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Abstract ii 

Abstract 

A soliton of the Kalb-Ramond field in closed bosonic string theory is introduced. Un­
der appropriate configurations the cosmological constant becomes a periodic function 
of the Kalb-Ramond field. This vacuum degeneracy permits the formation of sine-
Gordon solitons. The energy and length scale of the soliton is inversely proportional 
to the string coupling constant gs. The stability of the the solitons is discussed and 
it is shown that these objects are stable. 
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1: Introduction 

String theory purports to be a 'theory of everything' and it is currently the lone 

serious candidate for the unification of gravity and quantum mechanics. Decades of 

intense theoretical work have explored only a few avenues of the large landscape that 

is string theory, but to determine if string theory really is a 'theory of everything', 

we must continue to investigate its various aspects. A particularly interesting area of 

research involves looking at certain topological features of string theory. 

Herein we discuss one topological feature that occurs in closed bosonic string theory: 

the Kalb-Ramond soliton. One of the massless states of closed bosonic string theory 

gives rise to a field known as the Kalb-Ramond field, which is often called simply 

the B-field. Under appropriate compactifications, the B-field can couple to closed 

strings. In this situation, the B-field shifts the momentum, much like the shift in 

momentum caused by the application of an electromagnetic field to an electron. The 

shift in momentum drastically changes the value of the vacuum energy density. In 

fact, the cosmological constant becomes a function that is periodic in the B-field. 

This degeneracy of the vacuum can produce domain walls. To an approximation, 

the system is equivalent to the well known Sine-Gordon system. The energy, size, 

and structure of the domain wall depends on the compactification radius and may be 

observable in certain configurations. 

We begin what follows with a brief review of bosonic string theory. Chapter 2 

provides the necessary prerequisites for a discussion of Kalb-Ramond solitons. Chap­

ter 3 contains a discussion of the covariant path integral formalism. The key point 

here is the idea of modular invariance. The influence of the Kalb-Ramond field on 
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closed strings is analyzed in chapter 4. It is shown that the Kalb-Ramond field can 

shift the canonical momenta string modes. Chapter 5 details the calculation of the 

vacuum energy with and without toroidal compactification. The calculation is then 

consider for the configuration of a constant Kalb-Ramond field. The finding is that 

that vacuum energy is a periodic function of the Kalb-Ramond field. After a brief 

discussion of the tachyon divergence in chapter 6, the string theory effective action is 

introduced in chapter 7. The cosmological constant is added to the effective action 

and dimensional reduction is considered. Chapter 8 shows that under appropriate 

circumstances the Kalb-Ramond field can have sine-Gordon solitons, the details of 

which are discussed in chapter 9. The remainder of the thesis discuss the stability of 

these solitons. Chapter 10 begins with an explanation of why one might at first ex­

pect the solitons to be stable and concludes by explaining that the soliton may decay 

to the true vacuum through its coupling to massive modes. Chapter 11 estimates the 

rate of decay of the soliton through nucleation. Chapter 12 concludes the thesis with 

a summary. 
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2: Review of Bosonic String Theory 

2.1 History and Motivation 

Einstein's general theory of relativity is the currently accepted theory of gravitation. 

However, it is a classical theory. In order to describe gravitational effects in extreme 

circumstances a quantum version of general relativity is required. After many years of 

effort, though, gravity has prooven impossible to quantize. The efforts to do so have 

persisted since the early days of quantum mechanics, but all conventional attempts 

have failed [1]. 

During the 1960s and 1970s, the so called dual resonance model was explored as 

a possible theory of the hadrons. Ultimately it failed and was replaced by quantum 

chromodynamics. One of its failures was that it predicted a spin-2 particle that 

was not observed in hadronic reactions. This failure was, however, was somewhat 

fortuitous. For as the dual resonance model was abandoned, some realized that 

the spin-2 particle may in fact be a candidate for the graviton - the quanta of the 

gravitational field. That is, the dual resonance model should not be taken as a theory 

of hadronic interactions, but as a quantum theory of everything. In modern times, 

string theory has become the leading candidate for a consistent theory of quantum 

gravity. Thorough monographs have been written on string theory [2, 3, 4, 5] as well 

as excellent review articles [6, 7, 8, 9]. 

Herein we shall give a brief review of the elements of string theory that are imme­

diately applicable to the discussion B-field solitons. 
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2.2 From Particles to Strings 

2.2.1 Particles 

In special relativity, the action of a particle is given by the integral of the invariant 

length ds2 — glll,dxtldxu times an arbitrary constant m: 

The connection with non-relativistic physics is obtained by parameterizing r = X 

and taking the following limit: 

We therefore conclude that m is the particle mass. 

2.2.2 Strings 

To move to string theory, we note that a one dimensional string sweeps out a two 

dimensional sheet as it moves through spacetime. Cover the surface with a two 

dimensional grid parameterized by {ca\a = 1, 2} and metric hob- The element of length 

for any Riemannian (or pseudo-Riemmanian) surface is given by ds2 = habdcadcb. 

Thus the length of a small coordinate displacement is given by ||dca|| = \/haadca (no 

sum). Therefore the area of a particular (parallelogram) element of the grid is given 

(2.1) 

S = -m J dx°y/i-x* = j dx°{^ 

by: 
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AA = | |dc° x dc 1!! (2.3) 

= ||cic01| Hcic11| sin(6>) (2.4) 

= | |dc°| | Hdc1!! (1 -cos 2 (0)) (2.5) 

dc° 2 dc 1 2 - dc° • dc 1 2 (2.6) 

= v^oofcn - (hQl)2dc°dcl (2.7) 

= v ^ t i c ^ c 1 (2.8) 

where h — det(hab). Writing r = c°,o = c1 we then write the so-called Nambu-

Goto action as the total area of the surface times arbitrary constant T of dimension 

(length)'2: 

S = -T I dodr\f^h J dodr\f:-h (2.9) 

To determine the induced metric hab in terms of the spacetime metric note that the 

line element as calculate in both frames should be the same: 

ds2 = habdcadcb = G^dX^dX" (2.10) 

dX»dX" 

To make the connection with non-relativistic physics, we parameterize r = X° . We 

then parametrize o as the proper length perpendicular to r: (-J^X1)2 = 1, -§^X° = 0. 

Substituting these values into (2.11) and subsequently into (2.9) we obtain: 

S = -TJ d r d o ^ l - ( ^ ) 2

 + (^-X^Xr (2.12) 
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Writing v2 = (-^X1)2 — (^Xl-^X1)2 and expanding in small v, we obtain 

5 = T | d r d o Q,2 - 1 + C V ) ) . (2.13) 

Thus we may interpret v as the transverse velocity of the string and the second term 

as a potential energy term. I.e., T is the classical tension of the string. T is often 

written as T = TT—F 

We will find that an alternative, but equivalent version of the string action (2.9) 

will be easier to work with. Introduce a Lorentzian (—, +) metric 7 a h for the so-called 

Polyakov action: 

S p = 4^J drda^l^hd-Xil^X^ (2-14) 

The equation of motion for 7 a h following from this action can be used to eliminate 

itself from this equation and recover the Nambu-Goto action (2.9). We may also 

define the energy-momentum tensor via the equation of motion for ^ : 

Tab = - 4 . 7 T -
1 6 

-7 8fab a 

The equation of motion for Xth is 

SP = - l ( d a A ^ d % - l^daX^d'Xj - 0. (2.15) 

da(V=llabdbX») - ^d2X» = 0 (2.16) 

2.3 Symmetries 

The concept of symmetry plays an important role in string theory. Demanding certain 

symmetries puts extreme constraints on string theory. 

First we note that the action 5^ should be independent of intrinsic properties of 
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the world-sheet. That is, physics should be independent of parameterization of the 

world-sheet. This is called diffeomorphism invariance under: 

X'^T^O') = X»{T,O) (2.17) 

do'c do'd 

^Ta^'cd(r',a') = lab(r,o). (2.18) 

An additional symmetry satisfied by Sp is that of D-dimensional Poincare invari­

ance: 

X'"{T', a') = KX"{r, a) + a" (2.19) 

7ab(T,o-)=LAB(T,o-). (2.20) 

A third symmetry is unique to that fact that the world-sheet is two dimensional 

and is called Weyl Symmetry: 

A " " ( T V ) =X"(T ,<7) (2.21) 

iab(r,o) = e2^hab(r,a). (2.22) 

An arbitrary symmetric matrix has D(D + l ) / 2 free components. Diffeomorphism 

invariance implies that we can fix D components. Therefore there is D(D — l ) /2 

degrees of freedom. In particular, in D = 2 we have 1 degree of freedom which means 

that we can write the world-sheet metric as: 

Jab = e2^r,ab(T,o) (2.23) 
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where nab is the flat Lorentzian two-dimensional metric. Subsequently, Weyl invari-

ance implies that that the action is independent of the final degree of freedom. 

Of particular importance are conformal transformations: There are coordinate 

changes that scale the metric which can subsequently be undone via a Weyl trans­

formation. These compound transformations are called conformal transformations. 

Introducing o± = r ± cr we note that in the conformal gauge — det(7a&) = e 4 w and 

= e~2uJr]ab. The action becomes 

S = 4 ^ / d r d C T v / = 7 7 a 6 9 t t X " ^ X A 4 (2.24) 

Thus, the equation of motion is the simple wave equation: 

d2 d2 

1 A ^ = 0. (2.25) dr2 do2 

we may then factorize the differential operator yielding 

9 d ' A ^ = 0. (2.26) 
s do+ do 

The general solution is then the sum of a holomorphic and anti-holomorphic (right-

and left-moving, respectively) part: 

X»{o, T) = XL(o+) + XR(o-) (2.27) 

X^(a~) = \x» + o y e r - + £ ^e~2ina 

X£(o+) = \x» + a 'p"<7 + + YJ fe~2ina+ 

(2.28) 

We may now quantize in the usual way. In the conformal gauge we have 

S = | J d2odaX»daXt, (2.29) 
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and thus 

P " = — — L = TIC1. (2.30) 

To quantize the system, we introduce the equal time canonical commutators 

[X"(c, T), Pv{o', T)] = z5(a - o')rf\ (2-31) 

We then arrive at 

[xi*,tf\ = irr (2.32) 

[ < , < ] = (2-33) 

[<, <] = Sm+nVr (2.34) 

K , a @ = 0. (2.35) 

We recognize these as the harmonic oscillator raising and lower operators if we write 

04 = v ^ a ^ m > 0 (2.36) 

a £ m = Vma^ m < 0. (2.37) 

One then constructs the various string states by using the raising operators on 

the vacuum state |0;pM) . It will turn out that the higher states are increasingly 

more massive. However, not all states constructed in this fashion are physical. The 
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equation of motion for 7 in (2.15 ) yielded the energy-momentum tensor which may 

be written as 

T ± ± - d o ^ d o ^ - ° ( 2 ' 3 8 ) 

In order to facilitate the application of this constraint we take it's Fourier modes. 

For example: 

L - = i h [ ^ , m ' T - ^ = s b [ ( 2 - 3 9 ) 

After substituting in the mode expansion we find that for the right modes 

1 0 0 

L m = 2 ̂  a m ~ n ' a n = ° (2-41) 
—oo 

however, since [a_ n, a n] 7̂  0 , after quantization there is an operator ordering 

ambiguity in the m = 0 case 

^ 00 

L 0 = - c / p 2 + - a-n • Oin = a. (2.42) 
1 n= l 

That is, this normal ordered expression is ambiguous up to a constant a. The constant 

must be determined. For closed strings we find a — I [4]. Similar relations hold for 

the left modes. 

If we define mass as m2 = —p^p41 then the Virasoro generators give the important 

level matching and mass-shell condition. Taking the sum and the difference of the 

zero-mode Virasoro constraints, we find 
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N-N = 0 

m2 = —{N + N-2). 
a' 

(2.43) 

(2.44) 
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3: The Covariant Path Integral and Modular Invariance 

3.1 The Covariant Path Integral 

The Polyakov path integral formalism is essential for a proper understanding of string 

theory [10]. Here we investigate the the closed bosonic string path integral by ana­

lytically continuing the matrix ^ to the Euclidean signature metric gab- The path 

integral we are interested is given by 

J DXDge~s (3.1) 

where S is the sum of the action and the topologically invariant Euler character 

S = ^bJ d'a^daX^X, + d2a^gR. (3.2) 

This is the only local functional consistent with Weyl invariance, two-dimensional 

general covariance and Poincare invariance. The Euler character is often denoted by 

X and and is related to the number of handles (genus) of the surface in question: 

X = ^ J d2o^R = 2 - 2 7 . (3.3) 

In addition, however, we also need to add a counter term of the form /j,2 f d2o\fG 

to (3.2). This is required to compensate the regulator that is used to define path 

integrals of products of X^ at the same point. 

In D = 26 all anomalies cancel and the action is invariant under two-dimensional 
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coordinate transformations and Weyl transformations. We must therefore divide out 

the group volumes for the general coordinate transforms (diff-invariance) and Weyl 

invariance: V = VQCVW- This is in fact an oversimplified notation since the volumes 

are not quite independent. The proper path integral is then given by 

r DX*. 

J ~VG~C~ vw 

This integral was first evaluated by operator methods [11] but has also been de­

termined via the path integral method [12] for the torus amplitude. For the torus 

amplitude it was determined to be 

Zt0rus = T13V26 J ^ e 4 ^ ( 2 7 r r 2 ) - 1 2 | / ( e 2 ^ ) | - 4 8 (3.5) 

where r = Ti + ir2, d2r = dridr2, f(q) = TI^°=i(l — T IS the string tension, 

and V2e is the volume of space time. The one loop cosmological constant is just 

zly™ • Of critical importance here is the fact that the integral is performed over the 

fundamental domain F defined as 

\ < TI < ^ , r 2 > 0, \T\ > 1. (3.6) 

3.2 Modular Invariance and the Torus Amplitude 

The restriction to the fundamental domain can be understood by recalling the defini­

tion of a torus. Consider a parallelogram in the complex plane with sides represented 

by the complex parameters Ai and A 2 (that behave as vectors in the complex plane). 

A torus is obtained by identifying opposite edges of the parallelogram. If the plane 

is tiled with these parallelograms then we may identify equivalent points on the tori: 
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z ~ z + n iAi + n 2 A 2 

for m = 0 , ± 1 , ± 2 , - - - . 

There is, however, a certain amount of redundancy here. Consider 

(3.7) 

n iAi + n 2 A 2 = n'-^X^ + n 2A' 2 . (3.8) 

If, for a given A and for arbitrary n we can find always find a A' that satisfies this 

equation for a particular choice of n', then A and A' describes the same torus. 

To be more precise all A that are related by 

A' = M A (3.9) 

M = 

V a b 

(3.10) 

J 
where M is an SL(2,Z) matrix are equivalent tori. The world sheet action is confor-

mally invariant so, in fact, the absolute size of the tori is irrelevant, only the ratio of 

its sides is important. We thus define r = ^ Equation (3.9) then implies that all the 

relationships between all equivalent tori are given by 

CLT + b 
(3.11) 

cr + d 

A l l of these transformations can be generated by the two simple transformations 

S: T—y— 
r 

(3.12) 

and 

T : T ^ - r + 1. (3.13) 
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If we wish to parametrize the path integral in terms of unique tori then we must 

restrict r to a region where it is unique. One such region is the fundamental domain 

-\<TI<\> r 2 > 0 , 1-7-1 > 1. (3.14) 

The remaining infinite number of unique regions lie within the semi-circle in the strip 

of the upper half plane 

~ \ < T x < h r* > °' | r | < L ( 3 ' 1 5 ) 

These regions are all equivalent and can be mapped to each other via (3.11). 
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4: Strings in a Kalb-Ramond Field 

4.1 The Massless States of The Closed Bosonic String 

The massless states of the closed bosonic string are the graviton G^„, the dilaton <fi, 

and the Kalb-Ramond field (or antisymmetric field) B^. To be explicit, the massless 

states of momentum p in the light-cone gauge are given as 

etj-aLioiilOsp) (4.1) 

where j = 1, 2 , . . . (D — 2) and ê - is the transverse polarization tensor. The states 

transform as a two index tensor under SO(D-2). We may reduce this representation 

into a symmetric traceless tensor, an antisymmetric tensor, and a scalar that do not 

mix under SO(D-2) transformations. Any tensor e u can be decomposed as: 

1 1 1 1 

[-(eij + en) - -^z^^ijtre] + [-(e^ - eji)] + [jy^S^tre] (4.2) 

The three terms in brackets correspond, respectively, as: 

M + + [8v*] (4.3) 

which represent the graviton, the Kalb-Ramond field and the dilaton, respectively. 

Herein, we shall be mostly interested in B. 

The world sheet action for strings is the Polyakov action 
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S=l~bf d2°V99a\udaX»dbX\ (4.4) 

In the presence of background fields corresponding to coherent superpositions of the 

massless states, the action is modified to 

S = Î b / d^VdWG^iX) + ieabB^{X))daX»dbX» + a'R(j){X)]. (4.5) 

This equation will be justified in 7.1 

4.2 Mass-Shell Condition and Level Matching 

We wish to consider the allowed momenta for a string in only a background B field 

where space time is toroidally compactified on a 26-torus of radius R. In Euclidean 

space we have 

S = ^bJ d2(T^9ahGAX) + e^B^X^daX^X"} (4.6) 

If B^u is constant, the second term can be written as a total divergence da(tabBlluX^dbXu). 

This term's contribution to the canonical momentum is zero except when X^ is non-

periodic. Therefore, to determine the allowed momenta we consider only the non-

periodic parts of X11 and write 

X* = ^ ( T ) + w^Ra + oscillators (4.7) 

where is an integer that represents the number of times the string wraps around 

the X11 direction. The action then becomes 

(4.8) 
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The Lagrangian L for the system is just the integrand. We may form the canonical 

momenta 

P» = ^{Glu,xv + Btu,w"R). (4.9) 

We recognize this momentum as a sum of the conventional momentum and and a field 

momentum contributed from B. Under quantization it is the canonical momentum 

that must be quantized and we thus require P M = We may now write the mode 

expansion as 

X" = x» + loRvf + 2 r ( G " " V - ^ - B"uwuR) + oscillators (4.10) 
R 

Since we have 

X^(o,r)=XL(o+)+XR(o-) (4.11) 

with 

X£(o+) = \x» + oltfLo+ + £ fe~2in°+ 

We may determine the right and left momenta as 

and 

(4.12) 

77 
olpl = w^R + (G^a'-zj - B^w'R) (4.13) 

R 

Tl 

ay = -w^R + (G^a'-Z - B^uTR) (4.14) 
R 

For illustrative purposes, we consider a special case for non-zero B — B 1 2 with X1 

toroidally compactified. The momentum conjugate to X1* for flat spacetime (G^u = 
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n^) is 

P " = - ^ r L = /"W" + BSdaX"]da. (4.15) 

We write P " = p41 +P%- The first term here is the usual kinetic momentum p1 that 

multiplies the term linear in r in the mode expansion of X11. 

In the X1 direction the left and right moving parts are modified to: 

XR{o~) = \xl + {-wR + a'| - BwR)o~ + £ s^e-*™-
n * ° (4.16) 

Xl

L(o+) = \xl + {wR + oi\ - BwR)o+ + £ °*-e-2in(J+ 

The second term in (4.15) is the field momentum pB. This term only contributes 

when X1 is compactified on a torus with radius R then we have X1(T,O + n) = 

X1(T,O) + 2'KRW. In this case 

P7T 

/ daXldo = 2irRw (4.17) 
Jo 

and hence the field momentum is non-zero. 

The zero-mode Virasoro constraints are implemented as usual: 

T r • 2 

U = y A-R dcr = 1 (4.18) 

L0 = - j XL do = 1. (4.19) 

Inserting (5.26) and (4.16) into these constraints we obtain the mass-shell and level 

matching rules: 

(4.20) 
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and 

N-N = wn. (4.21) 

Since the canonical momentum is the generator of translations, it must be discrete 

in the X1 direction: P1 — ^. Also, we may replace the kinetic momentum with the 

canonical one which changes the mass-shell condition to [13]: 

( P 2 - 2*BRWf + £ p"p„ = (If + (̂ )2 + -V + N - 2) (4.22) 
^—' R a a 
^1,2 

This contrasts the the free-field string case in that there is now a shift in the mass. 
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5: The Vacuum Energy 

The vacuum energy can be calculated in essentially two different ways: via the 

operator formalism, or via the path integral formalism. Application of either of 

these methods will reveal that for an appropriate configuration the vacuum energy 

is a periodic function of B. The configuration we shall choose to investigate is two 

toroidally compactified dimensions with a nonzero B field in the component of those 

directions. The operator formalism is instructive, but the more correct method in 

this case is the path integral formalism. However, as discussed above, the operator 

formalism can be corrected by performing the restriction to the fundamental domain. 

We will proceed in this manner. 

5.1 Vacuum energy of the uncompactified string 

We may determine the vacuum energy by evaluating the vacuum persistence ampli­

tude in the euclidean formalism. 

Z= (0|e — HT |0> = e -E0T (5.1) 

For the scalar field <j> in D non-compact dimensions we have 

Z = j D<t>e~s = j D<f>e-ydDx ^+™2)* = e - | r n „ ( - ^ W ) ( 5 2 ) 

We may evaluate the trace as the sum of the eigenfunctions and obtain the vacuum 
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energy 

£ ° r = W ( 3 j i n ( p 2 + m 2 ) (5-3) 

where V is the spatial volume of D — 1 dimensions and T is the temporal length or 

time. 

A convenient representation of the logarithm for an arbitrary operator O is 

Hd) 

This can be verified by repeated differentiation and by observing that ln(l) = 0.We 

see that the divergent part is independent of O and can neglected. Defining the 

vacuum energy density as A — ^ we find that 

This is the vacuum energy for scalar field on an uncompactified flat space. For 

bosonic strings, we should sum over the masses of the spectrum while satisfying the 

level matching condition (4.21). That is, the vacuum energy becomes 

with m2 = £(N + N - 2). We may enforce the level matching condition (4.21) with 

a delta function. 

;l/2 
$N-N 

- -1/2 

/•1/2 
/ d n e 2 ^ N - N ^ (5.7) 

J-1/2 

and then trace over N and N: 

A = ~ \ (̂ v) / d r i d r 2 r 2 - 1 4 e 4 7 r T 2 i r ( e 2 7 r i T A r - 2 7 r i f ^ ) (5.8) 
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where we have defined r 2 = X/ct'ir r = Ti + zr 2. 

For the evaluation of the trace we recall the relations (2.36) and (2.37) and define 

q = e 2 7 U T. Now we note 

/ oo \ 24 

t r ( g E - = 1 - U m ) = T " [ _ ^ _ . ( 5 . 9 ) 

\ m = l ^ / 

The factor of 24 comes from performing the trace over the transverse states. We 

now define the Dedekind eta function as 

oo 

T}(q) = q1,U]l(l-qm)- (5-10) 
m = l 

In particular, then, we have 

y y ™ » * = f'2 dn ^ ( e ^ p 4 8 (5.11) 
and finally: 

The integral here ranges from —1/2 < T\ < 1/2 and 0 < r 2 < oo. However as we 

have learned from the path integral formalism we should in fact truncate the integral 

to the fundamental region —1/2 < TJ < 1/2, r 2 > 0 and abs(r) > 1. The physical 

reason for this is that the above is effectively a quantum field theory calculation 

and that we are over counting states. From the path integral perspective, we are 

calculating the torus amplitude. The Tj correspond to the Teichmuller parameters 

that characterize an arbitrary torus. However, some different Tj correspond to the 

same torus and we must only count each unique torus once. Hence we only integrate 

over the fundamental domain. 
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5.2 Vacuum Energy with one compact direction 

In a configuration with one toroidally compact direction X1 we make the identification 

X1~X1 + 2nR (5.13) 

Because the momentum is the generator of spacetime translation, the momentum Pl 

must be discrete 

P 1 = - n = 0 , ± l , ± 2 , - - - . (5.14) 
R 

Additionally, there exists the winding modes, so we must include modes that wrap 

around the compact direction. Denoting the number of wraps by w, we write the 

mode expansion as 

X1 = xl + 2oRw + 2 a ' + iJjJ2~ + oie~2in^) . (5.15) 

Evaluating the zero mode Virasoro generators L0 = L0 = 1 we obtain the mass-shell 

(for the 25- and 26-dimensional mass - see section 7.2 for their definition) and level 

matching conditions 

m. 
a ' / „ r »~r _ \ n2 R2w2 

= _ ( A . + A r _ 2 ) + _ + _ _ (5.16) 

a',„ ,-r ^ R2w 
™26 f ( i V + i V - 2 ) + w (5'17) 

N-N = nw (5.18) 
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with 
oo 

N = Y1 (a-nann + Oi\nanl) (5.19) 

71 = 1 

00 

N = J2 ( a - n Q V + c t n a n l ) (5.20) 
71=1 

where n here excludes the compactified dimensions X1. 

To convert (5.12) into the correct form 26-dimensional vacuum energy for a single 

toroidal compactification, we replace the integration f dpi with a sum ^ J2n

 ana-

also include the winding modes in the mass by replacing m with m26- The vacuum 

energy is then modified to 

^ ' w,n F 

(5.21) 

where D = 26. 

5.3 Vacuum Energy with many compact directions 

We now consider the case of Md xTk. In this case use label index m for the compact 

directions and write the mode expansion as 

Xm = xm + 2oLm + 2a'P

mT + « ^ 2 i < T ~ a ) + o^e~2in^a)). (5.22) 

It turns out that the are various ways one can consistently choose compactified 

momenta. To make this manifest, we use the left and right momenta. 

a'p™ = Lm + a'p' (5.23) 
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a'p% = L m - a'pm (5.24) 

with 

X»(a, T) = XL{o+) + XR(a~) (5.25) 

n#0 

-2in<r+ 

(5.26) 

The zero-mode Virasoro constraints now give 

a' 
N - N = - ( p | - p y . (5.27) 

where the boldface indicates a vector over the indices m. The left hand side of this 

equation is an integer and therefore we must demand that the right hand side of 

this equation be integers. The modification here contrasts the T 1 compactification 

because the periodic coordinate identifications we make need not be at right angles. 

For example, we may identify points as 

X = X + 27rv /o7Em (5.28) 

Where the basis vectors E m are complete over Tk. Thus we may write 

L = Vo7wmEm. (5.29) 

In order to make sure that the momenta are the generators of translations we write 

p = V a 7 n m e m (5.30) 
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where we have formed the reciprocal lattice vectors ei 

ep • E 9 = 6pq. (5.31) 

In this notation we may write the mass shell and level matching condition as 

m2

D-d = j(N + N - 2) + p 2 + ^ (5.32) 

N - N = n • w (5.33) 

We will typically be interested in the case where the basis vectors Ej are all orthog­

onal and equal to R in length. In this case we have simply 

^ - d = y ( i V + i V - 2 ) + ^ + ^ . (5.34) 

Now the cosmological constant is adjusted to 

l ( a ' ) ( * - £ ) / 2 

w,n 

dndn r-(D+!-*)/2

e-°''!*«*>1+(*>')-2*i"""1 \v(q)\-K 

5.4 Vacuum Energy with 2 compact directions and a B field 

In the configuration where two spatial dimensions are compactified (say X1 and X2) 

and a non-zero (and constant) B-field is permitted only in the Bi2 = —B2\ compo­

nent, an unusual feature appears: the vacuum energy becomes a periodic function of 

B. This configuration will be the central focus of what follows, as it can give rise to 

a unique topological structure. 
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In the free field case, two compactified dimensions have a cosmological constant of 

^ ' w,n 

(5.36) 

where D = 26. However, if we turn on B = B\2 = —B2\ we must now incorporate the 

momenta shifts as discussed in section 4.2. The mode expansions for the directions 

that are modified display the momenta shift (the coefficient of 2ra'): 

X1 = xl + 20-Rw1 + 2r(a'— - Bw2R) + oscillators (5.37) 
R 

n2 

X2 = x2 + 2oRw2 + 2r(a'— + BwlR) + oscillators (5.38) 
XL 

Thus the cosmological constant is modified to 

K ' w,n 

. e - Q ' r 2 7 r ( ^ ( r n - * « ) 2 ) 2 + ̂ -(n2+*u;i)2+(^)2)-27riwnT1 ^^-48 ^ 

We have defined the flux as $ = 2-K^-B. Note that the level matching condition is 

left unchanged after modifying the right a left momenta. While it is not immediately 

apparent, (5.39) is periodic in <5. To make the periodicity manifest we must perform 

some rearrangement. Consider the component 

Q = e-Q ,T27r(^(ni-$ t l;2)2 + ̂ (n2+$wi)2-K^f )2)-27riw-nri _ (5.40) 

We shall now perform a Poisson re-sum: 
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/

OO 
d2P e 2 T i k ' p e _ a ' T 2 W ( ^ ( p i ~ * W 2 ) 2 + ^ ( p 2 + * W l ) 2 + ( ^ ) 2 ) _ 2 ^ w ' p T l . (5-41) 

•oo k 

Define the dual of w as w = (—w2,Wi) and shift p —» p + w $ and perform the 

integration over p: 

^ a'r2 

k 

R 2

 c - ^ ( f c i - ^ i r i ) 2 - ^ ( f c 2 - ^ 2 T 1 ) 2 - Q ' r 2 7 r ( ^ f ) ^ 2 7 r i k . w ^ 

a'T2 

and insert this back into (5.39) and we obtain 

9 , = ^ - ^ [ ( ' . - " ^ ^ - w l - ™ ^ ^ . ^ ( 5 4 4 ) 

w,k 

Immediately the periodicity in $ is manifest. Further, if gi is a rapidly decreasing 

function for large negative and positive I we find that the most important contribution 

to the periodic function is the first harmonic. We thus write the cosmological constant 

as 

A I C O S ( 2 T T — B ) . (5.45) 
a' 

In summary, we have found that the cosmological constant for T 2 x M 2 4 immersed 

in a constant B-field is periodic in B. Obtaining the value of A i is not trivial. On 

dimensional grounds A i must scale as (a')~Dl2. We also expect A i to tend to zero 

as R —> 0 (this is the no compactification limit and there should be no periodic 

term). Further, since A i arises from the torus amplitude, we expect there to be no 

gs dependence. A dimensional estimation then yields 
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(5.46) 

A more careful analysis involving the method of steepest descent modifies this by 

adding an exponential suppression. Consider the term in the exponent found in the 

cosmological constant 

-7r^-C/(r i , r 2 ) = Uki - Win)2 + (k2 - w2Ti)2} - T 2 7 T + 2nik • w $ . 
cr a r2 a 

(5.47) 

By using 'Polchinski's Trick' [14] we may eliminate w2 in favour of integrating over 

the full strip, and not just the fundamental domain. Then we may trade integrating 

over Ti = [—1/2,1/2] to T\ — [—oo, oo] but summing only over ki < w\. Minimizing 

U with respect to T\ and r 2 we obtain the extrema, respectively 

Wl 
(5.48) 

U = 

The exponent at the extremum now becomes 

(5.49) 

R2 

-2-7T— |&2u>i| + 2irik2wi$. 
a' 

(5.50) 

Now we may proceed to write 

U{n,T2) = U(ti,t2) + ]-Uiti ( n - h)2 + \ u 2 a (r 2 - t2)2 + Uh2 ( n - h) (r 2 -1 2) + 

(5.51) 

and perform the integration over the upper-half plane. Noting 
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/

oo poo n 
I e-a{x-xtf-b(y-yo)2-c{x-x0){y-y0)dxdy = _ _ ^ = = ( 5 5 3 ) 

o o i - o o VAab-c 

We find that the dominant periodic term behaves as 

R2 

A 1 COS(2TT— ) (5.53) 
r\i' a' 

where 
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6: Elimination of the Tachyon Contribution 

While the discovery of a periodic cosmological constant is rather interesting, it is 

mired by the fact that the constant which multiplies the periodic term is in fact 

divergent. We must eliminate this divergence to make a physically reasonable inter­

pretation of the vacuum energies. We may proceed in two ways. 

6.1 Spectrum Truncation 

The tachyon contribution comes from the N = N = 0 modes. In evaluating the 

vacuum energy we traced over 

e-2niTN+2irirN = | / ( g ) | - 4 8 . (6.1) 

This causes the integral to diverge when N = N = 0. One way to remove the 

tachyon contribution, is to simply subtract off the N = N = 0 contribution, which 

amounts to replacing 

i / ( 9 ) r 4 8 - H / ( < / ) r 4 8 - i (6-2) 

or equivalently 

b7(g)p4 8 \v(Q)r48 - e 4 ? r T 2 (6-3) 

Note however, that the modular invariance of the vacuum energy is now spoiled since 

r —> r + 1 and r —>• — ̂  is no longer a symmetry. The value of the cosmological 
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constant has been carried out numerically for this scheme [15]. 

6.2 Relative Subtraction 

Perhaps a more reasonable (i.e., modular invariant) way is to look at the change in 

vacuum energy with respect to the non-compactified, field free vacuum energy.We 

define the renormalized cosmological constant as 

A r = A{B) - A(B = 0). (6.4) 

We should note, that there is some ambiguity in the choice of regularization. In re­

ality, any contribution to the vacuum energy should be observable due to its coupling 

to gravity. Bosonic string theory is pathological in this sense and cannot be remedied. 

However, for exploratory purposes we must choose a method of regularization so that 

we may have tenable results. Further, the contribution to A i is finite, so we may 

proceed by considering this term only. 
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7: String Theory Effective Action 

The path integral formalism is a general prescription for quantizing theories with 

classical actions. The key element of this method is the vacuum amplitude Z. The 

vacuum amplitude is formed by taking the weighted sum over all possible classical 

configurations. For strings, the different configurations are the different worldsheets. 

The weight is given as e~s where S is the action for the worldsheet. S is the 

area of the surface multiplied by the dimensional parameter T which produces the 

dimensionless action plus some additional terms. One of the additional terms (as 

discussed in section 3.1) is the Euler character. The value of this term is set by the 

number of handles in the world sheet and thus becomes the coupling constant gs 

(the string Feynman diagrams are weighted such that each additional loop provides 

a weight of gs): 

Consider the worldsheet depicted in figure 7.1. Here we have a closed string that 

propagates to another closed string. Consider, now, the more complicated worldsheet 

shown in figure 7.2. Here we have a closed string that propagates, splits into two 

strings, and recombines in to one string. This diagram is analogous to a one-loop 

Feynman diagram. 

The relative weighting of these diagrams is set by the expectation value of the 

dilaton though the Euler character. There is no way to guess at a value for the 

coupling constant and we must therefore introduce it as an arbitrary string coupling 

oo 

(7.1) 
genus h=Q 
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constant that fixes their relative weights of the two diagrams. More precisely we see 

that $ —> $ • const, sends gs -» econstgs. However, while the relative weighting of two 

diagrams is arbitrary, once we choose a value, the relative weight with respect to a 

third diagram is fixed. 

We shall be interested in topological features of the massless Kalb-Ramond field. 

The most convenient way to deal with these features is through the use of the effective 

action. The effective action method transforms the world-sheet perspective to the 

spacetime perspective. The effective action is the spacetime action for string theory. 

By this, we mean that is should generate the spacetime S-matrix elements of interest. 

The ambiguity of the relative weighting of string diagrams is also apparent in thee 

effective action. It is invariant under gs —> econstgs, — 2const.. We see that 

the constant part of the dilaton shifts gs and in a sense, gs is set by the vacuum 

expectation value of the dilaton. 

7.1 The Effective Action as the Spacetime Action 

The Polyakov action (4.5) is the worldsheet action for describing a string moving in 

a gravitational, Kalb-Ramond, and dilaton field. There is, however, an alternative 

way to examine strings propagating in background fields: the string effective action. 

The effective action formalism in string theory provides and spacetime perspective for 
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Figure 7.2: One loop string diagram 

strings in background fields. The complete derivation of the string spacetime action 

is straightforward, but somewhat involved [16]. However, the motivation is brief. 

The equations of motion for the internal metric (2.15) is traceless when the world 

sheet is two-dimensional: 

T% = ^G»u{daX»daX» - l-5a

adcX»dcXn) ~ (1 - |) = 0 (7.2) 

where q = 2 is the dimension of the worldsheet. This relationship is anomalous. That 

is, after quantization this condition only holds in special circumstances. The vanishing 

of the trace corresponds to maintaining conformal invariance in the quantized theory. 

It turns out that in order to guarantee the disappearance of the anomalies three 

differential equations must be satisfied: 

0 = 0%, = a%„ + 2G/V^V„<S> - -H^Hj* + 0(a'2) (7.3) 

0 = P% = ~ VAi/A„„ + a\Vx<S>)Hx,u + 0{a'2) (7.4) 

0 = £* = - ^ V 2 $ + a'(V$)2 - ±-a'H2 + 0(a'2) (7.5) 
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where is the covariant derivative. These three equations are linear combinations 

of the equations of motion which can be derived from the action 

s = h I dDx^e~2* \2{D

3J6) +R- ^H^H^X+2d^d^+°^') 
(7.6) 

Specifically, we have 

SS = [ dDXv^Ge-2* \8G^ (Bg^ - l-G^{B^ - 40*)) 
2K,0a J i \ z j [1-1) 

+ 5B^ (8B^) + 5$ (2$p - 80*)] = 0. 

The action (8.5) is the effective action for the low energy spacetime fields. It can be 

shown that using this action to generate S-matrix elements is equivalent to generating 

S-matrix elements from the standard operator formalism (for one-loop closed strings 

coupling to massless fields). Equation (8.5) will be of central focus in what follows. 

7.2 Kaluza-Klein Theory 

Kaluza-Klein theory is a classical attempt to unify electromagnetism with gravity 

[17]. The original idea was to consider gravity on a five dimensional manifold where 

one of the directions is periodic. In this section we let the compact direction be 

specified by y and the non-compact directions by x^. The manifold is M 4 x Sl with 

0 < y < 2nR where R is the compactification radius. The 5-D Einstein action is 

S* = 7T2 [ d5x^f5R5 (7.8) 
ZKb J 

We may parametrize the metric any way we wish and we choose the following: 
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(7.9) 

Here, 0 is a scalar, A^ is a vector, and is to be the usual 4-D spacetime metric. 

Owing to the periodicity of the fifth dimension we may expand <f> as a Fourier series 

oo 

<Kx,y)= YI U*VnvlT (7-10) 
n=—oo 

and similar expansions for the other fields. If we substitute the Fourier expansions 

and the parametrization of g5fll/ into (7.8) and integrate over y only keeping the n = 0 

terms (<f>0 = </>, etc.) we obtain (after some algebra, the details of which are discussed 

in the appendix) 

S=hj d ' x ^ R - \d^<t> - \e-^F,uFn (7.11) 

where the field strength is defined as F^ = <9MA, — duA^ and K2 = KI/2TVR. We have 

discovered that gravity on M4 x S1 is equivalent to gravity on M 4 plus electromag-

netism plus a massless scalar field. The presence of the dilaton 4> was troublesome at 

first, but in modern times it has become an important theoretical element. 

Kaluza-Klein theory also has a mechanism for constructing massive fields out of 

massless ones. Consider the free massless scalar propagating on R4 x Sl: 

d2J(x,y) = 0. (7.12) 

If we plug the Fourier expansion for <j> in we obtain an infinite number of uncoupled 

equations of the form 

(d^ - ml)<f>n = 0 (7.13) 
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where m 2 = j^. To a four dimensional observer (who defines mass as m\ = p2,— p\ — 

p\ — pi) these modes appear as massive scalar fields. In regards to these modes, one 

speaks of the Kaluza-Klein tower of states. Of course, the five dimensional observer 

still defines mass as m\ = p2

a — p\ — p\ — p\— p\. 

7.3 Compactitication of the Effective Action 

The effective action discussed in the previous section was for D = 26. We wish to 

analyze the effective action on the space M 2 4 x T2. We do this by way of Kaluza-Klein 

compactification. 

Parametrize the metric as 

ds2 = G^NdxMdxN = G^dafdx" + Gmn{dxm + A™dx»){dxn + A^dx11) (7.14) 

Then, the effective action can be dimensionally reduced to 

S0,k = / ddxy/=G~de-2** [Rd + 4 c ^ d " $ d 

2K 0 

- \GmnG™ (d.G^Gn, + d,BmpduBnq) (715) 

- \ G m n F $ m F ^ - \GmnHmiwH^ - ^H^H^] 

where the following definitions have been employed: 

$ d = $ _ I _ det(Gmn) (7.16) 

F$m = d,A^m - dvA^™ (7.17) 

H = F^ —B F^n (7 18) 
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FuJm ~ ^ 4 1 ^ ^ L m (7-19) 

4 m = B,m + BmnA^> (7.20) 

H^x = d,BuX - \ (4 1 )™ F%m + 4 M ) m ) + cyclic perms. (7.21) 

B,v = B,v + \A^mA^l - \A^mA^l - A^mBmnA^n (7.22) 

the details of which are explained in the appendix. 

7.4 Adding the Cosmological Term 

The general form of the partition function is: 

OO p 

Z= J2 92sh~2 / DxDge-Sp^3\ (7.23) 
genus h=0 

Tree level amplitudes correspond h = 0 and the torus amplitude is h = 1. Alterna­

tively, we take the effective action as the spacetime action. The effective action will 

then generate the string theory S-matrix. The effective action is invariant under 

c 

9s -> 9se2c 

for constant c. Hence we can always absorb the string constant into the dilaton. We 

expect the same of the effective action (which must reproduce the same S-matrix). 

Again, the torus amplitude goes as g®, so we expect the following form for the effective 
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action with the inclusion of the vacuum energy: 

S = S0tk + j dDxv^GA(B) (7.24) 

where we may replace 2k2 = (a')l2g2

s in So,k- Any uncertainty in the relative size of 

A term from the rest has been absorbed in gs 

We should note that the vacuum energy calculation was performed for a constant 

B. However, here, we assume B is not constant. We must be in a regime where 

treating B as non-constant is applicable. 
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8: Equations of Motion 

8.1 Equivalence of String Frame and Einstein Frame 

To touch basis with conventional gravity we shall now demonstrate the equivalence 

of (8.5) and the Einstein-Hilbert action [2]. Consider the action 

s=h I d°xV=Ue~ 2$ (8.1) 

This is the Einstein-Hilbert action coupled to a scalar field $. In D = 4 we identify 

K with Newton's gravitational constant GN- K2 = 8TTGN- We shall show that this is 

equivalent to the string effective action and vice-versa. 

Under Weyl transformations of the metric 

G>„ -> e 2 w ^GV (8.2) 

the Ricci Scalar Transforms as [18] 

R _> e - M « ) (R _ 2(D - 1) - (D - 2){D - 1)8^8^) (8.3) 

and 

G - ) • e2D^X)G. (8.4) 

$ 0 — $ 
If, for constant $o> w e define K — K0e 0 and choose w = 2 ——— , this transforma-
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tion turns the action () into the string action 

S0 = -L [ dDxv^Ge-2* [R + Ad^d^}. (8.5) 
2«o J 

This form of the action not as conveinient for determining the equations of motion 

as (8.1). We have learnt that string theory predicts general relativity coupled to a 

scalar field. 

8.2 Variation off the Action 

We wish to find the equations of motion for the doubly compactified action 

5o,2 = f ddxV^G~de-2^ [Rd + Ad^ddu^d 

- \GmnG™ {d,GmpduGnq + d^B^Bng) 
(8-6) 

+ J* dPx VGA. 

Write S = SGD + SBFG + S\, where SGD refers to the terms on the first line, SBFG 

refers to the terms on the second and third line, and SA refers to the final line. The 

cosmological constant term is constructed from 

A = A i ( l -cos(AB)). (8.7) 

We now perform the variation of the action to obtain the equations of motion for 

9nu-

SSQD = V=G~de-2** 
5G^ {o.')l2g2 

Rd^ + 2D„A, - ^G^(Rd + AD^$ - Ad^d^) (8.8) 
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SSBFG _ 

SG^ 
1 V^G~d 

2(c*')12<?2< 
G p,u GmnGpq ( D P G M P D P G N G + dpBmpdPBnq) 

1 /~i rpm rpnpa ^ rvmn TJ TJ pa ^ TJ TjpaX ~~^Gmnr p(Jt — -G h m p a H n

H - — llpa\tlH 

2* r f 

1 
2 

QmnQpq (d^GmpduGnq + d^Bjnpd^Bng) 

rpn a \/-vmn TJ TTX — T-f TJ PA 

' -^mn-T p,ar v r, ̂  •nmfj.\rlni' A n ^ p a n v 

(8.9) 

(8.10) 

The first of these three terms is obtained most easily from the Einstein-Hilbert form 

of the action (8.1). In this case the variation of the Ricci scalar can be carried out in 

the usual way [19]. The equation of motion for G^v is then 

For Gr 

6&' 
;{SGD + SGBF + 5A) = 0. (8.11) 

5St GD 
5Gr< 

(8.12) 

SS BFG 
8Gr 

(aiy2g2~ [ -^Gpq (dpGmpdpGnq +dpBrnpdpBnq) 

d^aG^d^Gn, - (GolGpid»Gnq)^ GlpG,t 

-L.-C ,Q F° FLPA - -JJ JJP° > ^Jnl^Jom1 pa1 ^ 1 1 m p a 1 1

n 

(8.13) 

JQ^ - -^V-G~dV-GD-dGmn^- (8.14) 



Chapter 8. Equations of Motion 45 

The equation of motion for Gmn is then 

5 
5Gr 

(SGD + SGBF + SA) = 0. (8.15) 

For $ d 

= "C?i2~~r [ - 2 ^ + Sd&d*** - SD^d] (8.16) 

SSBFG = V^G~de-2^ 
6$d (a') 1 20? 1 ' 

[-\GmnG™ (d,GmpduGnq + dliBmpduBnq) (8-17) 

- iGmnF$mFWn»" _ \GmnHm(U,H^ - ±H^XH^} 

t = ° <8-18> 
The equation of motion for $^ is then 

(S G j D + S G B F + 5 A ) = 0. (8.19) 
5®d 

For B 

5SGp _ Q 

5Bmn ~ 

J E ^ = i f f ? ^ (e-^G-G^Boq) GlmG 

0 { m , n } ^ {1,2} 

SBr 

AA0 sm(BA) y/^G~d x / G ^ {m, n) = {1,2} 

The equation of motion for Bmn is then 
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-(SGD + OGBF + SA) = 0 (8.20) 
5Bmn 

We are interested in static solutions about flat space with all fields flat except for 

B = Bi2(X3) and therefore the additional equations of motion do not couple in this 

regime. 

The equation of motion for Bmn then leads us to the equation of motion for the 

celebrated sine-Gordon equation: 

1 dlB{Xz) - A A i sm(B(X3)A) = 0 (8.21) 
W29. 

Unfortunately, allowing non-zero B means we must consider the other equations of 

motion that B couples to. We will resolve this shortly, but to do this we must see 

how (8.21) scales with gs 

Equation (8.21) admits a first integral. We multiply by 83B and integrate to find 

1 [B'f + A x cos(£,4) = c (8.22) 
2(a'Y292 

The constant is determined by requiring B'—O and BA — 2-KU at spatial infinity: 

c = A i . And thus 

(B')2 + 2(a') 1 2^ 2Ai(cos(i3A) - 1) = 0. (8.23) 

This equation can be solved (as will be done in what follows), however, the most 

important feature is that (B1)2 ~ g2. Since equations of motion for the effective action 

satisfy the flat solution, we may consider the sine-Gordon solution as pertubative 

solution in gs. Since (B1)2 ~ g2, to lowest order, we may ignore the coupling of B in 

(8.11, 8.20) and consider (8.21) alone. 
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9: Sine-Gordon Solitons 

9.1 Two Dimensional Sine-Gordon Solutions 

The sine-Gordon model is well known from field theory and many other fields [20]. 

It is one of few important example where various analytic results can be obtained. 

The sine-Gordon model exhibits various interesting solitonic solutions. We examine 

the model here in (1 + 1) dimensions with a (-1—) metric. The Lagrangian density is 

constructed from a kinetic term and a periodic potential 

The action is obtained by integrating over the two spacetime dimensions: 

S = j dtdxC (9.2) 

The equation of motion for this Lagrangian follow as the extremum of the action: 

a 2<^+^=sin(—0) = 0. (9.3) 
y/X rn Y J 

The naming of the constants m and A is clear if we expand out the cosine in the 

Lagrangian to reveal 

C=1-(d<l>r-1-m^ + ^ + ... (9.4) 
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We recognize m as a mass term (of dimension one in D=2) and A as a coupling 

constant (of dimension 2 in D=2). 

We may obtain a solution by multiplying the time-independent version of the equa­

tion of motion 9.3 by ^ 0 and integrating. Choosing boundary conditions such that 

at spacetime infinity dx(f)=0 and ^<j) = 2irn for integer n we obtain the so called 

soliton solution 

Am i 

<f>{x) = ^ a r c t a n ( e ± m x ) . (9.5) 
v A 

the length scale of the soliton is thus given by £ = 1/ra. To determine the energy of 

this solution we appeal to the canonical formalism by forming the the Hamiltonian 

density 

U = pdt<t> - U (9.6) 

V = ^ (9-7) 
d0(p 

which yields 

E = J dxU = jdx^(d(f>)2 - ^ - ^ o s ( ^ % ) - l j . (9.8) 

Applying this formula to our solution (9.5) we obtain the energy of the soliton: 

E = 8^-. (9.9) 
A 

The sine-Gordon model also admits a time-dependent version of (9.5) which may 

be obtained by performing a Lorentz boost on x. Likewise, its energy is increased 

by the Lorentz factor 1 / V l — v2. There are also various superposition solutions. For 

example, the so-called soliton-antisoliton: 
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4>{x) = -= arctan( ) / v ; ) . (9.10) 
VA v cosh(mx/y/1 — v 

9.2 B-field Solitons 

We are considering the configuration where we have two compactified directions 

A" 1 , X2 and a non zero B field in that various only in a third direction B = B^ix3) = 

—B2i(X3). To relevant order in gs we may then write the action as 

W292

s / 
d26X { ~(d3B)2 - Y(l - cos(AB)) } (9.11) 

where we have defined Y = (a!)l2g2Ai. We my proceed as in the previous section 

to obtain the energy an size of the domain wall: 

B = j avctan(e±AVVx) (9.12) 

e = —^= (9.13) 
AVY 

y^2W r-
E - / . A S . V A 1 

j d22X (9.14) 
(a')5gs 

where the integral is over d22X = dX4dX5 • • -dX25. Using the estimation for A i 

from (5.54) we obtain 

a' /Ri\ 
e{^> (9.15) 

2nRg. 

V2l6n2 _r«i 
:—; e 2̂"' 
(d)uRg. 

Since we have assumed ^ > 1 we find that £ is large and E is small. The depen 
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dance of E on gs is inverse and that is somewhat peculiar. Note the similarity to the 

physical D-brane tension, which has the same gs dependance [2] 

^ (27rv/o7)11-p (9.17) 
I6a'bgs 

for a p dimensional brane. 
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10: Topological Indices and Vacuum Manifold 

10.1 Topological Charge 

We now take a brief digression into topology. Topological defects have become of 

considerable interest in recent times in field theory, in string theory, and in cosmology 

[20] [21] [22] 

Consider a (1+1) scalar field theory with Lagrangian 

£ = i ( d , 0 ) 2 - u{4>) (10.1) 

where the potential is given by 

m 4 / , v A . . 
U= — \ cos(—(£) - 1 . 10.2 

A \ m 

Classically there are many ground states corresponding to the to minima of the po­

tential 

4>o = 2nn-^=. (10.3) 
v A 

However, the equation of motion also admits another solution 

A 'YY) 

(j)(x) = _ a rc tan(e ± m ( l - X o ) ) . (10.4) 
v A 

which has finite energy. For all finite energy solutions we expect the asymptotic 
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values of </> to take on the values 

m 
27rni —= x = —oo 

<f>{x) = { . (10.5) 

•y/X 

Consider the following integral: 

1 \/X f°° d 

m 
27rn2—F= x = +oo 

/ • O O Q 
I —<f>dx = rii — n 2 = A n (10.6) 

./-oo dx 2n m 

where A n = 0 corresponds to the true vacuum and A n = ± 1 corresponds to the 

soliton and anti-soliton. We see what appears to be a charge that characterizes the 

solutions. This motivates us to define the topological charge 

Jn - ^-—e^r* (10.7) 

This current is conserved identically (i.e., independent of the field equations) = 0 

and its zeroth component is the topological charge 

Q j j0dx = A n . (10.8) 

We should note that Q does not generate a continuous symmetry transformation, 

i.e., it is not a Noether charge. Regardless, it is a charge that is conserved and this 

indicates that the soliton is stable. 

10.2 Modularity of B 

Note that if (j> is a periodic variable then only Q is relevant, not ni, n 2 . For example, 

since B^V is a gauge field 

-» + d,j.xv - d„Xn- (10.9) 
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We may change gauge with Xv = | (^X 1 — S^X2). This shifts by 

SB^^ciSlSl-SlSl). (10.10) 

That is we can shift the field in the 1-2 direction and leave the other directions 

unchanged and it is the same physical state. This will have important consequences 

for the B-field solitons. Consider the term in the Polyakov action associated with the 

B-field 

Sb=4^G7>J d2°[zabBAX))daX»dbXv}. (10.11) 

For the path integral to be invariant under gauge transformations, this term must 

change by 2nni, for n 6 Z . We must be careful about the fact that we are on a 

compactified manifold. Under the gauge transformation (10.9) SB changes by 

ASF 

2ira' 

i 
2i\ot 

i 

- J <Po-[eabdliXvdaX"dbX1'} (10.12) 

7 J d2a[dlxXu{dlX^d2Xv - diX^X")} (10-13) 

= 2^ J d2°ldMdi(x"d2X") - d2(X»d1X»))} (10.14) 

since d^Xv is a constant we may use Green's theorem to turn this integral into a 

line integral 

ASF 
= 2^a7 j X ' d X 2 ~ X * d X l ( 1 0 - 1 5 ) 

Since the string must wrap around the compact directions a discrete number of 

times and the momentum modes are also discrete, we find the equivalence between 

physical states 
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B ~ (10.16) 

10.3 Unstable Topological Configurations 

Ordinarily one would expect the sine-Gordon soliton to be stable: It has a topological 

charge that commutes with the Hamiltonian [20]. However, we have been dealing with 

an effective field theory where other modes have been 'integrated out'. These modes 

can change the topology of the configuration space and permit a decay [23, 24, 25]. 

Figure illustrates two different homotopy classes corresponding to the vacuum (Q = 0) 

and the soliton (Q = 1). The vacuum cannot be continuously transformed into the 

soliton (and vice versa) without passing through the forbidden region. In reality, 

though, the problem is not two dimensional. Through coupling to other modes the 

problem introduces a third dimension perpendicular to the plane. In this case, the 

forbidden region becomes a hump barrier. Loops around the hump can be deformed 

to Q = 0 loops by dragging them over the hump. This of course has some energy 

cost. The hump will be modeled in the next chapter. 
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Figure 10.1: Homotopy classes. The black region is forbidden. The two loops corre­
spond to the vacuum (Q = 0) and the soliton (Q = 1). 
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11: Stability 

11.1 The Bounce 

The decay of false vacuum states has been discussed extensively in the context of 

homogeneous states [26, 27, 28] as well as in the application to domain walls [24, 25]. 

Consider a (2+1) scalar field theory with action 

where U(<f>) is a potential with two uniform (constant field) extrema: one local 

minima at (j)+ and a global minima at </>_. We wish to consider the probability for 

decay from (f>+ to 

The relevance of false vacuum decay to cosmology is important. In the early universe 

the energy density was very high and was not nearly a vacuum. The universe may 

have settled into a false vacuum </>+ and may decay toward the true vacuum </>_. 

There are also more terrestrial issues where false vacuum decay is important. For 

example, the nucleation process in a supercooled fluid as occurs in cold clouds. 

Physically the process is facilitated by quantum fluctuations. A fluctuation bubble 

of 4>- is formed in the (f>+ state. If the energy decrease from the volume of the bubble 

exceeds the energy increase due to the wall of the bubble, the bubble will rapidly 

grow, consuming the solution. 

In the semi-classical approximation, the decay rate per unit volume per unit time 

for a tunneling particle process is given as [27] 

(11.1) 
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r 
v 

Ae-B^{l + 0{h)). (11.2) 

where 

(11.3) 

B = SE(<j>) - SE(j>+) (11.4) 

and 4> here is the bounce solution. The bounce solution is so called because after 

forming the euclidean action, the sign of the potential is reversed. Hence the solution 

corresponding to tunneling through a barrier is actually a solution that slips down 

the inverted barrier, stops at the other end, and returns to its starting point. If the 

bounce has 0(3) symmetry then we may convert the action integral into a radial 

integral. We introduce the D dimensional solid angle QD = rm/l) an<^ W T ^ e 

We wish to investigate the system when the energy difference between the two vacuo 

4>+ and 4>- is small 

(11.5) 

The equation of motion is 

2<jf+ r<j>" - r —f/ = 0. (11.6) 

p = U{<j>+)-U{^) (11.7) 

and think of p as a perturbative parameter that turns on the asymmetry of the energy 

levels in in U . We thus write 
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U(<i>) = Uo(<f>) + pU1(<i>) + --- . (11.8) 

where Uo(<f>+) = Uo(4>-) and ĴoU± = 0. An example for Uo is 

Uo = ^2-x)2 ( 1 L 9 ) 

We are looking for bubble solutions to the equation of motion: the bubble has <f>-

in its interior and at some large r = ro it quickly grows to 4>+. We can therefore 

ignore the j^cf) in the equation of motion as it is either small, or small with respect 

to r. Our approximate equation of motion is then 

r<f>" - r—UQ = 0. (11.10) 

Multiply by 4-(f) and integrate using the boundary condition (/>(oo) = <j)+: 

| : 0 = V / 2(f /o(0)-f /o(0 + ) ) 1 / 2 . (11.11) 

Letting r be the radius at which 4> is midway between and </>_ we find 

r<t> Q 
r = r0+ —rd<f> (11.12) 

./(</>++</,_ )/2 0(P 

For (11.9) we find 

0 = - ^ t a n h ( ^ i ( r - r o ) ) (11.13) 

Now that we have explored the nature of the bubble solutions, we my evaluate B by 

treating the bubble as having a thin wall. B is given to lowest order by an integral 

over all space 
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poo 1 

B = 4 T T d r rX-m2 - (0'+) 2) + U0(J>) - W + ) ] (11.14) 

This integral may separated over three significant regions: the region inside r 0 , the 

region about r 0 , and the region outside r0. 

B = Bin + Bon + Bout (11.15) 

/

R ° 47T 
dr r2[UM - U0(<i>+)] = - — r i p (11.16) 

this is the volume of a 3-sphere times the density p. 

Bon = 47rr0

2 /" d r [ ^ ' ) 2 + U0(<f>) - U0(<j>+)] = ^T\O (11.17) 

This is the the surface area of a 3-sphere times the surface density o — fon dr[\((j)')2+ 

U0{(j>) - C/o(0+)] = / /_ + # (2U0{<t>) ~ 2U0{<f>+))1/2• The right hand sides follows from 

the equation of motion. For (11.9) we find 

(11,8) 

Outside the bubble cf> = 4>+ so we find 

Bout = 0. (11.19) 

In total the bounce is given by 

47T 

B = -—r3

0p + 4irr2o. (11.20) 

The extremum of B occurs when r§ = 2j which gives 
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Figure 11.1: The lines represent the value of the Kalb-Ramond flux $. The light line 
passes through the bubble and travels from $ = 0—> 0 as z = — oo —> oo. The dark 
line avoids the bubble and travels from $ = 0 -4 2n as z = —oo —> oo. 

_ 1 U / I u . . 
B = — - 2 . (11.21) 

If B > 1 we find the decay process is strongly suppressed via the exponential in 

(11.2). 

So far, we have been discussing a bubble of 0_ forming in a uniform c6+ world. 

However, this can also be applied to the case of a domain wall that separates two 

physically equivalent vacuua in arbitrary dimension. For example, the above (2+1) 

theory is equivalent to a (3+1) theory where a 3-dimensional bubble forms in the 

wall. In this case we write <f>+ for the domain wall solution and 0_ for the empty 

vacuum. Figure 11.1 illustrates a bubble forming in a domain wall. 

For bubbles of dimensions d we have 

B = -Sld-p + ndrd-1a (11.22) 

where p and a are the d-dimensional volume and surface density respectively. The 
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extremum of B with respect to r gives the critical radius r 0 

cr 
r 0 = ( d - l ) - . (11.23) 

P 

Then, the d-dimensional bounce is given as 

(11-24) d pd 

For large d we may use Sterling's formula for T(x) 

F(x) ~ V2^e~xxx-1/2 (11.25) 

and expand 

( d - l ) ^ 1 - e " 1 ^ " 1 . (11.26) 

For large d we find the asymptotic bounce: 

B « 2d/Vd-1)/Vd-2)/Vd-3>/24LT (11-27) 

For our domain walls the energy is given by (9.14) 

E = ^ y / % f d 2 2 X (11.28) 

and hence 

Evaluating the bounce for our domain wall requires d = 23. In this case we find 

B = ( Q , ) ^ y ) 2 2 a 2 3
 (11.30) 
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where we have written g's to absorb the unnecessary pure number. 

11.2 Modelling the Surface Tension 

Our final task then is to estimate a. Unfortunately we know very little about the 

detailed structure Uo((f>) for this case. We must proceed cautiously with an estimation. 

Qualitatively we know that (f>+ and </>_ must correspond to the minima of UQ and there 

must be some barrier between them. We shall model UQ with (11.9), but to analyze 

the problem it is more convenient to write it in terms of its width between minima 

w and its barrier height h. 

where the momentum dimensions of the constants are: [h] = 23 and [w] = 21/2. 

We obtain these dimensions by modeling the bubble in the wall (excluding the X 3 

direction) as a 25-dimensional scalar field theory. That is, we choose an action like 

This is consistent with obtaining the bounce (11.30). 

We should expect that the height of the barrier goes as the string energy scale 

scale. Therefore we dimensionally estimate h = (a')~ 2 3 / 2 In the free field limit, 

coupling to the massive modes is not present and the sine-Gordon soliton must be 

stable. Therefore we dimensionally estimate w = A 2 1 ^ 5 2 ^ - , where n is some positive 

integer. The gs dependence must be inverse because we must have B = oo for gs = 0. 

The power n can not be obtained easily but is likely some small integer power. Thus 

the surface tension is 

U0 / 4 ) 2 (11.31) 

(11.32) 

6 6 9\ ,n 
s 

(11.33) 
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and the bounce is 

B = c{ct')-*m9? " 2 3 " A - 8 9 / 5 2 (11.34) 

where c is a constant that can be absorbed into gs. Note that B scales inversely as 

gs since n is a positive integer. We may also insert our estimation for A i from (5.54): 

/ p 2 \ 89/52 

B = ( ~ \ g 2 2 - 2 3 " e i ^ (11.35) 

where we have dropped c (which is equivalent to absorbing it into gs). Since we 

require ^ >̂ 1 and we expect gs to be small, we find that the decay is exponentially 

suppressed: the Kalb-Ramond soliton is stable. 
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12: Conclusion 

After a brief introduction to the relevant parts of string theory, a soliton of the Kalb-

Ramond field in closed bosonic string theory was introduced. The soliton discussed 

forms under a double toroidal compactification. With a constant Kalb-Ramond field 

permitted in a components of the compact directions, the vacuum energy is found to 

be a periodic function of the field. This vacuum degeneracy permits the formation of 

domain walls, as in ferromagnets. We examined the configuration where two halves 

of the universe are in separate domains. The region in between is approximated by a 

sine-Gordon soliton whose length and energy are given as 

where the integral is over the spatial directions not including the compactified direc­

tions and the direction in which the field varies. 

The stability of this structure is threatened by decay through nucleation. However, 

the decay process is exponentially suppressed by inverse powers of gs. 

The are many other structures and features that may be investigated. Alternative 

compacitifactions may form other topological structures. As well, instanton gasses 

may occur. It is also important to investigate how particles would scatter of these 

objects and permit their observational detection. 

Bosonic string theory is pathological and is not the correct model for nature. How­

ever, type II string theory is more realistic and should have the same solitonic struc-

1 = 
2nRgs 

(12.1) 

(12.2) 
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tures. This is worth investigating in future work. 
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A: Dimensional Reduction 

Here we summarize the procedure of dimensional reduction [29]. We choose to 

parametrize the D-dimensional spacetime metric G^N

 AS 

ds2 = GMNdxMdxN = Gilvd^dxv + Gmn(dxm + Amdx»){dxn + A^dx11). (A. l) 

where M,N = 0,1, • • - 25 and fj, and u index the non-periodic dimensions and m 

and n index the periodic dimensions. In matrix form, we may write the metric and 

its inverse as 

GMN — 

( (~i _i_ n Am An fi Am \ 

KJmn-ri-v Gr, J 
(A.2) 

G MN 
G»u+ -A" 

_AHn Qmn + Apm A n 

This parametrization has a convenient property: 

\/—\GMN\ — \J — \G^\\/— \GT 

Using the above relations we find that 

(A.3) 

(A.4) 

^ [dDxyf-\GMN\e-2* [RD + 2dM$dM$] (A.5) 
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is equivalent to 

{2nR)k 

2 K n 
/ddxV=G~de-™« [Rd + 4d^ddu$d 

lGmnGPq (diiGmpdUGnq) 

\ G m n F $ m F ^ \ 

(A.6) 

with 

Fj»m = d^m - d„AVm (A.7) 

$ d = $ - -det (G/ m n ) (A.8) 

for A; periodic dimensions with d = D — k. Typically, we will write Au^n = A/j,n. 

The (1) is make a distinction between another tensor that will be defined shortly. 

Now we consider the action associated with Kalb-Ramond field 

f dDxV^Ge~2* 
J 

TT T T M N L 

~ 12 M N L (A.9) 

The metric parametrization allows us to separate the terms and write 

- ^ T " f ddxx/^G~de-2^HmnlHmnl + ^HfinlH^1 + ^H(lulH^1 + ^H,uXH^x] 

(A.10) 

where the following definitions have been employed: 

(ATI) 

ff — P (2 ) _ D p ( l ) n (A.12) 
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Ffflm — ̂ li-^vm dvA$n (A. 13) 

AW=B„m + BmnA^ (A.14) 

H^x = d„BvX - \ (41)™ F%m + A^lFT) + cyclic perms. (A.15) 

D _ D i I A / t ( 2 ) _ 1 4 ( l )m / t (2) _ - j ^ m r j ^( l )n / * 1 fi\ 

Adding all the components together, we find that the effective action can be dimen-

sionally reduced to 

S0,k = ! ddx^rGde-^ [Rd + 4d^dd^d 

- \GmnG™ (dltGmpdttGnq + dliBmpduBnq) • ^A-17) 

- \ G m n F $ m F ^ - \G™Hmtu,H<? - ^H^H^} 


