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Abstract 

The Cyg X-1 X-ray source i s believed to be comprised of 

an accretion disc around a central black hole. We apply the 

methods of Mean F i e l d Electrodynamics to the study of magnetic 

processes in such an accretion disc. 

By decomposing the magnetic f i e l d i n the disc into mean 

and flu c t u a t i n g components, the observed X-ray properties of 

this system may be accounted f o r . 

It i s found that intense, short l i v e d magnetic 

fluctuations may occur which give r i s e to s o l a r - l i k e f l a r e s on 

the surfaces of the accretion d i s c . The energy releases and 

time scales of such f l a r e s i s found to provide a physical 

basis f o r the observed shot^-noise l i k e character of the X-ray 

emission from the system. 

It i s demonstrated that a rather strong, large scale 

magnetic f i e l d can be generated by turbulent dynamo action i n 

the accretion disc. This r e s u l t i s the reason why magnetic 

f i e l d s may play a v i t a l role i n these systems. The long time 

averaged structure of the accretion disc i s determined by the 

Maxwell-stress due to the mean f i e l d , and i s i n agreement with 

the "standard" cool accretion disc models. 

We prove that on intermediate time and length scales, the 

Maxwell stresses due to the magnetic fluctuations remove the 

known i n s t a b i l i t y of "standard" accretion disc models to r i n g -
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l i k e "clumping" and subseguent heating of the gas. This r e s u l t 

shows that the hard X-ray emission of the Cyg X-1 source must 

arise from either a hot corona, or intense solar-type f l a r e s 

above the disc surfaces. If the hard X-ray emission a r i s e s 

from non-thermal electron populations accelerated i n the 

f l a r e s , i t i s found that t h i s emission must occur in a rapid 

"flash-phase" on submillisecond time scales. These f l a r e s 

occur well away from the inner disc boundaries so that we 

believe that submillisecond variations of the Cyg X-1 source 

need not be a test of the rotation of the central black hole. 
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L i s t Of Symbols 

ffydrodynamics 

u Boot mean square v e l o c i t y fluctuation 
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Mx Mass of central compact object associated kith X-
ray source 
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R=VK r/v > 10 ? Reynolds number 
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21 Surface density ( v e r t i c a l l y averaged gas density) 

V e r t i c a l l y averaged component of stress tensor 
giving r i s e to outward r a d i a l transport of angular 
momentum in an accretion disc 

z 0 Half-thickness of accretion disc 

ftaqnetphydrodynamies 

b Root mean square magnetic fluctuation 

£ = u'xb' Mean EMF a r i s i n g from co r r e l a t i o n of flu c t u a t i n g 
velocity and magnetic f i e l d s 

Pseudoscalar a r i s i n g i n non-mirror symmetric 
turbulence and which gives r i s e to regeneration cf 
the mean magnetic f i e l d 

*Vr Turbulent d i f f u s i v i t y for mean magnetic f i e l d 
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^ Ambient d i f f u s i v i t y f o r magnetic f i e l d 

» 1 High conductivity l i m i t 

E M = V kr/ Ay~10'° Magnetic fieynolds number 

y = e t/z*\ T Batio of regeneration due to dynamo action to 
dissipation for mean poloida l magnetic f i e l d 

%=Vic/r/*vr Hatio of regeneration due to d i f f e r e n t i a l rotation 
t.o d i s s i p a t i o n for mean toroidal magnetic f i e l d 
(Chap. 3) 

P~\XJ)c)/x Measure of dynamo action to d i f f e r e n t i a l rotation 
(Chap. 3) 

r= l/X. } r Dimensionless r a d i a l co-ordinate (Chap. 3) 

z= (fx_ ) H z Dimensionless v e r t i c a l co-ordinate (Chap. 3) 

Dimensionless r a d i a l wavenumber f c r mean f i e l d 
modes (Chap. 3) 

A = |zJ 3 Dimensionless parameter; large when H T « 1 and 
| Z | ~ Z 0 

2T"J Maxwell stress due to mean magnetic f i e l d 

Maxwell stress due to auto-correlaticn cf 
fluctuating magnetic f i e l d s 
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Chapter J. 

In troduction 

1=. Observations Of X-ray Sources Associated - With Binary 

S t e l l a r Systems 

Since the discovery of the f i r s t g a l a c t i c X-ray source by 

Giaconi et a l (1962), intensive observational and t h e o r e t i c a l 

e f f o r t has brought us to the point where strong arguments can 

be made for the existence of a black hole. Many of these X-ray 

sources can be accounted for i n terms of a hot gas s p i r a l l i n g 

into a white dwarf, neutron star, and in one case (the Cyg X-1 

source), a black hole. These objects are themselves i n close 

proximity to a more normal type of star. 

This thesis analyzes the magnetohydrodynamics of a 

turbulent disc of hot gas ( the so-called "accretion di s c " ) 

around a central black hole. I t i s the contribution of t h i s 

work to apply the methods of mean f i e l d electrodynamics (see 

Roberts .(1971) and Moffat (1978) for reviews of this theory) 

to t h i s problem. We intend to show that i f the magnetic f i e l d 

in a turbulent accretion disc i s regarded as having large-

scale mean, and microscale fluctuating components; then the 

observed rapid v a r i a b i l i t y of the X-ray output of the Cyg X-1 

source can be explained i n terms of solar-type f l a r e s a r i s i n g 

from intense magnetic fluctuations and that the o v e r a l l 
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structure of the accretion disc i s controlled by the large-­

scale mean magnetic f i e l d . Other authors have concentrated 

only on the study of chaotic magnetic f i e l d s . Osing our 

approach, i t i s shown that a large-scale mean magnetic f i e l d 

can be generated by turbulent dynamo action i n the accretion 

disc and that an intimate connection exists between the mean 

and f l u c t u a t i n g magnetic f i e l d s . These types of results are 

not new to the theory of mean f i e l d electrodynamics, however, 

to our knowledge, they have never been considered within the 

physical framework of a turbulent accretion d i s c . I t i s our 

contention that the p o s s i b i l i t y of dynamo action i n such a 

system makes the magnetic f i e l d a c r u c i a l element i n the 

interpretation of the Cyg X - 1 observations. 

A more detailed outline of the thesis i s presented i n the 

l a s t section of t h i s chapter. The observations of the Cyg X - 1 

source are discussed in the remainder of t h i s section. Section 

2 outlines the basic physics of an accretion disc and how the 

gross observational features can be accounted f o r . Section 3 

reviews previous work done on magnetic f i e l d s i n accretion 

discs while section 4 presents ideas which motivated our own 

work. 

The f i r s t important feature of these sources i s t h e i r 

enormous power output, which for the Cyg X - 1 source i s of 

order 1 0 erg s which i s ten thousand times the power of the 

sun. 
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3? -I 

There appears to be an upper l i m i t of 10 erg s for the 

known sources. This i s a suggestive observation because t h i s 

i s of the order of the "Eddington l i m i t " of luminosity L c r for 

an object of mass M { measuring M in units of solar mass M 0 ) 

which corresponds to the condition wherein the radiation 

pressure exerted on a gas eguals the g r a v i t a t i o n a l force of 

the object. We say more about th i s i n section 2. 

Of the nine o p t i c a l l y i d e n t i f i e d X-ray sources, seven are 

known to be spectroscopic binaries. The fac t that X-ray 

sources are members of binary systems provides a very 

important handle on the system, that i s , i t s mass. The 

detailed analysis of mass determination for the observed star 

M0t,t and of the unseen companion Mx i s reviewed i n Bahcall 

(1978). The allowed ranges of the masses associated with 

the X-ray sources are l i s t e d i n Table 1 (adapted from Bahcall 

(1978)) . 
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Table 1. Masses Mx Associated-With X-ray Sources-

SOURCE Mx(SOLAR MASS UNITS) 

Vela XR-I 1.0* M* f 3.4 

SMC X-I 0.5* M„ * 1.8 

Cen X-3 0.7* Mx * 4.4 

Her X-I O.in Mx4 2.2 

3U 1700-37 0.6 * M* 

Cyg X-I 9 < M«s 15 

The Cyg X-1 source stands out because of i t s high mass 

MX^9M0 . The v i s i b l e i n t h i s system i s an OB supergiant with 

mass i n the range 15-25 M© , having an op t i c a l magnitude of 9. 

The binary period of the system i s 5-6 days. The v i s i b l e star 

varies by 0.07 magnitudes with a double peaked l i g h t curve 

which i s evidence for t i d a l d i s t o r t i o n since a t i d a l l y 

distorted star would present a changing area and hence an 

apparently changing luminosity with a frequency of twice the 

or b i t a l - r e v o l u t i o n frequency. A comprehensive discussion of 

the o p t i c a l observations of the Cyg X-1 source may be found i n 
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Bolton ( 1975). 

We s h a l l henceforth be considering only the Cyg X-1 

source, and turn to a summary of the X-ray observations of 

t h i s source. 

X-ray Observations Of Cyg. x-1 

This source, discovered by Boyer et a l (1965) has a hard 

X-ray spectrum and i s highly variable at a l l X-ray energies. 

(1) X-ray Spectrum 

The Uhuru s a t e l l i t e observations in the 2-10 kev range 

have been extended into the 15-250 kev range by the OSO 8 

s a t e l l i t e ( see Dolan et a l (1979) ). One of the most 

int r i g u i n g aspects of the spectrum i s that i t undergoes 

t r a n s i t i o n s between two states: a high luminosity state with 
LU;5U * S S x io e<r«^ S 

and a low luminosity state with 

assuming that the distance to the source i s 2.5 kpc. The high 

state has an excess of energy in the 2-7 kev band and a lower 

amount of energy i n the >7 kev domain as compared to the low 

state. Thus, a high to low t r a n s i t i o n was apparent i n the 

Uhuru observations during March-April 1971 ( see Sanford et a l 

(1975) ), while Dolan et a l (1 979) find a low to high 

t r a n s i t i o n occurring i n Nov 1975. 

Dolan et a l f i n d that over the 20-150 kev range of the X-
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ray spectrum a power law of the form 

ol f 

could be f i t t e d . 

They state that the spectra may a l l be represented by a 

single power law expression whose spectral index i s d i f f e r e n t 

for the two inte n s i t y states. Their high state spectrum i s 

reproduced i n Fig. 1 while F i g . 2 shows fi v e low state spectra 

they took. The best f i t single power law parameters , over the 

20-150 kev range are 

5" a- |.?3 i o.ofo J j 2.z\ i 0.\g 

C = * 0.5-7 C = 6.«"o i " 0.<?7 

Fig.. J[ X-ray Spectrum Of Cyg X-1: H-igh State (From Dplan Et Al-

-..—Spectrum of Cyg XR-1 observed 1975 November 
17, 0200 UT-1530 U T ($ = 0.40-0.50), when the source was 
in a high state. The values of a, C , and £ 0 of the power law 
which best represents the data are given in Table 2; the power 
law is shown in the figure as the solid line. The dashed line is 
the power law which best represents the low-state spectrum 
shown in Fig. 2d. 

10 20 50 100 300 
E (keV) 
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Fig. 2 X-ray Spectrum Of Cyg X-1:_-Low State (From Dolan Et Al 

(1979)) 

10 
10 20 50 100 300 

E (keV) 
10 20 50 100 300 

E (keV) 

10 20 50 100 300 
E (keV) 

20 50 100 
E (keV) 

50 100 
E (keV) 

-Typica l spectra of Cyg XR-1 observed by OSO 8 when the source was in a low state as defined at lower energies. The 
straight line in each spectrum is* the single power-law expression which gives an ^eptable m . n = ^ 
observed intensities. The resultant values of a, C , and £ 0 for each spectrum as defined in eq. (1), are given m Table 2 (a) SP^trum 
observed 1977 November 13,1050 UT-November 14,0015 U T (<X> = 0-30-0.40) (6 Spectrum observed 1977 October 22,q01 1MJT ^ 
1445 U T ($ = 0.30-0.40). (c) Spectrum observed 1976, November 11 630 UT-November 12 0600 U T (* - 0 
(d) Spectrum observed 1976 November 10,0000 UT-1330 U T (0 = 0.50-0.60). (e) Spectrum observed 1975 November 14,2000 V l 
November 15, 0930 U T (0 = 0.00-0.10). 



8 

It i s important to note that Dolan et a l f i n d that about 

one t h i r d of t h e i r spectra could also be well represented by a 

double power law i n the 20-150 kev range with an increase i n 

the spectral index of 0.5 or larger. The break-point between 

the two power laws occurred between 40 and 125 kev for 

d i f f e r e n t spectra. 

F i n a l l y , Dolan et a l considering t h e i r highest energy 

data points f i n d evidence for an exponential cut-off i n the 

spectra of both states somewhere between 150 and 200 kev. 

The system seems to spend most of i t s time in the low 

state. 

(2) Short Term X-ray V a r i a b i l i t y 

For time p r o f i l e s over the 1-50 kev range , the 

g u a l i t a t i v e appearance i s characterized by a continual 

aperiodic t r a i n of spiky variations with pulse sizes ranging 

up to a few times the average i n t e n s i t y on time scales of a 

fr a c t i o n of a second ( see Oda (1977) f o r a review ). 

As Oda points out, i t appears that the pulses are a 

c h a r a c t e r i s t i c of the low state ( greater predominance of hard 

X-ray component ) and seems to get buried to some degree i n 

soft X-ray emission during periods when the source i s in the 

high state. This i s a key point and i s considered again i n 

Chapter 4. 

T e r r e l l (1972) successfully simulated the time p r o f i l e 

over periods of fract i o n s to tens of seconds i n terms of a 
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shot noise model comprised of a superposition of randomly 

occurring pulses ( instantaneous r i s e and exponential decay ) 

of constant amplitude and with c h a r a c t e r i s t i c times of 

fr a c t i o n s of a second-

In addition to the variations discussed Oda et a l (1971) 

and Eotschild et a l (1974) found evidence f o r millisecond 

bursts, which appear to occur i n bunches- The energy of these 

bursts appears to be lower than the o v e r a l l emission. The 

r e a l i t y of these millisecond bursts has been questioned by 

Weisskopf and Sutherland (1978) who f i n d that "spurious" 

millisecond bursts may arise as an a r t i f a c t of the data 

analysis and may have nothing to do with the physical 

processes associated with the X-ray source. 

We summarize the shot noise and millisecond burst 

parameters in Table 2 ( see Rotschild et a l (1977) ). 
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Tabl e 2_. Summary Of Shot Noise - And Millisecond Burst 

Parameters 

EVENT TYPE SHOT NOISE MILLISECOND 
BURST 

ENERGY/EVENT 10** ergs 10 3 rergs 

CHARACTERISTIC 10"' s 10 _ i s 
TIME 

EVENTS/SECOND 8 s _ l 100 s"' 

The simplest explanation of the Cyg X-1 source i s that of 

an accretion disc about a black hole of mass M X=10M© with 

accretion rates of 10 MGyr'' a r i s i n g from mass outflow ( Roche 

lobe overflow ) from the v i s i b l e star { see Bolton (1975) ). 

The reader may consult Kellogg (1975) for a discussion of the 

v i a b i l i t y of alternate models. 

Henceforth, we s h a l l only be considering these accretion 

disc models for the Cyg X-1 source. 

2_ The Basic Physics Of Accretion Discs 

The observations suggest that the v i s i b l e star i s t i d a l l y 

d i storted. This leads us to consider matter loss from the star 
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by Roche-lobe overflow. 

We generate the so-called Roche eguipotentials by going 

into the rotating frame of the binary system and drawing 

eguipotentials of the g r a v i t a t i o n a l and c e n t r i f u g a l 

potentials. Consider the case when the lower mass object Mx i s 

compact and the larger mass star M ̂  expands to f i l l i t s 

Roche-lobe (see Fig. 3). Matter may then leave i t s surface at 

the point of "zero gravity" ( the inner Lagrangian point L i ) 

and flow over toward Mx. Such a gas stream w i l l pick up 

angular momentum vi a the C o r i o l i s forces and go into o r b i t 

around Mx rather than f a l l i n g d i r e c t l y i n (see numerical 

calculations of Flannery (1975) f o r a detailed examination of 

the hydrodynamics). The matter stream and the orbiting gas 

w i l l stay in the o r b i t a l plane of the binary system. V i s c o s i t y 

of the gas w i l l lead to the gradual s p i r a l l i n g of the gas i n 

towards the ce n t r a l object Mx, thereby forming the so-called 

accretion d i s c . 
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EiSLs. 1 Hiss Accretion By Roche- Lobe Overflow IFrom Novikov And 
Thorne J197311 

The basic physics of an accretion disc around a compact 

object was worked out by Prendergast (1960), Lynden-Bell 

(1969), Pringle and Rees (1972), and Shakura and Sunyaev 

(1973), and comprises the "standard model" of accretion d i s c s . 
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E e l a t i v i s t i c corrections are reviewed by Novikov and Thorne 

(1972). 

The p a r t i c l e s of an accretion disc moving i n 

approximately Keplerian orbits about the central compact 

object, lose t h e i r angular momentum due to f r i c t i o n between 

adjacent rings of gas. These p a r t i c l e s therefore gradually 

s p i r a l towards the central object releasing g r a v i t a t i o n a l 

pot e n t i a l energy. Part of thi s energy increases the k i n e t i c 

energy of rotation so that at every radius the velocity i s 

Keplerian to good approximation, and the other part i s 

converted into thermal energy by the v i s c o s i t y and 

subsequently radiated from the disc surface. The angular 

momentum i s transported out to the outermost portion of the 

disc with the resu l t that some of the matter a r r i v i n g i n the 

mass stream i s flung away from the disc and escapes the 

system. For Cyg X-1, the outer radius of the disc i s of order 

5x10^ km. 

The angular momentum transport i s provided by either the 

turbulence, the magnetic f i e l d ( present i n the matter that 

streams to the disc ), or both. Modelling these stresses i s 

one of the most important aspects of accretion disc theory, 

although for stationary discs, many of the basic observed 

properties of the system are independent of such models. 

The action of the turbulent ( Reynolds ) stress and/or 

the magnetic ( Maxwell ) stress gives r i s e to a small inward 
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r a d i a l v e l o c i t y by which matter matter slowly d r i f t s into the 

inner regions of the dis c . In the case where the c e n t r a l 

compact object i s a black. hole, general r e l a t i v i s t i c 

considerations show that the innermost stable, Keplerian-like 

o r b i t that can occur for a p a r t i c l e i n orbit about a non-

rotating hole occurs at 

c* 

where r^ i s the Schwarzschild radius for a black hole of mass 

Mx. Matter w i l l drop staight into the hole once i t reaches t h i s 

inner o r b i t . This r a d i a l i n f a l l from r^ to the event horizon 

w i l l not l i b e r a t e much energy in the form of heat. The 

Schwarzschild radius for M=10M© i s 30 km so the inner edge of 

the accretion disc i s at 90 km. Keplerian o r b i t a l speeds at 

t h i s innermost radius w i l l be 1.0x10,ocm s "l « 1/3 c. General 

r e l a t i v i s t i c corrections to the flows are important only at 

t h i s inner edge, and Newtonian gravity can be assumed i n the 

disc to good approximation. For a rotating ( Kerr ) black 

hole, the innermost possible stable o r b i t i s at the event 

horizon which f o r M=10M© i s at 15 km i n t h i s case. 

The g r a v i t a t i o n a l potential energy liberated as the 

p a r t i c l e s traverse ever smaller orbits about the hole w i l l be 

the binding enery in the l a s t stable o r b i t . Hence, one expects 

energy releases of 0.057 me1 for the non-rotating case and 

0.40 mcl for the rotating one. Thus, energy releases per 
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n u c l e o n i n an a c c r e t i o n d i s c about a c e n t r a l b l a c k h o l e r i v a l 

o r exceed ( K e r r c a s e ) the e f f i c i e n c i e s f o u n d i n n u c l e a r 

r e a c t i o n s . 

The f l u i d p i c t u r e of the gas i s adopted which i s 

d e s c r i b e d by t h e c o n t i n u i t y e g u a t i o n , the c o n s e r v a t i o n of 

a n g u l a r momentum ( N a v i e r Stokes e g u a t i o n s ) and c o n s e r v a t i o n 

of energy, where a x i a l symmetry i s assumed and c y l i n d r i c a l 

p o l a r c o - o r d i n a t e s a r e employed. 

I f s t a t i o n a r y c o n d i t i o n s a r e assumed ( <7ot = o ) one f i n d s 

t h a t most of t h e i m p o r t a n t d i s c p r o p e r t i e s a re indep e n d e n t o f 

a d e t a i l e d model f o r t h e s t r e s s . 

The c o n t i n u i t y e g u a t i o n l i n k s t h e mass t r a n s f e r t h r o u g h 

each annulus of g i v e n r a d i u s t o t h e mass f l o w M ( c o n s t a n t ) 

a r r i v i n g a t t h e d i s c from the v i s i b l e s t a r . Thus, under 

s t a t i o n a r y c o n d i t i o n s , 

N\ = 2T\ Z it' r (,.q) 

where Z i s t h e " s u r f a c e d e n s i t y " 

w i t h z 0 the h a l f - t h i c k n e s s of the d i s c , and 0 r the r a d i a l 

v e l o c i t y . 

For f u t u r e r e f e r e n c e , the v e r t i c a l average of any 

g u a n t i t y ¥ i s denoted < f) where 

<+> « f f Jt, 

-2, 
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Hydrostatic equilibrium between the z-component of the 

central object's g r a v i t a t i o n a l force and the gas pressure 

f> = ^ c * gives 
a. * C s (i.s) 

where c s i s the sound speed and the t o r o i d a l v e l o c i t y O9* i s 

Keplerian to good approximation. 

U* * V * - (6 M x / r ) *" =" JlK r 

We note that the s e l f gravitation of the matter i n the disc i s 

n e g l i g i b l e . Equation 1 .5 shows that a thin disc ( z./r <<1) 

implies the dominance of the Keplerian v e l o c i t y in the 

problem. 

The r a d i a l component of the Navier-Stokes equation 

( v e r t i c a l l y averaged) gives, under stationary conditions 

T ^ D ( [x 4
r) - -i 2 ( W r V) M 

where w""* i s the v e r t i c a l l y averaged stress due to turbulence 

and/or magnetic f i e l d s . Application of 1.4 to t h i s r e s u l t 

gives, 

where the boundary condition 

has been used. This condition insures that p a r t i c l e s w i l l drop 
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r a d i a l l y into the hole for T<VL . Hence, the stress W has 

been determined independently of some prescribed ' v i s c o s i t y ' 

mechanism. 

From the conservation of energy, we find that the energy 

flux per unit area i s egual to the energy production by the 

shear stress Thus afte r the v e r t i c a l average i s taken, we 

have 

where Q i s the energy flux per unit surface area. From 1 .8 we 

have 

Z " H 

which shows that a maximal energy flux i s occurring at 

The t o t a l energy release i s then 

which gives f o r M^=10M© a luminosity of 

- 1 

Hence an observed luminosity of 4x1037 erg s"' f o r the Cyg X-1 
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source i s obtained with the deposition of M=10 M^yr"' onto the 

accretion d i s c . 

The temperature and radiation spectrum are derived i n a 

straightforward fashion. For a radiative flux Q, the radiati o n 

density i s 

where «" i s the opacity due to electron scattering. The two 

main types of scattering giving r i s e to X-rays are 

(1) inverse Compton scattering by which a low energy 

photon scatters off an energetic electron gaining energy i n 

the process 

(2) bremsstrahlung in which X-rays are emitted from the 

acceleration of electrons in Coulomb f i e l d s . 

In the f i r s t case, and for very low photon energies 

compared to electron energies we have the Thompson cross-

section ( independent of energy ) giving the opacity 

<rT = o.'i CIM.* ^v~~' ( / ' i ) 

while for bremsstrahlung the opacity i s 

In the standard disc model thermodynamic eguilibrium i s 

assumed as well as the opticalthickness of the d i s c . 

Substitution of £ ^ T 4 into 1.12 ( b=Uo-/c=7.65x10"l:rerg cm"* °K W 
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where cr i s the Stefan-Boltzmann constant) , and the use of the 

opacities 1.13 or 1.14 together with the equation of state for 

the gas and the radiation 

gives four equations ( 1-4, 1.5, 1.8, and 1.12 ) for 5 

unknowns: z0(r) , 0r(r) , T (r) , and W^(r) . The detailed 

r a d i a l structure of the disc can be solved i f we specify the 

stress W""* in terms of the other variables in the problem. 

This s p e c i f i c a t i o n of the stress i s precisely the most 

d i f f i c u l t problem i n turbulent hydrodynamics. By-passing these 

problems, the stress induced by turbulent motions (see Shakura 

and Sunyaev (1973) as an example) i s modelled with a turbulent 

viseosit y 

where equation 1.5 has been used. It i s then assumed that the 

turbulent Mach number 

P5 - c A T /-p 

where u i s the root mean sguare turbulent v e l o c i t y and 

i s a constant so that 

Ht P 
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Equation 1.17 now allows the solution of the r a d i a l disc 

structure. Solving equations 1.4, 1 . 5 , 1 . 8 , and 1.12; and 

using 1.6 in 1 . 8 , one obtains expressions for \t ~L » 0 r i and T 

in terms of three parameters: Mx, M, and Mt . The solutions 

show that t h i s o p t i c a l l y thick disc i s comprised of three 

zones: 

A) inner zone; Pr.>>P̂ , G^.»<r f f 

B) middle zone; P̂  >>Pr , <rT » \T4( 

C) outer zone; P̂  » P r , 0^>>crT 

Other general conclusions that may be drawn are ( see 

Shakura and Sunyaev for an excellent analysis ) 

1) the dependence of T upon r i s of power law form giving 

r i s e to a "non-thermal" looking power law X-ray spectrum 

2) maximal temperatures are of order 10 "K 

3) the half-thickness z 0 d i s p l a y s weak dependence on Mtand 

i s of order 10 cm in the inner region to 10 cm in the outer 

region 

4) Compton processes strongly a f f e c t the shape of the 

emitted spectrum i n the inner disc region 

5) exponential cut-off in spectrum for frequency range 

^ v > > k T r n a ) t ( c h a r a c t e r i s t i c for Compton process ) 

The main short-coming of the standard model i s that i t i s 

too cool to explain the large X-ray power emitted i n the 10-

100 kev band of the spectrum. 

Lightman and Eardley (1974) demonstrated that t h i s 
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constant Mt model was unstable i n the inner, r a d i a t i o n 

dominated zone and showed on t h i s basis that t h i s region would 

probably be extended, hot, and o p t i c a l l y thin ( t h i s 

i n s t a b i l i t y i s considered again in Chapter 4 ). Shapiro, 

Lightman and and Eardley (1976) constructed a model, based on 
4 

thxs observation, which gave electron temperatures T e»10 °K 

with much higher ion temperatures T-»10"°K ( the so-called 

"two temperature" model ). Soft photons from the cool ( T t=10 6 

°K ) middle region scatter off energetic electrons i n the 

extented hot inner region undergoing inverse Compton 

scattering. This accounts for the hard X-ray component. The 

spectrum has a power law form with an exponential cut-off at 

150 kev, which i s consistent with observations. 

Transitions i n the luminosity of Cyg X-1 ( high and low 

states ) are thought to ari s e from variations i n the mass 

transfer rate M (see Alme and Wilson (1976))..A large increase 

i n mass transfer would increase the low-energy photon f l u x 

from the outer regions of the disc which would account for a 

t r a n s i t i o n into the high state. 

For a s t r i c t l y hydrodynamic explanation of the rapid 

v a r i a b i l i t y , Shakura and Sunyaev assume that i f Mt*1r strong 

convective turbulence might occur with the resultant emergence 

of hot clumps of plasma on the disc surfaces. These authors 

speculate that solar-type f l a r e s could occur i n the disc i f 

the f i e l d were b u i l t up enough. 
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3^ Previous Work On Magnetic Processes In Accretion Discs 

In a short early paper, Blumenthal and Tucker (1972) 

suggested that the X-ray pulsations from Cyg X-1 could be 

understood i n terms of giant f l a r e - l i k e events i n a region of 

high magnetic f i e l d . They proposed that i n a f l a r e , 

o s c i l l a t i o n s of the f i e l d would be set up leading to plasma 

heating in the flux tube and thermal emission. The hard X-ray 

component would arise from synchotron radiat i o n from the high 

energy p a r t i c l e s known to be emitted i n such f l a r e s . They did 

not discuss how such f i e l d s could be generated. 

Later work on magnetic processes focussed on the r o l e of 

magnetic f i e l d s i n transporting angular momentum i n the disc. 

One feature of t h i s work i s that only f i e l d s at or below 

egu i p a r t i t i o n energies with the thermal energy are considered. 

Another feature i s that the in t e r a c t i o n between fl u c t u a t i n g 

velocity and fluctuating magnetic f i e l d was not considered. 

Such interactions however are known to give r i s e to very 

intense magnetic fluctuations as well as strong large scale 

"mean" f i e l d s under certain circumstances as much work on the 

theory of turbulent dynamo action shows. 

Eardley and Lightman (1975) as an example discuss the 

angular momentum transport and disc structure a r i s i n g from a 

chaotic magnetic f i e l d . Assuming that only a chaotic f i e l d can 

be present i n the turbulent disc, these authors consider the 

growth of the b p component of the chaotic f i e l d at the expense 
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of the r a d i a l component by the shearing of the r a d i a l f i e l d 

l i n e s in the Keplerian flow. They assume that d i s s i p a t i o n on 

micro-scales i s negli g i b l e so that the r a d i a l f i e l d b remains 

constant. With t h i s picture, there i s seemingly no l i m i t to 

the growth of the chaotic f i e l d . Consequently f i e l d l i m i t a t i o n 

by reconnection of the f i e l d l i n e s comprising the "magnetic 

c e l l s " of flux i s invoked. Since the physics of reconnection 

events (known to be important i n solar flares) i s poorly 

understood, Eardley and Lightman write down a phenomenological 

equation f o r f i e l d l i m i t a t i o n by reconnection, with a 

c h a r a c t e r i s t i c time for energy loss to the f i e l d as some 

fraction of the time required for an Alfve"n wave to traverse 

the distance of the magnetic "eddy". Assuming s t a t i o n a r i t y and 

magnetohydrostatic balance, they then go on to compute the 

disc structure with the Maxwell stress due to the flu c t u a t i n g 

f i e l d s providing the stress W1 .̂ 

Ichiraaru (1977) attacked the problem of angular momentum 

transport by fluctuating magnetic f i e l d s and theorized that 

the currents a r i s i n g from reconnection of the "magnetic 

eddies" would induce an anomalous r e s i s t i v i t y i n the plasma. 

This anomalous r e s i s t i v i t y a r ises from the scattering of these 

currents off of the magnetic fl u c t u a t i o n s , and i s very much a 

plasma theorist's point of view. Ichimaru then solves the 

induction equation f o r the fluc t u a t i n g f i e l d and finds using 

his anomalous r e s i s t i v i t y , that under stationary conditions 
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where v i s given by 

v • ( ? I (=' )'4 / «• 
and X i s the 0-r component of the Maxwell stress due to the 

f l u c t u a t i n g magnetic f i e l d s . 

The disc structure i s now computed and i t i s found that 

the disc can ex i s t i n two physically d i s t i n c t states for a 

given value of M. If the r a d i a t i v e loss i s small(large) 

compared to the rate of viscous heating near the outer disc 

boundary, the disc w i l l exist i n an o p t i c a l l y thick ( o p t i c a l l y 

thin) geometrically thin (geometrically thick) configuration. 

The model has an o p t i c a l l y t h i n , geometrically thick inner 

radiation dominated zone for both the states mentioned above 

which i s s i m i l a r to the two temperature regime found by 

Shapiro, Eardley, and Lightman. These states are i d e n t i f i e d 

with the high and low luminosity states discussed i n section 

1. Transitions between states i s determined by the r a t i o M/T 

with the low state i d e n t i f i e d with a higher accretion rate and 

a lower temperature in the outer regions which corresponds to 

the o p t i c a l l y thick, geometrically thin structure. Production 

of hard X-rays i s as discussed i n the two temperature model. 

Numerical ca l c u l a t i o n s show that the outer regions are s i m i l a r 

to the Shakura and Sunyaev o p t i c a l l y thick solution. Although 

t h i s is a very i n t e r e s t i n g explanation for the bimodal 

behaviour of the source, the explanation of the rapid 
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variations i s not discussed. 

The more recent work on magnetic phenomena i n accretion 

discs concentrates on the idea of a magnetically confined hot 

corona as the agency which gives r i s e to the hard X-ray 

emission. 

Liang and Price (1977) suggest that the accretion disc i s 

l i k e l y t o form a hot corona somewhat l i k e the solar corona. 

They picture a sandwich l i k e disc in which the middle layer i s 

an o p t i c a l l y thick, geometrically thin disc which generates 

the energy, surrounded by corona-like layers of much lower 

density which i s pumped by energy from the inner disc. As i n 

the sun, the o p t i c a l l y t h i n corona has to reach high 

temperatures before r a d i a t i v e cooling i s s i g n i f i c a n t . They 

point to three advantages of such an idea: 

(1) radiation produced at two temperatures ( cool disc 

and hot corona ) 

(2) coronal X-ray emission occurs at much higher 

temperatures |han for standard models 

(3) corona expected to be highly dynamical and produce 

highly variable emission. 

These authors suggest that a strong "disc wind" could be set 

up i n these coronae. S p e c i f i c a l l y , a corona of temperature 
II 

T^10 °k gives r i s e to X-rays in the ri g h t range. In t h i s 

picture, energy deposited in the corona i s removed by either 

bremsstrahlung, Compton scattering, synchotron radiation or 
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wind cooling. Whether synchotron or Compton scattering i s the 

dominant radiation mechanism i s determined by the coronal 

magnetic f i e l d strength. 

F i n a l l y Galeev, Bosner, and Viana (1979) work out a more 

detailed coronal model with the formation of loops of magnetic 

f i e l d (of scale 10^ cm and e q u i p a r t i t i o n f i e l d strength) 

protruding through the surface of the disc. They show that the 

reconnection of magnetic loops within the disc as imagined by 

the e a r l i e r work i s too slow a process to prevent the 

amplification of the f i e l d s by shearing. They argue that 

regions of strong f i e l d are expected, and these emerge from 

the disc by magnetic buoyancy. They consider only a 

fluctuating f i e l d . The emergent loops of f l u x are strong 

enough to confine a coronal plasma which i s heated to high 

temperatures when the loops undergo reconnections ( f l a r e s ) . 

The hard X-ray emission then derives from the inverse Compton 

scattering of soft photons from the cool disc off the hot 

electrons i n the corona. They show that such a process 

delivers f l a r e l i k e bursts of hard X-rays on time scales 1s 

and energies 103Sergs s"1, thereby giving a physical basis of 

T e r r e l l ' s shot noise model. 

We believe that t h i s model has time variations that are 

s l i g h t l y too slow and energy releases that are s l i g h t l y too 

small to recover the shot noise model but that the idea that 

the main e f f e c t of the magnetic fluctuations i s to give r i s e 



27 

to f l a r e s on the disc surface i s correct. 

It i s important to try to track down the requirements for 

v a r i a b i l i t y over the rapid time scales i n terms of f l a r i n g 

mechanisms. In view of the lack of a theory of reconnection 

and f l a r e a c t i v i t y that can account for both the enormous 

energy releases on short time scales for solar f l a r e s as an 

example, we turn to some experimental results f o r help. 

__ Laboratory " Solar Flare _ Experiments Scaled To Cyg X-1 

Suppose we imagine that s o l a r - l i k e f l a r e s are occurring 

on the surface of the accretion disc model proposed for Cyg X-

1. What constraints can be applied on the magnetic f i e l d s and 

t h e i r length scales i n order that v a r i a b i l i t i e s 10"'s f o r the 

shot noise and 10~5s for the millisecond bursts, with energy 

releases of 10 3 f cergs can be accounted f o r . 

Solar f l a r e s (see Sweet (1969) for a review) t y p i c a l l y 

involve the release of 10 ergs i n a period of 100s for 

moderate events and may range as high as 10 ergs ( solar 

luminosity i s 1033 erg s~' ) . The area of the f l a r i n g regions 

are 10l7-10*° cm1, the emission region being as high as i t i s 

broad with a c h a r a c t e r i s t i c scale of 10 cm. The ov e r a l l "mean" 

f i e l d of the sun i s 1-2 Gauss whereas the active regions may 

have 300-3,000 Gauss f i e l d s ( exceeding l o c a l e q u ipartition 

energies by two orders of magnitude in some cases ). Flares 

originate near regions where the lo n g t i t u d i n a l component of 
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the magnetic f i e l d changes sign ( i.e near a neutral l i n e of 

the f i e l d ). Succeeding f l a r e s i n an active region may occur 

with i d e n t i c a l p r o f i l e s and shapes suggesting that the f l a r e 

configuration i s determined by the l o c a l magnetic 

configuration. The time dependence and magnitude of X-ray 

emission are the same for a sequence of f l a r e s at a given 

s i t e , but are s t r i k i n g l y d i f f e r e n t from s i t e to s i t e . 

A se r i e s of beautiful experiments on magnetic f i e l d l i n e 

reconnection were performed ( see Bratenahl and Yeates (1970), 

and Baum et a l (1973) ) which were scaled to solar f l a r e s and 

found to be i n good agreement with the observations (see Baum 

and Brahenahl (1976)). We outline the experiments and r e s u l t s 

and scale to conditions appropriate in Cyg X-1. 

The laboratory experiments are done on a double inverse 

pinch device which creates a neutral l i n e between two magnetic 

c e l l s . The device consists of two insulation covered, current 

carrying rods which are p a r a l l e l , 10cm apart , and carry 

current from discharging capacitor banks ( see Fig. 4 ) . Two 

c y l i n d r i c a l current sheets are driven r a d i a l l y outward from 

each rod by JxB forces, and merge upon c o l l i s i o n leaving a 

neutral l i n e i n the centre of the assembly. 
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Ficr^ 4 Geometry Of The F i e l d Line Reconnection Experiments -

(From Baum Et Al _Q973JL1 

(c) 

Double inverse pinch device chamber, (a) side, and 
(b) top view; (c) equipotential lines of the t component of the 
magnetic vector potential (curl-free magnetic field lines). The 
dark, line is the separatrix which divides the flux into three 
regions. Region 3 is accessible from regions 1 and 2 by reconnec­
tion at the origin. 
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The main res u l t s of these experiments are: 

(1) current density i s a r e l a t i v e maximum along the 

neutral l i n e 

(2) the e l e c t r i c f i e l d along the neutral l i n e grows as 

soon as the l i n e i s established with the current density 

increasing as well 

(3) a discharge occurs during which the current drops 

abruptly, the e l e c t r i c f i e l d goes from 100volts/cm 

—>300volts/cm (in 0.3 sec), and the r e s i s t i v i t y jumps by a 

factor of 40 

(4) X-ray production i s observed which can be interpreted 

as thick target bremsstrahlung of energetic electrons 

impinging upon the anode i n the immediate v i c i n i t y of,the 

neutral l i n e . The power law X-ray spectrum observed can be 

f i t t e d with a power law electron spectrum. Thermal X-ray 

production i s hard to estimate. 

The most important aspect of these experiments for us i s 

the fact that they scale c o r r e c t l y to moderate energy solar 

f l a r e s . From the experiments i t i s found: 
-to 

(1) f l a r e duration: At[c_\_?= 10 s 

(2) t o t a l energy release Q u i , =1.6x10 erg 

under conditions where the length scale and magnetic f i e l d 

were fixed i n the experiment as : 
(a) length scale of reconnecting f i e l d : - 1 ^ = 10 cm 
(b) magnetic f i e l d : By, =10**Gauss 
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Baum and Bratenahl take the observed values L S u w , B s^ 

for the size of the reconnecting regions and t h e i r magnetic 
1 * . f i e l d strengths ( L w = 10 cm and Bs>^ = 10 Gauss ) and derive 

f l a r e durations of 10 s and energy releases of 10 erg, using 

the parameters above. The s c a l i n g r e l a t i o n s they use, due to 

Parker, are 

a t x = f L x j ^ (,.<„) 

= Quo. ( B . \ 2 ( U \ 3 (.•*.) 

where A t x , l < f and Qx are the f l a r e duration, f l a r i n g region 

s i z e , and energy release. 

The maximum cosmic ray energy possible from such f l a r e s 

can be estimated by integrating the e l e c t r i c f i e l d along the 

entire neutral l i n e length. The scaling i n t h i s case i s 

3 

where the measured voltage i n the experiment =3x10 v o l t s . 

For the solar parameters, Vx =30 Gev i n agreement with 

observations. 

Assuming that "solar type" f l a r e s are responsible for the 

rapidly varying X-ray emission i n Cyg X-1, we estimate the 

time scales and energy releases from the obervational data 

summarized i n Table 2 for both the shot noise and millisecond 
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burst parameters- Using the s c a l i n g r e l a t i o n s 1.20, 1.21, and 

1.22 ; the laboratory parameters; and the time scales and 

energy releases for shot noise and millisecond bursts: we f i n d 

the length scales, magnetic f i e l d , and maximal cosmic ray 

energies associated with f l a r e s on the disc. The r e s u l t s are 

given in Table 3. 

Table 3._ Characteristics Of Solar Type Flares In Cyg X-1 

EVENT TYPE SHOT NOISE MILLISECOND 
BURST 

6 4 

L x 10 cm 10 cm 
io.r 13 

B x 10 Gauss 10 Gauss 

Vv • 10 l S r ev 1 0 e v 

For the densities and temperatures i n the standard cool 

disc model, egu i p a r t i t i o n f i e l d s in the disc are of order 

108Gauss- If the r e s u l t s of Table 3 are correct, one i s 
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dealing with f i e l d s above egu i p a r t i t i o n energies. Such strong 

f i e l d s could not remain in the disc and would emerge from the 

disc surfaces and there undergo f l a r i n g . 

The parameters for the shot noise are i n agreement with 

what one would expect from the disc. The disc thickness varies 

from 10 cm to about 10 cm. In addition f i e l d strengths two 

orders of magnitude above egu i p a r t i t i o n strength are predicted 

which i s s i m i l a r to solar f l a r e s . 

The bursts represent extreme conditions indeed. The 

largest astrophysical f i e l d s known are those for pulsars where 

10 Gauss f i e l d s have been observed. The r e s u l t s of Chapter 4 

w i l l show that the largest f i e l d s present are about 10,i>rGauss, 

and give an alternative explanation of the millisecond 

a c t i v i t y i f i t i s indeed r e a l . 

We note that the maximum cosmic ray energy observed to 

date i s 10 ev. 

This analysis shows that i n order to recover the rapid 

temporal variation of the Cyg X-1 source together with the 

massive energies associated with these variations, a solar 

type f l a r e model reguires intense ( greater than e g u i p a r t i t i o n 

energies i f a standard underlying disc i s assumed ) magnetic 

flu c t u a t i o n s . A consistent MHD analysis should not therefore 

impose the condition of eguipartition at the outset. 

We turn to an outline of the remainder of the t h e s i s . 
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5- Outline Of The Thesis 

In Chapter 2, the f u l l equations for a magnetized f l u i d 

are examined. The various f i e l d s are decomposed into mean and 

fluctuating components and the energy transfer between the 

various f i e l d s examined. The relations between the fl u c t u a t i n g 

v e l o c i t y , temperature, and magnetic f i e l d s are developed using 

the methods of Mean F i e l d Electrodynamics and a regime i s 

i d e n t i f i e d where large magnetic fluctuations may occur. The 

magnitude of the mean magnetic f i e l d i s found to be of ce n t r a l 

importance in assessing the structure of the various 

f l u c t u a t i n g f i e l d s . 

In Chapter 3, a detailed analysis of the mean large-scale 

magnetic f i e l d i s carried out. Since some assumptions about 

the disc structure and turbulence properties are required, we 

use the standard disc model as a basis f o r our ca l c u l a t i o n s . 

Assuming steady conditions, these c a l c u l a t i o n s determine a 

value f o r the turbulent Mach number independent of any other 

parameters. In the f i n a l section of the chapter, i t i s found 

that for appropriately large scales, the mean f i e l d can be 

generated by turbulent dynamo action. 

In Chapter 4, the res u l t s of Chapters 2 and 3 are 

combined to give a coherent view of magnetic processes i n the 

accretion disc. Arguments are made to show to what strength 

the mean f i e l d i s expected to grow, which allows the magnitude 

of the magnetic fluctuations to be fi x e d , and a comparison 
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With the predictions of the scaling arguments cf the previous 

section of t h i s chapter to be made. & picture i s b u i l t up 

wherein the mean magnetic f i e l d remains inside the disc at 

below eguipartition strength and over the long time average i s 

responsible f o r angular momentum transport in the d i s c . On 

intermediate tiise scale averages, i t i s shown that the Maxwell 

stress due to the fluctuations acts to supress the lightoan 

and Eardley i n s t a b i l i t y so that the underlying accretion disc 

remains cool and thin. This r e s u l t i s important because i t 

shows that the hard X-ray emission must derive frcm magnetic 

f l a r e l i k e processes. The magnetic fluctuations undergo 

f l a r i n g processes on time scales and with energy releases that 

explain the shot noise model of the X-ray v a r i a b i l i t y . The 

hard X-ray emission i s modelled i n terms of a rapid, f l a s h -

phase subcomponent of the f l a r e s , in which non-thermal 

d i s t r i b u t i o n s of electrons account for the power-law X-ray 

spectrum. 

wherever possible, the mathematics has teen relegated to 

a series of appendices. The entire analysis to be presented i s 

n o n - r e l a t i v i s t i c . Ho major corrections to the r e s u l t s are 

expected for non-rotating black holes; however, interesting 

e f f e c t s i n addtion to those presented w i l l arise for rotating 

black holes i f the region immediately adjacent to the event 

horizon i s considered. Appendix A reviews the ideas and 

resu l t s of Mean f i e l d Electrodynamics reguired for t h i s work. 
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Chapter 2-

Magnetic Fluctuations In A Turbulent Accretion Disc -

Introduction 

The central aim of t h i s chapter i s to examine the 

properties of fluc t u a t i n g v e l o c i t y , magnetic and temperature 

f i e l d s i n a turbulent accretion disc. As mentioned i n the 

opening chapter, the assumption of s t a t i o n a r i t y allows 

solution of the disc equations without a detailed knowledge of 

the d i s s i p a t i o n mechanisms operative in a turbulent disc. 

However the rapid v a r i a b i l i t y of the disc's X-ray output down 

to millisecond time scales demands a careful examination of 

fluctuations i n such a turbulent regime. 

Let us f i r s t consider energy balance when magnetic f i e l d s 

are ignored. In a turbulent regime Reynolds stresses act to 

transfer energy out of the mean flow (in an accretion disc, 

t h i s i s b a s i c a l l y a Keplerian v e l o c i t y f i e l d ) into the 

velocity fluctuations. Then pressure fluctuations and 

v i s c o s i t y act to transfer energy out of the ve l o c i t y 

fluctuations into i n t e r n a l energy. Stewart (1974) examined 

thi s process by using various scaling arguments applied to a 

coupled pair of equations for the fluctuating kinetic and 

intern a l energies. His techniques and r e s u l t s , b r i e f l y 

reviewed i n section 2, w i l l prove a useful s t a r t i n g point for 
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our analysis which includes magnetic f i e l d s . 

When magnetic f i e l d s are included a host of new e f f e c t s 

may a r i s e . For the moment consider only the flu c t u a t i n g 

f i e l d s . In addition to the ef f e c t s described i n the preceeding 

paragraph, energy i s extracted from the vel o c i t y fluctuations 

by E.T type i n t e r a c t i o n s , and transferred into both the mean 

and fluctuating magnetic f i e l d s . Ohmic di s s i p a t i o n then 

transfers energy of the fluctuating magnetic into i n t e r n a l 

energy fl u c t u a t i o n s . These processes are spec i f i e d and 

examined i n section 3 . 

Our object in section 4 i s to solve f o r the k i n e t i c , 

magnetic and i n t e r n a l energy fluctuations. Now i n order to 

close t h i s set of three eguations for three unknowns i t w i l l 

be necessary to give a model for the ultimate value of the 

mean magnetic f i e l d . We w i l l be using mean f i e l d theory to 

express the various correlations between the f l u c t u a t i n g 

velocity and magnetic f i e l d s i n terms of the mean f i e l d . It i s 

to be expected that the energy in the mean magnetic f i e l d w i l l 

depend on the k i n e t i c energy fl u c t u a t i o n s . The s p e c i f i c model 

for t h i s w i l l s pecified i n Chapter 4 and w i l l enable us to 

close our coupled t r i p l e t of eguations. Comparisons with 

Stewart's r e s u l t s w i l l also be made in t h i s section 

As pointed out i n Chapter 1, i f we interpret the shot 

noise model for the X-ray output as due to solar type f l a r e s 

occurring on the surface of the accretion d i s c , large magnetic 
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fluctuations are reguired. In section 4 we show under what 

conditions such large fluctuations are possible, and discuss 

how they affect the o v e r a l l disc structure. I t w i l l become 

apparent that i n the regime that allows fluctuating f i e l d s on 

the order 10 1 0 gauss, i t i s not possible to have a stationary 

accretion disc on time-scales <10"' sec. We believe that under 

the conditions mentioned, an accretion disc such as that 

believed to comprise the Cyg. X-1 X-ray source can be 

approximated as stationary only on time-scales/v10 sec. 

2. Stewart's Analysis Of Energy. Balance In Turbulent Accretion 

Discs. 

2. 1 The Basic Eguations 

We begin with the eguations of continuity, conservation 

of momentum and conservation of i n t e r n a l energy f o r a viscous 

f l u i d i n the presence of an external g r a v i t a t i o n a l f i e l d . 

Stewart adopts the use of a semicolon notation for covariant 

d i f f e r e n t i a t i o n which f a c i l i t a t e s the conversion into 

c y l i n d r i c a l polar co-ordinates (r, 4,The eguations are 

f * q 1 ^; * = O (*.<) 

(?o t (r-̂ ).p s { r - _ r _ t - p / p (,.„ 
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where f i s the external g r a v i t a t i o n a l potential, t*'* i s 

the viscous stress tensor, p i s the symmetric s t r a i n 

tensor ( i . e . = i (m^. p +- u?;«.) ) ; e i s the i n t e r n a l energy, and 

i s the heat fl u x . The reader may consult Landau and 

L i f s h i t z (1959) for the detailed derivation of these 

eguations. 

In order to discuss turbulent processes, one now 

decomposes the f i e l d s into mean and fluctuating parts. 

Proceeding with t h i s decomposition we write 

f - {o + ^ 

e = t + e 

denoting the ensemble average of any guantity 0 by 9 , we have 

that u« -. If, f - fo e t c - T^e ensemble average of the fluc t u a t i n g 

quantities vanishes. 

Let us introduce the decomposition 2.4 into the equations 

2.1-2.3 and take t h e i r ensemble averaqe. As a simple example, 

consider the continuity equation which becomes 

f. + ( f p U " + f V j. ̂  = o 

Because density fluctuations '̂ are important we see that we 

pick up an extra term '̂«V i n addition to the terms 

present when turbulence i s absent. In , order to make the 
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e x p r e s s i o n s compact, i t i s u s e f u l to d e f i n e 

which allows us to w r i t e 2.5 as 

Stewart d e f i n e s w as the mass flow v e l o c i t y . We 

i n t r o d u c e the ̂  symbol i n order to c l e a r l y d i s t i n g u i s h t h i s 

from the us u a l mean v e l o c i t y U"--w. i t i s now n a t u r a l to d e f i n e 

u = u 

where we n o t i c e t h a t U" + 0'"= U"+lA'* = u* -

Using the d e f i n i t i o n s 2.6 and 2.8 as w e l l as the 

c o n t i n u i t y eguation 2.7 r e s u l t s i n the eguation of motion 

where 

and 
7*? = . ^ « u 1 

i s the Reynolds s t r e s s . We have dropped the v i s c o u s s t r e s s i n 

w r i t i n g 2.9 because d i s s i p a t i o n on the molecular l e v e l i s 

n e g l i g i b l e compared with the d i s s i p a t i o n a r i s i n g v i a the 

t u r b u l e n t s t r e s s e s . 

The eguation governing the dynamics of the mean flow 

energy i s found by t a k i n g the dot product of e g a t i o n 2.9 with 

t o g i v e 

<^(»') - >a% -f - r e.„ . f„., 
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where we have written 

and P^p i s the mean symmetric s t r a i n tensor. 

The equation governing the dynamics of the flu c t u a t i n g 

flow k i n e t i c energy are found by dot producting the f u l l 

equations of motion (using decompositions 2.4) by <* and 

taking the ensemble average r e s u l t i n g i n 

where u s f w «»/^ i s the mean square velocity fluctuation. 

The most important feature of these equations i s that the 
-A. S< 

Reynolds stress interacting with the mean st r a i n ( TKp- £ ) 

transfers energy out of the mean flow and into the 

fluctuations. The f i r s t two terms in the right hand side of 

2.11 represent the work done by pressure fluctuations and 

vi s c o s i t y while the l a s t term represents transport of 

fluct u a t i n g flow energy by the turbulent stresses. To maintain 

turbulence at a l l , some external agency (in t h i s case the 

external g r a v i t a t i o n a l f i e l d due to the central compact 



42 

object) must provide the s t r a i n . 

Turning to the inter n a l energy, defining the quantities: 

setting e-c^T , ( c„ constant) appropriate for a 

perfect gas so that i - t /c v and the temperature fl u c t u a t i o n 

9-e./Ctft the mean square thermal f l u c t u a t i o n P = f # / p6 s a t i s f i e s 

the equation 

which may derived in the same manner as equation 2.11 

2.2 Consequences Of The Mean Momentum Conservation Equation 

For Thin Discs 

This section provides more of the d e t a i l s concerning the 

r a d i a l structure of accretion discs and provides some 

background f o r the discussion i n Chapter 1- We apply the 

following four assumptions to the eguations of motion 2.9 i n 

c y l i n d r i c a l polar co-ordinates ( see Stewart, p.41 ) 

A) the disc i s thin with i„"r, where H 0 i s the scale 

thickness, 

B) the mean flow i s almost t o r o i d a l with 

i CiM » l u"| » I w *l 
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i n fact we require 

[ u*| » r iu*| 
where 

C) the mean flow i s axisymmetric and symmetric about 
i , o 

D) the size of the largest eddies ^ i s of order *.<> 

1. The z-component of equation 2.9 i s 

f o (. ̂  + H 4 ^ * vJ, r U ) = - Vj_Z 

r 2 

so that assumption B) makes the l e f t hand side n e g l i g i b l e 

compared with the c e n t r i p e t a l force. Using the thin disc 

approximation gives 

which i s r e a l l y an eguation of hydrostatic balance. Then 

applying the estimates 

?_ * 

where c$ i s the speed of sound, gives the resu l t 

IV)' 
1 ~ Z \ 
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N O B i n usual turbulence theory, the duration of a 

turbulent eddy of size / i s 

so that eguation 2.17 may be rewritten as (using assumption D) 

t , ^ t k [ .+ K; Z] 4 ^ ( 1 ) 

where H^i Cr/ C i i s the turbulent Mach number and "t k
 s r/V K i s 

the Keplerian time scale. Eguations 2.17 and 2.19 show that 

the Keplerian flow V*. i s always supersonic and that the 

Keplerian time scale i s the shortest time scale i n the 

turbulent accretion disc problem ( i . e . t t \ tK ). The time 

scales r e f l e c t i n g fluctuating proceses are t i e d to the 

Keplerian time scale in thin disc problems. 

With reference to mean f i e l d theory (see Appendix A), the 

use of the f i r s t order smoothing approximation to simplify the 

solution of the flu c t u a t i n g and mean magnetic f i e l d eguations 

can be s a t i s f i e d i f we imagine the turbulence as a c o l l e c t i o n 

of random waves where i f \ i s the co r r e l a t i o n time for such a 

wave of wave-length Jl 

2. The r-component of eguation 2.9 i s 

T 

+ ( r r r - T+0 c \ 

•r rr 
T . r- + 
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where by assumption B) the largest term on the l e f t i s 

- /r and from the re s u l t 2 . 1 7 the dominant term on the 

rig h t i s - v1* ̂ 0/ r so that 

which gives the mean t o r o i d a l flow as Keplerian to good 

approxim ation 

3. The jg'-component of eguation 2.9 i s 

and using previous estimates gives 

— (*.*«0 

Taking the v e r t i c a l average (see Chapter 1, section 2) of 

these eguations and noting that T * 2 must vanish on a free 

surface the equation becomes 

which i s equation 1.7. 

2.3 Energy Balance For The Fluctuating Fields 

Since the turbulence time scale tt«rtK, the turbulence 
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w i l l be well mixed i n both the z and $ directions. However, 

long r a d i a l scale variation of mean guantities such as the 

mean s t r a i n w i l l r e s u l t i n the r a d i a l variation of the 

turbulence. For t h i n discs then, the turbulence i s 

s t a t i s t i c a l l y homogeneous in each annulus r=constant. We turn 

to the study of the fluctuation equations 2.11 and 2.13.. 

On the l e f t hand side of these equations we have the 

appearance of the operator 
D = 2 + u • ^ 

where 3 / a - t measures the rate of change at a point and U-2 

represents the advective rate of change following the mean 

flow. The P/Dt operator then measures the rate of change for a 

hypothetical point moving with the mean flow. For a steady 

flow .7 =o and i f we have homogeneity of turbulent quantities, 

i . e . they are independent of r, 4 , and z, then U.V= o as 

well. 

A stationary disc requires D ^ / D t = o ; where = £*or 6>1 . 

Another approximation which i s employed i s to note that the 

diverqence terms on the r i g h t hand side of the equations 2.22 

and 2.23, which represent the s p a t i a l r e d i s t r i b u t i o n of energy 

vanish i n the case that our turbulence i s independent of z and 

<j>. This can be seen by imagining that we integrate these terms 

over an annular volume with cross sec t i o n a l dimension z„ and 

then applying Gauss's theorem. 

Equation 2. 11 then reduces to 



47 

In this equation, the l e f t hand side represents the rate at 

which enerqy i s being supplied to the turbulence via the 

reynolds stress interaction with the mean s t r a i n whereas the 

right hand side comprises the dissipation of energy by 

buoyancy and vi s c o s i t y respectively. This type of r e l a t i o n i s 

common to many analyses of turbulent processes (see Tennek.es 

and Lumley (1972)). Equation 2.26 concentrates on those 

features of turbulence not d i r e c t l y related to s p a t i a l energy 

transport. The turbulence interacts with the mean flow and 

in j e c t s energy into the turbulence on the largest scale . The 

dis s i p a t i o n by v i s c o s i t y ( second term on ri g h t hand side ) 

occurs at microscales however- As Tennekes and Lumley point 

out, a l l evidence suggests that the viscous d i s s i p a t i o n at 

these microscales occurs at a rate dictated by the energy i n 

the largest eddies. With an energy density in the largest 

scales of ^B £*" and a c h a r a c t e r i s t i c t i m e Z / G r , the viscous 

di s s i p a t i o n should occur at a rate (.u*//, i . e . 

Denote the components of the flu c t u a t i n g velocity by 

in c y l i n d r i c a l polar co-ordinates. The main contribution to 

i s the 4-r component denoting the s t r a i n associated 

http://Tennek.es
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with the Keplerian flow \/K • The l e f t hand side i s then 

^ " P E „ p * ^>0cu ul C-rJi') 

where the c o r r e l a t i o n c o e f f i c i e n t i s 

In the case of small pressure fluctuations the buoyancy 

term i s approximately P,« * * . Now the g r a v i t a t i o n a l force 

in the r a d i a l direction i s balanced by the c e n t r i p e t a l force 

(the gas i s d r i f t i n g r a d i a l l y at a much slower rate than i t s 

o r b i t a l period) so that the l o c a l gravity i s mainly in the z 

d i r e c t i o n . If we define V = 8*. as the l o c a l gravity then the 

buoyancy term i s 

» h e r e ^ U o ; - j ) , F i n a l l y , assuming a perfect gas allows us to 

relate the density fluctuation f' with (5 

4- * -A 
<• f 

so that we have 

with the velocity-temperature co r r e l a t i o n c o e f i c i e n t 
•21 ^ i A — 



49 

Combining equations 2.27 , 2.28 and 2.3o with 2.26 then 

g i v e s 

(^rri) c u u2- ^ - iL, c e u 6 + ( i - 3 i > 

which shows that the buoyancy i s c o u p l i n g the v e l o c i t y 

f l u c t u a t i o n s t o the thermal f l u c t u a t i o n s , which we study next. 

Osing the same c o n d i t i o n s t h a t l e a d to eguation 2.26, 

eguation 2.13 becomes 

.A 

where h e a t i n g due to kinematic v i s c o s i t y has been n e g l e c t e d . 

The l e f t hand s i d e i s approximately 

«. 

while the heat f l u x \ i s d i v i d e d up i n t o i t s conductive and 

r a d i a t i v e p a r t s with 

r « P o c , [ - l e v a ' * r 

where X i s the thermal d i f f u s i v i t y and t> i s the time s c a l e 

f o r r a d i a t i v e c o o l i n g . I n t r o d u c i n g a thermal l e n g t h s c a l e 

a llows us to w r i t e 2.32 as 

( i t + yc„) <0 8"a: = - ©jT . O-ssO 



50 

or 

Equations 2-31 and 2.33 re p r e s e n t two equations i n the 

unknowns 9 and u . Usinq equation 2.33 (b), the equation f o r 

the v e l o c i t y f l u c t u a t i o n s becomes 

Stewart makes t h i s equation more manageable by m u l t i p l y i n g 

throughout by and by d e f i n i n g the parameters 

and the dimensionless t u r b u l e n t i n t e n s i t y 

i n terms of which equation 2.34 may be w r i t t e n as 

' = ______ + X (a-ss) 
( x + y ) 
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The parameter k\ i s the Richardson number but more ins i g h t 

into i t s role may be obtained i f we note that using the 

equation of state f o r a perfect gas 

where f\ i s the gas constant and ^ the molecular weight and 

where K/u = j ̂  for a monatomic gas, we have f>= Taking the 
' 3 z c</ T 

derivative with respect to z of t h i s r e l a t i o n gives 

- — = 1 { T_ t l J- 1£ ) 

so that the Richardson number i n t h i s approximation takes the 

form 

In a stably s t r a t i f i e d disc s o that R; > o and 

consequently the buoyancy extracts enerqy from the turbulent 

k i n e t i c energy. Conversely, an unstably s t r a t i f i e d disc with 

>o and Ri<o shows that energy i s pumped into the turbulence 

via r i s i n g f l u i d elements. We s h a l l assume a stably s t r a t i f i e d 

disc where R i> 0 . 

The freguency 
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(the so-called Brunt-Vaisala frequency) represents the 

freguency of o s c i l l a t i o n of a neutrally buoyant element i n a 

stable density gradient and the Richardson number ft; given by 

2.37 compares this frequency with the Keplerian freguency; the 

basic frequency i n the problem. 

Returning to equation 2.35 we define 

(*•»-*) 

where f(x) i s the r a t i o of the rate of energy d i s s i p a t i o n to 

energy production. The condition f(x)=1 corresponds to 

stationary turbulence. I f f(x)>1 as an example (not 

stationary), then we have greater d i s s i p a t i o n than production 

so that the turbulence ultimately damps out. 

Solving f(x)=1 e n t a i l s nothing more than solving a 

guadratic eguation i n x. Two cases are in t e r e s t i n g . 

Case J V= o : 

Here 
i - 4 P Rc 

z 

so that stationary turbulence i s possible only f o r ^Ri * ^ with 

damping ( i . e . ) occurring when ^ ^ ; > ^ . Experimentally i t 

i s known that turbulence dies out when & ^ o-2 ( Tennekes and 

Lumley p. 99 ) . Stewart goes on to argue that of the two 

roots, ( assuming ) the larger one i s stable while the 

smaller root i s unstable in that a flu c t u a t i o n about th i s root 

may either lead to ultimate damping or increasing of the 
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turbulent i n t e n s i t y to the larger root. Since B R : - > o as i-> o 

( i . e . ^ = o at ?=o ) so that one always has a stationary 
a* 

turbulence about the mid-plane of the disc with x=1. Using x=1 

at z=0, together with the d e f i n i t i o n of x and u = V t K , shows 

that the co r r e l a t i o n c u i s c u = t K / t t . 

Case 2 }f ^ o •• 

Again solving the quadratic equation for x shows that for 

y < pRc < i C 1 + Y*) 

two stationary turbulent flows are possible only the flow 

corresponding to the larger root being stable. For 

f> Ri < y , one stationary flow i s possible (i.e only one 

root has x>0) and i t i s stable. Again we find that near z=0 

(with pR; -> o ) stationary turbulence i s possible but near the 

surface regions the r e l a t i o n of p>Ri to Y i s c r u c i a l . 

When p>R; i s large r e l a t i v e to if these regions must have 

a laminar flow because the turbulence damps out. Conversely, 

for y large r e l a t i v e to f>Ki , the disc i s turbulent r i g h t 

to the surface. As Stewart points out, t h i s i s explained by 

noting that large Y corresponds to rapid radiative cooling 

which destroys the temperature fluctuations and hence 

decreases the buoyancy e f f e c t . 

In conclusion, i t should be noted that i n Stewart's 

analysis t t ^ t K with tt*f«: only when the turbulence i s sonic or 

supersonic. With Keplerian time scales of 10~ 3 sec. for the 



54 

inner region of an accretion disc with a rotating black hole 

and 10"z sec. for a non-rotating hole ( of mass M** loKa) t i n 

order for the turbulence to be responsible for the rapid X-ray 

variation (hot blobs r i s i n g to surface as an example) 

Stewart's analysis would suggest a sonic or perhaps supersonic 

turbulence to be present. Our own work w i l l show ( Chapters 3 

and 4 ) that energetic solar type f l a r e s may account for these 

rapid v a r i a t i o n s even i n the case of subsonic turbulence i n 

the disc. 

We now turn to generalize the study of fluctuations i n a 

turbulent accretion disc to the case that magnetic f i e l d s are 

included. 

3-. Equations Of Motion Including Magnetic Fields 

3__ The Basic Eguations For A F l u i d In A Magnetic F i e l d 

We now wish to study the dynamics of a turbulent, t h i n 

accretion disc when magnetic f i e l d s are included. To t h i s end 

the complete set of eguations describing a magnetic f l u i d are 

l i s t e d a f t e r which the decompostion of these f i e l d s (including 

the magnetic f i e l d ) into mean and fluctuating parts w i l l lead 

to the same type of analysis for the fluctuations as found i n 

section 2.3. 

For a magnetic f l u i d the continuity eguation 2.1 i s s t i l l 

v a l i d . The Navier-Stokes eguations 2.2 must now contain a 
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c o n t r i b u t i o n on the r i g h t hand s i d e from the Lo r e n t z f o r c e . 

1 * -̂ * W c = ( V x b ) x t / 4 T T 

T h i s f o r c e may be w r i t t e n as the divergence of the Maxwell 

s t r e s s t e n s o r , i . e 

where 

<r°<P - ( V t P " ̂  ̂  / l f i r 

and hence eguation 2 . 2 becomes 

The e l e c t r o m a g n e t i c f i e l d s i n moving conductors are given 

by the equations 

c St 

rjx _ - 4 » j- / £ - __[__" [ e + U x 

where v" t> = o and where cr i s the c o n d u c t i v i t y . 

S o l v i n g f o r the e l e c t r i c f i e l d e i n terms of k bY the 

second eq u a t i o n , and s u b s t i t u t i n g i n t o the f i r s t , assuming 

th a t the c o n d u c t i v i t y i s uniform (or n e a r l y so ) g i v e s r i s e t o 

the s o - c a l l e d i n d u c t i o n equation o f magnetohydrodynamics, 

5 t 
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where the magnetic d i f f u s i v i t y ^ i s defined by = c
z/W<r- The 

use of t h i s eguation implies that the conductivity i s 

independent of the magnetic f i e l d which requires that the 

mean free path of the electrons be small compared with the 

radius of curvature of the i r o r b i t s i n a magnetic f i e l d . This 

condition may breax down i n regions of s u f f i c i e n t l y low 

density or high magnetic f i e l d strength. More d e t a i l s of the 

derivation may be found i n Moffat's book (1978, Chapter 2). 

F i n a l l y , the conservation of energy equation must be 

amended to include the magnetic f i e l d . The f u l l eguation i s 

( i u 2 t £ + - I/O + u . t . + 

+ c J 

where the energy density Sir contributed by the magnetic 

f i e l d has been included on the l e f t hand side, and the energy 

flux density £ ex (the Poynting vector) has been included 

on the r i g h t hand side. Writing e i n terms of k 

again, the Poynting vector takes the form 

which i s then substituted into equation 2.42. 

Equation 2.42 may be si m p l i f i e d by the same procedure 
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that leads from the conservation of t o t a l energy to equation 

2.3. S p e c i f i c a l l y , we take the dot product of ^ with 

equation 2. 4o ( using the continuity equation for additional 

s i m p l i f i c a t i o n ) , the dot product of b with equation 2.41, 

and subtract the resulting equations from 2.42 ( with the 

substitution 2.43 ). After some algebra one finds 

where we r e c a l l $ ~ fjir ^ *" - . Comparison of 2.44 with 2.3 

shows that the equation for the i n t e r n a l energy i s modified by 

the addition of the Joule heating term j 2/<r giving the rate 

of evolution of heat due to Ohmic dissip a t i o n . Eguations 2.3, 

2.40, 2.41 and 2-44 along with the equation of state 

[" form the basic framework of our analysis. 

3.-2 Eguations Governing The Mean And Fluctuating Fields 

The decomposition of the various f i e l d s i n t o mean and 

fluct u a t i n g components i s now introduced where i n addition to 

equation 2.4 we introduce b = B •»-k with ^ = B ( and hence 

_ - o ~) with 

2* ̂  s — [ B- B p - x ^sK?~] 4r z J 
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(a) The Navier-Stokes Eguation-

The equation f o r the mean velocity f i e l d i s 

where the l a s t two terms are the ef f e c t s due to the Maxwell 

stress. 

To f i n d the equation for the energy i n the mean v e l o c i t y 

f i e l d we take the dot product of with equation 2.45 and 

find 

f + 

( T « P - P5"P + Z " ) % < r - f 

where we see the Maxwell stresses interactinq with the s t r a i n 

F Kp of the mean ve l o c i t y f i e l d to transfer energy out of 

the mean flow. 

The energy in the fluctuating v e l o c i t y f i e l d i s found by 

taking the dot product of u' with the f u l l y decomposed 

equation 2.10 and then averaging. The new term that arises as 

compared with the equation i n the absence of maqnetic f i e l d s ( 

2. 11 ) i s 
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We manipulate t h i s factor as follows: 

We note that 

A 1 I 

i f the d e f i n i t i o n of u * in terms of i s used (equation 

2.8). Osinq the d e f i n i t i o n of cr" "P a rearrangement of t h i s 

term gives 

It i s most i n s t r u c t i v e to introduce the e l e c t r i c f i e l d s 

induced by the presence of fluc t u a t i n g v e l o c i t i e s by the 

de f i n i t i o n s 

If we remember J = c v * B and ;1 . £ ^ x (,' , then 

The fluctuating kinetic-energy equation can therefore be 



60 

written as 

- [ ( t - N . c»- a'')u . j J , * 

with the new magnetic terms added on the la s t l i n e . The term 

it**", a +- <r"*l\ O * has t^ i e same e f f e c t as -f'" Z\ in that i t 

adds the pressure (k z + >» ^/ffT to the f l u i d pressure I 5 and 

hence contributes to the further damping of the turbulence by 

buoyancy processes as already discussed. In the absence of 

density flu c t u a t i o n s , the most important e f f e c t s of the 

magnetic f i e l d are the terms - _> T - r'. f . Here the 

e l e c t r i c f i e l d s , induced by the inte r a c t i o n of the flu c t u a t i n g 

velocity f i e l d and the magnetic f i e l d , do mechanical work on 

the system i n the presence of currents. We w i l l l a t e r confirm 

that these terms extract energy out of the vel o c i t y 

fluctuations and pump i t into the mean and flu c t u a t i n g 

magnetic f i e l d s respectively. 

(b) The Induction Equation 

Assuming the decomposition )z & + k as already 

discussed, and using the same decomposition f o r the ve l o c i t y . 
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equation 2.41 becomes afte r averaging 

Dt 

We notice that i n turbulent f l u i d s , the co r r e l a t i o n of the 

flu c t u a t i n g magnetic and velocity f i e l d s gives r i s e to an 

electromotive force _'x w' not present when the flows are 

laminar. The counterpart of t h i s term i n the mean Navier-

Stokes equation i s the Reynolds stress. Here the s i m i l a r i t y 

ends however because as Moffat ( p. 248 ) points out the 

Navier-Stokes equations, being non-linear i n u do not permit 

the ready c a l c u l a t i o n of u u J i n terms of mean guantities 

such as U . Because the induction equation 2.41 i s li n e a r i n 

the magnetic f i e l d however, i t i s possible to calculate (At 

in terms of mean f i e l d quantities such as 6 i n a 

sat i s f a c t o r y manner. The detailed discussion of t h i s theory i s 

presented i n Appendix A. It i s important to note that the 

length and time scales over which the mean magnetic f i e l d s 

vary i s assumed to be much larger than the scales involved for 

the flu c t u a t i n g f i e l d k . This idea of separation of scales 

has been used in the development of the theory of equation 

2.50 and has received some support from detailed computer 

simulations by Pouquet et a l (1976). 

Equation 2.50 w i l l be studied i n d e t a i l i n the next 

chapter. The equation governing the energy i n the mean 
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magnetic f i e l d may be found by t a k i n g the dot product of 

eguation 2.50 with B/?ir- Making repeated use of the v e c t o r 

i d e n t i t y 

. C A K B ) « B . VK _ - /\ . V K B 

g i v e s 

B 
W 4-lT 

where r e c a l l V- _• - ̂ (i7x&)<§ . F u r t h e r use of v e c t o r 

i d e n t i t i e s i n c l u d i n g 

allows the above eguation to be w r i t t e n as 

B 

sir 

^7. 

where | i s the symmetric s t r a i n tensor a r i s i n g from U . 

i t i s easily shown that 

Now 

417 
(U* § ) x B " U . | 

so t h a t with a l i t t l e manipulation with t h i s f a c t o r and use of 

the d e f i n i t i o n I - U'K b /c g i v e s 

Bl] 7.U + Z : E + §. J - jVo 
srr 

L tiTT 4 7T J 
0 *<J 



63 

The r i g h t hand s i d e of t h i s eguation c o n t a i n s the work done by 

the magnetic pressure 8* htr, the i n t e r a c t i o n of the Maxwell 

s t r e s s with mean s t r e s s , our I•T term which here e n t e r s with 

a p o s i t i v e s i g n while i n equation 2-49 i t e n t e r s with a 

negative s i g n , the d i s s i p a t i o n due to Ohmic h e a t i n g , and the 

divergence of the electromagnetic energy f l u x which takes the 

form of the Poynting v e c t o r f o r a moving conductor. The 

appearance of i n equation 2.51 and -1-2 i n equation 

2.49 f o r the f l u c t u a t i o n s i n d i c a t e s t h a t energy t r a n s f e r from 

the f l u c t u a t i n g v e l o c i t y f i e l d i n t o the mean magnetic f i e l d i s 

o c c u r r i n g . In order t o have an a d v e c t i v e term on the l e f t hand 

s i d e of W- • C Msn) we use U u + u with p - f + _ (using 

equations 2.6 and 2.8) to o b t a i n , with a l i t t l e rearrangement, 

$ \ + u"fe>* \ . J B M % V-P ,t_ ~\ \ 

L V itr V HIT ' *TT i ; 

The i n d u c t i o n equation f o r the f l u c t u a t i n g magnetic f i e l d 

i s found by decomposing the f u l l i n d u c t i o n equation 2.42 and 

s u b t r a c t i n g the mean i n d u c t i o n equation 2.50 to g i v e 

i 
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where 
c i I i ~ r 

Neglect of the term £ (the " f i r s t order smoothing 

approximation ", see Appendix A.1) i s possible when the 

turbulence i s imagined to be a c o l l e c t i o n of random waves with 

« lu. / ̂  . We s h a l l be adopting t h i s assumption i n our 

calculations, and more about i t s role may be found i n Appendix 

A.2. To find the eguation for the energy i n the magnetic 

fluctuations we take the dot product of eguation 2.53 with 

{p'/fir . Proceeding by exactly the manipulations we used 

to f i n d eguation 2.51, the result i s : 

analagous to eguation 2.51. In t h i s eguation the f l u c t u a t i n g 

magnetic pressure b *" / S"n~ i s doing work, the f l u c t u a t i n g 

magnetic stress which transferred energy out of the mean flow 

i s here acting as an energy source, the £'. j-' term i s 

transferring energy into b'1 from the fluctuating v e l o c i t y 

f i e l d , Ohmic d i s s i p a t i o n due to the fluctuating currents i s 

di s s i p a t i n g energy as heat, and f i n a l l y the divergence of the 

energy f l u x vector ( which takes the form again of a Poynting 

vector i n a moving conductor ) i s the l a s t term i n 2.53L. 

Again, i n order to have the same type of advective term on the 

l e f t hand side of 2.53bas Stewart has, we follow the same 
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procedure used i n going from 2.51 to 2.52 to f i n d 

(c) The Internal Energy Equation 

The correction due to the magnetic f i e l d s i s simply the 

addition of the Ohmic heating term appears in equation 2.44. 

I f . t h i s equation i s averaged (using the standard 

decomposition), we find that the mean int e r n a l energy eguation 

for E has the terms ( l * + j'*) / c as source terms on the 

rig h t hand side of the equation i n d i c a t i n q that the Ohmic 

dis s i p a t i o n TIV of the mean f i e l d B and the Ohmic 

dis s i p a t i o n j' z / cr from the fluc t u a t i n q f i e l d k are being 

transferred into the mean inter n a l energy. 

The eguation for the mean-square thermal fl u c t u a t i o n i s 

just 
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It turns out that because the d i f f u s i v i t y ^ and not a 

turbulent magnetic d i f f u s i t i v i t y appears in t h i s l a s t term, 

that i t i s negli g i b l e as far as the 0 fluctuations are 

concerned. 

(d) Summary 

The energy flow a r i s i n g only from the new magnetic terms 

i s summarized b r i e f l y . These ef f e c t s are i n addition to those 

discussed i n section 2. Here we ignore the terms appearing as 

divergences ( v7. [ ] ) as discussed i n section 2. 

(1) Mean-flow Kinetic Energy: ( eguation 2.46 ) 

1. Energy loss - ( 4 a-""4!*) e ̂  due to inte r a c t i o n of 

Maxwell stresses with the "mean" s t r a i n . 

(2) Fluctuating Flow Kinetic Energy:. ( eguation 2.49 ) 

1. Energy loss - [ Z " r + <r"*p ) due to 

interaction of Maxwell stresses wxth s t r a i n e.^ 

2. Energy loss ~ ( . + £ * " j U ) d u e t o t n e presence 

of f l u c t u a t i n g e l e c t r i c f i e l d s in a turbulent medium. 

(3) Mean Magnetic Energy: (eguation 2.53) 

1. Energy gain + I * ! 5 ( E^p t ) which arises from 

the mean and fluctuating velocity f i e l d s respectively 

2. Energy gain -t-f^Xi which aris e from the fl u c t u a t i n g 
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velocity f i e l d 

3. Energy loss - 1* /cr which goes into the mean 

inte r n a l energy. 

(4) Fluctuating Magnetic Energy:-(eguation 2.54 ) 

1- Energy gain +• cr"K|i (E*p. + *KJ») a r i s i n g from the mean 

and fl u c t u a t i n g velocity f i e l d s respectively 

2. Energy gain £ ' " j 1 * a r i s i n g from the fl u c t u a t i n g 

velocity f i e l d 

3. Energy loss j 1 /°~ which goes into the mean i n t e r n a l 

energy 

The next section w i l l concern i t s e l f with the eff e c t the 

magnetic f i e l d s have on the structure of the mean flow. 

3.. 3 Consequences Of The Mean Momentum Conservation Eguation 

(Including Magnetic Effeetsj_ For Thin Discs 

This section i s entirel y analagous to the analysis i n 

section 2.2 except eguation 2.45 ( which includes the Maxwell 

stresses ) i s used instead of equation 2.9. We use exactly the 

same approximations ( thin disc, a x i a l symmetry, etc. ) as 

given i n section 2.2. In addition, and i n conformity with the 

usual MHD assumptions,we add 

(E) the length scale l t ' over which the magnetic 

fluctuations b occur are of order of those over which the v e l o c i t y 

f luctuates; X_' a «£u . 
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In the low Mach number regime; Mt<<1, we have l ^ « z a (see 

Shakura et a l (1978) and Chapter 3) and i t i s consistent from 

the "separation of scales" idea to imagine that the mean f i e l d 

varies on length scales l>.z0. 

In the high Mach number regime; M̂.~ 1, we have l u * z 0 and 

the idea of a mean f i e l d i s r e a l l y only v a l i d on scales L>>ze. 

Chapter 3 w i l l compute the structure of the mean magnetic 

f i e l d i n the low Mach number regime r and i n Chapter 4 i t i s 

shown that t h i s regime produces magnetic fluctuations of a 

magnitude s u f f i c i e n t to explain the shot-noise model as has 

been discussed i n Chapter 1. 

1. The z-component of equation 2.45 gives with the 

assumptions given (compare with 2.15) 

and using the estimates 

l " 4 e B z It**. 

shows that 

Cs + u + J ^ ( H + * l ) 
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where the Alfven v e l o c i t i e s 

have been used. Thin discs then require that i n addition to 

the requirements i n section 2 that 

v / / l / K
l « l (M t * i) 

The previous i n e q u a l i t i e s are derived under the 

assumption that we are averaging the fluctuations over the 

large-scales and long-times c h a r a c t e r i s t i c for the mean flow. 

These scales may be i d e n t i f i e d as r for s p a t i a l variation and 

the d r i f t time scale t 0=r/i/>>t K. 

It i s important to note that the p o s s i b i l i t y of intense 

fluctuations 

on short length scales l u and on very short time scales %. <t K 

i s not ruled out. 

2. The r-component of eguation 2.45 gives to lowest order 

provided that the r e s u l t s for 2-58 with *»/<- «I hold. 

3. The ci-component of equation 2.45 qives 
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More w i l l be said about these Maxwell stresses i n t h i s 

chapter and i n Chapter 4. 

ii*. Energy Balance For The- Fluctuating F i e l d s l l n c l u d i n q 

Magnetic Effects) 

This section proceeds in s i m i l a r fashion to section 2.3 

except we have now three coupled eguations for u z
 j ez and 

ID2" instead of just two for and 0 1 . We assume 

s t a t i o n a r i t y ( i . e . D/Dt = o ) and discard the terms in these 

eguations involving divergences of guantites. 

With these stated approximations and assumptions, and by 

s p l i t t i n g up the Maxwell stresses into diagonal ( the magnetic 

pressure ) and off-diagonal parts, the equations governing the 

fluctuations are from equation 2.49 

p 

from equation 2.54 

. 1 2 - \ mi . 'j. > a .A 

- O 

H I T ' pir 
and from equation 2.55 

where i n writing 2.60 the remaining term a r i s i n g from the off 
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diagonal Maxwell stresses may be written as a divergence and 

hence ignored. 

A l l of the purely hydrodynamic effects w i l l remain 

unchanged from the estimates used in section 2.3 i f we assume 

that the magnetic f i e l d s do not a l t e r the underlying 

turbulence too much. This w i l l be an assumption we s h a l l 

employ throughout t h i s thesis and j u s t i f i c a t i o n for t h i s 

procedure w i l l be found in Chapter 4. 

(1) Analysis Of Equation 2.60 

We note that the f i r s t term i s approximately 

and from equation 2.56 which expresses maqnetohydrostatic 

equilibrium we have 

The next terms are the viscous d i s s i p a t i o n and the enerqy 

source which are qiven by equations 2.27 and 2.28 

respectively. In comparison to the f i r s t three terms, the term 

so that 

P 
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w i l l be treated as ne g l i g i b l e since only the small s t r a i n 

e l c p i s involved. 

F i n a l l y , we consider the terms £.T and . These 

terms are computed i n Appendix B where we f i n d ( equations 

B.31 and B.34 ) 

where the length scales for the mean density L * and magnetic 

f i e l d L i are defined and where the turbulent d i f f u s i v i t y ^ T i s 

As already discussed, j 1 and i - T are the rates at 

which energy from the vel o c i t y fluctuations i s being pumped 

into the fluc t u a t i n g and mean magnetic f i e l d s respectively. 

From equation 2.65, we see that £.T i s positive only i f the 

v e r t i c a l scale of the mean f i e l d L z i s larqer than the scale 

L? for the v e r t i c a l density p r o f i l e . I t i s precisely under 

these conditions that the magnetic f i e l d i s stable with 

respect to the maqnetic buoyancy process (see discussion l a t e r 

in t h i s section). When L j / L , <1, the maqnetic f i e l d cannot 

exis t i n a stable configuration and such a region of gas 

becomes buoyant. 
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The other important feature about equations 2 . 6 5 i s that 

the r a t i o 

holds i n the low Mach number regime M^«1. We see that energy 

i s being transferred into the magnetic fluctuations at a rate 

(L|/i« ) faster than the rate into the large-scale mean 

magnetic f i e l d - If we approximate Z 0 as an example, and 

denote A T 0 as the growth time scale for the mean f i e l d , and 

ATj as the growth time scale for the fluctuating magnetic 

f i e l d , then 

We w i l l assume that we are i n the low Mach number regime 

for which iTjT» f.T . 
Col l e c t i n g a l l these approximations and substituting into 

equation 2 . 6 0 gives 

In t h i s eguation we find the energy source of the ve l o c i t y 

fluctuations given by the Reynolds stress on the l e f t hand 

side balanced by losses to the turbulent k i n e t i c energy by 

buoyancy, v i s c o s i t y , and energy transfer into the magnetic 
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f i e l d s . 

Equation 2.67 shows that we must provide an analysis of 

This i s a very d i f f i c u l t problem i n general. I f the mean f i e l d 

grows to equi p a r t i t i o n strengths < via dynamo action ) i t must 

very strongly e f f e c t the turbulence i n such a way that no 

further growth i s possible. However, Malkus and Proctor (1975) 

have analyzed a mechanism by which the mean f i e l d growth i s 

arrested at below equipartition strengths, a mechanism which 

involves the generation of large scale velocity f i e l d s instead 

of the suppression and a l t e r a t i o n of the underlying 

turbulence. As already mentioned, t h i s i s discussed in Chapter 

4 where i t i s shown that i n l i n e with Malkus and Proctor we 

estimate 

the ultimate mean f i e l d energy tf/w i n terms of the 

turbulent k i n e t i c energy i f our equations are to be closed. 

0 ( J Z . ^ T ) 

(2) Analysis Of Eguation 2__6__: 

The use of equation 2.65 to approximate yiel d s 

= 0 

where we have noted that i s axisymmetric and U r » U z 

and where 
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i n which I- i s the relevant scale length for the f l u c t u a t i n g 

current. We have grouped the f i r s t two terms together because 

they represent magnetic interactions with the mean v e l o c i t y 

f i e l d , whereas the l a s t two terms represent processes on the 

microscales. 

We f i r s t note that the Ohmic d i f f u s i o n time scale i s 

Jy ( see Moffat ) so that we set J£J = lu and hence 

U'X 1 I trU') 4 L ' ^ UJl') 

In the absence of a mean flow f i e l d , equation 2.70 

reduces to 

\ 

which i s exactly the res u l t found by Krause and Roberts (1976) 

and t h e i r analysis i s summarized i n Appendix A.2. This 

important r e s u l t shows that i n astrophysical settinqs where 

A| ^ r the fluctuating f i e l d s can be much more powerful 

than the mean magnetic f i e l d . It i s very important to note 

that t h i s r e s u l t ( eguation 2.71 ) does not v i o l a t e the f i r s t 

order smoothing approximation (see Appendix A.2). As Krause 

and Roberts point out, the part of that i s correlated 

with u ( t> , ) i s of order 

* This r e s u l t i s v a l i d provided that T^u/./^an. approximation v a l i d f o r the 
sun and assumed v a l i d for the accretion disc as w e l l . 
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where the l a s t inequality i s a consequence of the f i r s t order 

smoothing approximation in which the turbulence i s id e a l i z e d 

as a c o l l e c t i o n of random waves with Tu <.< \ . 

We now consider the effect of a mean flow on the r e s u l t s 

of Krause and Roberts. These authors obtained the result 2.71 

in the absence of a mean flow by solving the induction 

equation for the fluctuations 

1% - ^ V'b' = Vx C u' x B ) 
H 

as an inhomogeneous equation usinq the Green's function 

for the d i f f u s i o n operator 

1 ' \ 
Krause and Roberts (1973) consider how these results are 

affected by the presence of mean flows. When we have a non­

zero mean flow the induction equation for the fluctuations 

may be written ( taking V-U =0 ) 

Regarding U as a constant over the scales that b' varies then 

i f we Fourier transform the above equation for b the 

frequencies w over which b vary are Doppler shifted by the 

mean vel o c i t y 0 to 
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so that the mean flow has a n e g l i g i b l e e f f e c t on the r e s u l t 

2.71 provided 

oo 

or in other words, i f T i s the time scale and r the length 

scale for 0, 

T r 

This same r e s u l t i s found using the Green's function 

approach i f we note that the Green's function becomes roughly 

QLX,%) * (w^T ) ^ « „ r ( - ( S - W r ) z / i r ) 

Hence, in the l i m i t 2.72, we find that eguation 2.71 

holds so that from eguation 2.70 

In the small correlation time l i m i t , and for T^. < < T , the 

time scales over which the.last two terms i n equation 2.70 are 

in balance are much shorter that the time scales over which 

enerqy i s beinq transferred out of the mean flow ( the f i r s t 

two terms i n 2.70). 

The l i m i t 2.72 may be regarded as the smallest time T« 

that gives the r e s u l t 2.71 (and conseguently 2.73). Eguation 

2-73 shows that on Keplerian time scales, the fluctuations 
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b^are much larger than b r . This i s understood by observing 

that on such time scales, the strong shear of the Keplerian 

flow i s stretching the ra d i a l f i e l d l i n e s of b'r into t o r o i d a l 

f i e l d l i n e s of b'* , Rearranging 2.73 s l i g h t l y 

U IT 
"X. 

where b ^ » b r implies that b*« h"*"1 . Noting that 

we may write eguation 2.74 in an int e r e s t i n g way: 

( 2 -TO 

r"4>v 

U' 
0 U UL 

«• 4 

Now £ C U U i s the magnitude of the stationary stress as 

discussed i n Chapter 1 . Qn the.-long time T » t r , long scale 

L>>z o magnetohydrostatic balance i s maintained. Then from 

eguation 2.58 

/- T 

where we use L, T to denote these long scale averages. Thus 

from eguation 2.7 3 

I cr"*- ) 

so that the Maxwell stress due to the magnetic fluctuations i s 

neg l i g i b l e and cannot determine the long scale structure of 

the accretion disc. 

However, on short time and length scales -, i t i s possible 
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to have magnetic fluctuations up to a maximum amplitude of 

For these scales, eguation 2.73 shows that 

so that the Maxwell stress from the fluctuations, in small 

regions and for short times, are of order of the mean, long 

scale averaged stationary stress (of magnitude f. WW* ). We 

return to t h i s point in Chapter 4-

We note that using the r e s u l t 2.73, and examining the 

induction eguation for b using the assumptions of a x i a l 

symmetry and disc thinness, that the l i m i t 2.7 2 may be relaxed 

somewhat. The point here i s that since the fluctuations b/,r 

are small compared to b'̂  , the eguation for b'1* shows that the 

terms involving the mean velocity are 

assuming that the fluctuations are independent of z and 0. I f 

the fluctuations b are small enough compared to b T (as 

eguation 2.73 shows) then the mean f i e l d terras for the 

predominant fluctuations b^ nearly cancel out. This implies 

that we may take the correlation time l i m i t up to values 

T M £ t K without too seriously a f f e c t i n g the v a l i d i t y of 2.71 

and 2.73. 
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F i n a l l y , i t i s important to note that when 

bVwfo > c\ , the region wherein we f i n d such a high f i e l d 

strength becomes buoyant and r i s e s i n the di s c , a phenomenon 

f i r s t noted by Parker (1955a) and discussed more generally by 

Gilman (1970). B a s i c a l l y when the magnetic presure becomes 

large enough i n a region, and assuming at least i n i t i a l l y that 

we have pressure egualization, the gas pressure must drop and 

i f f><< ̂  , we see that the density i n t h i s region decreases. 

Conseguently, t h i s region of high magnetic f i e l d strength 

f l o a t s upward i n the gas ( assuming <• o ) . This phenomenon 

i s c a l l e d "magnetic buoyancy" (coined by Parker ), and must of 

course transfer energy out of the turbulence and cool the 

region of gas i n which t h i s high magnetic f l u c t u a t i o n i s 

prevalent. I t i s thought to occur i n sunspot regions on the 
3" 

sun where very intense fields~10 Gauss ( much higher than 

egu i p a r t i t i o n strength ) emerge from the solar surface. 

We believe the same mechanism i s operative here. The 

presence of intense magnetic fluctuations k ~ l/* does not 

v i o l a t e the thin disc assumption because instead of bulging 

the disc so that z 0-^ , these fluctuations are associated with 

a buoyant region that r i s e s up and eventually results in the 

emergence of these f i e l d s from the surface of the thin d i s c . 

We note that the r i s e time of these regions i s roughly the 

Keplerian time scale. The condition that t h i s magnetic 

buoyancy mechanism be operative i s that the length scale of 
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the magnetic fluctuation be less that the density scale 

height, i.e that i t < * 0 . 

The analysis leading to eguation 2.73 leads to the r e s u l t 

_}•>_* /Hr & < />. C 

As we have seen for maximal magnetic fluctuations 

' W H T T f D * , the stresses induced are cr"*"' « ̂ .U-'u^. since 

magnetohydrostatic equilibrium on time scales T « i u / V K i s being 

violated we see that we have large fluctuations 0 C{o _n the 

stresses responsible f o r angular momentum transport outward ( 

r a d i a l l y ) and net r a d i a l inflow. Only i f averaging i s done on 

length scales t0 o r time scales T A ^ / ^ K i s i t possible 

to discuss magnetohydrostatic equilibrium qiven by equation 

2.59 or equivalently, equation 2.63. These larqe magnetic 

fluctuations then are to be considered as deviations from the 

mean magnetic fluct u a t i o n s , which over time scales T» **/\J__ w i l l 

be of order tW^rrfo £ cl . 

(3) Analysis Of Equation 2.62 

Using a l l the approximations that lead to equation 2.33 

(a) , equation 2.62 i s 

( X * + ____ \ c e e u - J. t e ' (v4) 1 -- - _y - T 

Estimating the Ohmic dissipation term gives 
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The important factor here, the turbulent magnetic Reynolds 

number (_R̂  ) = X I l i m i t s the role of Ohmic heating even 

in the case of maximal magnetic fluctuations..Eguation 2.78 

shows that because of Ohmic heating, the temperature 

fluctuations take a higher value than i n the absence of 

magnetic f i e l d s . 

Consider f i r s t the case where time scales are of order 

*o/\]K with maximal fluctuations. With a mean f i e l d below 

eguipartition we have 

( ( T , £ • M - i A' ) C6u9 - -d Z\_t + x 1 
V ' L c * 4rr f„ / ( le tr J 

where we have used eguation 2.77 and /cr * l • If the mean 

f i e l d i s at egui p a r t i t i o n strength BV̂ TT f« * cl , then the 

heating due to those large magnetic fluctuations i s 

s i g n i f i c a n t and acts to make regions containig the 

fluctuations hotter than i n t h e i r absence. However, since we 

deal with mean f i e l d s below e g u i p a r t i t i o n , t h i s magnetic 

effect w i l l be taken as ignorable. 
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For longer time scales where we have magnetohydrostatic 

equilibrium the magnetic terms are < Cs/fu - Now since 

(RM ) ' " 1 ' the magnetic e f f e c t s are e n t i r e l y n e g l i g i b l e . We 

conclude that even for the largest magnetic fluctuations, as 

long as the mean f i e l d i s below equipartion strenqth, the 

effe c t s of Ohmic heating are n e g l i g i b l e and that equation 2.33 

(a) i s s t i l l a qood approximation to use for the maqnitude of 

the thermal fluctuations. Hence 

(>/^& + i / t f . ) 

where we notice that g, given by equation 2.63, contains the 

maqnetic pressure as well and that only the f l u i d pressure 

appears i n equation 2.78. 

We now combine equations 2.78 and 2.68 into equation 2.67 

usinq the estimate 2.66 and where q i s given by equation 2.63. 

We then obtain 

I f we note that u*-2 u/t t and that the l a s t term i n 

equation 2.79 may be written i*.* Jl CTu./tt)2' , the magnetic 

term adds an •* dependence which i s the same dependence as 

u 
SI 
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found for the Reynolds stress. 

As in the analysis leading to eguation 2.53, we multiply 

by (J cu J l u ( - f j i ) z ~ ] , and by using the d e f i n i t i o n s of [2 and f , 

as well as equation 2.37 for the Richardson number ( where g 

i s given by equation 2.63 ) we have 

- I M + * + i = i u.to) 

where 

-fc t 

and as before 

The last term i n equation 2.80 represents the energy extracted 

from the turbulent kinetic energy by the term £•j * $ • 7 . 

As pointed out e a r l i e r , we f e e l the assignment Tu & t K i s 

appropriate i n the disc so that we have 

C u V 

As i n section 2 we need only solve equation 2.80 i n x. 

Again i t i s easier to s p l i t the analysis into two cases for 

convenience. 

Case 1. (T= o : 

Here 

x = ( i - s) t 1/ ( * -o i - f ^ T 1 
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so that stationary turbulence i s only possible provided 

with of course the requirement that £<| . As $-» [ ; pRi-* o * 

so that turbulence in the whole disc i s shut o f f . If 

S ~ ("t* \ Z - ' w e s e e t n a t t h i s corresponds to the l i m i t of 

supersonic turbulence i f Cu i s estimated as t«./tt • This 

begins to defy the v a l i d i t y of the theory we have used to 

derive these r e s u l t s , however, and the situation for S - * ' i s 

probably considerably more complicated. 

Case 2 Y j= 0 : 

Here we f i n d that for 

two stationary turbulent flows are possible, only the flow 

corresponding to the larger root being stable. For 

only one stationary flow i s possible and i t i s stable. 

Comparing these results with those found by Stewart i n 

the absence of magnetic f i e l d s , shows that for small Mach 

numbers M t <•<• I , the extraction of energy from the turbulent 
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k i n e t i c energy by the magnetic fluctuations makes buoyancy a 

more e f f e c t i v e agent i n damping the turbulence ( i . e . i s 

r e s t r i c t e d to small values i f we are to have stationary 

turbulence ). Furthermore, l o c a l extreme magnetic fluctuations 

1~V ^ ( o V>cl cause large l o c a l values for pRi which as we see 

above res u l t s in the shutdown of the turbulence i n the region. 

Our analysis may be put into perspective i f we r e s t r i c t 

ourselves to low Mach numbers ft_« i , wherein " f c i < / t t « ( . The 

f i r s t order smoothing assumption i s v a l i d provided we are 

considering time scales for turbulent disturbances TM « t t A_ ' -
a 

Since the Keplerian time scale seems to be the fa s t e s t one i n 

the problem, by focussing on the time scale TU < -fcK r the f i r s t 

order smoothing assumption i s being s a t i s f i e d for M t « I . On 

t h i s time scale, equation 2 . 7 1 holds even in the presence of 

mean flows and hence large magnetic disturbances can occur. 

These are to be thought of as l o c a l strong perturbations of 

the o v e r a l l f l u i d . Our scenario suggests that as the energy i s 

being transferred into the l o c a l fluctuating magnetic f i e l d , 

the turbulence i s damped out, the f l u i d cools and the magnetic 

f i e l d r i s e s to the surface of the disc on times for the 

largest fluctuation IYMT ^ 0 =• V*. by some magnetic buoyancy type 

process. These loops of intense f i e l d escape from the disc by 

undergoing reconnection with a neighbouring loop i n the manner 

described i n Chapter 1 . We leave to Chapter 4 the calc u l a t i o n 

of the strength of these l o c a l intense f i e l d s . 
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We t u r n now t o i n v e s t i g a t e under what c o n d i t i o n s a mean 

f i e l d can be generated by t u r b u l e n t dynamo a c t i o n i n the 

a c c r e t i o n d i s c . 
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Chapter-3 

Solution Of The Induction Equation For - The Mean F i e l d B 

i i Introduction 

As has been pointed out i n Chapter 2 and Appendix A, 

additional terms appear in the induction equation for the 

magnetic f i e l d i n a turbulent conductor as contrasted with one 

in which only laminar flow i s occurring. When only a mirror-

symmetric turbulence i s present, a turbulent d i f f u s i v i t y * T i s 

added to the usual molecular d i f f u s i v i t y <f of the mean 

magnetic f i e l d , and i n conditions of high magnetic Reynolds 

numbers (as usually found in astrophysical flows), MT » ̂  

This indicates that the idea of "frozen- i n " f i e l d l i n e s of 

mean magnetic f i e l d i s incorrect for strongly turbulent flows. 

When the turbulence possesses h e l i c i t y , a mean current J 

p a r a l l e l or a n t i - p a r a l l e l to B arises and has the e f f e c t of 

regenerating the mean f i e l d . Steenbeck, Krause, and Radler 

(1966) were able to show that the presence of l o c a l rotation 

and a density gradient induces h e l i c i t y i n the turbulence, 

thereby providing a mechanism by which dynamo action ( s e l f 

e x citation of the mean f i e l d at the expense of turbulent 

k i n e t i c energy ) could sustain mean f i e l d s ( the so-called 

I I* - e f f e c t " ) . 

When the mean f i e l d remains weak (i.e much below equi-
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p a r t i t i o n with the energy i n the turbulence ) the Lorentz-

force a r i s i n g from these f i e l d s appearing i n the Navier-Stokes 

equation may be regarded as n e g l i g i b l e . Conseguently, i n t h i s 

s i t u a t i o n , prescription of the flow and the turbulence 

c h a r a c t e r i s t i c s allows the ca l c u l a t i o n of £ - _' x b' i n terms 

of B and various quantities a r i s i n q from averaginq over 

turbulent velocity fluctuations. The solution of the induction 

equation for the mean f i e l d ( equation 2.50 ) i s then possible 

i f an appropriate set of boundary conditions for the problem 

on hand i s provided. 

For s u f f i c i e n t l y vigorous h e l i c a l turbulence, an 

i n i t i a l l y weak mean f i e l d of s u f f i c i e n t l y large scale w i l l be 

amplified by dynamo action as has been shown i n work on 

t e r r e s t i a l , solar , and g a l a c t i c magnetic f i e l d s (see Moffat 

(1978)). Ultimately the f i e l d becomes strong enough so that a 

back-reaction on the flows occurs thereby preventing further 

growth. The magnetic f i e l d can act to suppress or a l t e r the 

turbulence or induce large scale " mean " flows, both of which 

arrest further growth of the f i e l d . 

The importance of the large scale mean magnetic f i e l d for 

accretion problems i s three f o l d : 

1. Generation Of Magnetic Fluctuations. The previous 

chapter has shown that the fl u c t u a t i o n magnetic f i e l d energy 

density i s related to the mean magnetic f i e l d energy density 

by L** _• 6 Z • The reason for t h i s i s understood i f the induction 
\ 
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eguation for the fluctuating magnetic f i e l d i s considered ( 

eguation 2.53 ). A ve l o c i t y f l u c t u a t i o n u'interacts with the 

mean f i e l d B and over a length scale 1* . and time scale 

twists up the f i e l d l i n e and creates a fluctuating magnetic 

f i e l d b on these same length and time scales. Consequently, 

information about the amplitude and orientation of B allows us 

to estimate what type of maqnetic fluctuations are to be 

expected. 

2- Transport Of Angular Momentum. I t was shown in Chapter 

2 that the fluctuating Maxwell stress <r"4 i r was s i g n i f i c a n t 

only i n those l o c a l i z e d regions where fluctuations t> * 

occur. Over s u f f i c i e n t l y long time scales, these l o c a l intense 

fluctuations are unimportant so far as angular momentum 

transport in the disc i s concerned. However, the mean Maxwell 

stress contributes to the o v e r a l l stresses ( again on 

s u f f i c i e n t l y long time scales ) and hence i s important i n 

determining the disc structure. 

3. The Presence Of A Magneto-sphere. The intense magnetic 

fluctuations emerge through the upper and lower surfaces of 

the accretion disc , and i n our picture, engage i n subsequent 

reconnections giving r i s e to solar type f l a r e s . The region 

exterior to the disc i s expected to be of low density. If i t 

i s imagined to be a vacuum as an example ( an i d e a l i z a t i o n of 

course ) , then the reguirement that the exterior vacuum f i e l d s 

match continuously to the i n t e r i o r disc f i e l d at the upper and 
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lower surfaces of of the disc implies the presence of a large-

scale, current-free magneto- sphere when large-scale mean 

f i e l d s are present i n the disc. The strength and structure of 

such a large scale vacuum f i e l d i s important for determining 

the t r a j e c t o r i e s that energetic p a r t i c l e s leaving the disc 

region would take and the radiation that they would emit as 

they s p i r a l along the f i e l d l i n e s . More s p e c i f i c a l l y , 

Blandford (1976) assuming a force-free magneto-sphere and 

Lovelace (1976), assuming a current free magneto-sphere have 

t r i e d to construct models of double radio- sources r e s u l t i n g 

from the presence of magnetized accretion discs around a 

central compact object. Their work however does not discuss i n 

d e t a i l how a large-scale magnetic f i e l d may be generated and 

maintained i n the disc. I t i s f e l t that the work to be 

presented here can act as a f i r s t step towards a more 

comprehensive treatment of such theories. 

With the previous arguments as a motivation, i t w i l l be 

the object of t h i s chapter to solve the mean f i e l d induction 

equation under conditions appropriate to an accretion disc. It 

w i l l be the assumption of t h i s chapter that the mean f i e l d i s 

i n i t i a l l y weak. The mean flow w i l l be taken to be Keplerian 

and the assumptions made about the turbulence as discussed i n 

chapters 1 and 2 w i l l be employed. Hence, we s h a l l determine 

on what lenqth and time scales we may expect the mean maqnetic 

f i e l d to grow i n a prescribed hydrodynamic se t t i n g . 
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In section 2, we begin with equation 2.50 and simplify i t 

as much as possible using the approximations under which the 

disc structure was solved in the absence of magnetic f i e l d s . 

In p a r t i c u l a r , i t w i l l be assumed that the disc i s t h i n , the 

mean flow i s Keplerian, and that the mean f i e l d i s 

axisymmetric. As discussed i n Appendix A, i t w i l l be assumed 

that the underlying turbulence i s mildly anisotropic so that 

h e l i c i t y i s present. 

It w i l l be necessary to specify the v e r t i c a l density 

p r o f i l e and the disc half-thickness z<> at a l l r a d i i . The 

density i s approximately Gaussian i n the gas-pressure 

dominated zone and t h i s permits solution by a n a l y t i c a l 

methods. The parameter z 0 however, depends on r and t h i s i s 

very d i f f i c u l t to deal with when matching to an exterior 

solution for the magnetic f i e l d . We w i l l assume that z 0=const 

for the purpose of the analysis. As long as the radius of 

curvature B 0 i s large, t h i s defect can be corrected by a 

perturbation procedure involving a power series expansion i n 

*./R. -

Section 3 i s devoted to the solution of the induction 

equation af t e r the s i m p l i f i c a t i o n s discussed i n section 2 have 

been applied. In p a r t i c u l a r , the v e r t i c a l structure of the 

mean f i e l d w i l l be analyzed extensively. The point of the 

analysis w i l l be to determine accurately the behaviour of the 

f i e l d near | z h ? 0 so that matchinq with an external vacuum 
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f i e l d can be accomplished. It w i l l be assumed in t h i s section 

that dynamo action and dissipation exactly balance one another 

so that stationary conditions p r e v a i l . When M t « ( , the 

problem can be solved a n a l y t i c a l l y . 

In section 4 we match the disc solutions to an external 

vacuum f i e l d assuming s t a t i o n a r i t y (on long time-scales). This 

procedure w i l l r e s u l t i n a r e l a t i o n between the turbulent Mach 

number M* and the r a d i a l wavenumber of the f i e l d . 

The f i n a l section attacks the same problem again assuming 

non-stationary conditions. Small deviations from eguilibrium 

are assumed so that the dynamo action and dissipation are very 

nearly i n balance. The procedure results i n a dispersion 

r e l a t i o n l i n k i n g the complex growth time scale to the 

turbulent Mach number and the r a d i a l wave-number. 

It i s important to point out that the entire theory being 

discussed i s n o n - r e l a t i v i s t i c so that the study of the mean 

f i e l d s at the innermost edge of the disc i s not considered. In 

particular,the electromagnetic boundary conditions at the 

event horizon are not considered. Recently Znajek (1978) has 

shown that the boundary conditions s a t i s f i e d by the 

electromagnetic f i e l d s at the horizon of a Kerr hole may be 

interpreted i n terms of equal e l e c t r i c and magnetic 

conductivities of such an object. In addition, Blandford and 

Znajek (1977) showed that electromagnetic f i e l d s could extract 

energy from a rotating hole ( Kerr ). Various i d e a l i z a t i o n s 
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about t h e f i e l d s were made i n t h i s work, and we b e l i e v e t h a t 

t h e p r e s ence o f a t u r b u l e n t d i s c ( not a p e r f e c t c o n d u c t o r ) 

c o u l d c o n s i d e r a b l y c o m p l i c a t e the p h y s i c s . 

2 . A n a l y s i s Of The I n d u c t i o n E q u a t i o n For The Mean F i e l d 

2 . 1 S i m p l i f i c a t i o n s A r i s i n g From The Assumptions Of A T h i n 

D i s c And A x i s y mmetric F i e l d , . -

We r e c a l l the i n d u c t i o n e q u a t i o n f o r the mean f i e l d i s 

2| - V K ( U x V + J" - ^ S ) 

where £ = U'K__ and where we s h a l l be workinq i n c y l i n d r i c a l 

c o - o r d i n a t e s (r,0,z) . 

The mean f l o w U i s assumed t o be ^ * C o , \)Ktr) to) which i s 

v a l i d p r o v i d e d t h a t the d i s c i s t h i n . T h i s d i f f e r e n t i a l 

r o t a t i o n o f t h e qas c o n t a i n s s h e a r i n q motions on the l e n q t h 

s c a l e r , which i s i m p o r t a n t i n t h e a n a l y s i s of £ 

S p e c i a l i z i n g t o c y l i n d r i c a l c o - o r d i n a t e s , d e f i n i n g 

i 

i = £ - ^ tfx B Cx.O 

and assuming a x i a l symmetry 

g i v e s 
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Since V.$-0lthe assumption of a x i a l symmetry for the 

f i e l d B allows us to use the representation 

B - ( - ̂  , T * 2 ti-n) (vo 

in which . P and T are a r b i t r a r y functions of r, z, and t , and 

which w i l l be fixed by substitution of equation 3.6 i n t o 

equations 3.3-3.5. Equations 3.3 and 3.5 are then e n t i r e l y 

equivalent so that only the coupled set 3.3 and 3.4 need be 

considered. Hence, these equations become, respectively, 

D _ r = si ( 3 . - 7 ) 

at 

(V«) 

E q u a t i o n 3.8 may be s i m p l i f i e d by noting = «o"s"f so that 

To proceed, i t i s necessary to calculate £ , which i s 

done i n Appendix B using the following approximations: 

1. Contributions to the h e l i c i t y are taken to arise from 

the i n t e r a c t i o n of the antisymmetric component of the mean 

st r a i n tensor ( R„<p = J-l^-p - Up-*.)) w i f h the density gradient 

2,. Gradients of the turbulent intensity are ignored. 

As discussed i n Chapter 2 , we expect the turbulent 
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c o e f f i c i e n t s t o depend only on r (the t u r b u l e n c e i s 

homogeneous i n z and a t each radius) . 

Appendix B shows t h a t 

4 

ir L s 3 6, 
8 2 2 r J 

^ -- ^ - /n T (X7< B ) ( 3 . . 0 

B 2 _ Br- - •£ 
7 i 8 a* J * ' 

where 

• . ( . v ( 

*1r * 

and where 2fr i s the r a t i o of the d e n s i t y s c a l e s i n 
2>«- ' "it. 

the r and z d i r e c t i o n s . We emphasize t h a t f i r s t order 

smoothing i s assumed i n these c a l c u l a t i o n s ( <2 & £?u/iu. « i ) as 

w e l l as the high c o n d u c t i v i t y l i m i t " IT/^ » 1 • 

For a t h i n d i s c , <? << | . I n a d d i t i o n e quation 3.15 shows 

th a t 
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so even i f we r e l a x the small c o r r e l a t i o n time l i m i t ( i . e say 

Q * \ ) then x l u / i a c , so t h a t ^-A/* «i f o r t h i n d i s c s . 

We s h a l l have more t o say about t h i s r e s u l t a f t e r we 

s u b s t i t u t e the equations 3.10 - 3.12 i n t o 3.7 and 3.9. 

Before we do t h i s we note t h a t 

f o r t h i n , axisymmetric d i s c s . Equation 3.12 shows t h a t i f the 

maqnetic f i e l d l e n q t h s c a l e s are of the same order as the 

d e n s i t y l e n g t h s c a l e s , then a l l the terms m u l t i p l i e d by <=< 

should be of the same order of magnitude. However, s i n c e 

and £^ e n t e r s i n t o eguation 3.9 i n the combination 

2>£,- 2£i ' w e estimate that 

(i.n) 

a r e s u l t v a l i d only f o r t h i n d i s c s . 

Noting t h a t the r e p r e s e n t a t i o n 3.6 i m p l i e s 

where 

»~ ^ r- 3 * 

s u b s t i t u t i o n of equations 3.10 - 3.12 i n t o 3.7 and 3.9 g i v e s , 

using the approximation 3.17 

H 

L T -. 1 (/» J i - « . + ( * r * - » 0 A T ( 5 . Z i ) 

U 2 r " a* 1 
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In the l i m i t of high turbulent magnetic Reynolds number, 

we have - * i r » - ^ so that *t r 1 - ^ ^ A<t - Let us rearrange 

equations 3.20 and 3.21 as ( using A\t y> ) 

- /M A P r tx. I h.zz) 

at 

The f i r s t thing to note about these equations i s the 
3 

appearance of the d i f f u s i o n operator ft ~ & on the l e f t 

hand sides. I t i s untenable to assume that the the mean f i e l d 

remains frozen-in to the gas since ̂ _ » ̂  . In a s u f f i c i e n t l y 

vigorous turbulence, i s so large that the mean f i e l d s 

quickly damp out i n the absence of sources. The source terms 

for the poloid a l and tor o i d a l f i e l d s have been written on the 

riq h t hand sides of the equations. 

The source for the reqeneration of the poloidal f i e l d P 

i s the t o r o i d a l f i e l d T. Dynamo action i s qenerating the 

poloidal f i e l d at the expense of to r o i d a l f i e l d . If <x = o , ( 

i. e absence of h e l i c i t y ) the poloidal f i e l d has no source and 

hence decays exponentially with a time constant ? 0
Z/^ T 

which i s not much longer that the Keplerian time scale . 

With a damped out poloidal f i e l d , i t i s not possible to 

sustain the t o r o i d a l f i e l d by d i f f e r e n t i a l r o t a t i o n , and so, 

very guickly, the entire mean f i e l d i s dissipated. 
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There are two sources available for the regeneration of 

the t o r o i d a l f i e l d T. The f i r s t term on the right hand side of 

equation 3.23 i s a term involving the int e r a c t i o n of the 

shearing of the t o r o i d a l flow ( — K ) with the r a d i a l f i e l d B r 

{ » - ) . This term i s absent for pure rotation ( - ( = o ) . 

Physically what i s happening can be seen i n terms of the 

r a d i a l f i e l d l i n e s being stretched out i n the o7 direction by 

the d i f f e r e n t i a l r o t a t i o n , thereby creating t o r o i d a l f i e l d T. 

The second source term again represents the e f f e c t of h e l i c a l 

turbulence, t h i s time resulting in the creation of t o r o i d a l 

f i e l d from poloidal f i e l d . 

The source terms involving oc are best understood by 

Parker's (1955b) arguments. Consider' an almost uniform long 

scale f i e l d B in the r - 0 plane, in the presence of a v e r t i c a l 

density gradient (see Fig. 5). Imagining that small-scale 

upwellings of f l u i d occur the f i e l d l i n e s w i l l be bent i n t o 

horseshoe shaped loops. I f , i n addition, a l o c a l rotation i s 

present, these horseshoes get twisted out of the i r i n i t i a l 

planes. Averaging over a l l of these small-scale twisted 

horseshoe shaped loops, we see that an i n i t i a l l y t o r o i d a l mean 

f i e l d should give r i s e to a r a d i a l component of the f i e l d ( 

source term i n equation 3.22 ) and an i n i t i a l l y r a d i a l mean 

f i e l d should give r i s e to a t o r o i d a l component of the f i e l d ( 

second source term i n equation 3.23 ). These arguments explain 

why oc i s dependent on both VPD and tfx U and why the 
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to r o i d a l and poloid a l f i e l d dependences arise i n the source 

terms as they do. 

Fig,. 5 The °t-Effect In Turbulence With H e l i c i t y 

When the term proportional to CK. i n equation 3.23 

dominates the term a r i s i n g from d i f f e r e n t i a l r otation, we see 

that the <K - e f f e c t i s responsible for regenerating both 

components of the f i e l d , a s i t u a t i o n c a l l e d the " <*x -dynamo 

". When the d i f f e r e n t i a l r o t a t i o n dominates the « term i n 

3.23, we have a " -dynamo 11. 

We have already noted that •x/V*. « ( i n the case of thi n 

discs. Writing the right hand side of equation 3.23 as 

and estimatinq 

: — , & 

if/a*  L* 

we see that the d i f f e r e n t i a l rotation dominates the < - e f f e c t 

source provided -7 f « i . Using the estimate 3.15 for we 

see that t h i s condition becomes Q ^ ^ J ^ i - Since consistency 
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of our whole analysis requires use of the small c o r r e l a t i o n 

time l i m i t ( ( ) the d i f f e r e n t i a l rotation w i l l act as the 

major mechanism for convertinq B r to B̂  . If the l i m i t Q2<< I i s 

relaxed, our condition i s that the turbulent eddies should be 

of a scale iC L_ xr i e . 

The previous discussion indicates that our set of 

equations for the f i e l d s becomes 

these equations show that t o r o i d a l f i e l d qives r i s e to 

poloidal f i e l d by the - e f f e c t while poloidal f i e l d gives 

r i s e to t o r o i d a l f i e l d by d i f f e r e n t i a l rotation, i . e . 
P ^ T 

If the strength of these sources i s s u f f i c i e n t to overcome the 

d i s s i p a t i o n due to "£T, the f i e l d s w i l l be amplified. Energy i s 

being extracted from the turbulent k i n e t i c energy i n order to 

rlin the - e f f e c t source for P while the Keplerian flow i s the 

source of energy necessary to regenerate T. 

Further progress requires that we specify the v e r t i c a l 

density d i s t r i b u t i o n and the expression of turbulent 

c o e f f i c i e n t s i n terms of mean f i e l d quantities. 
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2.2 V e r t i c a l Density P r o f i l e And The Calculation Of <K And 

In the standard model of accretion d i s c s , Shakura and 

Sunyaev (1973) showed that in the regions where the gas 

pressure dominates the radiation pressure, the gas density 

Po may be written, 

For \zt>z„ , the density f a l l s o ff exponentially at a faster 

rate. As we s h a l l imagine the disc to have a discrete boundary 

at \z\=za , we use eguation 3.26 as the density p r o f i l e i n the 

gas pressure dominated zones. Hence 

Their paper showed that i f e f f e c t s of turbulence are 

ignored, the inner, radiation-pressure dominated zone has a 

density p r o f i l e independent of z. This result would imply that 

• regeneration of the f i e l d by dynamo action would occur 

here^ although i n our case, a d d i t i o n a l d i f f i c u l t matching problems a r i s e . 

More recent work by Shakura et a l (1978) shows that 

convective turbulence should occur i n t h i s radiation dominated 

zone which a l t e r s the v e r t i c a l energy transport i n such a way 

that the v e r t i c a l density p r o f i l e i s no longer independent of 

z. For ^hi<o and assuming a polytropic r e l a t i o n between 

pressure and density they show that 
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where n ranges from n=0-85 f o r Mt=1 t o n=1..17 as ^t-»0. The 

v e r t i c a l d e n s i t y p r o f i l e i s then 

F o r | z K< Z o t h e d e n s i t y p r o f i l e s 3.29 and 3.27 a r e t h e same 

whereas i n t h e s u r f a c e r e g i o n s t h e d e n s i t y i n the r a d i a t i o n 

dominated zone f a l l s o f f more q u i c k l y than i n t h e gas 

dominated zone. We s h a l l adopt t h e Gaussian p r o f i l e 3.27 

th r o u g h o u t t h e e n t i r e d i s c . 

With t h e v e r t i c a l d e n s i t y p r o f i l e s p e c i f i e d , we t u r n t o 

c a l c u l a t e t h e t u r b u l e n t c o e f f i c i e n t s <*. and/v\T . . Shakura e t a l 

show t h a t t h e v e l o c i t y a m p l i t u d e o f t h e c o n v e c t i v e t u r b u l e n c e 

( dominant i n the r a d i a t i o n zone ) and t h e s h e a r t u r b u l e n c e ( 

dominant i n t h e gas dominated zone ) a r e of t h e same o r d e r o f 

magnitude. S p e c i f i c a l l y 

u / c & -- K t * lu I iB (3.30) 

so t h a t M<C<1 r e q u i r e s i u / l o « : | . So f o r low Mach numbers, we see 

t h a t t h e d i s c u s s i o n l e a d i n g t o e q u a t i o n 3.25 means t h a t t h e 

s h e a r i n q dominates t h e oc - e f f e c t r e q e n e r a t i o n of the t o r o i d a l 

f i e l d T even when the assumption o f f i r s t o r d e r smoothing i s 

r e l a x e d . 

T u r n i n g t o t h e e x p r e s s i o n s 3.14 and 3.15 f o r ^ and , 

we see t h a t we would l i k e t o r e p r e s e n t ZT and f M i n terms o f 

mean f l o w q u a n t i t i e s . We adopt t h e assumption used i n t h e 

s t a n d a r d d i s c models t h a t M 4 =const. I t has a l r e a d y been 
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s h o w n t h a t h y d r o s t a t i c e g u i l i b r i u m i n t h e d i s c i m p l i e s 

c s / l / k *" * o / r f o r M t <<1. C o n s e q u e n t l y we w r i t e 

w h e r e f o r t h e t h e o r y we w a n t t o p u r s u e M<<1 a n d z = c o n s t . 

F i r s t o r d e r s m o o t h i n g t h e o r y i s v a l i d i f we r e s t r i c t 

o u r s e l v e s t o s h o r t c o r r e l a t i o n t i m e s , 

a - ruu/iu - ru/tt «\ 

Now i n t h e l i m i t o f s m a l l M a c h n u m b e r s e q u a t i o n 2 . 1 9 s h o w s 

t h a t 

P u t t i n q 3 . 3 3 a n d 3 . 3 2 t o q e t h e r g i v e s 

Q = H t f « /-6K « ' 

s o t h a t i f T u i t f e , t h e a s s u m p t i o n M^C<1 d e l i v e r s Q < < 1 . T h e r e f o r e 

a s l o n g a s M^C<1, r e s t r i c t i o n o f t h e c o r r e l a t i o n t i m e t o Tu$tK 

s h o w s t h a t Q « M t « 1 a n d h e n c e t h e mean f i e l d a n a l y s i s i s 

i n t e r n a l l y c o n s i s t e n t . 

C o m b i n i n g r e s u l t s , i n t h e l i m i t M<<1 a n d f o r T^tK, 

e x p r e s s i o n s 3 . 1 4 a n d 3 . 1 5 f o r <nT a n d b e c o m e 

A\TCy) * H t 2 * C3-3 0 

w h e r e r e c a l l r / l / K - H e r e h a s t h e d i m e n s i o n s c m * s " ' a n d 

t h e d i m e n s i o n s o f a v e l o c i t y cm s _ l . We n o t e f o r f u t u r e 
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reference the property 

The s i m p l i f i c a t i o n s a r i s i n g from these assumptions are 

considered i n the next subsection. 

2.3 The Equations In Dimensionless Form 

Dividing 3.24 and 3.25 by /v\r, and using the results 3.35 

and 3.36 gives 

£ L p - \ 1 + x - - J. +}L P = r^T (5.3-0 

where 

3 / z 

We note that i s the r a t i o <*/*tT and X. i s the r a t i o 

W/rvtj r and are measures of the strength of dynamo and shear 

processes which amplify the f i e l d with respect to the 

dis s i p a t i o n by ^ T - Since both Y and X are constants with 

dimension cm"* we see that the guantity ( X Y) has dimension 

cm"' and we use t h i s to make the equations dimensionless. Thus 
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i s a measure of the product of the two source terms ( <* VK/r) 

divided by the sguare of the d i s s i p a t i o n and i s therefore a 

measure of o v e r a l l source strength r e l a t i v e to the 

d i s s i p a t i o n . This parameter i s e n t i r e l y analagous to the 

parameter -A defined by Parker (1971) i n his study of the 

ga l a c t i c dynamo. 

It w i l l prove convenient to solve the coupled eguations 

3.37 and 3.38 i f we use B> and B̂ , instead of P and T. Thus 

dividing both 3.41 and 3.42 by ( t o . ) and defining the 

dimensionless variables 
A 

we have 

where 

and = _J ̂  - The guantity yB i s the r a t i o of source 
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strength due to dynamo action to the source strength due to 

d i f f e r e n t i a l rotation- In the l i m i t M<<1, Js <<1 which i s 

showing the dominance of d i f f e r e n t i a l rotation over dynamo 

action i n the small Mach number regime. 

Eguations 3.44 and 3.45 indicate that a natural choice 

for the dimensionless time co-ordinate would be "ts J t / t k which 

suggests that the temporal v a r i a t i o n of the mean f i e l d should 

be roughly on scales t k v > t t , assuming M<<1. The d i f f i c u l t y 

here i s that t K * r V z so that eguations 3.44 and 3.45 have the 

problem of inhomogeneity i n the r a d i a l d i r e c t i o n due to the 

r a d i a l dependence of *\r «. This i s i n general a d i f f i c u l t 

problem but section 5 provides an analysis of a solvable 

regime. 

In the next section, we assume that the d i s s i p a t i o n and " 
i 

cx.ui » dynamo action are i n balance so that the f i e l d i s time 

independent. 

3- Solutions To The Eguations-In The Stationary Case 

We consider here the si t u a t i o n when =. o ; i . e the 

di s s i p a t i o n and dynamo action exactly compensate one-another. 

Eguations 3.44 and 3.45 then become 



108 

These equations admit separable solutions. Writing 

and introducing the separation constant - K. we f i n d that R 

obeys the eguation 

while the z dependent factors are governed by the coupled 

equations 

J 1 

Equation 3.52 gives 

which is substituted i n t o eguation 3.51 to give a fourth order 

equation for 0 

- AKJJU . % l\X + (V-i)U - 0 (3^5) 

«U* us 1 Xi 

With K r e a l , K >0 results i n solutions R beinq a l i n e a r 

combination of the Bessel functions J, C ) and whereas 

K <0 leads to a l i n e a r combination of the modified Bessel 
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functions K, ((-K)'4-?) and I/Hc/^rj. Matching to a vacuum with proper 

behaviour in the l i m i t z -* <o and r - * 0 , give k >0 and 

Equation 3.53 may most elegantly be solved by using an 

int e g r a l representation of the solution. S p e c i f i c a l l y , we seek 

a solution to eguation 3.53 of the form 

U(z) = J K<*.*) *U) Jit 

Since the d i f f e r e n t i a l operator acting on U contains 

polynomials of only order one i n z, the choice of the Laplace 

kernel 

w i l l require only the solution of a f i r s t order d i f f e r e n t i a l 

equation in t for the as yet unknown function v (t). This i s 

carried out i n Appendix C.1 where i t i s shown that 0 i s qiven 

by 

J • -TI ( 3-rt) 

where C i s any contour for which the inteqrand vanishes at the 

end points. Of course there w i l l be a number of d i f f e r e n t 

contours in the complex-t plane which accomplish t h i s , and 

these w i l l correspond to the d i f f e r e n t independent solutions 

of ( w | r o . The appearance of the factor t"K in equation 3.56 

implies the presence of a branch cut i n the complex-t plane. 
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Let us f i r s t consider the type of contours which are 

admissible. Consideration of the integrand shows that as It I 

-> , the factor e i s the most important. I f Re(t )<0, 

the i n t e g r a l diverges as we integrate out to ltl-^-*o . 

Convergence of the in t e g r a l occurs only in regions where 

Re (t ) >0. Writing t--[t\ e' , t h i s requirement becomes 

Solving the r e l a t i o n shows that there are four zones of 

convergence as diagrammed in F i g . 6 . Therefore, our contours 

are most simply chosen to have as asymptotes the co-ordinate 

axes i n the complex t plane. These contours are drawn in F i g . 

6 where we also show the branch cut extending up the p o s i t i v e 

imaginary a x i s . The end points of these contours are at Itl = 

i n the directions indicated, so that the requirement that the 

inteqrand vanish at the end points of the contour i s 

s a t i s f i e d . 
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The presence of the branch cut implies that the four 

solution s 

with the contours shown i n Fig. 6 are l i n e a r l y independent. 

I t may readily be shown, that the sum 2T U,^ ( ? ) ^ O « A 

phase s h i f t i s picked up due to the presence of the branch cut 

which insures that the sum i s non-zero ( see Appendix C .2 ) . 

The requirement that our disc solutions be matched 

continuously to an exterior vacuum solution at the upper and 

lower disc surfaces z=± z„ demands the analysis of K^c?) as 

z—-*±z 0. I t w i l l fee remembered that for M<C<1, as z — > ± z o f 

so that we may use the asymptotic form f o r U^ii) . The 

contintuity of the f i e l d throughout the disc w i l l reguire 

matching conditions at z=0. Conseguently we must examine the 

behavoiur of U«ti) i n the v i c i n i t y of z=0. These two tasks 

occupy the rest of t h i s section. 

It i s important to point out that the assumption of 

separation of scales for the f l u c t u a t i n g and mean f i e l d s 

allows us to r e s t r i c t attention to the l i m i t i<<=<| . This i s 

readily seen by noting that IAP = (V1/^^) r so that the r a d i a l 

wavelength i s \ r ~ i ^ t l ^ ' ' ) Since we reguire our mean f i e l d to 

vary on r a d i a l scales larger than z o t we see that the l i m i t 

K << | focusses on the correct regime for analysis of the 
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mean f i e l d s - This observation w i l l prove very h e l p f u l i n 

simplifying the analysis to come. 

We now digress to a discussion of the asymptotic analysis 

before going on with the problem of matching to the external 

vacuum f i e l d . 

Asymptotic form of the solutions a s z - » ? _ 

In the l i m i t z -» z0, the l i m i t M<X1 implies that z » 1 . It 

i s convenient to define the variable f as 

t \ % \ * r 

and the r e a l positive guantity X by 

[kit*)'*1 

i n terms of which the solutions 3.58 may be written 

C T 

where the positive sign i s adopted for z>0 and the negative 

sign for z< 0 . Introducing the d e f i n i t i o n s 

4 cr) s -Z H t r 

allows us to write equation 3.61 i n the form 

0-•**)/. f Aftr) + * _cr) 
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We evaluate the i n t e g r a l in 3.62 in the l i m i t A-*** 

(i.e z -> oo ) by the method of steepest descents. This method 

i s usually applied to in t e g r a l s of the form 

c 

where i f T0 i s a saddle point ( i.e where -fcr) ), and the 

contour may be deformed to pass through the saddle point onto 

the path of steepest descent (this must be j u s t i f i e d by 

Cauchy's theorem), one finds that in the l i m i t A -* ^ , fu) 

becomes 

where ot i s such that -f"crB) e 2 " * i s real and negative. 

This method requires extension i n order to handle an 

in t e g r a l such as that appearinq i n equation 3.61, where we 

have the appearance of an addit i o n a l parameter - Physically 

we want to focuss on modes such that K« I , so that as 

Appendix D. 1 shows, for f ( f ) and g ( r ) defined by 3.61, we 

have i n the l i m i t A -> , !<<./ ; 

where we more s p e c i f i c a l l y reguire that KlX''1- <:< 1 • 
The necessary mathematical d e t a i l s for the asymptotic 

analysis are found i n Appendix D. The c r i t i c a l points of the 
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integrand are found i n D.2 whereupon the paths of steepest 

descent from each saddle point i s determined ( section D.3 ). 

Our contours Cw are then deformed onto the paths of steepest 

descent , the contributions due to each saddle point picked up 

assessed, and the res u l t s summed to give the f i n a l asymptotic 

representation of W„ u ^ ) ( section D. 4 ) . 

We find that the solutions may be written, i n the 

asymptotic l i m i t * -* 

where the functions yU„ are l i s t e d i n Table 4. 
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Table 4._ Asymptotic Analysis: The - Functions\MM (K > z) -

2 > o 2 <: o 

e 

-TT/}CK: +.)." X \ 

*- e 

- e - e e 

e e 

^ ) - e a - e. e 

and where we r e c a l l that lAI = l i l 4 ' 3 . The numerical factors p, 

q, and g are 

ci - - 5 - i 3 JJ 

These re s u l t s show that two solutions (0, and ) grow 

exponentially for z>0 and exhibit exponentially damped 

o s c i l l a t i o n s in z<0. The solutions U 3 and 0^ behave 

conversely. The r e l a t i o n between U„{K,Z) and 0^(K,-Z) found i n 

the preceeding table are t r i v i a l applications of r e l a t i o n s 

C.26-C.29. 

We r e c a l l that the z dependence of B r ( Q(£) ) i s given 
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by equation 3.52 so that we must calculate <i zU/'J.¥~ . We s h a l l 

also need to find P (z) i n order to evaluate B z ( r , z ) . With the 

i n t e g r a l representation 3.58, t h i s i s e a s i l y done. 

S p e c i f i c a l l y 

/» .-t\ + K i % ? t 

Jr.. j . * 1 

Using the d e f i n i t i o n s 3.59 and 3.60 these i n t e g r a l s take the 

form 

In the asymptotic regime , making the same 

assumptions leading to the expression for gives 

where the functions ^ (.*.,%) are l i s t e d i n Table 5, 
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0) T a b l e A s y m p t o t i c - A n a l y s i s : The - F u n c t i o n s y U ^ l K,Z) 

2 > ° 2 < o 

J(,), "\ e 
€ « 

— e e e 

z. , 

e. z 
77"*:'<.' f"( 

e e 

yMH CK,1 ) e e 

-/77<2c' p/| 
- e e 
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And 
A ^ 

o i l 

( v i s ) 

w i t h t h e f u c t i o n s l i s t e d i n T a b l e 6. 

(z) ^ 
T a b l e 6.. A s y m p t o t i c A n a l y s i s : The- Functionsv f l U (K,z)^ 

9 > o S <̂  O 

e e 5 e 

r A 
- e 

e e 
7rcKx_/)c ^1 

e e 

- c e - e. e 

These r e s u l t s show t h a t i n t h e l i m i t z 

o i l .1* 

hence 

I, 
S i n c e K/A * ̂  | , we have 

1 J? ( S . 7 f ) 
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We t u r n f i n a l l y t o the behaviour of U (z) at z = 0 . 

Behaviour of U/h.(z)_ as z - * 0 . 

The i n t e g r a l r e p r e s e n t a t i o n 3 . 5 8 a l l o w s the ready 

expansion of OV, (z) about z= 0 s i n c e we only need t o expand e 

i n a power s e r i e s i n z, e v a l u a t i n g the i n t e g r a l s i n t (the 

c o e f f i c i e n t s of the expansion) as we go. In order to 

f a c i l i t a t e the i n t e g r a t i o n s , i t i s convenient t o deform the 

contours t o run along the a p p r o p r i a t e p o r t i o n s of the 

imaginary and r e a l t axes. As an example, the contour C, i s 

r e p l a c e d by an i n t e g r a t i o n running from to the o r i g i n , 

and form the o r i g i n out to + ̂> . The c o e f f i c i e n t s are then 

p r o p o r t i o n a l t o i n t e g r a l s of the form 

which, with the v a r i a b l e T-t z can be w r i t t e n i n g e n e r a l as 

f - ^ - ^ v - , 

where f - if a n < a ~X- {< with s (*•«-M-* *,)/*. T h i s l a t t e r 

i n t e g r a l can be represented i n terms of p a r a b o l i c c y l i n d e r 

f u n c t i o n s as ( see Gradshteyn and Ryzhik ( 1 9 6 5 ) p. 3 3 7 , 

formula 3 - 4 6 2 . 1 ) 

(3.1C) 
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where fte j? >̂ o and ^ e * > 0 and ° y 1 S the parabolic cylinder 

function. The condition Re. i s ea s i l y met with our 

constraint that K « | 

The d e t a i l s are given i n Appendix E. We only need the 

values of the expansions at z=o i n order to do the matching 

problem of section 4. Defining 

and taking the l i m i t of as z —» o + , we have 

1 ^ \A„u,%) 

ifrr c 

with and Q-w given i n Table 7 



1 2 2 

Table 7. Expansions About Z_\0z The Functions _TM And 

m 

1 
£y. 

Z 

3 
e 

f e £y. 

where 

X H -I fl K (Wo) 

6VC*) S DyCx) - X P 
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Writing 

z e ifrr e 

(3.^3) 

? 

-— ' -J 
we tabulate U„ and in Table 8. 

Table 8.,Expansions About Z=0: The Functions And 

/ 

2 e Dy,., f-x) 
-77V,; 

3 
-27?)/, ^ 

e 0 ; . , " 0 
-277 1/, t 

6 fry., (X) 

-3/f >/, i -37 / l/, 1' 

The l i m i t s as z —> 0" of the functions , , 

may be found using the above results plus the 4 ^ * P-
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important symmetry relations 

Tic ti-fc.' ) 

U 5 U - * ) - e U, £ K S) 

-TTi ' C l-fc*) 

derived in Appendix C.2. 

4. Matching To An External Vacuum-Solution. 

We w i l l suppose that outside the disc (i.e lzl>z e) the 

gas i s so tenuous that the region may be regarded as a vacuum. 
VAC 

A vacuum cannot support currents so that we demand (7* B = o , 

whxch together wxth v-_ = o , requires that B be 

derivable from a potential *t , with 
, VAC 

If we assume a x i a l symmetry of the vacuum f i e l d , and 

require that 

Q — * O *S * -* t 

h * as r -> O 
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t h e n f may be w r i t t e n i n s e p a r a b l e f o r m a s 

2 >+••?. 

(3 S><0 

w h i c h , u s i n g e g u a t i o n 3 . 8 6 g i v e s i n t h e r e g i o n z > z 0 

a n d i n t h e r e g i o n z< - £ „ 

w h e r e 

e v e r y w h e r e i n t h e vacuum a n d w h e r e E(4.) and F (4.) r e p r e s e n t 

a m p l i t u d e s t o be f i x e d by t h e b o u n d a r y c o n d i t i o n s . 

A t t h e u p p e r a n d l o w e r s u r f a c e s o f t h e d i s c | z | = z „ , we 

r e q u i r e t h a t B r , , and B s b e c o n t i n u o u s , i . e . 

T h e s e r e q u i r e m e n t s i m p o s e a s e t o f s i x c o n s t r a i n t s . 
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At the plane z=0, we require continuity of the f i e l d s and 

thei r qradients, i . e 

(s.<?l) 

which are four more conditions t o t a l l i n q ten altoqether. 

Noting that U i s a superposition of the four 

independent solutions ^U^K,?) , and writinq the disc mean f i e l d 

components as 

1 

where the other components follow form equations 3.49, 3.52, 

and 3.6 the boundary conditions 3.93 and 3.94 qive a set of 

ten equations for the ten unknowns E, F, Ĉ ,, and ( 

n=1,2,3,4 ). We use the res u l t s of the asymptotic analysis to 

evaluate at t z c ( s p e c i f i c a l l y equations 3.66, 3.72, and 

3.73 toqether with the results 3.74 and 3.75 ) i n order that 

the conditions 3.93 can be met with the vacuum solutions ( 

3.90 and 3.91 ) specified at ± z„. The constraints at z=0 

require equations 3.78 - 3.84 toqether with the r e l a t i o n s 3.85 

to establish the form of the solutions i n the l i m i t z —> o" . 

The r a d i a l behaviour of these solutions may be r e a d i l y 

matched i f we pick a vacuum mode with dimensionless wavenumber 
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i ; such that -4 = K . with i< > o we see that 

R e * ; ? ) " -

As i t stands, a set of ten simultaneous equations i n ten 

unknowns must be solved. This set may be reduced to a set of 

fi v e i f we l i m i t the discussion to modes i n thich the dominant 

disc f i e l d B^is either an even or an odd funcion of z (see 

Parker (1971)). Turninq to equations 3.24 and 3.25, and 

rememberinq that ac*) - -<x.c-£) , we have that f o r even modes 

U (z) =0 (-z) ,so that P(z) =-P(-z). S i m i l a r l y , for odd modes 

U(z)=-U(-z) so that equations 3.24 and 3.25 are s a t i s f i e d i f 

P(z)=P(-z). For even modes then, the t o r o i d a l f i e l d B ̂  w i l l be 

an even function of z, the r a d i a l f i e l d B r w i l l be an even 

function of z, and the v e r t i c a l f i e l d B_ w i l l be an odd 

function of z. Exactly the reverse i s true for odd modes. 

Consequently f o r even modes 

P cL_ z o (Jit = o ) (s-u) 

J l i 

and for odd modes 

U = <L P
 -- a C J * =<> ) 0-17) 

AS 

I f the f u l l matchinq conditions are written out, i t i s 

found that the choice 
-H i. Li2-i 

e 
+ e ') 

o, -
-TTlCu1-

e 
0 

^ 3 

t>n --t 
-n; t i c 2 -

e 
F -. + E 

( 3 . U) 
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s a t i s f i e s eguation 3.96 for even modes whereas the choice 

-!UC*2-.) 
P. = " * C, 

-it i U 1-*) 

D , - - - e C i 

- I T : Cu2-t) 

s a t i s f i e s eguation 3.97 for odd modes. 

The analysis has therefore been reduced to the study of 

the f i v e eguations: 

together with 3.96 f o r even modes; and 3.100 together with 

3.97 for odd modes. The l i m i t z —* 0 + i s to be used i n a l l 

res u l t s for z=0. Restriction to either even or odd modes has 

allowed us to consider only the ẑ -0 region. We have f i v e 

equations for the f i v e unknowns E ( K . ), C ( < ) where the other 

c o e f f i c i e n t s are qiven by either 3.98 or 3.99. These two sets 

of equations 3.98 and 3.99 are a di r e c t consequence of the 

symmetry re l a t i o n s 3.85. 

Written out i n d e t a i l , equations 3.100 are for the r a d i a l 

component 

P *LKJ») I C, e - Qze t 0, e £ - e e B t 
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t h e $ c o m p o n e n t 

a n d t h e z c o m p o n e n t 

w h e r e f r o m e q u a t i o n 3 . 6 0 

= £ 

(3.(01) 

(>- io«/) 

F o r e v e n modes t h e s e e q u a t i o n s a r e s u p p l e m e n t e d by t h e 

r e l a t i o n s 3 . 9 6 w h i c h w r i t t e n o u t a r e 

Even Modes 

-TV.; -ist^.i -iirv.i 
C, D^/") + C 2 e ^.(-x) * C3e 0y_/x) + C, e • D Y_,C-x).0 

C 6 V I 6 0 t C t e <-«> + e ^ , C , e ^ , . 0 = q 

( V i o l ) 

a n d f o r o d d modes a r e s u p p l e m e n t e d by t h e r e l a t i o n s 3 . 9 7 w h i c h 
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written out are 

Odd Modes 

(5 -10*) 

where a l l these r e s u l t s follow from Tables 7 and 8. 

These eguations may be put i n matrix form fj * = o 

where A ' i s the 5x5 matrix of c o e f f i c i e n t s of the above 

sets of eguations and x i s the column vector of the unknowns 

^ j E . S p e c i f i c a l l y 4 i s the matrix of 

c o e f f i c i e n t s of eguation 3.101 - 3.103 and 3.106 and 3.107; 

while for odd modes A i s the matrix of c o e f f i c i e n t s of 

eguations 3.101 -3.103 and 3.108 and 3.109. 

We reguire that 

for n o n - t r i v i a l solutions. The point of t h i s analysis w i l l be 

to f i n d a r e l a t i o n between /I, ( i . e . M̂. ) and k , which are 

the only parameters appearing in the matrices. 

Manipulation of the determinants shows that in both 

cases, the problem reduces to setting a 3x3 determinant egual 
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to zero. T h i s a r i s e s because i n both cases, o(«.t f\ ' takes 

the form 

ft : o 

JU* Be-° . jut c e ' 

where E>e° are 2x2 matrices and C-6'" are 3x3 matrices. T h i s 

being the case, the s o l u t i o n can be found g u i t e e a s i l y . The 

c o e f f i c i e n t s of B e" are dependent only on K v i a the 

v a r i o u s p a r a b o l i c c y l i n d e r f u n c t i o n s we have d e f i n e d , and 

XtX p/'° vanishes only f o r <- o i n g e n e r a l . 
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e, o Hence o u r c o n d i t i o n s f o r e v e n and o d d modes become oU-t C* _ o 

w h e r e 

li SUM. Hiu 2 I S fc 2 l l / , 

e e e / L - e. +- e e 7 e / 

i -i- e 
Aa A 

2; n 127T/3 

I - e 

-2nv;i in ,k z , : Cpi*)-i< 
e + e. e. e 

1 +• e 

(3...I) 

a n d w h e r e we n o t e t h a t V, = 1 - K and t h a t t h e o n l y d i f f e r e n c e 
2. 

b e t w e e n ^ a n d <- i s a s i g n d i f f e r e n c e i n t h e s e c o n d r o w -

A f t e r some a l g e b r a i c m a n i p u l a t i o n , f o r e v e n modes t h e 

r e q u i r e m e n t 
J e t C = 0 q i 

q i v e s 

[ cos *f + e_J = o 
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and for odd modes the requirement <>U-t C° = o gives 

( J.M3) 

where 

We note that equation 3.113 takes exactly the same form 
as 3.112 i f for odd modes we take ^ < f = <P - IT . 

In each of equations 3.112 and 3.113, we demand that the 

real and imaqinary parts vanish separately. We s h a l l also 

take e _*0 since Aa —* co . Noting that A_ y> i , we have 

from equation 3.112 for even modes 

Cos 

with the eguation for odd modes qiven by 3.115 where ^ i s 

replaced by ^ , and 

From the vanishing of the r e a l parts, we have to f i r s t 

approximation for even modes 

cos 1*3 X„) - o C'-"4^ 
and for odd modes 

, ( ̂  J 
Co i — • Ao 

V t 
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where f o r both cases we have from the v a n i s h i n g of the 

imaginary p a r t s 

if 

Uv. ( 3 H i0\ * V Own) 
IC 

We note t h a t the s e t s of equations 3.116 (a) and 3.117 

(for even modes) and 3.116 (b) and 3.117 ( f o r odd modes) are 

compatible s i n c e we have with / L ^ l , ct><, * o , and 

hence (_3y "* . This i s compatible with 3.116 s i n c e 

/U /V'* -* • Equation 3.117 should be reqarded as a f i r s t 

order c o r r e c t i o n i n «.*- t o equations 3.116. 

To z e r o t h order i n •<-'*- then, 

y 

f o r even modes and 

f o r odd modes . S u b s t i t u t i o n of these r e s u l t s i n t o equation 

3.116, and subsequent expansion i n K l q i v e s the f i r s t order 

c o r r e c t i o n s . 

Even Modes 

Odd Modes 

( 3 . no) 



135 

I f we r e c a l l that \. Q/rrr)V* 
, and express J» i n 

terms of Mf using 3.118 and 3.119, we find that and M° 

should f a l l i n narrow ranges ( governed by ) about the 

values 

e 

M 

where the f i r s t values are 

H° - o. o z 

The reader i s cautioned that these r e s u l t s may change s l i g h t l y 

i f more precise information about the spectral energy density 

of the turbulence i s available ( see Appendix B ). 

Solving for the amplitudes C^(K) , and E ( K ) we f i n d 

c * c l ° » e

 c

 r Cc<) 

E t K ) = -I p / I . c ' e

 / j CCk) 
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where C (K) i s some complex amplitude to be determined by 

conditions on the r a d i a l behaviour of the solutions. 

The r e l a t i v e strength of the vacuum f i e l d i s from 3 .124 

Eoc) 
p 

*4 - H t 

t e 

where p~ Hi , Ao^-^t''/ and M£<1- Hence the vacuum f i e l d i s 

very weak compared to the f i e l d i n the disc for the long-range 

" mean-field " modes. Powerful large scale vacuum f i e l d s 

d e f i n i t e l y require conditions i n the disc such that MFC «-i . 

We now wish to write out the components of B for each 

mode tc i n the regime z —* z c . To do t h i s we use the r e s u l t s 

3. 124 together with the asymptotic forms of the f i e l d 

components. For each mode K , we s h a l l have to sum a l l the 

contributions a r i s i n q f o r each n, from ^ and M {°, given by 

3 . 1 2 2 . Since ' L , ̂ ^H^ , the dominant contributions w i l l a r i s e 

from M|(I for even modes and for odd modes. The results 3 . 122 

then show that the dominant f i e l d B^ in a stationary s e t t i n g 

w i l l be even ( i . e . B^ w i l l have "dipole symmetry" whereas Bt 

w i l l be an odd function of z and so i s of "quadrttpole 

symmetry" ) since M^, = 0 . 1 9 >> ( = 0 . 0 4 . The r e l a t i v e 

amplitudes of even to odd modes i s approximately 

1 F ° > k . r * 
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away from the c e n t r e plane of the d i s c . 

Hence, we expect a t o r o i d a l f i e l d of " d i p o l e symmetry" 

with Mt ~ M̂ 6 = 0.19 under s t a t i o n a r y c o n d i t i o n s . For even modes 

then, we f i n d 

- 0 + In X ~. \ 

(3.nr) 

where we have absorbed common f a c t o r s i n t o B(K) 

and where 

1 2 , 

with 

p = (tltwV M t

e , 

We a l s o note the vacuum amplitude i s 
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F i n a l l y , the r a d i a l behaviour of our modes goes as 
~ f v ( - K l r ) where y = o or i . Now 

noting that A0 = z a we have 

2 . 

so that the scale L of the modes i s 

Focussing on long scale modes L>>z 0 requires from 

equation 3.129 

Equation 3.130 shows that to have scales L » z „ for the mean 

f i e l d i s equivalent to considering K2- i n the range 

Havinq worked out the consequences of s t a t i o n a r i t y , we 

now investigate the s i t u a t i o n when dynamo action and 

d i s s i p a t i o n do not exactly compensate one another. 

5. Small Deviations From Equilibrium 

In t h i s concluding section we s h a l l assume _\\ ̂  o and 
it 
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therefore investigate the p o s s i b i l i t y of having dynamo action 

dominating the di s s i p a t i o n . Returning to our f u l l equations 

3.44 and 3.45, we seek to define an appropriate dimensionless 

time co-ordinate t. Noting that t K = r l/A where A= (GMX ) 1 (M^is 

the mass of the central object). Making r dimensionless ( 

r e c a l l r={J>C)^r) allows t K to be written t k - r /# (yy.) '* 

so that the choice 

t = }t / 

(s..*0 

results in the eguations 

3* 

r »i 38f _ J 1*" •* J- £ 

Again, these eguations are separable assuming a time 

dependence 

where ^ i s a complex constant. Me should remember that the 

r factor arises because our turbulent d i f f u s i v i t y 

*_r * c~y''L . Introducing 3.134 into equations 3.132 and 

3.133, we may aqain seek separable solutions i n r and z with a 
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separation constant - k to f i n d that R(r) now obeys 

and with Q (z) and 0 (z) obeying eguations 3.51 and 3.52 as 

before. Since we w i l l be matching to external vacuum 

solutions, we take < as real and positive. We may regard 

P(£) 3 cV r / z as an e f f e c t i v e dimensionless, sguare, r a d i a l 

wave-number (complex i n general). Introducing 

RcS) = I C KW) 

which re s u l t s i n the 

This equation may be solved exactly. In the case where 

J f = - Yo ( ^ 0 and real ) we fin d decaying f i e l d s and 

from Abramowitz and Stegun ( (1968) formula 9.1.53 ) the 

solution i s 

we investigate the two extremes: 
(1) IK|^ I Pi , Then K.'~ tc and 

(2) I K! *<• I r I f Then K'~ Vc? ) 

eguation 

+ i :! -
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which using d e f i n i t i o n 3.136 i s 

which supports the claim about '""'c?) made above. 

Res t r i c t i o n to the case \K[ « I Pi amounts to studying 

slowly varying temporal variations of the mean f i e l d , and as 

we w i l l see, the analysis w i l l follow along the l i n e s as given 

in sections 3 and 4. The second l i m i t IK|<< i r | , corresponding 

to rapid variations of the mean f i e l d , greatly complicates the 

mathematics. In pa r t i c u l a r , we have modes of r a d i a l dependence 

Rf, (• ̂ t r ) in the disc ( R symbolizing the appropriate 

Bessel function ) whereas the vacuum modes have a r a d i a l 

dependence going as 3, ( r) . The matching of disc and 

vacuum solutions then i s complicated. On short enough time 

scales, the mean disc f i e l d i s strongly influenced by the 

inhomogeneity introduced by a r a d i a l l y varying turbulent 

d i f f u s i v i t y - * i r . The mathematical problems introduced by rapid 

time variations are probably best handled by a boundary-layer 

type analysis, where we note with Braginskii (1965) that i n 

general, when matching to an exterior vacuum solution, a 

boundary layer of thickness a, i s expected about z=tz e. 

The previous chapter showed that the disc i s not 

stationary on time scales ^ iot_ so that a rapidly varying 

mean f i e l d on these time scales could not develop- i n 

( 3 . I 3 J - ) 
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s t a t i o n a r y c o n d i t i o n s . We s h a l l t h e r e f o r e only concern 

o u r s e l v e s with slow temporal v a r i a t i o n s of the mean f i e l d i n 

the l i m i t IK1'» IP| . In t h i s l i m i t , we may t h i n k of the 

background hydrodynamic s e t t i n g as s t a t i o n a r y . In a d d i t i o n , no 

new mathematical procedures need t o be i n t r o d u c e d . 

C o n c e n t r a t i n g on the IM IP I l i m i t then, we seek 

s o l u t i o n s t o our d i s c equations and match t o an e x t e r n a l 

vacuum s o l u t i o n as we d i d before. For i't o ; t h i s w i l l r e s u l t 

i n a d i s p e r s i o n r e l a t i o n which r e l a t e s X to K and other 

c o n s t a n t s . To deal with our r a d i a l inhomogeneity, we note with 

Whitham (1974) t h a t i n working with non-uniform media, the 

d i s p e r s i o n r e l a t i o n t o f i r s t approximation i s the d i s p e r s i o n 

r e l a t i o n f o r a uniform medium pro v i d e d t h a t the t y p i c a l 

p e r i o d s and wavelengths over which the medium v a r i e s are long 

compared to the waves being c o n s i d e r e d . In these cases, the 

procedure i s t o compute the d i s p e r s i o n r e l a t i o n i n the case 

where the v a r i o u s parameters i n eguation are taken to be 

c o n s t a n t , and then t o r e i n s e r t t h e i r s p a t i a l and temporal 

dependences when the r e l a t i o n has been e s t a b l i s h e d . 

T h e r e f o r e , we w i l l regard 9 = P / K. t o be a s m a l l 

parameter, and t o regard the v a r i a t i o n s of P with r as 

n e g l i g i b l e i n order t o determine the d i s p e r s i o n r e l a t i o n t o 

lowest o r d e r . Beginning with the «• time dependence i n 

the manner alr e a d y d i s c u s s e d , we write 

{ 
l 3 
r 3r 

1 p 
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with the intent now of introducing the separation constant 

- K , with P regarded as constant and with \«I ^ | P ] . We 

then f i n d , using 3.49 that R (r) s a t i s f i e s equation 3.50 while 

equations 3.51 and 3.52 become 

.A1 

where 

K H K + P 

with the understandinq that 1*1 » I T I . Equations 3.139 and 

3.140 are exactly those we dealt with before except that 

With our vacuum f i e l d assumed to have & time 

dependence, the matchinq procedure i n section 4 may again be 

used, along with the various forms of the solutions ^.X) 

etc where in a l l cases we replace < with K = K <• P . Since 

we assume I M » . IP I , our solutions are n e g l i g i b l y affected by 

any complex component introduced by P . 

Our strategy i s to expand the r e l a t i o n s C e ' ° = 0 to 

f i r s t order i n 8 = P / K , and then to solve for & . We 
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s t r e s s t h a t P w i l l be c o m p l e x i n g e n e r a l . T h e d i s p e r s i o n 

r e l a t i o n JUt C e ' °= o d e r i v e d f r o m t h e m a t r i c e s 3.110 a n d 3.111 

i s i n g e n e r a l f o r m 

(T, TZ - u r „ ) *' ° = o (3./</<j 

w h e r e f o r e v e n modes 

a n d f o r o d d modes 

I, - - e. - « e 

T - — " = — ° — C 

w h e r e 

r 3 

R 5 k t P 
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Noting that 

we expand 3.141 to f i r s t order in 8 using 3.142 for even 

modes and 3. 143 f o r odd modes. Multiplying the r e s u l t i n g 

equations by & / z then gives the equations for even and odd 

modes 

where T r e t| and Tf* are the r e a l and imaginary parts of 

equation 3.112 and T° , and T ° „ are the r e a l and imaginary 

parts of equation 3.113. Note that 6'- o qives back our 

o r i g i n a l dispersion r e l a t i o n s . The factors F and G are the 

same for both even and odd modes and are 

f s - 27? 
3 
77 * 7° 

Before we proceed, l e t us analyze the r e l a t i v e magnitudes 
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of the terms i n F and G. The f i r s t term i n G i s 

G, Xr \o CoS t" 

while the second term i s of order 

£ J v ^ ^ Ac 

Taking the r a t i o 

6, 
K 1 1 - t ^ f l 

Near equilibrium, we may use eguation 3.117 in both even 

and odd cases to give 

6* 

Since we w i l l want to focuss on long r a d i a l scale mean f i e l d s , 

eguation 3.130 shows that for L » z 0 

together with our usual l i m i t 

gives [ ^ I . Hence, for near eguilibrium conditions and 

focussing on long r a d i a l scale modes gives 

G •» F 
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Using a l l these approximations i t may be shown from 

eguation 3.144 that 

'° - - - I - [ ( T e ' T F + T e'° 6). i( T<-° F _ T'\ t,\ 

F + 6 L 1 ' 

6 I * ~ S J (3..fo) 

Assuming e terms are n e g l i g i b l e we f i n d from 3.150 

wh ere 

0 ~ - 0 

The r e s u l t 3 .152 shows that for the same \„, frequencies i n 

the odd modes are exactly the negative of those for the even 

modes. We comment on t h i s l a t e r . 

Noting that $ 5 P/K , equation 3.151 qives f o r even modes 

V ' \ - — — 1 ( C + t-«P ) (»-T3) 

P e
 - i K f \ 

n e i ° 

For qrowinq modes to occur one must have 1 r<<_( >o , which 

for even modes qives 
Z ̂ 5 /L > K 
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We have already seen that under equilibrium conditions 

tcK*^ < o for both even and odd modes. Hence, we see that a 

c r i t i c a l dimensionless wavenumber K c enters the problem so 

that when '< i s small enouqh so that 

K'!7- S ZB / ( 3 . l « ) 

then exponential qrowth of the f i e l d takes place. Those modes 

K'1 such that > K? w i l l decay. Using the r e s u l t 3.129 for 

the scale of the mean f i e l d components, we see that even modes 

of scale 

zd Xo 

w i l l grow exponentially while scales of L<L C w i l l decay. We 

r e c a l l that with \ a a function of the turbulent Mach 

number Mt ( see 3.104 ) and that with L » z c ;|t*»rl 

The mode for which ^ ' / c / ^ " ' 4 ) = o i s found to be 

and this mode i s the most rapidly amplified component in the 

spectrum. 

The r e l a t i o n 3.153 may be written i n more suggestive form 

as 
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For consistency, we note that when [ r I * « the analysis can 

no longer be applied- From 3.159 the range of dimensionless 

wavenumbers considered here i s therefore 

± k£ < K z < 1 «C
 1 

2 2 

Within t h i s range, the fastest decaying mode occurs at 

K_a = 1 , which gives a fas t e r decay rate than the 
7. 

rate at which the mode K+. = | Ke. i s growing- S p e c i f i c a l l y , we 

find that when P e
 ( > o , 

and when I i <• o then 

These growth rates correspond to the scales 

U 2 Lc 
z 

for the growing mode «"+ and to 

for the decaying mode K- where we demand \ < - < 1 • 
3 Lc 

The r e s u l t 3.154 shows that one necessarily has an 

(J K-- «•+) 

( 3- Uo) 
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o s c i l l a t o r y dynamo at work here, whose frequency increases as 

we qo to smaller and smaller scales. 

Usinq the r e s u l t 3.152, we see that for odd modes 

- rc 

- - r' 

so that odd modes of scale L<L care qrowing exponentially while 

those of longer scales L>LC are.exponentially damped with 

r i =2 « c 

and K+= ̂ 2^K*. The dynamo action i s again o s c i l l a t o r y . 

The r e s u l t 3.152 may be traced to the general symmetry of 

our underlying eguations 3.41 and 3.42. The product <Tx which 

i s a measure of the o v e r a l l dynamo strength to di s s i p a t i o n 

strength i s for our analysis found to be positive. I f 

< o then U (z) =U (-z) implies P(z)=P(-z); and U(z)=-U(-z) 

implies P (z) =-P (-z) . In our system, i t may then be shown that 

what were even mode dispersion relations for /X>o become odd 

mode dispersion r e l a t i o n s when YX < ° . This kind of behaviour 

has been noted by Moffat (1978) p. 230 for the study of A W ' 
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dynamos. In his discussion. X plays the role of YX. and i n 
a disc system containing two thin regions of dynamo action we 

quote: 

"so that i f a dipole o s c i l l a t o r y mode e x i s t s for X= Xo 

say, then a quadropole o s c i l l a t o r y mode with the same 

(complex) growth rate p exists for X - ' Xa . ". 

The r e s u l t 3.152 i s an expression of t h i s basic symmetry 

property. 

The fact that our solutions necessarily have an 

o s c i l l a t o r y character may be traced to our approximation that 

our mean vel o c i t y f i e l d was taken to be t o r o i d a l . As Moffat 

points out (p. 213), t h i s i s a property of «w 1 dynamos and 

when the poloidal velocity f i e l d s are non-zero we may expect a 

freguency s h i f t of !4|> • _ to occur for a mode of the mean 

f i e l d of wavenumber K . I f Y\~«<^ i s the frequency when 
= ° , the new frequency i s K ;vwi^ - Y:^ - Uj, . K 

Since our main poloidal flow i s r a d i a l , we expect that 

the e f f e c t s of such a flow w i l l be negl i g i b l e provided that 

the d r i f t time scale U i s much longer than the 

ch a r a c t e r i s t i c tirwe over which the mean f i e l d changes. With 

t B » f i t i n our analysis, t h i s requires f - * . «• t 6 <•< t 0 

Puttinq a l l our re s u l t s together we find that the time 

dependence for our solutions i s qiven by 

r f 1 ! f - " K * 4 , ["(-CO 4- i 1 K 
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where + i s for even modes and - for odd modes and where 

t K = r 3 / l /(GH^is the Keplerian time. 

Focussing on k - <•*. - i n c for even modes (i.e the mode 

whose growth rate i s the quickest) corresponding to the scale 

L+ we have 

This shows that the o s c i l l a t i o n freguency i s a factor 

<c I\B "I smaller than the inverse growth time scale of the 

f i e l d . The growth time of the f i e l d s depends on Mt and Kc , the 

entire process being scaled by the Keplerian time scale. Now 

the exact value of Kc depends very much on the exact value of 

Et . However, we may introduce the parameter S such that 

L = tojS with 1 . Since <• sV-U'*' with t h i s parameter, we 

have K.c-h/Aoz' where 

Using the dependence of \„ on Mt we find that the even mode 

with scale L+. = grows exponentially as 

Conseguently, the smaller the value of the turbulent Mach 

number Mt, the longer i s the growth time of the f i e l d , the 

relevant time constant being 

t j - /(o.z) [Ht SC)
L (%./c<t) 
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Thus, the most rapidly growing even mode K+ w i l l occur 

with M _ = 0.19, with *SC being a measure of (Mt
c - | t and 

B — - t x 

For the odd modes, the most rapidly growing mode i s 

K = K° = i K<: corresponding to the scale 
1 

i , • d / ' . I n thi s case however, the largest value 

of H_ i s M t°, = 0.04 so that the exponential growth occurs with 

a t y p i c a l time of 

These r e s u l t s c l e a r l y show that the most rapidly growing 
''z ''x mode i s the even mode of wavenumber «•+ - £ Kc . We note that 

3 

the exact amplification rate i s sensitive to the exact value 

of MT . The build up of the f i e l d occurs on time scales 

-£5 « io 0 - b K which i s of the order of seconds to tens of 

seconds i n the inner regions of the disc where "f. ' * <D * s 

and approaches the d r i f t time scale. The results show that the 

longer the length scale of the mode, the longer the time 

required to bu i l d up the amplitude by dynamo action. 

We leave to chapter 4 the analysis of how such growing 

f i e l d s ultimately e g u i l i b r i a t e to some steady value. 
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Chapter 4 

Implications For - Accretion Disc Models 

Introduction 

In t h i s chapter, we bring together the various ideas 

investigated i n chapters 2 and 3 and examine the e f f e c t of our 

analysis on accretion disc structure. 

We f i r s t turn our attention to the eguilibrium value of 

the mean large-scale magnetic f i e l d , and investigate what type 

of stresses are set up by such a f i e l d . Section 2 i s devoted 

to this analysis and i t i s shown that the mean, large-scale, 

(long time average) Maxwell stresses give r i s e to the same 

type of accretion disc as studied by Shakura and Sunyaev 

(1973) . 

In section 3, we t r y to assess the long time averaged 

ef f e c t the l o c a l i z e d intense magnetic fluctuations w i l l have 

on angular momentum transport and disc structure. Arguments 

are introduced which, although not completely rigorous because 

of a lack of detailed information about the spectrum of the 

the magnetic turbulence, nonetheless show that the Lightman 

and Eardly i n s t a b i l i t y mentioned i n the opening chapter may be 

suppressed. A consistent cool thin accretion disc (averaged 

over long enough time scales) can therefore be imagined. The 

source of the hard X^-ray spectrum would then appear to be 
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associated with a c o l l e c t i o n of intense loops of magnetic 

f i e l d , emerging from the disc surfaces, and undergoing solar-

type f l a r e s . 

Section 4 i s a rather crude analysis of the type of 

spectrum one could expect from the f l a r i n g regions discussed. 

Again, we make the analogy with solar f l a r e s and model the 

hard X-ray emission as a r i s i n g from a rapid flash-phase of the 

f l a r e , wherein bremsstrahlung emission a r i s e s from a non­

thermal electron population (accelerated i n the f l a r e region) 

interacting with the denser gas towards the disc surface.. 

Zi. E g u i l i b r i a t i o n Of The Mean Magnetic F i e l d And Consequences 

For Accretion Disc Structure.-

In t h i s section, we study the angular momentum transport 

(over long time scales) generated by the mean f i e l d B. In 

order to do t h i s , some estimate of the ultimate eguilibrium 

value of B must be made. 

We have shown in Chapter 3 that i n i t i a l l y weak magnetic 

disturbances of long enough scale w i l l grow exponentially on 

time scales loo iK . i t was assumed in t h i s case that the 

flow was Keplerian. We now ask, what does this f i e l d do to the 

turbulence and/or the mean flow to l i m i t i t s own growth. 

Two p o s s i b i l i t i e s come to mind. The mean f i e l d may act to 

a l t e r the turbulence ( reaction on micro-scale ) when the 

f i e l d approaches eguipartition energies (see Moffat (1972)). 
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Another point of view i s that the large-scale f i e l d may be 

determined by r o t a t i o n a l constraints acting d i r e c t l y on the 

large-scale flows, and may be i n s e n s i t i v e to the detailed 

structure of the underlying turbulence responsible for 

magnetic regeneration (see Malkus and Proctor (1975), Proctor 

(1977), and a b r i e f review by Moffat (1978) p. 303-307 ). 

Which mechanism predominates i s a question which has no 

general answer yet, however, the l a t t e r point of view i s the 

one of immediate i n t e r e s t in accretion processes. 

The idea i s that growing large-scale magnetic f i e l d s w i l l 

give r i s e to large-scale Lorentz forces. These forces in turn 

generate a large scale velocity f i e l d . The magnitude of the 

induced v e l o c i t y can be determined from the induction eguation 

and i t s estimation i s independent of the magnitude of B. The 

ultimate l e v e l of mean magnetic f i e l d energy i s then 

determined by the magnetostrophic balance i n which Lorentz 

forces and C o r i o l i s forces are of the same order of magnitude 

(provided certain conditions are met). In t h i s picture, we 

imagine the induced velocity f i e l d as a r i s i n g as a re s u l t of 

angular momentum transport by the mean f i e l d , which i s how we 

connect with the accretion problem. 

Let us b r i e f l y discuss the Malkus and Proctor (1975) 

analysis for " <*• " dynamos. The idea i s to assume that CK i n 

the mean induction i s unaffected by the large-scale magnetic 

f i e l d . Defining the quantity 
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where <x_ i s the value of <x for which excitation of the large 

scale mean f i e l d can occur. When > i ^ r the f i e l d grows 

exponentially u n t i l the Lorentz force back-reaction on the 

possible for the growth of the f i e l d to be arrested by the 

appearance of a mean vel o c i t y d i s t r i b u t i o n driven by the 

Lorentz force; a l l t h i s occurring before modification of <* by 

the mean f i e l d B i s important. The mean velocity f i e l d w i l l 

continue to grow u n t i l i t can compensate for the Ohmic losses 

of the growing magnetic f i e l d . For the problem of rotating 

f l u i d s i n a sphere, the mean magnetic f i e l d l e v e l should then 

be roughly determined by the balance of C o r i o l i s and Lorentz 

forces. The exact l e v e l of the mean magnetic f i e l d depends on 

The eguations studied for •V2"" dynamos i n the rotating 

frame of reference are (neglecting Reynolds stresses; we 

return to t h i s point later) 

flows i s s i g n i f i c a n t . I f R* = R* t ( l 4 _ e ) where 0 i t i s 

(R* -R<xt) 

( M . I ) 

where <̂ cx) i s prescribed and with i n i t i a l conditions 

_ L_,o) = O _>Cx,o) -- B„ C x ) 
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where BJx) i s the eigenfunction in the problem when U=0 and 

=R« . With ft*. = ^ ( 1 + * ) , the mean f i e l d B i n i t i a l l y grows 

exponentially and generates a velocity f i e d given by 4.1. The 

velocity f i e l d grows u n t i l i t has s i g n i f i c a n t e f f e c t in 4 . 2 . 

The relevant magnitude of U when t h i s stage i s reached i s 

found by comparing tf*£u*B) with ^ so that we expect 0 

i s of order 

In the s i t u a t i o n where 

the C o r i o l i s forces i n 4.1 are more important than the 

i n e r t i a l forces ( at least away from the boundary ) so that 

the relevant magnitude of B i s deduced from the balance of the 

Lorentz and C o r i o l i s forces, and i s of order 

2. 

\ = Si U o <r - ^ J2 ^ 
<4 rr 

where both the estimates for B Dand U 0should by multiplied by a 

function of ^ . 

We wish to make similar estimates for the 11 " dynamo 
4 

studied i n Chapter 3 . For t h i s problem, both and ^ * 

are prescribed. Previous arguments have shown that for thin 

discs the t o r o i d a l v e l o c i t y i s always Keplerian to good 
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approximation and that t h i s comes about because the p a r t i c l e s 

o r b i t i n the powerful external g r a v i t a t i o n a l f i e l d of the 

central black hole. The growing mean f i e l d B i s imagined to 

give r i s e to a r a d i a l v e l o c i t y U r. The e f f e c t i v e magnetic 

d i f f u s i v i t y i n the problem i s "L. . He then estimate the order 

of magnitude of the induced v e l o c i t y f i e l d as 

ar i s i n g from the Lorentz force reaction on the disc. 

Neglecting the Reynolds stress for the moment, we then expect 

that the v e r t i c a l l y averaged Maxwell stress ^ S*"^/mr i s (see 

eguation 1 .7) over long time, steady state conditions 

iAj* r

 = ^ BV> - - r u ' u * 

Equation 4 . 6 i s nothing new; however, the r a d i a l v e l o c i t y 

0 r has been set by the mean induction eguation (relation 4 . 5 ) . 

This means that we now have a s u f f i c i e n t number of eguations 

to compute the disc structure, assuming that the Maxwell 

stress from the mean f i e l d B dominate the Reynolds stress. 

Before we analyze t h i s l a s t assumption, we note that from the 

d e f i n i t i o n 3 . 3 5 for <*T t that U r i s just 
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so that the Maxwell stress 4.6 becomes ( assuming 0<0 for 

r a d i a l inflow ) 

irr 

We note that 4.8 expresses the Maxwell stress i n terms of 

the pressure i n the same fashion as the standard model 

outlined i n Chapter 1, that i s , except for our factor of M̂  . 

Again, the eguilibrium values for l ^ r ' and / B* JB") found above 

should be multiplied by functions of e i n order to arrive at 

exact values. 

Assuming that the eguilibrium f i e l d B has a si m i l a r 

structure as computed i n Chapter 3 (the ultimate f i e l d has 

roughly the same structure as the li n e a r i z e d analysis derives, 

provided that i t i s below equ i p a r t i t i o n strength) we estimate 

from equations 3.126 and 3.127 

as the r e l a t i o n between the r a d i a l and azimuthal f i e l d 

components i n the reqion z zo. With M « 1 , and using the 

d e f i n i t i o n 3.46 for p and 3.60 for \ we have 

where numerical factors from the z integration have been 

dropped and only the scaling with Mt retained. With r e l a t i o n 
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4.9, we fin d from 4. 8 

which shows that the mean magnetic f i e l d energy i n the l i m i t 

Mj. -*• 0 i s below equipartition with the thermal energy of the 

gas by a factor 

Considering the Reynolds stress contribution to Wr^ r we 

have already noted that the eddy v i s c o s i t y model (see Chapter 

1) gives * K t Zc* . I t i s however also reasonable to 

estimate the Reynolds stress ( v e r t i c a l l y averaged ) as 

The model 4.10 shows that a competition between the Reynolds 

stress and the Maxwell stress due to the mean f i e l d may be 

expected. The dominant stress i s l i k e l y to be decided by the 

detailed v e r t i c a l structure and the magnitude of £ . Here, we 

assume the Maxwell stress dominates. 

This simple order of magnitude analysis shows that the 

mean f i e l d Maxwell stress gives r i s e to the same steady-state 

disc structure eguations as given i n Chapter 1- This a r i s e s 

because we have assumed that <* = K t cs i n our calcu l a t i o n s for 

*1 T. 

The discussion so far has ignored the contribution to the 

stress Wr<^ made by the intense f l u c t u a t i n g f i e l d s we discussed 
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in Chapter 2. We regarded these intense, s h o r t - l i v e d , 

s p a t i a l l y l o c a l i z e d fluctuations as ne g l i g i b l e as far as 

angular momentum transport averaged over long time scales was 

concerned. We examine t h i s assumption i n the following 

section. 

3^ The Long Time Averaged Effects-Of The Magnetic Fluctuations 

We examine the r e s t r i c t i o n s that can be put on M ̂  i n the 
/ V . 1 .2. 

case where magnetic fluctuations as large as t> / rrf° ~ ^n. 

occur. Using the re s u l t k - ( ^T/ n ) &l and the eguilibrium value 

for B discussed i n the previous section, we obtain 

-—• — —- — * Z. c, v 

and for maximal fluctuations 

we have 

Using the expression for /MT , t h i s i s 

^ * Mt z c* 

or with the magnetic Reynolds number - r^ l t /-̂  we have 
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where we have noted t h a t S i n c e we a r e d e a l i n g w i t h 

v e r y l a r g e magnetic Reynolds numbers, the r e s u l t 4.13 shows 

t h a t maximal f l u c t u a t i o n s may occur i n regimes where M t i s 

s m a l l . As an example, w i t h K M ~ 10 and w i t h ranges f o r 

t o / r a p p r o p r i a t e f o r t h e d i s c of * » / , r ^ i o _ z , we f i n d 

t h a t 
-2-4 _ . - 1 . 2 

T h i s i s i n t e r e s t i n g i n t h a t our model f o r l a r g e f l u c t u a t i o n s 

i s c o n s i s t e n t w i t h an a n a l y s i s where M<C<1. 

Let us more c l o s e l y examine how l a r g e the l o c a l magnetic 

f l u c t u a t i o n s can become. The d e n s i t i e s ^ i n the t h r e e 

r e g i o n s of t h e s t a n d a r d a c c r e t i o n d i s c model a r e i n terms o f 

t h e d i m e n s i o n l e s s v a r i a b l e s (see Shakura and Sunyaev) 

^ 5 ^ /Ha 

r» s r / r • 

(a) i n n e r r e g i o n : ( \ ± <> * ) 

0̂ -c 1.1 K\0~1 M t m " 2 -v^"1 ^ 3 / l 

(b) m i d d l e r e g i o n : ( ^ rA < ^5<>o) 
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(c) o u t e r r e g i o n : (l,*00 £ i~* ) 

w h e r e t h e c r i t i c a l a c c r e t i o n r a t e M C ( - i s d e t e r m i n e d f r o m t h e 

E d d i n g t o n l i m i t . We n o t e t h a t t h e o n l y d i f f e r e n c e b e t w e e n 

S h a k u r a a n d S u n y a e v , a n d t h e f o r m u l a s we g i v e i s t h a t t h e y u s e 

M-t when we u s e M* ( t h i s i s b e c a u s e W r < < - M t P f o r t h e i r 

e d d y v i s c o s i t y m o d e l a n d \S)r* * t\\ P f r o m t h e mean f i e l d 

M a x w e l l s t r e s s ) . 

A g l a n c e a t t h e r a d i a l d e p e n d e n c e s o f t h e s e d e n s i t i e s 

s h o w s s h o w s t h a t t h e maximum d e n s i t y o c c u r s a t Q - i^a ; 

a t t h e b o u n d a r y o f t h e i n n e r a n d m i d d l e r e g i o n s w i t h 

r„ -*• ifo . 

F o r t h e C y g X-1 s o u r c e , t h e b l a c k h o l e m a s s i s 10 M 0 s o 

m -10 a n d s i n c e t h e l u m i n o s i t y i s 10 e r g s ; m -10 . 
1 z 

W r i t i n g ^ r̂ , ' w e f i n d t h a t f o r m a x i m a l 

f l u c t u a t i o n s L> /V = V K - , t h a t i n t h e i n n e r z o n e o f t h e 

d i s c 
= s-A x 10 r i M t 

I f we t a k e r i = i r ° ; we t h e n f i n d t h a t 

; o.r 
We u s e t h e e s t i m a t e o f 10 G a u s s , b e c a u s e a s s h o w n i n 
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Chapter 1, we found that such a f i e l d strength can explain the 

shot noise model i n terms of solar-type f l a r e s . 

The value for the turbulent Mach number of M=0.26 derived 

by the above arguments i s i n agreement with the eigenvalue of 

M =0.19 found in Chapter 3. We have used two e n t i r e l y 

d i f f e r e n t approaches and come down to similar estimates for 

the value of M̂ . This leads us to the view that at 

equilibrium, the o v e r a l l structure of the disc i s determined 

by the mean maqnetic f i e l d ( i t provides the angular momentum 

transport ) which sets the value for M * 0.19. This disc 

structure, i n turn, w i l l e f f e c t the magnitude of the magnetic 

fluctuations that can be expected. The shot-noise model can be 

accounted for by randomly ( i n time ) occurring f l a r e s , which 

have maximum energies i f originating i n the region rs l o o - t r o * ^ . 

Flares occur everywhere on the disc surfaces, but the energies 

emitted by f l a r e s in regions other than r * * w o - i r o cA w i l l be to 

low to stand out above the o v e r a l l background emission. We 

note that with Mt=0.19 say, the interpretation of millisecond 

bursts as f l a r e events becomes d i f f i c u l t . We return to t h i s 

point in section 4. 

Before leaving t h i s discussion, we note that i f we take 
'— Id S" 
b*10 Gauss, then the t o t a l energy contained i n the f i e l d i s 

Now t h i s considerably overestimates the energy release of 
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10 J Oergs per event. The explanation i s that only about 3? of 

the t o t a l magnetic f i e l d energy i s being converted into ether 

ferns of energy during every f l a r e event. This compares 

favourably with the results of the experiments discussed in 

Chapter 1. 

A l l of the discussion to t h i s point has concentrated on a 

thin disc as the underlying model for our c a l c u l a t i o n s . As 

mentioned i n the opening chapter however, the assumption that 

vJ r*-Mt p where H_ i s a constant was shown ty Lightman and 

Eardley (1974) to lead to a secular i n s t a b i l i t y cf the inner 

(radiation dominated) zone of the standard thin disc model. We 

b r i e f l y discuss t h i s i n s t a b i l i t y and l a t e r show that the 

ccntribution made to the o v e r a l l stress by an intermediate 

t i B € average of c"r,» can s t a b i l i z e the inner zene, so that i t 

i s consistent to think of a cool thin accreticn d i s c . 

Raking no assumptions about s t a t i o n a r i t y , the disc 

structure equations deliver the following eguation f o r the 

evolution of the surface density 

a result which follows from the continuity eguation 

31 • i 3 M U r ) S D 
0 / Z o ) 
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and the conservation of angular momentum 

Now i n the inner radiation pressure dominated zone of the 

d i s c , one can show that i n the constant Mt model for the 

turbulence 

a result which follows from the independence of P,_ ( and the 

temperature T ) on the density Z~ i n t h i s inner region. I f 

eguation 4.22 i s substituted into 4.19, there results a non­

li n e a r d i f f u s i o n type eguation for the surface density L that 

turns out to have a negative e f f e c t i v e d i f f u s i o n c o e f f i c i e n t . 

Lightman (1974(a) and (b)) studied t h i s eguation- both 

a n a l y t i c a l l y and numerically and confirmed that the r e s u l t of 

t h i s negative d i f f u s i o n c o e f f i c i e n t i s f o r material to "clump" 

into rings, with higher density zones getting higher i n 

density and lower density zones getting lower. This clumping 

occurs on a l l wavelengths (secular) and on a time scale 

W i f ^ t p * 1 t " Z t K ( 4 . 2 * 0 

where the l a s t equality i s a consequence of 
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where t 0 i s the d r i f t time scale t D = r / . Physically, with 

IAT^ «. I " 1 (for constant K_) one has low stress i n high- Z 

regions and high stress i n low- Z regions so that 

matter i s pushed in t o regions of low stress resulting i n 

increasing density contrast and the formation of dense rings 

of gas. The wavelengths X of these regions must be /( > X*. 

because of turbulent mixing on smaller scales. This r i n g 

structure i s not thermally stable and should heat rapidly, 

resulting' i n the swelling of the o p t i c a l l y thick, radiation 

pressure dominated cool regime into a much hotter, gas 

pressure dominated, o p t i c a l l y thin one. I t i s t h i s observation 

which lead to the two temperature model dicussed i n Chapter 1-

Lightman and Eardley ( 1 9 7 4 ) point out that i f M± i s not a 

constant however, but f a l l s at lea s t as fast as Z , then a 

stationary, stable, thin cool disc i s possible. This may be 

seen by substituting * Z'M (n}.1) into 4.21 and then into 

equation 4 . 1 8 , where one finds then a positive e f f e c t i v e 

d i f f u s i o n c o e f i c i e n t . Physically, what i s happening i s that 

the e f f i c i e n c y of angular momentum transport i s decreased so 

that the i n s t a b i l i t y no longer occurs. 

Now in the magnetically dominated disc we have been 

discussing, the Maxwell stress due to the mean f i e l d takes the 

form P so that t h i s long time averaged stress cannot 

a l t e r the i n s t a b i l i t y discussed in the previous paragraph. Let 

us however examine the Maxwell stress a r i s i n g from the 
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f l u c t u a t i n g f i e l d s . He r e c a l l t h a t from Chapter 2 we had the 

s t r e s s a r i s i n g from the magnetic f l u c t u a t i o n s 

corresponding t o the s i t u a t i o n where l» ' _y B . Now over the 
n 

hydrodynamic time s c a l e rl^ we found t h a t s t a t i o n a r i t y was 

not p o s s i b l e and so the above ex p r e s s i o n f o r <r"*v' denotes 

f l u c t u a t i o n s i n the o v e r a l l Maxwell s t r e s s o c c u r r i n g on s h o r t 

time s c a l e s and s m a l l l e n g t h s c a l e s . Talcing the v e r t i c a l 

average and using the r e s u l t s 4.11 and 4.5 we f i n d 

Now from the long time averaged s t r u c t u r e of the d i s c , 

assuming steady s t a t e g i v e s 

which, i n view of eguation 4.5 shows t h a t 

Mr - t\/zWZ 

and hence, 4.23 may be w r i t t e n 

where have def i n e d an e f f e c t i v e t u r b u l e n t Mach number M. as 
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In other words, the l o c a l i z e d Maxwell stress fluctuations 

corresponding to our intense magnetic fluctuations can be 

characterized by a v i s c o s i t y parameter or e f f e c t i v e Mach 

number which has a density dependence of Z ~ z . This i s 

just the type of density dependence that would s t a b i l i z e the 

inner disc region- However, t h i s analysis must be taken one 

more step. We must average these fluctuations 4.25 i n the 

Maxwell stress over longer length and time scales i n order to 

determine what t h e i r average ef f e c t w i l l be. The relevant 

scales for averaging are the length and time scales over which 

the i n s t a b i l i t y discussed could a r i s e , which are scales 

intermediate between the hydrodynamic time scale and turbulent 

eddy s i z e on the one hand, and the very long time and length 

scales assumed fo r the stationary disc models we have 

disc ussed. 

The most obvious ef f e c t of magnetic fluctuations i s to 

cause density f l u c t u a t i o n s , since we have noted that regions 

of intense f i e l d should drive down the density i n that region 

making i t buoyant. Now our dynamo parameter depends on 

P o " ' so that we expect random fluctuations i n the 

magnetic f i e l d to be associated with random fluctuations i n 

cx . The averaging problem then i s to regard « as having a 

randomly varying component, which we average over a time scale 

t*. 
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and over a length scale of 

The analysis to follow, f i r s t investigated by Kraichnan 

( 1 9 7 6 ) shows that these intermediate time and length scale 

averages of the induction eguation with random fluctuations of 

r e s u l t s i n a modification of ^ to a new value . Hence, 

our fluctuations over the intermediate scales l i s t e d above 

allow us to assess the e f f e c t of cr"*"* fluctuations over these 

scales. 

We follow Kraichnan's analysis s t a r t i n g from the mean 

induction eguation 

36. -. VK (A B + U * ft ) + «, !7lB 
2>t 

and consider the e f f e c t of s p a t i a l and temporal fluctuations 

of over the scales t ^ and i * . To do t h i s , a double 

averaging procedure over scales a, and a z s a t i s f y i n g 

i w « a , «• JL*. c i t « r- (Hit?) 

i s introduced. Preliminary averaging over a gives r i s e to the 

induction eguation 4 . 2 7 . We treat *~ as having a randomly 

varying component which w i l l be averaged over the scale ax. 

The double overbar " ~ w i l l denote averaging over a t 

guantities that have already been averaged over a,. 
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S p l i t t i n g B and oc i n t o mean and f l u c t u a t i n g p a r t s 

where 

B = Bo ; \, = o 

one then f i n d s 

where 

The term Vic 6, i n eguation 4.32 may be n e g l e c t e d 

( f i r s t order smoothing) provided t h a t 
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where o^,^*., J i s the root mean sguare of the fluctuation <*, . 

We notice that the induction eguation 4.27 has been modified 

by the appearance of a new term <x• k> . We estimate t h i s 

c o r r e l a t i o n i n the same manner as done i n Appendices A and B. 

S p e c i f i c a l l y , we Fourier transform eguation 4.32 to solve for 

b, (the Fourier transform of _ ) , compute jo, ' , and then 

inverse transform. This procedure i s complicated by the 

presence of terms depending on the mean ve l o c i t y U and ua ( 

not considered by Kraichnan ). 

Moffat (1978, p. 177) sketches out the case for 

(x.0 - U - o where one finds 

where B c and t7'x are treated as uniform over the length 

scale 1«. One then obtains 

oc 

where 

and t^/i^) i s the spectrum function of the f i e l d * , . 

Now l e t us compare the terms I7x(rf. and P x xt,) with 

MTVZ_, i n eguation 4.32. The dominant contribution from 

(7x f«i>b,) i s of order , so that the AS- term dominates i f 
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where the l a s t inequality i n 4.38 follows from the estimates 

3.35 and 3.36. Now for small Mach numbers Mt we noted that 

A / ? 0 * M-t • so i t i s consistent to estimate L^z,, i n order for 

4.38 to hold. So near the surface reqions z-z<,the two terms 

become comparable. 

The term V x C u x lo, ) i s more d i f f i c u l t because U*can be 

large. However, usinq the same arguments as used in Chapter 2, 

terms involving U w i l l not be important provided that b,*" i s 

small compared to bf . The important contribution from U i s 

then the r a d i a l v e l o c i t y 0 rso that ^ 7 dominates i f 

which i s well s a t i s f i e d . Conseguently, for scales l^*zo>>l(it 

(only i f Mt « 1 ) , and regions z<z D with axisymmetric 

fluctuations <*, and b. , the r e s u l t s 4.36 and 4.37 are s t i l l 

applicable and eguation 4.31 becomes 

, X7K (« A B + [ U + Y ) x B 0 ) + [^T- X) T7* g o 

H 

Eguation 4.40, under the approximations l i s t e d i n the 

previous paragraph, shows that the e f f e c t of the fluctuations 

<*, give r i s e to a correction Y to the v e l o c i t y f i e l d and 

modify the d i f f u s i v i t y of the f i e l d B 0to 

where the l a s t ineguality arises from the fact that X>0. For 
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f l u c t u a t i o n s * i independent of p'; eguation 4 . 37 shows t h a t 

Y =0 ( independent of k ). Hence we expect c o r r e c t i o n s t o 

the r a d i a l i n f l o w v e l o c i t y 0 r to be the main e f f e c t of Y. 

The c r u c i a l p o i n t i s t o examine the magnitude of X. 

Moffat shows t h a t when 

then X may be estimated as 

Now, we have a l r e a d y c o n s t r a i n e d l K t o be 1 ^ -z 0, so t h a t 

with * T » Mt**a/t*. , the i n e q u a l i t y 4.4 2 g i v e s 

t IC 

so t h a t the time s c a l e t ^ i s c o n s t r a i n e d 

which by 4.22k i s 

where t was the time s c a l e over which the Lightman and 

Ea r d l e y i n s t a b i l i t y occurred. 

Let us estimate i n terms of the de n s i t y f l u c t u a t i o n s 

we imagine a r i s i n g from i n t e n s e magnetic f l u c t u a t i o n s b (on a 

s c a l e a , ) . Since ot depends on the d e n s i t y as (>„"' 2p> , we 
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estimate 

where ^ i s the root mean squared d e n s i t y f l u c t u a t i o n averaged 

out over s c a l e s L^and t*. Then 

S t r i c t observance of 4.44 guarantees t h a t X<<*v, however, 

pushing the time s c a l e up to t l w V+ ci, i m p l i e s from 4.47 t h a t 

the magnitude of the d e n s i t y f l u c t u a t i o n s a s s o c i a t e d with our 

l o c a l magnetic f l u c t u a t i o n s i s a l l important. 

From our d i s c u s s i o n and using 4.41 together with 4.47 we 

f i n d 

I f we were to average over l o n g e r times t , we cou l d expect 

t h a t (\ / approaches some constant value so that always 

A\- > o T h i s i s only s p e c u l a t i o n however. The g e n e r a l 

problem remains t h a t i f X >/nT _, a negative d i f f u s i v i t y o f 

the mean f i e l d would r e s u l t , and t h e r f o r e , the concept of the 

f i e l d s b' and B e x i s t i n g on two widely separated s c a l e s i s i n 

doubt. In g e n e r a l , the magnitude of X probably depends 

s e n s i t i v e l y on the d e t a i l e d spectrum of the tu r b u l e n c e (see 
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K r a i c h n a n {1976) ) . 

We note from r e l a t i o n s 4.5 and 4.24 t h a t a decrease of A\_ 

i s a s s o c i a t e d with a decreased r a d i a l i n f l o w 0 r and an 

i n c r e a s e d v a l u e o f the s u r f a c e d e n s i t y Z . The c o r r e c t i o n t o o"" 

i s the term Y? 

We may now r e t u r n t o the d i s c u s s i o n of ths Lightman and 

E a r d l e y i n s t a b i l i t y . In Chapter 2 we saw t h a t the H a x w e l l 

s t r e s s a r i s i n g from the f l u c t u a t i o n s can be r e l a t e d t o the 

magnitude of t h e long time averaged s t r e s s as 

^L^lO- k I*" T° I IM""̂  . On s h o r t t i m e s c a l e s , t h e magnetic energy 

f l u c t u a t i o n s can reach e q u i p a r t i t i o n w i t h the r o t a t i o n a l 

energy d e n s i t y and thus t h e i r a s s o c i a t e d s t r e s s i s o f the same 

o r d e r of magnitude as w""t Over much l o n g e r l e n g t h and t i m e 

s c a l e s m a g n e t o - h y d r o s t a t i c b a l a n c e must be m a i n t a i n e d so t h a t 

<!% Ic* and c o n s e q u e n t l y (lW> « on these s c a l e s . 

We now note that V\)r*= Zc$ i w i t h M t c o n s t a n t and 
N °_ b ' -  / (</o 2. Cs. where /n/0 depends on (iAT /. Dn the l o n g e s t 

s c a l e s , we e x p e c t -YI7 and hence ini0 t o t a k e i t s s m a l l e s t v a l u e 

so t h a t m a g n e t o - h y d r o s t a t i c b a l a n c e can be s a t i s f i e d . However, 

on s h o r t e r s c a l e s t « and 1«., i t i s ap p a r e n t t h a t W0* can be o f 

t h e same o r d e r as . S i n c e W*^>^ Z f the Lightman and E a r d l e y 

i n s t a b i l i t y w i l l be d e f e a t e d by t h e s t r e s s due t o the 

f l u c t u a t i n g f i e l d . 

These arguments show t h a t a t h i n , c o o l a c c r e t i o n d i s c i s 

c o n s i s t e n t when t h e e f f e c t s of magnetic f l u c t u a t i o n s a r e 

c o n s i d e r e d . We e x p e c t t o f i n d a corona o f i n t e n s e magnetic 

f i e l d f l u c t u a t i o n s of maximum s t r e n g t h b ~ 10 Gauss o v e r l y i n g 

t h i s d i s c . These f i e l d s w i l l undergo 
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f l a r i n g processes, and we turn f i n a l l y to a b r i e f analysis of 

the X-ray emission that might be expected. 

4. X-ray Spectra From Solar-Type Flares In The-Cyg X-1 Source 

The observed power law X-ray spectrum of the Cyg X-1 

source i s usually interpreted as a r i s i n g from a r a d i a l l y 

dependent temperature integrated over the disc surface. The 

model of Galeev et a l (1979) imagines that a magnetically 

confined, hot corona of material i s heated by reconnection of 

the looped coronal f i e l d s giving r i s e to thermal 

bremsstrahlung emission. Their mechanism explains the hard 

component of the X-ray spectrum with the soft photon flux (<10 

kev) a r i s i n g from the cool underlying accretion disc. We note 

that for an energy release of 10 ergs in a "thermal" f l a r e 

then 

where T i s the temperature, n the plasma p a r t i c l e density and 

V the volume of the magnetically confined plasma. To get the 

lowest estimate for nV, we adopt a temperature of 1.8x10 K 

corresponding to the maximal X-ray energies of 150 kev and 

fi n d the number of p a r t i c l e s 

^"V Sr I.I X X tO 

which for a maximum loop radius of 1-10 cm, V»10 cm and so we 
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are t a l k i n g about plasma densities 

which i s less than the p a r t i c l e density * I O " c>~~3 i n the 

outer portion of the inner radiation dominated zone of the 

accretion disc. One c r i t i c i s m we have of the Galeev et a l 

model i s that with loops of dimension 1-3x104 cm and f i e l d s 

b~10 Gauss, i f 3x10 ergs are to released i n each f l a r e event 

then v i r t u a l l y the entire magnetic f i e l d energy must be 

converted into thermal energy of the plasma, which i s contrary 

to the observation that only about 5% of the magnetic energy 

i s so converted. We f e e l therefore that t h e i r time scales are 

overestimated by 5 and their f i e l d s underestimated by a 

factor 20. However, their basic physical p r i n c i p l e s provide a 

consistent model for thermal heating of the coronal plasma due 

to f l a r e s -

There i s a large amount of uncertainty i n the analysis of 

the hard X-ray component (>10 kev) of the solar f l a r e X-ray 

emission, as to whether thermal or non-thermal ( power-law ) 

populations of electrons are responsible f o r generating the 

observed power-law X-ray spectra (see Kane (1975) for a seri e s 

of a r t i c l e s dealing with t h i s question). It does seem clear 

that for solar f l a r e s bremsstrahlung i s the dominant radiation 

mechanis m. 

Observations of solar f l a r e s of duration 100 s shows that 



180 

there i s a flash phase l a s t i n g 1 s during which much of the 

hard X-ray emission i s occurring. The t h e o r e t i c a l work 

suggests that a non-thermal electron population may be 

responsible f o r hard X-ray emission during t h i s i n i t i a l short 

flash-phase of the ov e r a l l f l a r e . 

Datlowe et a l (1974) have studied a sample of 123 hard 

solar X-ray bursts using the solar X-ray experiment on the 

OSO-7 s a t e l l i t e . During a t y p i c a l event, the hard X-ray flux 

peaked e a r l i e r and decayed rapidly compared to the soft X-ray 

f l u x . This i s c l e a r l y shown i n Fig. 7 taken from their paper. 

The hard and soft X-ray components of a f l a r e exhibit 

very d i f f e r e n t behaviour. In addition, the OSO-7 data most 

commonly show a steady softening of the spectrum throughout 

the burst. 

These authors f i n d that there i s a detectable time 

difference between the time i n t e r v a l in which the f l a r e energy 

grows and the time i n t e r v a l over which hard X-ray producing 

non-thermal energy input takes place, suggesting that the soft 

(thermal) X-ray emission does not arise from energy input of 

the non-thermal electrons within the hot f l a r e plasma i t s e l f . 

F i n a l l y , for the solar bursts studied, the spectral 

indices ranged from 3.5 to 5.5. 
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F i c j i 7 Hard And S o f t X-Ray Fl u x From A S o l a r F l a r e IFrom 

Datlowe E t A l (1974)) 

10.24 Second Average 

03=30 03=38 03=46 03=54 04=02 04=10 04 = 18 04=26 

. H a r d and soft X - r a y flux from an S N flare at 03:46 U T on January 26,1972. The upper trace 
gives the 5.1-6.6 keV channel o f the soft X- ray detector, and is characteristic o f the thermal X-ray 
flux. The lower trace gives the 20-30 keV channel of the hard X - r a y detector, representative of the 
hard X - r a y flux. Each point represents 10.24 s of data. H a r d X - r a y analysis was carried out from 

3:47:31 to 3:49:24. The background was taken to be the flux from 04:00 to 04:08. 

We s h a l l t h e r e f o r e i n v e s t i g a t e what c o n d i t i o n s are 

necessary i n order t h a t the hard X-rays from the Cyg X-1 

source be i n t e r p r e t e d as a r i s i n g from non-thermal e l e c t r o n 

p o p u l a t i o n s t h a t are maintained i n f l a r e s over some time 

^ftuti<*" A T+W W e a s s u m e t h a t : 

(1) Each f l a r e of t o t a l d u r a t i o n 10"'s has an i n i t i a l 

f l a s h phase of d u r a t i o n ^t^L <10 _ 1 s during which the hard 
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component (>20 kev) of the X-ray emission occurs, l i b e r a t i n g 
hie 

10 ergs of energy in t h i s band. 

(2) The spectral index for the X-ray photons of energy 

>20 kev i s constant from f l a r e to f l a r e . 

Both of these assumptions are crude because conditions at 

diffe r e n t f l a r e s i t e s on the accretion disc are apt to be 

di f f e r e n t . 

We follow the same procedures as used for solar f l a r e 

work as outlined by Korchak (1976). Suppose that at each 

moment i n time, the X-ray spectrum from an emitting region of 

volume V can be described by a power law form 

for photon energies in some range €t s i it*. and where Z 

i s the "spect r a l index". Then assuming a d i f f e r e n t i a l cross-

section appropriate for bremsstrahlung by Coulomb c o l l i s i o n s , 

the instantaneous spectrum for the electrons may be written as 

where Kc may be determined i n terms of KK and the average gas 

density a. in the emitting region, and which includes a factor 

Ra where R i s the distance from the source to the observer ( 

R= 1A.0. For solar f l a r e s ). 
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One must now go one more step and co n s i d e r the r e l a t i o n 

between the e l e c t r o n spectrum i n the e m i t t i n g r e g i o n 

( J |U « / O(E ) and the spectrum of the e l e c t r o n s i n the source 

r e g i o n . These two r e g i o n s need not be the same, and i n s o l a r 

f l a r e s , the a n a l y s i s suggests the source e l e c t r o n s are 

a c c e l e r a t e d i n the lower d e n s i t y r e g i o n s h i g h e r i n the 

atmosphere and move downward i n t o denser r e g i o n s c l o s e r to the 

s t e l l a r s u r f a c e where the emission of X-rays o c c u r s . I f J^eldt 

i s the in s t a n t a n e o u s average spectrum a l r e a d y d i s c u s s e d , and 

j JLE i s the power of the source, then the r e l a t i o n between 

these two i s given by a c o n t i n u i t y equation which under q u a s i -

s t a t i c c o n d i t i o n s may be s o l v e d t o give 

where T C i s the c h a r a c t e r i s t i c time f o r the l o s s of e l e c t r o n s 

due to Coulomb c o l l i s i o n s of the e l e c t r o n s by the ambient gas 

of d e n s i t y n and Te i s the c h a r a c t e r i s t i c time of escape from 

the e m i t t i n g r e g i o n . 

The l i f e t i m e i n the Coulomb c o l l i s i o n s i s gi v e n by 

f S A 

r c = z.x 10 _B s (4.J-0 

where E i s given i n u n i t s of kev while the minimum estimate 

f o r the escape time i s given by f r e e escape, 
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where 1 i s the l i n e a r dimension of the emitting region and v 

i s the electron speed. When % « % , , then the escape time i s 

much smaller than the c o l l i s i o n time and nest of the electrons 

escape without c o l l i d i n g . This case i s the so-called "thin 

target" approximation. Conversely , for Tc <<Te, the c o l l i s i o n 

term dominates and most of the electrons lose t h e i r energy 

through c o l l i s i o n s . This i s the "thick-target" apprcxiaation 

and i s obviously more e f f i c i e n t at producing X-rays. It has 

been noted by Brown (1975) that the thick target case may 

over-estimate the t o t a l number of electrons reguired for the 

X-ray emission by an order of magnitude. Koxchak (1976) notes 

in his analysis that either of these cases are U n i t i n g 

approximations useful only f o r a q u a l i t a t i v e analysis of a 

f l a r e problem. 

Let us f i r s t consider what conditions are required for 
the thick-target approximation. Here 

Taking a t y p i c a l electron energy of 50 kev say, with a 

dimension 1-10 cm for the emitting region, and o a 2 say, we 

find that for the inequality 4.54 to be s a t i s f i e d , the gas 

density i n the thick-target oust be n>>10 cm . With coicnal 

atmospheres of about 10 -10 cm , t h i s could be well 

s a t i s f i e d . 

We r e s t r i c t ourselves to the analysis of the thi c k -
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target case for the moment. As Korchak points out, a lower 

electron energy cut-off E,kev must be introduced i n order to 

estimate the t o t a l number of electrons and the i r t o t a l energy. 

It i s possible to make and order of magnitude error i n the 

theory because i t i s impossible to evaluate E, within the 

context of the theory i t s e l f . 

Nevertheless, introducing the low energy cut-off for the 

electrons E,in the electron power-law spectrum, at a distance 

of 1A.U the t o t a l flux F c of electrons with an energy E^E (and 

t h e i r t o t a l power P for thick-target emission are given by ( 

see Korchak ) 

r a - 0 

P c E - s-x (o 1" $ rcs-\) 

r c s - i ) 

i-5 
K, 

where E, i s given in terms of kev and Kx i s such that K* £' 

has the units cm^s^kev"1 with £ given i n kev. 

To sp e c i a l i z e to Cyg X-1 conditions we f i r s t correct the 

resu l t s 4.55 and 4.56 by factors of (Rc^x-i/B S u« ) where 
g 

R c ^ x - i =2. 5kpc=5. 15x10 A. 0. 

From the data of Dolan et a l i t seems two p o s s i b i l i t i e s 

for the power law X-ray spectrum are possible. 
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(1) There i s no break i n the electron spectrum i n the 

energy band 20-150 kev- In t h i s case, from equations 1.2 and 

1.3 we estimate 
S ~ 2.0 

which gives the value f o r Kx as 

K x * 

Then for thick target bremsstrahlung, we f i n d for Cyg X-1 

f l a r e s 

F p C E>, E.) « ' / . z r x i / ' E,"' (V"> 

p ( E V E, ) - ' ̂ 2 * E l ' *" 

Eguation 4.59 gives the power contained i n the non-

r e l a t i v i s t i c electrons. If we want the entire hard X-ray 

emission per f l a r e (>20kev) of* 10 ergs to arise from these 

non-thermal electrons, we reguire (note that the t o t a l 
id 

emission per f l a r e i s 4x10 ergs) 

so that with a cut-off of E*20 kev; 

which in turn implies that the t o t a l number of electrons 

required i s 

(4.42) 



187 

There i s one d i f f i c u l t y with these r e s u l t s . We have i n 

Chapter 1 made a case for taking 1=10 cm as the size of the 

magnetic fluctuations. We are imagining i n our f l a r e model 

that the f l a r i n g region i s a neutral tube or sheet between two 

adjoining magnetic loops. Now the time for a l i g h t s i g n a l to 

propagate over 10 cm i s 

Hence, case (1) v i o l a t e s causality considerations by an order 

of magnitude. I f eguation 4.56 i s examined, i t i s seen that a 

higher spectral index (^>2) i s favourable for lengthening the 

flash time. This leads us to our second case. 

(2) There i s a break i n the hard part of the X-ray 

spectrum at - 50 kev say. Dolan et a l mention that a t h i r d of 

t h e i r spectra demonstrate the break with spectral indices of 

2.5 or more for the higher energy domain. 

We assume that the hard X-ray emission (E >50 kev say) i s 

the f i r s t r adiation produced i n the source, and that t h i s 

emission has a spectral index of & =3.0 say. As the f l a r e 

continues, the lower energy ( s t i l l hard) X-rays are produced 

but that these have a lower sp e c t r a l index of & =2.0 because 

the power law electron population i s being degraded by inverse 

Compton scattering of cool disc photons. I t i s known that a 

power law electron population of spectral index ^ w i l l give 

r i s e to an X-ray spectral index of ( r 1+1)/2 when Compton 

scattering occurs. 
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Thus, t a k i n g <T =3.0 as the photon index f o r £ >50 kev say 

i n s p e c t r a with an observed break i n the 20-150 kev band, and 

a d j u s t i n g k* by a f a c t o r of 1.3 due to the change i n slope of 

the spectrum (estimated from F i g . 3), we f i n d t h a t using E=20 

kev g i v e s 

Fc » /.o6 * i o * * s-< f«uO 

? = r . 2 r x to € ^ s (M.6*0 

from which using eguation 4.60 we d e r i v e a f l a s h time 

and hence a t o t a l number of e l e c t r o n s per event of 

This f l a s h time s a t i s f i e s c a u s a l i t y c o n s t r a i n t s . 

Now with 5 =3.0, f o r £ >50 kev we assume t h a t we have a 

s i n g l e e l e c t r o n power law i n the range 20-150 kev with 

s p e c t r a l index 

Assuming t h a t X-ray photons i n the 20-50 kev range are 

emitted i n the l a t t e r phases of the f l a s h , one expects the 

e l e c t r o n s i n t h i s energy range to be degraded by i n v e r s e 

Compton s c a t t e r i n g (we support t h i s c l a i m l a t e r ) . Thus, the 
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electrons with spectral index Pe = 2.5 give r i s e to X-ray 

spectra for the 20-50 kev range with a spectral index of 

which i s i n agreement with the low state spectral index of 

1.83i0.06 given by Dolan et a l . 

This model, involving a break i n the X-ray spectrum due 

to the degradation of electrons in the l a t t e r phases, of the 

f l a s h by inverse Compton scattering, delivers a plausible 

picture of the f l a r i n g region. The idea that the spectrum of 

each f l a r e s teadily "softens" during the course of the f l a r e 

seems to correspond with the solar f l a r e r e s u l t s . 

We note that the f l a s h time of 4x10 rs i s much smaller 

than the escape time of 10 s so that a thick-target process 

must be assumed. Hence, the requirement < ^'Tpt.l, gives r i s e to 

(equation 4.52) a lower l i m i t for the gas density of 

n>1.8x10'rcm"3. 

To make further progress we consider two possible extreme 

cases. We have noted that an upper l i m i t on the coronal gas 
%\ -i 

density was n*10 cm p while the lower l i m i t i s established by 
ir 

h*1.8x10 cm"3 so that £ &%Ul\- Hence, we may consider 
IS" _•} i | ^ 

10 cm <n£<10 cm". We consider the conseguences of either 

extreme. 
C) Rex10. £fi" 1 = ̂ TA^L 1" T n e n from 4.66 we reguire a 

zy -j i 
volume of 10 cm or 1*-10 cm dimension of electrons to be 
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swept up in just one f l a r e . This i s c l e a r l y u n r e a l i s t i c since 

i t approaches the r a d i a l extent of the disc i t s e l f . 

(2) -St^iO cm 1 "i" c ~ «°̂ T' L Then i f no reacceleration of 

electrons occurs, one requires a volume of 10 cm or 
1-3 

1-10 cm. This i s s t i l l larqe by an order of maqnitude. 

However, with nc~10 cm" as the electron density, we see that 

the electrons are being accelerated and halted i n the same 

s p a t i a l region. Onder these conditions. Brown (1975) has 
43 

suggested that the t o t a l number of electrons (Nt*10 ) could be 

reduced i f electrons were reaccelerated. The number of 

electrons required would then be reduced by a factor depending 

on how freguently electrons , already having undergone 

c o l l i s i o n , could be reaccelerated. I f t h i s mechanism worked at 

high e f f i c i e n c y , then since fe./^f ^ * 10~r, we would suppose 
r 

that each electron would be reaccelerated a maximum of 10 
times. The t o t a l number of electrons now required i s reduced 

18 -y n - 3 to N =10 and with n,=10 cm , a volume of 10 cm i s involved 
in each f l a s h . An emission region consisting of a neutral tube 

of length 10 cm then would have a radius of ~10 cm while a 

neutral sheet of area 10 cm would have a thickness of 10 

cm,. 

We conclude that the electrons are most l i k e l y being 

accelerated i n the the same region where emission occurs, and 

that with the electron density the same as the gas density of 

n=10 cm , an adequate f i t to the date can be entertained. 
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We notice that the 10 cm" 3coronal density i s to occur i n 

the region 100-150 r^ where we have already shown that the most 

powerful f l a r e s should originate. 

This model fo r the spectrum should be regarded as crude 

because no physics of the acceleration mechanism has been 

produced. However, no comprehensive treatment as yet exi s t s 

for solar f l a r e mechanisms. I t i s interesting to note however 

that a c o l l i s i o n time 10 s for n ~ 10 cm gives r i s e to a 

mean free path for electrons of 100kev energies say of 

A ~ 10cm. Now, as noted i n Chapter 1, scaling arguments 

suggest that one may have e l e c t r i c f i e l d s equivalent to 

10 volts/cm so that over a mean free path of 10 cm, a p a r t i c l e 
3 

could aquire ** 10 kev energies- With a 100kev electron as our 

starting point, t h i s suggests that i f the e l e c t r i c f i e l d s are 

d i r e c t l y involved i n some manner, then the acceleration 

mechanism operates at about a 10% e f f i c i e n c y f o r converting 

magnetic energy into p a r t i c l e acceleration. These 

considerations suggest that the combination of a high ambient 

gas density i n the f l a r i n g region ( compare to solar f l a r e s 

where n~10 cm i n the f l a r i n g region) together with an o v e r a l l 

e f f i c i e n c y of <10% for pumping magnetic energy into p a r t i c l e 

acceleration , i s responsible for l i m i t i n g the bulk of the 

electrons to <150 kev energies. This explains the observed 

high energy cut-off at 150 kev. 

Our model for the spectrum i s then that randomly 
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occurring f l a r e s of 10/s l a s t i n g for 0.1s each emit t o t a l 
3t> 

energies of order 10 ergs. The dominant f l a r e s occur i n a 

region 100-150 r^. Each such f l a r e i s characterized by a double 

power law X-ray spectrum with 2.0 for the 20-50 kev range, 

and %" 3.0 for the 50-150 kev range. The hard X-ray emission 

(>20kev) of t o t a l energy 10 ergs per f l a r e i s modelled as 

a r i s i n g in a very rapid f l a s h phase of duration 4x10 rs 

during which the electron spectrum i s taken to be a power law 

dependence, so that non-thermal bremsstrahlung i s the dominant 

emission mechanism. The explanation of the double power law X-

ray spectrum i s that the electron population i s progressively 

degraded by inverse Compton scattering of cool disc photons. 

In the f i n a l stages, thermal emission of soft photons i s the 

predominant process. Such f l a r e s must have electron densities 

n t-10 electrons cm for the thick target case. 

The soft X-ray f l u x ( E<20 kev ) arises both from soft 

photons emitted by the f l a r e after the flash phase, as well as 

the soft photon flux from the accretion disc i t s e l f . 

Let us investigate the the e f f i c i e n c y of the inverse 

Compton process by which soft photons from the accretion disc 

scatter o f f the non-thermal electrons i n the f l a s h phase. Now 

the c h a r a c t e r i s t i c time f o r Compton cooling i s of order ( 

Tucker ( 1975) ) 
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where V?i£ i s the energy d e n s i t y of the photon f i e l d and If i s 

the Lorentz f a c t o r f o r the e l e c t r o n s . From Shakura and 

Sunyaev, the photon energy d e n s i t y i n the r a d i a t i o n dominated 

i n n e r zone of the standard d i s c model i s given by 

which, when s u b s t i t u t e d i n t o eguation 4.67, using M-0.19 and 

m=10 g i v e s 

which s p e c i a l i z i n g t o the r e g i o n r^~100 g i v e s 

I , 3. O-if > to % 

y 

For m i l d l y r e l a t i v i s t i c e l e c t r o n s ( X - 3 ) , the Compton 

c o o l i n g time i s of order of the f l a s h d u r a t i o n T ^ * 4 / - 10 s. We 

note t h a t the r a d i a t i o n zone photon energy d e n s i t y i s 

independent of m so t h a t v a r i a t i o n s i n m w i l l not e f f e c t t h i s 

r e s u l t . We see t h a t Compton s c a t t e r i n g becomes dominant 

towards the end of the f l a s h phase. 

The photon energy d e n s i t y from the middle zone of the 

d i s c depends on m however. I t i s s m a l l e r than the energy 

d e n s i t y of the r a d i a t i o n dominated zone so t h a t c o o l photons 

from t h i s p a r t of the d i s c would not be expected to a l t e r the 

Compton time s i g n i f i c a n t l y . However, v a r i a t i o n s i n m w i l l 

e f f e c t t h e o v e r a l l s o f t X-ray output of the source. T h i s 
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exp l a i n s the o b s e r v a t i o n t h a t the hard X-ray c h a r a c t e r i s t i c s 

are v i r t u a l l y u n a l t e r e d i n e i t h e r high or low s t a t e s , whereas 

the s o f t photon f l u x c e r t a i n l y does change between these two 

s t a t e s . 

F i n a l l y , we c o n s i d e r the m i l l i s e c o n d b u r s t s . I f these 

b u r s t s are a t a l l r e a l , we suggest t h a t they may be some s o r t 

of "naked" f l a s h phase of a f l a r e not accompanied by s o f t 

photon emission (see Canizares (1976)). We emphasize t h a t 

r a p i d f l a s h times are r e q u i r e d f o r the model we have 

d i s c u s s e d . These f l a r e s occur w e l l away from the event 

h o r i z o n . Rapid f l a s h phenomena may very w e l l e x p l a i n any 

v a r i a t i o n s at m i l l i s e c o n d and s u b m i l l i s e c o n d time s c a l e s so 

th a t o b s e r v a t i o n s of such v a r i a t i o n s would not c o n s t i t u t e a 

t e s t of whether a r o t a t i n q or n o n - r o t a t i n q b l a c k - hole e x i s t s 

at the c e n t r e of an a c c r e t i o n d i s c . 
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Conclusions 

The analysis of magnetohydrodynamics in a turbulent 

accretion disc using the methods of Mean F i e l d Electrodynamics 

shows that magnetic fluctuations and mean magnetic f i e l d s are 

important on di f f e r e n t time and length scales. 

In Chapter 2, the analysis shows that i f small 

co r r e l a t i o n time scales < t K are considered, then intense 

fluctuations of the magnetic f i e l d are possible on short 

l * « z 0 length scales. On such time scales, the accretion disc 

cannot be stationary. I f the mean properties of the 

fluctuations are considered over longer time and length 

scales, we fi n d that because energy i s being drained out of 

the turbulent fluctuations to support the fluc t u a t i n g and mean 

magnetic f i e l d s , that buoyancy forces become more prominant a 

factor i n damping out the turbulence, especially i n the 

surface regions of the disc. The analysis of the v e l o c i t y , 

temperature, and magnetic fluctuations shows that the mean 

magnetic f i e l d can determine how large such fluctuations w i l l 

be. This guestion was furthur studied in Chapters 3 and 4. 

In Chapter 3, we show that assuming a steady mean f i e l d , 

that matching a disc mean f i e l d to an external vacuum f i e l d 

reulted i n an estimate for the turbulent Mach number of 

Mt~ 0.19. I f an underlying standard disc model i s assumed, 

this would reduce to two the t o t a l number of parameters 
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required to f i t the observations (assuming steady state). The 

t o r o i d a l f i e l d dominates i n the disc and the favoured 

configuration i s a mode of "dipole symmetry" for B̂ , (and 

conseguently "quadropole symmetry" for B 2 ) . The vacuum f i e l d 

i s expected to be very weak i n comparison to the disc f i e l d i n 

the l i m i t of small Mach numbers. These results are a l l 

obtained by analytic means in the low Mach number l i m i t . The 

central r e s u l t of t h i s Chapter 3 i s the demonstration that a 

turbulent dynamo i s possible i n a "standard" cool accretion 

disc model. The "dipole symmetry" mode for B^ i s aqain the 

favoured configuration since for wavelengths larger than a 

c r i t i c a l wavelength (dependent on Mt) t h i s mode has the 

fastest growth rate. The time scales for t h i s growth are of 

order 100tk. in the l i m i t that small deviations from 

equilibrium are considered. 

The roles of the mean and fluctuatinq maqnetic f i e l d s as 

f a r as accretion d i s c structure and observational consequences 

are found to be quite d i f f e r e n t , even thouqh the two f i e l d s 

are i n t e r r e l a t e d as examined i n Chapter 2. In Chapter 4, i t 

was shown that on lonq length and time scales, that Maxwell 

stresses due to the mean f i e l d dominate those a r i s i n g from the 

f l u c t u a t i n g f i e l d s , and that they provide a stress Wr* of the 

same form as assumed for the analysis of the "standard " 

accretion disc model. On intermediate time scales however, the 

magnetic fluctuations contribute a stress which acts to 
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s t a b i l i z e the accretion disc to "clumping" i n the inner 

radiation dominated zone. Conseguently, such standard models 

are consistant and the hard X-ray emission from the source 

must aris e from either a hot corona or intense solar-type 

f l a r e s . Chapters 2 and 4 show that magnetic fluctuations are 

s u f f i c i e n t l y strong to account for these phenomena and provide 

a physical basis for the shot noise model. 

The interpretation of the hard X-ray component as a r i s i n g 

from the "flash-phases" of solar type f l a r e s on the accretion 

disc shows that rapid flash times />t û*L4x.10~r s are expected. 

This means that sub-millisecond bursting of the Cyg X-1 source 

need have nothing to do with processes occurring near a black 

hole event horizon. Such rapid variations, i f found, cannot 

r e l i a b l y be used to discriminate between either a rotating or 

non-rotating black hole. 

Many features of our analysis may be extended to other 

astrophysical phenomena. Immediate application to the g a l a c t i c 

dynamo problem i s possible. The idea that active galaxies may 

be powered by accretion discs around central massive black 

holes can be further tested by applying these methods to the 

system and determining the role of magnetic f i e l d s i n such 

energy releasing processes. Double radio sources seem to 

reguire twin opposed beams of r e l a t i v i s t i c electrons to power 

them. Magnetic f i e l d s generated by accretion discs may have 

long range structure capable of collimating such beams. 
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Intense e l e c t r i c f i e l d s generated i n f l a r e events on an 

a c c r e t i o n d i s c may provide b u r s t s of extremely r e l a t i v i s t i c 

e l e c t r o n s. 

In g e n e r a l , we may s t a t e t h a t because strong mean 

magnetic f i e l d s can be generated by dynamo a c t i o n i n a 

t u r b u l e n t a c c r e t i o n d i s c , and t h a t i n t e n s e short l i v e d 

magnetic f l u c t u a t i o n s orders of magnitude above the mean f i e l d 

l e v e l can occur, that magnetic processes form a c r u c i a l 

element i n any models f o r the Cyg X-1 source. 
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Appendix A 

Mean f i e l d Electrodynamics; 

A. 1 Basic Ideas 

We refer the reader to the excellent reviews by Moffat 

(1978, Chapter 7) and Roberts (1971). Introducing the 

decomposition of the magnetic and velocity f i e l d s 

u ; U + u ; u = o 

the mean and fluctuating parts of the induction eguation are 

H 

3f [ 

where a mean electromotive force 

i s seen to arise due to the co r r e l a t i o n of the flu c t u a t i n g 

velocity and magnetic f i e l d s and 

It i s the objective of mean f i e l d electrodynamics to 

express £ as a l i n e a r functional of B. Then A.2 i s a closed 
i 

eguation for B which may be studied in i s o l a t i o n from b. 
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We f i r s t note that the computation of £ i s simplest when 

known as the f i r s t order smoothing approximation. I f 1«. i s the 

cor r e l a t i o n length of the turbulent fluctuations and'fc the 

corre l a t i o n time, t h i s term i s small when as an example, 

* z • s r . . fu « i O - o 

We consider the conseguences of A.7 more in section A.2. 
i 

With G~0 , and writing equation A.3 as 

+ (u.T7t ' - t ' . VU ) - ^ \7*t' = T 7 X ( U ' * B ) 

we see that the flu c t u a t i n g f i e l d b i s being created from B by 

u. Hence the correlation between u and b reduces to 

determining the co r r e l a t i o n tensor of u. Solving A.8 i n terms 

of a Green's function G- (x,t;x,t) ( the boundaries should 

have n e g l i g i b l e e f f e c t i n evaluating £ since correlations 

over l«are the only important considerations ) 
i * 

4 
f f 

Using A.9, the d e f i n i t i o n A.4 then gives 
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where the c o r r e l a t i o n tensor (x,t;x,t) i s 

CS.*; = «ltx^) < * ' , 0 (ft.,,) 

When the ensemble average i n eguation A. 11 depends on x 

but not t , the t u r b u l e n c e i s " s t a t i s t i c a l l y steady " and i n 

t h i s case 

Q^x c*,*; « Q^i t-t' j 

I f the ensemble average does not depend on x, the t u r b u l e n c e 

i s " homogeneous " so t h a t f o r a steady, homogeneous 

tu r b u l e n c e 

£«i 6.*.') « Q„x (*-*'; +-4') 

In a steady t u r b u l e n c e , the ensemble average may be r e p l a c e d 

by a time average over any one member of the ensemble, and f o r 

a homogeneous t u r b u l e n c e , the ensemble average may be r e p l a c e d 

by a s p a t i a l average. 

I f the s t a t i s t i c a l p r o p e r t i e s of the t u r b u l e n c e are 

independent of the o r i e n t a t i o n of the c o - o r d i n a t e frame (at a 

point) the t u r b u l e n c e i s 11 i s o t r o p i c " and i f the p r o p e r t i e s 

are independent of whether the frame i s r i g h t or l e f t handed 

i t i s " m i r r o r symmetric " 

Returning t o eguation A.10 we see t h a t i f we expand 

B(x',t) i n a power s e r i e s about x, t h a t i s & ~ B e * ) + (x -* ' J .V§u) then 

because Q ̂ { vanishes with I x - V | the dominant terms 

should a r i s e from the lowest d e r i v a t i v e s . Hence, the g e n e r a l 

form f o r <E; t o f i r s t order i n the s p a t i a l d e r i v a t i v e s i s 

- * : J B j • k]k >3i (*•«*) 
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where the tensors ^CJ and k'j-i. depend on U and on the 

s t a t i s t i c a l properties of u but not on B. 

The exact s p e c i f i c a t i o n of acj and b : j - 4 for a given case 

involves i n t r i c a t e c a l c u l a t i o n but very general conclusions 

can be drawn from the form of eguation A. 13. Since £. i s a 

polar vector and B i s an a x i a l vector, we require that both 

a ; j and bcjiL be a x i a l . 

As an example, i f U=0 and the turbulence i s steady, 

homoqeneous, and i s o t r o p i c ; then the only i s o t r o p i c skew 

tensors of deqree two and three are 

where i s a pseudoscalar ( dot product of a polar and an 

ax i a l vector ) and n T i s a scalar. 

In t h i s case A.13 becomes 

i - oc B ^B, (A',S^ 

. > 0 L ' S L a ^ : I - a ;« ( I +• •< B) fr-'O 

G~<« 5 ('Vnr) [ i l . 
In a mirror symmetric turbulence a l l associated 

pseudoscalars must vanish. Hence, i f we have a non-mirror 

symmetric turbulence, an electromotive force proportional to B 

arises ( known as the 1 * - e f f e c t ' ) which i s a type of term 

capable of the reqeneration of the mean f i e l d . 
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The term - "\T 7 x § makes the t o t a l d i f f u s i v i t y appearing 

i n the mean i n d u c t i o n equation egual t o ^ =M tt ^ . Mean F i e l d 

E l ectrodynamics t h e r e f o r e d e l i v e r s a t u r b u l e n t d i f f u s i v i t y f o r 

the mean f i e l d B which i n the high c o n d u c t i v i t y l i m i t 

1* Tv \M 5 > I dominates the ambient d i f f u s i v i t y . In t h i s l i m i t 

t h e r e f o r e , the mean f i e l d i n a t u r b u l e n t conductor cannot be 

imagined to be " f r o z e n - i n " to the plasma. 

The important q u e s t i o n i s what causes a l a c k of m i r r o r 

symmetry. The s m a l l e r the s i z e of some t u r b u l e n t eddy, the 

q r e a t e r the tendency towards i s o t r o p y . Hence, as f a r as the 

s m a l l eddies are concerned, we can imaqine t h a t as a f i r s t 

approximation, the t u r b u l e n c e i s homoqeneous, i s o t r o p i c , and 

mirror-symmetric. D e v i a t i o n s from t h i s s t a t e w i l l be s m a l l and 

w i l l depend on X ; the d i r e c t i o n of a n i s o t r o p y . A n i s o t r o p y 

e x i s t s i f we have a l o c a l r o t a t i o n ~[l or the presence of a 

d e n s i t y q r a d i e n t g i n the problem. Summing up, we imagine t h a t 

our t u r b u l e n t f l u c t u a t i o n s can be w r i t t e n 

y - u 0 + y, 
r ' 

where U o i s an i s o t r o p i c , homogeneous, and mirror-symmetric 

t u r b u l e n c e with s m a l l d e v i a t i o n s u, depending on the presence 

of some a n i s o t r o p y i n the problem. For the presence of both 

l o c a l r o t a t i o n and a d e n s i t y g r a d i e n t , one may show t h a t 

o< =pc ) (which i s a pseudoscalar) . The s m a l l , non-mirror 

symmetric c o n t r i b u t i o n u, i s r e s p o n s i b l e f o r g e n e r a t i n g the <* -

e f f e c t . 
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A.2 The F i r s t Order Smoothing Approximation 

Krause and Roberts (1976) showed t h a t i n the f i r s t order 

smoothing approximation (eguation A.6, s a t i s f i e d by the 

i n e g u a l i t y A.7 as an example), i t i s s t i l l p o s s i b l e to have 

l a r g e magnetic f l u c t u a t i o n s compared t o the mean magnetic 

f i e l d amplitude i f one i s i n the high c o n d u c t i v i t y l i m i t 

where u l i s the mean squared v e l o c i t y f l u c t u a t i o n and X* i s a 

time s c a l e t y p i c a l of the f l u c t u a t i o n b. The reason f o r t h i s 

r e s u l t i s t h a t i n computinq 2 , i t i s o n l y the pa r t hcav.r , the 

part o f b t h a t i s c o r r e l a t e d with u' t h a t i s important and t h i s 

p a r t i s of order 

I g n o r i n g the e f f e c t s of the mean flow; they s o l v e 

equation A.3 by a Green's f u n c t i o n technique o b t a i n i n q (see 

equations 6 and 10 i n t h e i r paper ) 

r 

(A -2°) 
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where the velocity c o r r e l a t i o n Q(r' ) i s defined by A. 11 and 

the Green's function G i s 

G(r) = ( w ^ r ) ^ « r(-i7<vr) r"-2'J 

appropriate f o r the d i f f u s i o n operator. 

For equation A.19; i n the high conductivity l i m i t 

&<* /ru, * *i so that for Q < \ < 4 u . / ^ , the Green's function i s 

b a s i c a l l y a ^ function. Equation A.19 can then be 

approximated as 

which shows that the f i r s t order smoothing assumption i s 

giving the r e s u l t A.18. 

In t h i s high conductivity l i m i t however, eguation A.20 

for the magnitude of the mean squared magnetic fluctuations 

shows that because u^c-i) t.' c-t + r) i s correlated for a time 
J 

I ~ $ » T'U , then the estimate of A. 20 i s 

T7 *• air- & * i r » ^ 

n. \ 
I t i s t h i s r e s u l t which i s c r u c i a l to the theory we 

investigate i n the text. 

A_. 3 For malism For Computing Various Correlations Arising. In 

Mean F i e l d Electrodynamics 

The approach we employ to calculate * , <*iT etc was 
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developed by Roberts and Soward (1975). Here we summarize some 

of the r e s u l t s t h a t they worked out and which we s h a l l need 

f o r our own c a l c u l a t i o n s . I n t r o d u c i n g the concept of a l a r g e 

s c a l e on which the mean v e l o c i t y , magnetic e t c f i e l d s vary and 

a m i c r o s c a l e f o r a d e s c r i p t i o n of the tu r b u l e n c e , i t i s 

convenient t o i n t r o d u c e mean and r e l a t i v e c o - o r d i n a t e s f o r two 

po i n t s x, and x^as 

X a i ( < , . * , ) . « i ( j , . x x ) ; T « J f t . * * . ) . f . - ^ - t , [A-**) 

i n terms of which the two-point, two-time c o r r e l a t i o n 

f u n c t i o n s such as 

$ ; j C*> . t, • ^ ) -- u!(K, ) U- U t , t j 

may be expressed as 

^ j ^ . T ; ,,-t) , « l ( X ^ , T . ^ J uj- (K-J* , T-i-tr) C*-IS) 

The t u r b u l e n c e i s steady i f 

and l o c a l l y mirror symmetric i f 

(-1.1 x.*) - c*< T- + ) 

The method used by these authors r e l y s on a double 

F o u r i e r t r a n s f o r m a t i o n and expansion method whereby the 

F o u r i e r t r a n s f o r m with r e s p e c t to x of A.26 i s 
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and the Fourier transform for the mean variables X, T 

The idea i s to regard variations of mean quantities as 

ne q l i q i b l e over scales l^and times which characterize the 

turbulence- Hence, the induction equation for the flu c t u a t i o n 

i s f i r s t Fourier transformed, the various correlations 

computed i n K ~JI ; i_ - w space, and then an expansion of the 

re s u l t s carried out i n powers of K ( that i s a power series i n 

larqe scale derivative ^1M ) . The r e s u l t s are then 

transformed back so that the various c o e f f i c i e n t s i n the 

problem w i l l be in t e g r a l s over the microscale spectrum i , and 

u> . The idea of separation of scales i s obviously central to 

the whole process. 

As an example, the c a l c u l a t i o n of L proceeds by taking 

the Fourier transform of equation A.3 to find 

^ (4-zl) 

where i s defined as 

so that i n the hiqh conductivity l i m i t 

which, as t —* ̂ > goes to 
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We may now compute &i using equation A.26 as 

This r e s u l t i s expanded i n power of K and converted into 

X-space. 

In the case of homogeneous turbulence 

so that 

where A = 4 +j. K . inverting t h i s r e s u l t with respect to K and 

integrating over a l l and ^ then gives 

where 

^ , u > ) &(-u.) JLJLJL^ ^-^) 

We d i g r e s s s l i g h t l y t o p o i n t o u t t h a t f o r i s o t r o p i c 
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turbulence, the c o r r e l a t i o n tensor w i l l contain a mirror 

symmetric part and and a non^mirror symmetric part. To lowest 

order in the form of i s 

(4 •%(.) 

J 2C J 

where $ i s the Fourier transform of «'.u' and i s the 

spectrum of the turbulent i n t e n s i t y while H i s the h e l i c i t y 

spectrum, which i s the Fourier transform of tfx <*' . m 

addition, the tensor P- (k) i s defined as 

ft: (4 ) . Sii ~ *±*i {AZn) 

Substitution of A.36 i n t o the expressions A.35 and A.34 

results i n the reduction of A.33 to 

where the positive d e f i n i t e turbulent d i f f u s i v i t y «fT i s 

3 J 

and the parameter <* ( dimensions of velocity ) i s related to 

the h e l i c i t y 

(equations A.38 - A.40 are re s u l t s 3.51 - 3.53 i n the Roberts 
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and Soward paper). 

We s h a l l require equations A.26 and A.33 for the analysis 

in Appendix B. We must specify how the h e l i c i t y i s to arise i n 

our shear flow, and include the e f f e c t s of density gradients 

in the problem. 

We f i r s t write down the effects of l o c a l rotation i n 

generating h e l i c i t y . For us the l o c a l rotation comes about 

through the antisymmetric part of the l o c a l s t r a i n . Consider 

f i r s t the e f f e c t of rotation. In the rotating frame, the 

velocity fluctuation obeys 

H 

Suppose that the turbulence i s imagined to be 

predominantly i s o t r o p i c and mirror symmetric ( uj ) with the 

rotation 2 JL» introducing a small deviation u| to t h i s state. 

In the l i m i t u0 f u / " t the i n e r t i a l term i n A. 41 i s 

ignorable and v j I i s well s a t i s f i e d so that 

£ ^ , - ry f' _ zJL* x uj ("^ 

Fourier transforming A.42, and finding the c o r r e l a t i o n 

* {>) ^ * i« 

J ~ z J * 



215 

one may show th a t expansion t o 0(K) and i n v e r s e t r a n s f o r m i n g 

t h a t 

where the h e l i c i t y i s 

• 00 

We n o t i c e t h a t the v o r t i c i t y of the mean flow i s 

2 JL* = SL . 

Roberts and Soward show th a t i f i n s t e a d of pure r o t a t i o n , 

we have a mean flow with a non-zero s t r a i n on the long s c a l e s , 

then the antisymmetric p a r t o f t h i s s t r a i n t e n s o r 

Jl* -- 1 Jl = j. Vx U 
— 2. - Z 

w i l l generate h e l i c i t y H a s given by e x a c t l y 1/2 the r e s u l t 

found i n A.44. T h i s i s p h y s i c a l l y s e n s i b l e because the 

v o r t i c i t y "P* ̂  of the mean flow i s a c t i n g as a l o c a l 

r o t a t i o n . Thus 

F i n a l l y , these authors note that the e f f e c t s of 

c o m p r e s s i b i l i t y may be taken i n t o account by r e p l a c i n g a l l 

g r a d i e n t s 3 $ / D Xs of $ W by 
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I f we do not include derivatives of * as important, 

then the mirror symmetric part of the i s o t r o p i c turbulence i s 

to f i r s t order i n the density gradient 

( see eguation 3.38 of Roberts and Soward ) while the h e l i c i t y 

A. 44 we w i l l use may be corrected by using A.46 and ignoring 

the gradient of v-

We close by noting with these authors that neglect of the 

effects of l o c a l rotation ( to zeroth order ) on the 

turbulence requires 

Also in the analysis of the v e l o c i t y spectrum, the 

requirement 

i s used; a behaviour which has usually been accepted i n the 

dynamical theory of turbulence. 
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Appendix B 

The Calculation Of Correlations Between Velocity And Magnetic 

F i e l d Fluctuations 

B. 1 The Calculation Of £ = w'xU1 

We assume i n t h i s c alculation that the h e l i c i t y i s 

generated by the antisymmetric part of the mean s t r a i n 

i (7xU - We s h a l l include the e f f e c t of density 
z — 

gradients ^ \J (= and w i l l assume that for our purposes the 

turbulence i s homogenous over the scales that the density 

varies. Hence, we ignore gradients of the turbulent i n t e n s i t y 

vi . 

With = tfxU and with the assumptions above, we have to 

f i r s t order i n ( • " ' ( s e e eguations A. 36 and A. 47 ) 

/A 

with the h e l i c i t y ( see equation A.44) 

v. ^Xi J 

Substituting B.2 into B.1, we use eguation A.33 for the 
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c a l c u l a t i o n of Ei-- u'*|,'. assuming that we may approximate the 

tu r b u l e n c e as homogeneous to z e r o t h o r d e r . We s h a l l keep terms 

up t o f i r s t order i n . Noting t h a t only when an even 

number o f d i r e c t i o n c o s i n e s 4^ appear i n the i n t e g r a t i o n over 

^ do we get a non-zero r e s u l t , we f i n d 

Performing the i n t e g r a t i o n over X using 

«H 4 

with the i d e n t i t i e s 

J 5 J 



e q u a t i o n B .3 r e d u c e s t o 

r 
i i ^xi 3B,~ + 

z. 

w h e r e t h e i n t e q r a l s l m a r e 

I , s So So r r 

3 
f A*AC-^) 6*c~>)~] $®ciu) 
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a n d w h e r e we h a v e e m p l o y e d t h e i d e n t i t y 

Summing o v e r t h e i n d i c e s , t h e t h i r d t e r m i n B.7 v a n i s h e s 

l e a v i n g 

I = . r, VxB + TV (VBS) J2t + 

We now t u r n t o t h e s i m p l i f i c a t i o n o f t h e i n t e g r a l s l f , 

I, , and Iq. O s i n g t h e r e l a t i o n A.27 f o r A(<*>) , a n d t a k i n g t h e 

h i g h c o n d u c t i v i t y l i m i t s one o b t a i n s 

•t -# °° 

^ -£,*c„) \ -- 1 - 1 i P i Sc^o) - z $U^) - Sc-*>)] 

T a k i n g t h e r e a l p a r t s we f i n d 

o 

If J I T~ 

1 , is- ± 1 * £ j* (s.n) 
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Assuming t h a t ? ^ I ^ ) - f '(£.») <^zas UJ-»0, we have roughly 

For the t o r o i d a l v e l o c i t y f i e l d 

we have 

1 -. ( ^ o j j ; jB e , l/ K {13.20) 

so t h a t eguation B. 13 becomes 

| - - * l T x & + if f (Vs 2 ) JZj + 

Eguations B.21 show t h a t a term of the form 5 

appears i n the e x p r e s s i o n f o r 2 . Hence, d e f i n i n g 

(8-22) 
g i v e s 

I  H JL* 4 it J 

E x p r e s s i n g B.23 i n c y l i n d r i c a l p o l a r c o - o r d i n a t e s , with 
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the assumption of axisymmetry and defining the r a t i o 

gives r i s e to eguations 3.10 to 3.12 i n Chapter 3. 

33,2 The Calculation Of u'x(Uxt') = f 

Beginning with formula A.26 for b and noting that ^j2-»1;^x^ 

in the Fourier domain we f i n d 

which, with the assumed homogeneity ( to zeroth order ), of 

the turbulence leads to ( see steps leading to A.33 ) 

Integrating over 4 and u> and inverting with respect to 

, we have i n analogy with eguation B .7 

J J 

( 8 - " ) 
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I f we now substitute eguations B.1 and 2 for <£ % into 

B.27 and keep terms to f i r s t order in <=V<2XS , we find that the 

l a s t two terms i n B.27 make no contribution. The f i r s t term i n 

B.27 contains the product f so integration over ot-t' only 

gives non-zero results for those parts of <£ «.i containing an 

even number of factors . Hence, using i d e n t i t y B. 12 twice, 

we f i n d 

AJL <*- A' * ; J L # i + U i 

= - EK cU ^ i ~ X; J L *? ( °U w) 

where we note that 

Integrating B.28 over ° U and using B.5 then gives 

7*7^*77 ) - - f j i ^ d ^ e i i B 

We calculate the quantity £. j 

i d e n t i t y 

A . CA. 

from Chapter 2 usinq the 

so that 

4M 
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where we have used the r e s u l t B.29. E v i d e n t l y £_'. j i s 

p o s i t i v e which shows t h a t the i n t e r p r e t a t i o n of t h i s term as a 

l o s s term f o r u* and a source term f o r b* i s v a l i d . 

Turning t o the e s t i m a t i o n of 7 we have using B.23 

U n l i k e the C j term, the magnitude of £• T depends on the 

comparison of the <x term with r e p e c t to e f f e c t s due t o the 

d i s s i p a t i o n *\x . Using equation B.22 we have 

oc * 

so t h a t 

Now, f o r our sma l l c o r r e l a t i o n time l i m i t , we set T u < t K , 

so t h a t the crude order of maqnitude estimate B. 33 becomes 
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Appendix C 

The I n t e g r a l Representation For 0(z) -

C.I The S o l u t i o n Of Equation 3^53 For 0(z) 

Given the equation ^Ct)--o , the r e p r e s e n t a t i o n 

f -- f K(e.t) ATti) di (c.i) 

r e s u l t s i n 

Choice of an a p p r o p r i a t e k e r n e l l<cz,t) such that 

where ^-t i s some new d i f f e r e n t i a l o p erator i n t , q i v e s 

* Jtit(Kc*.i)) <r(i) dt - o 

I n t e q r a t i o n by par t s t r a n s f e r s the d i f f e r e n t i a l 

o p e r a t i o n s from to nit) r e s u l t i n g i n 

(cs) 
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w h e r e i s t h e a d j o i n t o p e r a t o r t o a n d '0 i s t h e 

s o - c a l l e d b i l i n e a r c o n c o m i t a n t . O b v i o u s l y i f s a t i s f i e s 

M 4 ( \r) = o 

a n d t h e p a t h o f i n t e g r a t i o n i s c h o s e n s u c h t h a t P^^) v a n i s h e s 

a t t h e e n d p o i n t s , t h e n t h e d i f f e r e n t i a l e g u a t i o n i s 

s a t i s f i e d . 

I t may r e a d i l y b e s h o w n t h a t i f 

M 

t h e n 

Mf(l-) ^ - ̂  (ocu-) + p V ( C l ) 

a n d 
PCtr l<) cx ir fC 

T h e r e a d e r may r e f e r t o M o r s e a n d F e s h b a c h ( 1 9 5 3 ) f o r m o r e 

d e t a i l . 

We now a p p l y t h i s t o t h e s o l u t i o n o f e q u a t i o n 3 . 5 3 . T h e 

c h o i c e o f t h e L a p l a c e k e r n e l 

i s m o t i v a t e d b y t h e o b s e r v a t i o n t h a t 

J-fr 

o*fc 
(cf) 
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so that use of t h i s kernel w i l l require only a f i r s t order 

d i f f e r e n t i a l equation i n t to be solved to f i n d AT-U) . Thus 

with 

2 K / - t A + ( K Z - l ) 

we fi n d 

It 
(c . , 0 

Employing the r e l a t i o n C. 9 then gives 

where 

Comparing C.12 with C.6 we see that with 

ecCi) s -t 

we f i n d the equation for AX as 

D i f f e r e n t i a t i n q we have 

*y - o 

Jy f f f 3 _ 2 K t + i £ z 1 
W - O 
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whose s o l u t i o n i s 

AT = 

Hence, w i t h t h e L a p l a c e k e r n e l and w- g i v e n by C.16, 

0 (z) t a k e s t h e form 

where t h e c o n t o u r s C a r e chosen such t h a t v a n i s h e s a t 

t h e e n d - p o i n t s o f i n t e g r a t i o n . 

C^2 R e l a t i o n s Between S o l u t i o n s U(z) 

We b e g i n w i t h t h e i n t e g r a l r e l a t i o n s d e f i n e d by e g u a t i o n 

3 . 5 8 f o r •< and z r e a l w i t h •< <1, and f o r t h e c o n t o u r s 

s k e t c h e d i n F i g . G 

We deform the v a r i o u s c o n t o u r s so t h a t they run a l o n g t h e 

c o - o r d i n a t e axes of t h e r e l e v a n t quadrant of t h e complex-t 

p l a n e . As an example, 0,(z) i s 

e x p e*. j> ( - t % 4- let 1 *-* t ) 

Let us d e f i n e t h e i n t e q r a l 

c i t 
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Using t h i s d e f i n i t i o n , and changing v a r i a b l e s ; i n the f i r s t 

i n t e g r a l of C. 19 as t-»e lTwe f i n d t h a t U(z) can be w r i t t e n as 

U,CK,S) 1 ( M ) - e z Tt-*, it) (cn) 

S i m i l a r deformations of the other contours d e f i n i n g the 

s o l u t i o n s Uz , 0 3 , ty, lead s to 

Summing the f o u r s o l t u i o n s given by C.21 t o C.24 g i v e s 

2. «,iK,J) , (e - . ) e I K ^ ? ) (c.zr) 

T h i s sum i s non-zero f o r rm where m i s any i n t e g e r . In t h i s 

case, our f o u r s o l u t i o n s are l i n e a r l y independent. The 

f a c t o r L e - » j i s expected to a r i s e i n the case where we 

eval u a t e a f u n c t i o n on a contour t h a t runs around a branch c u t 

i n the complex plane. 
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Comparing the representation C.21 f o r U, with C. 23 for 0 3 

we see that 

Similar comparison of C.27 with C.24 shows that 

Then from C.26, rearrangement gives 

and from C.27 

U A < / i ) = e U , ^ , fez*) 

U 4 Cic, *) = e ( c .d) 

The set of relations C.26 to C.29 gives the r e l a t i o n 

between solutions f o r z>0 and z<0, and comprise the set of 

symmetry relations mentioned i n the text. 

I t may also be shown that (P.H. Roberts, pr i v a t e communication) 

a r e s u l t which follows from C.21 and C.22. We also have 

as seen from C.23 and C.24. The four symmetry r e l a t i o n s C.26, C.27, C.30 

and C.31 allow the l i n e a r independence of the solutions corresponding to the 

four contours (n=l,...,4) to be established. 
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Appendix D 

Asymptotic Analysis O f a (z) 

D .J Asym ptotic Form For The Solutions jJ (z) 

Taking eguation 3.62 as our s t a r t i n g point, we expand the 

function 

H 1 Cr) = AUr) + K <j<r) 

as a Taylor series about a saddle point giving 

where, since To i s a saddle point; -f'«".)= 0. With q(f) = T Z 

there i s a term 

O fc 3 V ) ) ( r - r , ) z 

which we have ignored with respect to 

which i s v a l i d i n the l i m i t 

I* " 1 <»« 

Hence, i n the l i m i t A - » , the representation 3.62 becomes 

where 
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and i s the contour deformed to run through the saddle 

point t ; . 

Defining the new r e a l variable 

where '-re ( r re a l ) and chosen such that 

/I i 

i s r e a l and negative, one may write the i n t e g r a l X as (in 

the l i m i t X-* o* ) 

-1 
Z , \ \ oil 

1 { <rt) I * 

which on completing the sguare for the i n t e g r a l so i t takes 

the form 

gives 
''•L (.-*')/,/ - "I 
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Noting that 

5T 

equation D .7 then reduces to the r e s u l t given in eguation 3.65 

where the term X1 * ^^"^ i s negligible with respect to 

At<-r<>) i n the l i m i t D. 2. The angle « i s the d i r e c t i o n of 

steepest descent from the saddle point. 

D.2 Saddle Points, C r i t i c a l Points^-And Directions Of Steepest 

Descent 

To evaluate the saddle points of the problem, we set 

where $cr) - - ̂  and where the + sign i s for z>0 and the -

sign for z<0. Hence the saddle points s a t i s f y 

^ 3 

so that f o r z>0; the three saddle points are at 

1 2 % L

 f 

and for z<0; the saddle points are at 

(D.M) 

With these values for f 0 , fc fo) and + are then computed. 

The angle ot (double valued) i s then computed as mentioned i n 

section D.1. These r e s u l t s are gathered into Table 9. 
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Table 9 Saddle P o i n t s Of F.(r 1 

• f. 

+ 1 - 3 0 , 77 

Z > o e ) +B>3 

-27i >'/3 
e - 3 e 

- / - 3 o , TT 

i < o e 
* T 

- 3 e ) ~ % 

e . 3 +•*!?.• - 3 e 

The f u n c t i o n %^TJ = T" has a c r i t i c a l p o i n t a t Tc =0. We 

must then assess the path of s t e e p e s t descent from t h i s p o i n t 

as w e l l . Now $  c Tc) =0 and "̂"0 = 1. C o n s u l t i n g Table 7.1 of 

B l e i s t e i n and Handelsman ( 1975 ) , the s t e e p e s t path i n t h i s 

case i s 
a > o : ot - TT 

- A 

2 < o cX. = O 
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This r e f e r e n c e provides an e x c e l l e n t d i s c u s s i o n of the method 

of s t e e p e s t descents. We diagram the saddle p o i n t s "To , 

c r i t i c a l p o i n t 7 C , and the d i r e c t i o n s of steepest descent 

(arrows) f o r both z>0 and z<0 i n F i g . 8. We have placed the 

branch cut on the p o s i t i v e imaginary a x i s f o r convenience so 

as not t o i n t e r f e r e with the saddle p o i n t s at ± 1 . 
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D.3 Paths Of Steepest Descent 

I f we w r i t e 

T=x+:^ } -H <r) -. UC*;<A) + ivix,}) (D. iz) 

i t may be shown ( see B l e i s t e i n and Handelsman ) t h a t curves 

of s t e e p e s t descent and ascent from any p o i n t ?0 = * + ̂  are 

those curves d e f i n e d by 

To p i c k out t h e descent paths ( two from each saddle p o i n t , i n 

opposite d i r e c t i o n s ) , we use the d i r e c t i o n s computed i n Table 

9 f o r each saddle p o i n t . 

From the d e f i n i t i o n of l*r) and from Table 9, equation 

D. 13 then q i v e s , f o r f o = ± 1 (+ s i q n f o r z>0, - s i g n f o r z<0) ; 

f o r T.= e (both f o r z>0) : 

„ + 77 ;A 
and f o r i0-~ e (both f o r z<0) : 

I t i s not necessary to have a d e t a i l e d knowledge of y(x) 

at every p o i n t , however the g e n e r a l p r o p e r t i e s of the paths of 

steepest descent are r e g u i r e d f o r the a n a l y s i s i n s e c t i o n D.4 
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From eguation D.14 i t follows that y s a t i s f i e s either of 

Now from the r e s u l t s of Table 9, we know that the 

directions * = O,TT correspond to steepest descent paths from 

these saddle points. Hence, the curve y=0 corresponds to the 

steepest descent paths from these saddle points. The curve 

j = * + - then corresponds to steepest ascent paths from these 

points. In the l i m i t x -*»o ; y=±x so that these are the 

asymptotes f o r the ascent paths. In addition, for 7o=+1, x>1 

and To = -1, x^ -1-

Writing eguation D.15 in the form 

we see that i n the l i m i t x - * 0 , D.18 may be s a t i s f i e d by 

f ^ 
^ z • x < o 

Rearranging equation D.14 in the form 

shows that i n the l i m i t x-*-<*>; aqain 

Now the directions y — x are out of the zones 

C o - * ) 

of convergence 
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f o r our i n t e g r a l r e p r e s e n t a t i o n s , so t h a t the l i m i t y= 0 f o r 

x - » m u s t be the behaviour of the st e e p e s t descent curve. 

This same kind of reasoning may be a p p l i e d t o equation 

D . 1 6 where the r e s t r i c t i o n x> 0 must be made f o r s o l u t i o n s t o 

e x i s t . 

The r e s u l t s of t h i s a n a l y s i s are i l l u s t r a t e d i n F i g . 9 

f o r the case z> 0 and z< 0 , . The descent paths are l a b e l l e d i n 

s o l i d l i n e and ascent paths i n dotted l i n e s . 
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F i g . 9_. P a t h s Of S t e e p e s t D e s c e n t -
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Us.H F i n a l Results For Asymptotic Expansion - Of The Solutions 

In t h i s section, the asymptotic form for each solution 

BVjUr'z) i s determined by deforming the contour onto one or 

more paths of steepest descent, and assessing the contribution 

from each of the saddle points or c r i t i c a l points that are 

picked up. Only the dominant contributions w i l l be kept. We 

s h a l l do the analysis f o r z >0 since similar considerations 

apply for the z<0 case. 

( 1 ) U M f K , Z ) 

The contour C 4 i s deformable into the contour ( see 

Figures 9(a) and 6 ) 

Hence, only the contribution from the saddle point atT 

i s picked up. Dsing formula 3.65 we then have 

e e < 

x 

iff 
- 211/ i ^ic1 

- '3 
e 

f(*l-V>?])/* 
fl + K1)/^ 

- 2 e 

( 2 ) O i J ^ z l 

The contour Cj may be deformed onto 
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^ ( l + I C l ) / f 

so t h a t the saddle p o i n t a t To = e i s picked up. He then 

have 

x j e - e J 

(3) 0* (K, z) 

The contour C* i s deformable onto 

CL = - 0, + D z - Or + D ' (D-Z«0 

so that c o n t r i b u t i o n s from the saddle p o i n t a t f o =+1 , the 

c r i t i c a l p o i n t U = 0 , and the saddle p o i n t To = e are p i c k e d 

up. However, the saddle p o i n t at To =+1 c o n t r i b u t e s the f a c t o r 
''1 ̂  ^ € which i s e x p o n e n t i a l l y growing, whereas the U =0 has no 

e x p o n e n t i a l f a c t o r and To = e c o n t r i b u t e s an e x p o n e n t i a l l y 

damped f a c t o r e . Hence, to very good accuracy the 

c o n t r i b u t i o n from 70 =+1 i s the o n l y f a c t o r we need c o n s i d e r 

and we have 

(<0 O.l^xZl 
Here we note t h a t the contour C, l i e s e n t i r e l y t o the 
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r i g h t of our branch cut whereas the contour D , - C ^ - D j + Dw runs to 

the l e f t of the branch cut- The dominant c o n t r i b u t i o n i s s t i l l 

from Tc= + 1 f o r the same reasons as d i s c u s s e d f o r U a. Hence we 

f i n d 

These r e s u l t s are summarized i n Chapter 3 by eguations 

3.66 and 3.67 and Table 4. 
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Appendix E 

Expansions Of 0>j[f< f z) About Z=0 

Taking the f u n c t i o n U,(K,Z) as an example we had 0, as 

(z>0) 

from eguation C.21 where the i n t e g r a l I ( K , Z ) was given by 

C . 2 0 . Expanding I as a power s e r i e s i n z about z=0 we have 

where 

t - 1 

Changing v a r i a b l e s i n E. 2 to T = d e f i n i n g = " - ^ J / * 

one gets 

Using the i d e n t i t y 3.76 given i n Chapter 3 , Q « C K ) then 

becomes 

2-
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where i s the parabolic cylinder function. 

Doing the same expansion for I (-*, <-z) and substituting 

everything back into the expression for 0, ( K , Z ) we find 

2 

The coefficents i n the expansion E.5 may be s i m p l i f i e d 

using the i d e n t i t y 

which may be found i n Gradshteyn and Ryzhik (1965), p.1066, 

formula 9.248.2. Using formula E.6, the the expansion E.5 

becomes (z>0) 

Similar expansions are arrived at by st a r t i n g with 

formulas C.22, C.23 and C. 24 for Uz , U3 , and UH respectively. 

Derivatives of E.7 are e a s i l y found, as well as the l i m i t 

z -* 0 . As an example 

which i s shown by equation 3.78. 
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The expansions f o r z<0 are found by u s i n g the r e s u l t s 

above ( f o r z>0) and a p p l y i n g the symmetry r e l a t i o n s C.26 -

C.29 i n order t o get the z<0 expansions. 


