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Abstract 

This thesis is concerned with the orientational and conformational behaviour of molecules 

partially oriented in a nematic liquid crystal. We have studied these systems experimen

tally using Multiple-Quantum N M R spectroscopy, and computationally using the Monte 

Carlo simulation method. 

An important goal of the experimental component of this thesis was the investigation 

of the usefulness of applying Multiple-Quantum N M R spectroscopy as an aid for the 

analysis of complex one-quantum N M R spectra of oriented solutes. The technique was 

applied to biphenylene and butane. For the eight-spin molecule biphenylene. the analysis 

of the six-quantum and seven-quantum spectra was shown to be sufficient to provide a 

simple solution of the one-quantum spectrum. However, it was necessary to reduce the 

number of fitting parameters by fitting the proton geometrical coordinates and molecular 

order order parameters instead of the dipolar coupling constants. An analysis of the 

dipolar coupling constants was used to determine the vibrationally averaged molecular 

structure. An analysis of the seven-quantum and eight-quantum spectra of the ten-spin 

molecule butane provided an excellent prediction of the one-quantum spectrum, which 

could then be solved trivially. The dipolar coupling constants were analyzed to study the 

conformational behaviour of butane. The trans-gauche energy difference was determined 

to be in the range of 2.1-3.0 kJ /mo l . This is significantly less than the gas phase value and 

indicates that the condensed environment enhances the gauc/ze-conformer probability. 

Further, the conformational biasing was primarily a result of the isotropic component 

of the solute-solvent interaction; the anisotropy of the nematic solvent has only minor 

effects. Finally, the analysis of the couplings involved the use of mean-field models to 
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describe orientational ordering for each conformer. Several models were able to provide 

an adequate description of orientational ordering as determined by the ability to fit the 

dipolar coupling constants. 

Monte Carlo computer simulations were used to investigate the mechanisms for orien

tational ordering of solutes in nematics and test several empirical and theoretical mean-

field models of ordering. The importance of shape anisotropy and electrostatic inter

actions were studied. Solute and solvent molecular shapes were approximated by hard 

ellipsoids. Some simulations incorporated the interaction between point quadrupoles 

placed at the centres of the ellipsoids. In the purely hard-core systems, orientational or

der parameters and orientational distribution functions were calculated for a collection of 

different solutes under under a variety of conditions. Several empirical models were used 

to analyze the data. Fitting parameter values were quantitatively very similar to values 

obtained from previous fits to experimental data. This result clearly demonstrates the 

importance of anisotropic short-range repulsive forces for orientational ordering in nemat

ics and firmly establishes the connection between these various molecular-shape models 

with these interactions. The quadrupolar systems were used to investigate a mean-field 

model in which an interaction between the solute molecular quadrupole moment with 

an average electric-field gradient provides an orientational ordering mechanism. Simula

tions indicate that the electric-field gradient is highly dependent on the properties of the 

solute, contrary to some experimental evidence. Further, a mean-field theory developed 

to describe this model was found to provide a qualitatively correct but quantitatively 

imprecise prediction of orientational ordering. 
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Chapter 1 

Introduction 

1.1 Liquid Crystals 

1.1.1 Nematic Liquid Crystals 

In natural light, a nematic liquid crystal has the appearance of a cloudy fluid with 

thread-like structures floating within. Upon closer examination under a cross polarizing 

microscope, the fluid takes on a marbled texture that is indicative of an underlying 

structural complexity. When heated above some unique temperature, it changes to a clear 

liquid, while cooling will eventually freeze the sample into a solid. Thus, on a macroscopic 

scale it is already apparent that this substance can assume a state intermediate between 

that of an isotropic liquid and a crystalline solid. 

The liquid-crystalline state of matter was first reported by Reinitzer in 1888 who 

observed this macroscopic phase behaviour in cholesterol benzoate [1]. A year later, 

Lehman demonstrated that it displayed birefringence, a property of anisotropic systems 

[2]. The label "liquid crystal" was introduced to describe this compound which displayed 

properties of two very different states: the fluidity of an isotropic liquid and the optical 

properties of an anisotropic crystal. 

Some understanding of the properties of a nematic liquid crystal can be obtained 

by examining it on a microscopic scale. Typically, each of the constituent molecules is 

elongated, with a length to width ratio greater than 3 : 1 . As well, a nematogen generally 

is comprised of a semi-rigid core with flexible alkyl "tails" attached at either or both 

1 



Chapter 1. Introduction 2 

Figure 1.1: Molecular Structure of N-(4-ethox\d3enzylidene)-4'-n-butylaniline 

ends. An illustrative example is given in Figure 1.1 which shows the molecular structure 

of the nematogen N-(4-ethoxybenzylidene)-4'-n-butylaniline (EBBA) . 

The organization of molecules in a nematic phase is illustrated by the microscopic 

"snapshot" in Figure 1.2, which is a planar projection of a three-dimensional system 

where each of the line segments represents a nematogen. The centers of mass of the 

individual molecules are arranged so that there are no long-range positional correlations. 

The lack of long-range positional order is also a property of isotropic liquids. Unlike 

the latter, however, molecules in a nematic phase do display long-range orientational 

order: that is. the direction of the long axis of any one nematogen is correlated with 

that of another that is far from it on a length scale defined by the dimensions of the 

molecules. The result is an arrangement where the molecules are partially aligned along 

some average direction, which is referred to as the nematic director. 

The nematic phase is labeled uniaxial since the director is the only unique axis char

acterizing the phase. As a consequence, it is cylindrically symmetric: all measured prop

erties are invariant to rotations about the director. Further, the nematic phase is apolar 

in the sense that measured properties are invariant to reflections in a plane perpendicular 

to the director. Thus, the director vector, strictly speaking, is not uniquely defined for 

it may point in either of two opposite directions along the symmetry axis of the phase. 

It is important to note that the symmetry properties of the nematic phase are not also 
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Figure 1.2: Molecular Organization in a Nematic Phase. 

3 

properties of the individual molecules. Generally, nematogens possess neither cylindrical 

nor reflection symmetry. 

In the absence of external fields, the nematic director varies throughout the sample 

in an irregular manner. Note that the the length scale over which there is an appreciable 

variation in the direction of the director is large (~1 //,m) compared to the dimensions 

of the molecules (~20 A ) [3]. The cloudy appearance of a macroscopic sample of a 

nematic liquid crystal arises from the scattering of light as it propagates through the 

sample between regions characterized by different directors. The spatial variation of 

the nematic director may be continuous or discontinuous. The boundaries marking the 

discontinuities are called disclinations and are manifested in a macroscopic sample as the 

floating thread-like structures. Thus, the visible macroscopic features of nematics are 

closely related to the microscopic phenomenon of molecular orientational ordering. 
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1.1.2 Other Liquid Crystalline Phases 

The nematic phase is one example among many of a rnesophase (from the Greek word 

niesos = middle) which has properties intermediate between those of crystalline solids 

and isotropic liquids. This phase is classified as a thermotropic rnesophase because a 

transition to this phase may be brought about by purely thermal processes. Thermotropic 

liquid crystals are not at all uncommon: approximately 0.5% of all organic compounds 

possess a thermotropic rnesophase. The other main category of thermotropic phases is 

the smectic phase, which has, in addition to orientational order, some degree of positional 

order in at least one dimension. In this case, the molecules are arranged on average in 

equidistant planes, although there may be considerable positional fluctuations about this 

configuration". Further, this class is divided into many types, each classified according 

to several criteria, including the preferred direction of the molecules relative to the layer 

normal and the spatial organization of the molecules within the layers. 

The third main category of thermotropic liquid crystals is the cholesteric phase, la

beled thus because many derivatives of cholesterol belong to this class. This phase is 

composed of chiral molecules which form a type of nematic phase in which there is a 

regular twist to the director along some helical axis; that is. the director twists at a fixed 

angle per unit length along the axis. The pitch of the twist may vary from 200 nm to oo 

[4] . Today cholesteric liquid crystals are described as chiral nematics and are categorized 

as a subclass of nematic liquid crystals. 

More recently, thermotropic liquid crystalline phases composed of disc-shaped molecules 

have also been discovered. These "exotic" phases include the optically isotropic cubic 

phase, and the columnar phase in which molecules are stacked in regular columns with 

spatial disorder present in only one dimension along the column axis. 

While thermotropic liquid crystal phases are induced by thermal processes alone, 
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lyotropic liquid crystalline phases are formed as a result of mixing compounds with am-

phiphilic properties with a solvent. Between the extremes of pure amphiphile and its 

isotropic solution in an excess of the solvent, there exist at intermediate concentrations a 

wide variety of structured phases consisting of ordered arrangements of amphiphile and 

solvent which possess anisotropic properties characteristic of liquid crystalline phases. 

Lyotropic phases occur abundantly in nature, most notably in biological cell membranes, 

an example which underscores the importance of understanding the properties of liquid 

crystals generally. 

1.2 Orientational Order and Intermolecular Forces in Nematic Liquid Crys

tals 

The properties common to all of the mesophases described above are the presence of 

orientational order combined with some degree of positional disorder. An important 

component in the study of liquid crystals is the understanding of the relationship between 

the long-range orientational order and the anisotropic intermolecular forces which give 

rise to this property. Since the nematic phase is the rnesophase possessing the highest 

degree of symmetry, it is ideal for studying to give insight into this relationship. It 

is perhaps surprising that, more than a century after Reinitzer's discovery, a detailed 

understanding of the mechanisms responsible for the ordering in this "simple" phase is 

still lacking. Nevertheless, great progress has been achieved due to a combination of 

experimental, theoretical and, more recently, computational techniques. 

There are several molecular properties which contribute to, or in some way affect, 

the orientational ordering of molecules in a nematic liquid crystal. It is now recognized 

that the essential feature is the anisotropy in molecular shape. Just as the short-range 

repulsive forces dominate and determine the structure of a fluid at high densities for 
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mam- isotropic liquids, these forces couple to the molecular shape anisotropy to produce 

a strong contribution to molecular alignment in anisotropic liquid crystals. Results of 

recent computer simulations show that at sufficiently high densities, a system of elongated 

hard particles can form a stable nematic phase [5, 6]. Other related and important 

factors include molecular biaxiality and flexibility. Each of these properties, present in 

all nematogens, will play a major role in the local packing arrangement of molecules in 

this dense phase and therefore influence substantially the degree of orientational order 

and the stability of the nematic phase. 

Nematogens generally have electric dipole and quadrupole moments and molecular 

polarizabilities of significant magnitude. Thus, electrostatic interactions are expected to 

contribute to some degree to orientational ordering. In addition, the anisotropic compo

nent of attractive dispersion forces, which arise from correlated electrostatic fluctuations 

between polarizable molecules, will also play a role. A l l of these interactions are gener

ally believed to have a perturbative effect on the structure of the fluid which is mainly-

determined by the anisotropic short-range forces. 

There is a great variety of theories developed to explain the phenomenon of orien

tational ordering in nematic liquid crystals, and it is beyond the scope of this thesis to 

describe any of them in detail. However, there are two influential and contrasting theo

ries which have some relation to the material which will follow later. These approaches 

are due to Onsager [7], who showed that a nematic phase could arise in a system of 

infinitely long hard rods, and to Maier and Saupe [8, 9, 10], who showed that long-range 

orientational order may arise in a system where only attractive, anisotropic long-range 

forces are present. The main features relevant to the present work are described below. 

First, however, a quantitative description of orientational order is presented. 
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1.2.1 Orientational Distribution Function and Order Parameters 

For a uniaxial phase, the orientational ordering of a single rigid molecule is described 

completely by the orientational distribution function (ODF), f(0, 0), defined so that 

f(0, o) sin OdOdcp is the probability that nematic director assumes polar angles in the 

molecular frame in the range [0, 6 + dO] and [<̂ , </> + do}. The ODF may be expanded in 

terms of spherical harmonics: 

/ ( M ) = E E ^ ^ ^ U M ) , ( i - i ) 
l even m 

where 

YCm = r dcp f d9 sin 0 F 4 ( M ) / ( M ) , (1-2) 

and where Yt*n = YJ _ T O . The summation is restricted to even values of / as a result of the 

apolarity of the nematic phase. 

In many theories of liquid crystals, the nematogens are modeled in a highly simplified 

manner, and the shape is often approximated by introducing cylindrical symmetry. In 

this case the ^-dependence of the ODF vanishes and the above expansion reduces to the 

following: 

/(*)= E ^ P , P i ( c o s 0 ) , (1-3) 
( even ~ 

where 6 is the angle between the molecular symmetry axis and the nematic director, and 

where 
Pi = [V dBsin ePi(cos6)f (6) (1.4) 

Jo 

are called orientational order parameters. 

For molecules without cylindrical symmetry, it is useful to describe the O D F in Carte

sian coordinates. The leading terms in an expansion analogous to that of Eq. (1.1) are 

1 
1 + 5 E Sap cos 9a cos Op + 

a,0 
(1.5) 
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where 
3 cos 9a cos 6p — 8Qp 

2 > 
(1.6) 

is a symmetric traceless matrix known as the Saupe order matrix, and where 9a is the 

angle between the a-molecular axis and the nematic director. For the case of molecules 

with cylindrical symmetry, the Saupe order matrix has only one independent element, 

It is important to remember that the ODF described above is applicable in principle 

to rigid molecules only. Thus, the flexibility inherent to nematogens introduces a com

plication to this simple description of orientational order of single molecules. Generally, 

nematogen order parameters obtained experimentally are defined with respect to a rigid 

subunit such as a phenyl ring which comprises the core of the molecule. The problem of 

describing the orientational ordering of flexible molecules in a uniaxial medium will be 

returned to at a later stage. 

1.2.2 Molecular-Statistical Theories of Nematic Liquid Crystals 

The present work is concerned with the relationship between intermolecular forces and 

orientational order in nematic liquid crystals. A molecular-statistical theory is one which 

seeks to elucidate the nature of this connection. Generally, such a theory begins with 

some necessarily idealized form of the intermolecular potential, which nevertheless in

corporates its most important features. These potentials are used to calculate in some 

approximate way the configurational partition function which is then used to calculate 

the free energy and the related thermodynamic properties. For mean-field theories of 

nematic liquid crystals, the free energy is expressed as a functional of the ODF, min

imization with respect to which yields a self-consistent expression for the O D F which 

P2-
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can be solved numerically, or possibly analytically with further approximations. Ther

modynamic stability of the solutions is tested by examining the related free energy. The 

approach of this type of theory contrasts with that of the phenomenological variety, in

cluding most notably the Landau-de Gennes theory [11], which makes no attempt to 

calculate the partition function and thus has nothing to say about the underlying mech

anisms responsible for orientational ordering. 

Described below are very brief descriptions of the Onsager and Maier-Saupe theories, 

including only those aspects which have some relevance to the present stud}'. 

1.2.2.1 Onsager Theory 

In 1949 Onsager presented a theory for orientationally ordered fluids in which the molecules 

are modeled as long hard rods and attractive forces are neglected entirely [7]. The ap

proach involves the application of imperfect gas theory using a virial expansion of the 

configurational partition function. The partition function was calculated for a mixture of 

particles for which the components of the mixture were interpreted as identical particles 

with different orientations. It was shown that the leading terms in the calculated free 

energy. A, are given by: 

where A° is the ideal free energy related to integrations over translational and rotational 

momenta associated with the contributions of these degrees of freedom to the total energy 

of the system. As well, 0 = ( /c^T) - 1 where ks is the Boltzmann constant, N is the 

number of particles in the system, u = (9,<j)), p is the number density and B2, -S 3,..., are 

the virial coefficients. The latter quantities may be written as functionals of the ODF, 

f(uj). For example, 

B[A - A°] 1 du}'(uj)ln(Anf (to)) + (Inp - 1) + B2p + B3p2 + ... (1.7) 
N 

(1.8) 
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where Vex(cu,u') is the excluded volume between particles with orientations u> and u'. 

In the limit of very long rods, Onsager showed that the contributions from the higher 

order terms beyond that containing B2 were negligible. This contrasts with the other 

extreme case, that of hard spheres, where the higher order terms contribute significantly 

and cannot be neglected. Minimization of the free energy with respect to f(u>) using the 

expression in Eq. (1.7) and neglecting the higher order terms yields 

a self-consistent expression which can be solved to obtain f(u>). It may be shown that an 

orientationally ordered phase is thermodynamically stable for this system at sufficiently 

high densities. 

The important aspect of this theory is that it emphasizes the importance of orientation-

dependent excluded-volume interactions. For elongated rods, the excluded volume is 

smaller for parallel than for perpendicular orientations, and thus is a more favoured ar

rangement. Further, the existence of a stable orientationally ordered phase in a system 

with constant energy, and thus where entropy should be at a maximum, may be under

stood by noting that there are two competing contributions to the total entropy, each 

associated with translational and orientational degrees of freedom. For increasing elonga

tion and density, the translational entropy becomes the dominant term, and orientational 

entropy is "sacrificed" to maximize the total entropy. 

While this theory provides a simple qualitative understanding of the importance of 

short-range anisotropic forces to the phenomenon of orientational ordering, it is of limited 

relevance for real nematogens. In this case, the molecular elongation is not sufficiently 

large to neglect higher order terms in the expansion; thus, correlations between three 

and more particles will play a role in influencing the orientational behaviour. Significant 

improvement of the theory may be obtained with the (very difficult) evaluation of higher 

(1.9) 
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order virial coefficients. For example, it was found that the orientational behaviour of 

systems of hard particles with more realistic dimension ratios can be adequately described 

by the including the -B3 term into the theory [12]. 

1.2.2.2 Maier-Saupe Theory 

In the Maier-Saupe theory of nematic liquid crystals [8, 9, 10], the principal ordering 

mechanism is taken to be the anisotropic component of a long-range attractive interac

tion, originally proposed to be the London dispersion force. The pair potential is then 

used to derive a mean-field pseudopotential which is used to describe the ODF. The 

mean-field potential for one particle is obtained by averaging the pair potential over 

the rotational coordinates of one of the molecules, and the magnitude and orientation 

of the intermolecular displacement vector. For a pair potential between two particles, 

u(f,u!.ui'), the following ODF relation may be derived: 

where r is the intermolecular vector and g(r) is the pair correlation function. The relation 

above may be derived by several different procedures. The key approximation that all 

of these approaches use is to neglect short-range correlations. In particular, the depen

dence on the orientational coordinates of the pair correlation function is neglected, and 

g(f,LO,u') is replaced by g(r). The expression in Eq. (1.10) is a self-consistent relation 

which must be solved to obtain the ODF. 

As a further approximation, the constituent molecules are assumed to be rigid and 

possess Dooh symmetry. The leading term in an expansion of the anisotropic pair potential 

can be written as 

where f?12 is the relative orientation between the molecules, and where e(r) > 0. Finally, 

(1.10) 

u(r,el2) = -e( r )P 2 (cos 9l2) (1.11) 
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the distribution of intermolecular vectors is taken to be spherically symmetric, i.e. g(r) ~ 

g(r)/4ir. Under these approximations, and upon substitution of Eq. (1.11) into Eq. (1.10), 

it may be shown that there is a stable nematic phase with molecular orientational ordering 

described by the following ODF: 

for T < 0.2203e/kB = TN[, and where TN] is the nematic-isotropic phase transition 

temperature. 

That the Maier-Saupe theory of nematic liquid crystals and its derivatives has been 

such a successful theory for describing orientational order seems surprising considering the 

severity of the approximations. For example, there clearly will be significant short-range 

orientational correlations between real nematogens arising from short-range repulsive 

forces which are entirely neglected in the theory. As well, the assumption of a spherical 

distribution of intermolecular vectors is difficult to rationalize given the highly anisotropic 

nature of the system. 

1.3 Solutes as Probes of Intermolecular Forces 

1.3.1 N M R and Orientationally Ordered Solutes 

There are a variety of experimental techniques which in principle can provide quantitative 

information about orientational ordering in nematic liquid crystals. For example, X-ray 

diffraction can be used to measure the full ODF, /(#), while polarized Raman scattering 

can yield estimates of the order parameters P2 and P 4 [4]. In practice, such information 

is often difficult to obtain using these methods. Nuclear Magnetic Resonance (NMR), 

(1.12) 

where 

(1.13) 
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by contrast, is an excellent technique for studying order in anisotropic systems. Its 

principal limitation, however, is that it is capable of measuring order parameters of only 

the second rank, and therefore yields only a modest amount of information relative to 

that contained in the complete ODF. Nevertheless, it has been shown to be an extremely 

effective tool for elucidating the details of orientational behaviour in liquid crystals and 

is highly relevant, both directly and indirectly, to the present work. We shall not provide 

a detailed description of the basic theory of N M R , but only a brief outline of its relation 

to the determination of orientational order parameters. 

A n analysis of the N M R spectra of orientationally ordered molecules can yield a 

variety of different intramolecular coupling constants which are parameters of the nuclear 

spin Hamiltonian. An important example of this is the direct dipole-dipole coupling-

constant , which for a pair of like spins may be written as 

A , - = - ^ 2 ; : j 2 , ( i . i4) 
7 2 f t / i 0 / | c o s 2 ^ - i 
STT' \ r% 

where 7 is the gyromagnetic ratio of the spin, h is Planck's constant, fi0 is the magnetic 

permeability of free space, and 8?j is the angle between the internuclear vector and the 

external magnetic field which is defined to be along the Z-axis. The ensemble average 

includes both averaging over the internuclear distance and over the direction of the in

ternuclear vector. For rigid molecules, and neglecting vibrations, is fixed, and the 

expression can be written as 

2 ft 
Dij = - Sa/3 cos 6a cos Op, (1-15) 

where Sap is the Saupe order matrix defined in Eq. (1.6), and where 6a is the angle 

between the internuclear vector and the molecular o>axis. 

The measurement of dipolar coupling constants for nematogens is complicated for two 

reasons. First, the spectra are often impossible to analyze. Generally, this is the case for 
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proton N M R , since individual nematogens may have ~20 proton spins. The result is an 

extremely complex spectrum composed of many overlapping, unresolvable lines. Second, 

the nematogens are flexible molecules which sample a large number of conformations. 

This conformational freedom greatly complicates the analysis of the coupling constants 

even if they can be measured. In this case, Eq. (1.15) is not a valid expression for the 

dipolar coupling constant. 

A very useful alternative for studying orientational order in nematic liquid crystals is 

to employ solutes as probes of orientational order. Generally, a rigid molecule with lower 

than Td symmetry will be partially oriented when dissolved in an anisotropic nematic 

environment as it samples the same intermolecular forces which align the nematogens 

themselves. The solute will be characterized by its own ODF and orientational order 

parameters. Solutes may be chosen to simplify the spectral anah'sis and interpretation 

of the coupling constants: symmetric, rigid solutes with sufficiently few spins are often 

ideal. 

There are other important reasons why this approach can be highly useful for studying 

orientational ordering. The principle objective of many studies is to gain some insight 

into the underlying mechanisms responsible for the ordering. By studying the behaviour 

of the nematogens alone, it is difficult to disentangle the many factors and to understand 

the relative importance and effect of the various intermolecular forces. In contrast, it 

is often possible to choose a specific solute or collection of solutes for which a specific 

interaction is the principal orienting mechanism. An analysis of the orientational order 

parameters may then provide some understanding of the role of this interaction in the 

nematic phase generally. 

In the following sections, we review some important results of several N M R studies 

which employ solutes as probes in nematic liquid crystals. We emphasize those which 

focus on understanding the role of electrostatic and short-range repulsive interactions 
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and molecular flexibility in nematic liquid crystals. 

1.3.2 Electrostatic Interactions 

1.3.2.1 The Average Electric-Field Gradient 

An important study that provided direct evidence for identifying a specific intermolecular 

interaction as an orienting mechanism employed molecular hydrogen and its deuterated 

analogues as probe solutes in a nematic solvent [13, 14]. Since a deuteron is a quadrupolar 

nucleus, the nuclear spin Hamiltonian for partially oriented D 2 and HD is parameterized 

by a quadrupolar coupling constant, B Q , as well as the dipole-dipole and scalar coupling 

constants, D \ 2 and J 1 2 . between the two spins. Analysis of the spectra for D 2 and HD is 

trivial and yields directly the values of the couplings. In the absence of external fields, 

the ratio of B Q / D U should be a solvent-independent molecular property. The fact that 

this ratio was observed to be strongly solvent-dependent and deviate significantly from its 

gas-phase value can be explained by proposing that the probe solute experiences a non

zero average external electric-field gradient (EFG). This external E F G arises from the 

contributions from the solvent molecule charge distributions to the electrostatic potential 

sampled on average by the solute. The E F G interacts with the nuclear quadrupole 

moment and makes an additional contribution to the quadrupole coupling constant: 

BQ = --4

e-^(Fzz-eqP2), (1.16) 

where QD is the principal component of the deuteron nuclear quadrupole moment, Fzz 

is the principal component of the average external E F G , and P2=SZZ is the solute order 

parameter. The z-axis is the molecular symmetry axis while the Z-axis defines the 

direction of both the external magnetic field and the nematic director which aligns along 

it. Note that the E F G is a traceless, symmetric second-rank tensor. As a result of the 

cylindrical symmetry and apolarity of the uniaxial phase, however, the form of the E F G 
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tensor is simplified further: the off-diagonal terms vanish, FXX=FYY = — \FZZ- a n d the 

tensor is characterized by only one independent element, Fzz- In the mean-field limit, the 

molecular quadrupole moment interacts with the average electric-field gradient according 

to a mean-field potential given by 

U{6) = -\FZZQZZP2(COSO), (1.17) 

where Qzz is the principal molecular quadrupole moment and 6 is the angle between 

the molecular symmetry axis and the nematic director. Application of this potential 

using values for FZz obtained from the spectral analysis was found to provide excellent 

estimates of the measured order parameters for D 2 and HD [13, 14], These calculations 

carefully incorporated both the presence of intramolecular vibrations and the quantum-

rotor nature of these small molecules. 

It is very likely that the average EFG-molecular quadrupole interaction is a valid 

model for other probe solutes as well. The most straightforward hypothesis is to take 

the average E F G as a solvent-dependent property which interacts with the probe in a 

manner independent of the molecular properties of the solute. In studies of other oriented 

solutes, this hypothesis cannot be tested directly. The situation is complicated by the 

inability to measure FZz directly from spectral analysis and the importance of additional 

intermolecular forces as orienting mechanisms, most notably the anisotropic short-range 

repulsive forces. Considering this latter point, it is not surprising that predictions of 

orientational order parameters for a variety of other molecules, employing Eq. (1.17), 

and using known values of the molecular quadrupole moments and the values of the E F G 

measured using molecular hydrogen, are very poor [15, 16]. However, some qualitative 

agreement is provided by the orientational behaviour of specific solutes. For example, 

acetylene, like D 2 , orients with a negative order parameter in the nematic solvent E B B A . 

'While it is difficult to rationalize this behaviour by invoking other orienting mechanisms. 
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it is entirely consistent for a molecule with a positive quadrupole moment which interacts 

with a negative E F G , as was measured for this solvent using D 2 . Similarly, the behaviour 

of the order parameters for benzene and hexafluorobenzene, molecules with very similar 

shape but with opposite signs of quadrupole moments, follow the pattern predicted by this 

mechanism using values of the E F G obtained from D 2 for various nematic solvents [16]. 

Finally, the presence of non-vanishing dipolar and quadrupolar coupling constants for 

deuterated methanes in a nematic solvent can be understood as arising from a vibration-

rotation coupling that results from a second-rank tensorial interaction between the solute 

and a solvent mean-field [17]. A study of the quadrupolar coupling constants gives 

consistent results for theoretically solvent-independent quantities in different nematic 

solvents when an external E F G with values determined in the studies of D 2 and HD was 

incorporated into the analysis [18]. 

1.3.2.2 The Emsley-Luckhurst Potential of Mean Torque and the Average 

E F G 

Emsley. Luckhurst, and coworkers have developed a theory for describing orientational 

ordering of solutes in uniaxial liquid crystals which is closely related to the Maier-Saupe 

theory [19]. A potential of mean torque is derived by integrating the solute-solvent pair 

potential over the solvent coordinates. In analogy with the expression for the ODF 

relation in Eq. (1.10), the solute ODF, f(co), in the mean-field approximation is given by 

/ M ~ e x p [ - / 3 E / ( u ; ) ] (1.18) 

where 

U(u>) = p J dfduj'u(r,u,uj')f(uj')g{r), (1.19) 

where u(f,uj,u>') is the solute-solvent pair potential, and where we henceforth adopt the 

convention of labeling the solvent ODF as f(co) to differentiate it from that of the solute. 
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Note that f(u>) is not determined self'-consistently in this method, but is expressed in 

terms of the solvent ODF. As in the Maier-Saupe theory, the pair potential in the present 

theory is expanded and truncated to second rank: however, in this case, the biaxiality of 

both the solute and solvent molecules is included, in analogy to an extended version of the 

Maier-Saupe theory [20]. Further, as in the original formulation of the present theory, 

the distribution of the intermolecular vector was taken to be spherically symmetric: 

g(r) ~ g(r)/4n. With the approximations described above, and in the limit of negligible 

biaxiality for the solvent orientational ordering, the following mean-field potential is 

obtained: 

U(d,4>) = -u200P2

{nem)P2(cos6) - ^u2O2P2

{nem)sm26cos20, (1.20) 

where _pj' iem) is the nematogen order parameter. The coefficient u200 is analogous to 

the parameter e defined in Eq. (1.13), i.e. an average over the radial component of the 

axially symmetric second-rank term of the expansion of the pair potential, while U2Q2 is 

a similar term which accounts for the biaxiality of the molecules in the pair potential. 

Orientational order parameters may be calculated using the following relation: 

/ ( | cos 6 a cos Op - \5Qpj exp [-/?[/ (9, d>)} sin OdOdd 
S a P = Jexp[-pU(6,4>)} sin 9dM<p ' ^'21^ 

where 0Q, the orientations of the molecular axes with respect to the nematic director, are 

•functions of the polar angles, 9 and (f>. 

Applying this model to fit experimental orientational order parameters, the linear 
— ( 7ie77T.) 

dependence of the fitted potential on the solvent order parameter P2 is generally 

satisfied. It is also generally observed that the ratio A = U2QQ/U2Q2 is strongly dependent 

on both temperature and solvent [19, 21, 22, 23]. By contrast, the theory predicts that 

the temperature dependence should be determined solely by P2 . As well, for the 

case of second-rank tensorial solute-solvent interactions; A is predicted to be solvent-

independent. 
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There are a number of possibilities to explain this deficiency in the theory, includ

ing the presence of multiple contributions to the pair potential. This has been investi

gated by Emsley et al. with special emphasis on electrostatic interactions, its relation 

to the observed non-zero average E F G in nematic solvents, and the consequence to the 

dispersion-force contribution to the potential of mean torque [22, 23, 24]. In the context 

of the theory, it can be shown that the observation of a finite E F G indicates that the 

distribution of intermolecular vectors cannot be spherically symmetric, in contrast to 

the assumption of the Maier-Saupe theory and its derivatives. Further, the quadrupole-

quadrupole interaction is found to be the lowest order multipole expansion term which 

can contribute to the mean potential in the case where the distribution possesses only 

cylindrical symmetry. For an axially symmetric molecule, for example, the following 

mean-field potential is obtained [24]: 

UQ(8) ~ ^QWQMPtPfem)P2(.cose) (1.22) 

According to Eq. (1.17), this corresponds to an E F G given by 

Fzz-r^Q^P+Pt^-, (1.23) 

where Q^J and Q^J are the quadrupole moments of the solvent and solute, respectively. 

Further, the average over r is performed as in Eq. (1.13), and P 4

+ is a fourth-rank order 

parameter describing the orientational distribution of intermolecular vectors. The lack 

of spherical symmetry of the intermolecular vector distribution also modifies the form of 

the mean-field potential arising from dispersion interactions. 

The orientational order of anthracene and anthraquinone, molecules with similar 

molecular shapes and polarizabilities but with significantly different quadrupole mo

ments, was studied and analyzed using the modified theory above [25]. It was concluded 

that the observed behaviour of Szz and A could only be explained by a dependence of 
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P2 and P 4

+ on both solvent and solute properties. This contrasts with the proposal by 

Burnell et al. that the average E F G is a property of the nematic solvent alone. However, 

it is important to note that the analysis considered contributions only from electrostatic 

and dispersion forces, neglecting entirely contributions from the probably very important 

short-range repulsive forces. This latter interaction cannot be easily incorporated into 

the framework of the Emsley-Luckhurst theory which, like the Maier-Saupe theory, is 

valid for the case of long-range forces and neglects the effects of short-range correlations. 

A further complication of the theory was discovered by Luckhurst et al. in a Molecular 

Dynamics study of a system of Gay-Berne nematogens and the validity of the Maier-Saupe 

theory to this system [26]. In particular it was found that the orientational distribution of 

solute-solvent intermolecular vectors is highly dependent on the intermolecular distance 

r. This implies that separately averaging over the magnitude and direction of the inter

molecular displacement r is invalid and that the theory must be reformulated to account 

for this feature. It may be shown that the expression for the E F G must be rewritten in 

the following form: 

The consequence of this result will be discussed at a later stage in this thesis. 

1.3.2.3 Further Comments on Electrostatic Interactions 

In the application of the Emsley-Luckhurst theory to electrostatic interactions above, 

it is found that the lowest order non-vanishing multipole-multipole term is that for the 

quadrupole-quadrupole interaction, which results in a mean E F G with which the solute 

interacts. It is easy to understand why, for example, the dipole-dipole term does not 

contribute within the context of the theory. In this case, a solute dipole moment inter

acts with a mean electric field, which is necessarily zero for an apolar nematic phase. 

(1.24) 
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However, Photinos et al. have demonstrated the importance of intramolecular dipole-

dipole interactions in their studies of the orientational ordering of a-bromonated alkanes 

[27, 28]. The observed bias on the segmental orientational order relative to the case 

of regular alkanes was shown to result from interaction of the local dipole moment at 

the bromine position with the local dipoles on the nematogens. The effect was explained 

qualitatively by the asymmetric arrangement which results from off-centered local dipoles 

on molecules with short-range repulsive cores. This results in strong short-range corre

lations which contributes significantly to the orientational ordering. In principle, these 

interactions should then contribute to the ordering of solutes with dipole moments in a 

zero-EFG liquid crystal where it has been assumed, in the mean-field limit, that electro

static interactions are insignificant. 

There is further evidence that the mean-field approach to electrostatic interactions is 

too simplistic. Terzis et al. have derived an alternative theory to describe orientational 

ordering- of solutes in nematic solvents which incorporates explicitly both the anisotropic 

excluded volume interaction and interactions between electrostatic multipole moments 

[29]. The effects of molecular polarizability were also included, though they were generally 

found to be relatively insignificant. The theory derives hard-core (HC) and electrostatic 

(ES) contributions to a mean-field potential. The derivation involves a reduction of the 

full many-particle distribution function and incorporates many approximations, including 

neglecting correlations between solvent molecules and truncating the effective range of 

the electrostatic energy to a local region. The latter choice necessarily excludes the 

validity of the theory for dealing with long range dipole-dipole interactions. The following 

contributions to the mean-field potential are obtained: 

(1.25) 
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and 

UES{U) 
kBT 

p / drdu'f(u') [1 - exp (-uES(f,u,u')/kBT)} gHC{f,co,io'), (1.26) 

where gHc{r,uj,u') = 0, for overlapping configurations, or 1, for non-overlapping con

figurations, and UEs{r,u},Lj') is the electrostatic contribution to the pair potential. The 

potentials were expanded to fourth-rank and used to analyze experimental order parame

ters for a small collection of solutes by adjusting the solvent dimensions and nematic order 

parameters. The values of these were used to measure the strength of HC interaction and 

the various ES interactions including dipole-quadrupole, quadrupole-quadrupole terms. 

The main conclusions from this study were as follows: the effects of the ES interactions 

were of comparable magnitude to those of the HC interactions; they are highly sensitive 

to the shapes and electrostatic properties of the solvent and solute molecules: they cannot 

be described consistently by means of a coupling between the solute quadrupole moment 

and an external average E F G . 

However, there may be flaws in both the theory and its application to the analysis of 

the experimental data. The relation for the HC mean-field potential above has exactly 

the same form as the self-consistent expression for the ODF in Onsager's theory. In that 

case, the neglect of correlations between three and more molecules is a severe approxima

tion for particles with dimensions of typical nematogens. This may be even more severe 

for approximating the HC contribution to the ODF for solutes wrhich have considerably 

less shape anisotropy than the nematogens, and may significantly underestimate its con

tribution to orientational ordering. In light of this, the conclusions drawn by the study 

are arguable, and an alternative approach to studying the combined effects of HC and 

ES interactions on solute orientational order must be found. 



Chapter 1. Introduction 23 

1.3.3 Short-Range Repuls ive Forces and M e a n - F i e l d Mode l s 

It is generally accepted today that short-range anisotropic forces provide the principle 

orienting mechanism for nemotogens in their nematic phase. It is highly probable that 

this mechanism should also dominate for other molecules dissolved in an oriented phase. 

The fact that this is not the case for molecular hydrogen is probably due to its small size 

and nearly spherical shape. However, for molecules with dimensions closer to those of 

the nemotogens and with greater shape anisotropy, it is very likely to be true. 

In previous experiments with deuterated molecular hydrogen, it was found possible 

to combine nematic solvents with measured values of the E F G of opposite signs to form 

a mixture that has a vanishing E F G . Specifically, the following two mixtures were ob

served to have this property: (1) 55 wt% Merck ZLI 11321 / E B B A at a temperature of 

T=301.4 K [31]: (2) 30 wt% 5 C B 2 / E B B A at 316 K [32]. If the E F G is a property of 

solvent alone, then it should vanish for any other solute as well, along with its associated 

contribution to orientational ordering. Under this assumption, these zero-EFG mixtures 

are ideal for studying the other interactions contributing to orientational ordering of the 

solute. 

The orientational order parameters of a wide collection of solutes have been measured 

in the different zero-EFG mixtures and analyzed to test the importance of short-range 

repulsive forces as an ordering mechanism. The basic approach of the analysis is to 

construct a model pseudopotential, USR(U), which is highly sensitive to the molecular 

size and shape, to describe the orientational behaviour of an arbitrary solute. Molecules 

are modeled using van der Waals spheres to represent the atoms. Orientation-dependent 

projections of the molecules parallel and perpendicular to the nematic director are used 

* A eutectic mix tu re of a lkylcyclohexylcyanobiphenyls and cyclohexylcyanobiphenyls . See Ref. [30] 
for compos i t ion . 

2 4-n-pen ty l -4 ' -cyanobiphenyl 
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to define the potential in a way designed to have a lower energy, and therefore a higher 

probability, for elongated molecules aligned along the director, and, for oblate molecules, 

perpendicular to the director. The potential may be characterized by one or two solvent-

dependent model parameters which describe the strength of the interaction between the 

solute and the nematic solvent. Molecular order parameters may be calculated using 

Eq. (1.21). Several of these models shall be used and examined extensively in subsequent 

chapters, and we choose not to describe the details until then. 

The essential idea of this approach is that a model which incorporates the details of 

the molecular shape should be able to provide an adequate description' of orientational 

order for arbitrary solutes if the principal ordering interaction is short-range and repulsive 

in nature. Long-range attractive forces, by contrast, should be relatively insensitive to 

molecular shape. Several different models have been developed to analyze the large 

collection of order parameters which have been measured for solutes in zero-EFG liquid 

crystals. Of particular interest are the models developed by Burnell and coworkers [33, 34, 

35, 36], and a model due to Ferrarini et al. [37] which is closely related to that proposed 

by Zimmerman et al. [36]. The most important result of these studies is that the models 

which incorporate in the most detailed manner the molecular shape generally provide 

the best predictions of orientational behaviour and are able to predict the principal order 

parameters to within 10% of their measured values. 

1.3.4 Flexibility 

With few exceptions, the molecules which form nematic liquid-crystalline phases are 

highly flexible and sample a wide variety of conformations. The near-universal presence of 

this property is a result of the fact that it increases the entropy and therefore decreases the 

free energy of the nematic rnesophase relative to that of the crystalline-solid phase: thus, 

the system will not freeze before it passes into a liquid crystalline phase. Since molecular 
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shape anisotropy is the dominant factor contributing to the orientational ordering in 

these systems, the ordering behaviour is strongly influenced by the packing structure of 

the fluid. Molecular flexibility is expected to strongly affect the organization in the fluid 

via the complex relationship between translational, orientational and internal entropy, 

and therefore will alter significantly the orientational behaviour relative to that expected 

for systems of rigid molecules. 

Important examples of internal motion include the the following: rotation about one 

or more bonds that bridge the rigid units that form the core of the molecule, and the 

rapid exchange between conformations of alkyl chains which are often connected to the 

rigid cores. 

The incorporation of molecular flexibility into molecular-statistical theories of liquid 

crystals is a challenging task. These theories generally choose to ignore this factor and 

derive results in terms of interactions between rigid molecules, which may be thought of 

loosely as the average over all conformational states. Some Molecular Dynamics computer 

simulations have successfully simulated nematic systems composed of molecules which 

are modeled in detail and include internal flexibility together with an accurate molecular 

structure [38, 39]. However, such calculations are extremely time-consuming and can 

only be run over short times for relatively small systems. 

Experimental N M R measurements can provide some insight into the conformational 

behaviour of flexible mesogens. Deuterium N M R of isotopically substituted species di

rectly yields order parameters of individual rigid molecular subunits. Proton N M R spec

tra of nematogens are highly complex and cannot be analyzed without using additional 

techniques such as partial deuteration with deuterium decoupling. Nevertheless, the 

dipOle-dipole spin couplings that may be obtained contain considerably more informa

tion than the deuterium quadrupole coupling constants. In either case, the analysis 

requires a suitable quantitative measure of the orientational ordering. The Saupe matrix 
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in Eq. (1.6) is designed for rigid molecules; the use of an average SQ|g appropriate for an 

average molecular structure has been considered before and shown to be inappropriate for 

large molecules with large amplitude internal motions between conformations not related 

by symmetry [40], conditions which certainly describe typical nematogens. The neces

sary alternative approach requires a separate Sa/g to describe the orientational ordering 

of each conformer, and is valid provided that the rate of molecular reorientation is rapid 

compared to the rate of exchange between conformers [41, 42]. Thus, a very large number 

of independent order parameters is required to characterize the orientational behaviour 

of most nematogens. 

As in the case of investigating the intermolecular forces which contribute to orien

tational ordering of nematic liquid crystals, probe solutes may be used to provide some 

insight into the role of molecular flexibility for such systems. The principal advantage 

is that specific solutes may be chosen for convenience. The spectra of relatively simple 

solutes can be analyzed in a straightforward manner, either directly or with the help of 

some additional tool like that of Multiple-Quantum N M R spectroscopy which we shall 

present^ describe. The orientational ordering and conformational behaviour of flexi

ble solutes may reflect that of similar flexible components of nematogens. For example, 

studies of the behaviour of alkanes oriented in a nematic liquid crystal may provide some 

understanding of the role of nematogen alkyl tails. An important question about the con

formational behaviour of flexible molecules which can be investigated concerns the role 

of the solvent in biasing the conformational equilibrium from that for isolated molecules. 

Although a large number of independent order parameters are in principal required 

to describe the ordering of nematogens, this problem can be circumvented by employing 

model potentials described in Section 1.3.3. The models are characterized by only one or 

two parameters and can be used to calculate the order parameters for each conformer. A 

related advantage of studying flexible solutes is that the success that a particular model 
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has in fitting a set of N M R data provides an additional test of the overall ability of a 

model to adequately describe molecular orientational order. This approach has been used 

to study the conformational behaviour and orientational ordering of alkanes of various 

lengths in several recent N M R studies [43, 44, 45, 46, 47, 48, 49]. 

1.4 Multiple-Quantum N M R 

1.4.1 Application to the Analysis of N M R Spectra 

In N M R studies of solutes ordered in liquid crystals, information about orientational 

ordering is obtained from an analysis of coupling constants, which, in turn, are obtained 

from an analysis of N M R spectra. In the case of deuterium N M R , the spectra are 

relatively simple, even for complex molecules such as typical nematogens. They consist 

of a set of of doublets, each corresponding to a unique deuteron on the molecule, whose 

splitting is related to the order matrix of the corresponding rigid molecular subunit. This 

is a consequence of the large magnitude of the quadrupole coupling constant associated 

with the spin which interacts with a local electric-field gradient, which dominates the spin 

Hamiltonian. In the case of proton-NMR, however, it is the dipolar coupling constants 

which are the principal determinant of the fine structure in the spectrum. This leads to 

far more complex spectra that require sophisticated numerical methods for analysis. 

The general procedure for fitting a spectrum requires detailed information about the 

molecular structure, estimates of Sap, and, in the case of flexible molecules, some knowl

edge about the geometry and relative weighting of each of the conformations sampled, 

in order to calculate initial estimates of the D I Y These may be be used, together with 

literature values of isotropic chemical shifts, to generate an initial spectrum. If the param

eters are sufficiently accurate, then individual lines between experimental and calculated 

spectra may be assigned and fit using very well-established numerical techniques. 
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Many solute molecules with > 8 spins have a complex spin-Hamiltonian that gives 

rise to a correspondingly complex spectrum which may be very difficult to solve, even in 

the case of very symmetric molecules. The number of measurable transitions increases 

rapidly with the number of spins, eventually resulting in a quasi-continuous spectrum of 

overlapping, unresolvable lines. The case for spin systems of intermediate complexity, 

where the spectrum consists of lines which are generally resolvable but is still highly 

complex, deserves some attention. For these systems, extremely accurate initial esti

mates of the spin-Hamiltonian parameters are required. Small deviations may scramble 

positions of the numerous, densely packed lines to the point where adequate assignment 

becomes virtually impossible. However, such spectra in principle can be analyzed if a 

method were available with which to provide sufficiently accurate estimates of the N M R 

spin-Hamiltonian parameters. 

Multiple-Quantum (MQ) N M R spectroscopy is one possible method. The structure 

of higher orders of M Q spectra can be very simple, yet contain the same information 

that is available from the analysis of the corresponding, conventional N M R spectrum. 

Thus, the solution of M Q spectra does not pose the sanre severe demands as that of the 

conventional spectrum. Estimates of the coupling constants and chemical shifts obtained 

from the M Q spectra may then be used to solve the one-quantum spectrum with much 

less difficulty than would otherwise be the case. Yet the technique has generally been 

ignored as a basic tool for studying such systems. 

It is interesting to note that the phenomenon of continuous wave ( C W ) M Q - N M R was 

observed over thirty years ago. In this case the usual N M R selection rules forbidding most 

M Q transitions was circumvented by increasing the strength of the perturbing R F field. 

An unwelcome consequence of this technique, however, is that the spectral line positions 

and intensities depend not only of the unperturbed internal spin Hamiltonian, but on 

the magnitude of the perturbing field as well. Thus, it was not until the introduction of 
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the two-dimensional Fourier Transform N M R technique that M Q N M R could become a 

truly useful method. This is due to the fact that the frequencies of M Q transitions are 

obtained from the indirect observation of associated M Q coherences which evolve during 

a time in which the system is free from any external R F field. 

Although this approach was first suggested in the landmark 2D-NMR paper by Aue 

et al. in 1976 [50]. M Q - N M R methodology was developed mainly by Pines and coworkers 

at Berkeley in years shortly afterward. There is an enormous variety of M Q experiments 

that were developed during that time, and it is far beyond the scope of this thesis to 

describe most of these: an excellent review of this subject may be found in the review by 

Weitekamp [51]. However, a brief description of the basic method and underlying theory 

for measuring standard M Q spectra is presented below. 

1.4.2 Theoretical Background 

In the absence of an external R F field, the Hamiltonian for a collection of like spins 

of / = 1 (i.e. non-quadrupolar nuclei) is composed of the Zeeman, dipolar and scalar 

coupling terms: 

H = HZ + HD + Hj (1.27) 

The Zeeman Hamiltonian, Hz, is given by 
N 

Hz = -Y,hvlhi (1.28) 
i=l 

where the chemically shifted frequencies, Vi, are given by 

f/i = ^ ( l - f f z z , i ) , (1-29) 

where 7 is the gyromagnetic ratio of the nucleus, HQ is the static external magnetic field, 

defined to be along the Z-axis, and IZji is the Z-component of the spin operator for the 

iih spin of a system of N spins. The quantity ozz^ is the component of the chemical-shift 
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tensor projected onto the external field and is related to the molecular-frame components 

o~a/3,i by the following relation: 

1 2 
o~zz,i = o E <Jaa>i + o E SQpaapti, (1.30) 

where Sa@ is the Saupe order matrix defined in Eq. (1.6). Note that the second term 

vanishes for isotropic systems. 

The direct dipolar Hamiltonian is given by 

HD = £ hDi^IzJz^ -Ii • /*), (1.31) 

i<j 

where the dipolar coupling constant between spins i and j, was defined previously 

for the general case in Eq. (1.14) and, for rigid molecules, described by Eq. (1.15). 

The indirect dipolar or scalar Hamiltonian is approximately given by 

HJ = Y,hJijTi'Ti (1.32) 

i<j 

Note that the general form of this Hamiltonian includes an anisotropic component which 

has exactly the same form as the direct dipolar Hamiltonian. However, for most couplings 

involving protons, the anisotropy is small and may be ignored. 

The expressions written above are valid in the high field limit, where the chemical 

shift, and the direct and indirect dipolar interactions are small compared to the principal 

Zeeman interaction of the bare nucleus with the external magnetic field. The eigenstates 

and eigenvalues are obtained from a diagonalization of the Hamiltonian and are param

eterized by aZz,i, Dij and J ^ . Thus, the associated spectral transition frequencies and 

intensities are also a function of the coupling constants. 

The total Hamiltonian commutes with the Z-component of the total angular momen

tum operator, Iz = Z!i Iz,i'-
[H,Iz] = 0 (1.33) 
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Thus. Iz is also diagonal in the Hamiltonian eigenbasis and its eigenvalue. Miy given by 

Iz\i) = M{\i) (1.34) 

for an eigenstate is a "good" quantum number, and thus, each eigenstate can be 

labeled with a unique value of Mj. The spectra measured using either C W N M R em

ploying weak R F fields, or through fourier transformation of the Free Induction Decay 

(FID) following a "hard" R F pulse yield a spectrum characterized by transitions between 

eigenstates \i) and \j) which, in the case of infinitely sharp lines, is given by 

F(u) = Y,W±\3)\26(«>-Uii), (1-35) 

i<j 

where Uij = Ei — Ej for eigenvalue energies Ei and Ej. This gives rise to the main N M R 

selection rule: = AMy = M ; — Mj = ±1 . The order of a particular transition is given 

by the value of «y. Thus, a standard N M R spectrum is characterized by transitions of 

order ± 1 . 

Before describing how this selection rule may be overcome to permit effectively tran

sitions between all orders, it is useful to examine the number of transitions associated 

with each particular M Q order. It can easily be shown that for an A'-spin system, which 

has 2A' distinct eigenstates and energy levels, the number of n-order transitions is given 

by Zn = (2N)\/((N+n)\(N-n)\) for n < N. For a general ten-spin system, Zw=l, 

Zg=20, ^8=190,..., Zi=167960, Z0=184756. Thus, the number of transitions increases 

rapidly for decreasing M Q order. The higher order spectra, those for n = N — 1, N — 2, 

N — 3, contain the same information about the N M R coupling constants as does the 

one-quantum spectrum, yet contain far fewer transitions. This means that there is a vast 

redundancy in the conventional N M R spectrum. Note that for many molecules which 

have some degree of symmetry, many energy levels within each manifold are degenerate. 

Further, it may be shown that all transitions between states belonging to the different 
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irreducible representations of the permutation group (i.e. permutation of spin indices 

in the eigenstates) are forbidden. These factors can reduce considerably the number of 

observable transitions of all orders for molecules with some degree of symmetry. 

A basic pulse sequence that may be used for the generation and observation of M Q 

coherences is given by the following: 

GD • r - (i) • h • (I) ~ r'~ t ^ u i r e ) 
An understanding of how M Q transitions are observed in a two-dimensional N M R exper

iment requires an understanding of the time evolution of the spin density operator over 

the course of the experiment. This may be calculated using the Liouville equation: 

! = . ( i - 3 7 ) 

Prior to the application of the R F pulses, the equilibrium density operator, in the high-

temperature limit, is given by: 

The identity operator 1 plays no role under time evolution of p and may be ignored. Ap

plication of a strong 90° I'-pulse converts Iz into I\. The density operator evolves under 

the internal Hamiltonian according to the Liouville equation above. For the Hamiltonian 

described above, it can be shown that Ix = (i+ + a ±one-quantum operator, 

evolves into other one-quantum coherence operators during the preparation time r . Fol

lowing the application of a second R F pulse, these one-quantum coherences are trans

formed into all possible M Q coherences. The magnitude of the M Q coherences depends 

strongly on r and the N M R coupling constants that characterize the spin Hamiltonian. 

The M Q coherences evolve for the evolution time t i , again under the internal spin Hamil

tonian alone. The third pulse partially converts the spin order back into one-quantum 
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coherences which evolve into the observable Ix, which may be recorded as a function 

of rj2. Two-dimensional fourier transformation and projection onto the f\ axis yields a 

spectrum of M Q transitions which corresponds to the time evolution of M Q coherences 

during the evolution time t\. 

The basic pulse sequence may be modified further to accomplish specific goals. Ap

plication of particular phase cycles can be used to selectively detect particular orders of 

M Q spectra in order to reduce the spectral width and improve the digital resolution [52]. 

Offsetting the R F frequency from resonance can be used for the separation of individ

ual orders. If necessary, 1 8 0 ° pulses can be incorporated to refocus the effects of static 

magnetic field inhomogeneities. 

1.4.3 Limitations 

The primary interest in M Q spectroscopy in this thesis is in its application to simplify 

spectral analysis of one-quantum spectra. While this method is potentially very useful 

for such problems, it is also clear that there are factors which can limit its range of 

applicability. 

As the size N of the spin system increases, the number of M Q coherences increases 

considerably. Consequently, the initial order manifested in the equilibrium magnetization 

is distributed over an increasingly large number of coherences during the evolution period 

of the M Q experiment. The effective signal-to-noise therefore is reduced substantially for 

larger molecules. Elaborate methods designed to transfer the order to a particular order 

of coherence, and thus to reduce this "thinning out", have been devised [53, 54, 55]; 

however, these are non-trivial experiments and still may be of limited use for larger 

molecules. For typical nematogens with «20 proton spins, even specific high M Q orders 

will contain a prohibitively large number of coherences. The inefficiency of using a single 

pulse for converting the M Q coherences back into one-quantum coherences is also a severe 
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limitation of the basic pulse sequence. Time reversal pulse sequences which are intimately 

related to the sequences designed for selective excitation of particular M Q orders have 

been developed to circumvent this problem [56]. 

As stated previously, the magnitudes of the M Q coherences evolving during ti are a 

complex function of the preparation time r and the N M R coupling constants. A problem 

associated with this fact is that it can be very difficult to choose a particular r such 

that all coherences of a particular order of interest are appreciably populated. One may-

employ several values of r and sum the individual spectra. Further, a search procedure 

for optimizing r has been described [57], but this is suitable for maximizing the integrated 

intensity of an entire M Q order and not for individual coherences. . 

Finally, there is the usual problem of truncation in the ti domain common to all two-

dimensional N M R experiments. In typical experiments, it may take an unrealistically 

large number of t\ increments for wide spectra to avoid this problem. This truncation 

results in a widening of the experimental lines, reducing the signal-to-noise ratio and 

increasing the uncertainty of the estimated line frequency. Note that natural line broad

ening is magnified n-fold for n-quantum coherences in the absence of refocusing pulses 

and may contribute significantly to the broadening of lines of higher M Q orders. 

Clearly, these problems are not insurmountable. Many variations of the basic exper

iment have been devised to deal with them. However, most of these techniques utilize 

complex pulse trains which require near-ideal pulses. Loss of coherence due to R F inho-

mogeneity for example, a problem inherent to high resolution N M R systems, can be a 

serious impediment. Even the application of single 1 8 0 ° refocusing pulses can produce 

troublesome artifacts under such conditions. Thus, the limits of the basic pulse sequence 

deserved to be explored. As demonstrated in this thesis, this simple and undeservedly-

ignored technique can be very useful. 
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1.5 Monte-Carlo Simulations 

A principal goal of many studies of orientational ordering in liquid crystals is an un

derstanding of the relationship of molecular properties to the long-range correlations. 

Unfortunately, it is often the case that experimental data are very difficult to interpret 

unambiguously: the effects and relative importance of different molecular properties are 

difficult to determine. The use of specific solutes to enhance the effects of specific inter

molecular forces on the molecular alignment is a helpful, but limited method. 

Computer simulations provide an effective complementary approach to study such 

systems in that they can aid in the interpretation of experimental data, as well as supply 

a means to test specific theories. There are two main types of simulation techniques: 

the Molecular Dynamics (MD) and Monte Carlo (MC) methods. M D simulations follow 

the real time development of a system of interacting particles by starting from some 

initial configuration and integrating Newton's equations of motion over a time interval 

as long as is computationally convenient. Periodic boundary conditions are employed to 

accommodate the finite size of the model system. Equilibrium properties of the system, 

including various order parameters and distribution functions, are determined by aver

aging over the sequence of states generated by the time evolution of the particles. An 

advantage of the M D method is that quantities related to the dynamics of the system, 

such as diffusion constants, may be measured. 

The M C method, in contrast to the M D method, makes no attempt to simulate 

the true dynamics of the system. Instead, a sequence of micro-states is generated by 

a stochastic process such that the probability of the occurrence of a particular state 

in the chain is given by the appropriate ensemble (microcanonical, canonical or grand 

canonical). This can be achieved by using a Markov process to generate the sequence. 

In this process, a system which is initially in some state i undergoes a transition to 



Chapter 1. Introduction 36 

another state j with some probability Pji that is independent of the previous history 

of the system. The transition probability is chosen to satisfy the principal of detailed 

balance characteristic of systems in equilibrium, 

where i\i is the equilibrium probability that the system in the i state. For the canonical 

ensemble, this leads to the following relation: 

where Ei is the energy of the i state. 

One possibility for choosing the transition probabilities is that given by the Metropolis 

algorithm [58]. In this method, the system is arranged in some initial configuration for 

a finite collection of particles. One of the particles is chosen randomly, and a move (e.g. 

translation, rotation) is attempted and the energy difference between the initial and final 

states, AE = Ej — Ei, is calculated. If AE > 0, then the move is accepted, i.e. Pji = 1; 

if AE < 0, then the move is accepted with the probability given by Pij = e~0AE. It is 

trivial to show that this algorithm is consistent with the relations above. 

The sequence of states generated by this Markov process is governed by the appro

priate probability distribution, and is independent of the initial configuration under the 

assumption that it is possible to reach a particular configuration from any other in a 

finite number of steps. The configurations generated in the early stage of the sequence 

prior to the establishment of equilibrium are not counted in the calculation of expecta

tion values of quantities of interest. There is no general, quantitatively precise method 

for determining whether or not the system has attained equilibrium. A simple approach 

is to monitor block averages, measured over a specific number of steps, of a quantity 

of interest. Generally, after a short-lived transient effect, the quantity settles to some 

(1.39) 

expl-PiE, - Ei)), (1.40) 
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average value with some degree of statistical fluctuation. Further, the rate with which 

equilibrium is attained is highly dependent on the success ratio of individual moves. The 

translations and rotations which may characterize the move are chosen randomly within 

some maximum range of values relative to the current ones. Generally, it is found that 

the maximum values should be chosen to yield a success ratio of about 50% in order to 

attain equilibrium most rapidly. 

M C simulations have been used to study a wide variety of systems, including liquid 

crystals. We make no attempt to review the many studies w7hich use the M C method to 

investigate orientational ordering in these anisotropic systems. It should be pointed out, 

however, that the models employed in many of these theories fix the particles to points 

on a lattice, thereby eliminating the translational degrees of freedom. Particles interact 

through some highly simplified anisotropic interaction that drives the transition from a 

disordered to an ordered phase. A notable example of this is the Lebwohl-Lasher model in 

which lattice-fixed particles interact with a potential that has an orientation-dependence 

of P 2(cos#) ; where 6 is the angle between the orientations of a pair of cylindrically 

symmetric particles [59]. Despite the highly simplistic nature of these models, they have 

provided an invaluable tool for studying the details of liquid-crystal phase transitions 

and providing a test for various theories of liquid crystals. 

A significant development in the understanding of liquid crystals was made by Frenkel 

and coworkers over a decade ago using M C simulations. It was discovered that systems 

composed of hard convex bodies such as ellipsoids and spherocylinders could form stable 

orientationally ordered liquid crystalline phases for sufficiently high densities in the ab

sence of any soft or long-range anisotropic interactions [5, 60]. Note that these systems 

are characterized by constant energy since it is infinite in the case of overlap between any 

of the particles, a situation which is therefore forbidden, but is otherwise unaffected by 

the configuration of the system. Thus, these systems undergo phase transitions due solely 
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to the maximization of entropy. This work underscored the importance of short-range 

repulsive forces, whose anisotropy is closely related to the anisotropy in the molecular 

shape, as an ordering mechanism in liquid crystals. More recently, Weis et al. investi

gated the perturbative effects of electrostatic interactions on the orientational order and 

phase stability in such systems by including local dipoles on the hard particles [61, 62, 63]. 

The use of M C simulations which use similar models to study orientational ordering 

of solutes in nematic liquid crystals may provide insight into the importance of ordering 

mechanisms that are difficult to determine by experiment alone. In the present work, we 

are concerned with the influence of shape and electrostatic interactions on molecular or

dering. Specifically, we focus on the interpretation of N M R experimental data of Burnell 

and coworkers for solutes ordered in nematic solvents [33, 64]. For example, the relation

ship of various model potentials related to the size and shape of the molecule and the 

short-range repulsive forces which the model is assumed to describe deserves attention, 

as well as the EFG-quadrupole moment orienting mechanism described earlier. These 

properties may be easily examined using solutes modeled as hard particles of various 

shapes incorporated into a bath of orientationally oriented hard ellipsoids and including 

specific electrostatic multipoles on the individual particles. To date, the only computer 

simulations of solutes in liquid crystals have focused on two specific solutes, benzene [65] 

and hexane [66], with attention given to dynamical and conformational properties specific 

to these solutes. Our aim is to gain a more general understanding of solute ordering by 

studying a wide range of solutes without attempting to realistically model any particular 

molecule. 
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1.6 Outline of Thesis 

This thesis is concerned with both experimental N M R and MC methods to study orien

tational order of solutes in nematic liquid crystals in order to gain an understanding of 

the anisotropic intermolecular forces which induce orientational order. 

The experimental work presented here focuses on the use of M Q spectroscopy as a 

tool for the analysis of spectra of solutes with spin systems of intermediate complexity. 

Chapter 2 presents a study of biphenylene as an illustrative example. This eight-spin 

molecule is highly symmetric yet gives rise to a complex spectrum which only through 

an analysis of the six- and seven-quantum spectra can be solved to determine the dipolar 

couplings. These are then used for a determination of its molecular structure. 

In Chapter 3, we apply the same M Q methods to study butane as a solute in a 

nematic liquid crystal. This molecule is of significant interest since it is the simplest 

alkane which undergoes the large amplitude conformational changes between trans and 

gauche states. This ten-spin molecule gives rise to a particularly complex and feature

less spectrum which, nevertheless, is comprised of well-resolved lines. An analysis of the 

readily acquired seven- and eight-quantum spectra are found to give excellent estimates 

of the coupling constants and render trivial an analysis of the one-quantum spectrum. 

The dipolar coupling constants are analyzed to provide an estimate of the effective trans-

gauche energy difference and the individual internal and external contributions, the latter 

including both isotropic and anisotropic components. Further, the analysis of the cou

plings requires the use of a mean-field model to describe the orientational ordering in 

order to calculate the order parameters for each conformation. We employ several differ

ent models to this end, comparing the results obtained for each, and comment on their 

relative effectiveness. 

In Chapter 4, we use M C simulations to investigate the influence of molecular shape 
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on the orientational ordering of solutes in a nematic solvent. Both solvent and solute 

molecules are modeled as hard prolate ellipsoids whose only intermolecular interaction 

is determined by the requirement that they cannot overlap. The orientational order 

parameters and distribution functions of solutes of a wide variety of sizes and shapes 

are studied in detail. The results are analyzed in terms of the same mean-field models 

used in Chapter 3. The results of the analysis are compared to analogous results of the 

analysis of experimental N M R data. This comparison gives significant insight into the 

relationship between the mean-field models and short-range repulsive forces, as well as 

the general importance of short-range repulsive forces as a molecular ordering mechanism 

in nematic liquid crystals. 

In Chapter 5. we present results from a further study employing M C simulations to 

study ordering in nematics. In this case, a point quadrupole placed at the centre of each 

particle: both solvent-solute and solvent-solvent quadrupole-quadrupole interactions are 

considered, in addition to the hard-core interactions. This system is used to study the 

additional effects of electrostatic interactions on solute orientational ordering and its im

portance relative to that of short-range repulsive forces." Further, this model system is 

used to investigate the hypothesis that the interaction of the solute quadrupole moment 

with a solute-independent average E F G is a generally valid and significant ordering mech

anism. Finally, the results are analyzed in terms of the theories developed by Luckhurst 

and Emsley (Section 1.3.2.2) and Photinos (Section 1.3.2.3). 

In Chapter 6, we summarize the important results of the thesis and present our final 

comments on this material. 



Chapter 2 

Multiple-Quantum N M R of Oriented Solutes (I): Biphenylene as an 

Illustrative Example 

The material presented in this chapter has been published in ref. [67]. 

2.1 Introduction 

The use of N M R spectroscopy to determine the geometry of small rigid molecules aligned 

in liquid crystal solvents is well established and has proven to be very useful [68, 69, 70]. 

In such systems, the dipolar coupling constants, which are only partially averaged by 

the anisotropic molecular reorientation, contain direct information about internuclear 

distances and ordering which may be disentangled to yield the nuclear spin geometry 

and molecular order parameters. The ability to obtain the dipolar coupling constants is 

clearly contingent on the complexity of the spin system. In cases where the number of 

spins in the molecule is large (>8), or where there is little or no molecular symmetry, the 

N M R spectrum becomes very complex and often impossible to solve using conventional 

line assignment techniques. 

Multiple-quantum (MQ) N M R has long been recognized as a valuable tool in the 

study of oriented systems [71, 72, 73, 74]. M Q spectra contain far fewer lines than the 

conventional one-quantum spectrum, a feature that greatly simplifies the assignment of 

lines in the fitting process. In a system of n coupled spin-1/2 nuclei, the spectra of order 

n—1 and n-2 often contain a sufficient number of lines to obtain the dipolar coupling 

constants and chemical shifts. Despite this attractive feature, M Q - N M R spectroscopy 

41 
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has not been widely employed in such studies. One exception is the recent study by Field 

et al. where M Q - N M R was used to determine the proton geometry of the seven-spin sys

tem 1-bromonaphthalene [75]. In this case the one-quantum spectrum was too difficult 

to solve, even with the aid of M Q spectra. A major limitation of M Q techniques in such 

cases is the inability to obtain linewidths of the order that may be obtained for conven

tional one-quantum N M R spectra. As in many 2-D N M R experiments, significant line 

broadening results from signal truncation due to limitations in the number of evolution 

time increments achievable under practical conditions. Consequently, the accuracy with 

which the frequencies of transitions, and therefore the dipolar coupling constants, may 

be determined suffers greatly. The logical solution is to use the information obtained 

from the M Q spectra as a starting point in the solution of the one-quantum spectrum, 

where linewidths of the order of 1 Hz are easily achievable. Far more accurate values for 

the dipolar coupling constants may be then obtained. Surprisingly, few studies have been 

reported in which MQ spectral information has been utilized to solve one-quantum spec

tra. Yet, the study by Rendell et al. in which MQ information was used (and required) 

to solve the one-quantum spectrum of the six-spin system l,3-dichloro-2-ethenylbenzene 

[76] clearly demonstrates that it is possible under practical conditions. It must be noted, 

however, that in the limit of increasing complexity of a spin system the one-quantum spec

trum degenerates into a broad mass of unresolvable, overlapping lines, rendering analysis 

impossible. Even when the spectral lines are resolvable but very numerous, small inac

curacies in the dipolar coupling constants obtained from M Q spectra may significantly 

alter line order and intensity in the calculated one-quantum spectrum, providing little 

additional advantage in assignment of lines to the experimental spectrum. 

In this chapter, we present a study of oriented biphenylene. The molecular structure 

of biphenylene is shown in Figure 2.3. The N M R spectrum of this eight-spin system, 

shown in Figure 2.4, is very complex, despite the high degree of molecular symmetry 
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Figure 2.3: Atomic Labeling and Axis System for Biphenylene. 

z 

H ( 5 ) H(4) 

of this planar molecule. An approximate geometry determined by an early electron-

diffraction experiment was available and provided a useful starting point in the solution 

of the spectrum [77]. Yet initial attempts to solve the spectrum without any additional 

information were unsuccessful. A solution of the one-quantum spectrum alone may be 

possible with sufficient patience. However, this seemed an ideal spin system of medium 

complexity to probe the usefulness and drawbacks of M Q techniques for such problems. 

A simple pulse sequence commonly used to generate and detect M Q coherences is 

given by 

{\)<t> - T ~ ( f ) * - *i - ( | ) - T ~ hiacqmre). (2.41) 

Various one-quantum coherences evolve during the preparation time r. The second R F 

pulse converts them to coherences of all orders. These range from — n to n for an n 

spin-1/2 system. The coherences evolve during the evolution time t\. The third pulse 

partially converts the M Q coherences back into one-quantum coherences which then 
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Figure 2.4: Calculated and Observed N M R Spectra of Partially Oriented Biphenylene. 

Frequency (Hz) 
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evolve into the Ix or Iy coherences detected directly during the detection time t2- A 2-D 

fourier transform of the resulting interferogram followed by a projection onto the j\ axis 

yields a M Q spectrum with lines corresponding in principle to transitions of all orders 

permitted by symmetry selection rules. In practice, intensities of coherences of all orders 

are modulated in a very complex way by r and it is often necessary to coadd spectra 

obtained with several preparation times to ensure that all predicted lines are observed 

with sufficient intensity. 

Selective detection of ±p-order coherences is accomplished by the repeated application 

of pulse sequence (2.41), where the phase 4> of the first and second pulses is incremented 

2p times by an amount A<p = ir/p [52]. Alternate addition and subtraction of the 

resulting signals cancels all but those contributions resulting from evolution of ±p-order 

coherences during t\. While in principle this phase-cycle filter also permits the detection 

of ±/q>order coherences where /c=l,2,3,..., in practice this is rarely a problem since for 

an n spin-1/2 system, n is the highest attainable order, and it is the n—1, n—2 and n—3 

spectra that are of most interest. A longer phase-cycle of 4p steps in increments of 7r/(2p) 

steps with the receiver phase incremented in steps of 7r/2 permits quadrature detection 

of p-order coherences [78]. Refocusing it pulses may be inserted mid-way in the evolution 

time ti to reverse the effects of magnetic field inhomogeneities, to which a p-quantum 

coherence is p times as sensitive compared to a one-quantum coherence. However, this 

will also refocus the effects of chemical shifts—information that may be very important 

when ultimately attempting to solve the one-quantum spectrum. In addition, unless a 

technique such as Time Proportional Phase Incrementation (TPPI) [71] is implemented, 

the frequency offset typically used to separate the detected orders in the M Q spectrum 

will also be destroyed. Consequently, refocusing pulses were not used in this study. 
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2.2 Experimental 

The sample was prepared as a 5 mol% solution of biphenylene in a liquid crystal mixture 

of 55 wt% Merck ZLI 1132 and E B B A . This liquid crystal mixture has been the subject 

of an ongoing investigation in our lab as it has been shown to possess a vanishing average 

electric-field-gradient at 301.4K [31], although this feature is of no importance for the 

material in this chapter. The 5mm o.d. sample tube was fitted with a capillary tube 

containing acetone-dg, used to provide the lock signal. Experiments were carried out on 

a Bruker AMX-500 spectrometer at 500 MHz at a temperature of 301.4K. 

The six- and seven-quantum spectra were acquired using pulse sequence (2.41) with 

preparation times of 6. 7and 8 ms and a recycle delay of 3 s. There were 256 data points 

acquired in £2 and 1024 increments in t\. Selective-detection phase cycles employing 12 

steps of 30° increments for the six-quantum spectra and 14 steps of 25.75° increments for 

the seven-quantum spectra were used. The f\ dimension was zero-filled to 4096 prior to 

the 2-D magnitude fourier transform. The M Q spectrum was obtained by using a summed 

projection of the 2-D .spectrum onto the / i axis. The summed projection has been 

demonstrated to give a significantly better signal-to-noise ratio than the application of the 

"skyline" projection [75] or use of a t 2=0 cross section of the time-domain interferogram 

[79]. Peak positions were calculated using the standard Bruker U X N M R peak-picking 

routine. 

2.3 Results and Discussion 

The one-quantum spectrum of oriented biphenylene is shown in Figure 2.4. A linewidth 

of just under 3 Hz at half-maximum was achieved. The lines are clustered in two dense 

regions spaced roughly 5000 Hz apart, each subdivided into two slightly overlapping 
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regions about 1000 Hz apart. The presence of this overall feature proved useful in ob

taining first order estimates of the two independent, non-vanishing order parameters Szz 

and Sxx, both defined in the coordinate system of Figure 2.3. An estimate of the proton 

geometry of biphenylene was used based on a gas phase electron-diffraction study [77]. 

While the calculated carbon geometry was accurately determined in this study, the C-H 

bond lengths and C-C-H bond angles were far less precisely measured, and are the key 

structural parameters sought in the present study. Trial guesses of the molecular order 

parameters were used to calculate sets of dipolar coupling constants and therefore spec

tral simulations. A chemical shift difference between the two chemically distinct proton 

sites of 50 Hz was used initially, based on an isotropic chemical shift difference of 0.10 

ppm reported for biphenylene [80]. Similarly, the indirect spin-spin coupling constants 

were assigned their isotropic values and are not expected to deviate significantly. The 

overall structure of the spectrum was fairly insensitive to variation of the chemical shift 

difference by up to ±300 Hz, and was therefore mainly determined by the (larger) dipolar 

coupling constants. The values of Szz and Sxx were varied until the simulated spectra 

roughly mirrored the experimental spectra. Of particular use in this "fit" were the two 

doublets (not clearly resolvable as such in Figure 2.4) at the outer edges of the spectrum, 

each with about a 10 Hz splitting and clearly separated from any other lines of significant 

intensity. In fact, these were the only lines that could be unambiguously assigned from 

the initial calculated spectrum which was otherwise able only to reproduce the gross 

spectral structure. A l l efforts to assign other individual lines failed to yield a satisfactory-

convergence. Clearly, both the line positions and intensities are extremely sensitive to 

slight deviations in molecular geometry, the chemical shift difference and the molecular 

order parameters. 

Typical six- and seven-quantum spectra are shown in Figures 2.5 and 2.6, respectively. 

The seven-quantum spectrum is particularly simple, having only four predicted lines 
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Figure 2.5: Six-Quantum 1H N M R Spectrum of Biphenylene 

J 1 L J I I L 

5000 0 5000 
Frequency (Hz) 

Acquired with a preparation time of r=6 ms. 
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Figure 2.6: Seven-Quantum *H N M R Spectrum of Biphenylen 
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Acquired with a preparation time of r=7 ms. 
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due to the D 2 / i spin symmetry, one doublet for each magnetically inequivalent proton. 

While the outer doublet has a very strong intensity, the inner doublet is less clearly 

visible with one peak dipping into the noise. Other seven-quantum spectra acquired 

with other preparation times (6 and 8 ms) unambiguously fix the position of this elusive 

peak. This situation is fairly typical of M Q spectra where it is often impossible to clearly 

observe all predicted peaks with a single preparation time. While there are only 11 lines 

clearly visible in the six-quantum spectrum of Figure 2.5, a total of 15 different lines 

were observed in all of the acquired six-quantum spectra. Since the M Q spectra were 

acquired at different times under potentially slightly different experimental conditions 

(e.g. temperature), the spectra were not actually coadded. The linewidths were typically 

50-60 Hz, determined mainly by magnetic field inhomogeneities and signal truncation in 

the t\ domain. 

The frequencies of the six- and seven-quantum spectral lines are presented in Ta

ble 2.1. each centered about the product of the M Q order and the average chemical shift. 

These values are the averaged frequencies of spectra obtained with the three different 

preparation times. The variations of the frequencies of the lines that were observable in 

different spectra were small, roughly 2-3 Hz for the more intense lines and 5-10 Hz for 

the weaker lines. The fact that these variations are considerably smaller than the average 

linewidth indicates that the Bruker U X N M R peak-picking routine was able to adequately 

determine peak positions in these experiments. The six- and seven-quantum averaged 

spectral frequencies were fit simultaneously using a version of the program L E Q U O R [81] 

modified for use with M Q spectra. Initial M Q spectra were simulated using the dipolar 

coupling constant parameters estimated from the earlier "fit" of the one-quantum spec

trum . These calculated spectra were remarkably similar to the experimental spectra with 

line positions deviating by only about 100 Hz or less from their measured values. Since 

the average line spacings are of the order of kHz here, this presents few problems with 
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Table 2.1: Experimental and Calculated Frequencies (Hz) of Observed M Q Transitions. 

M Q Order Experimental Calculated ( l ) a ' b Calculated (2)c 

6- Q -6854.1 -6852.2 -6853.4 
-5504.8 -5499.6 -5494.7 
-4792.3 -4793.0 -4790.9 
-3660.1 -3663.5 -3658.7 
-2252.9 -2251.3 -2253.9 
-1101.2 -1101.5 -1097.3 

-78.7 -84.8 -86.1 
79.7 82.6 85.5 

1101.2 1099.6 1097.6 
2245.2 2249.2 2253.9 
3646.7 3646.0 3642.7 
4823.8 4820.1 4820.8 
5421.9 5423.9 5418.9 
5617.5 5618.5 5618.2 
6681.4 6682.9 6681.9 

7- Q -3500.7 -3502.5 -3501.8 
-1165.4 -1168.5 -1161.8 

1250.2 1249.7 1247.9 
3414.0 3416.3 3415.7 

a F i t directly from M Q line frequencies by varying the proton coordinates (xi, zA and 
SXx/Szz with Szz fixed. 
b RMS=2.8 Hz. -
Calculated from the fitting parameters obtained from the fit of the one-quantum spec
trum. 
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spectral line assignment. 

In the initial attempt to fit the six- and seven-quantum spectra, the 10 independent 

dipolar coupling constants and two chemical shifts were varied. The indirect spin-spin 

coupling constants were fixed at their isotropic values. The spectra were easily fit, and 

the coupling constants and chemical shift values obtained were used to simulate a one-

quantum spectrurm Upon close comparison, however, lines could not be unambiguously 

assigned, and it did not appear to be a significant improvement over the initial calculated 

one-quantum spectrum. Again, all attempts to assign lines from this starting point 

failed. At this point, five-quantum spectra were acquired and incorporated into the 

analysis in the hope that assignment of additional lines would improve the accuracy 

in the fitting process. Since the five-quantum spectrum is considerably more densely 

clustered with lines than the six- and seven-quantum spectra, most lines could not be 

unambiguously assigned. A total of 9 five-quantum lines, located mainly at the fringes of 

the spectrum, sufficiently well separated from any others, were included in the spectral 

fit. The fitting quickly converged, but again the values of the dipolar coupling constants 

and chemical shifts obtained were unable to assist in the assignment of lines in the one-

quantum spectrum. 

The difficulty in obtaining reliable estimates of the coupling constants and chemical 

shifts clearly stems from the low ratio of the number of assigned lines (19 from the six-

and seven-quantum spectra alone, and 28 from the five-quantum spectrum as well) to the 

number of fitting parameters. To reduce the number of fitting parameters, 5 geometric 

and ordering parameters (the x and z coordinates of the two distinct proton sites and the 

ratio of Sxx/Szz, with Szz scaled to a realistic value) replaced the 10 independent dipolar 

coupling constants in the fit. The six- and seven-quantum spectra were again fit with 

an RMS=2.8 Hz. The positions of the fitted lines are shown in Table 2.1. The dipolar 

coupling constants calculated from these parameters, listed in Table 2.2, were then used 
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to simulate the one-quantum spectrum, and this time with considerable success. The 

lines in the simulated spectrum accurately matched those in the experimental spectrum, 

both in relative intensity and order. At this point the solution of the one-quantum 

spectrum was trivial. A total of 144 lines were assigned and fit with an RMS=0.13 Hz 

varying the J-couplings as well as the dipolar coupling constants and chemical shifts. 

While it might have been possible to assign more lines, care was taken not to assign 

lines that were overlapping, particularly in the denser portions of the spectrum. The 

fitted spectrum is shown in Figure 2.4, and the fitting parameters are listed in Table 2.2 

and compared with the isotropic values. Although the fitted J-coupling constants do 

not significantly deviate from the isotropic values, the fitted chemical shift difference is 

over three times the measured isotropic value, clearly the result of a large chemical shift 

anisotropy. Frequencies of M Q spectral lines simulated with parameters obtained from 

the one-quantum fit are also presented in Table 2.1. 

The dipolar coupling constants were used by the program S H A P E [82] to determine 

directly the molecular geometry and molecular order parameters. The C-H bond length 

and C-C-H bond angles (determined using the ra geometry of the biphenylene carbon 

skeleton ) were calculated and are listed in Table 2.3 along with the molecular order 

parameters. The scale was fixed by setting the C-H bond lengths of the two distinct 

protons to be equal. A second fit was performed using a version of the program S H A P E 

modified to correct for the non-negligible effects of molecular vibrations on the dipo

lar coupling constants [83, 84, 85]. A set of force constants calculated in the electron 

diffraction experiment by Yokozeki et al. [77] were used to calculate the mean-square 

amplitudes of vibration required for the correction [86, 87]. Vibrationally corrected fitted 

parameters are also shown in Table 2.3. One notable effect of the vibrational corrections 

is to decrease slightly the value of the C-H bond length by about 0.02 A. In either case, 

the C-H bonds come within 2° of bisecting both C-C-C bond angles. The complete ra 
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Table 2.2: Fitting Parameters (Hz) from the Multiple-Quantum and One-Quantum Spec
tral Fits. 

Parameter M Q l -Q Isotropic" 
£>12 = £>34=A>6=£>78 -1617.2 -1627.418(12) .— 
£>18=£>45 -641.5 -645.505(40) — 
E>23=E>S7 229.1 235.308(51) — 
E>n = D28=E>35 = D46 -151.1 -153.094(14) — 
Dn=D24=D57=D&s -81.5 -80.698(16) — 
D16=D2-0=D38=D47 -72.2 -73.101(16) — 
D27=D36 -68.5 -69.478(47) — 
D2C=D37 

-54.9 -55.523(47) — 
D15=D48 -44.0 -44.997(47) — 
Dl4=D58 25.0 24.986(47) — 

\A5\ 163.824 168.916(54) 50.0 

-^12 = ^34 = ^56 = ^78 — 6.77(7) 6.8 
— • -0.08(14) 0.0 

^23 = ^67 — 8.28(09) 8.24 
^ 1 7 = ^28 = ^35 = ^46 — 0.08(06) 0.0 
^13 = ^24 = ^57 = ^68 — 0.75(04) 0.74 
J\ 6 = <̂ 25 = -^38 = ^47 — 0.15(03) 0.0 
< 2̂7 = ^36 — 0.47(12) 0.0 
^26 = ^37 — -0.17(09) 0.0 
J l 5 = J48 — -0.10(09) 0.0 
^14 = ^58 — 1.07(09) 1.08 

"From ref. [80] 
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Table 2.3: Geometric Parameters from Fit of Dipolar Coupling Constants. 

Parameter Fitted Value(l) a 

1.1315(25) A 
124.54(8)° 
119.41(3)° 
0.3236(8) 

-0.02888(5) 

Fitted Value(2) t 

C-H 
<C(8b)-C(l)-H(l) 
<C(1)-C(2)-H(2) 
SZZ 

Q 

1.11(1) A 
123.9(4)° 
117.5(2)° 
0.313(3) 

-0.0224(2) 

"From fit without vibrational corrections. 
bFrom fit with vibrational corrections. The carbon skeleton was fixed to the r Q geometry 
given in ref. [77], and the C-H bond lengths were set equal. 

structure is given in Table 2.4. 

2.4 Conclusions 

In this study, M Q spectra were used to assist in the solution of the one-quantum spec

trum of partially oriented biphenylene. This eight-spin system produces a complex one-

quantum spectrum, which despite the high degree of molecular symmetry, is very diffi

cult to analyze using conventional line-assignment techniques. By contrast, the six- and 

seven-quantum spectra are very simple, and assignment of calculated to experimental 

line frequencies was trivial when an estimated proton geometry for this rigid molecule 

was used. Since the M Q spectral line frequencies were far less accurately measured than 

the one-quantum line frequencies, and, since there were many fewer lines in the M Q 

spectra than in the one-quantum spectrum, the initial fits of the M Q spectra could not 

yield sufficiently accurate estimates of the coupling constants to aid in the solution of 

the one-quantum spectrum. It was found necessary to reduce the number of fitting pa

rameters by replacing the dipolar coupling constants with a lesser number of geometrical 

(proton positions) and molecular order parameters, thereby fully utilizing the molecular 
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Table 2.4: The rQ Geometric Parameters for Biphenylene. 

Parameter Value 
C(l)-C(8b) a 1.365(12) A 
C(l)-C(2) a 

1.415(12) A 
C(2)-C(3) a 

1.359(15) A 
C(4a)-C(8b) a 

1.427(18) A 
C(4a)-C(4b) a 

1.518(6) A 
C-H f t 

1.108(10) A 
<C(4a)-C(8b)-C(l) a 122.5(6)° 
<C(8b)-C(l)-C(2) a 115.0(2)° 
<C(1)-C(2)-C(3) a 122.5(2)° 
<C(8b)-C(l)-H(l) 6 123.9(4)° 
<C(1)-C(2)-H(2)6 117.5(2)° 

a From ref. [77]. 
b From the present study. 

symmetry of biphenylene, to obtain the required accuracy from the M Q fit. Dipolar cou

pling constants obtained from the fit of the one-quantum spectrum were used to obtain a 

vibrationally corrected proton geometry. This is one of the few studies in which analysis 

of M Q spectra was shown to simplify considerably the analysis of a complex one-quantum 

spectrum. 



Chapter 3 

Multiple-Quantum N M R of Oriented Solutes (II): Conformational and 

Orientational Behaviour of Butane 

The material presented in this chapter has been published in ref. [88]. 

3.1 Introduction 

With only one conformational degree of freedom, butane is the simplest flexible alkane. 

As such, it has attracted much interest and has been the subject of many studies, both 

experimental and theoretical/computational, concerned with the influence of condensed 

phases on the equilibrium conformational behaviour of non-rigid molecules. Early on, 

Flory had suggested that the average potential of hydrocarbon molecules should closely 

correspond to the unperturbed form with the configurational space populated according 

to the Boltzman distribution over intramolecular energy with intermolecular effects being 

ignored [89]. Later, this view was challenged by Chandler et al. whose rigorous statistical 

mechanical theory of hydrocarbon systems predicted an increase in the gauche conformer 

population as a result of short-range packing in the liquid [90, 91]. There is extensive 

experimental evidence to support the latter view. Gas phase studies typically report the 

trans-gauche energy, Etg, to be 3.3-3.7 kJ/mol. [92, 93, 94, 95, 96], though a recent FTIR 

study has suggested that it may be as low as 2.9 kJ/mol [97]. Experimental studies of 

butane, both as liquid and dissolved in other isotropic liquid solvents, consistently report 

lower values for -Etg, generally in the range 2.1-2.5 kJ/mol [98, 99, 100]. 

The effect of a condensed phase environment on the conformational equilibrium of 

57 
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butane has also been studied extensively using Molecular Dynamics (MD) and Monte 

Carlo (MC) computer simulations. These studies have generated less consistent and 

often confusing results over the last two decades. The earliest M D simulations of liquid 

butane [101, 102] and of butane in liquid carbon tetrachloride [103] appeared to indicate 

that there was a significant shift toward higher gauche populations. Another M D study 

of liquid butane found a negligible effect [104], as did the M C simulations of Jorgensen 

[105, 106, 107] who cited insufficient run time and inadequate convergence as explanations 

for the apparent M D shortcomings. Improved M D calculations suggested a significant 

solvent effect on conformer populations [108, 109, 110]. In this case it was argued that 

the M C calculations were in error since they had employed a strong attractive methyl-

methyl potential which may neutralize the packing effects [110]. More recent M D and M C 

calculations have again concluded that there is no significant shift [111, 112]. Another 

recent study suggests that the conformational behaviour of butane is highly sensitive 

to minor details in the molecular structure and the intermolecular forces used in the 

calculations [113]. 

An understanding of the behaviour of flexible hydrocarbons in condensed phases is 

particularly important in the field of liquid crystals. Most molecules that form liquid 

crystal phases have hydrocarbon chains that are attached to rigid cores. These alkyl 

tails appear to be an important component of the orienting mechanism for the meso-

gens. Knowledge about the conformational and orientational behaviour of alkanes in 

nematic liquid crystals then should contribute to an understanding of the ordering of 

liquid crystals. The behaviour of longer alkanes in anisotropic fluids has been the subject 

of several recent N M R studies. While early N M R studies had relied on an analysis of 

quadrupolar coupling constants of deuterated alkanes [46, 114, 115], recent advances in 

two-dimensional N M R techniques combined with random deuteration of the chains have 
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made it possible to measure the dipolar couplings between proton pairs, greatly increas

ing the amount of information available about these systems [43, 44, 45, 116, 117]. A 

detailed analysis of the dipolar couplings for alkanes ranging from hexane to decane were 

used to study the effects of the nematic environment on their conformational equilibria 

[44, 45, 49]. These studies indicate that there is a shift towards higher populations of 

conformers with more gauche bonds, an effect corresponding to a lowering in Etg relative 

to the gas phase values, similar to that observed for butane in isotropic liquids. More

over, this effect appeared to result from the isotropic "solvent pressure" of the condensed 

phase: the anisotropic component of the solute-solvent interaction was found to influence 

only marginally the conformer probabilities by favouring elongated conformers slightly 

[45]. Similar results were found in a M D study of hexane incorporated as a solute in a 

model liquid-crystal solvent [66]. 

An essential component in the analyses for the N M R studies discussed above involves 

the use of mean-field models to describe the orientation of molecules in a nematic envi

ronment. These models are used to calculate the molecular order parameters for each 

conformer. which are, in turn, used to calculate the experimental dipolar coupling con

stants. Thus, the ability of each model to fit the experimental couplings may be used to 

provide a critical test of each model. One orientational model, developed by Burnell and 

co-workers, describes the interaction between solute and liquid crystal as arising from 

the size and shape anisotropy of the solute [32, 33, 34, 35, 36, 64]. The study by Rosen 

et al. [45] concluded that early versions of this model [33, 34] were inferior to the chord 

model, developed by Photinos et al. [47, 48, 49], in which C-C bond orientations relative 

to the director and correlations with orientations of neighbouring C-C bonds were the 

key factors in the molecular ordering. Another approximation used in the analyses of 

these studies was the three-state rotational isomeric state (RIS) model [89] to describe 

the accessible conformational states of each C-C torsion bond of the molecule. Though 
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its application permits a convenient analysis of the data, it was judged to be a severe 

approximation. Later, it was shown that the inclusion of torsion-angle fluctuations about 

the RIS trans and gauche states can significantly improve the quality of the fits [118]. 

In this chapter, we present a Multiple-Quantum (MQ) X H N M R study of butane in a 

nematic liquid crystal. We view this study as an extension of previous experimental and 

computational work on the effect of condensed phases on the conformational behaviour 

of butane, and as a continuation of the study of alkyl chain behaviour in a specifically 

anisotropic fluid. The simplicity of this alkane offers some advantages. First, the N M R 

spectrum of butane is sufficiently simple that, with the help of straightforward M Q 

experiments, its analysis is possible without the need to resort to either specific or random 

deuteration. In this way, one may measure the dipolar coupling constants much more 

precisely than was done for the longer alkanes. As well, certain assumptions used in 

studies of longer alkanes. such as the equivalence of the internal rotational potential for all 

C-C bonds along the chain, are unnecessary. One goal of this study is the determination of 

Etg for butane in a condensed phase, and its dependence on both isotropic and anisotropic 

contributions from the solute-solvent interactions. However, since the use of mean-field 

models to describe the molecular orientation in a nematic liquid crystal is a key part of 

the analysis, an equally important aspect of this work is the investigation of the model-

dependence of the results. The influence of both the mean-field model and the details of 

the geometry, including the trans-gauche dihedral angle and the RIS approximation, are 

discussed. 
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3.2 Theoretical Background 

3.2.1 Dipolar Coupling Constants 

N M R has proven to be an excellent technique to study the conformational behaviour and 

orientational ordering of molecules in anisotropic fluids. Most studies to date that have 

investigated the behaviour of hydrocarbons have used 2 H N M R spectroscopy to measure 

quadrupolar splittings, AI/Q, of C - 2 H bonds of deuterated molecules. The 2 H - N M R 

spectra consist of a set of doublets, each with a splitting given by 

AvQ = SJ^-SC-D (3.42) 

where the order parameter SQ-D is given by 

SC-D = (^cos2eC-D-l) (3.43) 

and where 6C-D is the angle that the C - 2 H bond makes with the static magnetic field, 

along which the nematic phase director is aligned. Thus, the 2 H - N M R spectra readily 

provide information through SQ-D about orientational ordering of individual methylene 

segments along alkyl chains. On the other hand, the AVQ'S provide no direct information 

about inter-methylene correlations. Also, the number of distinct AUQ'S is limited to the 

number of independent carbon units along the chain. Thus, the information contained in 

quadrupolar couplings tends to be inadequate for studies in which detailed information 

about molecular orientational ordering and conformational behaviour is sought. 

Dipolar coupling constants, by contrast, provide much more detailed information 

about flexible molecules. The dipolar coupling constant between protons i and j on a 

partially oriented molecule is given by 
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where is the internuclear distance and 6fj is the angle between the internuclear vector 

and the static magnetic field. The factor of r^ 3 is significant because it provides infor

mation about the average distance between methylene groups on flexible alkyl chains. 

This feature, as well as information about the average orientation of internuclear vectors 

resulting from the dependence on 9f^ causes the Dij to be highly sensitive to the molec

ular conformation and orientation. As well, there are many more independent dipolar 

coupling constants than quadrupolar coupling constants, a factor which greatly increases 

the information about molecular properties that may be extracted from the experimental 

data. In the case of butane, there are seven independent D^'s and only"two AVQ'S. 

Although there is a clear advantage in determining dipolar coupling constants, these 

are often difficult to obtain in all but the simplest molecules. The complexity of the 
: H one-quantum N M R spectrum of partially oriented molecules increases rapidly with 

the size and complexity of the corresponding molecular spin system. In large molecules, 

including the nematogens themselves which have ~20 ] H spins, the large number of 

spectral lines results in severe overlap in which individual lines cannot be resolved, ren

dering any spectral analysis impossible. In molecules of intermediate complexity such 

as butane, this is not a major problem; however, the spectrum can still be sufficiently 

complex to hinder its analysis. In such cases, it is useful to analyze first high-order 

Multiple-Quantum (MQ) spectra. Such spectra have far fewer associated transitions, a 

feature that makes it much easier to assign lines of trial simulated spectra to those of 

the experimental spectra. The dipolar coupling constants obtained as fitted parameters 

may then be used as a starting point in the analysis of the one-quantum spectrum. The 

dipolar coupling constants obtained in the second stage of analysis are highly accurate. 

We have shown the usefulness of Multiple-Quantum spectroscopy as a tool in the analysis 

of one-quantum spectra for molecules of intermediate complexity in previous studies on 

the structural determination of the eight-spin molecule biphenylene [67], presented in 
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Chapter 2, and the six-spin molecule l,3-dichloro-2-ethenylbenzene [76]. 

A significant alternative to this method that is suitable and necessary for molecules 

of greater complexity is the approach taken by Pines and coworkers [43, 44, 45, 116, 

117]. In this case, random deuteration of the molecules, combined with MQ-filtered 

Correlated Spectroscopy (COSY) N M R experiments and 2 H double-quantum decoupling, 

were used to obtain spectra that are superpositions of subspectra comprised of a single 

splitting. These subspectra arise from isotopic species that have a single pair of protons 

and therefore yield directly the Dij associated with each proton pair. This technique was 

used successfully to measure dipolar coupling constants for a series of oriented alkanes 

in a study [44, 45] that is highly relevant to the present work and on which we shall 

comment further. 

3.2.2 F l e x i b i l i t y 

A common approach to analyzing dipolar coupling constants of partially oriented flexible 

molecules is to assume that the molecule exists in several discrete conformations, each 

of which has its own distinct Saupe order matrix. This assumption is justified as long 

as the correlation time associated with the reorientation of the molecule. rR, and the 

rate of exchange, k, between the different conformations satisfy krR <Cl [41, 42]. An 

important model used for approximating the conformations of hydrocarbon chains is 

Flory's Rotational Isomeric State (RIS) model [89] in which each C - C torsion bond is 

assumed to exist in three states, trans and ±gauche, with dihedral angles of 0° and ±4>y, 

respectively, corresponding to the angles at the minima of the rotational potential profile. 

These two approximations form the basis for the analysis of the Dj / s in the present study, 

as described below. 

One can show that an experimentally measured dipolar coupling constant between 

protons i and j for a flexible molecule satisfying the condition described above is given 
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by 

^ = ^ E ^ E % (3-45) 

where pn is the probability of the nih conformer, and where 5 ^ . the Saupe order matrix 

for the nih conformer, is defined by 

S20 = (lcos9lzcos9lz - l-6a0) (3.46) 

where f?" z is the angle between the ct-molecular axis of the nih conformer and the nematic 

director, which, for many liquid crystals, is aligned with the static magnetic field along 

the Z-axis. D?ja/3 is a tensor defined by 

^ = " 8 ^ ( 1 ^ ^ (3-47) 

where 6lJ'n is the angle between the internuclear.vector, fjj,„, and the nth a-molecular 

axis. 

3.2.3 The Mean-Field Potential and Eig 

A useful approach to the analysis of the dipolar coupling constants is to model the solute 

energy with a mean-field potential, Un(u), which is a function of both the conformation 

and the orientation of the solute in the uniaxial nematic solvent. The potential can be 

divided into 

Un(u) = U i n t i n + Uext,n(u) (3.48) 

where Uint,n is the internal energy associated with the conformational state of an isolated 

molecule, and Uext,n(u)) is the orientationally dependent energy of interaction between the 

solute and the external mean field. The latter term can written in terms of a spherical 

harmonic expansion which can be used to define the isotropic, Ul

ex°tn, and anisotropic, 
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U^°(UJ). components of the external field: 

even I 

1=2 m=-l 
= U%,n + U£ft(u) (3.49) 

Note that the odd terms in the expansion for U^s°(u}) vanish as a result of the apolarity of 

the nematic phase. Also, since Uini>n is purely isotropic, we shall omit the "exf subscript 

on the anisotropic component of the external potential energy, U^niso(uj), since it is only 

the external component of the solute energy which has an associated anisotropy. The 

isotropic component of the full solute potential energy, therefore, is the sum of internal 

and external contributions: 

KS° = U&ln + Uext,n (3-50) 

We define the effective trans-gauche energy difference, Etg, as the difference in the total 

isotropic potential energy for the trans and gauche states of the butane molecule: 

rp — jjiso jjiso 

ty ^gauche ^trans 
= El

tf + Etf (3.51) 

where El

t

r

g

lt is the internal energy difference between the trans and gauche states, and 

where 

rpext _ jjiso jjiso / o c o \ 
tg — ext, gauche ^ext, trans \O.OZ,) 

is the external perturbation to the internal energy difference due to the condensed phase 

environment. 

The anisotropic component of the mean field, U^niso(u)), gives rise to the orientational 

ordering of the solute in the nematic environment. The elements for the Saupe order 

tensor for each conformer may be calculated by 

_ I (Icosfls.gcosflg.s - f<W) eM-Urs°H/kT)du; 
a 0 Jexp(-Urs°(Lu)/kT)dLU ( 3 - 5 3 ) 

file:///O.OZ
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One can show that the conformer probabilities can be written as 

„ = Gnexp(-Ur/kT)Jexp(-Urso(u)/kT)du; 
P ZnGnexp(-U^0/kT)Jexp(-U^niso(u)/kT)dLo 1 ' ' 

where Gn = yJIxxIyyI^z is a rotational kinetic energy factor, dependent on the principal 

values of the moment of inertia tensor for each conformer, 7™Q, that arises from integrating 

out the molecular angular momenta from the full singlet probability distribution for 

flexible molecules. Eq. (3.54) clearly shows the dependence of the conformer probabilities 

on the anisotropic mean-field potential. 

3.2.4 Modeling of U™iao(u) 

In order to extract conformational and orientational information from the experimental 

dipolar coupling constants using the relations described above, it is necessary to employ a 

suitable model for the anisotropic potential, U^niso(uj). This is required since, in the limit 

of fast internal exchange between conformers, the conformer probabilities and molecular 

order parameters appear as products in the expression for in Eq. (3.45), and cannot 

be determined separately in a fit. Using a model for U^mso(uj), however, the dipolar 

coupling constants may be calculated by optimizing the model parameters and Etg, which 

generally are separately determinable, in the fit of the experimental D^. The pn and S^p 

are calculated using Eqs. (3.53) and (3.54). In the present study, we restrict the analysis 

to models that are characterized by a single parameter. We feel that this is a necessary 

restriction since we are limited to only seven independent 1 H dipolar coupling constants 

for butane. As well, by employing a wide variety of orientational models, we hope to 

bound Etg to a limited range of values and thereby obtain a model-independent estimate 

of this quantity. 

Below, we review briefly the important features of the models used in this study. 

More detailed descriptions may be found in the references cited. 
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3.2.4.1 Model A: Size and Shape Potentials 

Burnell and coworkers have developed a series of related mean-field models for the ori

entational potential of solutes of arbitrary nature in a nematic liquid crystal [32, 33, 34. 

35, 36. 64]. A l l of these models treat the solute as a collection of van der Waals spheres 

placed at the atomic sites in the molecule in order to approximate the molecular struc

ture. It is the anisotropy in the shape of the solute interacting with the uniaxial nematic 

field that gives rise to the orientation dependence of the potential energy. There are six 

different varieties of this "Size and Shape" (SS) interaction that we describe below. First, 

however, there are two important considerations that we discuss. 

(1) The general mean-field model developed by Burnell and coworkers consists of a 

contribution from the long-range interaction between the molecular electric-quadrupole 

moment (QM) with the average electric-field gradient (EFG) of the liquid crystal, in addi

tion to the short-range SS interactions that we consider here. There is direct evidence of 

the Q M - E F G interaction in the case of 2H.2, where it is the dominant orienting mechanism 

[13, 14, 119]. In addition, it was shown that one can construct liquid crystal mixtures 

in which the average E F G sampled by 2 H 2 vanishes [31]. These zero-EFG mixtures were 

the nematic liquid crystals chosen for the experiments in which the SS potentials were 

developed, since the model predicts that the Q M - E F G interaction vanishes in this case, 

leaving the short-range interaction as the sole mechanism responsible for solute orienta

tion. While it is true that the average E F G experienced by an arbitrary solute will not 

be the same as that experienced by 2Fi2 or any other solute, the high quality of the fits 

to experimental order parameters calculated under this assumption suggests that it is 

a reasonable approximation, though there has been some recent criticism of this claim 

[29]. Therefore, we use a zero-EFG nematic mixture in the present study, in keeping 

with these considerations. Previous studies of alkane behaviour in liquid crystals that 
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employed two of these models did not use a zero-EFG mixture nor comment at all on 

this matter [44, 45]. 

(2) It is very important to note that in all of the SS potentials developed by Burnell 

and coworkers, there a residual isotropic component; that is, 

(Uh) = cn

0fiY0>0 = ^ / U%s(tu)dcu ? 0, (3.55) 

where Uss (̂ >) represents any of the mean-field potentials discussed by Burnell and 

coworkers based on solute size and shape anisotropy that we discuss below. The residual 

isotropic component presents no difficulties in the case of rigid solutes where it has no 

effect at all on the predicted order parameters since these quantities depend strictly on 

the purely anisotropic component of the potential, U^mso(u)). The situation for flexible 

molecules is quite different. Inspection of Eq. (3.54) clearly shows that in calculating 

the conformer probabilities, any isotropic component contained in a mean-field potential 

used to model the supposedly anisotropic U^niso(u) will be absorbed into the calculated 

U™°, and will thus affect the resulting value of Etg. Thus, an improperly calculated E{g

alse 

will be obtained, where 

E{g

alse = Etg + (U£s

ans) - (U§asuche) (3.56) 

This point was not considered in any of the previous studies of oriented flexible molecules 

that used a SS model, and calls into question the values for Etg that were obtained. We 

return to this point later in the discussion section of this chapter. To calculate properly 

the conformer probabilities, it is necessary simply to subtract out the isotropic component 

of USs-

Urs°(u) = U$S{U) - (U$s) (3.57) 

Model A j . This is the original SS model, in which the mean-field orientation-dependent 
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potential energy is given by [33] 

(3.58) 

where Cn(co) is the minimum circumference traced out by the projection of the solute 

onto a plane perpendicular to the nematic director, as shown in Figure 3.7. 

Model A 2 . This model is a slight variation of Ai [33]: 

where Dn(u>) is the maximum circumference traced out by the projection of the solute 

onto the plane perpendicular to the nematic director, as shown in Figure 3.8 

Model A 3 . This two-parameter model was the first extension of A i [34] in which 

where Zn(cu) is the length of the projection of the solute along the nematic director (see 

Figure 3.8). In order to use this as a one-parameter model, we fix the second parameter 

to £=3.9, the value obtained from a fit to the order parameters for a collection of 46 

solutes using this model in which both k and £ were treated as free parameters [36]. This 

should be a valid assignment since the model parameters associated with a particular 

zero-EFG mixture are. in principle, solute-independent. 

Model A 4 . The model potential is given by [36] 

where Z is the position along the nematic director bounded by the minimum, Zmin>n, 

and maximum, ZmaXtTl, points of the orientation-dependent projection of the solute along 

this axis. Cn(Z,u) is the minimum circumference traced out by the solute at position Z 

along the director. Thus, Cn(Z,uj)d,Z is the area of an infinitesimally thin ribbon that 

(3.59) 

Unss(") = \k{Cn{u)f - ^kCn(u)Zn(u) (3.60) 

(3.61) 
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Figure 3.7: Illustration of Orientation-Dependent Parameters Used in Size and Shape 
Models (I). 

A hypothetical solute constructed from van der Waals spheres. The mean-field potentials 
of models A i , A 3 , A 4 and A 5 depend on parameters defined in this- figure. See the text 
for a further description. 
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Figure 3.8: Illustration of Orientation-Dependent Parameters Used in Size and Shape 
Models (II). 

A hypothetical solute constructed from van der Waals spheres. The mean-field potentials 
of models A 2 , and A 6 depend on parameters defined in this figure. See the text for a 
further description. 
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traces out this circumference, and the integral is the area of the full projection of the 

surface of the molecule onto a plane parallel to the nematic director (see Figure 3.7). 

Thus A 4 can be interpreted as an anisotropic surface potential. Note that the equation 

for A 4 is a generalization of the second term for the potential A 3 which can be obtained 

if one neglects the Z-dependence of Cn(Z,uj) and sets all values equal to Cn{u). This 

model is similar to another by Ferrarini et al. [37] in which surface area elements of the 

van der Waals spheres contribute an energy proportional to P2(cos-ib)ds, where tp is the 

angle between the surface normal and the nematic director, and ds the area of the surface 

element. In Model A 4 , the interaction energy effectively is proportional to | sin"0 | ds. 

M o d e l A 5 . This model is a combination of models A i and A 4 : 

^ s s H = \k(Cn{")? - \ks Cn(Z.u)dZ (3.62) 

Again, it is necessary to fix the ratio of parameters to the value obtained from the 

previous study by Zimmerman et al. [36], where /cs//c=23.529. Note that this particular 

model was the most successful for predicting order parameters for molecules oriented in 

a zero-EFG liquid crystal mixture. 

M o d e l A 6 . The potential is given by [36] 

U^s{u) = 2kxyA%(u) - kzDn(u)Zn(u) (3.63) 

where, again, Dn(uo) is the maximum circumference traced out by the projection of the 

solute onto the plane perpendicular to the nematic director Z-axis, and Z n is the length 

of the projection of the solute along the Z-axis. Also, A™y is the area of the projection 

contained within the maximum circumference, Dn(co), as shown in Figure 3.8. For this 

study, we fix kz/kxy=0.S27, the optimal value obtained in ref. [36]. Note that the quality 

of the fit to experimental order parameters for the solutes in that study using A 6 was 

comparable to the best fit obtained using A 5 . 
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3.2.4.2 Model B: Moment of Inertia Model 

Model B uses a mean-field potential based on the expansion of U^mso(uj) in Equation (8) 

truncated to second rank: 

t/r'»= E 4 i m y 2 , m ( M ) (3.64) 

m=-2 

The expansion coefficients, c^m, are parameterized by using a model developed by Stra-

ley [120] in which the interacting molecules are represented by parallelepipeds. The 

symmetry of the parallelepipeds causes this expansion to be reduced to [44. 45] 

E/r*» =-<£o*2,o + yf c2',2 sin2(fl) cos(2ri>) (3.65) 

For a solute modeled as a parallelepiped of length, L. width. W, and breadth. B: 

c'l0 = -e [6LBW + L{W2 + B2) - 2W(L2 + B2) - 2B(W2 + L2)} (3.66) 
3 

cn

2fl = ^[{L2 - BW){B -W)] (3.67) 

for L > W > B. where e is a parameter that characterizes the solute-solvent inter

action. The parallelepiped dimensions can be calculated in terms of the principal-axis 

components of the moment of inertia tensor. I^, for each conformer, n [46]: 

L = 2^ " p p ' 7 7 ^ (3.68) 
V 2m 

w here L , B and W are written as the elements L 

3.2.4.3 Model C: The Chord Model 

Photinos. Samulski and coworkers have developed a mean-field model for molecular orien

tation in a uniaxial phase that is specially tailored for molecules comprised of repeating 

identical units [47, 48]. Thus, it is not surprising that this model gives remarkably 
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good results in the analysis of X H dipolar coupling constants of oriented hydrocarbons 

[45, 49, 118]. Indeed Rosen et al. [45] concluded this to be the superior model in their 

study of oriented alkanes. This potential is derived from the leading terms in a rigorous 

expansion of the mean-field interaction. Photinos et al. [49] write 

where sl is a unit vector describing the orientation of the ith C - C bond of the hydrocarbon 

chain, and where the sum is over all of the bonds in the chain. The factors P 2 ( s \ s l + m ) 

are given by 

where 8Z is the angle between the ith bond and the nematic director, which aligns with 

the static magnetic field direction along the Z-axis. The parameters, wm, are propor

tional to the liquid crystal order parameter. The first term in Eq. (3.69) corresponds to 

anisotropy of the polarizability of the bonds [121]. The second term incorporates cor

relations between adjacent-bond orientations, and therefore distinguishes between con

formations that may have equal numbers of trans and gauche bonds but significantly-

different shapes: thus, it accounts for shape-dependent excluded-volume interactions. In 

the present study, we consider the specific case, w0=w1. This is called the "chord model", 

since it can be shown to be equivalent to a model in which the chords connecting the 

midpoints of the C - C bonds are the elemental submolecular units interacting with the 

external field. 

The mean-field potential defined in Eq. (3.69) can be written in a more convenient 

form. Following Rosen et al. [45], we define the components of a second rank tensor: 

C ' s » = - E K P 2 ( s \ s J ) + u; 1P 2(s\s J+ 1)] (3.69) 

(3.70) 

the independent alignment of separate C - C bonds that may arise, for example, from the 

ua0 = - 2 ^ 0 £ [ra j 8(s f,s') + ^(T Q / 3 (s \s : ) + TaP(si+1,si (3.71) 
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where 

T a / 3 (s \s J + m ) = - ^8a0sl • s l + m (3.72) 

where sl

a is the a-component of the iih C - C bond vector. The principle-axis components 

of uap, u33 > u22 > uu, can be used to parameterize the leading terms in the expansion 

l/rs>) = cSi0y2i0 + sj\cl2 sin2(0) cos(20) 

according to 

C 2 , 0 = 7^= ( 2 ^ 3 3 - ( W l l + U22)) 

C 2 , 2 = ^ 2 2 - ^ l l ) 

3.2.5 Other Details of the Calculations 

3.2.5.1 Torsional Fluctuations 

While the RIS model provides a convenient method for the analysis of experimental data 

to obtain information about the conformational behaviour of hydrocarbons, the high 

quality of the experimental dipolar coupling constants that may be obtained for these 

systems means that the crudeness of this approximation may be the limiting factor for 

the accuracy with which information can be determined. The principle restriction of this 

model is the limitation of the dihedral angle, <p, to the three angles, 0°, ±0 9 , associated 

with the trans and ±gauche states. Thus, it would be useful to examine the role of 

torsional fluctuations of (f> about these minima of the rotational potential energy. A 

simple approach is provided in a study by Photinos et al. [118] in which the dihedral 

angle can assume values at ±A(p about the RIS state values, in addition to the RIS 

values themselves. For butane, this corresponds to nine conformers with dihedral angles 

of cf) = 0°. ±A(A>, ±4>g, and ±(<fig ± A<p). We use this extended-RIS model in addition 

(3.73) 

(3.74) 

(3.75) 
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to the regular RIS model to determine the importance of torsional fluctuations on the 

determined Etg, conformer probabilities and molecular order parameters. We fix the 

population ratios of each extended-RIS triplet to 1:2:1 and set A^=20° to approximate 

roughly the shape of each peak in the torsional probability distribution. 

3.2.5.2 Dihedral Angle 

Experimental estimates of the dihedral angle, (f>g, vary widely, ranging from 110° from 

an electron diffraction study [122] to a value of 118° obtained from an analysis of the 

Raman spectrum [94]. Because the dipolar couplings have a sensitive dependence on <frg. 

we examine the variation in the results of our analysis to changes in <bg. 

3.2.5.3 Methyl Groups 

Since four of the seven butane dipolar coupling constants involve protons in methyl 

groups, it is important to model the rotation of these groups in a reasonable way. We 

employ a methyl group rotation barrier of 12.5 kJ/mol and sample different molecular 

geometries in steps of 5°, with probabilities weighted by the Boltzman factor. 

3.3 Experimental 

A liquid-crystal mixture of 55 wt% Merck ZLI 1132 and 45 wt% E B B A was prepared. 

Approximately 500 mg of the mixture was placed into a 5 mm o.d. standard N M R tube 

and was thoroughly degased through several freeze-pump-thaw cycles. Enough gaseous 

butane was condensed into the tube at liquid nitrogen temperature to achieve a ^5 mol% 

solute to liquid crystal ratio under the assumption that all of the gas dissolved in the 

liquid crystal. The tube was then flame-sealed under vacuum. Since a fraction of the 

gas in the tube filled the space above the sample, the true solute concentration was 
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<5 mol%. To provide a lock, the N M R tube was equipped with a capillary tube, filled 

with acetone-dg, that was held coaxial to the N M R tube with teflon spacers. 

The ] H - N M R spectra were acquired on a Bruker AMX-500 spectrometer at 301.4 K 

at 500 MHz. The M Q spectra were acquired using the following pulse sequence: 

To detect selectively a ±n-quantum spectrum, the phase <j> of the first two pulses relative 

to the third pulse were cycled through 2n steps in increments of 7r/Vi with alternating 

addition and subtraction of the signal for each value of t\ [52]. Thus, the acquisition of 

the seven-quantum spectrum required a phase cycle employing 14 steps of 25.7°, while 

that of the eight-quantum spectrum used 16 steps of 22.5° increments. 

Both spectra were acquired using a preparation time, r, of 12 ms, a recycle delay of 

3.5 s, and a t\ increment time of 41.7 us, which corresponds to an f\ sweep width of 24 

kHz. There were 1250 increments of tj collected for the seven-quantum spectrum and 

1200 increments for the eight-quantum spectrum. For both spectra, a delay of r ' = l ms 

was used to minimize the contribution of the liquid-crystal signal that is generated after 

the third pulse. For every t\ increment, there were 1024 data points collected in t 2. The 

total time for acquisition of each spectrum was approximately 20 hours. 

Both data sets were zero-filled to 2048 in the t\ dimension prior to the 2D magnitude 

fourier-transform. Each M Q spectrum was obtained by performing a summed projection 

of the 2D spectrum onto the f\ axis. Peak positions of both the one-quantum and 

M Q spectra were calculated using the Bruker U X N M R peak-peaking routine. The one-

quantum spectrum was analyzed using the computer program L E Q U O R ; the M Q spectra 

were analyzed using a suitably modified version of L E Q U O R . 
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3.4 Results and Discussion 

3.4.1 N M R Spectra 

The experimental one-quantum spectrum of partially oriented butane is shown in Fig

ure 3.9. The 1 H - N M R spectrum of butane consists of a thick mass of lines spanning 

a frequency range of 10 kHz with essentially no notable features and sits on the broad 

liquid-crystal 1H spectrum. A horizontally expanded region of the spectrum is shown 

in the lower half of Figure 3.10. It is apparent that while the spectral-line density is 

high, overlap is not so severe as to make it impossible to determine the frequencies of 

most of the lines; thus, a fit of the experimental spectrum is certainly possible. How

ever, the complexity of the spectrum makes it extremely difficult to do so without very 

accurate initial estimates of the coupling constants and chemical shifts. Small deviations 

from the true values of these parameters would alter the line frequencies and intensities 

enough to generate a spectrum with significantly different fine structure from that of the 

experimental spectrum. 

These problems can be circumvented with the help of M Q spectra. The seven-

quantum and eight-quantum spectra for oriented butane are shown in Figures 3.11 and 

3.12. There are far fewer lines than appear in the one-quantum spectrum, though they 

are spread out over a comparable frequency range. The strategy used to fit these spectra 

employed the Model A 5 described earlier, with parameters optimized to the zero-EFG 

liquid-crystal mixture according the results of an earlier study [36] to predict molecular 

order parameters and thus dipolar coupling constants. A value for Etg of 3.0 kJ/mol 

was used to generate initial conformer probabilities. Chemical shifts and J-coupling 

constants were initialized to their isotropic values [123]. The trial spectrum that was 

generated provided an adequate starting point to fit simultaneously the two M Q spectra. 

In total. 19 lines from the eight-quantum spectrum and 35 lines from the seven-quantum 
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Figure 3.9: Experimental (bottom) and Simulated (top) Spectra of Partially Oriented 
Butane. 
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Figure 3.10: Expanded Region of Experimental and Simulated Spectra of Partially O 
ented Butane. 
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Figure 3.11: Experimental and Simulated Seven-Quantum Spectra of Partially Oriented 
Butane. 
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For the simulated spectrum, the line intensities have been arbitrarily set equal since the 
intensity of each M Q transition is a complicated function of the preparation time r and 
the parameters in the spin Hamiltonian, and does not provide any information for the 
present study. 
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Figure 3.12: Experimental and Simulated Eight-Quantum Spectra of Partially Oriented 
Butane. 

For the simulated spectrum, the line intensities have been arbitrarily set equal since the 
intensity of each M Q transition is a complicated function of the preparation time r and 
the parameters in the spin Hamiltonian, and does not provide any information for the 
present study. 
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spectrum were fit successfully. Figures 3.11 and 3.12 show the frequencies of all of the 

lines calculated in the fit of the M Q spectra. A large number of these lines in the experi

mental seven-quantum spectrum have very weak intensity and are barely discernible, if at 

all, from the fluctuations in the noise. Note that the line intensities have a very complex 

and sensitive dependence on the preparation time, r. Ideally one uses an optimum r, if 

one exists, for which all of the associated M Q coherences are appreciably populated. A 

practical approach is to coadd a series of spectra acquired with different values of r. In 

the present case, we found the spectra acquired with a single r to be sufficient. 

The trial one-quantum spectrum that was predicted from the fit of the M Q spectra 

proved to be an excellent starting point in the fit of the experimental one-quantum 

spectrum: assignment of spectral lines was tedious, but trivial. A simulated one-quantum 

spectrum using the fitted dipolar coupling constants, chemical shift difference and J-

couplings is shown in Figure 3.9 with the experimental spectrum. The high quality of the 

fit is more evident in the expanded plot of a region of the spectrum shown in Figure 3.10. 

Table 3.5 lists the final values of the fitting parameters obtained in both the one-quantum 

and M Q spectral fits. The protons are labeled according to Figure 3.13. Note that the 

predicted coupling constants and chemical shift difference are almost exactly the same 

for both fits; the J-couplings are shifted only slightly from their literature values. Thus, 

an analysis of the M Q spectra for this particular ten-spin system is shown to provide 

information sufficiently accurate for the type of analysis that we describe below. This is 

a significant point when considering the accuracy of M Q spectral information of molecules 

of slightly greater complexity for which the one-quantum spectrum cannot be analyzed. 

3.4.2 Conformational and Orientational Behaviour of Butane 

Table 3.6 summarizes the results of the fit of the experimental dipolar coupling con

stants using the eight mean-field models described in Section 3.2.4, for three different (pg 
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Table 3.5: Fitting Parameters (Hz) from the Multiple-Quantum and One-Quantum Spec
tral Fits. 

Parameter M Q 1Q 
D12 

817.8(2) 817.63(3) 
Du -199.6(2) -199.57(5) 
A e -389.2(2) -388.84(2) 
A s -196.4(2) -196.14(2) 
A s 1601.3(3) 1601.09(4) 
A e 65.3(5) 65.61(8) 
A r 34.5(5) 33.98(8) 
61 - 64 309.5(2) 309.40(7) 

J\4 7.4a 7.37(5) 
Jl6 -0.2 a -0.19(2) 
J46 5.7a 6.04(2) 
J47 8.6a • 8.83(2) 

"Isotropic values from Ref. [123]. 

Figure 3.13: Labeling of Butane Protons 
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dihedral angles, with and without corrections for torsional fluctuations about the RIS 

states. Among the SS models, A i , A 2 and A 3 yield fits of comparable quality, with 

root-mean-square (RMS) deviations of approximately 30 Hz, regardless of the variation 

in the geometrical parameters. Models A 4 , A 5 and A 6 yield fits of substantially improved 

quality with RMS values roughly half those of the fits with the other three models. This 

trend is entirely consistent with the results of the study by Zimmerman et al. [36] in 

which these SS models were tested on a series of rigid solutes oriented in the same zero-

E F G liquid-crystal mixture. This probably is due to the fact that models A 4 , A 5 and 

Ag incorporate much more detail into their-descriptions of the molecular size and shape 

than do the others. Model B yielded by far the poorest fit of the experimental dipolar 

coupling constants. This is surprising in light of the results of Rosen et al. [45] in which 

this model yielded particularly good fits, especially so for the shorter alkanes. Model C 

gave the best fit. consistent with the results of Rosen et al. and as one may expect for a 

model specially tailored for molecules composed of identical repeating units. The quality 

of the fits for all mean-field models is generally insensitive to the value of <pg, and is 

only marginally improved by incorporating torsional fluctuations into the fits. Table 3.7 

lists the experimental and calculated dipolar coupling constants for all of the mean-field 

models for the case of ^ s =116° and A<^=20° and clearly highlights the relative success of 

each model in describing the orientational ordering of butane. Note that the simulated 

dipolar coupling constants for all models do not fall within the uncertainties of the highly 

accurate experimental coupling constants. This discrepancy is due to a variety of factors, 

including small uncertainties in the molecular geometry, molecular vibrations, as well as 

the limitations in the mean-field models themselves. 

The principal goal of the present study is an accurate determination of Etg, the 

effective energy difference between the trans and gauche states of butane in an anisotropic 

condensed phase. The results summarized in Table 3.6 clearly show that the value for 
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Table 3.6: Results of the Fits to the Experimental Dipolar Coupling Constants. 

• <f>9 = 112° 4>g = 116° <P9 = 120° 
Model Parameter A(j)=0o 20° Ad>=0° 20° A<^=0° 20° 

A i Etg / k J - m o l - 1 

k /10 3 N-m" 1 

RMS /Hz 

2.22 
5.81 
32 

2.22 
5.92 
32 

2.33 
5.75 
29 

2.34 
5.86 
29 

2.43 
.5.69 

26 

2.45 
5.80 
26 

A 2 Etg / kJ -moP 1 

k /10 3 N -m" 1 

RMS /Hz 

2.35 
4.64 
34 

2,36 
4.74 
33 

2.43 
. 4.62 

30 

2.45 
4.72 
30 

2.50 
4.60 
27 

2.54 
4.69 
27 

A 3 
£ i 9 / k J - m o l - 1 

A: /10 3 N - m - 1 

RMS /Hz 

2.27 
4.74 
32 

2.26 
4.81 
32 

2.37 
4.70 
29 

2.38 
4.77 
29 

2.47 
4.66 
26 

2.49 
4.73 
27 

A 4 £ i 5 / k J - m o l - 1 

Jfcs /10 3 N - m - 1 

RMS /Hz 

2.58 
70.4 
17 

2.67 
71.0 
15 

2.74 
68.8 
19 

2.84 
69.6 
19 

2.90 
67.2 
22 

3.01 
68.1 
20 

A 5 
£ t f f /kJ -moP 1 

kx /10 3 N -m" 1 

RMS /Hz 

2.48 
46.4 
17 

2.54 
47.0 
15 

2.62 
45.6 
16' 

2.68 
46.2 
14 

2.75 
44.7 
17 

2.82 
45.4 
15 

A G 
l^t,, /k-J-mol - 1 

A;x y /10 3 N-m" 1 

RMS /Hz 

2.62 
18.5 
13 

2.70 
18.7 
12 

2.78 
18.1 
15 

2.85 
18.3 
14 

2.93 
17.7 
18 

3.01 
18.0 
17 

B £ t f l / k J - m o l - 1 

e /10 4 k J -m- 3 

RMS /Hz 

2.94 
4.50 
44 

3.07 
4.56 
41 

3.18 
4.37 
48 

3.32 
4.44 
44 

3.46 
4.23 
52 

3.59 
4.32 
48 

C £ t s /kJ -moP 1 

ti)o / k J - m o l - 1 

RMS /Hz 

2.09 
0.736 

12 

2.09 
0.744 

11 

2.15 
0.725 

9 

2.17 
0.734 

7 

2.22 
0.713 

9 

2.26 
0.723 

7 
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Table 3.7: Experimental and Calculated Dipolar Coupling Constants (Hz) for ^ f l =116° 
and Ad)=20°. 

Exp. A i A 2 A 3 A 4 A 5 A 6 B C 

D12 817.3 842.9 822.5 843.0 821.7 829.8 822.5 776.6 821.8 
D1A -199.6 -195.3 -207.9 -194.7 -211.3 -206.2 -207.9 -206.5 -192.2 
Dl6 -388.8 -392.2 -360.5 -393.5 -352.6 -366.6 -360.5 -339.4 -390.0 
Dl8 -196.1 -229.2 -199.9 -229.2 -198.7 -208.7 -199.9 -160.6 -203.0 
D45 1601.1 1536.2 1609.1 1535.1 1615.3 1588.7 1609.1 1700.9 1591.0 

65.6 70.1 63.5 70.8 66.1 67.9 63.5 ' 66.0 66.5 
D47 

34.0 66.8 42.0 67.1 34.3 46.4 42.0 -13.4 52.7 

RMS 29 30 29 19 14 14 44 7 

this quantity obtained from an analysis of dipolar coupling constants is sensitive to the 

model used to describe the orientational ordering. Model C yields an Etg of ~2.1 kJ/mol, 

the lowest estimate of any of the models. Model B gives the highest value, with Etg ~ 

2.9-3.6 k.J/mol, while the various SS models predict values that lie between these two 

extremes. Thus, the estimates for Etg are spread over a fairly wide range. Note that while 

increasing the value of 4>g consistently leads to higher estimates of Etg, the range of values 

obtained from each model is small compared to differences between the predictions of 

different models, with the exception of some of the SS models which predict very similar 

values of Etg. Including torsional fluctuations in the calculations causes only a very slight 

shift towards a higher Eig. 

To assess the accuracy of each model prediction we must consider the quality of each 

fit to the experimental dipolar coupling constants. Since model B yielded such a poor 

fit, the high calculated Etg values must be treated skeptically. The poorness of this 

fit relative to those for other models is emphasized in Table 3.7. The dipolar coupling-

constant D 4 7 , for example, which is highly sensitive to Etg, is actually predicted to have a 
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different sign from the experimental value. In light of this consideration, we exclude the 

range of values of Etg predicted by model B. The low value of Etg obtained using model 

C mirrors the results of Rosen et al, in which a consistently low Etg for alkanes of various 

lengths was determined. Thus, we take 2.1 kJ/mol as the lower limit in our estimate of 

Etg. The values for Etg predicted by the SS potentials span a fairly wide range, 2.2-3.0 

kJ/mol. Of particular importance are models A 5 and A 6 , which account for the oriented 

molecule's shape in the most detailed manner and thus yielded the best fits among the 

SS models. These models also gave the highest estimates of Eig, with a range of 2.5-3.0 

kJ/mol, and thus provide an upper limit to the estimate of Eig for butane in this study. 

To summarize, our analysis of the 1 H . dipolar coupling constants of partially oriented 

butane using a variety of mean-field models suggests that Eig « 2.1-3.0 kJ/mol. 

While a model-independent estimate of Etg would have been preferred, the results 

of our analysis are significant, nevertheless. The range 2.1-3.0 kJ/mol is below most 

experimental gas-phase values which lie in the range 3.3-3.7 kJ/mol [92, 93. 94, 95. 

96]. with the exception of the value of 2.9 kJ/mol reported in ref. [97]. Thus, our 

study provides evidence that gauc/ie-conformer populations of butane in an anisotropic 

condensed phase are enhanced relative to the gas-phase values, in accord with much 

experimental evidence for butane in isotropic condensed phases [98, 99, 100]. 

Table 3.8 lists the trans-st&te probabilities calculated for the various models employed 

in our analysis. As expected the probabilities increase with increasing calculated Etg. 

with model B predicting the highest probabilities and model C predicting the lowest. 

Considering only the successful models that were used to establish a range of values for 

Etg, we estimate that the trans probabilities lie in the range 0.54-0.62. Also shown in 

Table 3.8 are the trans probabilities for an isotropic phase obtained by.setting U^niso(uj)=0 

in Eq. (3.54). The isotropic probabilities are consistently slightly lower than the nematic-

phase probabilities, indicating that the anisotropy in the mean-field has the effect of 
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Table 3.8: Nematic (N) and Isotropic (I) Phase trans Probabilities. 

Model Phase 
<f>g = 112° <f*g = 116° 120° 

Model Phase Ao=0° 20° A(f)=0O 20° A(p=0° 20° 
A i N 0.547 0.549 0.559 0.561 0.570 0.573 

I 0.537 0.539 0.549 0.551 0.560 0.544 
A 2 

N 0.559 0.562 0.562 0.572 0.577 0.582 
I 0.550 0.552 0.559 0.562 0.567 0.572 

A 3 
N 0.551 0.553 0.563 0.565 0.573 0.576 
I 0.541 0.543 0.553 0.555 0.563 0.567 

A 4 
N 0.580 0.590 0.596 0.607 0.612 0.624 
I 0.573 0.584 0.589 0.600 0.606 0.618 

A 5 
N ' ' 0.571 0.606 0.585 0.592 0.599 0.607 
I 0.563 0.570 0.577 0.585 0.591 0.599 

A 6 
N 0.585 0.592 . 0.600 0.608 0.615 0.624 
I 0.577 0.586 0.592 0.602 0.609 0.618 

B N 0.615 0.629 0.638 0.652 0.664 0.677 
I 0.608 0.622 0.632 0.646 0.658 0.671 

C N 0.535 0.537 0.543 0.546 0.551 0.555 
I 0.523 0.526 0.531 0.534 0.538 0.544 
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Table 3.9: Calculated Principal Axis System (PAS) Order Parameters, and PAS Euler-
Angle, for trans and gauche Conformers of Butane. 

Model Conformer szz 
9 - 9 

uyy uxx 
flrot 

A : trans 0.177 0.007 43.6 
gauche 0.107 -0.037 25.6 

A 2 . trans 0.175 0.010 43.3 
gauche 0.108 -0.035 27.2 

A 3 
trans 0.177 0.006 43.5 

gauche 0.108 -0.037 25.7 
A 4 

trans 0.151 0.034 • 44.6 
gauche 0.101 -0.616 25.0 

A 5 
trans 0.160 0.025 44.1 

gauche 0.103 -0.053 23.2 
A 6 

trans 0.154 0.028 44.1 
gauche 0.100 -0.059 24.3 

B trans • 0.140 0.061 42.0 
gauche 0.078 -0.064 23.8 

C trans 0.179 0.013 41.6 
gauche 0.089 -0.07 23.6 

Calculated for <pff=116° and A<p=20°. For both conformers, the PAS y-axis bisects the 
C - C - C - C dihedral angle, and the PAS z-axis makes an angle of (3rot with the central 
C - C bond towards the methyl groups. 

favouring the elongated trans state relative to the gauche states. Since these shifts are 

very small, it appears that the conformational distribution is essentially determined by 

the isotropic "solvent pressure" of the liquid crystal, in agreement with the findings of 

Rosen et al. for longer alkanes. 

Table 3.9 summarizes the model-dependence of the calculated Principal Axis System 

(PAS) order parameters for both the trans and gauche states of butane for the special 

case of <^s=116° and A</>=20°. It is interesting to note that the calculated principal order 

matrix component, Szz, for the trans state varies inversely with the calculated Etg and 

trans state probabilities. Thus, the calculated Szz is lowest for model B and highest for 
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model C. Also shown for both conformers is the Euler angle (5rot. defined as the angle 

between the central C - C bond and the Principal Axis System (PAS) ̂ -axis. As the results 

clearly show, the PAS orientation is not particularly sensitive to the choice of models used 

to describe the orienting potential. Thus, an interesting result of these calculations is 

that the orientation of the PAS system predicted for each model is essentially identical 

to that for the PAS system of the moment of inertia tensor for both conformers. which 

is the axis system calculated using model B. 

An important result of the present study is the fact that, with the exception of model 

B. all of the mean-field models for molecular orientation in a nematic phase employed 

here yielded physically reasonable results in the. fits of the experimental dipolar coupling 

constants. This is in marked contrast to the results of Rosen et al. [45] who concluded 

that the SS models that were tested (models A] and A 3 ) were deficient and unable to 

adequately describe the orientation of flexible alkanes. One major complaint against 

model A i , for example, was that the calculated Etg was unusually high, and found to 

increase with increasing alkane chain length. However, it is important to note that these 

calculations failed to account for the fact that each SS potential is not purely anisotropic, 

but has a residual isotropic component (see Eq. (3.55)) that must be subtracted away 

from the potentials defined in Eqs. (3.57)-(3.63) in order to calculate correctly Etg. In the 

case of butane, failure to incorporate this correction leads to an incorrect value, E[g

alse, 

defined by Eq. (3.56), that was found to be ~10% higher for model A] compared to the 

correct value, a result of the fact that (Us

r^ns) > (U9

s"s

uche). It is entirely conceivable 

that this effect may become more pronounced as the shape anisotropy increases with 

increasing hydrocarbon chain length and yield results similar to those of Rosen et al. 

Their results for model A 3 contain unrealistically low values for Etg. For butane it was 

found that {Us

T$ns) < (U9

ss

uche), the opposite of what was observed for model A i as a 

result of the large negative term in Eq. (3.60), which yielded E(g

lse < Eig. Thus. the. 
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apparent deficiencies in the SS models may arise from the failure to account for the 

isotropic component inherent to all of these potentials. In addition, the results of the 

present study strongly suggest that the more recent forms of the SS potentials are much 

more successful than are the earlier versions in fitting experimental dipolar coupling 

constants and therefore of describing the orientation of flexible molecules. 

3.5 Conclusions 

In this chapter, we have investigated the conformational and orientational behaviour of 

butane aligned in a nematic liquid crystal. Information obtained from the analysis of 

the seven-quantum and eight-quantum ^ - N M R spectra provided an excellent starting 

point to analyze the highly complex one-quantum spectrum and thus to obtain extremely 

accurate estimates of the seven independent 1U dipolar coupling constants. A n analysis 

of the coupling constants was carried out with the aid of several different mean-field 

models for molecular orientation in a nematic environment. It was found that recent 

versions of the "Size and Shape" potential proposed by Burnell and coworkers, and, in 

particular, the Chord model proposed by Photinos et ai. were able to describe successfully 

the intermolecular interaction of butane in a liquid crystal, while a model based on the 

molecular moment of inertia tensor was found to be inadequate. An effective trans-gauche 

energy difference in the range of 2.1-3.0 kJ/mol was determined, suggesting that the 

gauche-state probabilities are enhanced in a condensed anisotropic environment relative 

to the gas-phase values. Varying the dihedral angle, </>s, between trans and gauche states, 

and inclusion of torsional fluctuations about the internal rotational potential minima 

were found to have only small effects on the results. The anisotropic potential was found 

to cause a very minor shift towards higher probabilities of the elongated trans conformer 

relative to the isotropic values, in agreement with studies of longer alkanes, suggesting 



Chapter 3. Conformational and Orientational Behaviour of Butane 93 

that the conformational behaviour of butane is similar to that found in the neat liquid 

phase. 



Chapter 4 

Monte Carlo Simulations of Oriented Solutes (I): Shape Anisotropy and 

Mean-Field Models 

The material presented in this chapter has been accepted for publication in Molecular 

Physics. 

4.1 Introduction 

The task of elucidating by experimental means the details of the intermolecular forces 

that induce orientational order in nematic liquid crystals is challenging. In the case of 

N M R studies, acquiring information from direct probing of the nematogens is complicated 

by their structural complexity and significant conformational freedom. An alternative 

approach that has been fruitful has been to study small, rigid molecules dissolved in ne

matic solvents. The basic assumption is that these molecules will probe the forces present 

in the ordered fluid, which may be observed indirectly through the orientational ordering 

of the probes. The choice of probe molecules permits some means of disentangling the 

many factors that influence the behaviour of liquid crystalline systems. An important ex

ample is the case of dideuterium, in which the interaction between the molecular electric 

quadrupole moment with the average electric field gradient sampled by the molecule was 

shown to be the principal interaction responsible for its orientational ordering [13, 119]. 

More recently, studies of halogenated alkanes with localized dipole moments have indi

cated that the dipole-dipole interaction is also an important orienting mechanism [47, 48]. 

In both cases, it is postulated that these interactions are significant for the orientational 

94 
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ordering of the nematogens as well. 

While long-range electrostatic forces contribute to the orientational ordering in ne-

matics, it is the anisotropic short-range repulsive forces that are generally believed to be 

the dominant orienting mechanism. These short-range repulsive interactions have also 

been incorporated into the analysis of orientational order of probe molecules. The ba

sic approach is to construct a mean-field orientation-dependent potential characterized 

by one or two parameters that is sensitive to the details of the size and shape of the 

molecule. This potential then is used to fit the experimentally measured molecular order 

parameters for a collection of solutes. The values of the model parameters give a measure 

of the strength of the short-range repulsive forces that give rise to the ordering. Several 

mean-field models proposed by Burnell and coworkers [33, 34, 35, 36] and a closely re

lated model due to Ferrarini et al. [37] have been highly successful, yielding fits where 

the calculated principal molecular order parameters are within 10% of their experimental 

values. Generally, the models which are most sensitive to the details of the molecular 

shape provide the most accurate description of orientational order. 

It is interesting to note that these models are formulated as anisotropic surface inter

actions or as ah elastic distortion of the liquid crystal, but are assumed to arise physically 

from the short-range repulsive forces between molecules. Thus, some insight into the re

lationship between the mean-field models and these interactions may be gained by using 

computer simulations to study orientational ordering of solutes in model systems in which 

molecules interact solely by short-range forces. The ability to focus on the effects of spe

cific forces without the complicating effects of the other interactions is an important 

advantage of the computer simulation approach, and provides an additional tool for the 

interpretation of experimental data. 

Computer simulation techniques have been a very effective method to study liquid 
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crystal systems. In these studies, mesogens have been modeled to various degrees of com

plexity, ranging from simple hard convex bodies (HCB's) [6], to models of intermediate 

complexity such as the Gay-Berne mesogen [26, 124, 125, 126], which include long-range 

attractive forces, to models which attempt to incorporate full molecular detail [38, 39]. 

The case of HCB's such as hard ellipsoids has attracted much attention over the last 

decade [5, 60, 127, 128]. For this model, the basic requirement of non-overlap between 

the bodies approximates the effects of short-range repulsive forces sufficiently to induce 

the formation of orientationally ordered mesophases for systems of sufficient density. 

The purpose of the present study is to investigate the general nature of the size 

and shape dependence of solute orientational ordering in a nematic solvent without at

tempting to simulate the behaviour of any particular real molecule. We model both 

solvent-solvent and solvent-solute interactions with hard-core repulsive forces in an at

tempt to elucidate the role of this important ordering mechanism. Specifically, solvent 

and solute molecules are modeled as hard ellipsoids. We follow the approach taken in 

experimental N M R studies and study the second-rank orientational order parameters of 

a large collection of solutes of a variety of sizes and shapes. In addition, we investigate 

the detailed orientational behaviour of two dissimilar ellipsoidal solutes, including an 

examination of the singlet orientational distribution function and the dependence of the 

degree of solute orientational order on the nematic order parameter, p(nern\ The-MC 

results are analyzed in terms of four mean-field potentials that were designed to describe 

orientational order for arbitrary solutes in a uniaxial nematic phase. The simplicity of 

the approach used here contrasts with and complements that taken in two recent studies 

which investigated the orientational and dynamical behaviour of benzene [65] and the 

conformational behaviour of hexane [66] as solutes in a liquid crystalline solvent modeled 

using the more complex Gay-Berne potential. 
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4.2 Monte Carlo Simulations 

4.2.1 Order Parameters for a Collection of Solutes 

Constant-volume Monte Carlo (MC) simulations were conducted for a system composed 

of 95 liquid crystal molecules and one solute. The usual periodic boundary conditions 

were employed. Nematogens were modeled as hard prolate ellipsoids of revolution with 

an axis ratio of 5:1. Solutes of a variety of sizes and shapes also were modeled as hard 

prolate ellipsoids of revolution. Solute shape anisotropy was varied by adjusting the axis 

length ratio. Overlap between ellipsoids was tested for trial moves using the procedure 

described by Vieillard-Baron [129]. A l l calculations were performed using a reduced 

density of p* = NVQ/V—QA88, where A"=96 is the number of particles confined to the 

cell, vo is the volume of a solvent ellipsoid, and V is the volume of the cell. Although the 

true density of the system varied between calculations by <1% as a result of varying the 

solute volume, changes in the ordering of the solvent were negligible and too small to be 

detected to within statistical uncertainty. 

Particles were randomly chosen for trial moves, which consisted of a simultaneous 

translation and rotation, the maximum magnitudes of which were chosen so that the 

translation and rotation would contribute about equally to the likelihood that the move 

would be rejected. The overall acceptance ratio was 30-40%. Solute trial moves were 

attempted as frequently as those for individual solvent ellipsoids; no configurational bias

ing technique was used to increase the sampling rate for the solute. For each translation, 

a random displacement vector was calculated with individual components in the range 

of [—5,(5]. The orientational displacements were generated by adding a vector of fixed 

length r but with an orientation chosen at random from an isotropic distribution to the 

unit vector specifying the orientation of a given particle. The resulting vector was nor

malized to yield the new orientational unit vector. The values of 6 and r were chosen to 
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give an average acceptance ratio of the combined translation-rotation move of 30-40%. 

Further, the ratio of 6 and r was fixed by the requirement that a translation and rotation 

contributed about equally to the likelihood that a particle would be rejected. The values 

of 5 and r for solute ellipsoids varied considerably and were generally larger than those 

for the larger solvent ellipsoids. 

The orientational order parameter of the nematic solvent, p(nem^ w a s measured by 

finding the largest eigenvalue of the average second-rank tensor defined by 

where Ui is a unit vector describing the orientation of the ith solvent ellipsoid. The 

nematic director is given by the axial-symmetry axis of the principal axis system of this 

tensor. Solute orientational order was monitored by measuring the second-rank order 

parameter P2 = (P2(cos9)). where 9 is angle between the solute symmetry axis and the 

nematic director. An equilibration period of 1-2xlO 5 sweeps was used, where one sweep 

represents an attempt to move on average each particle once, starting from an initial 

configuration where the particles were perfectly aligned and placed on an F C C lattice. 

Typically 80-90 block averages of 104 sweeps each were used to calculate the ensemble 

averages and provide an estimate of the uncertainties. A total of 31 calculations were 

performed, each with a solute of a different size and shape. Solute dimensions were 

chosen to span the range of dimensions less than those of the solvent ellipsoids and were 

not intended to represent those of real molecules. 

The nematic order parameter p ^ n e m ' w a s determined to be 0.883±0.004, and is con

sistent with the results of Samborski et al. [128]. In order to check that the small size 

of the system did not in any way influence the outcome of the simulations, several cal

culations were repeated using a larger system of A /=240 particles and yielded identical 
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results. Attempts to conduct simulations for a system with a lower degree of orienta

tional order that is more comparable to that measured in a typical nematic phase were 

found to be not practical for conducting a large number of simulations involving different 

solutes. While reducing the density lowers p(nem^ it also brings the system close to the 

nematic-isotropic phase transition at p*=0.37 [128] where we found the effects of using 

a small system (N=96) to be severe, generally resulting in an overestimate of p^nem\ 

Since an appropriate increase in the system size required an unacceptable increase in 

computation time, the higher density was used. 

4.2.2 Further Simulations for Two Solutes 

Since an important objective of the study is to compare the results of the simulations with 

experimental results, it is necessary to have a means to scale the results to correspond 

to a system having a realistic value of p^nem\ To this end, additional simulations were 

performed for a dissimilar pair of ellipsoidal solutes in the model nematic liquid crystal 

at lower densities. The simulation method is almost identical to that described in the 

previous section. In this case, however, a larger system size of A /=240 particles was 

used to minimize finite-size effects. Solute A had dimensions of /=2.0 and UJ=1.0, while 

solute B had dimensions of /=3.33 and t/;=0.25, where / and w are the dimensions of 

the ellipsoid parallel and perpendicular to the symmetry axis, respectively, and where 

the dimensions are measured in units of the solvent ellipsoid width d. Simulations were 

performed for both solutes at a density of p*=0.388, where the nematic order parameter 

was found to be very close to P2™em^=0.634, the value reported for the order parameter of 

the analine ring of the nematogen E B B A in the experimental N M R studies of Burnell and 

coworkers [33, 36]. Simulations were also conducted for solute A and B at intermediate 

densities of p*=0.444, 0.425 and 0.405, as well as those at p*=0.488 and 0.388, in order 

to study the solute orientational ordering as a function of p(nem^. 
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In addition to calculating the second-rank order parameters P2, the full singlet ori

entation distribution functions were also calculated for these solutes. The probability 

distribution was calculated for cos# ranging from 0 to 1 in increments of 0.01. Solute 

orientations were measured with respect to the local director which was recalculated after 

every 1000 attempted moves per particle. 

4 . 3 Mean-Field Models 

The M C simulation data were analyzed using four mean-field model potentials that have 

been used previously for the analysis of molecular order parameters obtained from N M R 

data for solutes in nematic liquid crystals. 

Model I. The first potential, introduced by van der Est et al. [33], is given by 

where C(LO) is the circumference traced out by the projection of the solute onto a plane 

perpendicular to the nematic director, and where u=(9,(f)) are the angles describing the 

orientation of the nematic director in the molecular frame. For the axially symmetric 

solutes considered here, the (^-dependence vanishes. This model was also employed in 

Chapter 3 (Model A i ) . See Figure 3.7 for an illustration of the orientation-dependent 

solute parameters. 

Model II. The second potential is an anisotropic surface potential introduced by 

Zimmerman et al. [36], and is given by 

where Z is the position along the nematic director bounded by the minimum, Zmin, 

and maximum, Zmax, points of the orientation-dependent projection of the solute along 

this axis. C(Z,u>) is the circumference traced out by solute at this position along the 

(4.77) 

(4.78) 
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director. Thus. C(Z,u)dZ is the area of an infinitesimally thin ribbon that traces out 

this circumference, and the integral is the area of the full projection of the surface of the 

solute onto a plane parallel to the nematic director. For the case of the convex model 

solutes studied here, the potential of Eq. (4.78) may also be written as 

U(u)) = ~\ksjdSn | sin0 f t | (4.79) 

where n is the unit vector normal to a solute surface-area element dSn, and 9n is the 

angle between h and the nematic director. This model was also used in Chapter 3 in the 

study of butane (model A 4 ) . See Figure 3.7 for details. 

M o d e l I I I . Third, we consider another anisotropic surface potential due to Ferrarini 

et al. [37] given by 

U(u) = e j dSftP2(cos0 f t), (4.80) 

which has a form similar to that of the previous potential. A noteworthy point regarding 

this potential is that it may be expanded in terms of second-rank spherical harmonics 

generally, and is proportional to P2{cos9) for axially symmetric molecules, where 9 is the 

angle between the symmetry axis and the nematic director. 

M o d e l I V . Finally, we consider the two-parameter potential formed by combining 

the potentials of Models I and II [36] (Model A 5 of Chapter 3): 

1 _ 1 fZ-max 

U(L}) = -k(C(u))2--ks C(Z,u;)dZ (4.81) 
Z L J Zmin 

The four mean-field potentials described above were designed to fit experimental 

solute orientational order parameters according the following relation: 

Sap = J (J cos 9a cos dp - ^6a^ f{u)du, (4.82) 

where the solute orientational distribution function is related to the mean-field potentials 

according to 

= ^-^ll - ( 4 , 3 ) 
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The mean-field potentials are of the following form: 

U(u) = ch(u), (4.84) 

where c is any of the solute-independent solvent parameters (k, ks and e), and h(uj) 

gives the orientational dependence of the potential, specific for each solute. Model IV is 

simply a sum of two such terms. Defining a reduced potential U* (LO) = U(u>)/kBT, we 

can rewrite Eq. (4.83): 

= exp(-U*(u)) = exp(-c*h(cj)) 
J K 1 Jexp{-U*(u))dLU SQxp{-c*h(uj))du 1 • 1 

where c* = c/kBT (i.e. A:* = k/kBT, k*s = ks/kBT and e* = e/kBT). To apply these 

models to fit the order parameters generated in the M C simulations, we must first recog

nize that the hard-particle system is not characterized by a temperature, since it is fixed 

at one finite energy value, while also noting that the orientational distribution function 

in Eqs. (4.83) is defined in terms of temperature. To circumvent this problem, we simply 

reinterpret Eq. (4.85) as the definition of the mean-field potential U*(tu). characterized 

by the parameters k*, /c* and e* for the four models above, which, for a system that is 

characterized by temperature, may be used to define U(u), k, ks and e. In a real sys

tem, the temperature-dependence of k*, k*s and e* can be correlated to the variation of 

degree of nematic solvent orientational order with density which is an inverse monotonic 

function of the temperature. Thus, these fitted reduced interaction strength parameters 

for simulation and experiment may be compared directly in the case of equal nematic 

solvent order parameters. 
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4.4 Results and Discussion 

4.4.1 Order Parameters for a Collection of Solutes 

Solute order parameters vs. solute length for the 31 solutes in a nematic solvent with a 

density of p*=0.488 are plotted in Figure 4.14. The solute length and width are measured 

in units of the solvent ellipsoid width, d. For solutes of the same width, there is a smoothly 

varying increase in P 2 with increasing length. For the case of solutes with a width of 

u>=1.0 (Figure 4.14(a)), j \ initially rises rapidly with increasing length, and levels off as 

it approaches the solvent order parameter for a length of l=b. For smaller widths, this 

change in the slope of the graph is less pronounced. Interestingly, there is only a slight 

decrease in P 2 at the maximum length, that is when the solute length is equal to the 

solvent length, as the width is decreased to tu=0.25. 

The solute order parameters calculated from the four fits are plotted with the M C 

results in Figure 4.14. Each fit corresponds to using one model potential to fit simultane

ously the order parameters of all 31 solutes. Thus, the fitting curves shown in Figure 4.14 

correspond to a single value of the model parameters for each potential for all four solute 

widths employed. The root-mean-square (RMS) deviations and the values of the model 

parameters (Value(l)) for each of the fits are presented in the second and fourth columns, 

respectively, of Table 4.10. 

The curves calculated using the potential of Model I demonstrate that this potential 

is unable to calculate accurate order parameters for both short and long solutes simulta

neously for any solute width. For example, in Figure 4.14(a), the P 2 for short solutes are 

underestimated while those for longer ones are fit fairly well. The calculated P 2 for nar

rower molecules shown in Figures 4.14(c) and 4.14(d) are reasonably accurate for short 

molecules, but significantly overestimated for longer molecules. This model deficiency 
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Figure 4.14: Solute Order Parameters vs. Solute Length 

0 1 2 3 4 5 0 1 2 3 4 5 
l eng th l eng th 

Fits were calculated using the four model potentials, (a) Solute width of w—1.0: (b) w= 
0.7241: (c) w=0.5: (d) iu=0.25. In each simulation, a system of 95 solvent ellipsoids and 
one solute was used. 
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Table 4.10: Comparison of Results for Fits of M C and Experimental Solute Order Pa
rameters. 

Model RMS Parameter Value(l) a Value(2)6-C Value(3) M Value(4)b'.e Exp.bJ 

I 0.087 k* 0.45 0.028 0.0093 0.010 0.013s 

II 0.083 K 10.7 0.67 0.20 0.21 0.18s 

III 0.080 6* 2.4 0.15 0.049 0.053 0.05'1 

IV 0.031 k* 0.16 0.0099 0.0031 0.0034 0.0049s 

K 6.1 0.38 • 0.12 0.13 0.115s 

"Units of dr2. 
6Units of A"2. 
cValue(2) obtained from Value(l) by fixing the length scale by setting the length of a 
solvent ellipsoid to be 20 A . For a system with p(nem^ — 0.883. 
dValue(3) calculated by scaling Value(2) by the ratios for the model parameters for so
lute A listed in Table 4.13. For a system with P 2

( n e m ) = 0.634. 
eValue(4) calculated by scaling Value(2) by the ratios for the model parameters for so
lute B listed in Table 4.13. For a system with P2

[nem) = 0.634. 
Experimental values for a nematic mixture of 55 wt% 1132/EBBA. Order parameter of 

the analine ring on E B B A given by P 2

( n e m ) = 0.634. 
9 From Ref. [36]. 
T r o m Ref. [37]. 
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was also noted previously in analyses of experimentally measured molecular order pa

rameters. In that case. P 2 calculated for solutes like 1CB, whose length approaches that 

of the nematogens. were overestimated when using this potential to fit order parameters 

of a collection of otherwise predominantly small solutes [34]. 

The fits using models II and III show the opposite trends. In this case, the tendency is 

to either overestimate P 2 for shorter solutes or underestimate P 2 for longer solutes. Again, 

this trend has been noted previously. For example, model III was found to underestimate 

the orientational order of the nematogen 5CB using an interaction strength parameter 

suitable to a collection of shorter solutes [37]. Also noteworthy are the near identical 

predictions of these two potentials. This is perhaps not surprising, given their similar 

forms. Both are anisotropic surface potentials in which surface area elements have similar 

orientation dependencies with respect to the nematic director. RMS deviations for fits 

of the order parameters of the solutes using models II and III are similar to that of the 

fit using the model I. 

The two-parameter potential of model IV yields by far the best fit to the M C data. 

The RMS deviation of this fit is less than half of those using the three other potentials. 

In this case, the deficiencies of models I and II cancel out, yielding accurate fits to 

solute order parameters for both long and short solutes for all solute widths studied. 

This is a significant factor underlying the high quality of this fit despite the fact that 

varying two parameters generally should give an improved fit relative to that of one-

parameter models. Among the several models investigated in the study of Zimmerman 

et al. [36], this potential gave the most accurate fit to experimental data. In that case, 

the deficiences of the individual terms of the potential canceled out in an analogous 

manner to that observed here. 
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4.4.2 Analysis of Singlet Orientational Distribution Functions for Two So

lutes 

To gain further insight into the mean-field models, we focus on the detailed orientational 

behaviour of two very differently shaped solutes from the full collection analyzed above. 

Specifically, we investigate the singlet orientational distribution function, f(6), and the 

angular-dependence of the corresponding reduced mean-field potential, U*(8). 

Figures 4.15 and 4.16 show the singlet orientational distribution functions and the 

corresponding orientation-dependence of the mean-field potential for solutes A (1=2. 

w=\) and B (Z=3.33, iw=0,25). The potentials of Figures 4.15(b) and 4.15(b) are 

defined to be zero for #=0. The orientational distribution functions and mean-field 

potentials calculated using the model parameter values obtained from the fits of the P2 

of the full collection of 31 solutes are also shown in the figures. 

For the case of solute A in Figure 4.15, the strength of the interaction described 

by model I clearly is underestimated, leading to an underestimate of the probability for 

orientations parallel to the director and an overestimate of the probability for orientations 

perpendicular to the director. In contrast, the strength of the interactions described by 

models II and III are overestimated, which results in the opposite behaviour for the 

orientational distribution function. Finally, the interaction strength for model potential 

IV is exactly right, yielding a very accurate description of orientational order for this 

solute. This behaviour is consistent with the predictions of P2 for this solute, as shown 

in Figure 4.14(a), which is underestimated by model I, overestimated by models II and 

III and accurately predicted by model IV. 

For the case of solute B in Figure 4.16, model potential I significantly overestimates the 

degree of solute orientational order, while potentials II and III underestimate the order. 

Model IV by far gives the most accurate description of orientational order. As expected, 
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Figure 4.15: Singlet Orientational Distribution Functions and the Corresponding 
Mean-Field Potential for Solute A (1=2, w=l) 

M C calculated distribution and potential (squares). Model predictions calculated using 
model parameter values obtained from the fit to the P 2 of 31 solutes. For the simulation, 
a system of 95 solvent ellipsoids and one solute was used. 
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Figure 4.16: Singlet Orientational Distribution Functions and the Corresponding 
Mean-Field Potential for Solute B (/=3.33, tw=0.25) 

6 (degrees) 

M C calculated distribution and potential (squares). Model predictions calculated using 
model parameter values obtained from the fit to the P2 of 31 solutes.- For the simulation, 
a system of 95 solvent ellipsoids and one solute was used. 
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these results are consistent with the model predictions of P2 shown in Figure 4.14(d) for 

this solute. 

In the analysis of the orientational distribution function and the corresponding mean-

field potential for the two solutes above, the predictions from the model potentials used 

model parameter values based on the fits to the P2 for the full collection of solutes. An 

alternative approach is to fit the distribution functions with each model potential directly. 

Comparison of the fitted and calculated curves provides more detailed insight into the 

strengths or deficiencies of the models. Further, an analysis of the /^"^"dependence °f 

the fitted model parameters would provide a means of scaling the results of the fit above 

to a system with a more realistic p(nem\ j n t n j s w a V ) the- results of the M C simulations 

can be compared directly to those of experimental studies. 

Singlet orientational distribution functions were calculated by M C simulations of so

lutes A and B in the model solvent with densities of p*=0A88, 0.444. 0.425. 0.405 and 

0.388. Each distribution function was fit using the four model potentials. For the fits 

using the two-parameter potential of model IV, the ratio of parameters were fixed to the 

value of /c*//c*=0.0262 obtained from the fit of the P2 of the 31 solutes above. Rather 

than showing the fitted singlet orientational distribution functions, we present instead 

the corresponding calculated mean-field potentials together with the model predictions. 

These are shown in Figures 4.17 and 4.18. The presentation of the results in this form 

amplifies the deficiencies of the models more clearly. Again, we choose a potential energy 

of zero at 6=0. 

For each solute, the anisotropy of the potentials calculated in the M C simulations 

decreases with decreasing density. This is qualitatively the same behaviour expected for 

solutes in real nematic systems as the temperature is increased. In either case this is 

related to a decrease in p(" e m ) . The potential energy profiles predicted from fits to all 

the model potentials are generally better for the wider solute (A) than for the narrow 



Chapter 4. Shape Anisotropy and Mean-Field Models 111 

Figure 4.17: Orientation-Dependence of the Mean-Field Potential for Solute A (1=2, 
w=l). 

6)(degrees) ^(degrees) 

Calculated for p*=0.488 (triangles), 0.444 (squares), 0.425 (pentagons), 0.405 (hexagons) 
and 0.388 (heptagons). The predictions of model potentials I, II, III and IV were obtained 
by optimizing the model parameters in fits to the corresponding singlet orientational dis
tribution function. The potential energy is chosen to be zero for 6=0. A system of 239 
(p*=0.444, 0.425, 0.405, 0.388) or 95 (p*=0.488) solvent ellipsoids and one solute ellipsoid 
was used for each simulation. 
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Figure 4.18: Orientation-Dependence of the Mean-Field Potential for Solute B (/=3.33, 
iu=0.25). 

f3(degrees) ^(degrees) 

The predictions of model potentials I, II, III and IV were obtained by optimizing the 
model parameters in fits to the corresponding singlet orientational distribution function. 
The potential energy is chosen to be zero for 0=0. A system of 239 (p*=0.444, 0.425, 
0.405, 0.388) or 95 (p*=0.488) solvent ellipsoids and one solute ellipsoid was used for 
each simulation. 
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solute (B). This is evident both from the plots in the figures and in the relative size of 

the RMS deviations of the fits listed in Tables 4.11 and 4.12. Also noteworthy is the 

significant difference in the shapes of the mean-potential profiles predicted by models 

II and III. This feature contrasts with the fact that orientational order predicted by 

these potentials for a collection of solutes tends to be very similar, as illustrated in the 

fits to the order parameters in Figure 4.14. Thus, while the similarity in the forms 

of these two anisotropic surface potentials leads to a similar parameterization among 

solute shapes, the difference in the details of the surface interaction is manifested in the 

angular-dependence of the potentials. 

The results of the fits for solutes A and B are presented in Tables 4.11 and 4.12, 

respectively. There are two important results. (1) The solute order parameters have been 

calculated from the predictions of the model potentials using the model parameter values 

from these fits. For both solutes, these calculated values fall within ~5% of the M C values. 

This suggests that fitting solute order parameters using model potentials gives essentially 

the same results as fitting the orientational distribution functions which provide complete 

information about one-particle orientational behaviour. This is a significant consideration 

for the analysis of N M R experiments which yields only the solute order parameters. 

(2) Although the model potentials provide comparable descriptions of the orientational 

distribution functions when separately fitting the data from individual solutes, this is 

not true if the results are analyzed simultaneously. This is evident from a comparison 

of the values of the same model parameters for solutes A and B. Since the purpose of a 

model potential is to provide an accurate description of orientational order for solutes of 

arbitrary size and shape, the parameter corresponding to the same model and nematic 

solvent should be independent of the characteristics of the solute. However, the parameter 

values for the potentials of I, II and III vary roughly by a factor of two between the 

different solutes for all values of _p2(nem). By contrast, the parameter values for potential IV 
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Table 4.11: Results of Fits to Singlet Orientational Distribution Functions for Solute A 
with Dimensions of 1=2 and w=l. 

p* p(nem)a 
p a 

r2 Model Parameter Value/d- 2 P 2(calc) R M S 6 

0.488 0.886(2) 0.58(1) I k* 0.614 0.575 0.097 
II K 8.36 0.604 0.049 
III e* 1.81 0.583 0.062 
IV C 

K 6.15 0.597 0.037 

0.444 0.817(2) 0.44(1) I k* 0.418 0.416 0.082 
II K 5.48 0.441 0.056 
III e* 1.22 0.422 0.066 
IV C 

K 4.08 0.435 0.051 

0.425 0.780(2) 0.38(1) I k* 0.368 0.367 0.047 
II K 4.48 0.367 0.051 
III e* 1.07 0.372 0.035 
IV C 

K 3.56 0.383 0.038 

0.405 0.729(3) 0.30(1) I k* 0.304 0.287 0.049 
II K 3.89 0.303 0.040 
III e* 0.884 0.295 0.040 
IV C 

K 2.91 0.299 0.035 

0.388 0.636(6) 0.21(2) I k* 0.171 0.199 0.037 
II K 2.11 0.208 0.034 
III e* 0.494 0.201 0.033 
IV C 

K 1.60 0.206 0.031 

"Uncertainties in the last digit are given in parentheses. 
6Root-mean-square deviation from fits to singlet orientational distribution functions. 
c Fixing k*//c*=0.0262 as obtained from the two-parameter fit of P 2 for the full set of 
solutes at p* =0.488. 
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Table 4.12: Results of Fits to Singlet Orientational Distribution Functions for Solute B 
with Dimensions of /=3.33 and u>=0.25. 

p* 
p(nem)a p a Model Parameter Value/d- 2 P 2(calc) R M S 6 

0.488 0.883(2) 0.69(1) I 0.235 0.663 0.067 
II K 18.5 0.695 0.123 
III 3.48 0.667 0.053 
IV C 

K 6.03 0.676 0.047 

0.444 0.821(2) 0.53(2) I k* 0.164 0.518 0.10 
II K 12.2 0.557 0.106 
III e* 2,42 0.522 0.087 
IV C K 4.14 0.533 0.078 

0.425 0.782(2) 0.47(2) I k* 0.145 0.466 0.080 
II K 10.5 0.502 0.187 
III e* 2.13 0.468 0.093 
IV C 

K 3.62 0.480 0.11 

0.405 0.712(5) 0.39(3) I k* 0.115 0.369 0.063 
II K 8.13 0.408 0.13 
III 1.69 0.379 0.066 
IV C 

K 2.85 0.389 0.078 

0.388 0.616(9) 0.26(3) I k* 0.078 0.252 0.070 
II K 5.28 0.273 0.051 
III 1.14 0.253 0.069 
IV C 

K 1.90 0.260 0.054 

"Uncertainties in the last digit are shown in parentheses. 
6Root-mean-square deviation from fits to singlet orientational distribution functions. 
T i x i n g /c*//c*=0.0262 as obtained from the two-parameter fit of P2 for the full set of 
solutes at p*=0.488. 
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are very close for the two solutes. This is consistent with the results shown in Figure 4.14 

which illustrates the superiority of this model in its ability to predict order parameters 

for an arbitrary collection of solutes simultaneously. 

The dependence of the model parameter values on nematic order parameter p(nem^ 

is shown for the two solutes in Figure 4.19. The parameter values have been scaled 

to be unity for the highest density of p*=0.488. For each solute, the values scale very 

similarly for all four models. Further, the /^"^"dependence f ° r both solutes is very-

similar despite the substantially different shapes of the two solutes. For each case, there 

is a significant increase in the slope of the curves with increasing p^nem\ 

4.4.3 C o m p a r i s o n w i t h E x p e r i m e n t 

We now compare the results of the M C simulations with those of previous experimen

tal N M R studies of solute orientational order in nematics. Specifically, we compare the 

interaction strength parameters obtained from the previous fit to the M C solute order 

parameters for each of the model parameters with those obtained from a fit to the exper

imental values. In order to make this comparison it is necessary to scale the parameter 

values in twTo ways. 

First, it is necessary fix the length scale of the M C system. In the experimental N M R 

studies of Burnell and coworkers [33, 36], a 55 wt% ZLI1132 /EBBA mixture was used as 

the nematic solvent. Thus, we fix the solvent ellipsoid length to 20 A , the approximate 

length of an E B B A nematogen and roughly the average length of the various components 

of the ZLI 1132 mixture. For a length to width ratio of 5:1 for the solvent ellipsoids used 

in the M C simulations, this corresponds to a nematogen width of 4 A . This is narrower 

than a phenyl-ring width of ~5 A, but wider than the thickness of the biaxial nematogen. 

Thus, this is a quite reasonable approximation to the nematogen size and shape given 

that we are employing an axially symmetric ellipsoid. 
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Figure 4.19: Model Parameter Values vs. p^nem' for (a) Solute A (1=2, w=l) and (b) 
Solute B (/=3.33, w=0.25). 

0 .5 0.6 0.7 0.8 0 .9 1 
p(nem) 

Calculated using the potentials I (triangles), II (squares), III (pentagons), and IV 
(hexagons). ^Parameter values are scaled to unity for p*=0.488. 
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Table 4.13: Scaling Ratios from Results of Fits to Singlet Orientational Distribution 
Functions for Solutes A and B at P 2

( n e m ) =0.884 and P 2

( n e m ) =0.634. 

Model Param. 
Solute A a Solute B 6 

Model Param. Value(l) c ' d Value(2) d ' e Ratio 7 Value(l) c ' d Value(2)d'e<s Ratio 7 

I k* 0.614 0.205 0.333 0.235 0.0843 0.358 
II K 8.36 2.55 0.305 18.5 5.77 0.312 
III e* 1.81 0.592 0.327 3.48 1.24 0.355 

IV'' K 6.15 1,92 0.313 6.03 2.07 0.343 

"Solute A has dimensions of 1=2 and w=l. 
feSolute B has dimensions of £=3.33 and w=0.2o. 
cValue(l) calculated for P 2

( n e m ) =0.884. 
^Dimensions of d~2. 
eValue(2) calculated for P 2

( n e m ) =0.634. 
/ Rat io = Value(2)/Value(l). 
^Interpolated value using the results of Table 4.12. 
^Fixing k*/k*=0.0262 as obtained from the two-parameter fit of P 2 for the full set of 
solutes at p*=0.488. 

Second, it is necessary to scale the results of the fit of the M C solute order parameters 

to correspond to the lower experimental value of P 2

n e m^=0.634. We therefore scale the 

values of the model parameters by the ratios of the values obtained by fitting the orien

tational distribution functions for P 2" e m^=0.634 and 0.884. The scaling ratios have been 

calculated separately for all model potentials for solutes A and B. For solute B, the ne

matic order parameter was slightly smaller than that for the experimental value; hence, it 

was necessary to interpolate the model parameter values to correspond to P 2

n e m '=0 .634, 

although the correction was very small. For solute A , a similar correction was negligible. 

The scaling ratios are listed in Table 4.13. It is encouraging that the differences in the 

ratios between the two solutes are small despite the significantly different shapes of the 

solutes. 
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The scaled model parameter values corresponding to the fit of the M C simulation order 

parameters is compared to those obtained from a fit to experimental order parameters 

in Table 4.10 The parameter values are remarkably close, independent of whether the 

scaling ratio for solutes A or B was used. The agreement is particularly noteworthy for 

the two-parameter potential of model IV, for which the potential strength is partitioned 

between its two components very similarly for fits to experimental and M C data. The 

fact that M C order parameters, calculated using very crude models for nematogens and 

solutes, reproduce the basic results observed for experimental data when analyzed using 

the model potentials is highly significant. It firmly establishes the physical origin of these 

potentials as arising from the short-range repulsive interactions in the nematic solvent. 

As well, it highlights the ability to gain significant insight into the nature of liquid crystal 

systems without the need to resort to complex intermolecular interactions. 

4 . 5 Conclusions 

Monte Carlo simulations were used to study the orientational behaviour of solutes in a 

uniaxial nematic liquid crystal and its dependence on the solute size and shape. Solvent 

and solute molecules were both modeled as hard ellipsoids. The results were analyzed in 

terms of four model mean-field potentials. There was remarkable agreement between the 

results of these simulations and those of previous experimental studies in the analysis 

of solute orientational order parameters: the values of the model parameters and the 

trends of the model predictions were very close between simulation and experiment. 

The results confirm that the model potentials closely approximate short-range repulsive 

forces in nematic liquid crystals. Further, the detailed orientational behaviour of two 

differently shaped solutes was investigated. The models were able to describe the angular 

dependence of the mean-field potential reasonably well generally, though more poorly for 
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the narrower solute. Finally, the degree of orientational ordering scales with the nematic 

order parameter p(nem^ m a solute-independent manner. 



Chapter 5 

Monte Carlo Simulations of Oriented Solutes (II): Shape Anisotropy and 

Quadrupole-Quadrupole Interactions 

5.1 Introduction 

There is significant experimental evidence that anisotropic short-range repulsive interac

tions provide an important orienting mechanism for molecules in liquid crystal phases. 

The orientational order parameters for a wide variety of solutes used to probe the environ

ment of a nematic solvent can be predicted accurately by using various empirical mean-

field potentials which are sensitive to the details of the size and shape of the molecules. 

The importance of molecular shape in describing orientational order has been seen as 

evidence that short-range forces are the dominant ordering mechanism. In Chapter 4. we 

presented results of a computer simulation study which firmly established the connection 

between the model potentials and the underlying repulsive forces. In this case, there were 

no anisotropic long-range interactions incorporated into the model system; thus, there 

was no ambiguity in the interpretation of the results. 

While molecular shape anisotropy is a key factor in the ordering behaviour of solutes 

in a nematic phase, there are other important contributions to orientational ordering 

as well. These include long-range electrostatic and dispersion interactions. The former 

arise from the presence of permanent electrostatic multipole moments, while the latter 

arise from correlated fluctuations of the charge distributions of polarizable molecules. 

Interactions between permanent and induced moments are also present in such systems. 

121 
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An experimental study of deuterated molecular hydrogen as a solute in a nematic 

liquid crystal provided direct evidence that a specific electrostatic interaction provides 

a mechanism for orientational ordering [13, 14]. In particular, it was found that the 

interaction of the molecular quadrupole moment of both D 2 and HD with a measured 

average electric-field gradient (EFG) provided an accurate description of orientational 

ordering for these particular solutes. The important results of this study were summarized 

in Section 1.3.2.1 of this thesis. A reasonable conclusion from this study is that all probe 

solutes experience a similar interaction between their quadrupole moments and an average 

E F G . However, to apply this result to the analysis of order parameters of other solutes, it 

is necessary to assume that the E F G is a property of the nematic solvent alone, and not 

influenced significantly by solute properties. This approximation is necessary because the 

E F G can only be measured directly for the deuterated hydrogens, where the internal E F G 

contribution to the N M R quadrupolar coupling constant can be calculated accurately. 

Emsley, Luckhurst and coworkers have discussed the significance of the E F G and 

its effects on orientational ordering in the context of a theory for orientational ordering 

which is closely related to the Maier-Saupe theory of nematics [22, 24, 25]. The im

portant results of their studies were summarized in Section 1.3.2.2. It was shown that 

the nematogen quadrupole moment was the lowest order multipole that provided a non-

vanishing contribution to the E F G . Further, it is possible to derive an expression for 

both the E F G and the contribution to a potential of mean-torque arising from the pres

ence of the E F G . However, the expressions for these quantities are complicated by their 

dependence on the orientational distribution of solute-solvent intermolecular vectors, a 

property which is not readily determinable by experimental methods. Thus, the theory 

and its assumptions cannot be tested easily by an analysis of available experimental data. 

The description of the contribution to orientational ordering from electrostatic inter

actions by means of a solute-independent average E F G has been criticized by Photinos 
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et al. [27. 28, 29]. They provided experimental evidence that the interaction between 

local dipole moments on solute and solvent molecules, in conjunction with short-range 

repulsive forces, provide an additional ordering mechanism [27, 28]. In the context of the 

electrostatic mean-field approach introduced by Burnell and coworkers and developed 

theoretically by Emsley and Luckhurst, solute dipole moments interact with an average 

electric field, which is necessarily zero for an apolar nematic phase; thus, the contribution 

to the mean-field potential should vanish. Further, Terzis et al. have constructed a the

ory to account for the contributions from both short-range repulsive forces and arbitrary 

electrostatic interactions [29]. A surprising result of this study was that electrostatic 

interactions were predicted to provide a contribution to orientational ordering which was 

roughly equal to that from the anisotropic repulsive forces. In addition, it was shown that 

the mean-field electrostatic model of a solute molecular quadrupole moment interacting 

with a solute-independent mean E F G was inconsistent with their theoretical calculations. 

The results from these studies were summarized in Section 1.3.2.3. 

The studies of Emsley, Luckhurst et al. and Photinos et al. represent the only at

tempts to date to provide a theoretical understanding of the orientational behaviour of 

molecules in nematic liquid crystals. The goal of these theories is to derive a mean-

field orientational potential which incorporates the molecular properties, such as shape 

anisotropy and electric multipole moments, that give rise to the intermolecular interac

tions responsible for the alignment of molecules. There have been many other mean-field 

models developed to describe orientational ordering, such as those examined in Chapter 4, 

but these are empirical in nature and cannot be related directly to molecular properties. 

In the derivation of true theoretical models, there are two types of approximations em

ployed whose validity determines the accuracy of the theory: (1) the modeling of the 

molecules and the pair potential, and (2) the statistical approximations required when 

integrating over the pair potential to obtain the mean-field potential. Unfortunately, it is 
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difficult to test the theory and the validity of the approximations using the experimental 

data alone. This problem is due to the fact that there are multiple contributions to 

orientational ordering. Experiment provides only a few orientational order parameters 

per solute, and no estimate of the relative magnitude and effect from each contribution. 

Computer simulations of solutes in nematic solvents can provide an effective bridge 

between experiment and theory. The molecular models employed in the various theories 

can easily be incorporated into the simulations. A comparison of the simulation results 

with theory and experiment can then provide valuable insight into the validity of the 

models for the pair potential and the statistical approximations used in the theory. In 

addition, it provides a simple method for examining the importance of each component 

of the intermolecular pair potential as an orienting mechanism and how the complex 

interplay between the different contributions varies with the properties of the solute. 

In this chapter, we employ the Monte Carlo computer simulation method to study 

the combined effects of shape anisotropy and electrostatic interactions on orientational 

ordering of solutes in a nematic phase. We employ a minimal model in order not to 

obscure the interpretation of the results. Specifically, we model both the solvent and 

solute molecules as cylindrically symmetric hard ellipsoids with point quadrupoles placed 

at their centres. The modeling of the molecular shape is precisely that used in Chapter 4, 

and approximates the effects of shape anisotropy on the short-range repulsive forces while 

keeping the model computationally convenient. In the study presented in the previous 

chapter, this model yielded results that were quantitatively similar to those observed in 

earlier experimental studies. 

The use of point quadrupoles to describe the electrostatic properties of the solvent 

and solute molecules is likely a far more drastic approximation. At short intermolecu

lar distances, the quadrupole-quadrupole interaction may yield an unrealistic estimate 

of the electrostatic interactions between molecular charge distributions. This limitation 
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may be particularly problematic at the high densities typical of a condensed phase. Nev

ertheless, there are important reasons why this model deserves to be investigated. It is 

important to determine the simplest model which can reproduce the main qualitative be

haviour observed experimentally in real nematic systems. Further, the molecular models 

used in the theories of orientationally ordering described above also employ point elec

trostatic multipole moments. Thus, the simulations can provide a test of the statistical 

approximations employed in the derivation of the theoretical mean-field potentials. We 

focus on the effects of quadrupole moments alone, since a principal goal of this study 

is to investigate the interaction of the solute quadrupole moment with the E F G gener

ated by the solvent, and because the quadrupole moment is the lowest order multipole 

that the Emsley-Luckhurst theory predicts to contribute to a non-vanishing E F G . There 

are also important practical considerations for choosirig this model. More realistic de

scriptions of the molecular charge distributions, such as the distribution of several point 

multipole moments within the volume of the molecule, would involve considerably more 

computational effort to calculate the pair potential in the M C simulations. As well, 

quadrupole-quadrupole interactions decay as r~ 5 , which may be sufficiently rapid to ne

glect very long-range contributions to the total energy. This also has a major influence 

on determining the speed with which the calculations can be performed. Dipole-dipole 

interactions, by comparison, decay as r~ 3 and require the inclusion of much longer range 

contributions to the total energy, as well as the use of Ewald sums to induce the conver

gence of the total energy with increasing system size [130]. The result is a much more 

time-consuming calculation. 

To summarize, the description of a solvent or solute molecule as a hard ellipsoid 

with a point quadrupole represents a simple model with the following attributes: (1) it 

is computationally convenient; (2) it can be used to test the statistical approximations 

in current theories of solute ordering; (3) it is a starting point to determine the basic 
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molecular properties required to explain orientational behaviour of solutes in nematics: 

(4) it can be used to investigate the individual effects of the contributions to orientational 

ordering from shape anisotropy and electrostatic interactions, information which is not 

readily obtained by experiment. 

In the following section, we outline the basic ideas of the theoretical models developed 

by Terzis and Photinos (TP) [29] and Emsley and Luckhurst et al. (EL) [19, 22, 24]. 

Section 5.3 describes the technical details of the Monte Carlo simulations. In Section 5.4 

we present the results of the simulations and discuss their significance in terms of both 

theoretical predictions and experimental observation. Section 5.5 summarizes the key 

results of this study. 

5.2 Theory 

5.2.1 T P Theory 

Terzis et al. have developed a theory for the description of orientational order of solutes 

in a nematic solvent which can incorporate dispersion, induction, short-range- repulsive, 

and electrostatic interactions between the solute and solvent molecules [29]. We present 

a brief outline of the derivation of the mean-field orientational potential, considering only 

the effects of the latter two interactions. 

The theoretical approach involves the reduction of the singlet distribution function of 

the solute, which is given by the following exact expression: 

P(X) = Z~l jdX1dX2...dXNPN(XuX2,...,XN)exp 
N 

Y,u{X,Xi)lkBT 
i=l 

(5.86) 

where X = (r, to), PN(Xi,X2,XN) is the N-particle solvent distribution function in 

the absence of the solute, u(X,Xi) is the pair potential between the solute and the ith 

solvent molecule, and Z is a normalizing factor. The principal approximation of the 
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theory is to neglect the correlations between solvent molecules. 

PN(XUX2,...,XN) * P(X1)P(X2)...P(XN), (5.87) 

which simplifies the expression of the solute distribution function to the following: 

P(X) dX'P{X') exp {-u(X, X')/kBT) 
N 

(5.88) 

Short-range repulsive forces are approximated by a hard-core (HC) interaction between 

molecules, which can take the values of zero or infinity depending on whether the 

molecules overlap. Anisotropic long-range interactions are restricted in this treatment to 

electrostatic forces. Thus, the pair potential can be written as 

u(X, X{) = uHC(X, Xx) + uES{X, Xi) (5.89) 

Further, for spatially homogeneous systems, P(X) = f(u)/V and P(X) = f(to)/V 

Thus, the solute orientational distribution function can be written as the following: 

/ ( " ) V-1 / du'd,rf{uj') {1 - K{r, u, CJ')} = [1 - (K)] 
N 

r--\lA' 

W here 

and where 

K(r,u,uj') = 1 - gHcexp(~UEs/kBT), 

9HC = exp {-uHC/kBT) 

(5.90) 

i.91: 

(5.92) 

Note that K = 1 for overlapping particles and decays to zero with increasing r, though 

it has appreciable values for a small localized volume va, where v^3 is of the order of a 

few molecular diameters. The solute distribution function mav be written 

f(u) ~ e x p ( A H n ( l - (K))) (5.93) 
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Expanding the logarithm and neglecting terms of order (va/V)2 and higher, it is trivial 

to show that 

f(u;)~exp[-N{K(u}))]. (5.94) 

This corresponds to the following terms for the mean-field potential: 

U(LU) = UHC(u) + UES{LU), (5.95) 

where 

UHC(u)/kBT = pj drdJf{J) [1 - gHC(r, u, to')} (5.96) 

and 

UES(u)/kBT = pj dfdu'fiu') [1 - exp (-uES{r, u, u')/kBT)] gHC(r, u') (5.97) 

As a final remark on the mean-field potential, we note that the contribution from the 

hard-core component of the pair potential can be written as 

UHc{u)/kBT = pj du'Vexiu^fiu'), (5.98) 

where Vex(u,a/)* is the orientation-dependent solute-solvent excluded volume. As dis

cussed in Section 1.3.2.3, this is the same form of the potential that appears in the 

self-consistent expression in Onsager's theory for the distribution function for a system, 

of long hard rods [7], as described in Section 1.2.2.1. This is not surprising, since both 

theories consider the effects of interactions of pairs of molecules while neglecting corre

lations due to three and more particles. Onsager's theory is valid in the limit of very 

long rods where the effects of these higher order correlations are negligible. While the 

typical nematogen and solute molecules do not satisfy this condition, Terzis et al. have 

argued that neglecting solvent-solvent interactions should have minor effects if the system 

is sufficiently far removed from the phase transition. This assumption can be tested by-

comparing the results of computer simulations and the theoretical predictions for solutes 

in nematic systems. 
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5.2.2 E L Theory 

A theoretical model for describing the orientational ordering of solutes in a uniaxial 

nematic solvent which was developed by Emsley, Luckhurst et al. [19] was introduced in 

Section 1.3.2.2. The approach of this theory is closely related to that used in the Maier-

Saupe theory of nematic liquid crystals. A mean-field orientational potential is derived 

using some simplified model for the pair potential between solvent and solute molecules 

and averaging over the magnitude and direction of the intermolecular displacement, and 

over the orientation of the solvent molecules. The relationship between the mean-field 

and pair potentials is given by: 

where u>\ = (6i,<pi) and co2 = (02. 4>2) are the polar angles describing the orientation of 

the nematic director in the solute and solvent molecular frames, respectively. Also, r is 

the intermolecular displacement, p is the number density of the solvent, u(f, ui, LO2) is 

the solvent-solute pair potential, f{u>2) is the solvent orientational distribution function 

(ODF), and g(r) is the pair correlation function. The crucial approximation of this theory 

involves neglecting the orientational correlations between molecules, i.e. g(f,cui,u2) ~ 

Most applications of the Emsley-Luckhurst theory to the analysis of experimental 

data have employed long-range anisotropic dispersion forces, though the incorporation of 

an electrostatic interaction between quadrupoles to the pair potential has been discussed 

[22, 24]. Below, we derive the mean-field potential between quadrupoles for the case of 

axially symmetric molecules. 

The energy of two interacting axially symmetric quadrupole moments may be written 

(5.99) 

9(f)-
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as 

UQQ(r,uuuj2) = (^)^\[^ Q : > ° Q 2 A E C(224;m1,m2,m)Y2,mi(u}i) 

V 40 \ ITTCQr j m i i m 2 j m 

xY2,m2MY2*m(u), (5.100) 

where (7(224: mi , m 2 , m) are Clebsch-Gordon coefficients, u = (9, (f>) describe the ori

entation of the intermolecular vector in the frame of the nematic director, and Q2?d = 

\J^Qz

az , where is the principal cartesian component of the quadrupole moment 

tensor for the solute (a = u) and solvent (a = v). Substitution of Eq. (5.100) into 

Eq. (5.99) yields 

tf(0) = X ^ p £ C(224;m 1 > m 2 > m)y 2 i m i (a; 1 )<y 2 , m a > 1 4,rn 

where 

and where 

4 ^ 0 / mi7?,.m \ r I 
(5.101) 

(Y2,m2) = I dwJMY^M, (5.102) 

(^) = / . ^ ^ ^ > 2 d ^ - ( 5 - 1 0 3 ) 

In the case of axial symmetry considered here, Eq. (5.102) reduces to 

0 V , > = \P^P2

{nem)6mo.o, (5.104) 
V 4 T T 

where p^nem^ is the second-rank nematic order parameter, while Eq. (5.103) reduces to 

/Ylm\ a r , fP~4+(r)9(r) 
6>/SF<Jm,o/ 4 [r

rl9[r)dr, (5.105) 

where 

P+(r) = J d9sin 9P4{cos 9)P(9; r), (5.106) 

and where P(0; r) is the probability of finding a solvent molecule at angle 9 relative to 

the nematic director for a particular intermolecular distance r given that the solute is at 
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the origin. Finally, substitution of Eqs. (5.104) and (5.105) into Eq. (5.101) yields 

P4

+(r)g(r) 
U{9) = 60npr****" j P 2

( " e m ) / -dr P2(cos 9) (5.107) 

Noting that the form of the interaction between a quadrupole moment and an E F G is 

given by 

U(9) = -^FZZQZZP2(cos8), (5.108) 

Eq. (5.107) can be used to define an average E F G : 

F Z Z = -1207rpQ^P 2

( n e m ) j P ^ r ^ ( r ) d r ( 5 1 0 9 ) 

It is convenient to rewrite the expressions for the mean-field potential and the average 

E F G in terms of dimensionless quantities. We define a reduced mean-field potential 

U*(9) = U(9)/kBT: 

U*(9) = 60ITQ:Q:P* 
•P4

+(r*)g(r*) 
( r * ) 3 

dr* P 2(cos0), (5.110) 

where Q*Q = /\/4iTe0kBTd5, p* = pv0, r* = r/d, v0 is the solvent ellipsoid volume, 

and where d, the diameter of the solvent ellipsoid, is used to fix the length scale in the 

system. Further, we define a dimensionless E F G : 

F, zz (5.111] 

Finally, comparing Eqs. (5.110) and (5.111), we can write 

1 
U*{9) -FZZ\Q:\Q:P2(COS9). (5.112) 

In the context of the theory presented above, an essential requirement for the observa

tion of a non-vanishing average E F G is a non-spherical distribution of solute-solvent inter

molecular vectors. If this distribution had spherical symmetry, then the factor defined in 

Eq. (5.103) would vanish for all values of m, along with the magnitude of the E F G . This 
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point was first noted by Emsley et al. who incorporated this factor into the derivation 

of the contribution to the mean-field orientational potential from quadrupole-quadrupole 

interactions [22]. However, this derivation had implicitly assumed the separability of av

eraging the pair potential over the magnitude and direction of the intermolecular vector 

However, the computer simulations of Emerson et al. [26] indicate that the fourth-

rank order parameter P 4

+ , which describes the non-sphericity of the intermolecular-vector 

distribution, is strongly dependent on the molecular separation r. and that therefore the 

separability of the averaging in Eq. (5.113) is invalid. The mean-field potential derived 

above for the quadrupole-quadrupole pair potential differs from that derived originally 

by Emsley et al. by using Eq. (5.105) rather than Eq. (5.113) for averaging over the 

intermolecular coordinates. 

5.3 M C S i m u l a t i o n s 

The methods employed in the simulation of solutes in a nematic solvent are similar to 

those used in Chapter 4. The calculations were performed at constant volume for a 

fixed number of particles confined to a rectangular box subject to the usual periodic 

boundary conditions. The calculations used a system of 239 solvent particles plus one 

solute particle. Nematogens were modeled as cylindrically symmetric hard ellipsoids 

with an axis ratio of 5:1. Solutes were also modeled as cylindrically symmetric hard 

ellipsoids, though with a variety of sizes and axis ratios. An equilibration period of 1-

2 x l 0 5 trial moves per particle was used, starting from an initial configuration where all 

of the molecules were orientationally aligned and positioned on a F C C lattice. 

The sequence of system configurations was generated using the Metropolis algorithm, 

r : 

(5.113) 
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which was described in Section 1.5. In some of the simulations, only a hard-core pair 

interaction between molecules was considered. In this case, trial orientational and trans

lational moves for each randomly chosen particle were rejected if it resulted in overlap 

with any of the other particles, and accepted if there was no overlap—precisely the 

same procedure as described Chapter 4. However, in the present study, most of the 

calculations involved systems of particles with an additional interaction between point 

quadrupoles positioned at the centres of the ellipsoids. For such systems, the Metropo

lis algorithm is applied as follows. Trial configurations are first tested for overlap. If 

particles overlap, then the configuration is rejected. If the particles do not overlap, the 

quadrupole-quadrupole energy of the total system is calculated and compared to that of 

the previous configuration. If AE <0, then the move is accepted; if AE >0, then the 

configuration is accepted with a probability given by e

_ A £ / A : B T . The maximum displace

ments and rotations were chosen to contribute approximately equally to the likelihood 

that a particle move would be rejected, and to yield an overall acceptance ratio of in the 

range of 40-60% in order to achieve equilibrium as rapidly as possible. 

The solvent-solvent quadrupolar pair potential was. calculated using the following 

relation for the interaction between axially-symmetric quadrupoles: 

where 9\ and 92 are the angles between the quadrupole symmetry axis and the dis

placement vector between the point quadrupoles, and 9\2 is the angle between the two 

quadrupole symmetry axes. The E F G at the site of the solvent was calculated using the 

following expression for the E F G due to a point quadrupole moment: 

UQQ = 7 

i2 92 - 20 cos #i cos 92 cos 012], 

i 0i — 5 cos 02 + 2 cos2 9 12 

(5.114) 
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SbQapfafpf^fv], (5.115) 

where f is a unit vector describing the orientation of the displacement between the 

quadrupole pair, and where we have used the Einstein summation convention for repeated 

indices. The solute-solvent pair potential is a function of the E F G due to the solvent: 

= -^QiS c o s ^cp. cos 6auF^, (5.116) 

where Q / ;„ and Qffl are the quadrupole moments in the laboratory and principal axis 

system (PAS) frames, respectively, and cos0Q / i is the angle between the PAS Q - a x i s and 

the laboratory //-axis. 

The total energy is obtained by summing the pair potentials over all of the particles 

in the system and averaging over the sequence of configurations which are generated by 

the Metropolis algorithm. In certain cases for long-range interactions, it is necessary 

to include contributions to the total energy from particles that are very widely spaced 

in order to minimize truncation effects. For a finite-sized simulation system, this often 

requires a summation over molecules in repeated images of the system. However, this 

greatly increases the time required to perform a simulation. In the present case,- the 

quadrupole-quadrupole pair potential decays as r - 5 , which was found to be sufficiently 

rapid to eliminate the need to perform such a lattice summation. The energy of a single 

molecule was calculated by summing over the pair potentials between it and all other 

molecules within a radius given by half the smallest dimension of the sample cell. For 

a density of p*=0.42, this corresponds to a distance of r=4.96d, where d is the width of 

a solvent ellipsoid. When this maximum distance was doubled, the calculated energy of 

the system and of each of the molecules, and the E F G sampled by the solute, was found 
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to change by <1% for each of several different system configurations. Further, ensemble 

averages of various quantities of interest were not affected by increasing the sampling 

range. 

Most of the simulations for the quadrupolar systems were performed at Q*v = — v/275 

and p*=0.42. The choice of Q*v falls at the lower end of a range of values (| Q*v |RS 0.75-4.0) 

suitable for T=300 K and d ~5 A using the results of a study which employed a simple 

atom-dipole method for approximating the quadrupole moment for rigid conformers of 

various real nematogens. The use of higher values of Q*v was found to promote the 

formation of a smectic phase in the model system and was therefore avoided. Note that 

we neglect the axial asymmetry of the tensor present in real molecules. 

The nematic order parameter p™ e m was determined by calculating the largest eigen

value of the following matrix: 

(Q) = | E ( ^ - ^ ) ' (5-1 1 7) 

where A-7 is the number of solvent molecules, and is a unit vector describing the 

orientation of the ith solvent molecule. The brackets ( ) denote an ensemble averaging 

over the sequence of configurations generated by the M C Markov process. The nematic 

director is given by the eigenvector corresponding to this eigenvalue. In addition to the 

nematic order parameter, the following functions were also calculated: 

• the solvent orientational distribution function f(9) 

• the solvent-solvent pair correlation function gvv(r*) 

• the second-rank solvent-solvent orientational correlation function p2VV\r*) defined 

as follows: 

Pt\r*) = N { * _ 1 } £ <P2(cos<y >, ' (5.118) 

where % is the angle between solvent ellipsoids i and j 
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• the solute orientational order parameter P2 

• the solute orientational distribution function f(9) 

• the average E F G tensor at the center of the solute Fap in the frame of the nematic 

director 

• the solute-solvent radial distribution function guv(r*) 

• the solute-solvent orientational correlation function P2

uv\r*), defined in an analo

gous manner as P2

vv\r*) above 

• the fourth-rank orientational order parameter for the distribution of solute-solvent 

intermolecular displacements P 4

+(r*) defined in Eq. (5.106) 

"All of the measured quantities described above were calculated by averaging over 

typically 8-9x10° configurations. In order to calculate properly all quantities that are 

measured with respect to the nematic director, which undergoes orientational fluctua

tions over the course of a simulation, the director was recalculated after every 101—102 

attempted moves per particle. A l l calculated quantities which are functions of orientation 

with respect to the director were calculated for cos 9 in the range of 0 to 1 in increments 

of 0.01. Further, the quantities which depend on the intermolecular separation r were 

calculated to a distance of half the minimum dimension of the sample cell (e.g. 4.96d for 

p*=0.42) in increments of 0.05d. Solute and solvent orientational order parameters and 

E F G tensor components were calculated in 80-90 block averages of 104 sweeps through 

the system. The fluctuations of these averages were used to provide an estimate of the 

uncertainties of these quantities. 
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Table 5.14: M C and Theoretical Solute Order Parameters for a Hard-Core System 

p* la wa P 2 (MC) P2 (Th) 6 pnem 
r2 

0.388 0.65 1.0 -0.05(1) -0.030 0.627(4) 
2.0 1.0 0.24(1) 0.077 0.626(4) 
2.0 0.5 0.23(1) 0.083 0.629(4) 
5.0 1.0 0.63(1) 0.308 0.626(4) 

0.44 0.65 1.0 -0.13(1) -0.043 0.814(4) 
2.0 1.0 0.50(1) 0.077 0.811(4) 
2.0 0.5 0.34(1) 0.124 0.810(4) 
5.0 1.0 0.81(1) 0.458 0.811(4) 

" Units of solvent ellipsoid width d. 
b Calculated using Eq. (5.96). 

5.4 Resul ts and Discussion 

5.4.1 Ha rd -Core System 

Orientational distribution functions for four different solutes were calculated for two dif

ferent densities for a system employing only hard-core interactions. The M C distributions 

are shown in Figures 5.20 and 5.21. The corresponding second-rank solute orientational 

order parameters are listed in Table 5.14. The variation of the distributions with solute 

shape and solvent density is similar to that observed for the calculations described in 

Chapter 4. Increasing the length of the solute results in an increase in the degree of 

orientational ordering. This is evident in Figure 5.20 which shows distributions for.so

lutes with dimensions of /=5.0 and w=1.0, and /=2.0 and w=l.0. Further, increasing 

the solvent density, and therefore the degree of solvent orientational order, leads to a 

corresponding increase in solute orientational order. Note that the oblate solute with 

dimensions of Z=0.65 and iu=1.0 prefers to orient with its symmetry axis perpendicular 
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Figure 5.20: Calculated and Theoretical Solute Orientational Distribution Functions for 
a Hard-Core System (I) 
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M C data (squares) and predictions from T P Theory using Eq. (5.96) (solid line). 
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Figure 5.21: Calculated and Theoretical Solute Orientational Distribution Functions for 
a Hard-Core System (II) 
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Chapter 5. Shape Anisotropy and Quadrupole-Quadrupole Interactions 140 

to the nematic director resulting in a distribution maximum at 0=90° and a negative 

order parameter. 

We use the results of these simulations to test the predictions of the T P theory 

using the mean-field potential due to hard body interactions given by Eq. (5.96) or 

equivalently by Eq. (5.98). The orientation-dependent excluded volume Vex(cj,u>'), which 

for axially symmetric ellipsoids is a function of only the angle between the symmetry axes, 

was calculated through a numerical integration over the magnitude and direction of the 

solute-solvent intermolecular vector. The results for the case of identical 5:1 ellipsoids 

were consistent with those reported by Tjipto-Margo et al. [12] Note that the potential 

of Eqs. (5.96) and (5.98) is expressed in terms of the. solvent orientational distribution 

function f(u>). Thus, in order to calculate the solute distribution, we use the solvent 

distribution calculated in the M C simulation. Note that in the study of Terzis et ai, 

the mean-field potentials were rewritten in terms of the solvent order parameters p^nem^ 

and P\nem\, with higher order contributions neglected. The values of these quantities are 

not reported and thus were estimated: values were chosen in order to yield calculated 

order parameters to be consistent with experimentally measured order parameters for 

several molecules. Clearly, the M C technique provides a superior method to test the 

approximations of the theory. 

The calculated theoretical distribution functions are overlaid on the plots of the M C 

distributions in Figures 5.20 and 5.21 for the four different solutes for the densities of 

p*=0.388 and 0.44. In all cases the T P theory drastically underestimates the degree of 

orientational order observed in these hard-core systems. This contrast is further illus

trated by comparing the theoretical and calculated second rank order parameters P 2

 m 

Table 5.14. A notable case is that of the solute which is identical to the solvent particles 

(/=5, w=l). In this case, the M C orientational distribution function of the solute is iden

tical to the solvent distribution which was used in the calculation of the theoretical solute 
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ODF; thus, the very poor agreement between theory and simulation highlights the lack 

of internal self-consistency of the theory. Clearly, the hard-core component of the T P 

mean-field potential given by Eq. (5.96) gives an inadequate description of orientational 

ordering for hard-core systems. 

The flaw in the T P theory must be due to the approximation of neglecting solvent-

solvent correlations, which is expressed in Eq. (5.87). This is not a surprising finding 

given the high density of the nematic phase, coupled with the short-range nature of the 

interaction. It is analogous to the poor quantitative predictions of Onsager theory, which 

accounts for only two-particle correlations, when applied to hard particles of realistic 

length/width ratios. In the study by Tjipto-Margo et al. [12], an additional term in

volving the third virial coefficient (which accounts for three-body correlations) in the 

expression for the free energy for a system of hard ellipsoids with a dimension ratio of 5:1 

was included; this approach yielded an adequate quantitative description of nematogen 

ordering. Similarly, the T P theory requires a more careful treatment of many-particle 

correlations, beyond the consideration of solute-solvent effects alone, in order to provide 

a reasonable description of solute orientational behaviour. Such a modification, however, 

may be difficult to incorporate into the framework of the theory. 

5.4.2 Quadrupolar Systems 

Table 5.15 lists the P2 and F*zz calculated for simulations employing a wide variety of 

solute shapes and quadrupole moments. The nematic solvent was characterized by a 

reduced density of p* = 0.42, and by quadrupole moments with values of Q*v = — 

The nematic order parameter was found to be P2

{nem) = 0.76 ± 0.01, with some minor 

variations between systems with different solutes; specific values are listed in Table 5.15. 

Further, the table shows the theoretical Fzz calculated using Eq. (5.111) and theoretical 

predictions of P2 for spherical solutes using the reduced mean-field potential of Eq. (5.112) 
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Table 5.15: E F G and Order Parameters for Several Solutes at p*=0A2 and (Q*)2=2.5 

Shape Dimensions QIQT FZZ(MCY P 2 (MC) P2 (Th) c p(nem) 
2 

Spherical 1=1.0 -2.5 1.8 (2) 1.5 0.26(2) 0.50 0.749(3) 
w=1.0 -2.0 1.0(1) 0.9 0.15(2) 0.19 0.750(3) 

-1.5 0.5(1) 0.5 0.07(1) 0.08 0.761(2) 
0.0 0.05(3) 0.15 0.01(1) 0.0 0.751(3) 
1.5 0.5(1) 0.4 -0.03(2) -0.05 0.756(2) 
2.0 1.4(1) 1.4 -0.10(2) -0.22 0.756(2) 
2.5 2.2 (2) 2.4 -0.16(2) -0.32 0.758(2) 

Spherical 1=0.75 -1.5 3.8(2) 3.9 0.29(2) 0.59 0.757(2) 
w=0.75 -1.0 1.1(1) 1.1 0.09(1) 0.12 0.754(2) 

0.0 0.04(3) 0.07 0.01(1) 0.0 0.761(2) 
1.0 1.8(1) 1.7 -0.06(1) -0.14 0.757(2) 
1.5 5.4(3) 4.9 -0.19(2) -0.36 0.757(2) 

Oblate Z=0.65 -1.5 -0.8 (1) -0.9 -0.11(1) — 0.759(2) 
w=1.0 -0.75 -0.32(4) -0.39 -0.12(1) - 0.751(2) 

0.0 -0.01(3) -0.05 -0.09(1) - 0.756(2) 
0.75 2.1(1) 2.0 -0.14(1) - 0.761(2) 
1.5 11.8(4) 15.5 -0.37(2) - 0.752(2) 

Prolate 1=2.0 -2.5 2.7(1) 3.0 0.56(2) — 0.762(2) 
w=1.0 -1.5 1.0 (1) 1.0 0.39(3) - 0.758(2) 

0.0 -0.01(3) -0.02 0.30(2) - 0.753(2) 
1.5 -0.39(3) -0.39 0.37(2) - 0.768(2) 
2.5 -0.66(4) -0.70 0.40(2) — 0.761(2) 

Prolate 1=5.0 -2.5 3.5 (1) 4.6 0.81(1) — 0.768(2) 
w=1.0 0.0 -0.04(3) -0.14 0.80(1) - 0.772(2) 

2.5 -1.16(5) -1.50 0.78(2) 0.763(2) 

"Calculated using = —y/2^E < 0; using = +y/2~I > 0 simply reverses the sign 
olF'zz. 
Calculated using Eq. (5.111). 
cCalculate using Eq. (5.112). 
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of the E L theory. Note that F*zz calculated in both the MC simulations and by E L theory 

is proportional to Q^) (see Eqs. (5.115) and (5.111)). Thus, the sign of Fzz is determined 

by the sign of Q[v

z\ which in the present calculations was taken to be < 0. Using a 

positive value of Q^J simply reverses the sign of Fzz but otherwise has no effect on the 

calculated quantities. 

The most striking result is the strong dependence of Fzz on the shape and quadrupole 

moment of the solute. This is in contrast to the solute-independent model put forward 

by Burnell and coworkers. For the case of spherical solutes, F*zz increases in magnitude 

for increasing | Q*u |, though it is approximately symmetric with respect to changing the 

sign of Q*u, since the sign of Fzz is consistently positive. This is clearly not the case 

for the non-spherical solutes where the shape anisotropy breaks the symmetry and Fzz 

undergoes concomitant change in sign with Q*u. Thus, for the oblate solute, Fzz < 0 for 

QuQl < 0, and Fzz > 0 for Q*UQ*V < 0. The trend is the reverse for the small prolate 

solute (1=2, w=l). 

The dependence of Fzz on Q*u is qualitatively consistent with the behaviour of 

the measured orientational order parameters P2 in the context of a mean-field E F G -

quadrupole moment interaction given by Eqs. (5.108) or (5.112). In the case of the 

spherical solutes, the consistently positive Fzz is predicted successfully by Eq. (5.112) 

to give P2 > 0 for Q* > 0 and P2 < 0 for Q*u < 0 (for the present case where Q*v < 0). 

This is also consistent with the expected behaviour of P2 based on a consideration of the 

quadrupole-quadrupole pair potential alone. For axially symmetric quadrupole moments 

of the same sign, the minimum energy orientational configuration is a perpendicular 

arrangement of the symmetry axes; thus, a negative order parameter is expected. For 

quadrupole moments of opposite signs, a parallel configuration corresponds to the lowest 

energy, and thus, a positive P2 is predicted. 
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The asymmetry of Fzz for the non-spherical solutes is also consistent with the be

haviour of the calculated orientational order parameters P2, referenced with respect to 

the systems with Q*u=0. For the case of the oblate solute, the negative P2 is enhanced 

by the positive Fzz, which is present for Q*UQ*V > 0. Again, this is consistent with 

the expectation based on the orientation-dependence of the quadrupole-quadrupole pair 

potential. However, a somewhat surprising result is the (minor) enhancement of the neg

ative P2 for the case of opposite signs of solvent and solute quadrupole moments, where 

the lowest pair potential energy configuration corresponds to a parallel arrangement of 

the quadrupole symmetry axes. While the corresponding case for spherical solutes gave 

rise to an alignment of the solute symmetry axis along the nematic director, the nature 

of the shape anisotropy for the oblate solute appears to frustrate that outcome. 

The analogous situation is present for prolate solute with dimensions of 1=2 and w=l. 

In this case, the expected enhancement of the positive value of P2, relative to the case 

of Q*=0, for Q*UQ*V < 0 is observed, as well as an unexpected enhancement of P2 for 

Q*Q* > 0. Again, the increase in solute orientational ordering with | Q*UQ*V | regardless 

of the sign of Q*UQ*V is consistent with the change in sign of Fzz. 

In the case of the large prolate solute, with dimensions equal to those of the solvent 

ellipsoids (/=5.0, u;=1.0), Fzz has a similar dependence on Q*UQ*V relative to the case 

of the smaller prolate ellipsoid. Note however that the orientational ordering is not 

significantly affected by the details of the electrostatic interactions. Thus, orientational 

ordering of highly elongated particles in a dense nematic phase appears to be dominated 

by entropic considerations, in keeping with the belief that molecular shape anisotropy, 

in conjunction with short-range repulsive forces, is the dominant ordering mechanism for 

nematogens. 

The full orientational distribution functions for three solutes are plotted for Q*UQ*V = 

0, ±2.5 in Figure 5.22. The trends present in the behaviour of the P2 for each of the solutes 
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Figure 5.22: Solute Orientational Distribution Functions at (Q*) =2.5 and p*=0.42 
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is mirrored by the behaviour of the distributions. Only in the case of the spherical solute 

is the orientational ordering consistent with an interaction between the solute quadrurjole 

moment and a Fzz of a constant sign. The behaviour of the solute-solvent orientational 

correlation functions P2

uv\r*) for the same solutes, shown in Figure 5.23, provides some 

additional insight into the perturbing influence of the quadrupole-quadrupole pair in

teractions on the ordering of the solutes. Note that in the limit of wide separation r*, 

P^uv\r') = P2 • p(nem\ Thus, the long -range limit of these functions provides a measure 

of the degree of solute orientational order. For all cases, except that of the spherical 

solute with Q*u = 0, there are both short-range and long-range orientational correla

tions. In the case of the spherical solute, both long-range and short-range correlations 

have the same pattern: enhancement of parallel configurations for solute and solvent 

quadrupole moments of the opposite sign, and enhancement of perpendicular configura

tions for quadrupole moments of the same sign. Note that the short-range correlations 

are indeed very short-range as they vanish within approximately one solvent ellipsoid 

width d from the nearest approach distance. 

The case of the prolate solute is more interesting. While oppositely signed solute and 

solvent quadrupole moments corresponds to an enhancement of both short-range and 

long-range parallel configurations, quadrupole moments of the same sign lead to a slight 

enhancement of long-range parallel configurations, but a significant reduction of short-

range parallel configurations. The latter feature is more in keeping with the expectations 

based on the orientation-dependence of the quadrupole-quadrupole pair potential. In the 

case of the oblate solute, there is no noticeable effect of the quadrupole-quadrupole pair 

potential on the short-range orientational correlations. 

At this point, it is instructive to compare qualitatively the results of the simulations 

with certain previous experimental results. Table 5.16 lists the values of Szz for D2 ben

zene, hexafluorobenzene and acetylene measured in three different liquid crystals. The 
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Figure 5.23: Solute-Solvent Orientational Correlation Functions for (Q*,)2=2:0 and. 
p*=0A2 
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Table 5.16: Experimental Order Parameters for Three Solutes 

Solute Q zz 
a -OS 

JZZ 

E B B A C 1132e 

dideuterium 
benzene 
hexafiuorobenzene 
acetylene 

0.649 
•7.8(2.2)' 
9.59 

5.5(2.5)h 

-0.00965 
-0.1157 
-0.3144 
-0.0585 

-0.00082 
-0.1756 
-0.2280 
0.1123 

0.00731 
-0.2519 
-0.2144 
0.1912 

"Units of 10~ 2 6 esu-cm2. 
bFrom ref. [16]. 
c F z z = - 6 . 4 2 x l O n esu for D 2 . 
dFzz=0.Q esu for D 2 . 
e F z z = 6 . 0 7 x l O n esu for D 2 . 
7Average value of those reported in refs. [131] and [132]. 
»From ref. [133]. 
h Average value of those reported in refs. [134] and [135]. 

E F G has been measured for D 2 and HD in these nematics and was found to be positive 

for ZLI 1132, zero for the 55 wt% 1132/EBBA mixture and negative for E B B A [13, 31]. 

Further, benzene is known to have a large negative quadrupole moment, while hexafiu

orobenzene has a large positive value; approximate values are listed in the table. The 

magnitude of the negative value of P 2 was found to increase with increasing Fzz, while 

the opposite trend was observed for hexafiuorobenzene. This behaviour can be explained 

by the interaction of the molecular quadrupole moments interacting with an external Fzz 

which has a sign that is consistent with that measured by molecular hydrogen for the 

three nematics. The values of orientational order parameters of acetylene are likewise 

consistent with this solute-independent mean-field prediction. In particular, note the 

negative value of P 2 for acetylene in E B B A , a feature which is not easily rationalized ex

cept by an interaction between its positive Qzz with a negative Fzz. Further, note that 
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benzene and hexafiuorobenzene have approximately the same shape, despite the large 

difference in quadrupole moments. Thus, the differences in P2 for the two molecules 

in the same liquid crystal likely arise principally from the difference in quadrupole mo

ments. Again, the trend is consistent with a mean-field interaction between a quadrupole 

moment and a FZz with a sign which is independent of the solute Qzz: the magnitude 

of the negative P2 is enhanced for QzzFZz < 0, and reduced for QzzFZz > 0, where, 

again, we use values of Fzz measured using D 2 . The slightly larger magnitude of P2 of 

hexafiuorobenzene in the 55% mixture (where Fzz — 0), compared to that of benzene, 

is probably due to the fact that hexafiuorobenzene is slightly more oblate than benzene. 

To summarize, certain key experimental results strongly suggest that molecules of very-

different shapes and quadrupole moments interact with an average FZz which, at the 

very least, has the same sign. 

Clearly, the experimental results conflict with the results of the M C simulations which 

employ a simplified quadrupole-quadrupole potential to approximate the electrostatic 

interaction between molecules. As stated earlier, for example, the oblate solute in the 

simulations samples an average Fzz whose sign was directly proportional to the sign of 

the solute Q*u which was further manifested in an enhancement of | P2 | for increasing 

| Q*UQ*V | relative to the case of Q*u=0 independent of the sign of Q*UQ*V- At this point, we 

cannot pinpoint precisely the origin of this sharply contradictory behaviour, but it is very 

likely a result of using such a highly simplified form for the electrostatic pair potential. 

At short range, the convergence of the multipole expansion is very slow. Thus, in dense 

systems, an interaction between point quadrupoles may be a very poor approximation 

and produce the kind of artifacts observed here. A significantly improved model of 

electrostatic interactions may be required to reproduce the qualitative trends observed 

in experimental studies. This consideration is important with regard to any theory of 

solute orientational order which uses such a highly simplified pair potential. 
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The E L theory has been applied to analyze the present results. Eqs. (5.111) and 

(5.112) were used to calculate values of Fzz and P 2 . However, note that the calculation 

of these averages requires p(nem^ guv(r*) and P 4

+(r*), quantities which also must be 

calculated in the M C simulations. Thus, the "theory" simply provides a prediction of 

the relationship between various quantities that may be measured for the system, rather 

than a theory which requires exclusively external system parameters. Thus, it is not of 

a form which may be used to study real nematic systems using N M R spectroscopy, for 

example, since guv(r*) and P 4

+(r*) are not measurable with this technique. 

The results of the predictions of Fzz and P 2 are summarized in Table 5.15 along 

with the values measured in the M C simulations. Note that P 2 can only be calculated for 

spherical solutes, since the non-spherical solutes experience an additional orienting mech

anism due to the shape anisotropy coupled with the short-range repulsive forces. The 

theoretical predictions of Fzz are consistently good for all solute shapes and quadrupole 

moments. This is true for both the signs and magnitudes of Fzz. Considering this 

point, we may gain some insight into the dependence of Fzz on solute properties by-

investigating more closely the results in the context of the theory. 

In Figures 5.24 and 5.25 we show the three solvent-solute pair distribution func

tions guv(r*), P 4

+(r*) and P4

+(r*)g{r*)(r*)-3. Note that both the mean-field potential 

U*(9) (Eq. (5.110)) and F*zz (Eq. (5.111)) are directly proportional to the latter func

tion. Figure 5.24 shows the distribution functions for a prolate solute (1=2, w=l) for 

Q*Ql = 0, ±2.5. For zero quadrupole moment, there is only a vague shell structure visi

ble in guv(r*), while there is a very strong enhancement in minimum-distance positional 

correlation for Q*UQ*V = —2.5 and a smaller enhancement at Q*UQ*V = 2.5. The strong peak 

for QuQl = —2.5 is consistent with the a strong minimum in the quadrupole-quadrupole 

pair potential for parallel configurations between axially symmetric quadrupoles of op

posite signs. The P4(r*) distribution also undergoes noticeable changes with varying 
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Figure 5.24: Solute-Solvent Distribution Functions for Solute with Dimensions of 1=2.0 
and w=l.O at p*=0.42 and (Q*v)2 = 2.5. 
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Figure 5.25: Solute-Solvent Distribution Functions for Solute with Dimensions of 1=5.0 
and iy=1.0 at p*=0.42 and (Q*v)2 = 2.5. 
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Q*UQ*V- increasing Q*UQ*V results in a decrease in the minimum-distance positive peak and 

a deepening of the negative "well" to the right of this peak. These effects result in sig

nificantly different P4

+(r*)guv(r*)(r*)~3 functions. Clearly, integration of the functions 

result in a F*zz > 0 for Q*UQ*V = -2.5, Fzz"•< 0 for Q*UQ*V = 2.5, and a near-vanishing 

Fzz for Q*UQ*V = 0.0. The results for the longer prolate ellipsoid (1=5, w=l) are virtually-

identical. Thus, changes in the Fzz arise from changes in the structure of the solvent in 

the vicinity of the solute as a result of changes in the solute properties. 

The theoretical predictions of P2 for the spherical solutes listed in Table 5.15 are 

generally poor and deviate from the measured values typically by a factor of two. This 

result is somewhat surprising given the accuracy of the calculated Fzz, whose theoretical 

expression (Eq. 5.111) is defined by the mean-field potential (Eq. 5.112) which is used to 

calculate P2. At the very least, however, the signs of the order parameters are accurately 

predicted. A comparison of the calculated and theoretical solute orientational distribu

tion function for one spherical solute (I = w = 1) is shown in Figure 5.26. Note that 

the accuracy of the predicted curves appears to be poorer as the magnitude of the solute 

quadrupole moment increases. This discrepancy between the degree of orientational or

dering calculated in theory and simulation suggests that the statistical approximations 

used in the E L methodology may be too severe to yield a useful and accurate theory 

for solute orientational order. Given that the theoretical predictions are slightly better 

for weaker solute-solvent couplings for the systems studied here, it may be generally a 

more accurate theory in the limit of small solute quadrupole moments. It is interesting 

to note that in the case of D2 and HD, the only solutes for which the average E F G and 

order parameter can be simultaneously measured, the mean-field model gives excellent 

predictions of the measured P2. Perhaps it is significant that the solute quadrupole mo

ments for these molecules are very small, in keeping with this argument. Unfortunately, 

it is very difficult to test this hypothesis using M C simulations for solutes with very weak 
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Figure 5.26: M C and Theoretical Orientational Distribution Functions for Spherical So
lutes with (Q;) 2=2.5 and p*=0.42 
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Table 5.17: E F G and Order Parameters for Several Solutes at p*=0.39 and (Q*;)2=2.5 

Shape Dimensions QIQT Fzz(MC)a 

FzzW P 2 (MC) P 2 (Th) c p(nem) 
2 

Spherical 1=1.0 -2.5 1.8 (1) 1.2 0.26(2) .0.34 0.637(4) 
u;=1.0 -1.5 0.29(5) 0.29 0.04(2) 0.04 0.645(4) 

0.0 0.04(3) 0.05 0.01(1) 0.0 0.641(6) 
1.5 0.43(6) 0.35 -0.01(1) -0.05 0.622(7) 
2.5 1.5 (2) 1.5 -0.09(2) -0.18 0.636(4) 

Prolate 1=2.0 -2.5 2.0(1) 1.1 0.44(2) 0.638(4) 
w=1.0 -1.5 0.63(5) 0.45 0.30(2) - 0.636(4) 

0.0 0.01(2) 0.06 0.23(2) - 0.639(4) 
1.5 -0.33(3) -0.21 0.25(2) - 0.657(5) 
2.5 -0.48(4) -0.30 0.29(2) 0.635(2) 

Calculated 
*FZZ. 

using = < 0: using Q^z = +V2l > 0 simply reverses the sign 

^Calculated using Eq. (5.111). 
cCalculate using Eq. (5.112). 

quadrupoles: the statistical fluctuations of the measured Fzz and P 2 rapidly become 

very large relative to their average values, a feature that greatly increases the statistical 

uncertainties of these averaged quantities. 

To investigate further the details of solute orientational behaviour in a nematic sol

vent, we have conducted simulations for solutes in a nematic solvent at a lower density, 

and.therefore, with a lower degree of orientational order. Table 5.17 presents results 

for the E F G and order parameters of spherical and prolate solutes with a variety of 

quadrupole moments oriented in a solvent at a reduced density p*=0.39 and with an 

order parameter of P 2

n e m ^ = 0 . 6 4 ± 0 . 0 1 . As expected there is a significant reduction in 
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both Fzz and P2 as a result of the decrease of the degree of nematic ordering: otherwise, 

there is no qualitative difference with the results for the systems at p* = 0.42. 

Finally, we consider the effects of solvent-solvent correlations on the behaviour of 

solute average properties. In Section 5.4.1, it was shown that the T P theory drastically 

underestimates the degree of solute orientational order in hard-core systems. The cause of 

this problem was the severity of the approximation neglecting solvent-solvent correlations 

induced by the solvent-solvent hard-body interaction. A consideration which is related 

to that result concerns the importance of the solvent-solvent correlations due to the 

solvent-solvent electrostatic interactions on the solute properties. We have investigated 

this point by performing simulations in which solvent and solute interact both via hard

core and quadrupole-quadrupole interactions, but where solvent particles interact only 

with a hard-core pair potential. A comparison of the results of average solute properties 

with the corresponding results where all interactions have been properly included may 

provide some insight into this matter. 

In Table 5.18, we present the calculated values for Fzz and P2 for three solutes with 

and without the solvent quadrupole-quadrupole interaction turned on. In the case of 

the spherical solute, there is a small difference in F*zz and no change in P2. However, 

for the prolate solute with Q*u ^ 0, there is a significant variation in both Fzz and 

P2. The difference is reduced by setting Q*u = 0 for a solute with the same shape. 

Thus, it appears that solvent-solvent correlations induced by solvent-solvent electrostatic 

interactions can indirectly affect solute properties, though in a way that clearly depends 

on the properties of the solute. Note that these differences do not arise from a change 

in the nematic order parameter: as shown in Table 5.18, p^nem^ j s n o t significantly 

affected by the presence of solvent quadrupole-quadrupole interactions of the magnitude 

considered here. Nevertheless, there is a significant difference in the structure of the 

solvent between the hard-core and the hard-core plus quadrupole systems. This difference 
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Table 5.18: Comparison of M C Results With and Without Quadrupole-Quadrupole In
teractions Between Solvent Ellipsoids 

Ql-Ql off2 Ql-Ql on» 
Dimensions Q*UQ*V

C F*zz h p(nem) Hz Pi p{nem) 

1=1, w=l 2.5 2.6(2) -0.16(2). 0.764(2) 2.2(2) -0.16(2) 0.758(2) 

1=2, w=l 2.5 -1.03(5) 0.49(2) 0.766(2) -0.66(4) 0.40(2) 0.761(2) 

1=2, w=\ 0.0 0.07(3) 0.32(2) 0.765(2) -0.01(3) 0.29(2) 0.763(2) 

"Solvent-solvent quadrupole interactions turned off. 
6Solvent-solvent quadrupole interactions turned on: Q* = — \/2~5 
CQIQ*V gives the solute-solvent interaction strength. 

is manifest in the solvent-solvent pair distribution and orientational correlation functions 

shown in Figure 5.27. 

5.5 C o n c l u s i o n s 

In this chapter, we have presented a M C simulation stud}' of the combined effects of 

shape anisotropy and one specific electrostatic interaction on the orientational order of 

solutes in a nematic solvent. Solute and solvent molecules were constructed using a 

minimal model to describe pair interactions. Anisotropic short-range repulsive forces 

were approximated by using a hard-core potential, and axially symmetric ellipsoids of 

rotation were used to describe the molecular shapes. Electrostatic effects were studied 

by incorporating an interaction between point quadrupoles embedded in the centers of 

the hard ellipsoids. We have analyzed the results of the simulations using two current 

theories of orientational ordering of solutes in nematic liquid crystals. 
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Figure 5.27: Comparison of Solvent-Solvent Pair Distribution and Orientational Corre
lation Functions for [Q*v)2 = 0 and 2.5 at p*=0A2. 
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In a purely hard-core system, solute orientational order varies in a predictable manner: 

increases in solute shape anisotropy and solvent density enhance the degree of ordering. 

The orientational distribution functions were analyzed using a theory due to Terzis et 

al. which was found to drastically underestimate the solute ordering. This discrepancy 

is due to the complete neglect of solvent-solvent correlations in the derivation of the 

solute mean-field orientational potential. The severity of this approximation calls into 

question the results of the study which employed the theory to analyze orientational 

order parameters of solutes measured in previous N M R experiments. 

In the quadrupolar systems, the relationship between the hard-core and electrostatic 

contributions to solute orientational ordering was investigated in detail. The behaviour of 

the properties for a large collection of solutes of varying shapes and quadrupole moments 

was examined. As well, we were particularly interested in testing the accuracy of a 

mean-field model proposed by Burnell and coworkers in which the interaction between 

the molecular quadrupole moment and a solute-independent average E F G sampled by 

the solute constitutes an important orientational ordering mechanism. To this end, the 

relationship between the measured average E F G and orientational order parameters was 

examined in detail. Further, a theoretical mean-field potential and average E F G can be 

derived using a method due to Emsley, Luckhurst and coworkers. The theory provides 

a simple relationship between the solute order and solvent-structure functions in the 

vicinity of the solute. This approach was found to give some insight into the solute 

orientational behaviour. 

A significant result of the simulations employing the point quadrupole electrostatic 

model was that the measured E F G sampled by the solute was found to be highly sensitive 

to the details of the properties of the solute, in contrast to the model put forward by 

Burnell and coworkers. In the case of non-spherical solutes, the E F G was found to expe

rience a concomitant change in sign with the solute quadrupole moment. This result is 
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in sharp contradiction with certain key experimental N M R results for which it was found 

that the order parameters of several molecules conform to the mean-field model where 

the solutes interact with an E F G which, at the very least has the same sign. The origin 

of this discrepancy is very likely the inadequacy of using point quadrupoles for dense 

systems for which the convergence of the multipole expansion at short distances becomes 

an important consideration. Thus, an improved description of molecular electrostatic 

interactions will likely be essential in order to generate solute orientational behaviour 

consistent with that observed experimentally. 

Despite the problems with the molecular model outlined above, the observed orienta

tional ordering was qualitatively consistent with the predictions of the mean-field model, 

using the measured values of the E F G for each solute individually. In addition, the EL 

theoretical prediction of the solute E F G , which is related to the local solvent structure, 

was quite accurate. The E L prediction of the orientational order of spherical solutes, for 

which there is only the electrostatic contribution to ordering, was qualitatively correct, 

though quantitatively rather poor. Thus, the statistical approximations of the E L theory 

appear to be too severe. Note that the theory requires a simple form for the pair po

tential in order to yield a simple, tractable expression for the mean-field potential. Yet. 

as we described above, the interaction between point moments to represent electrostatic 

interactions was found to be inadequate for dense systems. Thus, given the combined 

inadequacy of both the basic electrostatic pair potential and the statistical approxima

tions of the theory, an accurate theoretical description of the electrostatic contributions 

to the orientational ordering of solutes in a nematic liquid crystal is not yet available. 



Chapter 6 

Conclusions 

In this thesis, we have presented several studies concerned with solutes partially oriented 

in nematic liquid crystal solvents. There are two main components to this work: the first 

part involves the application of Multiple-Quantum N M R spectroscopy as a tool to inves

tigate the orientational, structural and conformational properties of specific molecules; 

the second part employs the Monte Carlo simulation technique to complement previous 

experimental studies and investigate the influence of various molecular properties on ori

entational ordering. In this chapter, we review the important results and present our 

final comments on the material. 

A key component of the experimental work presented in Chapters 2 and 3 involved the 

application of M Q spectroscopy as an aid for the spectral analysis for oriented solutes with 

spectra which are highly complex, but which nevertheless are composed of resolvable lines. 

High-order M Q spectra have considerably fewer lines and are much more straightforward 

to solve. Estimates of the dipolar coupling constants obtained from such fits can provide 

excellent predictions of the conventional N M R spectrum, rendering its analysis trivial. 

Possible limitations of this approach as a standard method for the studies of oriented 

solutes include the difficulty of obtaining high-order spectra of sufficient signal/noise, and 

the inaccuracy of the estimates of the dipolar couplings as a result of the broader lines 

typical of 2-D N M R spectroscopy. It is important to note that the experimental methods 

employed in the present work were developed more than a decade ago. While standard 

M Q N M R is ideal for many studies of oriented solutes, this technique has been virtually 
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ignored in recent years. Thus, the subject of the present work is not a development of 

novel variations on the experiment, but is simply an illustration of the usefulness of the 

basic method. 

In Chapter 2, we presented a study of biphenylene which was used as a simple illus

trative example to demonstrate the effectiveness of M Q spectroscopy as an aid in spectral 

analysis. Solutions of the six-quantum and seven-quantum spectra were used to solve the 

one-quantum spectrum; the resulting dipolar coupling constants were used to determine 

a vibrationally averaged structure for this simple molecule. Clearly, this system is of 

very limited interest in its own right. However, the study did show a possible limitation 

of the M Q method: the fact that there were a large number of fitting parameters (ten 

dipolar couplings and two chemical shifts) resulted in an initially poor estimate of the 

one-quantum spectrum. Only by a reduction in the number of parameters, obtained by-

fitting the spectrum directly to the proton geometry and molecular order parameters, 

was a sufficiently good estimate of the spectrum obtained. 

In Chapter 3, the M Q experimental method was applied to the study of oriented 

butane, a far more interesting system. The N M R spectrum of this ten-spin molecule 

is highly complex and essentially featureless, and presents a significant challenge to the 

most courageous spectral-analysis enthusiast. However, the relatively straightforward 

fitting of sufficiently good quality seven-quantum and eight-quantum spectra provided 

highly accurate estimates of the coupling constants and chemical shifts and rendered 

trivial the analysis of the one-quantum spectrum. Clearly, M Q spectroscopy is a very ef

fective experimental technique that deserves far more serious consideration as a standard 

approach among N M R spectroscopists. 

The principal focus of Chapter 3 was the elucidation of the conformational and ori

entational behaviour of butane in an anisotropic condensed phase, from an analysis of 

the dipolar coupling constants. The considerable attention given to butane over the last 
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two decades stems from the fact that it is the simplest multi-conformational alkane. One 

important question concerns the effect of the condensed-phase environment on the con

formational equilibrium relative to that of the gas phase. We performed an extensive 

analysis of the coupling constants. This involved the use of mean-field models to de

scribe the orientational ordering of the solute for each of its distinct conformations. We 

employed several very different models in order to avoid the pitfall of obtaining model-

specific results. In addition, torsional fluctuations and the uncertainty of the gauche-stale 

angle were considered. From the analysis of the couplings, -the trans-gauche energy dif

ference was established to be in the range of Etg ^2.1-3.0 kJ/mol. This range of values 

is considerably lower than the values typically reported for gas-phase butane. Thus, it is 

clear that there is an enhancement of the gauche conformation of butane in a condensed-

phase environment. Finally, the analysis suggests that the conformational biasing is 

primarily a result of the isotropic solvent "pressure": the anisotropy of the external field 

has only minor effects. This latter observation is consistent with the conclusions of other 

studies of the conformational behaviour of longer alkanes oriented in a nematic solvent. 

As described above, in the analysis of the dipolar coupling constants of butane, it 

was necessary to employ mean-field models which are designed to describe orientational 

ordering of solutes in uniaxial anisotropic solvents. Such models are necessary generally 

for flexible molecules for which the dipolar coupling constants involve a summation of 

products of conformational probabilities and orientational order parameters. Since sev

eral different models were used, the analysis could also be used to test the ability of each 

of the models to accurately predict the orientational ordering of the solute. In accord 

with previous studies of alkanes, the "Chord Model" of Photinos et al. [47] was found 

to give the highest quality fit of the coupling constants, and thus, the best description 

of orientational ordering. However, recent versions of the "Size and Shape" model of 

Zimmerman et al. [36] which employ potentials that are more sensitive to the details 
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of the molecular shape, also gave excellent results. Further, it was explained that all 

previous studies that used the size and shape models for flexible molecules are in error: 

an accurate estimate of the trans-gauche energy difference Etg of alkanes can only be 

obtained if the non-vanishing isotropic component implicit to all of these potentials is 

removed to yield a truly anisotropic external mean-field potential. Failure to account 

for this factor yields erroneous results. For example, the improper application of early 

versions of this model to a series of oriented alkanes produced values of Etg that varied 

considerably with the length of the chain, and which were well outside the "acceptable'' 

range of values. In light of our results for butane, we propose the following project: 

the considerable collection of coupling constants for alkanes ranging from hexane to de-

cane should be analyzed using the mean-field models of Zimmerman et ai, in which the 

isotropic components are properly removed. We expect significantly better results than 

those obtained by Rosen et al. [45] Further, we propose that a corresponding analy

sis of existing dipolar and quadrupolar coupling constants of nematogens be performed. 

Unfortunately, time limitations precluded such an analysis for this thesis. 

A principal goal of studying the orientational ordering of collections of solutes in liquid 

crystals is to examine the nature of the anisotropic intermolecular forces which underlie 

the ordering of the liquid crystal molecules themselves. N M R spectroscopy is an excellent 

experimental technique for measuring the degree of solute order via second-rank orien

tational order parameters. An analysis of the order parameters themselves can be used 

to elucidate the role of various ordering mechanisms. In this way, previous experimen

tal studies were able to show, for example, the importance of short-range repulsive and 

electrostatic interactions. Nevertheless, there can be some ambiguity associated with the 

interpretation of experimental results. For this reason, the use of computer simulations 

of suitable model systems can complement and test the interpretation of experimental 

results. Further, this method can be used to investigate the accuracy of current empirical 
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and theoretical models which have been recently developed and applied extensively to 

the interpretation of N M R data. In Chapters 4 and 5, we employed the Monte Carlo 

simulation technique to study solute ordering in nematic solvents. In contrast to many-

recent M C studies of ordering in nematics, we employ minimal models to describe the 

molecular properties and intermolecular interactions. Further, the work focused specifi

cally on the role of short-range repulsive forces and long-range electrostatic interactions, 

the subject of many previous studies by Burnell and coworkers. 

In Chapter 4, we investigated the role of short-range repulsive forces, modeled as 

hard-core interactions, between molecules. The shapes of the constituent molecules were 

treated in a highly simplified manner: solvent molecules were modeled as hard prolate 

ellipsoids of revolution with an axis ratio of 5:1; solute molecules were also treated as 

hard ellipsoids, though with a variety of shapes and sizes. Orientational order parameters 

and distribution functions were measured under a variety of conditions. The results 

were analyzed in terms of several empirical mean-field models in order to provide a 

bridge between simulation and experiment. It was very interesting to note that the 

application of the model potentials not only provided good fits to orientational order 

parameters and distribution functions, but also yielded the same patterns of accuracy and 

inaccuracy as observed in fits of experimental data. Further, the values of the interaction 

strength parameters, obtained from a simultaneous fit for each model to all measured 

order parameters and scaled in an appropriate manner, were found to be remarkably-

close to those obtained from a fit to experimental order parameters obtained from N M R 

measurements. These results clearly demonstrate the importance of anisotropic short-

range forces on orientational ordering in nematic liquid crystals, and firmly establish the 

connection between the various shape models with these interactions. 

In light of the conclusions described above, we recommend that the importance of 

molecular shape be investigated further. We propose the following: (1) The solvent 
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molecular shape should be more accurately modeled, but without incorporating unnec

essary detail. For example, the hard ellipsoids of revolution could be replaced by general 

ellipsoids that approximate the shape biaxiality present in all nematogens. Previous 

studies have demonstrated the importance of nematogen "flatness" on stablizing the 

nematic phase [136], and on predicting magnitudes of phase-transition discontinuities 

more consistent with those observed experimentally [137]. In the present case, such a 

refinement of the solvent shape would very likely alter the structure of the solvent, and 

therefore influence the orientational behaviour of solutes. (2) Solute molecules should be 

realistically modeled in order to facilitate a more direct comparison with experimental 

results. A very useful approach could be to construct model solutes using hard van der 

Waals spheres for each of the atoms. This essentially is the approach taken in each of the 

"Size and Shape" models. With such a model, the complete Saupe order matrix could 

be calculated. Deviations between simulated and experimental order parameters could 

be used to assess the importance of additional interactions on the orientational ordering 

of specific solutes. 

In Chapter 5, we presented results of a further study which employed M C simulations 

to study orientational ordering of solutes in nematic liquid crystals. As in Chapter 4. 

the solvent and solute molecular shapes were approximated by hard axially symmet

ric ellipsoids. However, in most of the simulations, an additional interaction between 

point quadrupole moments, fixed at the centers of the ellipsoids, was included. This 

simple model was employed to investigate the relative importance of different ordering 

mechanisms. In addition, two current theoretical model potentials, applied previously to 

analyze experimental data, were investigated. The advantage of using computer simula

tions is that it can separately test two different types of approximations: (1) a comparison 

of the M C results with experiment provides a test of the molecular model; (2) a compar

ison of the M C results with the theoretical predictions provides a test of the statistical 
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approximations employed in the theory. 

Simulations of solute orientational ordering in hard-core systems were used to investi

gate a theory due to Terzis et al. [29] The theory was found to underestimate drastically 

the degree of orientational order for a variety of solutes and at different solvent densities. 

This deficiency is a result of the approximation of completely neglecting the solvent-

solvent correlations in the reduction of the full distribution function of the complete 

system. Clearly, a more careful treatment of these correlations is essential in order for 

this theory to provide an accurate prediction of the contribution to orientational order 

due to short-range repulsive forces. 

The principal focus of Chapter 5 was the investigation of the effect of electrostatic 

interactions, in addition to that of shape anisotropy, on orientational ordering of solutes 

in a nematic solvent. Particular interest was given to a mean-field model in which the 

solute molecular quadrupole moment interacts with a solute-independent average E F G 

which arises from the presence of solvent quadrupoles. A quantitative expression for 

the average E F G and contribution to the mean-field potential, derived using a method 

described by Emsley, Luckhurst and coworkers, was used to aid in the interpretation of 

the M C data. 

There are several important results of this study. First, the average E F G sampled 

by the solute in the simulations was found to be highly sensitive to the properties of the 

solute, in contrast with the Burnell model. For example, the E F G was found to undergo 

a concomitant change in sign with the solute quadrupole moment for many solutes. This 

feature contradicts certain experimental results, in which solutes of a variety of sizes 

and quadrupole moments appear to interact with an average E F G which has a sign 

consistent with that which was measured directly using D 2 and HD. We believe that this 

contradiction is a result of the very simplistic form of the pair potential: at short distances 

the point quadrupole approximation may be inappropriate to describe a generally very 
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complex interaction between molecular charge distributions. This defect is not surprising, 

considering the high density of the systems investigated here. Thus, in order to produce 

results from M C simulations which are more consistent with experimental data, a better 

model of the electrostatic interactions must be developed. The new model must provide a 

more realistic description of the pair potential at short distances. One possible approach 

may involve a distribution of point electrostatic moments throughout the volume of the 

hard ellipsoids in a manner which preserves the net quadrupole moment and long-range 

pair potential behaviour. 

Although the model employed in the M C simulations yielded results in which the 

E F G was highly solute-dependent, the orientational behaviour was nevertheless qualita

tively consistent with the picture of the solute quadrupole interacting with this average 

field. However, quantitative theoretical predictions of order parameters and orienta

tional distribution functions were found to deviate significantly from those measured in 

the simulations. Thus, it appears that the statistical approximations of the theory are 

not sufficiently valid. Given the poor model for the intermolecular pair potential em

ployed, the present theory is currently inadequate to describe the effects of electrostatic 

interactions on orientational ordering" of solutes in liquid crystals. We believe that fur

ther simulations employing improved molecular modeling will be required to guide the 

development of the theory to a sufficiently reliable form. 
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