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Abstract 
The work described in this thesis is related to two projects I worked on towards 
the ultracold collisions experiment between fermionic lithium and bosonic rubidium 
atoms in our lab. 

The first part is about the simulation of sympathetic cooling of Bose-Fermi mix­
ture inside the magnetic trap. An original single species code, which was specially 
designed for simulating the forced radio-frequency evaporation of 1 3 3Cs atoms in the 
magnetic trap (within harmonic approximation), is developed so that it can simu­
late the dynamics of a multi-species trap including iriter-atomic collisions and hon-
harmonic trapping potentials, and thus aid in the design of our future degenerate 
gas experiments. To validate the consistence between our multi-species code and the 
original single-species code, a comparison was tried using the parameters from Clauz 
Zimmermann's sympathetic cooling of fermionic Lithium using Rubidium atoms. The 
result shows a very good consistence between the multi-species and single species 
codes. Based on the same parameters from Zimmermann's experiment, another com­
parison is performed to check the influence of different macro-atom distributions on 
the simulation results when the total number of real atoms is constant, since the num­
ber of macro-atoms determines how fast the simulation can run. The result shows 
that using less number of macro-atoms (211 vs 213) won't effect the simulation too 
much and we can use less number of macro-atoms to speed up the simulation. 

The second part of this thesis is concerned with the design of the experimental 
apparatus to study hetero-nuclear Feshbach resonances between Lithium and Rubid­
ium. The strategy for this study was discussed in the experimental setup section, in 
which the required experimental subsystems for the Feshbach resonance studies were 
discussed, such as the vacuum system, the atomic sources for both species. This work 
also involved some experiments to calibrate the alkali metal dispensers to be used in 
this apparatus. A model was created to describe the Rubidium partial pressure in 
room temperature, parameters required by this model was calibrated by an absorp­
tion experiment, in which the Rubidium resonant laser was sent through a vapor 
cell. 
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Chapter 1 
Introduction 
With the development of laser cooling and trapping techniques, atomic collisional 
properties in the ultracold regime have become directly accessible. Today these prop­
erties play a crucial role for the realization of Bose-Einstein condensates (BECs) and 
quantum degenerate samples of Fermions. An ultracold collision experiment can be 
used to deduce these properties and thus give guidance for the design of future ex­
periments, such as a Bose-Fermi quantum degenerate mixture, and the production of 
ultracold molecules. 

Until now evaporative cooling is still the only way by which quantum degener­
acy could be reached. During the evaporative cooling process, the highly energetic 
atoms are removed from the ensemble so that the remaining atoms can rethermal-
ize by elastic collision and the overall temperature could be lowered. However, this 
mechanism only works for Bosons, not for Fermions, since the dominant collision at 
ultralow temperature, s-wave collision, are forbidden for Fermions. To circumvent 
this problem the fermionic cloud can be brought into thermal contact with a cold 
bosonic cloud, since collisions between Fermions and Bosons are not forbidden by the 
Pauli-principle. The temperature of the fermionic ensemble is thus lowered down and 
quantum degeneracy could be reached. This cooling method is called sympathetic 
cooling. 

1.1 M o t i v a t i o n f o r T h e U l t r a - c o l d C o l l i s i o n 
E x p e r i m e n t b e t w e e n 6 L i a n d R u b i d i u m 

Mixtures of ultracold gases are a field of growing interest which enables the gener­
ation of quantum degenerate Fermi gases and leads to many interesting effects in 
Fermi/Bose quantum systems. In our lab, fermionic Lithium and bosonic Rubidium 
combination is chosen as our research topic, since this combination hasn't been inves­
tigated at the time this research project was proposed. Other reasons come from the 
fact that the molecular dipole moment between Lithium and Rubidium is the second 
largest in all kinds of alkali combinations[l]. 6 Li and 8 5Rb is also an ideal system for 
studying the BEC-BCS crossover regime since the current experimental limit for Tp 
due to Fermi hole heating can be reduced with this mixture [2]. 

By investigating the ultra-cold collisions between 6 Li and Rubidium isotopes, 
inter-species Feshbach resonances and background scattering length can be found 
first. This work will be done in the experimental setup of our test chamber. In which 
a dual MOT for both 6 Li and Rubidium will be built to trap the atoms from the 
atomic sources, and then an optical tweezer will be used to hold these atoms for 
further investigation of Feshbach resonances. 
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Using the Feshbach resonances found, we can control the elastic collisions between 
6 Li and Rubidium during sympathetic cooling and thus optimize the efficiency of 
sympathetic cooling, since scattering length is a very critical factor for evaporative 
cooling, and it is also the only tunable factor once the experiment setup is determined. 
A numerical simulation is designed to simulate this process, in which the tunability 
of the scattering length could be simulated and provide an independent verification 
for the experimental results. Also new trap geometries can also be investigated with 
this simulation to aid in the design of future experiment. 

Besides the two species mixture of quantum degeneracy, hetero-nuclear ultra-cold 
molecules can also be made. Other topics, such as the many body physics of mixed 
Fermi-Boson systems, will also be investigated by tuning the interaction between 
them using Feshbach resonance. 

1.2 Outline of This Thesis 
This thesis is divided into two parts, corresponding to two projects I worked on for 
the ultracold collision experiment. 

The first part is about the simulation of the sympathetic cooling of Bose-Fermi 
mixture inside the magnetic trap. Chapter 2 describes the related theoretical back­
ground. Chapter 3 discusses the numerical simulation and the application of this 
simulation to actual experiments. This code was also developed to aid in the design 
of future degenerate gas experiments, and as a first test of the code, comparisons 
between the original single species code and the new multi-species code was tried 
using parameters from the experiment of Claus Zimmermann [3] in which Lithium 
was sympathetically cooled using Rubidium. 

The second part of this thesis is concerned with the design of the experimental 
apparatus to study hetero-nuclear Feshbach resonances between Lithium and Rubid­
ium. This work involved some experiments to calibrate the alkali metal dispensers to 
be used in this apparatus. In Chapter 4, the required experimental subsystems for 
the Feshbach resonance studies are discussed, such as the vacuum system, the atomic 
sources for both species. In Chapter 5, the results for the dispenser calibration ex­
periment are described. 
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Chapter 2 
Theoretical Backgroud 

This chapter can be divided into two parts. Section 2.1 describes the basic theory of 
quantum degenerate gases and evaporative cooling. Section 2.2 and 2.3 discuss some 
aspects of ultracold collision theory. 

2.1 Q u a n t u m D e g e n e r a t e G a s e s 

2.1.1 Bosons and Fermions 
Depending on the spin, all the particles in nature can be divided into two categories: 
Bosons or Fermions. If the total spin of the particle is integer multiple of h, it is a 
Boson, for half integer it is a Fermion. For a collection of identical particles, the many 
body wave function is either symmetric for Bosons or antisymmetric for Fermions 
under the exchange of two particles. The result of this fundamental symmetry of 
nature is that Bosons can and are likely to occupy the same energy state, this is 
called the Bose enhancement. Fermions, on the other hand, can't occupy the same 
energy state, which is the well known Pauli Exclusion principle. 

2.1.2 Bose Einstein Condensation 
Bose enhancement results in a phase transition at phase space densities above p = 
2.612 [4]. At this critical point, most of the atoms in the dilute bosonic gas will 
occupy the ground state, forming a new state of matter, a Bose Einstein Condensate. 
This new state of matter was predicted by S. Bose and A. Einstein in 1924. 

The way to realize BEC state is difficult, due to the fact that high phase space 
density requires high spatial density atoms at a very low temperature. Compressing 
an ensemble of atoms will lead to an increase of density but at the same time increase 
their temperature, adiabatically expanding the atoms will decrease the temperature 
but also decrease the density, leaving the phase space density to remain constant. 
The phase space density is defined by the following expression (Eqn. 2.1). 

_ 3 _ nh3 _ nh3 . . 
9 ~ n A d e B " WW3 - {MkBT)i ( ] 

In 1995, three American research groups published the first results of Bose Einstein 
Condensation at about the same time[5, 6, 7]. They all used laser cooling to precool 
atoms of different types (Na, Li, and Rb). Laser cooling lowers the temperature of 
the atoms without changing the density and thus leads to an increase in the phase 
space density. However, laser cooling alone is not enough to achieve the required 
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Bose-Einstein Condensation Fermi Sea 

(a) (b) 

Figure 2 . 1 : Schematics of quantum degeneracy, a: Bose Einstein Condensation 
(BEC), b: Fermi Sea, Ep is the Fermi energy level. 

critical phase space density to form B E C , as the last step of the cooling process, they 
all used evaporative cooling [8]. 

2.1.3 Fermionic Degenerate Gas 
Analogous to Bosons, Fermions will also fall into lower energy states when the temper­
ature is decreased; however, since the Pauli Exclusion principle forbids two fermions 
to share the same energy level, they will not coalesce together like Bosons at zero 
temperature, but rather the are pile up one after another, as shown in Fig. 2 . 1 . 
When all of the lowest states are occupied up to the Fermi energy, this state is re­
ferred to as a degenerate Fermi gas or Fermi sea, it was firstly described by E . Fermi 
in 1 9 2 6 [ 9 , 1 0 ] . 

At zero temperature, all the Fermions will be in the states below the Fermi en­
ergy E F , leaving the above states empty. The Fermi energy has a corresponding 
temperature, Fermi temperature, T F = E F / k e , and the degeneracy parameter T / T p 
represents the deviation from the classical distribution of the Fermi Gas. Unlike 
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Bosons, there is no phase transition to degeneracy, and the system transits smoothly 
from a classical (where the state occupation is low enough that a particle's state is 
independent of the other particles) to non-classical behavior. 

Figure 2.2: Principle of evaporative cooling. Shown is the energy of the ground state 
hyperfine splitting of 8 7 R b versus the distance from the magnetic trap center, 8 7 R b 
atoms are trapped in the highest |2,2 > state. Two kinds of evaporative cooling 
mechanisms are shown in this figure. One is the forced radio-frequency (URF) evap­
orative cooling, the other one is the forced microwave-frequency {VHF) evaporative 
cooling. Radio frequency couples adjacent Zeeman sublevels, it takes several steps for 
atoms in |2,2 > states to be transferred into untrapped states. Microwave frequency 
couples Zeeman sublevels in different hyperfine states, it can transfer atoms directly 
into the untrapped state. 

2.1.4 Boson-Fermi Mixture 
To get Fermi degeneracy, the temperature of the Fermi gas has to be lowered to the 
order of Tp. Evaporative cooling has been used to cool bosons to produce a quantum 
degenerate gas. This technique works by removing the high energetic atoms, and then 
allowing the remaining atoms to rethermalize by elastic collisions which produces new 
highly energetic atoms to remove. A problem occurs when applying this technique to 
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fermions. Because the many body wavefunction for fermions is antisymmetric, s-wave 
collisions are forbidden between fermions; however, at low temperature, only s-wave 
collisions are dominant. This means that particles in a gas of identical fermions 
do not collide with each other at low temperature. This makes evaporative cooling 
impossible for identical fermions. 

The solution to this problem is to cool a mixture of distinguishable particles. Then 
the anti-symmetry of the wave function is not required and the atoms can collide even 
at low temperature. This cooling scheme is called sympathetic cooling and was first 
proposed for two-component plasmas[ll]. 

2.1.5 Evaporative Cooling 
Until now evaporative cooling is still the only cooling method by which quantum 
degeneracy can be reached. The main point of evaporative cooling is to remove highly 
energetic atoms from the ensemble, so that the remaining atoms can rethermalized 
by elastic collisions and the overall temperature of the system is reduced. 

The atoms that are to be cooled are prepared in a low magnetic field seeking 
Zeeman state and kept in a magnetic trap, as shown in Fig.2.2. The magnetic field has 
a non-zero minimum at the center and increases in all directions. Selective removal 
of the high energy atoms is achieved by driving transitions to high field seeking 
Zeeman states (m^PF < 0) using radio frequency or microwave frequency radiation. 
The radio frequency radiation ( i / r / in Fig.2.2) drives transitions between different 
Zeeman sublevels inside the same F state, microwave frequency on the other hand, 
drives transitions between Zeeman sublevels in different hyperfine states, such asv^f 
in Fig.2.2. For a given R F / M F frequency, atoms at a specific spatial position are 
removed. The frequency acts like a knife to cut away the high energy tail of the 
distribution and is usually called a R F / M F frequency knife. 

After most of the high energy atoms are removed from the sample and the re­
maining atoms axe rethermalized, the sample temperature will decrease more and 
more slowly. To force the sample to lower temperatures at a rate faster than the in­
trinsic heating mechanisms (due to collisions with background vapor and three-body 
recombination), the R F / M F frequency has to be lowered as the sample cools. This 
process is called forced evaporative cooling, and the frequency decreasing procedure 
is called an R F / M F frequency ramp. 

2 . 2 U l t r a c o l d C o l l i s i o n s w i t h o u t E x t e r n a l 
M a g n e t i c o r O p t i c a l F i e l d 

2.2.1 Elastic Collision 
Elastic collisions conserve the total kinetic energy and momentum of the two collid­
ing particles, but can change the momenta of each particle. This kind of collision 
is responsible for establishing thermal equilibrium in the sample. In the ultracold 
regime, elastic collisions between neutral atoms is dominated by s-wave scattering 
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which can be characterized by a single parameter, the s-wave scattering length a. 
Positive (negative) values of a correspond to repulsive (atrractive) interactions. In 
the s-wave limit, two-body collisions at a finite energy are described by the scattering 
amplitude: 

I- T^H ( 2 ' 2 ) 

where hk is the relative momentum of the colliding particles. The total cross-section 
for elastic collisions is then given by: ' 

In the weak interaction limit, ka « 1, a reduces to Air a2. On the contrary, at the 
strong interaction limit (or for large relative momentum), a reduces to An/k2. 

Cross-thermalization experiments, in which one kind of atomic cloud is set to be 
hotter than (or in motion with respect to) the other one, can be used to determine 
the scattering length a between the colliding particles. Thermal equilibrium of the 
whole atomic sample is be reached by sympathetic cooling. The inter-atomic collision 
cross section can then be extracted from the thermalization speed. 

2.2.2 Inelastic Collision 
Inelastic collisions involve an energy transfer between the internal and external de­
grees of freedom. In two-body inelastic collisions, the internal Zeeman and/or hyper­
fine energy of the colliding particles is converted into kinetic energy. The released 
internal energy is usually higher than the trap depth and therefore the products of 
inelastic collisions are lost from the trap. In cases when the released internal energy 
is smaller than the trap depth, inelastic collisions lead to a. heating of the sample. 

Another example of inelastic collisions is the three-body recombination process. 
In a collision between three particles, two of them can form a bound molecular state, 
usually in a highly excited vibrational state, while the third one carries off the released 
binding energy. Since the energy involved is usually much larger than the trap depth, 
all three particles will be lost from the trap[12]. 

2.3 Ultracold Collisions with External Magnetic 
or Optical Field 

2.3.1 Feshbach resonance 
The scattering length of two colliding atoms can be tuned using magnetic field. One 
special case is the Feshbach resonance, which was first studied in nuclear physics by 
Herman Feshbach[13]. The main idea of a magnetic-field Feshbach resonance can be 
explained using Fig.2.3. 

Consider two atoms in a collisional state with a kinetic energy E^n hi their mutual 
potential, which is called the open channel in the figure. For the same pair of atoms in 
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Interatomic distance 

Figure 2.3: Principle of Feshbach resonance. A Feshbach resonance occurs, when a 
bound state of a closed channel is tuned into degeneracy with the kinetic energy Eki„ 
of colliding particles using an external magnetic field. 

different internal states, the potential energy surface is different and if the continuum 
lies above the energy of the collisional state, this is a so-called closed channel. If E k i n is 
equal to the energy of a bound molecular state of these two atoms, the free colliding 
atoms can be coupled into this bound state of the closed channel and a Feshbach 
resonance appears. If the energies of the open and closed channels are close but not 
exactly equal, Ekin 7^Ebound! coupling between the channels gives rise to a repulsive 
interaction when E k i n is greater than the bound state energy, and an attractive one 
if it is less. When the closed and open channels have different magnetic moments, 
these states (and the corresponding interaction) can be tuned against each other by 
applying an external magnetic field B, A E = A / i x B . 

A typical Feshbach resonance is shown in Fig.2.4, which is calculated using the 
following scattering length equation from a simple model. 

A S 
o ( B ) = o 4 s - ( l - — - ) (2.4) 

Where aj,g is the background scattering length far from the resonance, AB is the 
width of the resonance, Bo is the center of the resonance. In Fig.2.4, AB = 25G, 
B0 = 200G, abg = 10 OQ. 

2.3.2 Photoassociation spectroscopy 
Photoassociation (PA) spectroscopy was first proposed by Thorsheim[14]. Now it 
plays a significant role in understanding the collisional properties of ultracold atoms, 
and can be used to test the calculations of inter-atomic potentials, to make precise 
measurements of the molecular excited state lifetimes. Knowing the shape of the 
inter-atomic potentials provides the s-wave scattering length. Most important of all, 
photoassociation is another method to create ultracold molecules besides Feshbach 
resonance. The main idea of photoassociation is the following. 



Chapter 2. Theoretical Backgroud 9 

D) 
C 
a> 
O) 
c •c 

s 
8 w 

-10i 

Repulsivey 

*~Attractive 

100 200 300 

Magnetic field (G) 

400 

Figure 2.4: A sample Feshbach resonance calculated using eqn.2.4. When AB = 25G, 
B0 = 200G, abg = 10 oo 

During the photoassociation process, two colliding atoms absorb a single photon 
from a photoassociation laser beam whose energy is on resonance with a bound but 
electronically excited molecular state, and then these two atoms are converted into an 
electronically excited molecule. These excited state molecules can decay into singlet 
or triplet ground state molecules depending on the symmetry of the excited molecular 
state. Raman photassociation can be used to convert these excited molecules into a 
specific ro-vibrational state molecule. 
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Chapter 3 
Numerical Simulation of 
Sympathetic Cooling 

3.1 Introduction 
In order to provide quantitative theoretical account for the ultra-cold collision ex­
periment, we developped a numerical simulation of the motion of the atoms in the 
magnetic trap. This approach consists in a molecular dynamics evolution of the 
atomic sample. It allows a precise description of the atomic dynamics in the mag­
netic trap including elastic and inelastic collisions, collisions with background vapor, 
and Majorana spin flip losses. By adjusting initial parameters in the program, we can 
simulate our experiment on the computer before actually performing it and use these 
results to deduce optimized evaporation parameters for future experiment. After the 
experiment is finished, we can compare the resutls with our simualtion parameters 
to deduce the scattering length between Rubidium and Lithium atoms. 

The main idea of the simulation comes from a numerical model developed in J. 
Dalibard's group [15]. In which a concept of macro-atoms and the related duplication 
technique are used to simulate hundreds of millions of real atoms using several thou­
sands of macro-atoms. The collisions between macro-atoms are taken into account 
using a boxing technique, in which the volume occupied by the atomic sample is 
divided into many small boxes, collisions may if the macro-atoms are found to be 
in the same small box. This greatly reduces the number of pairs considered to ac­
curately simulate collisions in the ensemble. In the simulation, the radio/microwave 
frequency ramping is converted into a magnetic field boundary. During evaporative 
cooling procedure, the local magnetic field for each macro-atom will be calculated 
and compared with the magnetic field boundary to determine whether it still stays 
in the trap or not. 

Originally the above model was specially designed for simulating the forced radio-
frequency evaporation of 1 3 3Cs atoms inside the magnetic trap within the harmonic 
approximation (for the trap), my work was to generalize this simulation so that it 
can simulate the dynamics of a multi-species trap including inter-atomic collisions 
and non-harmonic trapping potentials. 

The primary code for this simulation is written in Fortran 77. To utilize the new 
advanced features of Fortran 90,1 transformed the old Fortran 77 code to Fortran 90. 
The complete program consists of the main file "ev.f90" and the input file "ev.in" 
[16]-

The simulation is running on our group server: qdg.physics.ubc.ca using the Intel 
Fortran Compiler 8.1 with free student license, which has dual 3.06GHz Xeon CPUs 
and 1GB of memory. Running the simulation once takes from several minutes to a 
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few hours depending on the size of the atomic sample and some other factors. 
This chapter is divided into two parts. In the first part, section 3.2 to 3.11, 

the numerical model of this simulation is discussed; In the second part, section 3.12 
to 3.14, this model is applied to the experiments performed in Claus Zimmerman's 
group on mixture of Lithium and Rubidium [3] to check the code's validity. 

3 . 2 M o l e c u l a r D y n a m i c s 
Molecular Dynamics (MD) is a computer simulation technique where the time evo­
lution of a set of interacting particles is followed by integrating their equations of 
motion. It has been widely used in computer experiments, here I just give the basic 
introduction, please check reference[17] for further information. 

In this simulation, we evolve the distribution of particles according to the laws of 
classical mechanics, most notably Newton's Law: 

Fi = m i O j (3.1) 

for each atom i in a system of N atoms. Here, mi is the i t h atom's mass, di = cPri/dt2 

is its acceleration, and Fj is the force acting upon it, due to the interactions with 
other atoms or the external potential. Therefore, in contrast with the Monte Carlo 
method, a molecular dynamics simulation is an initial value problem: given an initial 
set of positions and velocities, the subsequent time evolution is in principle completely 
determined. 

In brief, using a molecular dynamics simulation, one has access to the macroscopic 
properties of a system through the microscopic simulations. Statistical mechanics 
provides the rigorous mathematical expressions that relate macroscopic properties to 
the distribution and motion of the atoms or molecules of the N-body system. 

3 . 3 B o x - M u l l e r M e t h o d a n d R a n d o m N u m b e r s 
Random numbers are used quite often in this simulation, such as to decide from their 
probability if an elastic or inelastic collision has occurred or if a background collisional 
loss has occurred. In these situations we need uniformly distributed random numbers. 
On the other hand, when we try to initialize the positions and velocities of the atoms, 
Gaussian distributed random numbers are required. Function RAN3(idum) provides 
the uniformly distributed random numbers in the range of [0,1] , Fig. 3.1 shows the 
results of 106 times samplings of function RAN3(idum). 

The Box-Muller method[18] is utilized to transform the uniformly distributed ran­
dom numbers to a new set of random numbers with Gaussian (normal) distribution. 
The most basic form of this transformation looks like: 

y = sqrt(—2xln(xi)) x cos(2Trx2) (3.2) 

x\ and %2 are random numbers created by RAN3(idum), y is a random number in 
the Gaussian distribution with zero mean value and a standard deviation of one, as 
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Figure 3.1: Uniformly distributed random numbers produced by sampling function 
RAN3f(idum) for 106 times. The values of these random numbers are in the range of 
[0,1]. 

shown in Fig. 3.2 . xc = 0 .00125±0.00099 is the mean value, w = 2 .00025±0.00271 
is two times the standard deviation. 

The basic form of Box-Muller method is not very fast, since it calls the math 
library all the time, the cosine function and the natural logarithm. However, this 
method is only used to initialize the positions and velocities of several thousand 
macro-atoms at the beginning of the simulation, so the basic form is fast enough for 
our application. 

3.4 Macro Atoms and Duplication Process 
Since the main point of evaporative cooling is to get rid of the highly energetic atoms 
to lower the overall temperature of the remainder atoms, we need to load lots of 
atoms at the beginning of the evaporative cooling, mostly in the range of 10 6~10 9, 
as shown in Table 3.1. 

Keeping track of all these atoms during the simulation is beyond the ability of 
today's desktop computers, however, since what we need is just some statistical phys­
ical parameters, like temperature, density, it is not necessary to keep track of every 
single atom. In this program, a distribution of Macro-atoms, whose number is main­
tained between 4000 and 10000, is evolved to be compared with the 10 6~10 9 real 
atoms initially present. Each Macro-atom represents p real atoms, with p=2x, but 
has the same mass and the same magnetic moment as a single atom so that it moves 
within the trap as a single atom. It's collision cross section is p times bigger than the 
collision cross section of a single atom. 

Every time the number of Macro-atoms is lower than half of the initial value, 
either because of the evaporation or because of loss due to collisions with the residual 
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Figure 3.2: Gaussian distributed random numbers produced by sampling function 
RAN3(idum) for 106 times. 

background gas, every Macro-atom will be replaced with two new Macro-atoms, each 
of which represents p/2 real atoms, this is also the reason that p is base 2 exponential. 
These two new Macro-atoms are created symmetrically about z axis, in other words, 
if the parent macro-atom is at (x, y, z) with velocity (vx, vy, vz), then one of two new 
macro-atoms is placed at the same point with the same velocity, and the other one 
is placed in (—x, —y, z) with the velocity (—vx, —vy, vz). This duplication, which 
exploits the symmetry of the trap, guarantees that these two new macro-atoms will 
not undergo a collision with each other immediately after the duplication process. 
The duplication process stops when p is equal to 1. 

3.5 B o x i n g T e c h n i q u e 
The collisions between the macro-atoms are taken into account using a boxing technique[19]. 
After each evolution time step St, the position of each particle is discretized with a 
step 6r, so that each particle is assigned to a cubic box of volume Sr3. 

5 r ^ 4 x M A X ( ^ - , - ^ - , ^ - ) 
nmaxx nmaxy nmaxz 

(3.3) 

In which o(i) (i = x, y, z) is the standard deviation of position for the atom cloud in 
i direction, nmaxi is the number of boxes in i direction. The overall number of boxes 
is nmaxxxnmaxyxnmaxz = 3.24 x 105; Since o(i) represents the size of the atom 
cloud, Sr is adjusted as the cloud cools down, so that the probability for having two 
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Group Atom N (10e) 
Rice 7 L i 200 

0.1 
MIT 2 3 N a 1000 

0.7 
JILA y 7 R b 4 

0.02 

Table 3.1: Results obtained with evaporative cooling for the achievement of B E C , 
the first line represents the starting point in each case, and the second line represents 
the end point. 

particles in the same box is much smaller than 1. When two macro-atoms are found 
in the same box, a collision may take place between them. 

To determine the number of macro-atoms in the same box, each macro-atom is 
indexed by the discretized distance to the center of mass, ix, iy, iz are defined to be 
the indexes. 

ix = NINT{(x-X)/6r) (3.4) 

iy = NINT((y-Y)/6r) (3.5) 

iz = NINT{(z- Z)/Sr) (3.6) 

The box structure is realized by TABLE( ix , iy, iz), which stores the serial number 
"iat" of the atom at position (x,y, z). During each time step, for each atom, we will 
first find out the box it belongs to, then check if the box is empty or not, which 
means T A B L E T S , iy, iz) equals to zero or not. If the box is empty, that atom will 
be placed inside this box; Otherwise, if there is already an atom inside, then that 
atom may undergo a collision with the previously placed atom. After collision, both 
atoms will leave the box, and the table element TABLE( ix , iy, iz) will be set to 0. 

3.6 The Magnetic Trap 
Although Evaporative cooling is the only way to achieve the critical phase space 
density for B E C , there are different ways to implement it, such as in a magnetic 
trap or in an optical dipole trap[20], etc. The most common technique is evaporative 
cooling in the magnetic trap, which also has lots of different types. Here I will consider 
atoms in an Ioffe-Pritchard trap[21], since it is the first and most common trap used 
for evaporative cooling. For Ioffe-Pritchard trap, as shown in Fig. 3.3, the magnetic 
field takes this form: 

/ B'x-B"zx/2 \ 
3 = B0 + B"y2/2 - B"(x2 + z2)/4 (3.7) 

\ -B'z-B"zy/2 j 
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Figure 3.3: Ioffe-Pritchard Trap. 

Then the magnitude of B is: 

0\ = ^y/(2B'x - B"zx)2 + (-2B'z - B"zy)2 + (2B0 + B"y2 - B"(x2 + z2)/2)2 

(3.8) 
If we do Taylor expansion to ~B* around the coordinates center (0,0,0), 

(3.9) 

During the process of evaporative cooling, most trapping atoms just oscillate 
around the trap center, so we can just keep Eqn. 3.9 to the second order, now it's 
quite clear that the magnetic potential fi\B\ is approximately simple harmonic around 
the trap center. 

1 n r i nil 1 1 n n n i l 

\pB\ * pB0 + - ^-)x2 + \pB"y2 + l-p{^- - ^)z2 (3.10) 

By the definition of simple harmonic trap, p\~B*\ = ~m(ux

2x2 + ojy

2y2 + uz

2z2), we 
can find the trapping frequencies in 3D: 

2 2 H,B* B". 
u/ = u/ = -(- -) 

m i»o 2 

u 2 = 
pB" 

rn 
(3.11) 

Where p is the magnetic moment of the atom, BQ is the bias field, B' is the field 
gradient, B" is the field curvature, cJi (i = x,y,z) is the trapping frequency in i 
direction. 

For the simplified Ioffe-Pritchard trap, the magnetic field looks like: 

3 = 
B'x 

B0 + B"y2/2 
-B'z 

\ 
(3-12) 
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By the same procedure as Eqn. 3.7- 3.11, we get the trapping frequencies for the 
simplified Ioffe-Pritchard trap: 

2 2 pE* 2 fiB" „• 
UJ/ = u>S = —— , w/ = (3.13) 

mB0 m 

3 . 7 R u n g e - K u t t a M e t h o d a n d E q u a t i o n s o f 
M o t i o n 

This program is just a classical simulation of the dynamics for the atoms inside the 
magnetic trap, quantum mechanics is not being used here, the atoms are described 
by classical positions and velocities at each time step, not by wavefunctions. Based 
on this assumption, we can solve the dynamics by Newton's Law, which means the 
equations of motion are just ordinary differential equations (ODEs), more specifically, 
they are just second order ODEs. 

A problem involvling ODEs is not completely specified by the differential equa­
tions, more crucially it is determined by the boundary conditions. The nature of the 
boundary conditions determines which numerical methods will be feasible to solve 
the ODEs. Despite their diversities, all the boundary conditions fall into two broad 
categories: 

initial value problems: all the variables are given at some starting value xa, and 
it is desired to find these variables at some final point Xf, or at some discrete 
list of points. 

two-point boundary value problems: on the other hand, boundary conditions are 
specified at more than one x. Typically, some of the conditions will be specified 
at xs and the remainder at xj. 

Since our simulation is about the time evolution of the atoms, this is an initial value 
problem. There are many methods to solve the initial value problems for ODEs, like 
the Runge-Kutta method, the Bulirsch-Stoer method, arid the Predictor-corrector 
method, etc. The most often used is the classical fourth-order Runge-Kutta for-
mula [22], which has a certain sleek organization:. 

ki=6t-f(tn,yn) (3.14) 

*2 = «• / (««+ + (3-15) 

h = 6t-f(tn + | ) 2 / „ + | ) ' (3.16) 

k4 = 6t-f(tn + 6t,yn + k3) (3.17) 

2/n+1 = J/n + ! + ! + ! + ! + 0(tf5) (3.18) 

The fourth-order Runge-Kutta method requires four evaluations of the right-hand 
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N 
\ 

4 

Figure 3.4: Fourth-order Runge-Kutta method. In each time step the derivative is 
evaluated four times: once at the initial points, twice at trial midpoints, and once 
at a trial endpoint. From these derivatives the final function value(shown as a filled 
dot) is calculated. 

side per step St (see Fig. 3.4). In our program, subroutine RK4(£, y,St) does the 
algorithm from Eqn. 3.14 to Eqn. 3.18 , DERIVS(£, y, yt) calculates the derivatives. 
To carry out one classical Runge-Kutta step, we input the independent variable y(l : 
6), which stores 3 dimensional positions and velocities, and then get the new values 
which are stepped by a stepsize St and stored in the same array y(l : 6). 

In DERIVS(i, y,yt), yt(l : 6) stores the derivatives of the corresponding elements 
in 2/(1 : 6), it is obvious that yt(l : 3) are just equal to y(4 : 6), since y(l : 3) are 
positions and y(4 : 6) are velocities. yt(4 : 6) are the derivatives of y(4 : 6), in other 
words, they are the accelerations, dv/dt. By Newton's second law, a = F/m, we can 
calculate out yt(4 : 6), since F = -S7E = 

3.8 Initialization of the Simulation 
Some of the parameters, such as initial temperature, initial number of atoms and 
vacuum lifetime, etc., are stored in the input file "ev.in". Besides these common 
parameters, there still several other parts that need to be initialized, such as the 
initialization of the positions and velocities of the macro-atoms with a Gaussian 
distribution, the initialization of the spin states and the corresponding Lande g factor, 
and the initialization of the elastic/inelastic collisional cross sections between different 
combination of atoms. 

3.8.1 Initialization of positions and velocities 
The initial positions and velocities in the simulation are realized by the Box-Muller 
method: 

pos(iat, i) = depg + poso(i) cos(2nx2)\f—2ln(xi) (3.19) 
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vel(iat,i) = velo{i) sin{2irx2)\J—2ln(x\) ( 3 . 2 0 ) 

in which xi and x?, are random numbers in the range of [ 0 , 1 ] produced by RAN3(idum), 
poso(i) and velo(i) are the initial position amplitude and velocity amplitude in the i 
(i = x, y, z) direction determined by the initial temperature of the atom cloud. 

u2 pos0(i)2 = ^kBT0, velQ(i)2 = ^kBT0 ( 3 . 2 1 ) 

We know that in thermal equilibrium, kinetic energy of the atoms should satisfy 
the Maxwell-Boltzmann distribution, 

f(Ek)<xe-& ( 3 . 2 2 ) 

Box-Muller method gives us a Gaussian distribution with the following fitting equa­
tion (Fig. 3 . 2 ) : 

j / = Y O + _ = = E - 2 L ^ ( 3 . 2 3 ) 

w^/n/2 

After the approximation i C « 0 and u ) « 2 , Eqn. 3.23 turns to be: 

y = y0+A=e-4 ( 3 t 2 4 j 
V2n 

here x represents some random number produced by Box-Muller method, in the other 
words, 

x = sin(2irx2)\f—2ln(x\) (3.25) 

If we multiply x with the velocity amplitude velo(i), as in Eqn. 3 . 2 0 , we can get the 
velocity, vel(iat, i). Now we do this transformation to Eqn. 3.24, we get 

y = y0 + -j== e =y0 + -= e 2 -<o* ( 3 . 2 6 ) 

From Eqn. 3 . 2 1 , we know that veto2 — kBTo/m, then 

y = y0 + -j= e » * B » D = y o + — e (3.27) 

So the velocities produced by Box-Muller method do satisfy the Maxwell Boltzmann 
distribution. 

If we do the same transformation to positions, which means multiplying poso{i) 
to x, followig the same procedure as Eqn. 3.26 to Eqn. 3.27, we can get a similar 
result for the position distribution. 

A mu>(i)2poa(iat,i)2 A __££_ 

y = y0 + -= e 2 f c > 0 = y o + e kBr0 (3.28) 
\/2lT V 2 7 T 

Since the trapping frequencies Ui are different, according to the trap geometry, the 
initial postion distribution looks like a cigar in the Ioffe-Prichard trap, as shown in 
Fig. 3 . 3 . 
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3.8.2 Initialization of spin states 
Evaporative cooling always involves atoms in their ground electronic states, which 
for alkalis means the orbital angular momentum of the electron is L = 0, then the 
total angular momentum (J — L + S) for the single valence electron (S = 1/2) of the 
alkali atom is 

J = | 0 ± 1 / 2 | = 1/2 (3.29) 

Since the total angular momentum of the atom is F = I + J, in which I is the nuclear 
spin, the ground state hyperfine splittings always have two sublevels, F = \I ± 1/21. 
Due to the uniqueness of the the F states in each specific L energy level, we can 
define the atom's spin state by the combination of the F state and the related Zeeman 
sublevel (mp = —F....F). 

In the program a new data type is defined as following. 

type atom 
real * 8 F 
real * 8 mF 

end type atom 

"type(atom) a(l:nat)" allots the real memory space for all the atoms (from "1" to 
"nat"), it includes both F state and the Zeeman sublevel mp. 

User-defined Data Type is a new feature in Fortran 90, it allows us to define 
new data types derived from any combination of the intrinsic data types and derived 
types. The derived-type object can be accessed as a whole, or its individual com­
ponents can be accessed directly. For example, we can do operations on "a(l:nat)" 
directly, or access the individual components F and mF by "a(iat)%F", "a(iat)%mF" 
respectively. 

3.8.3 Hyperfine Lande g-factor 
Although gp, the hyperfine lande g-factor, is available in most of the references and 
there is also simpler formulae to calculate this factor for alkali atoms in the ground 
states, such as: 

9F = (3.30) xr 27 + 1 

in the simulation we still use the general formulae [23]: 

F ( F + ! ) - / ( / + !) + JjJ + 1) F(F + 1) + 1(1 + 1) - J(J + 1) 
9F-9J 2F(F + 1). + Q l 2F(F + \) 

(3.31) 
in which F is the total angular momentum of the atom, I is the nuclear spin and 
J is the electron total spin. The reason is that Eqn. 3.31 is the general formulae 
to calculate the gp of atoms in all different spin states, not only the alkali atoms in 
the ground states, this is also consistent with our purpose of generalizing the original 
program to satisfy wider applications. 

Function gF(type,F) returns the value of the hyperfine lande g-factor for specific 
type of atom in specific spin state F, since for ground state alkali atoms (J = 1/2, 
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constant / , gi and gj), the only variable in Eqn. 3.31 is F. For situations dealing with 
atoms in the excited states, we just need to add one more parameter J in gF(type,F). 

3.8.4 Initialization of collisional cross section 
Since this program is purely a classical simulation of the dynamics of an atomic sam­
ple, the elastic/inelastic collisional cross sections are assumed to be classical quantities 
and are stored in two separate matrices at the beginning of the simulation. 

"sigma_in(:,:)" and "sigma_e(:,:)" return the inelastic and elastic collisional cross 
sections between atoms with specific spin states respectively. "sigma_e(:,:)" comes 
from the scattering length matrix sl(:,:) by the relationship, sigma_e(:,:) = 87rxsl(:, :)2, 
this expression is just the simplified version at low relative velocity limit. The kinetic 
energy dependence of the elastic collisional cross section is accounted for in a different 
section of the code by the following lines of code: 

sigmalocl=sigma/(1.d0+(ml*vcoll*aO/(2.*hbax))**2) 
sigmaloc2=sigma/(1.d0+(m2*vcoll*a0/(2.*hbar))**2) 
sigmaloc=sqrt(sigmalocl*sigmaloc2) 

In which "vcoll" is the relative velocity of the colliding particles, m-vcoll/(2h)=k is 
the relative wave vector. The above code represents the following equation for o(k). 

a(k) = 
4na2 

1 + k2a2 
(3.32) 

Table 3.2 shows the structure for "sigma_in(:,:)" and "sigma_e(:,:)". Suppose that 
atomic species A has M spin states and atomic species B has N spin states, then the 
matrix size is (M+N)x(M+N). These spin states are ranked from the highest to the 
lowest. The arguments for "sigma_in(:,:)" and "sigma.e(:,:)" are not spin states, but 
they are associated with spin states. To relate these arguments to spin states, two 
extra functions, G_elastic(il,i2) and G_inelastic(il,i2), are used to calculate the array 
indices in the collisional cross section matrices for atoms with specific spin states and 
return the corresponding collisional cross sections. 

Table 3.2: Matrix structure for "sigma_in(:,:)" or "sigma_e(:,:)". S a l and S a M are 
the highest and lowest spin states for atomic species A respectively, Sbl and SbN are 

Atomic species A Atomic species B 
S a l S a M s b i S b N 

S a l <71M X X X 
Atomic species A X X X X X X 

S a M X X X X X X 

S b l X X X X X X 
Atomic species B X X X X X X 

S b N X X X X X X 
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3.9 Collisions 
Elastic and inelastic collisions are discussed in this section. During evaporative cool­
ing, elastic collisions are critical for the re-thermalization of the atomic sample after 
the loss of the high energy tail of the distribution. Inelastic collision, on the other 
hand, release internal energy by changing the spin states of the colliding atoms and 
convert it into kinetic energy. Thus inelastic collisions increase the overall tempera­
ture of the atomic sample. 

The probability for an elastic collision is novdt, in which o is the elastic collisional 
cross section and v is the relative velocity between the colliding particles. For inelastic 
collisions the collision rate is raGineiasticd£, where Gineiastic is the inelastic collisional 
cross volume and is assumed to be velocity independent. In the program, collision 
rates are calculated by the following lines of code, in which "macroloc/dx3" equals 
to the atomic density n. 

probacoll=macroloc*sigmaloc*vcoll*dt/(dx**3) (elastic collision rate 
proba_coll_in=macroloc*G_in*dt/(dx**3) !inelastic collision rate 

Figure 3 . 5 : Collision diagram in the center of mass frame. V\(cm) and vt(cm) are the 
initial velocities of atom 1 and atom 2 respectively in the center of mass frame, V{(cm) 
and V '̂(cm) are the final velocities correspondingly, ai and c*2 are the scattering angles 
of atom 1 and atom 2 respectively. 

3.9.1 Elastic collision 
During elastic collisions, both the total momentum and the kinetic energy of the 
atoms undergoing the collision is conserved, as shown below: 

miVl + mzV^ = m\V\ +m 2 V^ ( 3 . 3 3 ) 

\rmVr2 +l-miV2

2 = \rTiX2+ \miV? ( 3 . 3 4 ) 

( 3 . 3 5 ) 

file:///rmVr2
file:///rTiX2
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To figure out Vi and V2 , we turn to the center of mass frame, as shown in Fig. 3.5. 
Suppose V̂ cn is the velocity of the center of mass. 

v =m&±p& 36) 

The velocities of atom 1 and atom 2 in the center of mass frame will be: 
T? 1 \ T7> Tf ^(vj ~ V2) rn2Vc 

Vi(cm) = Vl-Vcm = • = — 
mi + m 2 mi + \ T? 1 \ T? T? mi(V[ - V2) mxT?c V2(cm) = V2-Vcm = • = — 

(3.37) 

(3.38) 'coll 
mi + m2 m x + m2 

in which V ^ / = V\ — V2is the relative velocity between atom 1 and atom 2. 
Now if we treat these atoms as hard spheres and neglect the interaction potential 

between them, we can calculate out the scattering angles for them, correspondingly 
the final velocities v\ and v\ can also be figured out by transferring Vi (cm) and 
V\ (cm) back to the laboratory frame. However, hard sphere treatment is only, an 
approximation and such a calculation is computationally intensive since it requires 
a calculation of the exact point of contact between the two spheres. Therefore, in 
the program we adopt a much more simple method to find the final velocities after 
collision. 

This simplified method calculates the new velocities by simply rotating the relative 
velocity vector V ^ / by a random angle (0, (j>) in the three dimensional space. This 
process respects conservation of total momentum and kinetic energy and produces 
a final velocity distribution not unlike that from a hard sphere collision. The new 
relative velocity vector is then 

Vcou = (Vcoii sin 0 cos 0, Voii sin 0 sin (f>, Vcoii cos 0), (3.39) 

where 0 and <f> are random numbers created by function ran3(idum): 

ctheta= 2.d0*ran3(idum)- l .d0 
stheta=sqrt(1.d0-ctheta**2) 
phi=2.*pi*ran3(idum) 

Here "ctheta" represents cos 0, and "stheta" represents sin 0. 
The expressions for the final velocities after collision are shown in the following 

equations: 

= v + m2 vM 
— 'cm.x 1 , 'coll 

mi + m2 

sin^ cos</> (3.40) 

Viy m2 

= Vcm,y + • Vcoll 
mi +. m2 

s in^ sin</> (3.41) 

VL — •'cm,2 "1" , * coll 
mi + m 2 

COS0 (3.42) 

VL T r m l T r 
— ^crn.x . *coll 

mi + m 2 

sin0 cos4> (3.43) 

vi ~ V c m ' y m, + m 2 ^ ' 
sin 0 sin</> (3.44) 

vL — Vcmz Vcoii 
mi + m 2 

cos 0 (3.45) 
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With final velocities obtained from the above equations, both the total momentum 
and the kinetic energies are conserved. 

3.9.2 Inelastic collision 
In an inelastic collision, atoms change their spin state, and the change in internal 
energy is compensated by a change in the relative kinetic energy (while conserving 
the total momentum). Since the projection of the total spin is conserved in such a 
collision, m,F=mFl + m ? „ different combinations of and can occur, and we 
assume (as an approximation) that they occur with the same probability. Clearly, 
some of the combinations may induce a release of the hyperfine energy and Zeeman 
energy and thus lead to the heating of the system. 

In the program, an inelastic collision is realized by considering all (and then choos­
ing one at random) of these possible combinations for a specific collision, which means 
this part has to be dealt with specially for each experiment and can't be generalized. 
The released internal energy, Zeeman energy or hyperfine energy, is converted into 
kinetic energy. This increased kinetic energy is first transformed into extra relative 
velocity, A V ^ , and then the total resultant relative velocity is transformed for the 
pair by the same method as in Eqn. 3.40~ 3.45. 

3.10 Loss Mechanism 

Different loss mechanisms are taken into account in the simulation, such as the evap­
orative cooling loss, the background loss and Majorana spin-flip losses. 

3.10.1 Evaporative cooling 
Radio frequency forced or microwave frequency forced evaporative cooling is usually 
used to get rid off the highly energetic atoms and thus decrease the overall,tem­
perature of the atomic sample. In the program, evaporative cooling is not done by 
simulating the R F / M F frequencies. Actually the R F / M F frequency knife is converted 
into magnetic field amplitude "Bevap" at which atoms will undergo a spin flip. 

Fig. 3.6 shows one example of linear ramping, which is usually adopted by most 
evaporative cooling experiment. B; and Bf are initial and final magnetic field am­
plitudes, which correspond to the initial and final R F / M F frequencies respectively. 
Bevap(t) is the magnetic field amplitude which is related to the cutting energy E c u t at 
time t. The analytical expression for Bevap(t) is given in Fig. 3.6 already. In the simu­
lation, the local magnetic field of each macro-atom, Bi o c(iat), is calculated at the end 
of every time step and compared with the cutting magnetic field amplitude B e v ap(t). 
If |Bi o c(iat) - B e v a p ( t ) | < A B , where A B = hujia,u/mFgFpB, the macro-atom with 
index "iat" will undergo a spin flip to the untrapped state with a probability w ^ d t 2 

and finally be lost. 
The straight line in Fig.3.6 is just the simplest version of linear ramping. In 

actual experiments, linear ramping is usually broken into several steps with different 
ramping slopes. At the the beginning step, quick ramping is utilized to get rid of 
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B 
tramp -1 Bevap(t) = Bf + (Bi - Bf) * 
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Figure 3.6: Linear ramping of the cutting magnetic field amplitude B e v ap(t). 

the highly energetic atoms, and then the ramping speed is slowed down so that the 
atomic sample has enough time to re-thermalize. In the program, the duration of 
each step is represented by "duree(isegment)". t r a m p is the time interval from the 
beginning evolution time to to the current ramping step, in other words, t r a m p is the 
sum from duree(l) to duree(i), as shown by the equation in Fig. 3.6. 

3.10.2 Background loss 
As we know, the magnetic lifetime is limited by the background pressure inside vac­
uum chamber. Collisions between the trapped atoms and room-temperature back­
ground vapor determines how long the ensemble of ultra-cold atoms can exist. In the 
simulation, background loss is realized by the following code. 

i f ( indic( iat) .and.(ran3(idum)*tau.It .dt)) ind ic ( ia t )= . fa l se . 

where "tau" is the magnetic trap lifetime. The probability for an atom (or group of 
atoms) to be lost in some time interval dt is simply dt/tau (assuming this ratio is a 
number much smaller than 1). Using this probability, a macro-atom is lost from the 
trap if a random number between [0,1] is less than this ratio. 

3.10.3 Majorana loss 
Majorana loss is caused by a spin-flip transition of the trapped atoms which fly 
through or near the magnetic field minimum where the changing rate of the B-field 
vector is greater than Larmor precession frequency. Because of the spin transition, low 
field seeking atoms may switch to high field seeking states and consequently will be 
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accelerated out of the magnetic trap. In our program, Majorana loss is implemented 
as changing spin mp to some random value between — F and +F when the particles 
venture closer than a specific distance n to the trap minimum. The distance rj is 
given by [24] 

. < 3 ' 4 6 ) 

Where Ap is the magnetic moment difference between adjacent Zeeman levels, B' is 
the magnetic field gradient for a quadruple trap, V = ^ksT/m. 

The rate at which the trapped particles change their magnetic sublevels is given 
by 

mApR1 

Where R = kBT/nB'. 

3.11 Measurement 
Just like actual experiments, the macroscopical properties of the atomic sample are 
measured in the simulation at regular intervals. In the input file "ev.in", there's a 
parameter named as "nmes" which determines how many times of measurements are 
going to be taken during the simulation. The measurement interval is decided by 
T/nmes, T is the total time consumed by the evaporation process. 

During each measurement, many parameters, such as temperature, number of 
atoms, density and phase space density etc., are measured for each atomic species 
and the overall atomic sample. The results for these measurements are displayed on 
the screen and also stored into the output files. One example of the output file is 
shown below. 

t xrms yrms zrms temp N_atomes taux.c densit phase Pcol Pocc Bevap 
0.00 118. 496. 120. .126E+03 299991040 0.0 270.4 0.13E-04 0.00 0.00 0.00 
0.04 275. 568. 264. .893E+02 299761664 37.2 46.2 0.36E-05 0.01 0.69 98.37 
0.08 289. 567. 269. .907E+02 298942464 30.8 43.2 0.33E-05 0.01 0.75 97.97 
0.12 375. 596. 339. .918E+02 297697280 23.6 24.9 0.19E-05 0.01 0.95 97.58 
0.17 390. 596. 334. .915E+02 296222720 21.1 24.2 0.18E-05 0.01 1.03 97.18 

3.12 Comparison 
To validate the multi-species code, we did the following comparisons and tests. 

The first is the comparison of results between original single species code and two 
species code. In this case, both the single species code and the multi-species code 
simulate the same dynamics of a rubidium sample, and in the multi-species code, the 
number of atomic species is set to be one. 

The other test is a check of the results with different macro atom distributions 
using the multi-species code. Parameters are from the same experiment as the first 
comparison. In this simulation, a certain number of rubidium atoms are distributed 
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Table 3.3: Parameters for the 8 7 R b and 6 L i mixture experiment in Zimmermann's 
group [3]. 

y 7 R b «Li 
Initial spin states |2,2> |3/2,3/2 > 

Initial temperature 200-300//K 200-300//K 
Initial number of atoms 3 x l 0 8 2 x l 0 7 

Final number of atoms 1.2 x 106 2 x 105 

Final temperature 620 nK 2.4/zK 
Trapping frequency 

Bo,B', B" 
Ramping frequency 

UJx = ujy = 2TT x 206i/z, uz = 2ir x 50.1Hz 
B0 = 3.5G, B' = 3.02T/m, B" = 1542T/m 2 

from 200Mhz-100Mhz-100kHz above Rb trap bottom 

by different number of initial macros and a different number of atoms inside each 
macro so that the total number of atoms represented is the same. 

3.12.1 Comparison of results between single species code 
and two species code 

Fig. 3.7 shows the results for the comparison between single species code and two 
species code, which is composed of four graphs describing the time evolution of tem­
perature, collision rate, density and phase space density separately. In this simulation, 
the size of the rubidium macro-atom is set to be 215=32768, the other parameters 
are from the rubidium part of table 3.3. 

Most parts of these curves in Fig. 3.7 overlap perfectly, except that the begin­
ning part and the small dips in collision rate graph are a little bit diverged. These 
dips correspond to the position of duplication processes where the atomic sample is 
duplicated and separated from the original one. 

The perfect overlapping of most parts of these curves, especially the latter parts 
after the first two seconds, ensures that our multi-species code is good enough to give 
approximately the same results as the single species code. 

3.12.2 Comparision of results between different macro 
atom distributions 

As we discussed in section 3.4, the atomic sample is reduced into many macro-atoms, 
each of which represents p = 2x real atoms, total number of the atoms equals the 
number of macro-atoms times p. The speed of the simulation is greatly influenced by 
the size of the sample atoms and the number of macro atoms, in order to shorten the 
time consumed by the. simulation loop so that we can debug the code faster, fewer 
macro atoms are preferable when the size of the sample atoms is constant. However, 
we were not sure whether this kind of treatment will affect our results or not. To 
clarify this puzzle, we did the following test. 
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Figure 3.7: Comparison of the results between single species code and two species 
code, (a): Evolution of temperature, (b): Evolution of collision rate, (c): Evolution 
of phase space density, (d): Evolution of density. 

By keeping the total number of atoms constant, we distribute the sample of atoms 
using different combinations between the number of macro atoms and the number 
of atoms inside each macro, such as 36621*8192 (213) and 9155*32768 (21 5), all the 
other parameters are the same and come from the rubidium part of Zimmermann's 
sympathetic cooling experiment [3]. The results for this comparison are shown in 
Fig. 3.8. 

Clearly all the curves in Fig. 3.8 overlap perfectly for different macro atom distri­
butions. The comparison of collision rate is not shown, since collision rate is related 
to the number of macro-atoms, which is not the same for different macro atom distri­
butions and thus not worthy of comparison. Based on the perfect overlapping of the 
curves in Fig. 3.8, we can say that bigger size of the macro-atoms and less number of 
macro-atoms will not affect the simulation result too much, we can use less number 
of macro atoms to speed up the simulation for debugging purposes. 
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Figure 3.8: Evolution of two different macro atom distributions (36621 x21 3 and 
9155x215) with equal number of total atoms, (a): Evolution of the number of atoms, 
(b): Evolution of temperature, (c): Evolution of density, (d): Evolution of phase 
space density. . 

3.13 Finding parameters for Zimmermanh's 
experiment 

Most of the parameters required for simulating Zimmermann's experiment are shown 
in table 3.3. In this section, we discuss the process for obtaining some important 
parameters. 

3.13.1 S0, B' and B" 
In Zimmermann's experiment, the magnetic trap creates a Ioffe-Pritchard type po­
tential, which can be simplified by a three-dimensional harmonic trap around the trap 
center. The trapping frequencies for this trap are given as, OJX^Uv = 2n x 206Hz and 
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Table 3.4: 8 7 R b Physical Properties[23]. 
Atomic Number Z 37 
Total Nucleons Z + N 87 

Relative Natural Abundance 77(87Rb) 27.83(2)% 
Atomic Mass m 86.909 180 520(15) u 

1.443 160 60 x IO" 2 5 kg 
Nuclear Spin I 3/2 

Nuclear g-factor 9i -0.000 995 141 4(10) 
Fine structure Lande g-factor 9J(5 2S1/2) 2.002 331 13(20) 

Electron spin g-factor 9s 2.002 319 304 373 7(80) 
Electron orbital g-factor 9L . 0.999 993 69 

Ground state hyperfine splitting <*>A/ 2TT x 6.834 682 611 GHz 

Table 3.5: 6 L i Physical Properties [27]: 
Atomic Number Z 3 
Total Nucleons Z + N 6 

Relative Natural Abundance T ? ( 4 U K ) 7.6% 
Atomic Mass rri 6.015 121 4 u 

9.988 341 4 x IO" 2 7 kg 
Nuclear Spin I 1 

Nuclear g-factor 9i -0.000 447 654 0 
Fine structure Lande g-factor 9J(2 2S1/2) 2.002 301 0 

uz = 2n x 50.1Hz, also the bias field B0 = 3.5G. For consistency with our program, 
let's switch uy and uiz. 

B' = u x ^ , B " = m^- (3.48) V A* A* . 

Eqn. 3.48 describes the relationship between trapping frequencies and B', B" of 
the Ioffe-Pritchard type magnetic trap, as discussed in section 3.6. B', B" are the 
gradient and curvature of the IP trap. Here in Zimmermann's experiment, m is the 
mass for 8 7 R b , fi is the magnetic moment of Rb atoms sitting at |2,2 > state. After 
calculation, we get: 

B' = 30277m, B" = 1542T/m 2 (3.49) 

3.13.2 Bi and Bf 

Microwave frequency is used to resonantly couple the Rb trapping Zeeman state 
|2,2 > and the untrapped |1,1 > state in Zimmermann's experiment, as shown in 
Fig. 3.9. At the beginning of the forced evaporative cooling, the microwave frequency 
is ramped down quickly from 200MHz+/ 0 to 100Mhz+/ o in 5 seconds, the next ramp­
ing step takes 20 seconds from 100Mhz+/ 0 to 100khz+/o. Here f0 is the equivalent 
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as ar 
e Li- 6 Li 45.5 ± 2.5 -2160 ± 250 [28] 
7Li- 7Li 33 ± 2 -27.6 ±0.5 [28] 
6 Li- 7 Li -20 ± 10 40.9 ± 0.2 [28] 

8 7Rb- 8 7Rb 93 ± 5 102 ± 6 [29] 
23Na-85Rb 167118 59l*2 [30] 

6Li- 8 7Rb N.A. 207J1. [3] 
23Na-87Rb 55l3 5ll§ [30] 

4 0 K - 4 0 K N.A. 78 ± 2 0 [31] 
N.A. -381?? [31] 

4 0 K- 8 7 Rb N.A. -9fi1+ 1 7 0 

Z D 1 - 1 5 9 
[31] 

Table 3.6: Singlet (as) and triplet (or) scattering lengths in units of ao (Bohr radius) 
for isotopically pure and mixed gases. 

frequency for 8 7Rb trap bottom, /o = 2\gF\pBBo/h ~ 4.9Mhz.. 
As mentioned in section 3.10.1, we are not simulating the RF/MF frequencies in 

the program, actually we convert the initial and final frequencies to the magnetic 
field boundaries, Bi and Bf. Eqn. 3.50 shows the method for this conversion. 

h(f + fo) = \9F\PBB x number of Zeeman sublevels (3.50) 

Here in this experiment, the number of Zeeman sublevels should be two, since the 
trap state is |2,2 > and mp=2. \gF\ equals to 1/2 for ground state 8 7Rb atoms. After 
calculation, the initial and final magnetic field boundaries are found to be: 

• £i=1.463263215xl0- 2T (200Mhz) 

• 5/=3.571413161xl0-4T (lOOKhz) 

• 5middie=7.491316073xl0-3T (lOOMhz), the middle point. 

3.13.3 Collision process 
Another thing need to be discussed is the collision process between different spin 
states. For 8 7Rb there are 3 low-field seeking Zeeman states: |2,2 >, |2,1 > and 
|1, — 1 >, as shown in Fig. 3.9. In Zimmermann's experiment, the |1, — 1 > atoms are 
removed from the trap once for all at the beginning of the evaporation ramp. The 
12,1 > state atoms are eliminated by applying a magnetic field offset chosen high 
enough to energetically separate the |2,2 > from the |2,1 > cloud, and then tuning 
the microwave frequency between the potential minimum seen by |2,1 > atoms and 
the untrapped 11,0 > state. Pulse durations of 5 ms is long enough to empty the 
undesired |2,1 > states. 

Based on the above discussion, only |2,2 > state is considered in evaporative 
cooling process in the simulation. 

file:///9f/pbB
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Figure 3.9: Scheme of the microwave transitions used (a) for evaporating the Rb 
cloud in the |2,2 > state, (b) for removing atoms from the |2,1 > state and (c) for 
removing atoms from the |1, — 1 > state. 

Two-species mixture experiment of quantum degenerate Bose and Fermi gases has 
been investigated by many groups, which covers various kinds of combinations, such 
as 4 0 K + 8 7 R b [37], 6 L i + 7 L i [25], 6 L i + 2 3 N a [26] and 6 L i + 8 7 R b [3], etc. Since our 
future experiment is about the ultra-cold collision between Lithium and Rubidium, 
the 6 L i + 8 7 R b experiment performed in C. Zimmermann's group becomes to be the 
best choice for calibrating this simulation. 

The next step for our simulation is to run the code for Zimmermann's sympathetic 
cooling experiment, from which to get useful information for our Li+Rb ultra-cold 
collisions experiment. 

3.15 Conclusion 
In this chapter, firstly, we discussed a numerical model for simulating evaporative 
cooling. This model was originally developed from J . Dalibard's group, and was spe­
cially designed for simulating the forced radio-frequency evaporation of 1 3 3 C s atoms 
inside a magnetic trap within harmonic approximation. In my work, the single species 
code was developed so that it can simulate the dynamics of a multi-species trap in­
cluding inter-atomic collisions and non-harmonic trapping potentials. 

In the numerical model, the concept of macro-atoms and the related duplication 
technique were introduced. We also discussed the boxing technique, in which the 
whole atomic sample is divided into many small boxes, atoms will undergo collisions if 
they are found to be in the same box as the others. Different kinds of loss mechanisms 

3.14 Next Step of Simulation 
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are included, such as the forced radio-frequency (or microwave frequency) evaporative 
cooling, background collisions, and Majorana spin flip losses. 

To validate the consistence between our multi-species code and the original single-
species code, a comparison was tried using the parameters from C. Zimmermann's 
sympathetic cooling of fermionic Lithium using Rubidium atoms. The result shows 
a very good consistence between the multi-species and single species codes. Based 
on the same parameters from Zimmermann's experiment, another comparison was 
performed to check the influence of different macro-atom distribution on the simu­
lation results when the total number of real atoms is constant, since the number of 
macro-atoms determines how fast this program can run. Two kinds of distributions 
are compared, 36621x213 and 9155x2n, in which 2X is the number of atoms inside 
each macro, the number ahead of it is the number of macro-atoms. The compar­
ison shows that results from different macro-atom distributions agree and give us 
confidence that the finite sample size does not result in spurious results. 
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Chapter 4 

Experimental Setup 
A test chamber has been built in our lab in order to study the ultra-cold collisional 
properties between lithium and rubidium atoms, as shown in Fig. 4.1. The whole 
experimental setup consists of several subsystems: 

• The atomic sources 

• Vacuum system 

• Laser system 

• Computer control system 

In the laser system, the rubidium laser was built by our research associate, Dr. 
Bruce Klappauf. Two summer students, Peter Eugster and Aviv Keshet, built 
a Broad Area Laser (BAL) amplifier system, producing laser light for a Lithium 
Magneto-Optic Trap. The computer control system was mainly constructed by a 
co-op student, Raymond Gao. 

My contribution focuses on the vacuum system and part of the atomic sources. 
For the vacuum system, I made a 3D design of the whole vacuum test chamber using 
IronCad 8.0, as shown in Fig. 4.1. This design allows us to assemble all the parts 
required for the ultra-cold collision experiment virtually on the computer, such as the 
magnetic coils, dispensers, the glass chamber and vacuum pumps etc., and thus gives 
us useful guidance for actual setup. Also a temperature monitoring box was made 
by me to monitor various baking temperature of the vacuum system during bakeout. 
This system is described in Appendix A. For the atomic source system, the mounting 
scheme inside vacuum chamber for Rubidium dispensers is simulated in the above 3D 
design. Spot welding of the dispensers onto copper conductors was investigated and 
an efficient way is found by us to do the work and described in Appendix B. 

In the following sections, I will discuss the atomic sources and vacuum system. 
The laser system and the computer control system are not included here, details for 
them can be found in the summer reports written by our undergraduate students. 



Figure 4.1: Experiment setup of the test chamber. 1: Getter Pump, CapaciTorr D400 from Saes Getters. 2: 4-way cross with 
dispensers inside, alkali metal dispensers from Saes Getters. 3: Ion Pump, Vaclon Plus 20 (Varian, part number 9191145). 4: 
all-metal valve (Varian, part number 9515017). 5: Magnetic coils. 6: Glass chamber. 7: Support of the water pipes and electrical 
connections to the magnetic coils. 8: Support of the whole setup. 9: Electrical feedthru for the dispensers (MDC Vacuum, part 
number 640004). 
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4.1 Experimental Strategy for The Study of 
Hetero-nuclear Feshbach Resonances between 
Lithium and Rubidium 

The experimental setup shown in Fig. 4.1 will be used to study the Hetero-nuclear 
Feshbach Resonances between Lithium and Rubidium. The procedure for this exper­
iment will take the following sequence. 

Firstly, a dual species MOT will be created to trap both 6 Li and Bosonic Rubidium 
istopes, ^Rb or 8 7Rb. Here the magnetic coils are set to produce a quadrupole 
magnetic field by using inverse current in the upper and lower coils, the current flow 
is about 2A which can provide a 10 Gauss/cm magnetic field gradient for our dual 
species MOT. 

Once the atoms are cooled by the dual species MOT, an optical tweezer will 
be used to trap these atoms for later Feshbach resonance experiment. The optical 
tweezer is created by a lOmW CW Yb Fiber laser with center wavelength 1064 nm 
and linewidth <100kHz, after amplified by the Yb Fibe amplifier, it will give a 20W 
CW saturated output power. A resonance cavity will be used to enhance the optical 
dipole trap [33]. 

After the atoms are trapped by the optical tweezer, the magnetic coils are changed 
to Helmholtz coils, which provides a uniform magnetic field between the coils. The 
current here will be 10A ~ 20A and the magnetic field can be adjusted between 0 
~ 2k Gauss. At a specific magnetic field valve, the temperature and the number of 
trapped atoms will be measured by shining Lithium and Rubidium resonant lasers 
into the optical trap. Based on the measured thermalization rate, the inter-species 
cross section between Lithium and Rubidium can be determined. Also, by checking 
the relationship between the decay rate of the number of trapped atoms with corre­
sponding magnetic field intensity, the Hetero-nuclear Feshbach Resonances between 
Lithium and Rubidium can be found. Since inelastic loss rate also diverges at the 
Feshbach resonance. 

4.2 The Atomic Source 
During the history of laser cooling and trapping experiments, many atomic sources 
have been tested and used to provide atoms for the loading of a trap, such as ovens, 
metal dispensers, Light Induced Atomic Desorption (LIAD) and laser ablation. The 
main point of all the atomic sources is to provide a large (and slowly moving) particle 
flux while not spoiling the vacuum so that on retains the long vacuum life time 
required for effective evaporative cooling to reach quantum degeneracy. 

Initially ovens were used to produce a large atomic beams for MOT loading, but 
these sources were not ideal since the vapor pressure was too high and couldn't be 
lowered quickly. The next generation used two MOTs, where one MOT was used 
to trap atoms in a region of high background pressure and the precooled atoms are 
then transferred to a region of better vacuum where they are captured by a second 
MOT. A variation of this dual trap system involved a pure magnetic transfer of the 
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precooled atoms and requires only a single MOT, thus improves optical access for 
further experiments [34, 35]. 

Besides the large particle flux provided by ovens, the background pressure also 
increases to a very high point and the vacuum lifetime is greatly decreased. To 
retain low background pressure after the MOT phase, two other techniques have re­
cently been investigated. One is the metal dispenser, which can be turned on/off 
very quickly (compared to ovens). In a UHV environment, many alkali atoms have a 
high room-temperature vapor pressure, and metal dispensers store the alkali atoms 
as alkali chromates with reducing agents. By ohmic heating, these alkali metal chro-
mates, which have a very low room-temperature vapor pressure, undergo a chemical 
reaction with the reducing agents, and alkali atoms are liberated and escape out of 
the dispenser. The reducing agent is SAES' StlOl (Zr 84%, Al 16%) getter alloy. In 
addition to reducing the alkali back to its metallic state, StlOl also removes chemi­
cally reactive gases from the device, preventing them from contaminating the alkali 
metal vapor. 

The other technique for providing atoms for trapping while still achieving a low 
background vapor is light induced atom desorption (LIAD). For incomplete coverings 
of the vacuum chamber walls, the vapor pressure of the alkali atoms in question can be 
well below the equilibrium room-temperature vapor pressure that one would expect 
from a chunk of the metal inside the chamber. In this case, atoms that are absorbed 
on the walls of a vacuum chamber can be quickly desorbed by irradiation with weak 
and incoherent light. This allows for a temporary increase of desired partial pressure. 
LIAD has been investigated for a number of alkalis since 1993 [36]. For the case of 
rubidium a 410 nm LED light has been found to greatly increase the MOT loading 
rate while keeping a long vacuum lifetime at the same time [37]. 

4.2.1 Rubidium Source 
In our experiment, metal dispensers are used to provide rubidium atoms. These 
dispensers are mounted on copper conductors inside a four way cross and face towards 
the glass chamber, as shown in Fig. 4.2. This kind of orientation can help atoms 
sprayed from the dispensers pass through the glass tube and be collected inside the 
glass chamber. However, most of these atoms will be coated on the wall when they 
try to pass the glass tube, the LIAD method will be used to desorb the rubidium 
atoms on the walls for the MOT loading phase. This will be discussed further in the 
next chapter on dispenser calibration. 

In order to maintain an ultra high vacuum inside the test chamber, we chose spot 
welding instead of screws to connect the dispenser terminals and the copper conduc­
tors. However, there are two problems concerning this technique in our application. 
Spot welding is a type of resistance welding used to weld various sheet metals. Typ­
ically the sheets are in the 0.5-3.0 mm thickness range. In our experimental setup, 
the copper conductor on the electrical feedthru is a cylinder with 0.25" diameter, 
which is not suitable for spot welding application. To solve this problem, vacuum 
soldering is used to first solder a piece of thin copper sheet to the top of the copper 
conductor, and then the dispenser terminal is spot-welded onto the copper extension 
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Figure 4.2: Atom sources for the test chamber. 1: metal dispensers which are 
mounted on the copper conductors by spot welding. Here the four way cross is 
set to be transparent for observation of the dispensers. 2: position for the lithium 
oven(Fig. 4.4), which is not shown in this design. 

sheet. Another problem is the incompatibility between the dispenser terminals and 
the copper sheet. The dispenser terminal is made of nickel alloy (78% nickel and 22% 
chromium), and it is quite difficult to spot weld this nichrome terminal to the copper 
sheet. After investigation and lots of practice, we figured out a convenient way to do 
the job, details of this method are discussed in Appendix B. 

4.2.2 L i th ium Source 
Like the rubidium source, a lithium metal dispenser is mounted on the copper con­
ductor of the electrical feedthru as one possible lithium source for our experiment. 
However, the LIAD method may not work as well for lithium atoms as for rubidium 
atoms, and to ensure that we can get enough lithium atoms into our trapping region, 
a lithium oven was designed and built by Swati Singh. 

The lithium oven is located at position 2 in Fig. 4.2, inside the small nipple. An 
electrical feedthru (1.33" flange size) is connected to the oven to supply necessary 
current. Schematics of the lithium oven are shown in Fig. 4.4, Fig. 4.3 shows an 
actual picture. 

As pointed out in Fig. 4.4, stainless steel is used as the oven material. Inside 
the oven, there is a lithium metal chunk which will be heated by the current passing 
through the electrical feedthru. At a high temperature, lithium vapor will be emitted 
out of the oven, after being adjusted by the collimator, a lithium atomic beam will 
be pointed to the chamber center. Because it takes very long for the lithium oven 
to cool down, and we need the lithium source to be shut off quickly after the MOT 
loading, a shutter is placed above the collimator to block the lithium atomic beam 
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Figure 4.3: Outlook of the lithium oven, the top one is the picture of the working 
situation. 

when necessary. This shutter is a piece of aluminum foil connected to the end of a 
tungsten wire which runs parallel to the lithium oven, the tungsten wire is fastened 
to the lithim oven by Kapton wire and has a magnet on the end. The magnet is 
spot-welded onto the tungsten wire. We can change the orientation of the magnetic 
and thereby rotate the shutter by changing the orientation of an applied magnetic 
field outside of the vacuum chamber. 

4.3 Vacuum System 
Three different kinds of vacuum pumps are used to realize the necessary ultrahigh 
vacuum environment in our experiment, the turbo pump (Turbo-V 70 from Varian), 
the ion pump (Vaclon Plus 20 from Varian) and the Non-Evaporable Getter (NEG) 
pump (CapaciTorr D400 from Saes Getters). 

4.3.1 Turbo Pump Station 
Our turbo pump is located in a mobile station, the turbo pump station, as shown in 
Fig. 4.5. It includes an ionization gauge, thermocouple gauge, Residual Gas Analyzer 
(RGA) and a dry scroll pump, and can be moved around in our lab and connected to 
various chambers to pump them down independently. Table 4.1 shows the part list 
for our turbo pump station. 

The turbo pump in our turbo pump station is Varian's Turbo V 70, which has a 
pumping speed varying from 42 L/S (for H2) to 52 L/S (for He) for 2.75" ConFlat 
flange size. Because of the big volume of our vacuum system, the ultimate pressure for 
the turbo pump station is only 1 x 10"8 torr, about 10 times higher than the lower limit 
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Figure 4.4: Schematics of the Lithium oven, which is designed by Swati Singh. 
Lithium source coming out of the stainless steel oven is calibrated by the collimator, 
a piece of aluminum foil is connected to the end of a tungsten wire (which is controlled 
by the magnet on it) to be the shutter. 
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Figure 4.5: Turbo pump station. 1: SH-100 Dry Scroll Pump, 2: Turbo-V 70 Pump 
3: Varian 571 Ionization gauge, 4: Turbo-V 70 Rack Controller, 5: 843 Ratiomatic 
Gauge Control, 6: temperature probing box, 7: RGA 200 Residual Gas Analyzer, 8: 
power box. 

of the Turbo V 70. The Turbo V 70 controller is a microprocessor-controlled frequency 
converter with self-diagnostic and protection features that ensures the highest degree 
of reliability. It displays rotational speed as the pump starts up and indicates when 
full speed is reached. At any time during the operation of the pump, the speed, 
current, power, and bearing temperature can be displayed. 

In order to be compatible with the turbo pump and to avoid the possibility of 
oil contamination of our pumping station or UHV vacuum system, a Varian SH-100 
is used as our dry scroll pump. This single-stage pump produces a pumping speed 
of 100 L/m (on 60 Hz power) and achieves an ultimate pressure of 50 mtorr (0.07 
mbar). 

An Ionization gauge and thermocouple gauge are used to monitor vacuum pres­
sure during the pumping down procedure, the acquired pressure values are displayed 
on gauge controllers of the 843 Ratiomatic Gauge Control box. The thermocouple 
gauge measures vacuum pressure from atmosphere to l x l O - 3 torr). The ionization 
gauge tube offers high performance over a wide range of pressures (2x10"10 torr to 
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Table 4.1: Part list for turbo pump station. 
Part Company Description 
Turbo Pump Varian Turbomolecular pump, Turbo V 70 
Turbo Pump Controller Varian Turbo V 70 controller 
Dry Scroll Pump Varian Dry Scroll Pump, SH-100 
Ionization Gauge Varian Bayard-Alpert type, 571 series 
Ion Gauge Controller Varian 843 Ratiomatic Gauge Control box 
Thermocouple Gauge Varian Model 536 
RGA SRS Residual Gas Analyzer, RGA 200 

l x l O - 3 torr), it can withstand long periods of degassing or accidental exposure to 
atmospheric pressure while at operating temperature and will still recover its origi­
nal characteristics. Because of these different ranges of measurements, TC gauge is 
used to monitor pressure when only the dry scroll pump is running, after the vacuum 
pressure drops to about miliTorr, the turbo pump is turned on and the ion gauge can 
continue with the vacuum measurement. 

RGA 200 is the Residual Gas Analyzer from SRS (Stanford Research Systems). 
It offers exceptional performance and detailed gas analysis of our vacuum systems. 
The RGA system is comprised of a quadrupole probe, an electronics control unit 
(ECU), and a real-time Windows software package that is used for data acquisition 
and analysis, as well as probe control. The standard Faraday cup detector allows 
partial pressure measurements from 10.5 torr to 5xl0 - 1 1 torr for all the elements 
between AMU (atomic mass unit) 1- 200. For increased sensitivity and faster scan 
rates, an electron multiplier is used and can detect partial pressures down to 5xl0 - 1 4 

torr. 

4.3.2 Ion Pump 
The ion pump in our vacuum system is Varian's Vaclon Plus 20 (StarCell version). 
It can handle a high amount of noble gases (better than Noble Diode version) and 
hydrogen (comparable to the Diode version). 

4.3.3 Non Evaporable Getter Pump 
To optimize the performance of the StarCell Ion Pump, Non Evaporable Getter Pump 
is added into our vacuum system. The NEG pump excels in pumping hydrogen, which 
is usually a shortcoming for the other kinds of pumps. However, It is very poor at 
pumping hydrocarbons at room temperature, and it will not pump noble gases at 
all. The combination of a NEG pump and an ion pump allows to contribute their 
strengths and for each to compensate for the deficiencies of the other. 

NEG pumps also have some other very interesting capabilities that make them 
attractive in many circumstances. They usually operate without power. They are 
clean, lightweight, compact and vibration-free. They can help provide better ultimate 
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Figure 4.6: (a): Sorption curve for CapaciTorr D400-2, (b): Heating curve for 
CapaciTorr D400-2. 

vacuum than is achievable without them. They operate unaffected by magnetic fields, 
and do not generate magnetic fields. 

In our vacuum system, CapaciTorr D 400-2 from SAES Getters is chosen as our 
getter pump. It uses St 172 (Zr-V-Fe) material in form of disks to achieve high 
pumping performance in a very compact configuration. Fig. 4.6 shows the sorption 
and heating curves. NEG pumps are usually shipped with a passivation layer on the 
getter alloy, they need to be activated to be ready for use. For St 172 cartridges, 
45 minutes heating at 450 °C (4.7A) is sufficient for activation. Because we use the 
NEG pump inside UHV environment and the gas load is very small, reactivation of 
the pump can be greatly reduced. 

4.3.4 Baking System and Pumping Sequence 

Baking of the vacuum system is essential for achieving ultra high vacuum. It can 
increase the outgassing rate of the vacuum chamber, and thus reduce the pumping 
time to get the vacuum system clean. 

Our baking system can be divided into two parts. One is the baking of the turbo 
pump station, which is done by covering all the bakeable parts with heating tapes 
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Figure 4.7: Brick oven for hard baking our test chamber. In this picture the glass 
chamber is not connected, due to the big baking temperature difference between the 
glass chamber and the other vacuum parts. Infrared ceramic heaters (the white tile 
in front of the black ion pump ) are used to heat the oven. 

(Omega, FGS/FGH/FWH Series) and adjusting power through each tape to achieve 
the desired temperature. The other one is the baking of the vacuum part in Fig. 4.1, 
which will be put inside a large oven. The oven is built of ceramic "fire brick" that 
are coated with aluminium foil to contain the dust created when the bricks crumble, 
as shown in Fig. 4.7. Ceramic infrared heaters (Salamander Ceramic, IRCER10272) 
are used to control the temperature inside the oven. 

All the heaters we used are controlled by variacs inside a mobile variac station, 
each variac is adjustable between 0-120V. The baking temperature of every part is 
monitored by a temperature probing box I made, which is capable of monitoring 16 
channels of thermocouple probes at the same time, details about this box will be 
discussed in Appendix A. The maximum baking temperature for all the bakeable 
parts in our vacuum system is shown in Table 4.2. 

Because the maximum bakeout temperature for the glass chamber is much smaller 
than the steel part, and the NEG pump doesen't need to be baked, we divide our 
baking procedure into two steps. In the first step, we bake the test chamber inside 
the brick oven at a very high temperature (400 °C) without glass chamber and NEG 
pump, this "hard bake" lasts about one week. The turbo pump station is connected 
to the test chamber by a flexible bellows through the all-metal valve to pump the 
system during the bakeout. Baking of the turbo pump station is carried out at 
the same time. During the second step, the test chamber and turbo pump station 
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Table 4.2: Maximum bakeing temperature for different vacuum parts. 
Part Maximum Baking Temperature 
RGA probe 300 °C 
Variable Leak Valve 450 °C 
All-metal Valve 450 °C 
Turbo-V 70 120 °C 
Ionization Pump 350 °C 
NEG Pump X 

Nipple, 2.75" Flange 450 °C 
Rotary Feedthrough 200 °C 
Electrcal Feedthrough 450 °C 
Quartz Viewport 200 °C 
Sapphire Viewport 450 °C 
Zero profile wide angle glass Viewport 400 °C 

are firstly cooled down to room temperature, the vacuum pressure now will drop 
to less than 10 -8 torr. Next we vent the test chamber to dry nitrogen and open it 
to install the glass chamber and the NEG pump, during the installation, clean and 
dry nitrogen will flow through the vacuum system to prevent contaminants (water, 
carbon compounds, etc.) from getting inside. After installing the glass chamber and 
the NEG pump, the test chamber will be baked again at a lower temperature (200 
°C) for several days. Before cooling down, the metal dispensers and Lithium oven 
will be heated below threshold to release possible contaminants. After the second 
baking is finished and the whole vacuum system is cooled down, the NEG pump will 
be activated and the all-metal valve will be closed. The turbo pump station will be 
shut down and disconnected. The ion pump and the NEG pump will continue to 
pump down the system and maintain vacuum pressure around 10 _ u~10 - 1 0 torr. 
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Chapter 5 

Calibration of The Alkali 
Dispensers 

As we discussed in section 4.2, metal dispensers are adopted as our Rubidium atomic 
source and a potential source for lithium atoms. To get a better understanding of 
the performance of these dispensers, a calibration experiment was conducted on the 
Rubidium dispenser to investigate its properties, such as the atomic partial pressure, 
resistance, heating time constant, etc. This experimental setup was designed and 
used to test LIAD for Rb+Li; However, our detection sensitivity was too small to 
study this phenomenon. 

This chapter can be divided into three parts. Section 5.1 describes the experimen­
tal setup for the calibration experiment. Section 5.2 explains the procedure for the 
experiment. Finally, Section 5.3- 5.5 discuss the various properties of the Rubidium 
dispenser. 

5 . 1 E x p e r i m e n t S e t u p 

5.1.1 Dispenser holder 
Because we need to investigate the properties for both the Rubidium and lithium dis­
pensers, the dispenser holder was designed to be capable of installing two dispensers. 
Fig.5.1 shows the 3D design for the dispenser holder. The dispensers used for the 
calibration experiment are mounted on an aluminium support, which is resting on 
the multi-channel reducing flange (2.75" to 1.33"). The top end of the dispensers is 
connected to the aluminum support, the other end is connected to copper connectors 
which are separated from the aluminum support by aMacor plate. Electrical power 
is supplied to the dispensers by Kapton wires that are connected to the aluminum 
support and the copper connectors. 

The multi-channel reducing flange has three extension tubes for connecting elec­
trical feedthroughs, and one smaller tube in the center for the rotary shaft, which is 
used for holding the glass slide. The rotary shaft can be rotated outside the vacuum 
and the angle of the glass slide is adjusted correspondingly. Atoms sprayed out of 
the dispensers can be coated on the glass slide and then used for testing the light 
induced photo desorption mechanism. 

The whole setup of the dispenser holder is placed inside a six-way cross, which 
is connected to the turbo pump station (Fig.4.5). In the calibration experiment, 
vacuum pressure doesn't need to be very low, the turbo pump only is able to pump 
down the system to around 10 -8 torr and satisfies the vacuum requirement for this 
experiment. 
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Figure 5.1: 3D design of the dispenser holder. 

5.1.2 Optical setup 
The optical setup for the dispenser calibration experiment is shown in Fig.5.2, which 
is the top view from the six-way cross. Light coming from the diode laser is locked 
to be resonant with Rubidium D2 transition by Doppler-free saturated absorption 
spectroscopy method. 

Two beams are sent into the six-way cross through the front window. The one 
passing between the dispensers and the glass slide is called as the inside beam, it 
will be detected by photo diode A, the other one behind the glass slide is called as 
outside beam and will be detected by photo diode B. In this setup, both the inside and 
outside beams are resonant light, the partial pressure on both sides of the glass slide 
can be detected. Some of the tests require us to measure the transmission through 
the thin film of alkali metal that is deposited on this slide by the dispenser in order 
to estimate the atom flux emitted by the dispenser as well as the evaporation rate 
from the slide. In this case the outside beam will be replaced with a non-resonant 
transmission light and the position will also be moved so that the transmission beam 
passes through the center of the glass slide. 



Chapter 5. Calibration of The Alkali Dispensers 47 

2 

Front W i l idow 

Diode 
Laser 

Photo diode A 

Photo diode B 

Figure 5.2: Optical seutp for the calibration experiment. 

5.2 Experiment Procedure 
This experiment can be divided into three periods. Fig. 5.3~ 5.5 (corresponding to 
periods 1~3) show the time evolution of the partial pressure for different elements, 
N2,8 5Rb, 8 7Rb, 6 Li, 7 Li and H 20. The partial pressure is measured by our Resid­
ual Gas Analyzer, RGA200. Nitrogen is the most dominant vacuum background 
component, it can give us valuable information about the quality of the vacuum en­
vironment. The partial pressure of H 20, on the other hand roughly tells us whether 
there is a leak in the vacuum system or not. 

It is true that the atomic mass units we monitored can also represent other kinds 
of chemicals. For example, AMU 28 can also be C0 2 , and AMU 18 can also be CH 4 . 
However, since N 2 and H 20 are more common in vacuum than the other chemicals 
having the same molecular weight as them, here in this experiment, we call AMU 28 
as nitrogen, and AMU 18 as water. 
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Figure 5.3: Degassing of the dispenser. Partial pressure of different elements inside 
vacuum chamber was recorded by RGA. The up arrows indicate current changes at 
related time. 

5.2.1 First period: degassing period 

During the first period, the Rubidium dispenser is firstly heated up by increasing 
current gradually to threshold (~5.3A), the current through the dispenser is then 
changed several times and finally the dispenser is turned off. The chamber pressure 
measured by ion gauge was below 10 - 8 torr before the heating. At 3A (minute 17:30) 
we saw partial pressure increase of all these five elements, as shown in Fig. 5.3, this 
heating results in the degassing of the dispenser, similar to the degassing of the ion 
gauge filament. We believe that the Rubidium and lithium atoms produced in this 
period do not come from the supposed chemical reaction AC1+B—•BC1+A, where 
A is the alkali we want to produce, B is the reducing agent. But rather from alkali 
atoms stuck to the outer surface of the dispenser. One reason is the immediate decay 
of the partial pressure after each peak; another reason is, later on when we heated 
the dispenser again at 50:00 minutes while below threshold current (5.1A), we didn't 
see partial pressure increase again. 

One weird thing is the partial pressure increase of the A M U 28 element at about 
05:00 minute, since there's no partial pressure increase for the other elements. One 
possibility is that a small amount of this kind of gas is trapped in somewhere of the 
dispenser holder, and released when we heat the dispenser. 
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Figure 5.4: Dispensing Rubidium atoms by heating above threshold. Partial pressure 
of different elements inside vacuum chamber was recorded by RGA, based on the 
data collected in the second period. The up arrows indicate current changes at 
specific time. The average partial pressure of 8 5Rb during each step is also shown at 
corresponding position. 

5.2.2 Second period: heating above threshold to dispense 
Rubidium atoms 

Fig. 5.4 records the experimental procedure of the second period. Based on the volt­
age and current data, we plot the Voltage-Current curve to investigate the behavior 
of the getter resistance during the heating process. Although we didn't check the 
absorption signal at this time, we still got useful information, which will be discussed 
in the following sections. Before taking the data shown in Fig. 5.4, the chamber 
pressure measured by ion gauge is 2 x 10 -8 torr. 

5.2.3 Third period: measuring absorption signal and 
finding Rubidium partial pressure 

Fig. 5.5 records the experimental procedure of this period. This time, besides the 
usual tests, the absorption signal is also measured so that the Rubidium partial 
pressure can be deduced. Different light sources, Rubidium resonant laser and a 
650W light bulb are used to investigate the effect of external radiation on the flux of 
Rb atoms coming out of the dispenser, and on changes to the electrical resistance of 
the dispenser. This test was done to investigate claims that dispenser output can be 
modified by incident radiation. Since the external radiation can provide additional 
heat to the dispensing chemical reaction. These external lights are sent into the 
six-way cross through the side window and focused on the Rubidium dispenser. 
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Figure 5.5: Partial pressure of different elements inside vacuum chamber was recorded 
by RGA, based on the data collected in the third period. The up arrows indicate 
current changes at related time. 

5 . 3 G e t t e r R e s i s t a n c e 
The current and voltage across the Rubidium dispenser are measured during the 
heating process, consequently we plot the V-I curve to figure out how the Getter 
resistance changes during the experiment. There are two graphs showing this, Fig. B.4 
(a) and (b), corresponding to the second and third period respectively. 

It's quite clear that the V-I curve is linear, which means the Getter resistance is 
constant. From the V-I curve, we get an approximate value for Getter resistance, 
which is 0.25~0.26 ohms, this value is the series resistance of the dispenser and 
the conductor (about 0.08 ohms). A direct resistance measurement of some burned 
dispensers is also done using a Hewlett Packard 34401A multimeter, the result is 
0.17±0.01 ohms for the dispenser only. Clearly the Getter resistances from these two 
methods are quite close. 

5 . 4 T i m e C o n s t a n t o f T h e R u b i d i u m D i s p e n s e r 
Because it is important to load the MOT but still maintain a good vacuum, we 
investigated the speed at which the disensers could be switched on and off. 

Based on the data from Fig. 5.4, we calculated the time constant for the heating 
and cooling of the Rb dispenser. We choose the big increase at 42:00 minutes to do 
the analysis. Fig. 5.7 (a) gives the amplified plot in this range, and also the time 
axis has been reset to start from the beginning of the pressure increase. Fig. 5.7 (b) 
gives us the relationship between time t and ln(j£tfj-p[tl))' ^ n e s *°P e °& *he n n e *s 
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Figure 5.6: (a): voltage and current across the Rubidium dispenser, based on the 
data collected in the second period, (b): voltage and current across the Rubidium 
dispenser, based on the data collected in the third period. 

\ j T since 
p(t)=p(tf)-(p(tf)-p(t0))e-t/r (5.1) 

Now we can find the time constant for the heating procedure, which is r = 1/0.0224 ~ 
45 seconds. 

5.5 Estimation of The Rubidium Vapor Pressure 
generated by the atom flux from dispenser 

To get a quantitative estimation of the Rubidium vapor pressure inside the six-way 
cross produced by the atom flux from the dispenser, we created a model and found 
a general formula (Eqn.5.12) to describe the relationship between vapor pressure 
and the attenuation parameter of the absorption signal. And then we performed an 
absorption experiment on the Rubidium vapor cell to calibrate the general formula 
for Rubidium. 

5.5.1 Model for the atomic vapor pressure from an 
absorption measurement 

A beam of N photons (or any particles for that matter) propagating along z in a 
scattering medium will lose particles as 

dN(z) = N(z)p(z)dz (5.2) 

where p(z) is the probability per unit length of a scattering event and is given by 

p(z)dz = noodz (5.3) 
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Figure 5.7: (a): Plot of some data from Fig. 5.4, from 42:00 minutes to 54:00 minutes, 
(b): relationship between time t and ^n(^ti)-p(t^)) °̂  * n e increasing part in Fig. 5.7 
(a), from which we can find the time constant of the heating procedure. Based on 
the data collected in the second period. 

where no is the spatial density of scatterers and adz is the cross-sectional volume 
swept out by the moving particle. Integrating the equation for dN over a path of 
length L gives an attenuation exponent of 

For a photon in an atomic vapor, the cross-section is frequency dependent and given 
by 

r2/4 

where T = 2-K/T is the atomic line width (r the excited state lifetime), CTQ = \2/2n 
is the resonant cross section, and 8 = u> - u>atom is the frequency "detuning" of the 
incident photon from the atomic resonance. Although the spatial density in an atomic 
vapor is uniform, the atoms are moving due to their thermal energy and this motion 
doppler-shifts the atomic resonance by an amount ki,vz where fc/, = 27r/A is the 
wavevector and vz is the component of the velocity along the photon beam axis. 
The spatial density of atoms at a given velocity is given by a Maxwell-Boltzman 
distribution 

n(vz) oc n0e-^mv2' (5.6) 

where ft = (ksT)'1. We consider that the laser is on resonance and has a negligible 
line width so that the detuning is simply S = kivz, and so the density can be written 
as a function of the velocity dependent detuning as 
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where now n(8) is normalized to no and the thermal broadening is given by 

*? = 4- (5-8) mp 

Now the attenuation factor, Eqn.5.4, can be calculated by integrating over all detun-
ings (velocities) and over the path of length L giving 

/

+oo 
n(S)oSd5. (5.9) -oo 

Since the typical atomic line width T ~ 10 MHz is much smaller than the doppler 
broadening width og ~ 1 GHz, we can approximate o(6) with a dirac delta function 
with the same area 

<r{S) « a0^vS{6) (5.10) 

so that the integral is easily evaluated and we have 

a = —L U o oo^n. (5.11) 
osv2n 2 

Using the ideal gas law, P = no/0, we can express the pressure as a function of the 
attenuation exponent 

For the specific case of a room temperature vapor, of 8 5 R b and 8 7 R b we have 

kB = 1.3804xl0" 2 3 J / K (5.13) 

T = 296 K, A = 780.02 nm (5.14) 

T = 27rx5.41Mhz, m = 1.45 x I O - 2 5 kg (5.15) 

l b a r = l x l 0 5 P a , 1 torr = 132 Pa, 760 torr = 1 bar (5.16) 

and therefore that 

P = y x 2.6787 x l 0 _ 8 m b a r m (5.17) 

or equivalently 

P = j x 2.0293 x l 0 _ 8 t o r r m (5.18) 
Lt 
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5.5.2 Calibration of the formula about Rubidium vapor 
pressure 

Eqn.5.18 describes the relationship between Rubidium vapor pressure and the attenu­
ation exponent a, which is equal to ln(7/7n). The theoretical parameter, 2.0293x 10~8, 
has to be calibrated by absorption experiment. 

To calibrate this parameter, we sent a resonant laser light through the Rubidium 
vapor cell (L=7.5cm), and then ramped the laser frequency around resonance to 
get the absorption signals of both Rubidium isotopes, ^Rb and 8 7Rb, as shown in 
Fig. 5.8. In which, the black line is the absorption signal and the laser power coming 
out of the vapor cell is 6.45//W. We also tried different input laser powers, as shown 
in Table 5.1, to insure the transition was not power saturated. Based on the data in 
this table, the average attenuation parameter is found to be a = ln(///o)— -0.93 for 
8 5Rb. 

P(/*W) Io(volts) I(volts) I/Io ln(I/I0) . 
2.15 0.0074 0.0029 0.39189 -0.93677 
4.25 0.0103 0.0040 0.39024 -0.94098 
5.25 0.0265 0.0105 0.39623 -0.92577 
6.45 0.0415 0.0165 0.39759 -0.92233 

Table 5.1: Absorption data for 8 5Rb at different input laser power. I0 and I are 
input and output signal strength respectively, the background light intensity has 
been excluded. 

The room temperature Rubidium vapor pressure can be calculated out using the 
formula from Daniel Steck's Rubidium 87 D Line Data[23]. 

1 Qfil O f̂t 
lo g l 0 P = -94.04826 - 0.03771687-T + 42.57526 logi 0r (5.19) 

0 4529 635 
logio-P = 15.88253 - ' ' + 0.00058663-T - 2.99138 log.pT1 (5.20) 

Eqn. 5.19 and Eqn. 5.20 describe the vapor pressure of solid phase Rubidium and 
liquid phase Rubidium respectively. The validity of these two equations has been 
checked by calculating Rubidium vapor pressure at 39.64°C, and comparing with the 
one we got on internet, 1.18xl0-6 Torr. The results from these two equations are 
very similar, both equal to 1.32xl0~6 Torr and very close to 1.18xl0~6 Torr. 

Now we can find the room temperature Rubidium vapor pressure using either 
Eqn. 5.19 or Eqn. 5.20. The room temperature in our lab is about 22°C, the room 
temperature Rubidium vapor pressure is therefore 2.1 x 10_7torr. Taking into account 
the isotope abundance, the vapor pressure for 8 5Rb at room temperature should be 
2.1 xlO"7 x 73%= 1.53xl0-7torr 

By substituting the attenuation parameter a and the room temperature vapor 
pressure for 8 5Rb into Eqn. 5.18, we got the experimental value, 1.23xl0~8 torr. 
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Figure 5.8: One example of the Rubidium absorption signal through a 7.5cm long 
vapor cell, the output laser power is 6.45/xW. 

Comparing with the theoretical value, 2.0293xlO - 8 torr, it's clear that the above 
model is very successful for describing the Rubidium vapor pressure. 

Finally, the vapor pressure equation we should use for the Rubidium calibration 
experiment takes the following form. 

I i 2 3 x l 0 - 8 I 
P = l n ( - ) x — — — — = l n ( - ) x 9.76190476 x I O - 8 torr m (5.21) 

io 0.126 h 

where 0.126 (meter) is the length for our six-way cross. Based on the vapor pressure 
calculated from Eqn.5.21, the relationships between Rubidium vapor pressure and 
the current/power through the Rubidium dispenser are shown in Fig.5.9. 

5.6 Conclusion 
The performance of the Rubidium dispensers which will be used as our Rubidium 
atomic source for the future ultra-cold collision experiment was studied and several 
properties for the Rubidium dispenser were investigated. 

Getter resistance was found to be 0.17 ~ 0.18 ohms and independent of power for 
the operating currents. This finding was important since we would like to control the 
power delivered to the dispensers. Based on the voltage and current data from the first 
and second periods. This is also consistent with the direct resistance measurement 
(0.17 ±0 .01 ohms) using Hewlett Packard 34401A multimeter. 

Based on the data from a heating process in the second period, the heating time 
constant for the Rubidium dispenser was found, which is about 45 seconds. This 
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Figure 5.9: (a): 8 5 R b pressure vs current through the Rubidium dispenser, based 
on the data collected in the third period, (b): 8 5 R b pressure vs power through the 
Rubidium dispenser, based on the data collected in the third period. 

timescale sets a limit on the time the vacuum will take to recover after the M O T 
loading phase. 

To describe the vapor pressure produced by the Rubidium dispenser, a model 
was developed by us and parameters in this model were calibrated by a test of the 
absorption signal for resonant Rubidium laser, when the light is passing through a 
Rubidium vapor cell. Using this, we calibrated the flux produced by the dispensers 
for different operating currents. 

Finally, Light Induced Atomic Absorption was investigated but the sensitivity 
of our absorption probe was not high enough to see changes in the partial pressure 
induced by external radiation. 
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Appendix A 

Temperature Monitor ing Un i t 

As mentioned in Chapter 4.3, our vacuum system includes many different parts, each 
of them can sustain a specific maximum baking temperature (shown in table ...). 
To obtain the required vacuum environment for our ultra-cold collision experiment, 
we need to bake the assembled vacuum system as hot as possible but withoult lo­
cally exceeding the maximum temperature of a given part. Monitoring the baking 
temperature is realized by a Data Acquisition (DAQ) system which is packaged in a 
rack-mounted box with a 19" front panel, as shown in Fig. A.I. 

Figure A.I: Overview of the temperature monitoring box. 

R e q u i r e d P a r t s a n d F u n c t i o n a l i t i e s 

This temperature monitoring unit is composed of several parts: 16-channel tempera­
ture probing circuit, 19" front panel (with 18 k-type thermocouple connectors on it), 
k-type thermocouple probes, power supply and Minilab 1008. Ordering information 
about most of the parts in this box is shown in table A.I. 

The thermocouple probes will be plugged into the connectors on the 19" front 
panel. By the connection between this 19" panel and the 16-channel temperature 
probing circuit, these thermocouples are linked to the related channels on the analog 
multiplexers. The temperature signal on each thermocouple is picked up by the prob­
ing circuit periodically and sent to the analog input on the DAQ device, Minilab 1008. 
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Part Number Manufacturer Price Qty. Description 
19MJP1-18-K Omega $61.45 1 19" front panel (with 18 

thermocouple connectors) 
N.A. Measurement 

Computing 
$109.00 1 Minilab 1008 

AD595 Analog Device $10.43 1 k-type thermocouple 
amplifier 

ADG407 Analog Device $6.33 2 analog multiplexer 
INA 128 Burr-Brown $3.05 1 op-amp 

Table A.l: Ordering information for the essential parts used in the Temperature 
Monitoring Unit. 

Finally these temperature data are sent to computer through the USB connection on 
the Minilab and further processed in Lab View. 

In the following paragraphs, details about the probing circuit and Minilab 1008 
will be discussed. 

16-channel Temperature Probing Circuit 

A2 Al AO EN ON SWITCH PAIR 
X X X 0 NONE 
0 0 0 1 1 
0 0 1 1 : 2 
0 1 0 1 3 
0 1 1 1 4 
1 0 0 1 5 
1 0 1 1 6 
1 1 0 1 7 
1 1 1 1 8 

Table A.2: Truth table for analog multiplexer, ADG 407. EN is the chip enable pin, 
combining EN with the other three pins, AO, Al and A2, determines which channel 
is switched on. On Switch Pair means SXA is connected to DA, SXB is connected 
to DB. 

The 16-channel temperature probing circuit is designed to switch between different 
thermocouples and export the analog voltage signals detected by each thermocouple 
periodically. This circuit is designed by me and etched in our lab on a double-sided 
PCB (Printing Circuit Board). The circuit schematics and PCB layout are shown in 
Fig. A.2 and Fig. A.3, respectively. 

As shown in Fig. A.2, several chips are combined together to realize the required 
functions for this circuit: 2 analog multiplexers (ADG407), 1 k-type thermocouple 
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a« a« aw e« n 

Figure A.3: PCB layout for 16 channel temperature probes circuit. 

amplifier (AD595) and 1 op-amp (INA128). The analog multiplexer, ADG407, can 
support 8 channel thermocouples, each channel is controlled by a 3-digit code (AO, 
Al and A3), table A.2 shows the logic between different codes and channel numbers. 
Each multiplexer can be distinguished by the EN pin. AD595 is a complete instru­
mentation amplifier and thermocouple cold junction compensator on a monolithic 
chip. It combines an ice point reference with a pre-calibrated amplifier to produce a 
high level (lOmV/ °C) output directly from a k-type thermocouple signal. INA128, 
the op-amp, offers an amplification of the input signal, the gain of this amplification 
is set by connecting a single external resistor, R G , between pin 1 and pin 8. Eqn A.l 
shows the relation between R G and the gain. In our circuit, R G is not used, since we 
choose to use unit gain between input and output signals. 

G = l + ^ (A.l) 

Minilab 1008 
The Minilab 1008 is a USB-based DAQ device with 8 channels of 12-bit analog 
input, two analog outputs and 28 Digital I/Os. It is used to periodically sample 
the thermocouple signals and send data into a computer through USB connection. 
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Digital I/O Connector 

USB Connector 

(a) (b) 

Figure A.4: (a): Minilab 1008, (b): general accessories. CIO-MINI37 is the extension 
board for external I/Os, it can be connected to Minilab through ribbon cable C37FF-
X. 

Fig. A.4 shows the picture of Minilab 1008 and all the required accessaries. 
In our circuit, 5 digital I/Os are necessary to control all-16 channels on two 

analog multiplexers (ADG 407), they will be connected to EN1, EN2, AO, Al and 
A2 separately. However, there are only 4 digital I/Os (DI0-DI3) on the top panel of 
the Minilab 1008, so we have to use extension board CIO-MINI37 to get the access 
to the other 24 digital I/Os. 

There are two different kinds of modes for the analog inputs, 4-channel differential 
mode and 8-channel single-ended mode. The differential mode provides more ranges 
of measurement, from ±1.0V to ±20V. Since four analog channels are enough for 
our application and different ranges are necessary for measuring different signals, 
Minilab 1008 is set to be differential mode in our circuit. The 1st channel is used for 
measuring thermocouple signals, the other three are connected to BNC connectors 
on the back of package box (Fig. A.l) so that we can access to them easily later. 

Two pieces of software are very important for using Minilab 1008, InstaCal and 
the LabView driver. InstaCal provides installation, calibration and test programs, 
mode setting can also be done using this software. The LabView driver gives us the 
chance to program Minilab 1008 in LabView, it also includes lots of useful sample 
Vis which can be utilized to simplify our work. 

LabView Program and Temperature Monitoring 
Since the Minilab 1008, the DAQ device, has plenty of LabView drivers and sample 
Vis, it is convenient to write the program in LabView. The resulting program has 
a very nice front panel (Fig. A.5) on which we can set different parameters and 
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monitor temperature of each channel very conveniently. This program scans all-
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Figure A.5: Labview front panel for monitoring temperature and vacuum pressure 
during bakeout procedure. 

16 channels periodically and converts the voltage signals into Celsius degrees, and 
the scanning period is determined by the parameter, "sec between readings". The 
obtained temperature data will be both displayed on the front panel and recorded 
into a file, the file name and storing directory can be set in the blank window "set a 
File Path". 

On the front panel, there are two modes for displaying the temperature value, the 
numerical list and the time evolution waveform. On the numerical list, the integer 
number on the left side is the channel number, the real number is the correspond­
ing temperature value; The maximum baking temperature on each channel is also 
indicated right after the temperature value so that we can make sure the baking tem­
perature is in the safe range. On the time evolution waveform, all-16 temperature 
curves can be displayed at the same time, or you can turn on/off some channels by 
changing the round button above the waveform using the right channel number. 

Below the temperature waveform, there's still one more graph for the vacuum 
pressure, which is determined by the signals from another channel on Minilab 1008. 
The x axes (evolution time) are the same for both waveforms, this synchronization 
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helps us inspect the changing of vacuum pressure with the baking temperature during 
bakeout. 
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Appendix B 

Spot Welding of Alka l i Dispenser 
W i t h The Copper Conductor 

To improve the connection between the dispenser and the copper conductor, and also 
to minimize the number of screws used in the vacuum chamber, we tried to use spot 
welding to connect the dispenser terminal with the copper conductor on the electrical 
feedthru. 

S p o t W e l d i n g M a c h i n e 

The spot welding machine is located in John Hepburn's lab, it has a Miyachi Unitek 
Dual Pulse 125DP power supply, and a THP tweezer handpiece with ET0420 elec­
trodes, the electrodes look like a taper with a 1/16" tip at the end, as shown in 
Fig. B.l. 

Figure B.l: Outlook of the electrodes. ET0420 is made of molybdenum, ET0450 is 
made of copper alloy. 

As programmed in dual pulse mode, the control will fire twice from a single 
actuation. The first pulse (Fig. B.2) is set at a lower energy level relative to the 
second pulse. It is specifically designed to properly seat the electrodes and prepare the 
parts by displacing surface contamination without significantly reducing the interface 
resistance between the parts. The second pulse (Fig. B.2), or "weld pulse" joins the 
base metals. The second pulse energy level is typically set three to four times that of 
the first. This important feature, pioneered by Miyachi Unitek, produces repeatable 
and acceptable results in difficult-to-weld situations. 
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Figure B.2: Schematics of the dual pulse process of the Unitek 125DP spot welding 
machine . First Pulse seats the electrodes, second Pulse provides the welding energy, 
the unit "ws" means watt-seconds. 

P r o c e d u r e o f S p o t W e l d i n g 

Before we actually did the spot welding, we were worrying about the compatibility of 
the dispenser and the conductor. It is said that spot welding between different mate­
rials is not easy to make. Our dispenser is made of nickel(78%) and chromium(22%), 
the conductor on the electrical feedthrough is made of copper (diameter: around 
0.1"), they are not compatible. Here somebody may say that there are electrical 
feedthroughs with nickel conductors, this is true, however, due to the high current 
threshold (5-7A) of the dispensers and the low current limitation of the nickel elec­
trical feedthroughs (8.2A for 0.05" diameter), and also due to the unpopularity of 
nickel electrical feedthroughs, the most likely electrical feedthrough we are going to 
order is the one with copper conductors. 

When I tried to do the spot welding, the first practice supported the above ar­
gument, the dispenser and the conductor are not compatible, we failed to weld them 
together. At this time the dispenser was placed on the surface of the copper wire, 
the result was that the tip of the electrode just went through the dispenser terminal, 
and the dispenser was not welded onto the copper wire. 

After the first practice, we also tried to wrap the dispenser terminal around the 
copper wire, still not working. Finally we planished the copper wire to be flat (Fig. 
B.3), like the dispenser terminal. This kind of treatment improved the welding, we 
can easily spot weld them together. We did 3-4 times spot welding between the 
dispenser terminal and the flat copper wire, as I remembered, the success rate is 
100%. 

R e s i s t a n c e Tes t 

Although we successfully spot welded the dispenser and the conductor, there's still 
some unclarity about how good the connection is, whether this connection can take 
high current or not. Also the soldering tip always penetrates the dispenser terminal 
and prevents us from making a perfect connection between the copper wire and 
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Figure B.4: Voltage vs current curve for the dispenser, which is welded to the copper 
wire by spot welding. 

the dispenser terminal, as shown in Fig B.3. To clarify these doubts, I tried to 
measure the resistance of the dispenser by Voltage-Current method, the result is 
shown in Fig. B.4. It is quite clear that the V-I curve is linear during the heating 
process, and the resistance is 0.221±0.003Ohms, this is consistent with the direct 
resistance measurement using a precise multimeter Hewlett Packard 34401A, which 
is 0.138±0.010(dispenser)+0.076Ohms(copper wire)=0.214±0.010Ohms. Here the 
resistance of the dispenser is lower than the others (0.16~0.18Ohms), this is because 
the resistance of the dispenser depends greatly on the length of the dispenser terminals 
and these dispenser terminals were damaged and shortened during the spot welding 
process; One terminal was even wrapped, as shown in Fig. B.3. The highest current 
I tried is 6.63A. After this measurement the connection didn't change at all, nothing 
weird happened. 
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P r o b l e m s t o B e T a k e n C a r e 
One thing I need to mention here is the cleanness of the materials, we didn't take too 
much care about this during the spot welding process. However, both the dispenser 
and the copper wire are pretty clean, there's no rust on them. 

Another thing is about the robustness of the connection. We found that the 
connection wouldn't be affected by the high current, even can take pulling force to a 
great point, however, it can't be bent too much. It seems that bending is the only 
method to easily destroy the connection. In the following paragraph we try to find 
out the solution to this problem. 

P o s s i b l e M e t h o d s t o I m p r o v e T h e S p o t W e l d i n g 
C o n n e c t i o n 
After checking the datasheet of the spot welding machine and consulting with the 
technical support in Miyachi Unitek Corporation, I find that the following solutions 
to improve the spot welding connection: 

• Get the 88A/EZ weld head, which can make a perfect connection between the 
copper wire and the dispenser terminal, as shown in Fig. B.5. 

• Machining the tip so that it is flatter with the part we want to spot weld, also 
radiusing the faces of the electrode to prevent catching the edges and creating 
hot spots. 

• Get the ET0420 (besides the copper wire) and ET0450 (besides the nickel plate) 
electrodes. Try increasing the force on the hand piece by tightening the flat 
head screw on the handle. Make sure that the electrode which is in contact 
with the thicker copper flat wire is connected to the positive output terminal 
of the power supply. 

The first method will cost us US$3,140 to buy the 88A/EZ weld head, and also 
the new 250DP power supply. The second one has been tried and didn't make great 
improvement. 

The last method just requires to get another piece of electrode, ET0450, which 
only cost us less than US$100/pair. However, since we already tried using the ET0420 
electrodes pair, it is not clear that how much improvements we can get by using 
different combination of electrodes. Anyway, this method still deserves to try, and 
we also ordered the new electrodes, as shown in Fig. B.l. 

T h e U l t i m a t e M e t h o d t o S p o t W e l d T h e C o p p e r 
C o n d u c t o r W i t h T h e D i s p e n s e r T e r m i n a l 
The methods we discussed above are either not applicable, or can't make great im­
provements. Luckily, after numerous practice, We found the ultimate method to 
perfectly spot weld the copper conductor with the dispenser terminal. 
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Figure B.5: Spot welding the pre-flattened copper wire to nickel heating element 
using 250DP and 88A/EZ weld head. 

Due to the high threshold current requirement of the dispenser(5.3A~7.3A), and 
the availability of the suitable electrical feedthroughs, we ordered the one with 4 
copper conductors (1/4" diameter), 2.75" flange size and can take 150A current at 
maximum. 

Then we tried to spot weld the dispenser terminal onto with the 1/4" diameter 
copper conductor. The result is a little bit disappointing, we can't spot weld the 
dispenser directly onto the thick flat copper bar (flattened by milling) at all. However, 
the dispenser is stuck onto the pre-flattened copper wire (0.1" diameter, in Fig. B.3), 
when we sandwiched the dispenser terminal between the pre-flattened copper wire 
and the cylinder surface of the 1/4" diameter copper conductor. The reason we guess 
is that, the narrow contact between the dispenser terminal and the cylinder surface 
on the 1/4" diameter copper conductor serves as a current focus for the dispenser 
and the pre-flattened copper wire, this current focusing increases the local current 
intensity and then improves the spot welding between the dispenser and the 0.1" 
pre-flattened copper wire. 

The lessons we learned from this practice are: 

• To protect the dispenser terminal from being penetrated by the tips, we should 
sandwich the terminal with another piece of metal. 

• We can't spot weld the dispenser terminal onto a big chunk of copper, like the 
1/4" diameter copper conductor, especially not the thick copper block with a 
flat surface. 

• Use the cylinder surface on the 1/4" diameter copper conductor as the base 
for the spot welding. In other words, use this cylinder surface as another part 
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to sandwich the dispenser terminal. The reason is discussed above, the less 
contact improves the current focusing. 

• Following all the lessons above can't guarantee spot welding the dispenser with 
the copper conductor very efficiently, we need to try several times before making 
a good welding. 

S u m m a r y 

Although there is incompatibility between dispenser terminal and the copper con­
ductor, we can still spot weld them together by planishing the copper wire. To avoid 
the penetration of the electrode tip through the dispenser terminal, we can sandwich 
the dispenser terminal between the pre-flattened copper conductor and a 1/4" diam­
eter copper bar. Using the cylinder surface on the copper bar as a current focus can 
efficiently increase the local current intensity at the sandwich contact and therefore 
greatly improve the spot welding connection. 

We also checked the connection by running high current through them and plot­
ted the Voltage-Current curve, the linearity of the V-I curve clearly shows that the 
connection is good enough to satisfy our requirement in the future experiment. 
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Appendix C 

Program Code for Simulating 
Zimmerman's Sympathetic Cooling 

i 
module parameters 

Implicit none 
!Here define number of atoms, species and F states 
integer, parameter :: nat=9766, ntype°2 !"nat" should be the sum of a l l species. 
real*8, parameter :: pi=3.141S926dO, uB=9.274d-24 
real»8 FmaxCI:ntype), Fmin(l:ntype) !Range of F state 
real*8 nivlnit(l:ntype) !Initial spin state 
integer iat, iat2, atype(1:nat), atypeaux(l:nat) !atype(iat):species of atom 
real*8 BO,Bprime,Bsec,mu(l:ntype),masse,massCl:ntype), ml, m2 
integer macroloc 
real*8 tempini(1:ntype) , natOCl:ntype) 
real*8 rabiCl:ntype), gFtempCl:nat) 
real»8, dimensionC:,:), allocatable :: sigma_in, sigma_e, s i 
real*8 hyper fined: ntype) (hyperfine frequency splitting of the ground level. 
j i . 

type atom 
real*8 F 
real»8 mF 

end type atom 
type(atom) a(l:nat) 
type(atom) nivauxCl:nat) ! tempera! storerage for a(l:nat) 

end module parameters 
I 
real»8 FUNCTION gFCtype.F) 
use parameters 
integer type 
real*8 F, gJCl:ntype), gl(l:ntype), I(l:ntype), J(l:ntype) 
gj = C/2.00233113d0,2.002301d0/) 
gl = C/-0.0009951414d0,-0.000447654d0/) 
I - C/1.5d0,l.d0/) 
J = C/0.5d0,0.5d0/) 
(Finding G factor for F level. 
gF = gJCtype)*CF*(F+l)-ICtype)«CICtype)+l)+JCtype)*(J(type)+l))/C2*F*(F+l)) ft 

+ gICtype)»(F*CF+l)+ICtype)*CI(type)+l)-JCtype)»(JCtype)+l))/C2*F»(F+l)) 
return 

END FUNCTION gF 
! 

program ev 
!-

use parameters 
integer, parameter :: nmaxx°30,nmaxy°360,nmaxzI>nmaxx,ndistribs21 
real*8 pos(l:nat,l:3),vel(l:nat,l:3),kB,hplanck,hbar,dB 
real*8 posaux C1:nat,1:3),velaux C1:nat,1:3),temperature C1:ntype) 
real*8 alphaCl:3,0:3),betaCl:3,0:3) 
real*8 posAverr(1:ntype, 1:3) .posdewCl:ntype, 1:3) ,posdev(l:3) , posAverCl:3) 
real*8 velAverr(1:ntype, 1:3) ,veldewCl:ntype,l:3) ,veldev(l:3) 
real*8 rayonOCl:ntype,l:3),velesseOCl:ntype,1:3),y(l:6), vquadd(l:ntype), vquad 
real*8 frequencyCl:ntype,l:3).omegaCl:ntype,1:3) 
real*8 vcdm(l:3),vrel(l:3),phi,stheta,ctheta,dx,dt,t,tmes 
real*8 Bevap.i(1:10),Bevap.f C1:10),dureeC1:10),Bevap,dep_gC1:ntype,1:3,0:4) 
logical indic(l:nat),resonance 
integer tableC-nmaxx:nmaxx,-nmaxy:nmaxy,-nmaxz:nmaxz) 
integer macro,macroO 
integer natrest, nrestCI:ntype), i ,j ! nrest:number of atoms in each species 
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integer mmm(l:ntype) (number of a l l spin states of each species 
real*8 probacollmoy,probacoll, gammacl,gammac2,gammac,bound 
real*8 Sigma , sigmaloc,sigmalocl,sigmaloc2 
real*8 density(l:ntype),vbar(l:ntype),densmoy(l:ntype).phase(l:ntype) 
real*8 temperatureAll.densityAll 
integer Nneg,NO,Nl,N2,N3 
I 
!parameters of different atoms 
mass(l) = 1.44316060d-25; mass(2) - S.»9.9883414d-27 ! l:Rb87, 2:Li6 
masse ° sum(mass)/dble(ntype) ! Average mass of a l l kinds of atoms 
rabi(l) = 2.d0»pi*100.0d3 ; rabi(2) » 2.d0*pi*100.0d3 
hyperfine = (/6.83468261090429d9,2.282d8/) 'unit: Hz. 
Fmax - (/2.d0,1.6d0/) ; Fmin ' - (/l.dO.O.SdO/) 
n i v l n i t - (/2.OdO,1.5d0/) ! Initial F state: Rb87:F=2, Li6:F=3/2 
I 
I init ial ization of matrixes for elastic and inelastic cross section 
mmm(:) - (Fmax(:)-Fmin(:)n)*(2*Fmax(:)+2*Fmin(:)+2)/2.dO 
allocate(sigma_e(sum(mmm),sum(mmm)),sigma_in(sum(mmm),sum(mmm))) 
allocate(si(sum(mmm),sum(mmm))) 
sigma_in(:,:)•» l.dO * 5.291772083d-ll 
do i = 1, mmm(l) ! Rb-Rb 

do j • 1, mmm(l) 
s l ( i .J ) - 102.dO * 6.291772083d-ll 
8igma.e(i,J) = 8.d0 * pi • sl ( i ,J)**2 

end do 
end do 
do i - mmm(l)+l, mmm(l)+mmm(2) ! Li-Rb 

do j • 1, mmm(l) 
s l ( i . j ) = 20.dO « 5.291772083d-ll 
. sigma_e(i,j) = 4.d0 • pi * sl ( i , j )**2 

end do 
end do 
do i = 1. mmm(l) !Rb-Li 

do j a mmm(l)+lt miom(l)+mmm(2) 
sl(i,j)=20.d0 * 5.291772083d-ll 
sigma_e(i,j) = 4.d0 * pi » a l ( i , j ) » » 2 

end do 
end do 
do i = mmm(l)+l , mmm(l)+mmm(2) !L i -L i 

do J a mmm(l)+i , mmm(l)'tmfflm(2) 
a l ( i . j ) = 2160.dO • 5.291772083d-ll 
sigma.e(i,j) = 4.d0 * pi * sl ( i , j )**2 

end do 
end do 
lsigma_e(:,:)= 8.d0 * pi * sl(: ,:)**2 
I 
(physical constants 
kB=1.38d-23 ! J/K 
hplanck°6.62d-34 ! J*S 
hbar°hplanck/(2.*pi) 
g°9.81d0 
I : 
open(unit=l,file='ev.in') 
open(unit° l l , file='parameter.dat') 
open(unit° l l1 , f i le= 'posi t ion.dat ' ) 
open(unit=2621,file='vquadd.dat') 
readd,*) tmax.nmes.tau,resonance 
read( l ,») Bprime.BO.Bsec 
readd,*) macroO,tempini,natO ! tempini: in i t ia l temperatureO 
read(l,*) nsegment 
nsegment°min(nsegment,10) 
do ieegment°l,nsegment 

readd,*) Bevap.Kisegment),Bevap_f(isegment),duree(isegment) 
enddo 
close(l) 
natini n sum(natO) ! finding total in i t ia l number of atoms 
! 
(Initialization of atom type, the corresponding mass for 
(that atom will be: mass(atypedat)) 
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ntemp = 0 
do i = 1 , ntype 

do iat - 1 , natO(i) 
atype(iat+ntemp) = i 

end do 
ntemp ° ntemp + oatO(i) 

end do 
open(unit»234,file»'atype.dat') 
do i B 1, natini 

write(234,*) i , atype(i) 
end do 
close(234) 
! mu = m_F • gF » U.B 
do i • 1 , ntype 

mu(i)=uB • abs(gF(i,nivInit(i))) • abs(nivlnit(i)) 
end do 
frequency(:,1)=sqrt(mu(:)/(BO»maes(:) ))•bprime/(2.»pi) 
frequency(:,2)=sqrt(mu(:)»Bsec/mass(:))/(2.*pi) 
frequency(:,3)°frequency(:,1) 
write(11,*)'mass ' , mass 
write(11,*) 'frequency_A', frequehcyd,:) 
write(11,*)'frequency_B', frequency(2,:) 
wri tedl ,* ) *B0,B' ,B" ' , BO, Bprime, Bsec 
write(11,*)'temperature', tempini 
wr i ted l , * ) ' in i t i a l N ' , natO 
wr i ted l , * ) ' in i t i a l F ' , nivlnit 
!finding boundary of the atom clound. 
bound •> 10.dO*sqrt(kB*maxval(tempini)/minval(mass))/(2*pi*minval(frequency)) 
!write(*,*) bound 
! 
do idim = 1 . 3 

omega(:,idim)=2.*pi*frequency(:,idim) 
do i=0,4 

dep_g(: ,idim,i)<*0.d0 
end do 

end do 
do i=i,4 

dep_g(:,3,i)=-(3./i)*g/omega(:,3)**2 
end do 
! 
open(unit°2,f ile='out.dat') 
open(unit»21,f i le='outl .dat ' ) 
open(unit=22,f ile=•out2.dat') 
open(unit=3,file='densite.dat') 
open(unit°4,file='natom.dat') 
open(unit=5,file='spin.dat') 
write(S,*) 'time Nneg NO NI N2 N3' 
write(2,*) ' tau° ' , tau 
write(2,*) 'B0=',BO,' Bprime-', Bprime,' Bseconde-3',Bsec 
write(2,*) 'calcul fait avec nat ° ' , n a t , ' macroatomes' 
write(21,*) 'tau=',tau 
write(21,«) 'B0° ' ,B0, ' Bprime"'.Bprime,' Bseconde=',Bsec 
write(21,*) 'calcul fait avec nat ° ' , n a t , ' macroatomes' 
write(22,*) *tau=',tau 
write(22,•) 'B0° ' ,B0, ' Bprime°',Bprime,' Bseconde=',Bsec 
write(22,*) 'calcul fait avec nat =',nat,' macroatomes' 
do. isegmenfl ,nsegment 

write(2,*) Bevap_i(isegment),Bevap_f(isegment),duree(isegment) 
write(21,•) Bevap.i(isegment),Bevap_f(isegment),duree(isegment) 
write(22,*) Bevap.i(isegment),Bevap_f(isegment).duree(isegment) 

end do 
write(2,*) • . ' 
write(21,*) • ^ • 
write(22,*) * * 
I • . ' • 
write(*,*) 'tau=',tau 
write(*,*) 'B0=*,B0,' Bprime"'.Bprime,' Bseconde"'.Bsec 
write(*,*) 'calcul fait avec nat " ' ,nat , ' macroatomes' 
do i8egment"l,nsegment 
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write(*,•) Bevap.i(isegment).Bevap.f(isegment),duree(isegment) 
end do 
write(*,*) .' ' 
! 
write(•,•) ' t xrms yrms zrms temp N.atomes taux.c', ft 

' densit ' , ' phase Pcol Pocc Bevap' 
write(2,*) ' t xrms yrms zrms temp N.atomes taux.c', ft 

' densit ' , ' phase Pcol Pocc Bevap' 
write(21,*) ' t xrms yrms zrms temp N.atomes taux.c', ft 

' densit ' , ' phase Pcol Pocc Bevap' 
write(22,*) ' ' t xrms yrms zrms temp N.atomes taux.c', ft 

' densit ' , ' phase Pcol Pocc Bevap' 
write(4,*)' t N.atomes N.Rb N.Li' 
macro<*macroO 
i 
(initialization of spin states 
do iat°>l,natini 

I init ial ization of F state-
a(iat)XF - nivlnit(atype(iat)) 
! init ial ization of spin state depending on gF 
i f (gF(atype(iat),a(iat)XF) .gt. O.OdO) then 

a(iat)XmF - nivlnit(atype(iat)) 
else 

a(iat)XmF = nivInit(atypeUat)) *(-l.dO) 
endif 

end do 
I init ial ization of positions and velocities 
do i « 1 , ntype 

do idim=l,3 
rayonO(i,idim)=sqrt(kB»tempini(i)/mass(i))/omega(i,idim) 
velesseOd, idim)=sqrt (kB*tempini (i)/mass (i) ) 

end do 
end do 
do i a t ° l , n a t i n i 

ind ie ( ia t )« . t rue . 
do idim°l ,3 

alealDl.0-raa3(idum) 
alea2°l.0-ran3(idum) 

posdat,idim)°dep_g(atype(iat), idim,3)+ rayonO(atype(iat).idirn)* ft 
sqrt(-2.*log(aleal))*cos(2*pi*alea2) 

vel( iat, idim)°velesseO(atype(iat) , idim)* ft 
sqrt(-2.*log(aleal))*sin(2*pi*alea2) 

end do 
end do 
I output the in i t ia l positions of a l l atoms 
do i a t ° l , n a t i n i 

i f (atype(iat) .eq. 1) wr i tedl l , * ) 'Rb', posdat,:) 
i f (atype(iat) .eq. 2) w r i t e d l l , * ) ' L i * , posdat,:) 

end do 
do iat=natini+l,nat 

indie(iat)-.false, 
end do 
! 
! beginning of the loop over time 
ncoll°0 
t=0. 
tmea»0. I interval of time between two measurements 
dt=0. t dt est ajuste a chaque pas pour un bon taux de co l l . ! 
do while (t.It.tmax) 

! re-index of left atoms and Duplication around z axis 
nrest(:) = 0 ; natrest = 0 
I Finding number of each kind of atom. 
do iat=l,nat 

i f (indie(iat)) then 
nrest(atype(iat)) = nrest(atype(iat)) + 1 
natrest •> natrest + 1 

end i f 
end do 
!if ((natrest.le.nat/2).and.(macro.eq.1)) goto 777 
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i f ((natrest.le.nat/2).and.(macro.gt.1)) then 
< manufacture of the auxiliary f i l e 
iataux°l 
do iat"l,nat 

i f (indie(iat)) then 
do idim=l,3 

posaux(iataux,idim)=pos(iat,idim) 
velaux(iataux,idim)=vel(iat,idim) 

end do 
(duplication of spin and F, and species of atoms 
nivaux(iataux) • a(iat) 
atypeaux(iataux)B atype(iat) 
iataux=iataux+l 

endif 
end do 
(transfer of the auxiliary f i l e into the main f i le 
do ia f l .natrest 

do idim=i,3 
pos(iat,idim)°posaux(iat,idim) 
vel( iat , idim)°velaux(iat , idim) 

end do 
a(iat) « nivaux(iat) 
atype(iat) = atypeaux(iat) 

end do 
(duplication with symmetry compared to axis Z 
do iat°natrest+l,2*natrest 

do idim-1,2 
pos (iat, idim) = -posaux(iat-natrest,idim) 
veKiat ,idim) = -velaux(iat-natrest,idim) 

end do 
pos(iat,3) = posaux(iat-natrest,3) 
veKiat,3) = velaux(lat-natrest,3) 
a(iat) » a(iat-natrest) 
atype(iat) = atype(iat-natrest) 

end do 
I updating indie() 
do iat=l,2»natreat 

indie(iat)=.true. 
end do 
do iatn2*natrest+l,nat 

indie(iat)=.false, 
end do 
I reduction in the atomic size 
macro=macro/2 
natre8t°natrest*2 
nrest(:)= nrest(:)*2 

endif ! end of duplication 
! 
! choosing of the time step 
(Average position and standard deviation for each atom species. 
posAverr (:,:) »0 ; posdew (:,:) =0 
(Average velocity and standard deviation for each atom species. 
velAverr(:,: )=0 ; veldew(:,: )=0 
(Number of atoms in each spin state. 
N0=0; N1°0; N2=0; N3=0; Nneg°0 
i 
do ia t ° l ,na t 

i f (indie(iat)) then 
posAverr(atype(iat),:)= posAverr(atype(iat),:)+pos(iat,:) 
posdew(atype(iat),:) = posdew (atype (iat),:) +pos(iat, :)**2 
velAverr(atype(iat),:)= velAverr(atype(iat),:)+vel(iat,:) 
veldew(atype(iat),:) • veldew(atype(iat),:) +vel(iat, :)**2 
i f (a(iat)XmF.eq.-3.dO) N3-N3+1 
i f (a(iat)XmF.eq.-2.dO) N2-N2+1 
i f (a(iat)XmF.eq.-l.dO) N1=N1+1 
i f (a(iat)XmF.eq.O.dO) N0=N0+1 
i f (a(iat)XmF.gt.O.dO) Nneg=Nneg+l 

endif 
enddo 
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, vquaddd) = O.dO; vquad » O.dO; 
posdevO) = O.dO; veldev(:) - O.dO; posAverd) = O.dO 
do idim=l,3 

posAverr (:, idim) •» posAverr(:, idim)/nrest (:) 
posdevvC: ,idim) • posdewC: ,idim) /nrestC:) 
posdewC:,idim) = sqrt(posdew(:,idim)-posAverr(:,idim)**2) 
velAverr(:,idim) = velAverr(:,idim)/nrest(:) 
veldew(:,idim) = veldewC:,idim)/nrest(:) 
veldew(:,idim) = sqrt(veldew(:,idim)-velAverr(: ,idim)**2) 
vquaddC:)=vquadd(:)+veldevv(:,idim)**2 

end do 
do i = 1, ntype 

vquadd(i)=sqrt(vquadd(i)) 
end do 
do i=l,ntype 

vquad = vquadd(i) + vquad 
posdevC:) • posdew(i,:) + posdevO) 
veldevC:) = veldew(i,:) + veldev(s) 
posAver(:)• posAverr(i,:) • posAver(:) 

end do 
posdevC:) • posdevC:) / dble(ntype) ! dbleO : convert to real*8 
veldevO) = veldevC:) / dble(ntype) 
posAver(:)= posAverC:) / dble(ntype) 
vquad = vquad / dble(ntype) 
vbar(:)=4./sqrt(pi) * vquadd(:)/sqrt(3.) 
densmoy(: ) • (nrest( : ) *macro) / (2 .*sqrt (2 . ) • (2 .*pi )*sqrt (2 .»pi ) ) / & 

(posdewC: ,1)'posdewC: ,2)*posdew(: ,3)) 
gammacl=minval(sigma_e)*minval(densmoy)»minval(vbar) 
gammac2=128»(minval(densmoy)/maxval(vbar))*(hbar/maxval(mass))**2 
gammac°max(gammacl,gammac2) 
dt=min(0.OOSdO/gammac,1.d-4) 
! 
! Hesurement 

i f (Ct.eq.O.).or. ft 
(int(t*nmes/tmax).ne.int((t+dt)*nmes/tmax))) then 

write(2621,») t , vquadd(i),vquadd(2) 
temperature(:)°mass(:)*vquadd(:)**2/(3.*kB) 
(calculating overall temperature • • 
temperatureAll ° O.OdO 
do 1 • 1 , ntype 

temperatureAll = temperatureAll + nrest(i)*mass(i)*vquadd(i)**2 
end do 
temperatureAll ° temperatureAll/(3.dO*kB*natrest) 
! 
density(:)°densmoy(:)*2.*sqrt(2.) ! densite centrale 
densite = sum(density) / dble(ntype) 
i f (tmes.gt.O.) tauxcoll=2.«ncoll/(natrest*tmes) 
phase(:)-density(:)*(hplanck/(sqrt(2*pi)*mass(:)))**3 *2.d0*sqrt(2.dO)/ ft 

(veldew(: ,l)*veldew(: ,2)*veldew(: ,3)) 
! 
i f (ncollpos.ne.O) probacollmoyprobacollmoy/ncollpos 
I output of the whole system 
write(2,999) t,lE6*posdev(l),lE6*posdev(2),lE6*posdev(3), ft 

lE6*temperatureAll>natrest*macro,tauxcoll,densite*lE-16, ft 
sum(phase)/dble(ntype), probacollmoy,densite»(dx**3)/macro,Bevap*1E4 

! output of different species separately 
write(21,999) t,lE6*posdevv(l,l) ,lE6*posdevv(l,2) ,lE6*posdew(l,3) , ft 

lE6*temperature(l),nrest(l)*macro,tauxcoll,density(l)*lE-16, ft 
phased), probacollmoy,density(2)*(dx**3)/macro,Bevap*lE4 

write(22,999) t,lE6*posdevv(2,l) ,lE6»posdevv(2,2),lE6*posdew(2,3), ft 
lE6*temperature(2),nrest(2)*macro,tauxcoll,density(2)*lE-16, ft 
phase(2), probacollmoy,density(2)*(dx**3)/macro,Bevap*lE4 

write(*,999) t,lE6*posdev(l),lE6*posdev(2),lE6»posdev(3), ft 
lE6*sum(temperature)/dble(ntype), natrest*macro,tauxcoll,densite*lE-16, ft 
sum(phase)/dble(ntype).probacollmoy,densite*(dx**3)/macro,Bevap*lE4 

999 format(f5.2,' ' , f4 .0 , ' ' , f5 .0 , ' ' , f4.0,* \ e 8 . 3 , ' 
• , i 9 , ' ' , ft 

f6.1," \ f 6 . 1 , ' ' , 0 8 . 2 , ' ' , f4 .2 , ' ',f4.2,f6.2) 
write(3,*) t,densite*lE-16 

file:///e8.3,'
file:///f6.1,'
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vrite(4,9) t.natrest'macro, nrest(l)»macro, nrest(2)*macro 
write(5,99) t, Nneg, NO, Nl, N2, N3 

9 format(16.2,' ' .19, ' ' ,19, ' \ i 9 ) 99 
format(f5.2,' ' ,16, ' ',16, ' ' ,15, ' ' ,16, ' \ i 5 , ' •) 

ncoll«0 
ncollpos°0 
probacollmoyO. 
tmes*0. 

endif I End of measurement 
! 
! collisions 

dx=4.*max(posdev(1)/nmaxx,poadev(2)/nmaxy,posdev(3)/nmaxz) 
do iat=l,nat 

i f (indie(iat)) then 
ix=nint ((pos ( iat, 1) -pos Aver (1)) /dx) 
iyonint((pos(iat,2)-posAver(2))/dx) 
iz=nint((pos(iat,3)-posAver(3))/dx) 
i f ((abs(ix).le.nmaxx).and.(abs(iy).le.nmaxy).and.(abs(iz).le.nmaxz)) then 

! calculate the number of atoms in the grid 
i f (table(ix,iy,iz).eq.O) then !There is not already an atom present 

t a b l e ( i x , i y , i z ) ° i a t 
else ! the atom is already present 

iat2=table(ix,iy,iz) 
ml=mass(atype(iat)) ; m2°mass(atype(iat2)) 
vcoll '» O.dO 
do idim=l,3 

vcdm(idim)=(ml*vel(iat,idim)+m2*vel(iat2,idim)) / (ml+m2) 
vrel (idim) =vel ( iat, idim)-vel ( iat 2, idim) 
vcoll=vcoll+vrel(idim)**2 

end do 
vcol l°sqrt(vcol l ) 
Ifind the scattering length between iat and iat2 f i s t . 
laO • G.elastic(iat,iat2), temporarily not considered here. 
i f (atype(iat).eq.l .and. atype(iat2).eq.l) then 

aO - 102.dO * 6.291772083d-ll 
sigma • 8.d0 • pi » aO " 2 

else i f (atype(iat).eq.2 .and. atype(iat2).eq.2) then 
aO - O.dO * 5.291772083d-ll ! no coll ision between L16-L16 

sigma = 4.d0 * pi * aO *»2 
else 

aO ° 20.dO * 5.291772083d-ll 
sigma • 8.d0 * pi • aO " 2 

end i f 
{elastic coll ision 
(first found out the elastic coll ision cross section between 
liat and iat2, G_elastic(iat,iat2) gives the scattering length, 
sigmalocl-sigma/(1.d0+(ml«vcoll*a0/(2.*hbar))**2) 
sigmaloc2°sigma/(1.d0+(m2»vcoll*a0/(2.*hbar))»«2) 
sigmaloc =sqrt(sigmalocl*sigmaloc2) 
! 
probacoll=macro*sigoaloc*vcoll*dt/(dx**3) 
i f (a(iat)%mF.ne.a(iat2)XmF) probacoll = probacoll/2.d0 
probacollmoy = probacollmoy + probacoll 
ncollpos " ncollpos + 1 

!if(abs(probacoll).gt.l) write(»,») dt, "probacoll=",probacoll, " is > 1" 
i f (probacoll.gt.ran3(idum)) then ! elastic coll ision 

ncoll = ncoll + 1 
!write(*,*) ncoll 
ctheta° 2.*ran3(idum)-l. 
stheta~sqrt(1.-ctheta**2) 
phi°2.*pi*ran3(idum) 
veKiat ,1) = vcdm(l) + m2/(ml+m2)*vcoll*stheta*cos(phi) 
vel(iat2,l) = vcdm(l) - ml/(ml+m2)*vcoll»stheta*cos(phi) 
veKiat ,2) = vcdm(2) + m2/(ml+m2)*vcoll*stheta*sin(phi) 
vel(iat2,2) = vcdm(2) - ml/(ml+m2)*vcoll*8theta*sin(phi) 
veKiat ,3) = vcdm(3) + m2/(ml+m2)»vcoll*ctheta 
vel(iat2,3) = vcdm(3) - ml/(ml+m2)*vcoll*ctheta 
table(ix,iy,iz) - 0 

endif 
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endif 
endif 

endif 
end do 
do iat s l ,nat 

ix=nint((pos(iat,1)-posAverC1))/dx) 
iy=nint ( (pos (iat, 2) -posAver (2)) /dx) 
iz=nint((pos(iat,3)-posAver(3))/dx) 

i f ((abs(ix).le.nmaxx).and.(abs(iy).le.nmaxy).and.(abs(iz).le.nmaxz)) table(ix,iy,iz)=0. 
end do 

I 
! move the atoms using Runge Kutta method and'calculate any losses, 
do i a t ° l , n a t 

(if (gF(atype(iat),a(iat)%F)»a(iat)XmF .It. O.dO) indic(iat) = .false. 
i f (indic(iat).and.(ran3(idum)*tau.lt.dt)) indie(iat)=.false. IBackgroud loss 
i f (indic(iat)) then 
(finding the g factor for atom "iat" f i rs t , to save time for the time evolution. 

gFtemp(iat) - gF(atype(iat),a(iat)%F) 
do idim=l,3 

y(idim)°pos(iat,idim) 
y (idim+3) =vel (iat, idim) 

enddo 
cal l rk4(t,y,dt) 
do idim"1,3 

posdat, idim) =y( idim) 
vel(iat,idim)=y(idim+3) 

enddo 
endif 
(get r id of Li atoms outside the boundary 
distance = sqrt (pos( iat , l ) *»2 + posdat, 2)**2 + posdat ,3) "2) 
i f (distance .gt. bound .and. atype(iat).eq.2) indic(iat) = .false, 

end do 
i . 
!rf spin flipping and evaporative cooling 
isegment-1 
trampe°duree(isegment) 
do while ((t.gt.trampe).and.(isegment.It.nsegment)) 

isegment=isegment+l 
trampe">trampe+duree ( isegment) 

. end do 
Bevap»Bevap_f(isegment)+(Bevap_i(isegment)-Bevap_f(isegment))*(trampe-t)/duree(isegment) 

!Bevap°Bevap_f(isegment)+(Bevap.i(isegment)-Bevap.f(isegment))*exp(-t/10.d0) 
do iat=l,nat 

i f (indic(iat) .and. atype(iat).eq.1) then 
Blocsqrt ((Bprime»pos (iat, 1) -0. 5d0*Bsec*pos (iat, 1) «pos (iat, 2)) **2+ft 

(B0+0.5d0*Bsec*pos(iat,2)»*2-0.25d0*Bsec*(pos(iat,l)**2+pos(iat,3)**2))**2+(t 
(pos(iat,3)»Bprime+0.5d0»pos(iat,2)«pos(iat,3)*Bsec)**2) 

IdB = abs( hbar * rabi(atype(iat)) / (a(iat)5imF*gF(atype(iat),a(iat)XF)*uB) ) 
! i f ( (abs(Bloc-Bevap). l t .dB).and.(ran3(idum). I t . (rabi(atype(iat) )*dt)«*2)) then 
i f (Bloc .gt. Bevap) then 

!if(a(iat)XmF*gF(atype(iat),a(iat)XF)/abs(gF(atype(iat),a(iat)XF)).eq.-a(iat)XF) ft 
! a(iat)XF = max(a(iat)XF-l.dO,Fmin(atype(iat))) 
!a(iat)XmF = a(iat)XmF - gF(atypedat) ,a(iat)XF)/abs(gF(atype(lat) ,a(iat)XF)) 
indic(iat) = .false, 

end i f 
endif 

end do 
! 
t = t + dt 
tmes ° tmes + dt 

end do 
goto 9000 

777 continue 
! wr i te ( * ,» ) 'macro"'.macro 
! wri te(»,«) 'program EV is terminated!' 

9000 continue 
close(2) 
close(3) 
close(4) 
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close(5) 
end program ev 

j . ; ; . 

!Derivative subroutine for Runge-Kutta method, 
subroutine derivs(t,y,y_t) 

use parameters 
implicit none 
real*8 y(l:6).y.t(i:6) 
real*8 t.deno.gF 
real*8 tmp, tmpl, tmp2, tmp3, yl2, y22, y32, tmp4 
i 
y_t(l)-y(4) 
y.t(2)=y(5) 
y . t (3)»y(6) 
yl2 = y(l)**2 
y22 - y(2)»»2 
y32 = y(3)»*2 
tmp4 • Bprime*Bsec 
tmpl - uB*gFtemp(iat)*a(iat)%mF/mass(atype(iat)) 
tmp2 = Bprime**2 
tmp3 = 0.5d0*B0*Bsec 
tmp = 0.125dO*Bsec**2 
deno°sqrt((B0+B8ec/2.»y22-Bsec*(yl2+y32)/4.0d0)**2 + ft 

(Bprime*y(l)-Bsec»y(l)»y(3)/0.5dO)««2 + (Bprime»y(3)+Bsec*y(2)*y(3)/0.5d0)»*2) 
y_t(4)—tmpl«(tmp2»y(l)-tmp4*y(l)»y(2)-tmp3*y(l)+tmp»y(l)»(yl2+y32))/deno 
y_t(6)=-tmpl*(-0.5d0«tmp4*y12+B0»Bsec»y(2)+2*tmp*y22*y(2)+0.5d0*y32*tmp4)/deno 
y.t(6)=-tmpl*(tmp2»y(3)+tmp4»y(3)»y(2)-tmp3*y(3)+tmp*y(3)«(yl2+y32))/deno 

end subroutine derivs 

!4th order Runge-Kutta method 
subroutine rk4(t,y,h) 

implicit none 
real«8 y(l:6),dydt(1:6),dym(l:6),dyt(1:6),yt(1:6) 
real*8 t,h,hh,h6,th 
external derivs 
integer i 
i 
hh=h*0.6d0 
h6=h/6.d0 
th=t+hh 
I 
ca l l derivs(t.y.dydt) 
do i-1,6 

yt ( i ) -y ( i )+hh«dydt( i ) 
enddo 
I 
ca l l derlvs(th,yt,dyt) 
do 1=1,6 

yt(i)=y(i)+hh*dyt(i) 
enddo 
cal l derivs(th,yt,dym) 
do i-1,6 

yt(i)=y(i)+h*dym(i) 
dym(iWyt(i)+dym(i) 

enddo 
cal l derivs(t+h,yt,dyt) 
do i=l,6 

y(i)=y(i)+h6*(dydt(i)+dyt(i)+2.d0*dym(i)) 
enddo 

end subroutine rk4 

(function that produces Random numbers with equal probability. 
FUNCTION ran3(idum) 

INTEGER idum 
REAL ran3 
integer, parameter:: HBIG°1000000000 



Appendix C. Program Code for Simulating Zimmerman's Sympathetic Cooling 82 

integer, parameter:: MSEED°161803398 
integer, parameter:: MZ=0 
real, parameter:: FAOl./MBIG 
INTEGER i . i f f , i i , iner t , inertp ,k 
INTEGER mj,mk,ma(55) 
SAVE iff,inert.inertp,ma 
DATA i f f /0 / 
if(idum.1t.0.or.iff.eq.0)then 

iff=l 
mJ-MSEED-labs(idum) 
mj=mod(mj,HBIG) 
ma(65)=mj 
mk°l 
do 1=1,64 

ii=mod(21»i.56) 
ma(ii)=mk 
mk=mj-mk 
if(mk.lt.MZ)mk=mk+MBIG 
mj=ma(ii) 

end do 
do k=l,4 

do i=l,66 
ma(i)=ma(i)-ma(l+mod(i+30,55)) 
if(ma(i).It.MZ)ma(i)=ma(i)+MBIG 

end do 
end do 
inext=0 
inextp=31 
idum=l 

endif 
inext=inext+l 
if(inert.eq.56)inert=1 
inextp=inextp+l 
if(inextp.eq.56)inextp=l 
mj=ma(inext)-ma(inextp) 
if(mj.It.MZ)mj=mj+MBIG 
ma(inext)=mj 
ran3=mj*FAC 
return 

END FUNCTION ran3 

(Finding inelastic collisional cross section between different spin states 
real*8 Function G_inelastic(il,i2) 

use parameters 
implicit none 
integer m , n, i l , i2, isign 
real*8 gF 
isign = gF(atvpe(il),a(il)XF)/abs(gF(atype(il),a(il)%F)) 
m=(Fmax(atype(il))-a(il)XF)»(Fmax(atype(il))+a(il)%F+2)+a(il)XF-isign*a(il)7jiiF+l 
if(atype(il) .eq. 2) m=m+(Fmax(l)-Fmin(l)+l)*(2»Fmax(l)+2»Fmin(l)+2)/2.d0 
isign - gF(atype(i2),a(i2)XF)/abs(gF(atype(i2),a(i2)%F)) 
n=(Fmax(atype(i2))-a(i2)W)»(Fmax(atype(i2))+a(i2)%F+2)+a(i2)y^-isign*a(i2)XmF+l 
if(atype(i2) .eq. 2) m=m+(Fmax(l)-Fmin(l)+l)»(2»Fmax(l)+2»Fmin(l)+2)/2.dO 
G.inelastic = sigma_in(a,n) 
return 

end Function G.inelastic 

(finding elastic scattering length between different spin states . 
real*8 Function G.elastic(i l , i2) 

use parameters 
implicit none 
integer m , n, i l , 12,isign 
real*8 gF 
isign = gF(atype(il),a(il)XF)/abs(gF(atype(il),a(il)XF)) 
m=(Fmax(atype(il))-a(i l)yj)«(Fmax(atype(il))+a(il) , /J+2)+a(il)%F-isign»a(il)XmF+l 
if(atypeUl) .eq. 2) m=m+(Fmax(l)-Fmin(l)+l)*(2*Fmax(l)+2*Fmin(l)+2)/2.d0 
isign = gF(atype(i2),a(i2)XF)/abs(gF(atype(i2),a(i2)XF)) 
n=(Fmax(atype(i2))-a(i2)W)»(Fmax(atype(i2))+a(i2)yj+2)+a(i2))ff-isign*a(i2)%mF+l 
if(atypo(i2) .eq. 2) m=m+(Fmax(l)-Fmin(l)+l)*(2*Fmax(l)+2«Fmin(l)+2)/2.d0 
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G.elastic = sl(m,n) ! s l ( : , : ) is the scattering length matrix 
return 

end Function G.elastic 
! 


