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Abstract

We examine recent developments in perturbative calculations of gauge theory amplitudes.
Motivated by a twistor space analysis, Cachazo, Svrcek and Witten (CSW) formulated a
new set of rules for computing scattering amplitudes, which have now been dubbed the
CSW rules. We examine the origins of these rules, and apply them to supersymmetric and
non-supersymmetric gauge theories. We review many of the recent calculations performed
using this new prescription at both the tree and one-loop levels.
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Chapter 1

Introduction

Gauge theories possess much structure which is not at all manifest when formulated in
conventional terms. For example, scattering amplitudes of perturbative Yang-Mills theory
are remarkably simple when expressed in a helicity basis. The simplest non-trivial amplitudes
involve two incoming gluons of negative helicity and any number of incoming positive helicity
gluons. By crossing symmetry these amplitudes are related to 2 — n — 2 processes where
all initial and final states have the same helicity and so have maximal violation of helicity
conservation. Such processes are called maximally helicity violating (MHV) amplitudes.
At tree level, they are given by the simple Parke-Taylor formula which can amazingly be
written on a single line. Parke and Taylor first conjectured this solution based on a few
simple examples (with small n) [1]. The all n formula was later proven by Berends and Giele
using recursive techniques [2]. That such a simple expression could apply to an infinite set of
amplitudes, where the number of external legs is arbitrary, was the first major clue of some
hidden structure in Yang-Mills theory. As Yang-Mills theory is effectively supersymmetric
at tree-level, it should not be surprising that the Parke-Taylor formula was generalized to
the case of N'=4 super-Yang-Mills (SYM) [3]. This generalization by Nair also uncovered
an unexpected simplicity of the next-to-MHV amplitudes (where three external gluons have
negative helicities): they are the product of two MHV amplitudes and 1/P2.

Loop amplitudes in Yang-Mills theory are notoriously difficult to calculate. At the one-
loop level, these amplitudes are only known for up to five external gluons [4]. In super-
symmetric theories, however, the situation has proven to be more tractable. In [5] Bern,
Dixon, Dunbar and Kosower (BDDK), demonstrated that a large class of one-loop ampli-
tudes, including all massless supersymmetric gauge theories, can be constructed solely from
the knowledge of their four-dimensional unitarity cuts. Amplitudes of this type are called
cut-constructible. One-loop N'=4 amplitudes for four external gluons were first calculated by
Green, Schwarz and Brink as the low energy limit of superstring amplitudes [6]. By applying
the power of unitarity, BDDK found general expressions for MHV amplitudes in A'=4 SYM
[7] and later in N=1 SYM [5] for an arbitrary numbers of external legs. An important
feature of cut-constructibility is that the cuts are applied not to individual diagrams, but to
the amplitude as a whole, thus avoiding the use of cumbersome Feynman diagrams. This
technique was largely known during the sixties under the title S-matrix analysis {§]. BBDK
capitalized on the new simple tree-level expression, the Parke-Taylor formula and Nair’s
generalization thereof, and sewed them together using unitarity into loop amplitudes.

More recently, Witten observed that many remarkable features of gauge theories emerge
when formulated in twistor space [9]. Specifically, scattering amplitudes must be localized on
curves of a specific degree when written in twistor variables. At tree-level, MHV amplitudes
lie on degree one curves, NMHV amplitudes lie on curves of degree two, and so on. At
loop level, the degree is increased by one, for example MHV loop amplitudes are localized
on degree two curves in twistor space. That the amplitudes were so constrained could not
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have been deduced simply from their momentum space representations. Witten went on to
conjecture a weak-weak duality between N'=4 SYM (in Minkowski space) and the so-called
B-model of topological strings in twistor space (CP?). This duality was further investigated
and inspired other twistor string theories [10, 11, 12].

It was soon realized that the degree d curves which supported scattering amplitudes could
equivalently be interpreted as d degree one curves, or some intermediate combination [13].
As each degree one curve corresponds to an MHV amplitude, this led Cachazo, Svrcek and
Witten (CSW) to conjecture a new set of rules for perturbative Yang-Mills amplitudes, using
MHYV amplitudes as vertices [14] and connecting them by scalar propagators. This conjecture
generalized Nair’s results for NMHV amplitudes. These CSW rules were latér extended to
include scalars and fermions [15], which passed several tree-level consistency checks [16, 17].
These rules were also used to construct a new recursive technique for tree amplitudes [18]
and to compute new sets of explicit tree-level amplitudes in (super)Yang-Mills [19, 20, 21].
Higgs fields and massive vectors were also incorporated at tree-level [22].

At first the twistor space structure of gauge theory loop amplitudes was poorly under-
stood [23]. It was soon realized that the conjectured dual topological string. theory would
inevitably lead to loop amplitudes for conformal supergravity[24], and it was unclear whether
the CSW rules would require modification at the loop level. Nevertheless, Brandhuber,
Spence and Travaglini (BST) applied the CSW rules directly to the N=4 SYM MHYV loop
amplitude and found perfect agreement with BBDK'’s original computation [25]. This im-
mediately raised the question if the CSW rules held at one-loop in less supersymmetric
theories. This author, with Rozali, showed in [26] that the CSW rules work in any super-
syminetric gauge theory by computing the MHV one-loop amplitudes. Our results were
confirmed by the authors of [27] who went on to show, however, that the CSW rules failed
in non-supersymmetric Yang-Mills theory [28].

The original confusion regarding the twistor space structure of loops was traced back
to a holomorphic anomaly [29], which has also been used to calculate supersymmetric loop
amplitudes [30]. Studies of unknown NMHV loop amplitudes’ twistor space support [31]
were conducted. Eventually, these amplitudes were computed using generalized unitarity
[32] combined with cut-constructibility. Specifically, all NMHV amplitudes in N'=4 SYM
[33] and many (including all n < 6) NMHV amplitudes with A'<4 [34] are now known.
Witten’s original work on amplitudes in twistor space has also led to new breakthroughs
in tree-level calculations [35], non-supersymmetric loop amplitudes [36] and amplitudes in
(super)gravity theories [37] including conformal supergravity [38].

The remainder of this thesis is structured as follows. Chapter 2 introduces the essential
features of supersymmetry we will need throughout the work. We assume the reader is fa-
miliar with quantum field theory, and also has a basic knowledge of group theory. No prior
knowledge of supersymmetry is assumed. After reviewing spinors and spinor notation, we
discuss Coleman and Mandula’s no-go theorem for extending the symmetries of spacetime.
By allowing fermionic generators, we by-pass the no-go theorem, and arrive at the super-
symmetry algebra. We incorporate A'=1 supersymmetry into field theory and discuss the
notions of superspace and superfields. We then proceed to write down Lagrangians for N'=1
supersymmetric theories. In the last two sections of the chapter we consider larger symmetry
groups, such as extended supersymmetry and superconformal groups.

The next three chapters study tree-level amplitudes in gauge theories. Chapter 3 discusses
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the Parke-Taylor formula for MHV amplitudes. We analyze the conformal properties of the
amplitudes, which motivates us to Fourier transform them to twistor space. We follow
Witten’s analysis in [9], deriving the fact that scattering amplitudes are localized on curves
of specific degrees. Chapter 4 introduces the CSW rules, and explains the steps of calculating
MHYV diagrams. We derive a general expression for NMHV amplitudes, and check it for a
simple 5-point amplitude. We discuss other consistency checks which support the legitimacy
of the CSW rules. In Chapter 5, we write down Nair’s generalization of the Parke-Taylor
amplitude and extend the CSW rules to include fermions and scalars.

The following three chapters of this thesis examine loop amplitudes in supersymmetric
gauge theories. Chapter 6 reviews the known results of MHV loop amplitudes in supersym-
metric gauge theortes, originally found by BBDK. In Chapter 7, we discuss how the MHV
diagrams are used in loop calculations. We summarize these steps by giving a review of the
BST calculation for the A’'=4 MHV amplitude. Chapter 8 presents a fully-detailed com-
putation of an MHYV loop diagram. The calculation we carry out, originally performed by
this author and Rozali in [26], is the A'=1 chiral multiplet contribution to a one-loop MHV
amplitude.

We discuss some recent results which have developed out of these new techniques, in-
cluding some works in progress, in the final chapter. Our notations and conventions are
summarized in the Appendix, where we also present the most general supersymmetry alge-
bra.




Chapter 2

Supersymmetry

Though currently unverified by experiment, supersymmetry, or SUSY for short, is the best
candidate for physics beyond the Standard Model. By postulating a global symmetry be-
tween bosons and fermions, SUSY is able to soften the UV divergences in quantum processes
as the contributions to loop amplitudes for each particle type comes with opposite signs. We
will see that SUSY links internal symmetries to the external (spacetime) symmetries, thus
modifying the Poincaré group into what’s called the super-Poincaré group. As any theory
which is locally invariant under the Poincaré group contains gravity, then any theory locally
invariant under the super-Poincaré group will contain supergravity. It is widely believed that
incorporating SUSY locally (particularly in higher spacetime dimensions) will help solve the
longstanding UV problem of quantum gravity. Of course, no such Bose-Fermi degeneracy
has ever been observed, so SUSY must be broken at sufficiently high energy to agree with
experiment. Exactly how SUSY is broken remains an important open question, which future
collider experiments, such as the Large Hadron Collider, will hopefully give some indication
as to its solution.

We will not concern ourselves with many of these exciting ideas here, and will focus only
on the much simpler unbroken global SUSY in flat four-dimensional spacetime. This section
is mainly a review of the material found in the first seven chapters of [39] and the first two
sections of [40], as well as various portions of [41, 42, 43]. For more regarding supergravity,
and SUSY in d > 4 the author suggests [39, 41], and for more on SUSY breaking see [40].

2.1 Spinors

Spinors will play a fundamental role in this work, especially in describing supersymmetric
theories, and so perhaps a quick review of them is in order. Our conventions and notations for
spinors are summarized in the Appendix. In Minkowski space, with signature (+, —, —, ),
the (non-compact) Lorentz group is SO(1, 3) and is generated by the Lorentz transformations
Jap- The unbounded actions are the boosts, generated Jy; = K;, while the remaining compact
rotation group, SO(3), is generated by J;; = €;;xJi, Where 4,7 = 1,2, 3. Because the Lorentz
group is not compact, all finite dimensional representations are reducible. To classify these
representations we consider the Lorentz group in Euclidean space, SO(4) (which is compact).
Locally on the group manifold, SO(4) ~ SU(2)1 x SU(2)g and the SU(2). g are generated
by the operators J; = iK,. We label the reducible representations of the Lorentz group by
the (half-)integer pairs (jz, jr), where j;, and jr denote the spins of the corresponding 2j + 1
dimensional irreducible representations of the associated SU(2).

Lefthanded spinors are those which transform in the (%, 0) representation and are labeled
with spinor indices, for example A,. Righthanded spinors transform as (0, %) objects and are

denoted by dotted spinor indices, such as Xd. The dotted and undotted spinor indices run
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over o, & = 1,2. We emphasize that these spinors are commutative. Later, when we discuss
fermions, we will require spinors that anticommute.
Angular momentum is added in the usual way, separately for each representation, thus

G,O) ® (%0) = (0,0) & (1,0). (2.1)

The scalar (0,0) piece comes from the antisymmetric product of two spinors; that is, by
contracting via the invariant antisymmetric tensor €,g. Spinor indices are raised and lowered
by this tensor and its inverse €*?, i.e.: A* = €*¥)\4, etc. We will often write the scalar product
of two (lefthanded) spinors as

€ Aatty = (A1) (2.2)

Note that because of the antisymmetric tensor €*?, (A, u) = —(u, A\)!. As one would ex-
pect, there exists an identical antisymmetric tensor for righthanded spinors, €,4- For scalar
products of righthanded spinors we often use the notation

e Naliy = N1 - (2.3)

The symmetric (1,0) part in equation (2.1) is not a vector; in general, a Lorentz tensors
must contain an equal number of dotted and undotted spinor indices. Rather, it is the self-
dual portion of an antisymmetric 2-form (a (0,1) object is the anti-self-dual part), which
will be discussed briefly in the next paragraph. Forming a vector out of spinors requires one
of each chirality, since this transforms as

() (03)- ()

which is the correct representation of a vector. Thus, a vector in spinor notation is written
Vs To translate between spinor and tensor notations, we use the Pauli matrices o® as
Clebsh-Gordon coefficients

Vot+ Vs Vl_M) . (2.5)

Vaa = (0 )aaVa=(V1+iV2 W-V3

Clearly det(V) = V,V*, so a lightlike vector is one with vanishing determinant. This is
possible only when _
Vad = /\a/\d (26)

for some A, and Xd, since these are commuting spinors®’. Note that while giving A (or
equivalently \) determines V' uniquely, the converse is not true. Given a null vector V, A
and A are only fixed up to the overall scaling

A—zA X—>%:\d, (2.7

!This is assuming commuting spinors; the scalar product of fermionic spinors is symmetric, for more on
this see the Appendix

2For real V, A = %X, depending on the sign of Vp.
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for any non-zero z € C. For two null vectors V,, = ,\C,Xd and W5 = Ualis, their scalar
product is given by . _
2V, We =V, W = (A, w) [\ 1) (2.8)

We conclude this section with some remarks on rank two tensors. A general rank two
tensor may be considered as the product of two Lorentz vectors, which has the Clebsh-Gordon
decomposition

(%é) ® (%%) = (0,0)® (1,0) ® (0,1) & (1, 1). (2.9)

This partition makes explicit the division between symmetric and anti-symmetric parts. The
symmetric (0,0) & (1,1) portion contains 1 X 1 + 3 x 3 = 10 components, while the anti-
symmetric (1,0) & (0,1) piece has 3 x 1 + 1 x 3 = 6, as expected. The symmetric piece
further decomposes into a scalar, the trace, and a traceless symmetric tensor. The simplest,
most commonly used symmetric rank-two tensor is the flat spacetime metric 7,,, which in
spinor notation is written

Naaps = €aBsp (210)
The decomposition (2.9) also illustrates the fact that any anti-symmetric 2-form can be
broken up into its self-dual and anti-self-dual components,

Fyp=-F,=FL+F; (2.11)

which, as noted before, are the (1,0) and (0, 1) pieces, respectively. The self-dual, F'*, arid ’
anti-self-dual, F'~, tensors are defined by

1
Fr=_(FFixF), where xF,= ieabchCd (2.12)

N —

is dual to Fgp, because then .
: *F% = 44F%, (2.13)

These names refer to the fact that in Euclidean signature, the eigenvalues are +1, instead
of £4. In spinor notation, this decomposition takes the form

FadﬁB = Fjﬁed[; + CQQF(;&. (2.14)

When the 2-form Fp, represents the gauge invariant field strength of some gauge field A,,
then F} corresponds to positive helicity particles, while F, gives the negative helicity states.

2.2 Super-Poincaré Algebras

Discussions of SUSY often begin by considering the Coleman-Mandula Theorem [44] from
1967. This rigourously proved theorem tightly constrains the allowed symmetry group G of
the S-matrix (whose matrix elements are scattering amplitudes). It states that given the
following assumptions:

i) (Lorentz invariance) G contains the Poincaré group, ISO(1, 3), as a subgroup,
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ii) (Particle finiteness) For any finite M, there exist a finite number of particle species
with mass < M, "

iii) (Weak elastic analyticity) Scattering amplitudes are analytic functions of the Mandel-
stam variables s and £,

iv) (Occurrence of scattering) In general, any two particles will interact to some degree,

v) (Dependance on Lie algebras) Any element of G may be obtained by the appropriate
exponentiation of its Lie algebra generators,

Then, G is a direct product of the Poincaré group and an internal symmetry group.

The Coleman-Mandula Theorem does not mention discrete symmetries, so to be precise
we should include at least CPT. To any physicist, with a basic understanding of particle
physics and group theory, the above assumptions are quite reasonable and mild. How then,
could one go beyond the symmetry group of the Standard Model whose symmetries are
G =150(1,3) x SU(3) x SU(2) x U(1)? In theories with a completely massless spectrum,
the Poincar’e group may be enlarged to the conformal group. However, quantum corrections
generically spoil this invariance so we will not consider this possibility now (though we will
- return to it at the end of this chapter). It was long thought that the only other possible ex-
tensions were to enlarge the internal gauge group, for example to SU(5) or SO(10). However,
a more profound result arises from weakening the fifth assumption. Though the best known
continuous symmetries are described by Lie algebras with their commutation relations, there
are mathematical groups called graded Lie algebras which possess anti-commutation rela-
tions.

The usual symmetries of a field theory are generated by: Lorentz transformations Jg
and spacetime translations P, and satisfy

[Jab, ch] = i(nad']bc - nachd + nchad - ndeac) (215)
[Jaba Pc] = i(nbcPa - nacpb) (216)
[P, P) =0 (2.17)
as well as any internal (gauge) symmetries each with generators 7, such that
[T, Ts) = if,,'T (2.18)
[Jab, T7] = 0 = [Py, T (2.19)

where f,,' are the group’s structure constants. The conserved quantities associated with
these symmetries are: (generalized) angular momentum, 4-momentum and any relevant
quantum numbers (electric charge, isospin, etc.). Angular momentum is not a distinct
charge as it is determined by the moment of the momentum vector Ju, = zoP — ZpP;.
A corollary to the Coleman-Mandula Theorem is then, 4-momentum and various quantum
numbers are the only possible (distinct) conserved quantities. Note that (2.16) and (2.19)

tell us that these charges transform as in the (3, 3) and (0, 0) representations of the Lorentz

group, respectively, i.e.: they are vectors and scalars.

By relaxing the fifth assumption we allow for anticommuting (fermionic) generators which
1
2

transform in the (3,0) (0, ;) representations of the Lorentz group. That is to say, we
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introduce spinor charges @4, as well as their complex conjugates Q4 ,, where A=1,...,N.
These spinor operators must satisfy the relations

{Q4, Qas} = 2(0")acPadh (2.20)

{Q2,Q8} = €npz?® (2.21)

{Qsn Qpp} = —€4pZasb - (2.22)

The antisymmetric matrices Z and Z are called the central charges and they commute with
all other charges in the theory including themselves

[Z4B | anything] = 0 = [Z s, anything] , (2.23)

in particular they are Lorentz scalars. There exists an additional internal symmetry, called
R-symmetry, which rotates all the Q% amongst themselves. When all central charges vanish,
which we will assume from now on, this extra symmetry is U(N)g. Its generators R, obey
relations analogous to (2.18) and (2.19), while their commutation relations with the SUSY
generators are

(@2, R = (Un)3Q7 | (2.24)
[@am R,,] = (Uj)ﬁaaB . (2-25)

The commutators of the SUSY charges with the Poincaré generators show that they are
constant spinors

[Q4, Pa] =0 = [Qaa, Fu) (2.26)
[Qé, Jab] = (Uab)ZQg (227)
Qi Jab) = ()@ - (2.28)

Notice that since the SUSY charges are spinors this automatically means that they do not
generate a new internal (scalar) symmetry. SUSY modifies/extends the external symmetry
group of spacetime itself into the super-Poincaré group.

It should not be surprising that the must satisfy (2.20), with P, on the right hand side,
as it is the only possibility. After all, the Q and @ charges are conserved, thus their anticom-
mutator should be as well. Since the left hand side transforms in the (3, 1) representation
so should the right hand side, and the Coleman-Mandula allows for a single such conserved
quantity, namely F,. Similar, though more involved arguments hold for the remaining rela-
tions in the SUSY algebra, and are given in [41]. We may also realize why spin %, that is
(1, %) GB(%, 1), generators were not considered: their anticommutators would lead to a spin 3
conserved charge which cannot exist. In 1975, Haag, Lopuszanski and Sohnius proved that
the graded Lie algebra given in (2.15)-(2.28) is the unique extension to the Coleman-Mandula
case obtainable by allowing fermionic generators [45]. Without convincing physical reasons

to further weaken the assumptions of the Coleman-Mandula Theorem, one could claim [41]:

Supersymmetry is the only possible extension of the known spacetime symme-
tries of particle physics.
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2.3 N=1 Supermultiplets

We will now incorporate SUSY algebras into quantum field theories. Later chapters will

. only require the understanding of massless SUSY field theories, so the massive cases will

not be addressed here (for more on these, consult the references). This section will develop
the formalism for A/ = 1 SUSY theories, and a latter section will address extended, N > 1,
cases.

To classify massless fields with energy E, we boost to the lightcone frame where P, =
(E,0,0, F) so that

{Qu 0y} = 4E ( N ) - (2.29)
By rescaling the charges we can define the annihilation and creation operators
1 _ | R
aaEmQa , adEde, (2.30)
which satisfy
{ai,@;} = 61:01; {ai,a;} =0={a;,q;} . (2.31)

Thus, M = 1 field theories possess a single ladder algebra, {a;,a;} = 1, for building Foch
spaces. Suppose |); > is a spin j state which a; annihilates. To be precise, as we are only
considering massless states, | 2; > should be a state of helicity j; we will often use the two
terms synonymously. Then, its Foch space is 2-dimensional:

|Qj > and Ell Qj > . (232)

No other states may be built from |, > since there exists a single anticommuting creation
operator. Since @g, like Q4, is spin 3, the state @;|Q; > will have spin j + 1. Thus, we may
conclude that an irreducible massless N=1 multiplet contains exactly one boson and one
fermion, both of which are massless®. For SUSY to hold, we will always require an equal
number of bosonic and fermionic degrees of freedom. This must be so if there is to be a
Bose-Fermi degeneracy. By CPT, there must also exist a similar pair of massless states with
opposite helicities (—j, —7 — %) So in general two irreducible massless N = 1 multiplets will
pair up giving four states with helicities (5,7 + 3, —j — %, —7).

e Superspace and Superfields

A convenient method of packaging N/ = 1 multiplets is achieved through the use of
superspace. This technique adapts well for ' = 2 but not for more supersymmetries, nor is
it useful in d > 4. Superspace, or more precisely N = 1 rigid superspace (rigid since we are
considering global SUSY), is the fermionic extension of four-dimensional spacetime. To the
usual four bosonic dimensions of spacetime, 2%, we add four fermionic dimensions #* and 8,

T — (3%,6%,04). (2.33)
Being fermionic, the new Grassman coordinates anticommute

{6%,6°} = {85,605} = {6*,8:} = 0. (2.34)

3Had we considered massive fields, we would have found {ai,a;} = 6&;;, thus, there would exist two
independent ladder algebras and therefore twice as many states in the Foch space.
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However, the combinations 6°Q, and 84,Q" are bosonic and so may be exponentiated to
obtain a finite translation in superspace. Analogous to how momentum operators generate
spacetime translations, SUSY generators lead to superspace translations. A general transla-
tion would be given by

G2, 6°,8,) = e Pat07Qut0T") (2.35)
or infinitesimally as
(z%,6%,05) — (2% + € + 100°€ — i£0°0, 0%+ £, 0, +E,) . (2.36)

Notice that an infinitesimal translation by £* in the fermionic directions induces a change
in the bosonic spacetime. This implies that the differential operators for the SUSY charges
are not J, and J4 but rather

Qo = 0o—i(0°0)abs (2.37)
Qs = —0a+1i(00%)ab, . (2.38)

In fact, the “extra” terms in the differential operator expressions for @, Q are essential to
ensure that the relation {Q,Q} ~ P holds true. So, while the rigid superspace we’ve been
dealing with has zero curvature there is a non-zero torsion present. To compensate for this,
we introduce covariant derivatives

Dy = 04 +1i(0%6)a0, (2.39)
Dy = —04—i(00%)50, (2.40)

which only differ from the SUSY generators by a relative sign. One could also check that
the covariant derivatives anticommute with the SUSY charges.

{Da,Qs} = {Da, Qs} = 0 (2.41)
{Da,Qa} = {Da, @3} =0, (2.42)

which will be important later. Their own anticommutation relations are the same (up to a

sign) as the SUSY charges’ o
{DaaDﬂ}:OZ{DdaDﬁ'} (243)

{Da, Da} = ~2(0%)as Pa (2.44)

A general superfield is a function written over all of superspace, and so by definition
is a SUSY invariant object. The superfields of interest to physicists are the ones which
transform irreducibly under the SUSY algebra. Since the Grassman variables of superspace
anticommute, a general function on superspace ®(z,6,8) can be Taylor expanded in the
fermionic variables into a sum which necessarily terminates:

®(z,0,0) = ¢(z)+0(z) + Ox + 02F(z) + 8°G(x) (2.45)
+ 00°9A,(z) + 6%0N(z) + 0 0p(z) + 6%9°D(z) (2.46)

where the summation over spinor indices is left implicit. This most general (scalar) function
on superspace, however, is not an irreducible representation of SUSY. To see this, note that it
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contains: complex scalars ¢, F, G, D, lefthanded fermions 1, ps, righthanded fermions %, A%
and a vector A,. As we’ve already discussed, the massless SUSY irreducible representations
have fields of spin (j,j + 3) which is smaller then what we found for the general scalar
superfield ®. To obtain irreducible representations, we must impose constraints on the
superfields. These constraints must (anti)commute with the SUSY charges to ensure the
constrained superfields are SUSY invariant as well.

e Chiral Superfields

The first constraint we will impose is the chiral superfield (xsf) constraint:
Ds® = 0. : (2.47)

As we already noted, D, anticommutes with the SUSY charges, so this is an allowed con-
straint. It is easy to check that 6 and y* = z® + i60°8 are both annihilated by Dy, so any
function ® = ®(y, ) will be too. The general ysf is

O(y,0) = o(y) + V20y(y) + 6*F(y)

= ¢+100%00,¢ + 202528% + V201 — éezaﬂpoa@ +8°F (2.48)

Under an infinitesimal superspace translation £* the component fields transform as
Sep = VY
Seba = V2%aF +iV2(0°8)alad (2.49)
(55F - —i\/iaawaaz .

So xsf do indeed transform into themselves under SUSY.

A xsf only contains the complex scalars ¢, F' and the lefthanded Weyl fermion v, and
therefore only spins 7 = 0, —;—, consistent with the restrictions on irreducible representations.
However, we noted earlier that massless N'=1 irreducible multiplets contained only one boson
and one fermion. The reason for this was that when we boosted to the particle’s lightcone
frame we were assuming the fields were on-shell. What we have derived is the off-shell xsf
multiplet. Off shell, it contains 4 (real) degrees of freedom for both bosons and fermions. It
will always happen that the F field is auxiliary (non-propagating). On shell, the multiplet
reduces to {¢, .}, each with 2 degrees of freedom (as we expect for complex scalars and
massless (on-shell) fermions). Though the F field is not physical, it is necessary to preserve
SUSY off-shell.

One can analogously define anti-chiral superfields, ¥sf, subject to

Do®=0. (2.50)

These must be functions of  and 7* = 2% —i60*0. Since (in Minkowski space) D* = D, if ®
is a xsf, then @ is an Ysf. Note that for xsfs ®¢, & + &/ and ®'®J are also xsfs, but &'+ &
and ®® are not. ysf and Ysf are the SUSY analogues of matter and anti-matter fields,
and by CPT they must come in chiral/anti-chiral pairs. The fermionic fields are thought of
as the standard matter fields (quarks, electrons, etc.), while their superpartner scalars have
been dubbed sfermions and have names like squarks and selectrons.
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e Abelian Vector Superfields

The next superfield we shall consider is the vector superfield (Vsf) V, which obeys the
reality condition .
V=V. (2.51)

The most general superfield which obeys this constraint is

V = B+0x+0x+62C+8C —00°0A, +

+ 02003 + %a@ x) — 0 6(\ — %aaaax) + %9252(1) +6°B), (2.52)

where B, D, A, are real and C is complex. Under a translation in superspace by &%, the
Vst’s components vary by

B = &X+EX
deXa = 26,C 4+ (0%€)a(i0,B + A,)
5C = Bt

beha = E0uX+ Ao + 2 (600X — DuXE) (2.53)
Seha = 26aD = 5Ea0"Au +i(s"E)adeC
6D = 20a(A0"E+E0"N),

so Vsfs are indeed scalars under SUSY as well.
The presence of the vector A, suggests that Vsfs should possess a gauge symmetry. The
supersymmetric generalization of a regular gauge transformation is

~

V—V+i(A-A) (2.54)
where A is an arbitrary xsf

V2

The Vsf’s components transform under this gauge transformation as

A = A+ V20p + 0°Fp +i00°09,A + — 0750, + i029262FA. (2.55)

B = i(A-A)

Sax = V2

6pC = iFy

oade = O, (A+A) (2.56)
A = 0

(5AD = 0.

In particular, the vector field A, transforms correctly with respect to the gauge parameter
Re(A). This supersymmetric gauge invariance is, however, larger than standard ones as it



Chapter 2. Supersymmetry 13

possesses the additional gauge parameter Im(A). In this case, with only a single gauge field,
the full gauge group is U(1)c, rather the usual U(1)g. In general, the gauge group G of A,
is complexified to G¢ for the corresponding Vsf.

One can determine by inspection that the B, x and C fields are all gauge artifacts and
may be gauged away. This is attained by fixing Im(A),iyp and Fj to cancel them, and is
called the Wess-Zumino gauge. The WZ gauge fixed Vsf is written

Vivz = ~60°GA, + 678X — B°6M + 6D, (2.57)

though from now on we shall not include the WZ subscript. In addition to reducing the
number of fields, the WZ gauge also has the advantage that

1
&/ =1+V -2 620" A2, (2.58)
as V3 = 0 in this gauge. The finite form of the gauge transformation (2.54) is then
eV s iV el (2.59)

Notice that Re(A) is left unaffected by fixing to the WZ gauge, thus the vector field still
has its usual gauge freedom. In effect, the WZ gauge breaks G¢ down to the standard gauge
group G. The disadvantage is that SUSY is no longer manifest in the WZ gauge. Also
note that (2.56) says that the A and D fields are gauge invariant, though they are not both
physical. As before, there is an auxiliary scalar field, D, which is necessary to continue the
Vst off-shell. In this case, the extra scalar field is real and when combined .with the massive
vector particle produce an equal number of degrees of freedom as the massive fermion. On-
shell, the physical degrees of freedom of the Vsf are the massless fermion A\, and the gauge
boson A,. The on-shell Vsf has fields of helicities (-1,—%,%,1) and so is already a CPT singlet.
The vector fields are interpreted as standard gauge fields, in this simple example A, is the
photon, while their fermionic superpartners are called gauginos, in this case X is the photino.

One would like the analogue of a gauge invariant field strength for the Vsfs. This is
another irreducible representation of the SUSY algebra, called the field strength multiplet,
and it has the same field content as the WZ gauge fixed Vsf. It is given by the field strength
superfields

1— — 1 _,—
W, = —ZD2DQV . Wa=-7D"DsV (2.60)

which are indeed invariant under the supergauge transformation (2.54). Let’s check this for
W,:

SAWa o D'Do(A —A) = D*D.A = Dy {D*, Do}A (2.61)
x Ed(a“)gPaA = (a“)gPaEdf\ =0,

where we’ve used the facts that the the DA =DA = 0, {D,D} ~ P, and [D, P] = 0. The
superfields W, W are also xsf and ysf, respectively:

— 1—
DaWa = =7Da(DD)DaV =0, (2.62)
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since the D anticommute and have only two components, thus D’ =o. They are not,
however, general (anti)ysfs, as they also satisfy the Bianchi identity

D°W, = D W, (2.63)

We can still expand them as functions of y or § and, by taking V in WZ gauge, the definitions
(2.60) imply

W, = —ida(y) + 02D(y) — %(aaﬁbﬁ)QFab(y) + (0“0 (1))a (2.64)
W =ida(§) +0:D(7) = %(aaaba)dFab(ﬂ) +8°(T0uND))a (2.65)

where F,, = 8,A, — OyA, is the gauge field strength. Notice that o°G°F,; projects F onto
F*, its self-dual (1,0) portion. Thus, W, contains the self-dual field strength, while W
contains the anti-self-dual piece.

e Non-Abelian Vector Superfields

Everything we have discussed so far generalizes to non-Abelian gauge fields. Many of the
details are rather complicated, so we will suppress them here, however the final results are
quite similar to the Abelian case above.

First, we define the non-Abelian Vsf and gauge parameter ysf as

V=TV" | (2.66)
A=T.A", - (2.67)

where the matrices 7. form the Lie algebra of some gauge group G and obey the commutation
relations (2.18). The finite gauge transformation of the Vsf is the same as in the Abelian
case B} )

eV —s e7eVelt (2.68)

however the infinitesimal form is more complicated, as one might expect for non-commuting
fields. Fortunately, a WZ gauge exists for these fields which, again, breaks the supersymmet-
ric gauge group from G¢ down to G, however, the remaining gauge parameter is no longer
Re(A) but rather

Awz = (1 + 6050, + %929262)1%@) . (2.69)
In WZ gauge, we again find
an ‘N2 ._2 1 2—2
Vwz = —00%0A, + 070X —i0 60X + 50 6D, (2.70)

though now the fields are matrix valued and transform in the adjoint representation. Having
fixed WZ gauge, the remaining non-Abelian infinitesimal gauge transformation is

?
2

V—V4+i(A—A) - 2[(A+A),V], (2.71)
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where we have once again dropped the WZ subscripts. Componentwise, this transformation
reads

SaAL = Ou(A+A) + fr AS(A+ A
AN, = frAL(A+A) . (2.72)
AD" = f,D(A+A).

The gauge invariant non-Abelian field strength ysfs are defined as:
1— — 1 —
W, = —ZDze‘VDaeV, Wo=~7D%"Dsc™ . (2.73)

Note that, for Abelian gauge fields this definition is equivalent to (2.60). Under a finite
gauge transformation, they transform in the correct covariant manner

W, — e~ AW, et . (2.74)
and similarly for W,. Expanded into functions of v, the field strength superfields are
Wo = =2a(y) + 0oD(y) — (0%8) o Fop + 62(6°V A (1))a (2.75)

where Fo, = 0,4, — Oy A, + i[A,, A is the Yang-Mills field strength and V, = 0, + i[A,, o]
is the Yang-Mills covariant derivative. As always, W is obtained by taking the hermitian
conjugate of W,. '

2.4 N=1 Supersymmetric Actions

Actions for superfields must be invariant under all the symmetries of the theory: Poincaré,
gauge, CPT and of course SUSY. To keep matters simple, we will also impose the constraint
that our theories be renormalizable in four-dimensional spacetime. Satisfying the symmetry
requirements is quite straightforward: we build Lagrangian densities from gauge-invariant
scalar objects made of superfields, always pairing ysfs with sfs, and integrate over super-
spacetime.

Using only ®* and 51, the simplest Lagrangian one can construct is
Ly = /d4a: do ,;9° (2.76)

where d*0 = d?0d?d. The subscript KX here stands for Kdhler, and in its most general form
the integrand is an arbitrary function K (51, @) called the Kihler potential. Recall that
Grassman integration is the same as differentiation, so the fermionic integral picks out the
629" component. With some straightforward manipulations we find,

Ly =FF' — 0,0,0°¢" — ith,5°0,9" . ~ (2.77)

As promised, the F fields have no propagators so their Euler-Lagrange equations read F* = 0.
This simple Lagrangian describes a set of identical free massless complex scalars and Weyl
fermions, which we know to be mixed under SUSY transformations.
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We can add interactions to this by including a superpotential W(®*) + W(@l) Being

(anti)holomorphic functions (functions only of ®* or 51), superpotentials must be integrated
over the appropriate half of superspace to give non-zero contributions. The most general
renormalizable superpotential is that in the Wess-Zumino model, given by

Ly = / 4?6 (19" + my; @' P + g;; P PIDF) + cc (2.78)
, . . 1 . 1 o
= (v +mi¢’ + gipd’d") F* — §mz’j¢z¢] - 59ijk¢zw]¢k + cc. .

One can again solve the F fields’ equations of motion (including the Kéahler term) and
substitute the solutions into the above superpotential to obtain

- 1 A | oo
Ly =V(p,¢) — Emz‘jWW - _2‘gijk¢l¢]¢k + cec., (2.79)
where the scalar potential is

W(¢)

d¢ | |vi + ¢ +9ijk¢j¢k|2 . (2.80)

V.9 -]

A remarkable result about superpotentials, whose derivation will take us too far off course
here, is that they receive no perturbative quantum corrections. That is to say, the superpo-
tential is exact and un-renormalized to all orders in perturbation theory!

The Kéhler potential in (2.76) is too simple for us, as it is not a gauge invariant quantity.
Under a finite gauge transformation, xsfs in the representation R of the gauge group G
transform as

Bfy — (e hR)idS T, o Ty, (eR)] (2.81)
where the gauge parameter ([XR); =A" (Tr); We also write V;' = V" (Tr);, with the genera-

tors (T,)j- in the same representation R. Then according to (2.68) the quantity

K' =3, (") & (2.82)

J

is gauge invariant and the kinetic terms for the ysfs is now

1l

L / d'0 T; (V) & (2.83)

= | = |V - @07 (Va9 — SN, —FXw) + D

where the Yang-Mills covariant derivative in a general representation is

(va); = aa(sj' - ZA; (,TT)2 (284)

i

Of course, the Vsf requires its own kinetic terms and they are given by the super-Yang-Mills
Lagrangian

Lsym :T/d20 TTW*W, + c.c (285)
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where the complex gauge coupling 7 contains both the Yang-Mills coupling ¢ and the theta-
angle 9:

1 9
= — , 2.
TT 4 T 3on2 (286)
After integrating over superspace the field strength Lagrangian becomes
L Ly (“lmret —ino* v X+ 202} 4 2 Tv Fy 5 F (2.87)
= — —=Fy — A0V, = — a . .
SYM = o5 Tl 5 3972 b

We can again solve for the auxiliary fields D, appearing in both the gauge invariant Kahler
and field strength Lagrangians, and find a new term in the scalar scalar potential

Ve = |20 1 £ (Gmie) (289

Putting all this together, the most general renormalizable A'=1 supersymmetric La-
grangian is the Yang-Mills-Wess-Zumino Lagrangian

S = Skgr+Sw+ Ssym
= / d*09;(e”):®7 + ( / 420 [1,®" + My ®'D + gD PID* + 7 Tr WOW,] + c.c>

1 1 ab . a By v ab 44 T —a i3
= ?Tr (—ZFabF —iXo Va)\) + 355 1F Fap ¥ F = ‘(Va)jw‘ = 1h,6* (Va); ¢/

+ (%Ei)\;zpj + myb" ! + gird It + c.c.) (2.89)
j k2, 9 (7 i )2
+ lVi +mi; ¢’ + gijed’ & | + 3 (¢i (T2); W)
A remark should be made that the couplings are gauge invariant only if [43]

mij(Tr)fc + mij(Tr))i =0
9ie(T)i + Gir(T)5 + gesn(T); = 0 (2.90)

V; (TT ); =

The first of these constraints implies m;; # 0 & R; = Rj, the second that g;;x # 0 &
R, x R; x Ry, contains the singlet, the last equation requires that the coupling v; # 0 & R;
is the singlet.

2.5 Extended Supersymmetry

Recall that the A'=1 (on-shell) massless multiplets contained two fields with spins (j, j + 3).
With A SUSY charges, we have more raising operators so we may build a total of 2V states
of the form @i4,a14, ...T14,|; >, where n =0,1,...,N. Thus, fields of helicity j + & will

be ( j7\1/ >—fold degenerate.‘
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An important feature of extended SUSY is the enlarged R symmetry. The mixing of
the SUSY charges under U(N )y implies that the components with common helicities must
transform in some representation of SU(N'). Essentially, the extra U(1)g factor continues
to act as in the N'=1 case, by assigning an “R-charge” to the components and rotating each
component into itself. This U(1)g must be present as every extended SUSY group contains
N'=1 subgroups*. Because of this structure, every supermultiplet can be decomposed into
its N'=1 components which must mix correctly under SU(N)r. We use this property to
classify extended SUSY multiplets below.

In principle, one may construct SUSY algebras for any A, however physical constraints
place an upper bound on this number. On general grounds, massless particles of spin j > 1
must couple to conserved charges of spin j — 1. Thus, spin-1 gauge fields couple to scalar
charges; the spin—% gravitino couples to the SUSY charges Q4; and the spin-2 graviton
couples to the momentum vector P,. Since angular momentum is given by the moment of
P,, Jo = 2,P, — 1, P,, no additional (higher spin) fields are required to couple to it. A
corollary of the Coleman-Mandula Theorem is then: there are no interacting massless fields
of spin> 2. These observations imply that A'=8 is the largest number of SUSY charges
physically possible. An A'=8 multiplet will contain states with all helicities from -2 to +2.
For theories without (super)gravity A'=4 is the maximal amount of SUSY possible, as the
gravitino must always appear in a multiplet with the graviton, and the helicities will then
range from -1 to +1.

e N=2 SUSY

We begin by examining the simplest extended supersymmetric theory which contains two
supercharges. In N'=2 SUSY, there are two types of multiplets possible: vector multiplets
and hypermultiplets, whose lowest spin states are are j = 0 (or -1) and j = —%, respectively.
The N'=2 Yang-Mills vector multiplet is composed of an N'=1 Vsf V = V"T, and an N'=1
xsf ® = ®"T, in the adjoint representation of the gauge group G. The on-shell states of
this multiplet are: gauge fields A} and complex scalars ¢", which are SU(2) singlets, and an
SU(2) doublet of fermions (A7, 47 ), along with their C PT conjugate partners. The relations
between the various components is displayed in Figure 2.1. This multiplet is governed by the
Lagrangian (2.90) with a vanishing superpotential (1; = m;; = g;;x = 0) as required by the
(A, ¢) SU(2) symmetry. In particular, the possible interactions involve gauge fields through
covariant derivatives Tr ([A,, ]), and scalars through the Yukawa couplings Tr (¢ - [, ¢])
and quartic self-interactions Tr ([, 5])2

N=2 theories may also contain a matter sector and this is given in terms of the hyper-
multiplets. Each of these multiplets are built from a xsf ®”* and a distinct Xsf 3" (different
from 6’2). We use the primes to distinguish these superfields from the N'=2 vector compo-
nents ®. The on-shell field content is: two SU(2) fermion singlets 1%, ¥, and an SU(2)
doublet of complex scalars (¢, ¢"*), together with their C PT conjugates. The realtionship
among flelds is also summarized in Figure 2.1. When coupled to A'=2 gauge fields, the
hypermultiplets may appear in any representation of the gauge group G provided R’ = I
The only superspotential which respects the SU(2)g symmetry is

W (9", @",87) = " (87),; & + m;; "™ . (2.91)

4The case of N'=4 is exceptional, as the action of the extra U(1)p is in fact trivial
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/\ /\

Ao e R — — R —
S@\ /@1 % _,/@1
¢ Va

Figure 2.1: The relations among the components of the N =2 vector multiplet (left) and
hypermultiplet (right)

e N'=4 SUSY

Our main concern with extended SUSY theories will be the N'=4 case. As mentioned
previously, this is the maximally supersymmetric field theory possible (without gravity) and
it contains a unique multiplet. N=4 super-Yang-Mills (SYM) can be considered as a sector
N'=2 theory, with an N'=2 vector multiplet coupled to a hypermultiplet in the adjoint rep-
resentation. In terms of N'=1 components, the N'=4 vector contains a Vsf and 3 ysfs. Its
on-shell spectrum consists of a gauge field A,, 4 left-handed fermions %2, and 3 complex
(or 6 real) scalars ¢4P plus their CPT conjugates. These fields transform in the singlet,
fundamental (4), and anti-symmetric tensor (6) representations of SU(4)g, respectively.
Symmetries dictate that right-handed fermions v 4 transform in the anti-fundamental rep-
resentation (4), and the scalars obey the reality condition ¢A8 = x¢4P = Le48 Py, The
SU(4) symmetry of the fermions ¢4 forbids a mass term in the N'=2 superpotential and it
imposes the equality of all couplings (except ¥). Furthermore all fields are matrix valued
and transform in the adjoint of G. Thus, symmetries fix the Lagrangian to be

1

1 920
Ln=a=5Tr <—ZFabF“b I Fop  F — 40"V, — |Vag*B |

327
- VERe (Bas - WA 07 + 5007 6P)) 29D

We have not mentioned AN'=3 in our discussion so far for a simple reason. In non-
gravitational theories, N'=3 SUSY is the same as A'=4. Consider what an A'=3 multiplet
might look like, a quick count reveals there would be: a positive helicity gauge field A}, 3
righthanded fermions 4%, 3 complex scalars ¢**# and a lefthanded fermion 1= (which must
be distinct from the other 1)4). When combined with their CPT conjugates this multiplet
is exactly that which appeared in the A'=4 case. Further analysis would reveal that the two
theories are in fact equivalent. Of course, there are N'=3 supergravity theories which are
distinct from their N'=4 cousins. However in acquires the fourth one “for free”.

2.6 Superconformal Algebras

In a massless theory, with dimensionless coupling, the spacetime symmetry group must be
extended to include conformal transformations (at least classically). This enlarged symmetry
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group includes, in addition to the Poincaré group, dilations D : z* — tz* and special
conformal transformations K, : z* — % The transformation properties of K,
may seem peculiar, however they insure that inversions ¢ — z%/z? are included in this
group. The indices on the new generators D and K, suggest that they are scalar and vector
operators, respectively, and indeed they are. Their behaviour under Lorentz transformations

are identical to (2.16) and (2.19) with T, « D and P, < K,. Their remaining relations are

[D,K,| = —iK, , [D,P,] =P, (2.93)
[Pa, Kb] = QiJab - 2i17abD (294)
[K., K, =0=[D,D]. (2.95)

We refer to the eigenvalues of the D commutation relations as (i times) the scaling dimension.
Thus, the dimensions of D, P,, K, and J,, are 0, +1, —1 and 0, respectively.

The number of fermionic generators must also be increased when passing from the super-
Poincaré to the superconformal group. We must include the superconformal generators S4,
which are in a sense complimentary to the Q4 in a similar manner to how K, is complimen-
tary to P,. In minimal SUSY algebras we have {Q,Q} ~ P, the S4 obey the analogous
relation

{52, 8a8} = —2(0")aaKal - (2.96)

As P, and K, have opposite scaling dimensions, so too do @4 and S4:
[D, Q%) = %Qﬁ , [D,S4= —%Sfj : (2.97)

For completeness, we list the remaining (anti)commutators of the superconformal group in
the Appendix.

Usually, conformal symmetries are only valid classically since so-called trace anomalies
tend introduce a scale dependance at the loop level. However, a most remarkable fact about
N=4 SYM is that it is an exactly conformal theory, even at the quantum level. To see
this, note that in general the strength of the gauge coupling constant is governed by the
renormalization group coefficient

3

Blg) = —Zgﬁ (%CI(G) - é Z C{(R) - 1—12 > c;(Ra)) (2.98)

where the sums are taken over fermions in representations R; and complex scalars in R,.
The C; are the Casimir operators for the representations R;, R, and G (adjoint). Since the 4
fermions and 3 complex scalars of A'=4 SYM all transform in the adjoint, then C{ =C; =
C1(G). The one-loop f-function is then

@ (11 4 3\ _ ’
5(9)“‘@ (E—é—ﬁ)-— . (2.99)

Although this is only a one-loop result there are theorems, similar those asserting the non-
renormalization of the superpotential, which protect the coupling constant from further
perturbative corrections beyond one-loop. Thus, the A’=4 theory is (super)conformal and
the gauge coupling does not vary with momentum scales.
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Chapter 3
MHYV Amplitudes and Twistors

3.1 MHYV Amplitudes at Tree Level

Consider a general Yang-Mills theory with an unbroken SU(N) gauge group in four dimen-
sions, with or without supersymmetry, and a coupling constant g,,,. If all the fields are
massless, then n-particle scattering amplitudes are functions of: colour labels, a;, external
momenta, p; and helicities, h;, for ¢ = 1,...,n. The full amplitude, A,,, can be decomposed
as a sum of kinematic partial amphtudes An, multiplied by an approprlate colour factor,
T, with an overall momentum conservation,

An(aiapia hz) = 7'g 27T 45(4) (ZP) Z T aa(z) pa(z)) ha ) (31)

oeSn/Zn

To ensure Bose symmetry, the sum is taken over all non-cyclic permutations of the n external
particles S,,/Z,, as the partial amplitudes themselves are cyclicly invariant. The colour
factors are easily determined, for example, at tree level with all particles in the adjoint
representation its simply a single trace of generators: T,, = Tr(T,, ...T,,). The difficulty
lies in computing the partial amplitudes.

We will focus on tree level amplitudes, with all particles defined to be incoming. We use
the notation g;* to denote the i gauge boson (henceforth referred to as gluon) with on-shell
momentum pi, = /\LXQ and helicity h; = +1. When all or all but one particles have the
same helicity, then the amplitude is identically zero, -

An(gi’_,g;; e ’g‘;:,_) = An(gl_’g;’ et ’g’;) = O
An(gi-’g;)""g’;t.) :An(gi}_3g{"'l"g;) :0 * (3'2)

The simplest non-trivial (partial) amplitudes are the Parke-Taylor amplitudes [1] where all
but two particles have the same helicity, hence their alternate name - maximally helicity
violating (MHV) amplitudes. Writing the momentum vectors in the spinor basis outlined
in Section 2.1, the MHV amplitudes take an exceptionally simple form. To further simplify
notation, we write spinor products

QoAy=G5)  and DA = [k 4 (3.3)
With this shorthand, the MHV amplitudes for the “mostly plus” case are
4
_ rs
An(gr ags ) = < > (34)

[T (€ e+ 1)

where the gluons in the r and s positions (1 < r,s < n) carry negative helicity, while the
remaining n — 2 (which are suppressed on the left hand side) carry positive helicity. Also,
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we cyclicly identify A,41 =~ A; throughout this thesis. The “mostly minus” Parke-Taylor
amplitudes shall be referred to as MHV, though they are also called googly, amplitudes.
They may be obtained from the MHVs by the simultaneous parity transformations + « —
and complex conjugation (i j) « [i j], yielding

An(gf,9h) = I o

VA S (3.5)

(where now the negative helicity gluons are suppressed on the left). Henceforth, positive
helicity gluons will usually be left implicit when denoting “mostly plus” amplitudes, and
similarly for the “mostly minus” cases.

The case of n = 3 is slightly exceptional as the MHV amplitudes only contain one gluon
of opposite helicity. These amplitudes vanish when on-shell, as expected. For instance,
consider the amplitude

AT 95.98) = 75 2 (3.6)

233 1)

To demonstrate the vanishing of this amplitude, suppose only the first two gluons are mass-
less, then by momentum conservation

pi=(p1+p2)’ =2p1-py=(12)[12] = [(12)]%, (3.7)
since for real momenta in Lorentzian signature, Xz = +),. So,
p3=0<= (12)=0, (3.8)
thus, in the limit where all three particles go on-shell

As(97, 92+ 95) 7= 0. (3.9)
Similar arguments hold for helicity configurations. One issue that deserves attention is the
fact that all factors p; - p; o (i j) vanish for on-shell 3-point functions. Fortunately, the nu-
merator of such amplitudes is of higher order than the denominator, so no singularities arise.
Off-shell continuations of 3-point (and higher) MHV amplitudes will be used considerably
in the coming sections.

3.2 Conformal Invariance and Twistor Space

The CSW rules were motivated by [9], where Witten first noticed that Yang-Mills amplitudes
are supported on algebraic curves in Penrose’s twistor space. Along with suggesting a new
approach to perturbative calculations, this work reveals a deeper structure of gauge theory,
and so is doubly deserving of our attention. Here, we’ll review the relevant points of Sections
2 and 3 of [9], readers interested in the details and its interpretation via topological string
theory are referred to the original paper.

A renormalizable (unbroken) SU(N) gauge theory contains only dimensionless param-
eters at tree level, and so should be invariant under all conformal transformations. For a




Chapter 3. MHV Amplitudes and Twistors 23

massless field, we may write the generators of the conformal group in bi-spinor notation:

i 0 0 ~ i ~ 8 ~ 0
Jaaﬁﬂ ()‘ a)\ﬂ + )\63)\0‘) €48 ) Jd[; = §6a5 (/\aﬁ + )\ﬂ%>
~ 2
Pad = /\a)‘d ) Kad = a ~. (310)
Oa g% .
D—g()\m + )\6:\,&+2>.

For n massless particles, we sum all n generators, so Ppg = >, P, = Y. A Xi etc. Given

1o’ an
that A, A have scaling dimension 3, (e —i[D, )] = —i[D, N = 1), we see that J, P,K,D
all have the proper scaling dimensions of 0,41, —1,0, respectively. The inhomogeneous
factor of 2 in the definition of D is necessary to produce the correct commutation relation
[Pag, K, 5] = i(Jaa,e/a - Jaaﬁﬁ + eaﬁedﬁD)'
Physical quantities in conformal theories (such as classical Yang-Mills) must be annihi-
lated by the above generators. As an explicit example, we will follow Witten’s demonstration

[9] that MHV amplitudes

ey Ag)
MHY 2 4 4 1y L) )
A = igph2(2m)4s ( E AL Y ) —1 T O hrn) (3.11)

are in fact annihilated by all the generators of the conformal group. Note that Poincaré
invariance is evident as these amplitudes contain a momentum conserving delta function
and the remaining terms (A, \') are Lorentz scalars. Thus the non-trivial checks are the
annihilation by D and K.

First, we consider the action of D. The delta-function has scaling dimension -4, which
precisely cancels the +4 contribution from (r s)4. So the numerator is annihilated by D.
The denominator is as well since it is homogeneous in each A; of degree -2 which cancels
the +2 inhomogeneity in the definition of each D!. So MHV amplitudes are invariant under
dilations.

We will now show that Ko AMHY = (. Write AMHY = §4(P,4)A(N;) and recall P,y =
S A X%. Since OA/8X = 0, then by using the chain rule we find

T a’ ot

82
Kad-A = ~_.A 3.12
2 5o 1

_ 0 82 4 0 4 1 8‘4()\")
_ ( <n%+pﬁﬂm> ; (Pad)> 4090+ (50-5"(Pa)) S 2000

Using the Lorentz invariance of A, we can replace

Z A[,(w 5ﬁ Z /\78/\1 —(n—4)53A . (3.13)

We may also replace

6*(Pas) » (3.14)
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as the two distributions are equal (this is easy to check by integrating some test function by
parts). Upon making these two substitutions, we realize that the right hand side of (3.12)
vanishes, as required.

Minkowski space is a redundant setting in which to formulate conformal field theories
because both the background and the field theory are scale invariant. It seems natural to
look for a space where this scale invariance has been divided out, leaving a more appropriate
background for the theory. Mathematicians have long studied such spaces and collectively
call them projective spaces. We shall be particularly interested in two of these spaces: RIP®
and its complex cousin CP?, which Penrose named twistor space [49], or more precisely
(complex) projective twistor space, denoted IPT.

For those unfamiliar with projective spaces, consider regular 3-space with one point (the
origin) removed, R?\ {0}. Next, “squash” every point radially onto the unit sphere, i.e. map
R3\ {0} — $? via
z
|z
Finally, identify antipodal points with each other, & ~ —z’; this new space is RP2. To
construct other projective spaces, like RP" or CP", follow the same procedure beginning
instead with R™"! or C"*! (and mod out an overall phase as well in the complex case,
instead of just £1). Equivalently, RP" (CP") is defined as the space of (complex) lines in
R™*! (mathbbC™) which pass through the origin.

While MHV amplitudes are holomorphic functions, that is functions of the A; and not
their conjugates );, a generic amplitude is not. Thus, an arbitrary n-point amplitude is
parameterized by n spinor pairs (Ay, A¢). Nalvely, one might suspect that to encode these
functions in twistor space, which is CP?, one simply takes the four (possibly complex) values
in each spinor pair as the coordinates of a point in PT, so n-point amplitudes are defined on
IPT". The process is, however, slightly more subtle. As in [9], first we must Fourier transform
half the coordinates 3 5

/\d—->’1;'——. —f—— — & - 3.16
B e M (3.16)

T—T =

(3.15)

This transformation, the so-called twistor transformation, leads to a more natural repre-
sentation of the conformal group than (3.10). Instead of the generators being a mix of
multiplication operators, and differential operators of degree one and two, the twistor trans-
formation convert all the generators into first-order homogeneous operators. In particular,
the two vector operators, Pp and K,s, now appear on equal footing

0

: .0
Pad = Z/\aa_/J,d Kozd = ’L/l,dm (317)

and the inhomogeneous term in D is no longer necessary

i, 8 .0
D——é‘(/\aa—/\a—ﬂ a#d) . (318)

The Lorentz generators are unaltered in form: J(A) — J(A), J(A) — J(u).
A (null) twistor, then, is a point in PT with coordinates Z4 = (A%, uy), which corresponds
to a null vector in Minkowski space Vs = AgAg. Since the null vector V is invariant under
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the simultaneous rescaling

A=zA |, Ao =X, (3.19)

™

for z € C*, then the twistor variables A, i will have the symmetry

(A% a) ~ 2(A% pia) - (3-20)

We recognize this as the symmetry of CPP?, so we are justified in associating twistor space
with this projective space. For an introduction to twistor theory see [50], or the recent review
[51], for a more comprehensive examination of the subject see [52]. -

3.3 Twistor Transformed Amplitudes

Before going further, let’s pause and examine this twistor transformation. Note that we
have (arbitrarily) chosen to transform the righthanded spinors over the lefthanded ones,
apparently breaking parity symmetry. The repercussions of this choice are that amplitudes
with fewer negative helicity gluons will be simpler to compute, while their parity conjugates
(like MHV amplitudes) will be more cumbersome. Also, recalling that for real momenta
in Minkowski space A= 4+, one may wonder exactly how to Fourier transform only the A
without affecting the A. The simplest solution is to Wick rotate to the signature (+, +, —, —)
where A and A are both real and independent. This is the signature used whenever Fourier
transforms to twistor space are discussed in this work.

The claim of [9] is that amplitudes involving ¢ negative helicity gluons with £ loops are
supported on an algebraic curves in twistor space of degree d.and genus g, where

d=g—1+¢ and g<V. (3.21)

This conjecture offers a new explanation for the vanishing of tree-level amplitudes in (?7).
There are no algebraic curves with d = —1, and when d = 0 the curve is just a point, so
A = Aj for all 4,5 = 1,...,n, this implies 2p; - p; = (¢ j)[¢ j] = 0, so the amplitudes must
vanish. The simplest non-trivial example is a curve with d = 1; MHV tree amplitudes should
be of this type, as they possess ¢ = 2 and £ = 0. They can be written simply as

AMIY (A X)) = / d*z exp <mad ZA;‘X?) AN, (3.22)
=1

where the momentum conserving delta function is written as an integral over z-space, and
the holomorphic function A(J;) is the Park-Taylor formula given by (3.4), other constant
factors are irrelevant here. Fourier transforming the A is quite simple, yielding

AN (N, i)

/ d'z (ﬁ (d2~ ) exp ( Z ,JWX’) exp (w:m ZX’A“)

i=1

= / diz <ﬁ 6P (g + xad,\;’)> A(N). (3.23)
=1
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Evidently, the amplitude vanishes unless all n twistors Z* = (A%, i) lie on the curve in PT
defined by the equations
Mo+ TaaA* =0, a=1,2. (3.24)

For such a simple curve, called a “complete intersection”, its degree is defined by d = dds,
where d; and d; are the degrees of the defining polynomial equations. In this case, we indeed
find d = 1 as predicted, since both polynomials on the left hand side of (3.24) are linear. The
real variables z,, parameterizes the moduli space: degree one, genus zero curves in twistor
space.

To make this more intuitive, consider the space RP?\ {\; = 0}. We may describe this

space by coordinates
Az p1 pe
21,%0,%3) = | —, —,— 3.25
( 1,42 3) (/\1,)\1,)\1 3 ( )
which is in effect nothing more than R3. In this representation, the non-vanishing of the
amplitude requires all n points to lie on a straight line through R3.

Continuing the study of tree-level amplitudes, the next case to examine is ¢ = 3, or
next-to-MHV (NMHYV), which should lie on curves of degree two. Using the representation
(3.25) of the last paragraph, these degree two curves may be realized as conic sections. Since
2 =d =didy = 1-2 is the only possible integer factorization, the twistor points must lie on
the solutions of the linear and quadratic equations

4 4
D asaZ*=0 and Y bapZiZP =0, (3.26)

A=1 A,B=1

for some real coefficients a4 and bsp. Verifying this is, however, more difficult than the
previous case. The simplest example, n = 5 (an MHV), requires Fourier transforming (3.5)
which is rather challenging indeed. Witten offers the following alternate method. Instead
of transforming the amplitudes to twistor space, convert the twistor coordinates back to
momentum space operators

Z4 = (A%, pa) — (A, —i8/00%). (3.27)

The amplitudes are supported on conics if they satisfy certain differential equations, which is
confirmed for n = 5,6 and to one loop for n = 5. Furthermore, Roiban et. al., using Witten’s
topological string interpretation, demonstrated in [10] that all MHV tree amplitudes lie on
curves of degree d = n — 3, and in general an amplitude supported on a degree d curve is
related to its parity conjugate on a curve of degree d = n — d — 2, as predicted.

'The CSW prescription was motivated by the realization in [9] that in addition to solving
the differential equations required for conic support, the n = 5 MHV amplitudes also satisfy
the requirements to lie on two disjoint straight lines. One possible configuration, depicted in
Figure 3.1, involves three gluons with helicities +, 4+, — attached to one twistor line while the
remaining two negative helicity particles are attached to the other. Some type of propagating
internal field connects the two lines, with opposite helicities at either end (since particles are
defined as incoming, internal lines must flip sign). The internal helicity values are chosen to
ensure each line contains exactly ¢ = 2, as required.
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Figure 3.1: a)Twistor graph depicted in R3, b) The corresponding MHV diagram.
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Chapter 4

Tree Level Amplitudes from Scalar
Diagrams

The observation at the end of the last chapter, that an amplitude supported on a degree two
curve is also supported on two skew lines, was originally difficult to interpret. Which moduli
space is integrated over, as in (3.23): curves of degree one or two? Are there contributions
coming from each integral, or should a unique one be used? Is this situation just a coinci-
dence, or does this happen generally? Gukov, Motl and Neitzke proved that the integrals
over each space are equivalent [13], and in general, an amplitude supported on a degree d
curve also has support on n curves of degree d;, so long as > .- | d; = d. Integrating over one
degree d curve is beneficial in some situations, e.g. proving parity symmetry [10], [11]. While
the other extreme, d disconnected degree one curves, produces the CSW method. This has
the advantage of generating a novel diagrammatic expansion for all tree amplitudes in terms
of MHV amplitudes.

4.1 Constructing MHV Diagrams

The CSW formalism says to interpret MHV amplitudes (degree one curves) as interaction
vertex points. This interpretation seems natural in twistor theory since, according to Penrose
[49], lines in PT correspond points in Minkowski space and visa-versa. These vertices are
then connected by scalar propagators to produce an MHV diagram. Finally, summing over
all possible diagrams consistent with a given cyclic order gives the partial amplitude A,.

There is one subtlety involved in using the CSW rules, since the internal gluons are off-
shell and the MHV amplitudes require each leg to be massless. The CSW prescription is to
define the spinor associated with a massive momentum P, as

/\Pa = Padndy (41)

for some arbitrary, but fixed, anti-chiral spinor 7. While the on-shell amplitudes are Lorentz
invariant, by lifting them off-shell and introducing 7 this symmetry is broken. This can
equivalently be viewed as introducing a gauge dependance (where the choice of 7 is a choice
of lightcone gauge), or a breaking of Lorentz invariance (by choosing some preferred vector
n7), into the vertex. In [14], CSW demonstrated that contracted vertices are independent of
n and therefore gauge (or Lorentz) invariant.

Writing the sum of the massless momenta (p;, pi+1, .. .,p;) as

Pij =D+ Py + ... + D, (4.2)

the CSW rules are as follows:
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e Spinors for off-shell particles are defined by Apo = Pasn®, for some fixed reference
spinor n

e All graphs contain MHYV vertices of the form

- (e (v ) - i = ® Py’
'. = P0G+ 1. G Fy)

e All vertices are connected by scalar propagators

+ P -

1
T

e All possible diagrams which preserve the the colour ordering must be summed over

e Any undetermined variables must be integrated over

At tree level, the only potentially undetermined variable is the internal momentum,
however the momentum-conserving §-function renders this integration trivial. This last rule
will, however, be relevant when including lower spin fields and in loop processes.

Since each vertex corresponds to an MHV amplitude, which is a degree one curve curve in
twistor space, the number of vertices required, v, should equal the amplitudes total degree d.
This new framework provides a natural explanation for (3.21), which was only conjectured
in [9], and can be rewritten

v=g—-1+4 (4.3)

Each vertex, being MHV, has two negative helicity legs. Each internal line connects a
negative helicity leg to a positive one. As usual, the number of internal lines is v — 1 + £.
The number of leftover (external) negative helicity lines is then

g=2v—-(v—-1+0)=v+1-2¢, (4.4)

confirming Witten’s suggested selection rule. Of course, no derivation of the CSW prescrip-
tion is yet known, so this “proof” has only traded one conjecture for another. It is, however,
more appealing to derive selection rules from a theory rather than the other way round.
Also, this diagrammatic interpretation offers yet another explanation for the vanishing of
amplitudes with ¢ < 2: they contain no vertices.

The use of a scalar propagator may seem puzzling at first, since these diagrams are
supposed to describe vector gauge fields. Recall, however, that S-matrix elements are always
contracted with external wavefunctions, which in this case are the polarization vectors eX
for h = +1. Consider the NMHV amplitude. If we factor the polarization vectors out of the
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vertex amplitudes and include them in the propagator instead, it can be rewritten as the
massless. Feynmann gauge propagator

+
A 1, Y €€
MHV? MHY = MHV ™ o q2 MHV
—g
= AMM'HV q2lW M'Hv’ (4.5)

where we have used the facts that internal lines must connect opposite helicity states and
summing over polarizations gives —g,,. Since scalars are generally simpler to manipulate
than tensors, the ingredients on the left hand side (the CSW building blocks) will prove
especially convenient. '
At this point it is quite simple to write down an expression for the general NMHV tree
level amplitude. Such an all n result was unknown before the advent of the CSW method.
Using the the cyclic invariance of the partial amplitudes, we may always choose one the of
the negative helicity gluons to be g, the other two are in some arbitrary positions s and t.
Following the rules given above, we can draw all the diagrams in Figure 4.1 and calculate

e d JA+1 - - ] G4+ 1
/ - + A B y
S_\l Pij + IDij 1‘_
A 1- S_\./L }\
et i 1% S i1+
----- ]+ ]+ 1+

i—1+7"
Figure 4.1: The MHV Diagrams contributing to the Next-to-MHV amplitude

the general NMHV amplitude:

s—1 t-1 s—=1 n
1¢)4 sR (1 P)4(s t)*
(LY Pt | S (1 Py)'Gs 0t CESRCUM

Z

&\

i=2 j=s i=2 ]._t
=~ (1 s)*(t Py;)*
— 4.6
* Z Z D;; (46)
=8 j=t
where the common denominator is

(i Py)(Byj j+1)P(Py; i+ 1){j Py)

Dij = Git1)(Gj+1) o (47)
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One might worry that the above expression will produce poles by appropriate choices
of the reference spinor 7. Also, the explicit dependance of 7 seems to destroy Lorentz
invariance by singling out some preferred direction in momentum space. Kosower showed
in [19], however, that this expression is indeed independent of 7, and derived an equivalent
form which depends only on the external momenta. The exact expression, which requires
half a page to write, need not concern us here. Suffice it to say, such an expression exists
and Lorentz invariance is ultimately preserved.

4.2 An Example: The Amplitude As(97,95,95,975,97)

Before calculating an explicit amplitude, let us derive some useful identities. First, write
momentum conservation in spinor notation,

PLApet - +Pn=0 = MA+ M+ ...+ Ahn =0, (4.8)
then contract with A\{* and X;‘, for some 4,7 = 1,...,n, to obtain the equivalent statement
DRk =0 VYij=1,...,n (4.9)

k=1

Another spinor manipulation, which is used ubiquitously throughout this work, is the

Schouten identity,
(a b){c d) + {a c){d b) + {a d){b c) = 0. (4.10)

This statement is probably better known through the equivalent relation €,z€"® = —5,}52 +
6263, which lies at the heart of the Fierz identities. We now turn to the n = 5 MHV
amplitude As(g7,95,95,97,9%). It is calculated by summing over the four appropriate
diagrams involving a 3-point and a 4-point MHV vertex with one leg from each contracted
by a scalar propagator, shown in Figure 4.2.

Using the general formula (4.6) for NMHV amplitudes, we find only the third term
survives, as s = 2 =t — 1. This leaves:

5 5 .
1 Py;)3(2 3)412)(j j +1)
As(97,92:95 [ - +
129 ) Eéf—}-ljz (2 P;j) 2J<JP2J><]+1P23>
LAL2)0E Py)»°23)( j+ 1)
(2 P3;) P3(5 Paj){(j + 1 Pyj)
Note that, of the six terms in the sum above, two terms will vanish (when j = 5, (1 Pp5) =

—(1 P;;) =0, and for j = 3, (3 Ps3) = 0). This leaves the expected four terms, whose sum
gives:

(4.11)

As(91,92,95) = (4.12)
(1 Py3)® 1 (2 3)3 (1 Pyy)3 1 (2 3)3
(4 5)(5 1)(Pa3 4) (2 3)[3 2] (P23 2)(3 Pag) (5 1)(Paq 5) (5 1)[1 5] (3 4)(4 Paa)(Pas 2)
N (12)3 1 (3 P35)3 + (12)3 1 (P34 3)3

(2 Pri2) (P12 1) (12)[2 1] (3 4)(4 5)(5 Ps5) (5 1)(2 Psa)(Psa 5) (3 4)[4 3] (3 4)(4 Psa)
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- 3~

4% *
+ R
< 4+ — + < 1-
1 5F 5~ 92—
3_ 4+ 1 2_
+ < 5+ ~ Jr< 3~
: _ +
2 1 5+ 4

Figure 4.2: The four MHV diagrams contributing to the amplitude As(97,95,95,9%,97)

Using the facts that Pj = —Pji14-1, (@ Pyj) = f;:i(a k)[k n], and recalling that spinor
products are anti-symmetric, the complexity of this expression is easily reduced. Also, the
clever choice of the arbitrary reference anti-chiral spinor n = A4 further simplifies the sum,
in fact the last term is canceled altogether. This leaves

L (3 5)2[4 53 (1 5)[4 5]3(2 3)2
As00,92.95) = BRI QL 2B A6 T B 4B 45 1R 1 Fr)
(15204 5
TTaE)B A2 34 2(4 Py
_ [4 53 { (3 5)%[2 3][5 1] + (2 3)2[1 2][2 3] " (1 5)[1 2][51] }
AR 3B 1 \BHE5)E IR T 340G Pmdl] | @542 Py )

(4.13)

As we know, this amplitude corresponds to an MHV, so the terms in parenthesis should

equal unity. Repeated applications of 4.9) and (4.10), and roughly a page of algebra, show
that this is indeed the case. Thus, the CSW rules give

[4 5]°
122 33 45 1]

As(97,92+95,94,95) = [ (4.14)

as expected.
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4.3 Some Consistency Checks: Mostly Minus
Amplitudes

As remarked above, the required number of MHV vertices,
v=q—1+Y¥, (415)

forces amplitudes with ¢ < 2 to vanish. We can examine the conjugates to these cases, that
is ¢ > n — 2, using MHV diagrams and find they too vanish, as they should.

The amplitudes where ¢ = n will vanish at tree level. It is impossible to construct an
MHYV diagram where all external legs carry negative helicity, since MHV vertices contain at
least one positive helicity leg and internal lines flip helicity between vertices. Choosing this
external configuration will force an internal vertex to consist of all negative helicities, which
is not allowed.

Though valid diagrams exist when ¢ = n — 1, it is easy to demonstrate that their ampli-
tudes also vanish. Begin by noting that the only available graphs must only contain trivalent
vertices. Higher point vertices must necessarily contain a greater number of positive helicity
legs, as the number of negatives is fixed at two. Since internal helicities flip signs between
sites, additional positive helicities will always propagate to the boundary of the graph. Hav-
ing established that all graphs with ¢ = n — 1 contain trivalent vertices only, we recognize
that there are two possible cases:

i) the positive helicity gluon g7 shares a vertex with a single internal line
ii) the positive helicity gluon g; shares a vertex with two internal lines.

In case ii), the diagram is naturally split by g} into two groups {p + 1,p +2,...,k} and
{k+1,k+2,...,p— 1}, for some gluon g; .

Figure 4.3: MHV diagrams forq=n—1

In each case the vertices containing g;f contribute the following factors:

) (p£1 Bpp1)® (p+1p)*[n p® _{prElhof (4.16)
ppE1)p Bps1) (pp:tLpp+1l)np+£]] mp+1] '
i (Por1x Poi)? _ ({p Por1r)[n Pl + (Pps1k Pps1r))? = (p Pyrri)ln 0 (4.17)

(D Ppy1x)(D Ppr) (p Porar)({p pY p] + (p Poy1k))
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Irrespective of the remaining terms in the diagrams, we can always choose = Xp and
these vertices will vanish. This confirms the expected result that ¢ > n — 2 amplitudes do
indeed vanish in the CSW formalism.

The case of ¢ = n — 2 correspond to MHV amplitudes, and we have already seen an
example of how the CSW method produces the correct result for n = 5 in the previous
section. In fact, Zhu showed that this result holds for general n [16]. Following the arguments
given above, we conclude that an MHV amplitude will contain a single four-point vertex and
the rest must be trivalent. Also, by choosing the reference spinor 7 to correspond to one
of the two positive helicity gluons, say g; , non-vanishing contributions will come only from
diagrams where glp,L lies on the four-point vertex. Thus, amplitudes where the only positive
helicity gluons are g; and g, are determined by the sum of the diagrams shown in Figure
44.

Figure 4.4: The googly amplitude is the sum of the above diagrams

Next, Zhu showed by induction that the “blobs” in the diagrams, which represent the
sums of only three-point vertices, are given by the formulas

P 1
i nllei+1]...[5 1)

V(97 9i41s -1 97, 9B,) = (4.18)
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P2 g n)* 1
Ealljnl Bi+1]... -1

This result will not be proven here, though the reader may readily verify that the case of
a single off-shell three-point vertex is reproduced by the above formulae. Also, notice that
these sums vanish when the off-shell gluon, 9;;,-,» is taken on shell, confirming the above result
regarding g = n — 1.

Completing the proof for the MHVs requires summing all possible diagrams in Figure 4.4,
using the effective “blob” vertices where appropriate. First, note that the 1/F;; propagators
which connect to the four-point vertex will cancel those terms in the “blob” vertices. Also,
while choosing n = A, simplifies the calculation, it also leads to the correct numerator for
the MHV: [q p]*. Finally, many of the anti-chiral spinor products, [X, ], which appear in
MHVs are already present in the “blobs”. This results in the sum

V(s G 7 08) = (4.19)

4 p=2 g-1
lap
Anlgt,gh) = NCY Y CHp+1 P+ > Cp+1 Ppai)+  (4.20)
Mo+
k=q k—p+2
-3

+) Cilp—1Fpyi)? +ZC —1P,,+1k>4>

=3

where
= lpp+1p+1p+2)kk+1]
Cr = [pp+ 2k pllp k+1p p+ 1) (0 + 1 Ppsok) (Pprzk Pok)(Po P) (4.21)
Cp = Pp—1p—1p—2kk+1] )

[pp— 2][’“ p][p k+ 1]<pp— 1)(10— 1 Pp+1k><Pp+1k P—1k><Pp—1k P>'

The fact that the bracketed terms in (4.20) sums to unity is a highly non-trivial check of the
CSW rules’ validity, which was carried out in [16] by taking p, = (p, 0,0, p), so that we can
scale n = )\ = (1,0).

Thus far we have used the CSW method to derive formulas for n gluon scattering ampli-
tudes with with up to 3 negative helicity particles. Using the conjugate set of rules (that is
using MHV vertices), one can equally determine all amplitudes with up to 3 positive helicity
gluons. With these results alone, one now knows all tree level gluon scattering amplitudes
with up to 7 external states. To obtain all amplitudes with n < 7 using traditional tech-
niques would require summing a total of tens of thousands of Feynman diagrams. This new
technique dramatically simplifies the process requiring only a few dozen diagrams to pro-
duce all n < 7 amplitudes! In fact, the result (4.6) for general NMHV amplitudes, being
an infinite series of solutions, would indeed require summing an infinite number of Feynman
diagrams, which are summarized above by just three (albeit infinite sets of) MHV diagrams.
This method’s remarkable simplicity cannot be emphasized enough.
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Chapter 5

Amplitudes with Fermions and
Scalars

We have so far considered tree level amplitudes for purely gluonic interactions. However,
the CSW rules are easily modified to include particles of spin < 1. In fact, we will see later
that including fermions and scalars is necessary at the 1-loop level, even in pure Yang-Mills
theories (i.e. theories of gauge bosons only).

5.1 MHYV Amplitudes in N'=4 SYM

At tree level, pure Yang-Mills theory is effectively supersymmetric. This is because a gluon
may only couple to a pair of fermions or scalars. So, if all external fields are gluons and
a pair of matter fields are produced in a scattering process, then the pair must necessarily
form a closed loop. Thus at tree level, gluons do not “know” if they live in a supersymmetric
theory or not. Because of this, we may treat the gauge particles as members of a theory with
maximal SUSY which is A'=4 SYM, so long as we restrict ourselves to the classical level.

This hidden symmetry of gluons may be respounsible for the extreme simplicity of the
MHYV amplitudes. One would not expect such a simple expression unless the theory possed
an incredible amount of symmetry. We might ask whether the MHV amplitudes may be
generalized to include all the fields of the A'=4 multiplet. Indeed, such a generalization
exists and was first written down by Nair in [3]. Before giving the A'=4 MHV amplitude,
we must introduce some additional notation.

As described in Section 2.5, N'=4 SYM contains fields of helicities -1 to +1. To package
this additional information in scattering amplitudes, we introduce scalar Grassman (anti-
commuting) variables 74, A = 1,... 4, which transform in the 4 of SU(4)g. Similar to the
manner in which @, , raises helicity by %, n lowers the helicity by % This is not a perfect
analogy as Q4 is an operator, and 7 is only a variable, but it is a useful mnemonic. We
measure a particle’s helicity with the operator

1 0
h=1-)Y -ng*—=—, 5.1
ZA: 27 5 (5.1)
so a term in an amplitude with the factor (n)* will correspond to a particle of helicity
h=1- g This implies the following associations:
1 ~ g
77A ~ ’(,bA
,,7A,’7B ~ ¢AB_ (52)
nAnBnC  ~ eABCDY
nAnBnCnP ~ ABCDg-
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Nair’s generalization of the Park-Taylor MHV formula is given by the partial amplitude

n

A (/\Z ' T ) - 6(8) <Z anz ) H ££+ (53)
Z=1

i=1

Recall that Grassman d§-functions are given by 6(6) = 6. Because of the anticommuting
variables, the d-function can be Taylor expanded into a finite sum

o (ae) -l (o)) ()

Il

% A=1 i

- 11 (i)
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By (5.2), the term proportional to (n,7,)* should correspond to the scattering of two

gluons of negative helicity and n — 2 of positive helicity. Indeed, in this case we recover the
expected numerator (r s)4. Thus, we find the following N'=4 SYM amplitudes,

Anlg™,97), Anlg™, EAJPA) , An(ha, ¥p, v, 05)
An(g™ 1,01 V%00 A, 0t 9 0% 0t
A (9%, 9%, 4, wl W2, 0%, 90 An(Bap, v, 08, 9N 00 0Y)
Anlg™ ¢A3a¢ ) Anlg™ ,¢ABa¢Aa¢B) ) An(EAa@Bad’AB)a (5.5)
An(
An(

2L

) ? ¢ABa¢BC,'¢}C) n(EAaggcﬂ,bf,wB,d)C) ) An(aABaQSAB’ECD’quD) )
n ¢ABa¢ ¢CD)¢Ca7/)D) ) An(¢ABa¢CD’¢A7¢Ba¢Ca¢D) ’

are all coefficients in the expansion of (5.3) and given by the formula

Gk O ma)r )
= E vy

where the values of ¢, §, k, £, m,n,r, s are determined by matching the appropriate factors of

41in (5.2) to n} n; nknl?nfnngnfn‘s‘ The overall sign may arise from anticommuting the n* into
the correct order. We could also determine the MHV amplitudes by switching (, ) < [, ].
Since all the fields transform in the adjoint, the colour factor which multiplies the partial
amplitude is the same as in pure Yang-Mills T,,(a;) = Tv(Ty, To, - .- To,)-

Notice that not all the amplitudes above are what we would normally call MHV, that
is, with two particles of different helicity then the rest (by an “opposite helicity scalar” we
mean its complex conjugate). In particular the second and third lines are not of this type.
The common feature is that they all possess 8 7 in the expansion of (5.3). Nevertheless,
for simplicity we shall continue to refer to any amplitude in (5.5) as MHV.

As in Sections 3.2 and 3.3, we could perform an.analysis of the N'=4 MHV amplitudes
similar to the one carried out in the non-supersymmetric case. We will summarize the results
of this analysis found in [9]. As =4 SYM is a superconformal theory, we would find that

(5.6)
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the amplitudes are indeed annihilated by the superconformal algebra’s generators. In bi-
spinor notation, these generators are also a mix of multiplication operators, and differential
operators of degree one and two. The Fourier transform

~ 0 0
)\d — y —f— — & 5.7
ops o " &7

.0 .0
T]A - Z% s —’LW — XA (58)

takes us to super-twistor space CP** parameterized by (A%, 14, X4) Subject to the equivalence
(A% Bar xa) ~ 2(A% pay xa) , V2 €C" . (5.9)

In super-twistor space the A'=4 MHV amplitudes are localized on CP! “curves” which
simultaneously satisfy the six equations

,u,d-l-CL'ad/\a:O , XA+ 042 =0. (510)

These CP* curves are parameterized by A, ~ 2\, and have the modulus z,4 as in the bosonic
case, however now the additional fermionic modulus 84, appears.

5.2 MHYV Amplitudes with A/ < 4

We might inquire whether some version of the above results carry over to theories with less
SUSY. After all the N'=4 theory is just a particular type of A'=2 theory, which in turn is a
particular type of A'=1 theory. The main difference between the various SYM theories is in
the fermion and scalar content. As pointed out in [15], if we restrict the external states to lie
in appropriate multiplets, then the above amplitudes are valid in theories with less SUSY.
For N=2 SYM, we require that A, B,... = 1,2. This completely eliminates the amplitudes
on the second and third lines which involve all four fermion fields. By further restricting A
to take only a single value, we limit ourselves to N'=1 SYM. In addition to the excluded
amplitudes for the A'=2 theory, this restriction forbids any of the amplitudes with external
scalars (as ¢4B = —¢B4), which is encouraging because the A'=1 version of SYM contains
no such fields.

It is possible to use these MHV amplitudes for SYM with N < 4 coupled to (mass-
less) matter fields. To do this we allow the indices A to run over additional values which
corresponds to the matter multiplets. Though we may consider theories with an arbitrary
number of matter fields, these amplitudes will only apply to processes where a limited num-
ber of those multiplets interact. Specifically, the Yang-Mills multiplet may interact with 1
hypermultiplet for A'=2 and up to 3 ysfs in A/=1. Any more matter would exceed the field
content of the N'=4 theory and spoil the agreement. The kinematic partial amplitudes A,
will be the same, however the colour factors T, (a;) must be altered in an appropriate manner
depending on the representation of the matter fields [46].

A particularly simple example of this actually has applications in the real (non-
supersymmetric) world. Consider N'=1 SYM coupled to ns xsfs in the fundamental repre-
sentation. We restrict A to a single value so only the first line of amplitudes in (5.5), with
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m = 0, 1,2 fermion pairs and ¢ = n — 2m gluons, will survive. The external fermions may
either be of the adjoint (gluino) type or the fundamental (quark) type. At tree-level, the
only internal states which can appear are the same as the ones we started with, g%, ¢*, ¢ A
for fized A. Thus, by fixing the external fermions to be quarks (of the same flavour) the
remaining fields (gluinos and squarks) decouple from these amplitudes. We are left with an
effective non-supersymmetric theory of gluons and quarks - that is to say QCD with SU(N)
gauge group and ns massless quarks. Thus we have deduced the non-supersymmetric MHV
amplitudes
Al(g_, g_) ) A€+2(g-—a qf, qf) s AZ+4(qfa Qfaqfa Q) ) . (511)
from N'=4 SYM. As we mentioned in the last paragraph, we must adjust the colour factor
in front of the amplitude to account for the presence of fundamental matter. For £ gluons
and m > 0 quark/antiquark pairs, the exact tree level colour factor is [15, 46],
(=17

»n+2m = W(Tal e Tael )ilal (Tall+1 . Ta,g2)i2a2 e (Tafm_1+1 . e Tae)imam . (512)
The ¢, ...%¢,, are an arbitrary permutation of the ¢ gluon indices; 4;...4, and a;...ap,
are the quark and antiquark colour indices, respectively. When quark i, is connected by a
fermion line to the antiquark oy, we set i, = @y. Finally, the power p is the number of times
ix = @ minus one, thus p € {0,...,m — 1}. This introduces the correct multi-trace colour
factors with 1/NP suppression, as required for fundamental matter. Amazingly, the partial
amplitudes Agyom are identical to the N'=4 theory, and given by (5.6).

5.3 Generalized MHV Diagrams

The generalization of the CSW rules is straightforward, and following the discussion of the
preceding two sections probably quite obvious. This extension was first employed at tree
level in [15] and later in [17, 20, 21] We simply replace the gluonic MHV vertex with the
N'=4 MHV supervertex:

P ik gmnyir s)
(P p)pp+1)...{q Py

y ninmingndmintng

Each vertex has 8 powers of n* associated to it, which are distributed amongst anywhere
from two to eight external legs. We continue to connect vertices by scalar propagators,
though the propagating field may have helicity 0, :t%, +1. Since propagators flip helicities
between vertices, internal lines have (g%, g~), (¥*,v,) or (¢48,d,5) endpoints. A quick
count reveals that each propagator uses up 4 of the n associated with the whole diagram.
Once again, we must sum over all possible diagrams which agree with the colour ordering.
For theories with less SUSY, we must constrain the vertices as in the previous section.

By now, we are used to using scalar propagators to connect gluonic MHV diagrams, so
perhaps we are not so surprised that the same scalar propagator works for fermions as well.
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As in the bosonic case, recall that the MHV amplitudes have all the external wavefunctions
incorporated into them already, including those which we take off shell to connect to other
vertices. Thus, by extracting the propagators’ wavefunctions from the vertices and including
them with the 1/P? terms we reproduce the fermionic propagators. For this to work, it is
once again essential that propagators flip helicities between vertices. For example, consider
the NMHV amplitude with an internal fermion line (such an amplitude will necessarily have
an identical fermion and its CPT conjugate on different MHV vertices), then

A 1, e Aparpa 6
MHV B3 AMHv = AMAEV ™ pp  AMHV
a (aa)adpa &
= MHV™ py ;\/IHV (5-13)
a Pad 16

MHV pz #MHV -

Using these modified CSW rules, we can easily construct the general NMHV amplitude in
N'=4 SYM, first presented in [20]. Of course, not all the amplitudes will be NMHV (just as
not all the amplitudes in Nair’s formula were MHV), however we use this name nonetheless.

“J j+1

- i—1
Figure 5.1: General diagram contributing to NHMV amplitude

The general diagram in depicted in Figure 5.1. It has two vertices connected by a single
propagator. We leave the specific helicities of the external particles arbitrary, only requiring
that the total amplitude have 12 powers of n“ associated to it. This is simply because there
are two vertices with 8 7 each, with the internal line using up 4 of them, as explained above.
Also, we orient the diagram so that the positive helicity end of the propagator is attached
to the left vertex. The division of the 4 7 between left and right endpoints of an internal
line is arbitrary unless the external helicities are specified, so we must integrate over these
variables.

As before, we define the off-shell spinor Ap, = Pnsn® for some arbitrary fixed spinor n%
(not to be confused with the Grassman variable ). The momentum transfer vector is still
P = p;+ ...+ p; = —Pj-1)-1), which we will sometimes abbreviate to just P. With all
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this in mind, we can write down the general NMHV amplitude in A'=4 SYM:

1 1 J i—1
b= e S [ ot (ke ot ) o0 (st + 5 st
He=1 (¢e+1) i D ko=i ’ ki=j+1 1
(5.14)
where the denominator D;; is the same as in (4.7):
(i Py) (P j+1)P(Py; i+ 1){j Py)

Dy = {i+1)(Gj+1)

(5.15)

The sum over %,j must be arranged to ensure that 8 n* are associated to each vertex and
the diagram’s orientation, discussed above, is preserved. Notice that we take one of the Ap
to be negative, this is a reflection of the momentum flow of F;;.

We make use of the fact that [ 8(f2)8(f1) = [8(f1+ f2)8(f1) to simplify the n“ integra-
tion,

i—1
5(8) ( )\PnA + Z)\kg )6(8) (AP’I]AJr Z /\klnlq)

ko=1 ki1=j+1
i—1
= &® (Z Ak A) 6® </\PnA + ) /\’“nkl> (5.16)
k=1 ki=j+1
n i-1
= 5® (Z)\ >H52 (Awﬁ 2 *'é‘"?l> -
k=1 ki=j+1

Now the n# integration is trivial, and in doing it the A\p get paired with the A,,. The final
result is [20]

A= T 1<M+1 RSV (ZAM) o

As expected, these amplitudes have 12 powers of n* associated with them. We also might
have expected they would be proportional to A%, as the internal line uses up 4 of the original
16 n#, and indeed it is. Taylor expanding (5.17) in n* yields all the A’'=4 SYM amplitudes
involving 12 factors of 7 as determined by the map between n* and helicity states (5.2).

(3 wmt) . 6

l] A=1 \m=j+1
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Chapter 6
One-Loop MHV Amplitudes

6.1 Loop Amplitudes in Supersymmetric Gauge
Theories

As discussed in Section 2.5, extended SUSY multiplets can always be decomposed into N'=1
components. In calculating loop amplitudes we can perform a similar decomposition. By
knowing the contributions arising from N'=1 vector and (adjoint) chiral superfields propa-
gating around the loop, we can combine these results into the one-loop contribution of any
SUSY multiplet. Rather then calculating the N'=1 Vsf contribution directly, we utilize the
following linear combination

AN=LY = pN=1 _ g pN=1 x| (6.1)

The advantage of this is that the A’'=4 theory possesses greater amounts of symmetry and so
proves simpler to compute. So, when calculating one-loop amplitudes in any supersymmetric
gauge theory, we can use the contributions from the AN'=4 multiplet and N'=1 ysf as a basis
for all amplitudes.

Unitarity plays an essential role in determining supersymmetric loop amplitudes. Recall
that the amplitudes which are completely fixed by their unitarity cuts were dubbed cut-
constructible by Bern, Dixon, Dunbar and Kosower (BBDK) in the mid-nineties [5]. The
essential feature of cut-constructible amplitudes in that they are can be written as a linear
combination of a set of well-know basis functions. These functions are the solutions to scalar
loop integrals with up to four external legs. By comparing the cuts of the basis functions
to the cuts in the amplitude, they were able to determine the correct coefficients in basis
expansion.

So for cut-constructible theories, one really only needs the information of trée-level am-
plitudes to determine one-loop results. By applying the power of unitarity, BDDK found
general expressions for MHV amplitudes in N'=4 SYM [7] and later in N'=1 SYM [5] for
an arbitrary numbers of external legs. We will present these amplitudes in the next two
sections.

To obtain a pure Yang-Mills amplitude, the decomposition (6.1) needs an additional
contribution arising from an internal scalar field in the loop

AYM = AN=4 g qpN=1x 4 p2, (6.2)

A lone fermion could also be found with knowledge of the scalar contribution, subtracting it
from the chiral multiplet. The scalar is always the most difficult of the three basis amplitudes
to compute, however it is far simpler then solving for the gluon or fermion circulating in
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the loop directly. In particular, the scalar loop (being non-supersymmetric) is not cut-
constructible [5]. This is the main obstruction to performing loop calculations in pure Yang-
Mills theory.

At the one-loop level, an additional complication arises concerning the colour decompo-
sition. We no longer have

An(s, iy hi) = ig} 2 (2m) 6 (ZI%) > Talao) An(Potis ho() (6.3)

0eSn/Zn

i=1

as in (3.1). Instead, assuming an SU(N) gauge group with all particles transforming in the
adjoint, the colour decomposition is [7]

n [n/2J+1
Aoy ) = ig7=2(2m) 5 (zpi)sz S Y Cru@ale), (64
i=1 J e=1  Sp/Snic

where |z is the largest integer less than or equal to z and n; is the number particles of spin
J. The leading colour-structure factor

Gr(1) =N Tx(T,, ... Ty.) (6.5)

is just N times the tree-level colour factor, and the sub-leading colour structures are given
by

Grpe(1) = Te(Tyy .. To, ) Tx(To, .- . Ta) - (6.6)
Sy is still the set of all permutations of n objects, while S, is the subset leaving Gry.,.
]

invariant. The leading contributions to scattering amplitudes, for large NV, comes from A1,
while the sub-leading corrections, down by a factor of 1/N, are given by Al;]]c for ¢ > 1.
Fortunately, we need not calculate all of the sub-leading terms as they can be determined
algebraically from the leading contribution [7]. It is therefore sufficient to consider only the
leading term ALJ;]l, which we will do in what follows.

In any supersymmetric gauge theory, amplitudes in which all or all but one external

gluons have the same helicity vanish [47],
A;—loop(gi’ g+’ s ’g+) =0 (67)

exactly as in the tree-level case. This is due to a supersymmetric Ward identity, however
we may also see this by appealing to cut-constructibility, which we will now explain. To
calculate a unitarity cut we use the Cutkosky cutting rules [48]. For a one-loop amplitude, we
replace two of the internal propagators with §-functions. This separates the loop amplitude
into a product of two tree-level amplitudes and two é-functions, which we then integrate
using an appropriate Lorentz-invariant phase-space measure. This calculates the cut in
one channel, we repeat this process for all possible channels and sum all the cuts. Any
state which crosses the cut must have different helicities in the two tree amplitudes, as
we always consider amplitudes to have all particles incoming. In one-loop amplitudes of
the form A,(g%, g%, ...,9") (or their parity conjugates), we can easily see that there is no
possible assignment of internal helicities states which prevents a tree amplitude of the form
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Atree(gt g% ..., g") from forming on one side of the cut. We know these amplitudes vanish
at tree level, from Section 3.1, so we conclude that the unitarity cuts vanish in all channels
for this external helicity configuration. As this theory is cut-constructible this implies the
amplitude is identically zero at one loop.

The first non-vanishing amplitudes at one loop in supersymmetric gauge theories involve
two particles with opposite helicities from the rest - that is, the MHV amplitudes.

6.2 MHYV Loops in N=4 SYM

In the case of N'=4 SYM, the MHV amplitude is particularly simple and given by [7]
AN=t = cpAlreey, (6.8)

where A'¢¢ is the regular tree level MHV amplitude, either the pure gluon Parke-Taylor
formula (3.4) or Nair’s generalized version (5.3), and V,, is a universal one-loop function
which only depends on the number of external legs, in particular V,, is independent of the
helicity ordering. The prefactor is

(4m)¢T(1 + e)T?(1 — )

TT 162 T(1-20) (6.9)

where € = (4 — D)/2 the dimensional regularization parameter.
V.. is most naturally written as a sum over pairs of external states in the set of n. We take
these distinguished particles to be in the positions 7, s and write their momenta as k,, k;.

The remaining n — 2 external momenta then naturally combine into two sets (Ks41,- .., kr-1)
and (k41,...,ks—1). We write the sums of these sets as
P = k)s+1 + ks+2 + ...+ kr—l ; Q = kr+1 + k'7-+2 + et ks—l . (610)

With this notation, momentum conservation reads k&, + @ + k; + P = 0 and the universal
function is written

n T+ [n/2j

Va=> Y (1 - %cu_) F(k., Q, ks, P) (6.11)

r=1 s=r+42

where F(k,,Q, ks, P) is the so-called (two-mass easy) box function, which we explain mo-
mentarily. First, we find it convenient to define the momentum invariants

s=(P+k) , t=(P+k)?, (6.12)

for reasons which will some become clear!. With these definitions in place, we can write the
box function compactly as

!We apologize to the reader if the proliferation of variables labeled s is confusing, however it will be
quite clear from the context whether we mean the position s € (1,...,n) or the Lorentz invariant quantity
s = (k. + P)2.
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F(kr, Q. ks, P) = —-elz [(=8)~ + (=) = (=P*)™* — (-Q*)™]
+ Lig (1— P—2) + Li, <1— —]fi) + Li, (1_Q_2) + Lis (1__ Q_z)
s t s t
20)2
— Lip (1 - PstQ > + %log2 (;) . (6.13)

Although the N'=4 theory is coriformal, implying that the Yang-Mills coupling constant
does not diverge on any scale, IR divergences will occur in the soft or collinear limit. While
these infinities may always be avoided at tree-level through the appropriate choice of external
momenta, they will inevitably arise in loop amplitudes. As we see here, this IR behaviour is
contained in the 1/€* terms.

The peculiar name “two-mass easy” box function is derived from the fact that it is
proportional to the “two-mass easy” scalar box integral,

. t — P2 2
Flky, Q, by, P) = L L= 276" fome (6.14)
cr 2 !
where "y )
I’me — 1
#:= | G reTEETE TaRE T (6-15)
which we depict in Figure 6.1.
r+1 -
. Q
r \\ ",
s-1
Y
,:-
i s
b

st

Figure 6.1: The loop diagram for the scalar box integral

As we can see, the above 4-point scalar loop integral contains two massive legs P, Q, hence
the name “two-mass”, the “easy” part refers to the fact that the massive legs separated by
a null leg. There is also a “two-mass hard” scalar box integral where the massive legs are
adjacent, however, it does not appear until computations of NMHV one-loop amplitudes and
is not needed for the simpler MHV case.
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6.3 MHYV Loops in N <4 SYM

As explained in Section 6.1, any supersymmetric gauge theory amplitude can be decomposed
into a linear combination of contributions from an A'=4 multiplet and N'=1 chiral superfields
(xsf). The N'=1 xsf contribution to one-loop MHV amplitudes was discovered in [5]. As in
the N'=4 case, the tree-level MHV amplitude factors out, however the remaining factor V,,
is no longer universal as it depends explicitly on the locations of the negative helicity states.
We label the negative helicity particles as p,gq. Using the same notation as in the previous
section, the A'=1 ysf contribution is

AN=IX %r Atree (6.16)

where the ordering dependant factor is

g—1 p-1

Vet = Z Z I Bk, Q. ko, P)+ > Y T (k. P,Q) +
r=p+1 s=q+1 r=p+1 s=¢q
g—1 p-—-1 _
+Z Z Cqu ks)QaP) +AIR . (617)
r=p s=¢+1

Notice the ranges of summation over r,s in (6.17) is always such that k, belongs to
the set of momenta in P = kg + ... + k.1, and likewise k; is one of the momenta in
Q = kry1 4+ ...+ ks—1. In particular the massless momenta k., ks, always have positive
helicity. The first term in V?? is related the scalar box function F', then there are two
terms coming from (two-mass) triangles functions and finally the last part 4;z comes from
exceptional, boundary terms. We explain each these terms below.

First, the functions B(k., @, ks, P) are the finite parts of the box functions (6.13), which
appeared in the A'=4 amplitude. More explicitly,

B(kT‘a Q} ksa P) = F(k’r,Q> ks; P) + Elg [(ﬂ’s)—e + (——t)—e - (_P2)—E - (_Q2)—6]

P2Q? 1
~ Li (1 - Sf )+ > log? (;) (6.18)

The triangle functions 7" depend on only one massless momentum £k, ;, and two massive

ones: P, @ =Q+ks or Q, P=P+ k., each of which contains a single negative helicity gluon
p or q. The two triangle functions are identical in form, in general

10g(P2) log(Q?)
- Q? '

We use the name triangle functions as they are proportional to a scalar 3-point integral

T(k, P,Q) = (6.19)

~ 1 € m
T(k,, P,Q) = - (m) 132;7;5 (6.20)
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where

om . [ dP2 1
13”_’/ @2m)P e — Q)26+ k)2 (6:21)

We point out that the scalar integral I37, has a 1/e divergence [5], implying that the function

T remains finite as € — 0. The set of diagrams contributing to triangle functions T'(k,, P, é)
is drawn in Figure 6.2, the others follow the same pattern. Though it was not explicit in the

r

r+1

s—1..-"

Figure 6.2: Diagrams contributing to triangle functions

given ranges of summation for the triangles, we require |r — s| > 1 and |r — s — 1| > 1. This
constraint ensures each of the triangles have two massive legs.

The representation (6.20) of the function T is not unique. When we calculate this ampli-
tude using the CSW rules we will need to know the follow equivalent forms of representing
this function [5]:

~ € m m 1
el (kr, P, Q) = <1 — 26> Ly = I o) = pysc (T2irss = T2iri1ss) - (6.22)
The integral I3 [z,] is the same as the triangle integral (6.21) except the Feynman parameter

T2 appears in the numerator. We will explain this representation more explicitly when it
arises in the calculations of Section 8. We have also introduced the scalar 2-point integral

[ dP¢ 1
Ippis = —i / P B —GF (6.23)

whose diagrams have momenta k; + P + k, on one side of the loop and @ on the other.
The last term in (6.17), A, is the only source of infrared divergences in these amplitudes.
IR divergences arise from the degeneration of triangle diagrams for which one of the massive
momenta become massless. That is, when it contains only a single external momentum,
which is then necessarily a negative helicity gluon. There are four such degenerations, for
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which p = P,ﬁ or q = Q,@. These cases are drawn in Figure 6.3, they give rise to the
following 4 terms:

(=1 + 1)) g (Slipr +Kp))
+6(1 — 2¢) + cg—l,p (1 —2¢)

Air = sz-l,p-—l + (@< q). (6.24)

p+1t p—1*

3

Figure 6.3: Two of the degenerate triangle diagrams

Finally, the coefficients appearing in (6.17) are as follows. For the box functions

o) SNa ) a )
S g (6:25)

whereas for the triangles (and the boundary terms) one has

L onrg (sst)
STt Gl

] (g r){p|Pr]+{p r)(a|P]r]) , (6.26)
where we have introduced the spinor product
j o~
(AP 1E =Y (A M)l A - (6.27)
k=i

Notice that in the coefficients 2 the null leg is k.. In c?? the null leg is k, and we must
change P=ksp1+ ...+ ko1 t0 Q =kpyr + ... + ks
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Chapter 7
One-Loop MHYV Diagrams

In applying the CSW formalism to one-loop amplitudes, we begin by noticing that the
number of MHV vertices must equal the number of negative helicity particles, as

v=q—-1+£4=q. (7.1)

We immediately conclude that the first non-trivial one-loop amplitudes are MHV with two
external negative helicity states. This agrees with the statement made in Section 6.1 that
Al-teor(g® g+ .., g%) = 0. Unfortunately, these amplitudes are non-vanishing in pure
Yang-Mills theory, so the CSW rules must be modified somehow for non-supersymmetric
theories at the loop level. What modifications must be made is still an open question,
although some speculations are presented in [23].

The first application of the CSW rules to loop amplitudes was conducted in [25] by
Brandhuber, Spence and Travaglini (BST). They calculated the simplest set of one-loop
amplitudes, which are the A’'=4 MHV ones, and found perfect agreement with the BDDK
calculation. Later, this author together with Rozali performed an analogous calculation
[26] involving the A'=1 chiral multiplet and also found perfect agreement with BDDK.
Our result was simultaneously confirmed by BST and Bedford [27]. When applied to the
scalar loop contribution, however, the MHV diagrams did not reproduce the full amplitude
[28]. In particular, the scalar amplitude contains terms which are not cut-constructible
and these terms are invisible to the MHV diagrams. This might have been anticipated,
as we have already noticed that the CSW rules require modification at the loop level in
non-supersymmetric theories.

Although the origins of the BBDK and BST approaches are far removed from each other
(unitarity cuts vs. CSW rules), after a point the two calculations follow almost identical
paths. The reason is the following. In performing the unitarity cuts, BDDK found that the
two tree-level amplitudes to be integrated over Lorentz invariant phase space (LIPS) were
necessarily both MHV [7]. In the BST calculation, as we shall soon see, the LIPS measure
naturally arises in the loop integral. With some rearrangement of terms, the sum over MHV
diagrams becomes equivalent to the sum over the cuts in all possible channels. It is quite
surprising that such disparate methods would produce such parallel computations. It may
simply be a coincidence, however this author believes it is a hint of some deeper hidden
structure in field theory.

7.1 The BST Measure

The crucial step in the BST calculation was rewriting the measure d*L in terms of spinor
variables and ultimately obtaining the phase space measure dLIPS. To do this, we begin
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with a slight modification to the CSW prescription for off-shell spinors. As in [18, 19}, we
can always decompose a massive (loop) momentum vector L into two null vectors

Lad = ead + 2Naa (72)

where 2 = 0 = n?, n is a fixed (but arbitrary) null vector and z € R. Essentially, z measures
how far the momentum L is from being null. The choice of 7 amounts to choosing a lightcone
frame. Writing the null vectors as bi-spinors, £,s = AaAs and 74 = Nall, it follows from
contracting (7.2) with 77* that
oo 4 o
N = Laal” 5 MLaa (7.3)
X 7] (Am)

The expressions we will construct using the CSW rules will always be homogeneous in the
off-shell spinors, and so the [ 7] or (A n) factors will always cancel. Because of this, these
factors may be neglected and this prescription becomes equivalent to CSW’s. The advantage
of this approach is that we now know

L? =220\ 7. (7.4)
Writing out the loop measure in spinor variables, we are led to the result that

d*L = 2dzdN(8) (A )X 7], (7.5)

where the Nair measure [3] is (proportional to) the LIPS measure of a single particle with
null momentum ¢:

AN(0) = (A dNYEX — [N dN)d?A = 20 d*2 5 (¢2) | (7.6)

where §(H)(£2) restricts £y > 0. The important observation to make now is that the combi-
nation which arises naturally when using MHV diagrams

d*L  dz
is independent of our choice of reference vector 7.

For one-loop integrals, there will be two off-shell momenta L, L, related through mo-
mentum conservation §)(L; — L, + P), where P is the total external momentum flowing
into one side of the loop. We decompose the massive vectors as above,

Liao'z = Aiaxid + zinaﬁd 3 1= 1a 2 ) (78)

using the same reference null vector 7 for both L;. The combinations d*L;/ L? are as described
above, while the quantity appearing in the é-function is

Ll—L2+P=€1—€2+P—-(z2—z1)n. (79)

Defining the quantities

z=2—2 (7.10)
P,=P—2zn, (7.11)
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then we have

d*Ly d*L, dzy dzy
I (L, — Lo+ P) = z—lz—2d./\/(€1)d./\/(€2)d(4) (6 — by + P,)
dz d
- _4.;_1§ A0S (+) () 0 () (26D (8 — 6+ P,)] (7.12)
1 2

Notice that the quantity in brackets in precisely the LIPS measure for two massless particles
whose momenta differ by P,

dLIPS(¢y, —fs; P,) = d4el<s(+)(e$)d4e25(+)(e§)5<4> (6, — L+ P,) . (7.13)

For z = 0 this is precisely the LIPS measure we would require to apply unitarity cuts. We
therefore conclude that
le d22

d*L, d*L,
& (L, — = 42122011 —ly: P,) . 14
I 6@ (L, — Ly + P) 4Z1 - dLIPS(¢y, —t2; P,) (7.14)

We call the measure on the righthand side the BST measure; it differs from the regular
LIPS measure used for unitarity cuts in two important ways. First, the momentum flowing
into the loop has been shifted by z dependent terms P — P, = P — 2zn. Second, there are
additional dispersion integrals dz;/z; which integrate over the shifts in P,.

The dispersion integrals over z; have an extremely elegant role in CSW/BST formalism.
Recall that BBDK'’s unitarity approach required comparing an amplitude’s cuts to the cuts
of the known basis functions. By invoking a uniqueness theorem for the basis’ cuts, they
could match each term in the amplitude to the appropriate basis function, thereby fixing the
amplitude uniquely. In using the BST measure, however, no such analysis is required. The
dLIPS calculates the cuts in each channel (whose momentum-invariant quantity contains z
dependent terms). Then while integrating out the z dependance, the dispersion integrals re-
construct the full amplitude exactly. The mechanics of this process will be more transparent
when we present an explicit one-loop computation in Chapter 8.

7.2 N=4 MHYV Loop Diagram

We summarize here the procedure used in [25] to calculate the N'=4 MHV amplitude at one-
loop using the CSW rules for MHV diagrams. We will be brief, omitting many of the details,
as an analogous calculation is presented in full detail in the next chapter. Nevertheless, it
will be useful to have an overview of how such a computation is carried out, before diving
into the calculation.

e Computing the Diagram

We begin by drawing the typical MHV loop diagram, shown in Figure 7.1, which has total
momentum P = ky, + K41+ .. +Em, on the left and Pg = kmyi1 +Kkmps2+. ..+ Kkmy,—1 o0
the right. The total amplitude will require summing over all possible pairs (m;,msy). For the

N'=4 loop, we may use the generalized MHV vertex with arbitrary external helicity states.
This diagram leads to the following integral

d*L, d*L,
Ly L

A=t = i(2m)*6@ (P, + Pg) 8(Ly ~ Ly + Py) / d*ne,d®ni, ALAr - (7.15)
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mo + 1

i Pr

Pr
~my 2 my —'1
Figure 7.1: Typical one-loop MHV diagram
where Ay, Ag are the vertices given by
A = §®(0) ! ﬁ . .1 : (7.16)
/\2 (m2>(/\1 m1><—)\2 )\1) i=my <’L 1+ 1>
m1—1
1 1
A = 5(8) O T
: O R mr g L 57
and
@04 = D Xnf = Manf, + Aeatlf, (7.17)
i
(@R)é = Z /\imf‘ + /\10177},41 - )\2a77f2 .
j=ma+1

As we have left the helicity assignments arbitrary we must integrate over the n“ variables.
This step is carried out [25] using an elegant trick of Fourier transforming the §®(0) into
an exponential in superspace and integrating out the . The result is that the tree-level
amplitude factors out,

_ d*Ly d'L
AN=4 = fpiree / L—;L—ﬂ(‘l)(Ll ~ Ly+ PR (7.18)
1 2
where
iree = i(2m)*6 (P, + Pg)6® N ) ] == 7.1
Ajree = i(2m)*8 (P + Pr) Zjn E<ii+l>, (7.19)

and the integrand is

<m1 -1 m1></\1 /\2) <m2 me + 1><)\2 )\1>

R= (7.20)

(m1 -1 )\1><—/\1 m1> <’ITL2 /\2><—)\2 moy + 1) )
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¢ Reducing the Integrand

Applying the Schouten identity to the numerators in each half of R leads to a sum of
four similar terms

R= R(ml,mg + 1) - R(ml,mg) + R(m1 - 1,m2) + R(m1 - 1,m2 + 1) (721)
where r Do) (5 ) ‘
R(r,s) = ) 5 ) (7.22)
Next, we use the fact that
o2y = LM el_ (v ) (1.23)

Die] T [he]

since (£; + k)2 = 2(X\; - ko), to convert all the spinor variables into the null vectors ¢; which
appear in dLIPS. After some manipulations, we obtain

%(Sztz - PEQZ)

R = 7.24
(7", 8) (62 _ kr)2(€1 i k3)2 ( )

where we have introduced the shifted momentum invariants
s: = (Pr2)’ ' P? = (Pp. — k) (7.25)

t, = (PL;z - k;r + ks)2 ) Qz - (PL;z + ks)2 .

When combined with the 1/L? factors, this integral at z = 0 precisely corresponds to the
scalar box function (6.14).

¢ Reorganizing the Sum

Next, we replace the measure over loop variables L; with the BST measure (7.14). In-
tegrating (7.24) with respect to dLIPS will calculate a cut in the Pp, channel of the scalar
box function. For fixed m,, mo, each term R(r, s) corresponds to the same channel, Py, ,, but
different values of r, s correspond to cutting different propagators in the box diagram (Figure
6.1), and hence different channels of the box s,,t,, P2, @%. Thus, each MHV diagram gives.
a cut in one channel of four different boxes. The sum of all MHV diagrams gives the sum of
all four (non-vanishing) cuts of all the boxes. It is convenient, then, to organize the sum of
diagrams into a sum over boxes, where each box is the sum of its four cuts.

e Calculating the Cuts

We consider a single term R(r, s) and assume it corresponds to the s,-channel cut of
some box. Its integral over the LIPS is given by

st — P2Q?
(by — kr)2(6y + k)2
This integral is most easily solved in the rest frame of ¢; — ¢, = Pp,, with k, oriented along
the 2P axis, and ks in the z'z? plane:

Z(s.) = [ dPLIPS(6, ~ta; Pr) (7.26)

1 1
El = EIPL;ZKLV) H 82 = 5|PL;Z|(—1aV) (727)
ko= (kb 0,...,0,k) , ke=(AB,0,...,0,C),
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where |v| = 1 and A? = B% + C?. After a long calculation and some help from Appendix B
of [53], BST find

3
m2°¢ 1\ s —as
I(s))==———=]|Z|(1—-as,) |1+ €Li z 3 2
(s2) =g (e) 1 (1—-as,) [ +e 12(1_%2)-{-0(6 )] , (7.28)
where the quantity
PP+ Q*—s—t
= —pigr —st (7.29)

e Performing the Dispersion Integrals

The final step in the calculation is the dispersion integrals over z1, z;. First, we change
variables to 2 = 25 — 2 and 2/ = 2, + 2
dz; dz 1 dzdz’'
Ao T . (7.30)
21 2o 2(2 = 2)(2 +2)
The 2’ integration is trivial, as the rest of the integrand is independent of it. The remaining
z integration can be recast as an integration over the shifted channel’s momentum invariant,
in this case s,:
dz _ ds,

z  §;—§

(7.31)

They found that the combination

/o —szd.s_’sf(sz)— A _de—%zf(@bré [(=5)7¢ = (-@*) ] +Liza(1~0Q*)~Liz(1-as) .
(7.32)

Combining this with the remaining ¢t and P? channels, they obtained the result

F(le, Qo P) = =5 (=) + (=) = (=Q%) ™ = (=P)~] (7.33)
+ Lig(1 — a@?) + Lig(1 — aP?) — Liy(1 — as) — Lis(1 — at) .

This is not the form in which the box function was originally presented. Amazingly, BST
went on to prove the following non-trivial identity involving nine dilogarithms [25]:

Liz(1 — aQ?) + Lis(1 — aP?) — Lip(1 — as) — Liz(1 — at) = %logQ (;) (7.34)

2 2 2 2 2,2
+Li, (1"‘P—>+Liz (1~£>+Li2 <I—Q—)+Li2 <1—Q—)—Li2 (1—PQ) ,
S t S t st

and so their result does indeed match that of BDDK. While the CSW rules still lack any
formal derivation, there is strong evidence to support their legitimacy. The fact that they
would be invalid if the above identity were not true is rather surprising. But the fact that
such a non-trivial identity is true is perhaps the strongest piece of evidence to date.

The question of using MHV diagrams to compute sub-leading amplitudes A, was exam-
ined in [54]. It was indeed confirmed that the CSW rules fix the sub-leading terms of N'=4
MHYV amplitudes as linear combinations of the leading terms, thus the technique applies for
finite N and not just in the large N limit.
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Chapter 8
The N=1 MHYV Loop Diagram

Here we present an explicit computation of an MHV loop diagram!. The amplitude we
are interested in calculating the contribution of N = 1 chiral multiplet to one-loop MHV
amplitude. We consider the case of external gluons only, but many other diagrams with
external fermions or scalar are related to this amplitude by supersymmetry.

8.1 Computing the Diagram

The typical one-loop MHV diagram of interest is the same as Figure 7.1, however we must
impose some constraints. We cannot use the general supervertex as we require the AN'=1
chiral multiplet to circulate in the loop. Also, we must have one negative helicity gluon on
each side of the diagram, as there is no possible helicity assignment for the intermediate
states if both negative helicity gluons are on the same side of the diagram. We label the
momenta on the left side as kp,,, ..., kn,, one of which is negative helicity, denoted by p.
The momenta on the right side as ky,;+1, ..., km, -1, the negative helicity momentum labeled
g. As always, all momentum labels are cyclically ordered. When calculating the complete
amplitude one has to sum over all such MHV diagram. All loop momenta are evaluated
using dimensional regularization, in D dimensions, with D = 4 — 2e.
Now the amplitude for this constrained diagram is given by

d*Ly d*L,
L L

AN=IX = §(27)16(Pp+Pp) / §O(Ly—Ly+Py) (A{Ag + AV AR 4+ zAgAg) (8.1)

where Py, Pr are the momenta flowing into the diagrams from the left and right correspond-

ingly. Each vertex Ar, A is obtained from the appropriate coefficient of the supervertex by

ensuring the two internal lines are members of a chiral multiplet, including a fermion (of two

helicities, resulting in vertices A¥ and Af) and a complex scalar (resulting in a vertex AS).
As reviewed above, each of the off-shell momenta L;,7 = 1,2 has an associated null

momentum #; and the corresponding spinors ¢; = A;\;, specifically L; = A\ A; + 2n7.
Factoring out the tree (Parke-Taylor) amplitude results? in:

1
(A1 A2) (A2 Aq) (
% (m;; Mo + 1)(m1 -1 777,1)
(/\1 m1><m2 /\2)(/\2,m2 + 1)(m1 — 1, /\1>

d'Li d'L :
AN=IX = piree / -2 5W(Ly — Ly + Pr) 215 + I + IF) x

Iz 12

(8.2)

1A version of this chapter has been accepted for publication. Quigley, C. and Rozali, M. One-Loop MHV
Amplitudes in Supersymmetric Gauge Theories. JHEP 01(2005)053.
2We do not keep track of the overall sign, which can be fixed at the end of the calculation.
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where
s Qpde p)’ 92 (s )
(r a)*
F _ s {2 @M p)
T T et
F (A2 p) (M1 )
T (&)
To sum the 3 terms in (8.2) one uses the Schouten identity
(a b){cd) = (ad){cb)+ {ac)bd) (8.4)

which will be repeatedly used below. This leads to the following expression for the chiral
multiplet contribution to the one loop gluon MHV amplitude

_ d*L{ d*L
AN=1x A::ee/ Lfl ng5(4)(L1 —Ly+P) R (8.5)
with
R {my — 1,mq){my, my 4+ 1) (A1 @){A2 ) (A1 p){X2 D) (8.6)

(P @)2(m1 — 1, A1) (A1 ma)(ma Ag) (A, mg + 1)

8.2 Simplifying the Integrand

Our next step is to split the spinor expression R into 4 terms of identical structure. Using
the pair of Schouten identities:

(mi1 = Lmi) (M @) = (m1 = 1,¢) (M ma) + (m1 — 1, M) (my q)

(ma, ma + 1)(A2 p) = (M2 p)(Ag,m2 + 1) + (my Ag)(ma + 1,p) (8.7)

we get the following sum:
R = R(mg,ml — 1) - R(m2 +1,m; — 1) — R(’I’I’Lg,ml) -+ R(mg + l,ml) (88)

where
(A1 p)(X2 q) (s q@)(rp)

{p q)* (s A)(r A2)

Let us simplify R(r, s): once again we use Schouten identities to split R(r, s) to 4 term,
which (when integrated) give rise to tensor box, vector triangle and scalar bubble diagrams3.
The 4 terms are:

R(r,s) = (8.9)

ay oy SO0 D s e 5 )

B ) IS Ou ) )

B s @)(rp)*(r q) (A2 s)

B = 5 mrrs? (an)

C _ <3 Q>2<7" P>(3 P) ()\1 T)

Brs) = b P O

RP(r,s) = S rpr (8.10)

3Tensor, vector and scalar refer to the degree of loop momenta appearing in the numerator.
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Let us simplify these expressions one at a time:
eSimplifying R4

The ); independent factors in R* give the box coefficient 5?7 while the remaining factors
give the tensor box function. We decompose this, in [5, 25|, into scalar components by
expanding

(s Aa){r A1) [ha rl{r M)[M s] s Aa) _tr(%(l — )2 K 1 Ks) _ (8.11)
(rdo)(s M)~ (r /\2>[/\2 r){s Ar)[A1 8] (o — k)2l + kg2 '
—2 { 62 El ) ( )( ) (kr ks)(el ) €2) + iEabcdggkgeik‘si}
£y — kr) (4 + k;)?

The term proportional to the e-tensor vanishes upon integration. As before, we define
Py, =¥, — €y = P, — (21 — 22)n7 , then the rest of the numerator may be rewritten as

(2(PL;z ' kr)(PL;z ' kS) - (kr : ks}Pf;z) - (gl + kS)Q(PL;z ' kr) -
(bo — k)2 (Prs - ks) + (€ — k. )2(€y + k)2 (8.12)

The terms collected in the first brackets contribute to a scalar box integral, while the next
two terms each contain a factor which cancels one of the propagators in the denominator,
leaving scalar triangles. The last term reduces to a scalar bubble, since both propagators
cancel. Next, we make use of the identity

4P-i)(P-7)—2P%i-j) = (P+i)2?(P+j)? - PYP+i+j)? (8.13)

valid for any momentum P and null momenta ¢ and 7, to rewrite the box’s coeflicient in terms
the shifted momentum invariants, (recall their definitions; s, = (Py.,)?, P? = (Pr.,~k. )%, t, =
(Pr.. — kr + ks)?, and Q% = (Pr.. + ks)?):

1
2(PL;Z ) kr)(PL;z ’ kS) - (kr ’ ks)Pg;z = §(P22Q§ - Sth) ' (8-14)

Thus, the result of the tensor box’s decomposition is

<S )‘2><T/\1> _{ %(PEQZ_SZtZ) _ PL;z'kr _ PL;z'ks }+1
(raa)(sh)  \(l—k)2(1+k)? (Lo—k)2 (61 +k)?

The terms collected in the bracket lead to the finite portion of the scalar box function,
complete with the correct coefficient #22, as in equation (6.17). The second term contributes
to scalar bubbles, which cancel against other contributions. We demonstrate this cancelation

below.
eSimplifying R? and R¢

We now turn to the linear triangle terms RZ(r, s) and R¢(r, s). First, we write the loop
momentum dependant part of RE(r, s) as

(8.15)

(sXo) _ (sho)rar] _ (sllalr] _ £ (8.16)

Car) - ] - -k - N T
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So, RE is the integrand of the (cut) vector two-mass triangle integral I2™  [¢2], defined as

3irymy

n (6.21), except with the numerator #3. Next, we introduce Feynman parameters z; into
the vector triangle integral, and shift the integration variable:

om e _ [ 4% ¢ '
fmlE] = / @mP (e + Q¢ - k) 17

dDgl 2(¢ — l‘z@ + 23k,
_ / B Z zi— ( )
o @ =4y
The term linear in £ vanishes upon integration, so we are left with

I 1] = = Q23 lwa] + K2 I, (3] (8.18)

where the arguments in square brackets are the numerators in the integrals, @z is the mo-
mentum of one massive leg (shifted by z dependent terms, as defined above) and k, is the
momentum of the massless leg, as drawn in Figure 6.2. Since Q, = P, + k, and [rr] =0,
we can write

(s1Yalr] Iy, [65] = —(s|Palr] g m, [2]- (8.19)
Now, the full coefficient of R? is
{pr)(r a){p 7){s q)(s Po)[P: 7]
— 8.20
a7 )2 (520
Applying the Schouten identity to the terms (p r)(s P,) and (r ¢)(s P,), then averaging over

the two gives

L N LT

{p )*(r s) 2
_ {pr)sq) (les)ro+ipr)sq) |
{p @)% s)* ( 2 )Q(Pz kr) (8.21)

We use the Schouten identity again, on the first term of the first pair only.
(prisq) _ (ps){raq

(rsy — (rs)
Note that the piece containing (p ¢) is independent of s, so it will vanish when summing over
s = {my —1,m;}, as that sum has alternating signs. Now the first pair of terms in equation

(8.21) reads
{pr)(rg) ((8 0)(p P:) + (s p){g Pz))
P, 7). 8.23
v ) 0)? 2 e &2
A similar analysis of RY(r, s) shows that the coefficient of the integral function

g s [m2] i

+{p q} (8.22)

{p s){s q) ((T p){q Q.) + Q. 5

{rg)p Q;;)) [

(rs){pa)? 2
pri{sq) ((ps)rqg)+{pr)isq) _
(r 5)%(p g)? ( 2 ) HQx ko) (824
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where (), is the shifted momentum transfer defined above. In this decomposition the first
term contributes to the coeflicient of the scalar triangle function, and the second one will be
used below to cancel the bubble diagrams.

eSimplifying R”

First,the scalar bubble in RP can be combined with the one that arose from decomposing
RA, giving a single bubble with coefficient

LD (45 547 00+ o rits ) (.25)

- Now, to cancel the bubbles notice that they possess the same coeflicient as the last pair
of terms in (8.21) and (8.24). These integrals combine into

{pr)s g) ((p s){r )+ {pris Q>) y

8.26
(o ) 2 (820
X (212:r;s —2(P; - kr)Ing;ml [z2] +2(Q: - kS)IBQ:Ts,?mz+1[x2]) )

which vanishes in each channel of each cut because of the relation (6.22)
(s — QZ)I:?:’rn;s[l?] = Ipirys — J2rt1;6- _ (8.27)

In summary, the net result of this decomposition is then

Rirs) = @ alps)s q>{(é<P3Qz-sztz> Py ke pL;z.ks}

(r s)*(p q) b — k)2l + k)2 (b= k) (6 + k)2

(pri(ra) [ (s a)plP.lr]+ (s p)alP:lr] | (25%)
 Eea 2 ot (5:28)
(p s)(s q) { (r p){glQ:ls] + (r @) <p|Qz|8]} (=)
(r s)(pq)? 2 (61 + ks)?
where we have again used (6.22)
o = (552 ) B (5.29)

to conveniently express the triangles’ integrands.

The first coefficient above is easily recognizable as %b’r’g from equation (6.25), but to get
the remaining two into the correct form requires an additional step. Consider the second
line of each of the four R(r,s) terms. Those with a common value for 7 differ only in the s

dependance of their coefficients. So when we add R(r,m; — 1) — R(r, m;), the only change is

(so) (my—1e) (mie) (er){mi—1m)
XS: (rsy (rmp—1) (rmy)  (m;—17)(rm)’ (8.30)

where we used the Schouten identity to combine the two terms. Now the coefficient of the
second line is %cf?ml_l). An analogous treatment of the third line produces the coeflicient

1.pq
5Chma
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8.3 Reorganizing the Sum

We have decomposed the integrand of each one of the MHV diagrams into a sum (8.28) which
should now be compared with the sum occurring in the exact result (6.17). The crucial point
is the BST measure [25]:

4y 14
dLI; dLI;A §O(Ly — Lo+ P) = _4% dz dLIPS(£y, ~£y, PL.) (8.31)
1 1 21 %

where dLIPS is the Lorenz invariant phase space measure appearing in the cut rules. For
fixed 21, 22, after performing the integration over [y, l; we have a sum over cuts of Feynman
graphs (at shifted values of the momentum invariant). The claim is that this sum, at z = 0,
coincides exactly with the cut of the exact result (6.17). This is not true diagram by diagram,
rather there is some re-arrangement of the cuts which we now demonstrate.

Having completed the decomposition of R =} R(r, s) in the previous section, we find
it contains eight distinct terms which are: 4 (cut) finite box functions (1 for each pair of null
legs k. and k), and 4 modified (cut) two-mass triangles (1 for each case where k, or k, is
the null leg). When we cut the loop in the MHV diagram, this is equivalent to cutting the
boxes and triangles, as shown in figure 5, so as to keep {k,,...,km,} on the same side of
the cut. Clearly, which lines get cut depends completely on where k,,,, k., are in relation to
k., ks. We stress that all these cuts are in the same channel, s = Pf. Alternatively, we could
combine the contributions from different MHV diagrams (with different m1, m,) which have
the same null legs ,, ks and therefore must produce the same boxes and triangles. Different
MHV diagrams will lead to different cuts. In this manner, we may combine: the 4 boxes
with common k, and k,, with cuts in the channels s, ¢, P? Q2 the 2 triangles with common
k., with cuts in the channels s = Q2 and P?, and the 2 triangles with common k,, with cuts
in the channels s = P? and Q?, for all values of r, s.

In the exceptional cases where one of the triangles massive legs becomes massless, then
this diagram has the single non-trivial cut which isolates the remaining massive leg, as
the trivalent vertex vanishes on-shell. We will show below that each of these terms are
reconstructed from their single cut.

One might worry that not all the cuts exist in all channels for non-degenerate cases. A
priori, we must sum over all MHV diagrams with g+ 1 < m; < pandp < my < ¢g-—1,
but when m; = p or my — 1 = ¢ the corresponding boxes and triangles may not be defined.
Fortunately, the coefficients

Bi=bl=cdi=cdl=0 (8.32)

all vanish. So, we may restrict the sums over my = r,m; = s + 1 to the ranges given in
Section 6.3, plus the degenerate triangle terms.

So, in summary, we have found that the decomposition of the sum of MHV diagram
is simply related to the result (6.16). For any channel X = s,t, P?, Q% of any function
F = B,T,Ajr in (6.17), we find a term in our sum of the form AxF(X,), where Ax
denotes the cut in the X-channel, and X, is X shifted by z-dependent terms.
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Figure 8.1: The cuts produced by one MHV diagram
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8.4 Calculating the Cuts

In the last section, we noted that the loop integrations factor into two parts: dispersion
integrals over the 2; and an integral over dLIPS(¢;, —¢;, Pr.,) which computes the cuts in
the diagrams. The cut box integrals were computed in [25] and these results were summarized
in Section 7.2, so the only new ingredients are the cut triangles. We will now evaluate these
integrals for when k&, is the null leg, the other case follows by switching r < s and ¢y — —¥¢;.
Also, we focus on the s-channel cuts; other channels are treated analogously. The integrals
we wish to solve are in dimension D = 4 — 2¢ and of the form

N(PL;z)

—————————(£2 s (8.33)

I(s,) = / dPLIPS(L, —1, Pp.,)

where the numerator N(FPy.,) only depends on Py, and external momenta?. By boosting to
the rest frame of £; — #5, then rotating k. into the zp direction, we have

1 1
el = 5 |PL;z| (1,V) ; 42 = 5 |PL;z| (_17V) ; kr = (kraoa .. '10) k;r)) (834)

where the unit vector v is such that v - Zp = cos(6;). This allows us to re-write our phase-
space measure as in [25]

~ i~ |P:_|”C
dPLIPS(£y, —ty, Pr) = ———— |~Z2| 46, df,(sin 6;)'~%(sin 6,) % (8.35)
’ 4T 7 6) 4
and the integrand’s denominator becomes
(62 — kr)2 = —282 . k),« = kr |PL;z| (1 — COS 01) (836)

Performing the integral (8.33) is now a simple task (for a computer), with the result

(s) 473~ 15y~ N(Pp2) D(—¢)
: oML —e) 14| Kk |P | T(1—¢)
1z N(PL;Z) —e
SRR (8.37)

Now, for any channel of any function F(X) appearing in the result (6.17), we are left
with an integral of the form [ %A xF(X,), where the cuts of the triangle graphs are
exhibited in (8.37). Furthermore, we have shown that Ax F'(X,-o) is precisely the cut of the
exact result (6.17). Appealing to cut constructibility, we can anticipate that our dispersion
integration will reproduce the correct answer as long as the functions Ax F'(X,) are cut free
on the integration contour of the z-integration. As the cuts (8.37) do include non-analytic
functions of X, the correct contour® is X, > 0. Choosing this contour, it is a simple matter
to perform the dispersion integration directly to verify that we get the correct answer, and
we turn to that integration now.

“Since [r r]=0, we can always write (8| P,|r] = (o|(P; + k..)|r] = (o|PL,.|7].
5We note that the integration contour then is channel-dependent, as in [25].
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8.5 Performing the Dispersion Integrals

We now show that the final integrations over zi, z» reproduce the result in (6.16). Recall
that in Section 8.3, we demonstrated that the sum over MHV diagrams is equivalent to the
sum of cuts in all possible channels of the box and triangle diagrams. Thus, it remains to
show that a given box (triangle) is reconstructed from the sum of its 4 (2) integrated cuts.

We change our integration variables to z = 2; — 25, 2/ = 27 + 23 and note that for any
function f(z) independent of 2’

%%f(zl — z9) = 2(2mi) Ei—:?-f(?:) (8.38)

21 29
Next, we use the fact that s, = s — 2zn - P, to write

d ds,
2o 2 (8.39)
z s—s,

with a corresponding change of variables in the other channels. Now, we must show that

ds, dt,
Bk, Q. ks, P) = / S A,B(s.) + / 2 A,B(1.)

§—8; — bz
dP2 \ dQ?2
/ P2 ——=sAp B(P?) — SEaE ——2 =N B(Q?) (8.40)
and 4F? iQ?
T(k7 P, Q) = P2 P2 APQT(PZZ) - Q2 QQ AQzT(Q2) A (841)

Again, we will consider the s-channel only, the other channels follow immediately. As
discussed above, we must restrict the integration to s, > 0, where the expression (8.37) has
no cuts.

First, we will reconstruct the divergence free box functions. They possess three types
of terms, given in the first line of (8.28). The first of these was calculated in [25], and we
quoted earlier that the s dependant terms are

—=(=s)"*—Liy(1—as) . (8.42)

The next term has the cut Z(s,) from the previous section, with numerator N(Pr,,) =
—Py..- k.. Up to a sign, this numerator is precisely the denominator in our working reference
frame (8.34). The dispersion integral is then

1 [ ds, _. 1mwcsc(me) e 1 —e
_2_6 o s — sz 82 - 2 € ( S) - 262( S) (843)

~ The next term in the divergence free box gives an identical contribution. Summing the three

contributions, we find
ds,

A B(s,) = =Lis(1 —as), (8.44)

s— 8,
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exactly what is required to reproduce (6.18). Treating the other channels similarly proves
the equality of (8.40) and (6.18), provided we use BST’s representation of the box function
(7.34).

Moving on to the triangles, we will consider those where k, is the null leg. These also
have cuts of the form Z(s,), in the reference frame (8.34) the numerator is

N(Py.) = (z|P.|r] = <$|PL;ZIT] = <-'EI'70|T] | Pr.:| (8.45)

€
1-2¢

times (%) and & = p,¢. The dispersion integral is nearly identical to (8.43):

1 > ds, e {z|y°r] e 1 (z]7°]r] »

% o S—8,1—2 k, 52 €(l—2€) 2k, (=)™

(8.46)
Multiplying the top and bottom by |P| = PP, then re-expressing this result in a covariant
fashion gives the coefficient

(z1r°lr] _ (@|Plr] _ (z|Plr]
2k, 2k,-P Q2 p2

(8.47)

(recall that s = @2) An anglogous result holds in the P? channel. Taking the difference of
the two, and expanding (—Q?)™¢, (—P?)7¢ in ¢ yeilds the desired result:

1 (”‘52)_5 —(=P%)~ log(@2) — log(P?)
€(1 — 2¢) Q2 — p2 - o2 — p? . (8.48)

In the case of the one-mass triangles, the result is even simpler. Consider the case
(r,s) = (p+1,p— 1), then P? = p? = 0 and the dispersion integral gives
1 (_Q2)—E
€(1-2) (2

(8.49)

as desired. We conclude therefore that all triangle terms are reconstructed once we perform
the final dispersion integration.

Thus, we have shown by explicit calculation that the MHV diagram formalism is valid
for the calculation of the one-loop contribution of the AN/ = 1 chiral multiplet to the MHV
amplitude. Together with the result of [25] this establishes the validity of the MHV-diagram
technique for this helicity configuration in any massless supersymmetric theory.
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Chapter 9

Conclusions and Future Outlooks

We have presented a wealth of evidence confirming that perturbative gauge theory ampli-
tudes are much simpler than anyone would najively suspect. Conventional approaches to such
calculations become exponentially cumbersome as the complexity (the number of external
legs or the number of loops) in the amplitude increases. The simplicity of the Parke-Taylor
formula indicates that standard approaches are overly redundant and are in need of simplifi-
cation. The first step in this program was factoring out the colour information to reduce the
problem to a kinematic one which further simplifies when formulated in a helicity basis. The
CSW carry this line-of-thought further by building amplitudes out of blocks where many,
many Feynman diagrams have already been summed.

While the CSW rules lack any derivation, we have demonstrated that they pass several
non-trivial checks at the tree and one-loop levels. It would interesting to push this further
and examine higher loop amplitudes. There is however, the unsettling fact that the CSW
rules do not seem to apply to non-supersymmetric loops. Understanding how to obtain
the full scalar loop contributions from the CSW rules would be a tremendous boost to the
program. It is essential that we develop some method of computing these contributions if
we are to push the calculation frontier of pure Yang-Mills loop amplitudes past five external
gluons. The six-point one-loop amplitude; for example, will be crucial for next-to-leading
order analyses of four-jet events at future collider experiments such as the LHC.

Recent investigations into supersymmetric gauge theories has been more fruitful. The
approach of generalized unitarity, where more than two propagators are put on shell, has
proven most effective for computing loop amplitudes. This has led to the discovery of all
NMHYV one-loop amplitudes in N'=4 SYM [33], and certain sets of loop amplitudes for the
N=1 case [34]. This success is largely due to the fact that such theories are cut-constructible.
Since cut-constructible theories may be expressed as a linear combination of known scalar
loop integrals, the only remaining task is to compute the coefficients.

The study of N'=4 one-loop NHMV amplitudes yielded a surprising result: the coeffi-
cients of one of the functions (the three-mass box) determined all the remaining coefficients
algebraically! This author is currently investigating whether this holds for more complicated
loop amplitudes. Specifically, we are examining the next-to-next-to-MHV amplitudes (with
four negative helicities) in N'=4 SYM to see whether all the coefficients are determined from
a single set (namely the four-mass box coefficients). So far, we have found general expres-
sions for the four-mass box integrals’ coefficients and are now determining their relationships
to the others. ‘

The N'=1 theory, having less symmetry, has proven more challenging. Only limited sets
of amplitudes have been uncovered so far. In particular, the set of NMHV A'=1 ampli-
tudes of the form A,(¢7,97,97,97,97,9",...,g") are now known, as well as all the helicity
configurations of the 6-point amplitude. We are working on an expression for the general
NMHYV loop amplitude. Our hope is that the coefficients of each basis function will be fixed
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in terms of the coefficients of a small subset (from one to three) of them.

Our final line of current investigation is in non-supersymmetric amplitudes. We aim to
determine all cut-constructible terms in the contributions from internal scalars to one-loop 6-
point amplitudes. As our technique relies heavily on unitarity, we do not anticipate producing
the full amplitude. Nevertheless, recent parallel developments have produced a recursive
formula for one-loop amplitudes of the form A,(¢*, g%, ¢",...,g") for non-supersymmetric
gauge theories [36]. There is a growing belief that eventually non-supersymmetric theories
will be solved through a combination of unitarity (to determine the cut-constructible terms)
and analogous recursion relations (which fix the remaining cut-free terms). With this in
mind, we feel that determining all cut-constructible terms in non-supersymmetric amplitudes
will be an important result for future calculations.

There have also been many interesting new developments in tree-level computations lead-
ing to even more compact expression then the CSW prescription does [35]. Undoubtedly,
these new compact formulae (when combined with unitarity) will lead to dramatic simplifi-
cations in loop amplitudes. Better control over loop calculations will be essential for probing
new physics at future colliders. Though the CSW rules may not be suitable at the loop level,
or at least require some modification, for non-supersymmetric theories, they are nonethe-
less an important step towards a more eflicient paradigm for calculating loop amplitudes.
Their more successful application to supersymmetric theories, however, should prove useful
in uncovering hidden structure in gauge theories.
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Appendix A

Conventions and Notations

Here we summarize our conventions and notations.

eSpinors
We use the signature (4, —, —, —) for the spacetime metric 7,,. Spacetime indices are
denoted a,b,... = 0,1,2,3. Lefthanded spinor indices are denoted by «, 3,... = 1,2, while

righthanded spinors follow the same convention with a dotted index. Spinor indices are
raised and lowered with the 2-dimensional Levi-Civita symbol

0 1 |
Eaﬂzedﬁ'-_— ( _1 0) (Al)
4 0 -1
af _ af _
€W =¥ = ( 1 0 ) , (A.2)
which satisfy
€ar€? = & (A.3)
€ap€”’ = —63—+—5g (A4)

and similarly for the dotted symbols.
We convert between tensor and spinor indices using the Pauli matrices

Vab... — (Ua)ad(ab)gﬂ' o Vadﬂﬂ... (A5)

with ' _
0*=(1,0')=7, and 7= (1,-0") =0, (A.6)

which are related by the Levi-Civita symbols
(@)% = e (0%55 5 (0%)as = capess (@) (A7)
and satisfy the completeness relations
tros® = 2™ (A.8)
(09)aa(@a)?® = 26867 (A.9)
The SL(2,C) generators are defined
i

o,ab — Z[Uaab _ an_b] : Eab - %[Ean . o.aab] . (A].O)

which implies they are respectively (imaginary) self-dual and (imaginary) anti-self-dual

x0® = io%® , x% = —ig? . (A.11)
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For our purposes , the Hodge star always maps p forms to 4 — p forms
1 Q. a
*Way..ap = Hfamzaa«uw PG4 (A.12)
We often write (antisymmetric) spinor products as
(A 1) = Ao = €Phopup = €Prghy = “fﬂaﬂﬁ)\a = —(u,A) (A.13)
N = Aoig = 6dﬂxdﬁﬁ- = edﬁﬁﬁxd = —¢’ ,uﬂ = [, A . (A.14)
Notice that for fermionic spinors the product is symmetric:
XY = aﬂXoﬂ/’ﬁ = _EaﬂwﬁXa = ’|'6 "Z)ﬂon X (A15)
XY = aﬁXa"/)g = —¢ ¢ﬂXa = +¢° ¢,@Xa =YX . (A.16)
In loop amplitudes the product
KN = O ) e, ] = A Akadkall® = A%(0%,)aaii® (A.17)
appears quite often.
eGrassman variables
Grassman variables anticommute:
On = —nb, (A.18)
in particular,
06 =0. (A.19)
A Grassman function of a single variable has a simple Taylor expansion:
f(@)=a+b8, (A.20)
since 86 = 0. The Berezian integral of an anticommuting variable is defined :
/ dgo=1 (A.21)
/ dg 1= (A.22)
/ do £() (A.23)
This definition implies the following properties:
¢ Berezian integration is translationally invariant
/ d8 £(8+7) = / d8 £(6) (A.24)
/ i 2 7(6) = 0 (A.25)
de N '
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e Berezian integration is equivalent to differentiation

d
56 =b= / d9 £(6) (A.26)

e We can define a delta function by
5(6) =0 (A.27)

For the superspace coordinates 6, we write
8, = 5%— and 6% = %eaﬂeaeﬂ. (A.28)
Thus,

0,0° = ¢&° (A.29)
0,0°0" = P97 —§76° (A.30)
0.0° = 0, (A.31)
0** = 1 (A.32)

and similarly for the 6. The important features for superspace integration are
/d29 2=1= /d2§ 7’ (A.33)

/ 440 6%9° = 1 | (A.34)

where d*6 = d?6d%0.
¢ Superconformal Algebras

The most general group we consider in this work is the superconformal group. To em-
phasize the various sub-groups of this large symmetry group, we divide the commutation
relations into parts.

Poincaré: Generators Jy, P,

[Jab, ch] = i(nadec - 77ac']bd + nbc']ad - ndeac) (A35)
[Jab, Pc] = ”:(nbcpa - nach) (A36)

Supersymmetry: Additional generators Q4, Q 4, R-

{Q::a@dB} = 2(0'a)adPa53 (A37)

{Q2, Q8 =eapZ?® ; {Qan Qppl = —€s3% 48 (A.38)
Q2 Ju] = (00)2Q% 5 [@ans Jul = (Ta)5Qp4 (A.39)
[ g,R,] = (Ur)ng ) [@aAaRr] = (U:)f@aa (A-4O)
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[R-, Ry] = if,,' R, (A.41)
Conformal: Generators K,, D in addition to Jy, P,

[Jabs Ke] = i Ko — NacKs) (A.42)
[Py, Ky = 2iJap — 2inaD (A.43)
[D,K,) = —iK, ; [D,P]=iP, (A.44)

Superconformal: All of the above generators as well as S2
{54,5:8} = —2(0YaaKa08 (A.45)
[S2, Ju) = (0w)2S5  [Saas Jul = @at)35 54 (A.46)
54, P = i(02)iQs 5 [Saa Pl = 1(00)5Qan (A.47)
(@2, K] = —i(00)8% 5 [Qanr Kal = —i(02)350a (A.48)
D,Q4 = 204 & 1D, Qan] = 1Qas (A.49)
D58 = ~252 5 1D,Sad) = ~us (4.50)
[S2, Re] = (Un)5S: 5 [San Rl = (UD3San (A.51)
{S2,Q8} = 2(6™)ap 0B + 2iD5op62 + (U R,)*Bnp + R64B60s (A.52)
{San, Q) = 2(6™)spJasdan — 26D6;56 a5 + (U R,) ap4y — R6*Pug (A.53)

and all other (anti)commutators vanish. Here R generates the additional U(1)g contained in

the full U(N)g. Also, in the superconformal algebra, the central charges

must vanish.
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