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Abstract 

In this work I have developed a model, based on the Evolutionary Minority 

Game (EMG), to examine the effect of agent inactivity within a group of agents 

competing for a limited resource, but governed by both supply-and-demand 

and a minority rule. The structure of the inactivity mechanism has been 

modeled after the strategy preference parameter, p, of the E M G . A parameter 

has also been introduced that models, in a very simple way, the effect of 

inflation on the system in order to motivate the agents to play the game. 

The behaviour of the model has been examined with the use of numeri

cal simulations over its entire phase space. The results focus on two aspects of 

the model: 1. how an agent's performance depends on his activity level; and 2. 

how the properties of the E M G are affected when agents are given the option 

of not playing the game. Results of these simulations demonstrate that an 

agent's performance is strongly dependent on his level of activity. Specifically, 

it has been shown that an agent's optimal level of activity is dependent on his 

strategy preference and, moreover, that this optimal activity level undergoes a 

first-order transition from a phase of optimal inactivity to a phase of optimal 

activity as the inflationary force is increased. Even though an agent's activity 

decision has been modeled as a process independent of his decision to "buy" 
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or "sell" during a given round, results of simulations indicate that correlations 

between the two decisions have emerged from the collective dynamics of the 

group. 

A theory of the model has also been developed. The formulation of 

the theory is based on a mean-field approach in which the actions of a single 

agent are considered within a background field produced by the remainder 

of the group. It has been found that the results of the theory agree with 

those of the numerical simulations very well and appear to become exact in 

the thermodynamic limit. Furthermore, the discrepancy between theory and 

simulation at finite N indicate a possible breakdown of the non-local nature 

of the inter-agent interactions built-in to the model. 
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Chapter 1 

Introduction 

1.1 Financial asset prices under speculation 

A financial market is a structured organization designed to centralize, and 

therefore facilitate the trade of similar types of financial assets, such as stocks, 

bonds, commodities, and derivative securities. The specific mechanism by 

which a trade occurs varies from market to market, but in general there are 

traders (which I shall term agents) who submit bids to buy an asset at a 

certain price and therefore create demand for that asset. Opposing this flow 

of demand is the supply created by agents who submit offers to sell the asset. 

In very general terms, a trade is then executed in one of two ways [3]: in a 

centralized market, a central third-party, or market maker, weighs the total 

supply and demand and sets a price to clear the market; in a decentralized 

market, individual agents simply meet face-to-face and agree on a price at 

which to exchange the asset. 

' From the above description it might seem that the process of asset price 
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formation is relatively simple: agents simply determine the value of the asset 

by the value of the underlying (ie. the value of one non-dividend-paying stock 

of a company would simply be the value of the company divided by the number 

of stocks outstanding) and buy (sell) when its price is lower (higher) than this 

value. In this scenario, only the change of exogenous factors, such as interest 

rates, the Gross Domestic Product, and foreign exchange rates, or the release 

of news concerning the underlying should cause a change in the asset's price 

(although it should be noted that even a change in the value of the underlying 

will not necessarily lead to trading of the asset). When none of these factors 

are present each agent should hold the same opinion for the value of the asset 

and no trading should occur. 

In reality, we know that trades of most assets occur at a high frequency 

not only during the release of news, but also in between these events. This 

observation is indicative of a very complicated mechanism of asset price for

mation and is mainly a result of two factors. First, not all agents have the 

same opinion about the "true" value of an asset and about how it will change 

in the future. These individual beliefs can result from an agent's risk prefer

ence, social conscience, or simple irrationalities; since they are not necessarily 

tied to anything tangible, these speculative effects are typically very hard to 

quantify. Second, the vast communication structure connecting agents within 

and across markets further complicates the dynamical behaviour of speculative 

asset pricing. With the progress of information technology in recent years, the 

physical barriers within financial markets are crumbling and the network of 

interactions between agents is increasing rapidly resulting in trading decisions 
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that are now rarely made independent of other agents' opinions and decisions. 

Empirical properties of speculative asset prices 

The above mechanisms produce very interesting properties observed in asset 

price time series. Let Xt be the asset's price at time t and rtAt = (Xt ~ 

Xt-At)/Xt-At be its rate of return at time t and over the time interval At. 

It has been well documented [4-6,9,14,15,17,18] that the probability density 

function, fTt At(x) = Prob[rtAt = x], is distinctly leptokurtic for time-scales, 

At < 1 month; as At —> oo, this leptokurtic form converges to a Gaussian. 

It has also been shown that interesting correlations exist between suc-

cessive asset price movements [4-6,11-14,16]. Let E[] be the expectation 

operator and px = E[xt] be the mean of some time series xt. Specifically, the 

autocorrelation function of returns 

/, ^ ^ _ E[{rtlAt - (ir)(rt2At - Mr)] n n 

Pr{ti,t2) = , , [i-i) 

yjE[(rtlAt-^y]^E[(rHM-fir)2] 

for an asset within a well-established and highly liquid market decays rapidly 

(specifically, with half-life r w 4 min) to the level of system noise within ap

proximately 30 minutes. This result is somewhat expected since it reflects the 

time for new information to be reflected in the asset price. More interestingly, 

though, is the very slow decay of the autocorrelation function of volatility 

(where the volatility, or standard deviation, vst{t), is defined as the R M S re

turn over a time, 8t » At) 

Pv{h,t2) = , , = (1.2) 
y/EftvsM - pv)y E[(vst(t2) - pvf] 
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Even for t 2 — > several years, p„(<i, £2) is still significantly above the level of 

noise. This effect, known as volatility clustering, simply means that an asset 

price movement tends to be followed by one of a similar size; it has received 

much attention since it shows that there are long-range correlations within 

|uat(£)| and it might therefore be possible to predict the asset price's future 

movements. 

1.2 The physics of speculative asset pricing 

1.2.1 W h y should physicists study finance? 

Although numerous variations have been developed, to date, no model has 

been put forward that is able to accurately generate all of the known em

pirical characteristics of speculative asset price time series. Historically, the 

majority of this effort has come from the financial economics community; sev

eral popular examples of these models are Mandlebrot's Stable Paretian Hy

pothesis [1], Clark's Subordinated Stochastic Process (SSP) model [27], and 

the (Generalized) Autoregressive Conditional Heteroscedasticity ((G)ARCH) 

class of models (see, for example [28-30]). While it is a problem that none of 

these econometric models are able to fully capture all of the stylized facts of 

the empirical data, much progress has been made since their introduction and 

it is feasible that this goal will be met in the future. 

Of a much greater concern is the fact that econometric models typically 

give very little cause-and-effect information about how the underlying market 

mechanisms generate the empirically observed stylized facts. Without knowl-
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edge of how the model produces the desired asset price dynamics our use of 

it would be "blind" and it would not be known whether its assumptions were 

valid from one time to the next. As physicists, it is our natural inclination to 

seek out the fundamental cause to a problem, which, in this case, should also 

provide us with both practical and academic benefits. 

Over the past few years, physicists have shown a lot of interest in spec

ulative asset pricing and financial systems in general. The idea behind the 

physics of finance, or econophysics, is that financial markets act in a very simi

lar way to certain statistical physical systems and therefore should be amenable 

to the tools developed to treat them. There is no question that researchers in 

the fields of finance and economics have been studying these problems for some 

time and have had a great deal of success. The goal of the econophysics field 

is not to replace this work, but rather to provide an approach to complement 

it. 

1.2.2 Complexity in finance 

Along with the goal of producing a model that gives insight into the cause 

of an asset price's behaviour, the motivation to study finance has, in large 

part, come from the realization that financial systems (ie. markets) are in 

many ways similar to the general class of "complex" physical systems such as 

frustrated magnetic systems, neurological networks, and surface growth. 
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Structural similarities 

The most obvious similarity between a financial market and one of these phys

ical systems is in their underlying structures. Complex systems always possess 

a large number of interacting subunits. While the form of this subunit is hu

man in the case of a financial system (as opposed to an atom or molecule 

typical of physical systems), markets are very large structures with an even 

larger communication network connecting one another making the form of the 

macroscopic systems very similar. 

There are, however, two significant structural differences between the 

two classes of systems. First, in a financial market each subunit is a living 

organism and therefore a complex system in its own right. While the internal 

structure can be very complicated for some physical systems (ie. the individual 

phospholipids of a biological membrane), it pales in comparison to that of a 

human being. Second, in a physical system, the laws governing the interaction 

and evolution of the microscopic components are well-defined fundamental 

forces; in a financial system, however, many of these forces are the result 

of poorly understood cognitive factors. It is interesting to wonder how well 

techniques designed for systems with particle-like subunits and which evolve 

under physical laws will adapt to social systems governed by less well-defined 

forces. 

Empirical similarities 

As the number of subunits within a macroscopic system is increased, it is 

intuitive to reason that the complexity of its behaviour will increase propor-
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tionately. It is a well documented fact that this is not the case. As the system's 

size increases, regular and distinctive macroscopic properties actually emerge 

from the complex microscopic dynamics. 

To illustrate these properties, consider for example the magnetization, 

M, of a macroscopic magnetic material [20] at a temperature, T immersed in 

an external magnetic field, H. If H = 0 and the temperature is increased, it is 

found that at some critical temperature, Tc, the system enters a critical state in 

which: 1. correlations between individual "spins" of the magnet become very 

long-range; 2. power law behaviour (indicating scale-invariance) is observed; 

and 3. the magnetization undergoes a transition and falls sharply to zero. 

Rescaling the temperature so that r = (T — Tc)/Tc and then measuring 

M vs. r for several values of H yields a very interesting result. It is found that, 

if M is rescaled by some power of H, and r by some different power of H, plots 

of the rescaled M versus the rescaled r all collapse onto a single curve. This 

scaling law (the specific values of the scaling exponents for a given system) and 

data collapse for this magnetic system are traits common to complex physical 

systems. 

Another interesting characteristic of such systems is termed universal

ity. To demonstrate this effect, imagine the above M = M(H,T) measure

ments are repeated on several different types of magnetic materials. From the 

measurements it is found that, ignoring the necessary material constants, the 

same scaling law holds for each material; it is said that all of these systems 

belong to the same universality class which means that, as the critical state is 

approached, their macroscopic properties behave in a similar manner. 
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Since financial markets posses a similar structure to traditional complex 

systems it is interesting to wonder whether they also share the same empirical 

characteristics such as scaling behaviour and universality. Many studies have 

been performed along these lines [1,2,7-9,16-24] and two key results have been 

found. First, the cumulative distribution of returns, Fn At(x) = Prob[rtAt > x] 

is found to asymptotically decay as a power law with exponent, a ~ 3. When 

the rate of return is scaled with the appropriate exponent, FrtAt(x) is also 

found [1,2,4,5,7-9,16-19] to be stable for time scales A t < 20 days (for 

individual stocks). Second, it is also now well known that the asymptotic 

power law decay exponent, a « 3 and the appropriate scaling exponent hold 

for individual stocks, whole-market indices, and even across various equity 

markets suggesting universality of the price formation process in these markets. 

Finally, the fact that long-range autocorrelations exist in an asset price's 

volatility time series and its cumulative distribution of returns exhibits power 

law behaviour suggest that a financial market exists normally near its critical 

state. This behaviour differs from that observed in the magnetic example 

above in that the magnet will only reach a critical state if its parameters, r 

and H, are tuned to their critical values. One possible explanation for this 

phenomenon is the Self-Organized Criticality hypothesis proposed by Bak et 

al. [50] in which a state of dynamical equilibrium is reached once the system 

has evolved to the point where it can no longer propagate a perturbation over 

the correlation length of the system. 
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1.2.3 Physical models of asset price dynamics 

The evidence is quite strong that the mechanism underlying the process of 

speculative asset price formation is very similar to that of various "complex" 

physical systems. The question is now How do we use the standard tools of 

statistical mechanics to develop a useful model of speculative asset prices? 

The number of different physical models of speculative asset price dy

namics is very large (see for example [32-49]) and to give a description of a 

"general" method would do none of them any justice. Instead I shall briefly 

describe the structure (and its motivation) of one of these models which I 

believe to be a good representation of the efforts of this approach. 

The model I shall discuss is the Cont-Bouchaud (CB) model [31]. In 

the C B model, correlations are introduced by incorporating a communication 

structure between the N individual agents who are situated at the vertices 

of an iV-dimensional random graph. Each agent is allowed to randomly es

tablish binary links with other agents and, through successive links between 

existing clusters (two or more agents linked together), large clusters can form; 

in this way the communication structure is analogous to bond percolation in 

an infinite-dimensional space. 

Within a single cluster it is assumed that all agents hold the same 

position towards the asset (ie. buy, sell, or hold) and so the price change 

(which is assumed to be proportional to the the excess demand) is simply 

proportional to the cluster weighted total demand. A key aspect of the model 

is an agent's ability to form coalitions; in the C B model this is controlled by 

a constant, user-set parameter. For a range of values of this parameter, the 
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model generates frtAt (x) in a manner that is very similar to what is observed 

in real markets. Specifically, it predicts both exponentially truncated tails 

(with a > 2) and a — 1.5 in the region of small-to-moderate \r&t\ which is 

very close to what is observed empirically. Finally, it is found that, as the 

clustering parameter approaches some critical value, very large coalitions form 

and a market crash occurs. 

As well as generating quantitatively accurate data, the C B model is 

useful for showing how a specific mechanism (in this case the inter-agent com

munication structure) can result in the leptokurtic form of frt&t(x)-

1.3 The Minority Game 

1.3.1 The model 

The Minority Game (MG) was developed by Challet and Zhang [55] as a 

simplification of Arthur's El-Farol Bar-attendance problem [54]. The model is 

designed to examine the behaviour of a group of individuals who all compete 

for a limited resource and are governed by the rule of supply-and-demand. 

The M G consists of a non-spatially oriented, odd number of agents who 

repeatedly attempt to out-guess one another and earn a reward. On each round 

of the game, the agents take one of two possible positions; with foresight in 

hand I will label these buy and sell. After the agents have made their choices, 

the size of each position is tallied; those agents who chose the position taken 

by the minority of agents are rewarded with +1 point, while those who took 

the opposite (majority) position are penalized —1 point. 
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To make his decision, an agent has a set of strategies. Each strategy 

predicts a specific position for the agent to take given each unique history 

of the game. The history consists of a certain number of the most recent 

winning positions of the game and is common to all agents within the group. 

Finally, in order to incorporate adaptability into the game, each agent rates 

the performance of his strategy (ies) and makes his strategy selection based on 

this performance. 

Many details were omitted from the above description of the M G since 

there are several formulations of the model which are all slightly different. In 

the original M G (which I will refer to as the Standard Minority Game), each 

agent possesses a finite and (possibly) unique set of strategies randomly drawn 

from some large simplex space. A virtual score is kept for each strategy and 

a virtual point is awarded on any round in which the strategy would have 

predicted the minority position. In the Standard M G agents use the simple 

strategy selection rule of choosing their strategy on each round with the highest 

virtual point score. 

The Standard M G is useful for examining global properties (such as 

system efficiency) of the group of agents within a M G framework. In a slightly 

generalized version of the Standard M G , agents have the ability to select any 

of their strategies (not just the one with the highest virtual score) according 

to the Boltzmann weight of their virtual scores. Because of the ever-changing 

dynamic of the game and since the agents' strategy sets can overlap, playing 

what is thought to be a "sub-optimal" strategy may in fact be beneficial if 

enough of the other agents play their similar "optimal" strategies. In this way, 
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this Thermal Minority Game is useful for examining whether-or-not using a 

sub-optimal strategy is actually irrational in this complex environment. 

1.3.2 The Evolutionary Minor i ty Game 

While the agents within the Standard and Thermal M G models are adaptive 

(the agents can select from a variety of strategies depending on the current 

conditions), they are not strictly evolutionary since both the population of 

agents and each agent's strategy set is fixed throughout the duration of the 

game. In reality, we would expect that an underperforming agent or strategy 

would be replaced with one that appears to be better equipped to compete 

within the group dynamics. 

Another popular version of the Standard M G , designed to include evo

lutionary effects, is the Evolutionary Minority Game [70]. In this model there 

are only two strategies available to the agents; one which contains the minor

ity positions the last time each of the possible histories was encountered and 

the other with the opposite positions (ie. the majority positions); in this way 

the two strategies are dynamic and change constantly throughout the game. 

Each agent then has a unique parameter (called his gene value) that predicts 

which of the two strategies he will play. Evolution is introduced by removing 

from the population agents whose performance falls below a certain level and 

replacing them with agents having different gene values. 

12 



1.3.3 The M G as a realistic market model 

As should be clear from the above description of the M G , the structure of the 

game is very simplistic. One might ask (justifiably) why the M G should be 

included in the discussion of speculative asset price models. To be perfectly 

honest, none of the versions of the M G presented thus far are remotely close 

to being accurate representations of a real financial market. Some problems 

with using the M G as a realistic model are: 

• Each agent is constrained to be active on every round of the game. 

• The size of the group is fixed. 

• There is no external information present in the model. 

• The binary payoff function (+1 for taking the minority position and —1 

for taking the majority position)is overly simplistic. 

While these details definitely restrict the applicability of the Minority Game to 

financial systems, they are simply structural components of the model and can 

be removed and replaced (fairly easily) by more realistic constructions. For 

instance, in a real market the total sales and purchases of an asset must equal; 

this fact implies that the total wealth is conserved within the group trading in 

the asset (neglecting commissions, spreads, e tc . ) . The binary payoff function 

of the M G is inaccurate since it does not preserve the system's wealth. Given 

there are n m ,„ agents in the minority group and nmaj majority agents, then 

one simple method of incorporating this conservation law while maintaining 

the model's basic minority structure would be to give a reward of +1 point to 
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each of the minority agents and a penalty of —nmin/nmaj points to each of the 

majority agents. 

Of a far greater concern are the components of the M G that are funda

mentally incompatible with a financial market; these include: 

• In the M G there is no motivating factor for the agents to play the game. 

Even though speculation is a crucial component of a real market, for 

the agents to trade they must at least believe that the asset has some 

intrinsic value. In the M G this does not exist; the agents simply play 

the game because we force them to. 

• The M G has no market making mechanism; agents simply "buy" and 

"sell" the asset. It is assumed that there is an unlimited quantity of the 

asset and all of those sold are then bought and the quantity of those to 

be bought are present in the market to begin with. 

• The M G neglects the effect of an agent's actions on his long-term per

formance. If there are more buyers than sellers during a round then we 

should expect the price to rise. While selling the asset during this round 

will earn an agent a good short-term profit, that agent will then own 

less of the asset when the price rises which is not beneficial in the long 

run. The M G essentially models how agents compete under supply-and-

demand pressures, but neglects any effects due to the arrival of external 

information (which result in the long-term movements of the asset price). 

With its construction, the M G was not intended to act as a model of a 

financial market; it was simply meant to model how a group of heterogeneous 
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individuals behave when competing for a limited resource and governed by a 

minority rule. For instance, in its basic form the M G acts as a fairly realistic 

model of: 1. commuters competing for the less crowded of two possible routes; 

or 2. foraging animals searching for a limited food source. Because of the 

reasons listed above the M G is too simplistic to be considered as a realistic 

market model. 

However, some researchers [56,57,62,66,69] have discussed the M G in 

terms of a market model. Neglecting the above problems, the M G does have 

features that make it attractive for this use. 

Minority rule 

It was stated above that the movements of an asset's price usually follow the 

actions of the majority. While this effect is central in determining the long-

term performance of an agent, under certain circumstances the minority rule 

effect is present and significant. Imagine the situation of a group of fund 

managers competing for profits through ownership of two stocks, x\ and x2 • 

Assume it is a commonly held belief that both stocks will increase in value, 

but that xi will increase at a slightly higher rate than x2- If we further assume 

that : 1. there are equal amounts available of both X\ and x 2 ; 2. each manger 

can only invest in one of X\ or x2; 3. the total quantity of each asset is shared 

equally among those who buy it: and 4. all resources not used to purchase X\ 

or x2 are held in the form of some more secure, but lower return asset such 

as a government bond, then it might seem logical for each manger to ignore 

X2 and buy as much of X\ as possible. But if this happens then none of the 
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managers will do very well since they will have to share the profits amongst a 

very large group. If the commonly held belief holds true and x2 earns slightly 

less per share, then a small (minority) group of the managers will outperform 

those in the majority group if they buy x2 since they will be able to buy more 

and earn a greater profit. 

Inductive reasoning 

Traditional financial economics has always assumed the use of a deductive agent 

and the Efficient Market Hypothesis (EMH); given any economic situation, an 

agent makes a logical decision based upon a perfectly defined environmental 

state in which all information about an asset is reflected in its current price. 

For instance, within an equity market, such a perfectly rational agent would 

weigh all information (such as the stock's price history and the "true" value 

of the underlying company) and trade according to the relationship between 

the current price and this information. 

In real financial systems these conditions are often very complex and 

sometimes ill-defined; assuming that an agent can decipher all of the informa

tion perfectly is not reasonable. It is known [54], however, that humans are 

very good at pattern matching and therefore reasonable to expect that, under 

complex circumstances, we will use inductive reasoning and base our decisions 

on our past experience. 

As opposed to standard models of speculative asset pricing, the dynam

ics of the Minority Game are formed through the use of inductive reasoning. 

On any round, an agent selects a position based on the current history of the 
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game and his personal experience with that history. Using this experience, the 

agent can then adapt (in a Lamarkian way in the Standard and Thermal MG) 

or evolve (in the genetic sense of the E M G ) in order to be more competitive 

within the ever-changing dynamic of the game. 

The Minority Game approach 

I believe the Minority Game is a convenient starting point to develop a market 

model which is capable of generating empirically accurate results. Although 

many details of the structure of a financial market are not present in the 

model, it does provide an attractive model (with its use of inductive reasoning) 

of how a group of agents compete for a limited resource when governed by a 

minority rule with dynamics resembling the process of price formation in many 

situations. 

The idea central to the M G approach for market modeling is to first 

understand the dynamics underlying the price formation process and then to 

build a more realistic model upon this base. There are two steps behind this 

approach. 

1. Characterize the basic M G model. 

2. Using this model as a base, successively remove its simplifying assump

tions and gradually build-up the more realistic model. 

Actually, the simplicity of the M G permits this approach; using such a simple 

model provides a tractable base that is relatively easy to treat analytically. 

While this approach is time-consuming, it has several benefits. First, 
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beginning with a simple base and then building the model up component-by-

component should allow us to determine which components (market mecha

nisms) are necessary for the model to produce results in agreement with those 

observed empirically. Second, it is also hoped that this type of approach will 

allow us to understand the specific effect (s) of each component and provide us 

with a cause-and-effect map between these microscopic components and the 

macroscopic dynamics of the asset price. Finally, from the vast number of 

current speculative asset pricing models it is clear that the structure of these 

components can be modeled in a wide variety of ways (for example the payoff 

function can be modeled as a simple step function as in the basic M G , or it 

could be modeled (slightly) more realistically as a fixed level of resource split 

evenly between each member of the minority group); with this bottom-up ap

proach we should be able to gain insight into how the specific structure of each 

component affects the asset price dynamics. 

Progress to date 

Since its introduction, much work has been done on the Minority Game (see, 

for example [55-72]). This has resulted in both a thorough understanding of 

the dynamical behaviour of the models and in accurate analytical theories of 

both the Standard M G [61] and the E M G [71]. 

Many extensions of the models have also been studied. First, a more 

realistic payoff function (similar to the one suggested in 1.3.3) that conserves 

the wealth of the system has been studied for the Standard M G [66]. It has 

been found that the properties of the model are largely independent of the 
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specific structure of the payoff function. In addition, the effect of various 

strategy distributions on both the Standard [63] and Evolutionary [72] M G 

models has been investigated as well as the size and structure of the agent's 

strategy space [67,68]. 

Along with many other studies investigating single extensions of the 

basic M G model, there have also already been two attempts at large-scale 

extensions of the model with the goal of creating price dynamics with empiri

cally accurate features. Removing only 3 or 4 of the simplifying assumptions 

of the basic M G , these papers [57,62] have already produced results that are 

in good qualitative agreement with both the empirical distribution of returns, 

frt,At(x)> a n d the autocorrelation of returns, pr(^i;^2)-

1.4 Focus of thesis 

1.4.1 Motivat ion for research 

Apart from a brief treatment in [62], the effect of agent inactivity on the M i 

nority Game model has largely been ignored. The lack of attention to this 

phenomenon is puzzling; from both day-to-day experience and the results of 

academic research, inactivity within a group of competing individuals seems 

to be an important component of the price formation mechanism. In their pa

per [31], Cont and Bouchaud state that allowing the agents to sit out at various 

times is crucial to obtaining the leptokurtic / r j A t (x) and volatility clustering 

characteristic of empirical data. From real-world experience it should be obvi

ous that: 1. the number of people trading in any particular asset is constantly 
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changing; and 2. investors are not forced to trade continuously and so their 

trading frequency will also vary in time. 

1.4.2 Present study 

In this thesis I will examine one very simple model, called the Variable Ac

tivity Evolutionary Minority Game ( V A E M G ) , of agent inactivity within the 

Minority Game framework. In keeping with the ultimate goal of the M G I will 

attempt to characterize the model as completely as possible and, in doing, will 

focus on two aspects: 1. how the performance of an arbitrary agent evolves 

when he is given a variable activity level; and 2. how the dynamics of the 

game are affected under these same circumstances. 

In analogy with the gene value of the E M G , each agent in the V A E M G 

will have his own activity parameter which is simply the probability that the 

agent is active on any given round. The structure of this inactivity mechanism 

is intentionally simplistic so as to maintain tractability in the model. At the 

moment I am simply concerned with how the presence of an inactive state 

affects the behaviour of the game; it will be left to a later study to examine 

more complex and realistic inactivity mechanisms. 

The play of the V A E M G is split into two steps. In the first, each agent 

"decides" whether to be active or not. If an agent chooses to participate in 

the round then he simply plays an EMG-type game with all of the other active 

agents in the second step. To motivate the agents to be active, I have included 

a small penalty to an agent's score for each round he is inactive. When an 

agent's score falls below some predetermined level that agent is killed-off and 
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replaced by one with new activity and gene values that are hopefully better 

able to compete within the group dynamic. 

In this thesis I will only examine the effect of this inactivity mechanism 

within the framework of the E M G model. This choice has been made since 

the E M G is ideal for examining the properties of an individual agent and I 

am interested in how this performance will be affected when the agent has the 

ability to choose whether or not to participate in the game. 

1.5 Organization of thesis 

The remainder of this study will be as follows: in chapter 2, I shall develop 

the formal definition of the E M G model and present the pertinent results of 

numerical simulations of the model. In chapter 3, I shall further discuss the 

choice of the inactivity mechanism for the V A E M G and then formalize the 

model's structure. This chapter will conclude with my developing a mean-

field theory of the V A E M G . In chapter 4 I present the results of numerical 

simulations of the V A E M G model and compare these with the results of the 

theory developed in chapter 3. These results will focus on the two areas of the 

model indicated above: 1. how the performance and behaviour of an agent is 

affected when he has the ability to control his activity level; and 2. how the 

dynamics of the E M G model change when this modification is added. Finally, 

in chapter 5,1 restate the pertinent results of the paper along with any possible 

implications they may have and then conclude by discussing the future work 

that the results suggest. 
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Chapter 2 

The Evolutionary Minority Game 

In this chapter I will review the Evolutionary Minority Game (EMG) model 

and discuss its behaviour with the use of numerical simulations. The work 

in this chapter is based upon [70] and will serve as a base for the rest of the 

thesis. 

2.1 The basic E M G model structure 

While the definition of the E M G given in chapter 1 might be enough to con

struct a numerical algorithm for the model, it is not adequate for any sort 

of an analytical treatment. In order to give a more precise description of the 

model and motivate a later analytical theory, a formal definition of the E M G 

is needed. 

Let N be the (odd) number of agents in the game and let i G { 1 , . . . , N} 

be the index that runs over this group. The game is played repeatedly for T 

rounds. On round t 6 { 1 , . . . , T}, each agent independently makes a binary 

decision, Xi,t £ {—!>+!}) about whether to buy (which will be arbitrarily 
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labeled +1) or to sell (-1) the asset for that round. Once all agents have made 

their decisions the number who chose, to buy and the number who chose to sell 

are calculated. The winning option, p,t € {0,1}, is defined as another binary 

variable whose value is 0 if J2i Xi,t > 0 (i e- sellers win) and +1 if Xi,t < 0 

(buyers win). 

Now let the memory, M, be the number of past rounds that each agent 

can remember and = HtM®Ht-{M-\)®- • -®^t-2®Pt-\ be the game's history 

of length M for round t. Given the binary nature of the game and a memory 

of length M, it follows that there are 2M possible histories, h^1; each history 

(a binary string) will be labeled by its decimal equivalent, j € {0,. . . , 2 M — 1}. 

A n agent's trading decision, Xi,t, on round t is determined by the inter

action between the current history, hf1, and his set of strategies. A strategy, 

S, is a function that maps each of the possible 2M histories onto some decision 

(<S : /x M —> 8) that will be made given that history is the current history. Each 

strategy will be represented as a bit string of length 2M where the jth element, 

Sj, is the agent's trading decision given that the jth history is the current his

tory. For concreteness I have listed all of the possible histories for M = 3 along 

with a sample strategy in figure 2.1 below. If the history bit string labelled by 

j — 3 is encounterred during round t of the game (ie. h^1 = Oi l ) and an agent 

is playing this strategy, then that agent will choose to buy the asset (s3 = +1) 

on that round. 

Because of the binary nature of the decision process there are 2 2 M unique 

strategies for the 2M possible histories; in the E M G agents only have access 

to 2 of these strategies. Let be the trend strategy. The jth entry of this 
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j hi SJ 
0 0 0 0 -1 
1 0 0 1 +1 
2 0 1 0 +1 
3 0 1 1 +1 
4 1 0 0 -1 
5 1 0 1 -1 
6 1 1 0 +1 
7 1 1 1 -1 

Figure 2.1: The 8 possible histories, , for M = 3 along with the 8 corre
sponding strategy elements, Sj, of a sample strategy, S. 

binary string holds the decision value, Xi,t, that would have put the agent 

in the minority room the last time the jth history was encounterred in the 

game. Since the result of the game fluctuates between "buy" and "sell", <S* 

is a dynamic strategy that will be modified after each round. While it might 

seem intuitive to play the trend strategy, if all agents took this view then they 

would all lose because of the minority rule. Heterogeniety amongst the agents 

is introduced by their ability to employ the anti-trend strategy, , which is 

the strategy anti-correlated with the trend strategy. Finally, associated with 

agent i is a gene value, pi G [0,1]; this the probability that agent i will play 

the trend strategy. 

At the beginning of the game each agent starts with a score of 0 and 

both the trend and anti-trend strategies are initialized. To seed the first round 

of the game an imaginary history, hf1 = /J.-M+I ® • • • ® /̂ o, is created. Details 

of these initializations will be presented in the next section. 

During each round t of the game agents select their trading decisions 

based upon their gene value. With probaility pi: agent i chooses the option 
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dictated by and with probability l—pi he chooses the other option. Once the 

minority decision is determined all those agents who chose the minority option 

have 1 point added to their score; those who chose the majority option have 1 

point deducted from their score. At the end of every round the strategies are 

updated with the result of the round just played. 

A n agent will play the game until his score falls below some critical level, 

Zc < 0, at which point he is "killed-off" and replaced with a new agent. This 

mechanism is the evolutionary feature of the E M G . If an agent's performance 

is poor then it is reasonable to assume that eventually he will lose all of his 

money and pull out of the market. The new agent is given an initial score 

of 0 and a new gene value which is a uniformly distributed random number 

with radius, R G [0,1] (reflective boundary conditions are employed to ensure 

p £ [0,1]) centerred around the pi value for the killed-off agent. In this way a 

poorly performing gene value is replaced by one that is hopefully better able 

to compete within the complex group dynamic. 

2.2 Numerical results 

A numerical algorithm has been created and run over a wide range of parameter 

values simulating the behaviour of the E M G model. These simulations will 

serve two purposes: 1. to characterize the basic E M G system; and 2. by 

comparing the results with the original work on the E M G [70] I hope to confirm 

the accuracy of the algorithm so it can be used as a base upon which to 

construct the Variable Activity E M G algorithm. 
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Throughout this work the focus will primarily be on an agent's perfor

mance within the collective actions of the group. The crucial feature differen

tiating one agent from another is his gene value, p,. In the E M G , Pi indicates 

agent z's willingness to follow trends; a pi « 1 means that the agent is a trend 

follower, while Pi « 0 means the agent employs a contrarian trading strategy. 

By quantifying an agent's performance in terms of his gene value we will hope

fully be able to shed light on what type of strategy is best suited for this type 

of supply-and-demand governed collective. 

For any agent, i, the stochastic process, {Ri,t}, of his payoff is a super-

martingale - ie. the E M G is a "less-than-fair" game. Because of the payoff 

function (+1 point per round for winning and -1 point for losing) and the 

minority rule structure of the game, the agent's expected payoff per round is 

negative and so it is expected that he will be killed-off within some finite time. 

Instead of his point total, which will eventually fall to Zc, I will measure 

an agent's performance by the number of rounds he plays before dying - ie. his 

lifetime. For this reason, the simulation results will focus on the distribution 

of average lifetimes, for the group of agents. 

To initialize the simulations, the current history, , the trend, , 

and anti-trend, <i>t strategies, and the agents' gene values, p^, were randomized 

from a uniform distribution of their appropriate realizations. Simulations were 

also performed using other initializations, but in all cases L(p) was found to 

be invariant under these changes. 

26 



2.2.1 Time evolution of the E M G 

In chapter 1 I discussed the intrinsic use of inductive reasoning in the E M G . 

Since this feature makes no assumption about the equilibrium of the system, 

it will be useful to investigate its dynamic properties and whether or not it 

does actually reach an equilibrium state. 

I will describe the state of the system by \n<i\, the magnitude of the 

difference between the sizes of the two positions. In figure 2.2 is plotted two 

time seriess of \nd\ for the E M G . We can see that the system exhibits a transient 

3501 1 1 1 1 1 

round number - 1 

Figure 2.2: The time evolution of \nd\ with Pi = 0.25 (—) and pi randomly 
initialized (• • •) for N = 501, M = 3, Zc = -100, and R=l. 

response which rapidly decays away after approximately 200 rounds. The 
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length and shape of this transient response appears relatively insensitive to 

the initial conditions of the system with one exception; when each agent's 

gene value is initially randomized the transient response is not clearly present. 

When the gene values are initially very similar to one another, the size of the 

majority group is very large (and therefore so is \nd\); for this initial period 

most agents will lose a point on each round and so will die off in « \ZC\ rounds. 

Once this first round of agents has been killed-off and replaced by agents with 

randomly distributed pi values (since R = 1), \nd\ then rapidly decays to a 

time-averaged value that remains constant for the rest of the game. 

The state of the system in this "dynamic equilibrium" (in which the 

average of \nd\ over some time interval t ~ O(103) rounds) reveals a very 

interesting property of the model. If we examine \nd\, the time-averaged value 

of \nd\, we will be able to determine how well the agents are utilizing the 

system's resources. As \nd\ —>• 1 the size of the minority group becomes largest 

and the least wealth is lost from the system. In figure 2.3 I have plotted \nd\ for 

several values of N. To compare the efficiency of the E M G ' s equilibrium state 

with the "random" case, I have also plotted \nd\ for simulations in which the 

agents simply select their position at random (ie. independent of the game's 

history). On a log-log scale, both curves are very linear with exponents of 1/2 

demonstrating that \nd\ oc \/N as we might expect. 

What is interesting from figure 2.3 is the fact that the value of \nd\ 

for the E M G is significantly less than the "random" \nd\. This result tells 

us that the agents within the E M G naturally evolve (over the transient time 

of the system) into a state in which the systems' resources are used much 
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Figure 2.3: The equilibrium average size difference between the two positions 
for the E M G (o) and when the agents select their positions randomly (•). 
Other parameters for the simulations are Zc = —100, M = 3, and R = 1. 

more efficiently than if the agents simply made their decisions at random. 

This emergence of "co-operation" is most likely a result of the evolutionary 

feature of the model and fascinating due to the fact that, as will be mentioned 

below, the equilibrium properties of the model are independent the agent's 

memory, M , which one might expect to be a large source of the model's history 

dependence and therefore its emergent behaviour. 

2.2.2 Equil ibrium properties of L(p) 

A sample L(p) distribution is shown in Figure 2.4. The distribution is sym-
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Figure 2.4: The distribution of average lifetimes, L(jp), for N = 101, M = 3, 
T = 106 rounds, Zc = - 5 , and R = 2. 

metric about pi = 1/2 and is distinctly bimodal with sharp peaks at p = 0 and 

p = 1. Let p* be an agent's optimal strategy - one that allows him to survive 

the longest. Interestingly, Figure 2.4 shows that this optimal strategy is to 

either always follow (p* = 1) or go against (p* = 0) the prevailing trend; if he 

uses any mixture of these strategies his performance will drop. In the case of 

p = 1/2 when an agent is most unsure of which strategy to choose, we can see 

that his performance is worst. 

Figure 2.5 shows the dependence of L(p) on the number of agents, N. 

As the number of agents increases the average lifetime of each agent increases 

also; this result can be understood if we consider an agent's expected payoff 
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Figure 2.5: L(p) for M = 3, T = 106, Zc = - 5 , and R = 2 with 7V=31 (—); 
N=61 (—); and 7Y=101 (—-). 

per round. From above we know that \rid\/N oc l / x / i V when the system is 

in equilibrium and so, as the number of agents increases, we should therefore 

expect the fractional difference between the size of the two options to go to 

zero. If this fractional difference decreases then so too will the expected payoff 

of the agents thereby increasing their average lifetimes. 

Figure 2.6 shows the dependence of L(p) on Zc. As Zc decreases it is 

intuitive that L(p) should increase. Specifically we can see that L(p) scales 

very well with the size of the cutoff score, \ZC\, or L(p) ~ \ZC\. 

In addition, the dependence of L(p) on M and R was checked. In all 
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Figure 2.6: L{p)/\ZC\ vs. p for Zc = -5 (—), -10 (—), -25 (—-), and -100 
(• • •)• N = 101, M = 3, T = 106, and R = 2. 

cases there was no statistically significant dependence of L(p) on either of these 

parameters. 

Analysis of results 

I will now give a simple explanation [73] for the cause of the bimodal and 

symmetric shape of L(p) seen in figure 2.4. Consider the case N = 3 and 

assume that each agent can only take on the gene values, p =0, 1/2, or 1. I 

will label the agents 1, 2, and 3 and focus on the actions of agent 3. 

Given the 3 possible values for p it follows that there are 9 possible gene 

value combinations, (p\,p2), for agents 1 and 2. Depending on the specific 
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combination of (pi,P2) and his own gene value, p 3 , agent 3 can expect a range 

of payoffs which are shown below in figure 2.7. The mean and variance for 

(Pl»P2) (0,0) (0,1) i1-l) (i1) (1,0) (M) (1,1) 
P 3 = 0 -1 -1 -1 - i 1 

" ? 
0 -1 0 + 1 

Ps = k 0 1 
2 

-1 i 
'•?. 1 

"2 
i 

"2 
-1 l 

"2 
0 

P3 = 1 +1 0 -1 0 I "2 -1 -1 -1 -1 

Figure 2.7: A l l possible expected payoffs for agent 3 when N = 3 given that 
each agent can only access the states p =0, 1/2, and 1. 

each of the rows of figure 2.7 are shown in figure 2.8. 

P3 mean payoff variance 
0 i 

"2 
2 
? 1 

2 

1 "2 i 

1 I 2 
Figure 2.8: The mean payoff and corresponding variance for each of agent 3's 
gene values when N = 3 and each agent only has access to the states p =0, 
1/2, and 1. 

From figure 2.8 we can see, as expected, that the mean payoff for agent 

3 is the same for each of his gene values (ie. there is no a priori best gene 

value), but that the variance is greater for p3 = 0 and p 3 = 1 than for p 3 = 1/2. 

Eventhough there are more situations in which agent 3 is guaranteed to choose 

the majority position (and therefore be penalized 1 point) with either p 3 =0 or 

1, the larger variances for these gene values indicate that the agent also has a 

greater probability of choosing the minority position by out-guessing the other 

two agents; he is therefore more likely to live for a greater number of rounds 

before he is killed-off. 
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2.3 Discussion of results 

The results of simulations of the E M G presented in this chapter have demon

strated some of the interesting properties of the model. First, it has been 

shown that agents within the E M G framework naturally organize themselves 

into a state in which the systems' resources are utilized more efficiently than if 

the agents simply chose their positions at random (ie. by nipping a coin). This 

self-organized "co-operation" was shown to be independent of the system's ini

tial state and, since its equilibrium state was found to be independent of the 

agent's memory, is most likely a result of the history-dependent evolutionary 

mechanism of the model. 

Also significant is the bimodal and symmetric nature of the distribution 

of average lifetimes, L(p). Within the type of competitive group dynamic 

formed by the E M G , it has been shown that an agent's optimal strategy is to 

either always or never follow the trend set by the group. This result has been 

explained using the simple arguement that the variance for an agent's payoff 

is a minimum for p = 1/2 and a maximum for p = 0 and p = 1; when an agent 

is in one of these extreme strategies he therefore has the greatest probability 

of choosing the minority position and surviving the longest. 

While the unrealistic features of the M G have been discussed in chap

ter 1, there is one point specific to the E M G that I feel should be emphasized 

further. It has already been mentioned several times that the E M G is a super-

Martingale and so the expected payoff for each agent is always negative. If the 

results of the model are discussed in financial terms then one immediately en

counters the problem If, on average, an agent expects to lose money, regardless 
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of which position he takes, then why would he trade in the first place? 

In reality, the E M G is actually more a realistic model of a group of 

agents either betting "red" or "black" on a roulette wheel than a group of 

agents trading a financial asset in a market. The only agents that would play 

the E M G are those that are risk-preferring - ie. agents would only participate 

for the thrill of the game and not with the realistic expectation of increasing 

their wealth. Since the lifetime is the only decent measure of such a risk-

preferring agent, the bimodal shape of the distribution of average lifetimes is 

not unexpected; the strategies p = 0 and p = 1 are the riskiest strategies and 

so it is reasonable that they are also the best performing. 

In keeping with the theme of developing the E M G into a more realistic 

market model, an interesting (and essential) extension would be to incorporate 

a payoff function in which the expected payoff is positive and the agents there

fore have an incentive to participate. By defining a "wealth" as an agent's ac

cumulated score and incorporating an evolutionary mechanism which replaces 

the gene values of a certain percentage of the worst performing agents every 

z » 1 rounds of the game, one can then examine the group's performance 

with the final distribution of wealth and of gene values. 

Because of the sub-Martingale property of this proposed model it is 

likely that using either p = 0 or p = 1 will no longer be optimal - ie. they 

will not maximize an agent's wealth. In fact, it is quite possible that p = 1/2 

will emerge as an agent's optimal gene value due to its lesser probability of 

creating a situation in which the agent is guaranteed to choose the minority 

room and lose (see figure 2.7). 
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Even though the current binary payoff function is financially unrealistic, 

I will use it in this work and leave the above modifications for a later study. 
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Chapter 3 

The Variable Activity Evolutionary Minority 

Game 

Results of simulations of the E M G from chapter 2 have shown that the model 

is well-suited for demonstrating properties of an individual agent within the 

Minority Game framework. Specifically, it has been shown that an agent's 

optimal strategy (defined as the gene value which maximizes his expected 

lifetime) is to always play the same pure strategy - either always follow the 

previous winning option (p = 1), or always go against this trend (p = 0). 

Several questions arise if the agents are given the ability to abstain 

from playing. Firstly, will the symmetry of the E M G be broken? It has been 

shown in chapter 2 that the trend-following and contrarian pure strategies of 

the E M G are equally optimal. It is interesting to ask whether this situation 

will persist, or if the ability to be inactive will cause one of these strategies 

to become preferable over the other. Secondly, what will the optimal strategy 

be when inactivity is introduced; will this strategy be "pure" such as always 

play or never play, or will it be some mixture of the two; are there symmetries 
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of agent performance over the strategy space; and are there conditions under 

which an agent's optimal strategy can change? 

These are some of the questions that have motivated the development of 

the Variable Activity Evolutionary Minority Game ( V A E M G ) . In this chapter 

I will discuss and formalize the structure of the V A E M G model and specifically 

the structure of the mechanism used to generate agent inactivity within the 

standard E M G framework. With the V A E M G I have attempted to model this 

mechanism so as to capture some realistic features of a group of competitive 

and adaptive agents while keeping the model as simple as possible. The chapter 

will conclude using this formal definition to develop an analytical theory of the 

V A E M G which will later be used as a comparison with the results of numerical 

simulations of the model. 

3.1 Choice of activity structure 

The first problem that must be addressed is the way in which to model agent 

inactivity within the framework of the E M G . The possibilities for this choice 

are endless. For instance, we could use: 

1. a very simple "group" condition where specific agents are randomly se

lected to sit-out on each round, 

2. inactivity spreading via a bond percolation mechanism like in the Cont-

Bouchaud model [31], or 

3. some more realistic mechanism of controlling inactivity at the single 
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agent level through feedback of the agent's past performance 

For this study it would be ideal if the inactivity mechanism generated 

emergent properties of the system, but also was very simple. With choice (1) 

above, while the global inactivity structure is very simple, it would unlikely 

produce any interesting results since it lacks any mechanism for generating 

correlations between the individual agents. With choices (2) and (3), mech

anisms exist to cause the necessary correlations, but in both cases they are 

overly complex and will likely produce results that are difficult to analyze. 

The E M G model provides an ideal starting point for this goal. As 

has already been noted, the evolutionary nature of the gene value, p in the 

standard E M G allows us to examine how an agent's performance depends 

on his strategy selection. Even though its structure is relatively simple, this 

evolution is important due to the feedback that introduces into the system. 

It is hoped that, if the agent's activity level is modeled in an analogous way, 

the modified model will produce interesting emergent behaviour (such as a 

relationship between agent performance and activity level) while remaining 

relatively easy to treat analytically. 

3.2 Model structure 

The play of the V A E M G is the same as the E M G with several exceptions. 

In the V A E M G , each agent i € {1, . . . , AT}) has an activity parameter, 

^ e [0,1], which is simply that agent's probability of being active during a 

round. In an analogous way with pi in the standard E M G , ai is an evolution-
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ary variable and therefore introduces feedback (memory dependence) into an 

agent's decision on his activity status. 

The game proceeds in two independent steps. In the first step, each 

agent "chooses" whether or not to be active based upon his activity parameter, 

cti. Once these decisions are made, the total number of active agents, Na < N, 

is determined. While not strictly necessary, we have chosen to exclude the 

possibility of having an even number of active agents (ie. Na G {1 ,3 , . . . , N}). 

In addition to keeping the model structure as close to the original E M G as 

possible and preventing us from having to deal with the case when there is no 

distinct minority group (rid — 0), the exclusion of A^-even, as will be shown in 

a later section, significantly reduces the complexity of the analytical theory. In 

the numerical algorithm the A^-even condition is enforced simply by requiring 

the agents to replay a round's first step until an odd number of active agents 

is obtained. 

In the second step of the round the active agents play a normal round 

of the E M G with N — Na. Each of the agents chooses either to "buy" or 

"sell" based upon the past history and their individual strategy preference, pi, 

and then is either rewarded or penalized based upon whether their choice puts 

them in the minority or majority group, respectively. 

As the V A E M G is currently structured, there is no incentive to partici

pate in the second step of the game. If an agent decides to be inactive for the 

round, then he simply sits out and waits for the next round. While he does 

have the possibility of choosing the minority option and raising his score, his 

expected payoff, given that he plays, is negative; he would therefore be better 
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off by choosing never to play. 

To prevent this "trivial" solution (all agents always inactive) I will in

troduce a global parameter, I £ [—1,0], to act as a penalty to an agent's score 

for being inactive during a round. More than just a mathematical convenience, 

/ can be thought of as a parameter that models the effect of inflation on the 

system. To explain this point, imagine a group of agents within a financial 

market who own cash and a single type of asset. When an agent is confident 

(in his own mind) about the future movement of the asset he will "play" the 

market and either buy or sell some quantity of it and in turn change the quan

tity of his cash reserve. If, on the other hand, he is unsure of the asset's future 

movements he can choose to avoid the risk of playing the market and hold the 

quantities of his cash and asset constant. While this second option is less risky 

than the first, it will not entirely preserve his wealth. Because of inflation, the 

value of his cash, which could have been invested in the form of the asset, will 

be worth less in the future and so his net worth will effectively decrease. 

The game proceeds until agent i's score falls strictly below the cut-off 

score, Zc. As in the E M G the agent is then killed-off and replaced by a new 

agent with an initial score of zero and redistributed values of both OJJ and Pi. 

These redistributions are uncorrected random variables uniformly distributed 

around the old values of Ui and pi with radii Ra G [0,1] and Rp € [0,1], 

respectively. 
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3.3 Theory of the V A E M G 

Like the standard E M G , the V A E M G is a super-martingale for all values of 

/ < 0. Since each agent will eventually die (for \ZC\ < oo) that agent's 

performance is best measured by his lifetime. In the V A E M G , however, there 

are two evolutionary variables, p^ and OJJ, and since correlations between these 

variables may emerge, the study will focus on the generalized average lifetime 

distribution, L(ojj,pj). 

The goal of this section is to derive an analytical expression for L(a,p) 

(the subscript i has been omitted since the theory should be general for any 

agent within the group). The derivation will mirror that of Lo et al. [71] and 

will use a mean-field formulation. Because agents within the V A E M G only 

interact through its global history, the system should be ammenable to a such 

a mean-field treatment. 

3.3.1 Derivation of an expression for the average life

time distribution, L(a,p) 

I will begin by defining the expected payoff to an agent in states a and p as 

(n a p ) . Since (n Q p ) < 0 it is expected that approximately l /| (n a p )| rounds 

will be required for the agent to lose 1 point. Because the agent is killed-off 

when his score, S, reaches Zc < 0 points, his average lifetime, L(a,p), should 

be given by 

L(a,p) = 
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The above equation is actually only valid for the standard E M G where an 

agent's score can only change by an integer amount and therefore (Sc(a,p)) = 

Zc is a constant (where (Sc(a,p)} is, on average, the agent's score when he 

is killed-off). In the V A E M G , if an agent is inactive during a round then his 

score will change by a non-integer amount, I E [—1,0] and therefore (Sc(a,p)) 

will most likely not equal Zc. The average number of rounds required to reach 

the cut-off score (ie. the average lifetime) will therefore be slightly modified 

in the V A E M G to 

During each round of the V A E M G , there are 3 possible moves for an 

agent in states a and p: 

1. He can choose to be inactive. This choice occurs with probability 1 — a 

and results in a payoff of I points. 

2. He can choose to participate in the round and then choose the minority 

option. This occurs with probability aPw(a,p) (where Pw(a,p) is the 

probability that an agent with activity level a and gene value p chooses 

the winning option given that he is active) and results in a payoff of +1. 

3. He can choose to play and then choose the majority option. This occurs 

with probability a ( l — Pw(a,p)) and results in a payoff of -1 point. 

The expected payoff to the agent is therefore 

L(a,p) = 
{Sc(a,p)) 

(n Q p ) 
(3.1) 

(n Q p ) = a{2Pw(a,p) - 1) + 7(1 - a) (3.2) 
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Analytical form for the expected cutoff score, (Sc(a,p)) 

To derive an expression for (Sc(a,p)) I will examine the actions of only one 

agent. It will be assumed that this agent never chooses the minority option 

(ie. the agent is always inactive or active but chooses the majority position) 

thereby neglecting the effect of positive score changes. This assumption should 

cause no loss of generality since positive changes are always integer valued and 

therefore do not contribute to the variability in (Sc(a,p)). 

The expected payoff of this agent is therefore aPw(a,p) + (1 — a)I and 

so, on average, the number of rounds it will take for his score to drop to Zc 

will be Zc/(aPw(a,p) + (1 - at)I)- Since the agent will not be killed-off until 

S < Zc this number of rounds must be rounded-up to the nearest integer (a 

fractional number of rounds is not allowed). The expectation of the agent's 

score, {Sc(oi,p)), at this point will simply be this number of rounds multiplied 

by his expected payoff, or 

(Sc{a,p)) = (aPw(a,p) + (1 - a)I) x ceil 

where ceil(x) is defined as the smallest integer no smaller than x. 

3.3.2 Derivation of an expression for Pw(a,p) 

The derivation of L(a,p) is now reduced to finding an expression for Pw(a,p). 

Towards this goal, I will focus on some round, t » 1, when the system has 

reached its equilibrium state. At this point I will consider the second step of 

the round in which there are Na active agents and, specifically, the actions of 

the ith agent in a pool of Na - 1 background agents. 
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I define FNa (n) as the probability that n of the total iV a active agents 

choose the option (buy or sell) predicted by the trend strategy. Also let 

G1
Na_l{n) be the probability that n agents, chosen from the background pool, 

choose the option predicted by the trend strategy. FNa(n) and G V 0 - i ( n ) a r e 

then related by 

FNa(n) = PiG*Na_1(n - 1) + (1 - Pl)Gi
Na_1(n) (3.4) 

which simply states that there are two ways in which n agents choose the 

trend strategey; either if agent i chooses this strategy along with n — 1 of the 

background agents, or if n of the background agents choose the strategy while 

agent i chooses the anti-trend strategy. 

Agent i will choose the winning option if one of the two following situ

ations occur: 

1. Either agent i chooses the trend strategy and no more than (Na — 3)/2 

of the background agents choose this same option, or 

2. Agent i chooses the anti-trend strategy while at least (Na + l ) /2 of the 

background agents choose the trend strategy 

The probability that agent i chooses the minority (winning) option, 

pw(Na), given that he is both active and there are Na active agents is therefore 

Pw(Na) = P l GlNA-AN) + (1 - ft) E °lNA-M (3-5) 

Equation (3.5) is z-dependent. To remove this dependence and gener

alize the result for all agents, (3.4) must be rewritten as 

FNa(n) = G ^ i n ) - px ( ^ ( n ) - G ^ n - 1)) (3.6) 
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and note its boundary conditions 

FNa(0) = £ ~ PJGN.-M (3.7) 

FNa(Na) = PiG^iNa - 1) (3.8) 

Now summing over both sides of (3.6) from n = 1 to n = (Na — 3)/2 

and cancelling terms gives 

(Na-3)/2 (iV„-3)/2 /V - 3 

E F " » = E ^ . - i ( « ) + f t ^ . - i ( o ) - ^ . - i ( - V " ) 

n=l n=l 

Using the b.c. (3.7) the above equation reduces to 

(JVa-3)/2 (tf„-3)/2 „ _ o 

E G J V a _ 1 ( n ) = E (3-9) 
n=0 n=0 

In an analagous manner, (3.6) can be summed from n = (Na + l ) /2 to 

n = N. After the appropriate cancellations and use of b.c. (3.8) we are left 

with 

E G J V a _ 1 ( n ) = E FNA^) - Pi^-d^Y1) (3-10) 

n=(Na + l)/2 n=(iV0 + l)/2 

Substituting (3.9) and (3.10) into (3.5) and using the relation (from (3.4)) 

PiG^dNa - 3)/2) = FNa((Na - l)/2) - (1 - pi)Gl
Na_1((Na - l ) /2) 

gives 
^ Na 

Pv,{Na)=PiY^FNa{n) + (l-Pi) E 

- 2 P i ( l - ^ G k - i ( ^ l i ) (3-11) 
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To remove all i-dependence from pw(Na) the third term on the RHS of 

(3.11) needs to be expressed in terms of F^ 0 (n). Again, rewriting (3.4) we 

have 

ftGVxfn - 1) = FNa(n) - (1 - Vi)G%
Na^{n) (3.12) 

Applying (3.12) to itself then results in the relation 

PtGi
Na-,(n - 1) = FNa(n) - ^ [F* B (n + 1) - (1 - Pi)Gi

Na_1(n + 1)} 

and after successive applications, we are left with 

P * G k - i ( " - 1) = - L-*FNa(n + l) + 
1 - p ' 

P 
F N o ( n + 2) + . . . 

p - 1 

P 

Na-n 

FNa(Na) 

or simply 

G i r . - i ( n - l ) = ^E ^ i=o 

P - 1 
. P 

(3.13) 

Because of the factor [(p - l)/p]j, equation (3.13) is not numerically 

practical for p « 0 . To correct this problem, we write (3.4) as 

(1 - Pl)Gl
Na_l(n) = FNa(n) - plG*Na_l{n - 1) (3.14) 

After recursively applying Eq. (3.14) to itself as was done with Eq. (3.12) we 

get 

G 
1 n 

y 3=0 
V 1 3 

P - 1 
FNa(n-j) (3.15) 

which is much more usable in the region p « 0. 
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Together, equations (3.11), (3.13), and (3.15) give the probability, pw{Na), 

that any agent chooses the minority option given that he is both active and 

there are Na active agents during the round in question. But € {1,3, . . . , N} 

is variable. To find the total probability that the agent chooses the minority 

option, it is necessary to perform a weighted sum over all possible states, Na. 

Towards this goal I will now focus on the first step of the round and, 

specifically, on the actions of the ith agent within a pool of N — 1 background 

agents (all N agents are still "active" at this stage). Let QN(NO) be the proba

bility that ther are Na active agents, out of a possible N. Also let ^ ^ ( A ^ —1) 

be the probability that, excluding the ith agent, there are Na — 1 active back

ground agents during the round. Simply by definition, the probability that 

agent i selects the minority option given that he is active is then 

N 

Pw(a,p) = £ $iv-iW» - l)pw(Na) (3-16) 
NA=3 

In a similar way to Eq (3.4), <dN(Na) and $ l
w _ 1 ( N a - 1) are related by 

QNW = a&^iNa - 1) + (1 - ax)&N_x(Na) (3.17) 

which states that there can be active agents if agent i is active along with 

Na - 1 of the background agents, or if agent i is inactive while A^a background 

agents are active. The expression for Pw(a,p) is conditional on agent i being 

active; if he is inactive then Pw(a,p) = 0 by definition. The 2 n d term on 

the RHS of (3.17) assumes that agent i is inactive and it therefore makes no 

contribution to Pw(a,p). For our purposes then, (3.17) reduces to 

^-l(Na-l) = ^eff(Na) (3.18) 
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and so the final, z-independent form of Pw(a,p) is 

N 

a 

1 N 

Pv,{a,p) = - T ®N(Na)pw(Na) (3.19) 
Na=3 

3.3.3 Analytical forms for QN(Na) and FNa(n) 

The final question that must be answerred is how to deal with QN(NQ) and 

F^a(n). Qualitatively, 0/v(Aa) and F^a(n) can be regarded as the sum of N 

and Na independent actions, respectively. At this time I will restrict N 3> 1 

and assume that Na » 1 also. Since cti,Pi € [0,1] the Central Limit Theo

rem tells us that QN(NO) and FNa(n) should both be approximately gaussian 

shaped with means, jia and /j,p, and variances, o2
a and ap, respectively, given 

by 

fia = N f f aP(a,p)dpda a\ = N f J a(l - a)P(a,p)dpda (3.20) 
J a J p J a J p 

PP = ^2eN(Na)Na / / Pp(a>P)dPda 

NA
 J A J J } 

°l = E QN{Na)Na f fp(l- p)P(a,p)dpda 
M JaJp 

(3.21) 

NA 

where P(a,p) is simply the joint frequency distribution of a and p and is given 

by 

P ( a , p ) = , r
L

T
{

(
a , P L . (3-22) 

Ja SpL{a,p)dadp 

when the system is in equilibrium (this will be experimentally verified in a 

later section). 
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3.3.4 Solving for the analytical form of L(a,p) 

The derivation is now complete. Together, (3.1-3.3), (3.11), (3.13), (3.15), and 

(3.19-3.22) form a self-consistent set of equations for L(a,p). Unfortunately 

this system is implicit and so L(a,p) cannot be solved directly. To solve for 

L(a,p) I will use the following iterative routine: 

1. Assume an initial form for L(a,p). 

2. Assume an initial gaussian form (with p, — a2 = N/2) for QN{NO) for 

use in Eq. (3.22). 

3. Calculate pa, pp, o\, and a2 using equations (3.20) and (3.21). 

4. Using equations (3.13) and (3.15), calculate pW(NA) from (3.11) 

5. Using (3.19) calculate Pw(a,p) 

6. Using (3.3) calculate the cutoff score, (Sc(a,p)) 

7. Calculate the expected payoff, (nQp), (3.2) and then find a corrected 

form for L(a,p) using (3.1) 

8. Using the new L(a,p), repeat steps 3-6 until the difference between suc

cessive L(a,p)'s falls within some convergence criterion. 
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Chapter 4 

Results and Discussion 

In this chapter I will examine the properties and behaviour of the V A E M G 

model developed in chapter 3. As with the E M G model of chapter 2, I will 

focus on results of numerical simulations of the model and then supplement 

and compare these with the theory developed in section 3.3. The results will 

focus on two aspects of the model: 1. the performance of an agent when he is 

able to control his activity level; and 2. how the properties of the E M G model 

react to a variable level of agent activity. 

In section 4.1 I will begin the chapter with a short discussion about 

the details of initializing the routines for generating both the numerical and 

theoretical results. In section 4.2 I will discuss the transient response of the 

V A E M G model. In section 4.3 I will then present and discuss results concerned 

with the activity-related properties of a single agent. In order to focus on this 

aspect of the model, I will use a version of the V A E M G in which the gene 

value, p, is non-evolutionary for all agents. As will be explained later, this 

formulation reduces the complexity of the model and allows us to focus more 
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easily on the activity dependence of an agent's behaviour. Finally, in section 

4.4 I will use the full version of the V A E M G model developed in section 3.2 to 

examine how the addition of a variable activity level affects global properties 

of the E M G model. 

4.1 Setup of numerical routines 

The data presented in this chapter have been generated from numerical rou

tines. The purpose here is to simply describe some aspects of the setup and 

any relevant initial conditions of these routines. 

4.1.1 Experimental 

The "experimental" data (data from numerical simulations of the V A E M G 

model) have been produced using a routine built-up from that used to simulate 

the E M G in chapter 2. As with those simulations, the initial history bit string, 

, the trend and anti-trend strategies (5* and respectively), and an agent's 

activity level, a, € [0,1] were all randomly initialized. In addition, an agent's 

gene value, Pi E [0,1], was randomly initialized in section 4.4 where the full 

V A E M G model is simulated. In section 4.3 however, pi is non-evolutionary 

and so it has been set the same for all agents; the choice of this constant will 

be discussed further in section 4.3. 

Simulations of the V A E M G are computationally very large. Whereas 

the number of rounds, T, used in a simulation of the E M G in chapter 2 was 106, 

I will show in section 4.3 that T must be much larger (typically T ~ O(10 8 — 

52 



109)) for the V A E M G model. As a result of this increased computational size, 

I have used the ran2() random number generator found in Numerical Recipes 

in C [74]. This random number generator is of the L'Ecuyer type with a Bays-

Durham shuffle and, most importantly, has a very long period (> 2 x 1018) 

which should prevent any serial correlations between rounds. 

4.1.2 Theoretical 

The routine, given in section 3.3.4, for generating the theoretical distribution 

of average lifetimes has several points that must be discussed. First, the "con

tinuous" variables, a and p (where appropriate), have each been discretized 

into 100 evenly spaced points over the interval (0,1). Second, an initial average 

lifetime distribution was required to seed the numerical routine; for simplicity 

reasons a constant, normalized distribution was used. The sensitivity of the 

algorithm to this initial distribution was tested using various other forms and, 

in all cases it was found that the final distribution was independent of this 

choice. 

The precision of the final distribution is dependent on the convergence 

criterion used in the algorithm. Let Li(a,p) be the ith approximation to the 

actual theoretical distribution. We define 

to be a measure of the difference between the i — 1th and ith iterations of the 

routine (and the ^2ap is a sum over all possible, discrete combinations of a and 

p). When the convergence criterion is set to be 7; < 10~6 there is no visible 
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change in the distribution between steps i — 1 and i. For safety sake I will use 

li < 10~ 1 0 as the convergence criterion throughout this study. 

4.2 Transient response of the V A E M G 

While I will mainly focus on the equilibrium properties of the V A E M G model, 

I would also like to characterize its approach to this state. With the E M G the 

approach to the dynamic equilibrium was quantified using \nd\, the magnitude 

of the difference between the number of agents who selected "buy" and who se

lected "sell". With the V A E M G there are three possible outcomes each round 

(buy, sell, and hold) and so two quantities are needed: the magnitude of the 

difference between the number of buyers and sellers, \na\; and the magnitude 

of the difference between the number of active and inactive agents, — N\. 

Time series for each of these quantities are shown in figure 4.1. The transient 

responses of both \nj\ and \2Na — N\ appear to have died out completely by 

t « 1000 rounds. 

There are two interesting points from figure 4.1. First, from figure 2.2 

we know that, within the E M G framework, \nd\ will not display a rapidly 

decaying transient if pi is randomly initialized; figure 4.1 re-confirms this result 

for the V A E M G . What is more interesting, however, is the fact that \2Na — N\ 

does rapidly evolve out of this randomly initialized state with a characteristic 

time ~ 0(|ZC|). As will hopefully become obvious later, this spontaneous 

evolution of \2Na — N\ out of a state in which OJJ is randomly distributed (in 

comparison to the evolution of |n^| into a state which behaves similarly to one 
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180 

round number - 1 

Figure 4.1: Time series for \nd\ and |2JVa - N\ for N = 301, M = 3, and 
/ = —0.5 with both pi and ctj evolutionary and randomly initialized. 

in which pi is randomly distributed) is a result of an agent's performance being 

asymmetrically dependent on OJJ. Second, once |27V0 — N\ has evolved into 

its dynamic equilibrium level, it appears to undergo much larger fluctuations 

(over a timescale of ~ 0(1000) rounds) than \rid\; at this time I have no good 

explanation for this behaviour. 
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4.3 Individual agent behaviour in the V A E M G 

4.3.1 Introduction 

This section will focus on the behaviour of a single, arbitrary agent within the 

framework of the V A E M G model. I will examine three main properties of the 

model: 1. the performance of an agent with a variable level of activity; 2. an 

agent's optimal performance for a given set of model conditions; and 3. how 

this activity dependent behaviour varies with certain model parameters such 

as the number of agents, N, the inflation rate, / , and the bankruptcy level, 

Zc. 

How an agent's activity level affects his performance is, presently, the 

main concern. While the V A E M G is capable of, and, in fact, has been specifi

cally designed to demonstrate this effect, the model includes unnecessary com

plexity that will detract from the activity dependence that is the present focus. 

For this section I will use a simplified version of the V A E M G model 

that will provide a more direct window into the activity dependent properties 

of an individual agent. This model is identical to the full V A E M G with the 

exception that the gene value, Pi, is now the same for all agents (pi = p), is 

fixed at p = 1/2, and is non-evolutionary (ie. Rv = 0). 

The specific simplifications were chosen for two reasons. First, they 

reduce the complexity of the theory that was developed in section 3.3. While 

it might seem intuitive that eliminating the evolutionarity of p will simplify 

the associated theory, of almost equal importance in this simplification is the 

choice of p = 1/2; this point will be discussed further in section 4.3.3. Second, 
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they simplify the dynamics of the game. In the second step of a round, each 

agent's strategy preference has been made irrelevant since he now has a p = 

1/2 probability of choosing either to buy or sell. This second step is now 

equivalent to Na agents each nipping an unbiased coin to determine their 

move for the round. By removing the evolutionarity of p we are eliminating 

the system's' dependence on its history so that we can more easily focus on 

the its a dependence. 

4.3.2 Experimental results 

Distribution of average lifetimes, L(a) 

Here I will focus on the 1-D distribution of average lifetimes, L(a), over the 

phase space of the V A E M G model. 

Figure 4.2 shows L(a) for several values of the penalty, I. We can see 

from the figure that the system displays the proper behaviour at a = 0, namely 

that L(0) = Zc/I. Also, the distributions are all monotonic; for small values of 

|7|, ^ < 0, while for larger values of |7|, ^ > 0. When inflation is small 

an agent will do better by playing less frequently, but, eventually, as inflation 

is increased the agent will be better off by playing more. This dependence of 

L(a) on I will be discussed much further in later sections. 

A n immediate question that arises is whether or not the V A E M G reaches 

an equilibrium state and produces distributions that are stable with T. The 

model has been simulated for T — 106 -» 109 with various I e [-1,0) and, 

ignoring fluctuations, in all cases L(a) is found to be stable in time (agreeing 
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Figure 4.2: Average lifetime distributions for I = -0.05 (—), -0.10 (---), -0.25 
(— - ) , and -0.75 (• • •) with N = 101, Zc = -100, and Ra = 1. 

with the conclusions from above). With 1 = 0 this is not the case. Figure 4.3 

shows L(a) at I = 0 normalized by LQ(Q) (defined to be L(a) for T = 106) 

for several values of T. As T increases, the distribution becomes more heavily 

weighted around a — 0. The reason for this result is that the state a = 0 

acts as a sink in the model. When an agent dies and is replaced by one with 

a = 0, this new agent will live forever. As T increases, the probability of an 

agent attaining the a — 0 state will increase; eventually (if T is large enough) 

all agents will become "trapped" in this sink and L(a) —> 6(a). 

Figure 4.4 shows the variation in the distribution of average lifetimes 

with the number of agents, N. For all L(a) increases with increasing 
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Figure 4.3: Normalized average lifetime distributions, L(a)/L0(a), for T = 
2 x 107,1 x 108 and 1 x 109 when the penalty, 7 — 0. Other parameters are 
N = 101, Zc = -100, and Ra = 1. 

N, or, in other words, as the number of agents within the group increases, so 

too does the performance of each agent. To explain this result, time series of 

the number of active agents, Na, have been plotted for several values of N in 

Figure 4.5. The second step of a round within the V A E M G is identical to the 

E M G with Na agents. We know from chapter 2 that an agent's performance 

in the E M G increases with the number of agents. Since A ^ increases with N 

(from figure 4.5), it is then clear why the performance also increases with N 

in the V A E M G . 

In chapter 2 we saw that L(p) ~ \ZC\. Since the the average point loss 
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Figure 4.4: Average lifetime distributions for ^=31 (---), 101 (—), 301 ( ), 
and 501 (• • •) when the penalty, / is -0.1. Other parameters are Zc — —100 
and Ra = 1. 

per round should be independent of the cutoff score, Zc, it is reasonable to 

expect the same behaviour in the V A E M G . Figure 4.6 shows the dependence of 

average lifetime distribution on this "bankruptcy level", Zc. While the scaling 

relation, L(a) ~ \ZC\, holds for large \ZC\, it breaks down for \ZC\ < 100. 

Specifically, for a ^ 0, an agent's average lifetime is larger than we expect 

in this small \ZC\ region. • The reason for this behaviour is due to the agent's 

inability to reach an equilibrium state. On average, we expect the ratio of 

number of active/inactive rounds to be approximately a/(I — a) for each agent. 

When \ZC\ is large, an agent's lifetime is large and this ratio is allowed to 
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Figure 4.5: Time evolution of Na for N = 31,51, and 101 for I = -0 .1 . The 
time series have been averaged over a window of 10000 rounds. 

approach its equilibrium value, but when \ZC\ is small this will not usually 

happen. In this case, the rounds when an agent is inactive (and therefore loses 

only a small amount) become statistically more significant than they otherwise 

would be. Since the equilibrium behaviour of the V A E M G is the present focus 

I have used Zc = —100 for all the simulations in this chapter. 

Finally, simulations of the V A E M G have also been performed for various 

Ra € (0,1]. For all values of this redistribution radius no variation was found 

in L(a). 
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Figure 4.6: Average lifetime distributions for Zc=-10 (—), -25 (---), -100 ( ), 
and -200 (• • •) with I = -0.1 and N = 101. 

Optimal performance characteristics 

In chapter 2, it was shown that an agent's optimal strategy is to either always 

or never follow the trend strategy, if the agent follows this rule then his 

average point loss per round will be minimized and he will survive the longest. 

The reason that the inactivity mechanism of the V A E M G has been modeled 

after the strategy selection mechanism of the E M G is so that we can determine 

an agent's optimal behaviour as a function of his activity level. To facilitate 

this study I will define a* to be the activity level that results in an agent's 

optimal performance - ie. his maximal lifetime. For example, from figure 4.2, 
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a. -0.05 
0 and so being inactive on every round will maximize the agent's 

lifetime. 

Motivated by the results of figure 4.2, I have run simulations of the 

V A E M G with N = 101 for a range of I. From each distribution, L(a), the 

optimal activity level, a*, has been determined and the results have been 

plotted vs. I in figure 4.7 below. Although not shown, a* = 0 V|J| < 0.1 and 

0.125 

Figure 4.7: Dependence of the optimal activity level, a*, on the inflation rate, 
\I\ for N = 101. 

a* = 1 V|/| > 0.125. These results show that there is a sharp transition from a 

pure strategy of optimal inactivity to the other pure strategy of optimal activity 

at some critical value of |/*| « 0.1125. For |/| < |/*| it is optimal for an agent 

to remain inactive for every round of the game. If the agent participates in a 
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round then there is a possibility that he will choose the minority option and 

increase his score, but, on average, his expected payoff will be less than if he 

had chosen not to play in the first place. As the rate of inflation is increased 

beyond |/*| the average loss being active will become smaller than / and so 

always playing the game will become the agent's optimal strategy. 

Taking a* to be the order parameter of the system suggests, due to 

the discontinuity in a*, that the active/inactive transition is first order. To 

explore this point further, figure 4.8 shows several distributions, L(a), for 

|/| fa Ignoring fluctuations, L(a>) appears to be very linear near |/*| which 

89301 1 1 1 1 1 1 1 1 r 

a 

Figure 4.8: Average lifetime distributions, L(a), near the active/inactive phase 
transition, |/*|, for N = 101. 

confirms the first order nature of the transition. Furthermore, the linearity of 
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L(a) for \I\ « |/*| suggests that there is no preferred level of activity at the 

active/inactive transition; on average, all values of a will result in an equal 

lifetime at |J| = |J*|. 

The distributions in figure 4.8 were run with T = 109. This was the 

minimal number of rounds required to reduce the size of the fluctuations in 

L(a) to the level where its maximum is distinguishable for AI = 0.0005; this 

distinguishability is the reason why T must be so much larger for the V A E M G 

than for the E M G . 

A note should be made about the nature of the optimality of a*. For 

\I\ < \I*\, a* is a true global optimum of this simplified (p = 1/2) version of 

the V A E M G . Regardless of the actions of the other N — 1 agents in the group, 

when |/| < |/*| an agent's best strategy is to always remain inactive. When 

|/| > 1 h o w e v e r , the strategy of a = 1 (always play) is only optimal if the 

other agents play as they normally would. If a group of the background agents 

collude and decide to not play for a round then they can change the expected 

payoff of playing so that it is no longer the optimal strategy. The simplest 

example of this is the extreme case when \I\ > |/*| but where all of the other 

N — 1 agents "decide" not to play. Here the "optimal" strategy for the single 

agent under consideration is still to always play, but if he follows this strategy 

his expected payoff is —1 (a minimum) since he is guaranteed to always be in 

the majority group. This optimal strategy of activity is therefore not global 

since it is inherently dependent on the decisions of the other agents. 

It will be useful to characterize the active/inactive phase transition in 

terms of the number of agents, N. Figure 4.9 shows plots of a* vs. |/*| for 
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various N. It is clear that the position of the transition, \I*\, decreases with 
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Figure 4.9: Active/inactive phase transitions for N = 31(—), 101(—), 301 (— 
- ) , and 1001(- • •)• 

increasing N. This result indicates that as the number of agents increases, the 

inflation rate that should "force" an agent into a state of activity decreases, 

or, in other words, an agent's optimal strategy is to take more risk as the size 

of the group increases. 

4.3.3 Theoretical results 

It was stated above that the structure of the simplified V A E M G used in this 

section reduces the complexity of the associated theory. Specifically, there are 
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two main simplifications that result from the choice of pi = p = 1/2. F irst , 

al l functions of both a and p (L(a,p), (Sc(a,p)), and Pw(a,p)) now reduce 

to functions of a alone. A s a result, the integration over p in E q . (3.20) and 

(3.22) disappears and E q . (3.21) reduces to 

To discuss the second simplification, I w i l l restate E q . (3.11) here. 

^ q - 1
 N 

2 "a 

PW(Na)=PiJ2FN^ + ( l - P J E ^ ( ^ - 2 ^ ( 1 - ^ ) ^ - 1 
n=0 n - A r « + 1 

i V a - 1 
2 

(4.2) 

Recall that FNa (n) is the probability that n agents follow the trend strategy. 

Because of the choice of px = 1/2 and the fact that 2^^=o-^a(n) = 1> E q . 

(4.2) reduces to 

Pw(Na) = \ - { ^ Y 1 ) (4-3) 

Since there is now no history dependence of the agents' strategy preferences, 

Gl
Na_l(n) also takes on a simplified form. The probability that n background 

agents choose the trend strategy is now simply the sum of Na independent 

(resulting from the lack of a history dependence on p) decisions where n agents 

choose one of two possible states and Na — n agents choose the other. This 

probability can therefore be written as 

QI - i j v a 

— ( N a \ (4-4) 
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and so Eq. (4.3) becomes 

pw(Na) = \- 1 

2 2N°+1\?^F1 

(4.5) 

The first term of Eq. (4.5) is simply an agent's probability of obtaining either 

of the two options when flipping a coin while the second is a finite size effect 

that reduces this probability given the games minority rule. The remainder of 

the theory is the same as was described in chapter 3. 

Figure 4.10 shows a comparison of the experimental results of figure 4.2 

with the theory of the simplified V A E M G . Agreement between the theory 

2000 
0.016 

(a) (b) 

Figure 4.10: (a) Average lifetime distribution, L(a), for / = -0.05 (o), -0.1 
(A) , -0.25 (•), and -0.75 (o) with N = 101. The solid lines are the respec
tive theoretical distributions, (b) The relative error, 5(a) = (Lsimuiation(ct) -
Ltheory(oi))lLsimulation(u), of the theoretical distributions in (a). 

and simulations is very good. Defining the relative error, 5(a), of the the 

theoretical distribution as 

L simulation^) ~~ Ltheory(a) 
5(a) 

L simulation 
(4.6) 
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it can be seen from figure 4.10 (b) that 5(a) < 2% and much less than this 

in the majority of cases. Ltheory(a) have been generated over the model's 

entire phase space (defined by N, I, and Zc) and the results are in similar 

agreement as those above. Figure 4.10.b does indicate that 5(a) is, in general, 

an increasing function of a and so is largest at a = 1. Since the transition 

of a* is most dependent on the relative height of L(a) at its endpoints, it is 

worth examining how well the theory predicts the position of this transition. 

Figure 4.11 shows a comparison between the "experimental" active/ 

inactive phase transitions from section 4.3.2 and the theory. Again, the theory 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 

Figure 4.11: Comparison of "experimental" phase transition plots (—) (from 
figure 4.9) with theory (—) for N = 31, 101, 301, and 1001. 

is in good agreement with the simulations and, moreover, becomes exact in 
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the thermodynamic limit. 

The discrepancy between theory and simulation is puzzling. Because of 

the simplified version of the model used in this section I am confident that Eq. 

(4.5) is exact. I am therefore left with the Gaussian assumption for G A r (A r
a ) 

as the only remaining source of error. To test this assumption QN(NO) has 

been measured from the simulated data and the results are shown in figure 

4.12 below. The parabola-shaped curves in figure 4.12 demonstrate that, in 

(a) N=31 (b) N=101 

Figure 4.12: eN(NA) distributions for N — 31 (a) and N = 101 (b) for I = 
-0.01(o), -0.02 (A) , -0.05 (•), -0.1 (©), and -0.2 (y)-

most cases, the Gaussian assumption for Gjv(iV0) appears justified. The only 

occasion when the assumption fails is for large N and small |ij where the large 

NA tail decays more slowly than a Gaussian. Since the disagreement between 

theory and simulation is most significant for small N (where the position of 

the transition, |/*|, is largest) this failure in the assumption of a Gaussian 

©;v(-Na) is not able to account for the discrepancy. 

This discrepancy, however, raises an interesting point about possible 
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emergent behaviour within the V A E M G model. It was mentioned above that 

an agent's optimal level of risk increases as N increases; in figure 4.11 |/| can 

therefore be thought of as a measure of this risk. What is interesting is that, 

for a given number of agents, N, an agent within the simulation acts as though 

he were less risk averse than a "theoretical" agent (\I?heory\ < \I*simuiation\)• l t 

should be noted that not only is a* the optimal activity level for an agent, but 

it is also the agent's most likely activity level when the game is in equilibrium. 

Since the theory of the V A E M G has been developed using a purely mean-field 

approach, the more risk-preferring behaviour of an agent has possibly emerged 

through some more subtle mechanism generating correlations between agents 

other than the simple "mean-field" global history of the system. 

4.4 Global behaviour of the V A E M G 

In this section I will focus on the general V A E M G and concentrate on two 

results: 1. the behaviour of an agent within this generalized model; and 2. how 

the properties of the E M G are affected when the agents are given access to a 

third possible state. Due to the added complexity introduced by evolutionarity 

in p I will not attempt to characterize the model over its entire phase space. 

The purpose here will be to simply present a few selected results of the full 

V A E M G model that demonstrate the model's behaviour with respect to the 

above two categories. 

Figure 4.13 shows the distribution of average lifetimes, L(a,p), gen

erated by numerical simulation and the relative error of the corresponding 
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theoretical distribution. The distribution demonstrates results that are con-

(a) (b) 

Figure 4.13: (a) The distribution of average lifetimes, L(a,p), for N = 101, 
I = -0.05, M = 3, Zc = -100, and Ra = Rp = 2. (b) Relative error of the 
corresponding theoretical distribution. 

sistent with those that have already been shown. At a = 1, when an agent 

is always active, the distribution properly reduces to the bimodal distribution 

seen in figure 2.4. Also, although it is not easily seen in figure 4.13, at p = 1/2 

the same convex, increasing nature of L(a, 1/2) (for |/| < |/*|) that has been 

shown in section 4.3.2 is seen. 

Theoretical distributions have been generated for a wide range of the 

model's phase space and agreement with the simulated data has been found 

to be very good in all cases (an example of which we have shown in figure 4.13 

(b)). Because of this agreement, the discussion of the theoretical results in 

section 4.3.3 holds here as well and so no further mention will be made of the 

results of the theory. 

A noticeable feature of figure 4.13 (a) is the apparent symmetry of 

L(a, p) with respect to p. To quantify this symmetry I will define a symmetry 
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measure, r)a, for a fixed activity level, a, as 

£ p < l / 2 L(a'P) - E p > l / 2 L(a>p) (4.7) 

A plot of r]a for / = -0.05 is shown in figure 4.14. In chapter 2 we found that 

x 10 
-| r - i r T r 

Figure 4.14: Measure of the p-symmetry in L(a,p) for the distribution shown 
in figure 4.13 (a). 

an agent's optimal strategy is symmetric about p = 1/2 in the E M G . Ignoring 

fluctuations, this symmetry has been preserved in the V A E M G . With the 

exception of a = 0 in which an agent's strategy preference, p, is irrelevant, 

for all a, p = 0 and p = 1 are optimal strategies. Furthermore, tossing a coin 

(p = 1/2) to determine whether to buy or sell is the worst possible strategy 
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for any activity level, a > 0. 

Another noticeable feature of figure 4.13 is the optimal state for an 

agent in the full V A E M G . When evolutionarity in p is permitted, we can see 

that the system is able to access states that greatly outperform those when 

p = 1/2. To demonstrate the /-dependence of the state (a,p), figure 4.15 shows 

L(a,p) for several values of / . Together with figure 4.13 (a) these distributions 

(a) (b) 

Figure 4.15: The distribution of average lifetimes, L(a,p), for I = 0.0(a) and 
I = -0.013(b). Other parameters were N = 101, ZC = - 1 0 0 , M = 3, and 
RQ — ̂ ~^p — ^ • 

demonstrate three interesting characteristics of the V A E M G ' s opt imal state 

(a* ,p*) . 

1. |/*| < |ip* = 1/ 2 l- When an agent's gene value is able to evolve in response 

to the history of the game he should take more risk. For N = 101 

the position of the phase transition has been determined to be |7*| = 

0.0141 ± 0 . 0 0 0 1 . 

2. For |/| < |/*| (see figure 4.13(a)) both (a*,p*) = (1,0) and (1,1) are 
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equally optimal, while for |7| > |7*| (see figure 4.15(a)) all values of p 

are equally optimal (ignoring fluctuations). 

3. For |7| = |7*| (see figure 4.15(b)), L(a,p) is a strictly convex function 

and so only the activities, a = 0 and a = 1 are optimal at this rate of 

inflation. This is in contrast to the p = 1/2 case where the distribution 

is a-independent at the transition and so all values of a are equally 

optimal. 

There is another subtle, yet interesting property of the V A E M G that can 

be seen in the distributions of figure 4.15. Examining the optimal performance, 

L(l,p*), of an agent in the a = l state shows that L(l,p*) is dependent on 7. 

A more detailed plot of this relationship is shown in figure 4.16. Because the 

penalty, 7, has no direct effect on the performance of an agent who is always 

active, to first approximation this result seems counterintuitive. But even 

though this agent is in the state a = 1 there will always be other agents with 

a < 1 and so, on average, Na < N. Since an agent's performance increases 

with the number of agents playing the game (from figure 2.5 in chapter 2) and 

since 7Va increases with |7| it is therefore reasonable to expect that L(l,p*) to 

increase with |7|. Figure 4.16 shows this property for 0 < |7| < 0.1, but for 

|7| > 0.1 the agent's optimal performance decreases with |7|. This large |7| 

behaviour is contrary to the above reasoning and may be the result of some 

more subtle correlation between a and p. 
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Figure 4.16: Optimal performance, L(l,p*), of an purely active agent vs. 
penalty, I. Other parameters are N = 101, Zc = —100, M = 3, and Ra = 
Rp = 1/2. 
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Chapter 5 

Conclusions 

5.1 Summary of results 

In this paper I have developed an extension of the Evolutionary Minor i ty Game 

( E M G ) , called the Variable A c t i v i t y Evolutionary Minor i ty Game ( V A E M G ) , 

in which agents have the ability to sit-out on various rounds. The goal has 

been to characterize the model in terms of its parameters and determine how 

agent activity affects affects the behaviour of the game. 

The original E M G model was designed to investigate how a group of 

agents compete for a l imited resource when governed by supply-and-demand 

and a minority rule, both of which are believed to play important roles in the 

functioning of a financial market. Agent inactivity was the focus of this work 

for two main reasons. First , "forced" activity is one of the most unrealistic 

assumptions of the Minor i ty Game. Inclusion of a variable activity level w i l l 

serve to answer the question of how inactivity affects the specific structure of 

the E M G and w i l l move us one step closer to the development of a more realistic 
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market model. Second, from a purely academic standpoint, it is interesting to 

wonder how the inclusion of an asymmetric third state affects the dynamics 

of the self-organizing complex system formed by the E M G . 

The structure of the inactivity mechanism in the V A E M G is intention

ally simplistic. Work on the E M G has demonstrated how an agent's perfor

mance depends on his strategy preference, p; this preference, or gene value, 

is simply the probability that the agent will follow the trend in the game. In 

order to determine a similar relationship between the agent's performance and 

his activity level, the inactivity mechanism has been modeled in analogy with 

the gene value of the E M G . Finally, in order to retain the super-martingale 

nature of the E M G (ie. to prevent the trivial situation where an agent never 

participates, but lives forever), a penalty, which can be thought of as a form 

of inflation, has also been included in the model. 

In order to focus on the activity dependence of an agent's performance, 

I first concentrated on a simplified version of the V A E M G . In this case each 

agent's gene value was fixed at p = 1/2 which was demonstrated to remove 

the system's history dependence on p to more easily focus on its activity-level 

dependence. 

Many of the results of this simplified V A E M G can be understood di

rectly in terms of the E M G . First, it has been found that the dynamics of 

the game are independent of an agent's memory size, M, and the redistribu

tion radius, Ra, of his activity level. Also, with the exception of the special 

case, 1 = 0, where the a — 0 state acts as a sink to the distribution and 

L(a) —> 8(a) as T —> oo, an agent's behaviour has been found to be indepen-
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dent of the length of the game, T. 

However, it has been found that L(a) does not scale with the bankruptcy-

level, Zc, for all Zc as with the E M G . For small \ZC\ (\ZC\ <~ 100) an agent 

tends to lose less per round than when \ZC\ is large. This counter-intuitive 

result is caused by the non-integer nature of the penalty, J , and has been ex

plained in terms of the system's inability to reach a fully equilibrated state 

when \ZC\ is small. 

The most significant result of the simplified V A E M G was that an agent 

is found to perform better (live longer) by playing more often as the inflation 

(measured by \I\) increases. Specifically, a first order transition from a phase 

of optimal inactivity to a phase of optimal activity has been found as \I\ is 

increased above some critical value, |/*|. Finally, the position of this transition 

has been found to be strongly dependent on the number of agents within the 

group; specifically, —» 0 in the thermodynamic limit. 

Next, I studied the general formulation of the V A E M G in which both 

an agent's activity level and gene value were allowed to evolve in response to 

the history of the game; the purpose being to examine the global properties 

of the model and how the dynamics of the E M G are affected when the agents 

are allowed access to a third state. 

Several interesting results have been observed with this model. First, it 

has been found that the V A E M G retains the symmetry in the gene value, p, 

as well as the characteristic bimodal dependence of an agent's performance on 

p. This result tells us that, for any given activity level, a, p = 0 and p = 1 are 

always an agent's equally optimal strategies. Furthermore, the optimal states 
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(a*,p*) = (1,0) and (1,1) tend to dominate over all other a ^ 1 states of the 

system even for values of the penalty much lower than the transition, |/*= 1/2I> 
of the simplified V A E M G . This result, that \I*eneral\ < l^i^l) means that an 

agent's optimal strategy is to be much less risk averse when he is allowed to 

modify his strategy preference based on the history of the game. Finally, it 

has been found that the optimal performance of an agent who is always active, 

L ( l , p * ) , is dependent on the value of / . This somewhat counterintuitive result 

has been explained in the region of small |/| where L(l,p*) increases with |/| 

using the empirical facts that the number of active agents, Na, increases with 

|/| and an agent's performance increases with Na. For larger however, it 

has been found that L{l,p*) decreases with |/| and it is believed that this is a 

result of some subtle correlation between an agent's activity level, a, and his 

gene value, p. 

Finally, I have also developed an analytical theory of the V A E M G model 

based upon a mean-field approach. For both versions of the model (simplified 

and full) and for a large region of the system's phase space, the theory has 

been found to approximate the simulations very well and appears to become 

exact in the thermodynamic limit. Furthermore, the discrepancy at finite 

N has been explained in terms of an agent within the simulation taking on 

more risk than what is predicted by theory. Since the theory has been based 

on mean-field assumptions, this discrepancy indicates a possible emergence of 

subtle inter-agent correlations within the model for finite N. 

80 



5.2 Future directions 

From its inception, the Minority Game was designed with a very simple struc

ture to provide a solid base upon which to build a tractable model of a financial 

market. This paper has extended the basic E M G , but it is only one small step 

and there is still a lot of work left to be done. 

Within the context of this paper, future work on the Minority Game 

will focus on two main areas. First, the structure of the inactivity mechanism 

is admittedly very simplistic in the V A E M G and, most likely, too simplistic to 

be used in a real-world model. It will be interesting study the V A E M G using 

inactivity rules that more closely resemble those found in a real market. For 

instance, while an agent's activity level, a, in the present model is dependent 

on the history of his performance, this dependence is only very weak; a much 

more realistic mechanism would incorporate specific rules based on past ex

perience in the agent's decision making process. It will be interesting to see 

whether a more realistic mechanism is necessary to generate some of the styl

ized facts of a real market and, if so, what effect this will have on the global 

properties of the model. 

Finally, as was stated above, many simplifying assumptions of the E M G 

are unrealistic and need modification before there is hope that the model can 

be used to make real-world predictions. Along with agent inactivity, work 

also needs to be done in developing realistic mechanisms for such things as 

the payoff structure, market maker, and diversity of the agent population. By 

formulating a market model from the ground up in this way hopefully we will 

be left with a model that is not only tractable, but also more realistic in its 
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predictions. 
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