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ABSTRACT

The damping of surface waves on shallow water can
be affécted by the roughness of the container walls as well
as by surfactant Tayers present on the air-water interface.
The increase in the damping caused by a grooved wave tank
base has been studied both theoretically and experimentally.
In any experimental investigation into the effect of surface
roughness on the damping, surfactants can obscure the effects
of wall roughness. An experimental technique is described
to enable the relative importance of these two effects to
be determined unambiguously. Initially experiments were
conducted with the groove amplitude much smaller than the
viscous boundary layer thi;kness. It was found that the
increase in the damping caused by the grooved base was small
(< 5% increase).

The damping has also been studied for large amplitude
grooves on.the base of the wave tank (dimensions much larger
than the viscous boundary layer thickness). It is shown
theoretically that, for grooves of triangular or approximately

sinusoidal cross section, the damping is increased by an
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amount proportional to the total surface area of the grooved
surface, and is independent of the direction of flow with
respect to the grooves. The theoretical model applies when
the groove spacing and amplitude are small compared to the
fluid depth and wavelength of the surface waves, but are
large compared to the viscous boundary layer thickness.
Experiments were conducted to test these predictions. By
carrying out observations on two surface modes, it is shown
that the observed increased damping is due to the grooved
surface alone and cannot be attributed to spurious surfactant
effects. It was found experimentally that the damping was
independent of flow direction with respect to the grooves,
and the increase in the damping was strictly proportional

to the fractional increase in the area of the base, in com-

plete agreement with the theoretical predictions.
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NOMENCLATURE

a groove amplitude

f frequency of surface modes

i V-1

k - surface mode wavenumber

2 viscous boundary 1§yer thickness

n unit vector normal to a surface of the wave
tank.

v flow velocity

Vo inviscid flow velocity

W complex variable

X>Y,2 position coordinates

A émp]itude of surface waves

A area ratio

B Beta function

H fluid depth

J Bessel Function

X i



length of the square wave tank
fluid pressure
radius of circular wave tank

viscous energy dissipation per unit area

coordinate along n

angle between the nodal line of the surface wave
and ‘the edge of one of the groove quadrants on
the base of the wave tank

wavelength of surface mode
kinematic viscésit&

wavelength of groove spacing
fluid density

damping frequency

inviscid flow velocity potential

angular frequency of surface mode



Chapter 1

INTRODUCTION

The damping of surface waves on a fluid can be
affected by surfactants on the free surface of the fluid,
or by the roughness of fhe container walls. In the past,
wall roughness has been used, with Tittle justification,
as a convenient means of éxp]éining discrepancies between
theory and experiment for the damping of surface waves
[Case and Parkinson, 1957].

In this investigation the effect of wall roughness
6n the damping of standing surface waves has been examined.
The surface waves used in this work were excited by spatially
inhomogenéous, time periodic electric fields applied normally
to the free fluid surface. In all of this. work the wave
amplitude of the surface wave was sufficiently small so that
linear theory could be used. That is, the wave amplitude
was much sma]]er than the wavelength of the surface mode.

The dimensions of the wall roﬁghness can be divided into
two regimes: larger or smaller than the viscous boundary

layer thickness. In Part A, the case where the roughness



amplitude is smaller than the visqous boundary layer thickness
is examined. In this investigation a cylindrical wave tank

is used. The roughness structure is controlled by inserting
grooved plates on.the base of the wave tank.

We realized through the course of these experiments
that groove amplitudes much smaller than the viscous boundary
layer thickness had Tittle effect on the damping, contrary
to previous conjecture [Case and Parkinson, 1957]. This
prompted us to examine the affect on the damping caused by
large grooves (a >> &), where a is the roughness amplitude,
and & is the viscous boundary'1ayer thickness. In part B,
we examine this case both theoretically and experimentally.
For these experiments a square wave tank is used to simplify
the analysis. The groove structure was controlled in the
same manner as in our initial experiment; a grooved plate
was inserted on the bottom of the wave tank.

Part A is composed of Chapter 2 and 3. Chapter
2 consists of an introduction to the effects of surface
roughness and surfactant Tayers on the damping. In addition
the damping frequency is calculated for a wave tank base
with two grooved quadrants. Chapter 3 describes the experi-
mental setup and results for-sma11 groove size (a < ).

Part B consists of Chapter 4 and 5. Chapter 4 consists
of a general approach applicable for determining the damping

enhancement caused by grooved container walls. Using this



approach the damping frequency is determined for some given
groove structures. Chapter 5 describes the experimental
system used to check the predictions of Chapter 4, and the
experimental results are compared with these predictions.
In addition, Chapter 5 also consists of a discussion of the
major conclusions of these investigations and suggestions

for future work.
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Chapter 2

THE EFFECT OF SMALL AMPLITUDE WALL ROUGHMESS ON THE
DAMPING OF SURFACE WAVES

2.1 Introduction

Wall roughness has been used in the past [Case and
Parkinson, 1957] to explain discrepancies between theory
and experiment for the damping of surface waves. Case and
Parkinson studied the damping of water waves in cylindrical
vessels of circular cross section and found that, for shallow
water the damping was a factor of three larger than their
theoretical value. They attributed this discrepancy to the
surface roughness of their cylindrical vessels, even though
the amplitude (depth) a of the roughness structure of
their vessels was sma]]_compared to the viscous boundary
layer thickness, &. It is difficult, however, to envisage
a physical mechanism which gou]d produce a significant
increase in the damping, if a << 2. Essentially for laminar
flow, the fluid in contact with the container walls is at
rest in a layer of thickness ~ 2. For a << & no information
- about the roughness structure should be propagated into the
fluid. As stated previously, surfactant layers present

on the air-water interface can significantly increase the
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damping bf surface waves [see Levich, 1941, 1962; Dorrestein,
19515 and Pike and Curzon, 1968].

Surfactant layers on the free fluid surface alter
the lateral mobility of this surface. On shallow fluids
the damping essentially doubles as the surface becomes |
laterally immobilized (i.e. the air-water interface is
completely covered by a surface film) [see Pike and Curzon,
1968].

The surface film can essentially be viewed és a
thin elastic membrane, which is stretched or compressed
by the motion of the fluid. This results fn the appearance
of additional forces at the surface which must be taken
into account in the boundary conditions at the free surface.
Surfactant layers on the top of the fluid can arise from
surfactant residues left on the vessel -walls which travel
upwards to the free surface, and to residues deposited on
the surface from the air above it. For the former, the
effect is more serious for shallow fluids, since the free
water surface is closer to the container base, decreasing
the time required for surfactants to reach the air water
interface. Hence, the enhancement in the damping reported
by Case and Parkinson could be due to surfactant Tayers

present on the air-water interface or to surface roughness.
In this investigation, we set out to determine

experimentally the effect on the damping of surface waves



~due to container roughness satisfying a < 2. This task is

greatly complicated by the presence of surfactants, which

can obscure roughneSs effects. Thus, it is essential to
design our experiments so that these two effects can be
separated. In the experimental investigation used to separate
these effects, the damping was studied for a sloshing mode

excited on shallow water in a vessel with alternately

" roughened quadrants on the base (see Figure 1). If the

roughened surfaces of the container do cause enhanced damping,

‘then the damping ffequency will vary sinusoidally with 6,
~ where 6 is the angle between the nodal line of the surface

wave and the edge of one of the grooved quadrants on the

base of the vessel (see Figure 1). During the time

" required for a series of measurements the condition of the

.. air-water interface can change due to surfactants, which

‘ﬁﬁi11 alter o. These variations in o, however, will not
*1 haVe any angQ]é;”dépendence, énd if the time required to
’%fimeasure o is'smaif,,then these variations in o due to changes
Lﬂi}h surfactant concentration should be small. In fact, it
“3A_.:¥Was found that o for a given value of 6 changes by less
.L;fﬁﬁén + 5% during the time reQU{Fed to Pérform an angular
?gtan of'o. Hénce if roughenedtﬁurféces do 1ncreasé o by a
”-ﬁ iféctor of thres [Case and Parkinson];lthen it should be

ipdésib]e to observe a sinusoidal dependence of o on 8 which

is not obscured by surfactant effects.



Grooved Base

Driver Electrode

QU

Figure 1. Orientation of driver electrode with respect to
the grooved base of the wave tank.



In the next section the damping frequency is
calculated for the grooved quadrant bases used in the experi-

mental study.

2.2 Calculation of the Damping Frequency for a Grooved Base

The damping frequency will now be calculated for
a sloshing mode for a shallow fluid in a wave tank with a
pair of grooved quadrants on the base. The nodal line of
the surface wave is inclined at an angle 6 to the edge of
one of the grooved quadrants.; Case and Parkinson show

that the damping frequency can be written as
g = oy t+ op +_0MS | (2.1)

where cw, O and Oyg are the contributions made, respectively
'vby the walls of the wave tank, the base, and at the fluid
surface,SWhich is assumed to be Taterally mobile. In all

of our experiments, however, the fluid surface was laterally
immobile. The term IMs must then be replaced by 015> the

laterally immobile term, where

= 2 ’
o1 g Cosh‘ (kH) ‘(2.2)
k = wave number of the surface mode
H = fluid depth

[see Pike and Curzon, 1968]. .



For the conditions used in the experiments kH << 1
(see Table 1), and 01 z g for a smooth base. The fluid
is shallow so that ow/oIS << 1 and the Ty term can be neglected.

The damping frequency for a smooth base is then given by

The damping frequency i5 in general dependent upon the
inviscid flow velocity on the container walls (see Section

4.2) and Appendix A)
¢ o [ vo? dA (2.4)

where vy is the inviscid fliow velocity tangential to a surface
of the container, and dA is an area element on the surface.

For a roughened surface (2.4) is increased according to Case
and Parkinson. It will be assumed that fhe roughness structure
for a < 2 does not alter the inviscid flow velocity v . The
damping frequency for a roughened surface could then be

given by
o a J A' vo? dA : (2.5)

where A' is a constant, A' > 1,
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Table 1

Experimental Conditions

Features of the water tank

Depth, H 0.01) cm

(4.33

H

Radius, R (15.0 + 0.1) cm

Kinematic viscosity 0.01 cm?sec™!

Characteristics of 'sToshing-mode'

Dimensionless wave number, kR 1.8412

Oscillation frequency, f (1.221 + 0.001) Hz

Damping f%equency oo (smooth base) = (0.043 = .006) Hz

Boundary layer thickness = Vv/w = 0.36 mm
Properties of Grooved Quadrants

a) 33 r.p.m. record - groove spacing = 0.063 mm

1 mm or 3.1 mm
(i.e. 1/8")

b) Atluminium discs - groove spacing
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The damping frequency, o, for the roughened quadrants

on the base will now be calculated using the approach used

for (2.5),
o+m/2 o+m
1 + J (A' vo?) r dr do + j Vo2 r dr do¢.
_ O+m/?2
02/015 = 5FT (26)
2
J Voo r dr d¢
6
where (r,¢) are polar co-ordinates on the base of the wave
tank and vy, is the tangential.velocity for a sloshing mode
for an inviscid fluid. TFor a sloshing mode |
Vo = constant J;(kr) cos ¢ (2.7)

9
ar
[see Case and Parkinson]. Now eliminating v, from equation

where Ji(kr) = 0 at r = R, the outer edge of the wave tank

(2.6) and using equation (2.3) to eliminate s yields

Q

2

= 1/2 + 1/4(0 + A') - 1/2 w(A' - 1) Sin 20 (2.8)

Thus the damping frequency shdu]d vary sinuéoida11y with 6
for the base considered, if roughness satisfying a < 2 does

enhance the damping.
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The expressions for o, and of¥ for a cylindrical wave

B
tank were derived by Case and Parkinson. They are

' v
op = [wsg —} k cosech (2kH) (2.9)
w V %
B Su ] 1 |1 + (s/kR)? 2kH
Oy = [ 2 7R {3 T (s/kR)? " sinh (2kH):l (2.10)

where R is the radius of the wave tank, k is the wave number

of the surface mode, H is the fluid depth, and wey is the

frequency characterizing the surface mode. The mSU's are
given by
, :
wey® = 9 kg, tanh (kg H) (2.11)
for surface grévity waves.® The‘kSU satisfy
Jo' (K R) =0 2.12
s (k, R) (2.12)

For the s]oshihg mode S = U = 1. The explicit forms for
o and op are mentioned since a comparison between predicted
o (laterally mobile or immobile) and experimental ¢ determines

the condition of the top surface of the fluid.

, “"Note that equation (2.11) is the general dispersion
relation for gravity waves. For an unbounded system there is
of course no restrictions on the values of the wave number.



Chapter 3

DAMPING EXPERIMENTS FOR SMALL ROUGHNESS AMPLITUDE

3.1. Experimental Set-up

When studying the damping of surface waves either
temporal or spatial damping can be considered. Temporal
damping involves the use of standing waves, while travelling
waves are used for spatial damping. Throughout our experi-
mental investigations temporal damping has been considered.
There are three major advantages to this approach. When a
standing wave system is considered, it is possible to drive
the system resonantly to obtain a pure surface mode, with an
ahp]itude that can easily be detected. The wave amplitude
détector fof such a system can be at a fixed position and
only one detector is required. Spatial damping requires
wave tank dimensions of at least the order of the damping
length, which is much larger than the wavelength of the
surface mode. This necessitates large systems, which is not
the case for temporal damping.

The geometry of the wave tank is shown in Figure 2.

The tank is made from a section of an old glass bell jar with

13
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Figure 2. Cross-section of the circular wave tank.
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the ends ground parallel to each other. The lower end of
the tank is sealed to a copper sheet by a silicone adhesive
on the outside surface of the tank. The copper sheet js
mounfed on a conventional levelling table fitted with three
adjustable legs. The depth of water in the tank can be
measured at any location by a micrometer depth gauge. This
device, togetﬁer with the three adjustable legs, enables
the free surface of the fluid to be aligned parallel to the
base of the wave tank to an accuracy of approximately 0.04 cm.

The waves are excited by a horizontal electrode
mounted above the fluid surface (Figufe 2). The electrode
is made from a hexagonal piece of printed circuit board
with a 1.4 cm wide strip of copper removed from one diameter.
A vertical vane is mounted below the electrode along a
diameter at right angles to the insulating strip. The vane
éuppresses spurious sloshing modes which caused.some problems
in our early experiments (see Discussion).

The electrode just fits inside the wave tank and
is suspended from a lucite frame which is fixed across the
top of the tank. Thé suspension system consists of three
spring loaded micrometers mounted at the vertices of an
'equi1atera1-trian§1e (Figure 3). After the tank is level,
three identical gauge pins are placed on the bottom and the
micrometers are adjusted until the electrode just rests on

’ the pins. The frame and electrode are then removed so that
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Mounting system for the driver electrode.
(a) Plan view of micrometer support frame.
(b) The micrometer levelling system.
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the metal gauge pins can be taken out of the tank. When

the electrode and holder are replaced, checks with a

travelling microscope showvthat the electrode and water

surface are spaced by a constant distance of ~ 1 cm = 0.1 mm.
The electrode plate can be rotated about a vertical

axis, and angq]ar position can be measured to an accuracy

of + 1° with a protractor scale fixed around the upper edge

of the wave tank. By applying a time dependent high voltage

to one-half of the electrode sloshing modes can be excited

on the water surface. The nodal Tine of the wave is along

the insulated diameter of the electrode, which can be set

at any compass direction by rotating the plate about its

vertical axis. The frequency of the high voltage waveform

is adjusted to resonate with the sloshing mode (~ 1.22 Hz

in our experiment). This result is approximately determined

from equation (2.11), where k satisfies equation (2.12).

The sloshing mode considered is the fundamental and for this

kR = 1.84. The dispersion relation given by (2.11) is not

completely correct when an electric field is applied normally

to the surface; there is a small additional term in the

dispersion relation proportional to -E? (where E = electric

field) (see Ionides thesis). This shifts the resonant

frequency by a small amount. Once the E field is shut off,

however, the surface modes oscillate at the natural frequency

given by equation (2.11). The form of the high voltage
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waveform used is given by V = V(1 + c05wt)%. The H.V.
waveform generator essentially consists of a rotary switch
with appropriafe resistor networks to produce the waveform
given above. Complete details of this generator are given
in [Ionides Thesis, 1972] and [Phillips and Curzon, 1973]
and will not be stated here.

The maximum voltage used is 5KV, which produces
a wave amplitude of ~ 2 mm on the water surface. The wave
amplitude is observed with a microscope (magnification x35)
focused on the air water interface at a distance of ~ 2 cm
in from the wall of the wave tank. The microscope can be
displaced horizontally to ensure that it is never focused
on the water surface a]ohg a nodal line. The eyepiece of
the microscope is fitted with a photoresistor. Another
photoresistor monitors a constant 1ight source behind the wave
tank used to illuminate the tank (see Figﬁre 4). After
processing of these two signals (see Figure 5), they are
applied to a differential amplifier (Tektronix storage
oscilloscope (549) equipped with a 1A2 differential amplifier).
This procedure eliminates noise signals common to both inputs.
For complete details of this measuring system see [lonides,
1972, Curzon and Phillips, 1973].

The grooved surface on the base of the wave tank
is produced by inserting suitably grooved discs and taping

them down to the base of the tank with vinyl tape. This
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FLUORESCENT
LAMP
, MICROSCOPE AND
PHOTORESISTOR
WAVE TANK
Figure 4. Plan view of the optical detection system.
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Figure 5. Photoresistor detection circuit. (a) Circuit
of one of the photoresistor detectors.
(b) Differential photoresistor network.
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procedure is necessary in order to prevent anomalous wave
damping caused by seepage of water under the grooved disc
(see Discussion).

A number of different grooved discs were used
in these experiments. In all cases the groove amplitude
was smaller or at least ~ boundary layer thickness &. For
small groove widths and amplitudes we used phonograph
records (33 r.p.m.). The grooves of a pair of opposite
quadrants were eliminated by varnishing these regions. For
groove widths Targer than ~ 0.5 mm we cut concentric grooves
on an aluminum plate (~ 5 mm thick), using a lathe. Grooves
in two opposite quadrants were removed, using a milling
machine.

To perform the experiment, surface waves were
excited with the wave generation electrode. Once the wave
amplitude has stabilized, the generator was switched off,
and the decay of wave amplitude was observed on the storage
osc111oscbpe. By judiciously changing the gain of the
oscilloscope amplifier during the course of the decay, the
signal could be kept large enough to ensure accurate measure-
ment. The damping freugency was determined from the s1ope'
of the 1ogarithmic plot of the wave amplitude as a function

of time.
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3.2 Experimental Results

Experiments were initially conducted to determine
the damping frequency for a sloshing mode with a smooth base.
This was done to determine the condition of the top surface
of the fluid. It was found experimentally that oo, = 0.043
+ 0.006 sec™ !, where oo, is the damping frequency for a smooth
base. There was quite a large variation in o from run to
" run, depending on the condition of the distilled water.

This result compared favourably with the predicted laterally
immobile kesu]t for o. Using equations (2.2), (2.9), and
(2.10), this predicted result was o = 0.0456, for the
experimental conditions given in Table 1. Thus the fluid
surface used in our experiments was laterally immobile.

Experiments were then conducted to determine
the damping frequency for a sloshing mode with a grooved
disc, as described in Section (3.1), secured on the bottom
of thé wave tank. With such a base, according to our cal-
culation in Section (2.2), the damping frequency should vary
sinusoidally with 6, where 6 is the angle between the nodal
Tine of the sloshing mode and an edge of the grooved quadrant
(see Figure 1).

In our early experiments we observed that o varied
with ® (large variations up to ~ 2 oq), aﬁd thus we thought

we had established an effect attributable to surface roughness.

This turned out, however, not to be the case. The variation

f
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in o with 6 was in fact caused by either water getting

under the grooved base or the excitation and interaction of
spurious modes. The seepage of water under certain parts

of the disc would result in enhanced damping when the flow
velocity was at a maximum over these regions. When the flow -°
direction was varied, the enhancement would also vary,
resulting in an angular variation in o.

In our early experiments (without the vane present)
it was noted for certain flow directions that there was an
increase in wave amplitude after an initial decay period,
following the removal of the electric field. This behaviour
was due to the interaction of spurious modes (see Discussion).
When the vane, described previously, was used the increase
in the amplitude of an initially decaying wave, was eliminated.
Damping runs were conducted with different grodved bases
as well as with a smooth base. Typical oscilloscope outputs
displaying wave amplitude as a function of time are shown in
Figure (6-9). In Figures (10-13) the logarithmic plots
of wave amplitude as a function of time for the various bases
are given. In Figure (14-17) the damping frequency o is
plotted as a function of 6 for each base (smooth a1um1num
base, 33 r.p.m. record with two Smooth varnished quadrants,
and grooved aluminum plate with two smooth quadrants).

The results for the smooth a]umﬁnum base show that
the wave tank does not possess any directional damping

properties. We also find no sinusoidal variation in o with 0
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Damping runs for 33 r.p.m. record used as a base
(horizontal 5 sec/div).

00
30°
60°

90°

(vert. 0.2, 0.1, 0.05 v/div)
(vert. 0.2, 0.1, 0.05 v/div)
(vert 0.5, 0.2, 0.1, 0.05 v/div)

(vert. 0.2, 0.1, 0.05 v/div)
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Figure 9. Damping runs for a grooved aluminum base (con-
taminated surface).

(vert. 0.%, 0.1, and 0.05 v/div, horizontal
i

5 sec/div).

(a) 6 = 0°

(b) 6 = 45°
= 9Q°

(c) ®
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for the other two grooved bases, as can be seen from
Figures (10-13). For both of these bases a/% < 1, and for
this regime we find no significant enhancement in the damping
over that for a smooth base, as well as no variation in
o with 6.

The damping frequency as a function of 6 for a
"dirty" surfaée using the grooved aluminum plate is shown
in Figure (17). The water was left in the tank for a few
days and then these damping runs were performed. The magni-
tude of the damping frequency has increased, but again it

exhibits no angular variation.

3.3 Discussion

Case and Parkinson (1957) claim thét container
"roughness whose depth was small compared to the boundary
1ayer thickness had a remarkably large effect" on the damping
of surface waves. They found experimentally values of o
three times larger than that predicted by theory for a dpeth
to radius ratio of < 1.5. Case and Parkinson assumed in
their theory a laterally mobile surface layer at the air-
water interface. With this assumption the energy dissipation
in the top surface is negligible compared to that of the base
and walls of the tank. In our experiments with a shooth

base we found good agreement between experiment and theory,
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assuming a laterally immobile top surface. A Taterally
immobile surface essentially doubles the damping for shallow
fluids.

To prepare a laterally mobile top surface requires
extreme care and it is reasonable to assume Case and Parkinson
did not have such a top surface. This reduces their dis-
crepency between experiment and theory to a factor of 1.5.

In our experiments we used depth to radius ratios of 0.2

and we should have certainly seen even larger effects (dis-
crepency between theory and experiment), based on Case and
Parkinson's conjecture. Our experimental results do not
agree with Case and Parkinson's contention that for shallow
fluids surface roughness (even with a/f% < 1) can drastically
increase damping.

We found for the grooved bases considered that the
variatiqn in damping was only of the order of < % 5% diffe;ent
from that for a smooth base. If Case and Parkinson's con-
tention that surface roughness was responsible for the
damping enhancement was valid, then for our model (oppositely
grooved quadrants), A' would be equal to 3. /

Substituting this in equation (2.8) results in a
variation of 20% in g,/0,, and this variation would be
sinusoidal in nature. This variation is much larger than
that found in our experiments < < = 7% difference between
smooth and groove base results. For_both the 33 r.p.m.

record and the grooved aluminum plate, o does not possess
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a sinusoidal dependence on 6 (see Figures 15-16) as pre-
dicted by equation (2.8).

Thé damping frequency in these runs does possess
an. angular variation_(not sinusoidal in nature), but these
variations (~ £ 8%) are much smaller than that expected due
to Case and Parkinson's conjecture. It was also discovered
that there waé no systematic behaviour to these variations.
Every angular scan of the damping frequency would result
in a different angular varijation. These variations in o with
6 are, in fact, due to surfactants on the free fluid surface.

As mentioned previously, surfactants make it

difficult to establish the effect on wave damping caused

by roughened surfaces. The value of the damping frequency
was extremely sensitive to the conditions of the distilled
water used in the experiments as well as to contaminants
present on the grooved base. Variations in o from day to.
day, depending on these condifions, were as high as 30%.*
While the value of the damping frequency varied for differentb
runs, the damping frequency for any one run did not exhibit
any sinusoidal angular dependence. To determine o as a

function of 6 (0° < 6 < 180°) takes about one hour and during

"It will be noted that the logarithmic plots of
wave amplitude versus time are excellent straight lines (as
good as those obtained by lonides. This indicates we are
dealing with a single surface mode and we are operating in a
regime where linear theory is applicable.
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this time fluctuations in the values of o at any given

value of 8 are ~ < 5%. The damping frequency (determined

by lTeast squares fit) has a typical error of less than 1%,

so that these variations cannot be explained by the uncertainty
of our experimental results. Hence these variations in o

are "real" variations. Since they possess no systematic
angular dependence, they cannot be the result of the oppositely
grooved quadrants of the base. The variations in o with 6

seen in Figure (14-17), must then be the result of surfactants
present on the free surface of the fluid and on the grooved
base.

As mentioned previously we observed a spurious
dependence of o on 6 in a wave tank where the electrode
had no vertical vane under it. For certain values of 8
the wave amplitude increased for a certain time after initally
decaying, and then finally decreased'again to zero. This
behaviour is reminiscent of the energy exchange between
coupled oscillators Having slightly different resonant
frequencies, which results in damped beats.

In a wave tank of circular cross-section any
sloshing mode can be resolved into two degenerate sloshing
modes having théir nodal lines perpendicular to each other.
However, if the tank is imperfect (slightly elliptical, or
with a sloping base), the degeneracy of the two reference

modes is removed and they become linearly coupled.
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During the driving cycle, the reference modes
are constrained such that the nodal Tline of the fluid surface
is near the centre strip of the e]eétorde. However, during
the decay phase, energy can be exchanged between the modes
because of the coupling. As a result the displacement of
the fluid surface exhibits the phenomenon of damped beats.
When the damping frequency is higher than the beat frequency
it is easy to overlook the existence of the beats and describe
the observations in ferms of a dependence of o in 6 in a
periodic fashion. However, we found that these damped beats
could be completely eliminated by the vertical vane under
the electrode. The vane constrains the system to oscillate
-such that the nodal line always remains along a diameter

perpendicular to the vane.

3.4 Conclusions

The experimental results for the damping of surface
waves in a circular wave tank having a base with alternately
grooved quadrants shows that the damping is independent of
the direction of thé surface mode with respect to:the base
for groove amplitudes smaller than the boundary layer thickness.
On the basis of Case and Parkinson's :suggestion, the damping
frequehcy should have possessed an angular variation if the

wall roughness did in fact greatly enhance the damping.
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We did however observe fluctuations in the damping frequency
(~ 30%) from day to day, but on any run there was no syste-
matic angular dependence. These results strongly suggest
that this variation in ¢ is due to surfactants. The rough-
ness of the container walls plays at best only a minor

role in the increase of o. In our experiments we were unable
to find any systematic increase in the damping caused by

base roughness, where the roughness amplitude is sma]]ér

than the viscous boundary layer thickness.
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Chapter 4

4.1 Introduction

From the results of Part A, we found that wall rough-
ness does not significantly increase the damping of surface
waves, when the amplitude of the roughness is smaller than
the Qiscous boundary layer thickness. Wall roughness of small
dimensions (a < &) has in the past been conveniently (but
erroneously) used to explain discrepancies between theory
and experiment., In this section the effect of large grooves
(a >> %) on the damping in a wave channel is examined theo-
retically and experimentally. The enhancement factor A' used
in Section 2.2 is an ad-hoc approach to the problem of‘damp-
ing over roughened surfaces, as it assumes that the flow
velocity is unaltered in the dissipation integrals. This
might be justified for small groove amplitudes, but not for
large grooves. Any meaningful calculation of the damping
must involve changes in the flow velocity over the roughness

“structure. In our theoretical study for large grooves, the

42v
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calculation of the damping frequency is approached from this
point of view. |

In determining the damping over.a roughened surféce,
it is necessary'to determine the inviscid velocity potential
over the roughness structure (see Section 4.2). The structure
of the.boundary layer (where essentially all energy dissipation
occurs) is then determined by solving the boundary layer
equation subject to the boundary conditions that the fluid
in contact with the container be at rest.

Roughened container walls change the velocity
potential from a value ¢, (thé value with smooth walls) to
some value ¢ and they change the effective surface area of
the boundary layer. There are two approaches to determine the
inviscid velocity potential over a roughened surface. A
linear perturbation scheme is the most general approach,
starting from the smooth wall potential ¢,. To do this, the
roughness structure is decomposed into Fourier components.

The componentslfor which a(g)/& > 1, where a(g) is the ampli-
tude of a Fourier component of wavelength & will have the
greatest effect in changing ¢o,. The term a(g)/& is used as
an expansion parameter. For the Fourier terms having the
greatest effect on changing the potential ¢,, the term a(g)/&
is. not an appropriate expansion parameter. The perturbation
scheme linking ¢ to ¢, for these modes will certainly be non-

linear in the expansion parameter a(g)/g if a/& = 0(1). Since
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we are interested in large amplitude roughness, a perturbation
approach is inappropriate.

An alternative approach is to Took for exact solu-
tions to Laplace's equation which satisfy the inviscid flow
boundary condition n - V¢ = 0 on non-flat boundaries for which
a(g)/eg = 0(1). For‘this approach it is necessary to know the
roughness structure a(&) and for any calculation a certain
structure is assumed. If there are many grooves (spacing &)
per wavelength of the surface mode (i.e. k& << 1 where k is
the wave number of the surface mode); then ¢, should essen-
tially be a constant over linear dimensions of order £. Above
‘the roughness structure, ¢ - ¢, should decay to zero over
vertical length scales of ~ng& (n > 1), and the particular
solution over the grooved structure must incorporate tHis
feature. The term k& can then effectfve]y be viewed as an
expansion parameter replacing a/&. The roughness structure
éonsidered in our investigation consists of a surface with
identical parallel grooves having a cross section in the shape
of an isosceles triangle.

An exact solution for the inyiscid velocity potential
¢ for this structure was determined which ié valid even if
a(g)/g > 1, provided that k& << 1. The damping was then

calculated using ¢. The results ofvthis calculation show that

the energy dissipation in the boundary layer is proportional
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to the surface area of the grooved surface, and independent

of the orientation of the inviscid® flow with respect to the

direction of the grooves.

4.2 Theory

The motion of a viscous fluid is determined from the
Navier-Stokes equation. It is assumed in all of our calcula-
tions that the fluid we are dealing with is incompressible,
i.e. V + v =0, where v is the fluid velocity. For the fluid
used in all of our experiments (water) this is certainly
appropriate. In the calculation to follow a right handed
cartesian co;ordinate system is used with the xy plane on the
undisturbed fluid surface, and the z axis vektica]]y upwards.
The linearized Navier-Stokes equation for an incompressible
fluid is

oV

L P 2
5T V[gz + p] + v Viy (4.1)

where P = pressure, p = density, and v is the kinematic
viscosity.

The boundary conditfon for this flow is that

“In this case the inviscid flow referred to is
measured at several boundary layers above the grooved surface.
It is therefore the flow which would remain if the groove
amplitude a is decreased to zero.
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on fixed boundaries. Viscous flow creates the additional
constraint that the tangential velocity at ffxed boundaries
is zero. The decrease of the velocity to zero occurs almost
exclusively in a thin layer next to the solid wall. This
layer is called the boundary layer and is characterized by
the presence in it of considerable velocity gradients. For
inviscid flow the only constraint at fixed boundariés is that
the normal component of the velocity be zero. For viscous

flow the velocity can be written in the form
Vo=Vt v, (4.3)

where v; can be written in terms of a vector potential A,

i.e.

The first term V¢ is the potential flow term, while the
second term v, is the rotational flow term.
Since the flow is incompressible (Vv « v = 0)

then it follows that
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Substituting the expression for v into the Navier-Stokes

equation gives

This equation (4.6) is broken down into two equations, one
for the viscous flow and one for inviscid flow. In the Timit
of zero viscosity v, vy - 0. Equation (4.6) then integrates

~directly to yield

P T |
5 + gz =t t const. (4.7)

The above solution (4.7) is also valid for the

viscous case if

2 (vy) = v vy, (4.8)

Equations (4.5) and (4.8) are solved subject to
the constraint that the fluid be at rest at rigid boundaries.
Expressed mathematically these conditions are

n v =0 (479)

(n x v¢) + n x (Vv x A) =0 (4.10)
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where n is a unit normal directed inwards from the solid
“boundary to the fluid. 'At any rigid boundary the velocity
varies rapidly in the direction of n. All of the other spatial
derivatives of the velocity are small compared with variations

in the n direction. Equation (4.8) can thus be simplified to

2 (vy) = v V1 (4.11)

The time variation of Vi will be assumed to be a

simple harmonic time dependence VvV, ~ eiwt where  is the
frequency of the surface waves. From (4.11) the solution for

vy will be of the form
Vi ~ exp - [b(1 + i)/8 /fl (4.12)

.where 2 is the viscous bouhdary 1ayer thickhess L = [—J%
and n is the co-ordinate along n. To satisfy the boundary
conditions at thé wall v, must include the term V¢ (Nb.
that v¢ in il does not alter the solution of (4.11) since
V2¢ = 0). The complete so]ution‘for v, is

vy = g.x (gli Vo) ekp - [5(1.+ i)/s /?] (4.13)
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where V¢ is evaluated at n = 0. The viscous energy dissipa-
tion per unit area of the container walls is dependent upon

Vi, and is given by [see Case and Parkinson]

2

R LRk RN (7Y VPR SR CA T
0 n=0 | n

It was remarked earlier that the energy dissipation
is only dependent on the inviscid velocity potential, and
this can be seen to be the case from (4.14). To determine
the damping it is necessary tobintegrate S over the container
surfaces; the damping frequency is then proportional to JSdA.
Hence the effects of a roughened surface oh the damping cah
be determined by calculating JSdA. To do this it is necessary
to evaluate the inviscid velocity potential over the rough-
ness structure (grooved structure). The inviscid potential
for two groove cross sections (triangular and approximately
sinusoidal) as well as the dissipation integrals for each,
are now calculated. 1In the following calculations it is
assumed that the boundary layer thickness 2 is much smaller
than any other scale lengths of the problem and there are
many grooves (spacing &) per wavé]ength of the waves (A).

For a flat surface the energy dissipation S = S,

“where

Se = v Vvo?/L V2 (4.15)
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and vy is the inviscid flow velocity parallel to the surface.
If fluid flows parallel to the grooves, vy is unaltered by
the grooves but the boundary layer spreads over the grooved
surface (see Figure 19(b)) increasing the dissipation area
from dA, to dA (dA, is an element of area on the flat surface,
dA is over the grdoved surface. Hence for flow parallel to
the grooves the dissipation is increased in the ratio dA/dA,.
For flow transverse to the grooves, v is changed.
At the top of the grooves v > v, and at the bottom v < vq
where in this case v, is the inviscid velocity some distance
above the grooves. Hence it is not clear what relation SdA

bears to S, dA, as the groove depth is changed.

4.3 Calculation of fSdA for Grooved Surfaces

When determining the velocity potential over a
grooved surface it is convenient to consider a complex velocity
potential. The modulus and argument of a complex potential
will gfve the magnitude of thé velocity and the angle between
the flow direction and in our case the xy plane. For inviscid
flow past a solid surface, the velocity must be along the
tangent to the surface. Hence the profile of the surface
must be the profile of a streamline. For the grooved struc-
tures considered a streamline follows the groove structure,

which makes it difficult to detérmine the potential. For all
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of our ca]cu]ations the groove structure is consfdeked to

be in the complex z-plane. If it is possible to determine a
transformation which maps the groove structure in the z-plane
~onto the real axis of the w-plane, then the problem is greatly
simplified. The streamlines of the flow in the w-plane will
thus be straight lines parallel to the real axis. The
problem of flow past a given contour then reduces to the
determination of an analytic function w(z) which takes real
values on the contour. With this approach it is possible to
determine the potential over the grooved structure and thus
the dissipation integrals can be solved.

Consider ¢ = w = f(z) to be the complex velocity
_potential tran;verse to the grooves. The magnitude of the
speed u at the grooved surface is then given by

u = u1V¢| = “'HE (4.]6)
‘This velocity potentia] must have the property that far
above the groove structure, their effect is negligible,
i.e. u > vy as Im(z) - é. The constant p is chosen so that
this is the case. Using (4;16)Vin the dissipation integral

- results in
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’ |dz | |dL | (4.17)

where dL is a length element on a groove over the area being
considered. The jntegral over dz js along the agroove struc-
ture, As stated previously, the evaluation of this integral
is simp]iffed.if the groove structure is mapped into the
real axis of the w-plane. Then the line integral over dz
transforms to a line integral over dw. For this (4.17) can

. . - /
be written in a more convenient form.

f SdA = “2[/;2} j

The case of grooves with a cross section in the

dw '
) dw | (4.18)

form of an isosceles triangle is first considered (see Figure
19a). To determine the potential and dissipation integral for
this case, a transformation mapping the groove structure into
the real axis of the w-plane is required. It is well known
that the interior of any polygon D in the z-plane can be
mapped into the upper half D' of the w-plane by a Schwartz-
Christoffel transformation (see Figure 18a);

The most general form of the Schwartz-Christoffel

transformation is

(=%

z
W

= A(w-w,)or/m-1 (w-wz)QZ/F'] )an/"'] (4.19)

a
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Figure 18.

Mapping of a polygonal region into the upper half
of the w-plane.

(a) Arbitrary polygonal region.

(b) Region bounded by a triangular groove
structure.
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and this can be uSed for polygonal regions with vertices at
©, Thus it is possible to map region S bounded by a grooved
structure into the upper half plane S' (Figure 18b). The
groove structure that has been considered can be viewed as
a superposition of individua] triangles.

The Schwartz-Christoffel transformation for a
single triangle is first calculated: The points z = -b, ai,
+b are mapped into the pointé w= -1, 0, + 1 respeétive]y in

the w plane (Figure 19a). Then

‘ﬁ+2a
( T 1) (W_])n-a/ﬂ-1

[«X

Z = a1/l

|

o

_ A(w2~1)(ﬂ-a/n) | 1 w(ﬂ+2u/ﬂ) -1

2a/ T 2a/T
= Aw e (4.20)
(wz_-l)O(, m (]_WZ)OL/TF

The constant K is chosen to fix the length of one side of

~ _the isosceles triangle. Integrating (4.19) yields



Figure 19:

Features of the groove geometry.

(a) Mapping contours for the velocity
potential,

(b) Flow of water along the grooves.
(c) Geometry of grooved area dA, with

p grooves per unit length (p = 3
in Figure 19c).
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W 20,
z=|<j v dy + B (4.21)

For w = 0, z = ai and for w = 1, z = b. Using this, K is

given by
b - ai
K = (4.22)
Il wZa/W dw
o (1 - p2)%/T

The S-C Transformation for the complete groove
structure is calculated in a similar manner to that for a

single triangle. The transformation is calculated so that

it maps vertices at height ai into 0, % 2(%), + 4(%), s
and maps vertices on the real axis into % %, t %F, s

(see Figure 19a) where m - 26 is the apex angle of the grooves.
. The SC transformation for this is the infinite

product



T+26 ] T-26 1 2
. = - - O_]
T = A e (wem) (w-m/2) w2/ +2) T
20/

o —20/m
W2
X P nE] -[’ ] W]
= = » Ty (4.23)
1 1 - 4w ?
n=1 (2”"]5 ki J
Here K is a constant, K = A const. = AC. The constant C
results from the factoring of the bracketed terms in the
second form of (4.23) which enables the S.C. transformation
to be expressed in the final simple form.
Now sin w and cos w have the following infinite
product representations [see Abramswitz and Stegun].
. _ ® w2
SIn w = w 1T {1 -W]
n=1
COS W = ; 1 - A (4.24)
- (2n-1)7%n?2 ’
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Thus (4.23) becomes

dz _ 20/m
T, = K (tan w) (4.25)
The constant K is determined in the same way as
for the single triangle case done previously. Integrating
(4.25) results in
W 20/
z = j (tan x) dx + B (4.26)
0
For W =0, z = ai so that B = ai, and for W = w/2, Z = b.
Thus K is given by
K = b_- ai (4.27)

n/2

J (tan w)ze/1T dw
0

The constant pu (equation (4.16) can now be determined
using the condition u » vy as Im(z) > ». This requires that
B

1im u = v | (4.28)
(Im z+~)  K(tan w)ze/Tr ’

and clearly u = K vy.
Now the dissipation integral can be calculated.

This integral is calculated over the length of one side of
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an isosceles triangle. Due to the symmetry of the groove
structure, the dissipation over any one side is equivalent
to any other. The total dissipation in length dx will
then be 2p times the dissipation for a single side of the
isosceles triangle, where p is the number of grooves
traversed in a distance dx across the grooves (see Figure 19c).
In the w-plane integrating over one side of a groove is equi-
valent to integrating over the range (0 - ©/2). Now sub-
stituting (4.25), (4.27), and (4.28) into (4.18) results in
w/2 '
Zp[ v ] vo? ¢ dL J (cot w)Ze/Tr dw
V2 % 0
JSdA - - _ (4.29)
(tan w)ze/“ dw

where ¢ = (a? + bz)%.
Now the general form for a Beta Function [Abramowitz

and Stegun, 1965] is

m/ 2
B(m,n) = 2 [ (sin t)%m-] 2n-1 (4.30)
’ Jo (cost) dt '
m/2 '
20/m 4 _gfl.8 1,8
Hence J (cot w) dw = 8[2 e n)

0

n/2

J (tan w)Ze/Tr dw = B{
0

N[~
4

3 |@

~o|—
t

= |@

N’
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The beta-function is symmetric in its argument, [B(m,n) =

B(n,m)] so that (4.29) reduces to

deA = [ﬁ“] ve2 pcdL = 25, p ¢ dL (4.31)

‘But 2 p c dL = dA (see Figure 19c). Hence for flow transverse

to the grooves.

SdA = S, d A, [dA]

d Aq (4.32)

The dissipation is thus increased in the ratio

'dA/dAo compared to the dissipation expected for a flat surface.

. This result is the same as for flow parallel to the grooves

‘as was discussed previously. Hence for a roughened surface

'N;; With grooves consisting of identical isosceles triangles the

2\dfssipation isAproportiona1 to the expression So[éﬂ%z]“d Ay

ﬁ; :ﬁrrespeCtiVe of the direction of the flow with respect to the

"grooves.
The Stream]ines above the triangular groove struc-
A'_tUre have ‘an approximately sinusdida] shape. For a groove

f: étructure of this form, the streamline af the groove surface

”~f?f_W6qu of course be sinusoidal. Using the transformation

f(4.25) along the line Im(w)_= Yigenerates a groove stfucture

~in thebz—plane with an approximately sinusoidal cross section.

For this type of structure the dissipation integral becomes
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m
JSdA = (%) vo® p K dL J |cot(x + iy)|

0

20/ d

where W= x + iy.

The integral in (4.33) can be written in the form

m/2 : _ 28
I = I [|cot(x + iy)[ze/ﬂ + Jeot(x + iy)] 7| dx (4.
0
using the identity
cot (x + =) = - tan x (4

The arc Tength for such a groove structure is given by

o]

The integral in (4.36), however, is the same as (4.34), which

dz

-20/w
o d

m
dw = K [ cot(x + iy)|
J
0

can be seen using (4.35). Thus equation (4.36) reduces to

KI (4

The dissipation integral is then

JSdA= [ v ] voZ p dL ¢ =Jso dA=JSodA0 [dAo] (4.

X (4.

X (4.

33)

34)

.35)

36)

.37)

38)
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Hence for a groove structure of approximately
sinusoidal cross-section the damping is enhanced in the ratio
Hg%; with respect to a flat surface; and the damping enhance-
ment is independent of flow direction with respect to the

grooves.

4.4 Calculation of the Damping Frequency o

It has been shown previously that the damping (and
hence the damping frequency) for surface waves is proportional
to JSdA integrated over the container surfaces. The complete

expression for the damping frequency o is given by

y (£(ve)?2
o =3 [%] [f (v¢T)2dﬁl\r] + (Sg) (4.39)

—

where (V¢)Tis the tangential inviscid velocity, dA is an
e1emént of area on the interface between the water and the

wave tank, dt is a volume element in the fluid and S- allows

F
for energy dissipation at the air-water interface. (This
result is derived in Appendix A).

Using (4.39) the damping frequency for a square
wave tank of length L and depth H with a grooved base is now
calculated. The bottom of the tank is at z = -H while the
' equilibrium fluid surface is at z = 0 (see Figure 20).

The inviscid velocity potential for flow parallel

to a pair of vertical walls in the wave tank is [see Landau

and Liftshitz].



Figure 20.

T

4

Coordinate system used for the ca]cu]at1on of
the damping frequency.
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& = A cosh k(z + H) cos kx cos wt (4.40)
and
vX = %% = - % sin kx cosh k{(z + H) cos wt
v, ; %% = % sinhk(z + H) cos kx cos wt

A/k

A, (4.41)

Using these results the integrals in (4.39) can
now be calculated, where the integrals are averaged over one

oscillation period of the water wave. Now

(v 2d _LZAZ 2.
¢) T = ——7rl— cosh?® k(z + H) dz

L* A,?

+ i [ sinh? k(z + H) dz

0
2 2
= £—79L— j cosh 2k(z + H)

-H

2 2 . .
_L* A, [smh 2kH] (4.42)

4 2k



The base term for J(V¢)% d A is

f((v¢)2d A)B = A,2 J cos? wt sin? kx cosh? k(z + H)z=—

A 2

= "N 2
i L
The end wall terms are

A2 J sinh? k(z + H) dy dz

- LA, j [cosh 2k(§ tH) - 1) 4,

The side wall terms are

A,? [] cos? kx sinh? k(z + H) dx dz

+ J sin? kx cosh? k(z + H) dx d%}

0
[ cosh 2k(z + H) dz
-H

L A?
2

(4.44)

Combining the contributions to [ (V¢); dA from the

| side walls and end walls yields
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2 .
L A J [2 cosh 2k(z + H) - 1] dz

L A% sinh 2kH
- g - H (4.46)

For a laterally mobile air-water surface SF is given

by

SF = 2 v k? (4.47)

and for a laterally immobile surface

S. = o, cosh2(kH) (4.48)

F B

where og = damping frequency due to the base [Pike and Cuonn,
1968]. The results calculated above are of course for smooth
surfaces. It has been shown that the enhancement in the
damping due to a groove structure with an\isosce1es triangular
or approximately sinusoidal cross section is directly pro-
portional to the area ratio d A/d A,. Thus for a grooved base,

the base term (4.43) becomes

L2 o (4.49)

Where A' = area ratio.
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Using (4.42), (4.44)-(4.47) and (4.49), o for a

laterally mobile air-water interface is given by

C(wv)® . . 2H(sinh 2kH _ .
o = (2] sinh KA E\ * L[ kT ]H to2vk (4.50)

For a taterally immobile surface

1
_ fwv)? k ' . s 2H{sinh 2kH
o= (%) s IE‘ * cosh <'<”)+T“‘“k7r—'1ﬂ (4.51)

If the surface is only partly covered, the factor coshz.kH
is correspondingly decreased, i.e. a term e cosh? kH and

(1 - €)2vk?® will be incorporated, where 0 < ¢ < 1).



Chapter 5

DAMPING EXPERIMENTS FOR LARGE AMPLITUDE GROOVES

5.1 Experimehta] System

In this experimental investigation, the case of large
groove dimensions is considered a >> &. The same approach
to the study of wave damping as given in Section 3.1 has
been used (i.e. temporal damping is used throughout).

As has been remarked previously, contaminants
(mono-layers) present on the free surface'can significantly
alter the damping of surface waves, causing problems in the
experimental investigation of the effect of wall roughness
on the damping. When two different surface modes are con-
sidered, however, it is possible to separate the contributions
to the damping from the free surface and the base (see
Section 5.2). In all of our experimental work (for a >> 2),
two sgrface modes have been used, where one satisfies the
shallow fluid case (kH << 1) and the other satisfies the
deep fluid case kH > 1.

The geometry of the square Tucite wave tank used

in this experimental investigation is shown in Figure 21.
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Figure 21. Cross-section of the square wave tank.
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Essentially, the same experimental procedure, described in
Section 3.1 has been used. A grooved aluminum plate could be
mounted on'the bottom of the tank and was secured on it with
a silicone adhesive (General Electric RTV). This procedure
was necessary in order to prevent anomalously large wave
damping caused by seepage of the water under the grooved
plate. The grooves on the plate were identical and parallel
to one another, having a cross section in the form of an
isosceles triangle (the groove dimensions are given in

Table 2). |

The waves are again excited by a horizontal e]eétrode
mounted above the fluid surface; the same electrode described
previously is used. The electrode is suspended from a
Tucite cross fixed across the top of the tank. The height
of the electrode above the fluid surface is adjusted by
four levelling screws at the ends of the cross. In this
series of experiments the electrode and water surface were
separated by a constant distance of (1.9 + 0.1) cm. .

The high voltage wave generator‘used for this
experiment was completely different from that used previously.
The generator incorporates two novel features. A1l of
generator timing is determined by a crystal controlled master
clock. The output waveform of the generator is constructed
by sequential scénning (with pulses from the master clock),

of a series of voltage registers.
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Table 2

Experimental Conditions

Features of the Water Tank

Depth = (3.01 + 0.01) cm
Length, L = (26.7 + 0.1) cm
Kinematic viscosity = 0.01 cm? sec-!

Properties of Grooved Base

Groove Spacing _ = (3.2 £ 0.1) mm
Apex Angle = 90°
A' (Area Ratio) = /2

Characteristics of Modes
Mode 1 (Sloshing Mode)

Wave number, k | - 0.1178 cm-!
Oscillation Frequency, f = (1.020 + 0.001) Hz
Boundary Layer Thickness = vv/2wf = 0.40 mm
‘Mode 2
| Wave number, k = 0.3533 cm~!?
Oscillation Frequency, f ' = (2.630 * 0.001) Hz
Boundary Layer Thickness = 0.25 mm
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A schematic diagram of the high voltage waveform
generation circuit is shbwn in Figure 22. The pulses from
the oscillator (crystal controlled) are divided by 10 and
800 in stages B and C respectively. The output from C is
delayed by D (variable delay 0.5 - 2.5 msec). The output
pulse from D occurs in coincidence with one of the pulses
from B, and also resets B and C. Since the jitter in the
delay unit output pulse is Tess than the interval between
pulses coming from B, the tﬁming accuracy is controlled by
the jitter of the pulses coming from B. This jitter is less
than 0.5 usec. .

This unit (B, C, and D) plus the oscillator produces
high stability variable frequency output pulses. The output
pulses from E (programmable divider National Sémi-Conductor
DM 7520) constitute the clock pulses which determine the
>rate at which the voltage registers contained in the function
génerator, are scanned. A schematic diagram of the function
generator is shown in Figure 23. The memory consists of 16
'storage registers. Each register has 128 levels, with Tevel
128 corresponding to 5 volts and level zero to 0 volts.
:Thus each register can be programmed to any DC level from 0
~to 5 volts. fo construct any periodic positive waveform,
.one-half of the waveform is considered. This half waveform
is then divided into 16 equal sections. The desired value
of the waveform is then depositéd by the use of the manual

address in a successive storage register. To illustrate this
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procedure, the programmed voltage levels of the registers
to produce a simple output pulse (see Figure 24c) are shown
in Figure 24a.

The output of the function generator is derived
from the storage registers. When a clock pulse of frequency
w (this frequency being controlled by the output pulses from
E) is applied to the input address, an output signal of
w/32 is produced by sweeping Up and down through the 16
successive registers of the memory. The counter logic and
the UP/DOWN_Counter control this sweeping through the registers.
The scanning cycle for thfs ié shown schematically in Figure
24b. The output from the memory (storage registers) is a
digital signal and this is converted to an analogue result
in the D/A converter. The buffer and integrator are used
to smooth out the resulting waveform. For the register levels
given in Figure 24a, the resultant output of the function
generator would be as in Figure 24c, with the frequency of
this output pulse being controlled by the pulses from E.

The output of the function generator is applied to
a KEPCO programmable high vo]tagé power supply. This unit
operating in the programmable mode acts as a low frequency
amplifier with a gain of 1000. The output of the Kepco unit

is applied directly to the electrode.



Figure 24.

The
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(a)

(b)

(c)
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construction of an arbitrary waveform using
function generator.

Register voltage (deposited by manual
address system) vs register number

Scanning cycle (determined by clock
pulses from E (Figure 22) and switching
logic of up-down counter

Resultant waveform
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5.2 Experimental Results and Discussion

Experiments were conducted to determine the damping
frequency for both a smooth lucite base and a grooved base
present in the wave tank. The experiments performéd in this
investigation were performed in an identical manner to those
described in Section 3.1. As was remarked previously, two‘
surface modes were consfdered in this investigation. By
applying the high voltage waveform to one-half of the electrode
surface modes of wavelength (A), 2L and (2/3)L can be excited,
where L is the length of the wave tank. The frequency of the
high voltage waveform is adjusted to resonate with the mode

considered (1.02 Hz for 2L and 2.63 for (2/3)L).

| Initially the damping frequency for the smooth

base was determined for two flow directions (separated by
90°). This was done to ensure that the wave tank did not
possess any directiona] damping properties. If this had not
been checked; any directional damping effects with the grooved
base present might erroneously have been attributed to the
grooves.

For the smooth base we found no directional damping
properties.‘ With the grooved base present, damping runs were
" conducted for flow parallel as well as transverse to the
grooves, for both modes. In bur iﬁitia] runs, we thought we
had discovered a directional damping effect with the grooved

base present. The damping for flow parallel to the grooves
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was consistently larger than for flow transverse to the
grooves. This result was reproducible; the value of the
damping frequency was not. On close examination of the
silicone adhesive, which secures the grooved base to the
bottom of the tank, we found small cracks in the sealer which
allowed water to get under the base. These cracks were
located mid-way along one wall, where the plane of this wall
was transverse to the grooves. This accounted for the
directional damping effects. For flow along the grooves the
velocity at the cracks in the sealer would be large, and
there would be enhancement of‘the damping due to flow into
these cracks. For flow transverse to the grooves, the
crécks are essentially on the nodal 1ine where the flow
velocity is a minimum. The enhancement in the damping caused
by the cracks in the silicone sealer would thus be smaller
for this case (flow transverse to grooves) than for flow
parallel to the grooves. After these cracks'were'properly
sealed, no directional damping effect was observed. Typical
damping runs are shown in Figure 27-28. The straight lines
are determined by a least sduares fit to the data points.
The oscilloscope traces from which these graphs are derived
(Figure 27-28) are shown in Figure 25-26. It will be noted
| that the amplitudes for Figures 25a, 25b and 26a, 26b are
different. This is due to the position of the detector and

the time after switch-off of the field at which the recording



Figure 25.

Damping runs for A = % L (horizontal scale
0.05 v/div, vertical scale 2 sec/div).

(a) smooth base

(b) smooth base with flow direction rotated
90° with respect to (a)

(c) grooved base with flow parallel to
the grooves

(d) grooved base with flow transverse to
the grooves
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Figure 26.

80 a

Damping runs for X = 2L (horizontal scale
5 sec/div).

(a)

(b)

(c)

smooth base (vert. 0.05 v/div)

smooth base with flow direction rotated
90° with respect to (a) (vert. 0.1 v/div
and 0.05 v/div) :

grooved base with flow parallel to the
grooves (vert. 0.1 v/div and 0.05 v/div)

grooved base with flow transverse to
the grooves (vert., 0.2, 0.1 and 0.05
v/div)



80b

d




Figure 27.

The logarithm of wave amplitude vs time
2

()x =§“L)

(a) smooth base

(b) smooth base with flow direction rotated
90° with respect to (a)

(c) grooved base with flow parallel to
grooves

(d) grooved base with flow transverse to
grooves
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Figure 28,

82a&

The logarithm of wave amplitude vs time (A = 2L).

(a)

(b)

(c)

(d)

smooth base

smooth base with flow direction rotated
by 90° with respect to (a)

grooved base with flow parallel to grooves

grooved base with flow transverse to
grooves
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of the amplitude started. From these graphs, it can be seen
that the damping frequency is independent of the direction
of the flow velocity with respect to the grooves, for both
modes considered.

In our earlier experiments reproducibility had
been a problem. In these runs distilled water from a copper
distillation system had been used. In our later runs low
conductivity distilled water from a glass system was used.
Before a series of runs, the wave tank was rinsed out with
this distilled water before filling the tank. With these
precautions, reproducible results were obtained for the
damping frequency.

According to the theoretical model developed in
Section 4.2, the damping over grooved surfaces should be
independent of the flow direction, and the enhancement in the
damping should be broportiona] to the fractional area increase
of the surface. When comparing our experimental results with
this theory, it is essential to consider how well the
experimental conditions approximate the theoretical model.

The grooved aluminum base used in-these experiments
satisfies all of the assumptions used in the theoretical

model. The shortest wave]ength surface mode has a length

N of ~ 18 cm, which is much Targer than the groove spacing

(~ 0.3 cm). The groove depth is also much smaller than the

fluid depth (~ 3 cm). Finally the thickest boundary layer
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used (for the lowest frequency mode) is < 10% of the groove
spacing (see Table 3).

Another effect which could cause a discrepency
between the experimental conditions and that of the theory,
is the condition of the air-water interface. 1In Section 4.3
the damping frequency is calculated for a laterally mobile
and laterally immobile surface. The condition of the air-
water interface may, however, be neither of the above; a
surfactant monolayer might cover only a part of this surface.

In Table III the predictions of equatién (4.50)
for the damping frequency for a laterally mobile surface and
equation (4.51) for a laterally immobile surface are given
for both modes. The experimental o from Figure 27-28 are
also tabulated. The uncertainty in o is ~ 1%. As Table
3 shows, for both modes the experimental results are well
described by the predictions of equation (4.50) (the laterally
mobile surface layer thoery).

From Table 3; it can be seen that the theoretical
values for a laterally immobile surface are too large to account
for the observed values of o. If a monolayer were present on
only a part of the surface o would be larger than the 1atera11y
mobile values. There would not be good agreement between
theory and experiment for this case. Hence, we are dealing with
a laterally mobile surface layer in these experiments. The

good agreement between our experimental results and the results.



Table 3

Values of the Damping Frequency, o (sec™?!)

Mode 1 Experimental Theory : Theory
_ . (Laterally mobile (Laterally immobile
(wavelength = 2 L) (2 1%) air-water interface) air-water interface)
smooth base 0.035 | 0.034 - 0.064
grooved base 0.045 0.045 0.075
Mode 2

(wavelength = 2L/3)

smooth base 0.039 0.041 0.105
grooved base 0.050 0.052 0.115

§8
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predicted by equation (4.50) confirm that the enhancement in
the damping caused by a grooved base is proportional to the

fractional area increase of the base.

5.3 Conclusions
| There are two significant (and surprising) results

which have been established in Part B. It was shown both
theoretically and experimentally (for a square wave tank
with a grooved base satisfying a >> ¢), that the damping is
independent of the flow direction with respect to the grooves;
and the damping is increased at a rate proportional to the

area increase of the base (for triangular and approximately
sinusoidal groove cross sections). The former result is the
more surprising, since intuitively it would seem that the
damping for a grooved base should be dependent on flow
direction. This simple intuitive prediction has been shown
in Part B not to be valid.

It has been established in Part A for a < & that
the variability in the damping is due to surfactants. Obser-
vations of damping then (particularly in space, rather than
in time) should provide a very convenient method of studying
the dynamic properties of two-dimensional physical systems.
Non-uniform surface films could be studied by app1ying a
high frequency electric field to the water surface. Regions
of high damping (large concentration of surfactants) would

then be low amplitude regions.
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APPENDIX A

THE GENERAL RESULT FOR THE DAMPING FREQUENCY

: 3 [/(ve)2
Derivation of o = 1 {92] {; (V¢;2dﬁT

Consider a wave tank geometry as given by Figure 20. The
damping frequency due to the walls of the wave tank will
now be calculated. Without loss of generality, o due to one
surface will be determined and the form of this result will
be applied to the other surfaces. In particular, this will
be done for the bottom surface of the wave tank.

The equation of motion for a viscous fluid, given

previously is

oV
p5:=-VP— Pg + vpv?2 vy (A.1)
t =
where
vV =Vy t Vv15 Vg = V¢ (A.2)

|
|
|

Equation (A.1) is now multiplied by v and the equation is

integrated over the fluid volume.
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In the absence of viscosity the RH

S of (A.3)

is

90

zero. The term v - (VP + pg) must then be the rate of change

of the potential energy, i.e. v « (VP + pg)
The LHS of (A;3) is then the time rate of ch

total energy ET

2

3t J Ep dt = [DV v o« V% vy dr

Since o caused by the bottom surface is to be

¢a1cu1ated vy will have the form

Foo |
i~ [Te()] exp [ 2(1+ 1)y + i

’

where y =

N

Now in equation (A.4) the quantities we are

are the real parts of the velocity terms, i

J(Re v) = (Re v? Vl).dT

= J(Re vo) (Re v2 v,) d= +'I(R¢ vi)(Re

+Note that V¢ is evaluated on the
bottom surface of the tank.

= 9
= 37 (P.E.).
ange of the

:

Al

interested

.e.

v? V1) dt

boundary,

in

.e.

(A.4)

(A.6)
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Now for v, -in the form given by (A.5)

(Re v,)(Re VZ v;) = Re(v; (V% v;) ) (A.7)

where the bar above the expressions on the LHS indicates a
time average over many oscillations of the surface. The

second term of (A.6) is then

J(Re VJ(Re Ve V1) dt = Re { V-l(] + 1)2 'Yz Vl* dt
= Re[[ [vi]2 27 7 dT} =0 (A.8)
The first term of (A.6) is

J Re[vo v2 vl*J dr = Re J(vo) [%ﬁgJ* dA (A.9)

where dA is a surface element on the bottom of the tank.
The boundary conditions on the surfaces of the tank

are that v = 0. Equation (A.9) then becomes
' 2
Re[~y [+ 1)[v¢(t)J dA]

= -y J{V¢(t)]2 dA (A.10)

The total energy is given by
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2
[ olrotn)] o
Equation (A.4) is then given by

2 2

% Jf p{v(p(t)] dt = -v YO”W(t)] dA (A.11)

For convenience V¢(t) can be broken into a spatial part and

a time dependent part

vo(t) =[V¢]S f(t) (A.12)

For a linear viscous fluid which is damping (i.e.
driving mechanism has been turned off) the inviscid velocity

will decay exponentially with time. Hence f(t) is given by

F(t) ~ e Ot | (A.13)

where o is the damping frequency. Equation (A.11) then

becomes



93

3007 | [l v o)
0f(t) _ -v y f(t) J(7)g dA
a(t = =5 (Vo) de (A-14)
1 (o) L (V6)2 dA
=3 [wz“v] 7 (96)2 dt (A-15)

The result (A.15) is completely general
to any surface of the tank, the surface

over the surface considered. The total

and can be abp]ied
integration being

o is then the sum

of o from all of the surfaces of the wave tank.



