0 = Θ(
√

N lg ǫ−1) (2.2)

18

Thus demanding a low probability of failure from BCWZ is cheaper than
demanding the same from BBHT; but since BBHT is a factor of

√
M faster

than BCWZ when is error probability is a constant, it is rarely practical to
use BCWZ on its own. We will explore using the two algorithms jointly in
Section 3.1, and thus create a tool that is more powerful than either alone.

It is worth noting that we have made a small modification to the original
BCWZ algorithm: instead of our step 3, Buhrman, Cleve, de Wolf and Zalka
have a step saying “conduct M0 searches, each with O(

√
N/M0) queries.”

They later conclude that “each of the searches in [that step] can be made
to have error probability ≤ 1/2.” It is unclear what “can be made to have”
means there, but such searches may have probability of success near 0 if
an unfortunate choice of ǫ (and thus M0) is made. Our step 3 avoids that
difficulty, and ends up having error probability ≤ 0.61. This can be reduced
to 0.5 by the simple expedient of trying it twice; this procedure is presumably
what the authors intended, or close to it.

2.5 Inside an Iteration: Properties of F

Each of the search algorithms that we have discussed operates with some
function F, and finds some solution x such that F (x) = 1; we have not given
much discussion to what properties F may have, however. Can the function
access tables of previously-stored information? Can it look things up in a
hash table or search tree? Can it write in memory, and have those writings
available in the next iteration? To some extent this discussion depends on
the capabilities we have chosen for our quantum computer, but there will
inevitably be some things we need and some things we can never have.

It is worth noting that in this thesis, the functions we evaluate inside
Grover iterations are always fundamentally classical in nature: look up some-
thing in a table; multiply two numbers together; if A then do B; and so forth.
F is executed as a quantum black box on a superposition of states, so it
needs to be implemented with quantum gates—objects that are fundamen-
tally reversible. Furthermore, after F has been evaluated and each term ai|i〉
has become either ai|i〉 or −ai|i〉, we need to have no intermediate qubits
from our computation of F tied up with that result. After all, if we took
F(|i〉|0〉+ |j〉|0〉) and somehow came out with (−1)F (i)|i〉|a〉+(−1)F (j)|j〉|b〉,
then any further manipulation of our state with Grover’s algorithm would
not budge |a〉 and |b〉, and thus would not allow interference between |i〉 and
|j〉.

Fortunately for us, decades of work have been done on reversible com-

19

puting, and a paper by Bennett[22] contains what we need: any irreversible
procedure may be executed reversibly, as long as we keep any intermediate
results. This allows us to perform operations such as multiplication, which
has no inverse—given ab we can not necessarily find a and b—reversibly, by
storing ancillary information (given ab and a, we can find b).

Generalizing this process to an arbitrary quantum algorithm F, we un-
dertake the following process: we start by executing F, taking care never to
erase any information. If at any point we have to perform a fundamentally
irreversible operation like multiplication, we keep ancillary information so
that we are able to reverse the operation. Once we have finished our com-
putation and determined k = F (x), our second step is to apply a gate that
gives us a total phase of (−1)k. Finally we take every step involved in the
execution of F and reverse it in order from last to first. Finally we end up
in our initial state, but for the phase on |x〉.

The fact that we reverse each step has the effect of undoing any writing
that we do to memory; so while we can perform an arbitrary classical com-
putation inside F, and can read from memory set before the beginning of
the computation (such as arrays, hash tables and binary search trees), any
alterations that we make to that memory will be undone before the next
Grover iteration.

2.6 Summary

We have discussed four search algorithms in this chapter. We summarize
them here, using our notation from earlier: F is a binary-valued function
that we are trying to find a solution for (x such that F (x) = 1), N is the
size of F ’s domain, and M is the number of solutions. An algorithm is said
to fail if it returns that there are no solutions when there is at least one.

Grover’s algorithm is a search that, when M = 1, takes Θ(
√

N) calls to
F and never fails. It is made obsolete by the other three algorithms.

BBHT is a search that does not require knowledge of M, takes Θ(
√

N/M)
calls to F, and fails with probability less than .5M−.93. If M = 0, it takes
Θ(

√
N) time but never fails.

Exact search is a search that takes a guess for M, which we call M1; if
that guess is correct, it takes Θ(

√
N/M) calls to F, and has probability 0

of failure. Otherwise it takes Θ(
√

N/M1) calls to F, and fails with some
probability.

BCWZ is a search that does not require knowledge of M, accepts a
parameter ǫ, takes Θ(

√
N lg ǫ−1) calls to F, and fails with probability ≤ ǫ.

20

3. Tools

Here we present some basic algorithms, founded on BBHT and BCWZ (see
Section 2.6). These serve as subroutines to be used throughout this thesis,
where they will be referred to by their abbreviated names, found in the
section headers.

Note that each of the following algorithms operates with some given
function often called F, whose evaluation could have some arbitrary time
complexity; as such, our standard unit of time for this chapter is the number
of calls to the given function. There are, of course, operations in these
algorithms outside of the function calls; in each of these algorithms, except
for mindiff in Section 3.4, the extra operations are subdominant to the
number of calls to the given function. In Section 3.4 we will use tJ and
tK to specify how the running time of the given functions J and K impact
the total running time of the algorithm.

Each algorithm in this section is not only polynomially faster than the
fastest known classical algorithm that achieves the same goal, but is also
polynomially faster than the fastest possible classical algorithm.

3.1 Finding a Solution to F, findsol

Theorem 1 Take a binary-valued function F over the domain {0, . . . , N −
1}. The following algorithm findsol searches for a solution x in the domain
such that F (x) = 1. If there are M > 0 solutions, findsol will return a
random one with probability > 1 − 0.5M−1.86ǫ, where ǫ is some probability
of failure that we are willing to tolerate. If it successfully does so, findsol
takes an expected Θ(

√
N/M +

√
N lg ǫ−1M−1.86) calls to F ; if it is unsuc-

cessful, or if there are no solutions, findsol returns the special value false
after Θ(

√
N lg ǫ−1) calls to F .

In the following we use an extra parameter r, which allows tradeoffs in
cost between the case where a solution exists and the case where there is no
solution. We found r = 2 to be adequate for our purposes throughout this
thesis; we include it as a parameter here in case someone else has use for it.

21

The principle we use here is very straightforward. First, we acknowledge
that we can’t do any better than

√
N lg ǫ−1 (a single BCWZ) in the case

where there are no solutions, so we try to optimize for the case where there
are solutions and we can hope for Θ(

√
N/M) calls to F . To do this, we

try BBHT first due to its faster running time. Then if we have not found a
solution, we check for one with BCWZ to make sure.

1. Run BBHT up to r times. If any of those returns a result that satisfies
F, immediately return that result.

2. Run BCWZ with parameter ǫ. If it returns a result that satisfies F,
return that result; otherwise return false.

The analysis for this is very straightforward. If there are solutions, step
1 takes an expectation of Θ(

√
N/M) calls to F (we expect it to repeat less

than twice). The BBHTs all fail with probability Θ(.5rM−.93r); if they do
we move on to step 2, which takes

√
N lg ǫ−1 calls to F . This gives us an

expectation of Θ(2
√

N/M + .5rM−.93r
√

N lg ǫ−1) total calls to F in the
case where there are solutions; these reduce to to the promised quantities
when r = 2. If there are no solutions, step 1 is Θ(r

√
N) and step 2 is

Θ(
√

N lg ǫ−1).
Looking at the probability of failure, we observe that the algorithm can-

not possibly find a solution that does not exist, and therefore cannot fail
when there are no solutions (the error is “one-sided”). If there are solutions,
the probability of failure is ≤ .5rM−.93rǫ, the probability that the BBHTs
and BCWZ all fail.

We chose r = 2 because 2 is the smallest value that gives us a sufficiently
small coefficient of

√
lg ǫ−1 in the running time (one proportional to less than

M−1). That property is important in Section 3.3; in general, almost any
natural number is a reasonable choice for r.

3.2 Minimum Finding, minfind

Theorem 2 Take a function G that maps the domain {0, . . . , N − 1} to
some totally-ordered set. The following algorithm minfind finds x in the
domain such that G(x) is less than or equal to all G(y) in expected time

Θ
(√

N lg ǫ−1
)

and with probability ≤ ǫ of failure.

This algorithm is based on one by Dürr and Høyer[4], and is identical
in approach to theirs; but where we use findsol (step 2a, below) they use

22

BBHT lg ǫ−1 times. The motivation for this algorithm, as with theirs, is
repeatedly to find y with smaller and smaller values for G(y). To do this
efficiently, we use findsol as introduced in Section 3.1.

1. Pick y uniformly at random from the set {0, . . . , N − 1}.

2. Repeat the following until instructed to return:

(a) Run findsol with parameter ǫ to find an element y′ : G(y′) < G(y).

(b) If findsol returns an element, set y = y′; otherwise return y.

Dürr and Høyer show that the probability that y will ever take on the
kth-lowest value is 1/k, and that for different k, those probabilities are in-
dependent. With that in mind, we can sum over all values of k to arrive at
an expected running time and a probability of failure. For expected running
time, we find:

tminfind =
√

N lg ǫ−1 +

N∑

k=2

1

k

√
N lg ǫ−1k−1.86

≤
√

N lg ǫ−1 +

∫ N

1

dk

k

√
N lg ǫ−1k−1.86

≤
√

N lg ǫ−1 +
√

N lg ǫ−1

calls to G. We calculate the probability of failure similarly, first noting that
Pfail ≤

∑
k P (k)Pfail(k):

Pfail ≤
N∑

k=2

1

k
ǫk−1.86 ≤

∫ N

1

dk

k
ǫk−1.86 ≤ ǫ

3.3 Finding all x that Satisfy F, findall

Theorem 3 Take a binary function F over the domain {0, . . . , N −1}. Let
any x for which F (x) = 1 be called a solution for F, and let the number of
distinct solutions be called M . The following algorithm, findall, finds all
solutions for F in Θ(

√
NM +

√
N lg ǫ−1) expected calls to F, with probability

≤ ǫ of failure.

The idea behind this algorithm is to find successive solutions x, striking
each off the search as we find it in order to guarantee that we find something
different every time. We do this straightforwardly with findsol.

23

1. Create a direct-address table D to store results found so far.6

2. Repeat the following until instructed to return:

(a) Run findsol with parameter ǫ to find an element x of {0, . . . , N−1}
such that F (x) = 1 and D does not contain x.

(b) If findsol returns an element, add it to the result set and D;
otherwise, return the result set.

We calculate the number of calls to F with a straightforward integral:

tfindall =
√

N lg ǫ−1 +
M∑

k=1

(√
N/k + k−1.86

√
N lg ǫ−1)

)

≈ 2
√

N lg ǫ−1 +

∫ M

1
dk
(√

N/k + k−1.86
√

N lg ǫ−1)
)

≈ 2
√

N lg ǫ−1 +
√

NM +
√

N lg ǫ−1

We calculate the probability of failure similarly, noting that the probability
of failure Pfail ≤

∑
k Pfail(k):

Pfail ≤
M∑

k=1

ǫk−1.86 ≤
∫ M

1
dkǫk−1.86 ≤ ǫ

3.4 Finding a Minimal d Objects of Different

Types, mindiff

Suppose that we want to book d holidays to different destinations, and there
are N flights yi leaving our home airport to various destinations, with various
costs J(yi). The following algorithm finds us the d cheapest destinations,
and their respective cheapest flights.

Theorem 4 Take a function J (our “cost”) over the domain {0, . . . , N−1},
and some division of that domain into disjoint subsets (our “destinations”).
The following algorithm, mindiff, takes the lowest-cost element of each sub-
set (breaking ties arbitrarily) and takes the lowest-cost d of those elements
(again breaking ties arbitrarily), and returns the result. mindiff achieves

6A direct-address table is a construct like a hash table, allowing us to keep track of
already-found elements with Θ(1) operations. Details can be found in Cormen et al.’s
book on algorithms[19].

24

this in O
(
(tJ + tK)

(√
Nd +

√
N lg ǫ−1

)
+ d lg N lg d

)
time, with probabil-

ity ≤ ǫ of failure.

In terms of implementation, mindiff accepts a cost function J and a
subset-division function K. We say that x and y are in the same subset iff
K(x) = K(y). We will call the d elements of mindiff’s result set xi. To find
the elements that we seek, we will start off with some “bad” set of d elements
that are not a valid result set for mindiff, and repeatedly use findsol to find
elements y that “improve” our current result set by satisfying either of the
following conditions:

1. J(y) < J(xa) and K(y) = K(xa) for some a. This means y and xa are
in the same subset, and y is lower-cost than xa.

2. J(y) < J(xa) for some a, K(y) 6= K(xi) for any i. This means y is
in some subset that doesn’t appear in our result set, but is lower-cost
than something that does.

The basis for this algorithm comes from Dürr, Heiligman, Høyer and
Mhalla[8]; their algorithm is roughly the same as our step 3 below, but it
only outlines that step, and not the various data structures necessary for
its implementation. The principle behind both their algorithm and ours is
repeatedly to find y such that it meets either of the conditions above, and
to replace the appropriate element of the result set with the new y.

1. Let x be the array of answers. Initially, let the xi be “infinities,” for
which J(xi) = ∞, and K(xi) is unique and not equal to K(y) for any
y in {0, . . . , N − 1}.

2. Let D be a direct-address table mapping K(xi) to i, and initialize it
as such. Let T be a balanced binary search tree containing the pair
(J(xi), i) for all i, sorted by J(xi), and initialize it as such.

3. Repeat the following until J has been evaluated Ω(
√

Nd) times, or the
loop has repeated Ω(d lg N) times (whichever happens first):

(a) Let τ be the largest J(xk) in T, and k the corresponding index.

(b) Use BBHT to find some element of the domain y such that either
J(y) < τ and K(y) /∈ D (condition 2), or K(y) ∈ D and J(y) <
J(xD(K(y))) (condition 1). Note that J(xD(K(y))) is the cost of the
cheapest flight that we have found so far going to y’s destination,
if that is currently in our result set.

25

(c) If condition 1 was met, set xD(K(y)) = y, and update D and T
correspondingly. Otherwise, if condition 2 was met, set xk = y,
and update D and T accordingly.

4. Run findsol with parameter ǫ to check whether there is still a y that
satisfies either condition as outlined in step 3b. If not, return x. If so,
repeat step 3.

Terminating the loop in step 3 after Ω(
√

dN) calls to J provides proba-
bility of success > 1

2 , which is shown by Dürr, Heiligman, Høyer and Mhalla.
They also show that Ω(d) iterations suffice to eliminate a constant fraction
of the domain from consideration, thus Ω(d lg N) iterations will also provide
probability of success > 1

2 . In order to improve the probability of success,
we run findsol with parameter ǫ to check whether we are yet done; if we are
not, we repeat step 3 until we are. Since the probability for step 3 to finish
successfully after one pass is ≥ 1

2 , we expect to repeat it – and findsol – an ex-
pectation of ≤ 2 times. We also have to consider the contribution of updating
and accessing T, which will take Θ(lg d) time with every iteration; thus our

total running time is O
(
(tJ + tK)

(√
dN +

√
N lg ǫ−1

)
+ d lg N lg d

)
with

probability ≥ 1 − ǫ of success.
Note that if d is greater than the number of distinct values for K (≡ γ),

we return γ valid elements and d − γ infinities (fictitious elements of the
domain as defined in step 1).

26

4. Applications in Graph

Theory

A graph G = (V, E) consists of a finite set of vertices V = {vi} and a finite
set of edges E = {ei}, where ei = (vj , vk). In a directed graph, each edge
is an ordered pair. In an undirected graph, each edge is an unordered pair.
For convenience when analyzing algorithms that run on graphs, we write |V|
as V, and |E| as E.

Many problems in computer science can be reduced to graph problems.
For example, a subway system could be represented as an undirected graph,
in which each stop is represented by a vertex and the each line connecting
a pair of stops is represented by an edge.

A common graph problem is to find a path from one vertex to another
along edges in the graph. More formally, a path p between vertices vstart

and vend is an ordered set of edges, (ei1 , ei2 , . . . , ein), where eij = (vij1, vij2),
such that vi11 = vstart, vin2 = vend, and eij2 = eij+11 for each 1 ≤ i < n
(the jth edge in the path ends where the j + 1th edge begins). Often one is
interested in finding the shortest path between two vertices: the path with
the smallest number of edges n.

In a variant of the shortest path problem, each edge and/or vertex is
assigned a weight, and the shortest path is considered to be the one for
which the sum of weights of all vertices and edges in the path is minimized.
A graph in which the vertices or edges have weights is referred to as a
weighted graph.

The graph algorithms presented here assume the graphs they operate on
will be simple graphs: they will have at most one edge between any two
vertices (or two edges in opposite directions, in the directed case), and no
“self-edges” that directly connect a vertex to itself. Most of these algorithms
are very easy to generalize to graphs that do not have those properties, but
we leave that task to the enterprising reader.

In this chapter we will focus on quantum versions of long-studied clas-
sic problems such as shortest paths, searching through graphs, and graph
matchings (suppose you want to pair up vertices that are connected; what’s

27

the maximum number of disjoint pairs you can make?).
We present the algorithms here for two models of representing graphs,

which we will discuss as quantum black boxes. If there is an edge between
vertices vi and vj, we refer to it as eij. We present these two models because
one, the edge array model, tends to yield more efficient algorithms; on the
other hand, the adjacency matrix model is a common representation, and
could be given to an algorithm as input. The models are:

• The adjacency matrix model, as a quantum black box, is passed i, j
(0 ≤ i, j < V) and returns whether eij exists. This is a mathematical
function, often represented classically as a V × V matrix with entries
in {0, 1}.

• The edge array model, as a quantum black box, is passed i, j and
returns the destination of the jth edge outgoing from vertex vi (we
assume for convenience that we know how many edges are outgoing
from each vertex). Classically this is usually represented as a ragged
array, but sometimes is generated mathematically as-needed. We call
the set of edges outgoing from vi di, and its cardinality |di|. The edge
array model is sometimes called the adjacency list model; though when
it is referred to by that name, the internal representation of edges may
be a linked list rather than an array.

If the graph is weighted, the adjacency matrix and edge array models also
return the weight of the edge queried.

For an excellent introduction to graph theory and algorithms therein, see
Cormen, Leiserson, Rivest and Stein’s classic introduction to algorithms[19].
It contains detailed discussions of breadth-first and depth-first searches, Di-
jkstra’s algorithm and the Bellman-Ford algorithm, as well as all-pairs short-
est paths. We look at all of these in this chapter, but leave the details to
this reference.

4.1 Breadth-First Search, BFS

Breadth-first and depth-first search are two of the simplest algorithms for
searching a graph, and find extensive use inside many important graph al-
gorithms. The principle behind each is the same: starting at some source,
we systematically explore the vertices of our graph, “visiting” each vertex
connected to the origin in some order. By introducing quantum versions
of each here, we tarnish their simplicity but maintain their strength and
increase their speed.

28

As we mentioned above, BFS and DFS both see extensive use. Both can
be used to determine whether a vertex is connected to the rest of the graph
(if there is a path from that vertex to every other vertex), and breadth-first
search in particular can be used to compute shortest paths in an unweighted
graph. Depth-first search, on the other hand, can be used to detect “bridges”
in a graph: edges which, if they were removed, would sever the graph into
two pieces with no edges between them. There is a great deal of utility to be
had from these two over and above what is discussed here, and both are well-
studied techniques in classical computing; both run on classical computers
in Θ(E) time, which is provably optimal.

To implement a breadth-first search here, we begin with classical BFS:
we keep a list of vertices we want to visit, and every time we visit another
of those vertices we add all of its unvisited neighbours to the list. Through
use of a boolean array we ensure each vertex is only visited and added once.
To choose the order in which the vertices are visited, we let our list be
a “queue,” wherein vertices added first are visited first; thus we end up
visiting the vertices in order of how close they are to the origin of our search
(breadth-first).

To speed up the process of finding all of the unvisited neighbours of each
node, we use Section 3.3’s findall. This algorithm is based on a BFS from
Ambainis and Špalek[9], though they use repeated BBHTs rather than our
findall.

Theorem 5 The following algorithm BFS executes a breadth-first search
through a graph G = (V, E) in O(

√
V 3 lg(V ǫ−1)) time in the matrix model,

O(
√

V E lg(V ǫ−1)) in the edge array model. There is probability ≤ ǫ that it
fails, executing the breadth-first search incorrectly.

1. Let the vertex from which we are searching be called va. Let there be
a queue of vertices q, and let it initally contain only va. Let there be
a boolean array vis of size V, with entries vis[i] = δi,a.

2. Repeat the following until q is empty:

(a) Remove the first element of q and call it vi.

(b) Visit vi.

(c) With Section 3.3’s findall, find all neighbours vj of vi with vis[j] =
false.

(d) For each such vj , set vis[j] = true and add vj to q.

29

Since BFS makes a call to a function that may fail, findall, there is some
probability that it fails. We may pass the BFS function some constant ǫ, a
probability of failure that we are willing to tolerate; since BFS calls findall
V times, if we require that findall has probability ≤ ǫ/V of failure each time,
the total probability with which BFS fails will be less than ǫ.

In the matrix model, each vertex vi is processed at most once, and its
findall contributes

√
V ni +

√
V lg(V ǫ−1) to the running time in the matrix

model, where ni is the number of elements added to q. In the edge array
model, each vertex is processed at most once and contributes

√
|di|ni +√

|di| lg(V ǫ−1). By the Cauchy-Schwartz inequality, we have:

∑

vi∈V

√
ni |di| ≤

√∑

vi∈V

ni

√∑

vi∈V

|di| =
√

V E (4.1)

∑

vi∈V

√
|di| lg(V ǫ−1) ≤

√∑

vi∈V

|di|
√∑

vi∈V

lg(V ǫ−1) ≤
√

V E lg(V ǫ−1) (4.2)

We conclude that BFS in the edge array model runs in O(
√

V E lg(V ǫ−1))

time, and since E < V 2, BFS in the matrix model runs in O(
√

V 3 lg V) time.
Classically the fastest possible breadth-first search algorithm takes Θ(E)

time in the edge array model, Θ(V 2) time in the matrix model; so for
bounded error probability, BFS is faster than its classical counterpart in
the matrix model, and faster than its classical counterpart in the edge array
model for E ∈ Ω(V lg ǫ−1).

4.2 Depth-First Search, DFS

Classically depth-first and breadth-first search can have very similar im-
plementations, and the same is true in the quantum regime. The simplest
implementation of depth-first search in both regimes, however, is a recursive
one, which we show here.

Theorem 6 The following algorithm DFS executes a depth-first search
through a graph G = (V, E) in O(

√
V 3 lg V) time in the matrix model,

O(
√

V E lg(V ǫ−1)) in the edge array model, with probability ≤ ǫ that it will
fail, performing the depth-first search incorrectly.

1. Let the vertex from which we are searching be called va. Let there
be a boolean array vis of size V, with its entries initialized to 0. Call
DFS-BODY(va).

30

2. Function DFS-BODY(vertex vk):

(a) Visit vk. Set vis[k] = true.

(b) Repeat the following until instructed otherwise:

i. Use Section 3.1’s findsol to find a neighbour of vk that has
not yet been visited, vi. If findsol returns false, return.

ii. Recursively call DFS-BODY(vi).

Since DFS makes a call to a function that may fail, findsol, there is some
probability that it fails. We may pass the DFS function some constant ǫ, a
probability of failure that we are willing to tolerate; since DFS calls findsol
no more than 2V times—one call to find each vertex, and one call returning
false from each vertex—if we require that findsol has probability ≤ ǫ/2V
of failure each time, the total probability with which DFS fails will be less
than ǫ.

For each of the calls to findsol that returns false, we find a contribution
(in the edge array model) of

√
|di| lg(2V ǫ−1) to our running time, which

sums over all vertices to O(
√

V E lg(V ǫ−1)) by the Cauchy-Schwartz in-
equality (see equation 4.2). We must also sum the running times of the
successful findsols: we note that for each vertex vi, if we end up finding
ni of its neighbours through DFS-BODY(vi), the running time of that will

be O
(∑ni

k=1

√
(|di| /k) lg(2V ǫ−1)

)
= O(

√
|di|ni lg(V ǫ−1)). Summing that

contribution over each vertex, we again use the Cauchy-Schwartz inequal-
ity (equation 4.2) to arrive at O(

√
V E lg(V ǫ−1)). In the matrix model we

simply replace E with V 2, arriving at O(
√

V 3 lg(V ǫ−1)).
Classically the fastest possible depth-first search algorithm takes Θ(E)

time in the edge array model, and Θ(V 2) time in the adjacency matrix
model; so for bounded error probability, BFS is faster than its classical
counterpart in the matrix model, and faster than its classical counterpart in
the edge array model for E ∈ Ω(V lg ǫ−1).

4.3 Single-Source Shortest Paths with Negative

Edge Weights, SPNW

Classically, the problem of single-source shortest paths with negative edge
weights is solved using an algorithm called Bellman-Ford[23, 24], on which
we base our algorithm.7 Our algorithm returns an array of shortest distances

7Thanks to Yury Kholondyrev for a discussion that led to this algorithm.

31

to points, or the special value false if there exists a negative-weight cycle in
the graph that can be reached from the source. It also computes an array
from, whose ith element is the index of the vertex previous to vi on the
shortest path from va to vi; this allows the shortest path from va to vi to be
recovered.

Intuitively, we are going to take each edge in turn and see if it helps
our current shortest path to each point (a technique called “relaxation”);
we repeat that process V times, at which point each edge will have helped
all it can.

Theorem 7 Given a graph G = (V, E), the following algorithm SPNW
returns an array whose ith element is the shortest distance from the source
va to vertex vi, or ∞ if no such path exists. If there is a negative weight
cycle that can be reached from va, instead of an array it returns the special
value false. It does this in O(

√
V 5 lg(V ǫ−1)) time in the matrix model,

O(
√

V 3E lg(V ǫ−1)) in the edge array model, with probability ≤ ǫ that it
fails, returning an incorrect result.

1. If we are using the edge array model, set up an array f such that f [i][j]
is the source of the jth edge incident on i.

2. Initialize an array dist, such that dist[i] = ∞ for i 6= a, 0 for i = a.

3. Initialize an array from, such that from[i] = −1.

4. Repeat the following V − 1 times:

(a) For each vertex vi, using the algorithm of Section 3.2, minfind
a vertex vj such that eji exists, and dist[j] + length(eji) is min-
imized. Execute the minfind by searching over f [i] in the edge
array model, V in the matrix model.

(b) If dist[j] + length(eji) < dist[i], set dist[i] = dist[j] + length(eji)
and set from[i] = j.

5. Repeat step 4a one more time. If it changes dist, return false. Other-
wise return dist.

Since SPNW makes a call to a function that may fail, minfind, there
is some probability that it fails. We may pass the SPNW function some
constant ǫ, a probability of failure that we are willing to tolerate; since
SPNW calls minfind V 2 times, if we require that minfind has probability

32

≤ ǫ/V 2 of failure each time, the total probability with which SPNW fails
will be less than ǫ.

This algorithm, like Bellman-Ford, works due to the fact that all shortest
paths in a graph without negative weight cycles must use fewer than V
edges. Each time through step 4, we ask “could the path to vertex vi be
shorter if we were allowed to use one more edge?” Repeating this V − 1
times lets us use V − 1 edges, and repeating it a last time lets us check
whether there is a negative weight cycle. Meanwhile we keep our array
from, which tells us how we got to vi and allows us to recover the whole
path. In the edge array model, the running time is V

∑
i

√
|di| lg(V ǫ−1) =

O(
√

V 3E lg(V ǫ−1)), again making use of the Cauchy-Schwartz inequality
(equation 4.2). In the matrix model, our E becomes a V 2 as usual, and we
have O(

√
V 5 lg(V ǫ−1)). Since this is greater than V 2, if the graph is sparse

it may be worth first converting to the edge array model.
Classically there are two fastest known algorithms for single-source short-

est paths: Bellman-Ford, discussed above, takes Θ(V E) time in the edge
array model, Θ(V 3) time in the adjacency matrix model; and an algorithm
by Zwick[25], which computes all-pairs shortest paths, runs in Θ(V 2.575) in
both models. For bounded error probability, SPNW is faster than both in
the matrix model, faster than Zwick’s algorithm in the edge array model,
and faster than Bellman-Ford in the edge array model when E ∈ Ω(V lg V).

4.4 All-Pairs Shortest Paths with Negative Edge

Weights, APSP

Theorem 8 Given a graph G = (V, E), the following algorithm APSP
returns an array whose i, jth element is the length of the shortest path between
vertices vi and vj, ∞ if no such path exists. If there is a negative weight
cycle in the graph, instead of an array it returns the special value false. It

does this in Θ(
√

V 5
(
lg V +

√
lg(V ǫ−1)

)
+ V 2 lg3 V) in the matrix model,

Θ(
√

V 3E
(
lg V +

√
lg(V ǫ−1)

)
+ V 2 lg3 V) in the edge array model.

We can do this directly with Johnson’s algorithm[19, 26]8, which we
will lay out in classical terms and then make obvious substitutions with our
own quantum subroutines. Johnson’s works by running Dijkstra’s algorithm

8Thanks to Wei-Lung Dustin Tseng, Michael Li and Man-Hon “Matthew” Chan for
simultaneously suggesting that looking at Johnson’s might yield something better than
than the algorithm I was presenting to them at the time.

33

from every origin point, which gives the shortest paths from all points to all
other points; the difficulty is that Dijkstra’s does not work in graphs with
negative-weight edges, so first it is necessary to reweight edges so that all of
their weights are positive.

When reweighting the edges, we need to reweight them in such a way
that running Dijkstra’s algorithm will return a genuine shortest path. It is
not enough, for example, to pick a large number and add it to each edge;
this would cause Dijkstra’s algorithm to favour paths that used few edges.
We will instead apply a label a[i] to each vertex vi, and let weight′(eij) =
weight(eij) + a[i] − a[j]. If we run Dijkstra’s algorithm using the weight′s,
any path from vx to vy will be reweighted by a[x] − a[y]; every vertex in
between will have its a value subtracted and then added. Thus genuine
shortest paths will be found, with the only caveat being that the paths’
lengths need to be reweighted.

Now that we know we can label vertices and reweight edges appropri-
ately, we need to decide how to label the vertices. Let a[i] be the length
of the shortest path from anywhere to vi. This will be 0 at most, since we
define the distance from vi to itself to be 0. If there is a negative-weight edge
going to vi, it may be the weight of that edge. We will find these distances
by inserting an imaginary node s into the graph with weight-0 edges going
everywhere, and then using Bellman-Ford to find the shortest path to each
node from there. If the shortest path to vi comes from vj , then there is a
path of identical length that comes from s. Using Bellman-Ford also tells
us right away whether there is a negative-weight cycle in the graph.

Now we need to show that this labelling causes our reweighting to give
only nonnegative weights to edges. Let there be an edge eij between vi and
vj , with weight w. Our reweighted edge has weight w′ = w + a[i]− a[j]. a[i]
is the shortest distance to vi from anywhere, and so the shortest distance to
vj from anywhere is at most a[i]+w; so we have a[j] ≤ a[i]+w, and w′ ≥ 0.

Now we have a way of altering our graph that preserves shortest paths
and gives nonnegative weights to all edges. From there, we can run Dijkstra’s
algorithm from each vertex, fixing our distances only when we’re done, and
so find the shortest paths (and distances) to each vertex from each vertex.

The quantum version for this algorithm is a straightforward adaptation.
We replace Bellman-Ford with our SPNW algorithm from Section 4.3, and
Dijkstra’s algorithm with our adaptation of Ambainis and Špalek’s single-
source shortest path algorithm from Section 4.5.2.

Since APSP makes calls to functions that may fail, SPNW and single-
source shortest paths, there is some probability that it fails. We may pass
the APSP function some constant ǫ, a probability of failure that we are

34

willing to tolerate; since APSP calls SPNW and single-source shortest paths
a total of V + 1 times, if we require that both have probability ≤ ǫ/(V + 1)
of failure each time, the total probability with which APSP fails will be less
than ǫ.

One SPNW and V single-source shortest paths, each with failure proba-

bility ≤ ǫ/(V +1), take a total of Θ
(√

V 5
(
lg V +

√
lg(V ǫ−1)

)
+ V 2 lg3 V

)

in the matrix model, Θ
(√

V 3E
(
lg V +

√
lg(V ǫ−1)

)
+ V 2 lg3 V

)
in the edge

array model.
Classically there are two fastest known algorithms for all-pairs short-

est paths with negative edge weights: Johnson’s algorithm takes Θ(V E +
V 2 lg V) time in the edge array model, Θ(V 3) time in the matrix model;
Zwick’s algorithm runs in Θ(V 2.575) in both models. So for bounded er-
ror probability, APSP is faster than Johnson’s algorithm in the edge array
model for E ∈ Ω(V lg4 V), is always faster in the matrix model than John-
son’s algorithm, and is faster than Zwick’s algorithm in both models.

4.5 Improvements to Existing Quantum Graph

Algorithms

It has quickly become to the tradition in the literature[8, 9] to devise quan-
tum algorithms with BBHT as though there were no probability that it
could fail, and then to throw a factor of log(N) into the running time at
the end to take the probability of failure into account. Here we give two
examples of algorithms that can be given faster asymptotic behaviour with
careful treatment of errors (done by using the tools introduced in Chapter
3).

4.5.1 Query Complexity

In the algorithms we discuss here, the authors chose to find the quantum
query complexity of their algorithms, rather than the running time. The
query complexity is the number of times a graph is “queried”: how many
times the algorithm has to ask “is there an edge between vi and vj?” in the
adjacency matrix model, or ask “what is the jth edge coming out of vertex
vi?” in the edge array model.

We have chosen to analyze running time rather than query complexity
for the algorithms here, as well as the algorithms elsewhere in the paper,
because we hope the day will come when quantum and classical algorithms

35

will be run on the same computer, at the same speed; and so an Θ(
√

V 3 lg V)
quantum algorithm might practically be said to be faster than an Θ(V 2)
algorithm. There are of course many reasons to prefer both, but this is the
one we have chosen.

4.5.2 Single-Source Shortest Paths

Dürr, Heiligman, Høyer and Mhalla (DHHM) discuss algorithms for single-
source shortest paths, minimum spanning tree, connectivity and strong
connectivity[8]. The quantum query complexity for their single-source short-
est paths, O(

√
V E lg2 V), can be improved by using mindiff, whereupon it

becomes O(
√

V E lg V). The explanation follows.
We will begin by trying to motivate this algorithm as a speedier version of

Dijkstra’s Θ(E lg V) algorithm. That algorithm involves iteratively building
up a set T of nodes, the shortest path to each of which we already know;
each iteration expands that set by one element by finding the next-closest
node to a, the origin of the search. First we will present a classical Dijkstra’s
algorithm, then discuss how that can be improved using quantum methods.

Our Dijkstra’s and quantum single-source shortest paths will make use
of priority queues: these will be implemented as balanced binary search
trees with Θ(lg N) access, insertion and deletion. The knowledgeable reader
will note that Fibonacci heaps are generally more appropriate for Dijkstra’s
algorithm; while that is true, they do no better in the quantum single-
source shortest paths algorithm, and so we avoid them for simplicity’s sake.
The reader who is used to C++ may imagine our priority queue to be a
set〈pair〈int, pair〈int, int〉〉〉.

We begin with the classical Dijkstra’s algorithm:

1. Construct an array Trace of size V, and initialize its entries to −1.

2. Construct an array LeastCost of size V, and initialize its entries to ∞.

3. Let there be a priority queue Q of edges, initially containing the
(priority, value) pair (0, (a,−1)).

4. While Q is not empty, repeat the following:

(a) Remove the least value from Q: call its priority cost, and its value
(loc, from).

(b) If LeastCost[loc] 6= ∞, we have already been to dest; go back to
step 4a.

36

(c) Set LeastCost[loc] = cost and Trace[loc] = from.

(d) For each element dloc[i] of dloc, call its destination v and its
weight c, and do the following: if LeastCost[v] = ∞, insert the
(priority, value) pair (cost + c, (v, loc)) into Q.

5. LeastCost[i] now contains the length of the shortest path from a to i,
or ∞ if no such path exists; Trace[i] is the predecessor to i in a shortest
path from a to i (i.e. the path goes a, . . . ,Trace[i], i).

Step 4 will repeat V times at most: every time the loop runs, a new
element of LeastCost will be set. Our most time-consuming step is thus step
4d, which is at the core of the algorithm: inserting edges into a priority
queue so that the edge of least cost may be removed. A total of E edges
will be inserted, and since the priority queue will be of size O(E) this will
cost Θ(E lg E) = Θ(E lg V). Step 4a shares this running time.

Our goal in constructing the quantum single-source shortest path, then,
will be to reduce the length of time taken by the equivalent of step 4d.
Since most of our graph algorithms seem to offer speedups on the order of√

E/V speedups, we will shoot for something similar (and will in fact hit√
E/V / lg V).
Since the Fibonacci heap implementation of Dijkstra’s algorithm takes

Θ(E + V lg V) time, if we wish to outdo that then we may not look at each
edge classically; instead we must do some sort of minfind over edges. For
the first few vertices, that seems to work: finding the closest vertex to the
origin vertex a is roughly a Θ(

√
V) operation. Of course, finding the next-

closest vertex in the same way is Θ(
√

2V), and so on up until the last vertex,
which will cost Θ(

√
E). This gives us something roughly Θ(V

√
E), which

is slower than Dijkstra’s algorithm; somehow we need to reduce the number
of minfinds that gets done.

The solution, due to Dürr et al., is to group vertices together, run a
sort of minfind from the group, and then use that result as many times as
possible. Consider the following: initially we just need to find the closest
vertex to a, b. Now we can find the closest (“closest” always means “closest
to a”) two vertices that use edges coming out of {a, b}, by using mindiff;
call the closer of those c, and the further of them d. We still have the next-
closest vertex from {a, b}, and can re-use that result: so we find the closest
vertex that uses edges coming from {c}, and see whether it or d is closest
(assume for the sake of example that this is d). Now we can merge d into
{c}, which becomes the same size as {a, b}, so we merge them together to
get {a, b, c, d} and find the closest 4 vertices that use edges coming from

37

that set. We continue in this fashion, merging sets whenever two sets are
the same size, and only ever re-computing the closest 2x vertices to a set
when it changes. The procedure is formalized below:

1. Construct an array Trace of size V, and initialize its entries to −1.

2. Construct an array LeastCost of size V, and initialize its entries to ∞.
Set LeastCost[a], the cost to get to the origin of the search, to 0.

3. Let there be a priority queue Q of edges, initially empty.

4. Let there be a stack of vertex sets S, initially containing {a}, the origin
vertex. We will refer to the current top element of the stack by S.top.

5. Repeat the following until instructed to exit the loop:

(a) Call the function SSSP–Mindiff, defined below; call the resulting
set R.

(b) For each element R[i] of R, call its destination v, its source u and
its weight c, and insert the (priority, value) pair (c, (v, u)) into Q.

(c) Remove the least value from Q: call its priority cost, and its
value (loc, from). Repeat this until LeastCost[from] = ∞ or Q is
empty.

(d) If Q is empty, go to step 6.

(e) Set LeastCost[loc] = cost and Trace[loc] = from. Push {loc} onto
S.

(f) As long as S has at least two elements, and the top two elements
of S have the same size, merge the top two elements of S.

6. LeastCost[i] now contains the length of the shortest path from a to i,
or ∞ if no such path exists; Trace[i] is the predecessor to i in a shortest
path from a to i (i.e. the path goes a, . . . ,Trace[i], i).

We would like to run mindiff on the edges outgoing from our sets, but
mindiff operates on the domain {0, . . . , N − 1}; as such, we have to adapt it
to work on several disjoint collections of objects. This adds a factor of lg V
to our algorithm and to DHHM’s (see below).

Function SSSP–Mindiff:

1. Create a table T of size |S.top| such that T [i] is
∑i

j=0

∣∣dS.top[j]

∣∣.

38

2. Let k = |S.top|, and N = T [k − 1] (the number of edges out from all
vertices in S.top).

3. Define the mapping H(i) = the ith edge out from all vertices in S.top.
H(i) can be computed by doing a binary search on T, followed by some
basic arithmetic.

4. Define c(i) to be edge H(i)’s weight, u(i) to be its source, and v(i) to
be its destination.

5. Run Section 3.4’s mindiff, using N as above, d = k, F (i) = c(i) +
LeastCost[i], and G(i) = v(i). Return the resulting set.

This algorithm is different from DHHM’s in that our mindiff algorithm
is more carefully constructed than the version they use, in two respects.
The first is that theirs has constant probability of failure, and they re-
peat it Θ(lg(V)) times, leading to slower performance than ours overall.
The second is that they do not make some of the specifics of their algo-
rithm clear: for example, they do not describe how they maintain their
list of best answers so far. This will inevitably add to the total run-
ning time of their algorithm (though not its queries to the graph, which
is what they chose to analyze), and so their mindiff’s running time ends

up as O
(
(tF + tG)

√
Nd lg N + some quantity

)
, at a contrast to our faster

O
(
(tF + tG)

(√
Nd +

√
N lg ǫ−1

)
+ d lg N lg d

)
.

The running time analysis for our mindiff and theirs is not complete; the
evaluation of F and G as defined in SSSP–Mindiff is a Θ(lg N) process. Our

mindiff thus takes O
(√

Nd lg N +
√

N lg ǫ−1 lg N + d lg N lg d
)

operations

here, whereas theirs takes O
(√

Nd lg2 N + some quantity
)
.9

Since this algorithm makes calls to a function that may fail, mindiff,
there is some probability that it fails. We may pass the function some
constant ǫ, a probability of failure that we are willing to tolerate; since it
calls mindiff no more than V times, if we require that each call to mindiff
has probability ≤ ǫ/V of failure each time, the total probability with which
our algorithm fails is less than ǫ.

We may now analyze our number of graph queries compared to theirs:
as far as querying the graphs go, our algorithms are identical but for the

9Rather than performing a binary search as we do, DHHM iterate through all of the
edges connected to S.top and label each one individually. Had they cared about running
time, they doubtless would not have taken this approach.

39

extra factor of lg V on their mindiff that arises due to errors. This be-
comes an extra factor of lg V in the algorithm’s running time, for a to-
tal query complexity of O(

√
V E(lg V +

√
lg(V ǫ−1))) for our algorithm (vs.

O(
√

V E lg V lg(V ǫ−1)x) for theirs).
Now that we know how long our mindiff step takes, we may evaluate

our running time. We perform this calculation only for our own algorithm:
DHHM’s time complexity is identical but for the extra lg V on the leading
term, the verification of which is an exercise that the reader is welcome to
perform. Our time complexity has two major parts: insertion/removal of
elements in Q, and the function SSSP–Mindiff. Merging sets is briefly worth
consideration, but recall that mindiff is immediately run on sets after they
are merged, and that takes at least Ω(size) time.

In order to determine the time complexity for inserting/removing el-
ements from Q, we will first examine how Q is updated. Q is updated
every time a new S.top appears, which is at the beginning of every iteration
through step 5. The sequence of update sizes follows:

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, . . . (4.3)

Note that 1 shows up as every second digit, 2 as every fourth, etc. We
can thereby say that for each size s, it appears no more than V/s times
in the sequence. Since the sizes are powers of two, we have a total of ≤∑lg V

i=0 V/2i × V = V lg V elements in Q. Since insertion takes an average
of Θ(lg V) time, the time used in the maintenance of the priority queue is
bounded from above by O(V lg2 V).

Next we need the time used by mindiff. The frequency of set sizes
is identical, so for each size we will sum over all sets of that size that we
encounter throughout the algorithm. Let mij be the number of edges coming
from the jth set of size 2i:

tmindiff ≤
lg V∑

i=0

V/2i∑

j=0

(√
mij2i lg mij +

√
2i lg(V ǫ−1) lg mij + i2i lg mij

)
(4.4)

Note that no vertex will be in two different sets of the same size, and so∑V/2i

j=0 mij = E.

tmindiff ≤
lg V∑

i=0

(√
E2i

V

2i
lg V +

√
2i lg(V ǫ−1)

V

2i
lg V + i2i V

2i
lg V

)

(4.5)

tmindiff ≤
√

EV lg2 V + V lg V
√

lg(V ǫ−1) + V lg3 V (4.6)

40

This is the dominant term, and so our algorithm takes O(
√

EV lg2 V +
V lg3 V +V lg V

√
lg(V ǫ−1)) time, and DHHM’s takes O(

√
EV lg2 V lg(V ǫ−1)

+ V lg3 V) time.
The fastest known classical solution to this problem, Dijkstra’s algo-

rithm, runs in Θ(E + V lg V), Θ(V 2) in the matrix model; so for bounded
error probability, our algorithm is faster than its classical counterpart in the
matrix model, and faster in the edge array model for E ∈ Ω(V lg4 V). Note
that the fastest possible classical algorithm must be Ω(E), so our algorithm
is also faster than that for E ∈ Ω(V lg4 V) in the edge array model, and
always in the matrix model.

4.5.3 Bipartite Matching

Ambainis and Špalek[9] address bipartite matching, non-bipartite match-
ing and maximum flow. Their algorithm for bipartite matching runs in
O(V

√
E + V lg V) time, and is a quantum adaptation of Hopcroft and Karp’s

classical Θ((E + V)
√

V) algorithm[27]; we further modify their algorithm,
solving the problem here in O(V

√
(E + V) lg V) time.

The problem of bipartite matching can be described in several ways: for
example, consider a collection of boys and girls to be vertices of a graph,
and have an edge in the graph for each (boy, girl) pair that would make a
good couple. In bipartite matching, we pair off the boys and girls in such a
way that only compatible couples are paired, each person has at most one
partner, and there is a maximum number of pairings.

Some basic principles underlie most solutions to this problem. Consider
some (non-maximum) matching-so-far M between boys and girls; if we can
construct a path P starting at an unmatched boy and ending at an un-
matched girl such that all edges in the path are either unmatched (boy, girl)
edges or matched (girl, boy) edges, then the old matching can be expanded
by one more pair by taking M

′ = M⊕P (where M⊕P means taking all edges
in either M or P, but not both). Intuitively, where M and P have an edge in
common, we are “unmatching” that (boy, girl) pair, and “rematching” the
two using the surrounding edges in the path. Because this path augments
M by adding one to its size, it is called an augmenting path. Figure 4.1
illustrates a single execution of this procedure.

The principle behind Hopcroft and Karp’s algorithm is as follows: sup-
pose that every time we want to find an augmenting path P, we find the
shortest such path. They proved that if we do that, we will see at most
2
√

V different path lengths in the whole process of constructing a maximum
matching. So if we devise a process to find a maximal set of disjoint aug-

41

boys girls

a

boys girls

b

boys girls

c

Figure 4.1: (a) A non-maximum matching M. (b) An augmenting path P,
using unmatched (boy, girl) edges and matched (girl, boy) edges. (c) A new
matching, M

′ = M ⊕ P. Dark edges indicate edges that are part of the
current matching.

menting paths of minimal length (maximal means here that the set cannot
be expanded by adding more paths of the same length), each time we ex-
ecute that procedure, the next set will have longer length. We can thus
repeat that process O(

√
V) times, seeing that number of distinct lengths,

and end up having constructed a maximum matching.
The construction of such a set of augmenting paths can be accomplished

through the use of a breadth-first search followed by a modified depth-first
search, which we will replace by our own BFS and DFS. We outline these
steps below, and show them diagrammatically in Figures 4.2; we suggest
following the steps in the figures in parallel with those written below.

1. Find the set of all unmatched girls. Consider there to be an edge to
each of those nodes from a new “fictional” node t.

2. Find the set of all unmatched boys. Consider there to be an edge from
each of those nodes to a new “fictional” node s.

3. Let there be an array a of size V whose entries are initialized to ∞.

4. Conduct a breadth-first search originating at t, where the only edges
permitted for use are matched (boy, girl) edges, unmatched (girl, boy)
edges, and the edges incident on s and t. When visiting a vertex vi,

42

set a[i] to vi’s distance from t. If the breadth-first search terminates
without reaching s, return that no augmenting path exists; otherwise
stop as soon as the search reaches s. Perform this search using BFS.

5. Reverse all the edges incident on s and t.

6. Any path running from s to t that uses unmatched (boy, girl) edges
and matched (girl, boy) edges will be an augmenting path. If we also
require that each step vi → vj brings us closer to t (a[i] = a[j] + 1),
any such path will be an augmenting path of minimal length.

7. Conduct a depth-first search originating at s, where an edge eij can
only be used if a[i] = a[j] + 1, and the only such edges permitted
for use are unmatched (boy, girl) edges, matched (girl, boy) edges, and
edges incident on s and t. When visiting an unmatched girl (whose
distance from t will be 1), trace back the path taken, mark it as an
augmenting path, and resume the search from s (not visiting any of
the nodes on the path again).

Hopcroft and Karp have done the work for us of proving that the al-
gorithm works in principle, leaving us to show that the procedure outlined
above finds a maximal set of disjoint augmenting paths of minimum length.
To show that, we need to show that the paths we find are all of minimum
length; and that after this procedure, there is no augmenting path remaining
that has the same length and is completely disjoint.

The latter condition is straightforward. Assume there is such a path P:
then at some point it must reach an unmatched girl, and it will connect that
unmatched girl to t.

Since our initial breadth-first search computes the distance from each
vertex to t (and thus from each vertex to some unmatched girl), the require-
ment that each step reduces that number ensures that all paths found in
our depth-first search are of minimum length.

The running time for our algorithm is straightforward to compute given
the results for BFS and DFS. Hopcroft and Karp proved that our procedure
(above) needs to be run no more than 2

√
V times. The procedure itself

comprises a BFS, a DFS, and some number of backtraces. The backtraces
use each node found in the DFS at most once, and so do not add to the
DFS’ running time.

Since this algorithm makes calls to functions that may fail, BFS and
DFS, there is some probability that it fails. We may pass our function some
constant ǫ, a probability of failure that we are willing to tolerate; since it calls

43

BFS and DFS no more than a total of 4
√

V times, if we require that BFS and
DFS have probability ≤ ǫ/4

√
V of failure each time, the total probability

with which bipartite matching fails will be less than ǫ. Our breadth-first
and depth-first searches thus have a running time of O(

√
V E lg(V ǫ−1)).

Ambainis and Špalek’s algorithm, on which ours is based, is almost iden-
tical; the difference is that where our BFS and DFS use findsol and findall,
theirs use repeated applications of BBHT. This causes their breath-first
and depth-first searches to run in O(

√
V E lg ǫ−1) time, whereas ours run in

O(
√

V E lg ǫ−1) time. Our total running time is thus O(V
√

E lg(V ǫ−1)), a
factor of

√
lg V faster than Ambainis and Špalek’s O(V

√
E lg(V ǫ−1)).

Ambainis and Špalek also discuss non-bipartite matching and maximum
flow in the same paper; in both cases they ignore errors for the body of
their algorithms, and throw on an extra factor of lg V at the end in order to
reduce the probability of failure to a constant. While that works, this section
shows that it is not necessarily optimal for bipartite matching; and due to
the similarity of bipartite matching to the other problems they consider, it is
reasonable to conjecture that one could also achieve a speedup on the order
of

√
lg V for general matching and flow.

44

boys girls

a

boys girls

b

s t

0

1

1

2

2

3

3

4

4

4

5

boys girls

c

s t

0

1

1

2

2

3

3

4

4

4

5

boys girls

d

Figure 4.2: (a) A non-maximum matching M. (b) After steps 1-4. Nodes
are labelled by their distance from t; for the purposes of this step, matched
(thick) edges go left-to-right, and unmatched edges go right-to-left. (c) After
steps 5-7. Two possible augmenting paths are shown in red. Here, matched
edges go left and unmatched edges go right; the thin edge in the middle
cannot be used, however, because it would mean increasing distance from t
(and thus lead to an augmenting path not of minimal length). (d) A new
matching, M

′ = M ⊕ {paths}.

45

5. Applications in

Computational Geometry

and Dynamic Programming

5.1 Computational Geometry Algorithms

Geometry problems are a natural area of attack for quantum algorithms,
because by defining N points we have implicitly defined Θ(N2) relationships
between those points, making it very natural to ask questions whose answers
use information Θ(N2) in the size of the question. We will address points,
which will be in either Z

d or R
2, as pi.

5.1.1 Maximum Points on a Line, maxpoints

This problem is, in all of its generality, a very simple one: given N points,
find the line that goes exactly through the maximum number of them. We
differentiate here between a solution that is practical for integers10 and a
slightly slower solution that is practical for real numbers; acknowledging
that practical computers, however quantum, have precision issues where
real numbers are concerned.

Intuitively each algorithm works by taking a single point p and finding
out how many points are on the best line that goes through p. We then
use minfind to find the best such p. In the Z

d case, our method is to find
the vector from p to each other point, canonicalize it using GCD, and then
stick all those vectors into a hash table so that we can quickly count repeats.
In the R

2 case, our method is to sort the points in counterclockwise order
about p and see look for collinear points, which should now be ordered
consecutively.

This is a particularly interesting problem to solve in Z
2 because it is

a member of a class of classical problems called “3SUM-hard”[28]. Of the

10Thanks to Kory Stevens for a productive conversation that removed a factor of lg N .

46

problems belonging to this class, all of the known ones have classical lower-
bounds of at most Ω(N), and upper bounds of at least O(N2). All problems
in the class are reducible from the 3SUM problem: given a set S of N
integers, is there some triplet a, b, c in that set such that a + b + c = 0?
That is quite a straightforward problem to solve with findsol in Θ(N), while
we will solve maxpoints in N1.5; thus we open a gap of

√
N between two

similar problems where no such gap existed before. This raises interesting
questions about the maximum points on a line problem, and a number of
other problems in 3SUM-hard. This in turn suggests that many of the
algorithms in 3SUM-hard may be amenable to sub-N2 quantum solutions.

5.1.2 Maximum Points on a Line: Zd

Theorem 9 Let there be N points in Z
d, whose coordinates are bounded by

±U . The following algorithm maxpoints finds the straight line on which
lies the maximum number of those points, in Θ(N3/2d lg U

√
lg ǫ−1) time and

with probability ≤ ǫ that it will fail, returning an incorrect result.

1. Use Section 3.2’s minfind to maximize the following function, mup
(maximum using p), over all points p. Call the result P .

2. Function mup(p):

(a) Create an empty hash table H, mapping vectors in Z
d (keys) to

integers (values).

(b) For each point pi:

i. Define −→a = −→pi −−→p .

ii. Normalize −→a , keeping its entries in the integers, so that the
first nonzero component is positive and the gcd of the abso-
lute values of the components is 1.

iii. If −→a is not yet in H, insert it in H mapping to value 1; if −→a
is already in H, increment its value.

(c) Return the maximum value in H: the number of points on the
best line going through p.

3. Run mup on P, but instead of returning the maximum value in the

hash table return its corresponding key, and call it
−→
V .

4. The answer to return is the line
−−→
X(t) =

−→
P + t

−→
V .

47

In mup, all vectors to other points from p are canonicalized in such a
way that any pair of points collinear with p will have the same direction
vector −→a . mup repeats d gcds N times, for a total of Θ(Nd lg U), and our
main function’s most costly operation is one minfind that evaluates mup
Θ(
√

N lg ǫ−1) times. Thus our total running time is Θ(N3/2d lg U
√

lg ǫ−1),
and our probability of failure is ǫ. Classically the problem can be solved in
Θ(N2d lg U).

5.1.3 Maximum Points on a Line: R2

Theorem 10 Let there be N points in R
2. The following algorithm finds

the straight line on which lies the maximum number of those points in
Θ(N3/2 lg N

√
lg ǫ−1), with probability ≤ ǫ that it will fail, returning some

incorrect result.

1. Use minfind to maximize the following function, mup2, over all points
p. Call the result P .

2. Function mup2(p):

(a) Let −→ai = −→pi − −→p . If −→ai .x < 0, or −→ai .x = 0 and −→ai .y < 0, then
reverse −→ai . This puts all points to the right of p.

(b) Sort the −→ai as follows: −→ai < −→aj iff (−→ai ×−→aj) · ẑ > 0. This has the
effect of sorting the pi in counter-clockwise order about p.

(c) Iterate over the sorted array, keeping a running total of how many
consecutive −→ai have cross product of 0 with one another. Return
the maximum such total. (Practically, we should see how many
consecutive −→ai have cross product < δ for some small δ, and loop
through a second time to catch the nearly-straight-up and nearly-
straight-down −→ai).

3. Run mup2 on P, but instead of returning the maximum total, return
some point (other than P) on the line giving that total. Call it P ′.

4. The answer to return is the line
−−→
X(t) =

−→
P + t(

−→
P ′ −−→

P).

This algorithm sorts the points about each point p, which has the effect
of grouping collinear points together. Then it simply counts how many
consecutive collinear points it can find. mup2 is Θ(N lg N), and our most
costly operation is one minfind that evaluates mup2 Θ(

√
N lg ǫ−1) times,

for a total running time of Θ(N3/2 lg N
√

lg ǫ−1) and probability of failure ǫ.
Classically this problem can be solved in Θ(N2 lg N).

48

5.2 Dynamic Programming Algorithms

Dynamic programming (DP) is a technique for solving problems by combin-
ing the solutions to subproblems. DP algorithms achieve this by partitioning
their problems into subproblems, solving the subproblems recursively, and
then combining the solutions to solve the original problem. What distin-
guishes dynamic programming from other approaches is that the subprob-
lems are not independent: subproblems share sub-subproblems with one
another. A dynamic programming algorithm solves every sub-subproblem
only once and saves its result in a table, thus eliminating the need to recom-
pute the answer for a sub-subproblem every time it is needed[19].

Dynamic programming is often used to solve optimization problems.
Given some situation (a problem), come up with a choice (each possible
choice leads to a subproblem) that optimizes some final quantity (way down
at the sub-. . . -subproblem level). We will see an example of this in Section
5.2.1. Since DP is often used to make some sort of optimal choice, DP al-
gorithms in general are obvious candidates for Section 3.2’s minfind, which
reduces the time taken to check all our options.

5.2.1 Coin Changer, coinchange

Given a monetary system with some set of coins and bills, we may wish to
make some precise amount of money – the coin changer problem is to use
as few coins and bills as possible. Intuitively, this is easy: with Canadian
or American money, for example, to make D cents one can simply take the
largest bill/coin of value v ≤ D, then make D−v cents in the same way. For
example, to make 40c one would take the largest coin less than 40c (25c),
then the largest coin less than the remaining 15c (10c), and finally a 5c coin.
This is a greedy approach that works for most real currencies, but it is not
always optimal: for example, should a 20c piece be added to the Canadian
system, then making 40c only takes two coins, but the greedy approach will
still cause us to use three. Should the reader ever travel to Costa Rica or
Bhutan, he or she will encounter a non-greedy currency system.11

Theorem 11 Given a length C integer array of coin denominations V, as
well as an integer D, the following algorithm coinchange returns the mini-

11The Bhutanese ngultrum is divided into 100 chertrum. The three least valuable
Bhutanese coins in modern circulation are the 20 chertrum coin, the 25 chertrum coin, and
the 50 chertrum coin. Making 40 chertrum is not possible using the greedy technique; even
with a 5-chertrum coin added, the greedy technique does not yield an optimal solution.

49

mum number of coins required to make D units, or ∞ if making D units of
currency is impossible. It achieves this in Θ(D

√
C lg D) time.

Since we are trying to minimize a quantity, the number of coins used,
making D units optimally is a matter of choosing one coin V [i] to use, then
making D−V [i] units optimally. To do so we build up a table T, where T [i]
is the minimum number of coins needed to make i units. We start by filling
in T [i] with i small, since later entries will depend on earlier ones.

1. Let there be an array T of size D +1, such that initially T [0] = 0, and
T [i 6= 0] = ∞.

2. For d from 1 to D, DO:

(a) Use the algorithm of Section 3.2 to minfind one of the coins V [i]
such that d − V [i] ≥ 0, and 1 + T [d − V [i]] is minimal.

(b) If such a coin was found, let T [d] = 1 + T [d − V [i]].

DONE.

3. Return T [D].

Here we simply fill in the table as discussed above, by using minfind
to determine which coin should be taken first. Since coinchange makes a
call to a function that may fail, minfind, there is some probability that it
fails. We may pass the coinchange function some constant ǫ, a probability
of failure that we are willing to tolerate; since coinchange calls minfind D
times, if we require that minfind has probability ǫ/D of failure each time,
the total probability with which BFS fails will be less than ǫ. Each minfind
takes Θ(

√
C lg(Dǫ−1)) time, and minfind is repeated D times for a total

time complexity of Θ(D
√

C lg(Dǫ−1)).
The reason we discuss this example is because it is very representative

of how one can improve dynamic programming algorithms in general using
quantum techniques. Many other problems, for example minimum-operation
matrix chain multiplication, can be solved quickly with a quantum algorithm
in much this manner.

5.2.2 Maximum Subarray Sum, subarray-sum

Theorem 12 Given an N ×N array of real numbers A, the following algo-
rithm subarray-sum finds a rectangular subarray such that the sum of the

50

subarray’s elements is maximized, in Θ(N2
√

lg ǫ−1) time and with probabil-
ity of failure ǫ. We will address the result by its limits: (miny, minx, maxy,
maxx).

This is another classic problem, for which the fastest known classical

solution runs in Θ
(
N3
√

log log N
log N

)
and was found by Tamaki[10]. There is

a much more straightforward (though still clever) Θ(N3) solution, which
involves maximizing the sum of all Θ(N2) possible column ranges, each in
Θ(N).

Our algorithm begins by creating a table T that makes checking the sum
for an arbitrary rectangle Θ(1), and then simply minfinds over all rectangles.
This algorithm, like the classical one, is really greedy rather than dynamic
programming; we include it in this section because the construction of T is
DP.

1. Let there be an N × N array T, whose i, j element will hold the sum
for subarray (0, 0, i, j). Initialize its entries to 0, and define T [i][j] = 0
if i or j is negative. The next step will fill in T as desired.

2. For i from 0 to n − 1, For j from 0 to n − 1 DO:

(a) T [i][j] = A[i][j] + (T [i − 1][j] + T [i][j − 1] − T [i − 1][j − 1]).

DONE.

3. There are N4 possible rectangular subarrays. The summation over
any such array is T [maxy][maxx] − T [maxy][minx − 1] − T [miny −
1][maxx]+T [miny−1][minx−1], which is a Θ(1) calculation. Use the
algorithm of Section 3.2 to minfind over all such (miny, minx, maxy,
maxx) and find the subarray with the maximum summation, and then
return it.

The creation of T takes Θ(N2), and the minfind takes Θ(N2
√

lg ǫ−1)
and has probability of failure ǫ. The dynamic programming part of this
algorithm is the construction of T .

51

6. Summary and Conclusions

We began the body of this thesis with careful analysis of the BBHT algo-
rithm, finding its probability of failure; the result allowed us to construct
an algorithm, findsol, that solves unstructured search (the same problem as
Grover’s algorithm solves) faster than previous algorithms. The benefit of
this tool is widespread: any algorithm making use of unstructured search
may use findsol, often saving

√
lg time factors over BBHT, the previous tool

of choice.
We summarize findsol in Table 6.1, contrasting it with the best pre-

existing quantum algorithm (BBHT) as well as the fastest possible proba-
bilistic and deterministic classical algorithms that achieve the same goals.

Unstructured Search Solution Exists No Solution

Quantum Θ(
√

N/M +
√

N lg ǫ−1/M1.86) Θ(
√

N lg ǫ−1)

Previous Quantum Θ(
√

N/M) Θ(
√

N lg ǫ−1)
Classical Probab. Θ(N/M) Θ(N lg ǫ−1)
Classical Determ. Θ(N) Θ(N)

Table 6.1: Section 3.1’s findsol compared to alternatives. The unit of time
is the number of calls to F ; N is the size of the domain, M is the number
of solutions, and ǫ is the maximum probability of failure we will tolerate.

After analyzing BBHT and introducing findsol, we discussed a series of
other tools designed to be used in the construction of algorithms. The tools
are various kinds of quantum searches, allowing us to perform operations like
minimum-finding faster than we could do with a classical computer: they
are summarized in Table 6.2, and contrasted with the pre-existing quantum
algorithms as well as the fastest possible deterministic classical algorithms
achieve the same goals.

After constructing these tools, we made use of them, finding applications
in graph theory. The tools are presumably applicable in a wide range of al-
gorithms, and we chose to target some of the more central, classic algorithms
in graph theory: breadth-first search, depth-first search, single-source short-

52

Minimum Finding Finding all M solutions

Quantum Θ(
√

N lg ǫ−1) Θ(
√

NM +
√

N lg ǫ−1)

Previous Quantum Θ(
√

N lg ǫ−1) Θ(
√

NM +
√

N lg ǫ−1)
Classical Determ. Θ(N) Θ(N)

Finding d Minimal, Different Objects

Quantum Θ(
√

Nd +
√

N lg ǫ−1 + d lg N lg d)

Previous Quantum Θ(
√

Nd +
√

N lg ǫ−1+?)
Classical Determ. Θ(N)

Table 6.2: Section 3.2-3.4’s algorithms minfind, findall and mindiff compared
to alternatives. The unit of time is the number of calls to F, except in the
d lg N lg d term of mindiff, where the unit is time. N is the size of the
domain, M is the number of solutions, and ǫ is the maximum probability of
failure we will tolerate.

est paths (with negative edge weights allowed), and all-pairs shortest paths.
We summarize those results in Table 6.3, contrasting with the fastest pos-
sible classical algorithms in the case of breadth-first and depth-first search,
and the fastest known classical algorithms in the case of single-source and
all-pairs shortest paths. Note that several of our graph algorithms can run
more slowly than their classical counterparts for E sufficiently small; in
each such case there is some a such that the quantum algorithm is faster if
E ∈ Ω(V lga V).

Problem Quantum Complexity Classical

BFS O(
√

V E lg(V ǫ−1)) Θ(E)

DFS O(
√

V E lg(V ǫ−1)) Θ(E)

Single-Src. S.P. O(
√

V 3E lg(V ǫ−1)) Θ(V E)

All-Pairs S.P. O(
√

V 3E(lg V +
√

lg(V ǫ−1)) + V 2 lg3 V) Θ(V 2.575)

Table 6.3: Chapter 4’s algorithms, BFS (breadth-first search), DFS (depth-
first search), SPNW (single-source shortest paths with negative weights)
and APSP (all-pairs shortest paths with negative edge weights) compared
to classical alternatives. Results are presented in the edge array model; V is
the number of vertices in the graph, E is the number of edges, and ǫ is the
maximum probability of failure we will tolerate. In this table, to convert
the complexity from the edge array model to the adjacency matrix model,
change E to V 2.

53

We have also adapted a graph algorithm by Dürr, Heiligman, Høyer and
Mhalla, as well as one by Ambainis and Špalek, to use our tools; we have thus
given them slight speedups by improving how they deal with the possibility
of failure. The results are summarized in Table 6.4, and contrasted with the
fastest known classical algorithms.

Single-Source Shortest Path (+ve edge weights)

Quantum Adaptation O(
√

EV lg2 V + V lg3 V + V lg V
√

lg(V ǫ−1))

Previous Quantum O(
√

EV lg2 V lg(V ǫ−1) + V lg3 V +?)
Classical Θ(E + V lg V)

Bipartite Matching

Quantum Adaptation O(V
√

E lg(V ǫ−1))

Previous Quantum O(V
√

E lg(V ǫ−1))

Classical Θ(
√

V E)

Table 6.4: Section 4.5’s algorithms, compared to the algorithms they were
adapted from and the fastest known classical algorithms. Results are pre-
sented in the edge array model; V is the number of vertices in the graph, E
is the number of edges, and ǫ is the maximum probability of failure we will
tolerate. In this table, to convert the complexity from the edge array model
to the adjacency matrix model, change E to V 2.

Finally we addressed a few problems in computational geometry and dy-
namic programming. In Section 5.1 we took a problem (maxpoints) whose
best classical limits are Ω(N) and O(N2), and invented a bounded-error
Θ(N3/2 lg N) algorithm for it; hopefully there are other problems that can
be addressed similarly. In Section 5.2.1 we addressed the coin changer prob-
lem, a problem that is commonly used when introducing dynamic program-
ming. This example is illustrative of what one can do for dynamic program-
ming with judicious use of minfind; meanwhile the maximum subarray-sum
problem in Section 5.2.2 is a good illustration of how one can make mi-
nor adaptations to a classical algorithm that make it amenable to quantum
techniques.

6.1 Future Directions

In this thesis we have chosen to focus on deriving new algorithms rather than
proving lower bounds. As such, it is possible that the algorithms presented
here are not optimal, which presents clear directions for future research:

54

Problem Quantum Complexity Classical

Points on a Line (Zd) N3/2d lg U
√

lg ǫ−1 N2d lg U

Points on a Line (R2) N3/2 lg N
√

lg ǫ−1 N2 lg N

Coin Changer D
√

C lg(Dǫ−1) DC

Maximum Subarray Sum N2
√

lg ǫ−1 N3

Table 6.5: Chapter 5’s applications in computational geometry and dynamic
programming, compared to fastest known classical algorithms. ǫ is the max-
imum probability of failure we will tolerate.

searching for lower bounds that approach the upper-bounds presented here,
and finding faster algorithms.

There are few published quantum algorithms (at least when viewed in
the context of the number of published classical algorithms!), which means
that there is a great deal of exciting work to be done; and with so many
classical algorithms with no quantum counterparts, much of the low-hanging
fruit remains untouched.

55

A. BBHT: Running Time

and Probability of Failure

The probability of failure for BBHT is the probability that, for each m up to
2
√

N, we never successfully find a result when there is one to be found. To
calculate that probability, first we need a result originally derived by Boyer,
Brassard, Høyer and Tapp[2]: first, note that after j Grover iterations, the
probability of returning a valid result is sin2((2j + 1)θ). For a given m, j
could be any of 0, . . . ,m−1; averaging over those values, we see the following
for the probability of failure for any given iteration through step 3:

Pfail,m =

m−1∑

j=0

1

m
sin2((2j + 1)θ)

=
1

2m

m−1∑

j=0

1 − cos((2j + 1)2θ)

=
1

2
− 1

4m

m−1∑

j=0

(
ei4jθei2θ + e−i4jθe−i2θ

)

=
1

2
− 1

4m

(
ei2θ 1 − ei4θm

1 − ei4θ
+ e−i2θ 1 − e−i4θm

1 − e−i4θ

)

=
1

2
− sin(4mθ)

4m sin(2θ)

Which is the probability that an invalid result will be returned, for m an
integer. m is of course not actually an integer, but by choosing a random
integer 0 ≤ j < m, we treat it as one and can consider it to be one for the
purposes of that formula.

We wish to upper-bound the probability of error for BBHT as a whole,
and we will start by differentiating between the cases 0 < θ ≤ π

4 (M ≤ N/2)
and π

4 < θ ≤ π
2 (M > N/2). For any M ≤ N/2, we wish to find an m0 such

that for each repetition of the outer loop when m > m0, the probability of

56

failure is less than or equal to some constant. For M > N/2, we will find
that the probability of failure is always less than or equal to some constant.

We begin by considering M ≤ N/2. In order to find m0, first we have to

find critical points of fθ(m) ≡ 1
2 + sin(4mθ)

4m sin(2θ) , the probability that an invalid
result will be returned:

dfθ(m)

dm
= 0

4θ cos(4mθ)

4m sin(2θ)
=

sin(4mθ)

4m2 sin(2θ)

4mθ = tan(4mθ)

4mθ = 0, 4.49, 7.73, . . .

Now we consider the form of fθ(m). It starts off at fθ(0) = 1
2 + θ

sin(2θ)
and decreases from there; we want to find the first maximum it will return
to after dipping down, meaning 4mθ = 7.73. Since 0 < θ ≤ π

4 , we use

sin(2θ) ≥ 4
πθ, and arrive at (when 4mθ = 7.73) fθ(m0) ≤ 1

2 + sin(7.73)
4
π
×7.73

≈ 0.6.

That does not give us m0, however: m0 is when fθ(m) first dips that low.
Solving numerically and using sin θ ≤ θ:

0.6 =
1

2
+

sin(4m0θ)
4
π4m0θ

4m0θ ≤ 2.78

m0 ≤ 0.69/ sin θ

m0 ≤ 0.69
√

N/M

For π
4 < θ ≤ π

2 , although fθ(m) is well-behaved and slowly-oscillating over
the space of integer values of m, it oscillates wildly in between; so our previ-
ous approach, based on considering fθ as a function acting on the continuum,
will not work. To fix this problem, instead of considering θ, we now con-
sider the angle φ ≡ π

2 − θ; first noting that fθ(m) = 1 − fφ(m), meaning
that success for θ corresponds to failure for φ:

Pfail(m) =
1

2
+

sin(4mθ)

4m sin(2θ)
=

1

2
+

sin(4m(π
2 − φ))

4m sin(π − 2φ)
=

1

2
− sin(4mφ)

4m sin(2φ)

Now we are back in the elysian realm of 0 ≤ φ < π
2 , and we can bound the

probability of failure for φ from below and use that result. The procedure
here is as before, but instead of 7.73 we use the first root of tan(4mφ) = 4mφ,
4.49. For φ < π

4 we use sin(2φ) ≤ 2φ, and arrive at (when 4mφ = 4.49)

57

Pfail ≥ 1
2 + sin(4.49)

2×4.49 ≈ 0.39. That is the lowest the probability of failure fφ(m)
ever gets, and correspondingly it is the lowest the probability of success
1 − fθ(m) ever gets.

We now have that, for any given iteration of the outer loop, the prob-
ability of failure for M > N/2 is less than or equal to 0.61 for all m, and
the probability of failure for M ≤ N/2 is less than or equal to 0.6 for
m ≥ m0 = 0.69

√
N/M . We now compute the total probability of failure

and running time for each case.

For M > N/2 the total probability of failure is simply 0.61lgλ(2
√

N) ≈
.5N

−0.26
ln λ , and the probability of getting to the kth iteration through the main

loop is 0.61k . This gives us a total running time of
∑lgλ(2

√
N)

k=0
λk

2 (0.61)k <
1
2

1
1−0.61λ .

For M < N/2 the total probability of failure is 0.6lgλ(2
√

N)−lgλ(0.69
√

N/M),

which gives us 0.6lgλ(2.8
√

M) ≈ (2.8M)−0.25/ ln λ. The running time is the
sum:

t =

lgλ(0.69
√

N/M)∑

k=0

λk

2
+

lgλ(2
√

N)∑

k=lgλ(0.69
√

N/M)

λk

2
(0.6)k−lgλ(0.69

√
N/M)

≈
∫ lgλ(0.69

√
N/M)

0

λk

2
dk +

∫ lgλ(2
√

N)

lgλ(0.69
√

N/M)

λk

2
(0.6)k−lgλ(0.69

√
N/M)dk

=
0.69

√
N/M

2 ln λ
+ (0.69

√
N/M)− lgλ 0.6

∫ 2
√

N

0.69
√

N/M

dx

2
xlgλ 0.6

=
0.69

√
N/M

2 ln λ
+ (0.69

√
N/M)− lgλ 0.6

[
dx

2

x1+lgλ 0.6

1 + lgλ 0.6

]2
√

N

0.69
√

N/M

=
0.69

√
N/M

2 ln λ
+

(3
√

M)lgλ 0.6

1 + lgλ 0.6

√
N − 1

2

√
N/M

1 + lgλ 0.6

Since we have
√

N/M dependence from the first term, we should choose
λ such that the second term contributes no worse, which gives us the con-
dition lgλ 0.6 < 1, or λ < 1.64. We now have:

t ≤ 0.69
√

N/M

2 ln λ
− 1

2

√
N/M

1 + lgλ 0.6

which is minimal for λ ≈ 1.31, and more importantly is Θ(
√

N/M). Boyer,
Brassard, Høyer and Tapp arbitrarily chose λ = 8

7 , which we would like to

58

say makes the algorithm 50% slower than our choice of λ; but that is only
true in this approximation. Furthermore, the optimal value for λ is actually
a function of M/N, so there is no one optimal λ in general.

Using λ = 1.31, our results can be summarized in Table A.1. Most
important to us is that our running time is Θ(

√
N/M) calls to F, and our

probability of failure is less than .5M−.93. It is also worth noting that
our earlier restriction, λ < 1.64, came because we chose a small root for
tan(x) = x. If we had chosen a larger root, λ could have been larger, up to
an asymptotic maximum of 2.

Case Probability of Failure Expected Running Time

M ≤ N/2 ≤ .4M−.93 ≤ 1.9
√

N/M
M > N/2 ≤ .5N−.96 ≤ 2.3

Table A.1: Probability of failure and expected running time for BBHT (for
λ = 1.31)

59

Bibliography

[1] L. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the 28th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 212–219, 1996.

[2] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quan-
tum searching. Fortschritte Der Physik, 46:493–505, 1998.

[3] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-
error and zero-error quantum algorithms. In Proceedings of the 40th
IEEE Symposium on Foundations of Computer Science (FOCS), pages
358–368, 1999.

[4] C. Dürr and P. Høyer. A quantum algorithm for finding the minimum.
quant-ph/9607014, 1996.

[5] Yu.I. Manin. Computable and uncomputable (in Russian). Moscow,
Sovetskoye Radio, 1980.

[6] R. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(6/7):467–488, 1982.

[7] P. Benioff. Quantum mechanical hamiltonian models of Turing ma-
chines that dissipate no energy. Journal of Mathematical Physics,
22:495.

[8] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query
complexity of some graph problems. In Proceedings of ICALP 2004,
Turku, Finland, 2004.

[9] A. Ambainis and R. Špalek. Quantum algorithms for matching and
network flows. cs/0508205, 2005.

[10] H. Tamaki and T. Tokuyama. Algorithms for the maximum subar-
ray problem based on matrix multiplication. In Proceedings of the 9th
Symposium on Discrete Algorithms (SODA), volume 12, pages 446–452,
1998.

60

[11] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58(2):345–363, 1936.

[12] A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, 42:230–265, 1936.

[13] S.C. Kleene. Lambda-definability and recursiveness. Duke Mathemati-
cal Journal, 2:340–353, 1936.

[14] D. Deutsch. Quantum theory, the Church-Turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London
Ser. A, A400:97–117, 1985.

[15] D.R. Simon. On the power of quantum computation. In Proceedings
of the 35th Annual IEEE Symposium on the Foundations of Computer
Science (FOCS), pages 116–123, 1994.

[16] P. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings of the 35th Annual Symposium on Foundations
of Computer Science (FOCS), 1994.

[17] C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing,
26(5):1510–1523, 1997.

[18] Yellow Pages Group Co. Canada 411. http://www.canada411.com,
2006.

[19] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2001.

[20] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, 2000.

[21] Gilles Brassard and Peter Høyer. An exact quantum polynomial-time
algorithm for Simon’s Problem. In Israeli Symposium on Theory of
Computing and Systems, pages 12–23, 1997.

[22] C.H. Bennett. Logical reversibility of computation. IBM Journal of
Research and Development, 17(6):525–532, 1973.

[23] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

61

[24] L. Ford and D. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[25] U. Zwick. All pairs shortest paths in weighted directed graphs: exact
and almost-exact algorithms. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 1998.

[26] D. Johnson. Efficient algorithms for shortest paths in sparse networks.
In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1998.

[27] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matching in
bipartite graphs. SIAM Journal of Computing, 2(4), December 1973.

[28] A. Gajentaan and M. Overmars. On a class of O(n2) problems in
computational geometry. CGTA: Computational Geometry: Theory
and Applications, 5, 1995.

62

