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Abstract 
The free energy functional theory of protein folding presents a framework to 
explain the effects of heterogeneity in the folding mechanism. These hetero­
geneity effects introduce changes in the folding free energy barriers that govern 
the rates for 2-state folding proteins. Here in this thesis, we focused on checking 
the validity of the predictions of free energy functional theory by using the data 
from simulations of C a , Go proteins and from experiments. Our results show 
that folding rates correlate with the degree of heterogeneity in the formation of 
native contacts for both simulated structures and real proteins. 
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1.1 Protein folding process is explained as the configurational dif­
fusion on a funnel shaped energy landscape [41]. The depth of 
the funnel typically represents the energy and the width typically 
represents the configurational entropy of a conformational state. 
Usually, there is not a perfect cancellation between energy and 
the entropy, so when we project the folding process onto a free 
energy surface, one observes free energy barriers for folding and 
unfolding, which determine the rate of diffusion. Folding barri­
ers (several T/) are much smaller than the total binding energy 
(~ 100T/) [34] 

2.1 Schematic description of the protein's native structure [40]. The 
native state can be described by the distribution of contact loop 
lengths {lij} and the distribution of contact energies {etj}. Qij 
is the probability of contact formation between residues i and j 
with energy ey and loop length 1^. . 

3.1 (A) Log of experimental folding rates (in sec"1) at the proteins' 
transition midpoints vs the mean loop length (I). Wild type pro­
tein S6 is shown by an open square and p 1 3 - 1 4 circular permu-
tant of S6 (formed by linking the ends of the protein and cutting 
the covalent bond between residues 13 and 14, so there is a new 
distribution of contact lengths) is shown by an open circle [26]. 
(B) Equivalent measure for logarithm of rates in simulations is 
—AFJim/Tf plotted vs 1. Both graphs show statistically signif­
icant anti-correlations. As a measure of statistical correlation, 
linear correlation coefficient r and Kendall's r have been used. 
Statistical significance is given by the corresponding probabilities 
to observe a given correlation coefficient or greater by chance. If 
the probability values associated with a correlation coefficient is 
smaller than 5%, the correlation is thought to be significant [56] 
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3.2 (A) Logarithm of the experimental rate data (over M, at the 
transition midpoints) is plotted against the structural dispersion 
(SP/t). (B) Simulated barrier heights (over MT) at the pro­
teins' folding temperatures Tf is plotted against 5l2/l . Both 
plots show statistically significant correlations. In the graphs 3 
outliers with large 5l2/l (shown by filled circles) are a//3 pro­
teins (A-repressor chain 3, cytochrome c, yeast iso-l-cytochrome 
c) which both have large variance in contact length distributions 
and relatively fast folding rates 16 

3.3 Variance in Rvalues for 18 simulated proteins shows a very strong 
and statistically significant correlation as expected with the vari­
ance in Q-values which were also extracted from the simulations. 
So that we can safely recast the change in the barrier in terms of 
W 17 

3.4 (A) Logarithm of experimental folding rate (over M) is plotted 
against the variance in experimentally measured 0-values for a 
subset of the proteins in Fig. 3.1. Wild type protein S6 is again 
marked by an open square and P 1 3 - 1 4 circular permutant of S6 
is shown by an open circle [26]. (B) Minus simulated free energy 
barrier height (over MT) for 18 proteins is plotted against the 
variance in simulated 0-values. Both graphs show strong, statis­
tically significant correlations. Especially, despite the fact that 
the number of data points in (A) is small, it is important to note 
the strong correlation 18 

5.1 Figure shows the case of a protein which folds via 2-state mech­
anism. A mutation causes a change in the stability of the folded 
state (F) with respect to the unfolded state (U), A A G F - C / , and 
a change in the free energy of the transition state (\) with re­
spect to unfolded state, A A G } _ t / . Rvalue, the ratio of these two 
free energy changes, depends on the amount of structure that 
has been formed in the transition state around the position of 
mutation 22 

A . l (A) Free energy F(Q) as a function of the reaction coordinate 
Q at the folding temperature Tf from our molecular dynamics 
simulations for the major cold-shock protein (PDB code 1CSP). 
Unfolded and native states are separated by a free energy barrier 
at around Q ~ 0.45 (B) A typical simulation (again for major 
cold-shock protein) at the folding temperature. The graph is the 
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Chapter 1 

Introduction 

Proteins are polypeptide structures of covalently bonded amino acids, folded into 
nearly-unique 3-dimensional shape for specific functioning. The unbranched 
polymer that consists of amino acids before folding is the primary sequence. 
There are 20 types of amino acids in the nature which are distinct in their side 
chain groups. Other than this side chain, the remaining structure of amino acids 
are same for all of them; a central Carbon atom (Ca) attached to a Hydrogen 
(H), an amino group ( N H 2 ) and a carboxyl group (COOH). 

In the cell, hereditary information is stored in 1-dimensional sequence of 
D N A base pairs [57] and it is transmitted through R N A for protein synthesis 
in ribosomes. Ribosomes read the instructions from messenger R N A and link 
the amino acids in the prescribed order, which forms the backbone (primary 
sequence) of proteins. The information stored in primary sequence has shown 
to be sufficient for protein to fold into specific 3-dimensional structure without 
the aid of any cellular machinery [1]. 

1.1 Driving Interactions 
Interactions that drive the folding mechanism are various: 

• Hydrogen bond interactions: Attractive intermolecular force between a 
Hydrogen atom and a strongly electronegative atom (Oxygen, Nitrogen). 
In proteins it can be between two amino acid atoms or an amino acid atom 
and a water molecule's atom. 

• Hydrophobic interactions: Some amino acids are hydrophobic (non-polar 
amino acids that are immiscible with water) and some are hydrophilic 
(polar amino acids that are attracted to water molecules). It is known 
that these interactions play an important role in the folding process in the 
formation of the folding nucleus. 

• Electrostatic interactions: Some amino acids are electrically charged, so 
there is Coulomb interactions present depending on the distances, in ad­
dition to the hydrogen bond and hydrophobic interactions. 

Even by knowing all these interactions that drive the folding process, it is 
very hard (time wise) even computationally to understand protein folding at 
the atomic level since proteins are large and complex systems, and it is very 
hard to keep track of all atoms separately. It is because of this reason, some 



Chapter 1. Introduction 3 

effective interactions and statistical mechanical models have been introduced 
which use these interactions to understand some specific aspects protein fold­
ing (e.g. rates, barriers, importance of topology, etc.) both theoretically and 
computationally [40, 41, 42, 44, 45]. 

Folding can be thought of as a thermodynamic process where the system 
(1-dimensional polymer chain in solution) searches to find the unique1 low en­
ergy ground state for given amino acid sequence. During folding, protein tends 
to twist into shapes that achieve a low energy state in which amino acids fit 
comfortably together (for example hydrophobic amino acids usually cluster in 
the middle of a protein structure while hydrophilic ones move to the surface). 
But how does the sequence find the unique stable native state, is it totally a 
random search in all configuration space? 

1.2 Levinthal's Paradox and Funneled Energy 
Landscape 

We can make an estimation for the time a protein needs to find its native state 
if it searches all possible conformations available. Let's think about a 100 amino 
acid long protein, and guess roughly that each amino acid in the chain has 10 
conformational states to search. So this makes a complete configuration space 
for the protein spanning 10 1 0 0 total states. Even if the sampling time (amount 
of time which a residue makes an attempt to find its native state) is assumed 
to be as small as 1 0 - 1 5 seconds, the mean first passage time becomes ( 1 0 - 1 5 

s e c ) x l 0 1 0 0 = 10 3 5 sec ~ 3 x 10 7 7 years, which is about 10 6 7 times the age of 
the universe. So, because the protein folding process occurs in physiological 
time scales on the order of seconds, all conformations available to the protein 
are not searched [3, 41]. For random heteropolymers (RHP, polymers which 
have random primary sequences), Levinthal paradox is actually real where the 
collapse of an R H P can take very long amount of times in comparison to protein 
folding times. So, one thinks that there should be an evolutionary mechanism 
which prevents the need to search the whole configurational space for a protein 
before finding its native state, a biased search. 

A theory that resolves the Levinthal paradox for proteins and gives answers 
to the search problem is energy landscape theory and its prediction: folding fun­
nels. Folding kinetics can be understood in the energy landscape perspective as 
the organization of an ensemble of partially folded structures (with their associ­
ated free energies and entropies), which the protein passes through in the folding 
process (many routes to folding) [31, 32]. The folding landscape of proteins are 
thought to be rugged because of the fact that polymers have many available 
conformations during the process and there is always possibility for residues to 
form inappropriate contacts (non-native, the ones that are not present in the 
folded structure) with other residues on the way to the native state. In a simple 

1lt has been shown [13, 14, 51] that physiologically active state is not just this lowest 
energy one but a number of states which differ at least in side chain orientations. 
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Figure 1.1: Protein folding process is explained as the configurational diffu­
sion on a funnel shaped energy landscape [41]. The depth of the 
funnel typically represents the energy and the width typically repre­
sents the configurational entropy of a conformational state. Usually, 
there is not a perfect cancellation between energy and the entropy, 
so when we project the folding process onto a free energy surface, 
one observes free energy barriers for folding and unfolding, which 
determine the rate of diffusion. Folding barriers (several Tf) are 
much smaller than the total binding energy (~ 1007/) [34]. 

model of folding, these non-native contacts are usually assumed to have random 
energetic contributions [31, 40]. 

Because the native contacts are highly stabilizing interactions, there is an 
overall slope of the energy landscape, that gives its funneled shape, toward the 
native structure. In realistic models of folding, proteins are considered to be 
minimally frustrated polymers. It means that the rugged energy landscape of 
folding for real proteins is not flat with random fluctuations imposed on it, but 
has an overall inclination and a preferred direction of flow [31, 32]. The local 
roughness in the landscape shows the temporary trapping of the configurations 
in local free energy minima. 

Appropriate order parameters are needed to describe the ensemble of par­
tially folded structures, which is another big topic of research [43]. One useful 
order parameter that is being used in folding literature to describe the position 
of an ensemble of states in the funnel picture is the fraction of native contacts, Q 
(some other order parameters that were introduced; fraction of correct dihedral 
angles in the backbone, fraction of the correct secondary structure, etc.). In our 
analysis, Q is the appropriate order parameter. 

By looking at the funneled energy landscape, one can see that the thermo­
dynamics of folding can be understood as a process where energy and entropy 



Chapter 1. Introduction 5 

have competing contributions. So when we project this process to a free energy 
surface as a function of the order parameter, for short, single domain, 2-state 
folding proteins (which fold without a metastable intermediate), it reduces down 
to a simple barrier crossing problem where the rate of folding is determined by 
the free energy barrier and given by the Arrhenius rate law: 

kf = k0e~AFt/T (1.1) 

The rates and free energy barriers for different proteins are different. The 
question is what factors determine the free energy barrier of proteins? A free 
energy functional theory has been developed to understand the determinants 
of folding rates and barriers [39, 40, 49, 50]. In this thesis, our aim is to 
understand the results of the theory and check the predictions of it by using the 
data available from both experiments and simulations. 
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Chapter 2 

Free Energy Functional 
Theory and Its Predictions 

In the process of protein folding, both the energetic and the topological factors 
play important roles [21, 29, 37]. When we say energetics, it means the contact 
energies of two or more residues that are in proximity at any stage during folding. 
Topology here means the distribution of contact loop lengths in the protein. In 
functional approach, energetics is characterized by the distribution of contact 
energies {eij}, where i and j label the residues in the protein and run from 1 
to N (total number of residues). The overall native topology is characterized 
by the distribution of contact loop lengths {£ij} = {\i — j\}- So if there is a 
native contact (see the definition of contact in Methods section) between the 
residues i and j, Uj becomes the the length of the loop in terms of number 
of amino acids and becomes the strength of the interaction. As discussed 
before, the fraction of native contacts, Q, was chosen to be the order parameter 
in the theory [40]. 

where M is the total number of native contacts and Qij is the probability of 
residue i having a contact with residue j at an overall nativeness during folding 2. 
So, given the contact energies and loop length distributions, the free energy can 
be written as a functional of contact probabilities, F({Qij(Q)}\{i-ij}, {eij})-

2.1 Hamiltonian of the Theory 
The Hamiltonian written for the theory to start with is 

W({A«}|{A£}) = £ [ C £ A « A £ + C A y ( l - A£)] (2.2) 
i<j 

where A y ( A ^ ) is 1 if residues i and j are in contact in a configuration (in native 
state) and 0 otherwise, e a n d ef-1 are the energies of the native and non-native 
contacts respectively. The goal of the theory is to find the energy functional, 
and for this purpose one needs to find analytic expressions for thermal energy 

2 In other words, it is the fraction of time the contact between residues i and j is formed at 
equilibrium in the ensemble with MQ native contacts or fraction of proteins in a macroscopic 
sample having some degree of nativeness (Q) with the contact between i and j formed [40]. 
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Figure 2.1: Schematic description of the protein's native structure [40]. The 
native state can be described by the distribution of contact loop 
lengths {lij} and the distribution of contact energies {ejj}. Qij is 
the probability of contact formation between residues i and j with 
energy and loop length lij. 

and thermal entropy. The usual way to this is first to calculate the density of 
states at particular energy E for a given distribution of contact probabilities 
{Qij}: this i s n{E\{Qij})- And it is equal to the number of states for the 
specific distribution {Qij}, times the probability of having energy E with that 
distribution, given the native state having a fixed energy EN: 

n ( £ | { Q y } ) = nUQulJP^IE*, {Qij}). (2.3) 

Conditional probability P(E\EN) can be written as: 

where the probability of native configuration and configuration to have 
energies EN and E respectively is P(E,EN) and the probability that native 
state has energy EN is P(EN)-

In writing the theory [40], non-native contact energies were considered as an 
average background field, and taken to be random which in turn gives a Gaussian 
distribution (with variance 62) and it is thought to be a good approximation 
for uncorrelated minimally frustrated energy landscapes [40, 42]. By using this 
information, the probability P(E\EN, {Qij}) can be calculated by taking the 
average of the delta functions over the non-native contact energy distribution: 

P{E\EN, {Qij}) (8[EN-H{{*$})])m • (2-5) 
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Now one can calculate the thermal energy using d\ogn{E)/dE — 1/T. It is 

£ ( T | { Q y } ) = Enn + £ djQij - ^f(l - Q) (2.6) 

where Enn is the average total non-native energy. The last term in the right 
hand side of Eq. 2.6 corresponds to decrease in thermal energy due to non-native 
traps [31, 40] (ruggedness of energy landscape). By using this relation for energy 
one can calculate the thermal entropy as 

Mb2 

S(T\{Qij}) = S({Q{j}) - i ^ - ( l - Q). (2.7) 

First term in the right hand side of Eq. 2.7 is the entropy of the polymer with 
the geometric constraints {Qij} and the second term is the decrease in entropy 
due to non-native traps. 

The next step in writing the free energy functional is to find an expression for 
the geometric entropy term S({Qtj}). This term can be written in 3 parts [40]: 

S({Qij}) = Ns0 + SROUTEUQH}) + SBOND({QnWij})- (2-8) 

Here so is the entropy per monomer, so NSQ becomes the entropy of the un­
constrained polymer chain. SRouTE({Qij}) is the entropy due to the ensemble 
of states having the same contact formation probability distribution {Qij}, so 
clearly SRouTE({Qij}) > 0. And finally SBOND({Qij}\{£ij}) is the configu­
rational entropy loss due to forming contacts, so SBoND({Qij}\{£ij}) < 0. A 
detailed analysis and rigorous calculations have been done in [40] to find an­
alytic expressions for these entropy terms. What we are interested in when 
writing this thesis is not to discuss ways of performing these calculations but to 
use the results and predictions and check their agreement with experiments and 
simulations. Because it is not going to give any insight to what we are doing, we 
will use the expressions taken from [40] and not repeat the calculations here. 

By using the expressions for SROUTE({Qij}), SBOND({Qij}\{iij}), Eq. 2.6 
and Eq. 2.7, one can write the functional for the free energy barrier height 
(F = E — TS). The result can be written in terms of a perturbative expansion3 

around a mean field term A F ^ F which only depends on mean of the contact 
energy and loop length distributions (e, 1). The first order terms are zero since 
T,i<j feij = z2i<j(eij-£) = 0 and Slij = T.KJ^H -*•) = 0- By plugging 
the appropriate coefficients of the expansion, the free energy barrier becomes: 

M T U * „ M M ) - M T 2T*de 8Q f AT ( ' 

This is the free energy barrier in terms of a mean field term and some fluctuation 
terms due to the varying contact energies and loop lengths, so they can be 
written in terms of the variances of corresponding distributions. 

3 This can be done by perturbing the free energy of a homogenous system with t{j — I, 
eij = e and Qij = (Q* is the value of Q at the barrier), by taking lij to 1 + S£,j and ey 
to ?+ Setj [38]. 
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The second term in the right hand side of the Eq. 2.9 is the correction to 
the mean field barrier due to variance in the contact energy distribution. As 
it is clear, this term always decreases the barrier. Teh third term in the right 
hand side is the fluctuation due to variance in contact loop length distribution. 
Like the energetic variance, structural variance also decreases the barrier. The 
barrier can also be lowered by making more likely contacts stronger and shorter 
contacts more likely. In that case the last term also decreases the barrier (since 
SISe becomes positive). 
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Chapter 3 

Results 

In this part of the thesis, we present the predictions of the free energy func­
tional theory and see if the results from molecular dynamics simulations and 
experiments agree with those predictions. 4 

The main question that we are interested in answering is what factors deter­
mine the folding free energy barrier for short proteins that fold via 2-state kinet­
ics. It has been shown that one factor is the stability of the folded structure -the 
barrier decreases as the energetic stability of the folded structure increases [8]. 
It has also been shown that the native topology is a very important predictor 
of rates. A topological measure, named relative contact order; 

RCO = 4- = T ^ V l i - j | A £ (3.1) 
Kj 

was found to be a good predictor of experimental rates that were measured at 
room temperature in water for 2-state folders [37]. After some time, it was 
discovered that mean loop length (2) itself is better predictor for both 2 and 
3-state (those that fold via a metastable intermediate state) proteins [21]. 

Here, we first reexamined the trend of experimental rates at the transition 
midpoint (see Methods) and simulated free energy barriers with 2. For this 
purpose we plotted the log folding rate kf vs 1 for a representative set of 20 
2-state proteins (See Fig. 3.1A). This graph shows a significant anti-correlation 
between \n(kf) and 2. This was clearly an expected result, because one can think 
that for a protein, during the folding process, it would usually take more time 
for a long contact to be formed than a shorter contact since the corresponding 
residues would have to search longer. So if a protein has longer contacts on 
average, one would expect it to fold slower (or have a larger barrier) than a 
short contact protein. We can observe the same effect for simulations when 
we plot the barrier height vs 2 for 18 structures of known 2-state folders (See 
Fig. 3.IB). Again we observe a statistically significant correlation between those 
quantities. However, the fluctuations around the best fit lines of both Fig. 3.1 A 
and Fig. 3.IB tells us that there should be some other factors that affect the 
barriers and rates. 

In the theory section we mentioned that the effects of native topology and 
energetics can be described analytically by free energy functional theory. It has 
been shown in Eq. 2.9 that the free energy barrier may be written in terms of 

4 For more information on molecular dynamics simulations and related data see Appendix 
A and Appendix B, for information about the experimental data see Methods section. 
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an expansion involving moments of distributions of native contact interaction 
energies {e^} and native contact lengths {lij}- Our earlier discussion on the 
second order fluctuation terms leads us to the notion that proteins with more 
heterogeneous folding mechanisms are expected to fold faster, since heterogene­
ity decreases the free energy barrier. Here heterogeneity refers to variance in 
contact formation probabilities, loop lengths and contacts energies. 

The next step is to check the theory prediction that fluctuations in the 
contact loop lengths (SI2 fl ) really decrease the barrier height. From Eq. 2.9, 
the change in the barrier due to presence of structural variance is: 

• (AF* - AFlfF) _ SAF* ̂  tW 
MT ~ MT ~ J2 1 ' 

Even when we ignore variations due to different mean loop lengths (1) of 
different proteins, the energetic variance term (Se2) and the cross term (Side), 
there is still an observable effect on barriers and rates. This can be seen from 
the plots of log experimental folding rate (over M) and simulated free energy 
barrier height (over MT) vs SP/t (See Fig. 3.2A and Fig. 3.2B). They both 
show statistically significant correlations with the measure of structural hetero-

_2 
geneity (SI2/I ), telling us that the free energy barrier of folding decreases with 
increasing structural heterogeneity. But as one can see, there are large devia­
tions present in the graphs: neglecting the effects of 2 and energetic variance, 
may have introduced some errors. 

Using functional theory, one can relate the fluctuations in contact energies 
and loop lengths to fluctuations in contact formation probabilities. As we dis­
cussed before, shorter and more stabilizing contacts are more probable to be 
formed, so the contact probability distribution Qij can be written as a func­
tion of {eij} and {lij} and the variance in contact formation probabilities can 
be written in terms of de2 and dl2. If we rewrite the change in the barrier in 
terms of 8Q2 = (1/M) Y^i<j{Qij ~ Q)2 by using the appropriate relations [40], 
it becomes: 

Here neither Qij nor the variance SQ2 is a practical quantity to extract from 
folding experiments. Rather, a more practical quantity named Rvalue (see 
Methods) is easier to determine and very closely related to the Q-values(. Since 
Rvalue, like Q-value, is a measure of both energetics and entropies (topology) 
for a residue, it should better capture the effects of heterogeneity in folding 
mechanism. We can estimate the variance in Q-values in terms of variance in 
Rvalues (5cj>2 = (1/N) - 4>)2) in the approximation that all contacts are 
fully formed in the native structure (QF = 1) and unformed in the unfolded 
structures (Qu = 0). The approximate relation is 
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where z is the average number of contacts per residue. Eq. 3.4 tells that the 
variance in Rvalues is proportional to the variance in Q-values up to a propor­
tionality constant of order unity. We checked the validity of this approximation 
from the simulations, since both Qij and §i values are available, by plotting 
5(j>2 against SQ2. As we can see from Fig. 3.3, they correlate extremely well 
and this result shows the validity of Eq. 3.4 except for the proportionality fac­
tor 1/z. z is typically ~ 5 for the proteins used in our analysis. According to 
Eq. 3.4, one expects the slope of Fig. 3.3 to be ~ 0.2, which is not the case. 
The reason for that is when we use the exact relation between the Rvalues and 
the Q-values (see Eq. A.7 in Appendix A) , there are some fluctuating quantities 
from one protein to another (like Qu and Qp) and z is also different for different 
proteins, which may change the value of the proportionality constant. 

Now we can write the total change in the barrier height due to both energetic 
and contact loop length fluctuations in terms of <f> variance: 

— « -4*W- (3-5) MT 2Qt v w ; 

This equation tells us that the free energy barrier of folding should be smaller 
for proteins with more polarized folding nucleus (larger variance in 0-values). To 
check this, we used <j>-value data extracted from experiments for 12 proteins and 
plotted it against the log of experimental folding rates (over M) at transition 
midpoints (Fig. 3.4A). The graph shows a statistically significant correlation 
which is what theory predicted about the change in the barrier (and so the 
rates) with 5<fi2. Furthermore we plotted the simulated folding barriers (over 
MT) against the variance in <f>-values extracted from simulations (Fig. 3.4B). 
What we observe is again strong, statistically significant correlation, telling that 
the barrier go down with increasing heterogeneity. 

We plotted the whole barrier over MT against the variances but not the 
change, because the mean field barrier is not a measurable quantity from the 
experiments or simulations. The quantity 6AF*/MT is actually the residual 
barrier after subtracting out the mean field barrier (which only depends on 
the mean loop length 2 and the mean of the contact energies e). One way to 
approximate this residual barrier could be to subtract the effects of 1 (since we 
don't know e for experimental proteins and it is 0 for simulated structures). 
Looking at the correlations of the residuals of —AF^/MT vs 1 with 5cj)2 and 
6£2, the results are comparable (statistical significance within 10%). 

For simulations, there is a strong and statistically significant correlation be­
tween 6(j>2 and SO.2 ft (Table 3.1) as one expects. It is because in our simulation 
models all the contact energies are same, so the energetic variance is 0. This 
means that the second and fourth terms on the right hand side of Eq. 2.9 vanish 
and there remains only the term due to fluctuations in the contact loop length 
which is a determinant of the barrier by itself like the variance in the t/>-values. 
However for experiments, we didn't observe any significant correlation between 
these two quantities (Table 3.1). This tells that there may be variance present 
in the native contact energies of real proteins. This is also the reason why we 
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do not see any significant correlation between the variances of experimental and 
simulated <f>-values (Table 3.1). 

In testing the theory we divided the barrier by the total number of contacts 
M and plotted it against variances. We want to note that the total number of 
contacts increases linearly with the chain length (iV) for the proteins used for our 
analysis, which can be seen by looking at the extremely good correlation between 
them (Table 3.1). One might divide the barrier by the chain length instead of 
number of contacts and still observe statistically significant correlations with 
the structural and energectic variances (Table 3.1). 

Data for wild type and p 1 3 - 1 4 circular permutant of protein S6 was not used 
in Fig. 3.2A, because both the wild type and the permutant have significantly 
correlated contact energies and loop lengths. For the wild type, longer contacts 
are stronger whereas the circular permutant was engineered to have stronger 
short contacts [26]. So, the effect of structural heterogeneity (6l2/l ) is not 
enough to explain the change in the barrier and this is why using the variance 
in (Rvalues is more accurate and significant (If we use those 2 data points in 
Fig. 3.2A, the correlation becomes r = 0.57 and P(r) = 9.6 x 1 0 - 3 , which is 
still significant). 
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Table 3.1: Correlation coefficient and statistical significance for various quan­
tities. 

y vs X r P(r)5 r P ( r ) 5 

Hkf) t -0.69. 9 x l 0 ~ 4 -0.46 5.3x10- -3 

I -0.71 IO" 3 -0.61 4.0x10" -4 

\n(kf)/M 0.78 2 . 8 x l 0 " 3 0.52 2.0x10" -2 

-AFljMTf 0.67 2 . 3 x l 0 - 3 0.47 7.2x10" -3 

\n(kf)/M stye2 0.62 6 . 6 x l 0 - 3 0.48 5.7x10" -3 

-AFljMTf se/t 0.53 2 . 7 x l 0 - 2 0.36 3.7x10" -2 

M Are 0.94 < IO" 8 0.84 < IO" 6 

Hkf)/N 0.78 2 . 6 x l 0 - 3 0.49 2.8x10" -2 

-AFljNTf 0.59 l . O x l O - 2 0.40 2.1x10" -2 

0.63 5 .7xl0~ 3 0.54 1.7x10" - 3 

-AFijNTf 5P/f 0.56 1 .8x l0 - 2 0.40 2.1x10" -2 

I W/T6 -0.14 0.52 -0.07 0.70 
I -0.64 2 . 5 x l 0 - 2 -0.43 5.5x10" -2 

J % m 
0.16 0.52 0.15 0.38 

&<t>lim 0.71 1.0 x I O - 3 0.32 6.4x10" -2 

0.29 0.37 0.18 0.41 
-0.16 0.80 0.20 0.63 
0.94 < io-6 0.77 9.0x10" -6 

52-sided statistical significance has been used. 
6 Data from both simulated and experimental proteins used. 
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Figure 3.1: (A) Log of experimental folding rates (in sec - 1 ) at the proteins' 
transition midpoints vs the mean loop length (2). Wild type protein 
S6 is shown by an open square and p 1 3 - 1 4 circular permutant of S6 
(formed by linking the ends of the protein and cutting the covalent 
bond between residues 13 and 14, so there is a new distribution of 
contact lengths) is shown by an open circle [26]. (B) Equivalent 
measure for logarithm of rates in simulations is — A F * i m / T / plotted 
vs 2. Both graphs show statistically significant anti-correlations. 
As a measure of statistical correlation, linear correlation coefficient 
r and Kendall's r have been used. Statistical significance is given 
by the corresponding probabilities to observe a given correlation 
coefficient or greater by chance. If the probability values associated 
with a correlation coefficient is smaller than 5%, the correlation is 
thought to be significant [56] 
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Figure 3.2: (A) Logarithm of the experimental rate data (over M, at the transi­
tion midpoints) is plotted against the structural dispersion (5t2/J ). 
(B) Simulated barrier heights (over MT) at the proteins' folding 
temperatures Tf is plotted against 8l2 /I . Both plots show statis­
tically significant correlations. In the graphs 3 outliers with large 
Sl2/1 (shown by filled circles) are ot/B proteins (A-repressor chain 
3, cytochrome c, yeast iso-l-cytochrome c) which both have large 
variance in contact length distributions and relatively fast folding 
rates. 
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Figure 3.3: Variance in 0-values for 18 simulated proteins shows a very strong 
and statistically significant correlation as expected with the variance 
in Q-values which were also extracted from the simulations. So that 
we can safely recast the change in the barrier in terms of 5<f>2. 
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Figure 3.4: (A) Logarithm of experimental folding rate (over M) is plotted 
against the variance in experimentally measured Rvalues for a sub­
set of the proteins in Fig. 3.1. Wild type protein S6 is again marked 
by an open square and p 1 3 - 1 4 circular permutant of S6 is shown by 
an open circle [26]. (B) Minus simulated free energy barrier height 
(over MT) for 18 proteins is plotted against the variance in sim­
ulated Rvalues. Both graphs show strong, statistically significant 
correlations. Especially, despite the fact that the number of data 
points in (A) is small, it is important to note the strong correlation. 



19 

Chapter 4 

Conclusions and Future 
Prospects 

In this thesis, we aimed to understand the results and the predictions of the free 
energy functional theory [40] on determinants of folding rates and corresponding 
free energy barriers for proteins that fold via a 2-state mechanism and check 
the validity of these predictions. To this end, we used the data available from 
folding experiments and from our own molecular dynamics simulations. 

We started by checking earlier results [21] of the dependence of rates on 
the mean loop length (t) by using our data. Results showed us that there 
are significant correlations between the mean loop length and the experimental 
and simulated free energy barriers of proteins (Fig. 3.1 A and B). Proteins with 
longer loop lengths have larger barriers and as a result, smaller rates. Free en­
ergy functional theory tells that apart from the dependence on mean loop length, 
heterogeneity present in the folding mechanism can effectively reduce the free 
energy barrier and speed up the folding process. This heterogeneity can be 
thought as the non-uniform ordering of the contacts, where shorter and more 
stabilizing contacts are more probable to be formed. So, one can talk about 
non-zero variances in the contact loop length ({tij}), contact energy ({e^}) 
and contact formation probability ({Qij}) distributions. By using mean field 
approach, an expansion of the free energy barrier can be written around the 
uniform folding scenario in terms of contact energy and loop length variances 
which was predicted to decrease the barrier. In order to see this, first we plot­
ted the simulated and experimental barriers against the structural variance term 
(St2ft ) in the expansion by using the available data (Fig. 3.2A and B). Sta­
tistically significant correlations tells that the structural heterogeneity indeed 
reduces the barrier. But it is not the end of the story since the result did not 
capture the whole heterogeneity present in the proteins but only the one due to 
loop length distribution. Total heterogeneity (structural and energetic) can be 
written as the variance in contact formation probabilities (SQ2). This quantity 
is not practical to extract from experiments, but it is very closely related to 
another quantity, variance in c/>-values, which can be obtained both from ex-
periments and simulations. So, we showed that the barrier can be written in 
terms of 5</>2. We plotted the experimental and simulated barriers against Scj>2 

and observed that proteins with more polarized nucleus (larger 0 variance) have 
smaller free energy barriers as theory predicted. 

The free energy functional theory is able to capture the overall effects on the 
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folding barriers. However, one can go further in the analysis by including the 
many body effects, which were shown to be present in some proteins [9]. This 
may introduce some corrections and increase the accuracy of the predictions 
of the theory. It may also be extended to include some predictions for 3-state 
folding proteins which have different determinants for their rates (like the chain 
length JV). 

One of the problems that we have encountered during this work was the fact 
that experimental 0-values available for 2-state proteins are very limited for this 
kind of statistical analysis. These effects could be observed better with more 
data points. Correlations and the significance values might be more accurate if 
an analysis will be done in the future by using a larger set of proteins. 
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5.1 Experimental Rates 
Experimental rates for 20 proteins were taken from different articles [4, 6, 12, 
16, 18, 19, 22, 23, 24, 26, 27, 28, 30, 36, 46, 47, 48, 54, 55]. Instead of rates at 
room temperature in water, the rates at proteins' transition midpoints (where 
the stability of the folded and unfolded states are equal, at various denaturant 
concentrations) were used in plots and calculations. This was done to eliminate 
the effects due to the presence of different stabilities for different proteins and 
to make a consistent analysis together with the results from simulations where 
all proteins are at their folding temperature (T/ is the temperature at which 
the folded and unfolded structures are at the same stability). 

5.2 Experimental 0-values 
(p-value is a measure that determines the structure of residues and their close 
proximity in the transition state. Since the knowledge of the transition state 
structures is very important for understanding the protein folding process, <f>-
value is a very useful quantity to examine. For 2-state proteins, experimental 
Rvalues are measured by mutations. A point mutation (changing a particular 
amino acid type) is done for a residue, than the change in the folding barrier 
(AAG\-u) and the change in the stability of the folded structure (AAGF-U) 
are measured. 0-value for that residue is denned as: 

* = A~AG~F~U  ( 5" 1 }  

When the mutation can be considered as a small perturbation, 0-value can 
be accepted as a good measure of the fraction of native structure formed in the 
transition state ensemble for the mutated part. A 0-value close to 1 means that 
the free energy change in the transition and the native state are very close to 
each other for the mutant and the wild type protein. And this indicates that 
the native contacts for the mutated residue are already formed in the transition 
state. On the other hand, a 0-value close to 0 means that the free energy change 
in the transition state and the unfolded state are very close to each other, so that 
it looks more like unfolded in the transition state around the mutated residue. 
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Figure 5.1: Figure shows the case of a protein which folds via 2-state mech­
anism. A mutation causes a change in the stability of the folded 
state (F) with respect to the unfolded state (U), AAGF-U, and a 
change in the free energy of the transition state (J) with respect to 
unfolded state, AAGj_y. 0-value, the ratio of these two free energy 
changes, depends on the amount of structure that has been formed 
in the transition state around the position of mutation. 

Experimental Rvalue Data 
Data for experimental <j> values were taken from [5, 6, 12, 15, 16, 18, 20, 24, 26, 
28, 47]. 

5.3 Topological Quantities 
Topological quantities for all proteins (simulated and experimental) were calcu­
lated by using corresponding Protein Databank (PDB) entries. P D B files have 
structural information about the folded proteins, including the amino acid types 
and order in the primary sequence and the coordinates for all the atoms in the 
folded structure. In calculating the topological measures (t and St2), a contact 
between two residues has been taken to be formed if in the native structure 
either heavy side chain atoms or C a atoms of two amino acids are within a 
cut-off distance of 4.8 A. So, mean loop length was calculated by using: 

(5.2) 
i< j 
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where 

^ N _ | 1 if residues i and j are in contact in native state 
i j 1 ~ \ 0 otherwise 

And the structural dispersion was calculated by using: 

i<3 

P D B Codes of Experimental Proteins 
P D B entries for 19 experimental proteins are: 1AEY, 1APS, 1BF4, 1 F K B , 
1HRC, 1LMB, 1MJC, 1NYF, 1PGB, IRIS, 1SRL, 1TEN, 1TIT, 1UBQ, 1YCC, 
2AIT, 2CI2, 2PTL, 2VIK. In calculation of topological quantities for p 1 3 - 1 4 

circular permutant of protein S6, the P D B entry IRIS has been modified. 
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Molecular Dynamics 
Simulations 

A . l Hamiltonian for the Model 
In order to check the predictions of the free energy functional theory, we followed 
the dynamics of the protein by using a Go-like Hamiltonian [53] to calculate 
the energy of the protein for a given configuration. Go-like means that the 
Hamiltonian takes into account only native interactions. Herein our model, 
each of these interactions has the same amount of energy, if any two residues 
are within a certain cut-off distance, they are given a fixed value of contact 
energy [7, 17]. 

Residues of the protein can be thought as droplets centered in their Ca po­
sitions. Residues form a chain by bond and angle interactions. The geometry of 
the native state is given in the dihedral angle potential and a non-local poten­
tial. Energy of a configuration T of a protein having a native state configuration 
T 0 is given by [7, 25] 

E(T,T0) = Kr(ri-ri)2+ £ Ke{d - 00)2 

bonds angles 

+ £ ^ n ) [ l + c o s ( n x ( ^ - 0 o ) ) ] 
dihedral 

+ Ej{«<..4(̂r-̂),°] 
+ « ( M ) ( » f } (A-l) 

In Eq. A . l , r is the distance between two adjacent residues at configuration 
T and ro is the distance between them at native configuration r 0 . Similarly 
0(#o) is the angle formed by three subsequent residues and (j>(cf>o) is the dihedral 
angle formed by four subsequent residues at configuration r(rn). The dihedral 
potential (third term on the right hand side of Eq. A . l ) is a sum of two terms 
for every four subsequent C„ atoms, one with period n = 1 and the other with 
period n = 3. The last term on the right hand side consists of two terms; first 
one is the non-local native interactions and the second one is the short-range 
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repulsive potential for non-native interactions. If the residues i and j axe native 
contact pair then ci(i,j) = 1 and £2(1, j) = 0. If they are non-native then 
ei(i,j) — 0 and 62(1, j) = 1. is the distance between residues i and j in 
the native state. For native pairs it is equal to the native distance between the 
residues and for non-native contacts it was taken to be 4 A in our simulations. 
Kr, Kg and K$ are the strengths of different interactions, in our simulations 
Kr = 100, KB = 20, = 1 and K{*] = 0.5. 

For the calculation of the native contact map for a protein, native contacts 
between pairs of residues axe taken to be zero if j < i + 3, since three or 
four adjacent residues are already assumed to be interacting in the angle and 
dihedral terms [7]. We defined that residues i and j are in native contact if 
either the heavy side chain atoms or C a atoms are within a cut-off distance 4.8 
A. The measure of the nativeness for a configuration Q(T), is the fraction of 
the formed native contacts at that configuration. Since this is not an all atom 
simulation, we do not keep track of all the atoms, but only Ca atoms. So, during 
the simulation, a contact is taken to be formed if the C a atoms of the residues 
i and j axe within a distance \.2o~ij. 

We used a simulation package named A M B E R which uses Berendsen algo­
rithm [2] to run constant temperature molecular dynamics simulations, which 
solves the Newtonian equations of motion numerically by rescaling the velocity 
to keep the temperature constant (by using Berendsen algorithm to couple the 
system to an external bath). In the simulations, both temperature and energy 
are measured in the units of the folding temperature Tf. 

A.2 Free Energy Profile 
For every protein structure we ran the molecular dynamics simulations numerous 
times to have enough sampling. After that we used the results from the W H A M 
algorithm [10, 11, 52] to get the free energy profile F(Q) as a function of the 
reaction coordinate Q. This algorithm estimates the free energy profile F(Q) 
at a specific temperature by using the approximation that logarithm of the 
probability distribution of the order parameter Q at fixed temperature can be 
considered as an estimate for the free energy profile. In a canonical ensemble, 
probability of variable Q to have value Qi can be calculated by 

where -E(Qi) is the energy of the system at <5i, W(Q\) is the density of states 
available for the value Q\ and ZT is the canonical partition function at temper­
ature T. The entropy of the system can be described in terms of the density of 

S ( Q , T ) ~ l n [ W ( Q ) ] . (A.3) 

So, free energy can be written by the well known formula by using related 
quantities: 

F(Q) = E{Q) - TS(Q). (A.4) 
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Since the free energy barrier is equal to the difference of the free energies of the 
transition (Q*) and unfolded (Qu) states, by using this formulation: 

PT(QU) W(Qu)e-E^u»T e - f ( Q " ) / r 

and the barrier becomes: 

AFt=F(Qt)-F(Qu)=Tlnj^^. (A.6) 

We calculated the corresponding probability distributions for different Q values 
by sampling the configuration space during all the molecular dynamics simula­
tions. 

A. 3 ^-values 

For the simulated proteins, kinetic 0-values are calculated by using [9, 33, 35]: 

, _ (rii)t - {nj)u _ &i 

where (ni)u, (ni)\ and ( n ^ f are the thermally averaged number of contacts for 
residue i in the unfolded state, transition state and folded state, respectively. 

Simulated P D B Structures 
18 simulated P D B structures are: 1AB7, 1AEY, 1APS, 1CSP, 1 F K B , 1HRC, 
1LMB, 1MJC, 1NMG, 1NYF, 1SHG, 1SRL, 1UBQ, 1YCC, 2AIT, 2CI2, 2PTL, 
2U1A. 
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Figure A . l : (A) Free energy F(Q) as a function of the reaction coordinate Q 

at the folding temperature Tf from our molecular dynamics simula­
tions for the major cold-shock protein (PDB code 1CSP). Unfolded 
and native states are separated by a free energy barrier at around 
Q ~ 0.45 (B) A typical simulation (again for major cold-shock pro­
tein) at the folding temperature. The graph is the reaction coordi­
nate Q as a function time that was measured in arbitrary units of 
molecular dynamics steps. Both graphs show 2-state behavior for 
this protein in our simulations. 
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How to Use Scripts and 
Codes to Run Simulations 
This chapter explains the steps how we ran A M B E R molecular dynamics simu­
lations starting from the P D B code of a specific structure. In addition to that, 
it also explains the codes that were used to prepare the required data format 
to run the simulations and the codes that were used to extract data from the 
output of the simulations (Rvalues, barriers, etc.). 

First step to start a simulation is to download the necessary P D B structure 
from the Protein Databank. The file "PDBCODE. pdb" has some information that 
is not necessary for running minimalist Go-like simulations, such as the type of 
amino acids and explanatory text. Some P D B structures also have more than 
one model (different experimental results). In this case one needs to extract only 
the necessary information, which is just the coordinates of all the atoms in the 
protein for one specific model (in our case we chose to use the first model in the 
beginning of the P D B file). For this purpose, we used a Perl code "model.pl". 
When we run this, 

> model .pl PDBCODE.pdb 
it creates an output file "PDBCODE. coord" with several columns including the 
residue number, atom type and the coordinates of the atoms. By using this 
information, now we can calculate the values of the necessary variables for the 
Hamiltonian (e.g. 0 angles, dihedral angles 0 and covalent bond distances r) 
in Eq. A . l . For this purpose we used the executable part of the C code named 

gen.c ; 
> gen.exe PDBCODE.coord prm.crd PDBCODE.contacts > prmtop 

which uses the coordinate file "PDBCODE. coord" as the input and creates several 
output files with various information, "prm. crd" is the file with all the coordi­
nates of the C a atoms in the structure. "PDBCODE. contact's" has 3 columns; 
first two columns show the residue numbers in the protein which have a native 
contact (having either heavy side chain or C Q atoms closer than the cut-off dis­
tance 4 .8 A) and the last column shows the distance between those residues. 
The place we extract the actual information that is necessary for running the 
simulations is "prmtop" file. It includes the energy information that is going 
to be used in the recipe given by the Hamiltonian in Eq. A . l (all the relative 
strengths of different interactions; Kr, Kg, K^, t\, a, data for r, 6 and 4> an­
gles, etc.). This file has the correct input format to be used directly by A M B E R 
package. 

http://model.pl
http://model.pl
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After getting all this necessary input, before starting the main run for the 
molecular dynamics simulations, we need to thermalize the protein structure 
which is in the folded state in the beginning and wait for it to come to equilib­
rium depending on the folding temperature T/ . To do this, we need to use the 
script "looprun_pre" 

> looprun_pre 
which reads the "prmtop" file as the input and runs the molecular dynamics 
simulation to find protein's equilibrium state and it prepares a new file with the 
new coordinates of C a atoms, named "coord_pre.TEMPERATURE", to use in the 
main simulation run. 

Next step is to start the molecular dynamics simulation. For this purpose, 
we used the script "looprun" 

> looprun 
which tells the AMBER software to run the simulation with the chosen options; 
such as the temperature, number of steps between the consecutive samplings, 
maximum number of time steps, etc. In the end of each run, we get two output 
files; "mdcrd.TEMPERATURE.NUMBEROFRUN.gz" and "mden.TEMPERATURE.NUMBE 
ROFRUN. gz" which have all the coordinate information and all the energy infor­
mation for different samplings in that run, respectively. We keep running the 
simulation and sampling until we get enough (~ 15) barrier crossings (folding-
unfolding event). 

When we are done with simulations and got enough sampling, we could 
extract the necessary information from the output data. For this purpose, we 
first run the executable part of the C++ code "GetAll.cpp"; 

> GetAll.exe PDBCQDE TEMPERATURE FIRSTRUN LASTRUN CUTDFF 
where "FIRSTRUN" and "LASTRUN" are the corresponding numbers for the first 
and the last runs respectively (e.g. 1 and 50) and "CUTOFF" is the parameter 
that we need to choose which multiplies native distance (c/ij) (see Eq. A.l) to 
calculate a cut-off value for C a atoms (it is 1.2 in our case). It creates two output 
files; "PDBCODE. TEMPERATURE. QFE" has the total energy and free energy profile 
as a function of the reaction coordinate Q and "PDBCODE. TEMPERATURE. All" has 
the kinetic, potential and total energy information for any snapshot from the 
simulation (snapshots can be taken periodically with a period of desired number 
of time steps). By looking at the free energy profile, one can find the Q-value for 
the unfolded, transition and the folded states. Thermal transition state (TTS) 
can be approximated by first calculating the Q-value that corresponds to the 
maximum of the barrier (Q*) and by finding the interval of Q where free energy 
drops until 20% of its maximum value on both sides of <2*, the interval is the 
thermal transition state. 

To calculate Rvalues, we first need to run the executable part of another 
C++ code qAverage. cpp; 

> qAverage.exe PDBCODE TEMPERATURE FIRSTRUN LASTRUN 
which reads the data from "mdcrd. TEMPERATURE. NUMBEROFRUN. gz" files and 
calculates the average number of contacts for each residue in the protein as 
a function of the reaction coordinate Q (e.g. (rii)u, (ni)t> ini)F are the av­
erage number of contacts residue i has in the unfolded Q = Qu, transition 
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Q = Qt and folded Q = QF states respectively) and creates the output file 
"PDBCODE.qAverage". Once we get this information, it is straightforward to 
calculate the </> value for each residue by using Eq. A.7. 


