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ABSTRACT

The microwave dielectric constant and conductivity of
MEM (TCNQ), were studied in the neighbourhood of the monomer to
dimer transition at 61°C using cavity-perturbation techniques at
9 GHz. The conductivity was founa to be 1in general agreement
with four-probe d.c. results. Thus, doubts about the
reliability of the d.c. measurements above the destructive
transition have been removed.

The complex dielectric constanﬁ of TTF-TCNQ at liquid
helium temperatures was studied using dielectric resonance
techniques. Some anomalies regarding the interpretation of the
dielectric resonance mode plots were resolved. Values for €, of
(3.020.4)X10° and for €, of greater than 9 were implied by the
results.

Finally, preliminary results and proposed directions for a
bolometric absorption measurement in TTF-TCNQ in the microwave
bands are presented; This technique may prove useful for the
direct observation of the pinned charge density wave in TTF-

TCNQ.
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CHAPTER 1

Introduction

In this section we will begin by commenting on quasi-one-
dimensional TCNQ salts in general with some discussion of the
Peierl's transition, charge density wave formation, and Frohlich
superconductivity. We will then describe MEM(TCNQ), and, in
connection with 1it, models of one-dimensional stacks in which
Coulomb interactions are important. This will serve as
introduction for the first part of this work. Finally we will
consider TTF-TCNQ , the subject of the second part of this work,
and, in particular, the dielectric constant appropriate to the

pinned charge density wave model of TTF-TCNQ.



1.1 Quasi-One-Dimensional TCNQ Salts

There are now a large number of charge transfer salts based
on the organic electron acceptor, tetracyanoquinodimethane,
(TCNQ). These are predominantly 1l:1 salts, such as TTF-TCNQ, or
1:2 salts, like MEM(TCNQE_ . A common feature of most of these
materials is that the planar TCNQ molecules, seen in Fig. 1,
form stacks in which the overlap of the m molecular orbitals is
significant. Some planar donor molecules, like
tetrathiofulvalene, (TTF) , can also form stacks. The
interactions of stacks in directions perpendicular to the
stacking axis, while strong enough to determine a three-
dimensional structure, are usually considerably weaker than
those along the stacks. These highly anisotropic materials thus
offer the possibility of studying the effects of interactions in
one dimension and are often described by the term quasi-one-
dimensional.

This name reflects the fact that real systems cannot be
purely one-dimensional. In a system with short range
interactions and only one dimension, fluctuations will prevent
the system from existing in a phase with long range order at any
non-zero temperature. This comes about because the contact
between regions of differing order parameter is a point and the
sur face energy involved 1in <creation of such a boundary is

independent of the size of the differing region. The entropy
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Figure 1. The organic acceptor molecule TCNQ.



contribution to the change in the free energy for <creating a
boundary somewhere .along a chain of M sites goes as TlnM. For
large M, this entropy change will always dominate the surface
energy increase and the system will be able to lower its free
energy by creating boundaries. (Emery,1977).

The fact that phase transitions will not occur 1in a one-
dimensional system does not invalidate the interest in one-
dimensional phenomena. In a real quasi-one-dimensional system,
the coupling of fluctuations on neighbouring one-dimensional
chains can lead to ordering in three dimensions. We go on,
then, to discuss briefly some of the properties of purely one-
dimensional chains with the implicit understanding that, in any
real system, the three-dimensional nature of the lattice would
play a part in any phase transition observed.

Perhaps the best known feature of one-dimensional models is
the Peierls 1instability (Peierlg ,1955). In a purely one-
dimensional system with no interactions and 1less than 2
electrons per site, the lowest band will be filled up to k=*k] ,
where the Fermi vector is given by
(1.1) k7 =NG, /4N, .

Here, N is the number of electrons, N, the number of sites,
each of which can accomodate two electrons, and G, =2w/d, is the
reciprocal lattice vector for a chain with sites separated by
dy . This situation describes a partially filled free electron

band and thus a one dimensional metal. The kinetic energy



associated with the electrons near k=k? can be lowered if a gap
is opened at that point. Such a gap is opened by 2k}
distortions of the -electronic systenm. One thus expects a
density fluctuation of wave vector 2k! to form for a vanishingly
small component of the applied potential. This is expressed in
terms of the electronic density response function at wave vector
q, X(q), which measures the ratio of the density fluctuations at

g to the component of the applied potential at that wave
vector. Toombs (1978) and Berlinsky (1979) discuss the form of
X(2kg). They show that, at low temperatures, it is negative and
goes as 1ln(T).

The force on the lattice includes a term involving YX(q).
Toombs gives the frequency for phonons of wave vector q, O((q),
as
(1.2) Nl@)= w'+ (20°w /M0)X (@)
where g is the electron-phonon coupling constant, Wy is the
unperturbed phonon frequency, and N is the number of sites. 1In
this case, X(q) is describing the response of the electrons to
the perturbation due to phonons of wavevector g. The first term
can be thought of as a restoring force due to the lattice itself
and the second as a force due to the conduction electrons.
Because X(Zkﬁ) is negative and increasing as T is lowered,
there will be a temperature, T,, at which ff72k§) goes to zero.
Berlinsky (1979) shows that the form of Qf(Zkﬁ) above T, is

given by



(OY(2k2) = (¢* Wy, /€ ) In(T/Ts ) .
He further states that, for T<To, the 2k; distortion is static
and a gap opens in the electronic spectrum. This softening of
the 2k; phonon 1is referred to as the Kohn anomaly. Other
mechanisms for distorting the lattice will be discussed when we
describe the wuse of the Hubbard model to deal with Coulomb
interactions in reference to MEM (TCNQ),.

Frohlich (1954) has shown that, for a jellium model, the
translational invariance of the positive background gives no
preferred position for the distortion and allows it to propagate
as a sliding charge density wave with only weak attenuation due
to scattering from phonons. This situation also applies if the
charge transfer does not result in the number of sites being an
integral multiple of the number of electrons. The new unit cell
brought about by the distortion will be infinite in length and
there will be no preferred position for the distortion. The
distortion and 1lattice are said to be incommensurate. In
reality, the charge density wave, if not commensurate with the
lattice, 1is susceptible to pinning by impurities, defects, or
three-dimensional ordering. ( Lee, Rice, and Anderson , 1974).
The effect of such a pinned mode on the low frequency electrical
properties of a material will be discussed below in relation to

TTF-TCNQ.



1.2 MEM(TCNQB_ and the Effect of Interactions on TCNQ Stacks

1.2a MEM(TCNQE.

Methylethylmorpholinium Tetracyanoquinodimethane,
MEM(TCNQ)l ' is an organic semi-conductor with a room
temperature conductivity of about 10'3(ﬂ—cmf' and an activation

energy of about 0.4eV. It has been a source of some interest
lately because of its unambigquous charge transfer, its quasi-
one-dimensional behaviour, and its two phase transitions
involving dimerization and tetramerization of the TCNQ molecules
along the stacking axis.

The MEM molecule 1is shown in Fig 2. It is a very good
electron donor and hence is assumed to donate a full electron
per MEM molecule to the TCNQ stack. The crystal structure
consists, generally, of stacks of TCNQ molecules with MEM
molecules separating planes containing the stacks.(Bosch and van
Bodegom,1977). See Fig. 3 for the crystal structure at 93K.

There are two known phase transitions in MEM(TCNQ), . Below
19K, the TCNQ molecules are tetramerized along the stacking axis
with one electron pair per tetramer. This is thought to be an
example of a Spin Peierls-: transition whiéh opens a gap at the
Fermi wavevector. The ground state is then non-magnetic with
elementary excitations which are spin-wave excitations.
(Huizinga et al., 1979). Between 20K and 340K, X-ray results

indicate that the TCNQ molecules form dimers with the intra-
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Figure 2. The organic donor molecule MEM.

Figure 3. The crystal structure of MEM(TCNQL at 93 K.
From Bosch and van Bodegom (1977)



dimer and inter-dimer overlaps being easily distinguishable.
Fig. 4a shows the intra-dimer overlap of two TCNQ molecules and
Fig. 4b shows the inter-dimer overlap. Fig. 5 shows the
variation in the TCNQ-TCNQ separation perpendicular to the plane
of the molecules. Here a=3.15A and b=3.27A.

In this phase, the crystal is a semiconductor with a gap of
about 0.8 .eV. (Morrow et al., 1979). It has been reported
(Chaikin, 1979) that the thermopower 1is about -60 u«V/K.
Although the low temperature values vary, this wvalue for the
thermopower seems to be common among the 1:2 TCNQ salts
including Quinolinium (TCNQXl and Triethylammonium (TCNQE' .
(Conwell, 1978 and references therein ). Much work has been done
on trying to understand this value of the thermopower by using a
one-dimensional Hubbard model to describe the TCNQ stacks. It
is generally agreed that a value of -60 «V/K implies that, for a
Hubbard model, the on-site repulsion U, which is the interaction
for two electrons on a single TCNQ molecule, must be greater
than kT. (Conwell,1978; Kwak and Beni,1976; Chaikin and
Beni,1976). The use of the Hubbard model to describe TCNQ
stacks will be discussed below.

At 340 K there 1is a violent first order transition to a
phase in which the distinction between intra-dimer and inter-
dimer overlap almost disappears. Fig. 6 shows these overlaps in
the undimerized phase. In this phase the conductivity is

between 15 and 30(ﬂ—cm)4 and does not show an exponential



Figure 4a.

Figure 4b.

The intra-dimer
dimerized phase
The inter-dimer
dimerized phase

TCNQ-TCNQ overlap in the
of MEM(TCNQ), .
overlap in the
of MEM(TCNQ), .
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. Figure 5.

The TCNQ-TCNQ spacing perpendicular to the
TCNQ planes in the dimerized phase
of MEM(TCNQ) .
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Figure 6.

12

The two types of TCNQ-TCNQ overlap in the undimerized
phase of MEM(TCNQ{I.
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temperature dependence. As stated above, the MEM molecule
should lose one electron to the TCNQ chain. Defining L as N/No,
where N is the number of electrons transferred and N, 1is the
number of TCNQ sites, this corresponds to f=1/2. Such a band
filling would be expected to exhibit metallic conduction. The
conduction in the high temperature phasé, while still low, has a
temperature dependence more like that of a metal than a

semiconductor.
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1.2b Use of the Hubbard Model to Describe TCNQ Stacks

Many workers have found it necessary to include the effects of
Coulomb interactions and overlap in describing the properties of
TCNQ stacks in various TCNQ charge transfer salts. These
include the scattering of diffuse X-rays from TTF TCNQ at g=4k;
(Torrance,1978) and the thermopowers of the 1:2 salts. These
effects are usually included by treating the stacks wusing the
Hubbard model or extensions of the Hubbard model to include the
interaction between electrons on neighbouring TCNQ ﬁolecules.
This model provides the simplest way to deal with correlations
brought about by Coulomb repulsion and by overlap of adjacent
sites. It 1is clear that these correlations can be a source of
periodicity quite distinct from that associated with the usual
Peierls . distortion of wavevector 2k?.

Hubbard was interested in describing correlation effects in
narrow d-electron bands of transition metals.  For a narrow
band, the Wannier functions, obtained by summing the Bloch
functions over the Brillouin zone, were well localized on the
lattice sites. This allowed him to neglect all Coulomb
interactions except for on-site repulsion. This Hamiltonian
then had the form, (Hubbard,1963),

+
(1.3) r1=—t<(g(c;r Cive +Ciuie Cig )+(U/2)§ n, N,

Here t is the overlap or hopping integral between adjacent
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sites, cf. and c;, are creation and annihilation operators for an
electron of spin o on site ¢, and U is the Coulomb interaction
for 2 electrons on the same site. The extended Hubbard
Hamiltonian includes terms in V; for the interaction of
electrons separated by ¢ lattice spacings (Hubbard,1978).

We will not be concerned with the general model for all
values of U. Rather, we will look at the effects of having a
very large U. Following Torrance(1977) we note that as U goes
to 1infinity, the problem transforms exactly to the case for
spinless fermions. This is because for very large U, double
occupancy of a TCNQ molecule 1is not allowed and this is the
situation for spinless fermions as well. This does not change
the tight binding problem except that each state can now
accomodate only one electron. The dispersion relation for the
lowest band is then identical to that for the U=0 tight binding
problem,

E(k) = -2t cos(kb)
where b is the lattice constant. Now, however, for N, lattice
sites, the 1lower band contains only N, states within the
Brillouin zone instead of 2N, states as for U = 0. As a result,
the value of the wave vector for the highest filled level in the
ground state is doubled to kg =TN/(bN,) rather than
kf=TN/(2bN,) where k2 is the Fermi wavevector for U = 0. There
is now a gap of U - 4t (Ovchinnikov,1970) above which double

occupancy of TCNQ sites occurs.
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With regard to this point, there 1is a misleading fiqgure

which appears in at least two references.(Chaikin et al., 1973;
Epstein et al., 1972). It shows a gap of U - 4t with the
minimum of the lower band and maximum of the wupper band
separated by U. This implies a band width of 2t in the upper
and lower band and this is clearly in conflict with the result
for the spinless fermion case. That U should, in fact, be the
separation between the centres of the bands is suggested by two
simple-minded arguments. The first is that, for t=0, we expect
2 levels separated by U. As we turn on the overlap, these
levels will spread into bands just as a single level would and
there will clearly be states separated by more than U. This is
consistent with the result obtained by using the Hubbard model
to describe the hydrogen molecule. (Ashcroft and Mermin, 1976).
For this case the two electron levels are given by
(1.4) E = (1/2)ut/at*+u*/4 .
For U>>4t the splitting is just U. As t 1is 1increased, the
separation increases to something greater than U. This suggests
some inconsistency in a Hubbard model calculation in which, for
U>>4t, the maximum separation of any two levels is U.

We will now qualitatively consider the effect on a chain,
described by the extended Hubbard model, of the dominance of
specific terms in the Hamiltonian. We focus attention on the

lower band. For 1large U there are N, states in the Brillouin
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zone. For o<1, the wavevector for the highest filled 1level 1in
the ground state is less than /b and we ﬁave a partially filled
band which can behave 1like a one-dimensional metal. This
filling of the band out to k=f2k7 will have a number of possible
consequences. The electron-hole excitations might have zero
energy at g = 4k7.(Coll, 1974). Alternatively a gap might be
opened in the band by a lattice distortion of wavevector 4kZ.
One way in which this might occur would be a Peierl's distortion
arising because of the softening of the 4ki phonon (Kohn
anomaly) . A gap might also arise because of a Wigner
crystallization. For this simple model in which U is the only
Coulomb interaction, Wigner crystallization can only come about
for p=1.

If longer range Coulomb interactions are included, Wigner
crystallization can result for p<l. Torrance attributes the 4k§
diffuse X-ray scattering from TTF TCNQ to such a
crystallization.(Torrance, 1978, 1977; Torrance and Silverman,
1977; Klimenko et al., 1976). The simplest model dealing with
this situation is then fhe Extended Hubbard model (Hubbard,
1978) for which the nearest neighbour Coulomb interaction, V,,
is included. For 1large V,, Hubbard finds that for p=1/n the
electrons are separated by n spacings. For 1/(n+l)<p<1l/n,the
electrons will be separated by n or n+l spaces in some kind of
periodic manner. This non-uniform spacing of electrons might be

expected to lead to distortion in the 1lattice due to Coulomb
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interactions with the lattice.

For the case of p=1/2, the large U and V, case would lead
to electrons on every second site. This would not distort the
lattice but the periodicity of the electrons would open a gap in
the electronic spectrum. This can be seen easily because of the
fact that, for the Wigner crystal ground state, any excitation
will put two electrons on nearest neighbour sites and this state
will be raised by V; . If V, is larger than the bandwidth, a gap
is formed. We cannot, however, immediately apply a large v
model to MEM(TCNQ), without caution since Conwell (1978) notes
that the results of Chaikin and Beni (1976) indicate that a
thermopower of -604V/K 1is inconsistent with V,;>>kT for the
Hubbard model.

We come, finally, to consider the role that overlap plays
in determining the behaviour of a Hubbard chain. The size of
the overlap will have no effect on the stability of a chain
unless we allow the chain to distort in such a way that the
increased overlap between some of the sites offsets the
increased energy of the distorted lattice. If we consider the
specific case of MEM(TCNQ), , with p=1/2, we find that in the
presence of a small distortion which distinguishes between two
overlaps, t; and tl,vthe intra-dimer and inter-dimer overlaps
respectively, the bandwidth changes from 4t to 2(t, +t;) and a
gap of 2|ty - t;| opens in the middle. For a half filled band,

such as for large U and 0=1/2, this might be an important



mechanism for driving the system to dimerization.

binding problem for a chain with

separations is discussed in Appendix A.

alternating
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l.2c Purpose of the Cavity Perturbation

Measurements on MEM(TCNQ)Z

This part of the experiment was carried out to measure the
electrical properties above and below the dimerization
transition and, in particular, to confirm the d.c. measurements.
The d.c. results were, in some sense, suspect due to the violent
cracking experienced by the crystal on being heated through the
transition. It was felt that the contactless microwave methods,
for which the <cracks would be capacitatively shorted, would
circumvent some of the problems associated with the wuncertainty
in the current paths in a cracked anisotropic crystal.

Some of the preceeding discussion on the role of different
interactions in determining the properties of a material
described by the Hubbard model will be applied to MEM(TCNQ), in
Chapter III. There we will find that while the conductivity and
dielectric constant do not help us to identify the valid regime
in terms of relative magnitudes of interactions, they do confirm
the d.c. results which, 1in turn, allow us to use the measured
value for the gap to estimate some of the interactions for

different assumptions about relative magnitudes of interactions.
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1.3 TTF-TCNQ and the Pinned Charge Density Wave

l.3a TTF-TCNQ

There has been much written about the properties and
structure of TTF TCNQ . A brief summary of some of the relevant
points will be presented here.

This material, 1like most TCNQ charge transfer salts,
involves stacks of TCNQ molecules. Unlike some doﬁors, however,
TTF is also planar and stacks as well. The TTF molecule is
shown in Fig. 7. The crystal structure is shown in Fig. 8. The
slipped geometry of the- TCNQ molecules is found to maximize the
overlap of the T orbitals on neighbouring molecules.
(Berlinsky et al.,1974). The structure suggests highly
anistotropic behaviour and this 1is confirmed by conductivity
measurements (Tiedje,1975) and dielectric constant measurements
(Khanna et al.,1974).

TTF-TCNQ 1is one of the most highly conducting of the one-
dimensional organic conductors found to date. While the
temperature dependence of the conductivity, T"* rather than T ’
is not exactly characteristic of a metal, it does exhibit some
of the properties expected for a material with a one-
dimensional, partly filled band such as the transition from high
to low conductivity and the diffuse scattering of X-rays at
g=2k . Friend et al. (1978) show that the constant wvolume
temperature dependence, as opposed to the constant pressure

results usually quoted, goes as T . The temperature dependence
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TTF

Figure 7. The organic donor molecule TTF.

Figure 8. The crystal structure of TTF-TCNQ.
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in excess of this 1is then due to the effect of thermal
contraction on the conduction band.
As T approaches 54K, conductivity rises to a maximum. It

has been suggested that this is due to a collective mechanism

involving charge density waves. (Bardeen,1973; Heegar,1977;
Andrieux et al., 1978). For the usuval Peierls . transition,
these would have characteristic wavevector 2k7.

Torrance (1977), however, has argued that on the basis of the
4k; diffuse X-ray scattering present at all temperatures, TTF-
TCNQ should be considered as a large U system. This leads to a
characteristic wavevector, for the charge system, of 4k;. For
antiferromagnetic coupling, the <characteristic wavevector for
the spin system is still 2k{. Torrance still, however, accepts
the 2k; distortion as being dominant at low temperature. The
dominant mechanism for the high conductivity above 54K appears
to remain unsettled.

Below 54K, the <conductivity drops sharply. X-ray and
neutron scattering show extra reciprocal 1lattice points which
indicate the presence of a three-dimensional super-lattice. The
periodicity of the extra spots in the stacking direction has
been interpretted as being 2k; .(Comes, 1977; Heegar, 1977).
The drop in conductivity is believed to indicate the opening of
a gap in the electronic spectrum due to the 2k% distortion.
This distortion is incommensurate with the lattice and should

thus, in the absence of pinning, have no preferred phase
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relative to the 1lattice. In the apparent absence of a
collective mode contribution to the d.c. conductivity, it is
assumed that the charge density wave is pinned to the lattice by
impurities or three-dimensional ordering effects.

A pinned collective mode would strongly enhance the low
frequency dielectric constant. Such a mechanism has been
advanced (Lee, Rice, and Anderson, 1974) to account for the high

dielectric constant of about 3000 observed below 40 GHz.
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1.3b Dielectric Constant for a Pinned Charge Density Wave

As has been discussed, a charge density wave which was
incommensurate with the lattice could be expected to propagate
without attenuation. Lee, Rice, and Anderson (1974) point out,
however, that both three-dimensional ordering and impurities
will pin the <charge density waves on different chains to each
other and to the crystal lattice. Three-dimensional ordering,
they felt, should result in a sharp transtion to a low
temperature insulating phase while impurity pinning should give
rise to a more gradual transition. The way in which such a
pinned mode could contribute to the 1low frequency dielectric
constant is described below.

The distortion opens a gap of width Vg at the fermi
wavevector. Associated with transitions across this gap will be
a polarizability and a contribution to the dielectric constant.
These are labelled as the single particle contributions, «* and
€ respectively, to distinguish them from those due to the
collective mode itself. With the <collective mode we can
associate an effective charge, e, and a reduced mass, M. The
equation of motion for the pinned wave in an a.c. field, Eeiwt,
is then, (Balkanski, 1972)

(1.5) MG+ MG+ Ma*u = e Ee"
where [ is a damping constant and will be the full width at half

maximum of the resonance, and u is the coordinate describing the
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motion of the charge density wave relative to the lattice. The
solution to (1.5) is
(1.6) u= (e, E/M) e /(@ -w'-ilw)
The associated dipole moment 1is then wue; so that the
polarizability is given by
(1.7) « = oL+ (e /M) /(@ -w"-ilw)
where the single particle contribution has been included.

Ashcroft and Mermin (1976) show how the dielectric constant
can be obtained from a polarizability of this form. Their
result is obtained using the Clausius-Mossotti relation and is
thus restricted to crystals with cubic symmetry in which the
Lorentz 1local field is appropriate. TTF-TCNQ clearly does not
present a situation of cubic symmetry. If we are interested in
the dielectric constant for a principal axis, however, it will
still be true that the macroscopic field, the polarization, and
thus the local field are parallel. In light of this, we assume

E*' (r)=K E(r)
where K 1is some constant depending on €w. For cubic symmetry,
K=1l+(é -1)/3 . Using the relationships (Ashcroft and Mermin,
1976)
B(r) = ((é -1)/47 )E(r)
and
P(r) = (=< /VE™" (1)

where v is the volume appropriaté to x , we get

(€-1)/K = 4T X /v ,
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Replacing « using Eq. (1.7) gives

(1.8) - T i [w

Clw -1 _ Am(&;p +  essM )
Kw) v

Here, € (w) is the complex dielectric constant at frequency w.
eE, M, and v can be eliminated by defining the 1low frequency
dielectric constant, €(0), and the high frequency value, € (o).
€ (@) 1is the dielectric constant for « much greater than @ but
smaller than 2TV;. We thus have

(1.9a) (€(0)-1)/K(0) = (4“/V)(<xsv+ej/(M¢Ul))

(1.9b) (€(0)=1)/K (@) = 4T /y

€(0) correctly depends only on transitions across the gap and
we will identify it with €°° .

If we can make the assumption that
K(w) = 1+4(€ (w)-1)/(B+1), then it can be shown that
(1.10) €w) = €7+ (€(0)- ) W,/ ( w*~w'~ilw)
where uf=(e@o)+B)ZDa/(e(O)+B). This is the expression for € (w)
as used by Eldridge and Bates (1979). While it is not clear how
we can connect wS to the microscopic picture of a pinned charge
density wave, this model does provide the basis for a
phenomenological fit to €(w).
In Eq. (1.10), for W close to w, , the imaginary part of

£ (w) is a Lorentzian of full width at half maximum given by M.
€ ? is given by Lee, Rice, and Anderson (1974) as

€F=1+24%/3 )/31
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This 1is the dielectric constant at frequencies where the pinned
mode cannot respond and only transitions across the gap can
contribute.

Eldridge fits his infra-red measurements to this model with
€14068, €(0)=3600, the pinning frequency equal to 102 GHz, and

£=1.5GHz.
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l1.3c Purpose of Dielectric Resonance Studies on TTF-TCNQ

The purpose of this series of experiments was to extend
Barry's (1977) dielectric resonance measurements on TTF-TCNQ at
low temperatures 1in an attempt to clarify the frequency
dependence of the real and imaginary parts of the dielectric
constant.

These are of particular interest in that the low frequency
dielectric constant 1is important in fitting the infra-red
bolometric measurements of Eldridge and Bates (1979) to
equation(l1.10) for the pinned mode dielectric constant. It is
also interesting to consider the frequency dependence of the
dielectric constant in light of this model. Unfortunately, the
frequency range conveniently available is too small to give any
conclusive indication of the validity of the model.

There have been two previous measurements of the dielectric
constant parallel to the stacking axis, €, . Khanna et al.
(1974) obtained 6Z=(3.2f0.6)x103 using cavity perturbation at
10.4 GHz. They also claimed to have measured a crystal with the
long direction along the a axis and obtained €&=6%*2. Barry
(1977) attempted to measure €, at higher frequencies wusing the
dielectric resonator technique and obtained similar values. The
same measurements, however, gave a value for Eiof about 2. This
seemed too small for such a material. 1In addition to this, the

shape of the mode plots, showing the resonant frequency squared
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versus the inverse square length of the crystal, were not fully
understood. One mode was identified as coaxial and thus
expected to have a slope corresponding to propagation along the
b axis at about the speed of light. The dielectric modes were
expected to give a slope proportional to 1/¢,. 1In fact all
modes gave straight lines with a slope intermediate between the
two expected extremes. This was attributed to end effects but
the lack of understanding of the slope did cast some doubts on
the reliability of the extrapolation to the ordinate axis which
was used to allow analysis in the infinite length limit.

The present work was carried out in the hope of extending
the measurements to situations in which some of the paradoxes

might be resolved.
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CHAPTER II
The Measurement of Electrical Properties of
MEM(TCNQ)a Above Room Temperature

2.1 Cavity Perturbation

The electrical properties of small crystals can be studied
using cavity perturbation methods similar to those which have
been described by a number of authors ' (Buravov and
Schegolev,1971; Khanna et al. ,1975; Waldron, 1969). In this
technique, the shift and change in width, due to insertion of a
small solid sample, of the resonance of a cavity of known
characteristics can be related to the real and imaginary parts
of the dielectric constant of the sample if the fields in the
sample are known.

The general formula for cavity perturbation is derived in

Waldron: (M.K.S. units)

ﬁ = jffv., {(E'Do ‘EO'B1) ’(H{ Bo" Ho'&)} J "4
f ), (E.D-R.B)dV

Here, E, and H, are the unperturbed electric and magnetic

(2.1)

fields and D, and B, are the unperturbed electric and magnetic
displacements. Sf/f is the fractional shift in the resonant
frequency of the cavity due to the perturbation. The subscript
1 labels fields which are the difference between the fields with
the sample present and the unperturbed fields. The integral is

over the volume of the cavity. This equation neglects the
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difference between D, and B and the total D and B
respectively, in the integral in the denominator. It 1is thus
correct only for small perturbations.

The experiments were carried out with the needle-shaped
crystals oriented parrallel to and at the maximum of the E field
of the TM,» mode in the cylindrical cavity. For this mode

E,= Foy Jo (kr)e'“’
(2.2) Ho= - (j@/K)Epy J, (kr)e'*
En =Eq =H, =H, =0
where E,, is the amplitude of E, and, for a cavity of radius a,
k*a® = X*
with X, being the first zero of J, (X) .

The denominator of Eq. (2.1) is then easily evaluated to
give
(2.3) //]A(Eo‘ﬁo -H,-B,)dv =2V, J° (ka)EZ

Using the fact that H=0 along the cavity axis and that the

fields with subscript 1 are assumed negligible outside of the

sample, we can write Eq. (2.1) as

st I (ED-E-D)dv
f ZV()J,IU«J() F..

(2.4)

where the integral 1is now over the volume of the sample.
Following Buravov and Schegolev (1971) one can assume that for a
sample with a dimension smaller than the skin depth and with

depolarizing factor n and dielectric constant &€ , the field
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inside the sample in the presence of external field E,r is given
by
(2.5) E; = E;/(l4n(e-1)).
n* is defined for a general ellipsoid of semi-major axis a" and
semi-minor axes b" andlc" as (Osborne, 1945)
(2.6) h=(b"c"/a"1)(ln(4a"/(b“+c“))—l),
We then have
(2.7a) Eq=-E,n(€-1)/(1l+n(€-1))
(2.7b) D;=E, ((€ -1)-n(€-1))/(1+n(e-1))

Taking E, to be continuous across the sample and equal to
the maximum value, E,,, allows us to dispose of the integral
giving

§E/£=-V, (€-1)/(2V, J; (ka) (1+n(e-1)))

Following Waldron, we can include the losses in the sample
by replacing ¢ by ¢'-j¢” where €'=20/f and o is the conductivity
in sec.”! . §f/f is then replaced by (4f,+3jA./2) where Af,=5f/f
and A./2 is the change, due to the perturbation, in the full
width at half maximum of the resonance, divided by the
unperturbed frequency. A./2 is given by (1/Q,-1/Q )/2. Buravov-
and Schegolev define
(2.9) X =V, Eg /2 f, &l av
which, for our mode, becomes

V, /2V, 37 (ka) =1.855V, /V,

so that we arrive at their formulae:
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{ = -w €-N(1+ne~1) + ne”aJ
(2.10) At * (1+Nge-N)* +n2e"?
and
(2.11) Do = e

l ([+ n(é/__”) + hiéﬂl

These may then be inverted to give:’

oo L [ak(E-0k)-(4)
(2.12) B AR » . 2
(2°) +(5 -2k)
and
AO
(2.13) €' ’Zr—cJ: %i[ Ao«l’i—d a]
(&) + (5 -4f)

These formulae will, in general, be applicable only for
small conductivities and thin crystals for which the skin depth
is large compared to the smallest dimension. . The skin depth is
given by

& =c, / (2Mew)i
where ¢, is the speed of light, o is the conductivity in sec.” ,
and W is the frequency 1in radians/sec. (1 sec.” =
9X10" (s1cm)” ).

In the high coﬁductivity regime, only the real part of the

conductivity can be determined. If the minimum sample dimension

perpendicular to the field is much larger than the skin depth,
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as was the case for some of the crystals studied, one must use

the expression of Cohen et al. (1975) for a prolate spheroid,

[

(2.15) s

Pr qTr“,(A,ﬁ,)a £%r

where f is the operating frequency and r is the semi-minor axis.
The derivation of this expression contains the assumption that
Af,~#%/n in the skin depth limited regime. « is proportional to
the spheroid volume and enters the expression in a way which
suggests that one may extend the formula to the case of a
general ellipsoid by using Eq. (2.15) for a prolate sphefoid of
the same volume. In terms of the ellipsoid semi-axes, a">b">c",

the expression becomes

o 4= ﬂﬂz_ (A.voo)a' F}/‘ be” 1
el X o A

(2.16)

The question then arises as to what general ellipsoid
should be wused to approximate a rectangular crystal of length,
width, and thickness, a>b)c. The appearance, in « , of the
sample volume, and, in n, of the ratio of the dimensions,
suggests that the appropriate ellipsoid has the same volume and
dimensional ratios. In terms of the crystal of length, width,

and thickness, a>b)c, the expression becomes
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ot art Ak L% (&) /e |

2° o« C. A,

(2.17)

If the skin depth 1is not much 1larger than the sample
thickness, then the assumption of wuniform penetration |is
appropriate and one can use Eq. (2.13) to find ¢” and thus o .
As 1long as the skin depth is large, this is true even for the
regime where one has ne»>1 giving Af,®«/n, and in which €’
cannot be determined (Cohen et al.,1975). 1In the regime where
the skin depth has beéome small relative to the minimum sample
dimensions, Eq. (2.13) is no longer valid and Eq. (2.17) must be
used to calculate o, A discussion as to which model is valid in

particular cases appears in more detail in Chapter III.
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2.2 The Apparatus

Measurements on four MEM(TCNQ), crystals were carried out
in a cylindrical copper cavity using the TM,, mode in which the
E;field has an antinode along the cavity axis. In this mode,
the resonant frequency 1is proportional to the diameter of the
cavity and independent of the height. (Hidy et al. ,1972). The
resonance was studied by observing the transmission of the
cavity which resonated empty at about 8.5 GHz. The cavity is
shown schematically in Fig. 9.

The cavity was heated by means of a circulating water bath.
Heat exchangers were placed on both faces between the cavity
body and the incoming and outgoing brass waveguides. A
thermocouple was clamped to the cavity body midway between the
exchangers. This assembly was then placed in a close fitting
styrofoam enclosure with walls of about 5 cm, thickness.
Temperature equilibrium was monitored by altering the heat bath
temperature and then observing the equilibration of the
temperature by following the frequency of the resonance.

The crystal volume and shape were determined from the
weight of the crystal, using the known crystallographic density
of 1.261 g/cc, (Bosch and van Bodegom, 1977), together with
microscopic photography.

Crystals were mounted on the end of a thin quartz fibre

using epoxy so that the long axis was parallel to the E fields
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along the cavity axis. The basic experiment involved measuring
the frequency shift and change in width of the cavity passband
due to insertion of the crystal. It was thus necessary to use
the frequency and width of the resonance, with the quartz fibre
inserted, as the unperturbed values. For these measurements , a
small drop of epoxy was placed on the end of the fibre so that
the small additional amount required to suspend the crystal
could be neglected. The frequency and width of the resonance
with only the quartz fibre in place, was then measured as a
function of temperature to allow for cavity expansion.
Resonance data at a given temperature for that fibre was then
obtained by interpolation. Sample handling techniques were such
that the fibre could be accurately repositioned after mounting
of the crystal.

The resonance was observed by frequency modulating the
R.F. source at 5 KHz and demodulating the detected signal with a
lock-in amplifier. The resulting signal could be used in two
ways. It could be integrated and added to the 5KHz modulating
signal to give an error signal which locked the R.F. source to
the centre frequency of the resonance. This mode of operation
was useful for monitoring of the resonance but inconvenient for
absolute measurements of the centre frequency due to drift in
the integrator. Alternatively, the output of the lock-in could
be recorded on an X-Y recorder with the X input being driven,

through a D/A converter, directly from a frequency counter -
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during a slow sweep. The width and centre frequency of the
resonance could then be taken directly from the derivative

trace. Fig. 10 shows the general arrangement of the apparatus.
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2.3 The Measurements

Four MEM(TCNQ), crystals were studied in detail using
cavity perturbation. The physical properties, including the
depolarizing factors and the dimernsions . < are summarized in
Table 1.

I£ has been mentioned that the violence of the first order
transition at 60°C provided some incentive for the use of
contactless microwave measurements. Fig. 11 shows crystal 2
before and after having passed through the 60°C transition. The
crystal has been broken off of the quartz fibre and thus appears
shorter in B. The real effect of the transition is the
appearance of flaking -on the face which is being viewed
obliquely. The crystal also appears slightly bent. The damage
to the crystal will affect only the depolarizing factor since it
is the only shape dependent parameter in the analysis. This
effect has, however, been assumed negligible in comparison to
the uncertainty in the depolarizing factors wused to describe
rectangular samples. It has been assumed that the depolarizing
fields due to polarization charges at the surface of the cracks
are not a serious problem. This assumption is valid if € is
not too large and the gap is small so that the capacitance of
the crack is large relative to that of the whole crystal.

In spite of the damage, it was found that the crystal could

be returned through the transition and that the low temperature
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Physical Data for MEM(TCNQ);k crystals used

Crystal
Source
Length a (cm)
wWidth b (cm)

Thickness ¢ (cm)

() ]

U.B.C.

0.259

0.028

0.0185

0.0162

U.B.C.

0.519

0.038

0.032

0.0108

0.465

0.037

0.037

0.0141

Groningen

0.690

0.062

0.0267

0.00843



Figure 11.

Photograph of MEM (TCNQ),
crystal before (A) and after (B) having
passed through the transition.
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frequency shift and width were reproduced. There was, however,
considerable hysteresis in the transition, occurring typically,
on heating, at about 65°C and, on cooling, at 60°C. This
behaviour has also been observed in d.c. and similar a.c.

measurements (Morrow et al. 1979). The hysteresis does not
depend on the time taken to equilibrate the crystal at
temperatures close to the transition temperature. It was found
that the hysteresis was still present when the crystal was
cycled through the transition for a second time. Graphs of the
frequency and width of the perturbed resonance as a function of
temperature, with crystal 4 inserted, appear in Fig. 12 and
Fig. 13. This shows clearly the hysteresis in the transition
temperature and the reproducibility of the 1low temperature
properties after the transition. The downward and upwafd
pointing arrows depict the transition on heating and on cooling
respectively. Typical traces with just the quartz fibre and
with the fibre and a crystal at about 61°C, on the heating
cycle, appear in Fig. 14. The trace shown is the derivative of
the power transmitted by the cavity. Each derivative trace was

obtained with a 10MHz wide scan.
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- CHAPTER III
Results

3.1 Regime of Validity of Perturbation Results

In order to interpret the frequency shift and change in
width in terms of the dielectric constants, it is necessary to
determine what assumptions can be made about the field
penetration in the analysis. The possible situations are that
1) the fields are fully penetrating and n €’ is small so that
both €' and €” can be obtained from egs. 2.12 and 2.13, 2) that
the fields are not skin depth limited but ne’ is 1large so that
only €" can be obtained and Eg. 2.13 is appropriate or 3) that
the fields are skin depth limited and ne¢” is large so that only
o or, equivalently, &” can be obtained from Eq. 2.17.

Egs. 2.12 and 2.13 can be used to calculate ¢ and ¢” as
long as né” is small and & is large. We see, in Table 2, that
this is the case below the transition. Above the transition,
however, the situation 1is somewhat more complicated. If we
compare the measured value of Af, to «/n, where n is calculated
for a "comparable" elipsoidal sample, the approximate equality
suggests that this 1is the regime in which ne¢’ 1is large. 1In
this regime, the observed perturbation is insensitive to €’.

To investigate the effect of non-ellipsoidal shape, two
copper pieces, of length 5 and 3 mm, and similar in shape to the

MEM(TCNQ), crystals, were studied. For these samples, (x/4f,)/n
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was found to be 1.033 and 1.027 where n was calculated from
Eq. 2.6. These deviations from one are surprisingly small. The
somewhat larger discrepances observed in the MEM(TCNQ), crystals
may be due to the effect of anisotropy on the transverse
currents which flow in a non-ellipsoidal sample. These
deviations from unity are, at any rate, sufficiently small that
we can assume that, above the transition, the crystal is in the
regime where the frequency shift is insensitive to €’.

Having determined that ne’ is large above the transition,
we are still faced with the decision as to whether ¢ should be
calculated assuming skin depth 1limited penetration, and thus
using Eq. 2.17, or assuming full penetration and thus using
Eg. 2.13. Clearly one has to base this decision on whether or
not the obtained O gives a skin depth that is consistent with
the size of skin depth assumed in the calculation of o . We
will generally take Eq. 2.17 to be wvalid for a skin depth
smaller than 1/2 of the smallest dimension and use Eq. 2.13
otherwise.

If we analyse the results for crystals 2,3, and 4, assuming
a small skin depth, and thus using Eq. 2.17, the values of &
obtained imply a skin depth that is slightly smaller than 1/2 of
the smallest dimension. _The assumptions implicit in Eq. 2.17
are thus approximately true.

In the analysis of the results for crystal 1, assuming a

small skin depth and thus using Eq. 2.17, yields a value for o
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which is an order of magnitude smaller that that found for
crystal 4 and hence a skin depth which 1is comparable to the
smallest sample dimension. Since &g is larger than half of the
thickness, it is thus inappropriate to use the assumption of
skin depth limited penetration for Crystal 1.

If, on the other hand, we assume that the skin depth is

large for crystal 1, we can use Egq. 2.11 to relate €’ to ADo/2.
Because we are in the regime where n€” is large 4./2 becomes
independent of (€'-1) and we can invert Eg. 2.11 directly to get
(3.1) €'= & /(n%(4./2)) .
Eq. 3.1 is, in fact, just Eg. 2.13 in which Af, has been set
equal to «/n. The conductivity obtained for crystal 1 using
Eq. 3.1 implies a skin depth which is only slightly smaller than
the minimum crystal dimension. This justifies the assumption of
penetrating fields made in the use of Eq. 3.1.

The relationship between the two ways of calculating & in
the high conductivity regime is 1illustrated in Fig. 1l5a.
Assuming, for this regime, that ¢’ is unimportant and setting it
arbitrarily to 1, and wusing the wvalues of £, n, and ¢
appropriate to «crystals 1 and 4 just above the transition, we
have plotted log, 4f, and log, Qo versus logw 9 using Egs.
2.12 and 2.13. Using the same values of f, n, and &« plus the
value of Af, appropriate to each of the two <crystals, we have
also plotted 1log A, versus log ¢ using Eq. 2.17. Eq. 2.12

ceases to be useful for the determination of €’ in the region
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where 1log, 4f, is constant. Eq. 2.17 is taken to be valid to
the right of that conductivity for which the skin depth is about
half of the smallest dimension. In the intermediate region,
Eq. 2.13 probably gives a better measure of o than Eq. 2.17.
The actual value of A, observed is denoted by the arrow labelled
(e) . For crystal 4, we see that the observed change 1in width
puts us onto the curves in a region where the two formulae give
similar results. More importantly, this is a region where
Eq. 2.17 1is expected to be applicable since the skin-depth is
less than half of the smallest dimension. For crystal 1, on the
other hand, the observed loss is in a region where Eq. 2.17
implies a skin depth larger than the sample and 1is thus
inconsistent.. Eq. 2.13, however; does appear to be wvalid for
crystal 1 in this regime.

In Fig. 15b, we have plotted o versus 1/A, for these two
crystals. For crystal 4, the observed A, yields a similar o for
both of the assumptions about the skin depth. The skin depth
limited calculation 1is preferred, in this case, as it avoids
some of the uncertainty associated with the ((X /n)- Af,) term
in this regime. The true curve relating o to 4, probably lies
somewhat above the two curves in the region of the intersection.
As a result, conductivities obtained close to the cross over
between the skin depth 1limited and penetrating regimes are
probably underestimated. For crystal 1, it is clear that skin

depth 1limited penetration is inappropriate and Eq. 2.13 or 3.1



55

is to be preferred for the calculation of ¢ .

As a result of these considerations, the conductivities for
crystal 1 above the transition were calculated using Eq. 2.13
with Af,=«/n, and those for «crystal 4 were calculated using
Eq. 2.17. The other two crystals were intermediate cases and
their «conductivities were calculated using Eq. 2.17 above the
transition.

We note here that there is some difficulty associated with
the interchangeable wuse of o/n and Af, in the calculation of

o in the large ne” regime. Equation 2.17 replaces o/n by Af,
whereas in equation 3.1 it is effectively Af, that has been
replaced by ®/n. This problem represents an uncertainty that

is intrinsic to these measurements in this regime.
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3.2 Dielectric Constants and Conductivity

The microwave conductivities for the crystals measured
appear in Fig. 16. The d.c. conductivity for one of the
Groningen crystals appears along with the microwave conductivity
for crystal 4, also from Groningen, in Fig. 17. The real parts
of the dielectric constant below the transition temperature are
shown in Fig. 18.

The MEM(TCNQ&_ crystals were found to have a transition
temperature of about 65°C on heating and 60°C on cooling.
Although results obtained in another laboratory and reported in
Morrow et al. (1979) have found these temperatures to be about
57.4°C and 51.5°C respectively there are also significant
differences in the conductivity and the dielectric constant
results below the transition which are not completely
understood. The hysteresis of between 5 and 6 degrees is,
however, common to both sets of results and is taken as evidence
for the phase transition being discontinuous.

The real part of the dielectric constant, €, could only be
obtained below fhe phase transition as explained above, and was
measured from just below the transition down to room
temperature. An increase with temperature was observed with &’
going from between 10 and 12 at room temperature to between 12
and 16 at the transition temperature. As a check, the apparatus

was used to measure the dielectric constant of a diamond sawed
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silicon chip of dimensions 0.820 cm by 0.099 cm by 0.065 cm.
This chip, thicker than the MEM(TCNQ), samples studied and not
really optimally shaped for this technique, was found to have
€£=10.5 as compared with the accepted value of 11.7.

The microwave conductivity in the low conductivity range
was found to be between 0.014 and 0.017 (ﬂrcmf’ . The
conductivity above the transition was found to be between 14 and
32 Ul—cmf' . These results are included in the summary given in
Table 2.

The conductivity below the transition can be analysed by

assuming an activated behaviour so that

6 (T) = oo exp(-44/2kT)

where A4 is the energy gap. 1In these measurements, Ag was found
to be (0.7%20.1)ev in the range from 310K to 335K. The
d.c. measurements had previously given (Morrow et al., 1979)
Aj=0.78eV between 250K and 290K and 0.69eV between 310K and
335K. The microwave measurements covered only the upper range
of temperatures but were generally found to confirm the
d.c. results.

Errors were estimated for a typical point above and below
the transition. Below the transition, the error in €’ was found
to be about 30% and that in €” and o to be about 35%. These

were largely associated with the wuncertainty in the crystal



Calculated Results for MEM(TCNQ)

Crystal
oo (S2em)  (T<65°C)
675 (s2:em)” (T>65°C)
67 /6%
€' (T=50°C)
S, (cm)  (T<65°C)
& (cm) (T>65°C)
(¢/sf0) /n (T>65°C)
n 6”’ l(T<65°C)

n€” (T>65°C)

0.01§5
22.292
1351
11
0.424
0.0115
1.249
0.0564

76.425

TABLE 2

10.0142
14.53
1023
15
Q.457
0.0144
1.267
0.0324

33.42

0.0149

13.62

914

13

0.447

0.0148

1.264

0.0444

40.81
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Crystals Studied

0.0161
31.39
1950
13
0.430
0.0098
1.142
0.0287

57.18
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dimensions and do not include the small systematic error in n
due to the non-ellipsoidal shape. Above the transition, the

experimental uncertainty in & is estimated to be about 20 &.
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3.3 Discussion

MEM(TCNQ), 1is found to be a semiconductor with a gap of
about 0.8eV in the dimerized phase and a poor metal in the high
temperature phase. There is some suggestion that the MEM 1ions
play a role in stabilizing the dimer and that the transition is
related to the 1loss of this stabilization with the increased
motion of the MEM 1ions at higher temperature. (Sawatzky, 1979)
For the purpose of this discussion, however, we will Just
consider the effect, on the extended Hubbard model for the p=1/2
TCNQ stack, of the three kinds of terms in the extended Hubbard
Hamiltonian. We will be interested in the relationships between
the overlap integrals and the on-site repulsion, U, and, in
particular, on whether or not the results presented here can
distinguish between the large U and small U cases.

It is clear, from the fact that the transition 1is not
directly from the monomer to the tetramer phase, with
characteristic wavevector 2k7, that Coulomb repulsion must be
significant.

In the monomer phase, we can think of there being just one
transfer integral, t. Then, for U<<K4t, we will have a tight
binding model with a quarter filled band of width 4t. For
U>>4t, we will have the spinless fermion model with a gap of U-
4t and a 1lower band of width 4t. Both of these will give a

metal-like behaviour. If, however, the nearest neighbour
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repulsion were large, then one would expect, for the p=1/2 and
large U case, a Wigner crystal situation with a gap above the
highest filled level since any excitation would involve
occupancy of neighbouring TCNQ molecules. That the conductivity
is not extremely high suggests that V, might be important. The
conductivity does not, however, appear to be activated so this
question remains unresolved. The high temperature behaviour,
then, does not distinguish between any of the extreme regimes of
the Hubbard model.

If we’ now look at the semi-conducting dimer phase, we can
consider two possibilities in terms of t, being large or small.
We already suspect that U is large because the tetramerization
does not occur immediately. The ground state of the dimerized
phase does not include double occupancy of TCNQ molecules.

We will first consider the situation where t, is the
dominant interaction. 1If we ignore the Coulomb repulsion for
the moment, we can consider the problem to be a tight binding
problem in a lattice of cell dimension ¢ with a basis b. We
will take the overlap of sites separated by b to be -t, and
those separated by c-b to be -t,. The Brillouin =zone then
extends to t1u/c. We find the dispersion relation to be

(Appendix A)

(3.3) k=if/ff +t2 +2t,t&cos(kc)l .
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This expression describes a band with limits at T(t, +t,) with a
gap between 1|t ,-t,]|.

We can now study the effect of 1including the on-site
repulsion. We assume that t,4 is much larger than t,. This
leaves three cases to consider. These are t1>>t2>>U, £, >>U>>t, ,
and U>>ty>>t,. |

For the first case, we expect the result to be similar to
that discussed above so that we have a lower band of width 2t,.
Double occupancy of the dimers is allowed so this 1lower band
would be half-filled and thus metallic. This is inconsistent
with the conductivity measurements and with the fact that the
magnetic susceptibility measurements (Huizinga et al., 1979)
indicate that MEM(TCNQ), is a chain of 1localized spins with
antiferromagnetic coupling rather than a metallic chain for
which the much smaller Pauli susceptibility would be
appropriate.

For the second case, t;>>U>>t; , the half filled lower band
is split by the Coulomb energy associated with double occupancy
of a dimer. This will be U/2 since the probability of double
occupation of a given TCNQ molecule in a doubly occupied dimer
is 1/4. The gap is thus U/2-2t, below which is a filled band of
width 2t,.

In the third case,U dominates the problem and we can handle
this by recognizing that, as in the case for a single type of

overlap, this is just the U=0 case for spinless fermions. The



66

result 1is then two bands of width 2t, with a gap of 2(t,;-ty).
Now, however, the lower band is filled.

We see, then, that both of these last two models give a
semi-conducting phase and, as for the metallic state, we cannot
distinguish between U dominating and t; dominating on the basis
of conductivity measurements. For both cases, nearest neighbour
repulsion,V, , would also contribute to the gap if it was non-
negliglible.

We thus find that, for both U>>t; and U<t;, we would
expect to find a gap for conductivity and a gap of about 9000
degrees is observed. The thermopower evidence of Chaikin (1979)
suggests that U is in fact large and this is consistent with the
conclusions drawn by Huizinga et al. (1979). If the gap 1is
taken to be 2t;-2t;, as for the large U case, the implication is
that t4 1is of the order of 0.4 eV. Based on Hubbard's (1978)
estimate for a TCNQ chain of of U=4.5 eV for the unscreened case
and 2.4 ev if the interaction 1is screened by conduction on
neighbouring chains and polarization of neighbouring molecules,

this is indeed small compared to U.
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CHAPTER 1V

Dielectric Resonator Studies of TTF-TCNQ

The second part of this work involved the study of the
complex dielectric constant of TTF-TCNQ for the direction
parallel to the conducting axis by observing dielectric
resonances of the crystals. This axis is labelled b in what

follows.

4.1 Dielectric Resonator Apparatus

The apparatus wused for this part of the work was
essentially the same as that wused by Barry for the original
dielectric resonance studies of TTF-TCNQ (Barry, 1977).

The nature of the experiment required that it be possible
to suspend the crystal in the wave guide at low temperature and
manipulate it from room temperature. It was also necessary that
it be possible to extract the crystal for cutting while 1leaving
the wave guide at liquid helium temperatures.

This was accomplished by suspending the crystal from a
quartz fibre on the end of a 1long stainless steel rod which
could be manipulated from the top of the cryostat. A detailed
diagram of the crystal handling rod and rod holder appears in
Fig. 19. The crystal, with its long axis parallel to the rod
assembly, was butted against the end of the quartz fibre and

held with a type of fast-setting epoxy (5 min.) manufactured by



TJ.

)

Figure 19.

——stainless steel rod

O-ring

brass rod

set screw

hypodermic needie

brass rod holder

-

quartz fibre

E

crystal

Crystal manipulating rod

and rod holder for the dielectric

resonance experiment.

68



69

Devcon. This quartz fibre was glued into a 26 gauge hypodermic
needle with approximately half an inch of quartz fibre
projecting from the needle. The needle, in turn, was fitted
into a concentric hole in a brass tip of the same diameter as,
and fitted into the end o0f, the stainless steel rod. This
stainless steel rod, of length 62 cm, was inserted into a brass
holder with an O-ring seal to secure the rod. The brass holder
was threaded so that it could be attached to the cryostat
flange. A spring was captured between the brass cap of the O0-
ring seal and a cap on the stainless steel rod.

The crystal could be withdréwn into the brass holder, after
mounting, to allow it to be moved to the cryostat. The brass
holder could then be screwed into a threaded hole on the top
cryostat flange. A stainless steel tube was used to guide the
rod and crystal down to and through a copper block and into the
wave guide. The crystal was oriented with the 1long axis
perpendicular to the E field in the rectangular wave guide. The
copper block, in which was inserted a 390§ carbon resistor
thermometer, supported a 120§ resistance wire heater and also
formed a short at the end of the wave guide. The wave guide
formed a "U" shape with one arm shorted by the copper block and
the other extending through the top flange of the cryostat. A
polyethylene window was used to seal the wave guide outside of
the dewar. There was a hole drilled in the waveguide just above

the operating liquid Helium level to allow He gas to enter and
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cool the <crystal. Two wave guide assemblies, to cover 18 to
26.5 GHz and 26.5 to 40 GHz ranges, could be interchanged.

Since a given crystal had to be wused for a number of
measurements, in order to <construct a mode plot, it was
desirable to minimize the opportunities for breakage. One of
the most likely times for the crystal to fracture was during the
insertion after a liquid He transfer. To minimize the number of
transfers necessary to collect data from a given crystal, as
well as to conserve He, the relatively heavy stainless steel
skirt of Barry's apparatus was replaced by a flange supporting
three thin-walled tubes. The smallest tube contained the
thermometer and heater wires as well as the tube in which the
crystal manipulating rod was guided. The largest tube contained
the wave guide assembly and the remaining tube guided the
transfer siphon to the dewar. These tubes passed through O-ring
seals on the top of a second flange which was sealed to the
dewar. The fubes and upper flanges supporting the waveguide and
crystal handling assemblies were fixed in place while the dewar
could be raised and lowered on the tubes by means of a simple
elevator mechanism. The dewar assembly is shown in Fig. 20.

It was found that the vibrations associated with the He
transfer were often enough to break the crystal so that the
crystal had to be inserted after the transfer. This required
careful use of techniques to insure that there was no

condensation of ice in the dewar and particularly in the crystal
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insertion tube. While the failure rate was still high, it was
found that some success could be achieved by leaving a dummy rod
in the crystal insertion tube during transfers along with
maintaining a He overpressure at all times. The dummy rod
prevented the blockage of the tube by condensable vapours during
transfers and could be wused to clear blockages from the tube

prior to insertion.
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4.2 The Spectrometer

The microwave sweep oscillator employed in these
measurements was a Weinschel 221 with 18 to 26 GHz and 26 to 40
GHz plug-ins. The microwave power was sampled at the plug-in
with a 10 dB directional coupler. It passed through a wave
meter and a variable attenuator to a Hewlett Packard model
11517A harmonic mixer which could be used for phase-locking
purposes as described below. The wave meter was used to convert
the external sweep voltage to frequency. The power 1level was
detected, at a second directional coupler, by an HP model R422A
crystal detector and used to level the backward wave oscillator
output. After passing through an isolator, it was sent to the
microwave assembly through a third directional coupler. The
power reflected from the short, less any absorbed by the crystal
resonance, returned up the wave guide assembly and through the
directional coupler, a variable attenuator, and an isolator, to
a second HP harmonic mixer used as a simple detector. The
output was amplified in two stages by inverting operational
amplifiers before being fed to the computer through a digital to
analog converter. The data handling from this point will be
described in section 4.6. Fig. 21 1illustrates the microwave

assembly schematically.
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4.3 Crystal Cutting

It was felt that 1in order to better understand the
dielectric resonance mode plots, it would be necessary to have a
means of trimming small lengths from the crystal quickly and
with a minimal risk of crystal breakage. To this end an
assembly was constructed which could be used to mount the

crystal under a microscope and could then allow the crystal to

be manipulated in two dimensions and cut while under
observation. The apparatus used 1is shown in Fig. 22 as it
appears on the microscope mount. The mount assembly (A)

attaches to the microscope arm using dovetail B. The rest of
the assembly is supported by rails which are inserted through
block C. This block can be translated perpendicular to the
direction of the rails by means of an adjusting knob. The rod
on which the crystal is mounted can be translated parallel to
the rails by means of the four assemblies D, E, F, and G.
Support D contains a threaded hole into which the brass crystal
support can be screwed. Support E, with the cap in place,
steadies the <crystal mount rod and provides a base for the
spring which remains on the rod at all times. Collar F can be
placed aroﬁnd the rod and clamped to it. The spring presses
against it to provide the force to return the crystal to the
block. Part G contains a fork through which the rod is passéd

and which presses on collar F to move the <crystal toward the



Figure 22.

The crystal cutting apparatus
mounted below microscope.
For a description, see text.
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centre of the apparatus. At the other end of the rails is the
cutter assembly (H) which can be translated along the rails to
position the blade below the microscope. The actual cutter
consists of an anvil (I) to support the crystal and a blade (J)
to cut it. Both are moved by differential screws mounted in
removable brass arms. A piece of razor blade steel epoxied to
the anvil forms the cutting table. This table must be hard so
that grooves, into which the crystal vcan be pushed, are not
formed. The blade was a section of razor blade. Best cutting
results were obtained when the blade was changed for each
crystal. It was found that, in the cutting process, it was
possible for the blade to exert a force on the crystal that was
parallel to the crystal's 1long axis. Since the crystals are
extremely weak in compression, this force had to be compensated
for. This was done by backing off the fork on part G once the
blade had pinned the crystal to the anvil. This allowed the cut
to proceed with a slight tension, supplied by the spring,
applied to the crystal. Photographs showing the cutting
operation and the end of the crystal appear in Fig. 23. While
the cutting operation is not a cleaving of the crystal, it was
found that reasonably clean cuts could be méde with ho apparent
degradation of the dielectric resonance.

The major purpose for the cutter was to allow the crystal
length to be changed by very small amounts. It was found that

as little as about 0.3 mm could be trimmed from the crystal



Figure 23.

Crystal and blade before and
after cutting operation. Anvil has been
withdrawn for clarity.
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quite easily. For cuts of less than
difficulty with the blade crushing

resulting in a slightly ragged cut.

0.1 mm,

the

end
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4.4 Mounting

This same assembly was also used to mount the crystal. For
this operation, it was mounted vertically on a stand as shown in
Fig. 24. The blade and anvil were retracted to allow the mount
rod to pass between them. The rod, with the needle and quartz
fibre mounted in the end as described earlier, was held in the
assembly in the same way as for the cutting operation. The
crystal was stood upright in a small hole drilled in the brass
block (K). The block rested on a table fixed to the cutting
assembly as shown (L). The rod was then 1lowered against the
spring using the fork and collar arrangement. With a drop of
epoxy on the quartz fibre, the crystal and fibre were butted
together and then raised slightly. The brass block was
positioned so as to hold the crystal straight while the epoxy
hardened. The rod and crystal were then withdrawn into the
barrel of the brass crystal support in preparation for transfer

to the dewar.



Figure 24,

Crystal mounting apparatus.
see text for description.

81



82

4.5 Measuring of the Crystal

The crystal could be measured from photographs taken
through the microscope. This method was accurate to about
0.01 mm. Later crystals were measured by attaching the crystal
holder to a stage which could be translated in two dimensions
using micrometers. These measurements are thought to be

accurate to 0.005 mm or less.
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4.6 Computer Control

The microwave source was controlled by a Nova 2
minicomputer as described by Statt (1979). Its use in the
context of this experiment will be described briefly.

Any operation 1involving sweeping of the backward wave
oscillator (BWO) under computer control required that a suitable
voltage ramp be fed to the external sweep input.of the BWO. The
first step 1in generating this ramp involved calibration. This
was done using the BASIC program, "CALIBRATION." A digital ramp
was output to the 16 bit.D/A converter. A wavemeter (TRG K551
for 18 to 26.5 GHz and TRG AS551 for 26.5 to 40 GHz) could be
used to identify preselected frequency points in the sweep. The
computer was signalled manually at each preselected point and
the digital output giving rise to the appropriate voltage
recorded on disk.

In order to collect data, the program "SWCONTROL" was used.
Two modes of sweeping were used for this experiment. Because of
the presence of strong standing waves between the short and the
polyethylene vacuum seal, it was usually necessary to ratio
spectra taken with the crystal in and out in order to locate all
but the most strongly coupled resonances. This initial search
for each resonance was performed using the "FASTSWEEP" routine
with a real time ratio option. In this mode of operation, the

computer used the frequency calibration previously obtained to
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calculate a digital ramp covering the frequency range requested
with the number of points requested. This ramp was then output
to the 16 bit D/A at a selected rate. At the same time
reflected power was being sampled and ratioed, point by point,
with the previously stored background. Each ratioed point was
displayed on - a scope monitor before the next point was taken.
This routine was typically used for repetitive scanning of 1001
points over about 2 GHz at a rate of 100usec. per point. For
both this routine and the synthesizer phase locking routine, the
spectra could be retaken with only the storage locations altered
by using the response "R". This allowed quick recording of
background and crystal spectra without re—entering all of the
sweep parameters. Features in the ratioed spectrum. could be
identified as crystal resonances by moving the crystal, and thus
changing the coupling, while observing the ratioedvspectrum in
real time. The gain of the displayed ratio could be increased
by up to a factor of 16. Using this option, resonances coupled
by less than 5% could be located. The coupling was usually
adjusted to a maximum so that for strongly coupled resonances
there was no question as to whether the resonance was over-—
coupled or under-coupled.

The data was normally collected with the source phase-
locked to the Rhode and Schwarz 0.01 to 500 MHz frequency
synthesizer. These could both be controlled by the "SYNSWEEP"

routine in "SWCONTROL". These scans typically covered 0.5 GHz
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with 1001 points at 100 msec./point. Again a 1001 point digital
ramp would be calculated and fed, point by point, to the BWO.
At the same time, the computer would output a signal to set the
synthesizer to a frequency such that a chosen harmonic of 8
times the synthesizer frequency would be 200 MHz greater than
the desired BWO frequency. ( the synthesizer output is fed
through a times 8 multiplier chain before entering the HP
harmonic mixer which was also sampling the BWO output.)

The result of mixing the BWO output and the chosen harmonic
(between 6 at 18 GHz and 11 at 40 GHz) of the multiplied
synthesizer output would include a signal close to 200 MHz.
After being picked out by a bandpass filter and divided by 10,
the signal was fed to a 20 MHz synchronizer. This generated an
error voltage which was then fed to the F.M. input of the BWO to
correct its output frequency. The power reflected was sampled
at each frequency step and the result stored. The contents of
the buffer containing the spectrum were displayed on the monitor
scope after each point was collected. The usual procedure was
to store the spectrum with the crystal inserted and then to
record a background signal. The ratio was then calculated and
stored on disk using the "ANALYSIS" program. This program was
also used to plot the spectra on an X-Y recorder. Before being
stored on disk by an assembly language subroutine, the ratioed
spectra were multiplied by a large number in order to reduce the

digital noise associated with floating point to fixed point



conversion of small numbers.

range led to the choice of 2'*
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Consideration of the monitor scope

as a convenient multiplier.
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4.7 Fitting of the Spectra

The resonance was analysed by assuming a Lorentzian
oscillator 1line shape for the absorption due to the dielectric
resonance. Ideal ratioed spectra are assumed to have the form
of 1 minus a Lorentzian curve. The spectra can be fitted to
such a line shape using the "AFIT" or "MFIT" programs. These
programs can be called from the "ANALYSIS" program by responding
to the prompt with "Z". Both request a directory in which they
may find requested files. They can perform disk operations and
scope monitor plots by responding to the prompt "%" with the
letters "D" or "P" respectively. These commands are used in the
same way as in "SWCONTROL" (Statt, 1979). The response "L"
results in the computer requesting information on the spectrum
to be fitted and then carrying out the fit. The first query
requests the baseline factor, as described above, to be entered.
Next information is requested about the spectrum to be fit
including the initial frequency, the fréquency interval, the
number of points, and the location, in the BASIC buffer, of the
first point. It then asks for a guess as to the centre
frequency and width of a Lorentzian with the same height as well
as the first location into which to store this Lorentzian.

In the manual program, "MFIT" , this Lorentzian is
calculated and stored. The response "C" brings a request for

the locations and 1lengths of two blocks of buffer space



88

containing the original and calculated spectra and then plots
them simultaneously for visual inspection of the fit. "CV" will
do this as well but will respond to the escape key by summing
the square of the differences of the two spectra. The computer
will then respond to "LI" by requesting a new set of parameters
for the Lorentzian but retaining the original spectrum. "cI"
will plot the contents of the blocks specified in the most
recent "C" command and, as is also true for "CVv", will not work
unless a "C" command has been used previously. 1In manual
fitting, then, one would simply vary the Lorentzian parameters
until the sum of the squared differences was minimized.

In "“AFIT", the requested centre frequency of the required
Lorentzian , is a dummy variable. The program locates the
lowest point in the spectrum, corresponding to the centre for an
ideal Lorentzian absorption, and calculates the Lorentzian
absorption with that height and centre frequency and with the
width supplied. The sum of the squared differences is then
calculated. The width is then changed by twice the frequency
interval supplied and the procedure repeated. The width will
change in the appropriate direction until the fit parameter is
minimized at which point the procedure will be repeated for the
centre frequency. The parameters of the Lorentzian giving the
best fit, plus the per-cent coupling of the gesonance, will then
be output. The fit can be checked manually by using the "C"

command as described above. Fig. 25 shows observed spectra and



the best fit Lorentzian for typical

resonance and for a poorly fit resonance.
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Figure 25. Examples of observed resonances
(solid lines) and best fit obtained using
"AFIT" program (dashed line).
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CHAPTER V
Theory of Anisotropic Dielectric Resonators

5.1 Introduction

Because of the possibility of total internal reflection at
the surface of a dielectric and vacuum, a dielectric solid can
be made to act as a microwave cavity. This was first considered
by Richtmeyer (1939) and applied by Okaya and Barash (1962) who
used a resonator made of rutile. Dielectric resonators have
since been used both in engineering applications and as a
technique for measuring dielectric properties of small crystals.
Dielectric resonance has been applied to studies of

KaPt(CN%_B% 3H&O (Jakelic and Saillant, 1974) and TTF-TCNQ

.3
(Khanna et al.,1975; Barry, 1977).

Most of the useful theory regarding anisotropic dielectric
resonators has been dealt with by Barry. We will review some of
it here and then describe some attempts to account for the
observed 1length dependence of the frequency for a finite
resonator using spécialized and somewhat unphysical boundary
conditions. We will then describe solutions for infinite
dielectric wave guides with and without an outer conductor for
the case of no azimuthal dependence and for a cosine azimuthal
dependence of the fields. We will find that the field patterns

for these models bear some relation to those for the two lowest

observed modes in the dielectric resonance experiment. The mode
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plots for the wave guide solutions do not provide an explanation
for the observed similarity of the mode plots for the lowest

coaxial and dielectric modes in the TTF-TCNQ crystals.
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5.2 Open Circuit Boundary Conditions

The problem of the dielectric resonator is more complicated
than that of a cavity with perfectly conducting walls because of
the presence of evanescent fields outside of the dielectric
resonator. The simplest way to déal with this problem 1is to
ignore the fields outside. This treatment 1is justified by
redognizing that the component of the electric displacement
perpendicular to a boundary, D,, must be continuous across that
boundary. The ratio of the perpendicular electric fields inside
and outside is then inversely proportional to the ratio of the
dielectric constant. If the sample dielectric constant is
large, the perpendicular component of E outside of the boundary
will be small. This situation is summarized by the so—called

magnetic wall boundary conditions

(5.1) AxH=0

=} §

o]
]

()

(5.2)

which 1limit the fields at a boundary to E fields parallel to the
boundary and H fields perpendicular to the boundary. As
Jaworski (1978) has pointed out, however, such boundary
condition are really only appropriate for higher modes for which
the exact behaviour at the boundary is of less importance.

Unfortunately, we shall see that for anisotropic rectangular
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crystals, open circuit boundary conditions provide the only
simple means of dealing with crystals of finite length.

Before applying the boundary conditions, we must find a
solution for the fields in a crystal. Maxwell's equations for a

magnetically isotropic dielectric,

(5.3) U xE= (iwx/c)H
(5.4) UxH=- (iw/c)¢E
(5.5) V.¢E=0

(5.6) ¥.5=0

L

can be combined to give a wave equation in E,

(5.7) VE-V(T-E) + (wle/c?) ¢ E=D

We take our origin to be the centre of the crystal and
recognize that we will be dealing with crystals in which the X
dimension, c%, will be very small so that we want a solution
without a nodal plane perpendicular to X in Ey and E;. A

convenient solution to this wave equation is then
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EX=A,sin(k,X)sin(kyY)sin(kzZ)
(5.8a) Ey=A,cos(kXX)cos(kyY)sin(kzZ)
Ez=Azcos(kxX)sin(kyY)cos(kzz)
The corresponding magnetic field components are,
Hx=(—i/ko)(Azky—Aykz)cos(k,X)cos(k,Y)cos(kzZ)
(5.8Db) Hy=(—i/k°)(Axkz+Asz)sin(kxX)sin(k,Y)cos(kzZ)
Hz=(i/ko)(Aykx+A,ky)sin(k,X)cos(kYY)sin(kLZ)
where ki=w*c* and we have taken wu«=1. We have chosen the
solution for which E, is an odd function of Y in anticipation of
this being the symmetry of the lowest mode.
The open circuit boundary (OCB) conditions require that,
for a resonator of X, Y, and Z dimensions given by ¢, a, and b,
we have (see Fig. 26)

ke =1m/c k,=mw/a k,=nm/b

where 1 is an even integer, and m and n are odd integers.

Substituting for E in the wave equation, (5.7), gives rise to



96

three homogeneous equations for A,, A,, and A,. For the case of
a tetragonal dielectric tensor, with €, and &=€&=¢€, there are

non-trivial solutions for

(5.9) wyct = ((kF+k}) /e, ) + (ki/e)
"and
(5.10) Wyt = (ko+k, +k2) /€,

If we use Eq. (5.9) to solve for A, and A, we find

Ax/Bz = €k Ky / (ki+ky )E,
(5.11)

Ay/A, = - Ekaky/ (ki+k1)€,

so that Ayk,+Ayk, = 0 and H, = 0. We will refer to this as the
transverse magnetic (TM) nmode. For this solution, k., and ky
must be non-zero since Ey contains sink,Z and E_, contains
sink,Y. k, may be 0.

If we use Eq. 5.10, we find that we can solve for A, and

obtain
K
(5.12) A, (K +k,+ks) ((€/€)-1) = 0

so that if €,#€, , we must have E,=0. This will be referred to



Figure 26.

The labelling of the dimensions
of TTF-TCNQ crystals.
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as TE. For non-trivial solutions for this type of mode, we must
have k, #0. Since c* is very small, in cases of interest to us,
the smallest non-zero k, will be very 1large. It is thus
unnecessary to consider this solution further.

We note, at this point, that for an isotropic resonator
(i.e. €,=€, ), Egs. 5.9 and 5.10 would be equivalent. We would
then be free to choose an axis along which to set the electric or
magnetic fields to zero. In the present case, however, the
anisotropy has split the T.E. and T.M. modes and we are not
free to <choose any axis . The anisotropy of the problem has
defined the Z axis as the one to which the 1labels T.E. and
T.M. are referred.

From Eq. 5.9, the frequencies for the magnetic wall

solution are given by
%
(5.13) Ek=%f{[}l/c f‘+(m/afq /€, + (n/b) /GL}

where 1 can be zero. The analysis for the even modes is
identical so that Eq. 5.13 is appropriate for all integer values
of m and n. Field 1lines for some of the lower lying modes
appear in Fig. 27. In a model with more realistic boundary
conditions, as we shall discuss below, the separation into T.E.

and T.M. modes becomes less distinct. Barry (1977) used the
notation E;' to denote dielectric resonances which, in the limit

of large aspect ratio (b>>a>>€’) would have electric fields
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primarily along the Z axis. We will use this notation in a
similar way with 1 and m giving the number of electric field
minima in the Y and Z directions respectively. Each mode in
Fig. 27, then, is labelled by the E;i mode which would reduce to

that mode in the limit of magnetic wall boundary conditions.
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Figure 27. The field lines for some of
the low lying dielectric resonances.
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5.3 A Review of Results for Infinite Dielectric Resonators

Following Barry (1977), we go on to consider models in
which the sample is infinite in the 2 direction (b=2,k,= T/b=0)
and for which we can take some account of fields outside of the
crystal.

Inside of the crystal, we will again use the plane wave
solutions of Egs. 5.8a and 5.8b. Because of the infinite length
kz is zero and the only spatial dependence will be in the X and
Y directions. We will take thishY dependence to be eihy for now

and thus include both even and odd solutions. For these

assumptions we obtain, for the fields,

(5.14) H, ==k, Ez /k,
Hy=(~i/ko) (9E, /2%)
where E, satisfies the wave equation
a =3
V E,+k, €;E; =0

and k:=6d7c&. The lowest mode will then have
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ik, Y
E,=A,,cos(k.X)e

iky V4
(5.16) H, = (=K, /Ko ) Azicos (ki X) e

) ) ikyY
Hy=(i/k, ) Azikvisin(kyX) e

. i 2 2 -
with Eq. 5.9 giving (kx +ky )/€,=Ks .

We can then go on to deal with the fields outside of the
crystal. We first consider the boundary perpendicular to X
since ¢® is the smallest dimension and OCB conditions are most
deficient in describing the fields at this boundary. The fields

outside of the X face boundary are assumed to decay

exponentially giving,

o (IXI=-€2) kY
" E,=Aje e

— ko (1X |- €22 kY
(5.18) H, == (k, /ko ) Agoe ko (X 28) Oy

koD CZ) kY
Hy=(iky, /K, ) Aze e

The wave equation applied outside of the crystal gives

(5.19) k

Boundary conditions at |X|=c/2 require the continuity of
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all three fields. Eliminating A,,and A,; from the continuity

equations leaves

(5.20) Kvo =ky: tan(ky; c¥2)

We now consider the Y dependence. If we just take k,=mv/a,
we have applied magnetic wall boundaries at Y= a/2. This 1is
equivalent to an anisotropic slab for which the Y dimension is
infinite and a wave length of 2a in the Y direction has been
imposed.

Barry (1977) discusses this solution in detail. He shows
that for €>>1, so that ki is small relative to k. and kyi ,
onhe obtains

A

& x*
ky’r\‘ﬁ kx,' tan ((ky. ¢ )/2)

which, for kx;c*<<l, becomes
Ky ® ke c /2

Inserting this into Eq. 5.9 gives an explicit expression for the

resonant frequency.

(5.24) W= c*{k, +2ky/c"}

2



104

or putting k,=mﬁ/a,

(5.24a) £* =<_:_% {(m/a)> +2m/ac®}
4 €z

Alternatively, one could apply exact boundary conditions on
the face perpendicular to Y. 1In doing so, one is failing to
satisfy the boundary conditions for the surfaces of the regions
bounded by IXI>672, lY|>a/2 as illustrated in Fig. 28.

We discuss such a model below. We note here that the
solution to be discussed below is the one which has been used to
analyse the dielectric resonance modeplots obtained
experimentally.

We must also remember that we now have both even and odd

dependence of the fields on Y. For even modes we have
(5.25a) E;;=Azicos(k,; X)cos(k,, ¥Y)

inside the resonator and

ke (1Y1-673)

(5.25b) E,=Ay, cos(k,X)e

in the region bounded by [Y|>a/2; IX]|<c/2. The wave equation

outside the crystal gives
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Figure 28. Surfaces on which boundary conditions
are not satisfied in theory used for
analysis of dielectric resonance data.



a_,* &
(5.26) ko =ky: —kyo
and matching fields at |[Y|=a/2 gives

(5.27) kyo =ky tan(kyia/2)
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One can then wuse Egs. 5.26 and 5.19 to eliminate kyo and kyo

giving

&
(5.28a) ki —k& =k tan (ke c72)
(5.28b) ke —ko =k} tan(k, a/2)

For the odd dependence on Y we obtain
(5.29) E,=Ajcos(k,; X)sin(k, Y)
inside and
k. (1YI-22)

(5.30) E, =A,, cos (ky; X)e

in the region bounded by I|Y[>a/2; IX1<ec/2. These

Eq. 5.28b being replaced by

lead

to
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X L

Y
(5.28¢) kv —ko ==k, cot(kyi a/2).

In the analysis of the experimental dielectric resonance
data, k,; and ky; have been obtained numerically from the
crystal dimensions using the appropriate pair ofsEgs. 5.28a and
5.28b or 5.28c. These values have then been used, with the

observed resonant frequency contained in k: , in
X
(5.17) €= (ko +kyi ) /Ko

to yield a value for €,.
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5.4 Other Models of Finite Resonators

As mentioned, the only model presented so far which was
capable of dealing with finite resonators was the magnetic wall
or OCB model. For this model, the length dependence of the
squared frequency entered as ki/CL where k,=nw/b. The slopes of
Barry's mode plots, however, gave a value for €, of about 2.
This was considered to be too small. 1In addition, it was found
that the dielectric modes had mode plot slopes almost identical
to those of the 1lowest (coaxial) mode. The models to be
discussed below were studied in the hope of accounting for these
anomalies.

We will begin by considering, in section 5.4a, a model in
which magnetic walls are applied to the X axis and extended
beyond the crystal boundaries. In section 5.4b, we will
consider a similar model with the "magnetic tube" parallel to
the Z axis. In section 5.4c, we leave only the magnetic walls

perpendicular to the X axis.



109

5.4a "Magnetic Tube" Parallel to X

Because of the finite 1length of the «c¢rystal, the Y
component of the E field might be important in the region
|Z|>b/2 and might be thought to be sampling a dielectric
constant of 1 rather than €, thus leading to an increase in the
slope of the mode plot (towards that of the coaxial mode). The
departure of the slope from the expected slope for a coaxial
mode might then be understood in terms of the finite size as
well.

The first step in investigating finite resonator models was
to attempt to extend the OCB model to include matching of fields
on some boundaries in order to see 1if this resulted in a
departure from the 1/¢€, slope.

Jaworski (1978) suggested that it might be possible to
apply a model originally proposed by Yee (1965) for <circular
cylindrical resonators. This model involves magnetic walls in-
the form of a cylindrical tube concentric with, and of the same
radius as, the resonator. The modified model had magnetic wall
boundaries on the faces perpendicular to Y and Z. These walls
continued into the region IX|>S72 as shown in Fig. 29. On the
face perpendicular to the X axis, the fields inside are matched
to exponentially decaying fields outside. The X dependence

outside of the face perpendicular to the X axis goes as
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Figure 29. 'Magnetic walls as applied

in adaptation of Yee's theory
to rectangular crystals.
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,kw(lY'C;%)
e .

Application of Yee's result for an isotropic dielectric yields

(5.29%a) Kyo =k tan(kyc/2)
with

a 2. a )
(5.29b) ko=kz+k7-km

In fact, as we shall see, this result 1is not appropriate
for anisotropic dielectrics. We now analyse the problem in
detail.

We begin by writing the fields inside and outside. 1Inside,

we have,
E,=A,; sin(k, X)sin(k, ¥)sin(k,2)
(5.30) Ew=Ayicos(kx;X)cos(kyY)sin(kZZ)
Eﬂ=Azicos(kX(X)sin(kyY)cos(kZZ)
and
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(5.31) Hy=(-1/ko) (Aci kz+A,; ky) sin(kgX)sin(k,Y)cos(k,2Z)

which are the wusual plane wave solutions. As before, the
condition for a non-trivial solution with H,=0 is Eg. 5.9.

Before going on to consider the fields outside the crystal,
it is important to ask whether, for our choice of the TM mode,
one can have a situation in which E, can be zero and k, be non-
Zero. In fact, if one chooses A,; =0, one can obtain, from the
wave equation, three equations in Ay; and A,;.
Ay k k +A,: kyk,=0

(5.32) Ay,((uﬂ/c*)eL—k}-kj)+Az;kzk,=o

Ayt ky k, +A,; ((w?/c?)€, =k -k}) =0
The condition for a non-trivial solution for Ay, and A,; is
found to be k=0 or €.=£,. The second condition can be
understood since, if € =€,, our separation into TE and TM modes
becomes arbitrary and one has the usual case for a metallic
cavity in which one can assign a TE or TM mode. Since we are
interested in €& #€;, we are forced to deal with a case in which

E, cannot be zero unless k,=0. Since we are interested 1in the
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spatial dependence along the X axis, we must accept E, as being

non—-zero.

We can now write down the fields for |[X|>c/2. They are

given by,

ko (IXI= €22)
Exo =Axo © sin(kyY)sin(k,Z)

—kxo(lx/—' Ci/&) .
(5.33) Eya=Ayoe cos(kyY)sin(kxZ)

“ko(IX(-C¥2)
E,, =A,0€ s1n(kYY)cos(kZZ)

and
_ ~ keo (IN1-572)
Hm;=(—1/ka)(Azoky—Ayokz)e cos(kyY)cos(k;Z)
. —keo(Ix1-7) |
(5'34)HW =(‘1/k°)(Axokz+Azokm)e sin(kyY)cos(k,Z)

- [-¢25
Hyo=(i/k,) (AypKetA ky) e xe(I¥=€22) cos(kyY)sin(k,2)
Z o Yo xXo Ny y z

We now have 6 conditions at the crystal boundary |X|=c72. These

are

and H,, =H

%
o
-
ja o}
<
1]
jao]
<
o
L"E
I
o



114

giving
A, cos(ky c/2)=A,,
A,;cos(k,; 072)=A20
€ Ay Sin(kei €72)=Ry
(5.35)

(Az k, -Ayk,;)cos(k, d/2)=A,,k -A,k,

(Ay; k,*+Ak,; )sin(k,; c72)=(A,, k,+A , K,, )

(Ay, Kyp +A o ky) =0

Because of the relations between A,; and A,; and A,;, as

given by Eg. 5.11, some of these conditions are not independent.

One ultimately arrives at two expressions for k,, .

(5.36) kyo = ((k2=ks) /(€. k2-k2) )ek,; tan(k,, &/2)

(5.37) Kvo = €,k,; tan(k,, c/2)

These are obviously incompatible unless €,=1, which is not an
interesting solution, or k,, =k,,=0, or tan(kx£€72)=0 which
returns us to OCB conditions. We thus find that trying to apply
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more realistic boundary conditions to the face perpendicular to
the X axis cannot be done for the anisotropic situation. It can
be easily shown that for the isotropic case, where A,, can be

zero while ky is non-zero, that Yee's result is obtained.
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5.4b "Magnetic Tube" Parallel to Z

The situation is slightly different if we consider matching
to decaying fields on the faces perpendicular to the Z and Y
axes. The simplest way to proceed is to apply magnetic walls to
all but the faces perpendicular to the Z axis. Outside of this

-k (1z1- 42)
e *° . We

face, we will consider the fields to decay as
can anticipate the behaviour of such a model. The frequency
will still be given by Eq. 5.9 and k, and ky will still be
defined by the OCB conditions at the appropriate faces. By
allowing the fields to extend into the region |Z|>b/2, we can
only obtain a k, that is smaller than its OCB value of nm/b.
This, then, would be the kind of end effect which would give

rise to an effective value for €, that was too large. When the

boundary conditions are applied, k,, is found to be given by
(5.38) k,o,=(kzi/€,) tan(k .;b/2)

The characteristic equation outside of the crystal is

X
[+

(5.39) Kuw =k, +k,; -k

Using it to eliminate k? from Egq. 5.9 gives a second equation in

kZo and kzc'
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E3 =S
(5.40) (kg +k, ) (6,-1) /&2 =k, +k 1 /€,

For a typical crystal, kf will be much larger than kﬁ‘/gL with
the result that k;, will be 1large and k,, will be slightly
smaller than w/b. If one thinks of the end effect as an
effective length, b,y =b+4b, then for k.=0 and k,=ﬂ/a, numerical
solutions using this model for a crystal of dimension a=0.05 cm,
give Ab ranging from 0.05 cm, for b=lcm, to 0.06 cm for b=0.2cm.

A small constant Ab would appear in the observed €, as

€ios= E,.(14(Ab/b)) .
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5.4c Magnetic Walls Perpendicular to X

One can extend this model to one in which the magnetic
walls are placed only on faces perpendicular to the X axis.
When we assume exponential decay beyond both the Z and Y faces,
we obtain, as for the previous model, Eg. 5.38 for ﬁhe relation

between kj,and k, as well as a similar condition
(5.41) kKyo =(ky/ &) tan(kyca/2)

The characteristic equations outside of the crystal are Eq. 5.39

and
(5.42) kyo =k, +ki -k

Eliminating k,, ky,, and kzo., and taking k,=0, leads to two

équations'in kz: and ky;.
(5.43) (kei/ k) €5((€2-1)/ &) - E=tarl(k yia/2)
2 a 2
(5.44) (kyi/kzi) €,((€,-1)/&)-€, =tan"(k,;b/2)
This model, unfortunately, just gives an effect similar to that

found ©previously. For a crystal with a=0.05 cm and taking

€,=3000 and ¢€,=5, this.model would yield a mode plot from which
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an inverse slope of about 5.14 would be obtained. This is
greater than €, .

It was generally found, then, that wusing simple models,
which try to match plane wave solutions inside the crystal to
decaying fields at the faces without matching the fields in the
corner regions, to analyse mode plot slopes would give values of
€, which were 1lower than the 1inverse slope. They are thus
unable to account for the low observed values of the inverse

slope.
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5.5 Infinite Waveguides With and Without Outer Conductor

The observed similarity of coaxial and dielectric mode plot
slopes suggests that one should consider the effect of an outer
conductor, i.e. the wave guide, on the dielectric resonances.
In this section we compare dielectric wave guides with and
without a metallic outer conductor for the two lowest azimuthal

dependences of the modes.
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5.5a n=0 Azimuthal Dependence

Barry (1977) disscusses the case for an infinite
cylindrical rod of radius Ry in a circular metallic waveguide of
radius R, for &=§&=¢€, His solutions are reviewed in
Appendix 2. The solutions can be classified by the azimuthal
dependence of the fields where this is given by el"? Barry has
calculated the solutions for the n=0 cases. Some examples of
calculated n=0 mode plots appear in Figs. 30 and 31. 1In
Fig. 30a, we have shown, for a wave guide with and without an
outer conductor, the solution for €=5, £,=3000 and an R, giving
a cross-sectional area typical of the crystals studied. 1In
Fig. 30b, we have shown the mode for an inner core identical to
the wave guide of Fig. 30a and an outer conductor with a cross-

sectional area similar to that of wave guides used in the

experiments. Also shown are the 1lines along which kf=0 and
k§=0. For k:<0, which is the region to the right of the K;=O

line, the fields die off outside of the dielectric. The
solutions are seen to be similar for both the dielectric
waveguide with and without an outer conductor. In Fig. 30b, the
section of the lowest mode labelled la to 1b is one in which
much of the field is outside of the dielectric. As we go to
higher frequencies, the fields are increasingly contained inside
the dielectric. At 1lb, where K:=O, there is a node in E, at the

surface of the dielectric. The variation of the amplitude of E,
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Figure 30a. n=0 dielectric wave guide mode plot
for Ry=0.015 cm, €=5, &=3000.

o (no outer conductor)
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Figure 30b. n=0 dielectric wave guide mode
plot for R,=0.015 cm, R, =0.500 cm,

€=5, (outer conductor present)

€:=3000.
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Figure 3la. n=0 dielectric wave guide mode
plot for R;=0.015 cm, R, =0.5 cm,
€=5, €:=600. (outer conductor present)

0 ] 20 kf 30 4 80
(em)”2
Figure 31b. n=0 dielectric wave guide mode

plot for R, =0.015 cm, R.=0.05 cm,
€=5, ¢€,=3000. (outer conductor present)
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across a diameter, for each of the labelled points, is shown
qualitatively in Fig. 32. At 2, the fields have drawn into ‘the
dielectric so that there 1is a <cylindrical nodal surface at
r¥0.01 cm. k$ is approximately constant along 4, 2, 3 and the
mode plot has a slope of about 1l/e. . This is predominantly a
dielectric mode but is not of experimental intereat because the
small c” dimension would push modes with cylindrical nodal
surfaces to very high frequency. A pure <coaxial mode with a
metallic centre conductor would follow the k:=0 line and have a
propagation velocity of ¢c. The 1,1b,la part of the lowest mode
is predominantly coaxial but does depend on the properties of
the dielectic core as discussed by Barry and illustrated below.
Fig. 3la shows the result for €;=600. The intercept of the
lowest mode has risen although not by a factor of 5 as would be
expected for a purely dielectric mode. The slope has increased
to 0.95.

The effect of decreasing R;/Rq is shown in Fig. 31b which
illustrates the case for R,=0.05 cm. The separation of the
dielectric and coaxial modes is now less distinct.

The section of the lowest mode, la to lb, in Fig. 30b, is
analogous to the A mode observed by Barry. This implies that
for long crystals, the coaxial A mode plot should have a slope

of about 90% of that expected for a purely coaxial mode.
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Figure 32. Qualitative depiction of the
variation of E, across the dielectric
rod diameter for selected points
on mode plot of Figure 30b.
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5.5b n=1 Azimuthal Dependence

To check the effect of the outer conductor on a dielectric
mode, such as the B mode, mode plots were calculated for the n=1
wave guide with and without an outer conductor. The problem
without the outer conductor has also been dealt with by Jaworski
(1978). Here there 1is a nodal plane across which E, changes
sign so that, for its lowest radial dependence, this mode is
analogous to the B mode. The higher radial modes are not of
interest since they are again pushed to very high frequency for
a flat crystal such as was used.

The derivation of the characteristic equation for the n=1
case appears in Appendix 2. The calculated mode plots for the
n=1 dielectric wave guide with and without an outer conductor
with the same parameters as in Fig. 30a and Fig. 30b appear in
Figs. 33a and 33b.

We again see that the regions k:<0 are similar. 1In the
case with an outer conductor, we find modes with constant k, and
modes with constant k:. The modes with constant k: can be
identified as the lowest wave guide modes in a cylindrical metal
tube of radius Rj. The modes with constant k% have a.slope
close to 1/€¢, and are identified as dielectric modes. Fig. 34
shows the radial dependence of E, across a diameter for the

point 1 on the mode plot of Fig. 33b. This is roughly analogous



Figure 33a.

Figure 33b.
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F/R1

Figure 34. Qualitative depiction of the
variation in magnitude of E; across the
diameter of the dielectric rod for
point 1 on Fig. 33b.
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Figure 35b.
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to the B mode. The dielectric and waveguide modes repel each
other but the are otherwise independent. This is illustrated in
Figs. 35a and 35b. In Fig. 35a, R, has been decreased by a
factor of 10. The waveguide modes have risen out of the range
shown, but the dielectric modes are unaffected. 1In Fig. 35b, €,
has been decreased by a factor of 5 and the intercept of the
lowest dielectric mode has risen by this amount leaving the wave
guide mode unaffected. The implication is that, other than for
a crossing of the wave guide mode, the dielectric mode, in the
absence of end effects, should not be stfongly affected by the
presence of the outer conductor.

The fact that the «coaxial and dielectric modeplots are
parallel in Barry's work cannot be attributed just to the effect
of the outer conductor on the dielectric modes. It is also
apparent that the slope of the A mode cannot be entirely
attributed to the fact that the core of the coaxial resonator is
a dielectric. We expect that these anomalies have to be
attributed to end effects of some sort and have tested this by
trying to measure dielectric resonances in 1long crystals for
which end effects are of less importance. The results are

discussed in the next chapter.
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CHAPTER VI
Results and Discussion of Dielectric

Measurements on TTF-TCNQ

6.1 The Mode Plots

As has been discussed, the real parts of the dielectric
constant for the b direction can be obtained from a plot of the
squares of the resonance frequencies versus the inverse squared
lengths of the crystal as it is cut. For a hypothetical crystal
obeying the open <circuit boundary conditions, this would
correspond to plotting £* versus k: for the lowest set of modes.
Extrapolating to the ordinate axis should then give, using the

characteristic equation, 5.9,

£r = (ki+k}) (c*/aT) /el

The most useful model for extracting €; is the infinite
resonator with the boundary conditions satisfied on the four
faces but not in the edge regions. This model uses Egs. 5.28a,
5.28b, or 5.28c to yield kﬁ“ and kﬁ . The slope 1is normally
dealt with by assuming k, =(mn/b) so that the slope becomes
(c*/n* &) .

Barry (1977) dealt with four modes in detail. The B, C,

and D modes were the three lowest dielectric modes with 0, 1,
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and 2 electric field nodal planes perpendicular to the Y axis.
In the Eyi notation, these are referred to as E: ’ E;., and E;
respectively. 1In the present work, crystals approaching 1 cm in
length have been used to observe modes with 1=1 ; 1<mg¢5, 1=2 ;

Kmg3, and 1=3; m=1. As will be described below, the importance
of end effects appears to diminish for the higher modes.

It has also been found that the 1identity of the coaxial
mode can be confirmed by comparing the A mode in long crystals
with the coaxial mode observed using copper replicas of these
crystals.

We will first consider some of the results concerning the A

mode.
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6.la The A Mode

Seven crystals were analysed in detail. Some of the mode
plots appear in Appendix 3. It can be seen that the A mode for
crystals 4, 9, 10, and 12 does not yield a straight line. The A
mode plot, for <crystal 4 particularly, deviates toward the
origin for large b. This suggests that the coaxial dielectric
transmission 1line solution might be appropriate in the long
crystal limit.

In order to study the effect of the finite crystal length,
copper replicas of some of the crystals were made and mode plots
for purely coaxial modes obtained. The dimensions of the copper
replicas appear in Table 3. The mode plots appear in Fig. 36.
Replica C5 was mounted with the quartz fibre perpendicular to
the replica and attached at the centre of the replica in order
to study the coaxial resonance in the absence of glue at the
ends. Unfortunately, the positioning of replica C5 was
imprecise using this mouné, and the significance of the results
obtained was uncertain. The effect of the mounting epoxy on the
resonances will be discussed below.

Also shown in Fig. 36 is the A mode for crystal 4. It can
be seen that the A mode has a length dependence similar to the
coaxial modes and that, for large b, both types approach the
line given by f2=ca/(4bz). On the basis of the dielectric

transmission line calculations, one would expect the limiting
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TABLE 3

Dimensions of copper replicas used

for coaxial mode studies

Replica a (cm) c (cm)
Cl 0.049 0.0035
Cc2 0.042 0.007
C3 0.040 0.007

Cc4 diameter = 0.019 cm
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Figure 36. Mode plots for copper replicas
in study of coaxial modes.
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slope of the A mode to be about 90% of that for the purely
coaxial mode. The crystals studied were not long enough to test
this point.

The deviation of the purely coaxial mode from f1=ca/(4ba)
can be represented by a model in which b is replaced by (b+4).
For reblicas 2, 3, and 4, A was found to be (0.13%*.01) cm. THat
A is constant implies that, in the range of lengths studied, the
fields at the end of the crystal are affected by the presence of
the boundaries and not, directly, by the length of the crystal.

The behaviour of the A mode is thus found to be consistent
with that for a coaxial mode. The deviation from a slope of
about c¢*/4 is not intrinsic to TTF-TCNQ but is likely just a
characteristic of the coaxial mode in a resonator with end

effects.
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6.1b The Dielectric Mode Plots

The 1initial results, such as those displayed in the mode
plots for crystals 4, 9, and 12, seemed to confirm that the
dielectric modes B, C, and D, did give straight line mode plots
with a slope similar to that of the A mode plot. It was,
however, possible to carry out detailed studies wusing 2
crystals, 18 and 19, with large enough a and initial b
dimensions to observe a number of higher modes as well as
resonances for lower modes low values of k, =7/b. The mode
Plots for all of these crystals appear in Appendix 3. These
results were obtained at 5K.

For crystal 18, it was possible to observe EZ resonances

om

for 1=1 ; 1<&mg5 and 1=2 m=1l. A third type of resonance,

-

labelled By on the mode plot, will be discussed below. With the
exception of B,, crystal 19 displayed all of the above modes
plus 1=2; m=2 and m=3 and 1=3 ; m=1. The m values for the
higher 1 modes are determined by noting that the frequency
becomes independent of 1 as k, goes to zero. The most striking
feature of the mode plot for crystal 18 is the fact that, for
the higher modes in particular, the slope appears to decrease
for smaller values of 1/b . At higher values of 1/b , the 1=1
mode plots all seem to be parallel to that for the A mode.
Crystal 19, unfortunately, broke before the short crystal

behaviour could be confirmed but it also showed the tendency for
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hiéﬁer modes to approach the ordinate axis with smaller slopes.
Table 4 shows the values of €; calculated from each of the
dielectric modes assuming that the limiting slope for 1/b=0 is
given by c“la/(4e;). It can be seen that, for a given value of
1, the derived value of ¢&; increases with increasing m. This
trend can be rationalized by arguing that k; approaches
1zna/(451) only if the fields in the crystal approach the 1limit
in which they approximate the open circuit bohndary condition
solutions. For each dimension, this limit can be approached in
two ways. For a given mode, the propagation constant in a given
direction will go to zero as that dimension gets large. This is
the situation as we approach large values of b. Alternatively,
if one takes a given crystal, the true propagation constant and
the OCB solution in a given direction will tend to approach each
other for increasing mode indices in that direction. It is not
immediately obvious that a better approximation of ky to the OCB

solution should improve the agreement between k and its OCB

z
value. It was, however, found, as discussed in chapter 4, that
situations in which OCB conditions were applied to the face
perpendicular to Y vyielded solutions for which k, also
approximated the OCB condition solution. An obvious problem is
then presented by the results for «crystal 19 where, for
corresponding m values, €; is found to be smaller for 1=2 than

for 1=1. This 1is not understood at present. Within the 1=2

modes, however, the trend for increasing m is still observed.
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TABLE 4

Values of €, obtained from dielectric
resonance studies for TTF-TCNQ

crystal . mode (E . ) €4
1 Uil

18 1 1 2.3
18 1 2 3.5
18 1 3 4.7
18 1 4 5.6
18 1 5 9.0
19 1 1 2.0
19 1 2 3.5
19 1 3 5.6
19 1 4 6.1
19 1 5 7.5
19 2 1 2.0
19 2 2 2.5
19 2 3.0
19 3 1 3.7
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[ff-wéuldnappear, then, that one should obtain a lower limit
for €, by using lbng crystals and higher modes. The values of
€, obtained for the modes observed in this work do not seem to
be approaching an upper limit. On this basis, the actual value
is expected to be greater than 9.

With the observation that the limiting mode plot slope for
long crystals is not equal to the slope at shorter 1lengths, it
is clear that the extrapolation back to the ordinate axis to
obtain €, must be approached cautiously. The best values of
will likely be obtained by extrapolating those mode plots giving
the highest values of €£,.

For given values of a and c*, the values oflgg and k;
obtained using Egs. 5.28a, 5.28b, and 5.28c, are largely
insensitive to k&. The value of €, obtained is thus inversely
proportional to the k: used. As it is clear that, for the lower
modes, the value of k& obtained is a 1lower 1limit, the 62
obtained should be an upper limit.

The largest source of uncertainty in estimating €, lies in
the measurement of ¢ and the fact that it may not be constant

over the whole crystal. c* is typically about 5x10__3 cm and can

be measured to about —"i10_3 cm. This results in an error in €,
of about 10%.

Fig. 37 shows values of €, for several crystals plotted

against f, where fy, 1s the square root of the mode plot
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intercept for each mode. Crystals 18 and 19 are represented by
solid symbols. The other crystals, because of the systematic
error in the slope, are expected to give upper limits to €, .
They do, 1in fact, give higher wvalues. On the basis of the
results for crystals 18 and 19, it would appear that there is
little frequency dependence in €L from 15 GHz to 40GHz. The
lower frequency values are again, however, less accurate and
should be taken as upper limits so that the lack of frequency
dependence may be a result of the systematic error in the slope
as discussed above. Setting this aside, we obtain
€;=(3.010.4)x103. It should be noted that there are some
erratic results. The B mode for crystal 19, for example, gives
an anomalously high value for 6;. It 1is ©possible that such
anomalies arise because of the fact that some modes may be more
sensitive than others to macroscopic imperfections at a
particular point on the crystal.

It 1is interesting to compare the frequency dependence of
the observed 62 with that predicted for a pinned charge density

wave as given by Eq. 1.10. The real part of € (w) is then given

by

(€)= €5°) wo* (wp?~cw™)
(WP~ + 2 w®

€sP+

(6.1) € w) =

This model predicts a change in G; of about 260 in going from

20GHz to 40GHz if one uses the parameters given by Eldridge and
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Bates (1979) with 64(0) adjusted to give 65(20 GHz)=3000. While
this is not inconsistent with the observed weak frequency
dependence, the range of frequencies covered is too small to
attach much significance to the comparison.

Before leaving the mode plots, it is intéresting to
consider two other points briefly. As has been mentioned,
crystal 18 displayed a mode, labelled By, with an anomalously
small slope. This has tentatively been identified as a mode,
analogous to the B mode, in which the relationships of the
fields to the X and Y axes are reversed. This identification is
supported by the observation that the maximum coupling angle for
By and D differ by m/2. Using this identification, it is found
that the intercept corresponds to 6L=4l77. This indicates, at
least, that the appearance of such a mode in this frequency
range may not be unreasonable for a crystal of this size. There
are two possible sources for the very small slope. The fact
that there is a component of T orbital overlap in the c*
direction and not in the a direction suggests that €. could be
considerably 1larger than ¢, . It is also possible that such a
mode, with the electric field forming a loop perpendicular to
the Y direction, could have very different end effects from
those encountered for the B mode. The lack of understanding of
end effects for this mode limits the information that can be
extracted from it at this time.

The other interesting result involves modes with 1=2. It
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can be seen, in the mode plot for crystals 18 and 19, that some
of these modes appear as doublets. It was found that the
separation of the two resonances is not constant as the crystal
is shortened. As the crystal is further shortened, however, one
seems to lose a clear indication of a double resonance. The
doubling phenomenon was studied in some detail foér the EQ? mode
in crystal 19. A sequence showing how the two resonances couple
as a function of the distance of the crystal centre from the
short appears in Fig. 38. It can be seen that there are
positions for which both resonances can be coupled. Maximum
coupling for the 1lower resonance is at about 9.4 mm from the
short while the higher one couples at about 5.4 mm from the
short. The rotational dependence 1is the same for both
resonances.

The origin of the double resonances remains somewhat of a
mystery. There is no difficulty in accepting that a strongly
coupled resonance can have a frequency which depends on the
position in the guide . It is more difficult to understand how
a resonance could couple at two different frequencies for a
single position of the crystal. A possible clue is illustrated
in Fig. 39 where the crystal, at the two maximum coupling
positions, is superimposed on a diagram representing the
standing wave out to 1 guide wave length from the short. If the
identification of this mode as Qﬁ is correct, we can think of

the E, and Ey fields as forming two loops as shown. Because the
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Figure 38. Coupling of the double dielectric
resonance in crystal 19 at several distances
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guide wave length does not correspond to the wave length in the
crystal, we expect that when one of the loops is in a position
where it couples strongly to the fields in the guide, the other
loop is roughly orthogonal to the wave guide fields. One can
see that the two maximum coupling positions correspond to the
positions for one or the other loop to be strongly coupled at
2/2. Both - resonances are coupled when the centre of the
crystal is at Ag/2. The ratio of the couplings, at this
position, is similar to the ratio of the maximum couplings.

In the weak coupling 1limit, it seems clear that there
should be only one resonant frequency which should not be
dependent on the position of the crystal. Even if we take the
system to be strongly coupled, one simply expects the coupling
to add vectorially and affect, at most, the phase of the
resonance relative to the guide fields. At present, then, aside
from some apparent significance of the relationship between the
fields in the crystal and those in the guide, the origin of the

double resonances remains a mystery.
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6.2 The Imaginary Part of the Dielectric Constant

Information about the imaginary part of the dielectric
constant, €' =4n0 Jw, is accessible through the Q of the
resonances. By substituting the imaginary dielectric constant,
€b=€;+i€Z, into Eg.5.9, one can obtain the real and imaginary

i
parts of the squared frequency if we neglect any loss due to

"
el
4 L 2 2 X
6.2 Re(f )= ke +k " +k
-2 (F)g, (K )e 2
€ €, €a
(6.3) Im(£%)=-c* ( €y ) (kE +kS2)
TN et

But the complex frequency for a lossy cavity is given by,

(6.4) f=f, -if, /(2Q0)
so that
(6.5) F =£" -£/(20,)-2if0/(20,)% £ -ife /00

Identifying the real and imaginary parts and assuming €,>>€,, we

have

(6.6) £2 —f?
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T X " '
£, /0,=f, €,/€,

(6.7)
where
(6.8) £, = (kS +k, )c*/ (4w %el)
(6.9) fr=c? k2 /(amiel).
f1 is Jjust the mode plot intercept and f;z is the squared
rearranged

1}
frequency of a particular resonance. Eq. 6.7 can be

to give

(6.10) € =€) /(£ 00 ).

Q, is the intrinsic Q of the resonator. It is related to the

observed Q. and the coupling Q, Q., through

1/0:=(1/Q,)+(1/Q.)

(6.11)
The reflection from a cavity is given by (Hidy et
al. ,1972)
2 Y
! | W~y
P, (&'5J * Wo )

(6.12) R (w) = ﬁ': 2 g/-a%)&

(& a) + (42

i~ L~

where P, 1s the reflected power and P; is the incident power.
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On resonance, one has (l/Qr)JR(wJ=I(l/Qa)—(l/Qc)I, so that

(6.13) 1/Q,=(1/2Q0+) (12 /R (@) )

where the upper sign is for wundercoupling and the 1lower for
overcoupling.

6, has been extracted, in this way, for six crystals and is
plotted against frequency in Fig. 40. Error bars are shown for
a number of resonances. The largest source of error lies in
obtaining the width, and thus Q, from poorly shaped resonances.
A possible systematic error arises in Eq. 6.10 where the &,
derived from each f,, for a given crystal, can be different.
For the conductivities shown, the value of €, used is the one
appropriate to f,, for the resonance in question.

The most notable feature of Fig. 40 is that, for lower
frequencies, the conductivities approach a single value whereas,
for frequencies approaching 40 GHz, the conductivities are
spread from about O.2(Q—cmf, to 1.4(Q—cmfl. There does appear
to be a lower limit which 1is roughly frequency independent.
Crystal 4 and 12, 1lying near this limit, were from the same
batch.

An immediate question raised by these results has to do
with the effect of the epoxy used to mount the crystals. This
does not, in fact, appear to be a wvalid source of concern.

There 1is no <correlation between the observed losses and the
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quality of application of the epoxy. This was confirmed with
measurements in which a quartz fibre was attached, with a large
excess of epoxy, to the bottom of an already mounted crystal.
The decrease in the Q of the resonance was found to be from 0 to
30%. While 6, 1is proportional to 1/Q, this would not account
for the range in observed o; even if the high 07} crystals were
those with excess epoxy. The lower 1limit of the observed
conductivities lies slightly below the values observed by Barry
(1977) in the earlier measurements.

The temperature dependence of the conductivities has also
been studied. lngis plotted against 1/T for «crystal 19 in
Fig. 41. The data 1is taken from the B mode for a number of
lengths of the crystal. It can be seen that, for 14K < T < 25K,
there is an activation temperature of about 73K. The other
crystals studied yield temperatures of 71K and 55K. Below 14K,
there is a region in which o; does not appear to follow an e T
dependence. The average slope in this region is about -10K. A
feature which is present in most of the temperature dependence
data is a small local maximum around 10K. For lower frequency
resonances, this can move up to 14K.

These results are notably different from those obtained
using d.c. methods. Tiedje (1975) found the conductivity below
10K to be less 1less than 0.005(-cm)”’ with an activation
temperature of about 210K. Barry attributed the excess

conductivity to a frequency dependent hopping conductivity
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associated with impurity states in the band gap. Mott and Davis
(1971) consider such models in detail. There are a number of
possible contributions to the conductivity. Two thermally
activated processes involve thermally activated hopping within
the impurity band and activated excitation from the impurity to
the conduction band. The thermally activated hopping will
normally be to the nearest neighbour and the conéuctivity will
have the usual activated temperature dependence. At very low
temperatures, variable range hopping can occur giving 1n¢
proportional to (T)-$. In addition to these mechanisms, Mott
and Davis discuss two mechanisms which can operate at finite

frequency to give a temperature independent conductivity. The

first involves a.c. hopping conduction and gives
Lf-
67 (w)x W (1ln () /w))
where VY.ugives the strength of the electron-phonon interaction.
If the 1impurity states are 1localized near the Fermi energy,

optical transitions will be more important and there will be a

contribution
oWy W(ln(I. /hw))”

where I, 1is related to the depth and volume of the potential

well in which the impurity is localized.



155

With this background, it seems possible to attribute the
observed frequency dependence to optical transitions from the
impurity to the conduction band. The temperature dependence
observed below 10K is probably also related to the impurity band
although it is not <clear whether it is thermally activated
nearest neighbour hopping or thermal excitations to the
conduction band. The activated regime above 14K is likely due
to transitions across the semi-conductor gap of TTF-TCNQ itself.
The observed d.c. conductivity (Tiedje, 1975) is comparable to
the microwave conductivity around 20K. The difference in
d.c. and microwave activation temperature is not understood
since one would expect the thermally activated impurity
conduction to be present in the d.c. measurement as well as in
the microwave measurement. The presence of the small local
maximum between 10K and 14K has not been accounted for.

It would seem necessary, on the basis of these results, to
consider the contribution to €'(0) from the observed frequency
dependent conductivities. This was done by using the Kramers-
Kronig relations and terminating the integral at 40GHz. The
contribution to £°(0) from the observed conductivities is then

given by

amx4ox o’

oy o)
AE(O)-g[ = dw

a
o
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Thé conductivity was taken to be quadratic with frequency. For
crystals 17 and 18, the contribution to 6%0) was found to be
about 250. For <crystal 12, the contribution was about 50.
This, of course, neglects the contribution from the conductivity
above 40GHz. It can be seen that the contribution to €(0) from
the oscillator strength associated with the impurity conduction
is not negligible. As a source of the spread in '6; as observed
in this experiment, however it is probably not as important as

the end effects discussed previously.
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CHAPTER VII

Microwave Absorption Studies of TTF TCNQ

The 1infra-red absorption experiments on TTF~-TCNQ by
Eldridge and Bates (1979) have been interpretted as evidence for
a strong mode in the neighbourhood of 102 GHz. It has been
suggested that this proposed mode is associated with
oscillations of a pinned charge density wave. The relation of
such a pinned mode to the low frequency dielectric properties of
TTF-TCNQ has been discussed in chapter I.

The region of the spectrum of interest here, roughly 3 cm”
to 4 cmq, hinders direct observation of the pinned mode
absorption in that this region lies just below that normally
accessible to infra-red techniques. It is, however, just within
the upper limit of microwave sources available in this
laboratory.

The dielectric resonance technique, discussed in preceding

chapters, is not useful at these frequencies. The major problem

in interpreting resonances at these frequencies 1is the
identification and separation of the modes. This might be
alleviated, somewhat, by the use of very fine crystals.

However, the interpretation of any mode plot obtained would
still be hampered by the lack of understanding of potentially
substantial end effects for such small crystals. Another source

of difficulty in interpretation of a mode plot is that é; would
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be changing quickly 1in the region of the pinned mode with the
result that the extrapolation technique used to extract €, from
the mode plots would break down.

It has been proposed (Hardy, 1979) that it should be
possible to use a microwave analogue to the infra;ed bolometric
techniques of Eldridge and Bates. In this technique, the
absorption of incident radiation results in a temperature rise
in the «crystal. This rise 1in temperature is dectected by
monitoring the d.c. conductivity of the crystal. In this
chapter, we will discuss the initial results from an experiment
of this type which is now in progress. The actual absorption
measurements have been made in several microwave bands. While
the construction of the crystal mounts and execution of the
experiment 1is similar in all of the bands used, the microwave
properties of the mount and the details of the measurement are
more critical for the high frequency experiments. We will
concentrate on the 75 to 110 GHz measurement and just mention,
briefly, the qualitative results from the 26 to 40 GHz and 60 to

90 GHz experiments.
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7.1 The Experiment

7.la The Spectrometer

These experiments utilized the computer controlled
microwave spectrometer described in Chapter IV. The 26 to 40
GHz spectrometer was run in the slow sweep mode in which a pre-
calculated voltage ramp is output, via a D/A conve?ter, to the
external sweep input of a Weinschel sweep oscillator controlling
a backward wave oscillator. Data was collected simultaneouly
via an A/D convertor and stored for processing. For the 60 to
90 GHz and 75 to 110 GHz runs, the voltage ramp was supplied to
a Singer sweep oscillator controlling a Micro-Now BWO power
supply. The microwave power was modulated at between 50 and 100
Hz using the AM input .on the 26-40 GHz source and using a
Hughes model 44714H modulator for the higher bands. A variable
attenuator was used after the source to control the power.

The crystal and microwave termination were located in a
tubular can which could be pumped independently of the 1liquid
helium space in the dewar. A carbon resistor thermometer and a
wound heater were attached to the wave gquide to allow for

temperature regulation.
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7.1b The Crystal Mount

There were several considerations in the design of the
crystal mount. Firstly, in order that the microwave fields be
polarized along the axis of interest, the crystal had to be
mounted with the b axis across the centre of the wave guide and
parallel to the &electric fields. The absorbed power was
detected by monitoring the d.c. conductivity of the crystal.

One end of the crystal was shorted to the guide. The other
end was attached to a lead which was insulated from, and taken
out through, the joint between two wave guide flanges. It was
necessary to capacitively short this lead to the wave gquide in
order to minimize the extraction of R.F. power along it. This
was done by using, as the d.c. 1lead, mylar sheathed copper foil
sandwiched between the gquide flanges. For the higher
frequencies, it was important that the. guide flanges mate
properly. To facilitate this, the face of the guide flange was
recessed to accept the foil.

It was also necessary that the crystal mount be flexible in
order to allow for differential thermal contraction of the
crystal and guide. This was most serious for the high frequency
mounts for which the crystals used were normally very thin. For
this mount, the connection between the crystal and the foil or
flange was through gold wires silver painted onto the crystal.

The high frequency mount is sketched in fiqure 42.
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WAVE GUIDE FLANGE

Figure 42. High frequency mount
for microwave absorption studies
in TTF-TCNQ.
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7.1c Detection

The crystal bias circuit was simply a 10M metal film
resistor and a 9 Volt Eveready 1222 battery in series with the
crystal. The 10MS resistor was at low temperature and connected
to the crystal through the waveguide. The voltage across the
10M{) resistor was fed to an Ithaco Dynatrac 391A lock-in
amplifier. The analogue output from the lock-in amplifier was
fed to the computer for storage. N

It was also necessary to <correct for variations in the
incident power. For the 26 to 40 GHz and 60 to 90 GHz bands,
this was done by attaching a power meter or a crystal detector
below the crystal and recording the power across the band in a
separate room temperature experiment. Using these traces to
ratio the raw data gave spectra which were proportional to the
absorption, except for a weakly frequency dependent factor
correcting for the change in wave guide velocity across the
band. This procedure has two disadvantages; a) the incident
power will certainly change with temperature of the cryostat and
b) the response of the crystal detector is not very flat with
frequendy. Of course, an absolute measurement also also requires
an absolute measurement of incident power as well as a
calibration of the absorbed power signal.

The necessary steps to obtain the absolute absorption have

been carried out for one crystal in the 75 to 110 GHz band. The
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incident power was detected in situ using a five couple Au-
Fe/Chromel-p thermopile with one end anchored to the wave guide
termination below the crystal and the other end anchored to the
crystal mount. The signal from the thermopile was detected with
a Keithly 148 nanovoltmeter. The output of the BWO was also
monitored using a directional coupler and crystal detector. The
"SYNSWEEP" option of " SWCONTROL" was altered to allow
simultaneous input on three channels so that output from the
lock-in, nanovoltmeter, and crystal detector could be recorded
together. The phase locking feature of the option was not used.
The three channel modification of the program allowed continuous
adjustment of the BWO grid voltages with no effect on the ratio
operation. The thermopile output was calibrated using a 2004
heater wound on the terminator at the thermopile anchor. The
thermopile signal correspoﬁding to a given d.c. power input
could be plotted. The assumption was then made that this
calibration would be appropriate to the R.F. power absorbed.
Because of the modulation, the peak R.F. power was, in fact,
twice the observed power level indicated by this calibration.
The signal from the crystal also had to be calibrated. The
change in voltage across the 10Mf) resistor was related to the

change in the crystal resistance, AR., by

K
V=-Vg AR, Rg/(R,+R, )
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where R; =10M2, Vp is the battéry voltage, and R. is the crystal
resistance. This resistance depended strongly on the d.c. bias
current and was typically 10Mf to 100Mf at a temperature of 10K.
The calibration of AR.to incident microwave power was obtained
by passing a d.c. current through the crystal and plotting the
observed resistance against the power deposited in the crystal
this procedure then assumes that the heating effect of the d.c.
power and microwave absorption is equivalent. Using the curve
obtained, it was possible to first find the d.c. "operating
point" due to the biasing battery. The slope then gave AR./ P.
This finally allowed one to calibrate the signal from the lock-
in amplifier 1in terms of power absorbed. The ratioed spectrum
could then be calibrated in terms of absorption.

We note here that in the presence of intrinsic non-ohmic
effects, the equivalence of d.c, and r.f heating may not be

valid. This point is currently under investigation.
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7.2 Results

The use of TTF-TCNQ crystals as bolometers was first tested
in the 26 to 40 GHz band. By first calibrating a wvariable
attenuator and then using the attenuator to measure the signal
as a function of incident power, it was found that the signal
was linear with power up to at least 2mW incident power at 30
GHz.

Two crystals were studied in the 26 to 40 GHz band. Both
spectra showed some sharp features which were attributed to
dielectrié resonances. For one crystal studied, the background
absorption was found to be roughly flat while, for the other, it
was found to increase by a factor of 3 across the band. This
behaviour 1is not inconsistent with the variation in the
frequency dependent conductivity across this band as observed by
dielectric resonance.

One crystal was studied in the 60 to 90 GHz band. The
absorption appeared to be decreasing slightly from 60 to 70 GHz
although the apparent presence of strong standing waves in both
the ratioed and the background spectra, in this region, casts
some doubt on the success of the ratioing in this instance.
Above 70 GHz, the absorption was flat with the exception of one
feature near 90 GHz. This 1is believed to be a dielectric
resonance.

The same crystal was also studied in the 75 to 110 GHz



166

band. The non-linearity of the resistance versus d.c. power
calibration has been a source of some concern in that the
absorbed power calibration becomes strongly dependent on the
position of the biasing point. Figure 43 shows an absorption
spectrum obtained wusing the most reliable R,versus power curve
obtained. It can be seen that, in addition to several features
between 85 and 100 GHz, there is a prohinent feature at about
107.5 GHz. If we mentally smooth the sharp -spikes .. which are
likely due to higher modes associated with the use of 60 to 90
GHz wave guide well above 100 GHz, we find a peak ratio
(absorbed power/ incident power) of about 150X165, where we have
included the factor of 2 associated with the fact that we have
only measured the average incident power. The ratio between 75
GHz and 85 GHz is between 3X10° and 5X10° .

We can convert these into rough measures of the
conductivity if we make some assumptions about the electric
fields in the crystal. The relation of power down a wave guide
to the peak electric field, Eox » can be found in
electromagnetism texts such as Lorrain and Corson (1970). They

give, in MKS units,
_(p* 2,k
power=(E,, ab/4cu.) (1-( »/2b) )

where a 1is the height of the wave guide, b is the width of the

wave guide, c¢ is the speed of light, and X is the free space
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wave 1length. If we assume that the effect of depolarizing
fields are removed by the a.c. shorting of the crystal to the
guide, then the power absorbed by the crystal is

, 2
P =a’b azE,o/2 watts

abs
where a’, b’, and az are dimensions of the crystal and ¢ is the
conductivity in (ﬂ—Mfl . This is correct assuming a crystal
length equal to the wave guide height. The dimensions of the
crystal used were 1.16 mm by 0.065 mm by 0.038 mm. The guide

dimensions were 1.5 mm by 3 mm. For these conditions, we find
o 3 L
o“(f)(ﬂ—M)'=2.leO (l—(49.97/ffl)“(P¢5/Pua)

where f is the frequency in GHz.. Using this formula, we find
that, between 75 and 85 GHz, o® is about 6.6X10" (n-cm)”  and
that, near 107.5 GHz, O is about 2.8X10 (R-em)™ . The
resistance at the d.c. operating point was 26 MQ which implies a
d.c. conductivity of about 2de#(fbcmf‘. The 75 GHz
conductivity appears to be of this order of magnitude whereas
one would expect it to be at least as large as the conductivity
at lower frequencies. The typical conductivity at 40 GHz and
10K was between O.BLQ-cmf‘ and l(chmYJ. If we accept that the
75 GHz conductivity at 10K should be at least 0.5 (S.-cmj' , then

the peak conductivity is raised to about 20 (ﬂ:cmf'. It is thus
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important to détérmine whether the apparent low conductivity at
75 GHz is real or just an artifact of the experimental analysis..

It is of interest to calculate the expected peak
conductivity required for a mode of width 5 GHz centred at 107
GHz to give rise to the observed 1low frequency dielectric
constant of about 3000. This conductivity is found to be about
2400 (-cm) . For a mode of width 3 GHz, this goes to about
4000 (M-cm)™.

The observed peak conductivity is clearly unable to account
for the low frequency dielectric constant. The effect of the
depolarizing fields, if the crystal were not shorted to the
walls, would be to decrease the absorption. For the present
crystal, with a depolarizing factor of about 5X 107 , the
observed absorption would be decreased by a factor of about
1.6X10° . If this were the case, the observed feature might be
able to account for the missing oscillator strength. Again,
however, we point out that depolarizing effects should not be
significant in the present experiment so that the fields in the
crystal should approximate those in the guide. Of course for
high enough o one gets a strong reflection from the crystal, in
which case the electric field in the guide is less than that of
the 1incident wave. It is not yet clear whether we are in this
regime or not.

At present, then, the observed feature at 107.5 GHz is not

found to have sufficient oscillator strength to account for the
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high values of €, observed at low frequency.
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7.3 Future Directions

Absorption experiments of this type still seem to offer
some hope for direct observation of the pinned charge density
wave if its pinning frequency lies below 120 GHz. Experiments
are presently underway in which the calibration of the
absorption signal and the microwave properties of . the crystal
mount will be refined. One benefit of using a variety of
crystals and mounts will be to allow mount-specific and
dielectric resonances to be distinguished.

The present experiment, then, must be taken as
inconclusive. There appears to be some question as to the
validity of the absorption to conductivity conversion in light
of the 1low conductivity obtained at 75 GHz. It is also
necessary to identify the components of the spectrum which are
specific to certain crystals and mounts so that the features due
to microscopic properties of TTF-TCNQ can be isolated and

studied.
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CHAPTER VIII

Summary

In the first part of this work, the electrical properties
of MEM(TCNQb‘ were studied in the neighbourhood of the dimer to

° c. The microwave and d.c.

monomer transition at 60
conductivities were found to be 1in general agreement. Just
below the transition, the microwave conductivity was found to be
between 0.014 and 0.017 (Ibcmf'. Above the transition, ¢ rose
to between 14 and 32 (f-cm)” . The activated behaviour of the
conductivity in the dimerized phase, as observed by d.c.
methods, was confirmed down to room temperature.

Some discussion was offered regarding the difficulty
inherent in interpreting these results in terms of the Hubbard
models for the TCNQ chains. Clarification of the role of the
on-site repulsion in determining the properties of this material
will have to come from other measurements such as the magnetic
susceptibility and thermopower.

In the second part of this work, the dielectric resonator
studies on TTF-TCNQ as done by Barry (1977) were extended. The
main results were the clarification of the behaviour of the
coaxial-like mode and some understanding of the systematic
errors introduced by end effects into the extraction of
dielectric constants from the mode plots. The low frequency

value of €, was estimated to be (3.0%0.4)X10>. It was suggested
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that the value of € is at least 9 and there were indications
that € could - be considerably 1larger. The spread in
conductivities as obtained in the dielectric resonance
measurements was felt to imply that below 40 GHz, the frequency
dependence of the conductivity was specific to pérticular
crystals and thus, likely, due to impurity effects. This was to
some extent confirmed by the temperature dependence of the
conductivity.

The final part of the work involved some preliminary
attempts at direct observation of the pinned charge density wave
using microwave absorption in a TTF-TCNQ bolometer. There is
still work needed, both in refining the technique and obtaining
sufficient data to distinguish between the effects of microwave
resonances in the apparatus and intrinsic properties of the
érystals. The results of these experiments are awaited with

some anticipation.
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APPENDIX A
Tight Binding Calculations for a

Linear Chain with a Basis

We first consider a linear chain of atoms with alternating
separations of b and (c-b). The unit cell dimension is then c.
The wavefunction for the atom at site R is a(r-R ). We can
construct a wave function, satisfying the Bloch conditions, of
the form,

A.1 Yo = witse K a(rom oz
R

n

where 4=1 or 2, z,=0, 2z,=b, and R, =nc. We thus have,

(A.2a) Y(r) = N'iZeikR” a(r-R, )
Rn
-4 (R Rn
(A. 2b) Yr) = NE) e a(r-R, -b)
Ry

The off diagonal elements of the Hamiltonian are given by

(A.3a) (Y (r)H Y(r))

- "k(Rn"ﬂn
N'éZe jé?r—Rn )7{a(r—R; -b) dr
R R,

, ik (Ra-Kn
NS e %*(r—R,, -b)X a(r-r, ) ar

(2.3b) (¥ (0)H Y ()
| Ruk:

Defining
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(A.4) -ty =/ a‘(r-R,,)”}/ a(r-R, -b) dr
and
(A.5) -t, =’/ a*(r—Rn )7/ a(r-R,_, -b) dr
we get

~ike
(A.6) ( % (r) 7{ Yo(n)) = ty ttye
and
(A.7) (Vo (K Y, () = ¢y +tethe |

Defining E,, the diagonal element, we obtain the electronic

energy,

(A.8) €, =E, 2 /Q: +t; +2t,tpcos(kc) .

At k=0,€-£,= 1(ty+t;) and at k= m/c , &-£=1lty-tyl. This
relation thus describes two bands each of width 2t, separated

by a gap of 2|t1—ta|.
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APPENDIX B

Anisotropic Dielectric Wave Guides

with and without Outer Conductors

We will begin by reviewing some of the results given by
Barry (1977), and then extend these to the case where EZ contains
an e'® azimuthal dependence.

We will deal with an infinite dielectric rod of radius R,
within a circular metallic tube of radius R,. The axis of
symmetry 1is the Z axis. The dielectric rod has E=€, =€, %€,
Taking .« to be 1, the fields inside of the guide are shown, by

Barry, to satisfy

B.1 E. = ifk,JE,,w 1 JH,
k2 or cCr og¢

B.2 Ey= L(kz OE, waH,_)
kF T TTor
S AW C or

B.3 Hp, =~L(¢’)Hz - we, | aEZ)
> 222 T4 Lok,
kilor Cr op

B.4 Hy =i [ k2 JH, + hf__é_J:f)Ez)
k*V r Do car

where
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B.5 kP =(w¥c*e, ki

Outside of the dielectric, the fields are the same but with

£, repléced by 1 and kf replaced by
a
B.6 ky = (w/c*)-k.

The wave equations for E, and H,, inside the dielectric, can be

shown to be

B.7 P + 1 9F + [k* - Qf] F =0
or# r Jr r#
and
B.8 ¢ + 129G + kf—n"]G—O
or* ror ™
where
2
B.9 ki = (6/€)0k)
and

B.10 E, (r,0)« F(r)e™"?
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B.11 H, (r,0)x G(r)e'”?

Outside of the dielectric, k? and Kf are replaced by k: .
The solutions to Egs. B.7 and B.8 are cylindrical Bessel

functions. 1In general, inside the dielectric, one uses

B.12 F(r) Ay Jpn (kqr)
B.13 G(r) = A, J,(k_r)

and outside of the dielectric, one uses

B.14 F(r)

.1 2
B,] Hn(klr) + C’I Hn(klr)

B.15 G(r)

1 a
Ban(k&r) + Cgﬂn(kar)

One <can then consider various situations. For n=0 and
R,=o, one requires that k:' be less than or equal to 0 in order
for the wave to be guided. It is also necessary to have C, and
C, equal to 0 for the fields at the centre to be finite. For

imaginary k; , it is convenient to replace H;(kar) by
- (2i/m)K, (&r)

-
where J=—k§ - The solutions for n=0 can be separated into
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T.E. and T.M. modes. Application of the boundary conditions
allows one to construct equations for the coefficients. The
condition for a non-trivial solution for these coefficients is
that the determinant of the coefficient matrix be 0. This is

found to imply '

B.17 EIK (YR )T (kqRy) + kqJolky Ry)K (IR, )=0

When R, is made finite, one must include the terms
involving C4, and C,. k% can now be both positive and
negative. One can still set H,=0. For k% >0, E, outside of the
dielectric is given by

Ky
B.18 E,(r) = (ByJ, (kar) + CqY,(ker)) e %Z

and the characteristic equation becomes

{Ja(k1R7)/k2}{Y7(k1R1)Jo(k;RJ)—J1(k1R1)Yo(k&Ra)}
B.19

={€,3 1 (kqgRq) /kq }{Y, (k3 R1)J, (K, Ry) =T ,(kyRy )Y, (K Ry)} = 0

For k:<0, the fields outside of the dielectric are given in

terms of I, (Jr) and K, (¥r). The characteristic equation is then
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{3, (kyRy) /ST, (¥ Ry)IKo (0Rz) =K, (JR4) I, (4Ry) }

-{(€2/kq) 37 (kqRy) HI, (FR.)Ko (FR) =L, (IR, )K, (YRz)} = O

The solutions of these characteristic equations have been
discussed in Chapter V.

One can then go on to discuss the case for n=1. Hz cannot
be set to 0 for this case so the solutions become considerably
more complicated. For the dielectric wave guide case, it is
again necessary that k, be imaginary. The external fields are
then conveniently discussed in terms of K,(yr) and K7(Xr). The
resulting characteristic equation is Eq. B.21 and appears on the
following page.

When R, 1is made finite, k, can again be both real and
imaginary. The boundary equations again result in equations for
the coefficients which have non-trivial solutions only if the
determinant of the coefficient matrix is 0. For the ki >0 case,
the resulting characteristic equation, Eq. B.23, appears below.
For the k3<0 case, the convenient replacements for the Bessel

functions are

K1(Ir) for J1(kar)

B.22
K, (r) for Jo(klr)
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EQUATION B.21

% R1€‘ [—J,(k,R,){'I - €—1*|<—§ } ¢k1R1 Jo(kR1)+ Jt( kR1) R%E‘ KJYR: )

. _Kf i ) gg& KA¥R)
[JKKR1)[1 k§} kiR JfR)-JHGRY ¢ K,(%’R)]

2

- 2
+ k:R$J1(k1R1) J1( k1R1) {1- -E‘g} = O



EQUATION B.23
2
-[%Tr [1- %F[JKK&R‘) J1(k1 R)EJ‘( kz R})Y](szz)‘JKszz)Y‘(sz‘ )J
.[J,(sz,) {szo( k,R,)- !(_kz&)} .Y‘(k2R1){ kyJolk, Rz)_‘\J]( K:R;) ']
- RZ ’ Rz
+ :):(el[k‘\‘]o(k‘lRl)- Ej_léb&)u\j!(sz1 )Y1(sz2 )‘J1(sz2 )Y,( k2R1)]
1 ' .
2
-%J1(kﬁ,)[{sz,( kR,)- M)}Y,(kﬁz) { szo(sz,)-M)IJ,(szz)
ot R, R
. ( [J'( k2R1){k2Y°(szz)-Yl(_KRﬁ2)} - [sz |(kR,)- éﬁ%))}Yl(sz))][K JSKR)- .Jp_«RO]
2 2 R,
K K &R){{wkﬂ)-é‘ﬁ’]{mkﬁz ) YkRy)
k2 R‘l Rz

-{k%(kza)-%&)}{kggkﬁ,)-i&éiﬁﬂ) =0

2
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I1(5r) for Y7(k1r)

B.22 cont.
I,(¥r) for Y, (kgr) .

Terms of the form (klzo(kgr)-(z1(kar)/r)) are derivatives of
Z1(k&r) and k, is replaced by y while the the Bessel functions
are replaced according to B.22. The solutions for this equation

are also discussed in Chapter V.
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APPENDIX C

Dielectric Resonance Mode Plots

for Several TTF-TCNQ Crystals
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Figure 44. Dielectric resonance mode plot

for TTF-TCNQ crystal 4
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Figure 45. Dielectric resonance mode plot
for TTF-TCNQ crystal 9.
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Figure 47. Dielectric resonance mode plot
for TTF-TCNQ crystal 17.
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