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Abstract 

We examine recent developments in perturbative calculations of gauge theory amplitudes. 
Motivated by a twistor space analysis, Cachazo, Svrcek and Witten (CSW) formulated a 
new set of rules for computing scattering amplitudes, which have now been dubbed the 
CSW rules. We examine the origins of these rules, and apply them to supersymmetric and 
non-supersymmetric gauge theories. We review many of the recent calculations performed 
using this new prescription at both the tree and one-loop levels. 
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C h a p t e r 1 

i 

I n t r o d u c t i o n 

Gauge theories possess much structure which is not at all manifest when formulated in 
conventional terms. For example, scattering amplitudes of perturbative Yang-Mills theory 
are remarkably simple when expressed in a helicity basis. The simplest non-trivial amplitudes 
involve two incoming gluons of negative helicity and any number of incoming positive helicity 
gluons. By crossing symmetry these amplitudes are related to 2 —> n — 2 processes where 
all initial and final states have the same helicity and so have maximal violation of helicity 
conservation. Such processes are called maximally helicity violating (MHV) amplitudes. 
At tree level, they are given by the simple Parke-Taylor formula which can amazingly be 
written on a single line. Parke and Taylor first conjectured this solution based on a few 
simple examples (with small n) [1]. The all n formula was later proven by Berends and Giele 
using recursive techniques [2]. That such a simple expression could apply to an infinite set of 
amplitudes, where the number of external legs is arbitrary, was the first major clue of some 
hidden structure in Yang-Mills theory. As Yang-Mills theory is effectively supersymmetric 
at tree-level, it should not be surprising that the Parke-Taylor formula was generalized to 
the case of A/"=4 super-Yang-Mills (SYM) [3]. This generalization by Nair also uncovered 
an unexpected simplicity of the next-to-MHV amplitudes (where three external gluons have 
negative helicities): they are the product of two MHV amplitudes and 1 / P 2 . 

Loop amplitudes in Yang-Mills theory are notoriously difficult to calculate. At the one-
loop level, these amplitudes are only known for up to five external gluons [4]. In super-
symmetric theories, however, the situation has proven to be more tractable. In [5] Bern, 
Dixon, Dunbar and Kosower (BDDK), demonstrated that a large class of one-loop ampli
tudes, including all massless supersymmetric gauge theories, can be constructed solely from 
the knowledge of their four-dimensional unitarity cuts. Amplitudes of this type are called 
cut-constructible. One-loop A / = 4 amplitudes for four external gluons were first calculated by 
Green, Schwarz and Brink as the low energy limit of superstring amplitudes [6]. By applying 
the power of unitarity, BDDK found general expressions for MHV amplitudes in A/"=4 SYM 
[7] and later in J\f=l SYM [5] for an arbitrary numbers of external legs. An important 
feature of cut-constructibility is that the cuts are applied not to individual diagrams, but to 
the amplitude as a whole, thus avoiding the use of cumbersome Feynman diagrams. This 
technique was largely known during the sixties under the title S-matrix analysis [8]. BBDK 
capitalized on the new simple tree-level expression, the Parke-Taylor formula and Nair's 
generalization thereof, and sewed them together using unitarity into loop amplitudes. 

More recently, Witten observed that many remarkable features of gauge theories emerge 
when formulated in twistor space [9]. Specifically, scattering amplitudes must be localized on 
curves of a specific degree when written in twistor variables. At tree-level, MHV amplitudes 
lie on degree one curves, NMHV amplitudes lie on curves of degree two, and so on. At 
loop level, the degree is increased by one, for example MHV loop amplitudes are localized 
on degree two curves in twistor space. That the amplitudes were so constrained could not 
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have been deduced simply from their momentum space representations. Witten went on to 
conjecture a weak-weak duality between A/"=4 SYM (in Minkowski space) and the so-called 
B-model of topological strings in twistor space (CP 3). This duality was further investigated 
and inspired other twistor string theories [10, 11, 12]. 

It was soon realized that the degree d curves which supported scattering amplitudes could 
equivalently be interpreted as d degree one curves, or some intermediate combination [13]. 
As each degree one curve corresponds to an MHV amplitude, this led Cachazo, Svrcek and 
Witten (CSW) to conjecture a new set of rules for perturbative Yang-Mills amplitudes, using 
MHV amplitudes as vertices [14] and connecting them by scalar propagators. This conjecture 
generalized Nair's results for NMHV amplitudes. These CSW rules were later extended to 
include scalars and fermions [15], which passed several tree-level consistency checks [16, 17]. 
These rules were also used to construct a new recursive technique for tree amplitudes [18] 
and to compute new sets of explicit tree-level amplitudes in (super)Yang-Mills [19, 20, 21]. 
Higgs fields and massive vectors were also incorporated at tree-level [22]. 

At first the twistor space structure of gauge theory loop amplitudes was poorly under
stood [23]. It was soon realized that the conjectured dual topological string theory would 
inevitably lead to loop amplitudes for conformal supergravity[24], and it was unclear whether 
the CSW rules would require modification at the loop level. Nevertheless, Brandhuber, 
Spence and Travaglini (BST) applied the CSW rules directly to the M=A SYM MHV loop 
amplitude and found perfect agreement with BBDK's original computation [25]. This im
mediately raised the question if the CSW rules held at one-loop in less supersymmetric 
theories. This author, with Rozali, showed in [26] that the CSW rules work in any super-
symmetric gauge theory by computing the MHV one-loop amplitudes. Our results were 
confirmed by the authors of [27] who went on to show, however, that the CSW rules failed 
in non-supersymmetric Yang-Mills theory [28]. 

The original confusion regarding the twistor space structure of loops was traced back 
to a holomorphic anomaly [29], which has also been used to calculate supersymmetric loop 
amplitudes [30]. Studies of unknown NMHV loop amplitudes' twistor space support [31] 
were conducted. Eventually, these amplitudes were computed using generalized unitarity 
[32] combined with cut-constructibility. Specifically, all NMHV amplitudes in yV=4 SYM 
[33] and many (including all n < 6) NMHV amplitudes with M<A [34] are now known. 
Witten's original work on amplitudes in twistor space has also led to new breakthroughs 
in tree-level calculations [35], non-supersymmetric loop amplitudes [36] and amplitudes in 
(super) gravity theories [37] including conformal supergravity [38]. 

The remainder of this thesis is structured as follows. Chapter 2 introduces the essential 
features of supersymmetry we will need throughout the work. We assume the reader is fa
miliar with quantum field theory, and also has a basic knowledge of group theory. No prior 
knowledge of supersymmetry is assumed. After reviewing spinors and spinor notation, we 
discuss Coleman and Mandula's no-go theorem for extending the symmetries of spacetime. 
By allowing fermionic generators, we by-pass the no-go theorem, and arrive at the super-
symmetry algebra. We incorporate N—l supersymmetry into field theory and discuss the 
notions of superspace and superfields. We then proceed to write down Lagrangians for A/=l 
supersymmetric theories. In the last two sections of the chapter we consider larger symmetry 
groups, such as extended supersymmetry and superconformal groups. 

The next three chapters study tree-level amplitudes in gauge theories. Chapter 3 discusses 
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the Parke-Taylor formula for MHV amplitudes. We analyze the conformal properties of the 
amplitudes, which motivates us to Fourier transform them to twistor space. We follow 
Witten's analysis in [9], deriving the fact that scattering amplitudes are localized on curves 
of specific degrees. Chapter 4 introduces the CSW rules, and explains the steps of calculating 
MHV diagrams. We derive a general expression for NMHV amplitudes, and check it for a 
simple 5-point amplitude. We discuss other consistency checks which support the legitimacy 
of the CSW rules. In Chapter 5, we write down Nair's generalization of the Parke-Taylor 
amplitude and extend the CSW rules to include fermions and scalars. 

The following three chapters of this thesis examine loop amplitudes in supersymmetric 
gauge theories. Chapter 6 reviews the known results of MHV loop amplitudes in supersym
metric gauge theories, originally found by BBDK. In Chapter 7, we discuss how the MHV 
diagrams are used in loop calculations. We summarize these steps by giving a review of the 
BST calculation for the jV=4 MHV amplitude. Chapter 8 presents a fully-detailed com
putation of an MHV loop diagram. The calculation we carry out, originally performed by 
this author and Rozali in [26], is the Af=l chiral multiplet contribution to a one-loop MHV 
amplitude. 

We discuss some recent results which have developed out of these new techniques, in
cluding some works in progress, in the final chapter. Our notations and conventions are 
summarized in the Appendix, where we also present the most general supersymmetry alge
bra. 



Chapter 2 

Supersymmetry 

Though currently unverified by experiment, supersymmetry, or SUSY for short, is the best 
candidate for physics beyond the Standard Model. By postulating a global symmetry be
tween bosons and fermions, SUSY is able to soften the UV divergences in quantum processes 
as the contributions to loop amplitudes for each particle type comes with opposite signs. We 
will see that SUSY links internal symmetries to the external (spacetime) symmetries, thus 
modifying the Poincare group into what's called the super-Poincare group. As any theory 
which is locally invariant under the Poincare group contains gravity, then any theory locally 
invariant under the super-Poincare group will contain supergravity. It is widely believed that 
incorporating SUSY locally (particularly in higher spacetime dimensions) will help solve the 
longstanding UV problem of quantum gravity. Of course, no such Bose-Fermi degeneracy 
has ever been observed, so SUSY must be broken at sufficiently high energy to agree with 
experiment. Exactly how SUSY is broken remains an important open question, which future 
collider experiments, such as the Large Hadron Collider, will hopefully give some indication 
as to its solution. 

We will not concern ourselves with many of these exciting ideas here, and will focus only 
on the much simpler unbroken global SUSY in flat four-dimensional spacetime. This section 
is mainly a review of the material found in the first seven chapters of [39] and the first two 
sections of [40], as well as various portions of [41, 42, 43]. For more regarding supergravity, 
and SUSY in d > 4 the author suggests [39, 41], and for more on SUSY breaking see [40]. 

2 . 1 S p i n o r s 

Spinors will play a fundamental role in this work, especially in describing supersymmetric 
theories, and so perhaps a quick review of them is in order. Our conventions and notations for 
spinors are summarized'in the Appendix. In Minkowski space, with signature (+, —, —, —), 
the (non-compact) Lorentz group is SO(l, 3) and is generated by the Lorentz transformations 
Jab. The unbounded actions are the boosts, generated Joi = Kt, while the remaining compact 
rotation group, SO(3), is generated by Jy = eyfcJfc, where i,j = 1,2,3. Because the Lorentz 
group is not compact, all finite dimensional representations are reducible. To classify these 
representations we consider the Lorentz group in Euclidean space, SO(4) (which is compact). 
Locally on the group manifold, SO (A) c± SU(2)L x SU(2)R and the SU{2)LiR are generated 
by the operators J, ± iKi. We label the reducible representations of the Lorentz group by 
the (half-)integer pairs (JL,JR), where JL and JR denote the spins of the corresponding 2j +1 
dimensional irreducible representations of the associated SU (2). 

Lefthanded spinors are those which transform in the (|, 0) representation and are labeled 
with spinor indices, for example A a . Righthanded spinors transform as (0, |) objects and are 
denoted by dotted spinor indices, such as A„. The dotted and undotted spinor indices run 
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over a, a = 1, 2. We emphasize that these spinors are commutative. Later, when we discuss 
fermions, we will require spinors that anticommute. 

Angular momentum is added in the usual way, separately for each representation, thus 

i 0 ) ® ( i ° ) = ( 0 ' 0 ) e ( 1 ' 0 ) - ( 2 ' 1 } 

The scalar (0, 0) piece comes from the antisymmetric product of two spinors; that is, by 
contracting via the invariant antisymmetric tensor ea/g. Spinor indices are raised and lowered 
by this tensor and its inverse ea/3, i.e.: Xa = ea/3A/3, etc. We will often write the scalar product 
of two (lefthanded) spinors as 

eal3Xaii0 = (X,p) (2.2) 

Note that because of the antisymmetric tensor ea/3, (A,/x) = — (fi, A) 1. As one would ex
pect, there exists an identical antisymmetric tensor for righthanded spinors, e^. For scalar 
products of righthanded spinors we often use the notation 

e ^ A ^ = [A,/i] . (2.3) 

The symmetric (1, 0) part in equation (2.1) is not a vector; in general, a Lorentz tensors 
must contain an equal number of dotted and undotted spinor indices. Rather, it is the self-
dual portion of an antisymmetric 2-form (a (0,1) object is the anti-self-dual part), which 
will be discussed briefly in the next paragraph. Forming a vector out of spinors requires one 
of each chirality, since this transforms as 

5 - ° ) * ( ° - 5 ) - ( i - 0 - ( 2 4 ) 

which is the correct representation of a vector. Thus, a vector in spinor notation is written 
Vaa. To translate between spinor and tensor notations, we use the Pauli matrices aa as 
Clebsh-Gordon coefficients 

1/ _ (nas v _ f Vo + V3 V, - iV2 \ 

Vaa - \P )a*Va ~ ^ + yQ _ J ^ W 

Clearly det(V) = VaVa, so a lightlike vector is one with vanishing determinant. This is 
possible only when 

Vaa = A Q A d (2.6) 

for some A a and Xa, since these are commuting spinors2. Note that while giving A (or 
equivalently A) determines V uniquely, the converse is not true. Given a null vector V, X 
and A are only fixed up to the overall scaling 

A - • zX , A —> - A , (2.7) 
z 

'This is assuming commuting spinors; the scalar product of fermionic spinors is symmetric, for more on 
this see the Appendix 

2For real V, A = ± A , depending on the sign of VQ. 
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for any non-zero z G C. For two null vectors Vaa = \a^a and Wa(x = HaHa, their scalar 
product is given by _ 

2 VaWa = VadeWa& = (A,p)[X,p[. ( 2 . 8 ) 

We conclude this section with some remarks on rank two tensors. A general rank two 
tensor may be considered as the product of two Lorentz vectors, which has the Clebsh-Gordon 
decomposition 

G ' I) ® G ' = 0 = ( O ' O ) 0 ( 1 ' O ) 0 ( O ' 1 } 0 ( 1 , 1 ) - ( 2 - 9 ) 

This partition makes explicit the division between symmetric and anti-symmetric parts. The 
symmetric (0,0) © (1,1) portion contains 1 x 1 + 3 x 3 = 10 components, while the anti
symmetric (1,0) © (0,1) piece has 3 x 1 + 1 x 3 = 6, as expected. The symmetric piece 
further decomposes into a scalar, the trace, and a traceless symmetric tensor. The simplest, 
most commonly used symmetric rank-two tensor is the flat spacetime metric rjab, which in 
spinor notation is written 

The decomposition (2.9) also illustrates the fact that any anti-symmetric 2-form can be 
broken up into its self-dual and anti-self-dual components, 

Fab = -Fba = F+ + F-b (2.11) 

which, as noted before, are the (1,0) and (0,1) pieces, respectively. The self-dual, F+, and 
anti-self-dual, F~, tensors are defined by 

F± = ±(FTi*F), where * Fab = ^e^F"1 (2.12) 

is dual to Fab, because then 
*F± = ±iF±. (2.13) 

These names refer to the fact that in Euclidean signature, the eigenvalues are ±1 , instead 
of ±i. In spinor notation, this decomposition takes the form 

Faa00 = Fa0eal3 + e a 0 F ^ - (2-14) 

When the 2-form Fab represents the gauge invariant field strength of some gauge field Aa, 
then F+b corresponds to positive helicity particles, while F~b gives the negative helicity states. 

2.2 Super-Poincare Algebras 
Discussions of SUSY often begin by considering the Coleman-Mandula Theorem [44] from 
1967. This rigourously proved theorem tightly constrains the allowed symmetry group Q of 
the S'-matrix (whose matrix elements are scattering amplitudes). It states that given the 
following assumptions: 

i) (Lorentz invariance) Q contains the Poincare group, ISO(l,3), as a subgroup, 
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ii) (Particle finiteness) For any finite M, there exist a finite number of particle species 
with mass < M , 

iii) (Weak elastic analyticity) Scattering amplitudes are analytic functions of the Mandel-
stam variables s and t, 

iv) (Occurrence of scattering) In general, any two particles will interact to some degree, 

v) (Dependance on Lie algebras) Any element of Q may be obtained by the appropriate 
exponentiation of its Lie algebra generators, 

Then, Q is a direct product of the Poincare group and an internal symmetry group. 
The Coleman-Mandula Theorem does not mention discrete symmetries, so to be precise 

we should include at least C P T . To any physicist, with a basic understanding of particle 
physics and group theory, the above assumptions are quite reasonable and mild. How then, 
could one go beyond the symmetry group of the Standard Model whose symmetries are 
Q = 750(1,3) x SU(3) x SU(2) x f/(l)? In theories with a completely massless spectrum, 
the Poincar'e group may be enlarged to the conformal group. However, quantum corrections 
generically spoil this invariance so we will not consider this possibility now (though we will 
return to it at the end of this chapter). It was long thought that the only other possible ex
tensions were to enlarge the internal gauge group, for example to SU(5) or 50(10). However, 
a more profound result arises from weakening the fifth assumption. Though the best known 
continuous symmetries are described by Lie algebras with their commutation relations, there 
are mathematical groups called graded Lie algebras which possess anta-commutation rela
tions. 

The usual symmetries of a field theory are generated by: Lorentz transformations Jab 
and spacetime translations Pa and satisfy 

[Jab, Jed] = KVadJbc - VacJbd + VbcJad ~ VbdJac) (2.15) 

[Jab, Pc] = liVbcPa ~ VacPb) (2.16) 
[Pa,Pb}=0 (2.17) 

as well as any internal (gauge) symmetries each with generators Tr such that 

[Tr,Ta]=ifra% (2.18) 

[Jab,Tr] = 0 = [Pa,Tr] (2.19) 
where frs

t are the group's structure constants. The conserved quantities associated with 
these symmetries are: (generalized) angular momentum, 4-momentum and any relevant 
quantum numbers (electric charge, isospin, etc.). Angular momentum is not a distinct 
charge as it is determined by the moment of the momentum vector Jab = xaPb — XbPa. 

A corollary to the Coleman-Mandula Theorem is then, 4-momentum and various quantum 
numbers are the only possible (distinct) conserved quantities. Note that (2.16) and (2.19) 
tell us that these charges transform as in the (|, |) and (0, 0) representations of the Lorentz 
group, respectively, i.e.: they are vectors and scalars. 

By relaxing the fifth assumption we allow for anticommuting (fermionic) generators which 
transform in the (^,0)®(0, |) representations of the Lorentz group. That is to say, we 
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introduce spinor charges QA, as well as their complex conjugates QAA, where A = 1,...,N~. 
These spinor operators must satisfy the relations 

{ Q t Q a B } = %<r aUPaS$ (2.20) 

{QA,QB} = e a 0 Z A B (2.21) 

{QaA,Q0B} = - ^ Z A B . (2.22) 

The antisymmetric matrices Z and Z are called the central charges and they commute with 
all other charges in the theory including themselves 

[ZAB, anything] = 0 = [ZAB, anything] , (2.23) 

in particular they are Lorentz scalars. There exists an additional internal symmetry, called 
R-symmetry, which rotates all the QA amongst themselves. When all central charges vanish, 
which we will assume from now on, this extra symmetry is U(M)R. Its generators Rr obey 
relations analogous to (2.18) and (2.19), while their commutation relations with the SUSY 
generators are 

[QtRr] = {Ur)A

BQB

a (2.24) 

[Q&A,RA = {Ul)B

AQ&B. (2.25) 

The commutators of the SUSY charges with the Poincare generators show that they are 
constant spinors 

[QA,Pa]=Q=[Q&A,Pa] (2.26) 

[Qt^]-(aab)iQA (2.27) 

@c*>Jab] = ( * a b ) i Q f l A . (2.28) 

Notice that since the SUSY charges are spinors this automatically means that they do not 
generate a new internal (scalar) symmetry. SUSY modifies/extends the external symmetry 
group of spacetime itself into the super-Poincare group. 

It should not be surprising that the must satisfy (2.20), with Pa on the right hand side, 
as it is the only possibility. After all, the Q and Q charges are conserved, thus their anticom-
mutator should be as well. Since the left hand side transforms in the (|, |) representation 
so should the right hand side, and the Coleman-Mandula allows for a single such conserved 
quantity, namely Pa. Similar, though more involved arguments hold for the remaining rela
tions in the SUSY algebra, and are given in [41]. We may also realize why spin | , that is 
(1, |) ® ( | , 1), generators were not considered: their anticommutators would lead to a spin 3 
conserved charge which cannot exist. In 1975, Haag, Lopuszanski and Sohnius proved that 
the graded Lie algebra given in (2.15)-(2.28) is the unique extension to the Coleman-Mandula 
case obtainable by allowing fermionic generators [45]. Without convincing physical reasons 
to further weaken the assumptions of the Coleman-Mandula Theorem, one could claim [41]: 

Supersymmetry is the only possible extension of the known spacetime symme
tries of particle physics. 
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2.3 Af=l Supermultiplets 
We will now incorporate SUSY algebras into quantum field theories. Later chapters will 
only require the understanding of massless SUSY field theories, so the massive cases will 
not be addressed here (for more on these, consult the references). This section will develop 
the formalism for J\f = 1 SUSY theories, and a latter section will address extended, N > 1, 
cases. 

To classify massless fields with energy E, we boost to the lightcone frame where Pa = 
(E, 0,0, E) so that 

{Qa,Q&} = 4E( I °Q) . (2.29) 
V / act 

By rescaling the charges we can define the annihilation and creation operators 

which satisfy 

{ai,a,j} = Su5ij {ai,aj} — 0 = {ai,a,j} . (2-31) 
Thus, N = 1 field theories possess a single ladder algebra, {ai,ai} = 1, for building Foch 
spaces. Suppose | f2j > is a spin j state which ai annihilates. To be precise, as we are only 
considering massless states, | Clj > should be a state of helicity j; we will often use the two 
terms synonymously. Then, its Foch space is 2-dimensional: 

> and ai\Qj > . (2.32) 
No other states may be built from | fij > since there exists a single anticommuting creation 
operator. Since aa, like Q&, is spin | , the state ai \ > will have spin j + \. Thus, we may 
conclude that an irreducible massless J\f=l multiplet contains exactly one boson and one 
fermion, both of which are massless3. For SUSY to hold, we will always require an equal 
number of bosonic and fermionic degrees of freedom. This must be so if there is to be a 
Bose-Fermi degeneracy. By CPT, there must also exist a similar pair of massless states with 
opposite helicities (—j, — So in general two irreducible massless N = 1 multiplets will 
pair up giving four states with helicities + — \, — j). 
• S u p e r s p a c e a n d S u p e r f i e l d s 

A convenient method of packaging Af = 1 multiplets is achieved through the use of 
superspace. This technique adapts well for J\f = 2 but not for more supersymmetries, nor is 
it useful in d > 4. Superspace, or more precisely J\f = 1 rigid superspace (rigid since we are 
considering global SUSY), is the fermionic extension of four-dimensional spacetime. To the 
usual four bosonic dimensions of spacetime, xa, we add four fermionic dimensions 9a and 6a, 

xa—• {xa,ea,6&). (2.33) 

Being fermionic, the new Grassman coordinates anticommute 

{6a,e?} = {9&,dfi} = {9ar0a} = 0 . (2.34) 
3 Had we considered massive fields, we would have found {a,i,a,j} = <5y, thus, there would exist two 

independent ladder algebras and therefore twice as many states in the Foch space. 
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However, the combinations 9aQa and 9aQa are bosonic and so may be exponentiated to 
obtain a finite translation in superspace. Analogous to how momentum operators generate 
spacetime translations, SUSY generators lead to superspace translations. A general transla
tion would be given by 

G(xa, 9a, d&) = e

i ^ x a P a + e a Q a + " 6 ^ ) , (2.35) 

or infinitesimally as 

(xa, 9a, 9a) — • (xa + ea + i9aal - i^aa9, 9a + C, 9a + ? D ) . (2.36) 

Notice that an infinitesimal translation by £ Q in the fermionic directions induces a change 
in the bosonic spacetime. This implies that the differential operators for the SUSY charges 
are not da and da but rather 

Qa = da - i(aa9)ada (2.37) 

Qa = -da + i{9aa)ada. (2.38) 

In fact, the "extra" terms in the differential operator expressions for Q, Q are essential to 
ensure that the relation {Q, Q} ~ P holds true. So, while the rigid superspace we've been 
dealing with has zero curvature there is a non-zero torsion present. To compensate for this, 
we introduce covariant derivatives 

D a = da + i(aa9)ada (2.39) 

D a = -da - i(9aa)ada (2.40) 

which only differ from the SUSY generators by a relative sign. One could also check that 
the covariant derivatives anticommute with the SUSY charges. 

{Da,Qp} = {Da,Qa} = 0 (2.41) 

{Da,Qa} = {Da,Qp} = 0 , (2.42) 

which will be important later. Their own anticommutation relations are the same (up to a 
sign) as the SUSY charges' 

{Da, Dp} = 0 = (Da, Dp) (2.43) 

{Da,Da} = -2(aa)aaPa (2.44) 
A general superfield is a function written over all of superspace, and so by definition 

is a SUSY invariant object. The superfields of interest to physicists are the ones which 
transform irreducibly under the SUSY algebra. Since the Grassman variables of superspace 
anticommute, a general function on superspace $(x,6,9) can be Taylor expanded in the 
fermionic variables into a sum which necessarily terminates: 

${x,9,9) = </){x) + 94>(x) + 9x + 92F{x) + 92G(x) (2.45) 

+ 9aa9Aa(x) + 929\(x) + 929p{x) + 9292D(x) (2.46) 

where the summation over spinor indices is left implicit. This most general (scalar) function 
on superspace, however, is not an irreducible representation of SUSY. To see this, note that it 
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contains: complex scalars (j), F, G, D, lefthanded fermions ipa, pa, righthanded fermions x", ^ a 

and a vector Aa. As we've already discussed, the massless SUSY irreducible representations 
have fields of spin + |) which is smaller then what we found for the general scalar 
superfield <E>. To obtain irreducible representations, we must impose constraints on the 
superfields. These constraints must (anti)commute with the SUSY charges to ensure the 
constrained superfields are SUSY invariant as well. 

• C h i r a l S u p e r f i e l d s 

The first constraint we will impose is the chiral superfield (xsf) constraint: 

Da$ = 0. (2.47) 

As we already noted, Da anticommutes with the SUSY charges, so this is an allowed con
straint. It is easy to check that 9 and ya = xa + i6aa0 are both annihilated by Da, so any 
function $ = $(y , 6) will be too. The general xsf is 

$(y,6) = (f>(y) + V2e^(y) + e2F(y) 

= <f> + i6o-a6da<fi + -eTtd'14> + V20tP - -^=92da^oa9 + 62F. (2.48) 
4 y 2 

Under an infinitesimal superspace translation £ a the component fields transform as 

S&c = V2(aF + iV2(aa1)ada4> (2.49) 

8(:F = -iV2daTpoa£, . 

So %sf do indeed transform into themselves under SUSY. 
A xsf only contains the complex scalars 0, F and the lefthanded Weyl fermion ijja, and 

therefore only spins j = 0, | , consistent with the restrictions on irreducible representations. 
However, we noted earlier that massless A/=l irreducible multiplets contained only one boson 
and one fermion. The reason for this was that when we boosted to the particle's lightcone 
frame we were assuming the fields were on-shell. What we have derived is the off-shell xsf 
multiplet. Off shell, it contains 4 (real) degrees of freedom for both bosons and fermions. It 
will always happen that the F field is auxiliary (non-propagating). On shell, the multiplet 
reduces to {cp, ipa}, each with 2 degrees of freedom (as we expect for complex scalars and 
massless (on-shell) fermions). Though the F field is not physical, it is necessary to preserve 
SUSY off-shell. 

One can analogously define anti-chiral superfields, xsf, subject to 

Da$ = 0 . (2.50) 

These must be functions of 9 and ya = xa — i9oa9. Since (in Minkowski space) D* = Da, if $ 
is a xsf, then $ is an xsf. Note that for xsfs <f>1, + <J?J and are also xsfs, but <&' + W 
and are not. x s f a n d X s f a r e the SUSY analogues of matter and anti-matter fields, 
and by CPT they must come in chiral/anti-chiral pairs. The fermionic fields are thought of 
as the standard matter fields (quarks, electrons, etc.), while their superpartner scalars have 
been dubbed sfermions and have names like squarks and selectrons. 
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• Abelian Vector Superfields 

The next superfield we shall consider is the vector superfield (Vsf) V, which obeys the 
reality condition 

V = V . (2.51) 

The most general superfield which obeys this constraint is 

V = B + 6x + 9x + 62C + 92C -9aa9Aa + 

+ i92e(X + ±o*daX) - it9(\ - \aadax) + \e2t{D + d2B), (2.52) 

where B,D,Aa are real and C is complex. Under a translation in superspace by £ a , the 
Vsf's components vary by 

hX* = 2&C + {aaOa{idaB + Aa) 

h^a = ^aX + Xa^+^daX-daxO (2.53) 

S^Xa = 2^aD-%-iadaAa + i{sal)adaC 

6SD = l-da(Xaal + ZaaX) , 

so Vsfs are indeed scalars under SUSY as well. 
The presence of the vector Aa suggests that Vsfs should possess a gauge symmetry. The 

supersymmetric generalization of a regular gauge transformation is 

V —• V + i(A - A) (2.54) 

where A is an arbitrary xsf 

A = A + y/2Bibk + 92FA + i9aa9daA + - ^ f l V d ^ A + -8292d2F„. (2.55) 
v 2 4 

The Vsf's components transform under this gauge transformation as 

SAB = z ( A - A ) 

SAX = iy/2ipA 
SAC = iFA 

= aa(A + A) 
SAX = 0 

5AD = 0 . 

(2.56) 

In particular, the vector field Aa transforms correctly with respect to the gauge parameter 
Re(A). This supersymmetric gauge invariance is, however, larger than standard ones as it 
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possesses the additional gauge parameter Im(A). In this case, with only a single gauge field, 
the full gauge group is U(l)c, rather the usual U(l)w. In general, the gauge group G of Aa 

is complexified to Gc for the corresponding Vsf. 
One can determine by inspection that the B, x a n d C fields are all gauge artifacts and 

may be gauged away. This is attained by fixing Im(A),^A and F A to cancel them, and is 
called the Wess-Zumino gauge. The WZ gauge fixed Vsf is written 

Vwz = -9aa9Aa + i929X - itf9\ + ^9292D, (2.57) 

though from now on we shall not include the WZ subscript. In addition to reducing the 
number of fields, the WZ gauge also has the advantage that 

ev = 1 + V- ^9292A2, (2.58) 

as V3 = 0 in this gauge. The finite form of the gauge transformation (2.54) is then 

ev e-^eve{K. (2.59) 

Notice that Re(A) is left unaffected by fixing to the WZ gauge, thus the vector field still 
has its usual gauge freedom. In effect, the WZ gauge breaks Gc down to the standard gauge 
group G. The disadvantage is that SUSY is no longer manifest in the WZ gauge. Also 
note that (2.56) says that the A and D fields are gauge invariant, though they are not both 
physical. As before, there is an auxiliary scalar field, D, which is necessary to continue the 
Vsf off-shell. In this case, the extra scalar field is real and when combined with the massive 
vector particle produce an equal number of degrees of freedom as the massive fermion. On-
shell, the physical degrees of freedom of the Vsf are the massless fermion A Q and the gauge 
boson Aa. The on-shell Vsf has fields of helicities (-1,-|,|,1) and so is already a CPT singlet. 
The vector fields are interpreted as standard gauge fields, in this simple example Aa is the 
photon, while their fermionic superpartners are called gauginos, in this case A is the photino. 

One would like the analogue of a gauge invariant field strength for the Vsfs. This is 
another irreducible representation of the SUSY algebra, called the field strength multiplet, 
and it has the same field content as the WZ gauge fixed Vsf. It is given by the field strength 
superfields 

Wa = ~D2DaV , Wa = --AD2D&V (2.60) 

which are indeed invariant under the supergauge transformation (2.54). Let's check this for 
Wa: 

6AWa oc D2Da(A - A) = D2DaA = Da{D&, Da}A (2.61) 
ex D«(o-a)«PaA = (aa)tPaDaA = 0, 

where we've used the facts that the the DA = DA = 0, {D,D} ~ Pa and [D, P] = 0. The 
superfields W, W are also %sf and xsf, respectively: 

DaWa = --D&(DD)DaV = 0, (2.62) 
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since the D anticommute and have only two components, thus D3 = 0. They are not, 
however, general (anti)xsfs, as they also satisfy the Bianchi identity 

DaWa = DaW&. (2.63) 

We can still expand them as functions of y or y and, by taking V in WZ gauge, the definitions 
(2.60) imply 

Wa = -i\a{y) + 6aD(y) - l-(aaab9)aFab{y) + 02(cradaX{y))a (2.64) 

Wa = iMv) + 0«D{y) = Z-(aaab9)aFab(y) + S V & A f t ) ) * , (2.65) 

where Fab = daAb — dbAa is the gauge field strength. Notice that aaabFab projects F onto 
F+, its self-dual (1,0) portion. Thus, Wa contains the self-dual field strength, while Wa 

contains the anti-self-dual piece. 

• Non-Abelian Vector Superfields 

Everything we have discussed so far generalizes to non-Abelian gauge fields. Many of the 
details are rather complicated, so we will suppress them here, however the final results are 
quite similar to the Abelian case above. 

First, we define the non-Abelian Vsf and gauge parameter %sf as 

V = TrVr (2.66) 
A = r r A r , (2.67) 

where the matrices Tr form the Lie algebra of some gauge group G and obey the commutation 
relations (2.18). The finite gauge transformation of the Vsf is the same as in the Abelian 
case 

ev —> e-ikeveik, (2.68) 

however the infinitesimal form is more complicated, as one might expect for non-commuting 
fields. Fortunately, a WZ gauge exists for these fields which, again, breaks the supersymmet
ric gauge group from Gc down to G, however, the remaining gauge parameter is no longer 
Re(A) but rather 

kWz = (1 + i9aa9da + ]92fd2)Re(A) . (2.69) 

In WZ gauge, we again find 

Vwz = -9aa9Aa + i929X - i9*9X + V^/J, (2.70) 

though now the fields are matrix valued and transform in the adjoint representation. Having 
fixed WZ gauge, the remaining non-Abelian infinitesimal gauge transformation is 

V —* V + i(k — A) — ^[(A + X), V] , (2.71) 
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where we have once again dropped the WZ subscripts. Componentwise, this transformation 
reads 

6aA: = ^(A+Ar+zv^A+A)* 
« = r r t A - ( A + A)* (2.72) 
sADr = rstDs(A+Ry. 

The gauge invariant non-Abelian field strength xsfs are defined as: 

Wa = -^D2e-vDaev, Wa = -^D2evD&e-v . (2.73) 

Note that, for Abelian gauge fields this definition is equivalent to (2.60). Under a finite 
gauge transformation, they transform in the correct covariant manner 

Wa e-ikWaeik, (2.74) 

and similarly for Wa. Expanded into functions of y, the field strength superfields are 

Wa = -Xa(y) + dQD(y) - (aab9)aFab + 92(aaVa\(y))a (2.75) 

where Fab = dAAB - dBAA + i[AA, AB] is the Yang-Mills field strength and V a = da + i[AA, •] 
is the Yang-Mills covariant derivative. As always, Wa is obtained by taking the hermitian 
conjugate of Wa. 

2.4 J\f=l Supersymmetric Actions 
Actions for superfields must be invariant under all the symmetries of the theory: Poincare, 
gauge, CPT and of course SUSY. To keep matters simple, we will also impose the constraint 
that our theories be renormalizable in four-dimensional spacetime. Satisfying the symmetry 
requirements is quite straightforward: we build Lagrangian densities from gauge-invariant 
scalar objects made of superfields, always pairing xsfs with xsfs, and integrate over super-
spacetime. 

Using only <f>1 and $ , the simplest Lagrangian one can construct is 

CK = J d4xd48$i¥ , (2.76) 

where d49 = d26d?'0. The subscript K here stands for Kdhler, and in its most general form 
the integrand is an arbitrary function K{W, $ l) called the Kahler potential. Recall that 
Grassman integration is the same as differentiation, so the fermionic integral picks out the 
926 component. With some straightforward manipulations we find, 

CK = FiF4 - dahW - i^da^ . (2.77) 

As promised, the F fields have no propagators so their Euler-Lagrange equations read Fl = 0. 
This simple Lagrangian describes a set of identical free massless complex scalars and Weyl 
fermions, which we know to be mixed under SUSY transformations. 
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We can add interactions to this by including a superpotential W($ 1) + W($*). Being 
(anti)holomorphic functions (functions only of <1?1 or $ ), superpotentials must be integrated 
over the appropriate half of superspace to give non-zero contributions. The most general 
renormalizable superpotential is that in the Wess-Zumino model, given by 

= + rriij^ + gijkfi<t>k) Fi - ^miJil)iipi - ^ j ^ V ^ + c.c. 

(2.78) 

One can again solve the F fields' equations of motion (including the Kahler term) and 
substitute the solutions into the above superpotential to obtain 

CW = V((f), 4>) - ^mijibiipi - \9nk<P^i>k + c.c. , 

where the scalar potential is 

dW(4>) 

(2.79) 

(2.80) 

A remarkable result about superpotentials, whose derivation will take us too far off course 
here, is that they receive no perturbative quantum corrections. That is to say, the superpo
tential is exact and un-renormalized to all orders in perturbation theory] 

The Kahler potential in (2.76) is too simple for us, as it is not a gauge invariant quantity. 
Under a finite gauge transformation, xs& m the representation R of the gauge group G 
transform as 

iARV (2.81) 

where the gauge parameter (A f i)j = A r (Tr)*. We also write Vj = Vr (Tr)*, with the genera
tors (Tr)lj in the same representation R. Then according to (2.68) the quantity 

K' = * 4 (evy. ¥ 

is gauge invariant and the kinetic terms for the xsfs is now 

cK, = J d4e $t (evy. & 

(2.82) 

(2.83) 

= F* - (V0)J <jj\ - i^oa (V0)j xl? - •^=(<j>i\\%jjj - <̂ A;#) + -hDtf , 

where the Yang-Mills covariant derivative in a general representation is 

(Va)) = da5)-iAr

a{Tr)) . (2.84) 

Of course, the Vsf requires its own kinetic terms and they are given by the super-Yang-Mills 
Lagrangian 

CSYM = rjd29 T±WaWa + c.c (2.85) 
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where the complex gauge coupling r contains both the Yang-Mills coupling g and the theta-
angle 

After integrating over superspace the field strength Lagrangian becomes 

-SYM • 4 
1FabFab - i\aaVa\ + ID2) + J^TrFn* * Fab 

32vr2 
(2.87) 

We can again solve for the auxiliary fields D, appearing in both the gauge invariant Kahler 
and field strength Lagrangians, and find a new term in the scalar scalar potential 

v\<t>,<i>) = dW{(f)) 
(2.88) 

Putting all this together, the most general renormalizable J\f=l supersymmetric La
grangian is the Yang-Mills-Wess-Zumino Lagrangian 

S SK1 + <SW + SSYM 

J d46Q>i(ev))& + (^J d26 [Vi& + mij¥& + gijk&&$k + rT r WaWa] + c.c 

| (V 0 ); .^|-t^a 0 (V 0 )*^' :Tr ~FabFab - i\aaVa\) + 7 ^ T r F a 6 * Fab 

+ 
i — 

^ A } ^ ' + rriijip^ + gijk(t>itp:j'4)k: + c.c. (2.89) 

+ \ut + rmrf + gijk^cpk\2 + j (Tr)) cry')' . 

A remark should be made that the couplings are gauge invariant only if [43] 

m^Trt + m^Trt = 0 

giATrYk + gUkiTrYj+gtjkiTrYi = o 

Vi(Tr)) = 0 . 

(2.90) 

The first of these constraints implies ^ 0 Ri = Rj, the second that g^ ^ 0 
Ri x Rj x Rk contains the singlet, the last equation requires that the coupling Ui ̂  0 <=> Ri 
is the singlet. 

2.5 Extended Supersymmetry 
Recall that the N—l (on-shell) massless multiplets contained two fields with spins + | ) . 
With N SUSY charges, we have more raising operators so we may build a total of 2^ states 
of the form aiA1aiA2 • • • &iAn \&j >, where n = 0 ,1 , . . . , N~. Thus, fields of helicity j + | will 

-fold degenerate. 
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An important feature of extended SUSY is the enlarged R symmetry. The mixing of 
the SUSY charges under U(N')R implies that the components with common helicities must 
transform in some representation of SU(Af). Essentially, the extra U(1)R factor continues 
to act as in the A/"=l case, by assigning an "i?-charge" to the components and rotating each 
component into itself. This U(1)R must be present as every extended SUSY group contains 
Af—l subgroups4. Because of this structure, every supermultiplet can be decomposed into 
its Af=l components which must mix correctly under SU(A/)R. We use this property to 
classify extended SUSY multiplets below. 

In principle, one may construct SUSY algebras for any Af, however physical constraints 
place an upper bound on this number. On general grounds, massless particles of spin j > 1 
must couple to conserved charges of spin j — 1. Thus, spin-1 gauge fields couple to scalar 
charges; the spin-| gravitino couples to the SUSY charges and the spin-2 graviton 
couples to the momentum vector Pa. Since angular momentum is given by the moment of 
Pa, Jab = xaPb — %bPa, no additional (higher spin) fields are required to couple to it. A 
corollary of the Coleman-Mandula Theorem is then: there are no interacting massless fields 
of spin> 2. These observations imply that Af=8 is the largest number of SUSY charges 
physically possible. An J\f=8 multiplet will contain states with all helicities from -2 to +2. 
For theories without (super)gravity Af=4 is the maximal amount of SUSY possible, as the 
gravitino must always appear in a multiplet with the graviton, and the helicities will then 
range from -1 to +1. 

• N=2 SUSY 

We begin by examining the simplest extended supersymmetric theory which contains two 
supercharges. In Af=2 SUSY, there are two types of multiplets possible: vector multiplets 
and hypermultiplets, whose lowest spin states are are j = 0 (or -1) and j = — | , respectively. 
The Af=2 Yang-Mills vector multiplet is composed of an Af=l Vsf V = VrTr and an Af—l 

%sf $ = <f>Tr in the adjoint representation of the gauge group G. The on-shell states of 
this multiplet are: gauge fields AR

A and complex scalars (j?, which are SU(2) singlets, and an 
SU{2) doublet of fermions (Xr

a, ipD, along with their C P T conjugate partners. The relations 
between the various components is displayed in Figure 2.1. This multiplet is governed by the 
Lagrangian (2.90) with a vanishing superpotential (z/j = = = 0) as required by the 
(A, ip) SU(2) symmetry. In particular, the possible interactions involve gauge fields through 
covariant derivatives Tr ([yla, •]), and scalars through the Yukawa couplings Tr (</>• [A,^]) 
and quartic self-interactions Tr([0, ci])2. 

Af=2 theories may also contain a matter sector and this is given in terms of the hyper
multiplets. Each of these multiplets are built from a %sf $'* and a distinct %sf (different 
from $ ). We use the primes to distinguish these superfields from the Af=2 vector compo
nents <f>r. The on-shell field content is: two SU(2) fermion singlets ip£, ip'£, and an 5(7(2) 
doublet of complex scalars ((f)'\ cj>"1), together with their CPT conjugates. The realtionship 
among fields is also summarized in Figure 2.1. When coupled to Af=2 gauge fields, the 
hypermultiplets may appear in any representation of the gauge group G provided R! = R . 
The only superspotential which respects the SU{2)R symmetry is 

W $ r ) = ( $ % &'j + Trus®*®"* . (2.91) 
4 The case of A^=4 is exceptional, as the action of the extra U(l)n is in fact trivial 
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K < R > 1>a <f> < R > # 

Figure 2.1: The relations among the components of the M=2 vector multiplet (left) and 

hypermultiplet (right) 

• Af=4 S U S Y 

Our main concern wi th extended S U S Y theories w i l l be the A / = 4 case. A s mentioned 
previously, this is the maximal ly supersymmetric field theory possible (without gravity) and 
it contains a unique multiplet. N = 4 super-Yang-Mills ( S Y M ) can be considered as a sector 
A / = 2 theory, wi th an M=2 vector multiplet coupled to a hypermultiplet in the adjoint rep
resentation. In terms of A / = l components, the A/"=4 vector contains a V s f and 3 xs^s- Its 
on-shell spectrum consists of a gauge field Aa, 4 left-handed fermions tpA, and 3 complex 
(or 6 real) scalars (pAB plus their CPT conjugates. These fields transform in the singlet, 
fundamental (4), and anti-symmetric tensor (6) representations of SU(A)R, respectively. 
Symmetries dictate that right-handed fermions tpAa transform in the anti-fundamental rep
resentation (4), and the scalars obey the reality condition 4>AB = *cfiAB = \eABCD<f>cD- The 
SU(4) symmetry of the fermions ipA forbids a mass term in the f\f=2 superpotential and it 
imposes the equality of al l couplings (except &). Furthermore a l l fields are matr ix valued 
and transform in the adjoint of G. Thus, symmetries fix the Lagrangian to be 

CN=A = ^ T r (~^FabFab + ̂ F a b * Fab - i^AoaVa^A - \Vacf>AB\2 

- v ^ R e {4>AB • [ipA,i>B]) + ^ | [4>AB, 4>CD] | 2 ) • (2.92) 

We have not mentioned AA=3 in our discussion so far for a simple reason. In non-
gravitational theories, A/"=3 S U S Y is the same as A / = 4 . Consider what an A/"=3 multiplet 
might look like, a quick count reveals there would be: a positive helicity gauge field A+, 3 
righthanded fermions ipA+, 3 complex scalars (j>AB and a lefthanded fermion ip~^ (which must 
be distinct from the other tpA). W h e n combined wi th their C P T conjugates this multiplet 
is exactly that which appeared in the JV—A case. Further analysis would reveal that the two 
theories are in fact equivalent. Of course, there are J\f—3 supergravity theories which are 
distinct from their J\f—A cousins. However in acquires the fourth one "for free". 

2.6 Superconformal Algebras 
In a massless theory, w i th dimensionless coupling, the spacetime symmetry group must be 
extended to include conformal transformations (at least classically). This enlarged symmetry 
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group includes, in addition to the Poincare group, dilations D : xa —> txa and special 
conformal transformations Ka : xa —> 1+Z°?b

ba+y2x2 • The transformation properties of Ka 

may seem peculiar, however they insure that inversions xa —> xa/x2 are included in this 
group. The indices on the new generators D and Ka suggest that they are scalar and vector 
operators, respectively, and indeed they are. Their behaviour under Lorentz transformations 
are identical to (2.16) and (2.19) with Tr <-> D and Pa <-> Ka. Their remaining relations are 

[D, Ka) = -iKa , [D, Pa] = iPa (2.93) 

[Pa,Kb] = 2iJab - 2iVabD (2.94) 

[Ka,Kb]=0=[D,D]. (2.95) 

We refer to the eigenvalues of the D commutation relations as (i times) the scaling dimension. 
Thus, the dimensions of D, Pa, Ka and Jab are 0, +1, —1 and 0, respectively. 

The number of fermionic generators must also be increased when passing from the super-
Poincare to the superconformal group. We must include the superconformal generators SA, 
which are in a sense complimentary to the QA in a similar manner to how Ka is complimen
tary to Pa. In minimal SUSY algebras we have {Q, Q} ~ P, the SA obey the analogous 
relation 

{SA,SaB} = -2(o-a)aaKa6A . (2.96) 

As Pa and Ka have opposite scaling dimensions, so too do QA and SA: 

\D,QA] = \QA , [D,SA} = -l-SA . (2.97) 

For completeness, we list the remaining (anti)commutators of the superconformal group in 
the Appendix. 

Usually, conformal symmetries are only valid classically since so-called trace anomalies 
tend introduce a scale dependance at the loop level. However, a most remarkable fact about 
N=4 SYM is that it is an exactly conformal theory, even at the quantum level. To see 
this, note that in general the strength of the gauge coupling constant is governed by the 
renormalization group coefficient 

M = ~i& - o" _ h^°2{Ra)) (2-98) 

where the sums are taken over fermions in representations B4 and complex scalars in Ra. 
The Ci are the Casimir operators for the representations Rt, Ra and G (adjoint). Since the 4 
fermions and 3 complex scalars of A/*=4 SYM all transform in the adjoint, then C{ = Cf = 
C\{G). The one-loop /^-function is then 

««>«-£(iH-£)-»• <™> 
Although this is only a one-loop result there are theorems, similar those asserting the non-
renormalization of the superpotential, which protect the coupling constant from further 
perturbative corrections beyond one-loop. Thus, the jV=4 theory is (super)conformal and 
the gauge coupling does not vary with momentum scales. 
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C h a p t e r 3 

M H V A m p l i t u d e s a n d T w i s t o r s 

3.1 M H V Amplitudes at Tree Level 
Consider a general Yang-Mills theory with an unbroken SU(N) gauge group in four dimen
sions, with or without supersymmetry, and a coupling constant gYM- If all the fields are 
massless, then n-particle scattering amplitudes are functions of: colour labels, at, external 
momenta, pi and helicities, hi, for i = 1,..., n. The full amplitude, An, can be decomposed 
as a sum of kinematic partial amplitudes, An, multiplied by an appropriate colour factor, 
Tn, with an overall momentum conservation, 

An(ai,Pi,hi) =^- 2 (27r) 4 t i ( 4 ) | J^Pij Tn(a°-(i))MP*(i),K(i))- (3.1) 
\ i = l / <7eS„/Z„ 

To ensure Bose symmetry, the sum is taken over all non-cyclic permutations of the n external 
particles Sn/Zn, as the partial amplitudes themselves are cyclicly invariant. The colour 
factors are easily determined, for example, at tree level with all particles in the adjoint 
representation its simply a single trace of generators: Tn = Tr(T 0 1 .. -Tan). The difficulty 
lies in computing the partial amplitudes. 

We will focus on tree level amplitudes, with all particles defined to be incoming. We use 
the notation gf to denote the ith gauge boson (henceforth referred to as gluon) with on-shell 
momentum pl

aa = Xl

aXl

a and helicity hi = ±1 . When all or all but one particles have the 
same helicity, then the amplitude is identically zero, 

An{gt, gt, • • • , 5 n ) = 4 » ( 0 r \ 0 2 . - " > 0 n ) = ° 
An(g~,gZ,---,gZ) = An(gt,g;i.:.,g-)=0 . (3.2) 

The simplest non-trivial (partial) amplitudes are the Parke-Taylor amplitudes [1] where all 
but two particles have the same helicity, hence their alternate name - maximally helicity 
violating (MHV) amplitudes. Writing the momentum vectors in the spinor basis outlined 
in Section 2.1, the MHV amplitudes take an exceptionally simple form. To further simplify 
notation, we write spinor products 

( A i , Xj) = (i j) and [Xk,Xe] = [k£]. (3.3) 

With this shorthand, the MHV amplitudes for the "mostly plus" case are 

A^^) = K ^ + i y (3-4) 

where the gluons in the r and s positions (1 < r, s < n) carry negative helicity, while the 
remaining n — 2 (which are suppressed on the left hand side) carry positive helicity. Also, 
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we cyclicly identify A „ + i ~ Ai throughout this thesis. The "mostly minus" Parke-Taylor 
amplitudes shall be referred to as MHV, though they are also called googly, amplitudes. 
They may be obtained from the MHVs by the simultaneous parity transformations + <-> — 
and complex conjugation (i j) «-> [i j], yielding 

(where now the negative helicity gluons are suppressed on the left). Henceforth, positive 
helicity gluons will usually be left implicit when denoting "mostly plus" amplitudes, and 
similarly for the "mostly minus" cases. 

The case of n = 3 is slightly exceptional as the MHV amplitudes only contain one gluon 
of opposite helicity. These amplitudes vanish when on-shell, as expected. For instance, 
consider the amplitude 

^" ^ = 7^§j|l> • ( 3 - 6 ) 

To demonstrate the vanishing of this amplitude, suppose only the first two gluons are mass
less, then by momentum conservation 

V\ = (Pi +P2? = 2Pl-p2 = (1 2)[1 2] = |(1 2)|2, (3.7) 

since for real momenta in Lorentzian signature, A; = ± A j . So, 

v\ = 0 ^=> (1 2) = 0, (3.8) 

thus, in the limit where all three particles go on-shell 

M9l,92,9t) - r t 0. (3.9) 

Similar arguments hold for helicity configurations. One issue that deserves attention is the 
fact that all factors pi • Pj oc (i j) vanish for on-shell 3-point functions. Fortunately, the nu
merator of such amplitudes is of higher order than the denominator, so no singularities arise. 
Off-shell continuations of 3-point (and higher) MHV amplitudes will be used considerably 
in the coming sections. 

3.2 Conformal Invariance and Twistor Space 
The CSW rules were motivated by [9], where Witten first noticed that Yang-Mills amplitudes 
are supported on algebraic curves in Penrose's twistor space. Along with suggesting a new 
approach to perturbative calculations, this work reveals a deeper structure of gauge theory, 
and so is doubly deserving of our attention. Here, we'll review the relevant points of Sections 
2 and 3 of [9], readers interested in the details and its interpretation via topological string 
theory are referred to the original paper. 

A renormalizable (unbroken) SU(N) gauge theory contains only dimensionless param
eters at tree level, and so should be invariant under all conformal transformations. For a 
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massless field, we may write the generators of the conformal group in bi-spinor notation: 

9 , 9 \ ~ i (~ d ~ d 
2 y dX@ dXaJ ' a S i 2ap\™d\(> pd\< 

d2 

Pact — AQAQ, > K-aa = ~ ( 3 . 1 0 ) 
daad\a 

D=lJx^ + A * - £ - + 2 
2V dX" d \ c 

For n massless particles, we sum all n generators, so Padc = YJ i P*^ = VJj KtK*> e^c- Given 
that A, A have scaling dimension | , (i.e.: —i[D,X] = —i[D,X] = | ) , we see that J,P,K,D 

all have the proper scaling dimensions of 0, +1,-1,0, respectively. The inhomogeneous 
factor of 2 in the definition of D is necessary to produce the correct commutation relation 
[Pact, = i(JaaP0 ~ JaaW + ^a^apP)-

Physical quantities in conformal theories (such as classical Yang-Mills) must be annihi
lated by the above generators. As an explicit example, we will follow Witten's demonstration 
[9] that MHV amplitudes 

AM™ = ig?2{2*)W A* A^ n ? ^ + i ) (3.11) 

are in fact annihilated by all the generators of the conformal group. Note that Poincare 
invariance is evident as these amplitudes contain a momentum conserving delta function 
and the remaining terms (A, A') are Lorentz scalars. Thus the non-trivial checks are the 
annihilation by D and Kaa. 

First, we consider the action of D. The delta-function has scaling dimension -4, which 
precisely cancels the +4 contribution from (r s)4. So the numerator is annihilated by D. 
The denominator is as well since it is homogeneous in each Aj of degree -2 which cancels 
the +2 inhomogeneity in the definition of each Dl. So MHV amplitudes are invariant under 
dilations. 

We^will now showjhat Ka&AMHV = 0. Write AMHV = 54(Paa)A(Xi) and recall P a a = 

J2i KtKt- Since OA/dX = 0, then by using the chain rule we find 

d2 

KaaA = V ^ A (3.12) 
i 

Using the Lorentz invariance of A , we can replace 

i a i T 

We may also replace 
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as the two distributions are equal (this is easy to check by integrating some test function by 
parts). Upon making these two substitutions, we realize that the right hand side of (3.12) 
vanishes, as required. 

Minkowski space is a redundant setting in which to formulate conformal field theories 
because both the background and the field theory are scale invariant. It seems natural to 
look for a space where this scale invariance has been divided out, leaving a more appropriate 
background for the theory. Mathematicians have long studied such spaces and collectively 
call them projective spaces. We shall be particularly interested in two of these spaces: RP 3 

and its complex cousin CP 3 , which Penrose named twistor space [49], or more precisely 
(complex) projective twistor space, denoted PT. 

For those unfamiliar with projective spaces, consider regular 3-space with one point (the 
origin) removed, R 3 \{0} . Next, "squash" every point radially onto the unit sphere, i.e. map 
R 3 \ {0} -> S2 via 

X - * f = T ^ r . (3.15) 
F l 

Finally, identify antipodal points with each other, x' ~ — x'; this new space is MP 2 . To 
construct other projective spaces, like RP" or CP™, follow the same procedure beginning 
instead with R™+1 or C™+1 (and mod out an overall phase as well in the complex case, 
instead of just ±1). Equivalently, RP 7 1 (CP™) is defined as the space of (complex) lines in 
K " + 1 (mathbbC71) which pass through the origin. 

While MHV amplitudes are holomorphic functions, that is functions of the A, and not 
their conjugates Aj, a generic amplitude is not. Thus, an arbitrary n-point amplitude is 
parameterized by n spinor pairs (Aa,A(i). Naively, one might suspect that to encode these 
functions in twistor space, which is CP 3 , one simply takes the four (possibly complex) values 
in each spinor pair as the coordinates of a point in PT, so n-point amplitudes are defined on 
PT™. The process is, however, slightly more subtle. As in [9], first we must Fourier transform 
half the coordinates 

This transformation, the so-called twistor transformation, leads to a more natural repre
sentation of the conformal group than (3.10). Instead of the generators being a mix of 
multiplication operators, and differential operators of degree one and two, the twistor trans
formation convert all the generators into first-order homogeneous operators. In particular, 
the two vector operators, Paa and Kaa, now appear on equal footing 

d . d 

and the inhomogeneous term in D is no longer necessary 

The Lorentz generators are unaltered in form: J(A) —* J(A), J(A) —• J(p). 
A (null) twistor, then, is a point in PT with coordinates ZA = (AQ, p&), which corresponds 

to a null vector in Minkowski space Vaa = Xa\a- Since the null vector V is invariant under 
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the simultaneous rescaling 
\->z\ , A - » - A , (3.19) 

z 
for z € C*, then the twistor variables A, p will have the symmetry 

(\a,Va)~z(\a,p&) . (3.20) 

We recognize this as the symmetry of CP 3, so we are justified in associating twistor space 
with this projective space. For an introduction to twistor theory see [50], or the recent review 
[51], for a more comprehensive examination of the subject see [52]. 

3.3 Twistor Transformed Amplitudes 
Before going further, let's pause and examine this twistor transformation. Note that we 
have (arbitrarily) chosen to transform the righthanded spinors over the lefthanded ones, 
apparently breaking parity symmetry. The repercussions of this choice are that amplitudes 
with fewer negative helicity gluons will be simpler to compute, while their parity conjugates 
(like MHV amplitudes) will be more cumbersome. Also, recalling that for real momenta 
in Minkowski space A = ±A, one may wonder exactly how to Fourier transform only the A 
without affecting the A. The simplest solution is to Wick rotate to the signature (+, +,—,—) 
where A and A are both real and independent. This is the signature used whenever Fourier 
transforms to twistor space are discussed in this work. 

The claim of [9] is that amplitudes involving q negative helicity gluons with £ loops are 
supported on an algebraic curves in twistor space of degree d and genus g, where 

d = q-l + £ and g < £. (3.21) 

This conjecture offers a new explanation for the vanishing of tree-level amplitudes in (??). 
There are no algebraic curves with d = — 1, and when d = 0 the curve is just a point, so 
A, = Xj for all i,j = 1,...,n, this implies 2pi • pj = (i j)[i j] = 0, so the amplitudes must 
vanish. The simplest non-trivial example is a curve with d = 1; MHV tree amplitudes should 
be of this type, as they possess q = 2 and £ — 0. They can be written simply as 

AMnv(\iX) = Jd4x exp (ix^f^XfXfj A(\i), (3.22) 

where the momentum conserving delta function is written as an integral over x-space, and 
the holomorphic function 4̂(A )̂ is the Park-Taylor formula given by (3.4), other constant 
factors are irrelevant here. Fourier transforming the A is quite simple, yielding 

AMnv(Xu m) = J d4x (f\ -0^1 exp (i J2 f^j (ixaa £ Af A: 
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Evidently, the amplitude vanishes unless all n twistors ZA = (A", pi&) lie on the curve in PT 
defined by the equations 

u& + xa&\a = 0, a = 1,2. (3.24) 

For such a simple curve, called a "complete intersection", its degree is denned by d = did?,, 
where di and d2 are the degrees of the defining polynomial equations. In this case, we indeed 
find d = 1 as predicted, since both polynomials on the left hand side of (3.24) are linear. The 
real variables xaa parameterizes the moduli space: degree one, genus zero curves in twistor 
space. 

To make this more intuitive, consider the space R P 3 \ {Ai = 0}. We may describe this 
space by coordinates 

(* i . *» . *3 )= (£ ,^ .g ) , (3-25) 
which is in effect nothing more than R 3 . In this representation, the non-vanishing of the 
amplitude requires all n points to lie on a straight line through R 3 . 

Continuing the study of tree-level amplitudes, the next case to examine is q = 3, or 
next-to-MHV (NMHV), which should lie on curves of degree two. Using the representation 
(3.25) of the last paragraph, these degree two curves may be realized as conic sections. Since 
2 = d = did? = 1 • 2 is the only possible integer factorization, the twistor points must lie on 
the solutions of the linear and quadratic equations 

4 4 

aAZA = 0 and hABZAZB = 0, (3.26) 
A=l A,B=l 

for some real coefficients aA and bAg. Verifying this is, however, more difficult than the 
previous case. The simplest example, n = 5 (an MHV), requires Fourier transforming (3.5) 
which is rather challenging indeed. Witten offers the following alternate method. Instead 
of transforming the amplitudes to twistor space, convert the twistor coordinates back to 
momentum space operators 

ZA = (Xa, pa) - f {Xa, -id/d\&). (3.27) 

The amplitudes are supported on conies if they satisfy certain differential equations, which is 
confirmed for n = 5,6 and to one loop for n = 5. Furthermore, Roiban et. al., using Witten's 
topological string interpretation, demonstrated in [10] that all MHV tree amplitudes lie on 
curves of degree d = n — 3, and in general an amplitude supported on a degree d curve is 
related to its parity conjugate on a curve of degree d' = n — d — 2, as predicted. 

The CSW prescription was motivated by the realization in [9] that in addition to solving 
the differential equations required for conic support, the n = 5 MHV amplitudes also satisfy 
the requirements to lie on two disjoint straight lines. One possible configuration, depicted in 
Figure 3.1, involves three gluons with helicities +, +, — attached to one twistor line while the 
remaining two negative helicity particles are attached to the other. Some type of propagating 
internal field connects the two lines, with opposite helicities at either end (since particles are 
defined as incoming, internal lines must flip sign). The internal helicity values are chosen to 
ensure each line contains exactly q = 2, as required. 



Figure 3.1: ajTwistor graph depicted in R 3 , b) The corresponding MHV diagram. 
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Tree Level Amplitudes from Scalar 
Diagrams 

The observation at the end of the last chapter, that an amplitude supported on a degree two 
curve is also supported on two skew lines, was originally difficult to interpret. Which moduli 
space is integrated over, as in (3.23): curves of degree one or two? Are there contributions 
coming from each integral, or should a unique one be used? Is this situation just a coinci
dence, or does this happen generally? Gukoy, Motl and Neitzke proved that the integrals 
over each space are equivalent [13], and in general, an amplitude supported on a degree d 
curve also has support on n curves of degree di, so long as 2̂ ™=i di = d- Integrating over one 
degree d curve is beneficial in some situations, e.g. proving parity symmetry [10], [11]. While 
the other extreme, d disconnected degree one curves, produces the CSW method. This has 
the advantage of generating a novel diagrammatic expansion for all tree amplitudes in terms 
of MHV amplitudes. 

The CSW formalism says to interpret MHV amplitudes (degree one curves) as interaction 
vertex points. This interpretation seems natural in twistor theory since, according to Penrose 
[49], lines in PT correspond points in Minkowski space and visa-versa. These vertices are 
then connected by scalar propagators to produce an MHV diagram. Finally, summing over 
all possible diagrams consistent with a given cyclic order gives the partial amplitude An. 

There is one subtlety involved in using the CSW rules, since the internal gluons are off-
shell and the MHV amplitudes require each leg to be massless. The CSW prescription is to 
define the spinor associated with a massive momentum Pa& as 

for some arbitrary, but fixed, anti-chiral spinor rj. While the on-shell amplitudes are Lorentz 
invariant, by lifting them off-shell and introducing n this symmetry is broken. This can 
equivalently be viewed as introducing a gauge dependance (where the choice of 77 is a choice 
of lightcone gauge), or a breaking of Lorentz invariance (by choosing some preferred vector 
7777), into the vertex. In [14], CSW demonstrated that contracted vertices are independent of 
rj and therefore gauge (or Lorentz) invariant. 

Writing the sum of the massless momenta (Pi,Pi+i, • • • ,Pj) as 

4.1 Constructing M H V Diagrams 

(4.1) 

\j =Pi+ Pi+i + ...+Pj (4.2) 

the CSW rules are as follows: 
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• Spinors for off-shell particles are defined by Xpa = PaaVa, f° r some fixed reference 
spinor r]a 

• All graphs contain MHV vertices of the form 

(p PnY 
(piji)(a + i)...tjp(j) 

• All vertices are connected by scalar propagators 

+ P - _ j _ 
" P2 

• All possible diagrams which preserve the the colour ordering must be summed over 

• Any undetermined variables must be integrated over 

At tree level, the only potentially undetermined variable is the internal momentum, 
however the momentum-conserving <5-function renders this integration trivial. This last rule 
will, however, be relevant when including lower spin fields and iii loop processes. 

Since each vertex corresponds to an MHV amplitude, which is a degree one curve curve in 
twistor space, the number of vertices required, v, should equal the amplitudes total degree d. 
This new framework provides a natural explanation for (3.21), which was only conjectured 
in [9], and can be rewritten 

v = q - 1 + L (4.3) 

Each vertex, being MHV, has two negative helicity legs. Each internal line connects a 
negative helicity leg to a positive one. As usual, the number of internal lines is v — 1 +1. 
The number of leftover (external) negative helicity lines is then 

q = 2v - (v - 1 + £) = v + 1 - £, (4.4) 

confirming Witten's suggested selection rule. Of course, no derivation of the CSW prescrip
tion is yet known, so this "proof has only traded one conjecture for another. It is, however, 
more appealing to derive selection rules from a theory rather than the other way round. 
Also, this diagrammatic interpretation offers yet another explanation for the vanishing of 
amplitudes with q < 2: they contain no vertices. 

The use of a scalar propagator may seem puzzling at first, since these diagrams are 
supposed to describe vector gauge fields. Recall, however, that S'-matrix elements are always 
contracted with external wavefunctions, which in this case are the polarization vectors ef 
for h = ±1 . Consider the NMHV amplitude. If we factor the polarization vectors out of the 
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vertex amplitudes and include them in the propagator instead, it can be rewritten as the 
massless.Feynmann gauge propagator 

•A-MHV^A'Mnv 
4̂  

MHV 

e + e -
Aw 

— 4M 

— MHV 

q* MHV 

A'v 

,2 A M « V > 
(4.5) 

where we have used the facts that internal lines must connect opposite helicity states and 
summing over polarizations gives —g^. Since scalars are generally simpler to manipulate 
than tensors, the ingredients on the left hand side (the CSW building blocks) will prove 
especially convenient. 

At this point it is quite simple to write down an expression for the general NMHV tree 
level amplitude. Such an all n result was unknown before the advent of the CSW method. 
Using the the cyclic invariance of the partial amplitudes, we may always choose one the of 
the negative helicity gluons to be gT, the other two are in some arbitrary positions s and t. 
Following the rules given above, we can draw all the diagrams in Figure 4.1 and calculate 

i-V 

Figure 4.1: The MHV Diagrams contributing to the Next-to-MHV amplitude 

the general NMHV amplitude: 

n ^ 

where the common denominator is 

a - l t - i 
(i p^(s ty 

i=2 j=s i=2 j=t 
t-1 n 

+ £ £ 
l=S j=t 

D, 

(1 5)4<t Pti) 

+ 
4/+ D . \ 4 

(4.6) 

(4.7) 
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One might worry that the above expression will produce poles by appropriate choices 
of the reference spinor n. Also, the explicit dependance of n seems to destroy Lorentz 
invariance by singling out some preferred direction in momentum space. Kosower showed 
in [19], however, that this expression is indeed independent of n, and derived an equivalent 
form which depends only on the external momenta. The exact expression, which requires 
half a page to write, need not concern us here. Suffice it to say, such an expression exists 
and Lorentz invariance is ultimately preserved. 

4 . 2 A n E x a m p l e : T h e A m p l i t u d e A$(gl ,g2 ,g3 ,g^g^) 

Before calculating an explicit amplitude, let us derive some useful identities. First, write 
momentum conservation in spinor notation, 

Pi + P2 + • • • + pn = 0 =̂> A i A i + A 2 A 2 + . . . + A n A n = 0, (4.8) 

then contract with A " and A " , for some i, j = 1,..., n, to obtain the equivalent statement 
n 

J2(ik)[kj} = 0 V z , j = l , . . . , n . (4.9) 
fe=i 

Another spinor manipulation, which is used ubiquitously throughout this work, is the 
Schouten identity, 

(a b)(c d) + (a c)(d b) + (a d)(b c) = 0. (4.10) 
This statement is probably better known through the equivalent relation Gape15

 = — 5%5p + 
S^Sp, which lies at the heart of the Fierz identities. We now turn to the n = 5 MHV 
amplitude A$(g7, g2 ,83,9$ •> 9t)- ^ ^s calculated by summing over the four appropriate 
diagrams involving a 3-point and a 4-point MHV vertex with one leg from each contracted 
by a scalar propagator, shown in Figure 4.2. 

Using the general formula (4.6) for NMHV amplitudes, we find only the third term 
survives, ass = 2 = £ — 1. This leaves: 

^5(51 >52 

s ^ 5 -

^) = n 7 Z 7 T T ) g ; 
( lP 2 j ) 3 (2 3)4(1 2)(j j + 

J = 3 [ ( 2 P 2 j ) P l ( j P 2 j ) ( j + lP2j) 

+ (1 2) 4(3P 3 J) 3(2 3)(j j + 
(2P3j)PiJ(jP3j)(j + lP3j)\-

Note that, of the six terms in the sum above, two terms will vanish (when j = 5, (1 P25) = 
— (1 Pn) = 0, and for j = 3, (3 P33) = 0). This leaves the expected four terms, whose sum 
gives: 

A > ( 5 i ,92 ,93 ) = 

(1 P23)3 1 (2 3)3 

(4 5) (5 1)(P2 3 4) (2 3) [3 2] (P 2 3 2) (3 P 2 3 ) 
(1 2)3 1 (3 P 3 5 ) 3 

(2P 1 2 )(P 1 2 1)(1 2)[2 1] (3 4)(4 5)(5 P 3 5 ) 

(4.12) 
(1 P 2 4 ) 3 1 (2 3)3 

(5 1)(P2 4 5) (5 1)[1 5] (3 4) (4 P 2 4 ) (P 2 4 2) 
(1 2)3 1 ( P 3 4 3)3 

(5 1)(2 P 3 4 ) (P 3 4 5) (3 4) [4 3] (3 4) (4 P 3 4 ) 



Chapter 4. Tree Level Amplitudes from Scalar Diagrams 32 

2 - X 5 + 

Figure 4.2: The four MHV diagrams contributing to the amplitude A5(g7, g^, g3 ,g%,g£) 

Using the facts that P y = — P , + l i _ i , (a P y -) = J2l=i(a a n d recalling that spinor 
products are anti-symmetric, the complexity of this expression is easily reduced. Also, the 
clever choice of the arbitrary reference anti-chiral spinor n = A 4 further simplifies the sum, 
in fact the last term is canceled altogether. This leaves 

M{9i ,92 >53 ) = 
(3 5) 2[4 5] 3 

+ 
(1 5)[4 5] 3(2 3) 2 

(3 4) (4 5) [4 1] [12] [3 4] [4 2] (3 4) [3 4] [5 1][4 1](4 P23] 
(1 5) 2[4 5] 3 

+ 

[4 5]" 
(4 5) [3 4] [2 3] [4 2] (4 P 2 3 ) 

(3 5) 2[2 3][5 1] (2 3) 2[12][2 3] <1 5>[1 2][51] 

1 2] [2 3] [3 4] [5 1] I (3 4) (4 5) [4 1][4 2] (3 4) (4 P 2 3 ) [4 1] (4 5) [4 2] (4 P 2 3 ) 
(4.13) 

As we know, this amplitude corresponds to an MHV, so the terms in parenthesis should 
equal unity. Repeated applications of 4.9) and (4.10), and roughly a page of algebra, show 
that this is indeed the case. Thus, the CSW rules give 

[4 5f 
[1 2] [2 3] [3 4] [5 1] 

(4.14) 

as expected. 
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4.3 Some Consistency Checks: Mostly Minus 
Amplitudes 

As remarked above, the required number of MHV vertices, 

v = q-l + £, ' (4.15) 

forces amplitudes with q < 2 to vanish. We can examine the conjugates to these cases, that 
is q > n — 2, using MHV diagrams and find they too vanish, as they should. 

The amplitudes where q = n will vanish at tree level. It is impossible to construct an 
MHV diagram where all external legs carry negative helicity, since MHV vertices contain at 
least one positive helicity leg and internal lines flip helicity between vertices. Choosing this 
external configuration will force an internal vertex to consist of all negative helicities, which 
is not allowed. 

Though valid diagrams exist when q = n — 1, it is easy to demonstrate that their ampli
tudes also vanish. Begin by noting that the only available graphs must only contain trivalent 
vertices. Higher point vertices must necessarily contain a greater number of positive helicity 
legs, as the number of negatives is fixed at two. Since internal helicities flip signs between 
sites, additional positive helicities will always propagate to the boundary of the graph. Hav
ing established that all graphs with q — n — 1 contain trivalent vertices only, we recognize 
that there are two possible cases: 

i) the positive helicity gluon g+ shares a vertex with a single internal line 

ii) the positive helicity gluon g+ shares a vertex with two internal lines. 

In case ii), the diagram is naturally split by p + into two groups {p + l,p + 2,.. 
{k + 1, k + 2, . . . ,p — 1}, for some gluon g^. 

, k} and 

ii) 

p-

p - r 

Figure 4.3: MHV diagrams for q — n — 1 

In each case the vertices containing g+ contribute the following factors: 

( p ± l P p p + 1 ) 3 (p± 1 pf[n pf (p r±l)[n p}3 

0 

ii) 

(PP±l){p Ppp±1) {pp±l}{pp±l)[r,p±l} [VP±1] 

(Pp+ik PPkf _ ((pPP+ik)[y P\ + (PP+ik PP+ik))3 

(4.16) 

(P PP+ik){p PPk) (p PP+ik){{p P)[V p] + {p Pp+ik)) 
= (p Pp+lk)[v P]6 (4.17) 
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Irrespective of the remaining terms in the diagrams, we can always choose rj = Xp and 
these vertices will vanish. This confirms the expected result that q > n — 2 amplitudes do 
indeed vanish in the CSW formalism. 

The case of q = n — 2 correspond to MHV amplitudes, and we have already seen an 
example of how the CSW method produces the correct result for n = 5 in the previous 
section. In fact, Zhu showed that this result holds for general n [16]. Following the arguments 
given above, we conclude that an MHV amplitude will contain a single four-point vertex and 
the rest must be trivalent. Also, by choosing the reference spinor n to correspond to one 
of the two positive helicity gluons, say g+, non-vanishing contributions will come only from 
diagrams where g+ lies on the four-point vertex. Thus, amplitudes where the only positive 
helicity gluons are g^ and g*, are determined by the sum of the diagrams shown in Figure 
4.4. 

Figure 4.4: The googly amplitude is the sum of the above diagrams 

Next, Zhu showed by induction that the "blobs" in the diagrams, which represent the 
sums of only three-point vertices, are given by the formulas 

P2 1 
V(9i ,9i+i> • • •,9j ,5pw) = [• if" i r- • , n T — r ~ T ( 4 - 1 8 ) 

[ir,}[] rj\[i i+ !)...[]-I j] 
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" < * - * + " M M M + il-Vur (4'19) 

This result will not be proven here, though the reader may readily verify that the case of 
a single off-shell three-point vertex is reproduced by the above formulae. Also, notice that 
these sums vanish when the off-shell gluon, gp~ , is taken on shell, confirming the above result 
regarding q = n — 1. 

Completing the proof for the MHVs requires summing all possible diagrams in Figure 4.4, 
using the effective "blob" vertices where appropriate. First, note that the 1 / P y propagators 
which connect to the four-point vertex will cancel those terms in the "blob" vertices. Also, 
while choosing rj = Xp simplifies the calculation, it also leads to the correct numerator for 
the MHV: [q p]4. Finally, many of the anti-chiral spinor products, [X,p\, which appear in 
MHVs are already present in the "blobs". This results in the sum 

An{g;,9t) = U n
 {\ft 1} ( £ C t ( P + 1 Ppk)1 + £ Ct(v + 1 PP+2k)4+ (4.20) 

11^=1L J \ k - q k=p+2 

P - 3 q-1 \ 

+ ^ C f c - ( p - l P p _ l f c ) 4 + J2 Ck-(p-lPp+lk)4\ 

k=g k=pA-l / 

where 

c + = \pp+l}\p+lp + 2}[kk + l} 
k \Pp + 2]{kp}\pk + l}(pp+l)(p + l Pp+2k)(Pp+2kPpk)(PpkP) l ' ) 

c - = \pp-l]\p-lp-2}[kk + l} 
k \pp-2}[kp}\pk + l}(pp-l)(p-l Pp+lk)(Pp+lk Pp_lk)(Pp_lkp)- [ - ' 

The fact that the bracketed terms in (4.20) sums to unity is a highly non-trivial check of the 
CSW rules' validity, which was carried out in [16] by taking p^ = (p, 0, 0,p), so that we can 
scale r) = Xp = (1, 0). 

Thus far, we have used the CSW method to derive formulas for n gluon scattering ampli
tudes with with up to 3 negative helicity particles. Using the conjugate set of rules (that is 
using MHV vertices), one can equally determine all amplitudes with up to 3 positive helicity 
gluons. With these results alone, one now knows all tree level gluon scattering amplitudes 
with up to 7 external states. To obtain all amplitudes with n < 7 using traditional tech
niques would require summing a total of tens of thousands of Feynman diagrams. This new 
technique dramatically simplifies the process requiring only a few dozen diagrams to pro
duce all n < 7 amplitudes! In fact, the result (4.6) for general NMHV amplitudes, being 
an infinite series of solutions, would indeed require summing an infinite number of Feynman 
diagrams, which are summarized above by just three (albeit infinite sets of) MHV diagrams. 
This method's remarkable simplicity cannot be emphasized enough. 
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C h a p t e r 5 

A m p l i t u d e s w i t h F e r m i o n s a n d 

S c a l a r s 

We have so far considered tree level amplitudes for purely gluonic interactions. However, 
the CSW rules are easily modified to include particles of spin < 1. In fact, we will see later 
that including fermions and scalars is necessary at the 1-loop level, even in pure Yang-Mills 
theories (i.e. theories of gauge bosons only). 

At tree level, pure Yang-Mills theory is effectively supersymmetric. This is because a gluon 
may only couple to a pair of fermions or scalars. So, if all external fields are gluons and 
a pair of matter fields are produced in a scattering process, then the pair must necessarily 
form a closed loop. Thus at tree level, gluons do not "know" if they live in a supersymmetric 
theory or not. Because of this, we may treat the gauge particles as members of a theory with 
maximal SUSY which is A/=4 SYM, so long as we restrict ourselves to the classical level. 

This hidden symmetry of gluons may be responsible for the extreme simplicity of the 
MHV amplitudes. One would not expect such a simple expression unless the theory possed 
an incredible amount of symmetry. We might ask whether the MHV amplitudes may be 
generalized to include all the fields of the JV"=4 multiplet. Indeed, such a generalization 
exists and was first written down by Nair in [3]. Before giving the A/"=4 MHV amplitude, 
we must introduce some additional notation. 

As described in Section 2.5, A/=4 SYM contains fields of helicities -1 to +1. To package 
this additional information in scattering amplitudes, we introduce scalar Grassman (anti-
commuting) variables rjA, A = 1,..., 4, which transform in the 4 of SU(4.)R. Similar to the 
manner in which QaA raises helicity by | , r\A lowers the helicity by \ . This is not a perfect 
analogy as QA is an operator, and rjA is only a variable, but it is a useful mnemonic. We 
measure a particle's helicity with the operator 

so a term in an amplitude with the factor (r])k will correspond to a particle of helicity 
h = 1 — | . This implies the following associations: 

5.1 M H V Amplitudes in j\f=4 S Y M 

(5.1) 

(5.2) 
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Nair's generalization of the Park-Taylor MHV formula is given by the partial amplitude 

An(xa, v f ) = ^ n • ( 5 - 3 ) 

Recall that Grassman (̂ -functions are given by 6(6) = 6. Because of the anticommuting 
variables, the 5-function can be Taylor expanded into a finite sum 

A=l \ i ) A=l 

n (x> 
A=l \ ij / 

E E E E < * J><* ̂ ><M N><R
 *)faH4faU4 

ij kl mn rs 

By (5.2), the term proportional to {r)rr]s)4 should correspond to the scattering of two 
gluons of negative helicity and n — 2 of positive helicity. Indeed, in this case we recover the 
expected numerator (r s)4. Thus, we find the following A/"=4 SYM amplitudes, 

An(g~,g~) , An(g~,i/jA,tl)A) , An(ipA,ipB,ipA,ipB) , 

An{g-^\^^\^4) , An®A^A^\f^\^4) , 

A^1,^2,^,^4,^^2,^^4) , An{4>AB^A^B,f,^2^^4) , 

An(g-,cj)AB^AB) , A„( 5-,<^B,^A,V;B) , A ^ V i j , ^ 5 ) , _ (5.5) 

An{^_AAAB^BC^C) , M^AABC,V_^^C) . KQAB^ACD^00) , 

M^AB^^CD^,^) , A n ^ A B A C D ^ A ^ B ^ C ^ D ) , 

are all coefficients in the expansion of (5.3) and given by the formula 

_ A _ { i j ) { k t)(m n)(r s) 

n ~ ' ( 5 - 6 ) 

where the values of z, j , fc, £, m, n, r, s are determined by matching the appropriate factors of 
rjA in (5.2) to r]jn1rj2rj2r)^nr]^r]4r]4. The overall sign may arise from anticommuting the rjA into 
the correct order. We could also determine the MHV amplitudes by switching ( ,)«-»•[ ,] . 
Since all the fields transform in the adjoint, the colour factor which multiplies the partial 
amplitude is the same as in pure Yang-Mills Tn(ai) — Tr(TaiTa2... TUn). 

Notice that not all the amplitudes above are what we would normally call MHV, that 
is, with two particles of different helicity then the rest (by an "opposite helicity scalar" we 
mean its complex conjugate). In particular the second and third lines are not of this type. 
The common feature is that they all possess 8 rjA in the expansion of (5.3). Nevertheless, 
for simplicity we shall continue to refer to any amplitude in (5,5) as MHV. 

As in Sections 3.2 and 3.3, we could perform an. analysis of the N~=4 MHV amplitudes 
similar to the one carried out in the non-supersymmetric case. We will summarize the results 
of this analysis found in [9]. As N~=4 SYM is a superconformal theory, we would find that 
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the amplitudes are indeed annihilated by the superconformal algebra's generators. In bi-
spinor notation, these generators are also a mix of multiplication operators, and differential 
operators of degree one and two. The Fourier transform 

^ - 7 ^ 7 • - ^ - X A (5.8) 

takes us to super-twistor space CP 3 ' 4 parameterized by (XA, pa, XA) subject to the equivalence 

(AQ, P&, XA) ~ z(XA, p^ XA) , V z e C . (5.9) 

In super-twistor space the A/=4 MHV amplitudes are localized on CP 1 "curves" which 
simultaneously satisfy the six equations 

pa + XAA^ = 0 , XA + dAa\a = 0. (5.10) 

These CP curves are parameterized by A a ~ z\a and have the modulus the bosonic 
case, however now the additional fermionic modulus 9Aa appears. 

5.2 M H V Amplitudes with M < 4 
We might inquire whether some version of the above results carry over to theories with less 
SUSY. After all the Af—4 theory is just a particular type of M—2 theory, which in turn is a 
particular type of M=l theory. The main difference between the various SYM theories is in 
the fermion and scalar content. As pointed out in [15], if we restrict the external states to lie 
in appropriate multiplets, then the above amplitudes are valid in theories with less SUSY. 
For A/=2 SYM, we require that ^4,5,.. . = 1,2. This completely eliminates the amplitudes 
on the second and third lines which involve all four fermion fields. By further restricting A 
to take only a single value, we limit ourselves to M=l SYM. In addition to the excluded 
amplitudes for the A/=2 theory, this restriction forbids any of the amplitudes with external 
scalars (as 4>AB = —(j>BA), which is encouraging because the A/=l version of SYM contains 
no such fields. 

It is possible to use these MHV amplitudes for SYM with M < 4 coupled to (mass
less) matter fields. To do this we allow the indices A to run over additional values which 
corresponds to the matter multiplets. Though we may consider theories with an arbitrary 
number of matter fields, these amplitudes will only apply to processes where a limited num
ber of those multiplets interact. Specifically, the Yang-Mills multiplet may interact with 1 
hypermultiplet for M=2 and up to 3 xsfs in N~=l. Any more matter would exceed the field 
content of the A/r=4 theory and spoil the agreement. The kinematic partial amplitudes An 

will be the same, however the colour factors T„(a;) must be altered in an appropriate manner 
depending on the representation of the matter fields [46]. 

A particularly simple example of this actually has applications in the real (non-
supersymmetric) world. Consider A/=l SYM coupled to rif xsfs in the fundamental repre
sentation. We restrict A to a single value so only the first line of amplitudes in (5.5), with 
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m = 0,1, 2 fermion pairs and £ = n — 2m gluons, will survive. The external fermions may 
either be of the adjoint (gluino) type or the fundamental (quark) type. At tree-level, the 
only internal states which can appear are the same as the ones we started with, g±,ipA,'tpA 

for fixed A. Thus, by fixing the external fermions to be quarks (of the same flavour) the 
remaining fields (gluinos and squarks) decouple from these amplitudes. We are left with an 
effective non-supersymmetric theory of gluons and quarks - that is to say QCD with SU (N) 
gauge group and rif massless quarks. Thus we have deduced the non-supersymmetric MHV 
amplitudes 

Ae(g~,9~) , Ae+2(g~,qf,qf) , AM{qj,qs,qf,q) , (5.11) 

from M=4 SYM. As we mentioned in the last paragraph, we must adjust the colour factor 
in front of the amplitude to account for the presence of fundamental matter. For £ gluons 
and m > 0 quark/antiquark pairs, the exact tree level colour factor is [15, 46], 

( - l ) p 

Te+2m = jyp (Tai . . . Taei)jlQl(Ta£i+1 . . . T 0 < 2 ) j 2 Q 2 . . . (T a^m_ i + 1 . . . T a e ) i m a m . (5.12) 

The £i... £m are an arbitrary permutation of the £ gluon indices; i\.. .im and a\...am 

are the quark and antiquark colour indices, respectively. When quark ik is connected by a 
fermion line to the antiquark ak, we set ik — ak. Finally, the power p is the number of times 
ik — elk minus one, thus p G {0, . . . , m — 1}. This introduces the correct multi-trace colour 
factors with 1/NP suppression, as required for fundamental matter. Amazingly, the partial 
amplitudes At+2m are identical to the A/=4 theory, and given by (5.6). 

5 . 3 Generalized M H V Diagrams 
The generalization of the CSW rules is straightforward, and following the discussion of the 
preceding two sections probably quite obvious. This extension was first employed at tree 
level in [15] and later in [17, 20, 21] We simply replace the gluonic MHV vertex with the 
N=A MHV supervertex: 

Each vertex has 8 powers of rjA associated to it, which are distributed amongst anywhere 
from two to eight external legs. We continue to connect vertices by scalar propagators, 
though the propagating field may have helicity 0, ± | , ± 1 . Since propagators flip helicities 
between vertices, internal lines have (g+,g~), (•0'4,^j4) or {4>AB, 4>AB) endpoints. A quick 
count reveals that each propagator uses up 4 of the r]A associated with the whole diagram. 
Once again, we must sum over all possible diagrams which agree with the colour ordering. 
For theories with less SUSY, we must constrain the vertices as in the previous section. 

By now, we are used to using scalar propagators to connect gluonic MHV diagrams, so 
perhaps we are not so surprised that the same scalar propagator works for fermions as well. 
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As in the bosonic case, recall that the MHV amplitudes have all the external wavefunctions 
incorporated into them already, including those which we take off shell to connect to other 
vertices. Thus, by extracting the propagators' wavefunctions from the vertices and including 
them with the l/P2 terms we reproduce the fermionic propagators. For this to work, it is 
once again essential that propagators flip helicities between vertices. For example, consider 
the NMHV amplitude with an internal fermion line (such an amplitude will necessarily have 
an identical fermion and its CPT conjugate on different MHV vertices), then 

AMHV-p2~A'MHV AMHV 
^Pa^Pa J^CL 

P2 MHV 

= A' MHV 

Al 

( a )aaPa j^ia 

P2 
f a a Ala 

MHV p2 MHV 

MHV (5.13) 

Using these modified CSW rules, we can easily construct the general NMHV amplitude in 
M = A SYM, first presented in [20]. Of course, not all the amplitudes will be NMHV (just as 
not all the amplitudes in Nair's formula were MHV), however we use this name nonetheless. 

3 j + 1 

+ p 

/ \ 

Figure 5.1: General diagram contributing to NHMV amplitude 

The general diagram in depicted in Figure 5.1. It has two vertices connected by a single 
propagator. We leave the specific helicities of the external particles arbitrary, only requiring 
that the total amplitude have 12 powers of nA associated to it. This is simply because there 
are two vertices with 8 rjA each, with the internal line using up 4 of them, as explained above. 
Also, we orient the diagram so that the positive helicity end of the propagator is attached 
to the left vertex. The division of the 4 rjA between left and right endpoints of an internal 
line is arbitrary unless the external helicities are specified, so we must integrate over these 
variables. 

As before, we define the off-shell spinor Xpa = PaaV a f° r some arbitrary fixed spinor na 

(not to be confused with the Grassman variable nA). The momentum transfer vector is still 
Pij = Pi + . . . + Pj = — P ( J _ I ) ( J _ I ) , which we will sometimes abbreviate to just P . With all 
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this in mind, we can write down the general NMHV amplitude in Af=4 SYM: 

i-l 

A-=jsJm - /' / **** ("AW+£A° <)st" (AM+ 

(5.14) 
where the denominator Dij is the same as in (4.7): 

A j = (H + D(Jj + l) • ( 5 > 1 5 ) 

The sum over i,j must be arranged to ensure that 8 nA are associated to each vertex and 
the diagram's orientation, discussed above, is preserved. Notice that we take one of the Ap 
to be negative, this is a reflection of the momentum flow of P^. 

We make use of the fact that f 6(f2)d(fi) = J 5(fi + / 2 ) £ ( / i ) to simplify the r\A integra
tion, 

\ k2=i J \ fci=i+l / 

= ^(8) ( E « ) 6(8) ( « + E A J ? < ) (5.16) 
\*;=i / V fci=j+i / 

- ^ f E A ^ n ^ ^ - f - g . 
\fc=l / ,4=1 \ fci=j+l / 

Now the rjA integration is trivial, and in doing it the Ap get paired with the A^. The final 
result is [20] 

A"=nfT(HTi)i,8) ( £ « ) £ h n (S <p« • <517» 
1 1 £ = n ' \fc=l / ij l J A=l \m=j+l J 

As expected, these amplitudes have 12 powers of nA associated with them. We also might 
have expected they would be proportional to A P , as the internal line uses up 4 of the original 
16 nA, and indeed it is. Taylor expanding (5.17) in nA yields all the JV=4 SYM amplitudes 
involving 12 factors of r]A as determined by the map between nA and helicity states (5.2). 
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C h a p t e r 6 

O n e - L o o p M H V A m p l i t u d e s 

6.1 Loop Amplitudes in Supersymmetric Gauge 
Theories 

As discussed in Section 2.5, extended SUSY multiplets can always be decomposed into M=l 
components. In calculating loop amplitudes we can perform a similar decomposition. By 
knowing the contributions arising from A/=l vector and (adjoint) chiral superfields propa
gating around the loop, we can combine these results into the one-loop contribution of any 
SUSY multiplet. Rather then calculating the A /=l Vsf contribution directly, we utilize the 
following linear combination 

AM=i v = AM=A _ 3Ax=i x . (6 !) 

The advantage of this is that the A/=4 theory possesses greater amounts of symmetry and so 
proves simpler to compute. So, when calculating one-loop amplitudes in any supersymmetric 
gauge theory, we can use the contributions from the A/=4 multiplet and A/=l %sf as a basis 
for all amplitudes. 

Unitarity plays an essential role in determining supersymmetric loop amplitudes. Recall 
that the amplitudes which are completely fixed by their unitarity cuts were dubbed cut-
constructible by Bern, Dixon, Dunbar and Kosower (BBDK) in the mid-nineties [5]. The 
essential feature of cut-constructible amplitudes in that they are can be written as a linear 
combination of a set of well-know basis functions. These functions are the solutions to scalar 
loop integrals with up to four external legs. By comparing the cuts of the basis functions 
to the cuts in the amplitude, they were able to determine the correct coefficients in basis 
expansion. 

So for cut-constructible theories, one really only needs the information of tree-level am
plitudes to determine one-loop results. By applying the power of unitarity, BDDK found 
general expressions for MHV amplitudes in A/=4 SYM [7] and later in A /= l SYM [5] for 
an arbitrary numbers of external legs. We will present these amplitudes in the next two 
sections. 

To obtain a pure Yang-Mills amplitude, the decomposition (6.1) needs an additional 
contribution arising from an internal scalar field in the loop 

AYM = AX=4 _ 4AM=1 x + A ^ (g 2 ) 

A lone fermion could also be found with knowledge of the scalar contribution, subtracting it 
from the chiral multiplet. The scalar is always the most difficult of the three basis amplitudes 
to compute, however it is far simpler then solving for the gluon or fermion circulating in 
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the loop directly. In particular, the scalar loop (being non-supersymmetric) is not cut-
constructible [5]. This is the main obstruction to performing loop calculations in pure Yang-
Mills theory. 

At the one-loop level, an additional complication arises concerning the colour decompo
sition. We no longer have 

An(ai,pi,hi) = ig^-\2n)46W (^pA Tn(aa[i))An{pa{i), K{i)) (6.3) 
\i=l J aeS„/Zn 

as in (3.1). Instead, assuming an SU(N) gauge group with all particles transforming in the 
adjoint, the colour decomposition is [7] 

/ n \ L«/2J+i 

An(ai,Pi,hi) = ign

Y-M\^{A) J > E E E Gr„»4£(<x) , (6.4) 
\*=1 / J C=l S n / S „ ; C 

where \_x\ is the largest integer less than or equal to x and nj is the number particles of spin 
J. The leading colour-structure factor 

Gr(l) = J V T r ( T 0 l . . . r 0 J (6.5) 

is just N times the tree-level colour factor, and the sub-leading colour structures are given 
by 

Gr n ; c ( l ) = Tr(T Q 1 . . . T ^ j T r f T ^ . . . T a J . (6.6) 
Sn is still the set of all permutations of n objects, while Sn-C is the subset leaving G r n ; c 

invariant. The leading contributions to scattering amplitudes, for large N, comes from A„\, 
while the sub-leading corrections, down by a factor of l/N, are given by A[n}c for c > 1. 
Fortunately, we need not calculate all of the sub-leading terms as they can be determined 
algebraically from the leading contribution [7]. It is therefore sufficient to consider only the 
leading term -AJ^, which we will do in what follows. 

In any supersymmetric gauge theory, amplitudes in which all or all but one external 
gluons have the same helicity vanish [47], 

Alrl°°?(g±,g+,...,g+) = 0 (6.7) 

exactly as in the tree-level case. This is due to a supersymmetric Ward identity, however 
we may also see this by appealing to cut-constructibility, which we will now explain. To 
calculate a unitarity cut we use the Cutkosky cutting rules [48]. For a one-loop amplitude, we 
replace two of the internal propagators with (̂ -functions. This separates the loop amplitude 
into a product of two tree-level amplitudes and two ^-functions, which we then integrate 
using an appropriate Lorentz-invariant phase-space measure. This calculates the cut in 
one channel, we repeat this process for all possible channels and sum all the cuts. Any 
state which crosses the cut must have different helicities in the two tree amplitudes, as 
we always consider amplitudes to have all particles incoming. In one-loop amplitudes of 
the form An(g±,g+,... ,g+) (or their parity conjugates), we can easily see that there is no 
possible assignment of internal helicities states which prevents a tree amplitude of the form 
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Atnee(g±,g+, • • •, g+) from forming on one side of the cut. We know these amplitudes vanish 
at tree level, from Section 3.1, so we conclude that the unitarity cuts vanish in all channels 
for this external helicity configuration. As this theory is cut-constructible this implies the 
amplitude is identically zero at one loop. 

The first non-vanishing amplitudes at one loop in supersymmetric gauge theories involve 
two particles with opposite helicities from the rest - that is, the MHV amplitudes. 

6.2 M H V Loops in jV=4 S Y M 

In the case of Af=4 SYM, the MHV amplitude is particularly simple and given by [7] 

<=4 = crAtrVn (6.8) 

where A^ee is the regular tree level MHV amplitude, either the pure gluon Parke-Taylor 
formula (3.4) or Nair's generalized version (5.3), and Vn is a universal one-loop function 
which only depends on the number of external legs, in particular Vn is independent of the 
helicity ordering. The prefactor is 

(^ rd + Q H i - Q 
r 16** T( l -2e ) ' { j 

where e = (4 — D)/2 the dimensional regularization parameter. 
Vn is most naturally written as a sum over pairs of external states in the set of n. We take 

these distinguished particles to be in the positions r,s and write their momenta as kr,ka. 
The remaining n —2 external momenta then naturally combine into two sets (fc s +i, • . . , fcr-i) 

and ( A ; r + i , . . . , fcs_i). We write the sums of these sets as 

P — ks+i + ks+2 + ... + fcr-i , Q = K+i + kr+2 + . •. + ks-i . (6.10) 

With this notation, momentum conservation reads kr + Q + ks + P = 0 and the universal 
function is written 

n r+Ln/2J , . 

Vn = Yl E U-26r+^s)F(kr,Q,ks,P) (6.11) 

where F(kr,Q,ks, P) is the so-called (two-mass easy) box function, which we explain mo
mentarily. First, we find it convenient to define the momentum invariants 

s = {P + kr)2 , t = (P + ks)2, (6.12) 

for reasons which will some become clear1. With these definitions in place, we can write the 
box function compactly as 

1We apologize to the reader if the proliferation of variables labeled s is confusing, however it will be 
quite clear from the context whether we mean the position s G (1,... ,n) or the Lorentz invariant quantity 
8= {kr + Pf. 
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F(kr,Q,ks,P) 

+ L i 2 ( l - ^ ) + L i 2 ( l - ^ ) + L i 2 ( l - ^ ) + L l 2 ( l - ^ 

P2Q2 

st L i 2 1 - H * " ( i ) - (6.13) 

Although the A/"=4 theory is conformal, implying that the Yang-Mills coupling constant 
does not diverge on any scale, IR divergences will occur in the soft or collinear limit. While 
these infinities may always be avoided at tree-level through the appropriate choice of external 
momenta, they will inevitably arise in loop amplitudes. As we see here, this IR behaviour is 
contained in the 1/e2 terms. 

The peculiar name "two-mass easy" box function is derived from the fact that it is 
proportional to the "two-mass easy" scalar box integral, 

F(kr,Q,ks,P) = ^ S t f 2 Q 2 / 4

2 -

where 
pme_ / u c 

4 : r ; s J (2TT)D 

which we depict in Figure 6.1. 

+ kry(£ + kr + Q)2(£- P)2 

(6.14) 

(6.15) 

r+1 -

-s+1 

Figure 6.1: The loop diagram for the scalar box integral 

As we can see, the above 4-point scalar loop integral contains two massive legs P, Q, hence 
the name "two-mass", the "easy" part refers to the fact that the massive legs separated by 
a null leg. There is also a "two-mass hard" scalar box integral where the massive legs are 
adjacent, however, it does not appear until computations of NMHV one-loop amplitudes and 
is not needed for the simpler MHV case. 
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6 . 3 M H V Loops in M < 4 S Y M 
As explained in Section 6.1, any supersymmetric gauge theory amplitude can be decomposed 
into a linear combination of contributions from an A/=4 multiplet and AA=1 chiral superfields 
(xsf). The A/=l xsf contribution to one-loop MHV amplitudes was discovered in [5]. As in 
the A/=4 case, the tree-level MHV amplitude factors out, however the remaining factor Vn 

is no longer universal as it depends explicitly on the locations of the negative helicity states. 
We label the negative helicity particles as p, q. Using the same notation as in the previous 
section, the A/=l xsf contribution is 

<=lx = %AV*V™ (.6.16) 

where the ordering dependant factor is 

q—1 p—1 q—1 p—1 

V n q = E E KqsB(kr,Q,ks,P)+ }2 J2(frqsT(kr,P,Q) + 
r=p+l s=q+l r=p+l s=q 

+ E E <%T(katQ,P) + AIR. (6.17) 
r=p s=q-{-l 

Notice the ranges of summation over r, s in (6.17) is always such that kp belongs to 
the set of momenta in P = fcs+1 + . . . + Av_i, and likewise kq is one of the momenta in 
Q = k r + i + . . . + k s - i . In particular the massless momenta k r , k s always have positive 
helicity. The first term in V£q is related the scalar box function F, then there are two 
terms coming from (two-mass) triangles functions and finally the last part AIR comes from 
exceptional, boundary terms. We explain each these terms below. 

First, the functions B(kr, Q, ka, P) are the finite parts of the box functions (6.13), which 
appeared in the A/=4 amplitude. More explicitly, 

B(kr,Q,ks,P) = F(kr,Q,ks,P) + ^ [ ( - S ) - e + ( - t ) - * - ( - P 2 ) - < - ( - Q 2 ) - * } 

- L i . ( l - + L i 2 ( l - + L i 2 ( l - + L i 2 ( l - £ 

- ^ ( I - ^ H K * A ( ? ) ( 6 - I S ) 

The triangle functions T depend on only one massless momentum kTtS, and two massive 
ones: P,Q = Q + ks or Q,P = P + kr, each of which contains a single negative helicity gluon 
p or q. The two triangle functions are identical in form, in general 

We use the name triangle functions as they are proportional to a scalar 3-point integral 

T(kr,P,Q) = ^ ( - ^ Y ) l 2 ^ s (6.20) 
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where 
/ 2 m = i f d i

 _1 /g 
3 : r ; s J {2ir)D p(£_Qy(£ + kry ' 

We point out that the scalar integral I$™ has a 1/e divergence [5], implying that the function 
T remains finite as e —> 0. The set of diagrams contributing to triangle functions T(kr, P, Q) 
is drawn in Figure 6.2, the others follow the same pattern. Though it was not explicit in the 

Figure 6.2: Diagrams contributing to triangle functions 

given ranges of summation for the triangles, we require \r — s\ > 1 and \r — s — 1| > 1. This 
constraint ensures each of the triangles have two massive legs. 

The representation (6.20) of the function T is not unique. When we calculate this ampli
tude using the CSW rules we will need to know the follow equivalent forms of representing 
this function [5]: 

crT{kr,P,Q) = 
l - 2 e 

^3™s — li™s[X2\ 
1 

s-Q< (I: (6.22) 

The integral if"^! 3^] is the same as the triangle integral (6.21) except the Feynman parameter 
X2 appears in the numerator. We will explain this representation more explicitly when it 
arises in the calculations of Section 8. We have also introduced the scalar 2-point integral 

I: 2:r:s 
i 

- Qf 
(6.23) 

whose diagrams have momenta ks + P + kr on one side of the loop and Q on the other. 
The last term in (6.17), Am, is the only source of infrared divergences in these amplitudes. 

IR divergences arise from the degeneration of triangle diagrams for which one of the massive 
momenta become massless. That is, when it contains only a single external momentum, 
which is then necessarily a negative helicity gluon. There are four such degenerations, for 
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which p = P,Porq = Q,Q. These cases are drawn in Figure 6.3, they give rise to the 
following 4 terms: 

A _ vq ( ( f c p + i + fcp-i) ) 2 \ - l - e 

P - i+ 

Figure 6.3: Two of the degenerate triangle diagrams 

Finally, the coefficients appearing in (6.17) are as follows. For the box functions 

L M = 2 ( P r){p s)(q r)(q s) 
(rs)2(pq)2 

whereas for the triangles (and the boundary terms) one has 

{pr){rq} (s,s + l) 
^ = (pq? < J r ) < 8 > r + l ) ( < g r ) < p | P | r ] + < p r ) ( g | P | ^ ' 

where we have introduced the spinor product 

(6.25) 

(6.26) 

(\\Plj\t] = Y/(\ Xk)[Xkp\ (6.27) 
k=i 

Notice that in the coefficients cp

r

q

s the null leg is kr. In c™ the null leg is ks and we must 
change P = ks+i + . . . + fcr_i to Q = kr+1 + ... + 
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C h a p t e r 7 

O n e - L o o p M H V D i a g r a m s 

In applying the CSW formalism to one-loop amplitudes, we begin by noticing that the 
number of MHV vertices must equal the number of negative helicity particles, as 

v = q-l+£ = q . (7.1) 

We immediately conclude that the first non-trivial one-loop amplitudes are MHV with two 
external negative helicity states. This agrees with the statement made in Section 6.1 that 
All~loop(g±,g+, • • • ,9+) = 0. Unfortunately, these amplitudes are non-vanishing in pure 
Yang-Mills theory, so the CSW rules must be modified somehow for non-supersymmetric 
theories at the loop level. What modifications must be made is still an open question, 
although some speculations are presented in [23]. 

The first application of the CSW rules to loop amplitudes was conducted in [25] by 
Brandhuber, Spence and Travaglini (BST). They calculated the simplest set of one-loop 
amplitudes, which are the A/"=4 MHV ones, and found perfect agreement with the BDDK 
calculation. Later, this author together with Rozali performed an analogous calculation 
[26] involving the M—l chiral multiplet and also found perfect agreement with BDDK. 
Our result was simultaneously confirmed by BST and Bedford [27]. When applied to the 
scalar loop contribution, however, the MHV diagrams did not reproduce the full amplitude 
[28]. In particular, the scalar amplitude contains terms which are not cut-constructible 
and these terms are invisible to the MHV diagrams. This might have been anticipated, 
as we have already noticed that the CSW rules require modification at the loop level in 
non-supersymmetric theories. 

Although the origins of the BBDK and BST approaches are far removed from each other 
(unitarity cuts vs. CSW rules), after a point the two calculations follow almost identical 
paths. The reason is the following. In performing the unitarity cuts, BDDK found that the 
two tree-level amplitudes to be integrated over Lorentz invariant phase space (LIPS) were 
necessarily both MHV [7]. In the BST calculation, as we shall soon see, the LIPS measure 
naturally arises in the loop integral. With some rearrangement of terms, the sum over MHV 
diagrams becomes equivalent to the sum over the cuts in all possible channels. It is quite 
surprising that such disparate methods would produce such parallel computations. It may 
simply be a coincidence, however this author believes it is a hint of some deeper hidden 
structure in field theory. 

7.1 The BST Measure 
The crucial step in the BST calculation was rewriting the measure d4L in terms of spinor 
variables and ultimately obtaining the phase space measure dLIPS. To do this, we begin 
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with a slight modification to the CSW prescription for off-shell spinors. As in [18, 19], we 
can always decompose a massive (loop) momentum vector Laa into two null vectors 

L a a £aa ~+ ZVaa ( '̂2) 

where £2 = 0 = rj2, n is a fixed (but arbitrary) null vector and z G R . Essentially, z measures 
how far the momentum L is from being null. The choice of 77 amounts to choosing a lightcone 
frame. Writing the null vectors as bi-spinors, £aa = XaXa and r)aa — rjarja, it follows from 
contracting (7.2) with rf1 that 

P . rf31 ~ naT • 
a~~M ' (7-3) 

The expressions we will construct using the CSW rules will always be homogeneous in the 
off-shell spinors, and so the [A rj\ or (A 77) factors will always cancel. Because of this, these 
factors may be neglected and this prescription becomes equivalent to CSW's. The advantage 
of this approach is that we now know 

L2 = 2z(\rj)[\?j\ . (7.4) 

Writing out the loop measure in spinor variables, we are led to the result that 

ci4L = 2dz aW(£) (X rj) [A 77] , (7.5) 

where the Nair measure [3] is (proportional to) the LIPS measure of a single particle with 
null momentum £: 

dM(£) = (X dX)d2X - [A dX}d2X = 2i d4£5w(£2) , (7.6) 

where 5^+\£2) restricts £0 > 0. The important observation to make now is that the combi
nation which arises naturally when using MHV diagrams 

d4 L dz ,. -. „. , ^ _ = _ d A / W ( 7 . 7 ) 

is independent of our choice of reference vector 77. 
For one-loop integrals, there will be two off-shell momenta L i , L 2 related through mo

mentum conservation 6^(Li - L2 + P), where P is the total external momentum flowing 
into one side of the loop. We decompose the massive vectors as above, 

Liaa — ^ia\a H" ^ i ^ a ^ d > * = 1; 2 , (7-8) 

using the same reference null vector 77 for both L;. The combinations d4Li/L2 are as described 
above, while the quantity appearing in the (̂ -function is 

Lx - L2 + P = lx - £2 + P - {z2 - Zl)r) . (7.9) 

Defining the quantities 

z = z2-zx (7.10) 
Pz = P-zrj, (7.11) 
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then we have 

^ ^ 4 ^ i -L2 + P) = ^^IdMi^dM^d^ -i2 + P,) 

= - 4 ^ 1 ^ • [dHl5{+){^d%5{+){e2)^\Zl -£2 + Pz)} . (7.12) 
z\ z2 

Notice that the quantity in brackets in precisely the LIPS measure for two massless particles 
whose momenta differ by Pz 

dLIPS(4, - 4 ; Pz) = ^i<5(+)(^2)d4^25(+)(^)(5(4)(4 - £2 + Pz) . (7.13) 

For z = 0 this is precisely the LIPS measure we would require to apply unitarity cuts. We 
therefore conclude that 

^ i ^ 4 ) ( L 1 - L 2 + P) = - 4 ^ ^ L I P S ( 4 , - ^ 2 ; P , ) - (7.14) 
1 J 1 L I 2 ZI Z 2 

We call the measure on the righthand side the BST measure; it differs from the regular 
LIPS measure used for unitarity cuts in two important ways. First, the momentum flowing 
into the loop has been shifted by z dependent terms P —> Pz = P — zn. Second, there are 
additional dispersion integrals dzi/zi which integrate over the shifts in Pz. 

The dispersion integrals over Zi have an extremely elegant role in CSW/BST formalism. 
Recall that BBDK's unitarity approach required comparing an amplitude's cuts to the cuts 
of the known basis functions. By invoking a uniqueness theorem for the basis' cuts, they 
could match each term in the amplitude to the appropriate basis function, thereby fixing the 
amplitude uniquely. In using the BST measure, however, no such analysis is required. The 
dLIPS calculates the cuts in each channel (whose momentum-invariant quantity contains z 
dependent terms). Then while integrating out the z dependance, the dispersion integrals re
construct the full amplitude exactly. The mechanics of this process will be more transparent 
when we present an explicit one-loop computation in Chapter 8. 

7.2 J\f=4 M H V Loop Diagram 
We summarize here the procedure used in [25] to calculate the A/=4 MHV amplitude at one-
loop using the CSW rules for MHV diagrams. We will be brief, omitting many of the details, 
as an analogous calculation is presented in full detail in the next chapter. Nevertheless, it 
will be useful to have an overview of how such a computation is carried out, before diving 
into the calculation. 

• Computing the Diagram 
We begin by drawing the typical MHV loop diagram, shown in Figure 7.1, which has total 

momentum PL = kmi + kmi+i +.. . + km2 on the left and PR = 
km.2+1 A~ km2+2 -t-... + kmi—i on 

the right. The total amplitude will require summing over all possible pairs (mi, m2). For the 
A/=4 loop, we may use the generalized MHV vertex with arbitrary external helicity states. 
This diagram leads to the following integral 

= i{2ir)W\PL + PR) J ^ ^ ^ { L , -L2 + PL) J d8r,Lld&

VL2ALAR (7.15) 
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where AL, AR are the vertices given by 

1 1712 1 
A 2 (m2)(Ai mi)( -A 2 Ai) ( u + l ) 

.. m i - l 1 

J- r r J-

^ = < w < e « ) / i . m . - i w - i . m . ^ i w - i . ^ n 

and 

(A L M I _ I)(_A 2 M 2 + 1)(-A! A 2) . = l l + i 0' j + 1) 

( e ^ = /ZKVi-Mavt + ^ v i , (7.17) 
i=m\ 

mi—1 

As we have left the helicity assignments arbitrary we must integrate over the r]A variables. 
This step is carried out [25] using an elegant trick of Fourier transforming the <5^8'(9) into 
an exponential in superspace and integrating out the rjA. The result is that the tree-level 
amplitude factors out, 

^=4 = AT J ^ ^ f * ( 4 ) ( ^ - L2 + PL)R (7.18) 

where 

AT = i(2n)W\PL + PR)8® (J2 XivA fl y ^ y r , (7.19) 

\ i = l / i=l ' ' and the integrand is 

R = ( m i - l mi)(Ai A2) (m2 m2 + 1)(A2 Ai) 
(mi - 1 Ai)(—Ai mi) (m2 A2)(—A2 m 2 + 1) 
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• R e d u c i n g t h e I n t e g r a n d 

Applying the Schouten identity to the numerators in each half of R leads to a sum of 
four similar terms 

R = R{m1,m2 + 1) - R(mum2) + R(mx - 1,m2) + R{mx - 1,m 2 + 1) (7.21) 

where 

{r Xx) {s A2) 
Next, we use the fact that 

. )̂ [A, .] __(£, + f c . ) 2 

<•AJ) - [A, .] - IAT^T ' ( } 

since (^ + k.)2 = 2(A; • k,), to convert all the spinor variables into the null vectors ^ which 
appear in dLIPS. After some manipulations, we obtain 

where we have introduced the shifted momentum invariants 

sz = (PL;Z)2 , P 2

Z = ( P L - i Z - k r ) 2 (7.25) 

tz = (PL;z -K + ks)2 , Ql = {PL,Z + ks)2 . 

When combined with the 1/Lf factors, this integral at z = 0 precisely corresponds to the 
scalar box function (6.14). 

• R e o r g a n i z i n g t h e S u m 

Next, we replace the measure over loop variables Li with the BST measure (7.14). In
tegrating (7.24) with respect to dLIPS will calculate a cut in the PL-Z channel of the scalar 
box function. For fixed mi ,m 2 , each term R(r, s) corresponds to the same channel, PL ; z , but 
different values of r, s correspond to cutting different propagators in the box diagram (Figure 
6.1), and hence different channels of the box sz,tz,P2,Q2

Z. Thus, each MHV diagram gives, 
a cut in one channel of four different boxes. The sum of all MHV diagrams gives the sum of 
all four (non-vanishing) cuts of all the boxes. It is convenient, then, to organize the sum of 
diagrams into a sum over boxes, where each box is the sum of its four cuts. 

• C a l c u l a t i n g t h e C u t s 

We consider a single term R(r, s) and assume it corresponds to the s2-channel cut of 
some box. Its integral over the LIPS is given by 

This integral is most easily solved in the rest frame of £X — £2 — PL,Z with kr oriented along 
the xD axis, and ks in the xlxD plane: 

*I = ^|PL ;*|(1,V) , £ 2 = i | P L ; z | ( - l , v ) (7.27) 

fcr = ( f c r , 0 ) . . . , 0 , f c r ) , ks = (A,B,0,...,0,C) , 
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where |v| = 1 and A2 = B2 + C2. After a long calculation and some help from Appendix B 
of [53], BST find 

3 
7T2" 

r ( I - c ) \e 

where the quantity 

(1 - asz)e 1 + e 2 Li 2 
-asz 

1 — as. 
+ 0{e3 

a = 
P2 + Q2-s-t 

(7.28) 

(7.29) 
P2Q2 - st 

• P e r f o r m i n g t h e D i s p e r s i o n In t eg ra l s 

The final step in the calculation is the dispersion integrals over Z\,z2. First, we change 
variables to z — z2 — z\ and z' = z2 + Z\ 

dzi dz2 _ 1 dz dz' 
~z^~Z2~ ~ 2 (z' - z)(z'+ z) 

(7.30) 

The z' integration is trivial, as the rest of the integrand is independent of it. The remaining 
z integration can be recast as an integration over the shifted channel's momentum invariant, 
in this case sz: 

dz dsz 

— = — . (7.31) 
z s z - s 

They found that the combination 

ds 
r d s z i ( c z ) r 

JO sz ~ s Jo 
70Q21(QI) = [(-*)"' ~ (-Q2r]+U2(l-aQ2)-Li2(l-aS) . 

(7.32) 

(7.33) 

sz — s 

Combining this with the remaining t and P 2 channels, they obtained the result 

1 j2\-<n F(kr,Q,ks,P) = --{(-s)-* + (-ty*-(-Q2)-*-(-P2) 

+ L i 2 ( l - aQ2) + L i 2 ( l - aP2) - L i 2 ( l - as) - L i 2 ( l - at) . 

This is not the form in which the box function was originally presented. Amazingly, BST 
went on to prove the following non-trivial identity involving nine dilogarithms [25]: 

L i 2 ( l - aQ2) + L i 2 ( l - aP2) - L i 2 ( l - as) - L i 2 ( l - at) = ^ log2 ( | ) 

Q2 

+Li 2 1 
P2 

+ L i 2 

P 2 

t + L i 2 + L i 2 
91 
t 

Lio 

(7.34) 

P2Q2' 
st 

and so their result does indeed match that of BDDK. While the CSW rules still lack any 
formal derivation, there is strong evidence to support their legitimacy. The fact that they 
would be invalid if the above identity were not true is rather surprising. But the fact that 
such a non-trivial identity is true is perhaps the strongest piece of evidence to date. 

The question of using MHV diagrams to compute sub-leading amplitudes An.c was exam
ined in [54]. It was indeed confirmed that the CSW rules fix the sub-leading terms of A/"=4 
MHV amplitudes as linear combinations of the leading terms, thus the technique applies for 
finite Af and not just in the large N limit. 
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C h a p t e r 8 

T h e Af=l M H V L o o p D i a g r a m 

Here we present an explicit computation of an MHV loop diagram1. The amplitude we 
are interested in calculating the contribution of N = 1 chiral multiplet to one-loop MHV 
amplitude. We consider the case of external gluons only, but many other diagrams with 
external fermions or scalar are related to this amplitude by supersymmetry. 

8.1 Computing the Diagram 
The typical one-loop MHV diagram of interest is the same as Figure 7.1, however we must 
impose some constraints. We cannot use the general supervertex as we require the Af=l 
chiral multiplet to circulate in the loop. Also, we must have one negative helicity gluon on 
each side of the diagram, as there is no possible helicity assignment for the intermediate 
states if both negative helicity gluons are on the same side of the diagram. We label the 
momenta on the left side as k m i , k m 2 , one of which is negative helicity, denoted by p. 
The momenta on the right side as km2+i,A;mi_i, the negative helicity momentum labeled 
q. As always, all momentum labels are cyclically ordered. When calculating the complete 
amplitude one has to sum over all such MHV diagram. All loop momenta are evaluated 
using dimensional regularization, in D dimensions, with D — 4 — 2e. 

Now the amplitude for this constrained diagram is given by 

A^ = i(2n)4S(PL+PR) J 6 ^ ( L L - L 2 + P L ) + A{Af

r + 2AS

LAS

R) (8.1) 

where PL, PR are the momenta flowing into the diagrams from the left and right correspond
ingly. Each vertex AL, AR is obtained from the appropriate coefficient of the supervertex by 
ensuring the two internal lines are members of a chiral multiplet, including a fermion (of two 
helicities, resulting in vertices AF and AF) and a complex scalar (resulting in a vertex AS). 

As reviewed above, each of the off-shell momenta Li:i = 1,2 has an associated null 
momentum £t and the corresponding spinors £t — Xi\, specifically LT = AjAj + Zi-nfj. 

Factoring out the tree (Parke-Taylor) amplitude results2 in: 

- *T J f 1 ^ ^ , - U + ft) (*/» + 7 ' + />) x 

(m2 m2 + l)(mi - 1 mi) 
(Aj m 1)(m 2 X2)(X2,m2 + l)(mi - 1, Ai) 

(8.2) 
JA version of this chapter has been accepted for publication. Quigley, C. and Rozali, M. One-Loop MHV 

Amplitudes in Supersymmetric Gauge Theories. JHEP 01(2005)053. 
2We do not keep track of the overall sign, which can be fixed at the end of the calculation. 



Chapter 8. The Af=l MHV Loop Diagram 56 

where 
Ts = (Ai P) 2(A 2 p)2(Ai g)2(A2 g)2 

(p q)4 

jF = js(X2 g)(Al p) 

(A2 p)(Ai q) 

(A2 p){Xi q) 
To sum the 3 terms in (8.2) one uses the Schouten identity 

(a b) (c d) = (a d) (c b) + (a c) (b d) (8.4) 
which will be repeatedly used below. This leads to the following expression for the chiral 
multiplet contribution to the one loop gluon MHV amplitude 

AN=ix = A T J ^ r f % 5 W ( L I _ L 2 + P L ) R ( 8 5 ) 

with 
R = (mi - l,m1){m2,m2 + l)(Ai g)(A2 g)(Ai p){\2 p) . . 

(p q)2{mx - 1, Ai)(Ai mi)(m 2 A 2 )(A 2 ,m 2 + 1) 

8.2 Simplifying the Integrand 
Our next step is to split the spinor expression R into 4 terms of identical structure. Using 
the pair of Schouten identities: 

(mi - l,mi)(Ai q) = (mx - l,<?)(Ai mi) + (mx - 1, Ai)(mi q) 
{m2,m2 + 1)(A2 p) = (m2 p)(X2,m2 + 1) + (m2 A 2)(m 2 + l,p) (8.7) 

we get the following sum: 

R = R(m2, mi — 1) — R(m2 + 1, mi — 1) — R(m2, mi) + R(m2 + 1, mi) (8.8) 

where 

(pg)2 (s Ai)(r Aj) 
Let us simplify R(r, s): once again we use Schouten identities to split R(r, s) to 4 term, 

which (when integrated) give rise to tensor box, vector triangle and scalar bubble diagrams3. 
The 4 terms are: 

RA( x = (s q)(r p)(r q)(ps) (A2 s)(Ai r) 
1 ' ' (pq)2(rs)2 (XlS)(X2r) 

r>B(r s = {s q)(r p)2(r q) (A2 s) 
1 ' 1 (pq)2(rs)2 (X2r) 

(p q)2(r s)2 (Aj s) 

3Tensor, vector and scalar refer to the degree of loop momenta appearing in the numerator. 
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Let us simplify these expressions one at a time: 

• S i m p l i f y i n g RA 

The Ai independent factors in RA give the box coefficient while the remaining factors 
give the tensor box function. We decompose this, in [5, 25], into scalar components by 
expanding 

(s A2)(r Ax) = [A2 r](r A^jAi s](s A2) = tr(|(l - 7
5)A ^ A £) = 

(r A2)(s Ai) (r A2)[A2 r](s Ai)[Ai s] (£2 - *v)2(^i + ^ ) 2 

-2 {(l2 • fcr)(4 • ka) + (l2 • fcB)(fi • kr) - (kr • ks)(£, • £2) + ieabcd£a

2kb

r£\kd

s} 
(£2 - KWi + ks)2 

(8.11) 

The term proportional to the e-tensor vanishes upon integration. As before, we define 
PL,Z = f-\ — £2 — PL — (zi — z2)nfj , then the rest of the numerator may be rewritten as 

(2(PL.Z • kr)(PL,z • k„) ~ (kr • ks)Pl.z) - (£1 + ks)2(PL.z • kr) ~ 
(£2-Kf(PL,z-ks) + (£2-kr)2(£x + ks)2 (8.12) 

The terms collected in the first brackets contribute to a scalar box integral, while the next 
two terms each contain a factor which cancels one of the propagators in the denominator, 
leaving scalar triangles. The last term reduces to a scalar bubble, since both propagators 
cancel. Next, we make use of the identity 

4(P • i)(P • j) - 2P2(i • j) = (P + i)2(P + j)2 - P2(P + i + j)2, (8.13) 

valid for any momentum P and null momenta i and j, to rewrite the box's coefficient in terms 
the shifted momentum invariants, (recall their definitions; sz = (Piz)2,P2 = (PL-Z—K)2 ,tz = 

(PL,Z ~ kr + ks)2, and Q\ = (PL,Z + ks)2): 

2(PL;z • K)(PL.z • ka) ~ (kr • ks)P2

;z = \(P2

ZQ\ ~ S z t z ) (8.14) 

Thus, the result of the tensor box's decomposition is 

(s A2)(r Ax) _ ( \(P2Q2

z-sztz) PL.Z • kr PL,z-ks L + i 

(rA 2 )(sA 1 ) I (£2 - kr)2(£i + ksf (£2-kr)2 (£x + ksf 
The terms collected in the bracket lead to the finite portion of the scalar box function, 

complete with the correct coefficient b™, as in equation (6.17). The second term contributes 
to scalar bubbles, which cancel against other contributions. We demonstrate this cancelation 
below. 

• S i m p l i f y i n g RB a n d Rc 

We now turn to the linear triangle terms RB(r, s) and R°(r, s). First, we write the loop 
momentum dependant part of RB (r, s) as 

(s^2) = (s A2)[A2 r] (s\£2\r] t2 

(A 2 r) <rA2)[A2r] (£2 - kr)2 { l 7 a | J (£2 - kr)2' l ' ) 
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So, RB is the integrand of the (cut) vector two-mass triangle integral / f ™ T O 1 [ ^ 2 ] > defined as 
in (6.21), except with the numerator £\. Next, we introduce Feynman parameters Xi into 
the vector triangle integral, and shift the integration variable: 

f dDl £a 

f dDl' J 3 \2(i'-x2Q + x3kry 
= %j ' \ £ X i ~ J ( ^ 2 - A ) 3 ' 

The term linear in £'a vanishes upon integration, so we are left with 

Il™miin = -Qlll^M + KI^mi{x3}, (8.18) 

where the arguments in square brackets are the numerators in the integrals, Qz is the mo
mentum of one massive leg (shifted by z dependent terms, as defined above) and kr is the 
momentum of the massless leg, as drawn in Figure 6.2. Since Qz = Pz + kr and [r r] = 0, 
we can write 

{s\laWl™min = -{s\Pz\r\ll™mi[x2}. (8.19) 
Now, the full coefficient of RB is 

(P r)(r q){pr)(s q)(s PZ)[PZ r] 
{p q)2{r s)2 " 1 ' 

Applying the Schouten identity to the terms (p r)(s Pz) and (r q)(s Pz), then averaging over 
the two gives 

{P r) {s q) ((p r) (q Pz) + (q r) (p Pz)' 
(p q)*{r s) V 2 
(pr)(sq) ((p s)(r q) + (p r)(s q) 

{p q)2(r s)2 V 2 

We use the Schouten identity again, on the first term of the first pair only. 

(pr)(sq) {ps)(rq) 

[Pz r] 

2(PZ • kr) (8.21) 

(r s) {r s) 
+ (P q) (8-22) 

Note that the piece containing (p q) is independent of s, so it will vanish when summing over 
s = {mi — 1, mi}, as that sum has alternating signs. Now the first pair of terms in equation 
(8.21) reads 

(P r)(r q) ((s q)(p Pz) + (s p)(q Pz)\ 
(rs)(pq)2\ 2 

A similar analysis of Rc(r, s) shows that the coefficient of the integral function 
4 ^ 2 + i M ^ 

{p s){s q) f(r p)(q Qz) + (r q)(p Qz)\ 
{rs)(j>q)2\ 2 
{pr)(sq) f(ps)(rq) + (pr)(sq)\ . 

+ (r s)2{p q)2 \ 2 ^ ) 
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where Qz is the shifted momentum transfer defined above. In this decomposition the first 
term contributes to the coefficient of the scalar triangle function, and the second one will be 
used below to cancel the bubble diagrams. 

• S i m p l i f y i n g RD 

First,the scalar bubble in RD can be combined with the one that arose from decomposing 
RA, giving a single bubble with coefficient 

^f2{(ps)(rq) + {pr)(Sq)) (8.25) 

Now, to cancel the bubbles notice that they possess the same coefficient as the last pair 
of terms in (8.21) and (8.24). These integrals combine into 

(pr)(sq) ((p s)(r q) + {p r){s q) 

(r s)2(p q)2 V 2 
x (2/ 2 : r ; 5 - 2(PZ • kr)I2™mi[x2] + 2(QZ • fcs)/3

2-m2+1[x2]) 

(8.26) 

which vanishes in each channel of each cut because of the relation (6.22) 

0 - Q2)ll™s[x2] = / 2 : r ; s - 7 2 : r + l i 8 . (8.27) 

In summary, the net result of this decomposition is then 

(P r){r q)(p s)(s q) J \(P2Q2

Z - sztz) PL;z • kr PL,Z • ks R{r, s) 
(rs)2(pq)2 \(£2-kr)2(£i + ks)2 (£2-kr)2 (£l + ks)2 

(P r)(r q) ( (s q)(p\Pz\r] + (s p)(q\Pz\r] \ (j^) 

+ 

(rs)(pq)2{ 2 j(£2-kr)2 

(p s)(s q) / (r p)(q\Qz\s) + (r q){p\Qz\s] \ ( r ^ ) 

} 
(8.28) 

(rs)(pq)2{ 2 \{£i + ksy 

where we have again used (6.22) 

C i N = ( T - T ^ J J 3 ™ S - I ( 8 - 2 9 ) 

to conveniently express the triangles' integrands. 
The first coefficient above is easily recognizable as from equation (6.25), but to get 

the remaining two into the correct form requires an additional step. Consider the second 
line of each of the four R(r, s) terms. Those with a common value for r differ only in the s 
dependance of their coefficients. So when we add R(r, mi — 1) — R(r, mi), the only change is 

(s_^> = (mi - 1 •) _ (mi •) = (• r)(mi - 1 mi) 
Z-^ (r s) (r mi — 1) (r mi) (mi — 1 r)(r mi)' 

where we used the Schouten identity to combine the two terms. Now the coefficient of the 
second line is ^ ^ m i - i ) - ^ n analogous treatment of the third line produces the coefficient 
lrPQ 
2 S7T12 ' 
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8.3 Reorganizing the Sum 
We have decomposed the integrand of each one of the MHV diagrams into a sum (8.28) which 
should now be compared with the sum occurring in the exact result (6.17). The crucial point 
is the BST measure [25]: 

where dLIPS is the Lorenz invariant phase space measure appearing in the cut rules. For 
fixed z\,z2, after performing the integration over li, l2 we have a sum over cuts of Feynman 
graphs (at shifted values of the momentum invariant). The claim is that this sum, at z — 0, 
coincides exactly with the cut of the exact result (6.17). This is not true diagram by diagram, 
rather there is some re-arrangement of the cuts which we now demonstrate. 

Having completed the decomposition of R = s R(r, s) in the previous section, we find 
it contains eight distinct terms which are: 4 (cut) finite box functions (1 for each pair of null 
legs kr and ks), and 4 modified (cut) two-mass triangles (1 for each case where kr or ks is 
the null leg). When we cut the loop in the MHV diagram, this is equivalent to cutting the 
boxes and triangles, as shown in figure 5, so as to keep {kmi,..., km2} on the same side of 
the cut. Clearly, which lines get cut depends completely on where kmi, km2 are in relation to 
kr, ks. We stress that all these cuts are in the same channel, s = P2. Alternatively, we could 
combine the contributions from different MHV diagrams (with different mi,m2) which have 
the same null legs kr, ks and therefore must produce the same boxes and triangles. Different 
MHV diagrams will lead to different cuts. In this manner, we may combine: the 4 boxes 
with common kr and ks, with cutsjn the channels s,t, P2, Q2, the 2 triangles with common 
kr, with cuts in the channels s = Q2 and P2, and the 2 triangles with common ks, with cuts 
in the channels s = P2 and Q2, for all values of r, s. 

In the exceptional cases where one of the triangles massive legs becomes massless, then 
this diagram has the single non-trivial cut which isolates the remaining massive leg, as 
the trivalent vertex vanishes on-shell. We will show below that each of these terms are 
reconstructed from their single cut. 

One might worry that not all the cuts exist in all channels for non-degenerate cases. A 
priori, we must sum over all MHV diagrams with q + 1 < mi < p and p < m2 < q — 1, 
but when m 2 = p or mi — 1 = q the corresponding boxes and triangles may not be defined. 
Fortunately, the coefficients 

all vanish. So, we may restrict the sums over m 2 = r,m\ = s + 1 to the ranges given in 
Section 6.3, plus the degenerate triangle terms. 

So, in summary, we have found that the decomposition of the sum of MHV diagram 
is simply related to the result (6.16). For any channel X = s,t,P2,Q2, of any function 
F = B,T,AIR in (6.17), we find a term in our sum of the form AxF(Xz), where Ax 
denotes the cut in the A"-channel, and Xz is X shifted by z-dependent terms. 

j ( 4 ) ( L l _ L 2 + P l ) = _ 4^1 ^ dUPS(e2, -iu pLiZ) (8.31) 

ups urq °ps °(jr ~~ u (8.32) 
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Figure 8.1: The cuts produced by one MHV diagram 
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8 . 4 Calculating the Cuts 
In the last section, we noted that the loop integrations factor into two parts: dispersion 
integrals over the Zj and an integral over dLIPS(£2j — PL-,Z) which computes the cuts in 
the diagrams. The cut box integrals were computed in [25] and these results were summarized 
in Section 7.2, so the only new ingredients are the cut triangles. We will now evaluate these 
integrals for when kr is the null leg, the other case follows by switching r <-> s and £2 <-> —£\-
Also, we focus on the s-channel cuts; other channels are treated analogously. The integrals 
we wish to solve are in dimension D = 4 — 2e and of the form 

T(sz) = J dDUVS{£2, -£u PL ; 2)^feL (8.33) 

where the numerator N(PL.Z) only depends on PL.Z and external momenta4. By boosting to 
the rest frame of £\ — £2, then rotating kr into the XD direction, we have 

4 = ^|PL ; Z | (1 ,V) ; *2 = ^ |PL;Z | ( -1 ,V) ; kr = (kr,0,...,0,kr), (8.34) 

where the unit vector v is such that v • XD = cos(0i). This allows us to re-write our phase-
space measure as in [25] 

dDUPS(e2,-£l,PL;z) 
7T2 PL d6x dd2 (sin 0!)1 ~2e (sin 92) ~u (8.35) 

4 T ( i - e 

and the integrand's denominator becomes 

(£2 - kr)2 = -2£2 -kr = kr \PL.Z\ (1 - cos^i). (8.36) 

Performing the integral (8.33) is now a simple task (for a computer), with the result 

I(sz 

4 e 7 T 2 _ e I S , -*N{PL]Z) r(-e) 
2r(| - e) I 4 I kr\PL.z\T(l-e) 

1 7T N{PL,Z) 
e 2 kr\PL.: 

(8.37) 

Now, for any channel of any function F(X) appearing in the result (6.17), we are left 
with an integral of the form J dz^ AxF(Xz), where the cuts of the triangle graphs are 
exhibited in (8.37). Furthermore, we have shown that A.xF(Xz=0) is precisely the cut of the 
exact result (6.17). Appealing to cut constructibility, we can anticipate that our dispersion 
integration will reproduce the correct answer as long as the functions AxF(Xz) are cut free 
on the integration contour of the ^-integration. As the cuts (8.37) do include non-analytic 
functions of Xz, the correct contour5 is Xz > 0. Choosing this contour, it is a simple matter 
to perform the dispersion integration directly to verify that we get the correct answer, and 
we turn to that integration now. 

4Since [r r]=0, we can always write (»|Pz|r] = (»|(-fz + kr)\r] = (•|J->L ; 2|r-]. 
5We note that the integration contour then is channel-dependent, as in [25]. 
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8.5 Performing the Dispersion Integrals 
We now show that the final integrations over Zi,z2 reproduce the result in (6.16). Recall 
that in Section 8.3, we demonstrated that the sum over MHV diagrams is equivalent to the 
sum of cuts in all possible channels of the box and triangle diagrams. Thus, it remains to 
show that a given box (triangle) is reconstructed from the sum of its 4 (2) integrated cuts. 

We change our integration variables to z = z\ — z2, z' = z\ + z2 and note that for any 
function f(z) independent of z' 

f^^f(zl-z2) = 2(2iri) [^f(z). (8.38) 
J Zi z2 J z 

Next, we use the fact that sz = s — 2zr) • Pi to write 

dz 
z 

(8.39) 

with a corresponding change of variables in the other channels. Now, we must show that 

B(kr,Q,kS,P) = f -^-AaB(sz)+ [ -^-AtB(tt) J s sz J t tz 

and 

T(k,P,Q) = f j^pi^T(PZ) - j Q^Ql^TiQl). (8.41) 
Again, we will consider the s-channel only, the other channels follow immediately. As 

discussed above, we must restrict the integration to sz > 0, where the expression (8.37) has 
no cuts. 

First, we will reconstruct the divergence free box functions. They possess three types 
of terms, given in the first line of (8.28). The first of these was calculated in [25], and we 
quoted earlier that the s dependant terms are 

-~{-s)-e-U2{l-as) . (8.42) 

The next term has the cut T(sz) from the previous section, with numerator N(PL.Z) = 
—PL-,Z ' kr. Up to a sign, this numerator is precisely the denominator in our working reference 
frame (8.34). The dispersion integral is then 

The next term in the divergence free box gives an identical contribution. Summing the three 
contributions, we find 

—ASB(sz) = - L i 2 ( l - a s ) , (8.44) 
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exactly what is required to reproduce (6.18). Treating the other channels similarly proves 
the equality of (8.40) and (6.18), provided we use BST's representation of the box function 
(7.34). 

Moving on to the triangles, we will consider those where kr is the null leg. These also 
have cuts of the form T(sz), in the reference frame (8.34) the numerator is 

N(PL-Z) = (x\Pz\r] = (x\PL.z\r] = (x\7

0\r} \PL,Z\ (8.45) 

times (jzil) an(^ x — P^Q- The dispersion integral is nearly identical to (8.43): 

2eJ0 s - s z l - 2 e kr

 z e ( l - 2e) 2kr

 1 j ' ^ °J 

Multiplying the top and bottom by \P\ = P°, then re-expressing this result in a covariant 
fashion gives the coefficient 

= (x\P\r] = (x\P\r] 
2kr 2kr • P Q2 _ P2 1 • > 

(recall that s = Q2). An analogous result holds in the P2 channel. Taking the difference of 
the two, and expanding (—Q2)~e, (—P2)~e in e yeilds the desired result: 

i (-Q2re - ( - p 2 r e iog(<2 2 ) - io g (P 2 ) 
6(1 - 2€) Q2 - P 2 Q2_ p2 (8.48) 

In the case of the one-mass triangles, the result is even simpler. Consider the case 
(r, s) = (p + l,p — 1), then P2 = p2 = 0 and the dispersion integral gives 

1 <-«">- (8.49) 

as desired. We conclude therefore that all triangle terms are reconstructed once we perform 
the final dispersion integration. 

Thus, we have shown by explicit calculation that the MHV diagram formalism is valid 
for the calculation of the one-loop contribution of the J\f = 1 chiral multiplet to the MHV 
amplitude. Together with the result of [25] this establishes the validity of the MHV-diagram 
technique for this helicity configuration in any massless supersymmetric theory. 
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C h a p t e r 9 

C o n c l u s i o n s a n d F u t u r e O u t l o o k s 

We have presented a wealth of evidence confirming that perturbative gauge theory ampli
tudes are much simpler than anyone would naively suspect. Conventional approaches to such 
calculations become exponentially cumbersome as the complexity (the number of external 
legs or the number of loops) in the amplitude increases. The simplicity of the Parke-Taylor 
formula indicates that standard approaches are overly redundant and are in need of simplifi
cation. The first step in this program was factoring out the colour information to reduce the 
problem to a kinematic one which further simplifies when formulated in a helicity basis. The 
CSW carry this line-of-thought further by building amplitudes out of blocks where many, 
many Feynman diagrams have already been summed. 

While the CSW rules lack any derivation, we have demonstrated that they pass several 
non-trivial checks at the tree and one-loop levels. It would interesting to push this further 
and examine higher loop amplitudes. There is however, the unsettling fact that the CSW 
rules do not seem to apply to non-supersymmetric loops. Understanding how to obtain 
the full scalar loop contributions from the CSW rules would be a tremendous boost to the 
program. It is essential that we develop some method of computing these contributions if 
we are to push the calculation frontier of pure Yang-Mills loop amplitudes past five external 
gluons. The six-point one-loop amplitude, for example, will be crucial for next-to-leading 
order analyses of four-jet events at future collider experiments such as the LHC. 

Recent investigations into supersymmetric gauge theories has been more fruitful. The 
approach of generalized unitarity, where more than two propagators are put on shell, has 
proven most effective for computing loop amplitudes. This has led to the discovery of all 
NMHV one-loop amplitudes in A/"=4 SYM [33], and certain sets of loop amplitudes for the 
J\f=l case [34]. This success is largely due to the fact that such theories are cut-constructible. 
Since cut-constructible theories may be expressed as a linear combination of known scalar 
loop integrals, the only remaining task is to compute the coefficients. 

The study of A/"=4 one-loop NHMV amplitudes yielded a surprising result: the coeffi
cients of one of the functions (the three-mass box) determined all the remaining coefficients 
algebraically! This author is currently investigating whether this holds for more complicated 
loop amplitudes. Specifically, we are examining the next-to-next-to-MHV amplitudes (with 
four negative helicities) in A/=4 SYM to see whether all the coefficients are determined from 
a single set (namely the four-mass box coefficients). So far, we have found general expres
sions for the four-mass box integrals' coefficients and are now determining their relationships 
to the others. 

The A/"=l theory, having less symmetry, has proven more challenging. Only limited sets 
of amplitudes have been uncovered so far. In particular, the set of NMHV jV=l ampli
tudes of the form An(g~, g~, g~, g+, g+, g+,..., g+) are now known, as well as all the helicity 
configurations of the 6-point amplitude. We are working on an expression for the general 
NMHV loop amplitude. Our hope is that the coefficients of each basis function will be fixed 
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in terms of the coefficients of a small subset (from one to three) of them. 
Our final line of current investigation is in non-supersymmetric amplitudes. We aim to 

determine all cut-constructible terms in the contributions from internal scalars to one-loop 6-
point amplitudes. As our technique relies heavily on unitarity, we do not anticipate producing 
the full amplitude. Nevertheless, recent parallel developments have produced a recursive 
formula for one-loop amplitudes of the form An(g±,g+,g+,..., g+) for non-supersymmetric 
gauge theories [36]. There is a growing belief that eventually non-supersymmetric theories 
will be solved through a combination of unitarity (to determine the cut-constructible terms) 
and analogous recursion relations (which fix the remaining cut-free terms). With this in 
mind, we feel that determining all cut-constructible terms in non-supersymmetric amplitudes 
will be an important result for future calculations. 

There have also been many interesting new developments in tree-level computations lead
ing to even more compact expression then the CSW prescription does [35]. Undoubtedly, 
these new compact formulae (when combined with unitarity) will lead to dramatic simplifi
cations in loop amplitudes. Better control over loop calculations will be essential for probing 
new physics at future colliders. Though the CSW rules may not be suitable at the loop level, 
or at least require some modification, for non-supersymmetric theories, they are nonethe
less an important step towards a more efficient paradigm for calculating loop amplitudes. 
Their more successful application to supersymmetric theories, however, should prove useful 
in uncovering hidden structure in gauge theories. 
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Here we summarize our conventions and notations. 

• S p i n o r s 

We use the signature (+, —,—,—) for the spacetime metric r]ab. Spacetime indices are 
denoted a,b,... — 0,1, 2, 3. Lefthanded spinor indices are denoted by a, /? , . . . = 1, 2, while 
righthanded spinors follow the same convention with a dotted index. Spinor indices are 
raised and lowered with the 2-dimensional Levi-Civita symbol 

e « / 3 = e d / 3 = ( _ ° i I) ( A - l ) - 1 0 
0 -1 
1 0 = & = ( ? " n 1 ) • (A.2) 

which satisfy 

7 / 3 = € (A.3) 
= -Pa + 6i (AA) 

and similarly for the dotted symbols. 
We convert between tensor and spinor indices using the Pauli matrices 

Vab- = (aa)aa(ab)0$ ... Va«W- (A.5) 

with 
oa = {l,ai) = aa and o° = (1,-a') = or a, (A.6) 

which are related by the Levi-Civita symbols 

(CT-r = e ^ V W i (^aU = ea0e^(aar , (A.7) 

and satisfy the completeness relations 

tvaaab = 2r]ab (A.8) 

(aaU(aaf0 = 2&A (A.9) 

The SL(2, C) generators are defined 

„ah ' f a — 6 — a „ . 6 l . — ab [—a „b _a—61 ( \ -ir\\ 

a = —[a a — a a \ ; a = —[a a — a a \ (A.1U) 

which implies they are respectively (imaginary) self-dual and (imaginary) anti-self-dual 

*CT

ab = iaab ; *aab = -iaab . ( A . l l ) 
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For our purposes , the Hodge star always maps p forms to 4 — p forms 

KUV.-a, = ^ a 1 a 2 a 3 a 4 W Q p + 1 - a 4 . (A.12) 

We often write (antisymmetric) spinor products as 

(A, p) = A > a = e Q /%M/3 = e Q % A Q = -e0ap0Xa = -(p, A) (A. 13) 

[A, p\ = A % = e^KJi$ = e"%Xa = - e ^ A * = —[/I, A] . (A.14) 

Notice that for fermionic spinors the product is symmetric: 

Xi> = eal3Xa^0 = ~ea^Xa = +e / 3 Q ^X« = i>X (A.15) 

Xi> = ^x3p = -z^pXa = +e^0Xa = • (A. 16) 

In loop amplitudes the product 

(X\k\p\ = (X,Xk)[Xk,-p\ = XaXkaXkaJP = Xa{oaka)aa]f (A.17) 

appears quite often. 

• G r a s s m a n v a r i a b l e s 

Grassman variables anticommute: 

Or] = -rfi, (A.18) 

in particular, 
99 = 0 . (A.19) 

A Grassman function of a single variable has a simple Taylor expansion: 

f(9) =a + b9 , (A.20) 

since 99 = 0. The Berezian integral of an anticommuting variable is defined : 

Jd9 9=l (A.21) 

(10 1 = 0 (A.22) 

dS f(9) = b . (A.23) 

This definition implies the following properties: 

• Berezian integration is translationally invariant 

J d9f(9 + V) = j d9f(9) (A.24) 

J d9 ±f(9) = 0 (A.25) 
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• Berezian integration is equivalent to differentiation 

± f ( 6 ) = b = Jd6 f(9) (A.26) 

• We can define a delta function by 
6(9) = 9 (A.27) 

For the superspace coordinates 9a, we write 

da = ̂  and 92 = ±ea09a9>3. (A.28) 

Thus, 

dj0 = 51 (A.29) 
d^P = S^BP-S^ (A.30) 

da92 = 9a (A.31) 
d262 = 1 (A.32) 

and similarly for the 9a. The important features for superspace integration are 

J d29 92 = 1 = j d29 t (A.33) 

= 1 (A.34) 02c2 

where d49 = d29d29. 

• S u p e r c o n f o r m a l A l g e b r a s 

The most general group we consider in this work is the superconformal group. To em
phasize the various sub-groups of this large symmetry group, we divide the commutation 
relations into parts. 

Poincare: Generators Ja(,, Pa 

[Jab, Jed] = i(VadJbc - VacJbd + VbcJad ~ VbdJac) (A.35) 

[Jab, Pc] = KVbcPa ~ VacPb) (A.36) 

Supersymmetry: Additional generators QA,QaA, Rr 

{QA,QaB} = 2 ( v a U P a 5 £ (A.37) 
{QA,QB} = ea0ZAB • {QaA,Q0B} = -ea0ZAB (A.38) 

[Qi,Jab} = {VabtQA
 ; [QaA,Jab] = (cTab)iQ0A (A.39) 

[QA,Rr] = {Ur)AQB ; [QaA,Rr] = mBQaB (A.40) 
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[Rr,Rs]=ifrs

tRt (A.41) 

Conformal: Generators Ka, D in addition to Jab, Pa 

[Jab, Kc] = i{rjbcKa - nacKb) (A.42) 

[Pa, Kb\ = 2iJab - 2ir]abD (A.43) 

[D,Ka] = -iKa ; [D,Pa\=iPa (A.44) 

Superconformal: All of the above generators as well as SA 

{SA, SaB} = -2(aa)aaKaSA (A.45) 

[Sa

A,Jab] = ((rab)iS$ ; [SaA, Jab] = (aab)iSpA (A.46) 

[SA,Pa}=i(aa)ZQA ; \SaA,Pa] = i(<Ta)ZQaA (A.47) 

[ Q ^ i f a ] = - i ( 0 ^ ; [ Q d A . ^ a ] = - z ( a „ ) ? 5 a A (A.48) 

[D,QA} = \QA ; [ A Q d A ] = ^ Q d A (A.49) 

[D,SA} = -l-SA ; [D,SaA] = -l-SaA (A.50) 

[5^,i?r] = ( t / r ) ^ a

3 ; [SaA,Rr] = (U})BSaB (A.51) 

Qf} - 2(aabUJab6AB + 2iD5a0SAB + {UrRr)AB5a0 + RSAB5a0 (A.52) 

{ 5 ^ , Q0B} = 2{aab)£c0Jab5AB - 2iD6-0SAB + ( C T ^ ) ^ ^ - R5AB6a0 (A.53) 

and all other (anti)commutators vanish. Here R generates the additional U(1)R contained in 
the full U(AT)R. Also, in the superconformal algebra, the central charges Z A B must vanish. 
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