MODE-LOCKING AND OTHER NONLINEAR EFFECTS IN CdS PHONON MASERS
by |
MELVIN DOUGLAS SMEATON
B.Sc. (Hon.), University of Alberta, 1971

M.Sc., Simon Fraser University, 1973

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE DEPARTMENT OF PHYSICS

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

November, 1976

C) Melvin Douglas Smeaton, 1976



In presentfng thfgzgﬁﬁg}s:fﬁﬁb$éf{éﬁi;ﬂifiiméﬁi>6f thé requiréments for
an advanced degree'at.the Univer;ity of Brf;ish Columbia, 1| agree that
the Library shall make it freely available for refe}ence and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes hay be granted by the Head of my Department or
by his representatives, |t is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission,

Department of PHYSIC)S

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T L1W5

Date NOV: 2 \|77(o




ABSTRACT
!

The nonlinear theory of acoustic amplification in piezoeleétric
semiconductors has been applied}to the CdS phonon maser, to demonstratg
that mode—locking in such a device can be predicted as a cdnseqﬁence of
its structure and nonlinear properties of the acousto-electric amplifying
mechanism. The first direct evidence of mode-locking in the phonoﬁ maser
has been provided by applying optical processing techniques to signals
obtained from laser diffraction. A new and powerful technique for the
malysis of opticai signals, involving a combination:of spatial and temporal
{iltering, has been developed.

Further application of optical processing has allowed the first
direct observation of acoustically induced space charge gratings in CdS.
Proper exploitation of the methods butlined should give insight into
the underlying physical processes.

In addition to the optical experiments, data has been presented
that demonstrates the existence of two new photovoltaic effects iq Cds.

The resulting photovoltages are several orders of magnitude larger ;han
those produced by known photovoltaic effects. As yet, the physical processes

involved are not properly understood.
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FOREWORD

Chapters 1 and 2 document the results of optical diffraction
and signal processing experiments, and contain the most important
contributions of the thesis. Chapter 3 deais with new photévoitaic
effects that are not yet understood. This chapter is included as a-
permanent record of the experimental results, and to provide a base for

future work.
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CHAPTER 1

MODE-LOCKING IN CdS PHONON MASERS

1.1 Introduction

Phonon masers are solid state acoustic oscillators produced by
polishing the faces of piezoelectric single crystals accurateiy flat and
parallel, to form high Q resonant structures which are strongly analogous
to lasers. The most successful phonon masers have been fabricated from CdS.
The application of a D.C. electric field of sufficient magnitude creates a
situation in which net round-trip acoustic gain can be achieved by virtue of
the piezoelectric coupling between drifting conduction electrons and local
acoustic fields. Acoustic oscillation is then spontaneously built up from
fhe thermal background. The linear theory of acoustic amplificatién in
piezoelectrié semiqonductors (White 1962) has been well established, and
reviews may be found in the literature (Gurevich 1969, McFee 1966). -

| Operation of the phonon maser is generally observed by monitoring
the current péssing through the device. There is a D.C. component to
tﬁis current, due to the applied D.C. electric field, but there is also
an.A.C. component present when the phonon maser is operating. This‘
acousto-electric current is produced by the tendency of electrons to
group in piezoelectric potential wells produced by the acoustic wave.
Maines and Paige (1970) reportedvthat phonon masers operated ﬁnder certain
experimental conditions exhibited sharp spiking in the_time‘display of

>~
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the A.C. cufrent. The frequency display of fhe current signal consisted
of a harmonic_series having‘amplitudes constant in time, and a frequency
spacing equal to the reciprocal of the round trip traﬁsit time of the_
crystal cavity. From these observétions Maines and Paige (1970)
concluded that the_phonon maser was operating in a mode-~locked rggimé,
and; by analogy with mode-locked optical lasers, predicted that the
acoustic output should consist of narrow, high strain pulses.

The validity of this prediction is, however, far from obvious,
since the mode-locked regime is strongly nonlinear,  ‘and there is no |
one-to-one correspondence betweén the frequency spectrum of the
acoustoelectric current and that of the acoustic fields. When the
piezoelectric potential associated with these fields is much larger
than the thermal energy, a purely Sinusoidai acoustic wave can respltr
in an electron distribution with rich harmonic content (Gulayev 1976,
Gurevich 1969). The nonlinear nature of the mode-locked regime is‘
clearly established by the presence of strong current saturation,é
indicating that the conduction electrons are trapped.in the potential wells
associated with the acoustic wave, and are constrained to.move with the
velocity of sound. These considerations clearly indi;ate that the prediction
of Maines and Paige (1970) should be verified by direct observation of
the acoustic fields.

This chapter deals with a unique set of optical experiments that
have provided verification of modg-locked operation, by allowing

direct observation of the resulting acoustic strain pulses. The general



method relies on a powerful combination of spatial and temporal filtering
applied to optical signals obtained from laser diffraction. Before
considering the optical measurements, it is worthwhile_tb consider what
mode-locking means and why the phonon maser may be mode-locked. This
information may be provided by making.a very fruitf;l analogy between

a phonon maser and a general class of devices known as Repetitive

Pulse Generators.

1.2 The Phonon. Maser.:asza Repetitive Pulse Generator

It is well known that a feedback loop containing the basic
elements of an amplifier, filter, delay line, and a nonlinear elément
called a saturable absorber, behaves as a Repetitive Pulse Generator (RPG)
(Cutler 1955). The mode-locked optical laser is a‘well known example
of such‘a device (Demaria et al 1969). The basic block diagram for a RPG
is shown in FIG. 1(a). The output.consists of a train of identical pulses
recufring at a rate aetermined by the loop delay, with shape determined
principaily by the characteristics of the filter and saturable absdrber,
and width controlled primarily>by the bandwidth of the filter.

The saturable absorber has a crucial role. It has the effect
of emphasizing the highest amplitude parts in the pulse circulating in
the.feedback loop, while reducing the lower amplitudes. An eiement having
the transmission éharacteristics shown in FIG 1A(a) will serve the purpose.
As indicated, intensities 2 Io are passed almost unattenuated while lower

intensities are reduced. A highly qualitative illustration of saturable

absorbef operation is shown in FIG 1 (b). As a circulating pulse makes

-~
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repetitive ﬁasses through the saturable absorber, it becomes more and
more compressed. Correspondingly, its frequenéy spectrum becomes bfoader

and broader until it is finally limited by the bandwidth of the filter.
The steady state pulse width is approximately equal to the reciprocal of
the system bandwidth. .

In the phonon maser, most of the required elements may be
readily identified. The piezoelectric coupling of the acoustic field to
drifting electrons provides an amplifying mechanism, a combination of
the cavity Fabry - Perot resonances and the gain profile of the phonon
maser constitute the filter, and the round trip transit time of the
resonant cavity serves as the 1§op delay. It remains to find someﬁhing
which will provide the necessary saturable absorber effect.

In the case of an ordinary opticai laser, which also contains
the above 3 basic elements, the saturable absorber must be physically added
to the system for RPG operation. One thing that is done, for example,
is to place a cell of bleachable dye solution in the laser cavity% Such
a dye becomes'transparent at.very high light intensities, thus providing
the necessary charaéteristic indicated in_FIG’].(a). For some lasers,
the gain profile encompasses hundreds of cavity modes. In general
all these modes will be running but in a very incohergnt manner,
so that any pulses existing in the system will be broa& and ill-defined.
vThe pulse compressioﬁ produced by addition of the saturable absorber
'forces the operating cavityvmodes into a fixed phase relationship.

Hence the origin of the term mode-locking,In this manner picosecond



optical pulses have been achieved..

For the phonon maser it is not poséible to isolate a physical
element which functions as a saturable absorber. We shall.present a
qualitative discussion which demonstrates that certain honlinear
properties of the écoustd—eleétric amplifying mechanism provide the
necessary behavior. |

1.2.1. Nonlinear Gain Theory — The Saturable Absorber

To establish that a mechanism which serves as the counterpart
of the saturable absorber exists in the phonon maser, it is necessary to
formulate an expfession for large amplitude gain. Since mode-locking
" is a strongly nonlinear process, closely related to such phenomena as
D.C. current saturation (Smith 1963) and high electric field domain
férmatidn and propagation (Maines 1966, Haydl and Quate 1966), any attempt
to extend the linear theory of acoustic amplification (White 1962) will
not produce results valid for this situation. The nonlinear theory of
acoustic wave propagation in piezoelectric semiconductors has béen .
discussed by many authors: Butcher (1971), Butcher and Ogg (1968, 1969,
1970), Gay and Hartnagel (1969, 1970), Gulayev (1970), Gurevich (1969),
Tien (1968), Wanneberger (1970), as well as others.

While the above treatments produce results that are largely
similar, the unique approach used by Butcher and Ogg (1968, 1969,'1970)
will be adopted since it is quite straight forward and prdvides results
in a transparent and useful form. Since only qualitative expressions are

required for our purposes, the finite thickness of the phonon maser

e



and the ensuing electrical boundary conditions will be ignored. Fof a
discussion of these boundary conditions see Sharma and Wilson (1970).

The quasi static approximation (ie. the curl of the eléctfic field = 0)
will be employed. This has the effect of decoupling purely electroﬁagnetic
waves (propagating at the velocity of light) from acousto-electric

waves (propagating at the velocity of sound). Since this correspon&s

to ignoring terms in the acoustic dispersion which afe a factor of ~1O_1'0
(the square of the ratio of the acoustic velocity to the velocity of"lighf)
smaller than other contributions éHudson and White 1962), it is an
excellent approximation. We shall consider the case of uniform plane .
acoustic waves, propagating along the x axis.T,This reduces the problem

to a one-dimensional situation. With these considerations the system of

equations to be solved becomes (MKS units are employed) :

Elastic wave equation:

3T _ p 3%u (1.1)
ax ot2 ‘

TThis is not as unrealistic as it may appear; The physical situation of
particular interest corresponds to pure shear waves whose wave vectors
lie along the crystallographic b-axis. Results of our optical experiments

‘indicate that a one dimensional analysis is quite reasonable in this case.



Poisson's equation:

3D _ q(n - ng) | (1.2)
9% ' ‘ '

Piezoelectric equations of state:

T = ¢S + eE (1.3)

~eS 4+ €E | ‘ . : (1;4)

o)
I

Continuity equation:

33 _ -9 3(n - no) -
ox ot ) (1.5)
Equation of current density:
J = qnuE --q D_ 3n
n o= (1.6).

Where T and S are the acoustic stress and strain, u is the mass displacement,
o is the mass density, E and D are the electric field and electric_
displacement, q, ¥, D, are the magnitude of the electron charge, the
electron mobility and the electron diffusion coefficient, J is the
conduction current, c, e; e, are the appropriate élastic stiffness,
piezoelectric and permittivity constants, n is the coﬁduction band electron
density and ngy is the equilibrium electron density.

The sign convention of Butcher and Ogg (1968) is employed in

o't
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equations (1.1) - (1.6) : E, J and D are measured positive in tﬁe,

negative x direction._This implies that a positive D.C. electric field

(ie; pointing in the negative x direction) will produce electron drift,

and ultimately acoustic amplification, in the positive x direction. In
equations (1.2), (1.5) and (1.6) the effect of holes has been ignored.

This is a very good'appfoximation for CdS which ié n—-type and has=a\

hole mobility and hole lifetime which are approximately 10~1 and 1073 times
smaller, respectively, than the corresponding electron parameters.

The presence of‘the acoustic wave produces a variation An = (n-ng)
in the equilibrium electron density. It is implicitly assumed in the
preceeding equations that the space charge gAn is mobile. While this
approximation is satisfactogy for our purposes, it should be realized that
qAn will include a contribution due to modulation of the electron density
in localized traps. Thus, in general, only a fraction of the space |
charge produced by the acoustic wave will be mobile (see McFee 1966).

Combining equations (1.2) and (1.5) to eliminate the term in
elecﬁron charge, we obtain:

D

3 (J+a—g)
9x

=0 a.7)
Expression (1.7) has general validity. For our one-dimensional system

it implies that the total current I, consisting of the conduction
current J and the displacement current D/t is spatially invariant.

.This allows us to modify equation (1.6) in the form
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I=gqnuE + 3 =~ q Dn 3n | | (1.8)
3t‘ Ix
where, according to equation (1.7); I can at most be a functioh of
time. In fact, as will be indicated shortly, I may be assumed to have
a constant value in the calculations to be performed.- i
S, Ty E, n and D are assumed to have plane wave dependence of

the form

D = D, + Dy el® 4+ c.c. - @9

as illustrated for the electric displacement. Here 6 = Kx - t, where K,
! are the real wavenumber and angular frequency of the wave. D, is time
independent, and D; is assumed to be a slowly varying functioﬁ of x and
t compared with the‘exponential. The D.C. éomponent E, corresponds to
the applied drift field required to operate the phonon maser.

The nonlinearity in the previous equations is contained solely
in the term nquE in the expression for current density (equationg'(1.6)
and (1.8) ). Thus this term must be explicitly retained to éxtend the
thebry into the large amplitude regime. Following Butcher and Ogg (1968), -

we begin by solving equation (1.8) for E and making use of equation (1.2)

to obtain
3D 32D
E = I- 52-+ Dy %2 )
(1.10)
o (1+ L1 2D ) :
qng 9x
where ¢ = ngqu
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The nonlinear behavior is now expressed by the denominator
in equation (1.10), as may be seen by expanding this term in powers

of (qnc,)_1 9D/3x. With the use of equation (1.9) and the_substitution

A = HD (1.11)

qn,
equétion (1.10) may be written:

4o, : i6
g oo L+ ([ (vg+ kDY) Ae” + c.c. ) (1.12)
' A 16
o ( 14 ( Fe + c.c. ) )

where vg = %-= velocity of sound. In obtaining equation (1.12) the

derivatives of Dy have been neglected in comparison with the derivatives
of the exponential term. From the previous discussiqn it is apparent
that all nonlinear behavior is now embodied in the barameter A. A has

a simple physical interpretation. Solving equation (1.2) for n and
using equations (1.9) and (1.11) we obtain (again neglecting derivatives
of Dy):

A io |, A —iel)

n = n, (1l+5e +5e

5 (1.13)

or, writing A in polar form |AIe1¢:

n = ‘no [ 1+ |A|cos(6+¢) ] ' _ _ (1.14).
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Thus A specifies the amplitude and phase of the electron density wave.
Since n in equation (1.14) cannot be negative, the present analysis

imposes the following constraint:
0< |a] <1 . (1.15)

In a broadef sense, A provides an extfemely conveﬁient parameter for
determining amplitude dependent expressions for the variables involved,
as for E in equation (1.12). The linear theorj of White (1962) may be
recovered in the limit IAI > 0. |

The D.C. and A.C. components of E may be extracﬁed from .

equation (1.12) by performing the following phase averages:

Eo = 5, JEde (1.16)
27 :

E; = %—ﬂ [Ee*®ae | (1.17)
0 | |

In the slowly varying envelope approximation already outlined, Dllhay

be treated as a constant in carrying out thé integrations. Also, since

D, E and n have the form shown in equation (1.9), the RHS of equation (1.8)
.may be treated as solely a function of 6 for the integrations in (1.16)
and (1.17). Thus I, which has been shown to be at most a functioﬁ of time,

may be treated as a constant in equations (1.16) and (1;17).
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i6

Using equation (1.12) and the standard substitution z = e s

the integrals in (1.16) and (1.17) may be converted to contour integrals

around the unit circle in the complex plane. One then obtains:
. o/

E, = Eg|1- @ - 'fs) ' (1.18)

(1 - ja]l2)%

EA -1 \
B, = ~ s 0 (1.19)

The notation used is the same as Butcher and Ogg (1968):

v :
s .
Eg = — 1is the synchronous electric field, i.e. the field required to
u .
~produce an electron drift velocity equal to the velocity of sound.

I, = nyqvg is the synchronous current.

[\

is the diffusion frequency.

=] I <

=]

Equation (1.18) may be rearranged to yield:
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I
1 - Tg) | ,
L=y (1.20)
(1 - |A|2)6 .
Eq vp
where y =1 - — = 1 - — vy = electron drift velocity (1.21)
Es Vg

Substituting equation (1.20) into equation (1.19) yields a relationship

between El and Dl:

iQDl . ]
' Wp
EWq
. ' 1
where wl = Hug [ 1+ - |al2%] (1.23)
w, = g- is the conductivity relaxation frequency.

To find the expression for acoustic gain, we obtain a wave equation by

substituting equation (1.3) into (1.1) to yield (using v3 = §-):

32y 2 38 _ e 3E |
322 T V8w T poax (1.24)

Taking the derivative with respect to x on both sides of (1.24) and

du

using the relation S = %
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(1525)

The plane wave forms of S and E [see equationv(l.9)] may now
be substituted into equation (1.25). In keeping with the slowly varying
envelope approximation, only the dominant terms on both sides of the
equation will be retained. On the LHS‘there are no terms in S; and the

first derivatives of Sl are therefore retained. We obtain:

% ' *
1 39 1 4 51 44 1 1o
— e - — e + Ve T e - Vg e
ot ot ax oxX
K e 10 % -4 .
2iv, b ( Eqe™ + Eje 77 ) (1.26)
Equating the coefficients of ele on both sides of (1.26):
9S 3S
1
— 4, =S @2
ot ax s P

With the aid of equation (1.22) and using equation (1.4) in the.form

Dy = -eSy + ek , El may be related tq S; and one finally obtains:
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Vg T = oS (1.28)
ot 9%
‘ Cy+ ;—Q)
where X0 D
% T 2y — (1.29)
VS wl
(iy - = - 59 )
wp
The real and imaginary parts of @, are given by:
X Yue .
@ = Reo = -4 A (1.30)
2 L e 2
. ¥
'y2 8- ( 9. + We )
: wp  Wp Q
= X8
Ak = ma, = - 2v (1.31)
' 1 )
s' Y2+(& +ﬂc )2
W
D
e2 .
X = epv2 is the piezoelectric coupling coefficient.
s

From the form of the general solution for equation (1.28), it may be
readily inferred that a in equation (1.30) is the nonlinear acoustic
- gain coefficient, while AK in equation (1.31) specifies the phase shift

- of the acoustic wave produced by piezoelectric coupling.
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Equations (1.30) and (1.31) only differ from the corrésponding
expressions in linear theory by the substitution of w! for w. [see equation
(1.23)]. In the limit |A| > O, we * we and linear theory is recévered.

The frequency of maximum gain is given by (wéwD)% [WhiteAl962]..From
equation (1.23) it is apparent that fhe frequency of maximum gain is reduced
by about 307 as IA[ increases from 0 to 1.

To use equation (1.30) in the expression for total round trip
gain in the phonon maser, it is necessary to account for acoustic waves
travelling both parallel and antiparallel to the applied D.C. electric
field E,. This is achieved by setting y in equation (1.30) equal to:

y = 1- XB- : (1.32a)

Vs

for acoustic waves travelling antiparallel to Eg» and

. vp
= 1 4+ — (1.32b)

A\
s

Yy

. for acoustic waves travelling parallel to E .

The total round trip gain G in the phonon maser may be written (Gurevich

1969):
21nr

G = ap+o_+ 2T - (1.33)

where a, (a_) is given by substituting Y, (v_) into equation (1.30).

I is the lattice loss coefficient, r is the acoustic reflectivity of
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the phonon maser cavity wall, and d is the cavity thickness. For the

lattice loss T' we use the empirical relation (Maines and Paige 1969):

r o= & (em™t ' (1.34)

where 6 = 1.11 x 10°1* ; g8 =1.51

In FIG 2(a) and (b) the value of G corresponding to the
frequency of maximum gain is plotted as a function of lAl, under
differént conditiéns of conductivity and applied D.C. electic field.
The parameters used in the calculation were wj = 4.38 X 109Hz,

p = 280 cm?/volt-sec., x = 0.0378 and vg = 1.759 x 105 cm/sec. (the
value for p was calculated from the threshold electric field for bL
crystal 24.01.02.04). A value of 1.5 was used for the end 1oss»term
-2Inr/d. As is indicated in FIG 2, conditioné can be realized such that
G increases with increasing |AI, and hence with increasing acoustié;
amplitude. .

It is this nonlinear property that provides the counte£bart
of the saturable absorber, and completes the analogy between the
phonon maser and the repetitive pulse generator. The. phenomenon of
mode—locking can thus be predicted as a natural consequence of thev
physical properties and structure of the phonon maser. The theoreéical_
behavior of the phonon maser as a function of conductivity and applied
‘electric field is summarized in FIG 3. The’region of oscillation is
* indicated by cross-hatching. The regime of the "saturable absorber"

corresponds to the shaded area near the top of the region of oscillation.
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ES
FIG 3. Behavior of the phonon maser as a function of conductivity o

and applied electric field E,. E; is the synchronous electric field.
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The small area enclosed by a dotted line near the bottom of the figure
corresponds to the regime where mode-locked operation was observed

for bl crystal 24.01.02.04. As is indicatéd, mode-locking was achieved
at conductivities approximately an oraer of magnitude iower than

predicted by theory.

v It is worthwhile to discuss the limitations of .the theory. First
of all, consider the maximum allowable value for the amplitude_E1 of
the self consistent A.C. electric field. From equation (1.19),with
IAI = 1, we observe that
. i .
1By o = Es IY ton | (1.35)

For typical operating frequencies, it is reasonable to neglect iQ/wD

in comparison with y. Thus

= E - E (1.36)

Since Eo/Es ~ 1.2-2.0, for the experiments performed,requation (1.36)

predicts that IElI < 0.5E,. In fact, values of E

Max of the order 6f

1

2Eo have been inferred from experimental measurements.
As a further consideration, the behavior of the total current

density as a function of IAI should be examined. We observe first of all

from equation (1.14) that |A| = 1 corresponds to a situation of

gomplete electron depletion at the minima of the electron density wave.
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This corresponds to D.C. current saturation as may be seen more concretely
in the following manner. If equation (1.18) is solved for I, the resulting

expression may be written in the form:

=
]

GE_ (1 - F) + I F (1.37)

1 - (1 - |A]2)*% - (1.38)

where F

From equation (1.37) we see that the total current density I behaves
as if a fraction F of the electrons were constrained to move at the
velocity of sound, while the rest exhibit normal ohmic response to the
local D.C. electric field. Thus F may be considered to be a.trapping
fraction in the sense that it specifies the portion of available
electrons that are trapped in the pétential wells produced by the
acoustic wave. Since F increases monotonically from O to 1 as |A|
increases from OIto 1, for |A| =1, I = IS independent of the apglied
fiéld E. Thus the present theory takes us up to the point of coéplete
currenf saturation. The region of mode-locked operation is, in fact, well
into the regime of current saturation.

The above limitations may'be traced to the fact that we have
assumed a sinusoidal electfon density distribution [equation (1.14)].
As has been indicated in section 1.1, this will not be a good assumption
"in the case of very large aéoustic amplitudes. The theory may be
" generalized to incorporate a more physical charge density profile by

writing all variables in the form of a general Fourier expansion, and
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then-proceeding in much the same manner as in this section (see Butcher
and Ogg 1969). For realistic profiles, however, numerical methods must
be applied (see Butcher and Ogg 1970 and Tien 1968). Our purpose has
not been to describe mode-locked operation per se, but to present a

plausibility argument for the existence of a '"'saturable absorber".

e
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1.3 Theory of the Optical Measurements

The necessary background for interpretation of the optical
experiments is developed in this section. To demonstrate the usefulness
of light diffraction in the study of acoustic fields, we begin by

considering the photoelastic effect (Nye 1964).

1.3.1 Crystal Optics - The Photoelastic Effect
The optical properties of an anisotropic crystal are conveniently
embodied in a quadric surface known as the indicatrix. It may be defined

in its general form by (Nye 1964):
B..x:x, ., = 1 ~ o (1.39)

where Bij are components of the relative dielectric impermeability tensor

defined by

B.. = g —= \ (1.40)

'Ei and Dj are'components of the electric field and electric displacement,

and €, is the vacuum permittivity. If the coordinate axes Xy Xy5 Xg

are chosen to lie along the crystallographic directions which correspond

to the principal axes of the dielectric tensor, equation (1.39) reduces to

= 1. (1.41)

PHOIPﬁv
+

hﬁoluﬁv
+

uﬁvluﬁo
!
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where Ky = ni, Ky = n% and Ky = ng.are the principal dielectricbconstants,
and 0y, D, n, are referred to as the principal refractive indices. The
quadric surface defined by equation (1.41) is an ellipsoid with.
semiaxes 0, n,, n3.
This surface has a valuable property that can be illustrated
by the geometrical construction in FIG 4(a). Consider that light
propagating in direction CO (0 is the ellipsoid origin) impinges on
the crystal. A central sectioﬁ of the indicatrix is made perpendicular_
to CO. This section will bé an ellipse and is referred to as the "index
ellipse'". In FIG 4 the index ellipse is emphasized by shading and in
FIG 4 (b) is viewed along the direction of incident light (i.e. light is
propagating into the page). If the incident light has its electric
displacement vector D polarized in the direction indicated in FIG 4(b),
it will propagate in the medium as the two independent components
Dl and D2, which are polarized along the axes of the index‘ellipse.
Dl’ D2 will have refractive indices equal to OA and OB, respectively.
Fof OA # OB (the index ellipse is not a circle) the medium exibits
birefringenﬁe or double refraction, and when the light emerges from

the crystal the two components D. and D2 will recombine to form, in

1
geﬁeral, elliptically polarized 1ight. For light having its wave normal
parallel to one of the indicatrix axes, the two independent waves in the
material will have refractive indices corresponding to the principal

indices in equation (1,41). For example, light propagating along the_x3

axis will have refractive indices n, and n, [see FIG4 (a)].
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(b)

'FIG 4. (a) Indicatrix construction for optical wave normal CO. The index
ellipse is shaded. (b) Index ellipse viewed along direction of
light propagation. The polarization of the incident light is

specified by the electric displacement vector D.
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.The shape of the indicatrix depeﬁds upon the symmetry of the
medium in question. For cubic or isotropic materials, which possess one
principal refractive index, it is a sphere. Hence all cen&ral sections
are circles and there is no natural birefringence. for hexagonal,
tetragonal and trigonal cfystals there are' two principal refractive

indices, and the indicatrix is an ellipsoid of revolution having the form

éi:lhﬁv
éi>h3k

x5
+ ——2— = 1 (1.42)
ne

where n, and n, are termed the ordinary and extraordinary refractive
indices. In general, central sections of (1.42) will be ellipses,
implying the existence of natural birefringence. The central section
perpendicular to the X axis is a circle, however, and for this unique
direction there is no birefringence. Xq is called the principal or optic
axis and such crystéls are termed uniaxial. CdS has hexagonal crystal
s#ructure and hence is an example of a uniaxial crystal. For CdS,

X1 Xy Xg in equation (1.42) correspond to the a, b and ¢ axes,
fespectively. For the remaining crystal classes there are 3 principal
réfractive indices and the indicatrix is a triaxial ellipsoid.

The permittivity and dielectric constant, and hence the index
of refraction are, in general, modified by the introduction of elastic.
strain in a crystal. Thus tﬁé presencé of an acoustic wave will be
indicated by a modulation of the local fefractive index which may,

-~
.
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in turn, bevexpressed in terms of small changes in the shape, size and
orientation of the indicatrix. If we consider only effects thét are
linear in the applied strain, the change induced in the indicatrix

may be written (Nye 1964):

ABij = pijklskl 2(1.43)
pijkl and Skl are components of the optoelastic and strain tensqrs.
The strain tensor is related to the mass displacements uy by:
Bui du,
S;; = H(— 4 —L) (1.44)
J X, 9xX, '
3 i

If the shear strains (i # j) are redefined in equation (1.44) by omitting

\

the factor of % , the indices in equation (1.43) may be contracted -

unambiguously according to the following scheme (Nye 1964):

11~ 1 32, 23 > 4
22 > 2 31, 13+ 5 (1.45)
33 > 3 .21, 12 > 6

This allows equation (1.43)to be represented in matrix form.
Under the influence of strain the indicatrix ellipsoid
_represented by equation (1.41) will be transformed, and the new ellipsoid

may be described by [refer to equation (1.39)]:
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2 -
1¥1 )%y B3X3 + 2B4x2x3 + 2B5X1X3 + 2B6xlx2 = 1 (1.46)

With reference to equations (1.41), (1.45) and (1.46); equation (1.43)

may be written in matrix form:

( 3 ( Y ( h ) ( h
_ 2
ABl By l/nl Pip +++- Pig Sl
- 2
AB, B, l/n2 Pyp +++- Pyg 82
AB B, - 1/n2 DPoq eeee P S _
3| 37 31 | L. |73 A.47)
bB, B Puy ot Pug S4
AB, B, Pgp ++-- Pog S¢
AB6 B6 ' Pg1 **** Peg _ 86
\ / \ / \ P, » L J

When the form of the strain is known, the new indicatrix may be found
from equations (1.46) and (1.47). With this information one is able to
determine the new polarizations and indices of refraction for a given
optical wave normal, using the indicatrix property illustrated by FIG 4.
The general problem provides a tedious exercise in algebra and analytic
geometry. General solutions have been obtained for crystals wifh
hexagonal 6mm symmetry by Vrba and Haering (1973), and provide a useful
model for solving other crystal structures.

| A much simpler case, that of a shear wave propagating in an
optically and acoustically isotropic medium, will be treated to illustrate
the use of the indicatrix. This situation is of particular interest and

the results will be used in later sections. In the absence of strain the

+
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indicatrix is a sphere and equation (1.41) becomes:

i
—

1 2 2 2
Y ( Xy + xz + x5 )

(1.48)
5 2

The coordinate system is chosen so that the acoustic wave normal lies

along the x_ axis,with mass displacement along the x, axis. Thus the

1 2

only non-zero strain component is S6. For an isotropic material the

optoelastic matrix becomes (Nye 1964): s

r . \
P11 P12 P2 0 0 0
Pjp P;; P;p 0 0 0
P12 P1p P;3p 0 O O (1.49)
0 0 0 Pus .0 0
0 0 0 0 Pss 0

(0 0 0 0 0

where Pusy = "/z(p11 - plZ)' Equation (1.47) then yieldé:

4 3 ( N
AB, | 0
AB, 0
AB3 0
AB = 0 , (1.50)

4 . : v

AB5 . 0
ABg P56

\ J \ ©



32

From equations (1.48) and (1.50), the coefficients in equation (1.46) may

be readily inferred:

- g .= L
Bl ; B2 - B3 n2
o
B, =Bs= 0 C ' ~ (1.51)
Be = P45
The new indicatrix thus becomes:
1 2 2 2 -
n% ( X7 + x5 + X3 ) + 2p4486XlX2 = 1 (1.52)

If Xq is chosen as the optical wave normal, the appropriate index

ellipse is given by setting Xy = 0 in equation (1.52) to obtain:

1

) ( x2 +x2) + 2p44S XX = 1 (1.53)
5 .

1 2 67172

The form of the index ellipse, both in the presence and absence of the
perturbing strain, is shown in FIG 5. As is indicated, the axes of the
index ellipse are rotated by 7/4 with respect to the coordinate axes
Xy and %, We therefore change to é rotated frame using the transfor-

mation:

”
it

1/V2 ( xi + xé )

(1.54)

M
i

V2 (x5 - %] )
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FIG 5. Form of the index ellipse in.an isotropic material for optical

wave normal x3, both in the presence and absence of shear.
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so that the new coordinate axes xi, x! are colinear with the axes of the

2

ellipse. Equation (1.53) then reduces to the more standard form:

x|2 x12
—%— + ~§ = 1 (1.55)
n1 0T '
)
_where ny =
(1 - pyySend)”

(1.56)

n

n = °

I1 L

-5 .
For typical experimental parameters p4486ng < 10 , so to a very good
approximation we may expand the square roots in (1.56) and retain

only linear terms:

ny = ng 1+ % p44s nz)
(1.57)
npy = ng 1 -% p44S6n(2))
It is readily apparent from equation (1.57) that the changes in
refractive index produced by the strain (see FIG 5) are:
: = -— = 1 3
Ang Ang o % PyuSen | (1.58)

6 O

The time dependence of the acoustic wave has thus far been
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neglected. FIG 5 is essentially a picture of the index ellipse at one
instant of time. For sinusoidal time dependence, we may imagine that

at time % T later, where T is the period of the acoustic wave, the index
ellipse will be a éircle; at time % T it will again be an ellipse, but
with the major axis now lying along xé ; and so on. Iﬁ this manner,

the local index ellipse may be visualized as pulsating with the
frequency of the acoustic wave.

It is worth mentioning that, for a given strain, the wave
normal of the incident light must be judiciously chosen. If in the
pfesent.case, for example, the 6ptica1 wave normal is takenbas xi or
X5 it may be seen from equation (1.52) that the appropriate central
§ections ( X = 0 and X, = 0 ) are circular and completely unaltered

by the strain. Thus a knowledge of the predeeding theory is essential

in determining the configuration for optical experiments.

1.3.2 Interpretation of the Optical Signal - Preliminary Considerations

The intimate relationship between the refractive index;and
thé local strain, outlined in the previous section, makes light
diffraction a powerful tool in the study of the phonén maser. In 6rder
to proceed to an optical analysis of the strain profileé in a mode-
ldcked phonon maser, it is necessar& to first establish the-relationship
between the optical signals derived by light diffraction, and the
acoustic fields that provide the diffracting mechanism. This subjeét
"has an extensive literature and will not be fully aeveloped here

" [the general theory of ultrasonic light diffraction has been discussed
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by Bhatia and Noble (1953) and by Klein, Cook and Mayer (1965)]. A
categorized bibliography is provided at the end of this thesis.

The configuration of physical interest is depicted in FIG 6.
An acoustic cavity of width L is illuminated by a unit amplitude plane
light wave, propagating in the xz plane (plane optical wavefronts may
be reasonably approximated in practise, since 1asér beams with wavefront
distortions less than 0.2 optical wavelengths may be prepared by careful
collimation). The optical waveform émerging from the far side (z = L)
of the acoustic cavity is transformed due to acoustically induced
modulations in the local refractive index. The near field optical
disfribution (i.e. the optical signal at z = L), denoted A , is imaged
by a converging lens.

The direction of acoustic propagation is taken as the x-axis
in FIG 6, and thevacoustic waveform is assumed to have épatial variation
only in the x-direction. Hence the near field distribution Ao is a
function only of x and t. This assumption requires some comment. In.
préctice, the field of view is determined by the cross section of the
incident laser beam. Since the beam size used in experimental situations
was smaller than the dimensions of the acoustic gavity, distortions in
acoustic wavefronts introduéed by edge effects were avoided and, as will
be verified by the experimental results, the assumption of a one
dimensional system is valid.

- In the focal plane of a converging lens the criterion for
Fraunhofer diffraction is satisfied (Goodman 1968). This is intuitively

£lear since in front of the focal plane light waves are converging and



converging focal image

.. lens plane plane
incident !
light !
acoustic |
cavity |
!
I
" !
¢ i
|
.
I
I
I
,l
!
I
|

Z=0 z:zi

FIG 6. Schematic representation of the optical system to be studied.
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behind it they are diverging. Hence at z = z¢ in FIG 6 we have plane
optical wavefronts. In the limit of small diffraction angles (g 18°%),
the optical distribution in the focal plane, Af(xf;t),is related to the
near field distribution by a one dimensional form of the familiar

Fraunhofer diffraction integral (Goodman 1968):

i

=
Hh
~
"
rt
~
1l

2 —ikx sin®
£ J Ao(x,t)e kx dx (1.59).

| whére £ is a phase factor determined by'the physical configuration and

W is .the:effective wiath of the optical beam. If we imagine two parallel
rays, separated by distance x in the neaf field, and making an angle 6
with the z axis, the term exf(—ikx sinb) equals the difference.in_optical
phase suffered by the two rays in propagating to point x' in the focal
plane (see FIG 6).

.The beam width W is assumed to be large compared with the
acoustic wavelengths so that all diffraction orders in the focal plane
are well resolved and completely separated. For this situation, we
impose no restrictions on the spatial filtering experiments to be carried
out, by extending the limits of integration in (1.59) to * ., In addition,
it may‘be shown that the phase factor £ reduces to unity when the.
separation between the near field région (object plane) and the lens
is equal to the focal length bf the 1eﬁs (Goodman 1968). With these

considerations equation (1.59) becomes:

-~
.
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ik'x

At = | oA G, 0™ Fax (1.60)

g ——38

where k; = k sin 8. There is a one to one relationship between
x' and k' in equation (1.60) since specifying x' uniquely determines
8 and vice-versa. Hence equation (1.60) indicates that the optical
distribution in the focal plane is the Fourier transform of the near
field signal. This Fourier transforming capébility is a general property
éf converging lenses (Goodman 1968). |
In ﬁropogating from the focal plane to the image plane in
FIG. 6, the optical $igna1 suffers an inverse Fourier transform. For a
distortion . free optical system, there is then a one to one relationship
(aside from a spatial magnificatidn factor) between the optical
distributions in the image plane and in the near fiéld or object plgné.
With the preceeding considerations, it remains to determine the
form of A (x,t). We begin with the simple example pf a sinusoida%,
progressive acoustic wave. Assume that the cavity is optically
isotropic in the absence of acoustic waves, and, to simplify notation,
that the incident light is polarized along one of the axes of‘the index
eilipse (See FIG. 5). Since the chaﬁge in refractive index is, to a
good approximation, linear in the local strain [see equation (1.58)],

the refractive index will have the form:

n(x,t) = ng + An sin(Kx - Qt) (o<z<L5 (1.61)
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where ny is the unperturbed refractive index, K and Q are the wavenumber
and frequency of the aqoustic wave,

Since the refractive index has slow variatioﬁ compared with
optical frequencies, the wave equation governing propagation of the
optical signal A in the acoustic cavity may be written (Raman and Nath

1936b)
n(x,t)? 32A
c? 3t? (1.62)

v2A

where ¢ is the vacuum velocity of light, In the absence of acoustic

fields, A will propogate in the region o<z<L in the form

a(x,z,t) = ei[nok (z cos ¢ + x sin ¢) -wt]
<0 LR ]

(1.63)
k,w are the optical wavenumber and frequency and ¢ is the angle made
by incident light with the z axis (see FIG. 6).
The modulation of the optical wave produced by the presence
of acoustic strains will be slowly varying compared with the spatial
and temporal dependence of (1.63). Thus in the presence of the acoustic

wave the optical waveform may be described by:

A(X’Z’t) = aO(x:z,t) \!)(X,Z,t) (1-64)
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The envelope function $(x,z,t) will be periodic in space and time with

the acoustic wave, and hence may be written as a Fourier series:

Pe,z,t) = ) yp(e) oMU T 90 (1.65)
n = =00
subject to the boundary conditions
b = 1
' at z=0 ~ (1.66)

Yp = O n#0

The near field amplitude Ao(x,t) is given by setting z=L in equations
(1.63) to (1.65). Substituting the resulting expressions into (1.60) we

obtain for the focal plane optical signal:

. : _ o o 3 v_ - _4'
Ap(x',t) e1(nokL cosd - wt) z o (L)e inQt J o i(k'-ksing nK)xdx
n = —© oo
(1.67)
The integral in equation (1.67) is non-zero only if
k' - ksing ~nK = O . . (1.68)

- Light will appear in the focal plane only at those points which satisfy

eqdation (1.68). Hence the index n labels the diffraction orders in the
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focal plane. The optical intensity in the nth diffraction order is
given by equation (1.67) as

o= vy @l . (1.69)

Also, the angular frequency in the nth order may be inferred from

(1.67)

W = w+ nf _ (1.70)

Equations (1.63) to (1.65) may be substituted into (1.62).
: ] . '
If terms in (An)2 and ¢ (z) are neglected, coefficients of exp i[n(Kx-Qt)]

may be equated.to obtain:

dlbndéw + %J_[\Pn_l(Z)—wnH(Z)] = i_}%(n—ZY)wn(Z) , (1.71)
whére:

v = AnkL _ (1.72)
x4 (1.73)

Q = n k

(o]
y = —nok sind (1.74)

K '
th

as indicated by equation (1.69), the optical amplitude in the n

-~
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diffraction order in the focal plane is proportional to wn(L). The
difference - differential equation (1.71) was derived in the special
case vy = 0 (normal light incidence) by Raman and Nath (1936b), and
in the more general case by Klein and Cook (1967).

In equation (1.71) adjacent optical modes are coupled by
the parameter v, Interaction and transfér of energy between these modes
will only take plaée if they maintain a constant phase'relationship,
i.e. maintain spatial synchronization. The degree of synchfonization
is determined by the coefficient, to be designatedan, on the R.H.S.

of equation (1.71) :

g = inQ (n-2y) ” (1.75)
n 2L
This may be conéidered as a relati&e phase factor, and only those qpfical
modes having the same, or nearly the same, value of this coefficiént
may be considered as being spatially coherent or synchronized, %nd hence
aﬁle to exchange optical energy.
| Since Bo = (0, an appreciable amount of opfical energy can
be coupled from the zeroth into the first order only if one or botﬁ of
fhe coefficients eii are very smali. This condition can be s;tisfied in
two regimes : (i) Q << 1, vy =0 ; (ii) Q >> 1, y = #4, (i) and (ii) are
the two limiting situations for which analytic solutions to (1.71) ére

practical, and each case will be discussed separately.
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Raman - Nath Limit: Q<<1

For Q = 0 and with boundary conditions (1.66) the solution

to (1.71) may be shown to be (Raman and Nath 1936 b) :
wn(z) = Jn(Ankz) . . (1.76)

where Jn is a Bessel function of order n. For sufficiently small nonzero
values of Q, Bessel functions form good approximate solutions of (1.71).
The regime of validity of this approximation is named for the two
workers who first provided a theoretical basis for this type of diffraction
(see Raman and Nath 1935 a,b and 1936 a,b).

For this situation energy is symmetrically coupled from the
zero order into both first order modes (n=t1). In addition, for sufficiently
large values of the éoupling parameter v, energy is coupled from the
first order to the second order, the seéond order fo the third, etc.
From a comparison of equations (1.73) and (1.74) it is apparent that
for Q small vy can be very large, even for small values of the incident
angle ¢. Thus we optimize the cqnditioh Bn,: 0 (n#0) by choosing
¢ = 0 =>y = 0 (normal light incidence). The optical intensity
in the nth diffraction order is then given from equations (1.69);-

(1.72) and (1.76) :
) | . .
In = Jn (v) | | (1.77)

and, éetting ¢ = 0 in equation (1.68), we obtain for the diffraction

~
3



45

angle ©

sin 6. = -— » (1.78)

~where X is the optical wavelength in vacuo and A ié the acoustic
wavelength.

In the Raman - Nath regime the acoustic wave only modulates
the phase of the optical signal. The barameter v, referred to as the
Raman - Nath parameter in this situation, is equél to the maximum
acoustically induced phase shift suffered by‘the light in traversing
the acoustic cavity (see eqn. 1.72).__ |

A practical upper limit of the Raman -~ Nath regime is given

by (Klein and Cook 1967) :

Q 20.5 1(1).79)

For large values of v (ie. large values of acoustic strain) condition
(1.79) may not be sufficient to ensure true R-N diffraction. For this

reason the supplementary condition (Extermann and Wannier 1936) :
Qv < 2 (1.80)

is sometimes quoted. For oﬁr.experimental situation, however, v<<1
and the nature of the diffraction is adequately described by the

‘magnitude of the parameter Q.
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Bragg Limit : Q>>1

]

For this situation, the condition Bn 0 (n#£0) can be
satisfied only for n = 1 or n = ~1. Thus for vy = (%) light is
diffracted only into order +l(—i). Other combinations of n and y are
not allowed for a simple sinusoidal acoustic wave; for n=*2, y =21,
for example, no light may be transferred from the zero order since only
adjacent orders are directly coupled by equation (1.71). For vy =tk
equation (1.74) may be written in the more transparent form:

%—- = +2) sin ¢ (1.81)
[e] . .

Thus y = #)% implies that ¢ satisfies the Bragg condition for specular .
optical reflection from the acoustic wave fronts. A practical lower

limit for the Bragg regime is given by (Willard, 1949)

Q 2 4m (1.82)

For values of Q intermediate to the Raman - Nath and Bragg
regimeé, analytic solutions to (1.71) are not practical. The gap between
the two limiting cases has been spanned by Klein and Cook (1967), using
numerical techniques. Some of their results are reproduced in FIG. 7.
The curves illustrated give'the percentage of optical intensity iﬁ the
zero and two first order diffraction spots at normal incidence (y=0),
for different values of the parameter Q. By summing the intensities in
the zeroth and first order in FIG. 7, it may be seen that second and

higher orders are depleted as Q increases, until at Q = 4 almost no
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100~ 100

60 Io

100;
80
40
20

FIG ‘7. Percentage of optical intensity in the zero and two first order
diffraction spots at normal incidence vy = 0),>for various
"values of the parameter Q. (after Klein and Cook 1967). v is

defined in equation (1.72).
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light appears beyond the first order. In the range Q = 4 to Q = 7 the
amount of light in the two first orders decreases considerably, and when
Q = 10 there is almost no diffraction at normal incidenée for small
values of v (small acoustic strains).

The values of Q encountered for mode~locked phonon maser
operation can span the entire gamut from Raman - Nath to Bragg diffraction.
However, the experimental results to be described in section 1.4 lie in
the range v<<l, for which second order diffraction is éompletely
negligible, and Q < 5. For these conditions, it is apparent from FIG. 7
(a) - (d) that first order diffraction does not change significantly from

“the Raman - Nath case. For this reason it will be assumed in all
subsequent discussion that the.effect of acoustic fields on a light wave
may be described by an optical phase transformation, as in the Raman -

Nath regime.

1.3.3 Interpretation of.the Optical Signal — The Mode-Locked Phonon Maser
In applying the results of the last section to a study of
the strain profile in a mode-locked phonon maser, the basic configuration
illustrated in FIG. 6 will be retaine&..The light is now assumed to
propogate in the z direction so as to be normally incident on the écoustic
waveform. As discussed in section 1.3.2, this is the optimum configﬁration
for Raman - Nath diffraction.
Following the discussion at the end of section 1.3.2, we
assume that the only efféct of the acoustic strain profile is to produce

variations in the optical phase, via acoustically induced modulations of
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the refractive index. Since the relatienship between the local strain
and refractive index variation is linear [eg. see equation (1.58)1, the
phase variation profile directly yields the acoustic strain prefile. 1f
the phase variation of the acoustic cavity is described by &(x,t), the
near field light amplitude is given by [c.f. equations (1.63) and (1.64)]

Ao(x,t) - e1(n0kl. - wt)eié(x,t)

(1.83)
For mode-locked operation, ' the acoustic waveform is assumed

‘to be a standing wave pattern consisting of a phase-locked harmonic .

series of sinusoidal waves. Using the results of Appendix A, the phase .

function in equation (1.83) may be written in the form:

v ( sin[n(Xx-Qt) + Gn]

o(x,t) = n

1~

n=1

+ sin[nK(x-2d) + nQt - Gn] ] £ tl.84)

where d is the thickness of the aeoustic cavity, N is the number of
active or parficipating acoustic modes and 2, K are the angular frequency
and wave number of the fundamental compoﬁent. The phase amplitudes

v, are the Raman - Nath paraﬁeters discuséed in section 1.3.2, and are‘
proportiqnal to the corresponding strain amplitudes. The set of phases‘
AG& will determine the exact shepe of the phase variation, and hence the

strain, profile. Equation (1.84) may also be written in the form:
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N

o(x,t) = 2 z vnsin[nK(x—d)]cos(an -~ nft + 6n) (1.85)
n=1

Since the acoustic cavity alters only the phase of the incident
light, the strain field is not directly visible in the image plane of
the-fbcussing lens (refer to FIG 6). This problem may be ovefcome by
means of focal plane spatiél filtering techniques. If certain diffraction
orders are physically removed (i.e. épatially filtered) in the focal
plane, the effect is to present a modified Fourier transform of the near
field signal to the image plane [fefer to discussion following equation
(1.66)]. Thus the image viewed will correspond to a pseudo-object whose
Fourier transform is given by the.modified focal plané diétribution
>passed by tﬁe spatial filter.

By removing the zero order or undiffracted beam‘in the focal
plane, for example, the dark field image is obtained (Born and Wolf 1959).
In this situation, phase variations in the object.plane'producevinfensity
variations in the image plane. The dark field distribution will be
derived in two ways. First, we begin by substituting the phase function
for a mode-locked waveform, equation (1.85), into equation (1.83):
N

z 2vnsin[nK(x—d)]cos(an—th+6h) ]
n=1 .

Ao(x,t) = elgexpvi[

11.86)

where 7 = (nokL - wt). Making use of the Bessel function relationship

(Abramowitz and Segun 1968):

-~
.
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o

elz sinb Z Jm(z)elme (1.87)
equation (1.86) may be written:

it N , ' ipynK(x~d) '

Ao(x,t) = e I z -.,Jpn[Zvncos(an—th+5n)]e (1.88)
. - n=1 pn=_oo

iz; o0 © ) N .
= e ) ... ) Jpl(Vl).....JpN(VN)exp i[ } np K(x-d) ] (1.89)
where Vn = 2Vncos(an-th+6n). (1.90)

A useful analogy may now be made with the case of a simple
sinusoidal acoustic wave discussed in secfion 1.3.2. When equation
(1.65) was substituted into equation (1.60) to obtain the focal plaﬁe
optical distribution,iit was found that the coefficient of the spatial
factor Kx in the exponential term of (1.65), n in this case, labglled the
diffraction orders in the focal plane. By analdg&, the diffraction order

for equation (1.89) may be inferred
diffraction order = Z np : (1.91)
This greatly simplifies the mathematics of spatial filtering.

"It is not necessary to Fourier transform the near field to find the focal

plane distribution, perform spatial filtering, and then inverse Fourier
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transform to obtain the image plane signal. Instead, we may use eduation
(1.90) to identify those components of Ao(x,t) that correspond to the
focal plane orders to be removed (passed) by the spatial,filter, and
hence obtain the modified image directly. |

It is dintuitively clear, from the cumbersome form of
equation (1.89), that an analytic expression for the dark field
distribution is not practical in>the most general case. However, we
are concerned with small values of the Raman - Nath parameters V.
For the experiments to be discussed, v, € 10—2 radians. It is therefore
necessary to consider only effects that are first order in Vi In

addition, we may use the asymptotic form for Bessel functions of small

argument (Abramowitz and Segun 1968):

. . 1, m .
J_(2) S (m>0) (1.92)

m 7z small m! —

Equation (1.92) may be used for negative values of m by first using the

relationship (Abramowitz and Ségun 1968):

J_(2) = (D" (2) (1.93)
In first order, the parameters P, in equation (1.89) may only take the
values 0, + 1. Furthermore, if one of these parameters takes the value

+1 or -1, all others must be zero. Let

p, = +l = p; = 0 fori # n (1.94)

‘e
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The corresponding contribution from equation (1.89) is [using equation

(1.92)]:

A = olfgn tKED (1.95)

From equations (1.91) and (1.94) it may be seen that (1.95) constitutes
the first order contribution to diffraction order +n. Similarly, the
first order contribution to diffraction order -n is given by setting

p,=-1 in equation (1.94) and using (1.92) and (1.93) to obtain:

A = _eic Vn e-inK(x—d)
-n 2

(1.96)

The zero order amplitude must be treated separately and is given by

setting P, = 0 for all i. Using eqﬁation (1.92) we obtain:
- e (1.97)

Hence the intensity in the zero order, IAOIZ, is equal to one. This
indicates that, to first order in the Raman - Nath parameters, the
zero order beam is unaffected by the diffraction.
Adding equations (1.95) and (1.96) we obtain:
I S S
ie Vn81n[nK(x—d)] » (1.98)
It is apparent from equations (1.95) and (1.96) that the index n, as

it is used in (1;98), labels symmetric diffraction orders in the focal
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plane. Hence the dark field amplitude is found by summing (1.98) over

all values of n except n = 0

.. N »
ADF = ie't z V,sin{nK(x-d)] ‘ - (1.99)

n=1

or, using equations (1.85) and (1.90):
Ay = it oGt (1.100)

Thus the first order dark field amplitude is proportional to the phase
variation produced by the acoustic cavity. The corresponding optical

intensity is given by:

Ip = 9%(x,t) : | (1.101)
It is, in fact, the intensity distribution, equation (1.101), that may
be detected experimentally. :

fhe second method of deriving the dark field distribution is
much simpler, but gives little insight iﬁto the mechanism of spatial
filtering. Since we have assumed small phase variations, the exponential

in equation (1.83) may be expanded to yield:
AGx,t) = e [ 1+ de(x,t) 1 (1.102)

The dark field amplitude corresponds to removing the factor of 1 im
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equation (1.102), to immediately yield equation (1.100). While this method
of derivation is much simpler, it should be emphasized that it is useful
only for effects that are first order in v,. For higher order effects
the factor of 1 in equation (1.102) can no longer be cotrectly
.identified as the amplitude of the zero order diffraction spot, and
the image plane distribution must be derived using the first method.

The dark field intensity distribution is obtained by substi;
tuting equation (1.84) or equation (1.85), into équation (1.101). The
resulting expression is Very messy, having terms with all the possible
combinations of spatial and frequency dependence produced by the
nonlinear operation of squaring. If, however, we extract only the term
which has no time dependence, we obtain the relatively simple expression

(Smeaton, Hughes, Vrba and Haering 1976):

N
I, = zlv%[l - cos2nK(x-d)] ' ' (1.103)
,n=

This D.C. ferm is straightforward in the sense that it contains none

of the phases §, [see equation (1.84) or (1.85)]. Thus its form depends
ohly on the constituent amplitudes and not on the exact shape of the
acﬁustic waveform.

Equation (1.103) is plotted in FIG 8. The relative values of
the amplitudes v, were inferred from experimental diffraction intensities,
obtained for the first 13 active modes of‘a mode-locked phonon maser.

Thus N = 13 in FIG 8. The width PW of the dark fringes is inversely

proportional to the number of participating modes N, and provides an
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FIG 8. Profile of the dark field term, equation (1.103), plotted using the amplitudes of the first

13 active acoustic modes for mode-~locked operation of DCl (refer to section 1.4.2).
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estimate of the mode-locked pulse width (refer to section 1.2). As is
indicated, the basic periodicity is A/2, where A is the wavelength of
the acoustic fundamental. |

To obtain I, in equation (1.103), a combinatibn of'spatiai
and'témporal filtering was employed. That is, we first modified the
optical distibution in the focal plane, and then selected only one
freduency component, the D.C. component in this case, to be examined
in the image plane. By extending this general technique, information
about the phases Gn, absent in equation (1.103), may be recovered. This
is of considerable interest since these phases determine the exact
shape and amplitude of the acoustic strain profile.

Consider, for example, that spatial orders n, nt+l, and n+2
(i.e. the nth pair of diffraction spots symmetric fo the zero order,
the (q+l)th pair and so on) are combined, and the intensity varia£ion
of the temporal component corresponding to the acoustic fuhaamental
ffequency'ﬂ is scanned in the image plane. The total iﬁage plane intensity

distribution is given by [refer to equation (1.99)]:

nt2
In,n+1,n+2 ) Z Vm[ sin[m(Xx - Qt) + Gm]
m=n :
2
+ sin[mK(x-2d) + mQt - Gm] ] (1.104)

Extracting only those terms from (1.104) which have frequency dependence

Q, we obtain:
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0
Tn,n+l,n+2 2[ ancos(Kd+6n+lf5n).+ bncos(Kd+6n+2—6n+l) ]coth
+ 2[ an31n(Kd+6n+l—6n) + bn31n(Kd+6n+2r6n+l) ]31th (1.105)
where a, = 2vnvn+1sin[nK(x—d)]sin[(n+1)K(x—d)]
(1.106)
bn = 2vn+1vn+zsin[(n+l)K(x—d)]sin[(n+2)K(x—d)]
We write equation (1.105) in the form
TQ o= acosfit + bsinft (1 107).
n,nt+l,n+2 '

where a,b are defined implicitly by.compafison of equations (1.105) and

(1.107). Introducing notation

. : 1
Csinn C = (a2 + bz)'i
o | (1.108)
a/b

o
I

o
il

Ccosn tann

equation (1.107) may be written:

Q

Tn,n+1,n+2 Csin(Qt + n) : (1.109)

The Fourier transform of (1.109) has the following simple form in the
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frequency (') domain:

f =._i~q in L _ —i'ﬂ '
Th,n+l,n+2 7 | & s - e 8@ +Q)] (1.110)

In practice, the magnitude of the component of (1.110) at Q'=Q is monitored.

Thus the detected signal becomes:

1
Q ¢ _ (a%p?)?
In,n+l,n+2 T2 2 ' (1'111)_
Using the definitions of a and b [equations(1.105) and (1.107)] we
obtain (Smeaton.and Haering 1976a):
¥ (a + by + 2a_b_coso_ )? (1.112)
n,n+l,nt+2 n n 855nC0S%, o : .
where a,, b, are defined by equation (1.106) and
0 = 8, - 28,41 + 6 4, (1.113)

The observed image plane profile should therefore depend on the
magnitude of O, , a linear combination of the individual phases of the
three combined orders..Thé behavior of equation (1.112) as a function
of en is illustrated in FIG 9, for n=4. The relative values of vﬁ were

calculated from experimental diffraction intensities obtained for



FIG 9. Theoretical image plane intensity profile of the Q component. for combined spatial orders 4,5,6,

.. et e e emmene o o

" for different values of 0, = 84 - 25;'+'éé.
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mode-locked operation. The sensitivity of the theoretical profiles in
FIG 9 to.Qariations in ©, indicates that it is feasible to recover
phase information by optical means. The intensity profilgs for other
combinations of spatial and temporal filtering may be dérived in a

manner similar to equation (1.112).
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1.4 Experimental Results

The CdS phonon maser crystals used in these experiments were
oriented so that the b-axis was perpendicular to the polished cavity
surfaces. For this orienfation the active acoustic modes consist of
shear waves whose K-vectors lie along the b-~axis. For the optical
measurements, the active CdS crystals were coupled to passive fused
quartz cavities by means of a high quality bond (described in Appendix C).
Since the two materials have nearly the same acoustic impedance for the
chosen CdS orientation, tﬁe double cavity modes were nearly harmonic
(Hughes and Haeriﬁg'l976). The passive cavity provided a convenient
means of examining the acoustic field of the phonon maser, since high
power laser light could be passed through it. Such a high intensity
probe could not be used in the active cavity since the large photo-
currents produced would disrupt or prevent oscillation.

The A.C. acousto-electric current signal (refer to seétign 1.1)
from the active crystal could be displayed either in the frequengy
regime, by means of a spectrum analyzer, or in the time regime b? means
of a sampling oscilloscope. An example of both displays is shown in
FIG 10, for mode-locked operation of phonon maser 24.01.02.04. The
well defined waveform exhibited in the time.domain in FIG 10(b),
indicates that the harmonically related modes in FIG 10(a) are ﬁhase-
locked. The D.C. I-V characteristics of the same phonon maser are
-displayed in FIG 11(a) for two different conductivities. The>oblique

"arrows indicate the threshold for acoustic oscillation. Above threshold,
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FREQUENCY DOMAIN, 20MHz/div.

(b)

TIME DOMAIN, 10 nanosec, /div.

FIG 10. Display of the acousto-electric current signal for bL phonon
maser 24.01.02.04 (part of composite cavity DCl). (a) frequency
domain, (b) time domain. Operating conditions: applied D.C.

electric field = 0.98 KV/cm, D.C. current density = 11.1 mA/cm2
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FIG 11(a). D.C. current density vs. applied D.C. electric field for b| phonon maser 24.01.02.04 (part

of composite cavity DCl) for two different conductivities a, b. [See text and FIG 11(b)].
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FIG 11(b). Time display of the acousto-electric current for the points

indicated in FIG 11(a). Horizontal scale: 10 nanoseconds/div.
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saturation of the D.C. current may be observed (refer to the discussion
at the end of section 1.2). The small discontinuous steps in this region
occur when the phonon maser makes sudden adjustments in its mode
structure. To show the development of current spiking, the time display
of the acousto-electric current was recorded at the points indicated

in FIG 11(a), and may be seen in FIG 11(b). It was the oBservation of
spiking andbself—locking modes in the acousto-electric current, as
evidenced in FIG 10 and 11(b), that first ied to spéculation that thev
acoustic output was also mode-locked, and hence should consist of
narrow, high amplitude strain pulses (Maines and Paige 1970).

1.4.1 Experimental Apparatus and Techniques

The configuration for the optical experiments is shown
schematically in FIG 12, The light source was an argon-ion laser
operated at 5145 K, with a typical output power of about 1 Watt. At
this high power level, even stray scatteredllaser'light was found éo
greatly disrupt oscillation in the active cavity, and careful.light
shielding was necessary. The incident light beams were carefully
prepared to provide good collimation, and beam diameters were typically
4 - 5 mm. A mounted double cavity is shown in FIG l3(a)..The goniometer
mount allowed convenient orientation of the acoustic cavity for
maximuﬁ diffraction efficiency.

The focussing 1ens.was requifed to subtend a sufficiently

.large diffraction angle at the acoustic cavity that loss.bf optical

* information was negligible, and yet to‘provide a focal plane diffraction
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FIG 12. Experimental configuration for the optical measurements.
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pattern of sufficient size to allow spatial filtering. An £/2.5, 15 cm
» focal lengfh lens was found to satisfy these criteria. All optical
components were maintained clean and vibration free to minimize optical
noise in the image plane.

fused quartz may be considered optically and acoustically
isotropic, and the results of section 1.3.1 may bevdiréctly applied
to illustrate a useful polarization property of shear acoustic waves.
Consider, in FIG 5, that incident light is polarized along the X, axis,
i.e. perpendicular to the.direction of acoustic propagation. If we let
S '

i, j be unit vectors along the xi, X, axes in FIG 5, incident light of

-amplitude A may be represented by:

v
I

[
+
ey

). _ (1.114)

S 15

th

Light diffracted into the m~ order has components along the axes 6f the

index ellipse given by (refer to Vrbaband Haering 1974):

A

AI,m = /% Am(VI,m)exp(le’m)
(1.115)
A - A (v Yexp(iv )
II,m J; o II,m II,m’
where v and v are the Raman - Nath parameters corfesponding to
. I,m II,m

 the xi, xé axes, respectively, in FIG 5. A.m is the appropriate diffraction

amplitude per unit incident amplitude, and is given by equations (1.90)
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and (1.95). The exponential factors in equation (1.115) represent the
optical phase variation produced by the acoustic cavity. The two
components in equation (1.115) add coherently in vector form (Vrba and

Haering 1974)., The total amplitude may then be written:

it

NITS

> C -+ >
Am [ Am(VI,m)eXP(iVI,m) i+ Am(vII’m)exp(ivII’m) 3 } _(1.116)‘

Equation (1.116) yields elliptically polarized light. The amount 6f
ellipticity is extremely small, however, since ﬁhe Raman - Nath parameters
Vi,m > ViI,m << 1. Thus, to a very good approximation, the exponential
factors in (1.116) may be replaced by 1. In addition, Vim = “VII,m

from equations (1.58) and (1.72). Thus from equations (1.90) and (1.95)

we see that

A ) = A G ) (Jm| > 0) (1.117)

and equation (1.116) becomes:

Km = /%Am(vl,m) d-D (|m} > 0) (1.118)

Thus the polarization of the diffracted light is rotated by 90° with
respect to the incident light. This polarization flip also occurs if the

incident light is polarized along x, in FIG 5, i.e. parallel to the

1

direction of acoustic propagation. In either case, the polarization of

-~
.
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the zero order light [refer to equation (1.97)] is unaffécted. Thué an
exit polarizer may be used to greatly dttenuate the strong background
due to undiffracted light, while leaving diffracted light largel&
unaffected.

The exit polarizer used was an air-spaced Glan-Thompson prism,
designed for high intensity laser light. The useful aperture of the
polarizing prism was large, about 2.5 cm, to avoid truncation of the
diffracted light, and dielectric coatings on the entrance and exit
faces optimized transmission at 5145 K. The extinction ratio was abouf
3 x 10%,

The focal plane diffraction pattern consisted of a vertical
row of spots symmetrically arranged about the zero order or undiffracted
beam. At higher operating levels, 60 - 70 diffraction spots could
be distinguished by eye. In the first order appro#imation outlined in
section 1.3.3, each acoustic mode only produced one symmetric pairﬁ
of spots. Thus the first two spots symmetric to the zero order were
produced by the acoustic fundamental, the next pair by the firstg
harmonic, and so on. Hence the various acoustic modes were, to second
order in the Raman - Nath parameters, optically decoupled in the focal
plane. The time-averaged intensity of the nth order diffraction spot
is given by equations (1.95) and (1.90) as V%/Z (in practice, we are
not dealing with unit amplitude incident light, and it was necessary
‘to divide by the zero order intensity to obtain v%/Z). The corresponding

strain amplitude could then be obtained using equations (1.58) and (1.72).
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The form of the focal plane diffraction pattern is illustrated
in FIG 13(b). The weak spots laterally displaced from the main vertical
'array were produced by diffraction of the acoustic waves, i.e. the active
cavity effectively behaved as an aperature for acoustid waves radiating
into the buffer. (c.f. Fraunhofer diffraction by a single slit). This
secondary feature‘may be ignored since it had.negligible effect on the
optical experiments performed.

The apparatus used for foéal plane spatial filtering is
shown in FIG 13(c). The V-slit was designed for processing symmetric
diffraction orders, and its width could be.accurately adjusted by means
of a micrometer. X-Y movement wasvcontrolled by adjusting screws, to
‘provide accurate positioning in the focal plane, and the diffraction
pattern was viewed through a low power microscope to ensure precise

" optical "surgery".

A photomultipliér coupled to a horizontal slit was located
in the image plane. The photomultiplier could be driven transverse

to the optical axis, as indicated in FIG 12, in order to investigate
the spatial variation of light intensity in the image plane. The slit
widths used were < 25 microns, and the length of the slit was about

5 mm. The optical gain (magnification) provided by the focussing lens
was about 17, so thétvthe slit width, referred to the near field or
object plane, provided an effective resolution of better than 1.5
microns. To examine A.C. components of the image plane distribution,

the photomultiplier éignal was processed by a Hewlett Packard model

8555A spectrum analyzer, operated in zero-scan mode. The resulting

-~
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(b)

FIG 13. (a) Composite cavity DC2 on its goniometer mount, (b) typical

focal plane diffraction pattern, (c) focal plane spatial filter.
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signal was essentislly the magnitude of the Fourier component for the
temporal term to be examined [refer to equations (1.110) and (1.11)].

1.4.2 Optical Verification of Mode-Locking

In FIG 14 phofographs and traces of the image plane signal
are presented for mode-locked operation of composite cavity DC1l (refer
to Appendix B), with a fundamental acoustic frequency of 11.71 MHz. The
corresponding wavelength A of the acoustic fundamental was 321 microns
~in fused quartz. The tlme and frequency dlsplays of the acousto electr1C» 
current correspond to FIG 10. FIG 14(a) is simply a bright field
photograph of DCl.. FIG 14(b) shows the image plane intenéity variation
of the D.C. term [equation (1.103), FIG 8]. Its form agrees well with
the theory of section 1.3.3, and this experimental evidence pfovided the
first direct evidence of mode-locking of the acoustic signal in phonon -
masers (Smeaton, Hughes, Vrba and Haering 1976). The width of the
resulting strain pulses, inferred from FiG 14(b), was about 23 micr;ns,
which corresponds to about 6 nanoseconds at the shear.velocity of;
sound in fused quartz. |

By spatially filtering symmetric pairs of diffraction spots
in the focal plane, each component of the sum in equation (1.103)
could be examined individually. FIG 14(c) and (d) are the profiles of
the components for n=1 and n=2. If a reference was chosen at a magimum
of the n=1 component, the cosine components for n odd were found to be
(nearly) m out of phase with those for n even [compare FIG 14(c) and (d)1],

‘as is predicted by equation (1.103).
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“_319,14;V1Ph0tograph§ and F;ggeshgﬁ;;hgwigaggﬂplgne intensity distribution
T ‘fof DCl;.éérfeébéﬁégﬁg:t;_ké&ntﬁe Bfight field image of DC1,

(b) the total D.C. dark field term, (¢) the n =1 and (d) n = 2
comﬁonents of the dark field term. The lengths indicated refer

to the near field or object plane. The detector slit width, or
effective resolution, referred tovthis plane is about 1.5 micfons.
Operating conditions: applied D.C. electric field = 0.83 KvV/cm,
D.C. current density =>ll.l mA/cﬁ% Fundamental acoustic frequency

= 11.71 MHz. (after Smeaton, Hughes, Vrba, and Haering 1976).
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At higher operating conditions narrower strain pulses couid
be achieved. In FIG 15 the profile of the D.C. term is shown for mode-
locked operatién of DC1 with the same acoustic fundamenﬁal as in FIG 14,
but at a higher operating voltage. The average width of the dark fringes
in FIG 15 is about 17.5 microns, corresponding to a pulse leﬁgth of
about 4.6 nanoseconds. At yet
about 3 nanoseconds were inferred from the dark field measurements.
The phonon maser was not very stable in this regime, however, possibly
due to heating-effects, and could only be maintained at this level for
short periods of time.

The acoustic strain amplitudes used in determining the
theoretical profile in FIG 8 were obtainéd for the same operating
conditions as in FIG 15. If A/2 is taken as 160.5 microns in FIG 8,
the width PW is about 20.2 microns. This is slightly larger than'the
average dark fringe width in FIG 15, owing to the fact that only the
first 13 acoustic amplitudes were used in the theoretical profile.

While the intensity profile of the D.C. term (FIG 14(b), 15)
provides an estimate of the strain pulse width, it contains no information
about the exact form of the strain profile, since tﬁe phases 8,

[eﬁuations (1.84), (1.85)] are not present in equation (1.103). By
vapplying spatial and temporal filtering techniques df the type outlined

in section 1.3.3, it has been shown (Smeaton and Haering 1976a) that

the necessary phase information can be recovered. Examples of experimental

data, together with their best fitting theoretical curves, are presented
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in FIG 16. This data was taken for mode-locked operation of DCl at the
same fundamental frequency of 11,71 MHz as in FIG 10,14,15, and under
the same operating conditions as in FIG 15. FIG 16(b) corresponds to the
same conditions of spatial and temporal filtering as FIG 9. The success
of the theoreticai model is readily apparent. It was usually possible to
fit the experimental profiles to Qithin 10 degrees.

By employing various combinations of spatial and temporal
filtering, it was determined that, to within experimental error, the

phases & formed an arithmetic series of the form
61,62,63,.....; = 0,0,20,00.0.. (1.119)

where o = 238° for the situation depicted in FIG 16. The phases in
(1.119) are measured relative to 61 , i1.e. a reference has been chosen
corresponding to 61 = 0. The strain amplitudes and phases obtained for
the fundamental and the first 12 harmonics are given in TABLE 1. FIG 17
is.the strain profile reconstructed from the data listed in TABLE 1.

It should be mentioned that, due primarily to the fact that
the measurements allowed only the magnitude of different linear
combinations of the phases to be determined, the data obtained allowed
for two possible strain profiles: that presented in FIG 17 and a second
profile obtained by inversion. The physically correct profile was inferred
from the fofm of the acousto—electric'cﬁrrent signal for mode;locked
operation. In the active cavity, the piezoelectric potential corresponding

fo the strain profile in FIG 17 would be consistent with strong electron



FIG 16, Experimental (upper) and corresponding theoretical (lower) image plane intensity profiles

for DC1l under differegirconditions of spatial and temporal filtering:

(a) spatial orders 3,4,5 with temporal filter at Q; theoretical profile: 83 - 264 + 65 = 0

(b) " 45,6 " Q; " | 8, = 285+ 8, =0
(c) " 1,3 | " | 20; - " 38, - 84 = 115°

(d) " 3,4,5,6 " ' ‘29; " | 53 - 54 - 55 + 66 =
(e) | " 4,5,6,7‘ " 203 oo 5, - 55 -5, + 5'7 -
(£) " 5,6,7,8 " 29; " 85 = 8 = 8, + &g =

In all cases the periodicity of the profiles is A/2 = 160.5 microns, but different scaling
factors have been used., Operating conditions: applied D.C. electric field = 1.17 KV/cm,

- D.C current density = 24 mA/cm? The fundamental acoustic frequency = 11.71 MHz,

6L
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TABLE 1
Experimentally determined strain amplitudes and phases for mode-locked
operation of DC1l under the conditions: fundamental acoustic frequency

= 11.71 MHz, applied D.C. electric field = 1.17 KV/cm, D.C. current

density = 24 mA/cm?. (after Smeaton and Haering 1976a). ///
,//
,/'/‘/
n STRAIN x 10° Sn Sdéé;ees)
1 %.87f’/’ —————————— . 0
2 .62 238
3 5.47 115
4 . 4.39 353
5 3.33 | 230
6 | 2.45 ’ 108
7 1.68 v 345
8 1.28 223
9 1.06 100
10 0.86 . 338
11 0.71 . 215
12 0.55 . 93
13 0.50 330




Fig 17.

The acoustic strain profile for DCl, reconstructed from the experimentally determined
strain amplitudes and phases listed in TABLE 1. Operating conditions: applied D.C.
electric field = 1.17 KV/cm, D.C. current density = 24 mA/cm? Fundamental acoustic

frequency = 11.71 MHz. (after Smeaton and Haering 1976a).
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bunching, giving rise to dominant negative spikes in the acousto-electric
current. This is, in fact, what is generally observed [see FIG 11(b)].

The width of the.pulses in FIG 17 is about 23 micronms, which
corresponds to a pulse duration of about 6 nanoseconds at the shear
velocity of sound in fused quartz. This is somewhat larger than the
width of the dark fringes for the corresponding dark field term, FIG 15,
due primarily to the fact that only the first 13 modes were used in
obtaining the profile in FIG 17. A more direct comparison may be made
between FIG 17 and FIG 8, since the number and relative amplitudes of
the acoustic modes are fhe same for both these profiles. The width PW
in FIG 8 is about 20.2 microns for A/2 = 160.5 miCrons;lin reasonable
agreement with the pulse width in FIG 17. Hence the dark field profile
does, in fact, provide a reasonable estimate of the corresponding strain
pulse width.

As has been mentioned, the minimum pulse duration achievéd,
as inferred from dark field measuremenfs, was about 3 nanosecondg.
Aléo, it was possible to achieve peak strains,'as estimated from.
measurement of diffraction intensities, in excess of 5 x 10_5. Due
to instability of the'phonon maser in this high operating ranée, detailed.
oﬁtical measurements were not possible.

The acoustic pulses produced by a mode-locked phonon maser
are unique for their narrow width. There is no other known source of
‘nanosecond acoustic strain pulses. An additional unique property may

" be seen if one considers the product of center frequency, or frequency



86
of maximum gain, and pulsé width. The phonon maser has a center frequency
pf about 108 Hz and a pulse width of < 5 x 10_9 sec.. Hence it produces
"D.C." pulses which only contain about 1/2 cycle of the carrier.

The composite cavity fundamenﬁal frequency, or reciprocal of
the rbund—trip transit time, was 323.4 KHz for DCl. The freqﬁency spacing
of the active modes in strong mode-locked operation was usually close to
a multiple of the reciproéal of the round-trip transit time of the
active cévity, about 736 KHz. While it was not possible to achieve true
mode-locking at the composite cavity fundamental frequency, an interesting
multimode form of operation could be achieved, and the corresponding
acousto-electric signai is shown in FIG 18. The display in FIG 18(a) .
>¢onsists of groups of lines separated by the composite cavity fundamental
frequency. The modes within a single group [see FIG 18(b)] had aﬁplitudes
randomly varying in time, indicating the absence of phase-locking.

The acoustic modes participating in mode-locked operation
were found to be harmonically related to better than 1 part in 10”,

For single frequency oscillation, composite cavity modes are not harmonic,
but differ from harmonicity by an amount determined by thé acoustic
impedance mismatch between the two members of the composite cavity

(Hughes and Haering 1976). For fused quartz and the chosen orientation

of CdS, the maximum deviation from harmonicity ié less than 3 KHz; and
the amount of mode—pulling required to induce harmonicity for mode-
locked operation is minimal. On this basis, one would predict that

mode-locking should be difficult to achieve in composite cavities

-
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(a)

(b)

FIG 18. Frequency display of the acousto-electric current for DCl operated

under the conditions: applied D.C. electric field = 1.32 KV/cm,

D.C. current density = 13.3 mA/cm? Horizontal scale is (a) 0.5

MHz/div., (b) 20 KHz/div.
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whose members differ considerably in acoustic impedance. For example,
if sapphire is substituted for fused quartz as the material for the
passive cavity, the maximum deviation from harmonicity is greater than
100 KHz (Hughes and Haering 1976). A composite cavity formed with a
bL phonon maser and é sapphife passive cavity (DC3) was found, in fact,'

not to display strong mode~locking characteristics.
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1.5 Optical Determination of the Normal Modes of Composite Cavities

The normal modes of composite cavities.have previously been
obtained by measurement of the active admittance as a function of
frequency (Hughes and Haering 1976). In this situation,-the composite
cavity was located in one arm of a symmetrical admittance bridge. Since
the bandwidth of the phonqn maser is > 300 MHz, the bridge was required
to be accurately balanced over a wide'range in order to examine the
cavity modes of interest.

A much simpler, optical technique may be applied in many
situations. Using a configuration similar to FIG 12, the normal modes
of composité cavity DCl were measured by monitoring the intenéity of
diffracted light as a function of freduency. The active crystal was
driven by a Hewlett Packard model 8601A sweep oscillator (maximum
output voltage 3 V rms). No attempt was made to optimize signal to néise
by use of phase seﬁsitive detection or other techniques. A typical
specﬁrum is shown in FIG 19. The spacing of the lines (= 323 KHz)
cofresponds to the reciprocal of the round trip transit time of the
composite cavity.

The ratio of the line width to the center frequency for the
modes in FIG 19 is a factor of 2 larger than for the electrical impedance
measuremeﬁts of Hughes and Haering (1976). Thisvis dug to Q—spoiling
of the active cavity produced by the presence of residual scéttered
laser light. With proper light shielding and optimization of the

experimental arrangement, the optical technique should easily match

-~
“
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FIG 19. Mode structure of composite cavity DC1

, obtained by optical diffraction techniques.
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the resolution of the eléctrical measurements.
Aside from inherent simplicity, the optical technique has
the advantage of wide frequency capability. Using a Hewlett Packard
model 3200B VHF oscillator to drive the active crystal,ldiffraction
could be observed by eye for frequencies in excess of 400 MHz. In fact,
if the Bragg condition is optimized, there is, in principle, no restriction
on the frequencies to be examined.

The major disadvantage of this technique is that it restricts
the form of the passive cavity. The passive cavity must be transparent
for one of the laser lines‘available, and should have a thickness
> 200 ﬁicrons. In addition, énisotropic materials must be oriented
so that the appropriate optoelastic constants are non-zero. These

constraints are satisfied, however, for many cases of practical interest.
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1.6 Conclusions and Summary of Contributions

By'applying the nonlinear theory of Butcher and Ogg (1968,

1969, 1970), it was shown that mode-locking can be predicted as a natural
consequence of the structure of the phonon maser and nonlinear properties
of the acousto-electric amplifying mechanism. The firsf direct evidence

of mode-locking was provided by employing laser diffraction and spatial
filtering techniques (Smeaton, Hughes, Vrba and Haering 1976), and by
means of a unique combination of spatial and temporal filtering,sufficient
phase information was recovered to allow reconstruct%dn of the mode-
locked strain profile (Smeaton and Haering 1976a). The general technique
of combining spatial and temporal filtering provides a powerful method

of processing and analyzing opticgi signals.

At high operating conditions, strain pulses of width = 3
nanoseconds and amplitude > 5 x l()_-—5 were achieved. For future experimgnts,
it would be of interest to investigate mode-locking for phonon masers at
low temperatures. The lattice loss term, which reduces the écoustic band-
width (Burbank 1971), should be smaller in this situation. Hence wider
bandwidths and correspondingly narrower strain pulse widths should be

achieved.
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CHAPTER 2

APPLICATION OF OPTICAL PROCESSING TO A STUDY OF ACOUSTICALLY INDUCED

SPACE CHARGE GRATINGS IN CdS

2.1 Introduction

Acoustic echo phenomena in piezoelectric semiconductors have
received considerable experimental and theoretical attention (Yushin
et al 1975, Chaban 1972, 1974, 1975, Shiren et al 1973, Shiren 1975,
Melcher and Shiren 1975, Maerfeld and Tournois 1975); These effects
result from a nonlinear interaction of the electric field produced by
an active acoustic mode of wave number K and angular frequency Q, with
an ekternally applied, spatially invariant A.C. electric field of frequéncy
equal, or harmonically related to Q.

Of present interest are so-called 3 pulse echoes (Shiren et al
1973) which are produced in the following manner., At t=0 an acoustic
puise of wave number K and angular frequency Q.1is introduced into a
piezoelectric crystal. This may.be achieved by means of an external
tfansducer, or, more commonly, by applying‘an R.F. pulse to the sample,
thﬁs producingAan acoustic pulse via the piezoelectric interactiog. At
a later instant t=t, an R.F. pulse of frequency Q (or harmonically related
to - Melcher and Shiren 1975) is applied to the crystal. Aside from
piezoelectric effeéts, this secoPa pulse will produce é.spatially invariant
A.C; field in the crystal. If, at time t=1+T, another R.F. pulse is

dpplied, an echo pulse is recorded at time t=271+T.
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In some recently proposed models (Melcher and Shiren 1975,
Chaban 1975), localized electron traps play a fundémental role in the
formation of echoes. It is postulated that a nonlinearity in the system
produces a redistribution of the trapped charge, which, in.turn, produces
a s;atic electric field distribution whose spatial variation mirrors the
periodicity of the propagating acoustic wéve. There is some controversy
over the nonlinear mechanism involved, and there are two basic models
of the interaction: |
(i) Electron "bunching": In this model, set forth in theoretical
papers by Chaban (1972, 1974, 1975), the periodic piezoelectric potential
associated with the propagating acoustic wave gives rise to a modulation
("bunching") in the conduction band electron density. The electron density
then has the form [see equation (1.9)]:

i(Kx-Qt) + oo

n(x,t) = n_ + nje (2.1)

(o}

whére»no is the equilibrium electron density. At the instant t=t an A.C.

electric field of the form
Ee 4 ce.. _ , (2.2)

is applied along the x-axis of the crystal. Since the current density,
equation (1.6), contains a nonlinear term proportional to the product of

<(2.1) and (2.2), it will have a time invariant component of the form ein.
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A periodic space charge will be built up to compensate for this current.
Hence trapping will be more intense in some parts of the crystal than
in others and, in the absence of the acoustic and electrical signals,

a bound space charge will exist, having the spatial periodicity of the
aconstic wave,

(i) Electric field-assisted denrapping (Shiren et al 1973, Shiren
1975,_Melcher and Shiren 1975): In this mndel one considers the total
_electric field Et in the crystél‘at time t=t1. It is given by tne sum of
the piezoelectric field (amplitude E,) of the propagating acoustic wave,
and the spatially uniform A.C. electric field:

_ iQt i(Kx-Qt)
Et(x,t) = Eje + Eze

+ c.c. . (2.3)
It is assumed that the total electric field in equation (2.3) produces
field-assisted detrapping of electrons initially uniformly distributed
in shallow traps. Since this process is highly nonlinear (Haering 1959),
it‘gives rise to many components in the conduction electron density
harmonically reléted in time and space to the total electric field. In
a manner similar to (i), the nonlinear current density [equation (1.6)]
will-then contain spatially nonuniform, time invariant tefms and, in
the absence of the perturbing fields, a stofed periodic space'change
pattern will exist.

For both (i) and (ii), the charge grating will decay with
a time constant related to the lifetime of the traps involved. If the

A.C. electric field is again pulsed at time t=T+T, it will interact
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.with the periodic electic field of the space charge grating to produce
a backward propagating (time reversed) acoustic wave (as well as a
forward wave), which is detected as a pulse echo at the surface of the
crystal at time t=2t4T.

Experimental data regarding acoustically induced space charge
gratings has been obtained almost exclusively by pulse echo measurements,
and it is of considerable interest to find an experimental technique that
will provide supplementary information. Since the electric field
produced by a static space charge grating will modulate the refractive
index in a piezoelectric crystal, via the primary and secnndary electro-
optic effect (Nye 1964), optical measurements are indicated. The
variation in the indicatrix produced by the electro—opticbeffect‘may

be represented by (Nye 1964) [c.f. equation (1.43)7]:

AB =

ij 219Kk (2.4)

where z,

ik’ Ek are components of the electro-optic tensor and the electric

field. Contracting the indices ij according to equation (1.45) allows
eduation (2.4) to be represented in matrix form, in a manner exactly
anélogous to equation (1.47). |

For hexagonal émm symmetry, apbropriate for CdS, the elettro—

optic matrix has the form (Nye 1964):
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0 0
0 0
0 Z49
242 0
0 0

13

33

13

(2.5)

For the case of an electric field parallel to the c~axis, for example,

the appropriate electric field component is E45 and one obtains:

AB

AB

AB

AB

AB

AB

The coefficients in equation (1.39) become:

o]
I

=]
It

1

B, = ( n2 %1383 )

1
( n2 T 233F3 )

(2.6)

(2.7)



98
n,, N, are the ordinary and extraordinary refractive indices [refer to

equation (1.42)]. The new indicatrix thus becomes:

1 2 2
( ng + 213 3 )(x + x ) + ( 33E3 ) X3 (2.8)
For light propagating along the b or Xy axis, the appropriate index
ellipse is given by:
1 1 |
Cop ¥ 7qgBy ) x] + (55 + 2538, ) %] (2.9)
(¢} e :
and has semiaxes:
n
n' = <
o 5
(l + ngzl3E3) 2
(2.10)
ng :
n' = 2 %
e a + nez33E3)
Slnce n2 233 3 ngzl3E3 << 1, the square roots in (2.10) may be
expanded to yield:
~ -1 3
Ang = - 2 nozl3E3
(2.11)
- 1 3
Ane 2 - E—nez33E3
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Equation (2.11) may be directly compared with equation (1.58). This
strong analogy with the photoelastic_effect indicates that it should be
possible to apply the laser diffraction and spatial fiitering techniques
of CHAPTER 1, to directly observe acoustically induced space charge

gratings.

2.2 Applicatioﬁ of Optical Processing
| In principle, it should be possible at low temperatures to
observe diffraction from stored charge gratings which ﬁave been previously
prepared by the application of suitable electric fields.. In practice
this has not proved possible with our crystals, presumably because the
trapped charge is disturbed by the probing light used in the diffraction
experiment. This is consistent with the experimental findings of Shiren
et: al (1973). For this reason, optical measurements were made with qL
CdS phonon masers which ﬁere driven at a resonant frequency by an -
external oscillator. In this steédy state situation, the acousticaliy
induced charge gratings exist in the presence of light. ﬁowever, it is
thén necessary to devise a measurement technique which can distinguish
between diffraction from a static charge grating and diffraction from
the acousto-electric fields which are simultaneously present.

The electric field in the‘crystal may be written:

Qt : el(Kx—Qt) + e1(Kx+Qt)] T oec.c

E(x,t) = Elei + EZ[ . (2.12)

‘where x is taken along the c-axis. It consists of a spatially invariant

-
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term of frequency 9 and amplitude El’ related to the driving field of
the external oscillator; and an acousto-electric field of frequency §
and wave number K, consisting of right and left going waves of - -
equal amplitude E,. The latter fields are produced via the piezoelectric
interaction of the crystal with the driving field. Equation (2.1?) does
not take into account the electric fields produced by modulations of
the space charge.

The static space charge grating is produced from the fields
El and E2 in equation (2.12) by one of the nonlinear effects described
in section 2.1, and, as was indicated, will produce a periodic modulation
of the local refractive index of -the crystal via the electro-optic effect.
it thus presents a fixed phase grating to incident laser light and results
in diffraction. In the Raman - Nath regime (refer to section 1.3.2 of
CHAPTER 1) the diffraction patterm will consist of a row of spots
symmefriéally arranged about the zero order or undiffracted beam. The
acousto-electric field E2 will also produce diffraction due to photoelastic
(section 1.3 of CHAPTER 1) and electro-optic coupling. In the experiments
performed, this diffraction was roughly two orders of magnitude more
intense than that produced by the static space charge. Moreover, since
the spatial periodicity was the same in both cases, both diffraction
patterns were superimposed. It was possible to completely separaté the
two optical signals, however, by means of épatial and temporal.filtering.

This may be demonstrated by examining the optical phase
transformation produced by the acoustic standing waveform. In analogy

with eQuations (1.83) and (1.85), it may be written:
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i¢ i2vsinKx cosft inKx
A - 4 :

g = Z Jn(2vcoth)e (2.13)

= =00
The Bessel function relationship, equation (1.87), has again been used.
The optical amplitude in the nth order diffraction spot in the focal
plane is proportional to J,(2vcosit) . Consider that only diffraction
spots n and m are combined and imaged. The image plane intensity

distribution is then proportional to

In,m = J%(V) + J%(V) + 2Jn(V>Jm(V)cos(n—m)Kx | (2.14)

where V = 2vcosft A (2.15)

If we extract those components of (2.14) that have no time variation,
the first two terms will contribute only a uniform background. From the

well known relationship (Abramowitz and Segun 1968)
m ' é
J (-z) = (-1) J.(2) | (2.16)

and the form of V in equatién (2.15), it is apparent that the cross
tefm in (2.14) will only contain a D.C. component if ntm is an even
number. Thus for n+m odd, the D.C. part of the image‘ﬁlane signal will-
contaiﬁ no terms with spatial variation. This is rigorously true, even
‘if weak acoustically induced variations of the optical absorption

‘coefficient are taken into account.
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Consider a few special cases of particular interest:

[1] Adjacent diffraction orders, m = ntl : the D.C. signal consists
solely of a uniform béckground, produced by the first th terms in
equation (2.14). |
[2] 'Symmetric diffraction orders, m = -n : using équation (1.93), it
is apparent that the D.C. component of (2.14) is proportional to
(1 - cos2nkx) [c.f. individual components of the dark field term, .
equation (1.103), see FIG 14(c),(d)]. Thus for n=1, for example, the
image plane intensity distribution consists of a cosine pattern of
bright and dark fringes with periodicity A/2, where A = ZHK—l.
{31 m = nt+2 : for this situation, the third term in (2.14) provides a
D.C. component proportional to cos2Kx. Thus cosine fringes appéar
.having periodicity A/2, similar to [2] with symmetric orders *1. The
fringes will be less distinct in this case, however, due to the presence
of a uniformrbackground D.C. component produced by the first two terms
in (2.14).

| Image plane photographs which illustrate the above results are
shown in FIG 20. This data was taken with a model system consisting of
tﬁo orthogonally arranged quartz transducers (resonant frequency 10 MHz)
mdunted in a cell of distilled water. The two transducers were driven
simultanéously by a General Radio model 1211-C oscillator and a two
dimensional diffraction pattern, FIG 20(a), resulted. In obtaining
FIG 20(b)-(g) only the central vertical row of diffraction spots was

used. It should be noted that the different spots in FIG 20(a) correspond

>
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@)

(e) (f)

Experimental data obtained from a model system consisting of

two orthogonal quartz transducers (resonant frequency 10 MHz)
mounted in a cell of distilled water. (a) focal plane diffraction
pattern. (b) zero order light imaged with sound generator off.
Image plane distributions produced by combining and imaging

diffraction spots (c) 0,1,(d) 1,2,(e) + 1,(f) 0,2 and (g) 1,3.
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to different orders of Raman - Nath diffraction from a simple sinusoidal
acoustic waveform. In contrast, all spots in FIG 13(b) correspond to
first order Raman - Nath diffraction from a waveform consisting of
many harmonically related components.

In FIG 20(c) and (d) adjacent diffraction orders 0,1 and 1,2 ,
respectively, have been combined and imaged. By comparison with FIG 20(b),
the zero order light with the sound generator off, it is apparent that .
no fringes are present, as was predicted in {1]. In FIG 20(e) symmetric
ordérs *1 have been imaged. A pattern of periodicity A/2, consisting of
alternating dark and bright fringes is produced, in agreement with [2].

In FIG 20(f) and (g) orders 0,2 and 1,3 , respectively, have been imaged.
A fringe pattern of periodicity A/2 is produced. As predicted in [3], the
fringes are less distinct than in FIG 20(e).

If, in addition to $5 in equation (2.13), a static éhase
grating is present, such as would be produced by a fixed space charée
pattern, the image plane signal will be modified. A sinusoidal grgting
ofﬂperiod A= ZWK—l will produce a phase transformation ?

ei¢§: . eivosinKx ' ) (2.17)
where v, is the aﬁplitude of tHe optical phase variation (v, << lj.
dg may'be considered to be the fundamental component of the periodig
-space charge pattern. The phase ¢g (or the combination of $g and ¢A)

‘produces an image plane D.C. term of the form cosKx, if diffraction
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orders 0,1 (or any other pair of adjacent diffraction érders) are combined
and imaged.

In practice, it was necessary to amplitude modulate the
external oscillator and to phase-lock the image plane detector to the
modulation frequency, in order to remové extraneous signals and optical
noise in the image plane. With this in mind, the total phase transformation

given by equations (2.13) and (2.17) may be written:

exp i{(Zvcoth + vo)(l + Mcoswmt)sinKx:)

(oo}

= Z Jn[(2vcoth + vy) (1 + Mcoswpt)le

n=—x

inKx (2.18)

where M is the modulation index (= O.i in ﬁractice),and Wy is the modulation
frequency. The Bessel functions in (2.18) may be Taylor exﬁanded to
yield:

Jn(2vcoth + v,) + (2vcosft + Vo) Mcosw t Jﬁ(ZvcésQ; + vy) ...

(2.19)

Iﬁ practice, v,,v << 1 and v, ~ V? It is therefore necessary to retain
coﬁtributions to first order in v,, and to second order in v. Only the
first two terms in (2.19) need be considered since they contain all
contributions to second order in both v and Vo. The derivative of the

Bessel function in (2.19) may be expanded using the relation (Davis 1968):
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zJ (z) = nJy(z) - zJ,4q(2) (n=20,1,2..... ) (2.20)

If diffraction orders 0,1 in equation (2.18) are combined and imaged,
the resulting image plane intensity distribution is proportional to

[see equation (2.14)]:
JZEN) + JT(V") + 23,(V') I (V") cosKx - (2.21)
where ' V' = (2vcosfit + vg) (1 + Mcoswyt) ' (2.22)

Using equations (2.19), (2.20), the small argument expression for the
Bessel function, equation (1.92), and extracting the component of (2.21)
at frequency wp, the appropriate image plane signai is (to first order
in v, and second order in v):

= M(v,cosKx - v2) : ; (2.23)

‘'Thus the presence of the static space charge grating is indicated by a
cosine fringe pattern of periodicity A, Thé component MvZ in equation
(2.23) is é uniform background prodﬁced by acoustic diffraction
effects. Its negative sign indicates that it is m out of phase with

the amplitude modulating reference.
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2.3 Experimental Results.

The experimental arrangement for optical measurements was
essentially the same as in FIG 12. The samples used were‘cl_CdS
phonon masers, driven byban external oscillator. For this configuration,
the piezoelectically active acoustic modes consist of longitudinal
waves whose K-vectors lie along the c-axis. The light source was a
5 mW HeNe laser (A = 6328 K) and incident polarization was parallei to
the c-axis. Aside ffom the laser light, no ancillary illumination of
the crystals was used. A slit width of 250 microns was used for the
scanning photomulﬁiplier in the image plane (refer to FIG 12), and
the magnification proyided~by~the'focussing lens was about 27. All
measurements were made at room temperature.

FIG 21 shows examples of image plane profiles for ci_crystal
24.06.06.01. The external oscillator in this case was an Arenburg
model PG~650C. The photographs on the LHS of FIG 21(b) and (c)‘were
obtained by imaging diffraction orders *1. The spacing of the bright
fringes is thus A/2 (refer.to section 2.2)f The photographs on the right
side of the figure were obtained by imaging orders 1,2. Weak, poorly
defined fringes of spacing A may be discerned, suggesting the presence
of a static phase grating.

To obtainlmore reliable data, the_technique outlined in‘section
2.2 was employed. The crystals were driven by a Hewlett Packard moael
3200B VHF oscillator, which was amplitude modulated at 3 KHz by a

Wavetek model 114 oscillator. The amplitude modulating signal provided

-~
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(a)

(b)

(c)

FIG 21. (a) Bright field image of cL crystal 24.06.06.01, and intensity
profiles produced by imaging diffraction spots %l (LHS) and
1,2 (RHS) for driving frequencies (b) 15.619 MHz and (c) 19.062 MHz.
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the reference for a P.A.R. model HR-8 lock-in amplifier, which was used
to process the signal from the image ﬁlane detector. For typical operating
conditions, the Raman - Nath parameter v g 5 x 10_2, as calculated from
the diffraction intensities.

An example of the image plane signal. for qL cfystal 24.06;06.01
is shown in FIG 22. The upper curve was obtained by imaging orders *1.
As has been indicated, the resulting profile has periodicity A/2 and is
presented as a reference. The lower curve in FIG 22 was obtained by
combining orders 0,1 (the variable amplitude of the optical signals is
a reflection of the intensity profile of the laser beam). The appearance
of sinusoidal fringes of spacing A is direct evidence for the presence
of a fixed charge grating of the form sinKx [refer to equation (2.17)].
This sinusoidal term is superimposéd on a larger neéative (i.e. 7 out
of phase with respect to the amplitude quulating reference) background
term, in agreement with equation (2.23). By comparing the amplitude;of
these two signals it was possible, with the aid of equation (2.23), to
esfimate the value of v,. Hence, with the aid of equations (1‘2);“(1.72)
and (2.11), the peak electron density modulation associated with_the
static space charge grating could be calculated, and was found to be
~ 1012 electrons/cmd at /2w equal to 33 MHz. Much higher modulations
have been reported in pulse echo measurements, perfofmed at corresfondingly
higher frequencies and driving amplitudes (Shiren 1975).

To check these results, a double cavity (DC4) was constructed

‘by bonding together two similarly oriented cl.CdS érystals. Either side
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of the resulting.compqsite cavity could be driven by an external oscillator.
This produced a situation in which the acousto-electric field E) [sece
equation (2.3)] was of nearly constant amplitude throughout the composite
cavity, but the external driving field E, was present only in one part.
Laser diffraction could be done in one or both parts of DC4 and, as. is
demonstrated in FIG 23, the.optical signals could be completely séparated
by focal plane spatial filtering. The image plane signal fo? one part
of DC4, both in the presence and absence of the driving field Eq, 1is
presented in FIG 24. The féct that the fringes require the simultaneous
presence of E; and Eé [equation (2.3)]) indicates that they are not an
artifact of the acousto-electric field alone.

For the measurement technique used, it was not possible to
establish whether the static charge grating was associated with trapped
or mobile charge. However, the strong sample dependence of our measurements
is an indication of the importance of defects in producing the obse;ved
results. To determine the presence of shallow traps of the typé postulated
by Melcher and Shiren (1975), thermoluminescence measurements wef;
performed. CdS samples, freshly etched in concentrated HCl, were mounted
in a LHe dewar at 4.2°K. After being illuminated with strong band gap
light, the crystals were maintained in the dark. Once the afterglow
had subsided (10 - 15 min. after illuminatiqn), the samples were Qarmed
up and the 1uminescent~ihtensity was recorded as a function of time.

The resulting glow curves were analyzed using the techniques of Garlick



FIG 23.

112

(c) (d)

Image plane photographs of DC4, illustrating that different
components of the optical signal may be examined individually.
(a) all light has been imaged, (b) the background light has
been removed, (c) only the background light has been imaged,

(d) the light from the lower member of DC4 has been removed.
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and Gibson (1948), Grossweiner (1953) and Booth (1954). A typical spectrum
is shown in FIG 25. As indicated, these measurements verified the
existence of shallow traps with an ionization energy of about 20 meV, as
required for the model proposed by Melcher and Shiren (1975) [refer to
model (ii) in section 2.1].

In principle, the diffraction experiments could be exténdéd
to study the higher Fourier components of the static charge grating.
This would be of interest siﬁce these components would yield information
about the nature of the underlying nonlinearity. In practice, this
extention has not been possible with our crystals because the observed

diffraction effects were too weak.
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FIG 25. A typical glow curve obtained from a CdS cryétal of the type used
to construct phonon masers. The points at which different temperatures

- occurred are indicated on the horizontal axis, and the calculated
trap ionization enérgies correspbndihg to the major thermoluminescent

peaks are given.



116

2.4 Conclusions and Summary of Contributions

By means of the spatial and temporal filtering techniques
outlined in CHAPTER 1, optical experiments were performed thatvallowed
the first direct observation of acoustically induced spacé charge gratings
in CdS (Smeaton and Haering 1976b). The information obtained by opticai
.imeans should be of considerable supplimental.value to data obtained
by pulse écho measurements. Proper exploitation of the techniques
described could provide insight into the underlying physical processes

involved in the formation of the static charge gratings.
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CHAPTER 3

NEW PHOTOVOLTAIC EFFECTS IN CdS

3.1 Introduction

Photovéltaic effects constitute a class of.phenomena in which
light generates a voltage across a portion of a semiconductor. Such
effects have been observed for several decades in CdS and other semi-
conductors (for a review see Pankove 1971). The samples used in the
present experiments were pélished phonon maser crystals, constructed
from high resistivity [1010 - 1012 (Qcm)-1 in the dark] photoconductive
CdS. For this situation, the dominant known photovoltage is produced
via the Dember effect (Williams 1962). The Dember voltage results when
strongly absorbed radiation generates a high density of electron-hole
pairs, which then diffuse away from the illuminated surface. The electroﬁs
have a higher mobility than the hoies and hence extend further into.
thé crystal, tending to make the surface positive with respect to the
bulk. This effect, and the resulting voltage, are named for their
discoverer (see Dember 1931). |

In this chapter some initial results from‘on—going experiments
are presented to illustrate the existenc¢ of two new'photovoltaic effects
in CdS. As will be shown, these effects provide D.C. voltages which are
several orders of magnitude larger than the Dember voltage. As yet,

the underlying physical mechanisms are not understood.

~
.
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3.2 The Photoacousto Voltaic Effect

A D;C..vdltage, requiring the simultaneous presence of light
and propagating acoustic fields, has been discovered in CdS phonon
masers. The basic experimental configuration for measurement of the
photoacoustic voltage is shown in FIG 26. Composite cavities, consisting"
of two similarly oriented bL or ci~phonon maser crystals, were used in
the experiments. The active side of the double cavity was used as a
source of acoustic waQes and was either driven by an external oscillator,
or operated with a D.C. electric field to aéhiéve phonon ﬁaser action.
The free surface of the passive cavity was illuminated and the D.C.
voltage appearing across the crystal was measured with a Keithley model
153 electrometer, or a Fluke model 8120A digital voltmeter.

The form of the photoaqbustic voltage for DCS as a function
of light intensity is shown in FIG 27(a). The corresponding short gifcuit
photoacoustic current had a maximum value < 0.1 mA/cm?, and mirror;dvthe

light intensity dependence of the photoacoustic voltage. For comparison,

passive cavity

/

- active cavity
incident - 1
light - | L - oscillator
; or DC. power supply

DC. meter . ' |
1 1 | l

. FIG 26. Experimental configuration for measuring'the photoacoustic voltage.
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FIG 27. (a) Photoacoustic voltage measured across bL crystal 29.04.03,02
(passive part of DC5) illuminated with 4880 A light. The activé part
of DC5 (bl_crystal 29.04.01.02) was operated in mode-locked |
fashion, under the conditions: applied D.C. electric field =
1.35 KV/em, D.C. current density = 15 mA/émz, fundamental
acoustic frequency =:18,2 MHz.

(b) Dember voltage as a function of light intensity at 5145 A

for b crystal 33.09.01.01 (part of DC2). i
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the Dember voltage for bL crystal 33.09.01.01 is presented in FIG 27(b).
The photoacoustic voltage was 3 to 4 orders of magnitude larger than

the corresponding Dember voltage. For strongiy absorbed 1ight, the sign
of the photoacoustic voltage was generally the same as fhe Dember voltage,
i.e. fhe illuminated side of the passive cavity was‘positivé with respect
to the dark side. However, anomalous sign reversals could be observed at
low strain amplitudes and for certain acoustic freqqencies.

The spectral response of the photoacoustic voltage generally
took the form illustrated in FIG 28(a), and displayed strong correllation
with the response of the photoconductivity, FIG 28(b) . This seems to
indicate that the effect is proportionai to the number of mobile carriers.
When the active crystal was driven by an external oscillator, tﬁe

' phoﬁoacoustic voltage only appeared at multiples of the reciprocal of
the round trip transit time of the composite cavity (= 1.28 MHz for DCS).
This is illustrated in FIG 29. At higher conductivities (i.e. higher light
intensities), the peak of the photoacoustié voltage shifted.to lower
ffequencies [compare curves (1) and (2) in FIG 29], in agreement with
the known conductivity tuning characteristics of CdS phonon masers
(Burbank 1971). When the passivé crystal was illuminated at =~ 5200 )3
[fhe peak wavelength in FIG 28(a)] it was poséible to achieve photo§coustic
voltages of up to 15 volts. ’
3.2.1 Diécussion

While the underlying physical mechanisms that produce the 
photoacoustic voltage are pooriy understood, two qualitative models

~deserve mention:
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FIG 28. (a) The spectral response of the photoaéoustic voltage for bl;.
crystal 29.04;03.02 (part of cohposite cavity DC5). The active
part of DC5 (bl_crystal 29.04.01.02) was driven at 7.55 yHé by
an external oscillator. - |
(b) The spectral response of the photocurrent for hL %Fystal
.29.04.03.02 under the same conditions of illumination as (a).
The light was provided by a 200 W tungsten halogen lamp in

series with a Heath monochromator.
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FIG. 29.

Behavior of the photoacoustic voltage for DC5 as a function of

the A.C. driving fieldaapplied to the active part of the composite
cavity. Weakly absorbed (orange) light was used. The curvés for
two different conductivities (light intensities) are presented;

o= (1) 2 x 10_4(§2cm)”1 and (2)_4 X 10—7(Qcm)~l.
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(1) "Mode-pulling"

‘The active modes in a phonon maser must satisfy the phase condition (Vrba

and Haering 1973):

ea(L +X ) +20 = 2nr o (3.1)

Vst V-

where n is an integer, d is the cavity length, vy, (vs_) is the velocity
of sound parallel (antiparallel) to the applied D.C. electriclfield. It
is Qell known, from the linear theory of acoustic amplificationvin.
piezoelectric semiconductors (see, for example, McFée 1966), that the
velocity of sound is a function of both conductivity énd electric field.
This forms the qualitative basis for the tuning characteristics of
phonon masers, since varying the conductivity or electric‘field modifies
the velocity of sound  and fequires the phonon maser to adjust its
frequency in order to satisfy (3.1).

In the present case, illumination modifies the conductivity
in the passive part of the composite-cavity, thus changing the velﬁcity
of sound and spoiling the resonance condition, equation (3.1). It is
conceivable that resonance can be restored, however, if the crystal
establishes a D.C. electric field of the proper magnitude, thus returning
the velocity of sound to its value before illumination. This highly
qualitative model does not establish the sign of the photoacoustic

voltage.
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(2) Electron transport
In this model we assume that the piezoelectric potential wells associated
with the acoustic wave act as "buckets" fo transport optically creatéd
electrons from.the illuminated surface to the dark surfaée. The resulting
D.C. voltage sﬁould have the same sign as the corresponding Dember.
voltage. This médel does not readily account for voltages of opposite
sign to the Dember voltage, or for effects observed with weakly absorbed
light. |

It has not yet been possible to form a conclusive link between

the experimental results and the preceeding models.
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3.3 The A.C. Electric Field Induced Photovoltaic Effect

A second D.C. voltage, requiring the simultaneous presence of
light and an externally applied A.C. electric field, has been discovered
in CdS crystals. The experimental configuration for méasurement.of this
photovoltage is shown in FIG 30. The capacitor C1 in FIG 30 served to
D.C. decouple the external oscillator from the rest of the circuit.

The combination of L and C2 formed a low pass filter to protect the
D.C. voltmeter from the A.C. driving voltage. The samples used in these
experiments were poiished phonon maser crystals and hence had In
diffused surfaces (see APPENDIX B).

The spectral response of the D.C. voltage is shown in FIG 31.
Similar to the photoacoustic voltage, it contained one dominant peak,
shifted ~ 100 A to shorter wavelengths with respect to the peak in
FIG 28(a). Also, the sign of the voltage generally reversed for wave—

lengths > 5250 A. As a function of light intensity, the D.C. voltage

incident light |
L
l 1 1 _-L_ 6030000 —I__

Cds Ci Cz'—"' )
Crystal.—_ DC. meter
external
oscillator

FIG 30. Experimental configuration for measuring the A.C. electric field

induced photovoltage.
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FIG 31. Spectral response of the D.C. photovoltage for bl
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crystal

29.04.01.02 (part of DC5). The intensity of illumination was

~ 0.5 mW/cm2. The light'wés provided by a 200 W tungsten halogen

lamp in series with a Jarrell Ash monochrometer.
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saturated very quickly, in a manner similar to FIG 27. It displayed a
quadratic dependence on the amplitude of ﬁhe A.C. driving voltage, as
illustrated in FIG 32(a), and as the driving frequency was increaSed
the D.C. voltage fell off quickly, as is shown in FIG 32(b).

The D.C. pﬁotovoltage appeared at all frequencies, indicating
that its presence ﬁas probably not related to the resonant acoustic
structure of the crystal. At frequencies correéponding to acoustic
resonances of the crystal, the photoacoustic voltage was also present.
In FIG 33(a) the D.C. photovoltage is shown as a function of frequency
for illumination with small amounts of weakly absorbed light. As the
light level (and hence the conductivity) was reduced, the photoacoustic
voltage became dominant [compare curve (3) in FIG 33(a) with curve (2)
in FIG 29]. For higher light levels, and particularly in the case
of strongly absorbed light, the nonresonant photovoltage dominated,
as illustrated in FIG 33(b).

. To further investigate the behavior of this photovoltage{
pulse measurements were performed at temperatures from 5°K to 300°K.
The crystals used were mounted in a Variable temperature LHe dewar,’
and were illuminated with white light provided by a 100 W Hg arc lamp.
When the light was shut off, by means of a mechanical shutter, an R.F.
pulse, whose width and delay time with respect to the end of the bptical
‘signal could be varied, was applied to the crystalp The R.F. pulses
were obtained from a Hewletf Packard model 3200B VHF 6scillator; which

was pulse modulated by a Hewlett Packard model 214A pulse generator.
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FIG 32. (a) The D.C. photovoltage as a function of the amplitude of
the applied A.C. voltage (12 MHz) for bl_crystal 29,04.01.02

° ' ’

(part of DC5). The illumination was at 5100 A, with an intensity

of about 0.5 mW/cm?. The solid curve through the experimental

points corresponds to VD (2.78 x 10—2)Vi

.C. .C.*

(b) The D.C: photovoltage as a function of driving frequency
at constant amplitude for_bl_crystal 29.04.03.02»(par£ of DC5),
illuminated with a small amount of weakly absorbed (orange)

light.
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FIG 33. (a) The D.C. photovoltage for b| crystal 29.04.01.02 (part of
DC5) as a function of frequency, for low levels of weakly
absorbed (orange) light. Curves.for three different cénductivities
(liéht levels) are presented: o= (1) 1.4 x 10—4(Qcm)_1,. 
(2) 5 x 107> (%em) T and (3) 4 x 107 (Rem) L. ’
(b) The D.C. photovoltage for bl_crystal 29.04.01.02 as a
function of frequency (the driving amplitude was not éonstant).
The crystal was illuminated with about 0.5 mW/cm? at 5100 Z.
The separation of the small negative peaks is equal to the

reciprocal of the round trip transit time of DC5 (= 1.28 MHz).
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The trailing edge of the optical signal and the form of the R.F.vpulse
are shown in FIG 34(a). For a given set of conditions, it wés found
that both the lifetime and amplitude of the pulseAgenerated voltages
increased by a factor of 2-3 in cooling the samples frém room temperature
to 100°K. At temperatures much below 70°K, however, the signals rapidly
became weaker, and were almost nonexistent at 5°K. The voltage signals.
generated at ~ 80°K by R.F. pulses of different delay times are shown
in FIG 34(b). If the time for generation tg was measured from the end
of the optical signal [see lower traces in FIG 34(a), (c), (h)] the
amplitude of the generated voltage decayed roughly as e—tng? where
T ~ 10ms. The decay time of the vbltage dependended strongly on the
level of illumination. As is shown in FIG 34(c) and (d), the amﬁlitude
of the generated voltage increased, while the decay time of the voltage
décreased} with increasing light intensity.
3.3.1 Discussion

Even less is understood about the physical processes involved
i; this photovoltage than in the case of the photoécoustic voltage.
Its dominant chéractéristics, however, do not appear to be strongly
éorrelated with the acousto-electric properties of the CdS samples. The
cﬁaracteristic decay time illustrated in FIG 34(b) is approximate}y the
same size as the electron lifetime, as determined using A.C. photoconductivity
measurements. This suggests that the photovoltage is associated with
mobile rather than trapped charge. The behavior illustrated in FIG 34(c)
aﬁd (d) is consistent with the crystal behaving as a battery with a |

~
.
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FIG 34. Some results of the pulse measurements:
(a) lower trace showsvtrailing edge of (negative) signal
produced by sample illumination; uppér trace shows the R.F.
pulse (11 MHz), in this case having a length of 200 usec énd
a delay of 10 msec with‘respect to the end of the optical signal,
(b) voltages produced by R.Ff pulses of 1 msec width, appiied
at various delay times to cl_crystal 33.05.01.01 (T = 80°K), and
voltages produced in cl_crystal 33.04.02.00 (upper tra%es) by
10 msec delayed R.F. pulses (width 200 psec) at T = 100°K for
(¢) weak illumination and (d) intensity of illﬁmination increased

by a factor of 10 with respect to (c).
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Horizontal scale: 2ms/div. Horizontal scale: 5ms/div.

Upper trace - 10V/div. Vertical scale: 0.5V/div.
Lower trace - 0.5V/div.
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variable internal impedance. At high light levels, the conductivity of
the crystal is larger. Hence its internal impedance is smaller and it

"discharges'" more quickly than for low light levels.
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3.4 Conclusions and Summary of Contributions

Two new photovoltaic-type effects have been discovered in
CdS. The voltages incurred are remarkable for their magnitude:
photoacoustic voltages of about 15 V and>A.C. eleétricAfield induced
photo&oltages of about 25 V were achieved with very small 1ight levels
( s 1 mW/cm?). These voltages are several orders of magnitude larger
than the normal photovoltages encountered‘at similar light levels in CdS.

At this time, the experimental results are not understood and more work

'is warranted in this area.

e
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APPENDIX A
ACOUSTIC STANDING WAVE PATTERN FOR MODE-LOCKED OPERATION

In practice, the strain profiles of the phonon maser were
observed by acoustic coupling to a passiﬁe cavity of fused quartz.
This allowed the strain profile to be optically probed in‘the passive
cavity, without disturbing the phonén maser (refer to section 1.4 of
CHAPTER 1). The acoustic strain at a point x in the passive cavity,
represented in FIG Al, may be written as a superposition of an incident

waveform Fi, coupled from the phonon maser, and a waveform Fr’ which

—emmmeex = 0

won ol ot e -

FIG Al.

has been spatially reflected from the surface x=d of the passive cavity.
We make the assumption that in steady state all waves moving in the
. same direction maintain the same phase at any plane x = constant, for

all times (i.e. no anomalous effect due to multiple reflections).
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Then, toboﬁtain the correct relative phase for Fi and Fr’ it may be
inferred from FIG Al that it is necessary to set x - 2d-x for Fr'

Assuming periodic form for the acoustic strain, Fi may be
written in Fourier series form: .

oo

.Fi(x,t) = Z~(ancos[n(Kx—Qt)] + b sin[n(Xx-0t)] (A1)
. n=1 :

where a,, bn are the usual Fourier coefficients and K, Q are thevwave
number and angular frequency of the acoustic fundémental. (A constant
term has been omitted in (Al) from the general form of the Fourier
series, since no D.C. strains aré associated with the acoustic waves.)
Assuming no losses upoﬁ reflection, it is appareﬁt from the preceeding

discussion that

Fr(x,t) = Fi(2d—x,t) = Zl[ancos[nK(Zd—x)~th] + bnsin[nK(Zd—x)—th]]
= Z ancos(Zan)cos[n(Kx+Qt)] + a,sin(2nKd) sin[n(Kx+Qt) ]
n=1
+ bysin(2nKd)cos[n(Rx+0t)] - b, cos (2nKd) sin[n(Kx+Qt) ]
= 2 cncos[n(Kx+Qt)] + dnsin[n(Kx+Qt)] ] ' (AZ)
n=1
where e, = ancos(Zan) + bnsin(Zan)
_ (A3)
d, = ansin(Zan) - bncos(Zan)
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We now introduce phases 6, in equation (Al) such that

a, = Snsinc‘in |
(A4)
bn = Snc036n
where | ’ tanGnv = an/bn (A5)
) @2 - 2 2
and | S; = aj + bj (A6)
Equation (Al) now takes the form:
Fi(x,t) = ZlSnsin[n(KXQQt) + 6,1 ' (A7)
n= - .

In a similar manner, phases B, may be defined in equation (A2) such that:

¢, = Cnsinsn
(A8)
dn = CncosBn
where o tanB, = c, /d, , (A9)

Making use of equation (A3) one obtains:

.
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Cﬁ = c% + dg = [ancos(Zan) + bnsin(Zan)]2+ [ansin(Zan) - bncos(Zan)]2
= a% + bi = Sg from equation (A6)
‘Hence Cn = + 5 ' ' (A10)

Using equation (A3) in equation (A9):

anéos(Zan) + bnsin(Zan)

tanBn =
a,sin(2nKd) - b, cos(2nKd)
tan§  + tan(2nKd)
= using equation (A5)
tanéntan(Zan) -1 '
= - tan(6n + 2nKd) .
Hence B. = = (8. + 2nKd) . : ' (All)
. n n .

With (A10) and (All), equation (A2) now takes the form:

Fr(x,t) = i_z Snsin[nK(x—Zd) + nt - 6n] 3 (A12) .
n=1 '

From equations (A7) and (Al2), the total acoustic strain may be written:

F(x,t) = Z Sn[sin[n(Kx—Qt)+6n] i_sin[nK(x—Zd)+th—6n]] (A13)
n=1 .
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The boundary at x=d may be considered a free surféce..Thus,
for the one-dimensional system considered, both the stresé and strain
must vanish at x=d. This can be satisfied by F(x,t) only if the +sign
is chosen in equation (A13). Equation (Al3) may then be written in the
alternate form:

CF(x,t) = 2] S_sin[nK(x~d)]cos(nKd-nRt+s_) (A1)
n=1

The boundary at x=d is noﬁ free since the passive cavity is bounded

to the phonon maser at this point. The value of the strain at x=0 ié
determined by the parameters K,2,6, and d in equation (Al4). Thé acoustic
modeé participating in mode-lockéd operation may be considered as being
harmonically related. Thus, for this case, the upper limit of the
summation in equations (Al3) and (Al4) will equal the number of active

acoustic modes N.
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APPENDIX B
PHYSICAL PROPERTIES
Material Parameters For CdS:

Density1 (103 Kg/cm3) p = 4.820

Elastic stiffness constantsl (100 newton/mz)

c 9.07, ¢,, = 5.81, ¢,, = 5.10,

11 12

c33 = 9.38, Chy T 1.504

Piezoelectric stress constantsl (coulomb/m?)

13

)5 = -0.21, €y = -0.24, e33 = 0.44
Dielectric constants (constant strain)l
Kl = 9,02, K2 = 9,02, K3 = 9,53
Refractive indices
n, = 2.506, n, = 2.491
. 3,4
Photoelastic constants
pyp = 0.11, 'plz = 0.051, py, = 0.072,
P3; = 0.050, pyy = 0.13, p,, = 0.054
Electro-optic constants?s© (10712 myv)
= = — EO 3 = ~ l?.c
%49 3.7, Z 233,(ne) zq4 5.5, 233 % 73
1 _ 3. 5. . o
Auld (1973) Dixon (1967) Gainon (1964)

2Neuberger (1969) 4Maloney and Carleton (1967) 6Kam:’mow (1968)
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Material Parameters For Fused Quartz:
Density3(103 Kg/m3) p = 2.2
Refractive index3 n, = 1.46

Photoelastic constant3 = 0.075

LA

Shear acoustic velocity3 (103 m/sec) vy = 3.76

Longitudinal acoustic velocity3(103 m/sec) v, = 5.95

The techniques uéed for fabrication of phonon maéers have been
detailed by Burbank (1971). The CdS crystals were oriented by meahs»of
X—ray diffraction to an éccuracy of +0.5°. For typical sample dimensions,
a flatness of from 1/5 to 1/10 of an optical wavelength could be achieved
for the polished surfaces. Transparent electrical contacts were provided
by means of In diffusion. Techniques similar tb those used for phonon
masers were applied to fabricate acoustic cavities from fused quartz,
s;pphire, and Barium Fluoride. Composite acoustic cavities were bonded
together using the technique outlined in APPENDIX C. The physica} data
for the samples mentioned in the main text of the thesis are lisledAin

TABLE B1,



TABLE Bl -
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Physical Data For Acoustic Cavities

Acoustic Cavity+

Dimensions (mm)

Surface Finish

polished| wire saw| In diffused
1 24,01.02.04 d = 1.193, b-axis X - X
L = 2.166 ' X
DC1 w = 1.999 X .
. | FQ1 (fused d = 3.306 X
" quartz) 2 = 10.781 X
' w = 10.760 X
33.09.01.01 d = 1.090, b-axis X X
£ 1 2 = 3.541 X :
DC2 . w=2.775 X
FQ2 (fused d = 4,414 X
- quartz) L = 7.844 X
: w'=17.778 X
24.07.10.01 d = 0.830, b-axis X X
L = 2.228 X
DC3 ' w= 2,022 X
' S1 (sapphire) d = 3.351, xl—axis X
2 = 10.949 X
o w = 7.087 X
27.02.04.02 d = 0.744, c-axis X X
¢ = 3.252 X
DC4 w = 2.288 X
27.01.01.02 d = 0.819, c-axis X X
2 = 3.579 X :
w = 3.207 X
29.04.01.02 d = 0.318, b-axis X X
' 2 = 3.210 X
DC5 w = 1.976 X
29.04.03.02 d = 0.379, b-axis X X
L = 4.731 ' X
w = 4.132 X

TUnless otherwise indicated, the acoustic cavities are CdS crystals.

s

% A
bl_crystal 33.08.06.00 was later bonded to DC2 to form a triple cavity.
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Surface Finish

‘Acoustic Cavity+ Dimensions (mm) polished |wire saw | In diffused
24.06.06.01 d = 1.265, c-axis X X
L= 7.225 X
w = 2,170 X
33.04.02.00 d = 0.376, c-axis X : X
2 = 3.111 X
w = 1.838 X
33.05.01.01 d = 0.854, c-axis X X
L = 4,037 X
w = 2.289 X
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APPENDIX C
ACOUSTIC BONDS

To proQide bigh quality acoustic bonds between a CdS phonén
maservand a second acoustic cavity (buffer), a cold welding procedure
similar to that.of Sittig and Cook (1968) was employed (Hughes 1974).
The two samples to be Sonded were first thoroughly cleaned. This step
was crucial éince the evaporated layers that formed the bond were only
~ 3000 & thick. Folloﬁing thorough ultrasonic washes in acetone:and
subsequent rinsing in distilled water, a final cleaning was performed in
a laminar flow box, using 1ens.tissues moistened with ether. Aﬁ optical
flat (also carefully cleaned) was used to check for the presencé of dust
particles using interference téchniques. Systematic wiping of the
surfaces was continued until no interference fringes could be obse;ved,
indicating that all dust particles 2 1000 A had been removed.

. ": . Following cleaning, the samples were mounted on a press‘in an
evapofator. When a vacuum of about 3 x 10"6 torr was échieved, a thin
layer (~ 100 K) of Cr followed by a 1000 A layer of Au were evaporated
oﬁ the buffer, to form_a durable eléctrical contact. 2000 K of In was
then laid down on the phonon maser, thus making electrical contact with
its diffused In surface. Following evaporation, and while still under

"vacuum, the evaporated surfaces of the two samples were pressed together
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with a pressure ? 200 Kg/cmz. After allowing several hours for the bond
to form, the composite cavity could be removed from the evaporator. In
the region of the bond the Au layer took on a silver color, indicating
that alloying had taken place with the In layer. Using this technique,

CdS phonon masers were successfully bonded to buffers of Al,03, fused

$i0y, BaF, and CdS.
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