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Abstract

The Cyg X-1 X-ray source is believed to be comprised of
an accretion disc around a central black hole. We apply the
methods of Mean Field Electrodynamics to the study of magnetic
processes in such an accretion disce.

By decomposing the magnetic field in the disc into mean
and fluctuating components, the observed X-ray  properties of
this system may be accounted for.

It is found that intense, short 1lived magnetic
fluctuations may occur which give rise to solar-like flares on
the surfaces of the accretion disc. The energy releases and
time scales of such flares is found to provide a physical
basis for the observed shot-noise like character of the X-ray
emission from the systen.

It 1is demonstrated that a rather strong, large scale
magnetic field can be generated by turbulent dynamo action in
the accretion disc. This result is the reason why magnetic
fields may play a vital role in these systems. The 1long time
averaged structure of the accretion disc is determined by the
Maxwell-stress due to the mean field, and is in agreement with
the "standard" cool accretion disc models.

We prove that on intermediate time and length scales, the
.Maxwell stresses due to the maénetic fluctuations remove the

known instability of "standard" accretion disc models to ring-
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like "clumping" and subsequent heating of the gas. This result
shows that the hard X-ray emission of the Cyg X-1 source must
arise from either a hot corona, or intense solar-type flares
above the disc surfaces. If the hard X-ray emission arises
from non-thermal electron populations accelerated in the
flares, it is found that this emission must occur in a rapid
"flash-phase" on submillisecond time scales. These flares
occur well away from the inner disc boundaries so that we
believe that submillisecond variations of the Cyg X-1 source

need not be a test of the rotation of the central black hole.
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Introduction-

1. Observations f X-ray Sources Associated- Hith- Binary-

Stellar Systems-

since the discovery of the first galactic X-ray source by
Giaconi et al (1962), intensive observational and theoretical
effort has brought us to the point where strong arguments can
be made for the existence of a black hole. Many of these X-ray
sources can be accounted for in terms of a hot gas spiralling
into a white dwarf, neutron star, and in one case (the Cyg X-1
source), a black hole. These objects are themselves 1in close
proximity to a more normal type of star.

This thesis analyzes the magnetohydrodynamics of a
turbulent disc of hot gas ( the so-called "accretion disc" )
around a central black hole. It is the contribution of this
work to apply the methods of mean field electrodynamics (see
Roberts (1971) and Moffat (1978) for reviews of this theory)
to this problem. We intend to show that if the magnetic field
in a turbulent accretion disc is regarded as having large-
scale mean, and microscale fluctuating components; then the
observed rapid variability of the X-ray output of the Cyg X-1
source can be explained in terms of solar-type flares arising

from intense magnetic fluctuations and that the overall



structure of the accretion disc is controlled by the large-
scale mean magnetic field. Other authors have concentrated
only on the study of chaotic magnetic fields. Using our
approach, it is shown that a large-scale mean magnetic field
can be generated by turbulent dynamo action in the accretion
disc and that an intimate connection exists between the mean
and fluctuating magnetic fields. These types of results are
not new to the theory of mean field electrodymnamics, however,
to our knowledge, they have never been considered within the
physical framework of a turbulent accretion disc. It is our
contention that the possibility of dynamo action 1in such a
system makes the magnetic field a crucial element in the
interpretation of the Cyg X-1 observations.

A more detailed outline of the thesis is presented in the
last section of this chapter. The observations of the Cyg X-1
source are discussed in the remainder of this section. Section
2 outlines the basic physics of an accretion disc and how the
gross observational features can be accounted for. Section 3
reviews previous work done on magnetic fields in accretion
discs while section 4 presents ideas which motivated our own
work.

The first important feature of these sources is their
enormous power output, which for the Cyg X-1 source 1is of
order 10nerg s™' which is ten thousand times the power of the

Sune.
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There appears to be an upper limit of 10 erg s' for the
known sources. This is a suggestive observation because this
is of the order of the "Eddington limit" of luminosity L. for

an object of mass M ( measuring M in units of solar mass Ny )

L., = ‘038 (M/MO) erq s7 ({.()

which corresponds to the condition wherein the radiation
pressure exerted on a gas equals the gravitational force of
the object. We say more about this in section 2.

Of the nine oétically identified X-ray sources, seven are
known to be spectroscopic binaries. The fact that X-ray
sources are members of binary systenms providesv a very
importaﬁt handle on the system, that is, its mass. The
. detailed analysis of mass determination for the observed star
M., and of the unseen companion My is reviewed in Bahcall
(1978) . The allowed ranges of the masses My associated with
the X-ray sources are listed in Table 1 (adapted from Bahcall

(1978)).



Table 1. Masses M, Associated- With- X-ray Sources-

SOURCE M, (SOLAR MASS UNITS)
Vela XR-1 1.0¢ My £ 3.4
SMC X-I 0.5 M, ¢1.8
Cen X-3 0.7¢M,¢ 4.4
Her X-I 0.4¢ Mys 2.2
3U 1700-37 0.6 ¢ Mx
Cyg X-I 9 <M,<15

The Cyg X-1 source stands out because of its high mass
My >9M, . The visible in this system is an OB supergiant with
mass in the range 15-25 Mg , having an optical magnitude of 9.
The binary period of the system is 5.6 days. The visible star
varies by 0.07 magnitudes with a double peaked 1light curve
which is evidence for tidal distortion since a tidally
distorted star would present a changing area and hence an
apparently changing luminosity with a frequency of twice the
orbital-revolution frequency. A comprehensive discussion of

the optical observations of the Cyg X-1 source may be found in



Bolton (1975).
We shall henceforth be considering only the Cyg X-1
»source, and turn to a summary of the X-ray observations of

this source.

X-ray Observations 0f Cvyg X-1-

This source, discovered by Boyer et al (1965) has a hard
X-ray spectrum and is highly variable at all X-ray energies.

{1) X-ray Spectrum-

The Uhuru satellite observations in the 2-10 kev range
have been extended into the 15-250 kev range by the 0SO 8
satellite ( see Dolan et al (1979) ). One of +the nmost
intriguing aspects of the spectrum is that it undergoes

transitions between two states: a high luminosity state with

"
Ll«:sk > 5.5 x:o3 evy s
and a low luminosity state with

37 »
Liow & 33X 10 evq s

assuming that the distance to the source is 2.5 kpc. The high
state has an excess of energy in the 2-7 kev band and a lower
amount of enerqgy in the >7 kev domain as compared to the 1low
state. Thus, a high to 1low transition was apparent in the
Uhuru observations during March-April 1971 ( see Sanford et al
(1975) ), while Dolan et al (1979) £find a 1low to high
transition océurring in Nov 1975.,

Dolan et al find that over the 20-150 kev range of the X-



ray spectrum a power law of the fornm
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could be fitted.
They state that the spectra may all be represented by a
single power law expression whose spectral index is different
for the two intensity states. Their high state spectrum is

reproduced in Fig. 1 while Fig. 2 shows five low state spectra

20-150 kev range are
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Fig. 2-X=-ray Spectrum Of Cyqg X-1:-Low- State (From-Dolan-Et Al-
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observed intensities. The resultant values of a, C, and E, for each spectrum,

observed 1977 November 13, 1050 UT-November 14, 0015 UT (@

1445 UT (® = 0.30-0.40). (c) Spectrum observed 1976, November 11,

(d) Spectrum observed 1976 November 10, 0000 UT-1330 UT (® = 0.50-0.60)
November 15, 0930 UT (® = 0.00-0.10).

= 0.30-0.

1 observed by OSO 8 when the source was in a low state as define

as defined in eq. (1),
40). (b) Spectrum observed 1977 October
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. (¢) Spectrum observed 1975 November 14,2000UT-
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d at lower energies. The
law expression which gives an acceptable minimum x? distribution about the
are given in Table 2. (@) Spectrum
22,0115 UT-,,
= 0.80-0.90).



It is important to note that Dolan et al find that about
one third of their spectra could also be well represented by a

double power law-in the 20-150 kev range with an increase in

the spectral index ©of 0.5 or larger. The break-point between
the two power laws occurred between 40 and 125 kev for
different spectra.

Finally, Dolan et al considering their highest energy
data points find evidence for an exponential cut-off in the
spectra of both states somewhere between 150 and 200 kev.

The system seems to spend most of its time in the low
state.

(2) Short Term X-ray Variability-

For time profiles over the 1-50 kev range , the
qualitative appearance is characterized by a continual
aperiodic train of spiky variations with pulse sizes ranging
up to a few times the average intensity.on time scales of a
fraction of a second ( see 0da (1977) for a review ).

As Oda points out, it appears that thé pulses are a
characteristic of the low state ( greater predominance of hard
X-ray component ) and seems to get buried to some degree in
soft X-ray emission during periods when the source is in the
high -state. This is a key point and is considered again in
Chapter 4.

Terrell (1972) successfully simulated the time profile

over periods of fractions to tens of seconds in terms of a



shot noise model comprised of a superposition of randomly
occurring pulses ( instantaneous rise and exponential decay )
of constant amplitude and with <characteristic times of
fractions of a second.

In addition to the variations discussed 0da et al (1971)
and Rotschild et al (1974) found evidence for millisecond
bursts, which appear to occur in bunches. The .energy of these
bursts appears to bé lower than the overall emission. The
reality of these millisecond bursts has been questioned by
Weisskopf and Sutherland (1978) who find that 'spurious"
millisecond bursts may arise as an artifact of the data
analysis aﬁd may have nothing to do with the physical
processes associated with the X-ray source.

We summarize the shot noise and millisecond burst

parameters in Table 2 ( see Rotschild et al (1977) ).
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Table 2. Summary Of Shot Noise- And Millisecond Burst-

Parameters-
EVENT TYPE SHOT NOISE MILLISECOND
BURST
| 36 35
ENERGY/EVENT 10 ergs 107" ergs
CHARACTERISTIC 107" s ©107%s
TIME
EVENTS/SECOND 8 s 100 s~

The simplest explanation of the Cyg X-1 source is that of
an accretion disc about a black hole of mass My=10M, with
accretion rates of 107 Moyr" arising from mass outflow ( Roche
lobe overflow ) from the visible étar ( see Bolton (1975) ).
The reader may consult Kellogg (1975) for a discussion of +the
viability of alternate models.

Henceforth, we shall only be considering these accretion

disc models for the Cyg X-1 source.

2. - The Basic Physics-0Of Accretion-Discs-
The observations suggest that the visible star is tidally

distorted. This leads us to consider matter loss from the star



1"

by Roche-lobe overflow.

We generate the so-called Roche equipotentials by going
into the rotating frame of the binary system and drawing
equipotentials of the gravitational and centrifugal
potentials. Consider the case when the lower mass object My is
compact and the larger mass star M,,, expands to fill its
Roche-lobe (see Fig. 3). Matter may then leave its surface at
the point of "zero gravity" ( the inner Lagrangian point L« )
and flow over'toward Mxy. Such a gas stream will pick up
angular momentum via the Coriolis forces and go into orbit
around My rather tham falling directly in (see numerical
calculations of Flannery (1975) for a detailed examination of
the hydrodynamics). The matter stream and the orbiting gas
will stay in the orbital plane of the binary system. Viscosity
of the gas will lead to the gradual spiralling of the gas in
towards the central object My, thereby forming the so-called

accretion disc.
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Fig. 3 Mass Accretion By Roche- Lobe-Overflow (From Novikov- And

“NORMAL" N/
HESTARS

The basic physics of an accretion disc around a compact
object was worked out by Prendergast (1960), Lynden-Bell
(1969), Pringle and Rees (1972), and Shakura and Sunyaev

(1973), and comprises the "standard model" of accretion discs.
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Relativistic corrections are revieﬁed by ©Novikov and Thorne
(1972) «

The particles of an accretion disc moving in
approximately Keplerian orbits about +the central compact
object, 1lose their angular momentum due to friction between
adjacent rings of gas. These particles +therefore gradually
spiral towards the <central object releasing gravitational
potential energy. Part of this energy increases the kinetic
energqy of rotation so that at every radius the ﬁelocity is
Keplerian to good approximation, and the other part is
converted into thermal enerqgy by the viscosity and
subsequently radiated from the disc surface. The angular
momentum 1is transported out to the outermost portion of the
disc with the result that some of the matter arriving in the
mass stream is flung away from the disc and escapes the
system. For Cyg X-1, the outer radius of the disc is of order
5x10° km.

The angular momentum transport is provided by either the
turbulence, the magnetic field ( present in the matter that
streams to thé disc ), or both. Modelling these stresses is
one of the most important aspects of accretion disc theory,
although for stationary discs, many of the basic observed
properties of the system are independent of such models.

The action of the turbulent ( Reynolds ) stress and/or

the magnetic ( Maxwell ) stress gives rise to a small inward
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radial velocity by which matter matter slowly drifts into the
inner regions of the disc. In the case where the central
compact object is a black hole, general relativistic
considerations show that the innermost stable, Keplerian-like
orbit that can occur for a particle in orbit about a non-

rotating hole occurs at

re = 5"3 = G G My
cz
where I, is the Schwarzschild radius for a black hole of mass

M. Matter will drop staight into the hole once it reaches this
inner orbit. This radial infall from r; to the event horizon
will not liberate much energy im the form of heat. The
Schwarzschild radius for M=10Mg is 30 km so the inner edge of
the accretion disc is at 90 km. Keplerian orbital speeds at
this innermost radius will be 1.0x10°cm s = 1/3 c. General
relativistic corrections to the flows are important only at
this inner edge, and Newtonian gravity can be assumed in the
disc to good approximation. For a rotating ( Kerr ) black
hole, the innermost possible stable orbit is at the event
horizon which for M=10M, is at 15 km in this case. |

The gravitational potential energy 1liberated as the
particles traverse ever smaller orbits about the hole will be
the binding enery in the last stable orbit. Hence, one expects

energy releases of 0.057 mc* for the non-rotating case and

0.40 mc* for the rotating one. Thus, energy releases per



15

nucleon in an accretion disc about a central black hole rival
or exceed ( Kerr case ) the efficiencies found in nuclear
reactions.

The fluid picture of the gas 1is adopted which 1is
described by the continuity equation, the conservation of
angular momentum ( Navier Stokes equations ) and conservation
of energy, where axial symmetry 1is assumed and cylindrical
polar co-ordinates are employed.

If stationary conditions are assumed ( ?/ot=0 ) one finds
that most of the important disc properties are independent of
a detailed model for the stress.

The continuity equation links the mass transfer through
each annulus of given radius to the mass flow M (constant)
arriving at the disc from the visible star. Thus, under

stationary conditions,

f‘;\= ZTqurr' (|.q)

where 2 is the "surface density"

2 = j" pe) dz

-2

with 2z, the half-thickness of the disc, and U " the radial
velocity.
For future reference, the vertical average of any

quantity ¥ is denoted <) where

¥ /205” A
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Hydrostatic equilibrium between the z-component of the
central object's gravitational force and +the gas pressure
F=€C; gives

Zo = Cs (l-S')

- ¢
r u
where cs is the sound speed and the toroidal velocity U¢ is

Keplerian to good approximation.

ut ~ Ve = (GMx/r)l N r (1.¢)

We note that the self gravitation of the matter in the disc is
negligible. Equation 1.5 shows that a thin disc ( 2z./r <<1)
implies the dominance of the Keplerian. velocity in the
problem.

The radial component of the Navier-Stokes equation

(
(vertically averaged) gives, under stationary conditions

ZU 2 (u) -0 2 (w'*,s) (1)

ar LR RS

where W™* is the vertically averaged stress due to turbulence
and/or magnetic fields. Application of 1.4 to this result

gives,

Wr¢ E ’\_.'l;flx ( [ (l“,_'/r)'é') (I- 8)

Fal

where the boundary condition

has been used. This condition insures that particles will drop
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radially into the hole for r<r;. Hence, the stress W% has
been determined independently of some prescribed 'viscosity!
mechanisnm.

From the conservation of energy, we find that the energy
flux per unit - area is equal to the energy production by the
shear stress W"?. Thus after the vertical average is taken, we

have

vé -
R W vW) o -2 g W (%)

where Q is the energy flux per unit surface area. From 1.8 we

have

"R 6 My (‘ - (".'/v-)llg) (I.'O)

3
s ~3

Q =

which shows that a maximal energy flux is occurring at

L 36 v, = 122 B

The total energy release is then

L - j(‘m’v‘) Qer) dv = ‘—é— G M. ':( (1)

which gives for N=10Mo a luminosity of

L= ‘4“0“(14_, erq 5"
Mo (Jr"

Hence an observed luminosity of 5x10°" erg s™' for the Cyg X-1
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source is obtained with the deposition of ﬁ=1oﬁmeyr"onto the
accretion disc.

The temperature and radiation spectrum are derived in a
straightforward fashion. For a radiative flux Q, the radiation

density is

™
u
£lw

Q> (1.412)
¢

where ¢ is the opacity due to electron scattering. The two
main types of scattering giving rise to X-rays are

(1) inverse Compton scattering- by which a low energy

photon scatters off an energetic electron gaining energy in
the process

(2) bremsstrahlung: in which X-rays are emitted from the

acceleration of electrons in Coulomb fields.
In the first case, and for very 1low photon energies
compared to electron energies we have the Thompson cross-

section ( independent of energy ) giving the opacity

0+ = o.¢4 Con 3\««-‘ (l~'3)

while for bremsstrahlung the opacity is

—_ —7/1

Geg = ot ] Me o’ 3‘“-‘ (1.14)

In the standard disc model thermodynamic equilibrium is

assumed as well as the opticalthickness of the disc.

o

Substitution of £:=bTY into 1.12 ( b=to/c=7.65x10""erg cn? °K™
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where ¢ is the Stefan—-Boltzmann constant), and the use of the
opacities 1.13 or 1.14 together with the equation of state for

the gas and the radiation

Pf) - Cjk_r /’W‘?
(|.|'>')
Pr' = 2/3

gives four equatioms ( 1.4, 1.5, 1.8, and 1.12 ) for 5
unknowns: z(fr), 2 (r)s, U(r)s T(r), and W”ﬁr). The detailed
radial structure of the disc can be solved if we specify the
stress W™* in terms of the other variables in the problen.

This specification of the st;ess is precisely the most
difficult problem in turbulent hydrodynamics. By-passing these
problems, the stress iﬁduced by turbulent motions (see Shakura
and Sunyaev (1973) as an example) is modelled with a turbulent
viscosity

Ve = eﬁ,l

Eal

where 1 is the root mean square turbulent velocity and

WN* Ve r dR2 = U"t % "t z
= T Ir (w‘ = w = (‘_‘:) ecb

Cs

where equation 1.5 has been used. It is then assumed that the

turbulent Mach number

m

‘Mt w /cs i (’l..l(e)

is a constant so that

4
Wt oM P (L)
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Equation 1.17 now allows the solution of the radial disc
structure. Solving equations 1.4, 1.5, 1.8, and 1.12; and
using 1.6 in 1.8, one obtains expressions for z, L , U, and T
in terms of three parameters: My, ﬁ, and M, . The solutions
show that this optically thick disc is comprised of three
zones:

A) inner zohe; P,>>Pj, 0 >> 0

B) middle zone; P3>>R., T >0y,

C) outer zone; Bj>>Pr, q&>>6}

Other general conclusions that may be drawn are ( see
Shakura and Sunyaev for an excellent analysis )

1) the dependence of T upon r is of power law form giving
rise to a "non-thermal" looking power law X-ray spectrun

2) maximal temperatures are of order 10°

3) the half-thickness z.,displays weak dependence on M and
is of order 106cm in the inner region to 10fcm in the outer
region

4) Compton processes strongly affect the shape of the
emitted spectrum in the inner disc region

5) exponential cut-off in spectrum for frequency range
l\v>>kT.,.,m,< ( characteristic for Compton process )

The main short-céming of the standard model is that it is
too cool to explain the large X-ray power emitted in the 10-
100 kev band of the spectrum.

Lightman and Eardley (1974) demonstrated that this
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constant M, model was unstable in the inner, radiation
dominated'zone and showed on this basis that this region would
probably be extended, hot, and optically thin ( this
instability is considered again in Chapter 4 ). Shapiro,
Lightman and and Eardley (1976) constructed a model, based on
this observation, which gave electron temperatures Te=10‘1 °K

with much higher iom temperatures T;¢10"°

K ( the so-called
"two temperature" model ). Soft photons from the cool ( T,,=106
°Kk ) middle region scatter off energetic electrons in the
extented hot inner region undergoing inverse Compton
scattering. This accounts for the hard X-ray component. The
spectrum has a power law form with an exponential cut-off at
150 kev, which is consistent with observations.

Transitions in the luminosity of Cyg X-1 ( high and 1low
states ) are thought to arise from variations in the mass
transfer rate M (see Alme and Wilson (1976))..A large increase
in mass transfer would increase the low-energy' photon £flux
from the outer regions of the disc which would account for a
transition into the high state.

For a strictly hydrodynamic explanation of the rapid
variability, Shakura and Sunyéev assume that if M,~1, strong
convective turbulence might océur with the resultant emergence
of hot clumps of plasma on the disc surfaces. These authors

speculate that solar-type flares could occur in the disc if

the field were built up enough.
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3. Previous Work On Magnetic Processes - In Accretion Discs-

In a short early paper, Blumenthal and Tucker (1972)
suggested that the X-ray pulsations from Cyg X-1 could be
understood.in terms of giant flare-like events in a region of
high magnetic field. | They proposed that in a flare,
.oscillations of the field would be set up 1leading to plasma
heating in the flux tube and thermal emission. The hard X;ray
component would arise from synchotron radiation from the high
energy particles known to be emitted in such flares. They did
not discuss how such fields could be generated.

Later work on magnetic processes focussed on the role of
magnetic fields in transporting angular momentum in the disc.
Oone feature of this work is that only fields at or below
equipartition energies with the thermal energy are considered.
Another feature 1is that the interaction between fluctuating
velocity and fluctuating magnetic field was not considered.
Such interactions however are known to give rise to very
intense magnetic fluctuations as well as strong 1large scale
"nean" fields under certain circumstances as much work on the
theory of turbulent dynamo action shows.

Eardley and Lightman (1975) as an example discuss the
anqgular momentum transport and disc structure arising from a
chaotic magnetic field. Assuming that only a chaotic field can
be present in the turbulent disc, these authors consider the

growth of the $¢ component 6f the chaotic field at the expense
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of the radial component by the shearing of the radial field
lines in the Keplerian flow. They assume that dissipation on
micro-scales is negligible so that the radial field b" remains
constant. With +this picture, there is seemingly no limit to
the growth of the chaotic field. Consequently field limitation
by reconnection of the field lines comprising the "magnetic
cells" of flux is invoked. Since the physics of reconnection
events {known to be important in solar flares) is poorly
understood, Eardley and Lightman write dowﬁ a phenomenological
equation for field 1limitation by reconnection, with a
characteristic time for energy loss to the field as some
fraction of the time required for an Alfvén wave to traverse
the distance of the magnetic "eddy". Assuming stationarity and
magnetohydrostatic balance, they then go on to compute the
disc structure with the Maxwell stress due to the fluctuating
fields providing the stress #"™%

Ichimaru (1977) attacked the problem of angular momentum
transport by fluctuating magnetic fields and theorized that
the currents arising from reconnection of the I'"magnetic
eddies" would induce an anomalous resistivity in the plasna.
This anomalous resistivity arises from the scattering of these
currents off of the magnetic fluctuations, and is very much a
plasma theorist's point of view. Ichimaru then solves the
induction equation for the fluctuating field and £finds using

his anomalous resistivity, that under stationary conditions

8 . b e (19)
gUm I
‘»_4_' - = L \a D_{z (/.l")

4T om T 3y >v



24

where v 1is given by

— X !
VI T(Z)

and X is the ¢-r component of the Maxwellbstress due to the
fluctuating magnetic fields.

The disc structure is now computed and it is found that
the disc can exist in two physically distinct states for a
given value of ﬁ. If the radiative 1loss 1is small(large)
compared to the rate of viscous heating near the outer disc
boundary, the disc will exist in an optically thick (optiéally
thin) geometrically thin (geometrically thick) configuration.
The model has an optically thin, geometrically thick inner
radiation ddminated zone for both the states mentioned above
which 1is similar to the two temperature regime found by
Shapiro, Eardley, and Lightman. These states are identified
with the high and low luminosity states discussed in section
1. Transitions between states is determined by the ratio ﬁ/Tz
with the low.state identified with a higher accretion rate and
a lower temperature in the outer regions which corresponds to
the optically thick, geometrically thin structure. Production
of hard X-rays is as discussed in the two temperature model.
Numerical calculations show that the outer regions are similar
to the Shakura and Sunyaev optically thick solution. Although
this is a very interesting explanation for the bimodal

behaviour of +the source, the explanation of the rapid
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variations is not discussed.

The more recent work on magnetic phenomena in accretion
discs concentrates on the idea of a magnetically confined hot
corona as the agency which gives rise to the hard X-ray
emission.

Liang and Price (1977) suggest that the accretion disc is
likely to form a hot corona somewhat like the solar corona.
They picture a sandwich like disc in which the middle layer is
an optically thick, geometrically thin disc which generates
the energy, surrounded by corona-like layers of mnuch lowver
density which is pumped by energy from the inner disc. As in
the sun, the optically thin corona has to reach ‘high
temperatures before radiative cooling 1is significant. They
point to three advantages of such an idea:

(1) radiation produced at two temperatures ( cool disc
and hot corona )

(2) coronal X-ray emission occurs at much higher
temperatures than for standard models

(3) corona expected to be highly dynamical and produce
highly variable emission. |
These authoré suggest that a strong "disc wind" could be set
up in these coronae. Specifically, a corona of temperature
T>/1dl °k gives rise to X-rays in the right range. In this
picture, energy deposited in the corona is removed by either

bremsstrahlung, Compton scattering, synchotron radiation or
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wind cooling. Whether synchotron or Compton scattering is the
dominant radiation mechanism is determined by the coronal
magnetic field strength.

Finally Galeev, Rosner, and Viana (1979) work out a more
detailed coronal model with the formation of_loops of'magnetic
field (of scale 10° cm ana equipartition field strength)
protruding through the surface of the disc. They show that the
reconnection of magnetic loops within the disc as imagined by
the earlier work is too slow a process to prevent the
amplification of the fields by shearing. They argue that
regions of strong field are expected, and these emerge from
the disc by magnetic buoyancy. They consider only a
fluctuating field. The emergent 1loops of flux are strong
enough to confine a coronal plasma which is heated to high
temperatures when the 1loops undergo reconnections (flares).
The hard X-ray emission then derives from the inverse Compton
scattering of soft photons from the cool disc off the hot
electrons in the corona. They show that such a process
delivers flare 1like bursts of hard X-rays on time scales 1s
and energies 10“érgs s™', thereby giving a physical basis of
Terrell's shot noise model.

We believe that this model has time variations that are
slightly too slow and energy releases that are slightly too
small to recover the shot noise model but that the idea that

the main effect of the magnetic fluctuations is to give rise
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to flares on the disc surface is correct.

It is imporfant to try to track down the requirements for
variability over the rapid time scales in terms of flaring
mechanisms. In view of the lack of a theory of reconnection
and flare activity that can account for both the enormous
energy releases on short time scales for solar flares as an

example, we turn to some experimental results for help.

4. Laboratory " Solar Flare " Experiments-Scaled -To Cyg X-1-

Suppose we imagine that solar-like flares are occurring
on the surface of the accretion disc model proposed for Cyg X-
1. What constraints can be applied on the magnetic fields and
their 1length scales in order that variabilities 10"'s for the
shot noise and 10°s for the millisecond bursts, with energy
releases of 1036ergs can be accounted for.

Solar flares (see Sweet (1969) for a review) typically
involve the release. of 10mérgs in a period of 100s for
noderate events and may range as high as 10’2ergs ( solar

luminosity is 102 erqg s' ). The area of the flaring regions

7 A

are 107-10*° cm®, the emission region being as high as it is
broad with a characteristic scale of 10°cm. The overall "mean™
field of the sun is 1-2 Gauss whereas the active regions may
have 300-3,000 Gauss fields ( exceeding local equiéartition

energies by two orders of magnitude in some cases ). Flares

originate near regions where the longtitudinal component of
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the magnetic field changes sign ( i.e near a neutral 1line of
the field ). Succeeding flares in an active region may occur
with identical profiles and shapes suggesting that the flare
configuration is determined by the local magnetic
configuration. The time dependence and magnitude of X-ray
emission are the same for a sequence of flares at a given
site, but are strikingly different from site to site.

A series of beautiful experiments on magnetic field 1line
reconnection were performed ( see Bratemahl and Yeates (1970),
and Baum et al (1973) ) which were scaled to solar flares and
found to be in good agreement with the observationsi(see Baum
and Brahenahl (1976)). We outline the experiments and results
and scale to conditions appropriate in Cyg X-1.

The laboratory experiments are done on a double inverse
pinch device which creates a neutral line between two magnetic
cells. The device consists of two insulation covered, current
carrying rods which are parallel, 10cm apart , and carry
current from discharging capacitor banks ( see Fig. 4 ). Two
cylindrical current sheets are driven radially outward fron
each rod by JxB forces, and merge upon collision leaving a

neutral line in the centre of the assembly.
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Fig. 4 Geometry Of The Field Line-Reconnection Experiments-

INCHES (b)

{c)

Double inverse pinch device chamber. (a) side, and
(b) top view; (c) equipotential lines of the £ component of the
Magnetic vector potential (curl-free magnetic field lines). The
dark line is the separatrix which divides the flux into three
regions. Region 3 is accessible from regions 1 and 2 by reconnec-
tion at the origin. '
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The main results of these experiments are:

(1) current density dis a relative maximum along the
neutral line

(2) the electric field along the neutral line grows as
soon as the line is established with the current density
increasing as well

(3) a discharge occurs during which the current drops
abruptiy, the electric field goes from 100volts/cn
—»300volts/cm (in 0.3 sec), and the resistivity jumps by a
factor of 40

(4) X-ray production is observed which can be interpreted
as thick target bremsstrahlung of energetic electrons
impinging upon the anode in the immediate vicinity of the
neutral line. The power law X-ray spectrum observed can be
fitted with a power 1law -electron spectrum. Thermal X-ray
production is hard to estimate.

The most important aspect of these experiments for us is
the fact that they scale correctly to moderate energy solar
flares. From the experiments it is found:

(1) flare duratien: ot = 10$s

{2) total enerqy release- Qit =1.6x103erg

under conditions where the length scale and magnetic field
were fixed in the experiment as :

(a) length scale of reconnecting-field: 1,,=10 cm

(b) magnetic field: Bkg=10*Gauss




31

Baum and Bratenahl take the observed values Lg,., B,

for the size of the reconnecting regions and their magnetic

field strengths ( Lh;=101cm and B =103Gauss ) and derive

Sum

flare durations ofA1ozs and energy releases of 103°erg, using
the parameters above. The scaling relations they use, due to

Parker, are

Lt

Qx = Qub (@j )2 (Ex )3 (|.1|')
Bul, Lk

where at, , 1,, and Q. are the flare duration, flaring region

at, =([_'_§ ) aty (1.20)

size, and energy release.
The maximum cosmic ray energy possible from such flares
can be estimated by integrating the electric field along the

entire neutral line length. The scaling in this case is

Vx = vla‘o ( g;: )( L« ) (I.ZZ)
Bub Il Ly ,
wvhere the measured voltage in the experiment V,, =3x10 volts.

For the solar parameters, V,=30 Gev in agreement with
observations.

Assuming that "solar type" flares are responsible for the
rapidly varying X-ray emission in Cyg X-1, we estimate the
time scales and energy releases from the obervational data

summarized 1in Table 2 for both the shot noise and millisecond
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burst parameters. Using the scaling relatioms 1.20, 1.21, and
1.22 ; the 1laboratory parameters; and the time scales and
energy releases for shot noise and millisecond bursts: we find
the length scales, magnetic field, and maximal cosmic ray
energies associated with flares on the disc. The results are

given in Table 3.

Table 3. Characteristics Of Solar Type Flares-In-Cyg X-1-

EVENT TYPE SHOT NOISE MILLISECOND

. BURST
Lyx lO6 cm qu' cm
lo.5" 3
Bx 10 Gauss 10" Gauss
s
Vy » 10" ev 10" ev

For the densities and temperatures in the standard cool
disc model, equipartition fields in the disc are of order

108Gauss. If the results of Table 3 are correct, one 1is
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dealing with fields above equipartition energies. Such strong
fields could not remain in the disc and would emerge from the
disc surfaces and there undergo fléring.

The parameters for the shot noise are in agreement with
what one would expect from the disc. The disc thickness varies
fronm 106cm to about 10%cm. In addition field strengths two
orders of magnitude above equipartition strength are predicted
which is similar to soclar flares.

The bursts represent extreme conditions indeed. The.
largest astrophysical fields known are those for pulsars where
10%Gauss fields have been observed. The results of Chapter 4
will show that the largest fields present are about 10“‘Gauss,
and give an alternative explanation of the millisecond
activity if it is indeed real.

We note that the méximum cosmic ray energy observed to
date is 10%%ev..

This analysis shows that in order to recover the rapid
temporal variation of the Cyg X-1 source together with the
massive energies associated with these variations, a solar
type flare model requires intense ( greater than equipartition
eﬁergies if a standard underlying disc is assumed ) magnetic
fluctuations. A consistent MHD analysis should not therefore
impose the condition of equipartition at the outset.

We turn to an outline of the remainder of the thesis.
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5. OQutline Of The Thesis

In Chapter 2, the full equations for a magnetized £fluid
are examined. The various fields are decomposed into mean and
fluctuating components and the energy transfer between tﬁe
various fields examined. The relations between the fluctuating
velocity, temperature, and magnetic fields are developed using
fhe methods of Mean Field Electrodynamics and a regime is
identified where large magnetic fluctuations may occur. The
magnitude of the mean magnetic field is found to be of central
importance in asseésing the structure of +the various
fluctuating fields.

In Chapter 3, a detailed analysis of the mean large-scale
magnetic field is carried out. Since some assumptions about
the disc structure and turbulence properties are required, we
use the standard disc model as a basis for our calculations.
Assuming steady conditions, these calculations determine a
‘value for the turbulent Mach number independent of any other
parameters. In the final section of the chapter, it is found
that for appropriately large scales, the mean field can be
generated by turbulent dynamo action.

In Chapter 4, the results of Chapters 2 and 3 are
combined to give a coherent view of magnetic processes in the
accretion disc. Afguments are made to show to what strength
the mean field is expected to grow, which allows the magnitude

of the magnetic fluctuations to be fixed, and a comparison
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With the predictions of the scaling arquments cf the previous
section of this chapter to be made. A picture is built up
wherein the mean magnetic field remains inside ¢the disc at
belcw equipartition strength and over the long time averace is
resronsible for anqular mcmentum transpcrt in the disc. On
intermediate time scale averages, it is shown that the Haxwell
stress.due to the fluctuations acts to supress the Lightman
and Eardley instability so that the underlying accretion disc
remains cocl and thin. This result is important because it
shows tha*t the hard X-ray ermission must derive frcm magnetic
flare 1like processes. The magnetic fluctuations undergo
flaring processes on time scales and with energy releases that
exrlain the shot noise model of the X-ray variability. The
hard X-ray emission is modelled in terms of a rapid, £f1lash-
phase subccmponent of the flares, in which ncn-thermal
distribuficns of electrons account for the power-law X-ray
spectrum.

Wherever rpossible, the mathematics has Leen relegated to
a series of appendices. The entire analysis tc be presented is
non—-relativistic. No major corrections toc the results are
expected for non-rotating black holes; however, interesting
effects in addtion to those presenﬁed will arise for Trotating
black holes 1if +the region immediately adjacent to the event
bhcrizon is concsidered. Appendix A reviews the ideaé and

results of Mean Field Electrodynamics required for this scrke.
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Magnetic Fluctuations-In- A-Turbulent Accretion Disc-

1. Introduction

The central aim of this chapter is to examine the
properties of fluctuating velocity, magnetic and temperature
fields in a turbulent accretion disc. As mentioned in the
opening chapter, the assumption of stationarity allowé
solution of the disc equations without a detailed knowledge of
the dissipation mechanisms operative in a turbulent disc.
However the rapid variability of the disc's X-ray output down
to millisecond time scales demands a careful examiﬁation of
fluctuations in such a turbulent regime.

Let us first consider energy balance when magnetic fields
are 1ignored. In a turbulent regime Reynolds stresses act to
transfer energy out of the mean flow (in an accretion disc,
this is basically a Keplerian velocity field) into the
velocity fluctuations. Then pressure fluctuations and
viscosity act to +transfer energy out of the velocity
fluctuations into internal energy. Stewart (197¢) examined
this process by using various scaling arguments applied to a
coupled pair of equations for the fluctuating kinetic and
internal energies. His techniques and results, briefly

reviewed in section 2, will prove a useful starting point for
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our analysis which includes magnetic fields.

When magnetic fields are included a host of new effects
may arise. For the moment consider only the fluctuating
fields. In addition to the effects described in the preceeding
. paragraph, energy‘is extracted from the velocity fluctuations
by E.J type interactions, and transferred into both the mean
and fluctuating magnetic fields. Ohmic dissipation then
transfers energy of the fluctuating magnetic into internal
energy fluctuations. These processes are specified and
examined in section 3.

our object in section 4 is to solve for the kinetic,
magnetic and internal energy flucfuations. Now in order to
close this set of three equations for three unknowns it will
be. necessary to give a model for the ultimate value of the
mean magnetic field. We will be using mean field theory to
express the various correlations between the fluctuating
velocity and magnetic fields in terms of the mean field. It is
to be expected that the energy in the mean magnetic field wili
depend on the kinetic energy fluctuations. The specific model
for this will specified 1in Chapter 4 and will enable us to
close our coupled +triplet of equations. Comparisons with
Stewart's results will also be made in this section

As pointed out in Chapter 1, if we interpret the shot
noise model for the X-ray output as due to solar type flares

occurring on the surface of the accretion disc, large magnetic
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fluctuatidns are required. In section 4 we show under what
conditions such large fluctuations are possible, and discuss
how they affect the overall disc structure. It will become
apparent that in the regime that allows fluctuating fields on
the order 10 gauss, it is not possible to have a stationary
accretion disc on time-scales <10°' sec. We believe that under
the conditions mentioned, an accretion disc such as that
belieyed to comprise the Cyg. X-1 X-ray source can be

approximated as stationary only on time-scalesa10 sec.

2. Stewart's Analysis Of Energy-Balance In-Turbulent Accretion:

Discs

2.1 The Basic Egquations-

We begin with the equations of continuity, conservation
of momentum and conservation of internal energy for a viscous
fluid in the presence of an external gravitational field.
Stewart adopts the use of a semicolon notation for covariant
differentiation which facilitates the conversion into

cylindrical polar co-ordinates (r, ¢.2). The equations are

(3 + (Q“’()/’ w = 0O (z'l)
(euf) + ((u“up)jp - ¢ L S b - t“P/P (2.2)
(pe) + ((:eu")l. a = - pu - tf “wp ~ f/-,‘ (2.3)

ﬁ-(t)
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where ? is the external gravitational potential, t*fF s
the viscous stress tensor, € p is the symmetric strain
tensor (i.e. Qp’i(ﬁ“;ﬁ*uPi“))z e 1s the internal energy, and

1f is the heat flux. The reader may consult Landau and
Lifshitz {1959) for the detailed derivation of these
equations.

In order to discuss turbulent processes, one now
decomposes the fields into mean and fluctuating parts.
Proceeding with this decomposition we write

u* = U* 4 L=

ec v g
be P g (24

1&3 Qs+ {x
denoting the ensemble average of any quantity © by ) s We have
that w . U5, E:(% etc. The ensemnble average of the 4fluctuating
quantities vanishes.

Let us introduce the decomposition 2.4 into the equations
2.1-2.3 and take their ensemble average. As a simple example,
consider the continuity equation which becomes

éo"‘ (eoud*'?:.—‘()/'&: [o) (»ZS)
Because density fluctuations ' are important we see that we
¢

pick up an extra term EQ* in addition to the terms

present when turbulence is absent. In_ order to make the



40

expressions compact, it is useful to define

A& ok [ DS
UW> = Wy pu= (2.¢)

which allows.us to write 2.5 as

A N
eo + ( eo u‘)/- x = O (2'—')
A&
Stewart defines U as the mass flow velocity. We

introduce the © symbol in order to clearly distinguish this
from the usual mean velocity U-u%, It is now natural to define
G U= o ?‘—*&/(e (2-8)

where we notice that U e tles Uty Wy
Using the definitions 2.6 and 2.8 as well as the

continuity equation 2.7 results in the equation of motion

DU“ — s roK A
(>° Bt = ()o ¢ - F + T“F/ p (2-‘7)
where
D oz 2 ¢ Q- )
Dt ot «
and
',T‘*? z - CC"‘&"‘

is the Reynolds stress. We have dropped the viscous stress in
writing 2.9 because dissipation on the molecular level is
negligible compared with the dissipation arising via the
turbulent stresses.

The equation governing the dynamics of the mean flow
energy is found by taking the dot product of egation 2.9 with

A
Use to give

(Z.IO)
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where we have written

<>

A A A A
" p = é‘ [u“)P t ul’:"] + é{ux”s - UF;‘]

SN + R,(’s

51}

Py

and E.p is the mean symmetric strain tensor.
The equation governing the dynamics of the fluctuating
flow kinetic energy are found by dot producting the full
Ay

equations of motion (using decompositions 2.4) by % and

taking the ensemble average resulting in

- [ (t“P-r i (aa"‘a‘f’> GL]F (2‘”>

Aty A

where iz pit uL/ceis the mean square velocity fluctuation.

The most important feature of these equations is that the
Reynolds stress interacting with the mean strain ( ?“P g“P )
transfers energy out of the mean flow and into the
fluctuations. The first two terms in the right hand side of
2.11 represent the work done by pressure fluctuations and
viscosity while the 1last term represents transport of
fluctuating flow energy by the turbulent stresses. To maintain

turbulence at all, some external agency (in this case the

external gravitational field due to the central compact
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object) must provide the strain E“P .

Turning to the internal energy, defining the quantities:

E = E+<‘e'/(’, ; PP —c—‘:/eo (2.12)

setting e-Cy , ( ¢v constant) appropriate for a

A
perfect gas so that 7T = f/%v and the temperature fluctuation

A

A ~ AT
O-ek, the mean square thermal fluctuation 6% (91/@ satisfies

the equation

Lpeey DUBR) g s, LBt - o%_ B
2 o Dt P =p g.-8 -
— A Al A :
_eo 66« 5't o'
v x(’ - 2!_ (ecv %8 )/.x
(2.13)

which may derived in the same manner as equation 2. 11

2.2 Consequences 0f The Mean Momentum- Conservation Eguation-

For- Thin Discs-

This section provides more of the details concerning the
radial structure of accretion discs and prévides some
background for the discussion in Chapter 1. We apply the
following four assumptions to the equations of motion 2.9 in
cylindrical polar co-ordinates ( see Stewart, p.41)

A) +the disc is thin with 2,«r, where 2., is the scale
thickness,

B) the mean flow is almost toroidal with

Va4 s 1G] » LGzl
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in fact we require

where

ut= v . u": U . ut: W

C) the mean flow is axisymmetric and symmetric about

2= 0

D) the size of the largest eddies A is of order .

1. The z-component of equation 2.9 is

()D(_\A] + W, W +V\),,,. U):-Covki - F”-.__ +’?’ii,i_+ ,".‘,ar’r (Z.H)

so that assumption B) makes the left hand side negligible
compared with the centripetal force. Using the thin disc

approximation gives

\Il
b ~_ i
ef"‘i‘" SR P = a (2.45)
r .

which is really amn equation of hydrostatic balance. Then

applying the estimates

Pe s - (o > [z,
(2.1¢)
Tzi,z = (’o 31/2,
where ¢; is the speed of sound, gives the result
z
L.Z_") x Cs tz (2"7)
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Now in usual turbulence theory, the duration t, of a

turbulent eddy of size { is
t, ~ L& (z.12)

so that equation 2.17 may be rewritten as (using assumption D)

2 %

te o~ b [ e 1 (z.12)
where M : &r/c, is the turbulent Mach number and tu«=r/V, is
the Keplerian time scale. Equations 2.17 and 2.19 show that
the Keplerian flow VK is always supersonic and that the
Keplerian time scale is the shortest time scale in the
turbulent accretion disc problem (i.e. t. > tx ). The time
scales reflecting fluctuating proceses are tied to the
Keplerian time scale in thin disc problens.

Withbreference to mean field theory (see Appendix 1), the
use of the first order smoothing approximation to simplify the
solution of the fluctuating and mean magnetic field equations
can be satisfied if we imagine the turbulence as a collection
of random waves where if Tu is the correlation time for such a

wave of wave-length /[

Thl <L aﬂ/ =« (V‘a«v\JOM wa\lcs) (2.20)

2. The r-component of equation 2.9 is

Qo(u+u'*W+u"u-\;}.)"f°\_}f—P,.i-’?r* T
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where by assumption B) the 1largest term on the left is
-V%. /v and from the result 2.17 the dominant term on the

o« » 2
right is -V« ¢./r so that

Ve Ve [ 008 Yoo (e.22)

which gives the mean toroidal flow as Keplerian to good
approximation

3. The @-component of equation 2.9 is

(:D(\‘jf» V,a W + (e V)

A

1=
e
n
<3
-G.
oY
3
+
~~
S
~
Y
<
hi
A
A\
-

and using previous estimates gives

D) U R L (e
-

,Z
2 (1.14)

-

Taking the vertical average (see Chapter 1, section 2) of

these equations and noting that T*%® pust vanish on a free
surface the equation becomes
U v -
CeW (e L <Fey) o an

- 2
r

which is equation 1.7.

2.3 Enerqy Balance For The Fluctuating-Fields-

Since the turbulence time scale +t.~%t,, the turbulence
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will be well mixed in both the z and ¢ directions. However,
long radial scale variation of mean quantities such as the
mean strain will result in the radial variation of the
turbulence. For thin discs then, the turbulence is
statistically homogeneous in each annulus r=constant. We turn
to the study of the fluctuation equations 2.11 and 2.13..

Oon the left hand side of +these equations we have the

appearance of the operator

D = 2 + 4.9

ot 2t
where ?2/>t measures the rate of change at a point and 4.9
represents the advective rate of change following the mean
flow. The P/pt operator then measures the rate of change for a
hypothetical point moving with the mean flow. For a steady
flow§L=o and if we have homogeneity of turbulent quantities,
i.e. they are independent of r, ¢, and z, then U.U=0 as
vell.

A stationary disc requires P¥/Dt=o; where Y :-%*or 087 .
Another approximation which is employed is to note +that the
divergence terms on the right hand side of the equations 2.22
and 2.23, which represent the spatial redistribution of energy
vanish in the case that our turbulence is independent of z and
¢. This can be seen by imagining that we integrate these terms
over an annular volume with cross sectional dimension Z, and

then applying Gauss's theorenm.

Equation 2. 11 then reduces to

%‘P E“ = F,u G"" - ‘t“P 2.“’, (2.26)
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In this equation, the left hand side represents the rate at
which energy is being supplied to the turbulence via the
reynolds stress interaction with the mean strain whereas the
right hand side comprises the dissipation of energy by
buoyancy and viscosity respectively. This type of relation is
common to many analyses of turbulent processes (see Tennekes
and Lumley (1972)). Equation 2.26 <concentrates on those
features of turbulence not directly related to spatial energy
transport. The turbulence interacts with the mean flow and
injects energy into the turbulence on the largest scale . The
dissipation by viscosity ( second term on right hand side )
occurs at microscales however. As Tennekes and Lumley point
out,iall evidence suggests that the viscous dissipation at
these microscales occurs at a rate dictated by the energy in
the largest eddies. With an energy density in the 1largest
scales of Qc&‘ and a characteristic time//&, the viscous

dissipation should occur at a rate(ﬁivy, ie.€.

”° Al ~ 3
._tPe_‘F =~ (Jou./j (2‘17)
Denote the components of the fluctuating velocity by

', \/', w‘)

(R
w
—~
<

in cylindrical polar co-ordinates. The main contribution to

T

p is the ¢-r component denoting the strain associated


http://Tennek.es
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with the Keplerian flow VK =+ N ; The left hand side is then
~ A oz
T ~p E‘,‘|3 * foCy U C—rﬂf) (2-28)

where the correlation coefficient is Cué.fjr/&ﬂ

In the case of small pressure fluctuations the buoyancy
term 1is approximately R‘.EC . Now the gravitational force
in the radial direction is balanced by the centripetal force
(the gas is drifting radially at a much slower rate than its

orbital period) so that the local gravity is mainly in the =z

direction. If we define 9= P. as the local gravity then the

o
buoyancy term is

r——————————

P, P 9 6'“' (z.zq)

where%ﬁ(o,o;3§. Finally, assuming a perfect gas allows us to

relate the density fluctuation e‘ with ©

£~ -B
(- T
so that we have
[’;A a'l" = —_C;g’ Co ® 5 (2,30)
T
with the velocity-temperature correlation coeficient

A A
Co = a' o /eu.,,
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Combining equations 2.27 , 2.28 and 2.30 with 2.26 then
gives
(en') e &* = - 4. G O + _Cf (2.30)
T Au
velocity

coupling the

which shows that +the buoyancy is
fluctuations to the thermal fluctuations, which we study next.

Using the same conditions that 1lead to equation 2.26,

equation 2. 13 beconmes
~ =TT —z,
T < @ a o = - 1"/..( 6 (2.32)

heating due to kinematic viscosity has been neglected.

where
The left hand side is approximately

~
p

693(‘99& + @, Cu

while the heat flux {‘is divided up into its conductive and

radiative parts with

where A is the thermal diffusivity and t~ is the time scale
radiative cooling. Introducing a thermal length scale Le

for

allows us to write 2.32 as
(2.334)
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or

6'—‘ - (T;t+j/cv) Ce‘(:

(’J/l-e + I/tr)

(2335)

Equations 2.31 and 2.33 represent two equations in the
unknowns ® and & . Using equation 2.33 (b), the equation for

the velocity fluctuations becones

+

(—rﬂ‘)cu&l = 3(_{,% + 3/5‘,) C; e

(Elte « 'e,)

3 (2.34)

152

>
s

Stewart makes this equation more manageable by multiplying

e ]! ..
throughout by[c‘.fiu bﬂn)] and by defining the parameters
z 2
PE Ce QO/C“ /@u

J’ = Lo /C‘,L J@u GPJZ')'t,-

R

11

;F (T2 +9/cy) . _L
(-en')*

and the dimensionless turbulent intensity

X =z 'J/C“ Lo (-r2")

in terms of which equation 2..34 may be written as

(x+Y)
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The parameter R:; is the Richardson number but more insight
into 1its role may be obtained if we note that using the
equation of state for a perfect gas

P o= e! (23¢)

R
7z
where R is the gas constant and e the molecular weight and
where RLM =% ¢, for a monatomic gas, we have 9=f?‘$‘ Taking the

v

derivative with respect to z of this relation gives

o D2 T <

so that the Richardson number in this approximation takes the

form

2 e L,
Ro= 35 % /(—rJz) (4.37)

In a stably stratified disc %ﬁ <0 so that R:>o and
consequently the buoyancy extracts emnergy from the turbulent
'kinetic energy. Conversely, an unstably stratified disc with
%§>o and K.<o shows that energy is pumped into the turbulence
via rising fluid elements. We shall assume a stably stratified

disc where Kivo,

The frequency

£B=(-3L3€o)i

fo >z
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(the so-called Brunt-Vaisala frequency) represents the
frequency of oscillation of a neutrally buoyant element 1in a
stable density gradient and the Richardson number R: given by
2.37 compares this frequency with the Keplerian frequency; the
basic frequency in the problen.

Returning to equation 2.35 we define

"3(") = _)T:?—L + X
(x+¥)

where f(x) is the ratio of the rate of energy dissipation to
energy production. The condition £ (x)=1 corresponds to
stationary turbulence. If £(x)>1 as an exanple (not
stationary), then we have greater dissipation than production
so that the turbulence ultimately damps out.

Solving f£(x)=1 entails nothing more than solving a
quadratic equation in x. Two cases are interesting.

case 1 Y=o

Here
x:[:m

ya

so that stationary turbulence is possible only for PR: ¢ ¢ with

damping i.e.fu)>l ) occurring when ﬁka>$. Experimentally it
is known that turbulence dies out when K: > 0.2 ( Tennekes and
Lumley p. 99 ) . Stewart goes on to arque that of the two
roots, ( assuming FK<¢ ) the larger one is stable while the
smaller root is unstable in that a fluctuation about this root

may either 1lead to ultimate damping or increasing of the
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turbulent intensity to the larger root. Since FR;-»O as z2-»> 0

( i.e. 3% =0 at =0 ) so that one always has a stationary
turbulence about the mid-plane of the disc with x=1. Using x=1
at z=0, together with the definition of x and Uu=lyt,, shows
that the correlation ¢, is c,=t«x/t;.

Case 2- ¥+ 0:

Again solving the quadratic equation for x shows that for

y < PR <.;(l+&")

two stationary turbulent flows are possible only the flow
corresponding to the larger root being stable. For
BR. <Y , one stationary flow is possible (i.e only one
root has x>0) and it is stable. Again we find that near 2z=0
(with Fqu 0 ) stationary turbulence is possible but near the
surface regions the relation of pBR tp ¥ is crucial.
When FR; is large relative to § these regions must have
a laminar flow because the turbulence damps out. Conversely,
for large relative to PR; , the disc is turbulent right
to the surface. As Stewart points out, this is explained by
noting that large Y corresponds to rapid radiative cooling
which destroys the temperature fluctuations and hence
decreases the buoyancy effect.
In conclusion, it should be noted that in Stewart's
analysis t,» tx with t.*tc only when the turbulence is sonic or

supersonic. With Keplerian time scales of 10~® sec. for the
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inner region of an accretion disc with a rotating black hole
and 10"* sec. for a non-rotating hole ( of mass My= loMs), in
order for the turbulence to be responsible for the rapid X-ray
variation (hot blobs rising to surface as an exanple)
Stewart's analysis would suggest a sonic or perhaps supersonic
turbulence to be present. Our own work will show ( Chapters 3
and 4 ) that energetic solar type flares may account for these
rapid variations even in the case of subsonic turbulence in
the disc.

We now turn to generalize the study of fluctuations in a
turbulent accretion disc to the case that magnetic fields are

included.

3. Equations Of Motion Including- Magnetic Fields-

3.1 The Basic Egquations For A Fluid In A Magnetic Field-

We now wish to study the dynamics of a turbulent, thin
accretion disc when magnetic fields are included. To this end
the complete set of equations describing a magnetic fluid are
listed after which the decompostion of these fields (including
the magnetic field ) into mean and fluctuating parts will lead
to the same type of analysis for the fluctuations as found in
section 2.3.

For a magnetic fluid the continuity equation 2.1 is still

valid. The Navier-Stokes equations 2.2 must now contain a
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contribution on the right hand side from the Lorentz force.
{’-}X‘E/c = (vxb) x b /uw

This force may be written as the q;vergence of the Maxwell

stress tensor, i.e

ot o<
£ . (;'F‘/.P (2.3¢)

where _
o “P =(l," LF— _li(b"o;) S"P) [ ut (2.39)

and hence equation 2.2 becones

(pu*) + (Qu“uf’);p = (q”x T AT SURRATTY

P

The electromagnetic fields in moving conductors are given

by the equatioms

-1 22 = Ux &
(& Dt
oxb = wife = WO [ uxe]
c 3
where U-b=0 and where o 1is the conductivity.

Solving for the electric field e in terms of b by the
second equation, and substituting into the first, assuming
that the conductivity is uniform (or nearly so ) gives rise to

the so-called induction-equation of magnetohydrodynamics,

°2 < Ux(4«xb) +A(Y7"g (2.41)
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where the magnetic diffusivity 1 is defined by q_:czémn The
use of this equation implies that the conductivity is
independent of the magnetic. field which requires that the
mean free path of the electrons be small compared with the
radius of curvature of their orbits in a magnetic field. This
condition may break down in regions of sufficiently low
density or high magnetic field strength. More details of the
derivation may be found in Moffat's book (1978, Chapter 2).
Finally, the conservation of energy equation must be

amended to include the magnetic field. The full equation is

H$IT

i[(éemcf'q*ﬁﬁy v. {C‘ii—i“z*“"/c -¥) eut ”t}*

+c exb /yr

(2.41)

where the energy density Lz/eﬁ‘ contributed by the magnetic
field has been included on the left hand side, and the energy
flux density %'g)<b (the Poynting vector) has been included
on the right hand side. Writing e in terms of &

again, the Poynting vector takes the form

which is then substituted into equation 2.42.

Equation 2. 42 may be simplified by the same procedure
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that 1leads from the conservation of total energy to equation
2.3. Specifically, we take the dot product of W with
equation 2.40 ( using the continuity equation for additional
simplification ), the dot product of b with equation 2.41,
and subtract the resulting equations from 2.ué ( with the

substitution 2.43 ). After some algebra one finds

ol

(ee) Al (Geu&)}x = FU/'R - t.‘l?/,F - 1‘),‘ + j‘j,( (,z.t{%)

where we recall =§w Ux b . Comparison of 2.44 with 2.3
shows that the equation for the internal energy is modified by
the addition of the Joule heating tern j?/w giving the rate
of evolution of heat due to ohmié dissipation. Equations 2.3,
2.40, 2.41 and 2.44 along with +the equation of state

p = Ccz form the basic framework of our analysis.

3.2 Equations Governing The-Mean And- Fluctuating-Fields-

The décomposition of the various fields into mean and
fluctuating components is now introduced where in addition to

equation 2.4 we introduce b - E*—Q with b = B ( and hence

—g =0 ) with

“p « 2 ox
zZ "= = [ R RP -1 B S‘P}
R L [V 8P+ 0P - (b°5,) S“F—J

Vowmy = 4 lx',‘;_":.x
P [ LTUP -1 SF]
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(a) The Navier—-Stokes Equation-

The equation for the mean velocity field is
e.\&") . (oﬁ" (&");P = e TR TP+
+ (ZdP—'P + :'_"_;F;P (2#:)
where the 1last two terms are the effects due to the Maxwell
stress.
To find the equation for the energy in the mean velocity

field we take the dot product of ¥ with equation 2.45 and

find

(2.46)

where we see the Maxwell stresses interacting with the strain
?“P of the mean velocity field to transfer energy out of
the mean flow.
The energy in the fluctuating velocity field is found by
taking the dot product of Ql with +the fully decomposed
equation 2.10 and then averaging. The new term that arises as

compared with the equation in the absence of magnetic fields (

2.11 ) is

AN Z""F Lo . 1
o ( Jpt TP, o PJP)
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We manipulate this factor as follows:

——

At

‘**(Zﬁilﬁ ¥ ".xPLP ¥ W"“P;ra) - (& Z“FJP " a;a'*pl,,, ) *

of

+ u;g-'-‘]!_P
We note that

Al <!_|"| '
u
3 ;P = M.‘U"‘P

al . 1 . -
if the definition of u* in terms of u* 1is used (equation

2.8) « Using the definition of ¢ P a rearrangement of this

term gives

u. L [(VHESXE' +(‘7’<.‘3')x5~\

It is most instructive to introduce the electric fields

induced by the presence of fluctuating velocities by the

definitions
€2 Wab /o
(2 40
€| = u.|x E /c
If we remember J. ¢ vy B® and ;'.c gxb , then
«n - ¥ T -
u;GJ"F)P = - g-l - g'. j_’ (2"\(8)

The fluctuating kinetic-energy equation can therefore be
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written as

(147)
with the new magnetic terms added on the last line. The ternm
(Z“ﬁp+-dVﬁP)'aL has the same effect as -P'“4, in that it
adds the pressure (Bz*'zl)/eﬁ to the fluid pressure P and

hence contributes to the further damping of the . turbulence by
buoyancy processes as already discussed. In the absence of

density fluctuations, the most important effects of the

magnetic field are the terms - &J - gl § . Here the

electric fields, induced by the interaction of the fluctuating
velocity field and the magnetic field, do mechanical work on
the system in the presence of currents. We will later confirn
that these terms extract energy out of the velocity
fluctuations and pump it into the mean and fluctuating

magnetic fields respectively.

(b) The Induction Equation-

1
Assuming the decomposition b= Bab as already

discussed, and using the same decomposition for the velocity,
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equation 2.41 becomes after averaging

'J 1 2
_E —_-Vx((:{_%%-u-l:x_(g‘)(-slvs (z-fo)

We notice that in turbulent fluids, the correlation of the

fluctuating magnetic and velocity fields gives rise to an

electromotive force g'xgl not present when the flows are
laminar. The counterpart of this term in the mean Navier-
Stokes equation is +the Reynolds stress. Here the similarity
ends however because as Moffat ( p. 248 ) points out the

Navier-Stokes equations, being non-linear in u do not permit

=
the ready calculation of wud in terms of mean quantities

such as U . Because the induction equation 2.41 is linear in

the magnetic field however, it is possible to calculate Qxh'
in terms of mean field gquantities such as B in a
satisfactory manner. The detailed discussion of this theory is
presented in Appendix A. It is important to note that the
length and time scales over which the mean magnetic fields
vary is assumed to be much larger than the scales involved for
the fluctuating field b' « This idea of separation of scales
has been used in the development of +the theory of equation
2.50 and has received some support from detailed computer
simulations by Pouguet et al (1976).

Equation 2.50 will be studied in detail in the next

chapter. The equation governing the energy in the mean
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magnetic field may be found by taking the dot product of

equation 2.50 with B/4y . Making repeated use of the vector

identity
\7 (6_)(]_3_) = _5, UKE - A vx B
gives
= - = ] |
K;"_) lé (Vé) +<E,¢.L) V_)(_E + 4 5 VJ.—& .
& "
+ LT {(( wx B) +(u'xc,))x3‘}
4
vhere recall V-Z = L(vxB)xB. Further use of vector

identities including
B.UB = ~B.oxoxB = - [ U.((7xB)xB) « (Uxfs)z—-}

allows the above equation to be written as

kS _ 2
£§> = 2t E v (deB) . UxBy - () (Ve B)T e
3w = B
e [teaee o wip)es ug) - yug]
i 4
where E is the symmetric strain tensor arising from U . Now

it is easily shown that

i-
~~
sy
»

w
N
*x
v
t
<
LU
i
{
/-\
1w
RN
<

so that with a little manipulation with this factor and use of

the definition ¢ =.§xg'/c gives

(Bi) +u,v(%:) : (%5_:) eu + Z:E +£1 -7 .

- v.[i(Vx§)><L’>‘—£§x§‘l (2.51)
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The right hand side of this equation contains the work done by
the magnetic pressﬁre lemr, the interaction of the Maxwell
stress with mean stress, our é-j' term which here enters with
a positive sign while in -equation 2.49 it énters with a
negative sign, the dissipation due to Ohmic heating, and the
divergence of the electromagnetic emergy flux which takes the
form of the Poynting vector for a moving conductor. The
appearance of + £.7 in equation 2.51 and -£.3 in equation
2.49 for the fluctuations indicates that energy transfer from
the fluctuating velocity field into the mean magnetic field is
occurring. In order to have an advective term on the left hand

—

A A
side of W .U (Bm) we use U- Q-+§‘ with E:- E+

=

nny

(using

equations 2.6 and 2.8) to obtain, with a little rearrangement,

wﬂ

(Bi\ ;U (B G- B oA
P (” ))‘ = (;&> W .ot 2 (E“P+ e*P) +

an
£ 5T, - TL /e -

[y oo g o) 5],

(1‘5'2)

The induction equation for the fluctuating magnetic field
is found by decomposing the full induction equation 2.42 and

subtracting the mean induction equation 2.50 to give

2
ot

= Ux (Uxb «u'x B +§) * WVZL (2.53)
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where

G = oukl - el

Neglect of the tern Ux & (the "first order smoothing
approximation ", see Appendix A.1) 1is possible wvwhen the
turbulence is imégined to be a collection of random waves with
7, ¢« du /% . We shall be adopting this assumption in our
calculations, and more about its role may be found in Appendix
A.2. To fiﬁd the equation for the energy in the magnetic
fluctuations we take +the dot product of equation 2.53 with

E/qw . Proceeding by exactly the manipulations we used

to £find equation 2.51, the result is:

_L—‘) W ?) .- ?)v. — — -
(—;T‘ +"'v(s«n ('{n— 4+ g, . g -

N

nm

~ v 1 1 _ ’ ]

V. [«'}r’ (vxb')x b q—?r £'xb (1,53 b)

analagous to equation 2.51. In this equation the fluctuating
magnetic pressure b /XT is doing work, the fluctuating

magnetic stress which transferred energy out of the mean flow

is here acting as an energy source, the ;ﬁ}' term - is
transferring energy into IF from the fluctuating velocity
field, Ohmic dissipation due to the fluctuating currents is
dissipating energy as heat, and finally the divergénce.of the
energy flux vector ( which takes the form again of a Poynting
vector in a moving conductor ) is the last term in 2.53b.
Again, in order to have the same type of advective term on the

left hand side of 2.53bas Stewart has, we follow +the same
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procedure used in going from 2.51 to 2.52 to find

:L:;) aa{?z) _ ‘o—lz A x A -
(8\1 * i VL (fo) U.o + "p (E"P +e‘f,)+
+ £y - Jujl le -

(c) The Internal Enerqy Eguation-

The correction due to the magnetic fields is simply the
addition of the Ohmic heating term appears in equation 2.44.
If . this equation is averaged (using the standarad
decomposition), we find thét the mean internal energy equation
for ’E has the terms (52+ ?1) [ o as source terms on the
right hand side ;of the equation indicating that the Ohmic
dissipation 1/ of the mean field B and the Ohnic

F

dissipation jq,/d" from the fluctuating field bk are being
transferred into the mean internal energy.
The equation for the mean-square thermal fluctuation is

just
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It turns out that because the diffusivity ~ and not a
turbulent magnetic diffusitivity appears in this 1last tern,

that it is negligible as far as the ¢ fluctuations are

concerned.

(d) Summary

The energy flow arising only from the new magnetic terms
is summarized briefly. These effects are in addition to those
discussed in section 2. Here we ignore the terms appearing as

divergences ( V.[ 1 ) as discussed in section 2.

(1) Mean—-flow Kinetic Energy:- ( equation 2.46 )

1. Energy loss - (ZfF-+;r:F)3LF due to interaction of

Maxwell stresses with the "mean" strain.

(2) Fluctuating Flow Kinetic Energy:- ( equation 2.49 )

—

1. Energy loss - - ( Z"F + o'=p ) ;LF due to
‘interaction of Maxwell stresses with strain ELF -
2. Energy loss -(E“LL-+5*J;) due to the presence

of fluctuating electric fields in a turbulent medium.

(3) Mean Magnetic Energy:- (equation 2.53)

1. Energy gain + I7P( E‘Ff ?“P) which arises from

the mean and fluctuating velocity fields respectively

2. Energy gain +&°J, which arise from the fluctuating
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velocity field
3. Energy loss —]d,/w which goes into the nmean

internal energy.

(4) Fluctuating Magnetic Energy:- (equation 2.54 )

1. Enerqgy gain + g:q><§ﬂ;+%tr) arising from the mean
and fluctuating velocity fields respectively

2. Energy gain -?:3: arising from the fluctuating
velocity field

3. Energy loss EEI/T which goes into the mean internal

enerqgy
The next section will concern itself with the effect the

magnetic fields have on the structure of the mean flow.

3.3 Consequences Of The Mean- Momentum- Conservation- Equation-

{Including Magnetic Effects) -For-Thin Discs-

This section is entirely analagous to the analysis in
section 2.2 except equation 2.45 ( which includes the Maxwell
stresses ) is used instead of equation 2.9. We use exactly the
same approximations ( thin disc, axial symmetry, etc. ) as
given in section 2.2. In addition, and in conformity with the
usual MHD assumptions,we add

(E) the 1length scale 1y over which the magnetic

. ' . "
fluctuations b occur are of order of those over which the velocity

-

fluctuates; ,fg)' x /@u .
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In the low Mach number regime; M ,<<1, we have 1,<<Kz, (see

Shakura et al (1978) and Chapter 3) and it is consistent from
the "separation of scales" idea to imagine that the mean field

varies on length scales LX»z,.

In the high Mach number-regime; M, =1, we have 1l,~z, and
the idea of a mean field is really oniy valid on scales L>>zZ,.

Chapter 3 will compute the.structure of the mean magnetic
field in the low Mach number regime , and in Chapter 4 it is
shown that this regime produces magnetic fluctuations of a
magnitude sufficient to explain the shot-noise model as has
been discussed in Chapter 1.

1. The z-component of equation 2.845 gives with the

assumptions given (ccmpare with 2. 15)

= - F;?. + f‘-“za/i + Zifz + 0'"""’} (z.ré)

r e

¢ v

—‘:z

and using the estimates

L x RN Ty (Mg <)

s L [gw =, (Mex )
(2.51)

Z.“,a z Bz /‘?T’ z, (Ht<“)

shows that
V. T ./ T O
(é) 2 (Q{-Vn) + ) [+ & ] (M, «t)
V>
> ¢, o+ '(Il + CAI ("1*z|)
s T H r T

(2.58)
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vhere the Alfven velocities

V,Az = Bz/ﬁ?(’o XLV e .

n

have been used. Thin discs then require that in addition to

the requirements in section 2 that

2 ~ 2
Vﬂ /V: << | i Vﬂ /VKI << fu/go (M_(,_ <<l)
4’;;41/\/,: <e | (Mtzl)
The previous inequalities are derived under the

assumption that we are averaging the fluctuations over the
large~scales and long-times characteristic for the mean flow.
These scales may be identified as r for spatial variation and
the drift time scale to=r/u >>t..

It is important to note that the possibility of 1intense
fluctuations

A

on short length scales 1, and on very short time scales Tu<ty
is not ruled out.

2. The r—-component of equation 2.45 gives to lowest order

V= Vg

provided that the results for 2.58 with %#/r <] hold.

3. The d-component of equation 2.45 gives

(f,u>(rvk)“’ = (rz </7\'¢r+z‘ér *_;_‘—“o—,.>)

.
"‘ (259)

VAl
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More will be said about these Maxwell stresses in this

chapter and in Chapter 4.

4.- Enerqgy Balance- For The- Fluctuating- Fields (Including

Magnetic Effects)

This section proceeds in similar fashion to section 2.3

~ 2 ~

except we have now three coupled equations for u | 6% and

~ ~

2 z

L* instead of just two for a and © . We assume
stationarity (i.e. D/pt = 0o ) and discard the termg in these
equations involving divergences of quantites.

With these stated approximations and assumptions, and by
splitting up the Maxwell stresses into diagonal ( the magnetic
pressure ) and off-diagonal parts, the equations governing the

fluctuations are from equation 2.49

- \: P+ LB’+F)M} o + P2 + TP E -

em “P “p

(2.60)

[24

- (Biffi:;ft:¥F> 2~ - £ 3. - £h‘y¢ = O

4T

P

from equation 2.54

——
1At

_B'Fu“/-‘,( - e, T (f‘)‘u"‘ ,,41?)‘(Vx'_o)

2 o Al

9% b = (2062

vV o

where in writing 2.60 the remaining term arising from the off
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diagonal Maxwell stresses may be writtem as a divergence and
hence ignored.

A11 of the purely hydrodynamic effects will remain
unchanged from the estimates used in section 2.3 if we assune
that the magnetic fields do not alter the underlying
turbulence too much. This will be an assumption we shall
employ throughout this thesis and justification for this

procedure will be found in Chapter 4.

(1) Analysis Of Equation 2.60-

We note that the first term is approximately

(2 ¢ Po B+ S ) | 1’;;_

and from equation 2.56 which expresses magnetohydrostatic

equilibrium we have

_ X 92 (P+(Bz+fz)/sﬁ> = 9 [2.63)
o 0%

so that

[P""+ (BI+CZ)’/M‘J w, = 9 U e , (2.¢4)

The next terms are the viscous dissipation and the energy
source which are given by equations 2.27 and 2.28

respectively. In comparison to the first three terms, the term

: (B‘*BF + L"“Llp) ?LMF
sl
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will be treated as negligible since only the small strain
QLF is involved.

Finally, we consider the terms £.7 and ET? . These

terms are computed in Appendix B where we find ( equations

B.31 and B.34 )

|

[
'
s

" R?
7o T

(%3

T}

T~ B [

(L2)* Ly (2.65)

- -1 -
Le = ¢ 2¢/5: ; L2 = 37 oB/ae

where the length scales for the mean density L; and magnetic

field L: are defined and where the turbulent diffusivity =, is
M. x W T (1'(’(’>

As already discussed, ;:F and £.] are the rates at
which energy from the velocity fluctuations 1is being pumped
into the fluctuating and mean magnetic fields respectively.
From equation 2.65, we see that §—J is positive only if +the
vertical scale of the mean field L: is larger than the scale

Lz for the vertical density profile. It is precisely under
these conditions that the magnetic field is stable with
respect to the magnetic buoyancy process (see discussion later
in this section). When LZ/Lz <1, the magnetic field cannot
exist in a stable configuration and such a region of gas

becomes buoyant.
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The other important feature about equations 2.65 is that

the ratio

SE A <f; )1 S

Lu
holds in the low Mach number regime M, <<1. We see that energy
is being transferred into the magnetic fluctuations at a rate
(ngiu)L faster than the rate .- into the. large-scale mean
magnetic field. If we approximate ng Z., as an example, and
denote 4T, as the growth time scale for the mean field , and

o7T; as the growth time scale for the fluctuating magnetic

field, then
~—~ A -
Llg = (-Z’/lu ) DTZ = My o7

We will assume that we are in the low Mach number regime
for which s.{'>> £.7 ..
Collecting all these approximations and substituting into

equation 2.60 gives

~ 2

(— rJZ') C. W =

t
()
@
£
@,
D
W
N

+
Is?

A S (2.67)
AL HT 0,

-
>~
&

In this equation we find the energy source of the velocity
fluctuations given by the Reynolds stress on the left hand
side balanced by losses to the turbulent kinetic energy by

buoyancy, viscosity, and energy transfer into the magnetic
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fields.

Equation 2.67 shows that we must provide an analysis of
the ultimate mean field energy Ef/gv in terms of the
turbulent kinetic energy if our equations are to be closed.
This is a very difficult problem in general. If the mean field.
grows to equipartition strengths ( via dynamo action ) it must
very strongly effect +the turbulence in such a way that no
further growth is possible. However, Malkus and Proctor (1975)
have analyzed a mechanism by which the mean field growth is
arrested at below equipartition strengths, a mechanism which
involves the generation of large scale velécity fields instead
of the suppression and altération of the underlying
turbulence. As already mentioned, this is discussed in Chapter
4 where it is shown that in line with Malkus and Proctor we

estimate

BIIL{»TTGD ~ O (-Szn'“'r) (Z.CIO

(2) Analysis Of Equation 2.61:-

The use of equation 2.65 to approximate £

"o euw) Wﬁ%dﬂ] +[ﬁ-$ o
o lE 4w s pr?

where we have noted that U is axisymmetric and U"» U?
and where

V7le = w (728)" &y _L—__

4 A T
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in which Zj is the relevant scale length for the fluctuating
current. We have grouped the first two terms together because
they represent magnetic interactions with the. mean velocity
field, wvhereas the last two terms represent processes on the
microscales.

We first note that the Ohmic diffusion time scale is

2 %
lu/n ( see Moffat ) so that we set Zfz . and hence

[- b™ 1 2 (eUr) 4 T Cﬂnfj] N [ me BY - BT 1.] - o
r bY‘ ju
(z.70)
In the absence of a mean flow field, equation 2.70

reduces to

(2.1

which is exactly the result found by Krause and Roberts (1976)
and their analysis is summarized in Appendix A.2. This
important result shows that in astrophysical settings where

S the fluctuating fields can be mnuch more powerful
than the mean magnetic field. It is very importamnt to note
that this result ( equation 2.71 ) does not violate the first
order smoothing approximation (see Appendix A.2). As Krause
and Roberts point out, the part of ) that is correlated
with o (b

) is of order

Covr

l°‘cm s (T /i) B o« B (2.72)

* This result is valid provided that 7&le@«,an approximation valid for the
sun and assumed valid for the accretion disc as well.
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where the last inequality is a consequence of the first order
smoothing'approximation in which the turbulence is idealized
as a collection of random waves with ﬁ.&/1¢<<1 .

We now consider the effect of a mean flow on the results
of Krause and Roberts. These authors obtained the result 2.71
in the absence of a mean flow by solving the induction
equation for the fiuctuations

% T . gkl xB)

t

as an inhomogeneous equation using the Green's function

- 3/7_

G(T,i) = (4_'417) ex;:(‘f/q’f)
for the diffusion operator

P &
)t 1

Krause and Roberts (1973) consider how these results are
affected by the presence of mean flows. When we have a non-
zero mean flow U, the induction equation for the fluctuations

may be written ( taking V4% =0 )

! ] t
2 (UevE - bvu) -4
3t

,o = Vx(g'xl_'.%)

Regarding U as a constant over the scales that E varies then
if we Fourier transform the above equation for b the
frequencies w over which Q'vary are Doppler shifted by the

mean velocity U to
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so that the mean flow has a negligible effect on the result

2.7% provided

1<
A=

(24

t| |

or in other words, if T is the time scale and r the length

scale for U,

- \F-.l

« Ly (2.72)
-

This same result is found using the Green's function

approach if we note that the Green's function becomes roughly
=312 2
G(T,g) = (47T4(T> zxr(_(g'u’r)/’l(?’)

Hence, in the 1limit 2,72, we find that equation 2.71

holds so that from equation 2.70

LeLr (rn') - VP o) 4o (2:73)
"or

In the small correlation time limit, and for Tu <KT, the
time scales over which the last two terms in equation 2.70 are
in balance are much shorter that the time scales over which
enerdgy is being transferred out of the mean flow ( the first

two terms in 2.70).
The 1limit 2.72 may be regarded as the smallest time T,
that gives the result 2.71 (and consequently 2.73). Equation

2.73 shows that on Keplerian time scales, the fluctuations
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!
ﬁ*are much larger than b" . This is understood by observing
that on such time scales, the strong shear of the Keplerian
flow is stretching the radial field lines of b"™ into toroidal

field lines of b* . Rearranging 2.73 slightly

L

—_—
~ g

’ b4
b

.l_A_r } = BF! <e | (2-’74)
u? Vi

~2

where b>>b" implies that b=b*%* , Noting that

P
we may write equation 2.74 in an interesting way:
Y ~2 - ¢
g e = { b /4T§o‘} (:, W w (2‘_15)
ut *

ot . .
Now (,u W' is the magnitude of the stationary stress as

discussed in Chapter 1. 0On-the long time T>>t«, long scale

L>>z, magnetohydrostatic balance is maintained. Then from

equation 2.58

(ﬁﬁWF@)HT << V:

where we use L, T to denote these long scale averages. Thus

from equation 2.73

<« (,,,u'u*

so that the Maxwell stress due to the magnetic fluctuations is
negligible and cannot determine the long scale structure of
the accretion disc..

However, on short time-and length scales-, it is possible




79

to have magnetic fluctuations up to a maximum amplitude of
Iz/qwco LUt 2 | (2.7¢)
For these scales, equation 2.73 shows that
T . (au'U4

so that the Maxwell stress from the fluctuations, in small
regions and for short times, are of order of the mean, long
scale averaged stationary stress (of magnitude @(A'M* ). We
return to this point in Chapter 4.

We note that using the result 2.73, and examining the
induction equation for § using the assumptions of axial
symmetry and disc thinness, that the limit 2.72 may be relaxed
somewhat. The point here is that since the fluctuations b"
are small compared t0'H¢ , the equation for b¥ shows that the
terms involving the mean velocity are

(wov —bou), o (Ui, bt - ut

or
assuming that the fluctuations are independent of z and ¢. If
the fluctuatiomns b are small enough compared to 5* (as
equation 2.73 shows) then the mean field terms for the
predominant fluctuations b% nearly cancel out. This implies
that we may take the correlation time limit up to values

Tué t without too seriously affecting the validity of 2.71

and 2.73.
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Finally, it is important to note that when
EL/WT°'>c§ , the region wherein we find such a high field
strength becomes buoyant and rises in the disc, a phenomenon
first noted by Parker (1955a) and discussed more generally by
Gilman (1970). Basically when the magnetic presure becomes
large enough in a region, and assuming at least initially that
we have pressure equalization, the gas pressure must drop and
if F"f s We see that the density in this region decreases.
Consequently, this region ‘of high magnetic field strength
floats upward in the gas { dssuming ?g <0 ). This phenomenon
is called "magnetic buoyancy" (coined by Parker ), and must of
course transfer energy out of the turbulence and cool the
region of gas in which this high magnetic fluctuation is
prevalent. It 1is thought to occﬁr in sunspot regions on the
sun vhere very intense fields~10> Gauss ( much higher than
equipartition strength ) emerge from the solar surface.

We believe the sane mecﬁanism is operative here. The
presence of intense magnetic fluctuations lcwqﬁﬁ:~ Vi does not
violate the thin disc assumption because instead of bulging
the disc so that z.~r , these fluctuations are associated with
a buoyant region that rises up and eventually results in the
emergence of these fields from the surface of the thin disc.
We note that the rise time of these regions is roughly the
Keplerian time scale. The <condition that this magnetic

buoyancy mechanism be operative is that the 1length scale of
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the magnetic fluctuation be 1less that the density scale
height, i.e that A, <z, .

The analysis leading to eguation 2.73 leads to the result
’L ——
yrr

As we have seen for maximal magnetic fluctuations
11Mﬁ€°x V: r the stresses induced are e »(,M'M4. Since
magnetohydrostatic equilibrium on time scales Ts {u/V.is being
violated we see that we have large fluctuations O(ptﬂuf)in the
stresses responsible for angular momentum transport outward (
radially ) and net radial inflow. Only if averaging is done on
length scales L» 2. or time scales T» 2./Ve is it possible
to discuss magnetohydrostatic equilibrium given by equation
2.59 or equivalently, equation 2.63. TheseA large magnetic
fluctuations then are to be considered as deviations from the
mean magnetic fluctuations, which over time scales TS)th_will

be of order twﬂffa $¢

(3) Analysis Of Equation 2.62-

Using all the approximations that lead to equation 2.33

(a) , equation 2.62 is

— ~ . A, AT, ~ 2
(IIE+B’§>COG(A S 19(7;(_[2)1 —_—Lu _E
eac\l (DCV Lo tf
Estimating the Ohmic dissipation term gives
B loxb)y . e ® [E .2 Ia,s}
Sl N
-] [}

n

~ (% T B/ 4.
(o O U (E‘LI“) ‘: /;:rca + b Bi:u(v}
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Hence

- - 5 E + A ‘ \
= -0 [10 tj (2.77)

The important factor here, the turbulent magnetic Reynolds

number (R: >‘|= gi ¢« | limits the role of Ohmic heating even
in the case o; ;aximal magnetic fluctuations.  Equation 2.78
shows that because of Ohnic heating, the temperature .
fluctuations take a higher value than in the absence of
magnetic fields.

Consider first the case where time scales are of order

2,/V, with maximal fluctuations. With a mean field below

equipartition we have

z ~ ~ 2 ~
((Ttw) S1 B )csm . -a[g e i
goCy IuCv dme, Lo tr

where we have used equation 2.77 and M /g flu=! . If the nmean
field is at equipartition strength Efﬁm-p ~c; , thenm the
heating due to those large magnetic fluctuations is
significant and acts to make regions containig the
fluctuations hotter than in their absence. However, since we
deal with mean fields below equipartition, this magnetic

effect will be taken as ignorable.
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For longer time scales where we have magnetohydrostatic
equilibrium the magnetic terms are < ¢ /f.. Now since
(R:)"«l , the magnetic effects are entirely negligible. ¥We
conclude that even for the largest magnetic fluctuations, as
long as the mean field is below equipartion strength, the
effects of Ohmic heating are negligible and that equation 2.33

{a) 1is still a good approximation to use for the magnitude of

the thermal fluctuations. Hence

§ o -(Ter 2, Ba) e

(U/Xe + l/tr‘)

(2-79)

where we notice that g, given by equation 2.63, contains the
magnetic pressure as well and that only the fluid pressure
appears in equation 2.78.

We now combine equations 2.78 and 2.68 into equation 2.67
using the estiméte 2.66 and where g is given by equation 2.63.

We then obtain

2 .2 _
(- V'J?,‘)C\L’l:l & CO w 1 C l,e + ‘O-I;Cv PJE + a-; . ~ Y T,z
- —— — «
T - e
(“/18 + ‘/'(:r) L L
(z.'IQ)

If we note that W=~ 4{./t, and that the last term in
equation 2.79 may be written & N (T./t)" , the magnetic

term adds an & dependence which is the same dependence as
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found for the Reynolds stress.

As in the analysis leading to equation 2.53, we multiply
by EQ?,L?GFQWB]_L and by using the definitions of f and y o,
as well as equation 2.37 for the Richardson number ( where g

is given by equation 2.63 ) we have

£y (2.52)

n
w
=
< .
+
X
+
WA
1

where
§ = C—L (:“‘ )z (1.8')

and as before

Xsa/cugq(-fﬁl) = D’fx /Cu_lu

The last term in egquation 2.80 represents the energy extracted
from the turbulent kinetic energy by the term {tf t §-I .
As pointed out earlier, we feel the assignment 7. £ t« is

appropriate in the disc so that we have

g = @’—K [te) 1 (z.yz)

Cu
As in section 2 wvwe need only solve equation 2.8 in x.
Again it is easier to split the analysis into two <cases for

convenience.

« = ()t (3-0r -4pRe
2
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so that stationary turbulence is only possible provided
2
BR: < (-8)" /4

with of course the requirement that $<] . As §—>1 3 FR;_,O v
so that turbulence in the whole disc is shut off. If
3:{2;)1 é s We see that +this corresponds to the 1limit of
supe;sonié turbulence if Cu is estimated as ti«/¢t, . This
begins to defy the validity of the theory we have used to

derive these results, however, and the situation for S— | is

probably considerably more complicated.

Here we find that for

yli-g) < BR: < # [ Y+ ('-gﬂz

two stationary turbulent flows are possible, only the flow

corresponding to the larger root being stable. For

FR;< Xf"%]

only one stationary flow is possible and it is stable.
Comparing these results with those found by Stewart in
the absence of magnetic fields, shows +that for small Mach

numbers Mg <<l , the extraction of energy from the turbulent
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kinetic energy by the magnetic fluctuations makes buoyancy a
more effective agent in damping the turbulence ( i.e. pR;is
restricted to small values if we are to have stationary
turbulence ). Furthermore, local extreme magnetic fluctuations
Z‘/%W@ »C: cause large local yalues for /3Rz which as we see
above results in the shutdown of the turbulence in the region.
Our analysis may be put into perspective if we restrict
ourselves to 1low Mach numbers My« | wherein tx/h;«!. The
first order smoothing assumption is valid provided we are
considering time scales for turbulent disturbances 7;;<tt=£2'.
Since the Keplerian time scale seems to be the fastest onélin
the problem, by focussing on the time scale 7T, ¢t , the first
order smoothing assumption 1is being satisfied for Mi«! « On
this time scale, equation 2.71 holds even in the presence of
mean flows and hence large magnetic disturbances can occur.
These are to be thought of as local strong perturbations of
the overall fluid. Our scenario suggests that as the energy is
being transferred into the local fluctuating magnetic field,
the turbulence is damped out, the fluid cools and the magnetic
field rises to the surface of the disc on times t«x for the
largest fluctuation 'IVQWeoz\i'by some magnetic buoyancy type
process. These loops of intense field escape from the disc by
undergoing reconnection with a neighbouring loop in the manner
described in Chapter 1. We leave to Chapter 4 the calculation

of the strength of these local intense fields.
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We turn now to investigate under what conditions a mean
field can be generated by turbulent dynamo action in the

accretion disc.
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Chapter- 3-

Solution Of The Induction  Equation For-The Mean Field B-

1. Introduction

As has been pointed out in Chapter 2 and Appendix A,
additional terms appear in the induction equation for the
magnetic field in a turbulent conductor as contrasted with one
in which only laminar flow is occurring. When only a mirror-
symmetric turbulence is present, a turbulent diffusivity m, is
added to the wusual molecular diffusivity v of the.mean
magnetic field, and in conditions of high magnetic Reynolds
numbers (as usually found in astrophysical flows), M > o .
This indicates that the idea of "frozen- in" field 1lines of
mean magnetic field is incorrect for strongly turbulent flows.
When the turbulence possesses helicity, a mean current J
parallel or anti-parallel to B arises and has the effect of
regenerating the mean field. Steenbeck, Krause, and Radler
(1966) were able to show that the presence of local rotation
and a density gradient induces helicity in the turbulence,
thereby providing a mechanism by which dynamo action ( self
excitation of +the mean field at the expense of turbulent
kinetic energy ) could sustain mean fields ( the so-called
"X —effect" ).

When the mean field remains weak (i.e much below equi-
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partition with the energy in the turbulence ) the Lorentz-
force arising from these fields appearing in the Navier-Stokes
equation may be regarded as negligible. Consequently, in this

situation, prescription of the flow and the turbulence

characteristics allows the calculation of £ =¢§x§' in terms
of B and various quantities arising from averaging over
turbulent velocity fluctuations. The solution of the induction
equation for the mean field ( equation 2.50 ) is then possible
if an appropriate set of boundary conditions for the problen
on hand is provided.

For sufficiently vigorous helical turbulence, an
initially weak mean field of sufficiently large scale will be
amplified by dynamo action as has been shown in work on
terrestial, solar , and galactic magnetic fields (see Moffat
(1978)). Ultimately the field becomes strong enough so that a
back~-reaction on the flows occurs thereby preventing further
growth. The magnetic field can act to suppress or alter the
turbulence or induce large scale " mean " flows, both of which
arrest further growth of the field.

The importance of the large scale mean magnetic field for
accretion problems is three fold:

1. Generation Of Magnetic- Fluctuations. The previous

chapter has shown that the fluctuation magnetic field energy
density is related to the mean magnetic field energy density

by b*- s B°. The reason for this is understood if the induction
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equation for the fluctuating magnetic field is considered (
equation 2.53 ). A velocity fluctuation u’interacts with the
mean field B and over a length scale lu. and time scale T.
twists up the field line and creates a fluctuating magnetic
field § on these same length and time scales. Consequently,
information about the amplitude and orientation of B allows us
to estimate what type of magnetic fluctuations are to be
expected.

2. Transport Of Anqular Momentum. It was shown in Chapter

2 that +the fluctuating Maxwell stress T was significant
only in those localized regions where fluctuations 'EUWHF » Ve
occur. Over sufficiently long time scales, these local intense
fluctuations are unimportant so .far as angular momentun
transport in the disc is concerned. However, the mean Maxwell
stress Efﬁr contributes to the overall stresses ( again on
sufficiently long time scales ) and hence 1is important in
determining the disc structure.

3. The Presence Of A Magneto-sphere.-The intense magnetic

fluctuations emerge through the upper and lower surfaces of
the accretion disc , and in our picture, engage in subsequent
reconnections giving rise to solar type flares. The region
exterior to the disc is expected to be of low density. If it
is imagined to be a vacuum as an example ( an idealization of
course ), then the requirement that the exterior vacuum fields

match continuously to the interior disc field at the upper and
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lower surfaces of of the disc implies the presence of a large-
scale, current-free magneto- sphere when 1large-scale mean
fields are present in the disc. The strength and structure of
such a large scale vacuun field is important for determining
the trajectories that energetic particles leaving the disc
region would take and the radiation that they would emit as
they spiral along the field 1lines. More specifically,
Blandford (1976) assuming a force-free magneto-sphere and
Lovelace (1976), assuming a current free magneto—-sphere have
tried to construct models of double radio~ sources resulting
from the presence of magnetized accretion discs around a
central compact object. Their work however does not discuss in
detail how a large-scale magnetic field may be generated and
maintained 1in the disc. It 1is felt that the work to be
presented here can act as a first step towards a more
comprehensive treatment of such theories.

With the previous arguments as a motivation, it will be
the object of this chapter to solve the mean field induction
equation undeg conditions appropriate to an accretion disc. It
will be the assumption of this chapter that the mean field is
initially weak. The mean flow will be taken +to be Keplerian
and the assumptions made about the turbulence as discussed in
chaéters 1 and 2 will be employed. Hence, we shall determine
on what length and time scales we may expect the mean magnetic

field to grow in a prescribed hydrodynamic setting.
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In section 2, we begin with equation 2.50 and simplify it
as much as possible usihg the approximations under which the
disc structure was solved in the absence of magnetic fields.
In particular, it will be assumed that the disc is thin, the
mean flow is Keplerian, and that the mean field is
axisymmetric. As discusséd in Appendix A, it will be assumed
that the underlying turbulence is mildly anisotropic so that
helicity is present.

It will be necessary to specify the vertical density
profile and the disc half-thickﬁess Z, at all radii. The
density is approximately Gaussian in the gas-pressure
dominated zone and this permits solution by analytical
methods. The parameter 2z, however, depends on r and this is
very difficult to deal with when matching +to an exterior
solution for the magnetic field. We will assume that z,=const
for the purpose of the analysis. As 1long as the radius of
curvature R, is 1large, this defect <can be corrected by a
perturbation procedure involving a power series expansion in
2,/R. «

Section 3 1is devoted to the solution of the induction
equation after the simplifications discussed in section 2 have
been applied. In particular, the vertical structure of the
mean field will be analyzed extensively. The point of the
analysis will be to determine accurately the behaviour of the

field near Izl=2, so that matching with an external vacuunm
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field can be accomplished. It will be assumed in this section
that dynamo action and dissipation exactly balance one another
so that stationary conditions prevail. When M <« (| , the
problem can be solved analytically.

In section 4 we match the disc solutions to an external
vacuaum field assuming stationarity (on long time-scales). This
procedure will result in a relation between the turbulent Mach
number M,and the radial wavenumber of the field.

The final section attacks the same problem again assuming
non-stationary conditiomns. Small deviations from equilibrium
are assumed so that the dynamo action and dissipation are very
nearly in balance. The procedure results in é dispersion
relation linking the <complex growth time scale to the
turbulent Mach number and the radial wave-number.

It is important to point out that the entire theory being
discusséd is non~-relativistic so that the study of the mean
fields at the innermost edge of the disc is not comsidered. In
particular,the electromagnetic boundary conditions at the
event horizon are not considered. Recently Znajek (1978) has
shown that the boundary conditions satisfied by the
electromagnetic fields at the horizon of a Kerr hole may be
interpfeted in terns of equal electric and magnetic
conductivities of such an object. In addition, Blandford and
znajek (1977) showed that electromagnetic fields could extract

energy from a rotating hole ( Kerr ). Various idealizations
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about the fields were made in this work, and we believe that
the presence of a turbulent disc ( not a perfect conductor )

could considerably complicate the physics.

2.- Analysis 0Of The Induction- Equation For The- Mean Field-

2.1 Simplifications Arising From The  Assumptions- Of A Thin-

Disc- And Axisymmetric Field.-

We recall the induction equation for the mean field is

B oo Uk (UxB « £ - yuxB)
2t
where & = uW'xb and where we shall be working in cylindrical

co-ordinates (r,#,z).

The mean flow U is assumed to be U= (o, Wcﬂ,cﬂ which is
valid provided that the disc is thin. This differential
rotation of the gas contains shearing motions on the 1length
scale r, which 1s important in the analysis of § .
Specializing to cylindrical co-ordinates, defining

€ = & -4 UxB (3.9

and assuming axial symmetry

B-= (Br (rz,e)  Byovest) BN‘“*—”) (>

gives OB, . - D g; (33)
ot o* |

I A N B LR B

z:_rest L 20 i) (5.5)
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Since V.B ., ,the assumption of axial symmetry for the

field B allows us to use the representation

B = ( -0 T L éLCr P%) (3-¢)

in which . P and T are arbitrary functions of r, z, and t, and
which will be fixed by substitution of equation 3.6 into
equations 3.3-3.5. ©Equations 3.3 and 3.5 are then entirely
eﬁuivalent so that only the coupled set 3.3 and 3.4 need be

considered. Hence, these equations become, respectively,

?,.F = Z'P (3,'1)

N N A T2 A a[vnaffs;]
It 2% v Iv )2

(3,8)

Equation 3.8 may be simplified by noting Ve = wuwst /+% so that

9T:3\/ 95‘_ !
TorE L (¥ o2 ()

ot 2 3—;-" 3; v

To proceed, it 4is necessary to calculate £ , which is
done in Appendix B using the following approximations:

1. Contributions to the helicity are taken to arise fron
the interaction of the antisymmetric cﬁmponent of the mean

strain temnsor ( R“P: i(qsp"ab*» with the density gradient

-1

(o V(‘, -
2. Gradients of the turbulent intensity =* are . ignored.

As discussed in Chapter 2, we expect the turbulent
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coefficients to depend only on rt (the turbulence is
homogeneous in z and & at each radius).
Appendix B shows that

Er = & [ R, - & Bi adilY La a__‘ée] - MT(V’(B),- (3,19)
4 8 2r -

&g = Bs - Mmr (vx §)¢ (3.1)
£, = = {Bz - & B. -5 Lz ?_’Ee - ,Vb_(v,( _[_5) (3‘,1)
z 4 .3 22 z :
where
-1 -1 i f)
L = = __§° o , ba .
LT T - (L0 k) (-
Me = U5 T, (3.14)
X = — ?iz T: U 2
= (&) (39

and where éi?%%l//;g is the ratio of the density scales in
the r and 2z directions. We emphasize that first order
smoothing is assumed in these calculations ( Q= &M/l <«1 ) as
well as the high conductivity limit 4/, » 1 .

For a thin disc, € << ) . In addition equation 3. 15 shows

that

= Q gi (3.1)
("L;a_.



97

so even if we relax the small correlation time limit ( i.e say
R~1 ) then MJVK==€:/Lir , So that «/y, «i for thin discs.
We shall have more to say about this result after we
substitute the equations 3.10 - 3.12 into 3.7 and 3.9.

Before we do0 this we note that
Ev’ = B"' - Mr (VK.B)'_

for thin, axisymmetric diécs. Equation 3.12 shows that if the
magnetic field length scales are of the same order as the
density length scales, then all the terms multiplied by «
should be of the same order of magnitude. However, since £,
and Za enters into equation 3.9 in the combination

d,. _ DSa s Ve estimate that

2t 2

D8r _ 2%: L3x B,) - m; { )211 (oxB), _)% [w;})éj

iz ’r
o2 (347)
a result valid only for thin discs.
Noting that the representation 3.6 implies
_ a7 p) T
oxs - (5 o -oF, #91"”) (319)
vhere
37. + 1 b Az 1—91% .
£l - - 2 - z 3.9)
A g whorory rr et (

substitution of equations 3.10 - 3.12 into 3.7 and 3.9 gives ,

using the approximation 3. 17

5P (3.20)

it

|1
Niw
RIS
lU
|
R
v
V]
+
T~
X
1
4
2
D.
._{

(3.2)

</
N <
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In the limit of high turbulent magnetic Reynolds nunmber,

t -~
RME&&L»Iwe have My Dy SO that Mpt o =My Let us rearrange
"

equations 3.20 and 3.21 as ( using M, » 9 )

2_('; - m. B Pz «T , (3-22)
N EK‘ W 2P (3.23)
ot 2 on Jaz ’

The first thing to note about these equations is the
appearance of the diffusion operatorj% - Mr D on the left
hand sides. It is untenable to assume that the the mean field
remains frozen-in to the gas sinces;» 4 . In a sufficieﬁtly
vigorous turbulence, 4, 1is so large that the mean fields
quickly damp out in the absence of sources. The source terms
for the poloidal ‘and toroidal fieldé have been written on the
right hand sides of the equations.

The source for the regeneration of the poloidal field P
is the toroidal field T. Dynamo action is generating the
poloidal field at the éxpense of toroidal field. If x=p , (
i.e absence of helicity ) the poloidal field has no source and
hence decays exponentially with a time constant 2:/47
which 1s not much longer that the Keplerian time scale *. .
With a damped out poloidal field, it 1is not ©possible to
sustain the toroidal field by differential rotation, and so,

very quickly, the entire mean field is dissipated.
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There are two sources available for the regeneration of
the toroidal field T. The first term on the rightvhand side of
equation 3.23 is a term involving the interaction of the
shearing of the toroidal flow ( 2 ) with the radial field B.
(=—§£ ) . This term is absent for pure rotation ( ﬁr(Q%) =0 ).
Physically what 1is happening can be seen in terms of the
radial field lines being stretched out in‘the g direction by
the differential rotation, thereby creating toroidal field T.
The second source term again represents the effect of helical
turbulence, this time resulting in the creation of toroidal
field from poloidal field.

The source terms involving &« are best understood by
Parker's (1955b) arguments. Consider‘an qlmost uniform long
scale field B in the r-g plane, in the presence of a vertical
density gradient (see Fig. 5). Imagining that small-scale
upwellings of fluid occur the field lines will be bent 1into
horseshoe shaped 1loops. If, in additiomn, a local.rotation is
present, these horseshoes get twisted out of their initial
planes. Averaging over all of these small-scale twisted
horseshoe shaped loops, we see that an initially toroidal mean
field should give rise to a radial component of the field (
source term in equation 3.22 ) and an initially radial mean
field should give rise to a toroidal component of the field (
second source term in equation 3.23 ). These arguments explain

why « is dependent omn both V(o and UxUW and why the
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toroidal and poloidal field dependences arise in the source

terms as they do.

Fig. 5 The x-Effect In Turbulence- With Helicity-

€2 Y

b |

a

When the +term proportional to [ in equation 3.23
dominates the tern ariéing from differential rotation, we see
that the « -effect 1is responsible for regenerating both
components of the field, a situation called the " Xx* -dynamo
", When the differential rotation dominates the & term in
3.23, we have a " X w' -dynamo ",

We have already noted that %/Ve «( in the case of thin

discs. Writing the right hand side of equation 3.23 as

3 Vo o [ Vo x e P/2a?
x v o Vee dP/o®
and estimating
DIP/;)EZ A~ -1
—— [
SPIo® bz

we see that the differential rotation dominates the «x -effect

ok 7~

source provided UL‘;2<<I. Using the estimate 3.15 for o ve

see that this condition becomes QZC@)Z<|. Since consistency
La
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of our whole analysis requires use of the small correlation
time limit ( Q°<<t( ) the differential rotation will act as the
major mechanism for converting B, to By. If the limit &%« is
relaxed, our condition is that the turbulent eddies should be
of a scale du<«la sz, -

The previous discussion indicates that our set of

equations for the fields becomes

‘Z{ -m 0P = u T (3.24)
0

‘)_-!: -Mp O = 2 I/K .D_.P g)
)t 2 F e v (3'2

these equations show that toroidal field gives rise to
poloidal field by the x -effect while poloidal field gives

rise to toroidal field by differential rotation, i.e.

w‘ —
P = 1
[~ 4
If the strength of these sources is sufficient to overcome the
dissipation due to 4,, the fields will be amplified. Energy is
being extracted from the turbulent kinetic energy in order to
ran the « -effect source for P while the Keplerian flow is the
source of energy necessary to regenerate T.
Further ©progress requires that we specify the vertical

density distribution and the expression of turbulent

coefficients in terms of mean field quantities.
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2.2 Vertical Density Profile And- The-Calculation 0f « Agg~qr

In the standard model of accretion discs, Shakura and
Sunyaev (1973) showed that in the regions where the gas
pressure dominates +the radiation pressure, the gas density

% may be written,
-(212,)"
focr,2) = C(r) e (».2¢)
For \zPz, , the density falls of f exponentially at a faster
rate. As we shall imagine the disc to have a discrete boundary
at |zkz,, ;we use equation 3.26 as the density profile in the

gas pressure dominated zones. Hence
Lg = L+ ¢ = -2z (3.27)

Their paper showed that if effects of turbulence are
ignored, the 4inner, radiation-pressure dominated zone has a
density profile independent of z. This result would imply that

regeneration of the field by dynamo action would occur
here, although in our case, additional difficult matching problems arise.

More recent work by Shakura et al (1978) shows that
convective turbulence should occur in this radiation dominated
zone which alters the vertical enerqgy transport in such a way
that the vertical density profile is no longer independent of
z. For °5/3z <o and assuming a polytropic relation between

pressure and density they show that

Qolr, 2) = (Cc;-) [ | -G});_] ® (3.7.9)
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where n ranges from n=0.85 for M,=1 to n=1.17 as . Mi»0. The

vertical density profile is then

t ~\
L Crad dow) = ° zi——f"’l{ b (E,ﬂ (3.29)
For |zK<zo. the density profiles 3.29 and 3.27 are the sanme
whereas in the surface regions the density in the radiation
dominated zone falls off more gquickly than in the gas
dominated zone. We shall adopt the Gaussian profile 3.27
throughout the entire disc.

With the vertical density profile specified, we turn to
calculate the turbulent coefficients # andam, . Shakura et al
show that the velocity amplitude of the convective turbulence
{( dominant in the radiation zone ) and the shear turbulence (
dominant in the gas dominated zone ) are of the same order of
magnitude. Specifically

Wiley, = My = dulz, (3.30)
so that ML requires fu/u<<l. So for low Mach numbers, we see
that the discussion 1leading to equation 3.25 means that the
shearing dominates the X -effect regeneration of the toroidal
field T even when the assumption of first order smoothing is
relaxed.

Turning to the expressions 3.14 and 3.15 for 4, and «x ,
we see that we would like to represent &« and 7, in terms of
mean flow quantities. We adopt the assumption wused in the

standard disc models that M. =const. It has already been
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shown that hydrostatic equilibrium in the disc implies
¢ /Vx ~t,/r for MZ<1. Consequently we write
%= Me (i;’) Ve | (330
where for the theory we want to pursue M§<1 and z - const.
First order smoothing theory is valid if we restrict
ourselves to short correlation tinmes,
Q = ’T’“?[/fu = T“‘/ft << | (3-32)
Now in the limit of small Mach numbers equation 2.19 shows
that
te = tu/ Mo (333)
Putting 3.33 and 3.32 together gives ‘
| Q= My 7 /4, <« (3-3¢)
so that if T,.¢t,, the assumption ML<K1 delivers Q<<1. Therefore
as long as MLLA1, restriction of the correlation time to 7T.<t,
shows that Q= M <1 and hence the mean field analysis is
internally consistent.
Combining results, in the 1limit M§<1 and for T.~%y,

expressions 3.14 and 3.15 for 4, and x become

2

Mocry = Myozs (3.35)
ti

x(rz) = _z(g=) My = (53¢)
1 ;K

where recall t.: /v, . Here M, has the dimensions cm® s’ and

« the dimensions of a velocity cm s-'. We note for future
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reference the property

«(r,z) = -x(r,-2)
The simplifications arising from these assumptions are

considered in the next subsection.

2.3 The Equations In Dimensionless- Form-

Dividing 3.24 and 3.25 by 4,, and using the results 3.35

and 3.36 gives

2 Xty @f-§‘f+¢2_¢ + P o= Y2 T (3.37)
i yt et oy T
z 2 r=d
zX.JCKéT_{?_+—L§-—' 20T oox A (3.3¢)
3 )t orr M rt 02t )z
where
= 2 K
s = E}(:r)
(2.39)
3
Xe 22
M 2%
We note that ¢z is the ratio «/v4, and X is the ratio

Vk/mh, and are measures of the strength of dynamo and shear
processes which amplify the field with respect +to the
dissipation by #; . Since both ¥ and X are constants with
dimension cm™® we see that the quantity (Xff)%+ has dimension

cn”' and we use this to make the equations dimensionless. Thus

(YK)@ = (é/szr)/lf/"'ftllz 2, (3.40)
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is a measure of the product of the two source terms ( xl&/r)
divided by the square of the dissipation and is therefore a
measure of overall source strength relative to the
dissipation. This parameter is entirely analagous to the
parameter A defined by Parker (1971) in his study of the
galactic X' dynamo.

It will prove convenient to solve the coupled equations

3.37 and 3.38 if we use B, and By instead of P and T. Thus

39

X te 2 Br-§9_’+L2_L +>‘%5r . r 2 (28) (o)
t r r * oz

3 p) It I 2 Je

z
2 X,tK QBtﬁ - {22 + 4 2-1-1*"2:(5,; = =X B~ (5.‘(7.)
:?: ot ,)r" ~ o r J2

Y,
dividing both 3.41 and 3.42 by (XX) ! and defining the

dimensionless variables

;\“ E(XX.)/‘* r ; 2= O’X,)q Z (3‘%)
we have
F3 p) 2
te 2B - {%Jé v 7 *%ng, - -F 2 (3 Be)
F oot o ? 2 (3.44)
b 9B . {2 412 -fz+fig+= - B
% 0 Y R R AT & s (3.45)
where L 3 _
F; (d”/x_)" = (3/1rn) My = 041 My (3.4¢)
and F‘E} f . The quantity f is the ratio of source
2



107

strength due +to dynamo action to the source strength due to
differential rotation. In the 1limit %§<1, P <<1 which 1is
showing the dominance of differential rotation over dynamo
action in the small Mach number reginme.

Equations 3.44 and 3.45 indicate that a natural choice
for the dimensionless time co-ordinate would be %E‘Ft/tkwhich
suggests that the temporal variation of the mean field should
be roughly on scales tkme“tu assuming M§<1. The difficulty
here is that t.« r so that equations 3.44 and 3.45 have the
problem - of inhomogeneity in the radial direction due to the
radial dependence of My « This 1is 1in general a difficult
problem but section 5 provides an analysis of a solvable
regime.

In the next section, we assume that the dissipation and "

xw m dynamd action are in balance so that the field is time

independent.

3. Solutions To The Equations- In-The Stationary Case-

We consider here the situation when EE =0 3 l.e the

ot
dissipation and dynamo action exactly compensate one-another.

Equations 3.44 and 3.45 then become

2. + f % -l i Be = P I (3 B+) (54ﬂ

T S VR b P 2

P oL 0y e O §13+ - L B, (3.48)
i LR R A - P
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These eguations admit separable solutions. Writing

B,.(%3) - Rer) Qe3)
(349)
B, (¥, %) = R Ucz) '
and introducing the separation constant -k we find that R
obeys the equation
%o‘__*‘io_l_'\ +K-L7_2§R:O (S.SD)
de  * d7 v

while the z dependent factors dre governed by the coupled

equations

idi' - K%Q - -pd s (3.51)
{ﬂz - K i w= -1 @Q (3.52)

Equation 3.52 gives

Q- - fi’-Kgu
F 1l
which is substituted into equation 3.51 to give a fourth order

equation for U

dU - oakdU LU s (DU =0 (3-53)

A3t A3 1z

With < real, K >0 results in solutions R being a linear
combination of the Bessel functions J (k%) and Y,(x“7) whereas

K <0 leads to a linear combination of the modified Bessel
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functions K, ((-x%7)and Iaqf?). Matching to a vacuum with proper
behaviour in the 1limit 2z — = and r— 0, give K >0 and
R: T (k7).
Equation 3.53 may most elegantly be solved by using an
integral representation of the solution. Spegifically, We seek

a solution to equation 3.53 of the form
Uez) = /rl<(3,f) w(t) dt (3.54)

Since the differential operator acting on U contains
polynomials of only order one in Z, the choice of the Laplace

kernel
it
Kz, &) = e (3.5%)

will require only the solution of a first order differemntial
equation 1in t for the as yet unknown function v(t). This is
carried out in Appendix C.1 where it is shown that U is given
by

. “thy v ktt 24
Uis) = e : ot

—_— (3.5¢)

c +K*

where C is any contour for which the integrand vanishes at the
end points. Of course there will be a number of different
contours in the complex-t plane which accomplish this, and
these will correspond to the different independent solutions
of GZ,€u§=o. The appearance of the factor g« in equation 3.56

implies the presence of a branch cut in the complex-t plane.
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Let us first consider the type of contours which are
admissible. Consideration of the integrand shows that as It
» o , the factor 6¢U4 is the most important. If Re(t*)(O,
the integral diverges as we 1integrate out to (tl—» .
Convergence of the integral occurs only in regions where

c L. .0 . .
Re(f‘))O. Writing t=-(tl e s this requirement becomes

cos % > o (3_§1)
Solving the relation shows that there are four zones of
convergence as diagrammed in Fig. 6. Therefore, our contours
are most simply chosen to have as asymptotes the co-ordinate
axes in the complex t plane. These contours are drawn in Fig.
6 where we also show the branch cut extending up the positive
imaginary axis. The end points of these contours are at Itl ==
in the directions indicated, so that the requirement that the
integrand vanish at the end points of the contour is

satisfied.
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Fig. 6. Contours Defining The-Solutions U.(Z) -
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The presence of the branch cut implies that the four

solutions

uM(_;) = j laxr["tq/&{ + K t* +€t-_l db (3~5'8’)
¢

" t"l

mel,2,3, 4

with the contours C, shown in Fig. 6 are linearly independent.
It may readily be shown : that the sum «.2:;:! Un (E)¥ 0. A
phase shift is picked up due to the presence of the branch cut
which insures that the sum is non-zero ( see Appendix C.2 ).

The requirement that our disc solutions be matched
continuously to an exterior vacuum solution at the upper and
lower disc surfaces z=* z, demands the analysis of . (%) as
z—tz_ . It will be remembered that for M§<1, 13]») as z— 2 z,,
so that we may use the asymptotic form for Uu.(%) . The
contintuity of the field +throughout +the disc will require
matching conditions at z=0. Consequently we'must examine the
behavoiur of U. (%) in the vicinity of z=0. These +two tasks
occupy the rest of this section.

It is important to point out that the assumption of
separation of scales for the fluctuating and mean fields
allows us to restrict attention to the limit  K<<| . This is
readily seen by noting that w7 :O<HH}%>rso that the radial
wavelength is irﬁ(ﬂf/ﬁ)z..since we require our mean field to
vary on radial scales larger than z,, we see that the limit

K << | focusses on the correct regime for analysis of the
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mean fields. This observation will ©prove very helpful in
simplifying the analysis to cone.

We now digress to a discussion of the asymptotic analysis
before going on with the problem of matching to the external

vacuumn field.

Asymptotic form of the solutions Uf3) as Z —» . o-
In the limit z-— z, the limit MZ<1 implies that Z>>1. It

is convenient to define the variable 7 as
b= (2% 7 (3:51)

and the real positive quantity A by

i 4/
JUEYE i(é/su’)‘l, =z ] : (3.¢0)
Zo

7
M¢™

in terms of which the solutions 3.58 may be written

'-KZ)/ -’TY iy )
uM(kaL,{( N ur{A( BtT) e A

k'l.
Cun T

o~
N
=\
N

(3.41)

where the positive sign is adopted for 2z>0 and the negative

sign for z<0. Introducing the definitions

z

x(r) = 7~

far) = _I‘{ + 4
Y

]C’F) = ',"2

allows us to write equation 3.61 in the form

B (-x?)/q Afery + A% & qcr)
U, (x,3) = * [X('f’) e AT (3.(.27
c

~m
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We evaluate +the dintegral in 3.62 in the limit /L#w
(i.e Z > o } by the method of steepest descents. This method

is usually applied to integrals of the form

teor
&p(,{) = /7((7‘) J{ ) AT (3.¢3)

[4

where 1if 7, is a saddle point ( i.e where f2f>=° ), and the
contour may be deformed to pass through the saddle point onto
the path of steepest descent (this must be justified by

Cauchy's theorem), one finds that in the 1limit A-> .- . Yol

becomes
/[(L'r‘o) , o
Gel) » XN) e (zm* e (3.64)
(4 L 1™
where « is such that f"mn Pthe is real and negative.

This method requires extension in order to handle an
integral such as that appearing in equation 3.61, where we
have the appearance of an additional parameter - Physically
we want to focuss on modes such that K<« s So that as

Appendix D.1 shows, for £(7 ) and g(r ) defined by 3.61, wve

have in the limit A+ . , k< .
! : Y Kk
L Ler) # A%k qer) AL, W A
f X(T) e ] 4T < x) e QM e e
) 1A e | ™
(3.¢5)

where we more specifically require that K/l <<t .
The necessary mathematical details for the asymptotic

analysis are found in Appendix D. The critical points of the
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integrand are found in D.2 whereupon the paths of steepest
descent from each saddle point is determined ( section D.3 ).
oaur contours C, are then deformed onto the paths of steepest
descent , the contributions due to each saddle point picked up
assessed, and the results summed to give the final asymptotic
representation of WU, (x,%) ( section D.4 ).

We find that the solutions U, may be written, in the

asymptotic limit 2 » -

z
A 2 r -q/sK
Un (x,2) = 3 ¢

3 3.60)
/{lwzl)/‘l A (0,2 (

where the functions «, are listed in Table 4.
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Table QL-Asymptotic-ggalysis;~The-Function§/gsz‘21-

Z 20 Z<¢o
N
4 pA ‘ Sy ()
/axk,z) e e e
. pA T (K3 ¢ o)
My (kZ) - e —e ei
ZT%(KI"")L' 1/{ 7{-(Kz+l):.' f/l
/u.b(k,i) e e e e
- —amy (K Cg*) | 7)o pA
Ay ( K,2) -e e - e e
a4 .
and where we recall that Al = |21™ | The numerical factors Ps
q, and q* are
i) = 3/,+
s i
1 8 ¢ ;

(3.67)
f:-% +L%?

These results show that two solutions (U, and U,) grow
exponentially for z>0 and exhibit exponentially damped
oscillations in 2<0. The solutions U3 and Uy behave
conversely. The relation between U, (x,2) and U, («,~-z) found in
the preceeding table are trivial applications of relations

C.26~-C.29.

We recall that the 2 dependence of B. ( 0(2) ) is given
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by equation 3.52 so that we must calculate LU/ 43> . We shall

also need to find P(E) in order to evaluate Bz(f,i). With the
integral representation 3.58, this is easily done.
Specifically

I, -'ﬁvq +kt 3t

——:\M = t € &L": (3‘3)

o2 Coan tk"

2 . ~f1/4 et y3t

J__(f;: = f e di (3.(,7)

d% ¢ tkz

Using the definitions 3.59 and 3.60 these integrals take the

form
(2-—!(2)/4 z 4 2
&_[,-L{.M' Z /l i cx,” [’{ (’/r;{‘f t7) + A% 7] d7
o3 .
(3.70)
('5-[(.1)/4 2 ' 2
Az('("'\ s /{ [TZ-K—U‘[’[’{('?ZtT) *'{/LKT—} 0’7
42 T (s.)
In the asymptotic regime /L?w . making the same
assumptions leading to the expression for Um gives
9, Kt
- r_ﬂ’— - B :
Aetn®) = 208 e 4000 (72
ol 3 A <

where the functionslﬂg>@j) are listed in Table 5,



118

. . . <l> a
Table 5. Asymptotic-Analysis: The- Functlons/g.m_(K,_gL

,2-‘ >o ; < O
z,
. F'{ . T 1’l
A, (k) e e e
(I) FA' .2 *l
oy ] K ¢ ?« 4
/llz (K, 2) - e e /3 .
2,
o, . ki g4 7o pd
/(,{3 (K,z) e e e e
- 2. * .
v . -2k g A _iTKE ;’4
My (1,2 ) e e — & e
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And 2
-4k (|—l<")/q
AU (x,3) . o * @ . -
N A P
T

with the fuctions /ag)cgi) listed in Table 6.

. . . )
Table 6. Asymptotic-Analysis: The- Functions Ma(K.Z) -

Z>o 2 <o

A T, (K1) oA

o . P , ) STk g
A0k, e e ° e

— L) AP

(@ ) F’\ ,,/S(K 1) 1/‘
My (k) - e -e €

e 3) i) 1A T pd

k,
My 2 e e € e
24

(2 . _zr%(K—l)u ?:'/l T=1) & P’l

Ay (x,2) - e e - e e

results show that in the limit Z — .= .

These
AU & /\’/‘( U ; J_z,(i( z /(llt"(
A3 - dE
hence
cop[dueu] s cp [l p [ AU
Q F[Jil P f T
since k/A* ¢c| , we have Bez) = - Filjz‘f(z (3.74)
Z
Pia) - g JdU
P3) S ( 3.25)
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We turn finally to the behaviour of U(Z) at Z=0.

The integral representation 3.58 allows the ready
expansion of Uw(Z) about Z=0 since we only need to expand e%
in a power series in Z, evaluating the integrals in t (the
coefficients of the expansion) as we go. In order to
facilitate the integrations, it is convenient to deform the
contours C,. to rTun along the appropriate portions of the
imaginary and real t axes., As an exanmple, the contour C, 1is
replaced by an integration running from +:.» to the origin,

and form the originm out to +» . The coefficients are then

proportional to integrals of the form

o°

() T
R I A
o 'tKl

which, with the variable 7= t* can be written in general as

® 2
-FT‘ -yr o
G (k) e T AT
[

where FE # and -Y=: K with V. = (M+'-k9/a This latter
integral can be represented in terms of parabolic <cylinder
functions as ( see Gradshteyn and Ryzhik (1965) p. 337,

formula 3.462.1)

o0

_ z_ A 2
J ST A’T,ry-: dr = (2p) M) exp [f}) D-y(%},-)

[

(3.14)
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where RQF >o and R, y>o and D, is the parabolic cylinder

function. The condition K¢ Y 30 is easily met with our

constraint that kK«| .

The details are given in Appendix E. We only need the

values

of the expansions at Z=o in order to do the matching

problem of section 4. Defining

Ra(Z) = -B ‘izz -k} Ua
l("ti ) (3.1'))
Pat) jaMm A3 |

and taking the limit of U,(v3) as Z — ot , we have

with

=¢

. ) (5Dl Gh-r) Ty Kl o~ |
;%:5+(AM(ga) = [z e e U, k) (3#)
2 [}

2
. -2 Oh-1)Tiy | ~
Mo Qu(03) = [z e ywoe Qu, () (379)

2-0°

~

and Qe given in Table 7
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~o -~
/ DV,—I (x) gya (x)
Vo< "Tr)}z(:
2 e Dy, -1 (-x) e Gy, (-x)
2V e _ni Y, <
3 0 Dyn_l(x) e * G),o(x)
—3TV, L -3, ¢
g e ° Dv,,-n (-x) e ? @Vo (-x)
where
Xz -i0Z K (3.80)
Yo = (1-k¥)/2
)1‘ = VD+2.-L. (35")
J/z = )/D + |
éy(*) g Dy(x) - x DV (x) (3.42)
1
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Writing

. i-2)z (V=) Tily e, o
b () [ e e 2w

— U, )

20" Az

(3-93)
2z
. (V.-z)/z ())‘—()TFL/ K/I.7 ~

e () - p[ S S

A +

>0 (3.5)4)

/\—( ,>
we tabulate W, and I in Table 8.
Table 8. Expansions About-Z=0: The- Functions ﬁL And E;
-~ / b
m “ P
! Dy, (X) Gyt X
Y. -
2 e Dy, (-x) e &, x)
2TV, ¢ -2y, {
3 e )/‘—l (X) e éM_,(x)
YV 37 V,¢
Y e Dl/.-l ('X) e Yot (-x)

The limits as Z —» 0~ of +the functions U r Qi

AUm v F; may be found using the above results plus the

———

AZ
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important symmetry relations

T C1-x2) -

U (k-2) = e L{E(K,2>
_ e ci-ict)

U, (k,-3) = e U, cx3)

(3.65)

" ST (- kt)

us(K;%) = e U, (x 3)
" -TiCi-k?)

Uy (k)= e U, e, %)

derived in Appendix C.2.

e ey

We will suppose that outside the disc (i.e lzl>z,) +the

gas is so tenuous that the region may be regarded as a vacuum.
vac

A vacuum cannot support currents so that we demand vxB =0 ,
. . —3\’*4 . vic

which together with U3 = O » Trequires that B be

derivable from a potential % ¢ With
B™ . vV (3.%¢)
74 (3.%7)
If we assume axial symmetry of thé vacuum field, and

require that
VAC

vy
!
o
>
W
{
+
)

VA 3-8’.?)
T_S 'Fiw'\{'c ) as r— O C
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then %’ may be written in separable form as

/ -~
o L~ (2-%,)

Z)fa

‘7& A") ]- l'l.") I, A A i
g (T 2) = o (&* ¥ _&"'(?Ha) R
€ . % -3,

(3-99)
which, using equation 3.86 gives in the region z>Z,
(73,
VAC 4 °
B, (&;73) = Bch) T, (&*2) ¢
wc , WA (3-%5) (5'9")
By (h,73)- ECh) T,(45%) e
and in the region %<;£,
yAc 4 L (F43)
B (k,23) = Fra) T(EF) e
Z &""(3‘4--23) (3.‘?[)
vaC . .
B, (d;#32)= -F&) T, (4£°7) ¢
where
VRC
54, = 0 (3'?2)

everywhere in the vacuum and where E(£ ) and F(4) represent
amplitudes to be fixed by the boundary conditions.
At the upper and lower surfaces of the disc izl =2z,, Wwe

require that B., By, and B, be continuous, i.e.

(8.7 = [8] = [B] = o  (at 12i=2.)

(3.93)

These requirements impose a set of six constraints.
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At the plane z=0, we require continuity of the fields and
their gradients, i.e
(B.7- I8 -8 - [22]) =0 et ave)
(3.94)
which are four more comnditions totalling ten altogether.
Noting that WUw,2) is a superposition of the four
independent solutions W.(x?), and writing the disc mean field

components as

4
By (k,7#,3) = Ree?) 2 (utx) Uy tk, 3) : 7 50

¢ (3.98)
Bd’ (x; ?J?) = R(k;?‘)z D, () (,(M(z);‘) . Zco

Mm=t

where the other components follow form equations 3.49, 3.52,
and 3.6 the boundary conditions 3.93 and 3.94 give a set of
ten equations for the +ten unknowns E, F, Ca., and D. (
n=1,2,3,4 ). We use the results of the asymptotic analysis to
evaluate U; at tz_, ( specifically equations 3.66, 3.72, and
3.73 together with the results 3.74 and 3.75 ) in order that
the conditions 3.93 can be met with the vacuum solutions (
3.90 and 3.91 ) specified at * z,. The constraints at z=0
require equations 3.78 - 3.84 together with the relations 3.85
to establish the form of the solutions in the limit z— o0~ .
The radial behaviour of these sblutions may be readily

matched if we pick a vacuum mode with dimensionless wavenumber
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,&%, k>0 ;3 such that A o=k . With k>o we see that
Ree; 7) = 1Kok

As it stands, a set of ten simultaneous equations in ten

unknowns mnust be solved. This set may be reduced to a set of

five if we 1limit the discussion to modes in thich the dominant

disc field B¢is either an even or an odd funcion of 2 (see

Parker (1971)). Turning to equations 3.24 and 3.25, and

remembering that K(3) = ~o(-E) , We have that for even modes

U(z)=U(-%),so that ©P(2) =-P(-%Z). Similarly, for odd modes-
U(Z) =-U(-%) so that equations 3.24 and 3.25 are satisfied if
P(§)=P(-E)_ For even modes then, the toroidal field B¢ will be
an  even function of Z, the radial field B, will be an even
function of Z, and the vertical field B, will be an odd

function of Z. Exactly the reverse is true for odd modes.

Consequently for even modes

P=dh . » (at 2 =5) (3.1(.)
42
and for odd modes
u = 4_.[) = o (a.'& 3:’0) . (317)
A2

If the full matching conditions are written out, it is

found that the choice

~Mi i)

D} =te C|
i SN AL
Dy = +e ) ¢,
C&?K)
~TiCw?-1)
D‘ T o+ e C3
—l'f»'(\(z-l)
D4 -t € cti

F - +E
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satisfies equation 3.96 for even modes whereas the choice

S Ck3-0)

D3 = - e I

D - Ceter)

,{ = - e Cz
~Al (kEr) 3.91)

D,=~-¢ C3 ( i
-l C?ar)

De=-e th

F= - E

satisfies equation 3.97 for odd modes.

The analysis has therefore been reduced to the study of

the five equations:

[B;\ : [Bal =0 By=-o (ot 2= 2.) @Jw)

together with 3.96 for even modes; and 3.100 together with
3.97 for o0dd modes. The limit z — 0" is to be used in all
results for z=0. Restriction to either even or odd modes has
allowed us to consider only the 2>0 region. We have five
equations for the five unknowns E(«x ), C{x) where the other
coefficients are given by either 3.98 or 3.99. These two sets
of equations 3.98 and 3.99 are a direct consequence of the
symmetry relations 3.85.

Written out in detail, equations 3.100 are for the radial
component

P’lo F/"a zﬁé(xz-.); ,{o -zﬂ;»(n‘-a); i!/lo
F _E('K//lo) CI e - Cl e t C, e’ ei - C'-{ ¢ ’ ei =

(s.lol)
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the ¢ component

Lo He o Wede gt
'f"‘,/(o) {C,cf -C, e e C. e (Rl e‘L _c ’“é(k\‘) ez* %

3 qC = O

|
A

(3.102)
and the z component

Y Ao pAs T am el Ao Sl e ‘),
-p K Pied.) fc(c SGe 4 Ge’ R LGy e 5 az»{ §
" _

o>

where from equation 3.60

4

o4 _ "y 3
/{o z 12, 5 = [ (é___/an'zz 1 (3.104)
M.

-4y (-?) /4

fex, ) = 2 Y oe 4. (3.105)

For even modes these equations are supplemented by the
relations 3.96 which written out are

" Even Modes

=Ty, (‘, ) -lﬂv.\.- ‘5“'#‘('_
c, DV.-l"" t C,e Dyi(x) + Ge D, ) + Cye D (x)=o
(3Joé)
ik -2l ¢ -3y, ¢
C. Gy‘-l x) + Cz e G'y‘_‘ ("K) + C; e éy,-‘ Cx) + C" [4 Gy_' (-x) o
(3‘101)

and for odd modes are supplemented by the relations 3.97 which
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written out are

04d Modes

. ~2Mih ¢ .

"‘T“)oL. ' e -3T‘>’°L
¢,D, ) +Ge D, (x) + (e Dy 4 Cy e D, ") =0
(ylo&)

gt -2, ¢ -3y,
C.Gy (x) + C, ¢ G,, (-x) + C, e Gya (x) + Cy e Gyp ¢-x) = o
(3.104)

where all these results follow from Tables 7 and 8.

These equations may be put in matrix form ﬂcA; = O
where iao is the 5x5 matrix of coefficients of the above
sets of equations and X is the column vector of the unknowns

Cu”’ , ES° . specifically ﬁﬁ is the matrix of
coefficients of equation 3.101 - 3.103 and 3.106 and 3.107;
while for odd modes ﬁo is the matrix of coefficients of

equations 3.101 -3.103 and 3.108 and 3.109.

We require that

0{€{'Ae‘o = 0O

for mnon-trivial solutions. The point of this analysis will be
to £ind a relation between /LQO( i.e. M:} ) and K , which are
the only parameters appearing in the matrices.

Manipulation of the determinants shows that in both

cases, the problem reduces to setting a 3x3 determinant equal
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to =zero. This arises because in both cases, - det A7 takes
the form
Docs’
o- det 4°° . gt [ oS0
R*°: o

det B ° | Jot ¢ ©°

where B%° are 2x2 matrices and C°° are 3x3 matrices. This
being the case, the solution can be found quite easily. The
coefficients of B&* are dependent only on « via the
various parabolic cylinder functions we have defined, and

det R*® vanishes only for k=o in general.
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Hence our conditions for even and 0dd modes become det C*°_ o

where
2i sun 20/ 20 s 20y '
€ - ' -2, Ll K (p-q) Ic) ( -2y i amde (P "M,)
C = (" _ & S e Loy, g e T o
: -2W fy b
[ - e"ﬁL/B ’ Ite ’lbq k"z
(3.(10)
2¢ sn;v\zn/:.} 2l sun ZT"/3 |
. X * 4
) RUHA P S o WL
C° - wifs -2 am kY &-ﬂA,) (+e + e e P e o
= (- e - e e ¢
. -AMif3 “u
| ez‘“/a 1¥ e A Jx%
(3.10)
and where we note that ¥,z(-kK° and that the only difference

2

[~
between ¢ and C is a sign difference in the second row.

After some algebraic manipulation, for even modes the

requirement det C°=0 gives
-'?Jo 7 -3 /{o ’S/I{a
(ch(vL-tex )4— ii—(ﬁ/_{;f V})(c»s\bare,‘? )—i(s-&«q/—es E)}:o
"; K 2 z 2 2
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and for odd modes the requirement det C°=0 gives

30 Ao % 23 J_, _ 3,
_(“s\l,_%_:_’ >+;{(E/_{é/z+§J((asq‘—e_;)+ZL(SMY‘+331/_ZT) =0
(Z.HS)
wvhere
%E 303 |, +T3LKL (z.w{)

We note that equation 3.113 takes exactly the same form
as 3.112 if for odd modes we take ¢-* $= ¢
In each of equations 3.112 and 3.113, we demand that the

real and imaginary parts vanish separately. We shall also

"3/on ] |"‘
take e -0 since /{o — .0 <« Noting that {[‘:_: D U, ve have
K"
from equation 3.112 for even modes
I/'{
Cos¢ + L {“r’: dg Cosk{/ - ésmq’ = © (z.us)
. Kk

with the equation for o0dd modes given by 3.115 where Y is

replaced by ¢ , and ‘92'25 Ao .
.

From the vanishing of the real parts, we have to first
approximation for even modes-
cos( 395 ). 3 = o (3¢ )
¥

and for odd modes

c::s(.s—‘IE /{o —W) = o (X-HL L)
8
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where for both cases we have from the vanishing of the

imaginary parts

tan (3_53 /\°> ~ ~2(3 /L:'/‘{ (3417)

!,
K=

We note that the sets of equations 3.116 (a) and 3.117
(for even modes) and 3.116 (b) and 3.117 (for odd modes) are
compatible since we have with A, 1 ’ ws(%549>xo , and
hence f-(%?’h3‘*¢° - This is compatible with 3.116 since
)ﬁ k%2 > » « Equation 3.117 should be regarded as a first

order correction in k* to equations 3.116.

To zeroth order in «* then,
3._{_.3— /‘a = (M_—I‘—> l—l M:\,Z,B,"" (3”5,)
¥

for even modes and

(3.11‘\).

3(3— /13 = (M+'2£_) w m=,2,3 -
8
for o0dd modes . Substitution of these results into equation
3.116, and subsequent expansion in K gives the first order

corrections,

Even Modes

K
305 z 23 [j(«d)W]Q
33 z (3.'7_0)
0dd Modes
P
_— K=z
Aozﬁ(""*z')' + L ——-——‘—"'""'4*4_
303 2 V3 [.i (m+d) F]
153 z
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L)

5 ,
o/sr) 3
If we recall that A =[(—2Q* 1 » and express A in

g
Me
<€

terms of M, using 3.118 and 3.119, we find that M} and &
should fall in narrow ranges ( governed by Kt ) about the

values

3
Mt, = 0.19 /(,ZM_,)/1 m=0,2,3, .-

o]

Mt - = O.IQ/(ZM.pI)s/L M= l,23, ...

s

(30122)

where the first values are

€ e
Mt,c = 0.19 . Mt';_ = o.0Y%
(g.lz's)
o
. o.04 o
My = ©o© . H‘(:,L = 0.02

The reader is cautioned that these results may change slightly
if more precise information about the spectral enerqgy density
of the turbulence is available ( see Appendix B ).

Solving for the amplitudes C,(x), and E(x) we find

_ -'n'KZL ) - -F.,.— euta modes
Ctw) = C,(k) = 7 e C‘* ) {+ for  odd mod¢5_l
_sz/Z(K2+I);. L-;d‘; /‘o
C'b(K) = e e = CCK)
ar, (ke ;303 (3.(14)
Clx)s e 3 e-c?/lo Clk)

t3
(1-6)/ ‘3’4’/"’ _4,3|<7‘

Ece) = -ip A e . Cex)
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where C(K) 1is some complex amplitude to be determined by
conditions on the radial behaviour of the solutions.
The relative strength of the vacuum field is from 3. 124

2
‘/4 '3/y /{° 7, - H{: :

E k)
[ - \ ~ [3/‘0 e x Mt e << | (5-'25>

Ca k)

i, N7
where Fm My o A:‘~M£6' and u§<1. Hence the vacuum field is

very weak compared to the field in the disc for the long-range
" mean-field " modes. Powerful large scale vacuum fields
definitely require conditions in the disc such that My =1 .

We now wish to write out the components of B for each
mode K in the regime z-—» z,. To do this we use the results
3.124 together with the asymptotic forms of the field
components. For each mode k , we shall have to sum all the

contributions arising for each n, from M:A\and M’ given by

0
3.122. Since A%Mtlﬂzi‘, the dominant contributions will arise
from Mi,for even modes and M:‘for odd modes. The results 3.122
then show that the dominant field By in a stationary setting
will be even ( i.e. By will have "dipole symmetry" whereas B,
will be an o0dd function of 2z and so is of ‘"quadrhpole

symmetry" ) -since M:, = 0.19 >> M;‘ = 0.04. The relative

amplitudes of even to odd modes is approximately

[

]

W% _.r(g@J%S
e[ [Ty ((4—:,.)”* (;Jﬂ !
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away from the centre plane of the disc.
Hence, we expect a toroidal field B¢ of "dipole symmetry"
with Me“‘u;|= 0.19 under stationary conditions. For even modes

then, we find

-y 3.4
Br(") ’.;I;) = F RBex) /L e g s;.a(g_a"jyffh-’”*’-_g‘f) Il(KI”-?—) (3.;u)

. i) Iy A . T -
By (K} ,‘2) ~ Be) A4 e’ s (3;5 frlp-’ﬂ) ).Ck‘r) (?_,z,)
) -y 3 ) - a2 Y -
B3 = -p B A T s (o (] T) TR Cou)

where we have absorbed common factors into B(k)
- ._llk.z/s
Beay: i tIF e Cek)

and where
4/

/‘= [((’/5"){/4 2 ] ’
Me)® 2

P = (X/Isrr)/z Mz'

with

We also note the vacuum amplitude is

i-k%)/ ~3//|o
Blk) = -p ’3“)#@; /L( k).+e y
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Finally, the radial behaviour of our modes goes as
T, (<% %) yhere yeo or1 . Now
|<|/" T o- K'I" ;‘, ;r' = kl/" é\, .
25 ";:
. q’&
noting that Aoz 2, Wwe have
- 7 3/4,
K "o r = K/z /l ° -
z,
so that the scale L of the modes is
L= - 2
i ’ ° (342?)

Focussing on long scale modes L>>z _, requires fron

equation 3.129
" ! | (3.130)

Equation 3.130 shows that to have scales L>>z_, for the mean

field is equivalent to considering k> in the range

-3/_’.

[}

K <</h

Having worked out the consequences of stationarity, we

dynamo action and

now investigate the situation when

dissipation do not exactly compensate one another.

5. Small Deviations-From Equilibrium-

QE +# 0 and

this concluding section we shall assunme
ot

In
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therefore investigate the possibility of having dynamo action
dominating the dissipation. Returning to our full equations
3.44 and 3.45, we seek to define an appropriate dimensionless
time co-ordinate %. Noting that tK=r%/A where A=(Gmx)% (Mcis
the mass of the central object). Making r dimensionless (
recall ?=Uxfﬂ-) allows t, to be written = ﬁ%'/qq(Xxf@

so that the choice

/‘ —
t = Ft / TK
3.131)
T = — 3 = M:L' £ (
K ¥ Zo
X -_— _—
A L) (6lsn)® A
results in the equations
~% OB FaLd rY
re T2 - - A R S = -B J (35
Ve Sl P e s Fa‘a @ 5) (3-132)
rA 2
e 2By P N +i,%3¢ -2 b (3.03%)
— At 7 o2 P
1t oY r dr r

Again, these equations are separable assuming a time
dependence

E(?.;,{) = B(r z) e (3.13\4)

where ¥ is a complex constant. We should remember that the

A3
! factor arises because our turbulent diffusivity
My = sz « . Introducing 3.134 1into equations 3.132 and

3.133, we may again seek separable solutions in r and z with a
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separation constant -k to find that R(I) now obeys

(3.135)

4oy (k—b’?%)_}\z% Rez2) = o

dv r

and with Q(%) and U(%) obeying equations 3.51 and 3.52 as

before. Since we will be matching to external vacuun

solutions, we take K as real and positive. We may regard
N X?»z as an effective dimensionless, square, radial

wave-number (complex imn general). Introducing

K-‘L?) = K - [ (?) ; Tery= 40" (3.(36)

we investigate the two extremes:

() kI T, Then &'~k ana Red)= Texa?)
(2) fele Ir] . Then K5~Fc?) which results in the
equation
4 1o ~3% Ay L
i Lr iRl T g RE e (3:37)

This equation may be solved exactly. In the case where
Y= -Yo ( Y.>o and real ) we find decaying fields anad
from Abramowitz and Stegun ( (1968) formula 9.1.53 ) the

solution is

Re#y= Ty (4057%)
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which using definition 3.136 is

!
~ i LN
R(V') = :Y‘(,_) (%7(10‘;‘)) ") (3,‘35')
which supports the claim about ) made above.
Restriction to the case ikl » (Tl amounts to studying

slowly varying temporal variations of the mean field, and as
we will see, the analysis will follow along the lines as given
in sections 3 and 4. The second limit |Ikl<« ||, corresponding
to rapid variations of the mean field, greatly complicates the
mathematics. In particular, we have modes of radial dependence
R%1( Fh?) in the disc ( R symbolizing the appropriate
Bessel function ) whereas the vacuum modes have a radial
dependence going as ) (k% F) . The matching of disc and
vacuum solutions then is complicated. On short enough time
scales, the mean disc field is strongly influenced by the
inhomogeneity introduced by a radially varying turbulent
diffusivity #, . The mathematical problems introduced by rapid
time variations are probably best handled by a boundary-layer
type analysis, where we note with Braginskii (1965) +that in
general, when matching to an exterior vacuum solution, a
boundary la&er of thickness J< 2, is expected about z=tz_.
The previous chapter showed that the disc is not
stationary on time scales < ioty so that a rapidly varying

mean field on these time scales could not develop. in
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stationary conditions. We shall therefore only concern
ourselves with slow temporal variations of the mean field in
the 1limit [\df» Il « 1In this- limit, we may think of the
background hydrodynamic setting as stationary. In addition, no
new mathematical procedures need to be introduced.

Concentrating on the Ix| » || limit then, we seek
solutions to our disc equations and match to an external
vacuum solution as we did before. For J¥#o ; this will result
in a dispersion relation which relates ¥ to K and other
constants. To deal with our radial inhomogeneity, we note with
Whitham (1974) that in working with non-uniform media, the
dispersion relation to first approximation is +the dispersion
relation for a uniform medium provided that the typical
periods and wavelengths over which the medium varies are 1long
compared to the waves being considered. In these cases, the
procedure is to compute the dispersion relation in the case
where the various parameters in equation are taken to be
constant, and then to reinsert their spatial and temporal
dependences when the relation has been established.

Therefore, we will regard 0= I'/«x to be a small

n

parameter, and to regard the variations of with T as

negligible in order to determine the dispersion relation to

¥t
lovwest order. Beginning with the e time dependence 1in

the manner already discussed, we write

’ -1 _ _[2 . -
ia_?z+ 27 ?ziB,-[ (;-? l)B,+lsJ%(ersp)]

2 —;JEB«# - [‘(Ef‘“) By + F B,}

i
[

p——
< je
sy 0
rl
+
-
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with the intent now of introducing the separation constant
- K, with [ regarded as constant and with \k| » [T} . We
then find, using 3.49 that R(%) satisfies equation 3.50 while

equations 3.51 and 3.52 become

”ll _‘ng_ d (T u) .
éx%z ’ e (>0
Jd* _T<§U: R

—_ - 1Yo
%Agt P (3-140)

where

K = k+ I

with the understanding that %! » 7| . Equations 3.139 and

3. 140 are exactly those we dealt with before except that

K = kK = k+ T

With our vacuum field assumed to have ayt time
dependence, the matching procedure in section 4 may again be
used, along with the various forms of the solutions (AM‘%%)
etc where in all cases we replace k with K=zk+D . Since
we assaume IxI» 1T} , our solutions are negligibly affected by

.
|

any complex component introduced by
el
Our strategy is to expand the relations det ¢ D=o to

first order in © = /[« , and then to solve for & . We



144

stress that 1" will be complex in general. The dispersion
relation Jet (®°-20 derived from the matrices 3.110 and 3.111

is in general form

- _ e o
(7.7, - T T ) P (3.141)
vhere for even modes
Zﬁu../s ‘f 3/1‘0
T,e: ( e - € ca )
—e : N N _
P (:[’“‘“‘5_5—" ,—'f,, t Se z'/s)’ (n«as!_:))
KI-
A 3.142)
e 2iTify -."7‘ S&Jo) (
T; = (— e + & L4
“t
Te’ ( (zs».zu /_‘: ¥ ;,.,Z__IT) _(:-uszj)>
L 3 K'/‘ 3 3
and for odd modes
o 2l [y AT )
’v = (-’ e - e e
—_— 0 -2y ‘:¢ z/ijo
, = [* e t ¢ e (3143)
o e e e
7; = /1. G“G( I‘f = ’.(

wvhere
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Noting that

we expand 3.141 to first order in b using 3.142 for even

modes and 3.143 for odd modes. Multiplying the resulting

-3, '{o
equations by e ’ /z then gives the equations for even and o044

modes

€, e, e, o0 — .

(T2 e e« o [ree] e w0
where Tiul and qu are the real and imaginary parts of
equation 3.112 and T:u( and T:“s are the real and imaginary

parts of equation 3.113. Note that 0=0 gives back our
original dispersion relations. The factors F and G are the

same for bofh even and odd modes and are

F= -20 son Y (3245)
3
y y
G s E Pq (Cos'{lft-%/’“\ +2£KL/SV;17L[EJ0"+E] - 4 (435%)
z yh O = 3 C ;:"; 2
(3.:44)

Before we proceed, let us analyze the relative magnitudes
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of the terms in F and G. The first term in G is
l/q
Gl [ :‘i cos(’}
k4

while the second term is of order

i
. |
Gl =~ Kl swk}/ /_l_:_;
,

Ki

Taking the ratio

|
<2 l‘tc—-‘\fl (3-147).

QR
R B
»

Near equilibrium, we may use equation 3.117 in both even

and odd cases to give

I
‘ 6. i A (3.14%)

Since we will want to focuss on long radial scale mean fields,

equation 3.130 shows that for L>>z,

{
K’ J:w

together with our usual limit

» |

/
2

- <<
Ao

gives { Q/51[>>l . Hence, for near equilibrium conditions and
focussing on long radial scale modes gives
€ x 'E) /(olh‘ eV
(BJqq)
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Using all these approximations it may be shown fromn

equation 3. 144 that

;‘“‘5 fr.ol

0% - - -, g (Tl FeTilc)clmi FoTlt é)}

2

e ) e, o0
L { - R i t ¢ Trca.l 1
& s : (3.1{0)

'3/ /‘o
Assuming e s terms are negligible we find from 3. 150
% “
pt. 2 X g (2_":3,1{° +ﬁu‘7L) + 2LE (3-'5')
B} ,{:“ K’z

where

° e

6 = -0 (3.1;‘2.)

The result 3.152 shows that for the same Jo, frequencies in
the odd modes are exactly the negative of those for the even
modes. We comment on this later.

Noting that 0: I'/x , equation 3.151 gives for even modes

¢ Ksll " )
K | L2 ( 23 o 4t ¥ (3.13’3)
res f—s— /\ol/,{ ‘—:'/1_
3
ne Loz ok
l..W\“S u"B—‘ _"I/‘t (3- If‘f)

©

For growing modes to occur one must have'P;;|>o . which
for even modes gives
273 A:q Y
("éan(}’)
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We have already seen that under equilibriunm conditions
tawt <0 for both even and odd modes. Hence, we see that a
i,

3 - » . 1
critical dimensionless wavenumber K., enters the problem so

that when K> is small enough so that
K2 s K,”' (Z.ISS) )

PSP U AT ] (3-15¢)

then exponential growth of the field takes place. Those modes
k" such that kh > Kf will decay. Using the result 3.129 for
the scale of the mean field components, we see that even modes

of scale

Le N L—c = Zo Itaa-\(ltl (3‘“—1)
23 A,

will grow exponentially while scales of L<L_. will decay. We
recall that ?;—%? Ao with 40 a function of the turbulent Mach
number M, ( see 3.104 ) and that with L>>zZ, ;lfm~¥f»/b.

% . N 4 .
The mode Ky for which dT/ded) = o is found to be

% 2.
2 _ kS
Ky = 2 K
3

[3Jr&)

and this mode is the most rapidly amplified component in the

spectrume.

The relation 3.153 may be written in more suggestive form

as
€

Pm.l = 2« [ 1-5’:] (3.:§7)

c
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For consistency, we note that when lP\ = Kk the amnalysis can

no longer be applied. From 3.159 the range of dimensionless

wavenumbers considered here is therefore

Within this range, the fastest decaying mode occurs at

<
5
-

K.* =3 kK> , which gives a faster decay rate +than the
A

2 2

rate at which the mode K.*=2 K. is growing. Specifically, we
3

(g

find that when veel 2 © ’
;—-,C ..\C 2 3 (. )
Iru.”-}— = omax I real = (3‘ ) Ke (“' K= Ky
[3. t¢o)
[4
and when I g4 <o then
re
~e h ot K=l
l—leoJ_ E MC.X?-IYC“‘% :L}i) K. ( « )
el [3-160)

These growth rates correspond to the scales

L+ = _3_ LC
2
for the growing mode X, and to

L= Le

2
3

for the decaying mode K. where we demand z < Lt <2,

[

~

The result 3.154 shows that one necessarily has an
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oscillatory dynamo at work here, whose frequency increases as
we go to smaller and smaller scales.

Using the result 3.152, we see that for odd modes

0 h e
= - 2K {- to- E . -
r‘ua\ Kc’I“] - FV‘LL{
(x.laz)
re Sz KE . - T
l-mas = rg /‘(‘c,* :maj
E]

so that odd modes of scale L<L_are growing expomentially while

those of longer scales L>L. are.exponentially damped with

.\
~
L

N
+
N

(3.u3)

and Kf:(;ygf. The dynamo action is again oscillatory.

The result 3. 152 may be traced to the general symmetry of
our underlying equations 3.41 and 3.42. The product ¢X which
is a measure of the overall dynamo strength to dissipation
strength is for our analysis found to be positive. If

¥*x <o then U(z)=U(-%Z) implies P(Z)=P(~%); and U(Z)=-U(-%)
implies P(zZ)=-P(-%). In our system, it may then be shown that
what were even mode dispersion relations for {X>o become odd
mode dispersion relations when /X <o . This kind of behaviour

has been noted by Moffat (1978) p.230 for the study of X!
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dynamos. In his discussion, X plays the role of YX and in
a disc system containing two thin regions of dynamo action vwe
quote:

"so that if a dipole oscillatory mode exists for X=Xo
say, then a quadropole oscillatory mode with the same
(complex) growth rate p exists for X=-X, < "

The result 3.152 1is an expression of this basic symmetry
propertye.

The fact that our solutions necessarily have an
oscillatory character may be traced to our approximation that
our mean velocity field was taken to be toroidal. As Moffat
points out (p.213), this is a property of xw' dynamos and
when the poloidal velocity fields are non-zero we may expect a
frequency shift of Qp- K to occur for a mode of the mean
field of wavenumber K . If %um3 is the frequency when

f

Up= o , the new frequency is X“”j: Vi -@& . K .
Since our main poloidal flow is radial, we expect that
the effects of such a flow will be negligible provided that
the drift time scale t, = r/U” is much longer than the
characteristic time over which the mean field changes. With
tB>>tK in our analysis, this requires te «wtge« tp .

Putting all our results together we find that the time

dependence for our solutions is given by

iy, 3,
J+t3s (o) M, t [’ZK 1- kK*® {2z K? %
exp g z ( ¢4 ( kl‘> " ﬁ":W]
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where + is for even modes and - for odd modes and where
tk=r%'/@bufis the Keplerian time.

Focussing on kK= K, * %Kc for even modes (i.e the mode

whose growth rate is the quickest) corresponding to the scale

L, we have

This shows that the oscillation ‘frequency is a factor

K*/AM«| smaller than the inverse growth time scale. of the
field. The growth time of the fields depends on M, and k. , the
entire process being scaled by the Keplerian time scale. Now
the exact value of K, depends very much on the exact value of
M, . However, we may introduce the parameter 3 such that
L : 2./ with J5<<l . Since K= 5°/AJ* with this parameter, we

L, 3
have K.:3/|.* where
1

Sge UZ)/

T

<< |

o C—«.s_g
o [ 1t ),
Using the dependence of . on M, wve find that the even mode

with scale L; = 2./§. grows exponentially as

e"‘? § 0.2 ("'(t &)L t/t.‘%

Consequently, the smaller the value of <the turbulent Mach
namber M, . the 1longer is the growth time of the field, the

relevant time constant being

te,3 = te /(o.z) (Htsc)L (x.1¢9)
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Thus, the most rapidly growing even mode K, will occur
with M; = 0.19, with 5, being a measure of M - Hfﬂ , and
ty = 38 g,
sZ (3.1¢5)

For the o0dd modes, the most rapidly growing mode is

K = Ky = K. corresponding to the scale

L4_'-

al, =4 L+ =« In this case however, the largest value
3
of M, is M:'= 0.04 so that the exponential growth occurs with

a typical time of

ty = “l_y“ii' t. (3-u¢)

These results clearly show that the most rapidly growing

. 4, ’/1
mode is the even mode of wavenumber (& =§ K. « We note that

the exact amplification rate is sensitive to the exact value
of M « The build up of the field occurs on time scales
ta = toot which is of the order of seconds to tens of
seconds in the inner regions of the disc where 'tl'xlo-z s
and approaches the drift time scale. The results show that the
longer the length scale of the mode, the 1longer the time

required to build up the amplitude by dynamo action.
We leave to chapter 4 the analysis of how such growing

fields ultimately equilibriate to some steady value.
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Chapter- 4-

Implications For-Accretion Disc Models-

1. Introduction

In this chapter, we bring together +the various ideas
investigated in chapters 2 and 3 and examine the effect of our
analysis on accretion disc structure. |

We first turn our attention to the equilibriunm vaiue of
the mean large—-scale magnetic field, and investigate what type
of stresses are set up by such a field. Section 2 1is devoted
to +this analysis and it is shown that the mean, large-scale,
(long time average) Maxwell stresses give rise to the sanme
type of accretion disc as studied by Shakura and Sunyaev
(1973) . |

In section 3, we try to assess the long time averaged
effect the 1localized intense magnetic fluctuations'will have
on angular momentum transport and disc structure. Arguments
are introduced which, although not completely rigorous because
of a 1lack of detailed information about the spectrum of the
the magnetic turbulence, nonetheless show that the Lightman
and Eardly instability mentioned in the opening chapter may be
suppressed. 1A consistent cool thin accretion disc (averéged
over long enough time scales) can therefore be imagined. The

source of the hard X-ray spectrum would then appear to be
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associated with a collection of intense 1loops of magnetic
field, emerging from the disc surfaces, and undergoing solar-
type flares.

Section 4 is a rather crude analysis of the type of
spectrum - one could expect from the flaring regions discussed.
Again, we make the analogy with solar flares and model the
hard X-ray emission as arising from a rapid flash-phase of the
flare, wherein bremsstrahlung emission arises from a non-
thermal electron population (accelerated in the flare region)

interacting with the denser gas towards the disc surface. .

2. Equilibriation- Of -The Mean- Magnetic Field And- Conseguences-

For Accretion Disc Structure.-

In this section, we study the angular momentum transport
(over long time scales) generated by the mean field B. In
order to do this, some estimate of the ultimate equilibrium
value of B must be made.

We have shown in Chapter 3 that initially weak magnetic
disturbances of long enough scale will grow exponentially on
time scales foo t4 - It was assumed in this case that the
flow was Keplerian. We now ask, what does this field do to the
turbulence and/or the mean flow to limit its own growth.

Two possibilities come to mind. The mean field may act to
alter the turbuience ( reaction on micro-scale ) when the

field approaches equipartition energies (see Moffat (1972)).
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Another point of view is that the large-scale field may be
determined by rotational constraints acting directly on the
large~-scale flows, and may be insensitive to the detailed
structure of the underlying turbulence responsible for
magnetic regeneration (see Malkus and Proctor (1975), Proctor
(1977), and a brief review by Moffat (1978) p. 303-307 ).
Which mechanism predominates is a question which has no
general answer yet, however, the latter point of view is the
one of immediate interest in accretion processes.

The idea is that growing large-scale magnetic fields will
give rise to large-scale Lorentz forces. These forces in turn
generate a large scale velocity field. The magnitude of the
induced velocity can be determined from the induction equation
and its estimation is independent of the magnitude of B. The
ultimate level of mean magnetic field energy is then
determined by the magnetostrophic balance in which Lorentz
forces and Coriolis forces are of the same order of magﬁitude
(provided certain conditions are met). In this picture, we
imagine the induced velocity field as arising as a result of
angular momentum transport by the mean field, which is how we
connect with the accretion problem.

Let us briefly discuss the Malkus and Proctor (1975)
analysis for noln dynamos. The idea is to assume that &« in
the mean induction is unaffected by the large-scale magnetic

field. Defining the quantity
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where &, is the value of x for which excitation of the large
scale mean field can occur. When K >Rﬂ, the field grows
exponentially until the lorentz force back-reaction on the
flows is significant. If K, - R, (1+€) where 0<€ <! _ it is
possible for the growth of the field to be arrested by the
appearance of a mean velocity distribution driven by the
Lorentz force; all this occurring before modification of &« by
the mean field B is important. The mean velocity field will
continue to grow until it can compensate for the Ohmic losses
of the growing magnetic field. For the problem of rotating
fluids in a sphere, the mean magnetic field level should then
be roughly detefmined by the balance of Coriolis and Lorentz
forces. The exact level of the mean magnetic field depends on
(R - Rue) -

The equations studied for "X " dynamos in the rofating

frame of reference are (neglecting Reynolds stresses; we

return to this point later)

Wy UWgu + 22xU = -UP + L JxR 4+ v U%R

ot - ¢ - - (1)
B . Ux (« B ¢ Ox (UxB) + V'R

= ) 1 (4.2)

where «(x) is prescribed and with initial conditions

u(_x,:;): o i}(f,o) = B"Cx)
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where B(x) is the eigenfunction in the problem when U=0 and
R, =R, . With R.. R 1+¢), the mean field B initially grows
exponentially and generates a velocity fied given by 4.1. The
velocity field grows until it has significant effect in 4.2.
The relevant magnitude of U when +this stage 1is reached 1is

found by comparing Vx{&!*E) with ” V'R so that we expect U

is of order

Uy, = 1(/ - (q.s)

In the situation where

E= V[Qriz<l ., Euz /07 <

the Coriolis forces in 4.1 are more important than the
inertial forces ( at least away from the boundary ) so that
the relevant magnitude of B is deduced from the balance of the

Lorentz and Coriolis forces, and is of order

;Bu; = (:JZU.N - C.Q,.,( (4.4)

= =
where both the estimates for B,and U, should by multiplied by a
function of € .

We wish to make similar estimates for the "«w'" dynamo
studied in -Chapter 3. For this problem, both « and uts Vi
are prescribed. Previous arguments have shown that for thin

discs the toroidal velocity is always Keplerian to good
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approximation and that this comes about because the particles
orbit in the powerful external gravitational field of the
central black hole. The growing mean field B is imagined to
give rise to a radial velocity U". The effective magnetic
diffusivity in the problem is M, - We then estimate the order

of magnitude of the induced velocity field as
Wl = /¢ (4.5)

arising from the Lorentz force reaction on the disc.
Neglecting the Reynolds stress for the moment, we then expect
that the vertically averaged Maxwell stress (B¢Br>ﬂm is (see

equation 1.7) over long time, steady state conditions

W . <s'e) - - Fuut (4.6)

Yir

Equation 4.6 is nothing new; however, the radial velocity
U" has been set by the mean induction equation (relation 4.5).
This means that we now have a sufficient number of equations
to compute the disc structure, assuming that the Maxwell
stress from the mean field B dominate the Reynolds stress.
Before we analyze this last assumption, we note that from the

definition 3.35 for 4. , that U" is just

uvr: IR
( | Mﬁ-% (4.7)
U
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so that the Maxwell stress 4.6 becomes ( assuming <o for

radial inflow )

Z2 ¢t (4-8)

&
=

We note that 4.8 expresses the Maxwell stress in terms of
the pressure in the .same fashion as the standard model
outlined in Chapter 1, that is, except for our factor of M: -
Again, the equilibrium values for U/ and I8*B”| found above
should be multiplied by functions of ¢ in order to arrive at
exact values.

Assuming that the equilibrium field g‘ has a similar
structure as computed in Chapter 3 (the ultimate field has
roughly the same structure as the linearized analysis derives,
provided that it is below equipartition strength) we estimate

from equations 3.126 and 3.127
Br:r F/L,l B’L

as the relation between the radial and azimuthal field
components in the region 2z — z. With M<K<1, and wusing the

definition 3.46 for F and 3.60 for 4 we have
/. .
4 Br> ~ N ( B‘P) (4.9)

where numerical factors from the 2z integration have been

dropped and only the scaling with M, retained. With relation
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4,9, we find from 4.8

By o LB o s

Cs
8T &

which shows that the mean magnetic field energy in the limit
M - 0 is below equipartition with the thermal energy of the
gas by a factor M .

Considering the Reynolds stress contribution to W'Y, we
have already noted that the eddy viscosity model (see Chapter
1) gives %ﬁ+c M¢ Zei . It is however also reasonable to

estimate the Reynolds stress ( vertically averaged ) as
ZW> s oY - M Zd (10)

The model 4.10 shows that a competition between the Reynolds
stress and the Maxwéll stress due to the mean field may be
expected. The dominant stress is likely to be decided by the
detailed vertical structure and the magnitude of &« . Here, we
assume the Maxwell stress dominates.

This simple order of magnitude analysis shows that the
mean field Maxwell stress gives rise to the same steady-state
disc structure equations as given in Chapter 1. This arises
because we have assumed that « =M, ¢ in our calculations for
M oo

The discussion so far has ignored the contribution to the

stress ¥'? nade by the intense fluctuating fields we discussed
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in Chapter 2. We regarded these intense, short-lived,
spatially localized fluctuations as negligible as far as
angular momentum transport averaged over long time scales was
concerned. We examine this assumption in the following

section.

3. The Long Time Averaged Effects- Of The Magnetic Fluctuations:

We examine the restrictions that can be put on M, in the

~ 2 z

case where magnetic fluctuations as large as bk /s7¢es = Vi
occur. Using the result fz=6wdﬂ)Bzand the equilibrium value

for B discussed in the previous section, we obtain

(B o o <Y . a4 B 5 (4n)
0 Ir s B T My Z e, .
87 T 1.

and for maximal fluctuations

(UYL T
e
we have
4
V: o 411_ M(:3 C: (‘-Ln.)
"
Using the expression for M; , this is
- '\410/.s 2
\/K X t TG
" Ve
or with the magnetic Reynolds number R = ’Jht/q we have

M (£) RA (4.13)
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where we have noted that(idv) z@%“&l Since we are dealing with
very large magnetic Reynolds numbers, the result 4.13 shows
that maximal fluctuations may occur 1in regimes where M, is
small. As an example, with Rn ~ 10" and with ranges for
¢,/ appropriate for the disc of (o7 > Zlr > o , we find

that

1D ¢ < o (q_;q)

This 1is interesting in that our model for large fluctuations
is consistent with an analysis where M§<1.

Let us more closely examine how large the local magnetic
fluctuations can become. The densities ¢ in the three
regions of the standard accretion disc model are in terms of

the dimensionless variables (see Shakura and Sunyaev)

M [Mo

3
W

F*E f'/r.'

A::A z M /l*"lc,_ = (M /3xm—?He L:)f-\)

X
wA
(a) inner region: (1¢ ¢ iSo)

(’C: 7.2 x 10-’ M;z w . QB/,_ (u.15)

(b) middle region: (5o ¢y ¢ 6,300)

-”’/IO o 2/5 -7/“) ‘33/10
P = 1o Mo M m (i (d-1e)
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(c) outer region: (¢ 300 1)

' —-“f/‘o ./ —7/10 —Ir/y
o & S0 X0 My m "a (4.)

where the critical accretion rate ﬁc, is determined from the
Eddington limit. We note +that the only difference between
Shakura and Sunyaev, and the formulas we give is that they use
M¢ when we use M. ( this is because W™= M P  for their
eddy viscosity model and W, My P from the mean field
Maxwell stress ).

A glance at the radial dependences of these densities

shows shows that the maximum density occurs at R = 180 H

at the boundary of +the inner and middle regions with

e, — 50 o

For the Cyg X-1 source, the black hole mass is 10 M, so
m ~ 10 and since the luminosity is 1031erg s’y m~107%

Writing Ve ’—‘; Jr:* . We find that for ‘maximal
fluctuations b [er - r,V: , that in the inner zone of the
disc

ﬂf: £%Xl;ana M,

If we take =150 ; we then find that

~ 10. %
— h. = 10 @anss (4.:9)

. ’o'r .
We use the estimate of 10 Gauss, because as shown in
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Chapter 1, we found that such a field strength can explain the
shot noise model in terms of solar-type flares.

The value for the turbulent Mach number of M=0.26 derived
by the above arguments is in agreement with the eigenvalue of
M =0.19 found in Chapter 3. We have used two entirely
different approaches and come down to similar estimates for
the value of My« This 1leads us to the view that at
equilibrium, the overall structure of the disc is determined
by the mean magnetic field ( it provides the angular momentum
transport ) which sets the value for M:f0.19._ This disc
structure, in turn, will effect the magnitude of the magmnetic
fluctuations that can be expected. The shot-noise model can be
accounted for by randomly ( in time ) occurring flares, which
have maximum energies if originating in the region r=s (0o-ts0r.
Flares occur everywhere on the disc éurfaces, but the energies
enitted by flares in regions other than r,xwo -iso ¢ will be to
low to stand out above the overall background emission. We
note that with M,=0.19 say, the interpretation of millisecond
bursts as flare events becomes difficult. We return to this
point in section 4.

Before leaving this discussion, we note that if we take

5x10wsGauss, then the total energy contained in the field is

-

(itUgn) is = 4x 10 avq

Now this considerably overestimates the energy release of
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1036ergs per event. The explanation is that only akout 3% of
the 'total magnetic field energy is being converted into cther
fcrms of energy during every flare event. This compares
favourably with the results of the experimerts discussed in
Charpter 1,

All of the discussion to this point has concentrated on a
thin disc as the underlying mcdel for our calculatidns. As
mertioned in the opening chapter however, the assumption that
W™.M.P where M, is a constant was shown ty Lightman and
Eardley (1974) to lead to a secular instakility cf the inner
(radiation dcminated) 2cne of the standard thin disc podel. We
briefly discuss this instability and 1later =show that the
ccrtribution made to the overall stress by an intermediate
time average of o'*¢ can stabilize the inner zcne, so that it
is consistent to think of a cool thin accreticn disc;

¥faking no assumptions about stationarity, the disc
structure equations deliver the followirg equation for the

evclution of the surface density

Z . 12 { [J;u‘r)]" 53_ [rzw“(z,.«)]} (4.19)

a result vhich follows from the ccntinuity equaticn -

WZ .

YL lg(fZU') =0
T «or

(ll.zo)
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and the conservation of angular momentum

¢ _ _ 2 " .
W" = _Z.:_D_(r Wd') (q.z()

Now in the inner radiation pressure dominated zone of the
disc, one can show that 1in the constant M, model for the

turbulence

W™ . (MeZ)7 (4.22)

a result which follows fromvthe independeﬂce of P. ( and the
temperature T ) on the density 2 in this inner region. If
equation 4.22 is substituted into 4.19, there results a non-
linear diffusion type equation for the surface density Z that
turns out to have a negative effective diffusion coefficient.
Lightman (1974(a) and (b)) studied this equation - both
analytically and numerically and confirmed that the result of
this negative diffusion coefficient is for material to "clump"
into rings, with higher density zones getting higher in
density and 1lower density zones getting lower. This clumping

occurs on all wavelengths (secular) and on a time scale

-2

.tl'ns('n\a 2 (.E; )l tD = Nt tK (‘4.21‘)

vhere the last equality is a consequence of

() e () )
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where t, is the drift time scale ty= r/y". Physically, with

W4, ¥ (for constant M,) one has low stress in high-Z
regions and high stress in low-Z2Z regions so that
matter is pushed dinto regions of 1low stress resulting in
increasing density contrast and the formation of dense rings
of gas. The wavelengths A of these regions must be A > A
because of turbulent mixing on smaller scales. This ring
structure 1is not thermally stable and should heat rapidly,
resulting in the swelling of the optically thick, radiation
pressure dominated cool regime into a much hotter, gas
pressure dominated, optically thin one. It is this observation
which lead to the two temperature model dicussed in Chapter 1.
Lightman and Eardley (1974) point out that if M, is not a
constant however, but falls at least as fast as Z™ , then a
stationary, stable, thin cool disc is possible. This may be
seen by substituting My« 27 (n>1) into 4.21 and then into
equation 4.18, where one finds then a positive effective
diffusion coeficient. Physically, what is happening is that
the efficiency of angular momentum transport 1is decreased so
that the instability no longer occurs.

Now in the magnetically dominated disc we have been
discussing, the Maxwell stress due to the mean field takes the
form M: P so that this long time averaged stress cannot

alter the instability discussed in the previous paragraph. Let

us however examine the Maxwell stress arising from the
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fluctuating fields. We recall that from Chapter 2 we had the

stress arising from the magnetic fluctuationms

[ S &

b

0—”¢f‘ - u
uti

~2

corresponding to the situation where b = Mr B* . Now over the
hydrodynamic time scale r{ut we found that"l stationarity was
not possible and so the above expression for e denotes
fluctuations in the overall Maxwell stress occurring on short
time scales and small 1length scales. Taking the vertical

average and using the results 4.11 and 4.5 we find

—_— 2 Y
(T - («T W) ze (4.23)
" .

Now from the 1long time averaged structure of the disc,

assuming steady state gives

f:l :Zﬂ’zurr'

which, in view of equation 4.5 shows that
My = M/ZTZ (L(,z_\l)
and hence, 4.23 may be written

(oS o N Zea (4. 25)

where have defined an effective turbulent Mach number N, as

YRR
o Ta) n e
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In other words, the 1localized Maxwell stress fluctuations
corresponding to our intense magnetic fluctuations can be
characterized by a viscosity parameter or effective Mach
number N, which has a density dependence of 2% . This is
just the type of density dependence that would stabilize the
inner disc region. However, this analysis must be taken one
more step. We must average these fluctuations 4.25 in the
Maxwell stress over longer length and time scales in order to
determine what their average effect will be. The relevant
scales for averaging are the length and time scales over which
the instability discussed could arise, which are scales
intermediate between the hydrodynamic time scale and turbulent
eddy size on the one hand, and the very long time and length
scales assumed for the stationary disc models vwe have
discussed.

The most obvious effect of magnetic fluctuations is to
cause density fluctuations, since we have noted that regions
of intense field should drive down the density in that region
making it buoyant. Now our dynamo parameter & depends on

v” ?g - so that we expect random fluctuations in the
magnetic field to be associated with random fluctuations in
X « The averaging problem then is to regard X as having a
randomly varying component, which we average over a time scale

tx
T <« bu « tp



171

and over a length scale of

,f“ <L ,fo( << r

The analysis to follow, first investigated by Kraichnan
(1976) shows +that +these intermediate time and length scale
averages of the induction equation with random fluctuations of
® results in é modification of M, to a new value M:G‘._Hence,
our fluctuations over the intermediate scales listed above
allow us to assess the effect of ks fluctuations over these
scales.

We follow Kraichnan's analysis starting from the mean

induction equation

D_f:3_ = Vx(x_@ +(¢(x§) + qTVZE (4.27)

and consider the effect of spatial and temporal fluctuatiomns
of & over the scales t, and 1l,. To do this, a double

averaging procedure over scales a, and a, satisfying

Ru << a, << Ao e a, << r (’-l.zS’)

is introduced. Preliminary averaging over a gives rise to the
induction equation 4.27. We treat 2 as having a randomly
varying component which will be averaged over the scale aj;.
The double overbar = will denote averaging over a,

quantities that have already been averaged over a;.
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Splitting B and « into mean and fluctuating parts

where

one then finds

PR
2+
b,
St
where
The term VUx é

(first order smoothing)

]_3_: B_o + EJ_. P oK o= 0(°+ O(‘ (qzq)
r.-B_ = Do ; __'3. = 0
(c{.:so)
; = Ko M ﬁl = o
T (weBe v UxBe 4 KB ) u TR,
(4.30)

+ Ux 6,
El = 0<| lZ( _— ol l_?_|
in equation 4.32

may be
provided that

€, = 'o\(’,‘fx/lu << |

(q. 3z)

(4.33)

neglected

(q.stl)
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)
/7.

where Q.:CZ?) is the root mean square of the fluctuwation «, .

We notice that the induction equation 4.27 has been modified

10—

by the appearance of a new ternm . He estimate this
correlation in the same manner as done in Appendices A and B.
Specifically, we Fourier transform equation #4.32 to solve for
E, (the Fourier transform of b ), compute 3.@\ » and then
inverse transform. This procedure is complicated by the
presence of terms depending on the mean velocity U and «, (
not considered by Kraichnan ).

Mof fat (1978, p. 177) sketches out the case for

x,=U =0 where one finds

(-iwar‘&z) /_L;, ) oné R, o+ w. Vx B (q‘ss)

where B, and VUx Be are treated as uniform over the length

scale lx. One then obtains

l\

ot by = - BoxY + X (vxB.) (u-3¢)
where
f me B B (e, 0) ok o ; :{_=“)3@,<U,u) dh Jdu
J (w +417'lz\‘) m"zq) =

and é«‘&w>is the spectrum function of the field x, .
Now let us compare the terms Vx(«. b)) and Vv x (U xb) with
VL in equation 4.32. The dominant contribution from
Vx(«ob) is of order «s5 /4. , so that the m term dominates if

., P> 0(_@_—{& = __i_'_' »px ("’.55’)
Z

MT ° #»
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where the 1last inequality in 4.38 follows from the estimates
3.35 and 3.36. Now for small Mach numbers M, we noted that
Lifzo My so it is consistent to estimate lu~xz, in order for
4.38 to hold. So near the surface regions z~ 2z,the two terms
become comparable.

The term Ux (4 xb ) is more difficult because U*can be
large. However, using the same arquments as used in Chapter 2,
terms involving U will not be important provided that b’ is
small compared to bf - The important contribution from U is

then the radial velocity U'so that MTVz§o dominates if

Cy Wk L (4-39)
‘T

which is well satisfied. Consequently, for scales 1,»2>>1y
(only if M, <<1), and regions z<z_, with axisymmetric
fluctuations %, and b., the results 4.36 and 4.37 are still

applicable and equation 4.31 becomes
0B
ot

- Ux (wB 4 (l3+1’)x7§o) + (MT—X)V7/§O (4.40)

Equation 4.40, under the approximations listed in the
previous paragraph, shows that the effect of the fluctuations
X, give rise to a correction Y to the velocity field and

modify the diffusivity of the field B, to

-

M Gwr—x) < My (4.4)

where the last inequality arises from the fact that X>0. For
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fluctuations «. independent of ¢; equation 4.37 shows that
Y¢=O { §m independent of &¢). Hence we expect corrections to
the radial inflow velocity U" to be the main effect of Y.

The crucial point 1is to examine the magnitude of X.

Moffat shows that when

E, = Moty /Ao << (4-42)
then X may be estimated as
X~ 0( & t#) (4-43)

Now, we have already constrained 1,to be l~z,, so that
withAMT:Mfitﬂm} the inequality 4.42 gives
L .
E?_ = Mf fK ’z3! ("{q'"’)
t w
so that the time scale t is constrained
-2
which by 4.22bis
'l'.,‘ < ‘tlv\.f'l’aL- (L{.‘{L)
where t .l was the time scale over which the lLightman and

Eardley instability occurred.
Let us estimate &, in terms of the density fluctuations

we 1imagine arising from intense magnetic fluctuations b (on a

scale a,). Since x depends on the demnsity as ¢ 2 , we
P
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estimate

<, =L%« /<a) Ko | {q.4¢)

where ?1 is the root mean squared density fluctuation averaged

out over scales lcand ta«, Then

X = &'t (%) o 2% )2
o ~ 1 o = ] (p 0<° t,{ < _2, [ .
Mr Mr ( M (2') —CC: ) (q 41)

Strict obéervance of 4,44 guarantees that X<<m, however,
pushing the time scale t up to t;( dimplies from 4.47 that
the magnitude of the density fluctuations associated with our
local magnetic fluctuations is all important.

From our discussion and using 4.41 together with 4.47 we

find

Mt > My > My [ ! ‘(Z—;)l(ﬁ_ )Z-} (q'“')'

If we wvere to average over longer times &, Wwe could expect
that E;/p approaches some constant value so that always

M;“ >o . This 1is only speculation however. The genéral
problem remains that if X >m; , a negative diffusivity of
the mean field would result, and therfore , the concept of the
fields Q' and B existing on two widely separated scales is in

doubt, In general, the magnitude of X probably depends

sensitively on the detailed spectrum of the turbulence (see
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Kraichnan (1976)).

We note from relations 4.5 and 4.24 that a decrease of Mt
is associated with a decreas2d radial inflow U" and an
increas=2d value of the surface jensityZ: . The correction to U"
is the term Y.

We may now return to the discussion of the Lightman and
Eardley instability. In Chapter 2 we saw that the Haxwell
stress arising from the fluctuations can be related to the
magnitude of the long tine averaged stress as
<%#“>=(E¥;H§] “r¢. On short time scales, the magnetic energy
fluctuations can reach equipartition with the rotational
energy density and thus thelr associated stress is of the same

order of magnitude as ¥ over much longer length and time

scales magneto-hydrostatic halance must be maintained so that

~Z )
E}>s 2 c; and consequently {bb?) <« W™ on these scales.
[T ati

We now note that Wr4=M:Zf§, with M, constant and

<%’;4> = /?l/:ﬁfcf where /7)/;# depends on (M;“ﬁ On the longest
scales, w2 expect yﬁa and hence/Wf# to take its smallest value
so that magneto-hydrostatic balance can be satisfied. However,
on shorter scales t« and l«, it is apparent thattﬁde#can be of
the same order as M: . Sincefqua.sz the Lightman and Eardley
instability will be defeated by the stress due to the
fluctuating field.

Thesa arguments show that a thin, cool accretion disc is
consistent when the effects of magnetic fluctuations are
considered. ®e expect to find a corona of intense magnetic
field fluctuations of maximum strength‘B =10m‘ Gauss overlying

this disc. These fields will undergo
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flaring processes, and we turn finally to a brief analysis of

the X-ray emission that might be expected.

4. X-ray- Specira From Solar-Type Flares In-The-Cyg X=-1 Source-

The observed power 1law X-ray spectrum of the Cyg X-1
source is usually interpreted as arising from a radially
dependent temperature integrated over the disc surface. The
model of Galeev et al (1979) imagines that a magnetically
confined, hot corona of material is heated by reconnection of
the looped coronal fields giving rise to thermal
bremsstrahlung emission. Their mechanism explains the hard
component of the X-ray spectrum with the soft photon flux (<10
kev) arising from the cool underlying accretion disc. We note
that for an enerqgy release of 1036ergs in a "thermal" flare

then

3¢

10 = 3&T’(M\f)

vhere T is the temperature, n the plasma particle density and
V the volume of the magnetically confined plasma. To get the
lowest estimate for nV, we adopt a temperature of 1a8x10q°K
corresponding to the maximal X-ray energies of 150 kev and

find the nunber of particles

dz
MV ~ [.38 Xlo

{
which for a maximum loop radius of 110" cm, V=10 cn’ and so we
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are talking about plasma densities

which is less than the particle density M = o cw3 in the

outer portion of the inner radiation dominated zone of the
accretion disc. One criticism we have of the Galeev et al
model is that with loops of dimension 1:3x10° cm  and fields
b-10° Gauss, if 3x10“.ergs are to released in each flare event
then virtually the entire magnetic field energy must be
converted into thermal energy of the plasma, which is contrary
to the observation that only about 5% of the magnetic energy
is so converted. We feel therefore that their time scales are
overestimated by 5 and their fields underestimated by a
factor 20. However, their basic physical principles provide a
consistent model for thermal heating of the coronal plasma due
to flares.

| There is a large amount of uncertainty in ﬁhe analysis of
the hard X-ray componént (>10 kev) of the solar flare X-ray
emission, as to whether thermal or non-thermal ( power-law )
populations of electrons are responsible for generating the
observed power-law X-ray spectra (see Kane (1975) for a series
of articles dealing with this question). It does seem élear
that for solar flares bremsstrahlung is the dominant radiation
mechanism.

Observations of solar flares of duration 100 s shows that
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there 1is a flash phase lasting 1 s during which much of the
hard X-ray emission 1is occurring. The theoretical work
suggests that a non-thermal electron population may be
responsible for hard X-ray emission during this initial short
flash-phase of the overall flare.

Datlowe et al (1974) have studied a sample of 123 hard:
solar X-ray bursts using the solar X-ray experiment on the
050-7 satellite. During a typical event, the hard X-ray flux
peaked earlier and decayed rapidly compared to the soft X-ray
flux. This is clearly shown in Fig. 7 taken from their paper.

The hard and soft X-ray components of a flare exhibit
very different behaviour. In addition, the 0S0-7 data most
commonly show a steady softening of the spectrum throughout
the burst.

These authors find that there 1is a detectable time
difference between the time interval in which the flare energy
grows and the time interval over which hard X-ray producing
non-thermal energy input takes place, suggesting that the soft
(thermal) X-ray emission does not arise from energy input of
the non-thermal electrons within the hot flare plasma itself.

Finally, for +the solar bursts studied, the spectral

indices ranged from 3.5 to 5.5.
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Fig. 7- Hard And Soft X-Ray Flux From- A-Solar-Flare (From-

Datlowe Et Al- (1974))
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? UCSD SOLAR X-RAY EXPERIMENT 3
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- . Hard and soft X-ray flux from an SN flare at 03:46 UT on January 26, 1972. The upper trace
gives the 5.1-6.6 keV channel of the soft X-ray detector, and is characteristic of the thermal X-ray
flux. The lower trace gives the 20-30 keV channel of the hard X-ray detector, representative of the
hard X-ray flux. Each point represents 10.24 s of data. Hard X-ray analysis was carried out from
3:47:31 to 3:49:24. The background was taken to be the flux from 04:00 to 04:08.

We shall therefore investigate what conditions are
necessary in order that the hard X~rays from the Cyg X-1
source be interpreted as arising from non-thermal electron
populations +that are maintained in flares over some time

DUy << 8Ty » We assume that:
(1) Each flare of total duration 10~'s has an initial

flash phase of duration ¢7¢u <10™' s during which the hard
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component (>20 kev) of the X-ray emission occurs, liberating
105‘ ergds of energy in this band.

(2) The spectral index for the X-ray photons of energy
>20 kev is constant from flare to flare.
Both of these assumptions are crude because conditions at
different flare sites on the accretion disc are apt to be
different.

We follow the same procedures as used for solar flare
work as outlined by Korchak (1976). Suppose that at each
moment in time, the X-ray spectrum from an emitting region of

volume V can be described by a power law form

: Y
%J; = Ky ¢ FLa‘l’ous cw 2 g7 J(e\)-' (L{.'-(Q)
for photon energies in some range g5 ¢ £ 2, and where &

is the "spectral index%", Then assuming a differential cross-
section appropriate for bremsstrahlung by Coulomb collisions,
the instantaneous spectrum for the electrons may be written as

-(85-1)

AN Lk E electoons hev” (4.59)

oAE

where K, may be determined in terms of K, and the average gas
density 1 in the emitting region, and which includes a factor
R* where R is the distance from the source to the observer (

R= 1A.U. For solar flares ).
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One must now go one more step and consider the relation
between the electron spectrum in the emitting region
( 4“¢/JE ) and the spectrum of the electromns in the source
region. These two régions need not be the same, and in solar
flares, the analysis suggests the source electrons are
accelerated in the 1lower density regions higher in the
atmosphere and move downward into denser regions closer to the
stellar surface where the emission of X-rays occurs. If ANe [ E
is 'the instantaneous average spectrum already discussed, and
dF, [dE is the power of the source, then the relation between
these two is given by a continuity equation which under quasi-

static conditions may be solved to give

JFO =
dE

SL‘L
m'2.

[ 4 4 ) (4-51)
Te Te
where 7. is the characteristic time for the loss of electrons
due to Coulomb collisions of the electrons by the ambient gas
of density m and 7. is the characteristic time of escape fronm
the emitting region.

The lifetime in the Coulomb collisions is given by

/.
7., = zxio E° (d.52)

where E is given in units of kev while the minimum estimate

for the escape time is given by free escape,

Te, min = L/ a (4-53
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where 1 is the linear dimension of the emitting regiom and v
is ' the electron speed. When T,<<7,, then the escape time is
much smaller than the ccllision time and mcst of the electroms
escape without colliding. This case is the so-called "thin
target" approximation. Comversely , for T. <<T., the collision
term dominates and most of the electrons 1lose their energy
through collisions. This is the "thick-target" apprcximation
and is obviously more efficient at producing X-rays. It has
been noted by Brown (1975) that the thick target case may
over-estimate the total numker of electrcns required for the
X-ray emission by an orde; of magnitude. Korchak (1976) notes
in his analysis that either of these cases are 1limiting
aprroximations useful only for a qualitative analysis of a
flare problen.

let us first consider what conditions are required for

the thick-target approximation. Here

3
T, = 2x togflz/& S << Te muin = 2w

Taking a +typical electron energy of 50 kev say, with a
dirension l~*106cm for the emitting region, and §~ 2 say, we
find that for the inequality 4.54 to be satisfied, the gas
density in the thick-target must be i>>1omémd. With corcnal
atmospheres of about 10n—10ﬂ cma, .this could be well

satisfied.

We restrict ourselves to the analysis of the thick-
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target case for the moment. As Korchak points out, a lower
electron energy cut-off E kev must be introduced in order to
estimate the total number of electrons and their total energy.
It 1is possible to make and order of magnitude error in the
theory becausé it is impossible to evaluate E, within the
context of the theory itself.

Nevertheless, introducing the low energy cut-off for the
electrons E,in the electron power-law spectrum, at a distance
of 1A.U0 the total flux F,of electrons with an energy EXE, and
their total power P for thick-target emission are given by (

see Korchak )

i : -7
F(EsE,) = 3xio (5-) T0E-4) o F - -
N&-1) ‘
24 n 1-3
P(EYE) - sxio & T(35-4) i, E vy 5”
" (8-1) (4.5¢)
.5

where E,1is given in terms of kev and K, is such that K. &
has the units cm™s'kev™ with £ given in kev.

To specialize to Cyg X-1 conditions we first correct the
results 4.55 and 4.56 by factors of (R%jb,/an f“ where
Reyyxt =2. 5kpe=5.15x10" 2. .

From the data of Dolan et al it seems two possibilities

for the power law X-ray spectrum are possible.
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(1) There is no break in the electron spectrum in the
energy band 20-150 kev. In this case, from equations 1.2 and
1.3 we estimate

(w.51)
E, - 28 kev
C

-3 . R -
= 7.1 Xx {0 PLQ'{‘M«{ (\«2 s ! &CJ

which gives the value for K« as

K, = 6.0o4
Then for +thick target bremsstrahlung, we find for Cyg X-1
flares

1 -2 .
Fo(EbE.) = .25 x10o E, 57 (459

pleve) = iz BT ey T (e
Equation 4.59 gives the power contained in the non-
relativistic electrons. If we want the entire hard X-ray
emission per flare (>20kev) of= 1§éergs to arise from these
non—-thermal electrons, we <rTequire (note that the total
emission per flare is 4x103£ergs)
3

4 ' ~
2X 10 e"j = Dl P(E>/Ev) (4[‘60)

so that with a cut-off of Ex20 kev;
bT-C(AsL x 3x ‘D—L Sec (‘{6()

which in turn implies that +the +total number of electrons

required 1is

~ _ a3
Ne ¢t (E2E ) = 8Tg - Fo(E%E,) = 348 xi0  lectisus
(4.62)
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There is one difficulty with these results. We have in
Chapter 1 made a case for taking l=10‘ cm as the size of the
magnetic fluctuations. We are imagining in our flare model
that the flaring region is a neutral tube or sheet between two
adjoining magnetic loops. Now the time for a light signal to
propagate over 106 cm is

Tt = Alc = x0T sec
Hence, case (1) violates causality considerations by an order
of magnitude. If equation 4.56 is exémined, it is seen that a
higher spectral index (3>2) is favourable for lengthening the
flash time. This leads us to our second case.

(2) There is a break in the hard part of the X-ray
spectrum at ~ 50 kev say. Dolan et al mention that a third of
their spectra demonstrate the break with spectral indices of
2.5 or more for the higher energy domain.

We assume that the hard X-ray emission (E >50 kev say) is
the first radiation produced in the source, and that this
emission has a spectral index of § =3.0 say. As the flare
continues, the 1lower energy (still hard) X-rays are produced
but that these have a lower spectral index of ¢ =2.0A because
the power law electron population is being degraded by inverse
Compton scattering of cool disc photons. It is known that a
power law electron population of spectral index 7' will give
rise to an X-ray spectral index of (7 +1)/2 when Compton

scattering occurs.
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Thus, taking § =3.0 as the photon index for E >50 kev say
in spectra with an observed break in the 20-150 kev band, and
adjusting K¢ by a factor of 1.3 due to the change in slope of
the spectrun (estimated from Fig. 3), we find that using E=20

kev gives

—_ 4y
Fo ~ lo6 x (0 s (4.¢3)

P = $.25 x (10 ev‘) N ’ ('-{6‘()

from which using equation 4.60 we derive a flash time

BVl = 2Ex 1 sec (4.65)
and hence a total number of electrons per event of
43
Ne}{.,{. = q.z*I X 1O ¢[ec+rnu\s (‘{.LL)

This flash time satisfies causality constraints.
Now with ¢ =3.0, for & >50 kev we assume that we have a
single electron power law in the range. 20-150 kev with

spectral index

Assuming that X-ray photons in the 20-50 kev range are
emitted in the latter phases of the flash, one expects the
electrons in this energy range to be degraded by inverse

Compton scattering (we support this claim 1later). Thus, the
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electrons with spectral index e =2.5 give rise to X-ray

spectra for the 20-50 kev range with a spectral index bf
S=(P¢+‘\/Z -(2.5'1—1)/2_ = .15

which is in agreement with the low state spectral index of
1.83:0.06 given by Dolan et al.

This model, involving a break in the X-ray spectrum due
to the degradation of electrons in the latter phases. of the
flash by inverse Compton scattering, delivers a plausible
picture of the flaring region. The idea that the spectrum of
each flare steadily "softens" during the course of the flare
seems to correspond with the solar flare results.

We note that the flash time of 4x10°s is nuch smaller
than the escape time of 1@45 so that a thick-target pr&cess
must be assumed. Hence, the requirement 7 < 27;,, gives rise to
(equation 4.52) a 1lower 1limit for the gas density of
1> 1.8x10° cn.

To make further progress we consider two possible extreme
cases. We have noted that an upper limit on the coronal gas
density was Tc10 cn™ while the lower limit is established by
fx~“1.8x10’§cm'3 so that 7T, ¢ Aﬁhr Hence, we may consider
1Owcm$<n§15'cm4. We consider the consequences of either
extreme.

Is
(Y n,=10 cmn”? Te= 0Ty ) - Then from 4.66 we reguire a
MeT M = Lha sl

w IO

¥ q
volume of 10 cm™ or 110 cm dimension of electrons to be
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swept up in just omne flare. This is clearly unrealistic since
it approaches the radial extent of the disc itself.

(2) gcxl_(_)_ﬂ__@"’ (T = lo’,ff,;“!_- Then if no reacceleration of
electrons occurs, one requires a volume of 1012cm‘3 or
1~10" cm. This is still large by an order of magnitude.

®> as the electron density, we see that

However, with nc~1&‘cm'
the electrons are being accelerated and halted in the sane
spatial region. Under these conditions, Brown (1975) has
suggested that the total number of electroms (Nf1&3) could be
reduced if electrons were reaccelerated. The number of
electrons required would then be reduced by a factor depending
on how frequently electrons , already having ﬁndergone
collision, could be reacéelerated. If this mechanism worked at
high efficiency, then since ﬁ4@§hd~= 10'i ve woﬁld suppose
that each electron would be reaccelerated a maximum of 10
times. The total number of electrons now required is reduced
to md:10”' and with ne=16Jcm°, a volume of 10 cn” is involved
in each flash. An emission region consisting of a neutral tube
of length 106 cn then would have a radiué of/~10r cm while a
neutral sheet of area 10" cm® would havé a thickness of 10°
Cl.

We conclude that the electrons are most likely being
accelerated in the the same region where emission occurs, and

that with the electron density the same as the gas density of

- | -
n=1OLcm3, an adequate fit to the date camn be entertained.
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We notice that the 10vcm‘3coronal density is to occur in
the region 100-150 r,where we have already shown that the nmost
powerful flares should originate.

This model for the spectrum should be regarded as crude
because no physics of +the acceleration mechanism has been
produced. Hovwever, no comprehensive treatment as yet exists
for solar flare mechanisms. It is interesting to note however
that a collision time 1042 for n z10ﬂcm4 gives rise to a
mean free path for electrons of 100kev energies say of
A= 151cm. Now, as noted in Chapter 1, scaling arguments
suggest that one may have electric _fields equivalent to
1quolts/cm so that over a mean free path of 10Jcm, a particle
could aquire ~ 103kev energies. With a 100kev electron as our
starting point, this suggests that if the electric fields are
directly involved in some manner, then the acceleration
mechanism operates at about a 10% efficiency for converting
magnetic energy into particle acceleration. These
considerations suggest that the combination of a high ambient
gas density in the flaring region ( compare to solar flares
vhere "n~10mcm'3 in the flaring region) togéther with an overall
efficiency of <10% for pumping magnetic energy into pérticle
acceleration , 1is responsible for limiting the bulk of the
electrons to <150 kev energies, This explains the observed
high enerqgy cut-off at 150 kev.

our model for the spectrum 1is then that randomly
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occurring flares of 10/s lasting for 0.1s each emit total
energies of order 10“Ergs. The doﬁinant flares occur in a
region 100-150 L. Each such flare is characterized by a double
power law X-ray spectrum with 3= 2.0 for the 20-50 kev range,
and d=~ 3.0 for the 50-150 kev range. The hard X-ray emission
(>20kev) of total energy 10 ergs per flare is modelled as
arising in a very rapid flash phase of durationozhf 4x1dr§
during which the electron spectrum is taken to be a power law
dependence, so that non-thermal bremsstrahlung is the dominant
emission mechanism. The explanation of the double power law X-
ray spectrum is that the electron population is progressively
degraded by inverse Compton scattering of cool disc photons.
In the final stages, thermal emission of soft photons is the
predominant process. Such flares must have electron densities
nc:1d‘e1ectrons cn”> for the thick target case.

‘The soft X-ray £flux { E<20 kev ) arises both from soft
photons emitted by the flare after the flash phase, as well as
the soft photon flux from the accretion disc itself.

Let us investigate the the efficiency of the inverse
Compton process by which soft photons from the accretion disc
scatter off the non-thermal electrons in the flash phase. Now
the characteristic time for Comptonv cooling is of order (

Tucker (1975) )

’T’Cowf‘thh = 3'03 X io S (QG-I)

Uplat . ¢
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where U is the energy density of the photon field and f is
the Lorentz factor for the -electrons. From Shakura and
Sunyaev, the photon energy density in the radiation dominated

inner zone of the standard disc model is given by

s

-2 - —3~/z ' _
UF(“,{ = Xl Xlio Mt w v ev-j . 3 (L{.é&)

which, when substituted into equation 4.67, using Mfo.19 and
m=10 gives

-8 3
A 0.78 X (0 f:'/

4

which specializing to the region r,100 gives

2
cﬂwr{o w

s (4.69)

_s .
T ~ 0-18 x yo s (4-70)
O v, LN e —— ettt
c r"’ -~
¥

For mildly relativistic electrons ()-3), the Compton
cooling time is of order of the flash durationf;fdzhi 1645.'We
note that the radiation zone photon energy density is
independent of m so that variations in m will not effect this
result. We see that Compton scattering becomes dominant
towards the end of the flash phase. .

The photon energy density . from the middle zone of the
disc depends on m however. It 1is smaller than the -energy
density of the radiation dominated zone so that cool photons
from this part of the disc would not be expected to alter the

Compton time significantly. However, variations in m will

effect the overall soft X-ray output of the source. This
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explains the observation that the hard X-ray characteristics.
are virtually unaltered in either high or low states, whereas
the soft photon flux certainly does change between these two
states.

Finally, we consider the millisecond bursts. If these
bursts are at all real, we suggest that they may be some sort
of "naked" flash phase of a flare not accompanied by soft
photon emission (see Canizares (1976)). We emphasize that
rapid flash times are required for the model we have
discussed. These flares occur well away from the event
horizon. Rapid flash phenomena may very well explain ény
variations at millisecond and submillisecond time scales so
that observations of such variations would not constitute a
test of whether a rotating or non—rotatiﬁg black- hole exists

at the centre of an accretion disc.
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Conclusions-

The analysis of magnetohydrodynamics in a turbulent
accretion disc using the methods of Mean Field Electrodynamics
shows that magnetic fluctuations and mean magnetic fields are
important on different time and length scales.

In Chapter 2, the analysis showus that if small

T

correlation time scales T. <t, are considered, then intense
fluctuations of the magnetic field are possible on short
lu<<z, length scales. On such time scales, the accretion disc
cannot be stationary. If +the mean properties of the
fluctuations are considered over 1longer time and length
scales, we find that because energy is being drained out of
the turbulent fluctuations to support the fluctuating.and mean
magnetic fields, that buoyancy forces become more prominant a
factor in damping out the turbulence, especially in the
surface regions of the disc. The analysis of the velocity,
temperature, and magnetic fluctuations shows that the mean
magnetic field can determine how large such fluctuations will
be. This question was furthur studied in Chapters 3 and‘u.

In Chapter 3, we show that assuming a steady mean field,
that matching a disc mean field to an external vacuum field
reulted in an estimate for the +turbulent Mach number of
M, 0.19. If an underlying standard disc model is assumed,

this would reduce to two the total number of parameters
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required +to fit the observations (assuming steady state). The
toroidal field dominates 1in the disc and the favoured
configuration is a mnode of "dipole symmetry" for By (and
consequently "quadropole symmetry" for B,). The vacuum field
is expected to be very weak in comparison to the disc field in
the 1limit of small Mach numbers. These results are all
obtained by analytic means in the low Mach number 1limit. The
central result of this Chapter 3 is the demonstration that a
turbulent dynamo is possible in a "standard" cool accretion
disc model. The "dipole. symmetry" mode for Bg4 is again the
favoured configuration since for wavelengths larger than a
critical wavelength (dependent on M,) this mode has the
fastest growth rate. The time scales for this growth are of
order 100t « in the 1limit that small deviations fron
equilibrium are considered.

The roles of the mean and fluctuating magnetic fields as
far as accretion disc structure and observational consequences
are found to be quite different, even though the two fields
are interrelated as examined in Chapter 2. In Chapter 4, it
was shown that on long length and time scales, that Maxwell
stresses due to the mean field dominate those arising from the
fluctuating fields, and that they provide a stress W'? of the
same form as assumed for +the analysis of the "standard "
accretion disc model. On intermediate time scales however, the

magnetic fluctuations contribute a stress which acts to
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stabilize the accretion disc to "clumping"™ in the inner
radiation dominated zone. Consequently, such standard models
are consistant and the hard X-ray emission from the source
must arise from either a hot <corona or intense solar-type
flares. Chapters 2 and 4 show that magnetic fluctuations are
sufficiently strong to account for these phenomena and provide
a physical basis for the shot noise model.

The interpretation of.the hard X-ray component as arising
from the "flash-phases'" of solar type flares on the accretiqn
disc shows that rapid flash times Atﬂﬁuu10’rs are expected.
This means that sub-millisecond bursting of the Cyg X-1 source
need have nothing to do with processes occurring near a black
hole event horizon. Such rapid variations, if found, cannot
reliably be used to discriminate between either a rotating or
non-rotating black hole.

Many features of our analysis may be extended to other
astrophysical phenomena. Immediate application to the galactic
dynamo problem is possible. The idea that active galaxieé nay
be powered by accretion discs around central massive black
holes can be further tested by applying these methods to the
system and determining the role of magnetic fields in such
energy releasing processes. Double radio sources seem to
require twin opposed beams of relativistic electrons to power
them. Magnetic fields generated by accretion discs may have

long range structure capable of collimating such beans.



198

Intense electric fields generated in flare events on an
accretion disc may provide bursts of extremely relativistic
electrons.

In generﬁl, we may state that because strong mean
mnagnetic fields can be generated by dynamo action in a
turbulent‘ accretion disc, and that ;ntense shoLt lived
magnetic fluctuations orders of magnitude above ?he mnean field
level <can occur, that magnetic procegses form a crucial

element in any models for the Cyg X-1 source.
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Appendix- A-

Mean Field Electrodynanmics-

A. 1 Basic Ideas

We refer the reader to the excellent reviews by Moffat
(1978, Chapter 7) and Roberts (1971). Introducing the

decomposition of the magnetic and velocity fields

L: B'}_‘?_‘ . ?:»0
S (A1)

1
+ U , W o= O

=

U =

the mean and fluctuating parts of the induction equation are

2B . ox(ux® + £) .(VIB (4.2)
o i

_a:ti S 0x (Ul w WxB o 6') 1{71&‘ (43)
ot

where a mean electromotive force

Z = L_J;i;gél . (ﬁ‘/)
is seen to arise due to the correlation of the fluctuating

velocity and magnetic fields and

€ = g'xé’ -

vyy ('4'5_)

‘&

It is the objective of mean field electrodynamics to
express £ as a linear functional of B. Then A.2 is a closed

. _ /
equation for B which may be studied in isolation from ).
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We first note that the computation of & is simplest when

¢ =o (4-¢)

known as the first order smoothing approximation. If 1. is the
correlation 1length of +the turbulent fluctuations and?, the

correlation time, this term is small when as an example,
€, = ATe [4e < | (A1)

We consider the consequences of A.7 more.in section A.2.
{

With 6%0, and writing equation A.3 as

1

+(q.vg'- Q

R

J

l

.vg)-qu'= vx(gxg) (48

<
(g

we see that the fluctuating field 5 is being created from B by
gt Hence the correlation between g’ and 9‘ reduces to
determining the correlation tensor of gi Solving A.8 in terms
of a Green's function G¢j(g,t;gC€) ( the boundaries should

have negligible effect in evaluating _§ since correlations

over l,are the only important considerations )

(A4-9)

£ <
T G Y G{’[d bt )y ole) Buosled
Ix,, .

Using A.9, the definition A.4 then gives

Eixt) = & Seap St LH' ' 061 (n; x't) At tx ) Bltet)

J
x!
- - a3 (A.Il’)
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where the correlation temnsor QMl(g,t;g;€) is

Rt (x4 €'4') = dotx ) Uy e’ ') (a-n)

When the ensemble average in equation A.11 depends on x

but not t, the turbulence is " gstatistically steady " and in

this case
Rt (x; 2'4") = Qug (2, ¢ t-t")
If the ensenmble average does not depend on x, the turbulence
is " homogeneous- " so that for a steady, homogeneous
turbulence
Rut (x,¢; £'4") < Quu (x-x', t-¢)

In a steady turbulence, the ensemble average may be replaced
by a time average over any one memnber of the ensemble, and for
a homogeneous turbulence, the ensemble average may be replaced
by a spatial average.

If the statistical properties of the turbﬁlence are
independent of the orientation of the co-ordinate frame (at a
point) the turbulence is " isotropic-" and if the properties
are independent of whether the frame is right or left handed

it is " mirror symmetric "

Returning to eguafion A.10 we see that if we expand
B(gzé) in a power series aboﬁt x, that is R =§Q)+@-gfvgg)then
because Q.  vanishes with [3)=: Ix-x'| the dominant termns
should arise from the lowest derivatives. Hence, the general
form for &; to first order in the spatial_derivatives is

& = aij Bj + hjm 215 (r.)
IX g,
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where the tensors i and hijl. depend on U and on the
statistical properties of g‘but not on B.

The exact specification of aij and b;y& for a given case
involves intricate calculation but very general conclusions
can be drawn from the form of equation A.13; Since £ is 'a
polar vector and B is an axial vector, we require that both
aij and qu_ be axial.

As an example, if U=0 and the turbulence 1is steady,

homogeneous, and isotropic; then +the only isotropic skew

tensors of deqree two and three are

J (n.ul)
bije = mp €k
where o« 1is a pseudoscalar ( dot product of a polar and an
axial vector ) and M is a scalar.
In this case A.13 becomes

_E_ = x B -y Vx@ (4&5)

> Ohw's Law: T = g (E+x B) (n.16)

Gel = (Cz/qn) [7'1— “’{1
In a mirror symmetric turbulence all associated
pseudoscalars must vanish. Hence, if we have a non-mirror
symmetric turbulence, an electromotive force proportional to B
arises ( known as the '« -effect' ) which is a type of term

capable of the regeneration of the mean field.
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The term -m; vx B makes the total diffusivity appéaring
in the mean induction equation equal to W¢ﬂ=‘47+1 . Mean Field
Electrodynamics therefore delivers a turbulent diffusivity for
the mean field B which in the high conductivity 1limit
1:7;/1 »( dominates the ambient diffusivity. In this 1linit
therefore, the mean field in a turbulent conductor cannot be
imagined to be "frozen-in" to the plasnma.

The important question is what causes a lack of nmirror
symmetry. The smaller the size of some turbulent eddy, the
greater the tendency towards isotropy. Hence, as far as the
small eddies are concerned, we can imagine that as a first
approximation, the turbulence is homogeneous, isotropic, and
mirror-symmetric. Deviations from this state will be small and
will depend on A ; the direction of anisotropy. Anisotropy
exists if we have a local rotation JU or the presence of a
density gradient g in the problem. Summing up, ve imagine that
our turbulent fluctuations can be written
u = gl + Q
where g; is an isotropic, homogeneous, and mirror-symﬁetric
turbulence with small deviations g:depending.on the presence
of some anisotropy 'in the problem. For the presence of both
local rotation and a density gradient, one may show that
X =u.({§.% ) (which is a pseudoscalar). The small, non-mirror
symmetric contribution g:is responsible for generating the x -

effect.
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A.2 The First Order Smoothing Approximation-

Krause and Roberts (1976) showed that in the first order
smoothing approximation (equation A.6, satisfied by the
inequality A.7 as an example) , it is still possible to have
large magnetic fluctuations compared to the mean magnetic

field amplitude if one is in the high-conductivity limit-

~ 2
“lw = M oy (n.17)

“ “

where u° is the mean squared velocity fluctuation and T, is a
time scale typical of the fluctuation pL The reason for this
result is that in computing § s it is only the part b;W., the
part of § that is correlated with g’that is important and this

part is of order

z

[o‘cw', ~ €. B (448)

Ignoring the effects of the mean flow; they solve
equation A.3 by a Green's function technique obtaining (see

equations 6 and 10 in their paper )

P

ol
—T—l—— ’ ! ' ! ’
u; (4) LJ~ (4t7) = j’ 'r/.lg G(T-'r)ZJAJ Stun Yy ng“‘cr) B. ¢ +7'J]

- -

(A7)

T
1 ' ‘ f )
-

~

(4.20)



where the velocity correlation Q(T‘) is defined

the Greent's function G is

._3/1

() = (u.nlr)
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A.11 and

by

axp (-8 [daT) (a21)

appropriate for the diffusion operator.

For equation A.19; in

20 /ra ® 4
basically a S function.

approximated as

“w

]
W (+) by (4o7)
1.

which shows that +the first

giving the result A.18.
In

this high

for the magnitude of the mean

the

~1
T W

order

conductivity limit however,

squared

high conductivity 1limit

rA
so that for 0<’l;</eu/,,l , the Green's function is

Equation A.19 can then be

(4.22)

smoothing assumption is

equation A.20

magnetic fluctuations

shows that Dbecause

T 121/,‘ >> 7., then the

P T R

It is this result which 1is

investigate in the text.

A.3 Formalism

Mean-Field Electrodynamics

The approach we employ to

ul o) Lj (t+7)

is correlated for a time

estimate of A.20 is

: My B » E; (n23)
"
crucial to the theory vwe

For- Computing- Various- Correlations Arising In-

calculate x , 4. etc was
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developed by Roberts and Soward (1975). Here we summarize some
of the results that they worked out and which we shall need
for our own calculations. Introducing the concept 6f a large
scale on which the mean velocity, magnetic etc fields vary and
a microscale for a description of the turbulence, it is

convenient to introduce mean and relative co-ordinates for two

points x, and x,as
X s (xy+ x2) xEX-%) . T g (tet) . ts t,-t, (4.24)
in terms of which the two-point, two-time. correlation
functions such as
‘:0«'3 (x. £, x_z,-l-,) : u:'()g.,t.) “JI' (x: t;)

‘-§\.J(X,T‘/ ,_v’f) = U-"' (2'(4«:(},—_‘_ _é) ul,' (25_{5 }—‘__‘ _{_) (4.25)

The turbulence is steady if

4’«'j (.)S,T,' g,é)

and locally mirror symmetric if

n
VSl
T~
>

~|
X

)

~
N

@%(LT;L+)= b (X, T, -x. <)
The method used by these authors relys on a double
Fourier transformation and expansion method whereby the
Fourier transform with respect to x of A.26 is

Py

é;i (Z,f;g,w)
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and the Fourier transform for the mean variables X, T

~

The idea is to regard variations of mean quantities as
negligible over scales l,and times 7, which characterize the
turbulence. Hence, the induction equation for the fluctuation
is first Fourier transformed, the various correlations
computed in K -n; ,é~A) space, and then an expansion of the
results carried out in powers of K ( that is a power series in
large scale derivative 9/95 ). The results are then
transformed back so that the various coefficients in the
problem will be integrals over the microscale spectrum 4 , and
v « The idea of separation of scales is obviously central to
the whole process.

As an example, the calculation of < proceeds by taking
the Fourier transform of equation A.3 to find

Palll

by (&,w) - ik il C«QJ‘ J(‘a/'((_-bgljw) B,..(g‘)ol_lfl A(wh"llz)

(#-2¢)
where 4(w) is defined as
s s fepant) oV /iw (r7)
so that in the high conductivity limit
Dlwrind’) ~ Acw) CED)

which, as t —» .» goes to

Diw) — Tolw) + </ (A'ZQ)
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We may now compute & using equation A.26 as

£ = fp gt T [0 (21G) 87 Camiq(bo10)") «

X jﬁ;(&+.ztl_<,w)a’[-,_£+ l'E’,w) B.‘(E(‘) G(L‘l (,4-3.:)

This result is expanded in power of K and converted into
X-space.

In the case of homogeneous turbulence

S (hrsi,w) bpClorpte i ) = (K- Tup (hesx', o)
(4.31)
so that

A

2 homos_ =t E"‘F ZPJ‘ S,&I.M (ZJ - k)) 4,{1 (g,'(A)) Bu\[/_() A(“"-’)
(h-32)

‘ . _
vhere @ H @+%5 - Inverting this result with respect to K and

™

integrating over all Q' and 4 then gives

______; QB _I(:) B T(z)
51)(& = € £ ) s o { dihdog xd - J~,<J g A-33)
(u'xb ), FEajh a4 >, (
where
I(,; z Jj 9}“1 (d W) BCw) db du (-34)
o, 7
_LJ-,U( z jJ Lan @xl (l_g'u) D(-w) 0(4 e (‘4'3‘()

We digress slightly to point out that for isotropic
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A
turbulence, the correlation teansor §x1_ will contain a mirror

symmetric part and and a non~mirror symmetric part. To lowest
Pal

order in °/0X the form of $.¢ is

2 2 M. A,
éocl = <A + @dl
(4 .2¢)
A . :{‘
2L
A
where @ is the Fourier transform of ul ! and is the

A
spectrum of +the turbulent intensity while H is the helicity

- . - 1
spectrum, which is the Fourier transform of W Uxw « In

addition, the tensor Pq (k) is defined as

_ 1;ﬂj (A37)

Substitution of A.36 into the expressions A.35 and A.34

results in the reduction of A.33 to

B (#-32)

g;g_’x!,’ = -Ar(TVX_!} 4+ o
where the positive definite turbulent diffusivity 4; is
PR Sl B YIRS WANY' (439)
s J
and the parameter « ( dimensions of velocity ) is related to

the helicity
i jf Feee) 242 (4-4o]

3 J

(equations A.38 - A.40 are results 3.51 - 3.53 in the Roberts
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and Soward paper).

We shall require equations A.26 and A.33 for the analysis
in Appendix B. We must specify how the helicity is to arise in
our shear flow, and include the effects of density gradients
in the problen.

We first write down the effects of local rotation in
generating helicity. For us the loéal rotation comes about
through the antisymmetric part of the local strain. Consider
first the effect of rotation. In the rotating frame, the

velocity fluctuation obeys

7_‘5| . Vo o ZJ_Z»x«_,_L' = —V[P) VR A (4-41)

ot
Suppose that the turbulence is imagined to be
predominantly isotropic and mirror symmetric ( g; ) with the

rotation 2fs introducing a small deviation g: to this state.

In the 1limit & 7./ 4w <« the inertial term in A.41 is
ignorable and u/-ﬂ*fz << | is well satisfied so that
f !
U L L g -z Rexu (4-42)
2t

Fourier transforming A.42, and finding the correlation

2 () ~
Q;J’ = (#‘J + q/‘.l

~w) (4-43)

-
ut
=
€.
~
==
+
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one may show that expansion to O(K) and inverse transforming
that

20 A

$

where the helicity is

i

c.j l:\’)

B (0T b - 4(820) 27 [ a0 —o%ar] »
@ 44) -

+'2J2"‘Z Rl‘ D_fm IR A‘Lw)‘]
L)xg

We notice that +the vorticity of the mean flow is

2-{2*=ﬁ.

. Roberts and Soward show that if instead of pure rotation,
we have a mean flow with a non-zero strain on the long scales,
then the antisymmetric part of this strain tensor

£l= JZ:Z'_VX(:(

i

7 %
A

will generate helicity H ,¢ given by exactly 1/2 the result

found in A.44. This is physically sensible because the

vorticity Tx U of the mean flow is acting as a 1local

rotation. Thus

A

-/\
Ha.s = _ZL H,of, (/'?'7‘5)

Finally, these authors note that the effects of

compressibility may be taken into account by replacing all
]

gradients 287/ )x, of 3” by

z

&@) . 2 ((azé‘co;) . (g.t/‘)
) Xs (’ JXS .
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. . . 7o .
If we do not include derivatives of g as important,
then the mirror symmetric part of the isotropic turbulence is

to first order in the density gradient

A WS, )
s P (LY [ his, . Lx ) (44
®LJ - @ ( I'J(‘é) ¥ Z_ {0 )XF f L J ,7~]

( see equation 3.38 of Roberts and Soward ) while the helicity
A.44 we will use may be corrected by using A.46 and ignoring
the gradient of 6®) -

We close by noting with these authors that neglect of the
effects of 1local rotation ( to zeroth order ) on the

turbulence requires

Q

ET )t »Tul = (Tt CED

Also in the analysis of the velocity spectrum, the

requirement

é("’[glw) = O(wz) as W — 0o (;4"'/?)

is used; a behaviour which has usually been accepted in the

dynamical theory of turbulence.
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Appendix- B-

The Calculation Of Correlations Between Velocity-And- Magnetic-

Field Fluctuations-

We assume in this calculation that the helicity is
generated by the antisymmetric part of fhe mean strain
s Uxu - We shall include the effect of density
gradients (;‘V@ and will assume that for our purposes the
turbulence 1is homogenous over the scales that the density
varies. Hence, we ignore gradients of the turbulent intensity

vé .
With X = UxU and with the assumptions above, we have to

first order in @”V@ ( see equations A.36 and A.47 )

(o Do (b 9, b5 ) a O 2 @)
@LQ = { ,,&.0. {:‘,_(klf’ Jlt.l)(’ J_)grifg -

- o @
S tsgt b H (B-1)

with the helicity ( see equation A.44)

H92 ) ian) Loy - 8] + g Py oo [ o+ steny ] 39
kg 1 oo sf

1

(3.2)

Substituting B.2 into B.1, we use equation A.33 for the
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calculation of f;:q}yiassuming that we may approximate the
turbulence as homogeneous to zeroth ordef. He shall keep terms
up to first order in 3/:))(S . Noting that only when an even
number of direction cosines EM appear in the integration over
4 do we get a non-zero result, we find

&= fupfu d ){ ” Ry oo™ 8748 au 2B
)XJ'

A R ¥
tofean [l, b, ot- [t - sy B2l des I8 L 4

JXJ' z

——

' ” iJ' (L. 5 -4 Set) o6w) 87U de L] Bu -

T fad ﬁ)i,' be Py stew) [0+ 84 | €% dh s 15 B D
2-

L
-\ R _1 A
L= o v, hp = Ap ]k
(B. 3)
Performing the integration over & using
JJ@f jJﬂ{Jl&z
with the identities
b2 dn - g,
J‘ J 3 J (/3.\')

(L 0y Qe o =87 (5 0+ S e+ 50ns ) (80
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equation B.3 reduces to

E._ = (f(,,(l XJM 'SQ,LM

SRy B,

DXJ

+ Iz ft,‘f D_@M _)z-s +
X, (7.7

-1

t T, (Tu) T - S0 5 ) L B -

- Iq Ssu d [4st~’yr{:—’53wry;t - SJ‘{ c)-s\/-),(

-3
X Ly Ba S

2

where the integrals I, are

=l
w

1
ut

)
w
"l

§,_r' J)‘ onl!é ‘a-z AC”«JS é(o)(i,w) 03&)
>
- O

—_—

3

Y H dod b 47000 [ S| ) (20

(/3./0)

. // do db 27 a0 [800) o] 37,
. (,3.1()
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have employed the identity
E'PJL ZIMAQ. - y]%f XJM_ F‘“ S i (13-12)
Summing indi
leaving

over the indices, the third term in B.7 vanishes

LB Ay (,_3._42)5—'}

2
(/3,/3)
We now turm to the simplification of the integrals 1I,,
I,, and Iy. Using the relation A.27 for 4(w), and taking the
high conductivity limits one obtains
N

6("(4)) =
t e

Tdlw) - </

'PM B(-w) [A(”) Pa) Cw)‘J ST
t»*\

w

¢ [z Stw) - 2 3(2w) - Sc—u)_J
L D(-w) [otw) +A*(w\‘l
£ o

8\4

[SCL«) + IC-w) -2 5[2«))7

Taking the real parts we find

(BJ#).

2 = 6 2
m- Re{T}- fg[@ (4 o) L™k

o (Bas)
21’\79?1"_‘1 - lblfj

3" (Zw)/& odd o w (r3.1¢)
I, = 1Is1T

(13-/7)
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Assuming that %ﬁﬁﬂgxlhd,)afas w- 0, we have roughly

~ 16T ~
= Me T = 2 m. 7
&i/3 ” or T - (B.10)

For the toroidal velocity field

g = ( O, u,‘,lo) u¢~ VK (B.t‘?)

we have

It
~
<
.
©
o
o
A—

'3_2’ R = ‘_/_x (3.z0)
z

so that equation B. 13 becomnes

g = '/VITVX

IR

s VBE JZE+
+ X?( )

Equations B.21 show that a term of the form « B

appears in the expression for £ . Hence, defining

X (rz) = ‘ZEﬂi - _z[_;l_rr) 47:—1"“ 2,
L L
: : (B.22)
gives
£= VB {’- "L (L B)2 (kB LT s 1, (08))
4 23z 4 16
(B-23)

Expressing B.23 in cylindrical polar co-ordinates, with
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the assumption of axisymmetry and defining the ratio

€= Le /L, (B.z“%)

gives rise to equations 3.10 to 3.12 in Chapter 3.

B.2 The Calculation Of u'x(uxl') =F

Wy

Beginning with formula A.26 for § and noting that vxb - ;fx

in the Fourier domain we find

?; = 2;,<PZF;J 53‘52 fg.. (0 (KJ.":Z k.)') (&) (/26"?1 ka’) x

K,w) a;(-{t +'i15-5""“') B‘M(S')a{'_‘., b (-w)

x®
——
=X
N
-~
=
+
Ni—

(5.15’)
which, with the assumed homogeneity ( to zeroth order ), of

the turbulence leads to ( see steps leading to A.33 )

F

‘ ' )
x o tiwp Spys fa Saan (B - k) (hy-K,) E 0 hL) Bu(K) o¢w)

(B2¢)

Integrating over @ and « and inverting with respect to

K , we have in analogy with equation B.7

PO _ R ,
(g x ( Ux ‘2)); = f‘,g{;%,?ri SJJ,Q {J,.,fu.\ 1( - [jljl.l (kil A(,-w)oé{;_olw BW. +

2 '
+ ‘ [{/ZJ éx’i OC'“‘)J% DQLJ Q_B'_w ¥
Xy

. ') 0
”J[ﬂa § .4 0G0 dhdo 8.
)XJ'

- (8.27)
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If we now substitute equations B.1 and B.2 for 52} into
B.27 and keep terms to first order in 9/9X5, we find that the
last two terms in B.27 make no contribution. The first term in
B. 27 contains the product 132; . SO integration over J&i bnly
gives non-zero results for those parts of aﬁd containing an

even number of factors Qt . Hence, using identity B.12 twice,

we find

(!(K(VXL")/‘;

m
'
twy)

H
—
—
S
1A
j-
2
%
N
—r—
;=5
=
4
o>
> &
Fa
+
P\
>
~
o>
PG
S
&
§
§
o
~
-
e
F e
~
—1
o
o
&
N

= - Bu W‘UL 4o ﬂ: }:LEM 1%(0‘(1’.'w) B(-w)
)

(B-ZS’)
where we note that
P, = .
/2'5 S't © J Esv-'(‘ Qf -a..e = 0 F ]‘)1{ = 2
Integrating B.28 over J& and using B.5 then gives
ol
[ - & L = =M

(weCoxpy) = ?”[l g(ho)oth B = B (8-29)

PR

We calculate the quantity glj' from Chapter 2 using the

identity

L
=
1o
-
nt

(W B).oxb = -u'x(oxb) . B (3:39)

so that

* ' (B~3l)

1™

T
%
=
3
x

|

o

LY
=4
=|
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where we have wused the result B.29. Evidently g.y is
positive which shows that the interpretation of this term as a
loss term for U and a source term for b~ is valid.

Tarning to the estimation of £.J we have using B.23

E.-I z 1 (u\xlp‘) L UxBR x4 {tx E Vxi3 - Mr(VXB)L§ (3.32)
- 7 4w T 7 - 4 - =
Unlike the £'j term, the magnitude of ¢.J] depends on the

comparison of the &« term with repect to effects due to the

dissipation #4r. Using equation B.22 we have

X x 'f’l-r ( T_&( )
Lz t
so that

41

e3- (0 - ) B Gy

- (52" ) wm

Now, for our small correlation time limit, we set 7. ¢ t« ,

so that the crude order of magnitude estimate B. 33 beconmes

g-I"" Mr B {L: _\g (3‘7"‘)
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Appendix- C-

The Integral Representation For U(Z) -

C.1 The-Solution Of- Equation 3.53 For U(Z) -

Given the equation 1(70=0, the representation

‘f z /K(;‘e) o (t) ot

(e.1)
results in
J(Y) - j[j; (K(?,f)) wig) df =z o (c.2)
Choice of an appropriate kernel K¢z,t) such that
Le (k) = M, (k) (c2)

where ﬂe is some new differential operator in t, gives

f(%):/f'ft(l(ct{—)) vit) dt =0 ' (c-4)

Integration by parts transfers the differential

operations from K¢z,4) to a(¢t) resulting in

204) - /l((i,{-) M, (vl0) d¢ + P (v, K) (cs)
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where M. is the adjoint operator to Mt ana F(u K) is the

so-called bilinear concomitant. Obviously if ~(¥) satisfies

g{(v) =0

and the path of integration is chosen such that Pl k) vanishes
at the end points, then the differential equation is
satisfied.

It may readily be shown that if

Mo (k) = x() 4K« By K (c-6)
ot
then
[q’ (v) = - ol (o(u') v ’ (C.'7)
¢ (v) T + P
and
Ple, K) = «v- K (c.4)

The reader may refer to Morse and Feshbach (1953) for more
detail.
We now apply this to the solution of equation 3.53. The
choice of the laplace kernel
" it
K(z,t) = e

is motivated by the observation that

LY

L) et g ()
ot
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so that use of this kernel will require only a first order

differential equation in t to be solved to find ~ (). Thus

with
4 »
IQ i} { S mzed o2 () (c.10)
od? Az A3
we find
A : 3t
L) o[-t at oG] e (c.m)

Employing the relation C.9 then gives

A

Z% (Cgf) - M, (e;é)

where

EE) = -1 é + tq_zK'éz+ (K1) t
Me(e ;' dt f ] ) (c.i2)

Comparing C.12 with C.6 we see that with

) = -t
(C.JS)
el - {{~Zkfl+(ﬁ—01
we find the equation for w as
g-e (U’) - ?__l (tll') + [\é“_ZK‘él+(KZ")}V =z 0 [C‘Lf)
At
Differentiating we have
vy ff3-ZKf *‘5] v = 0 (cis)
Ty t

At
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whose solution is

- [f‘;q - Kfz‘]
A = e (c.1e)
{Kz.
Hence, with the Laplace kernel and v given by C.16,

U(z) takes the form

v 2
_t/q + kit +3t'

U(i) = JV e————z——— (‘/Lt (c.l'l)
[ -t“

where the contours C are chosen such that P(v, k)  vanishes at

the end-points of integratiomn.

C.2 Relations Between Solutions u(z) -

We begin with the integral relations defined by equation
3.58 for K and Z real with K <1, and for the contours C,
sketched in Fig. 6

We deform the various contours so that they run along the
co-ordinate axes of the relevant quadrant of the complex-t

plane. As an example, UA%) is

[

,o .
| . . )
U (k,3) = [ex?(-f/‘++‘<f+?‘(’) 1t . Jexr(-tq/4+ktz+2f) 1
o

z
" tn‘
{w

(c.1a)

Let us define the integral

od

q 2 A
T CK,;)=[ gxl>[—t/4 + Kkt +%f) Jt
kz

t (c.20)

p]



229

Using this definition, and changing variables; in the first

Tr A «
integral of C.19 as t— e *Twe find that U(z) can be written as

U (k3) = T(g3)-e T -, 7) (c-21)

Similar deformations of the other contours defining the

solutions U,, Uy, U, leads to

U, (k3 ) Tle 2) ALY a

¥2) = -T(k 2 + e T (-x,-i2) (clzz)
“ ‘T‘il"lcz) “ -l'n/- (4-&1) -

U3U<,e) =-e Ti,-2) -~ o 2 T(-x,-i%) (c.23)
" ST Li- 1) -3y, (1-k*) - '

Uqu,%) = -e T(x,-3) + e T(-x, c2 (¢c.24)

Summing the four soltuions given by C.21 to C.24 gives

M anik® G-y “
L UM(K,E) = (e -") 4 ¢ _l_[-k’li) (C~ZY)

M3

. - 2 . . .
This sum is non-zero for K #m where m is any integer. In this
case, our four solutions are linearly independent. The
- T
21t K . . .
factor (e ' —l> is expected to arise in the case where we
evaluate a function on a contour that runs around a branch cut

in the complex plane.
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Comparing the representation C.21 for U, with C.23 for u,

we see that

+TWili-k?)

Uk,2) = e U, («,-%) (czé)

Similar comparison of C.27 with C.24 shows that

*+ Wi (1-K7)
U, (k,3) = e U, («, -7) (c.27)

Then from C.26, rearrangement gives
-ﬁi(l—Kl) A)
U, (,3) = ¢ u,tk, - (¢ 2%)
and from C.27

N e Gi-icY) -
Uy (K, 3) = e uzCK/-2> (c.29)

The set of relations C.26 to C.29 gives the relation
between solutions for Z>0 and %<0, and comprise the set of

symmetry relations mentioned in the text.

It may also be shown that (P.H. Roberts, private communication)

'no'/Lc(-K"')

U .3 = e U, (-« i2) (¢.35)

a result which follows from C.21 and C.22. We also have

. 2
LK) CI-k)
e 2

Uy (x,3) - Wy (1,3 (¢.31)

as seen from C.23 and C.24. The four symmetry relations C.26, C.27, C.30

and C.31 allow the linear independence of the solutions correzsponding to the

four contours C,, (n=1,...,4) to be established.
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Appendix-D-

Asymptotic-Analysis- Of U(2)

D.1 Asymptotic Form For The Solutioens U(z) -
Taking equation 3.62 as our starting point, we expand the

function

Yer) = Jdem) + A%k 3<T)

as a Taylor series about a saddle point 7. giving

ver = (1A ] )" e (Ekglem) Grr) (p-1)

where, since 7 is a saddle point; .anFO. With g(r) =7*
there is a term

(1% « gy ) (7-70) ‘
which we have ignored with respect to

(4 4+ ) (70"
rA
which is valid in the limit
K << | (
—l/ DZ.)
/{ 2
Hence, in the limit A—)d*, the representation 3.62 becomes

X (6T) exp [ ATem) v A 3] A .. (b3

where

So
3
u

j exr g (ZL /l‘(”CTp)) (’lv-'ro)z + (/{I,‘K j'("‘lo)) 6‘ﬂ)} J’i’

Ca .
(D-4)
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and C; is the contour deformed to run through the saddle
point T, .

Defining the new real variable

2 " 2
"'7!_ § = ’2{_ '[(To) (T-'a)- (D~5).
Lk
where @“ﬂ)i re ( r real ) and « chosen such that
" 2u¢ {
f 1,) e

is real and negative, one may write the integral AL as (in

the limit A— o )

\/(-' h , fexr{ j_ + kjll gg o S (p.¢)
| ALyl ® * gy 1™ |

which on completing the square for the integral so it takes

the form
[ exr('“zlz) du = J'Z_'i—'l:
- o2
gives
% G-y . .
UM(«,E) = (ZTT/‘/\ 4‘"(1"‘,)‘) /{ X rk,f,) szul/l-rCT',,)-f— /l kJ(l,)-J

k'Q )
x ¢ “5’( {":‘))) (0-1)
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Noting that
[ z ~2 R ~2
(3 (Y} = 47 s Lty = -37
equation D.7 then reduces to the result given in equation 3.65
where the term A°x 3Cﬂ3 is negligible with respect to

Af¢r) in the limit D.2. The angle ~x is the direction of

steepest descent from the saddle point.

D.2 Saddle Points, Critical Points,-And Directions Of Steepest-

To evaluate the saddle points of the problem, we set
where fw)5‘7%+f’f and where the + sign is for Z>0 and the -

sign for Z<0. Hence the saddle points satisfy

Too= o (pq)
so that for z>0; the three .saddle points are at
Toz *1 t’.\:zm5 L (D-10)
and for 2z<0; the saddle points are at
tmst
To=-V @ (p.n)

With these values for 7, ,£C%) and { %) are then computed.
The angle « (double valued) is then computed as mentioned in

section D.1. These results are gathered into Table 9.
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Table 9. Saddle Poimnts Of F(r) -

v 1
+ 2Mi/3 +4T/s
gd>o e -3 +i303 -3 e ~2T |+,
v ¥ 3 3
LY . -4ic /5
e -3 -3 -3e 2y, ST/3
K I3 _ 3
-1 3/4 -3 o, T
L ' +20ils 3 B
2L 0 e 3 -3 - 33 | -3 e __“/5 ) 4—11:/3
¥
T/, _2mey
e ? 3 + 303, -3 e g ALY
T3 5
kZ
. — - - . ) e
The function Xr)= T has a critical point at 7c =0. We

must then assess the path of steepest descent from this point
as well. DNow fer) =0 and fe) = 1. Consulting Table 7.1 of

Bleistein and Handelsman (1975), the steepest path in this

case is
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This reference provides an excellent discussion of the method
of steepest descents. We diagram the saddle points 7. ,
critical point 7., and the directions of steepest descent
(arrowvs) for both z>0 and z<0 in Fig. 8. We have placed the
branch cut on the positive imaginary axis for convenience so

as not to interfere with the saddle points at *t.
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Fig.- 8. Directions Of Steepest- Descent-
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D.3 Paths Of Steepest Descent-

If we write

T- x+iy Ler) = ouy) o+ {arix,y) (D.12)

it may be shown ( see Bleistein and Handelsman ) that curves
of steepest descent and ascent from any point 7 = x+iy are

those curves defined by

Tu {fm 2 vog) = v ge) (p-13)

To pick out the descent paths ( two from each saddle point, in
opposite directions ), we use the directions computed in Table
9 for each saddle point.

From the definition of f¢r) and from Table 9, equation

D. 13 then gives, for 7. =%1 (+ sign for 2z>0, - sign for z<0);

ﬂf'**“z-n‘)@ =o (b-14)

tany

for Te=e  ° (both for z>0):

j{*l'-x(xz-")l)i:t&{“;/y (p-i5)
.t Tif
and for7,=" e (both for z<0):
tj?"- x(xz-z/f\g= :35/8 (D'/é)

It is not necessary to have a detailed knowledge of y(x)
at every point, however the general properties of the paths of

steepest descent are required for the analysis in section D. 4
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From equation D.14 it follows that y satisfies either of
(@ y=o (1) 31 = X ¥ i (p.1)

Now from the results of Table 9, we know that the
directions & =0T correspond to steepest descent paths fron
these saddle points. Hence, the curve y=0 corresponds to the
steepest descent paths from these saddle points. The curve

z

Y =x'3 then corresponds to steepest ascent paths from these

L
X
points. In the 1imit x> ; y=*x so that these are the
asymptotes for the ascent paths. In addition, for Te=+1, x>1
and To=-1, x<-1.

Writing equation D.15 in the form

q=.[

( sz + 1 - x’) v 306 “" = 0 (D~'?)

|

we see that in the limit x—0, D.18 may be satisfied by

-
‘02 ("() 2 X £ 0

Rearranging equation D.14 in the form

,
L3$+ (2,__,‘7.>.,) ¥ 3’5:‘; x> - o (D-12)
shows that in the limit X #-»; again
2 z

(,J=K

[
[\
[o]

Now the directions y=%tx are out of the zones of convergence
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for our integral representations, so that the limit y=0 for
x - - must be the behaviour of the steepest descent curve.

This same kind of reasoning may be applied +to equation
D.16 where the restriction x>0 must be made for solutions to
exist.

The results of this analysis are illustrated in Fig. 9
for the case 2>0 and z<0. The descent paths are labelled D, in

s01id line and ascent paths in dotted lines.
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Fig. 9. Paths Of Steepest Descent-
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D.4 Final Results  For Asymptotic- Expansion-Of-The Solutions

Uk, Z)

In this section, the asymptotic form for each solution
QJK:%) is determined by deforming the contour C. onto one or
more paths of steepest descent, and assessing the contribution
from each of the saddle points or «critical points that are
picked up. Only the dominant contributions will be kept. We
shall do the analysis for z >0 since similar considerations
apply for the 2z<0 case.

(1) UufxgZ)

The contour C4 1is deformable into the contour ( see

Figures 9(a) and 6 )
Cq = D; - Dq. (D‘zo)

Hence, only the contribution from the saddle point atT, = e’ '

is picked up. Using formula 3.65 we then have

SFLUSVA :

. e
7 = 1l S | -3 (33
Uytk,?) \/’: e e — exr(/{ [3’ + LT])
A
-211;/5 “Clig
X {‘ e + (v4 . (D~Z|>
..Zl—lé(K?-kl)L -qukl (I*Kl)/q

_ -2 Z—g e e eyr(/\[‘%"ug )//l

(2) Us(k,z)

The contour C3 may be deformed onto

Cy = D:’D@
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-27 L{;

so that the saddle point at 7. = e is picked up. We then
have
+z|T£mz/3 _kléﬁ
p -3 .
U(e3) = §% ¢ e exr(/([?“g?}) LL
/{A(Hk.z)/t{
< SiTe
x { ez'n' Iy . W/-S‘X
2 (KL 2 2
2 * SRk - . ) (H-lc)/q
=2y3 ¢ e exr(/l[‘é—dg_j /’l
(9.13)
(3) U=(x,2Z)
The contour C; is deformable onto
Cl = —D‘ + D;_ - DS + DC (qu)

so that contributions from the saddle point at To=+1, the
sy . - . -2ne/ .
critical point 7« =0, and the saddle point 7o = e 3 are picked

up. However, the saddle point at 7o =+1 contributes the factor

3y I\

e which is exponentially growing, whereas the % =0 has no
-27T¢/3
exponential factor and 7o = e contributes an exponentially
~3. A
damped factor e d . Hence, to very good accuracy the

contribution from 7-=+1 is the only factor we need consider

and we have

z
L/
{;K

Cwet)/y
U,U‘,s) =~ -ZLZ’; e exr(%’l) //l (D~Z$'>

(4) U, (x,2)

Here we note that the contour C, lies entirely to the
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right of our branch cut whereas the contour D.-D,-Dy;+Dy rumns to
the left of the branch cut. The dominant contribution is still

from To =+1 for the same reasons as discussed for U,. Hence we

find

-4 w? ’ ekt
u-uékla): "'ZE e : 2%'3 (%/{) /,{( )/L' (D,zé)

These results are summarized in Chapter 3 by equations

3.66 and 3.67 and Table 4.
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Appendix - E-

Taking the function U(x,2) as an example

we had U, as
(z>0)

i (k)

U (6,3) = TCk3)- e T (-x,<%)

t

from equation C.21 where the integral I(«x,Z) was given by

C.20. Expanding I as a power series in Z about z=0 we have

[0

L A
T(k,z2) = Z_' _f:l Aw () (E.1)
wvhere
P
w00 /"‘"_e_q;(_‘ﬂ’i;“’) at (&)
KZ
o t

Changing variables in E.2 to T =fz, defining Y. = (wme1-¥) /g

one gets
ol
Nljw\" 2 )
anlk) = £ // exp (-T/‘/ +l<l) A7 (E.S)
2
]
Using the identity 3.76 given in Chapter 3, aw(«) then
becones

Yulz . 2 .
auce) = @ T exp (£) Dy (F) (E4)
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where D, 1is the parabolic cylinder function.
Doing the same expansion for I(-,:Z) and substituting

everything back into the expression for U, (k,z) we find

2 i Viulz VT Ven
Uo(g,3) = exp (K2) / @ Co) [D_thuzz) -e
Z m=o

m .

0, Ca)] o

The coefficents 1in the expansion E.5 may be simplified
using the identity
-V - (YN,

D) - e  Dyex) = [T e D, (ix) (z.¢)
[-»)

which may be found in Gradshteyn and Ryzhik (1965), p. 1066,
formula 9.248.2. Using formula E.6, the the expansion E.5

becomes (2>0)

o> K]
i/, Ylz DTz,
U (x €>= I exr("i/z) e Z (2) € Dﬂ (Ulz‘() ;"‘
v * = © m! - (.1)

Ssimilar expansions are arrived at by starting with
formulas C.22, C.23 and C.24 for U,, U, and U, respectively.
Derivatives of E.7 are easily found, as well as the limit

A

z—> 0 . As an example

il Yola VT, )
u,(x,o‘) - [lr ur(?h) e 2 e > D,,o-,(‘ﬁ'() (.5

which is shown by equation 3.78.
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The expansions for 2z<0 are found by using the results
above (for %)0) and applying the symmetry relations C.26 -

C.29 in order to get the z<0 expansions.



