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Abstract

A selective history of immunology is first presented that tells about the development of

the theories of “acquired immunity”, from the early observations of the phenomenon of

immunity in the Roman times until the long debate ending in the late 1960’s between the

proponents of the theories of “cellular immunity” and those of the theories of “humoral

immunity”. Some theories of antibody formation are also reviewed up to the “clonal

selection theory”. Then the “immune network hypothesis” and some of the models that

it engendered are explained, with a focus on a particular model due to Hoffmann and his

co-workers: the N-dimensional network model. A short history of the attempts to model

the “affinity” distribution and various choices of “connectivity” matrices is presented,

focussed on a particular one: a connectivity matrix based on a one-dimensional “shape

space”. The + shape-space , a shape-space formulated by Segel and Perelson, is reviewed

and a “new shape-space without shape zero”, the shape-space, is introduced in which

“complementarity” relationships between clones differ from the ones in the + shape-

space. Some analysis and numerical simulations of the two different versions of shape-

space embedded in Hoffmann’s N-dimensional network are shown, which are the first

simulations of the model to have ever been be done with non-Boolean affinities. The

concept of a “distance coefficient” is reviewed, analyzed and developed further for its use

with non-Boolean affinities. The first numerical simulations of the distance coefficients to

have ever been done are presented and analyzed, embedded in Hoffmann’s N-dimensional

network model with Boolean and non-Boolean affinities.

‘The author’s renaming of the origina’ shape-space of Segel and Perelson.
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Chapter 1

Introduction

Immunology is among the most dynamical branches of biology. An amazing number of

facts are being discovered every year. But still it is realized that a lot is left to understand

about the immune system, and especially about its regulation.

The history of immunology starts a long time ago, with observations of the phe

nomenon of “acquired immunity”, that is observations that those that have recovered

from a disease are “immune” to it upon a second attack. Chapter 1 of this thesis begins

with a history of those early observations and presents the first theories of acquired im

munity up to the long battle between supporters of “cellular immunity” who thought that

cells were the important constituents responsible for the defense of the immune system,

and the supporters of “humoral immunity” who considered “antibody” molecules to be

the defenders of the body. It also presents the development of the theories of antibody

formation up to the “theory of clonal selection”, which is now considered to be a corner

stone in immunology. The information contained in Chapter 1 is mostly derived from

the book titled “A history of immunology” [125] by Arthur Silverstein.

The first mathematical models in immunology that would try to give insight to the

question of the regulation of the immune system were essentially triggered by the “net

work theory” of self-regulation. Chapter 2 presents the network hypothesis and reviews

the first models of immune networks, focussing on a particular one: Hoffmann’s model. It

also meiltions some later work by other theorists in the field. It then presents Hoffmann’s

“N-dimensional network” model which is the basis of the work presented in Chapters 4

1



Chapter 1. Introduction 2

and 5.

Chapter 3 talks about a practical aspect that network theorists face when they want

to input the biological parameters “affinities” in their models. It tells about attempts to

model the “affinity distribution” of antibodies and the eventual choices of “connectivity

matrices” (matrices of affinities) that network theorists have made.

Chapter 4 presents some of the results obtained when implementing Hoffmann’s N-

dimensional network into a particular setting of computed affinities presented in chapter

3, the “shape-space”. It first shows a few simulations done with the original shape-space

of Segel and Perelson which was the earliest version of shape-space. Then it presents a

new shape-space without shape-zero and shows some simulations done with it.

Chapter 5 contains the most analytical and principal part of the thesis. It presents

a generalization of the “distance coefficient” which is a measure of the “dissimilarity”

between two substances for its use with non-Boolean affinities. Some simulations are also

shown which are based on Hoffmann’s N-dimensional network model with affinities of the

new shape-space without shape zero. It can actually be said that all previous chapters to

this one are only introductory to it. In order to justify the generalization of the distance

coefficient for its use with non-Boolean affinities and to show some simulations of it,

there was a need to use an immune network model, so the N-dimensional network model

needed to be presented. It then seemed a good idea to present the network hypothesis

which originated the model, as well as the background to the hypothesis. Also, since the

goal of the generalization was to enable the use of non-Boolean affinities in the concept

of a distance coefficient. it seemed sensible to mention the problem of the choice of the

affinity distribution. The affinity matrix chosen here being of a shape-space, it also made

sense to show simulations in shape-space with Hoffmann’s model, since the model had

always been used with Boolean affinities,

Finally, chapter 6 contains the conclusion.



Chapter 1. Introduction 3

The simulations that are presented in this thesis have been done with Fortran pro

grams created by the author, excepted for some Fortran routines obtained from the book

“Numerical Recipes in Fortran” [113]. For the integration of the differential equation of

Hoffmann’s N-dimensional network model, the following routines from chapter 16 were

used: the stepper routine “rkqs”which is a fifth-order Runge-Kutta step with monitoring

of the local truncation error to ensure the accuracy and adjust the stepsize, the algorithm

routine “rkck” which is a fifth-order Cash-Karp Runge-Kutta method, the driver routine

“odeint” with adaptive stepsize control (modified by the author). For the generation of

random initial conditions (variables having a value between 0 and 1), the routine “Ran2”

from chapter 7 was used. It is a long period (> 2 x 1018) random number generator of

l’Ecuyer with Bays-Durham shuffle and added safeguards.

The original illustrations that are part of this work were made with the graphics

packages: Gnuplot, MG, and Mathematica.



Chapter 2

From immunity to clonal selection

2.1 The phenomenon of immunity

The latin word “immunitas” is related to the legal concept of exemption [125]. It initially

described the exemption of a person from service or duty in Rome. Later, in the Middle

Ages, it referred to the exemption of the Church and its properties and personnel from

civil control. The first use of the term in a disease context can be traced to the Roman

poet Marcus Annaeus Lucanus (A.D. 39-65) when he observed the great resistance of

the Psylli tribe of North Africa to snakebites. It was later used occasionally in the same

manner, but gained popularity only in the nineteenth century, with the discovery of

smallpox vaccination by Edward Jenner.

The phenomenon of acquired immunity had been observed long ago. Pestilence and

poison were once the most feared causes of death. Even then, some keen observers realized

that a person who had been infected by a disease and recovered would not be affected by it

again, at least not fatally. The first related report comes from the historian Thucydides

[139] of Athens, in 430 B.C. Also, it is known that in Roman times, Mithridates VI,

king of Pontus, wrote in his medical commentaries about his increasing daily intakes of

poison, to prevent himself from attempts against his life. His conqueror Pompey had

those writings translated, and the practice became well-used, so that throughout the

Middle Ages there were mixtures called Mithridaticum used to that effect. It is worthy

to note that for centuries, it was thought that many diseases were due to poison, called

4



Chapter 2. From immunity to clonal selection 5

“virus” in latin. Also, the Greek word “pharmakeia” still means poisoning, witchcraft or

medicine!

The first theory of acquired immunity was made by the best known of the Islamic

physicians, Abu Bekr Mohammed ibn Zakariya al-Razi (880-932). In his Treatise on the

Smallpox and Measles [115], he gave the first modern clinical description of smallpox,

stated the fact that survival from smallpox conferred lasting “immunity” and provided

an explanation for it [126].

The notions of a disease being caused by small seeds (seminaria) and of its contagion

was first raised by Fracastoro [46] in 1546. It is interesting to note that he thought that

those seminaria have affinities for different objects. And with this he explained “natural

immunity” to certain diseases. Furthermore, he stated that the seminaria of smallpox

have an affinity for that trace of menstrual blood that each individual was supposed to

have inherited from its mother. Shortly after, Girolamo Mercuriali [92] denied the theory

of menstrual blood affinity stating that if smallpox, measles, and leprosy were all results

of menstrual blood contamination, then getting one disease should give protection from

the others, which obviously was not the case. One can see there a resemblance to the

modern concept of “cross-immunity”.

By the end of the seventeenth century, smallpox (previously a rare disease) had be

come a serious infection, which was going to plague the world for long after. With the

rise of physical sciences in the sixteenth and seventeenth centuries, new theories of small

pox were developed, the most dominant ones being those proposed by the iatrophysicists

and the iatrochemists who would explain everything in terms of physical and chemical

processes respectively [127).

At the beginning of the eighteenth century, the practice of variolation (consisting of

inoculation of smallpox to produce mild dermal infections which prevent further more

severe attacks), that had become popular as part of the folk medicine of several Eastern
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cultures, gained particular attention from the official Western medicine, through the

independent influences of Cotton Mather [88], a Boston resident, and of Lady Mary

Montagu [49], the wife of a British Ambassador in Constantinople. Several interesting

theories were raised as explanations for the phenomenon of “acquired immunity” against

smallpox [128].

The humoral theory of diseases was then still prevalent, as a remnant of the last twenty

centuries belief that diseases originated from a maladjustment of the four humors: the

blood, the phlegm, the yellow bile and the black bile. It was only iii 1858 that Rudolf

Virchow [143] suggested that all pathology is based on the malfunction of cells rather

than the maladjustment of humors. His successful theory gave birth to cellular pathology.

In the late 1870’s, modern bacteriology was founded, mainly as a result of the work

of Robert Koch [78] and Louis Pasteur [104]. They showed that each infectious disease is

produced by its own specific pathogenic microorganism. Studies of these organisms both

in vitro and in vivo, led to the germ theory of disease. Pasteur [103] was able to induce

acquired immunity to chicken cholera, but without being able to suggest an adequate

mechanism that would account for it.

Whether inflammatory responses were beneficial or detrimental to one’s health was

still controversial. Because inflammatory responses often seemed to accompany infectious

diseases, the latter theory was most favored. As microscopy and anatomical pathology

developed, macrophages and microphages were identified as the important cells present

in inflammatory responses and were thought by most pathologists to carry the infectious

organisms throughout the body. Then, in 1884, the Russian zoologist Metchnikoff [93]

proposed that phagocytic cells constitute the primary line of defense of an organism.

He was immediately opposed by the supporters of humoral immunity, which were not

able then to rigorously disprove him, But the discovery in 1888 by Nuttall [98] that the

serum of normal antibodies has a natural toxicity for some microorganisms was the start
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of further investigations in that direction. During the same year, Metchnikoff became

chef de service at the Pasteur Institute where hostility toward scientists based at Koch’s

Institute in Berlin reigned. This feeling was inherited from a violent debate that took

place between Louis Pasteur and Robert Koch since the late 1870’s, caused by the inter

national politics that had not long ago opposed France to Germany. Each accused the

other of scientific incompetence and refuted the validity of the other’s experiments, Thus,

following this, a fierce and nationalist battle lasting for two decades ensued. Some scien

tists grouped around Metchnikoff and his phagocytic theory at the Pasteur Institute were

in favour of cellular immunity. They claimed that the phagocytic and digestive powers of

the macrophage and of the microphage constituted the main defense of the body against

infection. Others based at the Koch’s Institute in Berlin under the leadership of Koch

were for huinoral immunity. They argued that invading pathogens could be immobilized

and destroyed only by the soluble substances of the blood and other body fluids. Each

group performed experiments designed to support their own theory. Metchnikoff and his

co-workers did numerous experiments to prove that the natural bactericidal powers of

the sera of different species are often not related to the species’ susceptibility to infection

by a given organism. His opponents would continually report that bacteria could be

killed by the cell-free fluids of normal and especially of immunized animals. The discov

ery in 1890 by von Behring and Kitasato [144] that immunity to diptheria and tetanus

is due to antibodies without obvious interactions of any cellular elements hit hard the

cellular theory of immunity. Von Behring and Wernicke [145] observed soon after that

passive transfer of immune serum protected a healthy organism from diptheria, without

any involvement of any cellular activity. Pfeiffer [111] then found direct bacteriolysis of

cholera microorganisms by antibodies in guinea pigs, and shortly after it was found that

this phenomenon could also be induced in a normal animal by injection of an immune

serum. And Bordet [12] would soon observe that even the erythrocyte could be killed by
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antibodies in the absence of phagocytes.

More observations were made over the 1890’s that showed the importance of antibod

ies for immunity. As more antibodies of different specificities were being discovered and

as Ehrlich [36] was able to isolate antibodies in a test tube via the recently discovered

precipitin reaction [80], more immunologists turned towards the humoral theory, as they

felt more comfortable with the antibodies than with the less manageable phagocytes. In

1908, the Swedish Academy tried to reconcile both camps by confering a joint Nobel

prize to Metchnikolf and Ehrlich, then leader of the humoral theory “in recognition of

their work in immunity”. It is interesting to note that in England, Wright and Douglas

[153] claimed that “both humoral and cellular functions were equally important and in

terdependent, in that humoral antibody interacts with its target microorganism to render

it more susceptible to phagocytosis by macrophages” But apart from them, the theory

failed to find strong supporters, and in the following decades only rarely would some

one explore the role of cells in immunity or the phenomena of “bacterial allergy” and of

“delayed sensitivity” which had been observed. In the 1920’s and early 1930’s, Zinsser

[155, 156], investigated bacterial allergy and Dienes and co-workers [35] got interested

in delayed hypersensitivity followed by two other groups [71, 130]. The importance of

inflammatory cells in tuberculin allergy was shown by Rich and Lewis [116]. In the mid

1940’s, Harris, Ehrich and co-workers [52] studied extensively the role of lymphocytes in

antibody formation.

Only in the 1960’s was there a switch from a chemical to a more biological approach

to immunology. It was then realized that the phenomena of allograft rejection, immuno

logical tolerance, immunity in some viral infections, pathogenesis of autoallergic diseases

and those related to immunological deficiency diseases could not be explained within

the framework of a theory based uniquely on humoral antibodies. This was the start of

an explosion of research in cellular immunity that would try to catch up with the last
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decades of inaction in that domain.

2.2 Theories of antibody formation

The discovery of humoral antitoxic antibodies in the early 1890’s was the start of a

theoretical investigation that would last for about eighty years. At that time, nothing was

known about the nature of toxins or antitoxins and little was known about the chemistry

of biological macromolecules in general. The questions that immunologists would try to

answer were about the origin and formation of antibodies within the immunized host and

about the way that they would acquire their specificity.

2.2.1 Antigen incorporation theories

The antigen incorporation theories appeared initially, with the first one proposed in

1893 by the noted German bacteriologist Hans Buchner [19]. He suggested that the

antitoxin was derived from the antigen. But new experiments [121, 77] would soon

disprove the hypothesis by showing that the amount of antibody formed in the immunized

animal was far greater than the amount of antigen utilized. Despite this, there were

several immunologists that continued to formulate theories to support the hypothesis

[55, 85, 84, 114, 86, 87], and experiments to disprove it [54, 140, 63, 64, 10].

2 2 2 Ehrlich’s side-chain theory

In 1897, Paul Ehrlich [37] described the interaction of diphteria toxin and antitoxin and

how to measure it. He suggested that a unique stereochemical relationship between the

active sites of an antigen and its antibody was responsible for immunological specificity.

He also introduced the concepts of “affinity” and of “functional domains” on the anti

body molecule. At the same time, he presented his side-chain theory which relied on
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intracellular digestion, like Elie Metchnikoff’s earlier phagocytic theory of immunity. He

postulated that every cell capable of synthesizing antibodies had on its surface “side

chains” of different specificities. The antigen would react with its specific side-chain and

be taken up by the cell. The side-chain could then perform its function anew or else

it could be regenerated. However, in presence of large or repeated amounts of antigen,

the cell would overproduce the specific side-chains and the excess would be released as

antitoxins into the blood. This theory already had all the requirements of a natural se

lection theory. When it was proposed, only a limited number of antibodies were known,

so it seemed possible for a cell to have side-chains of all the required specificities on

its surface. But within a few years, numerous other antibodies were found, discrediting

the side-chain theory. Figure 2.1 is one of the diagrams [38] that Ehrlich presented to

illustrate his side-chain theory.

2.2.3 Instruction theories

The instruction theories were based on the assumption that the amount of information

required for an antibody repertoire is so large that it cannot be contained inside the body

and hence must come from the outside. The first theories of that kind were the direct

template theories.

Direct template theories

In 1909, Oskar Bail and his co-workers [6] suggested that the antigen is not eliminated

after interaction with its specific antibody. It would then free the specific antibody to

pursue its function which is to bind to “natural antibodies” of the normal blood and

thereby imprint these with its specificity. Theories built on the same basic idea were pre

sented by other immunologists [5, 4, 138, 99, 100] until the beginning of the 1930’s. It was

then known that proteins were made of some kind of assembly of 20-odd types of so-called
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Figure 2.1: Ehrlich’s side-chain theory: “the autitoxines represent nothing more thall

side-chains reproduced in excess during regeneration and therefore pushed off from the
protoplasma, and so coming to exist in a free state”. (Scanned from [38].)
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amino acids and that antibodies were globular proteins. A new theory was then proposed

almost simultaneously by various immunologists [141, 94, 3], but most conclusively by

Breiril and Haurowitz [16, 53]. They suggested that the antigen travels to the site of

protein synthesis and acts as a template for building up the nascent antibody molecule;

further, through an unknown mechanism, the stereochemical structure of the antigenic

site determines a unique amino acid sequence, which results in the complementarity and

specificity of the interaction between the antibody and the antigen.

In 1940, the interaction of complementary three-dimensional configurations of atoms

was formally shown by Pauling and his students to be responsible for the specificity of

the antibody-hapten interaction, as Paul Ehrlich had suggested long ago. Their binding

energy was apparently a combination of ionic, hydrogen-bonding and van der Waals

interactions. Following this, Pauling [106] suggested that the specificity of an antibody

must be due to its unique tertiary structure which is determined by a unique folding of

its peptide chain. The antigen would serve as a template only at the time of coiling of

the nascent polypeptide chain of the antibody molecule and the resulting configuration

would be stabilized by familiar interatomic bonds. Figure 2.2 shows one of the diagrams

that Pauling used to illustrate his “theory of the structure and process of formation of

antibodies”. This theory was extended by Karush [73], who proposed that the unique

folding of the peptide chain was stabilized by multiple disulfide bridge cross-linkages,

which with their different extents would produce the variety of antibodies. He also

argued that the linearity of any template that determines a primary amino acid sequence

is mandatory, which would invalidate the Breiril-Haurowitz theory.

One major problem with the direct template theories, not even mentioned by its

proponents, was that they could not account for a greater and faster antibody response

due to a second booster encounter with an antigen.



Chapter 2. From immunity to clonal selection 13

lv
FOUP STAGES OF POSTULATED PROCESS
OF FORM4TION OF GLOBULIN MOLECULE

ANTIGENf
B

Aç•

‘C

ffl

—.---
SIX STAGES OF POSTULATED PROCESS
OF FOdATION OF ANTIB)Y MOLECULE

SATURATIO4 OF ANTIGEN MOLECULE
WITH IWNIBrnON OF ANTIBODY FORMATION

Figure 2.2: Diagram of Pauling’s theory of antibody formation, representing the four
stages in the process of formation of a molecule of normal serum globulin, the six stages
in the process of formation of an antibody molecule as the result of interaction of the
globulin polypeptide chain with an antigen molecule and the antigen molecule surrounded
by attached molecules or parts of molecules and thus inhibited from further antibody
formation. (Scanned from [106].)
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Indirect template theories

In 1941, Burnet [20] presented his “adaptive enzyme theory”, which later led to the in

direct template theories, At the time it was thought that all proteins were broken down

and synthesized by special proteinase enzymes. Some experiments had also suggested

that “adaptive” enzymes could appear in response to special changes or needs of the

bacterial organism. Burnet suggested that the antigen would reach the cells of the retic

uloendothelial system and there get in contact with the local proteinases. Dissolution

of the antigen molecule would be accompanied by an adaptive transformation of those

enzymes, which could then synthesize a globulin molecule specific to the antigen. The

information carried by those enzymes would be passed on to their daughter cells, thus

enlarging the number of antigen-specific enzymes, and this would explain the stronger

response obtained with large or repeated antigen injections. Furthermore, the theory

would account for the recent observation that the affinity of the antibodies would im

prove after these booster injections, since the enzyme would adapt at each injection and

thus become more specific. This was a net advantage over the direct template theories.

Towards the end of the 1940’s, adaptive enzymes were no longer popular. It was

known that a “genome” of undetermined composition ruled proteins synthesis. So in

1949, Burnet and Fenner [23] presented a new indirect template theory that would endow

the antigen the ability to imprint its specificity on the genome, thus transfering it to the

antibody. The information would persist in the genome of a cell and be passed on to

the daughter cells, which would explain an enhanced secondary response. Reexposure to

antigen would also improve the quality of the genocopy. Some experiments on grafts had

just suggested the rationale of an immune system able to distinguish between self and

non-self. So Burnet and Fenner postulated that during development, the body elements

get “self-markers” which protect them from future attacks from the immune system.
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By 1957, it was known that DNA is the carrier of genetic information. Schweet

and Owen [123] presented then their “template-inducer” theory in which they proposed

that the antigen first changes the DNA of the globulin gene, giving somatically heritable

information for the generation of a new RNA template to produce cells “primed” for

specific antibody formation. The antigen would furthermore act as an inducer on those

cells, stimulating the formation of many templates and enhanced antibody production.

2.2.4 Selection theories

The first of the selection theories was presented by the physicist Jordan [72] in 1940. In his

quantum-mechanical resonance theory, he suggested that the antigen, during its partial

digestion inside the body, is divided into fragments which select and interact with natural

molecules, their specific antibodies. Molecules having identical groups get attracted

to each other through quantum mechanical resonance aild this leads to autocatalytic

reproduction of the antibody molecule. The structure of the daughter molecules can be

altered during reproduction, which would account for the graded cross-reactions observed

by Landsteiner [81]. His theory was attacked by Pauling [105] who stated that resonance

attractions were more likely between complementary molecules thall between identical

molecules.

In 1955, Niels Jerne [66] presented his natural selection theory. He postulated that

the antigen, after interaction of its specific determinants with their natural specific a

tibodies, would carry the antibodies to specialized cells able to produce them. The

selected antibodies would induce synthesis of a specific RNA or change the structure of

the existing RNA to allow for synthesis of more specific antibody molecules. The theory

accounted for larger booster response and for improved affinity. Jerne also explained

immunological tolerance by suggesting that during embryogenesis the first natural anti

bodies made against self-antigens are integrated by the body tissues and thus become
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absent as stimuli for further autoantibody formation. But the theory had a problem

that Talmage [136] pointed out, due to the so-called “central dogma” of genetics later

formalized by Francis Crick [25]. It was that the instruction for protein structure came

from the DNA via the RNA to the protein and stayed there. This process could not

be reversed. This meant that none of the antigen or the antibody could directly inform

the DNA on the production of a specific antibody. It could at most trigger an existing

program. Ehrlich had already suggested this idea and Burnet and others returned to it.

The clonal selection theory of antibodies was first presented in a general way

by Talmage [136] and Burnet [21], and then more extensively by Burnet [22], Talmage

[137] and Ledeberg [82]. In his book published in 1959, Burnet suggested that natu

ral receptors or antibodies possessing a unique specificity are situated on the surface of

every lymphoid cell. The antigen interacts selectively with its specific receptor and trig

gers the differentiation of antibody production and proliferation to form daughter cells

which constitute a clone of the same specificity. This already accounted for enhanced

secondary responses and changes in quality of the antibody, the latter possibly improved

by somatic mutations. Furthermore, Burnet explained self and acquired tolerance by

postulating that clonal precursor cells might be especially susceptible to lethal action of

their respective antigens early in ontogeny, which eliminates them from the repertoire.

The antigen being “sequestered” and thus being absent for clonal elimination, as well as

somatic mutations were suggested as the precursors events of auto-immune diseases.

Talmage theorized further about the roles of antigen selection and antigen-induced cell

differentiation. He studied particularly the specificity and the size of the antibody reper

toire and proposed that a heterogeneous immune system might show a greater specificity

for an antigen than any of its constituent antibodies, because a distinct specificity would

be displayed by each set of cross-reacting antibodies. Lederberg examined the genetic

inferences of the clonal selection theory and suggested that somatic mutations continue
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Figure 2.3: The clonal selection theory of antibodies: antigen binds to a receptor on the
surface of a lymphocyte bearing the right specificity and triggers its proliferation into a
clone of lymphocytes of the same specificity; some of the daughter cells enlarge to become
plasma cells that secrete antibodies of the same specificity, others are the memory cells
ready to respond to further stimulation by antigens of the same specificity.
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to occur after fetal life . Soon, the clonal selection theory became widely accepted in its

general lines and is now considered to be the cornerstone of immunology.

‘This idea of the somatic generation of antibody diversity would be the center of another important
debate between supporters of the germ-line and the somatic theories, which would be concluded by both
sides making concessions.



Chapter 3

Immune network theories and models

3.1 Jerne’s network hypothesis

In 1974, Jerne [68] reviewed the pertinent immunological data that was available and

postulated that the immune system functions as a network with a complexity comparable

to that of the nervous system. To put his postulate in its context, let us make a summary

of some basic facts of immunology which were generally accepted at the time.

It was known that the antibody is a protein molecule called immmunoglobulin (Ig)

which is made up of four polypeptide chains: two identical light chains and two identical

heavy chains, joined together by various disulfide bonds. The domain structure of the

Ig molecule is illustrated in figure 3.4 borrowed from [50]. Both types of chains contain

“constant” and “variable” regions. The five classes of immunoglobulins: IgG, 1gM, IgA,

IgD and IgE are determined by the constant regions of the heavy chains. The great

diversity of antibodies within each class comes from the differences among the variable

regions (V regions). These constitute the antibody combining sites (paratopes) which can

react with the antigenic determinant (epitope). The importance of cells in immunity had

finally been recognized, leading to the discovery that antibodies are actually produced

by a class of white blood cells, the lymphocytes. There are two classes of these, namely

the B cells originating from the bone marrow and the T cells derived from the thymus.

Both possess specific receptors capable of recognizing antigens. The receptors of the B

cells are immunoglobulins. Originally, the B cells are in their resting state and secrete

19
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Figure 3.4: The domain structure of an Ig molecule. L and H represent the light and
heavy chains respectively. CL and VL are the “constant” and “variable” regions of the
light chain. C111, CH2, CR3 are constant regions of the heavy chains. VH1 is the
variable region of the heavy chain. CDR’s are the complementarity determining regions,
that is those regions that form the antigen-binding sites. (Scanned from [50].)
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only a relatively small number of antibodies (mainly 1gM) which they also display on

their surface as “receptors”. When the epitopes of antigens interact with paratopes of

receptors, the B cells become either stimulated or suppressed. If they become stimulated,

they begin to reproduce into a clone of cells all possessing the same specificity. Some

of them enlarge and become “plasma” cells which begin to secrete large amounts of

antibodies (mainly IgG) into the blood. The remainder reverts to the resting state and

become “memory” cells, ready to respond if the antigen reappears. If the B cells become

suppressed, they are no longer capable of being stimulated. This can happen, for example,

with very high injections of antigens (high zone tolerance) or low injections below the

threshold for stimulation (low zone tolerance).

The basis of Jerne’s network hypothesis was that antibody molecules can recognize

not only antigens but also other antibody molecules, Antibodies formed against the

antigenic determinants of other antibodies had been discovered experimentally almost

simultaneously by Jacques Oudin and Mauricette Michel [101] in France and by Philip

Gell and Andrew Kelus [47] in England. They were called “anti-clone” antibodies by

Gell and Kelus. The term “idiotype” was used by Oudin [101] to denote the antigenic

specificities of antibodies produced by an individual or a group of individuals in response

to a given antigen: that is, an idiotype is the set of epitopes on the variable regions of a

set of antibodies. Jerne named each single idiotypic epitope an “idiotope”. He thought

that antibody molecules possess combining sites called idiotopes which can be recognized

by paratopes of other antibody molecules, and viewed the immune system as a network

involving stimulatory and suppressive interactions between idiotopes and paratopes. The

system was normally maintained in equilibrium by the dominating suppressive interac

tions. Injection of an antigen into the system would disturb that equilibrium by giving

more stimulation to clones with certain idiotopes. These would in turn stimulate other

clones with anti-idiotopes specific to the idiotopes, and so on, leading to a chain reaction
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that could potentially spread throughout the whole network. If the system then settled

into a new equilibrium, this would represent immunological memory. Jerne [67] says:

“I am convinced that the description of the immune system as a functional network of

lymphocytes and antibody molecules is essential to its understanding, and that the net

work as a whole functions in a way that is peculiar to and characteristic of the internal

interactions of the elements of the immune system itself: it displays what I call an eigeri

behaviour.” This was then almost the first time [129] that the production of antibodies

against self-antigen was suggested to be normal rather than exceptional.

It is often forgotten that the main features of this hypothesis had already been put

forward implicitly by Ehrlich in his side-chain theory in 1897. Furthermore, as Kossel

[79] in Germany and Camus and Gley [24] in France had claimed having discovered anti-

antibodies in 1898-9, Bordet [13, 14] on one side and Ehrlich and Morgenroth [39, 40,

41] on the other side had performed more experiments and speculated further on this

discovery. They had been imitated by Alexandre Besredka [11], Pfeiffer and Friedberger

[112], August von Wasserman [146], Hans Sachs [122] and others. By 1905, it had been

realized that data had been misinterpreted, and so had died the first series of anti-

antibodies theories. But even though they had been built on misinterpreted experiments,

conceptually they had not differed much from what would be presented some seventy

years later by Jerne.

3.2 First mathematical models of the network hypothesis

3.2.1 Introduction

The first models of Jerne’s hypothesis [69] appeared during the year that followed his 1974

paper. Before examining them, it is appropriate to mention their precursor which was

one of the first mathematical model proposed to describe clonal selection and antibody
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production, presented by Bell [7, 8, 9] in 1970-1971. His model can be understood from

the point of view of a network, because the absence of any interactions between cells or

antibodies is equivalent to a network with zero strength of connections. Bell made no

distinction between different classes of antibodies and ignored the T cell activity. He

assumed that only a few lymphocytes can respond to an antigen to different degrees

depending on the average properties of the association constants of their receptors for

the antigen. Upon stimulation by an antigen, the lymphocyte can become paralyzed,

or divide into two proliferating lymphocytes, or divide into either two plasma cells or a

plasma cell and a memory cell, this latter being a new target cell for antigen. Antibodies

secreted by plasma cells help to eliminate the antigen. This limited model embodied

into a set of differential equations, accounted reasonably well for experimental antibody

responses, for high and low zone tolerance and for changes in the affinity between a

lymphocyte and its stimulating antigen.

3.2.2 Richter’s model

The first model subsequent to Jerne’s hypothesis including network interactions was

presented by Richter [117] in 1975 and includes excitatory, suppressive and inhibitory

interactions between the variable regions (V-regions) of the lymphocytes and of the an

tibodies. It ignores the differences between B and T cells and between antibody classes.

An antigen stimulates a specific set of idiotypic antibodies which, in turn, stimulates a set

of anti-idiotypic antibodies and so on. Negative feedback between idiotypic populations

is assumed to occur to limit the growth of the populations. This negative feedback can

happen only subsequent to the presence of stimulation by antigen. The set of differen

tial equations representing the model can simulate low zone tolerance, a normal immune

response and high zone tolerance, as well as immunological memory. It simulates several

important features of immune responses and leads to testable expectations.
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3.2.3 Hoffmann’s model

The second model to appear in 1975 was due to Hoffmann [56]. It will be examined

in more detail since we will use its latest version as a basis for our investigations. A

new feature of this model is that it gets rid of the distinction between paratopes and

idiotopes by assuming that the same surface pattern that can recognize antigen can

itself be recognized by the variable regions of other lymphocytes and antibodies. More

precisely, it is assumed that by averaging the three-dimensional shapes of all the V

regions that are recognized by an antigen, one should obtain a shape which is somewhat

complementary to the shape of the epitope of the antigen. The system is therefore

approximated by two sets of lymphocytes, the “positive” set that interacts with the

antigen, and the “negative” set that interacts with the positive set. The symmetrical

interaction between the two sets is postulated to happen via cross-linking of receptors.

Thus the positive set can stimulate the negative set to proliferate and vice versa.

The difference between T and B cells is taken into account. T cells secrete monovalent

specific factors. Specific T cell factors produced by one set can block the receptors of

the T and B cells of the other set and thus inhibit interactions of the two sets, B cells

of one set secrete antibody molecules which can kill, in association with complement, T

and B cells of the other set. This is called “complement-mediated cytotoxicity”. One

antibody molecule of the 1gM type or two of the IgG type bound to the cell surface

are required for this process. B cells switch from producing mainly 1gM molecules to

producing mainly IgG molecules during the course of an immune response. Effector cells

(e.g macrophages), to which the constant region of the antigen specific T cell factor can

bind, were postulated to be able to kill T and B cells of the complementary specificity.

This was called “indirect cell-mediated cytotoxicity”.

Four stable states of the system are postulated to be: a virgin state where populations
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Figure 3.5: The stable states of Hoffmann’s model. (Scanned from [56].)

of both sets are low enough that there is not a significant amount of stimulation but there

is killing (linear), an immune state where the populations of positive cells is high and

the immune effector function kills the negative population, a suppressed state where

populations of T cells of both sets is high and where all stimulation is inhibited by a high

level of monovalent factors, and finally an anti-immune state which is the converse of the

immune state. Figure 3.5 illustrates the stable states of the model.

Hoffmann presents a relatively complex set of differential equations that takes into

account the theory described above and generates the steady-states. For simplification,

he assumes that the concentration of antibodies is proportional to the concentration of

the cells that produce them, thus allowing the use of only one variable to model both of

these. The difference between B and T ceiis is taken into account by different functions
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and kinetic constants. The antigen, by modulating the dynamics of its specific cells, takes

care of the difference between cells of each specificity. The model also includes the two

types of killing, cell and complement mediated, and for this latter more specifically the

difference between 1gM and IgG killing. The switch from 1gM production to IgG is also

included. The theory also deals with with several other features of the immune system

such as self-tolerance, and suggests experiments.

3.2.4 Adam-Weller’s model

During the same year of 1975, Adam and Weiler [2] presented a model which aimed at

explaining the generation of antibody diversity and of a large set of different lymphocyte

clones in early ontogeny.

3.3 Later models

We have just examined the very first models of Jerne’s network hypothesis that appeared

during the following year that is was proposed. Those first modelers pursued their in

vestigations to different extents. Adam [1] published one more paper in 1978. Richter

[118, 119] published two other papers in 1978. Hoffmann still continues his research in

the field. His work will be examined in more details in the next chapter.

Many other researchers have investigated the network hypothesis. Some of the most

important ones are mentioned here.

Kaufman, Urbain and Thomas [76] produced a model in 1985 which is based on a log

ical analysis of the immune response, using boolean variables. In 1987, the continuation

of that paper is presented by Kauman and Thomas [75]. They analyse the same model

with continuous variables this time. Kaufman, Urbain and Thomas have published more

after that and are still continuing their studies.
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De Boer [27, 281 presents his first model in 1988. His model differs from the previous

ones in that he does not consider suppression to be the important mechanism for main

taining homeostasis in the virgin state. He is continuing his investigations, in conjunction

with others [29, 30, 31, 32, 33].

Here, it is certainly not the aim to do an extensive review of all the literature on

studies of immune networks. But the names of some of the other researchers in the field

that have persevered over the years are given here for reference (in alphabetical order)

with some of their papers: Avidan Neumann [95, 96], Alan Perelson [110, 109], Lee Segel

[124], Dietrich Stauffer [131, 134, 133, 132, 131, 134], Francisco Varela with Antonio

Coutinho and John Stewart [142, 135], Gerard Weisbuch [149, 151, 150]. It should be

well understood that this is not an exhaustive list.

3.4 More on Hoffmann’s model

Here, we will follow the development of Hoffmann’s model in the following years. The

reason for doing so is that it will help the reader to understand gradually the apparently

complex form of the latest version, the N-dimensional network model presented in §3.5.

A symmetrical two-dimensional model: the “plus-minus” model

In 1979, Hoffmann [57] presented the “plus-minus” model that was aimed at a better un

derstanding of the behaviour of the immune system near the steady-states rather than the

more complex events that occur during the switching between them. But his postulates

were essentially the same. He was also more interested in a qualitative rather than quan

titative understanding of the steady-states. So he made several further simplifications to

the ones already made in his previous model. First, he made no difference between the
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Figure 3.6: The interactions between cells in the plus-minus model. (Scanned from [57].)

T and 13 cells in the mathematical model, on the basis that at the level of approxima

tion of the model the same selective forces act on T± cells and B cells, and similarly

for T_ and B_ cells, where T+, B±, T_ and B_ cells represent T and B cells of the

positive and of the negative sets. Figure 3.6 illustrates the interactions between cells in

the “plus-minus” model. Accessory cells, previously termed effector cells, were assumed

to be involved in the switching between the steady-states but not in the steady-states

themselves. They were thus no longer considered in the mathematical model; similarly,

the antigen did not enter the model. The concentration of specific I cell factors was

chosen to be proportional to the product of the concentration of the cells that produce

them and of the concentration of cells that. specifically stimulate those cells. And 011cc

again the concentration of antibodies was treated as being simply proportional to the

concentration of cells that produce antibodies.

The “pius-minus” mathematical model is presented here since we will be using a
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version which is simply its extension to N dimensions. If one denotes by x and x_ the

concentrations of the positive and negative sets respectively, the differential equations

governing their dynamics are of the form:

dx+ 2

——

= S+kix+x_ei+k2x+x_e2+k3x+(x_)e3—k4x+ (3.1)

dx -

= S+kix+x_ei+k2x+x_e2+k3(x+)2x_e3—k4x_ (3.2)

1
where eq = nq q = 1,2,3. (3.3)1 + (:-)

The first term S models the constant non-specific influx of cells into the system. The

second term models the mutual stimulation of the cells. The third term denotes killing

by killer T-cells and/or by 1gM plus complement. It is linear in the concentration of cells

of the opposite specificity and has a rate constant equal to k2. The fourth term models

antibody-dependent cellular cytoxicity and/or killing by IgG plus complement, It has a

quadratic dependence on the concentration of cells of the opposite specificity and has a

rate constant equal to k3. The last term models the natural non-specific death and has

a rate constant equal to k4.

The eq terms model the specific inhibition of stimulation and killing by specific T-cell

factors (figure 3.7). The interaction between positive and negative cells and antibodies

are assumed to be inhibitable by both positive and negative specific T cell factors. The

Cq are constants that specify the threshold values of the product x x_ at which the

inhibition becomes effective, and the riq are constants that determine the sharpness of

the thresholds. The product of the concentrations is used (rather than, say, the sum)

because the concentration of T cell factors depends on the amount of stimulation between

positive and negative cells. The fact that 1gM production is more important in the virgin

state than TgG production and vice versa in the immune state is incorporated in the

model by choosing different values for the Cq and the flq.
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-

Cq2

Figure 3.7: The eq function for flq=7.

Hoffmann finds parameters that lead to the postulated steady-states and performs

some stability analysis on them. He finds that the steady-states are all attractors. Figure

3.8 is a phase-plane diagram of Hoffmann’s symmetrical plus-minus model. He also

studies the model when only one of the two 1gM or IgG killing terms is present and finds

that one does not then get all the steady-states or that they are then not all stable.

It should be noted that in a paper published in 1980, Hoffmann [58] reviews the

experimental findings which support the idea of symmetric1interaction between idiotypes

and anti-idiotypes of both T and B cells, cross-linking as the mechanism of interaction

and the existence of specific T-cell factors.

HofFmann’s next aim is to find the minimal model that leads to the postulated set of

stable-states. Gunther and Hoffmann [51] find that a minimal model does not require a

positive stimulatory term (the term with rate constant equal to k1), but only the negative

suppressive ones.

‘In 1984, Jerne [70] reviewed experimental data on idiotypic interactions and came to the conclusion
that they are indeed symmetrical.
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log x_

log x,

31

Figure 3.8: Phase-plane representation of Hoffmann’s plus-minus model. The virgin,
immune, anti-immune and suppressed states are labeled V.S., I.S., A.I.S, and S.S. re
spectively. All four stable states are attractors, Parameter values are k1 = 0.1, k2 = 1,

= 1, k4 = 0.01, S = 1, c1 = 10, c2 = 3, c3 = 0.3, n1 = 1, n2 = 2, n3 = 2. (Scanned
from [57].)
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3.5 Hoffmann’s N-dimensional model

3.5.1 The model

A first attempt to generalize the two dimensional “plus-minus” model to N dimensions ap

pears in 1988, presented by Hoffmann et al. [60]. A second improved version by Hoffmarin

et al. [61] appears later, which gets rid of an inconsistency with regard to the symmetry of

the interaction, overlooked in the first version, but brings unnecessary complexity to the

model. The most recent and simplest version is achieved by Mathewson and Hoffmann

[90] and is presented here, since it will used as a basis for further investigations.

One denotes the population of a clone i as x. For a network of N clones, the

differential equation governing the dynamics of clone i has the form:

= S + k1 x U1 e1 — x1 U2 e2 — k3 x(U3)2e3 — i = 1, N (3.4)

where eq= flq q=1,2,3. (3.5)

One can see that equation (3.4) now replaces equations (3.2) and (3.1), with various values

of the index i now representing clones of various specificities (in the two dimensional case,

the plus and minus specificities). The only difference is the term Uqi (where q = 1, 2, 3)

instead of the concentration of clones of the other specificity (plus or minus). We also

now have equation (3.5) instead of equation (3.3) with the term W’ replacing the previous

product of the concentrations of plus and minus clones; the term Cq is used instead of

cq2 for simplicity.

Consider the term To be consistent with the two-dimensional model, it must

represent a measure of the concentration of T cell factors. Before giving its value in

the N-dimensional case, let us first introduce other quantities that are relevant in an N

dimensional network of interacting clones. Clones in the network will interact with each
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other with different strengths of interaction (affinities), depending on their specificities.

One can denote by Kk3 the affinity between clones k and j. Studies of Hoffmann’s

N-dimensional network have been done up to now only with Boolean affinities, that

is = 0 for no interaction between clones i and j, and K, 1 for an interaction

between clones i and j. The implementation of non-Boolean affinities in Hoffmann’s

N-dimensional model (as will be seen later) is one of the novelties of the work performed

for this thesis. Another useful quantity is the field of a clone k, given by:

N

k=1,N. (3.6)
j=1

It is the sum of the concentrations of all clones j that interact with clone k, weighted

by the strength of each interaction. A measure of the T cell concentration of a clone i is

proposed as:
N

W=KkxkYk. (37)
k=1

One can see that this expression is a generalization of the two-dimensional one in the

sense that it is proportional to the product of the concentrations of two clones for N = 2.

Hoffmann et al. [61] found that this formulation was creating some problems in that, in

their numerical simulations, all the clones tended towards the suppressed state. So they

added a refinement to this formulation. They postulated that an enzyme controls the

total amount of T cell factors. It keeps the total amount of T cell factors constant, more

precisely equal to N times the average of the threshold constants Cq. This can be done

by first calculating W, then multiplying it by a factor equal to the average of the two

threshold constants divided by the average of all the T cell factor concentrations, so that

the new expression for the T cell factor concentration is given by:

=
(C2 +C3)/2

(3.8)
±wi
I i=1
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The other term we need to look at is the Uqi. It is called the effective field and is

modelled by:

Uqi =Kjjeqjxj q= 1,2,3. (3.9)

The summation takes into account the fact that clone i potentially receives stimulation

from all other clones j in the network. Each clone j can stimulate clone i more or less

efficiently depending on its specificity, which is taken into account by the affinity K

between clones i and j. This stimulation can be inhibited if the level of T cell factors of

clone j is too high, reflected by eqj in equation (3.9), and/or if the level of T cell factors

of clone i is too high, reflected by eqi in equation (3.4).

A last comment is that in their recent simulations of the N-dimensional network,

Hoffmann and his co-workers have used effectivities eqi with a very sharp threshold.

They have found that the results were not significantly affected by this choice [91]. We

have decided to keep the same choice in order to have results that can complement theirs.

For sharp threshold, that is riq = x, the effectivities become:

Ii ifWiCq
eqi = (3.10)

0 otherwise.

3.5.2 The steady-states of the model

We will consider the minimal model for which k1 = 0. The theory predicts three steady

states for the N-dimensional model: a virgin state where the production of 1gM antibodies

is dominant, an immune state where the producion of IgG antibodies becomes more

important and a suppressed state where the production of both types of antibodies is

inhibited. The state of a clone is determined by W’, the amount of its T cell factors.

Depending on the values of the threshold constants 02 and 03, there are two manners to

obtain the predicted steady-states.
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Case C2 > C3. A clone is in the virgin state if C3 < W < C2. The steady-state is

reached when:

Sk2Xvu2vk4XvO. (3.11)

The steady-state has the value:

S
= 1 IT I (3.12)

2 (2v + 4

A clone is in the immune state if W < C3 < C2. The steady-state is reached when:

= 5—k2xU2—k3x1U— k4x = 0. (3.13)

The value of the steady-state is given by:

Xi=kUkU2k• (3.14)

A clone is in the suppressed state if C3 < C2 < The steady-state is reached

when:

= S — k4 x3. (3.15)

This yields:

= (3.16)

Case C2 < C3. A clone is in the virgin state if W < C2 < C3. The steady-state is

reached when:

5—k2xU2
—k3xU — k4x = 0. (3.17)

The value of the steady-state is given by:

XV=k2U2v+k3Ujv+k4• (3.18)

A clone in the immune state is characterized by 02 < W’ <03. Then the steady-state

is reached when:

(3.19)
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The steady-state has the value of:

1 2 (3.20)
I3 U3 + k4

The suppressed state happens if 02 < C3 < T4/’, Then the steady-state is reached

when:

= S—kx8. (3.21)

This yields:

=
-. (3.22)

At this moment, further analysis on the N-dimensional network model is still unpub

lished [90]. But it is available in the Master’s thesis of D. Mathewson [89]. In further

work that is presented in this thesis, only the case 02 < 03 will be considered.
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The affinity distribution

4.1 The problem of the reconstruction of the affinity distribution

Introduction

A great problem that theorists face when they try to model the immune network is the

lack of experimental data available for the parameter values of their models. This concern

seems to be most prominent in the determination of the distribution of the equilibrium

binding constants (affinities). The affinity K between two substances A and B is defined

such that for any reaction:

A + B AB, (4.23)

one has that:

K
= [A][B]

(4.24)

It is known from experimental evidence that the distribution of the affinities between an

“invading” antigen and the antibodies produced by the lymphocytes is heterogeneous and

varies with time under various circumstances [107, 42, 43, 48]. Many attempts have been

made to reconstruct the affinity distribution from the relatively few measured values,

which are available only for a finite number of free hapten concentrations. One major

drawback when one attempts to do so is that several solutions can fit the data.

37
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Gaussian and Sips distributions

Pauling et al. [107] tried a Gaussian distribution in 1944, followed by Eisen and Karush

[42] in 1949. The Sips distribution was proposed by NisonofF and Pressman [97] in

1958 and by Karush [74] in 1962. The affinity mean value and the variance of those

distributions were estimated from the experimental data by non-linear regression. The

interpretation of affinites for a small range can be done using the Gaussian and the Sips

distribution but has been found to be inappropriate in general. One good reason for this

is that the affinity distribution is now known to be asymmetric and/or bimodal [152, 120].

Fourier and Stieltjes transforms

Other attempts have been made to reconstruct the affinity distribution without preas

signing a specific distribution. An exact analytic inverse based on the Fourier transform

was proposed by Bowman and Aladjem [15]. It was never used in practice because it

requires measurement of the experimental data with an extreme precision over the whole

range of free hapten concentrations. Its advantage though was to provide a unique solu

tion in the analytical sense. A similar approach was used by Bruni et al. [17, 18] using

the Stieltjes transform. They offered a way to interpolate and extrapolate the data to

generate a complete binding curve for the inversion. The problem with this is that the

reconstruction of the affinity distribution can be strongly influenced by the details and

manner of this completion. Hsu [65] suggested state-variable reduced order procedures.

His method was also never used in practice because it requires both the complete binding

curve and its derivative.
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Histograms and delta functions

Other approaches to the problem of the reconstruction of the affinity distribution include

a method based on histograms by Werblin and Siskind [152] in 1972 and another one

on delta functions by Erwin and Aladjem [44] in 1976. The problem with these two

methods is that several histograms or delta distributions can be found to fit the limited

data available.

Minimum cross-entropy

In 1991, Yee [154] proposed a method based on minimum cross-entropy. It is a highly

non-linear inversion procedure that does not require any prior assumptions about the

affinity distribution or of parts of it. It apparently provides a good recovery of the

distribution from a very limited amount of data. At this point, it is not known whether

this method has been implemented by experimentalists.

4.2 Choices of connectivity matrices

From the previous discussion of attempts to reconstruct the affinity distribution, it can be

seen that no solid ground is available for immune network theorists to work on. Under

this uncertainty, they have chosen diverse connectivity matrices (matrices of affinities

between the idiotypes of the immune network) for the simulations of their models.

Experimental connectivity

Varela et al. [142] have chosen affinities derived from experimental findings. They have

given the affinities values 0 or 1 taken from connectivity matrices based on cross-reactivity

as measured by ELISA assays.
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Random connectivity

Others such as Hoffmann [60], Parisi [102], De Boer [30] have used random and sym

metrical connectivity matrices. Weisbuch [150] has used a random but asymmetrical

connectivity matrix. The reasons for choosing a random connectivity matrix are well

expressed by Hoffmann [59], and by Weisbuch [150]. As HofFmann mentions, somatic

mutation processes produce a considerable part of the immune system repertoire of V

regions (variable regions), which renders their exact knowledge impossible for a particular

animal. This means that the immune system must be constructed in such a way that it

is not important which V-regions are present, as long as a very diverse repertoire exists,

such that for each idiotype there are some matching anti-idiotypes. He continues by

stating that the actual V-regions are not completely random since they are produced by

combinations and mutations of a finite set of germ line genes. It seems that in some

strains, particular “germ line” antibodies (or idiotypes) occur reproducibly. But consid

ering that diversity has developed under various somatic mechanisms and especially the

fact that repertoires can be mixed (by crossing strains, for example) without ill effect, one

may deduce that the stability of the network should not depend on a specific structure

of the connectivity matrix. The reasons that Weisbuch mentions for choosing a random

connectivity matrix complement the ones given by Hoffmann. He suggests that the use of

a random connectivity matrix is related to not knowing the real connectivity matrix He

also mentions it as a “good choice” since one searches for general properties that should

not rely in any critical way on a specific structure of the matrix which might vary from

one animal to the other.



Chapter 4. The affinity distribution 41

Bit-string complementarity

Some have decided to model the affinities using the bit-string approach [45, 32]. They

associated the shape of the receptors with a binary string and used the degree of corn

plementarity between the bitstrings to determine the affinity between the clones.

Shape-space concept

A recently popular approach is to use the concept of shape-space first introduced in an

immunological context by Perelson and Oster [110] in 1979. The affinity between two

receptors depends on factors such as the average geometric shape of the binding region

and the intermolecular attractive forces (hydrogen bonding, electrostatic forces, van der

Waals bonds and hydrophobic bonds). Perelson and Oster [110] have shown that a small

number (five to ten) of measurements of such factors is enough to describe adequately

the “generalized shape” of the binding region.

This approach was first used by Perelson and Segel [124] in 1988. Each idiotype is as

sociated with a vector of real numbers that describes its generalized shape. They studied

a one-dimensional shape-space, in which the variable x would describe, for example, the

geometric shape of the binding region or its electric charge. Figure 4.9 is a diagram that

they used to illustrate their “idealized” one-dimensional shape-space. Perelson and Segel

numbered all the shapes from —N to N and assigned maximum complementarity to the

shapes y = —x and x. They assumed that the smaller is x
—

(—y) x + y, the better

is the fit of shape x with shape y. To simulate this, they used a Gaussian distribution

centered around shape —x to represent the affinities of shape x with the other shapes.

More will be said about this in the next chapter.

In 1988, a shape-space for which no dimension needed to be specified was studied

by Percus [108]. Then, a high-dimensional shape-space restricted to a Bethe lattice was
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(a) (b)

Figure 4,9: Two realizations of a one-dimensional shape-space. In figure (a), the shape is
defined by the height of wedge-shaped epitopes, positive for protuberances and negative
for indentations. In figure (b), the shape is defined as the charge of the homologously
located patches. (Scanned from [124].)

used by Weisbuch et al. [151] ill 1990. Studies of models of the immune network in

two- and/or three-dimensional shape-space frameworks were done in 1990-1 by Weisbuch

[150], Weinand [147, 148], and Stewart and Varela [135], and in 1992 by De Boer et

al. [33]. Higher-dimensional studies have been dolle by Stauffer and Weisbuch [134].

De Boer et al. [34] have studied a model of the immune network for which there were

only two possible states for the clones. This was an incentive for Stauffer and Sahimi

[133, 132, 131] to use techniques developed from statistical physics (for example, for

Ising models) to simulate a high-dimensional shape-space (up to ten dimensions) with a

high-dimensional network (10 clones).



Chapter 5

Simulations in one-dimensional shape-space

5.1 Introduction

It was said previously that Hoffmanri’s models had oniy been studied with Boolean affini

ties. It was thus of interest to insert non-Boolean affinities in his model. The following

studies in shape-space are not meant to be extensive, but rather to be short incursions

which give an idea of the interesting behaviour that can arise from the implementation

of an immune network model in shape-space. Since this had never been done with Hoff-

mann’s model, it seemed quite relevant. But in fact, the original reason for choosing

affinities of the shape-space was that an arbitrary choice of non-Boolean affinities was

required to test numerically certain new analytical work about the “distance coefficient”

which will be presented in the last chapter of this work. So, the reader is asked for his

(her) indulgence with regard to its demands toward a more extensive study of such an

interesting topic, that is the shape-space concept. He is reminded that this work is only

made of brief incursions in several directions which call for further work.

In the following simulations, networks of dimensions approximately equal to 20 will

be done since all previous work by others has been done for that dimension. Hoffmann’s

N-dimensional network model presented in 3.5 is implemented with the following fixed

parameter values: S = 10, k2 = 1, k3 = 0.01, k4 = 1 and others which will be specified

when relevant.

43
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5.2 The + shape-space

5.2.1 Introduction

Hoffmarin’s N-dimensional model is first studied using the original idea of a shape-space

proposed by Perelson and Segel (see §4.2). This shape-space will be referred to as the

+ shape-space, since positive shapes are complementary to negative shapes in it, For

the simulations, a network of dimension 21 is studied. First, the non-periodic case is

considered, then the periodic case. The initial concentrations of the clones are chosen

to be uniform or random. Some parameters are modified to observe the effects on the

dynamics of the network.

5.2.2 The non-periodic ± shape-space

The clones are numbered from —N to N and positioned on a finite one-dimensional shape-

space axis accordingly to their similarity with each other (figure 5.10). The distance

between two clones determines their similarity. Immediate neighbours on shape-space

(like clones x and x + 1) have the greatest similarity and are at an arbitrary distance

of S from one another. More distant clones are less similar. For example, clones —N

and N are the least similar. Clones of opposite sign (x and —x) are assigned maximum

complementarity (maximum affinity). This is illustrated in figure 5.10 by dotted lines

joining the clones of maximum complementarity. The complementarity of clone x with

other clones situated symmetrically on each side of clone —x decreases as these are being

further apart from clone —x. For example, the complementarity of clone x with clones

—x — 1 or —x + 1 is the second greatest. To model this, De Boer et al. [33] have used

a “discrete” Gaussian centered at x. The same will be done here. Note that this shape

space representation allows for different combinations of similarity and complementarity

between clones. For example, clone 0 has maximum complementarity with itself, as well
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-N -34- —x O

Figure 5.10: The non-periodic + shape-space. Clones are numbered from —N to N aud
positioned accordingly to their similarity with each other. Neighbouring clones are the
most similar and are separated by an arbitrary distance 6, Dotted lines join the clones
of maximum complementarity. Note that clone 0 has maximum complementarity with
itself.

Figure 5.11: The matrix of affinities of a 21- dimensional network, for the non-periodic
± shape-space. The left and right pictures are two-dimensional and three-dimensional
representations. Clones are nnmbered from —10 to 10 for both representations. In the
two-dimensional representation, the shade of grey represents the value of the affinity with
a scale going from white representing a maximum affinity of one and black representing
a minimum affinity of zero. In the three-dimensional representation, the vertical axis
represent the value of the affinity. Here, a = 6 and cut-off= 10—6.
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as maximum similarity. But clone N has maximum complementarity with clone — N and

minimum similarity with itself.

The affinity between clones i and j is denoted by K. It is of course equal to by

symmetry of the interaction between two clones. The 2N +1 x 2N + 1 matrix of affinities

shown for N = 10 in figure 5.11 is based on the following relationship:

K3 = k (2iru2)112exp[—(i +j)2 6/2a2] i,j = —N,N. (5.25)

where k is a normalization constant, S is the space between shapes on the one-dimensional

shape-space axis, and u2 is the variance of the Gaussian. In all simulations, the normal

ization constant k was selected such that the maximum value taken by the affinity was

one, that is k = 2Kuhhl’2. The space 6 was arbitrarily given the value 1. The only param

eter that was varied was ci. To include non-periodic boundary conditions, the tails of

the discrete Gaussians are truncated when they reach the boundaries of the shape-space

axis. An additional parameter not shown here which appears in the Fortran program

that generates the matrix of affinities is cut -ofl the smallest possible value of the affinity;

whenever K3 < cut -off it is set equal to zero. Such a simplification has been done by De

Boer et aL [33]. The matrix of affinities has a band of Gaussian distributions that are

centered on the upper-right to lower-left diagonal.

The non-periodic ± shape-space with random initial conditions

The system is studied with random initial clone populations, more specifically for 0 <

x < 1 at time t=0. The characteristic parameters of the Gaussian distribution of

affinities are chosen to be: a = 4 and cut -off= iO. The other parameters of the model

are S = 10, k2 = 1, k3 = 0.01, k4 = 1, C2 = 0.6 and C3 = 0.7. The differential

equation (3.4) and its dependents is integrated until time t=100, which allows for all

clone populations to reach complete equilibrium.
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Dynamics of the model Figures 5.12 to 5.17 show the dynamics for different variables

of the model. Figure 5.12 represents the dynamics of the clone concentration x, versus

the time t. At time t=0, the clone concentrations are randomly distributed between

o and 1. They increase to a value greater than the equilibrium value, decrease below

it, and then increase again to reach it and settle there. At equilibrium, the clones have

three distinct ranges of populations and complementary clones have the same population.

Each pair of complementary clones has its own value of the population. Clones are in the

three steady-states of equations (3.18), (3.20) and (3.22), that is the virgin, immune and

suppressed state. The steady-state that one can easily predict is the suppressed state,

since it has a unique value of S/k4 = 10. In the suppressed state, clones have the highest

population. In the virgin state clones have various populations determined by the cubic

equation in x (3.18. The populations are the lowest and are quite similar, although only

each pair of complementary clones has an identical population. In the immune state,

clones can have various populations determined by the cubic equation in x (3.20). For

this set of parameters, only one pair of complementary clones (with identical population)

ended up in that state. Clones in the immune state have an intermediate population.

The state of a clone is defined by the amount of T-cell factors W’ that it produces

at equilibrium. This is shown in figure 5.13 which depicts the dynamics of the clone

concentration x versus the T-cell factor concentration W’. At equilibrium, one can also

see the three regions delimited by the values of C2 = 0.6 and of C3 = 0.7. Clones that have

a low amount of T-cell factors (below 0.6) are virgin, those that have an intermediate

amount of T-cell factors (between 0.6 and 0.7) are immune, and clones that have an

elevated amount of T-cell factors above 0.7 are suppressed. This classification was used

to label the state of the clones in figure 5.12. At equilibrium complementary clones have

the same amount of T cell factors and each pair of complementary clones has its own

value of the T cell factors.
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Suppressed clones: -4,-3,-2,-i,0,l,2,3,4

Immune clones: -5,5
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2 Virgin clones: -lO,-9,-8,-7,-6,6,7,8,9,l0
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Figure 5.12: Clone concentration x versus time t for the non-periodic + shape-space,
with random initial conditions. 0 < x < 1, S 10, k2 = 1, k3 = 0.01, k4 = 1, C2 = 0.6,
C3 = 0.7, a = 4, cut -off= i0.
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Figure 5.13: Clone concentration x, versus T-cell factor W’ concentration for the
non-periodic + shape-space. Same parameter values as in figure 5.12.
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Figure 5.14: Field Y versus clone concentration x for the non-periodic + shape-space.
Same parameter values as in figure 5.12.
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Figure 5.15: Field versus T-cell factor W’ concentration for the non-periodic +
shape-space. Same parameter values as in figure 5.12.
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Figure 5.16: Effective field U2 versus clone x concentration for the non-periodic +
shape-space. Same parameter values as in figure 5.12.
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Figure 5.17: Effective field U3 versus clone x concentration for the non-periodic +
shape-space. Same parameter values as in figure 5.12.



Chapter 5. Simulations in one-dimensional shape-space 51

Figure 5.14 represents the dynamics of the field Y versus the clone concentration

x. At equilibrium, one can see the three regions of values of the field, This illustrates

the fact that clones with a low field are virgin , those with an intermediate field are

immune, and those with a high field are suppressed. Complementary clones have the

same field. Each pair of complementary clones has its own value of the field. The fields

are also plotted against the T-cell factor concentrations in figure 5.15. Remember that

one is somewhat dependent on the other. The graph shows a “linear” configuration of

the equilibrium points.

The last variables of the model which can be of interest are the effective fields U2 and

U3. They are depicted in figures 5.16 and 5.17 with respect to the clone concentration.

The pattern exhibited is much more dramatic, with sharp corners in the trajectories,

that is with major changes in the continuity of the, at times, smooth behaviour. Com

plementary clones have the same effective fields. Each pair of complementary clones has

its own value of effective fields.

The interest here was more to examine the configuration of the clones in shape-space,

so the graphs of the dynamics will be left for now without further analysis.

Clusters in shape-space Clones are found to form clusters of the steady-states in

shape-space (figure 5.18). The clones position themselves in the clusters such that clone

zero is suppressed and is the center of the unique cluster of 9 suppressed clones. Then, on

each side of this cluster, there is an immune clone, separating the cluster of suppressed

clones from the two clusters of 5 complementary virgin clones. Complementary shapes

end up in the same steady-state and have the same steady-state population. Each pair

of virgin and immune complementary clones has its own steady-state population. All

suppressed clones have the same steady-state population, as was shown previously in

§3.5.2. It is verified analytically in appendix B.2 that the differential equation (3.4) with
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Figure 5.18: Formation of clusters of clones in the virgin(V), immune(I), suppressed(S)
steady-states in the non-periodic + shape-space for a 21-dimensional network with ran
dom initial conditions. Complementary clones share the same steady-state concentration.
There is a symmetry in the configuration of clusters. Same parameter values as in figure
5.12, so a = 4 and cut-off= iO. This configuration is also the same for values of a
between 2 and 4.

which the affinities obey the relationship (5.25) has a solution such that complementary

shapes have the same concentration.

Note that clone 0 is at the center of the cluster of suppressed clones, i.e. those that

have the highest concentration. De Boer et al. [33] had observed that clone 0 autostimu

lates itself to grow because it has maximum complementarity with itself, and influences

the other clones around it to grow. But their model involves positive stimulation terms

rather than the negative suppressive terms of Hoffmann’s model. So their explanation is

valid in their case, but not in this one. In Hoffmann’s model, the scenario is different and

less obvious. The amount of T cell factors that clone 0 has initially is high enough (see

figure 5.13) that both negative terms due to suppression by other clones are zero in the

differential equation (3.4). Therefore, clone 0 grows until it reaches its maximum value in

the suppressed state. If one looks at the matrix of affinities displayed in figure 5.11, one

realizes that clone 0 is the one clone for which the truncation of the tails of the Gaussian

imposed by the non-periodic boundary conditions is the least effective. As clones are

positioned further away in shape-space from clone 0, the influence of the truncation of
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the tails of the Gaussian increase. Clones —10 and 10 are the ones that have the smallest

amount of interactions with other clones. As one can see from equations (3.6), (3.7)

and (3.8), the amount of T-cell factors produced by a clone is strongly dependent on its

affinities with other clones. So, even when considering the influence of the clone concen

tration on the computation of the T-cell factors, there should be a general tendency for

the clones near clone 0 to have the greatest amount of T-cell factors. This was actually

seen to be the case in the different simulations which were done for various sets of initial

conditions.

Modify the random seed generator of the initial populations of clones The

random seed that generates the initial clone populations was changed to different values.

There was no observed change in the positions of the clusters. The values of the steady-

states essentially remain the same.

Modify the variance The variance was given different values from 2 to 7. Major

changes were observed. The different configurations in shape-space obtained are depicted

in figures 5.18 to 5.22. For o = 2 to 4, the configuration in shape-space was as shown

in figure 5.18. It is made of clones —10 to —6 being virgin, clone —5 being immune,

clone —4 to 4 being suppressed, clone 5 being immune, clones 6 to 10 being virgin.

Complementary pairs of clones share the same steasy-state population in all cases. As

o is increased towards the value 4.5, there is a break in the symmetry. The concentration

• of the complementary clones begins to differ slightly. As it reaches 4.5, the steady-state

situation becomes more asymmetric. The disparity between the concentrations of the

complementary clones is greater, and clone —5 switches from being immune to being

suppressed (figure 5.19). When u = 5, the clone —6 switches from being suppressed to

being immune (see figure 5.20). As a reaches 5.5, the clone —5 returns to its original
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Figure 5.19: Same as in figure 5.18 but now a = 4.5. Clone —5 has become suppressed(S).
The concentrations of complementary clones are rio longer identical.

/ •“ 5’ S, v ‘v ‘v ‘V
I p I I I I I I I

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Figure 5.20: Same as in figure 5.18 but now a = 5. Clone —6 has become immune(I).
Concentrations of complementary clones are still not identical.
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Figure 5.21: Same as in figure 5.18 but now a = 5.5. Clone —5 and 6 have become
immune(I) and clone 6 has become suppressed(S). Concentrations of complementary
clones are still not identical.



Chapter 5. Simulations in one-dimensional shape-space 55

I I I I I I I I I I I I I I I

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Figure 5.22: Same as in figure 5.18 but now a = 6. Clone 5 has become immune(I),
so that now clones —6, —5, 5 and 6 are immune(I). The situation is symmetric again:
complementary clones have the same concentration and are in the same steady-state.
The same situation holds for a = 7.

immune state, clone 5 switches from an immune to a suppressed state and clone 6 switches

from a virgin to an immune state (see figure 5.21). Then, the concentrations of the

complementary clones get more similar, until at a = 6 clone 5 returns to its original

immune state (see figure 5.22). Now, the configuration of the clusters is symmetric and

the concentration of complementary shapes is identical again. And we have that the

immune clusters are comprised of two clones instead of one as we had at our point our

departure for a = 2. For a = 7, the same situation holds.

The system has not been studied for greater or smaller values of the variance, so there

is left an open question as to whether one could have other regions of the parameter space

for which the symmetry would break and then be retrieved with a different number of

immune clones.

5.2.3 The periodic + shape-space

The system is now studied with periodic boundary conditions on the shape-space, which

simulate an infinite domain. There are different ways that one could do so. One could

set a period of 2N. This was the choice of De Boer et al. [33]. This means that there
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is no separation in shape-space between shape —N and shape N. A period of 2N + 1 is

chosen here. Figure 5.23 shows the two different periodic shape-spaces. To indicate the

periodicity, “circular” diagrams of shape-spaces are now presented, that is the ends of

the finite one-dimensional shape-space are joined. The matrix of affinities was computed

with a Fortran program based on equation (5.25) but including several modifications

to simulate the periodicity of the shape-space. It is shown in figure 5.24 for N = 10.

Note that an implication of having periodic boundary conditions is that the sum of the

affinities of one clone with the whole network is the same for every clone in the network,

that is:
N

= constant for each clone i. (5.26)
j=i

The periodic ± shape-space with uniform initial conditions

The system was first studied with uniform initial conditions for the clones concentra

tions. It is seen that the N-dimensional problem becomes one-dimensional because of

the symmetry brought about by the fact that the clones in the system encounter iden

tical stimulation. The analytical proof for this is presented in appendix A. The main

advantage of using uniform initial clone populations is that it permits one to find a set

of parameters that constitutes a point of departure for our simulations. In the case of

random initial clone populations, the system is too complex to allow for this finding So

the parameters for all the simulations in this work were based on the ones found with

the procedure indicated in appendix A. The one-dimensional is not that interesting in

itself, since all clones reach the same steady-state. We cannot see any difference in the

configuration of the clusters in shape-space when we change the value of the variance,

for example. We therefore restrict ourselves to non-uniform initial conditions for the rest

of the numerical experiments.
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0
Figure 5.23: The + shape-space with periodicity 2N + 1 (left) and with periodicity 2N
(right). Clones are positioned on the “circular” shape-space. Each clone is most similar
to its nearest neighbours. Dotted lines join the clones of maximum complementarity.
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Figure 5.24: The matrix of affinities for the + shape-space, with periodicity 2N + 1, for
a = 6 and cut-off= l0_6. Refer to figure 5.11 for explanations on the legend.
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Figure 5.25: Formation of clusters in the periodic + shape-space. This experiment was
done for the exact same values of parameters as in figure 5.18, except for a different set
of initial conditions. The only observed difference is the switch between clones in the
virgin(V) and suppressed(S) states.

The periodic ± shape-space with random initial conditions

The system is examined for exactly the same values of parameters as in figure 5.18 of

the simulations of the non-periodic case. The new steady-state configuration attained

was composed uniquely of immune clones, all with the same concentration. There was a

spontaneous restoration of symmetry, such that the system somehow became effectively

one-dimensional. The random seed generator of the initial conditions was changed to get

a situation where all three steady-states are represented and complementary clones have

the same concentration. The new configuration in shape-space is shown in figure 5.25.

The difference with figure 5.18 of the non-periodic + shape-space is simply a switch in

the positions of the virgin and suppressed states.

In the non-periodic case, remember that there was an asymmetry with regard to the

number of interactions that the different clones of the network would have with others.
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For example, clone 0 had the greatest number of interactions with others, In the periodic

case, every clone has the same number of interactions with other clones. So, one would

not expect the type of special configuration in the clusters that was brought by the

asymmetry in the number of interactions. And indeed, for the exact same parameter

values as in figure 5.18, it was seen that by changing the boundary conditions from

non-periodic to periodic, one would lose that special configuration. Surprisingly, simply

changing the set of initial conditions brings a special configuration again, although this

time, the configuration has “reversed” itself; the clones that were previously suppressed

are now virgin and vice versa.

5.3 A new shape-space without shape zero: the L shape-space

5.3.1 Introduction

In the + shape-space, one shape had maximum complementarity with itself, that is the

shape zero. It was thus of interest to construct a new shape-space in which there would

be no shape zero and see how this would modify the configuration of the clusters of

steady-states in shape-space. A new shape-space without shape zero is now presented.

It will referred to as the L shape-space (where stands for the Greek symbol “delta”),

to illustrate the fact that the complementarity in it is assigned by means of a constant

translation.

5.3.2 The non-periodic L shape-space

In the L shape-space, the clones are numberered from 1 to N, where N is an even

number. Once again, the distance separating two clones on the shape-space determines

their similarity. But this time complementarity is assigned differently. Each clone x is set

maximally complementary with the clone positioned at a distance equal to (1 + N/2)S
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Figure 5.26: The non-periodic shape-space. Clones are numbered from 1 to N (where
N is an even number) and positioned on the shape-space according to the same rules
of similarity with each other than for the ± shape-space. Note that the dotted lines
that join clones of maximum complementarity exhibit a different pattern than for the +
shape-space.

from itself. The position of this latter clone is thus the center of the Gaussian that

determines the affinities of clone x with other clones, as was the case in the + shape

space. Figure 5.26 depicts the L shape-space.

Note that this particular version of shape-space is quite different from the ± shape-

space depicted in figure 5.10. One can see that the dotted lines joining the clones of

maximum complementarity exhibit a different pattern. As was observed in §5.2.2, in

the + shape-space there is a great flexibility about the degrees of complementarity and

similarity that can be associated with two shapes. In particular, two shapes with a given

distance in shape-space and that have a maximum amount of complementarity can have

all degrees of similarity. But in the shape-space, the rules of complementarity assign

a fixed level of similarity to all pairs of maximally complementary clones.

One can also see the L shape-space as a reconstruction of the + shape-space in the

following way’. First, take the + shape-space and remove the shape zero. Then fold the

1This information was given to me at the Discussion meeting for Statistical Physicists held at the
St. Francis-Xavier University on October 3rd, 1993 by D. Stauffer, who himself had obtained it from S.
Dasgupta [26].
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Figure 5.27: The + shape-space with the shapes renumbered appropriately and omitting
the shape zero shows the same pattern of dotted lines that join clones of maximum
complementarity as in the z\ shape-space.

positive part on the negative part. That is, renumber the positive part by exchanging

clone 1 with clone N, then clone 2 with clone N — 1, etc... The reconfiguration is shown

in figure 5.27. One can see that the dotted lines indicating the complementary clones are

identical to the ones in the L shape-space.

5.3,3 The periodic L shape-space

We now impose periodic boundary conditions on the Z shape-space, by joining the two

ends of the shape-space together. We assign a periodicity equal to N + 1 so that shapes

1 and N are now immediate neighbours on the shape-space. One of the consequences of

doing this is that now clones of maximum complementarity are also clones of minimum

similarity (or maximum dissimilarity). The periodic shape-space is shown in figure 5.28.

The dotted lines that join the clones of maximum complementarity are now “diameters”

of the periodic shape-space. The interactions between clones are symmetric, so the

affinity between two clones i and j denoted by is equal to To determine the

N x N matrix of affinities one thus needs only specify the affinities K3 between clones i

and j for which i = 1, N and j = i, N and then symmetrize to get the rest of the matrix.
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Figure 5.28: The z shape-space with periodicity N+ 1. Dotted lines that join the clones
of maximum complementarity are diameters of the “circular” shape-space and denote
that those clones are also maximally dissimilar.

Figure 5.29: The matrix of affinities of a 20-dimensional network, for the shape-space
with periodic boundary conditions. The left and right pictures are two-dimensional and
three-dimensional representations. Clones are numbered from 1 to 20 for both represen
tations. In the two-dimensional representation, the shade of grey represents the value of
the affinity with a scale going from white representing a maximum affinity of one and
black representing a minimum affinity of zero. In the three-dimensional representation,
the vertical axis represent the value of the affinity. Here, a 6 and cut-off= 10—6.

b0)r



Chapter 5. Simulations in one-dimensional shape-space 63

So the affinities are defined by:

= k (2a2)_h/2exp[_(i +
— j)2 6/2a] (5.27)

for i = 1, N and j i, N, where k is a normalization constant, 6 is the space between

shapes on the one-dimensional shape-space axis, and a2 is the variance of the Gaussian.

This expression is a modification on the one derived by De Boer et al. [331 for their

shape-space.

The affinity matrix now has two bands of Gaussian distributions (in contrast to one

band for the ± shape-space), positioned symmetrically with respect to the upper-left to

lower-right diagonal, and parallel to it. It is pictured in figure 5.29 for N = 10.

The periodic Li shape-space with random initial conditions

The Li periodic shape-space has been studied only for random initial clone populations.

They were randomly chosen to be between 0 and 1. The characteristic parameters of the

Gaussian were a = 2 and cut -off= i0. A system of 20 clones is first examined.

Dynamics of the model Figures 5.30 to 5.35 show an equivalent of figures 5.12 to

5.17 of the dynamics of the different variables of the model. Figure 5.30 shows the

dynamics of the clone concentrations x, versus the time t. It can be seen that there

is no great difference between figure 5.12 and figure 5.30 in that the values reached

at equilibrium are essentially the same. Some difference can be observed in the way

that the virgin and immune states are reached by the clones. In figure 5.12, the clone

concentrations increased to a greater value than the equilibrium value, then decreased

below it, then increased until they reached it and finally settled there. In figure 5.30,

the clone concentration increases to a greater value than the equilibrium value, then

decreases to this latter and settles there. At equilibrium, complementary clones N and
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Figure 5.30: Clone concentration x versus time t for the periodic z shape-space, with
random initial conditions. 0 < x < 1, S = 10, k2 = 1, k3 = 0.01, k4 = 1, C2 0.62,
C3 = 0.65, a = 2, cut -off= i0.
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Figure 5.31: Clone x versus T-cell factor W’ concentrations for the periodic
shape-space. Same parameter values as in figure 5.30.
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Figure 5.32: Field Y versus clone concentration x for the periodic L shape-space. Same
parameter values as in figure 5.30.
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Figure 5.33: Field Y, versus T-cell factor W’ concentration for the periodic shape-space.
Same parameter values as in figure 5.30.
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Figure 5.34: Effective field U2 versus clone x concentration for the periodic z\
shape-space. Same parameter values as in figure 5.30.
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Figure 5.35: Effective field U3 versus clone x1 concentration for the periodic A
shape-space. Same parameter values as in figure 5.30.
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N + 10 (for N < 10) have the same steady-state concentration, e.g. clones 2 and 12 are

virgin with identical concentration.

Figure 5.31 depicts the dynamics of the clone concentration x versus the T cell fac

tor Wi’. At equilibrium, complementary clones have the same value of T cell factors.

Comparing with figure 5.13, it can be seen though that rather than each pair of comple

mentary clones having its own equilibrium value, there are two pairs of complementary

clones having the same value. Also, at time t=0, the range of values of the T cell factors

is narrower in figure 5.31.

Figure 5.32 shows the dynamics of the field Y versus the clone concentration x.

The same clusters of complementary clones that were sharing the same level of T cell

factors (refer to figure 5.31) are seen here to share the same field. Comparing with figure

5.13, it can be seen that the behaviour is smoother here, that is not with sharp corners.

Figure 5.33 shows the dynamics of the field Y versus the T cell factors W’. The greater

clustering ocurring here than in figure 5.15 is again obvious. And once more it can be

observed that there is a “linear” configuration of the equilibrium points.

Figures 5.34 and 5.35 depict the effective fields U2 and U3 versus the clone concen

tration x. At equilibrium, the same clusters of complementary clones of the previous

figures are seen to have the same value of effective fields. The behaviour can also be seen

to be much smoother than in figure 5.16 and 5.17. Once again, we will go directly to the

study of the configuration in shape-space without examining further the graphs of the

dynamical variables of the model.

The conclusions that can be drawn from comparing the non-periodic ± shape-space

with the periodic L shape-space are: more clustering and a smoother behaviour in the

latter case.
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Clusters in shape-space Figure 5.38(right) shows the configuration in shape-space

for a particular set of parameters. The clones end up in the three steady-states. They

position themselves in a very symmetrical manner. There are two clusters of four virgin

and of four suppressed clones, separated from each other by clusters of one immune clone.

Complementary shapes are in the same steady-state and share the same concentration.

It is shown in appendix B.l that this is a solution.

Modifying the initial clone populations The random seed that generates the

initial clone population was changed many times. The only observed change was that

the configuration of clusters rotates around the shape-space. The clone populations

were also given random values between 0 and 20 for the same random seed. There was

no significant change. The same steady-states were occuring with essentially the same

populations. The configuration of clusters stayed the same.

Modifying the values of the threshold constants Figures 5.36 to 5.39 show the

configurations of the clones in shape-space as only the values of the threshold constants

C2 and C3 are modified. Figure 5.36 left shows the configuration when C2 = 0.35 and

C3 = 0.6. All clones are in the immune state. The concentrations of the complementary

clones are not the same. For the rest of the figures, the value of C3 is kept fixed and

the value of C2 is increased up to 0.59. In figures 5.36 (right), 5.37 (left), 5.37 (right)

and 5.38 (left), the value of C2 has been changed to 0.358, 0.36, 0.39 and 0.44. One

can see that virgin clones appeared one by one consecutively at positions 8, 9, 7 and 6.

They positioned themselves side by side until they formed a cluster of four clones. As C2

reaches the value 0.45, the configuration of the shape-space changes drastically. Not only

do we have one cluster of four virgin clones, but two of them, as well as two other clusters

of four suppressed clones. These clusters are separated from each other by one immune
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Figure 5.36: Formation of clusters of clones iii the virgiri(V), immiine(I) and sup
pressed(S) steady-states in the periodic L shape-space for a 20-dimensional network
with random initial conditions. 0 < x < 1, S = 10, k2 = 1, /c3 0.01, k = 1, o = 2,
cut-off= iO. Left: All clones are immune(I). Complementary clones do not share the
same concentration. 02 = 0.35 and 03 = 0.6. Right: Clone 8 has become virgin(V).
02 = 0.358 and 03 = 0.6.
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Figure 5.37: Same as in figure 5.36 excepted for the values of 02 and of 03. Left: Clone
9 has become virgin. 02 = 0.36 and 03 = 0.6. Right: Clone 7 has become virgin.
02 = 0.39 and 03 = 0.6.



Chapter 5. Simulations in one-dimensional shape-space 70

20 1 2 20 1 2
19 3 19 3

18 7 ,t 4 18 y. ‘1 Y
/ i. \. \ / /

17
I

5 17 s
161 -0-- V 6 168- --0- S 6

15
- V

15
- S

.j 7 1 \ S / \ \ SZJ

14 8 14 8

13 9 13 9
12 10 12 10

Figure 5.38: Same as in figure 5.36 excepted for the values of C2 and of C3. Left: Clone 6
has become virgin. C2 = 0.44 and C3 = 0.6. Right: Drastic change in the configuration.
There are now clusters of four virgin and suppressed clones separated from each other
by immune clones. The situation is symmetric and complementary clones have the same
concentration. C2 = 0.358 and C3 = 0.6.
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Figure 5.39: Same as in figure 5.36 excepted that C2 = 0.59 and of C3 = 0.6. The immune
clones have disappeared and have been replaced by suppressed clones. The situation is
still symmetric and complementary shapes have the same concentration.
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Figure 5.40: Clusters in the periodic shape-space for a 22-dimensional network with
random initial conditions. The configuration that exhibits all three steady-states has
complementary clones sharing the same concentration and being in the same steady-state.
The pattern is different than with the 20-dimensional network. Same parameter values
as in figure 5.36 excepted for 02 = 0.65 and C3 = 0.7.

clone. The situation is symmetric and the concentrations of complementary clones are

identical. It was discussed previously. Note furthermore that the original position of

our first cluster of virgin clones has not been kept! As 02 reaches the value of 0.59, the

immune clones have vanished and are replaced by suppressed clones (figure 5.39). The

situation is again symmetric and complementary clones share the same concentration

still. But note that the fact that we have a symmetric situation does not involve having

complementary shapes sharing the same concentration. In the first case all shapes were

in the immune state, which can be seen as a symmetric situation, but they did not share

the same concentration.

Changing the dimension of the network The nice symmetry encountered in

the previous cases was thought to come from having chosen a number of 20 clones iii the
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network which would bring that symmetrical distribution of the clusters. To test that

hypothesis, the model was studied with other numbers of clones in the network.

First, an experiment was done with 22 clones to keep the even number number of

clones. The result is shown in figure 5.40. And indeed, the system exhibits a different

pattern. Complementary shapes still exhibit the same concentration as it is to be ex

pected (adding an even number of clones surely does not invalidate the demonstration

presented in Appendix B.l), and there can still be three general types of steady-states.

But the number of virgin and suppressed clones grouped in clusters has changed, and

those clusters are not always separated from each other by an immune clone. There still

are some immune clones separating some of the clusters, but one is not present and has

been replaced by a suppressed clone.

The model was then studied with an odd number of clones, that is 21 clones. Each

shape was set complementary to another hypothetical one situated between the two most

complementary shapes, so that the expression giving the the affinities is:

== k (2ira2)’I2exp[(i
— j + N/2 + 8/2)2 8/2g2] (5.28)

where i = 1, N and j = i, N (N is an even number), with symmetrization of the matrix.

The matrix of affinities shown in figure 5.41 is very similar to the one for an even number

of clones. One now has that each clone has maximum complementarity with two other

clones. For example, clone 1 has maximum affinity equal to 1 with clones 11 and 12, and

then a smaller affinity with clones 10 and 13, etc... The result of the simulation is shown

in figure 5.42. It is found that the three actual shapes mentioned above ended up in the

same virgin or suppressed state as long as the first one is part of a cluster of virgin or

suppressed shapes. If the first shape ends up being iii the immune state, then the two

most complementary shapes are found to be one in the virgin state and the other in the

suppressed state. It is believed that the hypothetical complementary shape to the actual
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Figure 5.41: The matrix of affinities of a 21-dimensional network, for the periodic A
shape-space. It is very similar to the one for a network comprised of an even number of

clones. a = 6 and cut -off= 10_6,
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Figure 5.42: Clusters in the periodic A shape-space for a 21-dimensional network with

random initial conditions. Dotted lines of maximum complementarity show that each

clone is set complementary to a hypothetical clone situated between its most comple

mentary clones. Same parameter values as in figure 5.36 excepted that C2 = 0.6 and

C3 = 0.7.
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shape in the immune state would also be in the immune state. The new geometry of

the shape-space is such that one has actually doubled the number of actual shapes (by

adding to it an equal number of hypothetical shapes), so that one ends up with a total

number of an even number of clones. Then the demonstration presented in Appendix B.1

also holds for the case when one is taking into account all the actual and hypothetical

shapes in it.

This ends the studies of Hoffmann’s N-dimensional network in shape-space.



Chapter 6

The distance coefficient

6.1 The concept of a distance coefficient

In 1989, Hoffmann and Tufaro [62] presented the concept of a “similarity coefficient”,

which represents the extent to which two substances A and B are similar, as seen by a

third substance C. The justification for defining such a parameter follows here. Biolo

gists can measure experimentally the degree of complementarity of two proteins, which

is defined by the affinity K. Sometimes, one wants to know how similar proteins A and

B are. To answer that question, one usually compares their sequences of amino acids and

DNA. But this doesn’t tell much about other characteristics like the three-dimensional

shapes of those proteins, which can vary significantly even for a small change in the se

quence. Furthermore, different observers can have diverging opinions about the similarity

of two proteins. One example given by Hoffmann and Tufaro is about the similarity of

the proteins of bovine serum albumin (BSA) and of mouse serum albumin (MSA). These

proteins, which have similar three-dimensional structure, would be considered as dissim

ilar from the point of view of a mouse or of a cow’s immune system; but they would be

seen as quite similar by a chicken’s immune system, since chicken anti-BSA is likely to

cross-react with chicken anti-MSA, the reason being the close relatedness of mice and

cows from the chicken’s phylogenetic point of view.

Thus it is sensible to define the similarity of two substances in the context of a

third one. This can be done in various ways. One way which has been suggested by

75
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ADB

C -+ AandB

Figure 6.43: The fractions of C that are taken into account in the Hoffmann-Tufaro’s
definition (eq. 6.25) of the similarity coefficient. (Adapted from [62].)

Hoffmann and Tufaro is to define the similarity coefficient between two substances A and

B in the context of C as the ratio between the fraction of C that reacts with A and B

simultaneously and the fraction of C that reacts with either A or B or both:

S1AB1
C—*AandB

L’

where C —* A arid B denotes the fraction of C that reacts with A and B, C — A not B

denotes the fraction of C that reacts with A but not with B, C — B not A denotes

the fraction of C that reacts with B but not with A, and C —* A and B denotes the

fraction of C that reacts with both A and B. Note that this definition does not take

into account the parts of C that interact with neither A or B. Figure 6.43 illustrates the

different fractions of C that are taken into account in this definition It can easily be

seen that the similarity coefficient defined above is a number ranging from 0 to 1, since

• the denominator contains the term in the numerator plus some others. It will be zero if

there is no part of C interacting with some parts of A and B simultaneously, in which

case substances A and B appear completely dissimilar to substance C. It will be one if
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some part of C interacts to the same extent with parts of A and B only but not with

each of them separately, meaning that they are considered as being totally similar from

the point of view of C. Hoffmann and Tufaro describe experimental ways of measuring

this coefficient by absorption of sera against others, while being aware of the practical

difficulties that can arise from it.

They also introduce the “distance coefficient” which is defined as the converse of the

similarity coefficient:

D[A,B(C] = 1
— S[A,BIC} (6.30)

— C—*AnotB+C--*BnotA
1

C-*AnotB + C—*BnotA + C-*AandB’

It also is a number ranging between 0 and 1, with properties opposite to those of the

similarity coefficients’. They prove, using Venn diagrams, that the distance coefficients

for sera are a metric (see Appendix C), one of the consequences being that they obey

the triangle inequality such that for any three sera X, Y and Z and a reagent C, one has

that:

D[X,YC] <D[YZC]+D[Z,XC]. (6.32)

The three distances between three sera can be plotted by points on a plane, They

suggest it to be very useful for different practical purposes such as the diagnosis of certain

diseases. Take for example the disease lupus. The diagnosis method using the distance

coefficients is illustrated in figure 6.44. One measures the distance coefficient between

an average serum obtained from normal individuals and an average serum of individuals

for lupus, using a third reagent C. Each of the sera used to form the average sera also

has a distance coefficient with each of those average sera. Ideally, when plotted in the

distance coefficients plane, the normal sera will have positions somewhere close to the

average normal serum and the lupus sera will be close to the average lupus serum. They
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Figure 6.44: Representation in the distance coefficient plane: a useful tool for the diag
nosis of diseases. Nay and Lay are the average normal and lupus sera. N and L are the
individual normal and lupus sera that constitute the average sera. Plotting the distances
of all these sera in the distance coefficient plane is expected to result in two different
regions (illustrated with the semi-arcs). The region into which an unknown serum would
be plotted could help determine whether the unknown serum is normal or from a person
with iupus. (Adapted from [62].)

Nay Lay
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then define separate regions which can be used to diagnose unknown sera, depending on

where the latters are located in the distance coefficients plane.

6.2 The first model of the similarity coefficient

The concept of similarity coefficient sees its first use in immune network modelling with

Hoffmann et al. [61]. Choosing the context C to be the set of N idiotypes in the

network, each one represented with a certain concentration, they ask how much any two

idiotypes i and j taken from inside the network look similar from the point of view of

the network. To answer this question, they use the original definition of the similarity

coefficient presented by Hoffmann and Tufaro [62], which for this system becomes what

will be called here the first definition of the similarity coefficient:

S[i,jC] = .

. C .‘ iandj .

.. (6.33)
C—÷znotj + C—*jnoti. + C—*zandj

They also present another definition which this time takes into account the fraction

of C that reacts with neither clones i nor j. The basic argument is that if some clones

of C react with neither clones i nor j, then this is an aspect of similarity of clones i

and j. They define what will be called here the second definition of the similarity

coefficient as the fraction of C that reacts with both i and j plus the fraction of C that

reacts with neither of them, divided by the whole of C:

not.C—*zandj + C—*orj
S [z,1IC]

=
. (6.34)

where C i or j represents the fraction of C that reacts with neither A nor B, and

C is the total population of C. Figure 6.45 illustrates the new fractions that are taken

into account in this definition of the distance coefficients. Their work until then has been

using only affinities which are dimensionless Boolean variables, i.e. if two antibodies i and

j bind to each other the affinity K:3 = 0, and if they do not interact K, = 1. They have
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notC —* i or
C

C—iandj

Figure 6.45: The new fractions of C that are taken into account in the second definition
(eq. 6.30) of the similarity coefficient. (Adapted from [62])

written down some equations for the similarity coefficients defined by expressions (6.33)

and (6.34) using those affinities. It appears that one runs into problems when wanting to

use those equations for non-Boolean affinities, i.e for 0 < 1 (where the K’s have

been normalized and non-dimensionalized). To see this, let us review the formulations

of the similarity coefficient developed by Hoffmann et al. [61], using Boolean affinities.

One considers a system of N clones. One can denote the population of a clone k by

xk. One then has that:
N

Xj

k=1

(6.35)

where xk 0. One wants to know how much the idiotypes i and j are similar from the

point of view of the network. It makes sense that they will look similar to C if clones

within C react to a similar extent with them. Taking a representative clone k of the

system, one can write its contribution to the fraction of C that reacts simultaneously

with clones i and j as the product of its affinity with each of them, weighted by its

population xk. This product is zero unless clone k reacts with both clones i and j.
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Including the contributions from all the clones in the system yields the expression:

N

C —* i andj = K K3k XIV. (6.36)

One represents the other terms in the similarity coefficient expression in a similar manner.

One can define the fraction of C that reacts with clone i but not with clone j as:

N

C —* i notj K (1— K3k) xk. (6.37)
k=1

Each term in the summatioll is zero unless clone k reacts with clone i and not with clone

j. Identically, one gets the fraction of C that reacts with clone j but not with clone i as:

N

C —* j not i = K (1 — Kk) Xk. (6.38)
k=1

The fraction of C that reacts with neither clones i nor j is expressed by:

C iorj
=

(1— Kk) (1— Kk) Xk. (6.39)

The term multiplying xk in the summation is 1 only if both Kk and K3k are zero.

Finally, one can write the first expression of the similarity coefficient using

(6.33) and (6.36) to (6.39), after simplifications, as:

N

K Kk Xk

S[i,jC]
= N

k=1 (6.40)

(K + Kk — Kk Kk) Xk

k=1

The second expression of the similarity coefficient is given by (6.34), (6.35),

(6.36) and (6.39), as:

N

(1 — Kk — Ajk + 2 Kk Kk) Xk

S’[i,jC] = k=1
N

. (6.41)

Xk

k=1
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6.3 The limitations of the first model of the similarity coefficient

Let us here analyze these formulations. First, note that expressions (6.36) to (6.39) are

correctly defined for Boolean affinities since each clone can contribute uniquely to one

of the fractions of C. These fractions are all non-negative and symmetric with respect

to clones i and j. Their maximum and minimum values are respectively Z- Xk and 0.

It is also easy to verify that the summation of the different fractions of C does give the

whole population of C, using expressions (6.35), (6.36), (6.37), (6.38) and (6.39):

C ‘ iandj + C ‘ inotj + C
,‘
j noti + Ciorj

N

= [K K3k + ‘ik (1
— K1k) + ‘jk (1

— Kk) + (1
— Kk)(1

— I(3k)] Xk

= Xk

k=1

= C. (6.42)

Taking a close look at the first expression of the similarity coefficient given by (6.40),

one realizes that it cannot be used in two cases. It will be seen that they actually do not

cause any problem, since one of them appears in a situation where one is not interested

in computmg the similarity coefficient of two clones in the context of a iletwork, and the

other situation is non-existing for a network. If one looks at the denominator of S[i, j IC],
one realizes that it can be zero if:

(i) all clones have a population equal to zero, that is xk = 0 for all k’s,

(ii) clones i and j are completely disconnected from the rest of the network,

that is if Kk = ‘jk = 0 for all k’s.

When situation (i) occurs, the network has vanished and there is no interest anymore

for computation of the similarity coefficients in the context of a non-existing network.
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Situation (ii) never appears since a clone considered to be part of a network must be

connected to at least another clone in the network. Clones which are completely discon

nected from the network do not affect the dynamics of the network and are therefore not

considered to be part of it. The denominator of S[i,jC] is thus always positive for all

times at which one needs to compute the similarity coefficient of a network.

One can arbitrarily use the concept of a distance coefficient to demonstrate that the

previous formulations of the similarity coefficient are inadequate for non-Boolean affini

ties. For this, only the first definition of the similarity coefficient (6.33) will be considered

as a basis for deriving an expression for the distance coefficient. The conclusion derived

from the following demonstration applies equally to the distance coefficient derived from

the second definition of the similarity coefficient (6.34). The first definition of the

distance coefficient derived from (6.40) and (6.30) is given by:

C—*inotj+C--*jnoti
D[z,jC] = . . . . .. (6.43)

C—znotj + C—*jnotz + C—*zandj

Using (6.37), (6.38) and (6.39), one can obtain the first expression of the distance

coefficient:
N

(K + K3k — 2 Kk K3k) Xk

D[i,jjC] = ktzl (6.44)

(K + Kk — Kk Kk) Xk

k=1

Sillce the denominator of D[i,jC] is the same as the one of S[i,jCj, it is also positive.

As pointed out by Hoffmann and Tufaro [62], the distance coefficient of a clone with

itself should be zero. This makes sense biologically and is part of the requirements for

the distance coefficient to form a metric. The distance coefficient of a clone i with itself
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is obtained by letting j = i in equation (6.44):

N

2 (Kk — Kk K2k) Xk

D[i,iC] = k=1 (6.45)

(2 Kk
— ‘ik Kk) xk

k=1

It can be zero for any network only if the affinity Kk is confined to values 0 or 1. One can

see a problem here. As long as one is dealing with affinities that are Boolean variables,

one is fine using the formulations proposed by Hoffmann et al. [61], but as soon as one

wants to use more realistic affinities whose values can range anywhere from 0 to 1, one

has to find another way to express the similarity and the distance coefficients. Since only

Boolean affinities have been used before in Hoffmanri models, the previous formulations

were suitable. The second definition of the distance coefficient derived from (6.41)

and (6.30) is given here for completeness:

C—*inotj+C--jnoti
D[z,jlCj= . (6.46)

The second expression of the distance coefficient is thus given by:

N

(K + Kk — 2 Kk K3k) Xk

D’[i,jIC] = k=1
N (6.47)

>Xk
k=1

Note that in all of the last four formulations of the similarity and distance coefficients

(6.40), (6.41), (6.44) and (6.47), the denominators are positive, for reasons mentioned

above. The numerators are non-negative, since they consist of summations of the non

negative fractions of C. The coefficients are numbers ranging between 0 and 1 since their

denominators consist of their numerators plus some other terms.
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6.4 The first model of the distance coefficient is a metric

Note that the above demonstration has established the fact that, as long as one is using

Boolean affinities, the first expression of the distance coefficient (6.43), using expres

sions (6.36) to (6.39) satisfy at least one of the requirements for them to be a metric,

that is the second criterion stated in Appendix C. Since the only difference between the

first aild the second definition of the distance coefficient appears to be the denominator,

it is easily seen that the second definition of the distance coefficient also satisfies the

second criterion. It seems appropriate to determine whether the two definitions of the

distance coefficient also satisfy the other criteria. The first of the criteria requires that

the distance coefficient is never negative. This surely is true since it is a number ranging

between 0 and 1. The third criterion asks for its symmetry with respect to clones i and

j. This certainly is respected since the distance coefficient is composed of symmetric ex

pressions of the fractions of C. The fourth criterion specifies that the distance coefficient

be positive for distinct clones i and j. This is true since if clones i and j are distinct

then there exists at least one k for which Kk Kk, in which case the numerator of

D[i,jC] is positive. The fifth criterion requires the distance coefficients to obey the

triangle inequality. The proof of this is analogous to the proof provided by Hoffmann

and Tufaro [62] for this criterion with respect to the original formulation of the distance

coefficient. The original notation of Hoffmann and Tufaro will also be modified in this

procedure. The total population of C can be written as:

N

cC=> Xk. (6.48)
k=1

One can write down some expressions for the different fractions of C that react to different

extents with pairs of clones i, j and j, 1 and i, 1. The expressions that give the fractions
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of C that react to different extents with clones i and j are given by:

N

lij C —* i andj = K K3k Xk

k=1

N

k=i

N

13 C—*jnoti=>K3k(1—Kjk)xk
k=1

Ciorj=(1—Kk)(l—I(k)xk (6.49)

so that: lj + l + 13 + lj = c. The expressions that give the fractions of C that react to

different extents with clones j and 1 are given by:

N

iii C — j and 1 = K3k ‘4k Xk

k=1

N

C—jnotl=K3k(1—Kjk)xk
k=1

N

i1C—*lnoti=Klk(l—K3k)xk
k=1

i1 Cjorl= (1 —K3k) (—K1k) xk (6.50)

so that: iji + i3 + i1 + i1 = c. The expressions that give the fractions of C that react to

different extents with clones i and 1 are given by:

N

C —* 1 arid i = K Kk Xk

k=1

N

j C — i not 1 = Kk (1
—

Kik) xk
k=1

N

C — lrioti = Kik (1— Kk) Xk
k=1

j Clori= (1—Kik) (l—Kk) Xk (6.51)

so that: ji +ji +i +i = c.
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One can rewrite each of the fractions previously defined in (6.49), (6.50) and (6.51)

with respect to pairs of clones i,j and j, 1 and i, 1 as sums of other fractions with respect

to clones i,j, 1. For this, one must first define those latter fractions:

N

x C—+inotjnotl= Kk(l—Kk)(l—Klk)xk
k=1

N

y C—*jnotlnoti= Kk(1—Kk)(1—Klk)xk
k=1

N

z C_1lnotinotj=ZKlk(1—Kjk)(1_Kjk)xk

u C —* j and 1 not i = K,, KIk (1 — Kk) Xk

k=1

N

v C —* iandlnotj = Kk Kik (1 —Kk) Xk

k=1

w C .‘ i andj not 1 = Kk Kk (1 — Kik) xk

t C —* i andj and 1 = Kk K3k Kik xk

Ciorjorl= (1—Kk) (1—Kk) (1—Klk) xk. (6.52)

It can then easily be seen that fractions (6.52) are related to fractions (6.49) to (6.51) in

the following way:

(w+t)+(x+v)+(y+u)+(z+s) = lj+li+lj+lj =c

(u+t)+(y+w)+(z+v)+(x+s) =i3i+i+ii+i1=c

(v + t) + (x + w) + (z + u) + (y + s) = ji + ii + j + j = c. (6.53)

Now, consider the first expression of the distance coefficient (6.44). One can rewrite the

first expressions of the distance coefficient for pairs of clones i,j and j, 1 and i, 1 that are

in terms of the fractions (6.49) to (6.51 as first expressions for clones i,j, 1 that are in
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terms of fractions (6.52):

88

D[i,jC] =
li+lJ

ii + ii + lii
— (x+v)+(y+u)

— (x+v)+(y+u)+(w+t)
(6.54)

D[j,IIC] =
ij+il

ii + ii + iii

— (y+w)+(z+v)

— (y+w)+(z+v)+(u+t)
(6.55)

D[i,lC] =

Ji +31 +Jii

= (x + w) + (z + u)
(6.56)

(x+w)+(z+u)+(v+t)

It has already been shown by Hoffmann and Tufaro (see Appendix C) that expressions

(6.54), (6.55) and (6.56) satisfy the triangle inequality.

Now, consider the second expression of the distance coefficient (6.47). The only

difference with the first expression (6.44) is in the denominator. Actually, the situation

is even simpler now since the three expressions for the distance coefficients D[i,jC],

D[j, lC] and D[i, lC] now have the same denominator, that is the whole of C. Then, it

suffices to demonstrate that the sum of the numerators for two clones is greater than the

numerator of one clone. So one one wants to prove that:

(l+l)+(i+i1) > (ii+ii)

[(x+v)+(y+u)}+[(y+w)+(z+v)] [(x+w)+(z+u)1.

But this last equation is equivalent to say that 2 (v + y) 0, which is certainly true,

since v, y > 0. Thus, it is seen here that the second expression of the distance coefficient

is also satisfying the requirements for it to satisfy the triangle inequality.
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6.5 The generalized distance coefficient

The following is a proposition for the generalization of the old expressions (6.40), (6.41),

(6.44) and (6.47) towards their utilization with non-Boolean variables. It will be seen

that new expressions can be found for each of the fractions of C expressed in (6.36) to

(6.39). Those expressions will not be truly describing these fractions, Remember that in

the Boolean case, a clone in the system contributes uniquely to one of the fractions of C.

With non-Boolean affinities, the problem has to be approached differently. There are of

course several ways that this can be done. One simple way that one could think of to be

able to use the old formulations with non-Boolean affinities is to set all affinities smaller

than a certain threshold equal to an affinity of zero and all affinities greater or equal to

that threshold equal to an affinity of one. But if one wants some finer “tuning”, then one

has to come up with another expression which achieves it. The one presented here was

chosen because it was the simplest that came to mind that could be an extension of the

Boolean case and for which the general behaviour was concordant with expectations. In

this formulation, each clone will contribute partly to each of the different new “fractions”

of C, depending on its degree of binding with the clones of C. Although it is understood

that one does not deal with real fractions anymore, they will still be denoted as such,

since they turn out to be real fractions in the Boolean case.

A model is considered in which the affinity of the clone i V region (variable region)

for the clone j V region is a variable that can take any value in the range 0 to 1, that is:

0 1. Now one has more than two different degrees to which antibodies can bind

to each other. As before, two antibodies can bind to a third one with the same degree

and thus appear similar to it. For example, if KIk = Kk = 0.3, one can say that clones

i and j bind to clone k with the same degree and that they should appear similar to

the latter. But if one has the case where Kk = 0.3 and Kk = 0.8, then from the point
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of view of clone k, clones i and j will appear to a certain point similar or dissimilar.

The extreme case is the Boolean case, when Kk 0 and Kk = 1 (or the converse).

Clone k would then see clones i and j as maximally dissimilar. Thus, the contribution

to C — i and j is expected to depend not only on the degree of binding of each clone i

or j to clone k (see later), but also on the difference between those. If the affinities Kk

and Kk are “close” to each other, in other words if the difference between them is small,

then one would expect to have a bigger contribution to the similarity of clones i and j

then if they were “far” apart.

The following expression is proposed to represent the extent to which clones i and j

similarly bind to clone k:

similar extent = 1— Kk — K3k I . (6.57)

Notice that if the difference between the affinities is small, i.e. if clones i and j bind

similarly to clone Ic, then the extent is closer to 1. But if the difference is big then the

extent is closer to 0. The similar extent is a function whose isoclines in the K3k versus

Kk plane are given by: K3k = Kk + s, where — 1 s 1. Its maximum and minimum

values are respectively 1 and 0. One here would be tempted to define the contribution

of clone k to C —* i and j as simply equivalent to the similar extent. And indeed it

could make sense that all the clones that react similarly to clones i and j should have

the same contribution. But consider a specific example, with clone m which has affinities

Kim = 0.1 and Kjm = 0.4, and clone n which has affinities = 0.6 and = 0.9. The

similar extent is the same for both clones m and n. Nevertheless, it seems reasonable

that clone n should have a greater contribution, since it binds more strongly with clones

i and j than does clone m. To account for that fact, one can multiply the similar extent

by the product of the affinities KkKk. The final expression to describe the fraction of
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C that reacts “similarly” to clones i and j is then given by combining (6.36) with (6.57):

C i andj
=

K Kk (1— I K — Kk I) Xk. (6.58)

This surely is not a unique way that one could rewrite C —* i and j. No biological

basis indicates that one should have a cubic expression to describe it. But as was men

tioned previously, this expression is essentially the simplest that is consistent with the

old Boolean expression (6.36).

In a similar manner, we can find new ways to express C —f i not j and C —k j not i.

Consider the latter. One expects the converse to the C —* i andj case to be applicable in

terms of similarity of clones i and j with respect to clone k. For example, if Kk is close

to Kk, one wants the contribution to C —* j not i to be small. This gives the following

expression for the extent to which clones i and j bind dissimilarly with clone k:

dissimilar extent = — Kk . (6.59)

The dissimilar extent has isoclines in the Ki. versus Kk plane that look the same as

the ones of the similar extent. Its maximum and minimum values respectively are 1 and

0. Now, consider clone m with affinities Km = 0.2 and Kjm = 0.9 and clone n with

affinities = 0.9 and = 0.2. The dissimilar extent is the same for both clones m

and n. However, clone m should have a greater contribution to C —* j not i than clone

n, firstly because it binds more strongly with clone j and secondly because it binds less

strongly with clone i. To represent this, one can multiply the dissimilar extent of a clone

k with the product K3k(1 — Kk). Combining (6.38) and (6.59), one can then write:

N

C—*jnoti= K (1 —Kk) Kk—Kk I xk. (6.60)
k=1

Identically, using (6.37) with (6.59) gives:

N

C —* i notj = K (1— K3k) — K,k I xk. (6.61)
k=1
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To find the fraction of C that reacts with neither i nor j is not as intuitively simple.

But one can use the argument that all the fractions of C have to add up to the whole

population of C to calculate it. This yields:

C
no,t

Orj [1 — KIk Kk — (KIk + Kk —3 K Kk) KIk — Kjkl] Xk, (&62)

The term multiplying xk in the summation takes the value 1 if both K13 and K3k are 0,

and the value 0 if they are both 1 or if one is 0 and the other is 1.

An a priori conceivable alternative is that that the different fractions could be written

more simply in terms of the similar and dissimilar extents. In this view, one would have

defined C —* i and j as identical with the similar extent, and each of C — i not j and

C —* j not i as identical with the dissimilar extent. C i or j would however then have

to take the negative value of —jK1k — Kk, which is not acceptable. As defined above,

expressions (6.58) and (6.60) to (6.62) are all foil-negative and symmetric with respect

to clones i and j. Their maximum and minimum values respectively are Xk and 0.

The generalized first expression of the similarity coefficient can then be writ

ten, after a few simplifications, as:

N

> KlkKjk(l—Klk—KjkI)xk
S[i,jC]

= N
k=1

. (6.63)

[K1 Kk + (K1k + K3k — 3 K1 Kk) KIk — K3k I] Xk
k=1

Its counterpart defining the distance coefficient gives the generalized first expression

of the distance coefficient

N

(K + K3k — 2 KIk Kk) KIk — Kk Xk

D[i,jIC] = N
k=i

. (6.64)

[Kk K3k + (ik + K3k — 3 ‘ K) I K11 — Kk I] Xk
k=1

Similarly, the generalized second expression of the similarity coefficient is given



Chapter 6. The distance coefficient 93

by:
N

[1 + (2 KIk K3k Kk — Kk) Kk — KjkIJ Xk

S’[i,jC] = k=1

N . (6.65)

Exk
k=

And the generalized second expression of the distance coefficient is:
N

[(K1, + Kk — 2 Kk Kk) Kk — Kk] Xk

D’[i,jC] = k=1

N . (6.66)

Xk

k=1

Note that all the above new expressions are generalizations of the old expressions in the

sense that they reduce to the old expressions when one uses Boolean affinities.

Since expressions (6.63) to (6.66) are derived from expressions (6.58) and (6.60) to

(6.62), they are numbers ranging between 0 and 1. Therefore, the distance coefficient is

never negative. The dissimilar extent of a clone with itself being zero, so is the distance

coefficient of a clone with itself. Since the expressions of the fractions of C are symmetric

with respect to clones i and j, the distance coefficient derived from them is symmetric

too with respect to those clones. For two clones i and j to be distinct, there must be at

least one k for which Kk K3k. Within these conditions, D[i,jIC] is always positive.

The first four criteria of the metric are thus fulfilled. As for the fifth criterion which is

the triangle inequality, it still needs be verified analytically. But it was found numerically

that for all the studied cases, the generalized distance coefficients did satisfy the triangle

inequality, that is, one could always plot the distance coefficients of all clones in the

network (which was the primary goal).

6.6 The distance coefficients plane

In this section, it will be demonstrated how one can plot the positions of the clones in a

distance coefficient plane, once one has calculated the distance coefficients of all clones
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x

Figure 6.46: The distance coefficients plane

with respect to two arbitrary reference clones.

In the XY plane, choose the X-axis as the reference axis, Pick the two reference clones

i and j. Position clone i at the origin and clone j at a distance D[i,jC] from clone i on

the X-axis. One has thereby set the reference distance. Now one wants to determine the

position of clone k in the plane, with respect to the reference clones. Clone k could be

positioned anywhere on a circle of radius D[i, kC] centered on clone i at the origin. The

equation describing the circle is given by:

x2 + y2 = D[i, kb]2. (6.67)

Clone k also has to be positioned anywhere on a circle of radius D[k,jbC] centered

on clone j, described by:

(x — D[i,jC])2+ y2 = D[j, kbC]2. (6.68)
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Solving for both equations simultaneously gives the position of clone k in the plane:

— D[i, kid2 — D[k,jiC]2+ D[i,jiC]2
6 69

— 2 D[i,jiC]

y = (D[i, kid]2 — x2)”2 (6.70)

where the positive square root is chosen. Since the two circles intersect symmetrically at

two different places above and below the X-axis, one can choose either.

6.7 Simulations of the distance coefficient

6.7,1 Affinities from the periodic L shape-space

To test the generalized formulations of the distance coefficient, one can begin by choosing

a particular set of affinities relating the clones in the network. Affinities derived from the

shape-space with periodic boundary conditions were chosen. A network of 20 clones

was studied.

Uniform initial conditions The system with uniform initial conditions is one-dimensional

as described in appendix A. The distance coefficients can be plotted independently of

the populations of the clones in this system. Consider the expression (6.64) giving the

distance coefficients. For the uniform initial conditions prevalent in the one-dimensional

system, the concentrations of all the clones are identical, and can be factorized in front of

the summations. They then cancel each other in the numerator and in the denominator,

and one gets the following expression for the distance coefficient:

N

(K. + K3k — 2 K<, K3k) Kk — I
D[i,jIC] = N

k=i
. (6.71)

[Kg,, K3k + (Kk + K3k — 3 K1 K3k) I Kk
— ‘jk I]

k=1
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Thus in this particular system, the distance coefficient is constant in time and does not

depend on the change of the populations of the clones. For a shape-space with a high

level of symmetry, the individual positions of the clones in a distance coefficients plot

would be expected to have a corresponding degree of symmetry. If one chooses two

complementary shapes as reference shapes, one would expect that all the other clones

are positioned in a symmetrical way with respect to them. For example, here clones 1

and 11 are chosen as reference clones. Then clones 6 and 16 are “perpendicular” to them

in the circular shape-space (see figure 5.39); they are the most dissimilar from clones 1

and 11 for this shape-space. They are thus most “distant” from clones 1 and 11 in the

distance coefficient representation. This is shown in figure 6.47, which shows the distance

coefficient representation of all 20 clones with complementary clones 1 and 11 as reference

shapes. The two dashed curves are part of two circles of radius 1 and of centers equal

to the positions of the reference shapes. Thus, the distance coefficients have a maximum

value of 1, as was shown in §6.5.

Random initial conditions The system was studied with random initial conditions,

0 < x < 1. A fixed set of initial conditions and a fixed value of the variance was

given, but the value of the cut-off was varied. The values of the threshold constants

C2 and C3 were chosen so that in all cases, the three steady-states are present and the

complementary shapes have the same concentrations. The other values of the parameters

are the same as for all previous simulations in shape-space: S = 10, k2 = 1, k3 = 0.01,

k4 = 1.

Figures 6.48 to 6.51 show the distance coefficient dynamics for the same variance

= 3 and different values of the cut-off and of the threshold constants C2 and C3.

The initial positions of the clones are represented with the “stars”. Their trajectories in

time are along the full lines. Their final positions at equilibrium is depicted by one of
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Figure 6.47: The distance coefficient representation for the periodic z shape-space, with
uniform initial conditions. The positions of the clones are fixed in time and are symmet
rically positioned with respect to complementary refereilce clones 1 and 11. x = 0.1,
S = 10, k2 = 1, k3 = 0.01, k4 = 1, C2 = 0.6, C3 = 0.7, a = 2, cut -off= iO.
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Figure 6.48: The distance coefficient representation for the periodic A shape-space of
a 20-dimensional network with random initial conditions. d is the distance between
reference clones 1 and 11. S = 10, k = 1, Ic3 = 0.01, k = 1. a = 3, cnt-off= 0.9,
C2 = 0.45, C3 0.65.
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Figure 6.49: Same as in figure 6.48 but o = 3, cut -off= 0.5, C2 = 0.65, C3 = 0.7.
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Figure 6.50: Same as in figure 6.48 but o = 3, cut -off= 0,1, 02 = 0.65, C3 = 0.7.
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Figure 6.51: Same as ill figure 6.48 but a = 3, cut -off= 0.01, C2 = 0.65, C3 = 0.68.
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the three different symbols that identifies their final state: virgin, immune or suppressed.

The dashed curves are part of two circles of centers equal to the final positions of the

reference clones 1 and 11, and of radius 1 (the formula that generates the curve for clone

11 contains the term d, which is equal to the distance between the final positions of clones

1 and 11).

It is observed that the similarity computed by the distance coefficient is here also

quite in accordance with the one which is implicit in the periodic L shape-space. For

example, clones 2 and 20 are neighbours of clone 1 in shape-space. They also are in the

distance coefficient representation. Also, there seems to be a tendency for suppressed

clones to move less in the distance coefficient plane than the virgin or immune clones.

It can be seen that for a wide Gaussian (which is the case in figure 6.48 where cut

off=O.O1, the dynamics are happening along a wide arc. But for a narrower Gaussian

(for example, in figure 6.49, the cut-off is 0.1), the dynamics happen along a narrower

band.

The system was also studied for a smaller value of the variance, that is o = 2. It was

found that the distances between clones are thell bigger (not shown).

6.7.2 Random boolean affinities

One could easily observe that in the previous cases where one used affinities computed

in relation to a one-dimensional shape-space, the positions of the clones in the distance

coefficients were observing a somewhat smooth pattern along a more or less wide semi

arc. One can imagine that this regular pattern arises from the particu’ar choice of the

affinities. To test this hypothesis, one can make a simulation with random Boolean

affinities. The matrix of affinities is shown in figure 6.52. The simulation was done for a

22-dimensional network and random initial conditions, with random Boolean affinities.

It is shown in figure 6.53 and does indeed verify that the previous regular pattern arose
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Figure 6.52: The two-dimensional representation of a matrix of affinities for a 22-dimen
sional network, with random Boolean affinities. Clones are numbered from 1 to 22. In
the two-dimensional representation, the squares shaded white represent an aiffinity value
of one and the ones shaded black represent an affinity value of zero.

from the particular choice of the affinities computed in the shape-space context. It can

also be noticed that in the last simulation of the distance coefficient using affinities from

the shape-space, that is with u = 0.9, there were many clones that would be considered

as maximally dissimilar from reference clones 1 and 11. This arose from the fact that the

clones far away from the reference clones in shape-space were not very much connected

to other clones. In the random Boolean case, depending on the connectance (percentage

of ones in the matrix), one can have more or less clones maximally distant from the

reference clones. For a smaller connectance, most clones are not very much connected

with others, and thus there is a great probability that they would be considered as

maximally dissimilar from other clones, including the reference clones. As one increases

the connectance, there are more connections established. This improves the chances of

having clones being more similar from the point of view of the network.
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Figure 6.53: The distance coefficient representation for a 22-dimensional network of clones
randomly connected with Boolean affinities. One can see that the regular pattern that
was exhibited for the affinities derived from a one-dimensional shape-space is not present
anymore. 0 <x < 1, S = 10, k2 = 1, k3 = 10, k 1, C2 = 10, C3 = 3.
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So the similarity between this simulation and the one done in shape-space is that

as one increases the connectance of the matrix or the variance of the Gaussian, one

gets closer to the mean-field (all clones are connected to each other in the same way).

And then they should all appear to be equally similar (this would be the case if the

concentrations of the clones were all identical). In the other extreme case, one could

have a situation where there is an almost null connectance or a very narrow variance of

the Gaussian. And then almost all clones would be considered as greatly dissimilar to

each other.

This ends the work presented in this thesis.



Chapter 7

Conclusion

This thesis has covered a wide range of subjects. It started by recalling the first observa

tions of immunity which gave rise to the theories of acquired immunity, then presented

the theories of antibody formation which culminated in the theory of clonal selection.

This was important so that the reader had some background for the understanding of

the immune network hypothesis which pushed so many theorists to show interest in

modelling the immune network. Hoffmann’s N-dimensional model was then presented.

It was said that this model had never been studied with affinities other than Boolean.

So some non-Boolean possible matrices were presented. A particular one based on the

shape-space formulated by Segel and Perelson was chosen. This led to the creation of a

new shape-space without shape zero. Some simulations and analysis of Hoffmann’s N-

dimensional network model with non-Boolean affinities derived from those two versions

of shape-space were shown. And finally the main part could be presented, that is the

review, analysis and generalization of the distance coefficient in terms of non-Boolean

affinities, as well as numerical simulations of the distance coefficients of clones of an

immune network modelled by Hoffmann’s N-dimensional network model.

A summary of the new material that was presented in this thesis can be made. It

consists of implementing non-Boolean affinities in HofFmann’s model, more specifically

affinities from a shape-space. Also, a new shape-space setting is presented and simulations

with various mappings onto a plane of the N-dimensional dynamics are done with both

the original and the new shape-space. A mapping using distance coefficients is presented.

106
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The distance coefficient is analyzed and generalized for its use with non-Boolean affinities.

Simulations are done with both Boolean and non-Boolean affinities.

However, as it was mentioned several times already, because the work presented was

broad it was not very deep to keep the length of the thesis within reasonable bounds. It

thus calls for further work, that is analysis and simulations. It is hoped, though, that it

aroused the curiosity of the reader and showed what interesting work can be performed

in theoretical immunology.



Appendix A

The N-dimensional model brought back to a 1-dimensional model

It is here shown that the N-dimensional system behaves like a 1-dimensional one when

periodic boundary conditions on a shape-space and uniform initial clone populations are

considered.

Consider the field of a clone k, given by expression (3.6). Now, due to the specific

initial conditions, the concentration xk is identical for each clone. It can be characterized

by a constant x and factorized in front of the summation. Furthermore, because of the

periodicity the shape-space, the sum of the affinities relating a clone to the others in the

system will be the same. As a consequence, the field experienced by each clone is the

same and can be simply written as:

Y=xK (A.72)

where it is understood that K is the summation over the affinities of one clone with the

others.

The same reasoning allows to show that the parameter expressed iii (3.7) that gives

a measure of the T-cell factors are identical for all clones and given by:

W=xYK. (A.73)

Note that in this case it would not make sense to normalize W. See what happens if

one wants to do so. Remember that in the original formulation of the model presented

by Hoffmann et al. [61], one first calculates the T-cell factor concentration for each clone
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and then multiplies it by a factor equal to the average of the two threshold factors C2 and

C3 divided by the average of all the T-cell factors concentrations. Now examine what

one gets when applying the normalization to this case.

The average of the T-cell factors concentrations is here simply given by W. The

normalized value of the T-cell factors concentration is then given by:

—

(C2 + C3)/2

= C2+C3

which is a constant! It is thus independant of the change in concentration of the clones,

which does not make sense. It is concluded that the the normalization of the T-cell

factors concentrations is not required when dealing with uniform initial conditions.

The next step is to consider the effectivities, given by (3.5). As they only depend on

the T-cell factors concentrations, one can see that they are also identical for all clones:

eq = flq q = 1,2,3. (A.75)

This last finding leads to the fact that the effective fields expressed by (3.9) are also

identical for all clones and simply given by:

UqxeqK q=1,2,3. (A.76)

Finally, the basic differential equation (3.4), in respect of what has just been shown,

can be written as:

=S+kixeiU1—k2xe2U2—k3xe3(U3)2—k4x. (A.77)

It can be seen that the same equation is controlling the behaviour of the uniformly

distributed initial populations of the cells, and therefore these populations will all vary
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identically. For that reason, the model can be seen as one-dimensional in this special

situation and will later be refered as so. Well, this is not a very interesting case in

itself, but one of the advantages of its extreme simplicity is to enable the calculation of

parameters that yield biologically reasonable steady-states. These parameters can then

be used for further investigations of the model.

To find them, one can borrow the same idea that was used previously in the first

of paper on Hoffmann’s symmetrical two-dimensional models [57]. It is an approximate

method of analysis that allows to find parameters that generate predetermined steady-

states. One considers each of the steady-states to be essentially a balance between two

dominant terms in the differential equation. Here, the case where 02 < 03 is studied and

= 0.

In this approach, some biological assumptions are made. First, the virgin state x is

characterized by a balance between source and 1gM killing terms:

S k2 x U2 2• (A.78)

This can be solved to yield, in view of (A.76):

5 1/2

(2 K)
. (A.79)

This solution can occur only if W, < 02, i.e. if:

(A.80)

The immune state x, represented by a balance between source and IgG killing terms

is given by:

Sk3x(U3)2e3. (A.81)

This yields:
s 1/3

() . (A.82)
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This result requires that 02 < W < 03. So one must have:

SK 2/3

02
< (-i—-) <03. (A.83)

Finally, the suppressed state x is a balance between source and natural death terms:

S x. (A.84)

This yields:

(A.85)

This gives the condition that W3 > C3 i.e.

/ S 2

> 0. (A.86)

Combining the above inequalities gives the conditions on the parameters which yield

those steady-states:

<02

<

() <03
< (v), (A.87)

A similar procedure was used by Hoffmann et al. [61] when they considered their one

dimensional model using Boolean affinities, It appears that the only difference between

inequality (A.87) and the one they find is the presence of the sum of the affinities in the

first case!
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Complementary clones can have the same concentration

B.1 The periodic Li shape-space

It is shown here that for the periodic shape-space, a solution that satisfies the N-

dimensional model exists for which complementary clones have the same concentration.

An important feature that makes this solution possible appears to be the periodicity

associated with the affinities which allows to equate the expressions for the steady-states

of the two complementary clones. Indeed, the following relationships exist, at least,

between the affinities:

KijKjiKnmKmn (B.88)

where i,j = 1,N

I i+N/2 ,i<N/2
m=

i—N/2 ,i>N/2

=
j+N/2 ,j<N/2

(B.89)
j-N/2 ,j>N/2.

The fields of two complementary clones k and k + N/2, where k = 1, N/2 are given

accordingly to (3.6) by:

Yk = Kk,l x1 + ... + Kk,N/2 XN/2

+ Kk,1+N/2 X1+N/2 + ... + Kk,N XN (B.90)

Yk+N/2 = Kk+N/2,1 x1 + ... + Kk+N/2,N,2 XN/2
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+ Kk+N/2,1±N/2 X1+N/2 +... + Kk+N/2,N ZN (B.91)

where k = 1, N/2. But the relationships (B.89) between the affinities allow to write that:

Kk,1 = Kk+N/2,1+N,2; . 1k,N/2 = Kk+N/2,N (B.92)

Kk,1+N/2 = . . . ; Kk,N = Kk+N/2,N/2. (B.93)

We can then rewrite (B.91), using these relationships, as:

k+N/2 = Kk,1 X1+N/2 + . + Kk,N/2 ZN

+ Kk,1+N/2 X1 + ... + Kk,N XN/2 (B.94)

with the order of the terms in the summation of (B.91) reversed. Now assume that

complementary shapes that have the same concentration is a solution. One can then

replace each cell concentration by the concentration of the complementary clone, that is,

one replaces x, by Xi+N/2 for i N/2 and xj by Xi_N/2 for i > n/2. It can easily be seen

that one then has that Yk = Yk+N/2.

The T-cell factor concentrations of the same two complementary clones k and k + N/2

are given, accordingly to (3.7), by:

Wk = Kk,1 x1 Y + ... + Kk,N/2 XN/2 YN/2

+ Kk,1+N/2 X1+N/2 Y1÷N/2 + . + Kk,N XN YN (B.95)

Wk+N/2 = Kk+N/2,1 X1 Y1 + .. . + Kk+N/2,N/2 XN/2 YN/2

+ Kk+N/2,1+N/2 Z1+N/2 Y1+N/2 + ... + Kk+N/2,N ZN YN. (B.96)

There is no need to consider the normalized T-cell factor concentrations since the presence

of the normalization constant does not invalid the present verification. The expression

for Wk+N/2 can be rewritten in a similar way that was done for Yk+N/2, as:

Wk+N/2 = Kk,l X1+N/2 Y1+N/2 + ... + Kk,N/2 ZN YN

+ Kk,1+N/2 x1 Y1 +... + Kk,N XN/2 YN/2. (B.97)
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Again, assuming that complementary clones have the same conceiltratioll shows that,

their fields also having the same values as shown above, their T-cell concentrations are

the same, that is Wk = Wk+N/2. This also means that ej = ek+N/2, since ek is directly

proportional to Wk, accordillg to (3.5).

The effective fields of the two complementary clones k and k + N/2 are given, accord

ingly to (3.9), by:

Uk = Kk,l e1 x1 + .. + Kk,N/2 eN/2 XN/2

+ Kk,1+N/2 el+N,2 X1+N/2 + .,. + eN XN (B.98)

Uk+N/2 = Kk+N/2,1 e1 x1 + .. . + Kk+N,2,N/2 eN/2 XN/2

+ Kk+N,2,1+N/2 X1÷N/2 + ... + Kk+N/2,N XN. (B.99)

Again, the same work can be performed on the expression for Uk+N/2 to yield the new

expression for (B.99):

Uk+N/2 = Kk,1 el+N,2 X1+N/2 + .. + Kk,N/2 el+N/2 XN

+ Kk,1+N/2 e1 X1 + ... + Kk,N eN/2 XN/2. (B.100)

It was already said above that assuming complementary clones to have the same value

makes the effectivities have the same value, and as a direct consequence the effective

fields also are seen to take the same value.

So, looking back at the expressions (3.18) and (3.20) that describe respectively the

virgin and immune states, one can see that complementary clones that have the same

concentration and also have the same effective fields is a solution that satisfies those

expressions. It is obvious that in the suppressed state complementary clones that share

the same concentration is a solution, since its value is unique.
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B.2 The non-periodic ± shape-space

It is shown here that for the non-periodic shape-space, there exists a solution that satisfies

the N-dimensional network for which complementary clones have the same concentration.

One here numbers the clones from —N to N, where N is any number. The fields of two

complementary clones k and —k are given accordingly to (3.6), by:

Yk = Kk,_N XN + ... + Kk,o x0 + ... + Kk,N XN (B.lOl)

K_k,_N X_N + . . . + x0 + ... + K_k,N XN. (B.102)

But the following relationships exist between the affinities:

Kk,_N = K_k,N,. . . , K_k,o, . . , Kk,N = K.k,_N, (B.103)

By doing the similar type of work that was done in Appendix B.1, on can rewrite (B.102)

as:

= Kk,_N XN + ... + Kk,o Xo + ... + Kk,N xp. (B.104)

Assuming that complementary clones having the same concentration (i.e. xk = x_k for

k = —N, N) is a solution shows that in that case their fields take the same value, that

is: Yk=Ykfork=—N,N.

The T-cell factors concentrations of two complementary clones k and —k are given

by:

W = XN Y.N + ... + K,0x0YN + ... + K XN YN (B.105)

W_ = K_,_N X_N YN + ... + K_,0 x0 Yo + ... + K_,N XN YN. (B.106)

This last expression can be written using relationships (B.103) as:

W. = K,N ZN YN + ... + K,0 x0 YN + . .. + K XN YN. (B.107)
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If complementary clones have the same concentration, then their fields have been shown

to have the same value, and therefore the T-cell factor concentrations also have the same

value, that is: Wk = W_k for k = —N, N. Again, since the effectivities depend only on

the T-cell factors concentrations, they also take the same value in that case.

The effective fields of two complementary clones k and —k are given by:

U = K,_jv e_N Xjj + ... + K,o e0 xo + ... + K,N GN ZN (BJO8)

U_ = -N X_N + ... + K_i,o e0 xo + ... + K_,N eN ZN. (B.l09)

This last expression can be rewritten using relationships (B.103) to yield:

U K,_pq eN ZN + ... + K,0 e0 xo + . .. + K,N e_N X_N. (B.11O)

The effective fields of complementary clones are easily shown to take the same value if

complementary clones that have the same concentration is assumed to be a solution,

since then their effectivities have been shown to take the same value. One then has that

Uk=Ukfork=—N,N.

So looking back at expressions (3.18) and (3.20) that describe respectively the virgin

and the immune states, one can see that complementary clones that have the same

concentration and also have the same effective fields is a solution that satisfies those

expressions. The same thing can be said for the suppressed state for the same reasons

that were stated in Appendix B.1.



Appendix C

The following is essentially a slightly reworded review of the demonstration done by

Hoffmann and Tufaro [62] that serological distance coefficients form a metric. Consider

any three sera X, Y and Z, and a reagent C. In order for the distance coefficients between

these sera to form a metric, they must obey the following criteria [83]:

(1) D[X,YIC]>O

(2) D[X,XIC] = 0

(3) D[X,YC] = D[Y,XC]

(4) If X Y, then D[X,YC] > 0

(5) D[X,YC] <D[Y,ZC] + D[Z,XIC].

Using Venn diagrams, one can denote the fractions of C that react with different groups

of sera the following way:

x the fraction of C that reacts with X only

y the fraction of C that reacts with Y only

z the fraction of C that reacts with Z only

u the fraction of C that reacts with Y and Z only

v the fraction of C that reacts with X and Z only

w the fraction of C that reacts with X and Y only

i the fraction of C that reacts with X, Y and Z

The distance coefficients of Hoffmann and Tufaro form a metric

117
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Figure C.54: The Venn diagrams for the fractions of C that interact with three sera X,
Y and Z. (Adapted from [62].)

where x,y,z,u,v,w,t> 0, (C.111)

With respect to these, the distance coefficient between sera X and Y is given’ by:

D[X,YC]=
X+V+Y+U

. (C.112)
x+v+y+u+w+t

The distance coefficients betweell sera Y and Z, and between sera X and Y can be written

in a similar way.

The proof that the distance coefficients obey the metric criteria follows immediately.

(1) The fact that the denominator of (C.112) contains all the terms in the numerator

plus some others, combined with (C.lll) automatically leads to the conclusion that

criterion (1) is obeyed.

(2) For two sera X and Y where X = Y, one has that x = v = y = u = 0. So one gets

that D[X,X(C] = 0, which satisfies criterion (2).

(3) The expression giving D[Y,XC] is identical to the one giving D[X,YC], which

satisfies criterion (3).

‘using the first definition 6.31
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(4) First note that D[X,YCj can be zero even if X Y, since they are identical in the

eyes of C if they interact identically with it. This can seem to violate criterion (4).

But one has to realize that one does only consider distances from the perspective of

C. With this regard, sera X and Y are identical from the perspective of C if they

interact identically with C and then D[X,YIC] = 0, which satisfies criterion (2).

But if they interact differently with C, then they are different from the perspective

of C and then D[X,YC] > 0, which satisfies criterion (4).

(5) It needs to be shown that:

D[X,YIC] + D[Y,ZC] > D[X,ZC] (C.113)

which is equivalent to asking that:

X+V++U
+

X+W+Z+U y+W+Z+V
(C114)

x+v+y+u+w+t x+w+z+u+v+t — y+w+z+v+u+t

This last inequality can be rewritten as:

(x+v+y+u)(x+w+z+u+v+t)(y+w+z+v+u+t)

+ (x+w+z+u)(x+v+y+u+w+t)(y+w+z+v+u+t)

(y+w+z+v)(x+v+y+u+w+t)(x+w+z+u+v+t)(C.115)

Since the left-hand side of this inequality contains all the terms contained in the

right-hand side plus others, and because of (C.111), the inequality is respected.

This satisfies criterion (5).
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