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ABSTRACT

Several theoretical models of the wave-induced current
circulation in the viCiﬁity of a breakwater extending from
shore are presented. . The models,which are patterned after
a local field site, include several numerical modéls which
take into account variable sea-floor topography and which
compare the effects of linear and non-linear bottom friction.
as well as an analytical model characterized by semieihfinite
beaches and -uniform sea-floor topography..

In:general:(for a given angle of wave incidence) the
circulation patterns show two counter-rotating ceils driven
by wave-induced longshbre currents which flow along both the
breakwater and natural beaches toward their common inter-
section corner, with an offshore return flow in the form of
a rip current. The qualitative features of the models are
consistent with observations of sediment traﬁsport taken.at
the study site. |

Differences in the linear and non-linear bottom friction
models do not becomevapparent until an off-shore trench
parallel to the breakwater is introduced to the sea-floor
topography. The non-linear model shows a deflection of the
off-shore return flow into the trench in agreement with pre-
liminary analysis based on a one-dimensional mbdel. The
linear results, however, differ considerably from those of
the non-linear model and are difficult to interpret, showing
an inordinate increase in transport over the trench. _

During. the development of the analytical model difficult-
ies were encountered due to the complexities of the analySiS
which necessitated that part of the solution be solved nume-
rically. The results, while showing the same general features
as the_numérical models, exhibit a much more strongly diver-
~gent off-shore return flow. This difference,_thleRUnreSolved,

appéars to be one of scale rather than of £érm.
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CHAPTER I

INTRODUCTION

The need to understand littoral processes has become
ever more apparent as our coastal environment is increas-
ingly subject to human exploration and exploitation. The
dispersal of pollutants, the erosion and accretion of shore-
lines, and the behavior of waves are but a few of the pro-
cesses and phenomena which affect and are themselves, in
turn, affected by human activity. The consequences of our
encroachment upon the coastal environment need to be well
understood, since man-made structures may have important
effects (James, 1972).

It is in this vein of understanding our impact upon
the coastal environment, in light of the behavior of waves
that we have undertaken this study of longshore currents
in the vicinity of an isolated breakwater extending from
shore. We shall thus be examining the effects upon near-
shore circulatory systems of one of the more common types
of structures to have been built along our coasts. The
exercise shall consist of the development of theoretical
models of the current circulation near a breakwater and
a comparison of their results, where practicable, to ob-

servations taken at a field location.



Related studies of longshore currents and their inter-
action with coastal structures have been conducted, for
example, by Dalrymple et al (1977), who used several model
basins to check their theoretical predictions of the effects
of placing a wall in the path of a longshore current, and
Mei and Liu (1976), with their study of the combined effects
of refraction and diffraction on wave-induced mean currents
in the vicinity of a breakwater.

This study shall investigate the current circulation
resulting from wave-induced longshore currents generated
along both breakwater and natural beach surfzones. It shall
be presented in the following manner.

We shall first discuss the evidence for longshore cur-
rents at the field location as indicated by sediment trans-
port along the beaches, inspection of groynes, aerial photo-
graphs, etc., and from these surmise as to the prevailing
circulatiqn pattern present in the érea;

We shall then develop several models of the current
circulation in a beach-breakwater configuration patterned
after the field site. These will consist of:

i/ several numerical models using finite beaches
in closed basins, with consideration given to variable
sea-floor topography, as well as linear and non-linear
forms of bottom friction

ii/ an analytical model employing semi-infinite

beaches,



We shall conclude with a discussion of the theoretical
results in 1light of the simplifying assumptions made through-
out the analysis, and a comparison of the various models®
results.

It should be pointed out that this thesis shall not
attempt to resolve the practical quantitative aspects of
sedimentation in a particular area; it is rather a study
of the nature of longshore currents in a type of natural
beach-breakwater configuration as inspired by avspecific

field location.



CHAPTER 2

DISCUSSION OF THE FIELD SITE

I General Location.

The area which has‘inspired the study is a portion
of the tidal-zohe of the fraser River Delta near the south
end of Roberts Bank (see Figure 1).

It is bounded to the north by the Tsawﬁassen Ferry
causeway - a breakwater extending in a south—wesferly
direction for a distance of approximately 3000 m., - and
to the east by the Tsawwassen Beach - a narrow beach backed
by-lOO m. high cliffs extending in a southerly direction
for a distance of approximately 6000 m. to the southern,tip'
of Point Roberts. The angle formed by the intersection
of theicauseway'and Tsawwaséen Beach, to the south,bis
approximately 60°.

Our interest lies in observing, and subSequently
modelling the current circulation over this portion of
Roberts Bank resulting from wave-induced longshore currents

along the Tsawwassen and causeway beaches,

IT Geology, Geometry,  Oceanography

With the exception of an off-shore trench - the result
of dredging operations to procure fill for the causeway -
the southern end of Roberts Bank is a shallow mudflats

region having base sediments of sand and silty-sand.
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General location of the study site




As can be seen in Figure 2, the trench runs parallel
to the causeway, across most of the width of Roberts Bank.
It is approximately 150 m. wide, having mean low and high
tide depths of 10 m. and 5 m. respectively, and stands
approximately 250 m. from the southeast side of the cause-
way.

Our chosen study site will thus affora us the opportun-
ity of isolating an aspect of variable sea-floor topography
and studyingvits effect upon the local current circulation.

The remainder of the Bank has a mean high tide depth
of approximately 5 m. and drains completely at low tide
(see Figure 2), thus dictating that longshore currents will
‘be relevant to shore erosion only during periods of high
tide.

Also note that the off-shore edge of Roberts Bank,
which falls with a slope of approximately 5 in 1 to a depth
of approximately 100 m., does not run parallel to Tsawwassen
Beach, but rather in a more south-easterly direction, effec-
tively tapering from a distance of 3000 m. offshore with
respect to the mean high tide line at the causeway, to

100 m. off-shore at Point Roberts.

III Discussion of Prevailing Winds and Local Topography

Since longshore currents are the result of waves break-
ing at an angle on a beach, let us examine the basic features
affecting the waves which strike the causeway and Tsawwassen

beaches, these being
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a/ the nature of the prevailing winds
b/ the local topography

Keeping in mind the orientation of the study area '
. and its boundgries, it.is apparent that it is open to attack
only by wave trains incident from the southern quarter.
Figure 3 ihdicétes_that a éignificant percentage of the
local winds are, indeed, frpm the southern quarter,.partiC—
ularly from the south and south-east.

Wave trains approaching from the south will élearly
have components of their propagation vector parailél to
both the cauéewéy and Tsawwassen beaches, suggesting the
generation of longshore currents, whose direction of flOW,
in each inétance, would be towardvthe intersection apex
(see Figure 4). At first glance it appears as though Point
-Réberts shields the area from southeasterly waves. However,
it has been suggested by Wood (1970), that southeastefly
wavestrains.passing the Point are diffracted and then re-
fracted to approach the study area in a more southerly |
direction. Thus, they too will add to the effect of southern
stotms, their"contributioh, however, being less than if'they
had come over anuninterrupted fetch.

The pfedominant nature of the winds (from . the south
and sduth—east) together with thé topographical effects
of Point Robefts and RobertsABgnk are thus conducive to. -
the,géneratioﬁiof‘longshore currents along both thg Tsawwassen

and causeway beaches.
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Figure 3. Wind characteristics at the Tsawwassen cause-
way (Wood, 1970) (Winds are from the direction
shown. ) :
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longshore current flow at the study site
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Since longshore‘movemeht of beach material is due
almost entirely to longshore currents (Komar, 1976), let
us now discuss the evidence for sediment transport along
the Tsawwassen and causeway beaches as indicated by aerial

photographs, inspection of groynes, etc.

Causeway Beach

Aerial photographs have shown the growth of two bulges
in the beach on the south side of the causeway near the
ferry terminal, with erosion between them, at times,
threatening to undercut the highway as shown in Figure 5
(Hodge, 1970).

In a study conducted by Hodge in 1971, the region of
the bulges was mapped and the movement of beach material
measured. He concludes that "actual measurement quantitative-
ly confirms the observed morphological changes - beach
materials are moving along the causeway to the NNE," that

is, toward the intersection apex.

7

Tsawwassen Beach

Although direct sand transport measureménts along
Tsawwassen Beach are unavailable, we can nevertheless in-
directly evaluate the littoral drift by examining the shore-
line éonfiguration in the vicinity of several groynes built
along the beach., The direction of the littoral drift during
the immediately preceding period can be inferred from the

entrapment of sand on either side of the groynes.



—_— e
foreshore crest-—-—-///

(a) May 18, 1963. (from Aerial Photograph BC 5073:38)

eroded escarpment

(b) May 31, 1970. (from Aerial Photograph BC 5371:108)

Figure 5, Air-photo comparison of the growth of "bulges" south-side Tsawwassen

causeway. (Hodge, 1971)

[
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Periodic inspection of these groynes has shown, that
at all of them, there is a significant drop in beach level
from south to north, indicative of a predominantly northern
littoral drift and accompanying sediment transport toward
the intersection apex of the two beaches. Of particular
note is a groyne approximately 400 m. south of the dauseway
having a drop in cross-sectional elevation of 0.5 m. with
characteristic depositon of beach sediment on its south
(up-current) side and erosion to the north (down-current)
side (see Figures 6 and 7).

In light of the evidence for sediment transport along
both the beaches (toward the intersection apex) we should,
quite reasonably, expect to find a build-up of beach mater-
ials in the corner. Field inspection of the corner shows
it to be an area of stagnation, a gathering point of sea-
side debris - drift-wood, seaweed, étc. - while aerial
photographs (taken in the years following construction of
the causeway) clearly show the corner to be filling up
(see Figures 8 and 9).

Morphological evidence is then consistent with earlier
expectations based upon the nature of the prevailing winds
together with local topographical effects that longshore
currents are present in the study area and are responsible
for the transport of beach materials along both the Tsawwassen
and causeway beaches toward their intersection apex. Under
conditions of high tides accompanied by winds from the sou-

thern quarter, we can reasonably expect a circulation pattern



Figure 6.

Shows a portion of a groyne on the
Tsawwassen beach approximately 200 m.
south of the causeway. A south to
north (right to left) drop in beach
elevation of approximately 0.25 m.

is indicated.
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Figure 7.

Taken at a groyne on the Tsawwassen
beach approximately 400 m. south of

the causeway. It shows a drop in
beach elevation from south to north
(right to left) of approximately 0.5 m.

15



Figure 8.

Aerial photograph of the
corner taken in 1963.

intersection

16
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Aerial photograph of the intersection
corner in 1975.

Figure 9
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to develop consisting of longshore currents flowing along
both the Tsawwassen and causeway beaches toward their common
corner with some form of return flow out over Roberts Bank.
It is this circulation pattern that we now wish to modél.

We should, perhaps, make a note here with regards to
the nature of the littoral processes at work at the Tsawwassen
location. It is highly likely that a combination of very
high tides together with stronger than normal winds acting
over a relatively short period of time will do as much to
alter the coastal configuration as will months of moderate
winds in conjunction with normal high tides. Hence, the
transport of sediments at the Tsawwassen site may be of a
highly non-linear nature and should not be viewed as being

solely the result of a continuous process. -
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CHAPTER 3

THEORY

Before beginning the detailed anaiysis let us briefly
review the mechanism by which wéve—induced longshore. cu-
rrents are.generated.

A longshore current is defined as the depth and time
averaged total velocity in the longshore directidn. It is
dbserved‘to reach a maximum in the surfzone (James, 1972).

The mean wave-induced current is driven by the spatial
variation of the radiation stress -~ which is the excess
flow of momentum associated with a progressive_or standing
wave - a concept developed by Longuet-Higgins and Stewart
(1964) and applied to longshore currents by Bowen (1969a).
This extra "kinetic" pressure term in the presence of wévesw
is due*fo-the componénts of velocity correspbnding»to the
orbital motion of Wave particles - it is a quadratic non-
linear qﬁantity which arises from time averaging over.the
wave oscillation and integrating over the depth of the‘watér.
The subject has been reviewed recently by Miller and Barcilon
(1976). |

The momentum transfer that produpes circulation.(the spa-
~tial vétiatidn of the radiation stresses) is directly propor-
tional fdvenergy dissipation., If there were no dissipation
there would be no currents, since it is the gradients of the

radiation stress term which are responsible for the forcing.
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These gradients will be balanced by set-up or set-down
except when dissipation is present.

Bowen (1969a) and Longuet-Higgins (1970) both used
first order sinusoidal (or 'Airy') waves as a basis for
calculating momentum and energy fluxes in the near-shore
region. On the basis of lSt order theory and the assump-
tion of negligible wave energy dissipation outside the |
surfzone there are no spatial variations inithe radiation
stress and therefore no driving outside the breaker-lines.
Inside the surfzone, if the assumption is made that wave
height is proportional to depth, there exist variations
. in the radiation stress across the surfzone and hence a
driving force for the longshore current (Miller ahd Barcilon,
1976).

Under steady state conditions, the driving force must
be balanced by friction. 1In shallow water, bottom fric= |
tion is most important. However (James, 1972), lateral

miiing also contributes and allows the longshore current

to spread seawards of the surfzone.

In this chapter we shall derive the set of governing
equations which are valid for a general beach with arb=
itrary bottom topography. ‘Chapter 4 will be devoted to
a discussion of some numerical models whilé in Chapter 5

we shall apply these equations to an analytical model.



II Formulation of the Problem

We shall begin our analysis with the mean momentum
equations for a steady wave field as given by O'Rourke and

LeBlond (1970).

Ub_g \Ié_g = - b“ .._I- DS.,(,‘ ;S'I - V)
)4* Sy %—ﬂ i 2A 5“\7 g—d (3.1)

\; . u (3.2)
AR S 3y —€_

where; d 1is the total water depth equal to the sum

of the local still water depth h, and the
mean displacement of the water surface from
the still water level,éi;
thus d=h+ ”l

f= &ﬁ_c_ A oy

| w1th C a drag coefficient of 0(107%)
/o is the water density

N
uo,, = Ylahg )7, with 0.3¢¥<0.6

h#_, a characteristic depth (Longuet-Higgins,

1970, Part 1)
g 1is the acceleration due to gravity
U,V are the mean velocity components in the

longshore (x) and offshore (y) directions

respectively. They include the mean current

as well as the mass transport of the waves and"

are assumed to be depth independent.
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The radiation stress terms for a train of monochromatic
.small amplitude waves of amplitude a and wave number k,

propagating over a nearly flat bottom are given by

= E (an- = .
S’*’# :).( ) + Encos 7( _
S')(‘I = S\Id = —;a__n‘ﬁ“na¢
. . ) 3
SYY = %(an-l) + Ensin ¢
Q
where: &:%p%m

" 5('?}3&@0)

¥ is the angle of incidence relative to the
normal to the shore-line

Note, that as a means of simplifying the analysis we
shall ignore horizontal eddy viscosity, the effects of
which (with respect to the profile of a longshore current
along an infinite beach) have been discussed by Longuet-
Higgins (1970, Part 2).

In shallowwater and for small angles of incidence
the radiation stress terms reduce to (Longuet-Higgins and

Stewart, 1964)

' ?
Sxa ™ 33

S,,(y =

(3.4)



The vertically integrated continuity equation is ex-

pressed as

- (3.5)
U (Mad) 4+ W (Mai ) = - Oy
3+ " >Y "\ >

o,

Let us define the wvectors E’ and ’E_ such that (O'Rourke

and LeBlond, 1970)

P DYy (3.6)
T = = 135S,y 4 DSy
* (’di 3+ Y
1ﬂ = T QL’ ‘11 = 7 g&!

‘Substituting these into equations (3.1) and (3.2)

we get
e -~ /'
U)_\_, 4‘/;_!.) + VvV, = '%A_"Z + ¥ (3.7)
% 3y S
(3.8)
Uav +‘4§Q’ + vV, F -433EL + Pl
A Y ay
along with the steady state continuity equation
W (ha) 4+ W (hed) =0
> > (3.9)

Writing them in vector notation, the momentum

equations take the form

L‘;‘_"V\\;" +':\: = -%Vt:( +E’ (3.10)

23



We can eliminate the term in 22 by taking the curl of

equation (3.10), to get
-7x(V-IYVU « IxT = Vx (3.11)

As a further simplification of the analysis we shall
now neglect the remaining non-linear terms in equation
(3.11), on the basis of work done by Arthur (1962), who
showed their effects to be a narrowing of off-shore flows
and a widening of on-shore flows. Thus, while the non-
linear terms affect the details of fhe currents we trust
that their absence will not greatly affect their general

form and will allow us to obtainan analytic solution.

Equation (3.11) then becomes

VxT = IxY (3.12)
In the seaward zone (where there is no energy diss-
ipation and hence no spatial variation of the radiation

stress), the driving torques vanish and (3.12) reduces to
= 0 (3.13)
In the surfzone, where there is a dynamic balance

between the drive due to wave stress and the retarding

effect of bottom friction we have
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7T = Ox ¥ (3.14)

Let us now define a transport stream function Lk(x,y)

from the steady state continuity equation (3.9) such that

u- | (3.15)

Substituting these into equations (3.13) and (3.14)

the governing equation in the seaward zone becomes

¢ a3 Y -0 (3.16)
é—ajtm* Stll dks:‘ S_..}(* —\( 3\‘\

wWhile in the surfzone we get

L[y . N Q_[—'—(AS'M ?‘.’i‘/] (3.17)
%Apd(i:“ s’?] >yLed Y

. &33} S Q%(sc\ﬂ 34 5 }

Fa 4 ¥ SR'3# 3Y 3y

We have now to solve equations (3.16) and (3.17) sub-

N
ject to the topographic characteristics and boundary conditions



relevant to our particular problem (as will be discussed
in Chapter 4), but first let us comment on some 6§ the
assumptions made in arriving at these equations. (Fbr a fuil
summary of approximations see Appendix A).

1/ The use of a bottom shear stress::linearized in the
longshore current velocity (see equations (3.1) and (3.2))
is justifiable if this is small compared with the wave

orbital velocity, which as James (1972) points out is not

always true. In the presence of steady flow or long period
waves, a reasonable assumption appears to be that the bottom

shear stress be given by (James, 1972)

T C/lgolu: (3.18)

where; u, is the instantaneous total velocity vector
just outside the bottom boundary layer
C 1is a dimensionless coefficient whose mag-
nitude may be.increased by the presence of
oscillatory flow.

We shall consider the use of this friction term in
connection with the numerical models as discussed in Chapter
4., A recent extension to strong mean currents has been
presented by Liu and Dalrymple (19781.

2/ We have neglected to include a horizontal eddy

viscosity term (whose effect is to transfer momentum from

the surfzone, where the driving of the longshore current
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takes place, across the breaker-line where there is no
driving) since such friction terms lead to a 4th‘order
equation when a stream function is introduced (whereas the
linearized friction terms lead only to a an order equation)
(Miller and Barcilon, 1976).

3/ The remaining non-linear terms in. equation (3.11)
have been neglected on the basis of work done by Arthur
(1962) who sthed that they play no causative role in the
dynamics of the currents although they may affect their
local characteristics.

The balance in the linear equations is then taken to
be between the radiation stress terms, the pressure gradient

(set-up) and the bottom friction terms.
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CHAPTER 4

NUMERICAL MODELLING

I Introduction

This chapter is devoted.to the discussion of several
numerical models of the wave-~induced circulation in a beach-
breakwater configuration similar to that of the Tsawwassen
site. A numerical approach will give us greater flexibility
in choosing beach configurations and bottom topography (such
as a trench and drop-off to deeper water) than an analytical
approach (to be discussed in Chapter 5) and also allows the
comparison of models using different forms (linear and non-

linear) bottom friction.

II Model Layout

Each numerical model shall consist of two beaches of
finite length intersecting at some angle <S (0< £< 90°%)
enclosed within a rectangular basin (the walls of which
have been put as far away as is practical so as to limit
their effect upon the current circulation) as shown in
Figure 10.

The seaward zone has been divided into three regions
consisting of two surfzones and an off-shore zone beyond
the breaker-lines.

The extent of the surfzones, the regiohs over which
the longshore shear stresses exist, are subject to wave
height changes at the breaker-lines. As discussed by

O'Rourke and LeBlond (1970), accurate determination of the
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Figure 10.

Plan view of the numerical model geometry



position of the shore and breaker-lines would lead to tedious
matching problems at these boundaries which would do little
to alter the overall current patterns. Hence the boundaries
of the surfzones shall be taken as the space-averaged values
of the shore and breaker-lines. To conform to the Tsawwassen
configuration the natural beach shall be approximately twice
as long as that corresponding to the causeway.

The ratios of surfzone length to width, in the models,
are 10:1 and 20:1 for the causeway and natural beach respec-
tively. The models presented as such exhibit a discrepancy
with respect to scale, when compared directly to field dimen-
sions, since they then yield highly unrealistic surfzone
widths of approximately 300 m., Attempts to present models
which are scaled more realistically would, however, due to
restrictions of space, result in surfzones of negligible
width. The models then strike a compromise, allowing us to
study the currents in a configuration for which the surf-
zones are much longer than they are wide yet still retain
some degree of detail.

Note that we have removed the surfzones' intersection

corner to ease the specification of the boundary conditions
there, the rationalization being that if the surfzone widths
are sufficiently small in comparison to their lengths, then
removing the corner will have little effect upon the major
features of the current circulation, an assumption which

shall be justified a posteriori.
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The off-shore zone shall accomodate variations in bottom
topography in the following manner. Immediately seaward of
the breaker-lines is a shallow shelf region which in some-
models fills the remainder of the basin. In other models
the off-shore zone is further sub-divided (see Figure 10)
to ihcorporate a much deeper region beyond the shelf-zone
typical of the drop-off into Georgia Strait found at the
Tsawwassen loction; while still others will include a sub-
marine trench running parallel to the causeway across the
width of the shelf-zone., We shall thus have an opportunity
to study the effects of these variations in bottom topo-
graphy upon the wave-induced circulation.

Let us first consider the configuration shown in Figure

11, for which the beach intersection angle 1is 90°.

’

We shall assume surfzone I to be approximately uniform

in the y-direction so that

d, ey = W) s M) (4.1)‘

~ W)
that is
édl ~ 0
RYY (4.2)
The slope m.)in this region shall be defined by
T d, (4.3)
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Similarly, we shall assume surfzone II to be approx--

imately uniform in the x-direction, which gives us

dtkd.\‘) = \r\,_un + "h"”-‘(\ (4.4)
~ W)
so that

(4.5)

BA; ~ 0

oL
The slope My in this region shall be defined by

o~y d, (4.6)

Subject to the above approximations the governing
equations (3.10) and (3.17) for the surfzones and off-shore
zone become

1. Surfzone I

(4.7)
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2. Surfzone II

A \ >4 | s, bng
e Sy | 3 EY

(4.8)
S N Y [Syy-
! (’da\(sﬁ Tp) > s 3‘431( " S“““l
= 'g S—i A Bit" - 2 pY )4
pds L2+ ¥ 4y 5y
3. Off-shore zone
q"m A *Y‘I -2 d, éj -~ 2 3d; é_j =0 (4.9)

Consider now equation (4.7), the governing equation
for surfzone I, into which we shall substitute the expre-

ssions for the radiation stress terms (equatians (3.4)),

to get
: ' 2
-qa, Ade ) 2. da: sin S+ é&:‘ 4 Qsin é_g_-
&d\a‘ 3+ i > /A 3‘!1 :?Jl\ /5{(3‘(\

(4.10)

- (ém\a + 0, (§f&_-_ - 3:0_.0_ \) + | o+ dau + O }_a_a_u
o+ Q42 dA4° o4 3y 43y



Taking the wave amplitude in the surfzone to be pro-

portional to the mean water depth ( Munk, 1949) so that

a,: ¥d,
gives us
3o - ‘K}gL ~ O
N N
and
- ¥ad
O~ O~

so that equation (4.10) reduces to

SRS ARE AR

or

+A ~

& -Q."hur“‘“ = aﬁ%\o&‘(at&.ﬁm;‘

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Assuming that Snell's law of refraction holds in the

surfzone (Longuet-Higgins, 1956) so that

(4.16)
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(where/@° and d, are the angle of incidence and the depth

at the breaker-line) equation (4.15) for surfzone I becomes;

d(nm 1* kh‘/ “9/) % i,é_g:]d% (4.17)

¥
= K\’f .

Similarly for surfzone II we get

k\',*,.“%k\\, + "\Y\{ =T { Q/lea\( M:/il%\%eo]\‘3b

In summary then, the governing equations for the three
zones of our numerical model are

1. Surfzone I
¥,
% —2‘1[4+“h\, = K™ (4.19)

2, .Surfzone II

. N ~ _ %
\\',H‘%{WY +L\W ) Ka‘! (4.20)
3. Off—shore zone
a3 d¢ _aadd .
tm*k‘w‘ Sy Ay o e



The values of the stream funcfion, in each model, shall
be calculated from these governing differential equations
by the Gauss-Seidel iterative technique (as discussed in
Appendix B) subject to the constraint that the stream func-
tion is identically zero along the shore-line, the seaward
edges of the intersection corner and the boundaries of the

seaward zone as shown in Figure 11.
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ITII A Simple Configuration

The first model we shall present is shown in Figure

12, and shall serve to illustrate those properties common

’
to all the models. This configuration shows a perpendicular
beach-breakwater intersection with no off-shore depth varia-
tions:.and currents of equal strength. Models incorporating
features which conform more closely to the field site will
follow.

Tllustrated in Figure 12 is the entire field of
according to equations (4.19), (4.20) and (4.21). In steady
flow, the streamlines are equivalent to the pathlines of the
fluid particles.

Note, that in order to avoid cluttering the current
circulation diagrams, the breaker—lines and drop-off will .
not be shown. Their positions may be determined by referring
to Figure 10 - the breaker-lines originate in the intersec-
tion corner and run parallel to the shore-lines for the
length of the surfzones while, as will be seen, the location
of the drop-off, in those models incorporating it, will be
apparent. The position of the off-shore trench, when present,
will always be indicated.

The circulation pattern consists of two counter-rotating
cells, each cell driven by one of the wave-induced currents
generated in the surfzones. The streamlines of the longshore
currents converge toward the intersection apex where they
merge to form a rip current which then flows out over the

shelf region. Having travelled a distance across the shelf,
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Figure 12.

Current circulation for perpendicular
beach intersection, equal current
strengths and no off-shore depth
variations.
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the return flow must divide -~ each branqh turning to com-
plete its cell - due to continuity.

The qualitative aspects of the circulation pattern:
are then consistent with observations and measurements of
sediment transport taken at the Tsawwassen site. The long-
shore currents flowing toward the intersection apex are
conducive to sediment transport toward the corner, as was
found at the field site, with the off-shore return flow
now predicted to take the form of a rip current.

The effect of the convective inertial terms which we
neglected in Chapter 3 will be to strengthen the return
flow as it comes out of the corner because the current there
is flowing into deeper water, and to weaken the currents
which feed back into the ends of the surfzones since the
flow there is into shallower water.

The exclusion of horizontal eddy viscosity (that is,
lateral mixing) in the governing equations generally leads
to the velocity being greater inside the surfzones and
falling off more rapidly seaward of the breaker-lines than
experimental results indicate (James, 1972). To include
horizontal eddy viscosity in the equations would

i/ alter the surfzone velocity profiles so as to de-
crease the velocity maxima near the breaker-lines and in-
crease the velocity at points closer to the shore, that
is, to effectively flatten the profiles, and

1i/ result in the velocity outside the surfzones

falling off less sharply than linear theory, with only

bottom friction, predicts.



IV The Corner Geometry

In section II of this chapter we discussed the need
to remove the intersection corner in order to ease the
specification of the boundary conditions there, and justi-
fied it on the grounds that if the widths eof the surfzones
were sufficiently small in comparison to their lengths then

removing the corner would have little effect upon the over-

all circulation. Figure 13 shows a model configuration iden--

tical to that of Figure 12 with the exception that the corner
has now been included. The assumption has been made that
the zero-valued stream line would emerge from the corner
at the same angle at which it crosses the shelf zone (as
shown in Figure 12), hence we have specified the boundary
condition in the corner accordingly - that the stream func-
tion must be identically zéro along the line bisecting the
intersection angle (for the case of equal current strengths).
The results, as shown in Figure 13, justify the arguments
for removing the corner since the effect on the overall
flow pattern is indeed negligible. Note also that’ Figure
13 shows a stagnation point in the corner thus indicating
a possible location for the deposition of beach materials
(which have been carried along the surfzones by the long-
shore currents). This is again consistent with observations
at the Tsawwassen location which show the corner to be
filling up.

A normalized streamline profile taken half-way along

the breakwater surfzone of Figure 12 is shown in Figure 14,
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Figure 13. Perpendicular beach intersection model
with the corner replaced. (The small
'‘corner' appearing in the streamline
pattern is a numerical artifact.)
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Figure 14, ©Normalized streamline profile
taken across the surfzone along
cross-section gq' in Figure 12
(shown as a solid line), together
with that of an infinite beach
model from Dalrymple et al (1977)
(shown as © ): where 4, is the
value of the stream function at
the breaker-line, the width of
which is:{L.
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together with that for the infinite beach model developed
by Dalrymple et al (1977). They compare very closely, the
longshore current profile half-way along the breakwater

surfzone-approaching that of an infinite beach.

V Acute Intersection Angle

To conform more closely to the configuration at the
Tsawwassen site, the beach-breakwater intersection angle
, must be reduced to approximately 60° as has been done in
Figure 15, which shows the circulatory system for equal
current strengths and no variations in off-shore bottom
topography. The general features are similar to those
of the 90° beach intersection model: the cross-surfzone
streamline profile is unchanged and the off-shore return
flowcagain bisects the beach intersection angle. (The
'steps!' in the streamlines adjacent to the natural beach
are a computational artifact caused by the fact that, in
the acute angle mddels, the natural beach runs diagonally
to the (finitely spaced) grid lattice used in the numerical
models).

The effects of varying current strength (due peéerhaps
to relative differences in angle of wave incidence at the
breaker-lines, beach slopes, surfzone widths etc., or coﬁ—
“binations thereof) are shown in Figures 16 and 17. We
shall not specify the exact values of factors necessary
to account for the variations in relative current strength

but merely present the results for ratios of natural beach
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Figure 15.

Current circulation for acute beach-
breakwater intersection ( § =60°),
equal current strengths and no off-
shore depth variations.
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Figure 16.

Circulatory pattern for a ratio of
natural beach current strength to
causeway beach current strength of
2:1.. There are no cff-shore depth
variations.



Figure 17.

Circulatory pattern for a ratio of
natural beach current strength to
causeway beach current strength of
4:1. There are no off-shore depth
variations. '
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current strength to causeway beach current strength of

2:1 and 4:1 respectively. The results are what we should
intuitively expect, with the cell driven by the stronger
current dominating the circulation pattern as the ratio of
the current strengths increases., The off-shore return flow
is deflected toward the causeway in such a way that its
tangent divides the angle of beach intersection 5 , into
angles whose ratios vary as the current strengths, that is,

2:1 and 4:1 respectively.

VI Variable Bottom Topography

The next models to be presented incorporate variations
in the bottom topography of the type to be found at the
Tsawwassen location, that is, a drop-off from the shallow
shelf region to much deeper water as from Roberts Bank to
Georgia Strait, and an off-shore trench which runs parallel
to the causeway across the width of the shelf-zone (see
Figure 10 for the basic layout).

Shown in Figure 18 is the circulation pattern for a
model featuring the drop-off to deeper water (for currents
of equal strength). The deeper zone has been given a depth
of 100 m. compared to the shelf depth of 5 m., a ratio of
20: 1.

The results show a pronounced deflection of the stream-
lines as they approach the large mass of water beyond the

drop-off and a discontinuity in the tangential velocity
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Figure 18. Circulatory pattern for the linear
bottom friction model incorporating
a drop-off to deep water.



as they cross the boundary from shallow to deep water.
Such a discontinuity is allowed by the absence of lateral:
friction in the model.

An off-shore trench is next introduced to the bottom
topography. It is rectangular in shape, with a mean high
tide depth of 10 m. (twice that of the she;f)'and tranverses
most of the width of the shelf as shown in Figure 10, its
off-shore end emptying into the deep off-shore zone.

The results are given in Figure 19; the influence of
the trench may be seen by comparing this figure with Figure
18. The results are surprising; in addition to the chann-
eling of the off-shore flow into the trench, which is what’
we would intuitively expect, we see a large increase in the
total transport of the off-shore flow. A large eddy forms
with seaward flow over the trench and return flow between
the trench and the causeway.

Let us pause here to reflect upon the validity of these
results. Recall that the linear form of bottom friction,
while simple, is not realistic, being dependent upon two
rather severe restrictions:

i/ that the longshore current velocity be small com-
pared to the wave orbital velocity in the surfzone and

ii/ that the angle of wave incidence be very small.

As pointed out by James (1972) and Liu and Dalrymple
(1978) these assumptions are not always satisfied. Futther-

more, in the off-shore zone, the wave orbital velocity at
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Figure 19. Circulatory pattern for the linear

: bottom friction model incorporating
a drop-off to deep water and an off-
shore trench running parallel to the
causeway. ’
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the bottom is likely to be smaller than the mean current;
a linearization of the bottom stress; in the form given
below is then clearly inappropriate.

Hence, in light of the questionable validity of these
assumptions and the difficulty in interpreting the results
8o derived, we shall not speculate further upon the linear-
results.

Rather, let us proceed to discuss the properties of

models using the more realistic form of bottom friction
T: C/’ \\io\ &o

in the off-shore zone, as mentioned in Chapter 3. (The
relevant finite difference equation is given in Appendix
B).

The resultsvas derived for

i/ a model with no variations in bottom topography and

ii/ a model featuring only the drop-off to deeper water
are given in Figures 20 and 21, which exhibit negligible
differences in comparison to their linear countefparts
(Figures 15 and 18). -

However, the flow pattern for the non-linear model
incorporating both the drop-off and the trench (as shown
in Figure 22) differs considerably from the linear model
(Figure 19). Upon comparison of Figures 22 and 21, we
see a definite channeling of the off-shore return flow
into the trench, again as expected, but without the in-

ordinate amplification of the flow pattern.
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Figure 20.

Circulatory pattern for the non-linear
bottom friction model with currents of
equal strength and no off-shore depth
variations.
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Figure 21. Current circulation for the non-linear
‘ bottom friction model incorporating a
drop-off to deep water.
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Figure 22.

Current circulation for the non-linear
bottom friction model incorporating a
drop-off to deep water and an off-shore
trench running parall=l to the causeway.



The deflection of the current is most apparent on the
causeway side of the trench, as is shown by a decrease in
transport there, with a corresponding increase in the trench
as water is drawn into it.

Velocity profiles taken along cross-sections pp' and
dd' of Figures 21 and 22 respectively are compared in Figure
23, and found to be similar in form. The lower profile,
from Figure 21, shows the velocity in the absence of a
trench. The flow is slightly slower in the presence of
the trench (upper curve) but the transport is nevertiheless

increased in the trench because the increase in depth more

than compensates for the decrease in speed.
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Figure 23.

Velocity profiles taken along cross-
sections pp' and dd' of Figures 21
and 22 respectively. The upper pro-
file is taken from the trench model
(Figure 22). The position of the
trench is shown by the dashed line.



VII The Influence of Depth Variations

Let us consider further the effects of variations in

bottom topography upon the local current circulation.

We begin with the x and y components of velocity

respectively;

so that in the case of a flat bottom we have
‘V(\i-\C\zo

while, for a bottom which is not flat

v(wv4)=o

Consider now the bottom to be nearly flat,

= W, (14 67"["'“"

* = ‘*o A el*‘ L S

(4.22)

(4.23)

(4.24)

(4.25)

so that

(4.26)

To zeroth order, we have from (4.24) and (4.25)

V"“*o =0

(4.27)
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while to lSt order

v° "&‘= Vn'(-V‘L | (4.28) |

where 734., is a measuré of the departure from average
at a point, so that if V°4“>0 then ‘+ is increasing.
What then are the effects of a variation in depth
upon the velocity and transport?
Consider the one-dimensional situation as illustrated
in Figure 24, where all the motion is in the x-direction,

so that

14.29)

which gives us

= (0, ughoy) (4.30)
° |

V‘~h= Lo, u,\o) (4.31)

and

(4.32)

( =0 if an has no y~component)
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Figure 24.
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Is the velocity changed? (that is, is «, #0 ?)

From (4.22) we have

wu = 'l"\\l'y

(U eu)= C%T*_&"O : ( k\’o-\— e4\7

to lSt

or
’ order

ah, * \\‘T -u.hem (4.33)
To determine *'1' let
. (5_.\ = \,(\lq) (as shown in Figure 25)
T [

so that v? ‘h: om v‘h
= ‘.a\"l\‘\\o“o

that is
*\.1 . "’(k"u" (4.34)

giving us

ak, =o (4.35)
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”'(= y(y-1)

Figure 25, Variation in depth as
defined by ﬂz=y(y—l).

|
-N
2

Figure 26. Variation in depth as
defined by 'YI=N(y—1/2).
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So that to 15% order, u, =0, hence the speed of the

current is not changed in this one-dimensional case.

A slightly different case is as follows: consider a

variation in depth, as shown in Figure 26, such that the

average depth is not changed, by letting

= N(y-4)  (4.36)

so that we have

Q}\aj

1"

i \\o(H&"‘L\ d\]

(4.37)
= \'\o = Q.Or\s'k.o.r\‘&
Then we have

\'\'.\“= V'V('-Vq",
"l (4.38)
= N\\o“o

and
\".\‘: N\\c“o\l + (‘.Oh$'\0.v\t (4.39)



Now the total transport is not changed, that is

&Luo\\o* e\u‘\\°+\\°ﬂlu°']\d\) = \“o\‘oé‘j

° (4.40)

\'\o‘\ (u,+ v\uo\ A‘j =0

or from (4.33)

'% 4_\, dx, =0

(4.41)
"“L‘\ - 4.(0\ o

Thus from (4.39) we have

\‘l = N\ou,\r’ x (‘.or\sktmt\ ¥ Qons{o.l\ta (4.42)
E)

Solving for the constants

‘{‘(\D - M\‘sﬁ‘ﬁ Py (4.43)
Q.

Again, the velocity is not affected, as is seen upon

substitution = of 4‘ from (4.43) into

)
"\.\'\o = “\‘] - \\ouotrl

Hence, with 4 =0, the transport locally is

ul - u.\\o (\4 en-p (4.44)

64



65

so that in both cases considered, the transport increases
linearly with the depth of the fluid layer because to lSt
order, continuity alone does not require the velocity to -
change with small changes in depth.

The results then, for our simple one-dimensional model
are in agreement with the numerical models which show an
increase in transport over the trench (although there is

less of an increase in the more realistic non~linear case

due to th= stronger effects of friction).
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CHAPTER 5

ANALYTICAL MODEL

I Physical Description

We shall now attempt to develop an analytical model
of the wave-induced current circulation in the vicinity
of a beach-breakwater intersection.

During the course of the discussion we shall encounter
a number of difficulties (despite further simplifications
to the analysis) and shall find, in fact, that we must
resort to some numerical means in order to salvage a solution.

We wish then to apply equations (3.16) and (3.17) to
our analytical model which consists of the intersection at
right angles of two semi-infinite beaches, as shown in
Figure 27. (The soiution we derive for this genexal con-
figuration need only be rotated 180° so as to conform more
closely to that of the field site.)

As discussed in Chapter 2, the Tsawwassen and causeway
beaches are of great length, hence we have replaced them in
the model by semi-infinite beaches. This allows us to
circumvent the need of specifying the boundary conditions
at the ends of the surfzones (which we do not know a priori),
since we can now simply allow the stream function profiles
to approach those of the infinite beach solutions as we get
further from the corner.

The quadrant of interest has again been divided into

three zones, consisting of two surfzones and an off-shore
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. Figure 27, Plan view and boundary conditions of

the analytical model.
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zone seaward of the breaker-lines. The angles of approach

of a wave-train with respect to the breaker-lines of surf--

zones I and II will be taken as /3 and €& respectively.

We shall invoke the following assumptions and approx-
imations as for the numerical model:

i/ the intersection corner has been removed to ease -
the specification of the boundary conditons there

ii/ the boundaries of the surfzones shall be taken
as the space - averaged values of the shore and breaker-
lines

iii/ the surfzones are assumed uniform in the long-
shore directions (equations (4.1) through (4.6))

iv/ the wave amplitude in the surfzones is taken to
be proportional to the mean depth of the water (equations
(4.11), (4.12) and (4.13))

v/ Snell's law of refraction holds in the surfzones
(equation (4.16))

Further, the off-shore zone shall now be assumed to
have a uniformly flat bottbm, with a depth equal to the

water depth at the breaker-lines, which gives us

ady; - dd3 <o (5.1)
O~ o>y
Under these assumptions and approximations
the governing equations for the three zones of our analyt-

ical model become
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1. Surfzone I

444 _%44 * k‘W ) \(\"‘% (5.2)

2. Surfzone II

. - 3,
\\41 "_'_Q, “-\l +*\|\| - \la \‘ 2 (5.3)

3. Off-shore zone

Y + 4., =0 (5.4)

e Y

which differ from those for the numerical model (equations
(4.19), (4.20) and (4.21)) only in the off-shore zone,
where variations in the bottom topography are now forbidden.

IT Analysis

Surfzone I
Let us begih with the governing equation for surfzone
I (the region for which 0 ¢ x< Xy o and y>'yL) as given by

equation (5.2),

‘ot

¢ “%4-4 ¥ \\-w = K xR (5.5)

which is to be solved subject to the following boundary
conditions:
i/ the stream function is identically zero ‘along the

mean shore-line defined by x=0



that is, (.\,‘ (.0,\1\ =0 v Y >,\IL

ii/ the stream function tends to the infinite beach-

solution far away from the corner, so that

/. =1 ;-
QM” tk\k’""\l) = hoA ? ) o$¢<4L

\/—>+oa

iii/ the stream function is identically zero at the

end of the surfzone
Y yze,  efaeny
The homogeneous equation

Id"

k\' -%4." ‘,\‘,\Y\':o (5.6)

can be solved using the separation of variables technique.

By making the substitution

d(‘kq(.\ﬂ : \K(d)\/(\p . (5.7)

equation (5.6) gives the following pair of ordinary differen-

tial equations
"
X -2 \(’+Q°\/=o (5.8)
~

\I"‘ a\/=° (5.9)
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where "a" is a separation constant and the primes denote

differentiation with respect to the appropriate independent

variable.

The solution of equation (5.8) which vanishes at x=0

is (Kamke, 1959)

3, ——
Xy = A7 Jge0 (5.10)

(where qw(ax) is a Bessel function of the first kind:
Q

— -3
= P B " - :
\33,&(0'{) v = LM) ( 9w oy — 0 Cosox )
The general solution of equation (5.9) is
\I‘\\): '8‘2“14—33 e Y (5.11)

where B, and Ba shall be determined by the boundary conditions.

As a particular solution of the non-homogeneous equation

(5.5), let us take

; |
B, 4 /s (5.12)

where B3 shall also be determined by the boundary conditions.
The general solution of the governing equation (5.5),

for any one value of the separation constant "a", is then

given by
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+e -ay 3/y —— _,/
L\"(’fn\lst(B‘e \/-\- Ble \,\I JJ% (M) + Bsd ' (5.13)

to which we shall now apply the boundary conditions to

determine B,, and B,.

Bar 3
i/ ‘*.b%1) =0 , 1s identically satisfied by equation
(5.13)

1i/ \iews L*‘w.“: ?. 47/“ gives us

\[->&oo

We now have, for any one given value of "a"

| _o . — -1 X/
\\«‘(4.\‘3 = BLQ Y"‘ ° J%LWX * ‘-\d ? (5.14)

Applying the final boundary condition

Wi | *-L#N\BEO y 054‘4L

gives us, after integrating over all possible values of

llall

= ~ayy ¥, — - 7
\ 'Blm\e. \“’4 "J%LM\c\m = - |'\ A (5.15)

(-]

or



!
-
*3

o0
xfy lw)\sl(&)e-““\ adae = e
A S
o

which is of the form

1 P
(where %L#\‘ _~¥”*a 02 *L

o AL <o < o

73

(5.16)

(5.17)

which allows us to pass to the upper limit of xL immediately)

so that we may apply the following Hankel transformation

(Morse and Feshbach, 1953, p.944)

- Ab
{eor = \ Ty, o0 ?wwdoc

o

to equation (5.16), giving us

or

. weyy
By : -Fiee PT (o)

(5.18)

(5.19)

(5.20)
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where

\

~A\
Tm\=\T ¢ 3d (5.21)
-\ 3/:.°")d "‘ e

°
Thus, the complete solution for the stream function
subject to the governing equation (5.5) (in surfzone I

defined by 0¢ x< x|\, y>»yL) now takes the form

oo

) oy 3 »
Qgém\ e 014 JJ%LN) da + ?f A
(o]

"

‘hw)
- ~aly-Yb) __ 3 U
-t \ ¢ T @y Jy towdado + 1A

(5.22)

a0
A/ . _—oyYh) —
t, ,-I\/’.,,"%Xe ! T @) I, texdode
£

Surfzone II
In surfzone II, defined by ogy« yk, x:>xL, the

governing equation is (as given by equétion (5.3)),

“‘(;M‘ %‘*‘.’y ¥ *“w = - a\(% | (5.23)

where ‘*apﬁq\ is subject to the following boundary

conditions



i/ the stream function is identically zero along the

mean shore-line defined by y=0, that is

k\a (~,0)= 0 y AL

ii/ the stream function tends to the infinite beach

configuration far away from the corner, so that

. - - 7
Qw* * y) = kaY ) 0Ly <Y}
A=>ve0 ¥
iii/ the stream function is identically zero at the

end of the surfzone, that is
%HL'\D =0 y oYy

In a manner similar to the derivation of equation (5.22),
we can arrive at the following expression for the stream

function Lh(.,(,\,) (in the surfzone defined by 04y« Yyr X ch)

(-]

| ~ by _—
Fups T 17/‘—13“\e o) Ty by bl

°

Al

Lyhy= \3%C\"l)‘13‘l)’

-1 KJ

(5.24)

"p" being the separation constant in this case



Off-shore Zone
| We have now to derive an expression for the stream
function L\B (~.4) in the off-shore zohe defined by X>X|o'
Y7Y - |
The governing equation in this region subject to the-
assumptions and approximations discussed earlier was found

to be Laplace's eguation;

4, + 4

iale'd

o (5.25)
31\’

The expression for the offshore stream function is to
be found by matching it across the breaker-lines to the

respective surfzone solutions, the boundary conditions being
TR SOV IRIL WETRN Y7L
TR N RTOEEE IRV s 7ot

iii) \\'3(4”\ e mains ‘m%'\e AS A —¥% 400

ond os y =7+ (5.26)

Let us begin by breaking this in to two simpler problems,

expressing \¥3Q4,q) in the following manner

('\3“‘)‘{\: L\:-;,‘k""‘i\ * d‘s,a “hY) (5.27)
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where *é and (&3& satisfy equations (5.28) and (5.29)

) \

respectively;
- “\ z (5.28)
i| 943, 7o A IS -
fl%, G ey V7Y,
Wil *%‘bﬁ1y)=° A 7AY

?Vl \\ femains \)ouv\'c\ QJ AS ~ —» +o0
3

il ka‘,B)a;o 474\’, \171\> (5.29)
W \*3.3 L“‘"l\)‘ L‘aw"f\\ oAy,
Yy, )= o 7Y

‘\'sil d(a.a cLrnaing \:oov\c.\ ed s \I —3p reo

Considering first equations (5.28), let us apply

separation of variables by making the substitution

*3”('1,\{) = Y \{(\‘) (5.30)



into equation (5.28(i)) to get the following pair of ordinary

differential equations

Aa=4p) - na-4L)
Yuy:= A e rAje (5.31)

Ny = Agcos Wy-yy) *+ Ay sin Ay

where A is a separation constant and the Ai's are to be

found from the boundary conditions.

Applying then, boundary condition (5.28(iii)) and

(5.28(iv)) to equation (5.31) yields

¥

"

- A=Ay
A,e

(5.32)

N

Ay sio >‘(‘r‘m

Integrating over all possible positive values of )\ ’

equation (5.30) gives us

T - A=~ ) | 4 )
“‘(3,\(4.1\ : \ ALK € Sin >sc~,-\{p da (5.33)

To determine A() ) we apply boundary condition (5.28(ii))
to equation (5.33) to get

18



*anthim) = \ A(N)sin )‘L‘I‘YL\ dx

8! (5.34)
= ‘L'\l\.\l\
or
7 ! ] [} .
An) - % \\\‘(dL.\')sin )‘\1 AY (5.?’5)
.Similarly for (*3§44)we get
o« ly-
“\mw.\fv \Bb\\ e M “Ln;. A=) d 2 (5.36)
where
8- %X d‘a(""‘l'&)ﬁ‘“ At doy! (5.37)
7¢ }

Combining solutions for‘*3ﬂ and (‘&a gives us the

stream function in the off-shore zone;

*3("‘)\{) b ‘Ln(d,\(\ 4 k\s’a(ﬁ;.\{)
(5.38)

- g A(A\ e ?\(4‘-4\%;,\ )\(\H[\d)\ I \B(k\ e’>~(‘l"ll)§; “\(4 <) dx

ALY = & \ “‘,(d\,\{}sm M'dy!

RO = 2 Ay siandy
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The remaining task is to solve the expressions for the
stream functions in the surfzones and hence arrive at a
solution in the off-shore zone by matching the 'stream functions
across their respective breaker-lines.

In summary, the expressions are;

1. Surfzone I

o0

' -1 1) -o(y-Yp) —
L\‘w.\{\= FolA /‘;-43/"%3 1) J%UMB ado (5.39)

AL
Ly X Ty, Loy 7 dx

o
2., Surfzone II

(- -4

— ..\H—l-—l\,)___ _
‘hw,\n: v, i\lﬂ‘l“[%%e L, .)36(\>\|\‘>A\) (5.40)

¢ y
RSN \:\‘%L\”hﬁ dy

o

3. Offshore zone

§, = (5.41)

< N T - XGHE)
\Am S nepidn o 8oy € it d

(]
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o0

ACX) = 2 % ‘*‘Lrl'\,\“\ﬁn >\\|'dy'

L]

BN= 2 X g sin nedy!

o

Before we can begin to evaluate the integral expre-
ssions for qJ,hq)and 4§VL1)WG must first attend to I (a)

and I,(p), where

T & vy

-]

The algebra is presented in Appendix C, from which

we get

— SR ¥, g. (5.42)
Aoy = (% N ;l(,o.‘\)\ * Cosoy| - Loxl) sin x|
\

b — )
al inoyl - 2t (@ SVoy
+ ?LWD sinoy| 2 /g Svox|,
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where S(JML ) is a Fresnel integral as given by Gradshteyn

and Rhyzik (1965, p.930, 8.251(2)); and

T.preq2 \,-4_\_ ’-2_1 (HO% cos ( py{)-¢ \’VL\% sin Pyl

(5.43)

o e —
<2 (Y ety - %ESVHL]

The expressions for the surfzone stream functions

\\"{4,\‘) and 43(4,\‘) are now

| —alyYR 3 - g
4 s T KA”“—«;%&Q 1 "’y/g ‘0.4{—(04\3 ®sieloxl)

_3_ (M‘)\3/‘)C°5(9"\,\ + 3_;7: (M\,\yaﬁh\ko'i‘x\
—%@SJ&T\ :\—ya(o';w o*do"-l

. _
- 8 %
=;f‘ \41/.1_5:2( Xe— aty-Yh K— } (odkd aC“(ML\
"N

]

(5.44)

- (M\’\ﬂasinkw\g * .g‘_: LML\'/J sin(oxl)

-a.ﬁSJ&—C\\(&AM - Coxw\ (i‘_l 1
412 o 074



and L\/(,.,,D \' \ /a 9‘/& X‘:\—'(P‘IL\% COb‘PYL

Y
- (\:\]L\%sin(\»‘ﬂ,\ * 9_‘.: (\”IL\ asi“(\"{L\ (5.45)

7/9

-glFSW\(&“\"I - cosby | db ]

In each of equations (5.44):.and (5.45) there are eight
integrals to be evaluated. Let us first turn our attention

to Lk‘(x,y), for which the integrals are

" .
y - .
:’."IL ? e ml(‘.oso-{\’%u\oq( dq/ 3 (5.46)
2 ‘:)( Q
o«©
- % r{Lab % Q‘°Y cos o«L coloY da/aa (5.47)
y o
312 —aY
: in (5.48)
"I_L’? %Q $“WL$ o AO/QQ

AP\ eV ain (5.49)
~ XQ sinox| cosoy Ac}/q_
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o
1
-af d’l;"’ \Q_ofsinwL>:ao4 d& (5.50)
y o
]
o0
L -
+al ALJ \e “‘/smw\’c_oso-{ da/a3 (5.51)
“4 _
= [ ma (5.52)
+alw L e ¥ \I .
ﬁ(; F‘X sinoy O Vogl da/@qb

.Y
“

1)

X Q,—wl Co30/ S ‘!.(;:C df}/oj/d

(5.53)

(where y =y y - yL,)
By repeatedly applying the technique of integration
by parts (see Appendix D), integrals (5.46) through (5.51)

can be reduced to multiples of the following standard integrals

as given by Gradshteyn and Rhyzik (1965, p.492)

[ 4

o | (5.54)
XQ Ysiﬁ o.,:\’smw d&: ﬁ .9:». &\1%- L4~4L\a

[+
[

2+ (rl+'4L\a
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9 §4L -4

®
Qﬁ-ayﬁinoq(cosoa*\‘ég = —'5-‘\0«-« (J/Y/ \ (5.55)
O

& $\AML%N\01( c\cz:~ = d_aL o™ (9134+454433

(5.56)

¥+ Kr{-vﬂa\a

+d ‘m:' (JM’/ \ ey A [ N2+ (4=Ap)? ]
-l L . A
Integrals (5.46) through (5.51) then give us

E7 B gy ) —|( o 3 (5.57)
-1 + -2 LA L e [ aY 2
SR S I R Rl e

o)

\
2\

L sh 4
+ (a.' AP 1AL :’"ﬂ“ 19»(1"'«(4—40
g LA NEFY TNy
Similarly, by applying the following integration by

parts relations

Xe,—o‘/smw Sﬁéq_ = (5.58)

a™a

o w»
+ 2 SVox|, sined -y \e" Sinoy SJML _da
(n-a) TTazd Q\—Q\ n,-!

) . o



o

+%\€.’°1co§0rﬁ $\IML iﬂ/ + ’d) \& sw\o{ﬁf\w‘,éq
(n-3) a=® U\—a\ a"it
° o 9 [
&
xﬁ’:wcmm( S\f&'l: d_&_
° 0.‘\/a
o
o e S
L S\‘M\, Co3ox - oY xe’ YCOXO—;( S\[G«{Ldy
(n-a) r\.‘.’ KK:A) n-2
o o a @ (5.59)
o0
- 3o xe. Sinoy S ‘__ \{;; cosws\r\MLd&
(n-2) a“ﬁ? (n—a) R

o

('n' a positive integer) integrals (5.52) and (5.53) can

be reduced to the following form

A, )3 —\wx (é\l“'{f,")) +y ( \‘Ya’#
(5.60)

: 7
+(|§Aé¢ —oral®_1 al,é‘la) Y Jw[\ﬁ«» (i) ] -2 A "31
3 40 T 4 /4 —_— 5

N+ Ty

cO_

NER RN "‘L‘L‘l _ 404 Xe""/smoq( SWorf da
tos ~ alld
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oo

-r:’-b_\lo‘{q(af -?13\\6 *Y cosox 3\]0,4, Aq y

QJ

o
(where y = y-yy )
Adding equations (5.57) and (5.60) gives us, for integrals

(5.46) through (5.53)

et () (3 -2 et

194’4

o .
¥, ~o "
-2 \l"‘LJ . N \1‘)\‘9,* +\Q\l¢_qo,{3]\e éil\o—x S‘IML dQ (5.61)
5 to3 E3 /;3&

(03

:_,‘- \10‘{414«‘&\[ \\ COSG%S‘IML da

The expression for the stream function 4'(x,y)

(equation (5.44)) then becomes

©



-

-2l fir .9;1,.'-' 10414%%\(3 waasw SJML da
H{a 7 103 PR

]

(The solution for'k*£x5y) is arrived at in a similar manner).

Setting x = 0, gives us

' . (5.63)
Y () =0

satisfying the boundary condition (5.5(i)) at the shore line.
‘At the end of the surfzone, y = 0 (that is, as y>y,),

0<x<x we get

bl

d(‘ (~,0) = T: 'no,g S du =
ala

Making the substitution

+° -
oy

in the integral gives us

“% —"% \$in (@;‘:—JSL’Q\A(Z | (5.65)

or (Gradshteyn and Rhyzik (1965), p. 654, 6.325)

AR

X\

: L
(hlt Z) o J‘s/d (5.66)

|
RS
N
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which then gives us
T, (herzo

to satisfy boundary condition (5.5(iii)).

Attempts to further reduce the integrals

% e °‘/~_:,in (o) 5 {;(_C c\o/&y&

(5.67)

\ & o) S0l doy y,

to standard forms did not meet with success.
An attempt to solve them by Taylor series expansion
of the Fresnel integral met with convergence difficulties
at both limits of y (as y-»0 and as y-»+00), as well as
a discontinuity at the breaker-line, X=Xy
Integrals (5.67) were,ﬂtherefdre, evaluated numerically
(using the trapezoidal rule) and the results thus obtained
used in equation (5.62) to calculate values for the stream
function(‘\'I (x,y) in surfzone I. (Values for the stream
function in surfzone II were calculated in a similar manner.)
The solution seaward of the breaker-lines was not
calculated from the closed form (5.41), which is not of
much practical use. Instead, Laplace's equation was in-

grated numerically using the finite difference equation -
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given in Appendix B (7b), with values at the breaker-lines

matched to the analytical solutions.

IIT Discussion

The full solution, as presented in Figure 28; has been
rotated 180° from the configuration shown in Figure 27 and
the surfzones truncated at lengths equal to those of the
numerical models for comparison with the solutions of Chapter
4, It is realized that the surféoneS'thus presented are
from semi-infinite, but nevertheless of sufficient length~-
in comparison to their widths.to merit presenting in this -
manner,

The genefal circulation pattern again consists of two
counter-rotating cells driven by ‘the wave-induced longshore
currents - which flow toward the intersection corner. The
off-shore refurn flow is, however, more strongly divergent
than in the numerical solutions, "leaking" across the breaker-
lines for most of the width of the surfzones.

Presented in' Figure 29 are normalized stream-line
profiles taken across the natural beach surfzone at the
positions shown in Figure 28. (The stream function values
have been normalized with respect to the yalue of the stream
function at the breaker-line of cross section d.) They
differ considerably from the infinite beach profile shown
lin Figﬁre.l4 and again illustratelthe rapid divergence of

~the longshore currents in comparison to the numerical models.
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The difference between the analytical and numerical
solutioné appears to be one of scaie rather than of form.
A thorough verification of the analysis leading to equation
(5.62) has not revealed any errors in algebra._ A repetition
of the nﬁmerical model with doubled resolution shows the
reliability of the numerical integrationé and the indepen;
dence of the results on grid scale. The difference between
numerical and analytical models remains unresolved:; in view
of its complexity the analytical model does not éppear to be

a useful tool even in the idealized conditions studied here.



Figure 28.

Current pattern for the analytical
model, where the beaches have been
truncated for comparison to the
numerical solutions.
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Figure 29.

Normalized stream-line profiles
taken across the natural beach

surf zone of the analytical model
at the positions shown in Figure 28
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CHAPTER 6

SUMMARY

We have developed several theoretical models of the
wave—induced current circulation in the wicinity of an
isolated breakwater extending from shore, as inspired by
a local field site.' These consist of

i/ several numerical models using finite beaches in
enclosed basins, where consideration has been given to
variations in sea-floor topography as well as to linear
and non-linear fqrﬁs of bottom friction

ii/ an analytical model characterizedbby semi-infinite

beaches and uniform sea-floor topography.

Numeriéal_Models

In general (for a given angle of wave incidence) the
circulation patterns show two counterfrotating'ceils driQen
by the'wéve—induced longshore currents - which flow along
each beach toward the intersection apex - with a return
flow out over the shelf in the form of a rip current. The
maximum velocity is found in the return flow, shortly after
it emerges from the intersection corner. Despite.'a host ofl
simplifying assumptions and approximations, theiqualitative-
features of the models are consistent with observations of
sediment transport taken at the study site which show beach
sediments to be moving along both the.causeway and Tsawwassen
beaches toward their common corner which is building out as

a result.



Differences in the linear and non-linear bottom friction
models did not become apparent until an off-shore trench
parallel to the causeway,'was introduced to.the sea-floor -
topography.

The results for the non-linear model show a deflection'
of the off—shore‘return flow into the trench with a cor-
responding increase'in transport and agree with prelimiﬁary
analysis baséd on a one-dimensional model. However, the .
linear results differ cdnsiderably from those of the non-
linear modél; are difficult to interpret and thought to be
suspect due to the restrictive assumptions upon whiéh the
linear form of bottoﬁ'friction is derived.  The trench
model perhaps serves to illustrate another insﬁance'in
which the use of the linear form of bottom friction may

not be appropriate.

Analytical Modél

Difficulties were encountered in the development. of an
analytical model of the current circulation despite the
linearization of the governing equations and the use of
semi-infinite beaches. As a result it was found necessary .
to numerically integrate two of the integrals in the surf
zone solution as well as the governing equation for the
regioﬁ seaward of the breaker-line.

‘While exhibiting the same general features as the
numerical ﬁddels, the analytical model shows a much broader

and weaker off-shore return flow. The source of this
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difference has been sought in p0851ble scallng dlsparltles
between the numerical and analytlcal models but without
success. In view of its algebraic complex1ty, the analytical
model does not appear to be a useful tool, even in the
‘relatively simbie geometry studied here, and a fortiori in
more realistic geometries.

Improvements to the analyéis would take 1into accqunt‘
horizontal eddy viscosity (which may reduce the strength of
the longshore currents), convective inertia (thch may
strengthen the off-shore return flow), and wave4current
interaction, since the off-shore return flow may‘modify
the wave field and cause the waves to break earlier than
othefwiSe (Mei‘and Liu, 1976, part 2). |

Also of interest (at the Tsawwassen location) is thé
added effect of the trench upon current circulation in lightA
of tidal action, particularly the effects of an ebbing tide
upon nearshore circulation as water is drawn into the trench.

To verify the models' predictions, aseries of fiela
measurements or wave tank experiments should be undertaken.
That longshore currents are present at the study siﬁe has
been established by evidence of sediment transport along
the beaches. However, difficulties in obtaining field
‘measurements of the total circulation at this particulari
locafionAarise due to the restrictions imposed by the locél
'béthymetry;and geometry as well as the non—lineérity of;the
littoral processes.themselves. Wave tank.éxperiments may R

then give a higher yield of data per input of time and effort.
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The relationship between near-shore currgnts and coastal
sediment transport is a difficult and complicated problem.
Hopefully the basic understanding of the currents in a typical
beach-breakwater configuration gained in this stqdy may serve

as a first step in resolving the associated quantitative

éspects of sedimentation.
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APPENDIX A

SUMMARY OF APPROXIMATIONS

The governing equations for the linear numerical models
have been derived subject to the following approximations.

1l. The equations have been formulated for mono-
chromatic small amplitude wave trains propag-
ating over a mildly sloping bottom.

2. All averaged motion is purely horizontal and
depth independent.

3. The energy density of the waves E, is equal"
to %/Ogaz, where 'a' is the amplitude of the
waves.

4. Horizontal eddy viscosity has been ignored.

5. Bottom friction has been lihearized.

6. The inertial convective terms have been
ignored.

7. The wave amplitude in the surfzone is propor-
tional to the mean water depth.

8. Wave-current interaction has been ignored.

9. The waves are assumed plane at the breaker-

line.

In addition, for the analytical model, the off-shore
zone isassumed to have a uniformly flat bottom, with a
depth equal to the water depth at the ‘breaker-line, while
the non-linear numerical models do not assume’the bottom

friction to be linear.
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APPENDIX B

COMPUTATIONAL CONSIDERATIONS

We wish to develop a computer programme which will
numerically solve for the stream function Lt’(x,y) in the
vicinity of a beach-breakwater junétion.

Throughout we shall be referring to the beach con-
figuration as shown in Figure 30, which differs slightly
from the Tsawwassen configuration in angle of intersection-
and orientation with the general surroundings.

The regionin which we are to solve for L*(x,y) shall
be divided into three zones, surfzones I and II and an
off-shore zone. Surfzone I (corresponding to the Tsawwassen
Beach surfzone) is parallel to the y—axiS‘from'—yb to —21,

and is of width'\x Surfzone II (corresponding to the

-
causeway surfzone) is parallel to the x—axis from ~Xy to

' “X) and is of width 'ybl. The intersection corner has:’
been removed to ease the specification of the boundary con—;
ditions there.

The off-shore zone is to accomodate variations in
bottom topography such as a trench running parallel to the
causeway and a drop-off to much deeper water, as discussed-
in Chapter 4.

The problem shall be solved by the Gauss-Seidel
iterative technique, the general application of which is
described below. For a more detailed discﬁssion see James,

Smith and Wolford (1968).
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CAUSEWAY BEACH y

NATURAL BEACH

Figure 30, General lay-out and boundary con-
ditions for the numerical models.



A lattice or grid of mesh size Ax=Ay=h and of dimension
Xy by Y is superimposed upon the region in which a solution
is required. The Solution of the governing equations con-:
sists of determining the stream function values at the
finitely-spaced grid points (i,j). |

The governing equations for each region of the linear
(4.20) and (4.21).

model are as given by equations (4.19),

1. Surfzone I

N ,gé_‘k +§f_‘{' = -K.d%
342 F I« oy° (l.b)
] QdeL)-o | <%0
6 Ylay) =o Yo Y Yh
2. Surfzone II
> > _ 3/
B’%o —%l% i %%{Pa - ~%y™ (2.p)

—\IL<\I$O

=0

—415 A < —4L
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3. Off-shore Zone

)f_f_i ;94 ;_é_é_d _‘_l g_;___‘_l o (3.b)

The offshore stream function is identically zero on
the walls of the basin, as shown in Figure 30, and is
matched across the breaker-lines and the ends of the surf-
zones to the respective surfzone stream functions.

From Taylor series expansions we have the following

finite difference approximations to derivatives:

v;a(»\ = LV W N —Q NN W,

W + -
Py L*\,l\ (.)‘) (,-\,J
S42 o

Y \\a (4.b)

335 = Wi Uy
N
L
%5‘54 = L\éu,‘s - Uiy

W

which upon substitution into equations (l.b), (2.b) and

(3.b) give:
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1. Surfzone I

L\—L' = 3P kki.{—\.s * L\

\5 ‘L—l,“\ * &"

<D

'L.SH Al

sP= 1-9 ., SD= 4-2 (5.0

Q,* 'S ‘\\\C (h\'\'omct 4¥rom ‘\’LQ B\'\o(e‘:ne_

2. Surfzone 11

k\i..' = (\(i.-u.:) ¥ ‘h_.; ¥ $P. 46\314 v d(

J A
sO

v .0 Y%
(;(S'-l \(J f\2\1

6.
SP= - 2 ; Sb* - 2 (6.5)

R\I ;2#
Q\l s Ne  divtonce 'gro‘m\. {-‘:\e %&\are_\ine

i
3. Off-shore Zone

\-\L)‘S: sV L\Vi.-n."s t kki,-n.‘ rSbL k\’iﬁ:t + &,t’i'y.' |

A (7.b)
sSD

5?’ 3-2- "\('_1.;,")/“{_,3'
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SL* 3‘0‘“gy.lu

Oy

5D 8- | Mg v Hewg | [ He,

where Hij is the depth at grid point-(i,j).

The problem has now been reduced to obtaining the
simultaneous soluﬁion of a set of linear algebraic equa-
tions in the unknéwn grid-point stream function values ({%j'
the total number of equations depending upon the extent
of the boundaries and the number of grid points used.

The steps in the Géuss—Seidel iterative methpd used
to obtain the solutions are as follows {(as given berames{’
Smith and Wolford, 1968).

i/,each equation is first written in a form convenient
for solving for the unknown with the largesf coefficient
in that equation. |

ii/ ali unknown stream function values at the grid points
are then assigned initial values on the basis of the best
estimated value (the better the éstimate, the more rapid
the convergence to a solution).

iii/ at each point (i,j) in the lattice, an approximate
value of the stream function STEMP is then calculated using
the appropriate equation ((5.5), (6.b) or (7.b)). This
calculated value supercedes the estimated value and is then
used as the sfream function value (ti,j, at that grid point

until it, in turn, is superceded by a new calculated value



iv/ in all iterations, the latest calculated stream func-
tion values are always used in calculating newer and better
points.”

v/ the points on the lattice at which the STEMP values
are calculated are selected in sone systematic way - in
this case by rows

vi/ one iteration is completed when an appropriate value
has been calculated for each lattice point whose stream
function value is sought

viii/ when the stream function change at all grid points”
between.sucéessive iterations is less than or equal to some
pre-determined value or when a certain maximum number of

iterdations has been reached the computations are stopped;

A plotter is used to draw the contour graphs of the
stream-lines as functions of i and j.
In some models a non-linear form of bottom friction

(James, 1972)
T= C/)\(ﬁo\ “}:" (8.b)

is used in the off-shore zone (as discussed 'in Chapter 3).

The relevant finite difference equation then becomes

, ‘ (9.b)
k\ri.;): $?' g\(fd-‘);) + o 4(“:3 + Sk k['iv:)-u* o &(’C"—-l

s>
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’D: — . .. P
SV 4- 3 \L.‘\“ II-\L“

SL= 4-a- W [ W

('“'3 C'.S

SD= 1R-3 [““3“ + Hw,ﬂ / H‘:&
And finally, a note with regards to the mesh size h,
used in the analysis. The ﬁodels presented in Chapters 4
and 5 have a lattice spacing of 18 grid points per inch.
The effects of varying‘the numerical modeis"resolution is
clearly illustrated upon comparison of the acute ané&é model‘
of Figure 31 with that of Figure 18, where the models differ
only in their mesh size; Figure 18 showing the circulation
patternAof.a.moael having twice the resolution of that shown
in Figuré 31. The most noticeable effect of increasing the
resoiution is to decrease the size of the 'step' (which is
a direct reflection of the mesh size) in the stream-lines
adjacent to the natural beach which runs diagonally to the
grid lattice. In addition, the 'eddies' which are present
in Figure 31 Would also appear ta be a manifestation'bf”poor
resolution since they are not evident in the higher resolu-

tion models of:Chapters 4 and 5.
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]~

Figure 31. An example of the effects of varying
the resolution of the numerical models



APPENDIX C

EVALUATION OF INTEGRALS I, (o) AND IZ(P,)

We wish to evaluate

A
1 (o) = \I%Lw\dsdq( (1.c)

(V]

where (Abramowitz and Stegun (1965), p. 437)
T o - 3 |
\\:%LLM)— % (o) (%\Mw-w COSMS (2.c)
so that

b

_— _ 3,

T () é‘ 0. “%(saﬂw-wmw\ (o) dox 3¢
/

If we integrate by parts, letting

¥, A
e dus e e

(VA XL%EAW*O-{.COSW\AO{ = ‘(acosw+o‘sino—<\
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equation (3.c) gives us

o¢\, o<}, (4.c)

'/g 3’&
+ 3\ (o) cosogdox + 3 \ ) sinox doy

6 0

Consider now
ox|,
3
36 \um Sinoy doy = E4 Q ox) (5.c)

o

Again integrating by parts

k% VA
w= (ox) . v dw= 3/°1L0—£\ ao\w

we get

oxl

| 74 |
3/a Q o) = 33(0«&\ ac::so—.:k + % X (o) L corox doy
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so that
—_— ¥, st
L ey = ﬁ o ~1(o,d,\ COSML (o) slnML
7
.c)
oxl, v (6.c
£l \ (ox) ° oSOy c\w]
A

o

Now consider

o
XLM\“mwdw -

o

R(w)

once again integrating by parts

l’& ) d\k= -‘at &M)_Vddo‘x

w = (X)) ;

n s XCO\&\(M = S0y

so that
oxl, oxl
/RW\ (MS Sm(o—x\ ~ j— \ sinoy doy
° ° Cox) %

A ! -
(o) “sinloxl) - x ) ( (0453



—
where S(Jm¢ ) is a Fresnel integral as given by Gradshetyn
and Rhyzik ((1965), p. 930, 8.251(2)).

We then have

¥ s/
I\(_Q) =Aél 0:4 K—g (ML\ aCoBM\ - (_M&) Jsfr\()«{L

]

~

4
+e_ql LML\J&\ML ’%’@S(\[&:—L‘B] (7.c)

Similarly for

Yi
Aoy \ Ty by ey

]

é’ b \ 2 N e b - Cp byl -

'IJ —
+ 2 (hlY s B[ - %’{? S‘/\’YL'J
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. 'APPENDIX D

INTEGRAL- ANALYSIS

We wish first to evaluate integrals (5.46) and (5.47)

ol

oo [
%o ) | v C _ (1.d)
Znf"\@ GYC°W\‘S°~°$§5 - TAf” %f’- ° coxwLmo—fc(q
:J‘ ’:I‘ &3 & "I
o i .

Let us start by integrating the following integral

by parts
% e
. -of
A, \e sinogsinoy| da (2.d)
“* od :
[+
letting
e -
w= € ‘sinoy dar = s&no«L , N ° -cos oxi,
“a2 ' |,

We then have

~ o

[
5/, -
~Np© XC aYsmof steox| ég =
B

(]

o0

¥ o ¥ ¢
P | A mgorer
+ ol * N 07 (3.4)

0 o
. »l _ _
- .'M[, J-xe— °YcoWLsin°¢ é‘_l_ + r{f’a xe— .l cowL coloy cil;
7 O~3 : of}
/] o
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or
” ©
1 q(L J \Q-—c\/COW\,SW\M A__a_ =
d % a3
[~
ﬂ o0
31° £ -
7 ,-4[) J \ -1 '{L XQ °Y$tno1$tr\wL c_!_g_
4 =5 4 3 o
° (4.d)
@ © :
o . -0
147\ @ Ycostu..o';da + 1A\ e YCoqucow{c[q
4 ' oa 1t 2
o Q
]
Equation (1.d) now becomes
—
L
3%° ﬂaw
1 n((, e \ -2 4 e."mlah\of;(gmw\) da.
4 - 4 = o
]
(5.4)
oo o«
-1 ,1(&)[ Q,—OYCOWLSfAHAQ _ ,.;L% %e"oyc«:w;L cosox da
4 a2 4 —a
+ o . o
(]
u T



where integral III is % of Integral (5.47)

, which we shall
now integrate by'parts to get
2 %
-2 A XQ C_oso«\)cosoxda =
4 o®
. \\l
3%,°
. _ZdL \ ¢ I+ X oYCowslﬂwL dq
4 ‘o q (6.4)
< <
\ -
¥, -
23 4b \ € Voo cosonda  + 74 ’GY““”“F‘“"““
4 y 4
o
so that equation (5.d4) becomes
~
. o -0
-1 4%\e’“15inwstmgda - ZﬂlL/ ! \Q Cosor{ Sin0¥ d,&
4 = o2 LI a’
)
(7.4)
o
W ¥

-

Y %4‘;5/"'%6- Cosoy smoqt\bdq + 1’1‘, ‘{\Q YCQSML co$o«‘da

Gt
N

®
., -
R .T: Aoy XQ \/Cﬂutstr\wd/@
7N
4]
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Considering now Integral.V: we have

»
y‘) -0 3/-?
Z"IL Yy \¢ YCom\,Cowdq = -~ ZNL \l
4 - 4
o
—
g
od -
34 -
+ 2 ALY Xe— mlsmo,( coro«], da
4 — jpateba_H
~ o
° (8.4)
—
. on ("E) o0 V}'
—o /) -
+ Idst %e YMML$H\0—{ cl__g + 24y ie. oémwsu\w{, da
1 = 0 Y3 o
o o
Substituting into equation (7.d) we get
oo x
E74
¥, J o
-ZAY - 7 4 \e \émw%mw\,c\a
4 4+ o
o
— —
* ‘l o £
Sh\ - % -
+24), "\e OYCOMEFAMLAQ + _‘.’AL d\e o):_oso«[,stno-l dﬁ (9.4)
4 ) = A . =
—
% oot EAEY
+ 14[) "\ ¢ sc.\o,gcowLég_ +:IML Y\¢ scno-,(stnw[’ég_
4 = o V% c

[+

Finally, we also have
—
N
/

oo
1 ndga\ Q—cYcoso-{ s RML (;‘5_ _
* o (10.4)

°
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. = o
=7 nlLi’f \€~°st\o')($ino-,(L c&;_
4 ~ e
(]
o (‘-I) (-] E
% 1KLC _
+:’d!,_ \Q_ GYﬁ\I\(}#XN\O{Ld« -1 L \Q /SWCO‘AO'{LAQ
13 a4z o
e o
which then gives us
%
-z
Z b Y
oo \ZI-) Yz;, lz'
+ 7 (dL oL +4L ~[ ’L%) ie"’ com,q,smwdy (11.4)
£ + " ‘ o
a
5 0 -
d -G
+1 All:‘! XQ Ystnog sino| dg/

The integrals in equation (ll.d) are to be found in

Gradshteyn and Rhyzik ((1965)

p. 492), so that equation

(1.d) now becomes

A

.d)
-7~lL Y —lth Y,Qk °‘+(4L—43) (12.d
Ya+wl,+4)"



115

v (A% e s -4L7"“\ 1%“(‘”} \

~ 244l >~

In a similar manner integrals (5.48) and (5.49) give

L (J‘I/_,) +4L4‘y B'N \‘l"+(4§. -\* (13.4)
f/ "2 1 aal ~ y2 + (b )

while integrals (5.50) and (5.51) can be shown to equal

2 ~1
(e lr s i) v (e

"%L"d"’ \ \u.:'(A/ (14.4)

N

Taking the sum of equations (12.d), (13.d) and (14.4d)

gives us

(15.4)
(_14[,3'54 ~ AN L 41,% 1 lo.c‘ ay¥
,* ? : a \lJ-H"LJ—"
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as shown in equation (5.57).



