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Abstract

This thesis is concerned with the orientational and conformational behavidur of molecules
partially oriented in a nematic liquid crystal. We have studied these systems experimen-
tally using Multiple-Quantum NMR spectroscopy, and computationally using the Monte
Carlo simulation method.

An important goal of the experimental component of this thesis was the investigation
of the usefulness of applyving Multiple-Quantum NMR. spectroscopy as an aid for the
analysis of complex one-quantum NMR spectra of oriented solutes. The technique was
applied to biphenylene and butane. For the eight-spin molecule biphenylene, the analysis
of the six-quantum and seven-quantum spectra was shown to be sufficient to provide a
simple solution of the one-quantum spectrum. However, it was necessary to reduce the
number of fitting parameters by fitting the proton geometrical coordinates and molecular
order order parameters instead of the dipolar coupling constants. An analysis of the
dipolar coupling constants was used to determine the vibrationally averaged molecular
structure. An analysis of the seven-quantum and eight-quantum spectra of the ten-spin
molecule butane provided an excellent prediction of the one-quantum spectrum, which
could then be solved trivially. The dipolar coupling constants were analyzed to study the
conformational behaviour of butane. The trans-gauche energy difference was determined
to be in the range of 2.1-3.0 kJ/mol. This is significantly less than the gas phase value and
indicates that the condensed environment enhances the gauche-conformer probability.
Further, the conformational biasing was primarily a result of the isotropic component
of the solute-solvent interaction; the anisotropy of the nematic solvent has only minor

effects. Finally, the analysis of the couplings involved the use of mean-field models to
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describe orientational ordering for each conformer. Several models were able to provide
an adequate description of orientational ordering as determined by the ability to fit the
dipolar coupling constants.

Monte Carlo computer simulations were used to investigate the mechanisms for orien-
tational ordering of solutes in nematics and test several empirical and theoretical mean-
field models of ordering. The importance of shape anisotropy and electrostatic inter-
actions were studied. Solute and solvent molecular shapes were approximated by hard
ellipsoids. Some simulations incorporated the interaction between point quadrupoles
placed at the centres of the ellipsoids. In the purely hard-core systems, orientational or-
der parameters and orientational distribution functions were calculated for a collection of
different solutes under under a variety of conditions. Several empirical models were used
to analyze the data. Fitting parameter values were quantitatively very similar-to values
obtained from previous fits to experimental data. This result clearly demonstrates the
importance of anisotropic short-range repulsive forces for orientational ordering in nemat-
ics and firmly establishes the connection between these various molecular-shape models
with these interactions. The quadrupolar systems were used to investigate a mean-field
model in which an interaction between the solute molecular quadrupole moment with
an average electric-field gradient provides an orientational ordering mechanism. Simula-
tions indicate that the electric-field gradient is highly dependent on the properties of the
solute, contrary to some experimental evidence. Further, a mean-field theory developed
to describe this model was found to provide a qualitatively correct but quantitatively

imprecise prediction of orientational ordering.

iii




. Table of Contents

Abstract : ii
Table of Contents _ iv
List of Tables viii
List of Figures X
Acknowledgement xii
1 Introduction 1
1.1 Liquid Crystals . . . .. . ... ... .. .. R 1
1.1.1 Nematic Liquid Crystals . . . . . . . . .. ... ... ... ... 1

1.1.2 Other Liquid Crystalline Phases . . . . . . . ... ... ... ... 4

1.2  Orientational Order and Intermolecular Forces in Nematic Liquid Crystals 5
1.2.1 Orientational Distribution Function and Order Parameters . . . . 7

1.2.2 Molecular-Statistical Theories of Nematic Liquid Crystals . . . . . 8

1.2.2.1 Onmsager Theory. . . . . . .. ... .. .. ... ... 9

1.2.2.2 Maier-Saupe Theory . . . . .. .. ... .. ... .... 11

1.3 Solutes as Probes of Intermolecular Forces . . . . ... .. .. ... ... 12
1.3.1 NMR and Orientationally Ordered Solutes . . . . . .. ... ... 12

1.3.2 Electrostatic Interactions . . . . . . . . ... ... ... L. 15

1.3.2.1 The Average Electric-Field Gradient . . . .. ... ... 15

1.3.2.2 The Emsley-Luckhurst Potential of Mean Torque . . . . 17

v




1.3.2.3 Further Comments on Electrostatic Interactioﬁs ..... 20

1.3.3 Short-Range Repulsive Forces and Mean-Field Models. . . . . . . 23
1.3.4 Flexibility . . .. . . . . 24
1.4 Multiple-Quantum NMR . . . . .. ... ... oo 27
1.4.1 Application to the Analysis of NMR Spectra . . . . . . .. .. .. 27
1.4.2 Theoretical Background . . . . .. . ... ... 29
1.4.3 Limitations . . . . . . . .. ... 33
1.5 Monte-Carlo Simulations . . . . . . . . . . ... ..o 35
1.6 Outlineof Thesis . . . . ... ... . ... ..... e I 39

2 Multiple-Quantum NMR of Oriented Solutes (I): Biphenylene as an

Illustrative Example 41
2.1 Introduction . . . . . ... ... . e 41
2.2 Experimental . ... ... ... ... ..., e 46
2.3 Results and Discussion . . . . . R 46
2.4 Conclusions . . . . . . . .. 55

3 Multiple-Quantum NMR of Oriented Solutes (II): Conformational and

Orientational Behaviour of Butane 57
3.1 Introduction . . . . . . . . .. L 57
3.2 Theoretical Background . . . . ... ... ... ... ... e 61

3.2.1 Dipolar Coupling Constants . . . . . .. ... ... ... ..... 61
322 Flexibility . . . . ..o\t o 63
3.2.3 The Mean-Field Potential and Eyy . . . . . . . ... ... ... .. 64
3.24 Modeling of Us™°(w) . . . . . .. ... .. ... .. AP 66
3.2.4.1 Model A: Size and Shape Potentials . . . . ... .. .. 67
3.2.4.2 Model B: Moment of Inertia Model . . . . . . . ... .. 73




3.2.4.3 Model C: The Chord Model . . . . . . . .. . ... ... 73

3.2.5 Other Details of the Calculations . . . . . . ... ... ... ... 75
3.2.5.1 Torsional Fluctuations . . . . ... ... ... ... ... 75

3.2.5.2 Dihedral Angle . . . . .. .. ... L 76

3.2.5.3 Methyl Groups . . . .. ... ... .... I 76

3.3 Experimental . . ... ... 76
3.4 Results and Discussion . . . . . . . . .. ... oL 78
3.4.1 NMR Spectra . . . . . .. ... 78
3.4.2 Conformational and Orientational Behaviour of Butane . . . . . . 83

3.5 Conclusions . . . . . ... ... 92

4 Monte Carlo Simulations of Oriented Solutes (I): Shape Anisotropy and

Mean-Field Models 94
4.1 Introduction . . . . . . . . . 94
4.2 Monte Carlo Simulations . . . . . . . . . ... oo 97

4.2.1 Order Parameters for a Collection of Solutes . . . . . . . . .. .. 97
42.2 Further Simulations for Two Solutes . . . . . ... ..... ... 99
4.3 Mean-Field Models . . . . . . .. ... . oo 100
4.4 Results and Discussion . . . . . . . ... Lo 103
4.4.1 Order Parameters for a Collection of Solutes . . . . . . .. .. .. 103

4.4.2  Analysis of Singlet Orientational Distribution Functions for Two

Solutes . . . . . . . e 107
4.4.3 Comparison with Experiment . . . ... .......... ... 116
4.5 Conclusions . . . . . . . . 119

5 Monte Carlo Simulations of Oriented Solutes (II): Shape Anisotropy

and Quadrupole-Quadrupole Interactions 121

vl




5.1 Introduction . . . . . . . . . e 121

5.2 Theory . . . . . . . 126

521 TP Theory . .. . . . . . . . . 126

522 ELTheory . . . . ... ....... B 129

53 MC Simulations . . . . . . . ... 132

5.4 Results and Discussion . . . . . . S 137

5.4.1 Hard-Core System . . . . ... ... .. .. ... e e e e 137

5.4.2 Quadrupolar Systems . . . . . ... 141

5.5 Conclusions . . . . .. .. ... ... ... R 157

6 Conclusions - 161
Bibliography . 169

vii




2.1
2.2

2.3
2.4

List of Tables

Experimental and Calculated Frequencies (Hz) of Observed MQ Transitions. 51

Fitting Parameters (Hz) from the Multiple-Quantum and One-Quantum

CSpectral Fits. . .. ..o oo 54
Geometric Parameters from Fit of Dipolar Coupling Constants. . . . . . 55
The r, Geometric Parameters for Biphenylene. . . . .. ... . ... . 56

3.6
3.7

3.8
3.9

4.10

4.11

4.12

4.13

Fitting Parameters (Hz) from the Multiple-Quantum and One-Quantum
Spectral Fits. o I e 84
Results of the Fits to the Experimental Dipolar Coupling Constants. . . 86
Experimental and Calculated Dipolar Coupling Constants (Hz) for ¢,=116° |
and A¢=20°. . ... ... ... ... e e e 87
Nematic (N) and Isotropic (I) Phase trans Probabilities. . . . . . . .. 89
Calculated Principal Axis System (PAS) Order Parameters, and PAS Euler

Angle, for trans and gauche Conformers of Butane. . . . ... .. .. .. 90

Comparison of Results for Fits of MC and Experimental Solute Order
Parameters. . . . . . . . . . ... 105
Results of Fits to Singlet Orientational Distribution Functions for Solute A
with Dimensions of I=2 and w=1. . . . . . . . .. ... .. .. ... 114
Results of Fits to Singlet Orientational Distribution Functions for Solute B
with Dimensions of [=3.33 and w=0.25.. . . . . ... .. ... .. .... 115
Scaling Ratios from Results of Fits to Singlet Orientational Distribution
Functions for Solutes A and B at Pgnem)=0.88{i and P{"™=0634. . . .. 118

viii




5.14 MC and Theoretical Solute Order Parameters for a Hard-Core System . . 137
5.15 EFG and Order Parameters for Several Solutes at p*=0.42 and (Q7)?=2.5 142
5.16 Experimental Order Parameters for Three Solutes . . . . . . . . .. . .. 148
5.17 EFG and Order Parameters for Several Solutes at p*=0.39 and (Q;)?=2.5 155
5.18 Comparison of MC Results With and Without Quadrupole-Quadrupole

Interactions Between Solvent Ellipsoids . . . . . ... ........... 157

1x




3.7

3.8

3.9

3.10

3.11

3.12

List of Figures

Molecular Structure of N-(4-ethoxybenzylidene)-4'-n-butylaniline . . . .

Molecular Organization in a Nematic Phase. . . . . . . ... ... ... .

Atomic Labeling and Axis System for Biphenylene. . . . . .. ... . . .

Calculated and Observed NMR Spectra of Partially Oriented Biphenylene.

Six-Quantum 'H NMR Spectrum of Biphenylene . . . . . . .. .. .. ..

Seven-Quantum 'H NMR Spectrum of Biphenylene . . . ... ... ..

Ilustration of Orientation-Dependent Parameters Used in Size and Shape
Models {I). . . . . . .
Ilustration of Orientation-Dependent Parameters Used in Size and Shape
Models (II). . . . . . . o
Experimental (bottom) and Simulated (top) Spectra of Partially Oriented
Butane. . . . .. ..

Expanded Region of Experimental and Simulated Spectra of Partially Ori-

ented Butane. . . . . . ..., .

Experimental and Simulated Seven-Quantum Spectra of Partially Oriented
Butane. . . . . . ...
Experimental and Simulated Eight-Quantum Spectra of Partially Oriented

Butane. . . . . ..,

3.13 Labeling of Butane Protons . . . . ... .. ... .. ... 0.

4.14 Solute Order Parameters vs. Solute Length . . . . . . . ... ... ... .

43
44
48
49

70

71

79

80

81




4.15

4.16

4.17

4.18

4.19

5.21

5.22

5.23

5.24

5.25

9.26

9.27

Singlet Orientational Distribution Functions and the Corresponding Mean-
Field Potential for Solute A (=2, w=1) ..... e 108
Singlet Orientational Distribution Functions and the Corresponding Mean-
Field Potential for Solute B (1=3.33, w=0.25) . ... . ... ... .... 109
Orientation-Dependence of the Mean-Field Potential for Solute A (=2,
W=1)o 111

Orientation-Dependence of the Mean-Field Potential for Solute B ([=3.33,

Model Parameter Values vs. P{"™ for (a) Solute A (I=2, w=1) and (b)
Solute B (1=3.33, w=0.25). . . . . . . . .. ... 117

Calculated and Theoretical Solute Orientational Distribution Functions

for a Hard-Core System (I) . . . . . ... ... e e 138
Calculated and Theoretical Solute Orientational Distribution Functions

for a Hard-Core System (II) . . . . . . . . . . ... .. ... .. ... .. 139
Solute Orientational Distribution Functions at (Qr)?=2.5 and p*=042 . . 145
Solute-Solvent Orientational Correlation Functions for (Q:)?=2.5 and p*=0.42147
Solute-Solvent Distribution Functions for Solute with Dimensions of {=2.0

and w=1.0at p*=0.42and (Q;)>=25. . . . . . . . ... ... 151

Solute-Solvent Distribution Functions for Solute with Dimensions of [=5.0

MC and Theoretical Orientational Distribution Functions for Spherical
Solutes with (Q;)?=2.5and p*=0.42 . . ... ... ... .. ... ... 154
Comparison of Solvent-Solvent Pair Distribution and Orientational Corre-

lation Functions for (Q7)? = 0 and 2.5 at p*=0.42. . . . . T 158

xi




Acknowledgement

I would like to thank my supervisor Prof. Elliott Burnell for his guidance, encouragement

and generousity over the past five years. It has been a great pleasure to work together.

I am also grateful to my other supervisor Prof. Myer Bloom, who has been a great

inspiration to me, for his insight and generousity.

I would like to thank Prof. Gren Patey for numerous stimulating discussions and very

helpful advice that helped to shape a large part of this thesis.

Thanks to Leon ter Beek, Chandrakumar and Ray Syvitski for stimulating discussions

and for making the lab an enjoyable place to work.

Finally, I want to thank my wife Beth for her love, encouragement and understanding

which helped make it all possible.

xii




Chapter 1

Introduction

1.1 Liquid Crystals

1.1.1 Nematic Liquid Crystals

In natural light, a nematic liquid crystal has the appearance of a cloudy fluid with
thread-like structures floating within. Upon closer examination under a cross polarizing
microscope, the fluid takes on a marbled texture that is indicative of an underlying
structural complexity. When heated above some unique iemperature, it changes to a clear
liquid, while cooling will eventually freeze the sample into a solid. Thus, on a macroscopic
scale it is already apparent that this substance can assume a state intermediate between
that of an isotropic liquid and a crystalline solid.

The liquid-crystalline state of matter was first reported by Reinitzer in 1888 who
observed this macroscopic phase behaviour in cholesterol benzoate [1]. A year later,
Lehman demonstrated that it displayed birefringence, a property of anisotropic systems
[2]. The label “liquid crystal” was introduced to describe this compound which displayed
propertiés of two very different states: the fluidity of an isotropic liquid and the optical
properties of an anisotropic crystal.

Some understanding of the properties of a nematic liquid crystal can be obtained
by examining it on a rriicroscopic scale. Typically, each of the constituent molecules is

elongated, with a length to width ratio greater than 3:1. As well, a nematogen generally

is comprised of a semi-rigid core with flexible alkyl “tails” attached at either or both
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Figure 1.1: Molecular Structure of N—(4—ethoxybenzylidene)-4'-n-butylaniline
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ends. An illustrative example is given in Figure 1.1 which shows the molecular structure
of the nematogen N—(4—ethoxybenzylidene)—4;—n—but§7la.niline (EBBA).

The organization of molecules in a nematic phase is illustrated by the microscopic
“snapshot” in Figure 1.2, which is a planar projection of a three-dimensional system
where each of the line segments represents a nematogen. The centers of mass of the
individual molecules are arranged so that there are no long-range positional correlations.
The lack of long-range positional order is also a property of isotropic liquids. Unlike
the latter, however, molecules in a nematic phase do display long-range orientational
order; that is, the direction of the long axis of any one nematogen is correlated with
that of another that is far from it on a length scale defined by the dimensions of the
molecules. The result is an arrangement where the molecules are partially aligned along
some average direction, which is referred to as the nematic director.

The nematic phase is labeled uniazial since the director is the only unique axis char-
acterizing the phase. As a consequence, it is cylindrically symmetric: all measured prop-
erties are invariant to rotations about the director. Further, the nematic phase is apolar
in the sense that measured properties are invariant to reflections in a plane perpendicular
to the director. Thus, the director vector, strictly speaking, is not uniquely defined for
it may point in either of two opposite directions along the symmetry axis of the phase.

It is important to note that the symmetry properties of the nematic phase are not also




Chapter 1. Introduction : . 3

Figure 1.2: Molecular Organization in a Nematic Phase.
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properties of the individual molecules. Generally, nematogens possess neither cylindrical
nor reflection symmetry.

In the absence of external fields, the nematic director varies throughout the sample
in an irregular manner. Note that the the length scale over which there is an appreciable
variation in the direction of the director is large (~1 pm) compared to the dimensions
of the molecules (~20 A) [3]. The cloudy appearance of a macroscopic sample of a
nematic liquid crystal arises from the scattering of light as it propagates through the
sample between regions characterized by different directors. The spatial variation of
the nematic director may be continuous or discontinuous. The boundaries marking the
discontinuities are called disclinations and are manifested in a macroscopic sample as the
floating thread-like structures. Thus, the visible macroscopic features of nematics are

closely related to the microscopic phenomenon of molecular orientational ordering.
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1.1.2 Other Liquid Crystalline Phases

The nematic phase is one example among many of a mesophase (from the Greek word
mesos = middle) which has properties intermediate between those of crystalline solids
and isotropic liquids. This phase is classified as a thermotropic mesophase because a
transition to this phase may be brought about by purely thermal processes. Thermotropic
liquid crystals are not at all uncommon: approximately 0.5% of all organic compounds
possess a thermotropic mesophase. The other main category of thermotropic phases is
the smectic phase, which has, in addition to orientational order, some degree of positional
order in at least one dimension. In this case, the molecules are arranged on average in
equidistant planes, although there may be considerable positional fluctuations about this
conﬁguratioﬁ'. Further, this class is divided into many types, each classified according
to several criteria, including the preferred direction of the molecules relative to the layer
normal and the spatial organization of the molecules within the layers.

The third main category of thermotropic liquid crystals is the cholesteric phase, la-
beled thus because many derivatives of cholesterol belong to this class. This phase is
composed of chiral molecules which form a type of nematic phase in which there is a
regular twist to the director along some helical axis; that is, the director twists at a fixed
angle per unit length along the axis. The pitch of the ﬁ\\rist may vary from 200 nm to oo
[4] . Today cholesteric liquid crystals are described as chiral nematics and are categorized
as a subclass of nematic liquid crystals.

More recéntly, thermotropic liquid crystalline phases composed of disc-shaped molecules
have also been discovered. These “exotic” phases include the optically isotropic cubic
phase, and the columnar phase in which molecules are stacked in regular columns with
spatial disorder present in only one dimension along the column axis.

While thermotropic liquid crystal phases are induced by thermal processes alone,
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lyotropic liquid crystalline phasés are formed as a result of mixing compéunds with am-
phiphilic properties with a solvent. Between the extremes of pure amphiphile and its
isotropic solution in an excess of the solvent, there exist at intermediate concentrations a
wide variety of structured phases consisting of ordered arrangements of amphiphile and
solvent which possess aniéotropic properties characteristic of liquid crystalline phases.
Lyotropic phases occur abundantly in nature, most notably in biological cell membranes,
an example which underscores the importance of understanding the properties of liquid

crystals generally.

1.2 Orientational Order and Intermolecular Forces in Nematic Liquid Crys-

tals

The properties common to all of the mesophases described above are the presence of
orientational order combined with some degree of positional disorder. An important
component in the study of liquid crystals is the understanding of the relationship between
the long-range orientational order and the anisotropic intermolecular forces which give
rise to this property. Since the nematic phase is the mesophase possessing the highest
degree of symmetry, it is ideal for studying to give insight into this relationship. It
is perhaps sﬁrprising that, more than a century after Reinitzer’s discovery, a detailed
understanding of the mechanisms responsible for the ordering in this “simple” phase is
still lacking. Nevertheless, great progress has been achieved due to a combination of
experimental, theoretical and, more recently, computational techniques.

There are several molecular properties which contribute to, or in some way affect,
the orientational ordering of molecules in a nematic liquid crystal. It is now recognized
that the essential feature is the anisotropy in molecular shape. Just as the short-range

repulsive forces dominate and determine the structure of a fluid at high densities for
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many isotropic liquids, these forces couple to the molecular shape anisotropy to produce
a strong contribution to molecular alignment in anisotropic liquid crystals. Results of
recent computer simulations show that at sufficiently high densities, a system of elongated
hard particles can form a stable nematic phase [5, 6]. Other related and important
factors include molecular biaxiality and flexibility. Each of these properties, present in
all nematogens, will play a major role in the local packing arrangement of molecules in
this dense phase and therefore influence substantially the degree of orientational order
and the stability of the nematic phase.

Nematogens generally have electric dipole and quadrupole moments and molecular
polarizabilities of significant magnitude. Thus, electrostatic interactions are expeéted to
contribute to some degree to orientational ordering. In addition, the anisotropic compo-
nent of attractive dispersion forces, which arise from correlated electrostatic fluctuations
bet.ween polarizable molecules, will also play a role. All of these interactions are gener-
ally believed to have a perturbative effect on the structure of the fluid which is mainly
determined by the anisotropic short-range forces.

There is a great variety of theories developed to explain the phenomenon of orien-
tational ordering in nematic liquid crystals, and it is beyond the scope of this thesis to
describe any of them in detail. However, there are two influential and contrvasting theo-
ries which have some relation to the material which will follow later. These approaches
are due to Onsager [7], who showed that a nematic phase could arise in a system of
infinitely long hard rods, and to Maier and Saupe [8, 9, 10], who showed that long-range
orientational order may arise in a system where only attractive, anisotropic long-range

forces are present. The main features relevant to the present work are described below.

First, however, a quantitative description of orientational order is presented.
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1.2.1 Orientational Distribut_ion Function and Order Parameters

For a uniaxial phase, the orientational ordering of a single rigid molecule is described
completely by the orientational distribution function (ODF), f(8,¢), defined so that
f(8,0)sinfdfd¢ is the probability that nematic director assumes polar angles in the
molecular frame in the range [0, 6 + df] and [@, ¢ + d¢]. The ODF may be expanded in

terms of spherical harmonics:

20+ 1, , '
f6,6)= > 2—4;;‘3’17,15%(9,@), (1.1)
) | even M
where . ‘
2T T
Vi = [ do [ dosin6Y7,(6,0)1(6,9), ()

and where ¥* = Y} —m. The summation is restricted to even values of I as a result of the

Im
apolarity of the nematic phase.

In many theories of liquid crystals, the nematogens are modeled in a highly simplified
manner, and the shape is often approximated by introducing cylindrical symmetry. In
this case the ¢-dependence of the ODF vanishes and the above expansion reduces to the
following:

0= 3 2 RAeoso) (13

| even

where 6 is the angle between the molecular symmetry axis and the nematic director, and

where

P = /07r d6 sin P;(cos 8) f (6) (1.4)

are called orientational order parameters.
For molecules without cylindrical symmetry, it is useful to describe the ODF in Carte-

sian coordinates. The leading terms in an expansion analogous to that of Eq. (1.1) are

£0.6) = 1=

145Y Sapcosfycoss+ ... (1.5)
a,f
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where

3¢os 0, cosfs — b4
Saﬂ:< > A ﬂ> (1.6)

is a symmetric traceless matrix known as the Saupe order matrix, and where 6, is the
angle between the a-molecular axis and the nematic director. For the case of molecules
with cylindrical symmetry; the Saupe order matrix has only one independent element,
S..= P,

It is important to remember that the ODF described above is applicable in principle
to rigid molecules only. Thus, the flexibility inherent to nematogens introduces a com-
plication to this simple description of orientational order of single molecules. Generally,

nematogen order parameters obtained experimentally are defined with respect to a rigid

- subunit such as a phenyl ring which comprises the core of the molecule. The problem of

describing the orientational ordering of flexible molecules in a uniaxial medium will be

returned to at a later stage.

1.2.2 Molecular-Statistical Theories of Nematic Liquid Crystals

The present work is concerned with the relationship between intermolecular forces and
orientational order in nematic liquid crystals. A molecular-statistical theory is one which
seeks to elucidate the nature of this connection. Generally, such a theory begins with
some necessarily idealized form of the intermolecular potential, which nevertheless in-
corporates its most important features. These potentials are used to calculate in some
approximate way the configurational partition function which is then used to calculate
the free energy and the related thermodynamic properties. For mean-field theories of

nematic liquid crystals, the free energy is expressed as a functional of the ODF, min-

imization with respect to which yields a self-consistent expression for the ODF which
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can be solved numerically, or possibly anal;ftically with further approximations. Ther-
modynamic stability of the solutions is tested by examining the related free energy. The
approach of this type of theory contrasts with that of the phenomenological variety, in-
cluding most notably the Landau-de Gennes theory [11], which makes no attempt to
calculate the partition function and thus has nothing to say about the underlying mech-
anisms responsible for orientational ordering.

Described below are very brief descriptions of the Onsager and Maier-Saupe theories,

including only those aspects which have some relevance to the present study.

1.2.2.1 Onsager Theory

In 1949 Onsager presented a theory for orientationally ordered fluids in which the molecules
are modeled as long hard rods and attractive forces are neglected entirely [7]. The ap-
proach involves the application of imperfect gas theory using a virial expansion of the
configurational partition function. The partition function was calculated for a mixture of
particles for which the components of the mixture were interpreted as identical particles
with different orientations. It was shown that the leading terms in the calculated free

energy, A, are given by:

ﬁ[A];A"] — / dw f (w)ln(47 f(w)) + (Inp — 1) 4 Byp+ By + .. (1.7)

where A° is the ideal free energy related to integrations over translational and rotational
momenta associated with the contributions of these degrees of freedom to the total energy
of the system. As well, 3 = (kpT)~! where kp is the Boltzmann constant, N is the
number of particles in the system, w = (6, @), p is the number density and By, Bs,..., are
the virial coefficients. The latter quantities may be written as functionals of the ODF,

f(w). For example,

B, = % [ dodet () (Ve (0, ), (1.8)
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where V., (w,w') is the excluded volume between particles with orientations w and o'
In the limit of very long rods, Onsager showed that the contributions from the higher
order terms beyond that éontaining B, were negligible. This contrasts with the other
extreme case, that of hard sphefes, where the higher order terms contribute significantly
and cannot be neglected. Minimization of the free energy with respect to f(w) using the

expression in Eq. (1.7) and neglecting the higher order terms yields

fw) ~ exp [ép/dw'Y/eI(w,w’)f(w') (1.9)

a self-consistent expression which can be solved to obtain f(w). It may be show‘n that an
orientationally ordered phase is thermodynamically stable for this system at sufficiently
high densities.

The important aspect of this theory is that it emphasizes the importance of orientation-
dependent excluded-volume interactions. For elongated rods, the excluded volume is
smaller for parallel than for perpendicular orientations, and thus is a more favoured ar-
rangement. Further, the existence of a stable orientationally ordered phase in a system
with constant energy, and thus where entropy should be at a maximum, may be under-
stood by noting that there are two competing contributions to the total entropy, each
associated with translational and orientational degrees of freedom. For increasing elonga-
tion and density, the translational entropy becomes the dominant term, and orientational
entropy is “sacrificed” to maximize the total entropy.

While this theory provides a simple qualitative understanding of the importance of
short-range anisotropic forces to the phenomenon of orientational ordering, it is of limited
relevance for real nematogens. In this case, the molecular elongation is not sufficiently
large to neglect higher order terms in the expansion; thus, correlations between three

and more particles will play a role in influencing the orientational behaviour. Significant

improvement of the theory may be obtained with the (very difficult) evaluation of higher
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order virial coefficients. For example, it was found that the orientational behaviour of
systems of hard particles with more realistic dimension ratios can be adequately described

by the including the Bj term into the theory [12].

1.2.2.2 Maier-Saupe Theory

In the Maier-Saupe theory of nematic liquid crystals [8, 9, 10|, the principal ordering
mechanism is taken to be the anisotropic component of a long-range attractive interac-
tion, originally proposed to be the London dispersion force. The pair potential is then
used to derive a mean-field pseudopotential which is used to describé the ODF. The
mean-field potential for one particle is obtained by averaging the pair potential over
the rotational coordinates of one of the molecules, and the magnitude and orientation
of the intermolecular displacement vector. For a pair potential between two particles,

u(F,w,w"), the following ODF relation may be derived:
Fw) ~ exp |=Bp [ dide'u(Fw, )1 (/)9(7)] (1.10)

where 7 is the intermolecular vector and g(7) is the pair correlation function. The relation
above may be derived by several different procedures. The key approximation that all
of these approaches use is to neglect short-range correlations. In particular, the depen-
dence on the orientational coordinates of the pair correlation function is neglected, and
g(Tyw,w') is replacéd by g(7). The expression in Eq. (1.10) is a self-consistent relation
which must be solved to obtain the ODF. |

As a further approximation, the constituent molecules are assumed to be rigid and
possess Do, symmetry. The leading term in an expansion of the anisotropic pair potential
can be written as

U(T‘, 912) = —'€(T')P2(COS 912), - (111)

where 61, is the relative orientation between the molecules, and where ¢(r) > 0. Finally,
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the distribution of intermolecular vectors is taken to be spherically symmetric, i.e. g{(f) =
g(r)/4m. Under these approximations, and upon substitution of Eq. (1.11) into Eq. (1.10),
it may be shown that there is a stable nematic phase with molecular orientational ordering

described by the following ODF:
f(8) ~ exp [~ BePy Pa(cos )] , (1.12)

where
€= p/dr47rr2e(r)g(r), (1.13)

for T < 0.2203¢/kp = Tn;, and where Ty, is the nematic-isotropic phase transition
temperature.

That the Maier-Saupe theory of nematic liquid crystals and its derivatives has been
such a successful theory for describing orientational order seems surprising considering the
severity of the approximations. For example, there clearly will be significant short-range
orientational correlations between real nematogens arising from short-range repulsive
forces which are entirely neglected in the theory. As well, the assumption of a spherical
distribution of intermolecular vectors is difficult to rationalize given the highly anisotropic

nature of the system.

1.3 Solutes as Probes of Intermolecular Forces

1.3.1 NMR and Orientationally Ordered Solutes

There are a variety of experimental techniques which in principle can provide quantitative
information about orientational ordering in nematic liquid crystals. For example, X-ray
diffraction can be used to measure the full ODF, f(6), while polarized Raman scattering

can yield estimates of the order parameters P, and P, [4]. In practice, such information

is often difficult to obtain using these methods. Nuclear Magnetic Resonance (NMR)

K
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by contrast, is an excellent technique for studying order in anisotropic systems. Its
principal limitation, however, is that it is capable of measuring order parameters of onlyw
the second rank, and therefore yields only a modest amount of information relative to
that contained in the complete ODF. Nevertheless, it has been shown to be an extremely
effective tool for elucidating the details of orientational behaviour in liquid crystals and
is highly relevant, both directly and indirectly, to the present work. We shall not provide
a detailed description of the basic theory of NMR, but only a brief outline of its relation
to the determination of orien_tational‘ order parameters.

An analysis of the NMR spectra of orientationally ordere_d molecules can yield a
variety of different intramolecular coupling constants which are parameters of the nuclear
spin Hamiltonian. An important example bf this is the direct dipole-dipoleucoupl.ing
constant, which for a pair of like spins may be written as

2p, 3cos?hZz — 1
Dij — _7 (30 <2 1) ) > ) (114)

2 3
8T i

where v is the gyromagnetic ratio of the spin, & is Planck’s constant, p, is the magnetic
permeability of free spéce, and 95 is the angle between the ’internuclear vector and the
external magnetic field which is defined to be along the Z-axis. The ensemble average
includes both averaging over the internuclear distance and over the direction of the in-
ternuclear vector. For rigid molecules, and neglecting vibrations, r;; is fixed, and the

expression can be written as

2
v hy 15
D;; = _misag cos f, cos b, (1.15)

where S,s is the Saupe order matrix defined in Eq. (1.6), and where 6, is the angle
between the internuclear vector and the molecular a-axis.
The measurement of dipolar coupling constants for nematogens is complicatéd for two

reasons. First, the spectra are often impossible to analyze. Generally, this is the case for
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proton NMR, since individual nematogens may have ~20 proton spins. The result is an
extremely complex spectrum composed of many overlapping, unresolvable lines. Second,
the nematogens are flexible molecules which sample a large number of conformations.
This conformational freedom greatly complicates the analysis of the coupling constants
even if they can be measured. In this case, Eq. (1.15) is not a valid expression for the
dipolar coupling constant.

A very useful alternative for studying orientational order in neniatic liquid crystals is
to employ solutes as probes of orientational order. Generélly, a rigid molegule with lower
than Ty symmetry will be partially oriented When dissol?ed in an anisotropic nematic
environment as it samples the same intermolecular forces which align the nematogens
themselves. The solute will be characterized by its own ODF and orientational order
parameters. Solutes may be chosen to simplify the spectral analysis and interpretation .
of the coupling constants: symmetric, rigid solutes with sufficiently few spins are often
ideal.

There are other important reasons why this approach can be highly useful for studying
orientational ordering. | The principle objective of many studies is to gain some insight
into the underlying mechanisms responsible for the ordering. By studyving the behaviour
of the nematogens alone, it is difficult to disentangle the many factors and to understand
the relative importance and effect of the Qarious intermolecular forces. In contrast, it
is often possible to choose a specific solute or collection of solutes for which a specific
interaction is the principal orienﬁng mechanism. An analysis of the orientational order
parameters may then provide some understanding of the role of this interaction in the
nematic phase generally. |

In the following sections, we review some important results of several NMR studies

which employ solutes-as probes in nematic liquid crystals. We emphasize those which

focus on understanding the role of electrostatic and short-range repulsive interactions
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and molecular flexibility in nematic liquid crystals.

1.3.2 Electrostatic Interactions
1.3.2.1 The Average Electric-Field Gradient

An important study that provided direct evidence for identifying a specific intermolecular
interaction as an orienting mechanism employed molecular hydrogen and its deuterated
analogues as probe solutes in a nematic solvent [13, 14]. Since a deuteron is a quadrupolar
nucleus, the nuclear spin Hamiltonian for partially oriented D, and HD is parameterized
by a quadrupelar coupling constant, Bg, as well as the dipole-dipole and scalar coupling
constants, Di; and Jyo, between the two spins. Analysis of the spectra for D, and HD is
trivial and yields directly the values of the couplings. In the absence of external fields,
the ratio of Bp/D1, should be a solvent-independent molecular property. The fact that
this ratio ;vas observed to be strongly sélvent—dependent and deviate significantly from its
gas-phase value can be explained by proposing that the probe solute experiences a non-
zero average external electric-field gradient (EFG). This external EFG arises from the
contributions from the solvent molecule charge distributions to the electrostatic potential
sampled on average by the solute. The EFG interacts with the nuclear quadrupole
moment and makes an additional contribution to the quadrupole coupling constant:

- Je _ _
Bg = —Z%Q(Fzz —eqPy)

3

(1.16)

where Qp is the principal component of the deuteron nuclear quadrupole moment, Fy
is the principal component of the évera.ge external EFG, and P,=S,, is the solute order
parameter. The z-axis is the molecular symmetry axis while the Z-axis defines the
direction of both the external magnetic field and the nematic director which aligns along
it. Note that the EFG is a traceless, symmetric second-rank tensor. As a result of the

cylindrical symmetry and apolarity of the uniaxial phase, however, the form of the EFG
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tensor is simplified further: the off-diagonal terms vanish, Fy y="F- Z—%Fzz; and the
tensor is characterized by only one independent element, Fz,. In the mean-field limit, the
molecular quadrupole moment interacts with the average electric-field gradient according

to a mean-field potential given by

u() = —%FzzszPz(cos 9), (1.17)

where Q.. is the principal molecular quadrupole moment and 6 is the angle between
the molecular symmetry axis and the nematic director. Application of this potential
using values for F,z obtained from the spectral analysis was found to provide excellent
estimates of the measured order parameters for D, and HD [13, 14]. These calculations
carefully incorporated both the presence pf intramolecular vibrations and the quantum-
rotor nature of these small molecules.

It is very likely that the average EFG-molecular quadrupole interaction is a valid
model for other probe solutes as well. The most straightforward hypothesis is to take
the average EFG as a solvent-dependent property which interacts with the probe in a
manner independent of the molecular properties of the solute. In studies of other oriented
solutes, this hypothesis cannot be tested. directly. The situation is comp.licated by the
inability to measure F;, directly from spectral analysis and the importance of additional
intermolecular forces as orienting mechanisms, most notably the anisotropic short-range
repulsive forces. Considering this latter point, it is not surprising that predictions of
orientational order parameters for a variety of other molecules, employing Eq. (1.17),
and using known values of the molecular quadrupole moments and the values of the EFG
measured using molecular hydrogen, are very poor [15, 16]. However, some qualitative
agreement is provided by the orientational behaviour of specific solutes. For example,
acetylene, like Do, orients with a negative order parameter in the nematic solvent EBBA.

‘While it is difficult to rationalize this behaviour by invoking other orienting mechanisms,
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it is entirely consistent for a molecule with a positive quadrupole moment which interacts
with a negative EFG, as was measured for this solvent using Dj. Similarly, the behaviour
of the order parameters for benzene and hexafluorobenzene, moTecules with very similar
shape but with opposite signs of quadrupole moments, follow the pattern predicted by this
mechanism using values of the EFG obtained from D, for various nematic solvents [16].
Finally, the presence of non-vanishing dipolar and quadrupolar coupling constants for
deuterated methanes in a nematic solvent can be understood as arising from a vibration-
rotation coupling that results from a second-rank tensorial interaction between the solute
and a solvent mean-field [17]. A study of the quadrupolar coupling constants gives
consistent results for theoretically solvent-independent quantities in different nematic
solvents when an external EFG with values determined in the studies of D, and HD was

incorporated into the analysis [18].

1.3.2.2 The Emsley-Luckhurst Potential of Mean Torque and the Average
EFG

Emsley, Luckhurst, and coworkers have developed a theory for describing orientational
ordering of solutes in uniaxial liquid crystals which is closely related to the Maier-Saupe
theory [19]. A potential of mean torque is derived by integrating the solute-solvent pair
potential over the solvent coordinates. In analogy with the expression for the ODF

relation in Eq. (1.10), the solute ODF, f(w}, in the mean-field approximation is given by
f(w) ~ exp [-BU (w)] (1.18)

where :
Ulw) = p/dFdw'u(F,w,w')f(w')g(f’), (1.19)

where u(7,w,w’) is the solute-solvent pair potential, and where we henceforth adopt the

convention of labeling the solvent ODF as f(w) to differentiate it from that of the solute.
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Note that f(w) is not determined self-consistently in this method, but is expressed in
terms of the solvent ODF. As in t_he Maier-Saupe theory, the pair potential in the present
theory is expanded and truncated to second rank; however, in this case, the biaxiality of
both the solute and solvent molecules is included, in analogy to an extended version of the
Maier-Saupe theory [20]. Further, as in the original formulation of the present theory,
the distribution of the intermolecular vector was taken to be spherically symmetric:
g(7) = g(r)/4m. With the approximations described above, and in the limit of negligible
biaxiality for the solvent orientational ordering, the following mean-field potential is

obtained:

—~ (nem 3 —~ (Ttemrt .
U(8, ) = —Tiage 2, ™™ Py(cos §) — @am&( ) sin2 6 cos 26, (1.20)

where P.z(”em)

is the nematogen order parameter. The coefficient %gpy is analogous to
the parameter ¢ defined in Eq. (1.13), i.e. an average over the radial component of the
axially symmetric second-rank term of the expansion of the pair potential, while g, is

a similar term which accounts for the biaxiality of the molecules in the pair potential.

Orientational order parameters may be calculated using the following relation:
f (% c0s B, cos g — %50,[;) exp|—BU (0, ¢)] sin 0dBd¢
[ exp[—BU (8, ¢)] sin 6dfd¢ ’ (

where 6,, the orientations of the molecular axes with respect to the nematic director, are

Sag = 1.21)

functions of the polar angles, # and ¢.

Applyving this model to fit experimental orientational order parameters, the linear
dependence of the fitted potential on the solvent order parameter ]52("%) is generally
satisfied. It is also generally observed that the ratio A = figpg /%202 is strongly dependent
on both temperature and solvent {19, 21, 22, 23). ij contrast, the theory predicts that

the temperature dependence should be determined solely by P, As well, for the

5 (nem)

case of second-rank tensorial solute-solvent interactions, A is predicted to be solvent-

independent.
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There are a number of possibilities to explain this deficiency in the theory, includ-
ing the presence of multiple contributions to the pair potential. This has been investi-
gated by Emsley et al. with special emphasis on electrostatic interactions, its relation
to the observed non-zero average EFG in nematic solvents, and the consequence to the

dispersion-force contribution to the potential of mean torque [22, 23,. 24). In the context
of the theory, it can be shown that the observation of a finite EFG indicates that the
distribution of intermolecular vectors cannot be spherically symmetric, in contrast to
the assumption of the Maier-Saupe theory and its derivatives. Further, the quadrupole-
quadrupole interaction is found to be the lowest order multipole expansion term which
can contribute to the mean potential in the case where the distribution possesses only
cylindrical symmetry. For an axially symmetric molecule, for example, the foiléwing

mean-field potential is obtained [24]:
Ug(6) ~ T3QEIQI P By ™ Py(cos 6) (1.22)
According to Eq. (1.17), this corresponds to an EFG given by
Fyz ~ 73QW B} P, (1.23)

where Q) and Q) are the quadrupole moments of the solvent and solute, respectively.
Further, the average over r is performed as in Eq. (1.13), and P_jr is a fourth-rank order
parameter describing the orientational distribution of intermolecular vectors. The lack
of spherical symmetry of the intermolecular vector distribution also modifies the form of
the mean-field potential arising from dispersion interactions.

The orientational order of anthracene and anthraquinone, molecules with similar
molecular shapes and polarizabilities but with significantly different quadrupole mo-
ments, was studied and analyzed using the modified theory above [25]. It was concluded

that the observed behaviour of S,, and A could only be explained by a dependence of
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P;* and P_4+ on both solvent and solute properties. This contrasts with the proposal by
Burnell et al. that the average EFG is a property of the nematic solvent alone. However,u
it is important to note that the analysis considered contributions only from electrostatic
and dispersion forces, neglecting entirely contributions from the probably very important
short-range repulsive forces. This latter interaction cannot be easily incorporated into
the framework of the Emsley-Luckhurst theory which, like the Maier-Saupe theory, is
valid for the case of long-range forces and neglects the effects of short—‘ra.nge correlations.

A further complication of the theory was discovered by Luckhurst et al. in a Molecular
Dynamics study of a system of Gay-Berne nematogens and the validity of the Maier-Saupe
theory to this system [26]. In particular it was féund that the orientational distribution of
solute-solvent intermolecular vectors is highly dependent on the intermolecular -distailce
r. This implies that separately averaging over the magnitude and direction of the inter-
molecular displacement 7 is invalid and that the theory must be reformulated to account
for this feature. It rhay be shown that the expression for the EFG must be rewritten in

the following form: )
Py (r)g(r)dr

Fzz ~ pQ% [ / 3 } B, (1.24)

The consequence of this result will be discussed at a later stage in this thesis.

1.3.2.3 Further Comments on Electrostatic Interactions

In the application of the Emsley-Luckhurst theory to electrostatic interactions above,
it is found that the lowest order lnbon-vanishing multipole-multipole term is that for the
quadrupole-quadrupole interaction, which results in a mean EFG with which the solute
interacts. It is easy to understand why, for example, the dipole-dipole term does not

contribute within the context of the theory. In this case, a solute dipole moment inter-

acts with a mean electric field, which is necessarily zero for an apolar nematic phase.
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However, Photinos et al. have demonstrated the importance of intramolecular dipole-
dipole interactions in their studies of the orientational ordering of a-bromonated alkanes
[27, 28]. The observed bias on the segmental orientational order relative to the case
of regular alkanes was shown to result from interaction of the local dipole moment at
the bromine position with the local dipoles on the nematogens. The effect was explained
qualitatively by the asymmetric arrangement which results from off-centered local dipoles
on molecules with short-range repulsive cores. This results in strong short-range corre-
lations which contributes significantly to the orientational ordering. In pfinciple, these
interactions should then contribute to the ordering of solutes with dipole moments in a
zero-EFG liquid crystal where it has been assumed, in the mean-field limit, that electro-
static interactions are insignificant.

There is further evidence that the mean-field approach to electrostatic interactions is
too simplistic. Terzis et al. have derived an alternative theory to describe orientational
ordering of solutes in nematic solvents which incorporates explicitly both the anisotropic
excluded volume interaction and interactions between electrostatic multipole moments
[29]). The effects of molecular polarizability were also included, though they weré generally
found to be relatively insignificant. The th-eory derives hard-core (HC) and electrostatic
(ES) contributions to a mean-field potential. The derivation involves a reduction of the
full many-particle distribution function and incorporates many approximations, including
neglecting correlations between solvent molecules and truncating the effective range of
~ the electrostatic energy to a local region. The latter choice necessarily excludes the
validity of the theory for dealing with long range dipole-dipole interactions. The following

contributions to the mean-field potential are obtained:

Uyc(w)
kgT

= / Vie (w, ') f(w')do! (1.25)
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and

Ups(w) _

T p/df'dw'f(w') [1 — exp (—ups(F,w,w')/ksT)]| guc (7, w,w'), (1.26)

where gyc(7,w,w’) = 0, for overlapping configurations, or 1, for non-overlapping con-
figurations, and ugs(7,w,w’) is the electrostatic contribution to the pair potential. The
potentials were expanded to fourth-rank and used to analyze experimental order parame-
ters for a small collection of solutes by adjusting the solvent dimensions and nematic order
parameters. The values of these were used to measure the strength of HC interaction and
the various ES interactions including dipole-quadrupole, quadrupole-quadrupole terms.
The main conclusions from this study were as follows: the effects of the ES interactions
were of comparable magnitude to those of the HC interactions; they are highly sensitive
to the shapes and electrostatic properties of the solvent and solute molecules; they cannot
be described consistently by means of a coupling between the solute quadrupole moment
and an external average EFG.

However, there may be flaws in both the theory and its application to the analysis of
the experimental data. The relation for the HC mean-field potential above has exactly
the same form as the self-consistent expression for the ODF in Onsager’s theory. In that
case, the neglect of correlations between three and more molecules is a severe approxima-
tion for particles with dimensions of typical nematogens. This may be even more severe
for approximating the HC contribution to the ODF for solutes which have considerably
less shape anisotropy than the nematogens, and may significantly underestimate its con-
tribution to orientational ordering. In light of this, the conclusions drawn by the study
are arguable, and an alternative approach to studying the combined effects of HC and

ES interactions on solute orientational order must be found.
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1.3.3 Short-Range Repulsive Forces and Mean-Field Models

It is generally accepted today that short-range anisotropic forces provide the prillciple
orienting mechanism for nemotogens in their nematic phase. It is highly probable that
this mechanism should also.domina.te for other molecules dissolved in an oriented phase.
The fact that this is not the case for molecular hydrogen is probably due to its small size
and nearly spherical shape. However, for molecules with dimensions closer to those of
the nemotogens and with greater shape anisotropy, it is very likely to be true.

In previous experiments with deuterated molecular hydrogen, it was found possible
fo combine nematic solvents with measured values of the EFG of opposite signs to form
a mixture that has a vanishing EFG. Specifically, the following two mixtures were ob-
served to have this property: (1) 55 wt% Merck ZLI 1132! / EBBA at a temperature of
T=301.4 K [31]; (2) 30 wt% 5CB? / EBBA at 316 K [32]. If the EFG is a property of
solvent alone, then it should vanish for any other solute as well, along with its associated |
contribution to orientational ordering. Under this assumption, these zero-EFG mixtures
are ideal for studying the other interactions contributing to orientational ordering of the
solute.

The orientational order parameters of a wide collection of solutes have been measured
in the different zero-EFG mixtures and analyzed to test the importance of short-range
repulsive forces as an ordering mechanism. The basic approach of the analysis is to
‘construct a model pseudopotential, Usr(w), which is highly sensitive to the molecular
size and shape, to describe the orientational behaviour of an arbitrary solute. Molecules
are modeled using van der Waals spheres to represent the atoms. Orientation-dependent

projections of the molecules parallel and perpendicular to the nematic director are used

1A eutectic mixture of alkylcyclohexylcyanobiphenyls and cyclohexylcyanobiphenyls. See Ref. [30]
for composition.
24-n-pentyl-4'-cyanobiphenyl
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to define the potential in a way designed to have a lower energy, and therefore a higher
probability, for elongated molecules aligned along the director, and, for oblate molecules,
perpendicular to the director. The potential may be characterized by one or two solvent-
dependeht model parameters which describe the strength of the interaction between the
solute and the nematic solvent. Molecular order parameters may be calculated using
Eq. (1.21). Several of these models shall be used and examined extensively in subsequent
chapters, and we choose not to describe the details until then.

The essential idea of this approach is that a model which incorporates the details of
the molecular shape should be able to provide an adequate description” of orientational
order for arbitrary solutes if the principal ordering interaction is short-range and repulsive
in nature. Long-range attractive forces, by contrast, should be relatively insensitive to
molecular shape. Several different models have been developed to analyze the large
collection of order parameters which have been measured for solutes in zero-EFG liquid
érystals. Of particular interest are the models developed by Burnell and coworkers [33, 34,
35, 36], and a model due to Ferrarini et al. [37] which is closely related to that proposed
by Zimmerman et al. [36]. The most important result of these studies is that the models
which incorporate in the most detailed manner the molecular shape generally provide

the best predictions of orientational behaviour and are able to predict the principal order

parameters to within 10% of their measured values.

1.3.4 Flexibility

With few exceptions, the molecules which form nematic liquid-crystalline phases are
highly flexible and sample a wide variety of conformations. The near-universal presence of
this property is a result of the fact that it increases the entropy and therefore decreases the
free energy of the nematic mesophase relative to that of the crystalline-solid phase; thus,

the system will not freeze before it passes into a liquid crystalline phase. Since molecular
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shape anisotropy is the dominant factor contributingi to the orientational ordering in
these systems, the ordering behaviour is strongly influenced by the packing structure of
the fluid. Molecular flexibility is expected to stroneg affect the organization in the fluid
via the complex relationship between translational, orientational and internal entropy,
and therefore will alter significantly the orientational behaviour relative to that expected
for systems of rigid molecules.

Important examples of internal motion include the the following: rotation about one
or more bonds that bridge the rigid units that form the core of the molecule, and the
rapid exchange between conformations of alkyl chains which are often connected to the
rigid cores.

The incorporation of molecular flexibility into molecular-statistical theories of liquid
crystals is a challenging task. These theories generally choose to ignore this factor and
der.ive results in terms of interactions between rigid molecules, which may be thought of
loosely as the average over all conformational states. Some Molecular Dynamics computer
simulations have successfully simulated nematic systems composed of molecules which
are modeled in detail and include internal flexibility together with an accurate molecular
structure [38, 39]. However, such calculations are extremely time-consuming and can
only be run over short times for relatively small systems.

Experimental NMR measurements can provide some insight into the conformational
behaviour of flexible mesogens. Deuterium NMR of isotopically substituted species di-
rectly yields order parameters of individual rigid molecular subunits. Proton NMR spec-
tra of nematogens are highly complex and cannot be analyzed without using additional
techniques such as partial deuteration with deuterium decoupling. Nevertheless, the
dipole-dipole spin couplings that may be obtained contain considerably more informa-
tion than the deuterium quadrupole céupling constants. In either case, the analysis

requires a suitable quantitative measure of the orientational ordering. The Saupe matrix
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in Eq. (1.6) is designed for rigid molecules; the use of an average S, appropriate for an
average molecular structure has been considered before and shown to be inappropriate _fo»li“
large molecules with large amplitude internal motions between conformations not related
by symmetry [40], conditions which certainly describe typical nematogens. The neces-
sary alternative approach requires a separate S,g to describe the orientational ordering
of each conformer, and is valid provided that the rate of molecular reorientation is rapid
compared to the rate of exchange between conformers [41, 42]. Thus, a very large number
of independent order parameters is required to characterize the orientational behaviour
of most nematogens.

As in the case of investigating the intermblecular forces which contribute to orien-
tational ordering of nematic liquid crystals, probe solutes may be used to pro{fide s.bme
insight into the role of molecular flexibility for such systems. The principal advantage
is that specific solutes may be chosen for convenience. The spectra of relatively simple
solutes can be analyzed in a straightforward manner, either directly or with the help of
some additional tool like that of Multiple-Quantum NMR spectroscopy which we shall
presently describe. The orientatioﬁa,I ofdering and conformational behaviour of flexi-
ble solutes may reflect that of similar flexible components of nematogens. For example,
studies of the behaviour of alkanes oriented in a nematic liquid crystal may provide some
understanding of the role of nematogen élkyl tails. Animportant question about the con-
formational behaviour of flexible molecules which can be investigated concerns the role
of the solvent in biasing the conformational equilibrium from that for isolated molecules.

Although a large number of independent order parameters are in principal required
to describe the ordering of nematogens, this problem can be circumvented by employing
model potentials described in Section 1.3.3. The models are characterized by only one or
two parameters and can be used to calculate the order parameters for each conformer. A

related advantage of studying flexible solutes is that the success that a particular model
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has in fitting a set of NMR data provides an additional test of the overall ability of a
model to adequately describe molecular orientational order. This approach has been used
to study the conformational behaviour and orientational ordering of alkanes of various

lengths in several recent NMR studies [43, 44, 45, 46, 47, 48, 49].

1.4 Multiple-Quantum NMR

1.4.1 Application to the Analysis of NMR Spectra

In NMR studies of solutes ordered in liquid crystals, information about orientational
ordering is obtained from an analysis of coupling constants, which, in turn, are obtained
from an analysis of NMR spectra. In the case of deuterium NMR, the spectra are
relatively simple, even for complex molecules such as typical nematogens. They consist
- of a set of of doublets, each corresponding to a unique deuteron on the molecule, whose
splitting is related to the order matrix of the corresponding rigid molecuiar subunit. This
is a consequence of the large magnitude of the quadrupole coupling constant associated
with the spin which interacts with a local electric-field gradient, which dominates the spin
Hamiltonian. In the case of proton-NMR, however, it is the dipolar coupling constants
which are the principal determinant of the fine structure in the spectrum. This leads to
far more complex spectra that require sophisticated numerical methods for analysis.
The general procedure for fitting a spectrum requires detailed information about the
molecular structure, estimates of Sy, and, in the case of flexible molecules, some knowl-
edge about the geometry and relative weighting of each of the conformations sampled,
in order to calculate initial estimates of the D;;. These may be be used, together with
literature values of isotropic chemical shifts, to generate an initial spectrum. If the param-
eters are sufﬁc‘iently accurate, then individual lines between experimental and calculated

spectra may be assigned and fit using very well-established numerical techniques.
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Many solute molecules with > 8 spins have a complex spin-Hamiltonian that gives
rise to a correspondingly complex spectrum which may be very difficult to solve, even in
the case of very symmetric molecules. The number of measurable transitions increases
rapidly with the number of Spins, eventually resulting in a quasi-continuous spectrum of
overlapping, unresolvable lines. The case for spin systems of intermediate complexity,
where the spectrum consists of lines wﬁich are generally resolvable but is still highly
complex, deserves some attention. For these systems, extremely accurate initial esti-
mates of the spin-Hamiltonian parameters are required. Small deviations may scramble
positions of the numerous, densely packed lines to the point where adequate assignment
becomes virtually impossible. However, such spectra in principle can be analvzed if a
method were available with which to provide sufficiently accurate estimates of the NMR,
spin-Hamiltonian parameters.

Multiple-Quantum (MQ) NMR spectroscopy is one possible method. The structure
of higher orders of MQ spectra can be very simple, vet contain the same information
that is available from the analysis of the corresponding, conventional NMR spectrum.
Thus, the solution of MQ spectra does not pose the same severe demands as that of the
conventional spectrum. Estimates of the coupling constants and chemical shifts obtained
from the MQ spectra may then be used to solve the one-quantum spectrum with much
less difficulty than would otherwise be the case. Yet the technique has generally been
ignored as a basic tool for studying such systems.

It is interesting to note that the phenomenon of continuous wave (CW) MQ-NMR was
observed over thirty years ago. In this case the usual NMR selectiou rules forbidding most,
MQ transitions was circumvented by increasing the strength of the perturbing RF field.
An unwelcome consequence of this technique, however, is that the spectral line positions
and intensities depend not only of the unperturbed internal spin Hamiltonian, but on

the magnitude of the perturbing field as well. Thus, it was not until the introduction of
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the two-dimensional Fourier Transform NMR technique that MQ NMR could becomé a
truly useful method. This is due to the fact that the frequencies of M(Q) transitions are
obtained from thé indirect observation of associated MQ coherences which evolve during
a time in which the system is free from any external RF field.

Although this approach was first suggested in the landmark 2D-NMR paper by Aue
et al. in 1976 [50], MQ-NMR methodology was developed mainly by Pines and coworkers
at Berkeley in years shortly afterward. There is an enormous variety of M@ experiments
that were developed during that time, and it is far beyond the scope of this thesis to
describe most of these; an excellent review of this subject may be found in the review by
Weitekamp [51]. However, a brief description of the basic method and underlying theory

for measuring standard MQ spectra is presented below.

1.4.2 Theoretical Background

In the absence of an external RF field, the Hamiltonian for a collection of like spins

of I = % (i.e. non-quadrupolar nuclei) is composed of the Zeeman, dipolar and scalar
coupling terms:

H=H;+Hp+H; (127)

The Zeeman Hamiltonian, Hyz, is given by
. R ‘
HZ = _ZhViIZi (128)
i=1

where the chemically shifted frequencies, v;, are given by

_ H

v; = . (1=0zz4), (1.29)

where 7 is the gyromagnetic ratio of the nucleus, Hj is the static external magnetic field,

defined to be along the Z-axis, and Iz; is the Z-component of the spin operator for the

it" spin of a system of N spins. The quantity 07z, is the component of the chemical-shift
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tensor projected onto the external field and is related to the molecular-frame components

0a8,: by the following relation:
1 2
022i = 3 Za: Oaa,i + 3 QZ; SapTapis (1.30)
where S,z is the Saupe order matrix defined in Eq. (1.6). Note that the second term
vanishes for isotropic systems.
The direct dipolar Hamiltonian is given by
Hp =Y hDy(31z:lz; ~ I; - I}), _ (1.31)

i<
where the dipolar coupling constanﬁ D;; between spins ¢ and j, was defined previously
for the general case in Eq. (1.14) and, for rigid molecules, described by Eq. (1.15).

The indirect dipolar or scalar Hamiltonian is approximately given by
Hy =3 hlyli-I; (1.32)
i<j

Note that the general form of this Hamiltonian includes an anisotropic component which
has exactly the same form as the direct dipolar Hamiltonian. However, for most couplings
involving protons, the anisotropy is small and may be ignored.

The expressions written above are valid in the high field limit, where the chemical
shift, and the direct and indirect dipolar interactions are small compared to the principal
Zeeman interaction of the bare nucleus with the external magnetic field. The eigenstates
and eigenvalues are obtained from a diagonalization of the Hamiltonian and are param-
eterized by 0zz4, D;; and J;;. Thus, the associated spectral transition frequencies and
intensities are also a function of the coupling constants.

The total Hamiltonian commutes with the Z-component of the tatal angular momen-

tum operator, Iz = ¥ ; Iz,

[H,I]=0 (1.33)
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Thus, Iz is also diagonal in the Hamiltonian eigenbasis and its eigenvalue, M;, given by
Iz|1) = M;l|q) (1.34)

for an eigenstate |i), is a “good” quantum number, and thus, each eigenstate can be
labeled with a unique value of M;. The spectra measured using either CW NMR em-
ploying weak RF fields, or through fourier transformation of the Free Induction Decay
(FID) following a “hard” RF pulse yield a spectrum characterized by transitions between
eigenstates |7) and |j) which, in the case of infinitely sharp lines, is given by

Flw) = Y1) 6w - ws), (1.35)

i<

where w;; = E; — E; for eigenvalue energies E; and F;. This gives rise to the main NMR
selection rule: n;; = AM;; = M; — M; = £1. The order of a particular transition is given
by .the value of n;;. Thus, a standard NMR spectrum is characterized by transitions of
order £1.

Before describing how this selection rule may be overcome to permit effectively tran-
sitions between all orders, it is useful to examine the number of transitions associated
with each particular MQ order. It can easily be shown that for an N-spin system, which
has 2" distinct eigenstates and energy levels, the number of n-order transitions is given
bv Z, = 2N)//((N+n)/(N-n)!) for n < N. For a general ten-spin system, Zjp=1,
Zy=20, Z3=190,..., Z;=167960, Z;=184756. Thus, the number of transitions increases
rapidly for decreasing MQ order. The higher order spectra, those forn = N — 1, N — 2,
N — 3, contain the same information about the NMR coupling constants as does the
one-quantum spectrum, yet contain far fewer transitions. This means that there is a vast
redundancy in the conventional NMR spectrum. Note that for many molecules which

have some degree of symmetry, many energy levels within each manifold are degenerate.

Further, it may be shown that all transitions between states belonging to the different
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irreducible representations of the permutation group (i.e. permutation of spin indices
in the eigenstates) are forbidden. These factors can reduce considerably the number of;‘
observable transitions of all orders for molecules with some degree of symmetry.

A basic pulse sequence that may be used for the generatio.n and observation of MQ

coherences is given by the following:

- )-a-@)res0

An understanding of how MQ transitions are observed in a two-dimensional NMR exper-
iment requires an understanding of the time evolution of the spin density operator over

the course of the experiment. This may be calculated using the Liouville equation:

9p _ 1 e

Prior to the application of the RF pulses, the equilibrium density operator, in the high-

temperature limit, is given by:

yhHg
S QY L S .
Peq 1 (kBT(2]+1)J\’> 2 (1.38)

The identity operator 1 plays no role under time evolution of p and may be ignored. Ap-
plication of a strong 90° Y -pulse converts I, into Iy. The density operator evolves under
the internal Hamiltonian according to the Liouville equation above. For the Hamiltonian
described above, it can be shown that Iy = (I. + I_)/2, a *one-quantum operator,
evolves into other one-quantum coherence operators during the preparation time 7. Fol-
lowing the application of a second RF pulse, these one-quantum coherences are trans-
formed into all possible MQ coherences. The magnitude of the MQ coherences depends
strongly on 7 and the NMR coupling constants that characterize the spin Hamiltonian.

The MQ coherences evolve for the evolution time ¢;, again under the internal sp.in Hamil-

tonian alone. The third pulse partially converts the spin order back into one-quantum
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coherences which evolve into the observable I, which may be recorded as a function
of t,. Two-dimensional fourier transformation and projection onto the f; axis yields a
spectrum of MQ transitions which corresponds to the time evolution of MQ coherences
during the evolution time ¢;.

The basic pulse sequence may be modified further to accomplish specific goals. Ap-
plication of particular phase cycles can be used to selectively detect particular orders of
MQ spectra in order to reduce thé spectral width and improve the digital resolution [52].
Offsetting the RF frequency from resonance can be used for the separation of individ-
ual orders. If necessary, 180° pulses can be incorporated to refocus the effects of static

magnetic field inhomogeneities.

1.4.3 Limitations

The primary interest in MQ spectroscopy in this thesis is in its application to simplify
spectral analysis of one-quantum spectra. While this method is potentially very useful
for such problems, it is also clear that there are factors which can limit its range of
applicability. |

As the size N of the spin system increases, the number of MQ coherences increases
considerably. Consequently, the initial order manifested in the equilibrium magnetization
is distributed over an increasingly large number of coherences during the evolution period
of the MQ experiment. The effective signal-to-noise therefore is reduced substantially for
larger molecules. Elaborate methods designed to transfer the order to a particﬁlar order
of coherence, and thus to reduce this “thinning out”, have been devised [53, 54, 55]|;
however, these are non-trivial experiments and still may be of limited use for larger
molecules. For typical nematogens with ~20 proton spins, even specific high MQ orders

will contain a prohibitively large number of coherences. The inefficiency of using a single

pulse for converting the M(Q) coherences back into one-quantum coherences is also a severe
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limitation of the basic pulse sequence. Time reversal pulse sequences which are intimately
related to the sequences designed for selective excitation of particular MQ orders have
been developed to circumvent this problem [56].

As stated previously, the magnitudes of the MQ coherences evolving during t; are a
complex function of the preparation time 7 and the NMR coupling constants. A problem
associated with this fact is that it can be very difficult to choose a particular 7 such
that all coherences of a particular order of interest are appreciably populated. One may
employ several values of 7 and sum the individual spectra. Further, a search procedure
for optimizing 7 has been described [57], but this is suitable for maximizing the integrated
intensity of an entire MQ order and not for individual coherences. .

Finally, there is the usual problem of truncation in the ¢; domain common to all two-
dimensional NMR experiments. In typical experiments, it may take an unrealistically

‘large number of ¢, increments for wide spectra to avoid this problem. This truncation
results in a widening of the experimental lines, reducing the signal-to-noise ratio and
increasing the uncertainty of the estimated line frequency. Note that natural line broad-
ening is magnified n-fold for n-quantum coherences in the absence of refocusing pulses
and may contribute significantly to the broadening of lines of higher MQ orders.

Clearly, these problems are not insurmountable. Many variations of the basic exper-
iment have been devised to deal with them. However, most of these techniques utilize
complex pulse trains which require near-ideal pulses. Loss of coherence due to RF inho-
mogeneity for example, a problem inherent to high resolution NMR systems, can be a
serious impediment. Even the application of single 180° refocusing pulses can produce
troublesome artifacts under such conditions. Thus, the limits of the basic pulse sequence

‘deserved to be explored. As demonstrated in this thesis, this simple and undeservedly

ignored technique can be very useful.
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1.5 Monte-Carlo Simulations

A principal goal of many studies of orientational ordering in liquid crystals is anlun-
derstanding of the relationship of molecular properties to the long-range correlations.
Unfortunately, it is often the case that experimental data are very difficult to interpret
unambiguously: the effects and relative importance of different molecular properties are
difficult to determine. The use of specific solutes to enhance the effects of specific inter-
molecular forces on the molecular alignment is a helpful, but limited method.

Computer simulations provide an effective complementary approach to study such
systems in that they can aid in the interpretation of experimental data, as well as supply
a means to test specific theories. There are two main types of simulation techniques:
the Molecular Dynamics (MD) and Monte Carlo (MC) methods. MD simulations follow
the real time development of a system of interacting particles by starting from some
initial configuration and integrating Newton’s equations of motion over a time interval
as long as is computationally convenient. Periodic boundary conditions are employed to
accommodate the finite size of the model system. Equilibrium properties of the system,
including various order parameters and distribution functions, are determined by aver-
aging over the sequence of states generated by the time evolution of the particles. An
advantage of the MD method is that quantities related to the dynamics of the system,
such as diffusion constants, may be measured.

The MC method, in contrast to the MD method, makes no attempt to simulate
the true dynamics of the system. Instead, a sequence of micro-states is generated by
a stochastic process such that the probability of the occurrence of a particular state
in the chain is given by the appropriate ensemble (microcanonical, canonical or grand
canonical). This can be achieved by using a Markov process to generate the sequence.

In this process, a system which is initially in some state i undergoes a transition to
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another state j with some probability Pj; that is independent of the previous history
of the system. The transition probability is chosen to satisfy the principal of detailed

balance characteristic of systems in equilibrium,

Pji'/Ti = ]Dij’/l'j, (139)

where 7; is the equilibrium probability that the system in the 7** state. For the canonical

ensemble, this leads to the following relation:

P'i M
ﬁ.. = = exp[-A(E; - B, _ (1.40)

th state.

where FE; is the energy of the ¢

One possibility for choosing the transition probabilities is that given by the Metropolis
algorithm [58]. In this method, the system is arranged in some initial configuration for
a finite collection of particles. One of the particles is chosen randomly, and a move (e.g.
translation, rotation) is attempted and the energy difference between the initial and final
states, AE = E; — Ej, is calculated. If AE > 0, then the move is accepted, i.e. Pj; =1;
it AE < 0, then the move is accepted with the probability given by P; = e PAE Tt is
trivial to show thét this algorit'hm is consistent with the relations above.

The sequence of states generated by this Markov process is governed by the appro-
priate probability distribﬁtion, and is independent of the initial configuration under the
assumption that it is possible to reach a particular configuration from any other in a
finite number of steps. The conﬁguratioﬁs generated in the early stage of the sequence
prior to the establishment of equilibrium are not counted in the calculation of expecta-
tion values of quantities of interest. There is no general, quantitatively precise method

for determining whether or not the system has attained equilibrium. A simple approach

is to monitor block averages, measured over a specific number of steps, of a quantity

of interest. Generally, after a short-lived transient effect, the quantity settles to some
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average value with some degreé of statistical fluctuation. Further, the rate with which
equilibrium is attained is highly depende}nt on the success ratio of individual moves. The
translations and rotations which may characterize the move are chosen randomly within
some maximum range of values relative to the current ones. Generally, it is found that
the maximum values should be chosen to yield a succeés ratio of about 50% in order to
attain equilibrium most rapidly.

MC simulations have been used to study a wide variety of systems, including liquid
crystals. We make no attempt to review the many studies which use the MC method to
investigate orientational ordering in these anisotropic systems. It should be pointed out,
however, that the models employed in many of these theories fix the particles to points
on a lattice, thereby eliminating the translational degrees of freedom. Particles interact
through some highly simplified anisotropic interaction that drives the transition from a
disordered to an ordered phase. A notable example of this is the Lebwohl-Lasher model in
which lattice-fixed particles interact with a potential that has an orientation-dependence
of Py(cos®), where @ is the angle between the orientations of a pair of cylindrically
symmetric particles [59]. Despite the highly Simplistic nature of these models, they have
provided an invaluable tool for studying the details of liquid-crystal phase transitions
and providing a test for various theories of liquid crystals.

A significant development in the understanding of liquid crystals was made by Frenkel
and coworkers over a decade ago using MC simulations. It was discovered that systems
composed of hard convex bodies such as ellipsoids and spherocylinders could form stable
orientationally ordered liquid crystalline phases for sufficiently high densities in the ab-
sence of any soft or long-range anisotropic interactions [5, 60]. Note that these systems
are characterized by constant energy since it is infinite in the case of overlap between any
of the particles, a situation which is therefore forbidden, but is otherwise unaffected by

the configuration of the system. Thus, these systems undergo phase transitions due solely
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to the maximization of entropy. This work underscored the importance of short-range
repulsive forces, whose anisotropy is closely related to the anisotropy in the molecular
shape, as an ordering mechanism in liquid crystals. More recently, Weis et al. investi-
gated the perturbative effects of electrostatic interactions on the orientational order and
phase stability in such systems by including local dipoles on the hard particles [61, 62, 63].

The use of MC simulations which use similar models to study orientational ordering
of soluteé in nematic liquid crystals may provide insight into the importance of ordering
mechanisms that are difficult to determine by experiment alone. In the present work, we
are concerned with the influence of shape and electrostatic interactions on molecular or-
dering. Specifically, we focus on the interpretation of NMR experimental data of Burnell
and coworkers for solutes ordered in nematic solvents [33, 64]. For example, the relation-
ship of various model potentials related to the size and shape of the molecule and the .
short-range repulsivé forces which the model is assumed to describe déserves attention,
as well as the EFG-quadrupole moment brienting mechanism described earlier. These
properties may be easily examined using solutes modeled as hard particles of various
shapes incorporated int'o a bath of orienta'tidnally oriented hard ellipsoids and including
specific electrostatic multipoles on the individual particles. To date, the only computer
simulations of solutes in liquid crystals have focused on two specific solutes, benzene {65
and hexane [66], with attention given to dynamical and conformational properties specific
to these solutes. Our aim is to gain a more general understanding of solute ordering by

studying a wide range of solutes without attempting to realistically model any particular

molecule.
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1.6 Outline of Thesis

This thesis is concerned with both experimental NMR and MC methods to study orien-
tational order of solutes in nematic liquid crystals in order to gain an understanding of
the anisotropic intermolecular forces which induce orientational order.

The experimental work presented here focuses on the use of MQ spectroscopy as a
tool for the analysis of spectra of solutes with spin systems of intermediate complexity.
Chapter 2 presents a study of biphenylene as an illustrative example. This eight-spin
molecule is highly symmetric yet gives rise to a complex spectrum which only through
an analysis of the six- and seven-quantum spectra can be solved to determine the dipolar
couplings. These are then used for a determination of its molecular structure.

In Chapter 3, we apply the same MQ methods to study butane as a solute in a
nematic liquid crystal. This molecule is of significant interest since it is the simplest
alkane which undergoes the large amplitude conformational changes between trans and
gauche states. This ten-spin molecule gives rise to a particularly complex and feature-
less spectrum which, nevertheless, is comprised of well-resolved lines. An analysis of the
readily acquired seven- and eight-quantum spectra are found to give excellent estimates
of the coupling constants and render trivial an analysis of the one-quantum spectrum.
The dipolar coupling constants are analyzed to provide an estimate of the effeﬁtive trans-
gauche energy difference and the individual internal and external contributions, the latter
including both isotropic and anisotropic components. Further, the analysis of the cou-
plings requires the use of a mean-field model to describe the orientational ordering in
order to calculate the order parameters for each conformation. We employ several differ-
ent models to this end, comparing the results obtained for each, and comment on their

relative effectiveness.

In Chapter 4, we use MC simulations to investigate the influence of molecular shape
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on the orientational ordering of soluﬁes in a nematic solvent. Both solvent and solute
molecules are modeled as hard prolate ellipsoids whose only intermolecular interaction
is determined by the requirement that they cannot overlap. The orientational order
parameters and distribution functions of solutes of a wide variety of sizes and shapes
are studied in detail. The results are anvalyzed in terms of the same mean-field models
used in Chapter 3. The results of the analysis are compared to analogous results of the
analysis of experimental NMR data. This comparison gives significant insight into the
relationship between the mean-field models and short-range repulsive-forces, as well as
the general importance of short-range repulsive forces as a molecular ordering mechanism
in nematic liquid crystals.

In Chapter 5, we present results from a further study emploving MC simulations to
study ordering in nematics. In this case, a point quadrupole placed at the centre of each
particle; both solvent-solute and solvent-solvent quadrupole-quadrupole interactions are
considered, in addition to the hard-core interactions. This system is used to study the
additional effects of electrostatic interactions on solute orientational ordering and its im-
portance relative to that of short-range repﬁlsive forces” Further, this model system is
used to investigate the hypothesis that the interaction of the solute quadrupole moment
with a solute-independent average EFG is a generally valid and significant ordering mech-
anism. Finally, the results are analyzed in terms of the theories developed by Luckhurst
and Emsley (Section 1.3.2.2) and Photinos (Section 1.3.2.3).

In Chapter 6, we summarize the important results of the thesis and present our final

comments on this material.




Chapter 2

Multiple-Quantum NMR of Oriented Solutes (I): Biphenylene as an

Illustrative Example

The material presented in this chapter has been published in ref. [67].

2.1 Introduction

The use of NMR spectroscopy to determine the geometry of small rigid molecules aligned
in liduid crystal solvents is well established and has proven to be very useful [68, 69, 70].
In such systems, the dipolar coupling constants, which are only partially averaged by
the anisotropic molecular reorientation, contain direct information about internuclear
distances and ordering which may be disentangled to yield the nuclear spin geometry
and molecular order parameters. The ébility to obtain the dipolar coupling cbnstants 1s
clearly contingent on the complexity of the spin system. In cases where the number of
spins in the molecule is large (>8), or where there is little or no molecular symmetry, the
NMR spectrum becomes very complex and often impossible to solve using conventional
line assignment techniques.

Multiple-quantum (MQ) NMR has long been recognized as a valuable tool in the

study of oriented systems [71, 72, 73, 74]. MQ spectra contain far fewer lines than the

conventional one-quantum spectrum, a feature that greatly simplifies the assignment of
lines in the fitting process. In a system of n coupled spin-1/2 nuclei, the spectra of order
n—1 and n-2 often contain a sufficient number of lines to obtain the dipolar coupling

constants and chemical shifts. Despite this attractive feature, MQ-NMR spectroscopy

41




Chapter 2. Biphenylene: An [llustrative Example 42

has not been widely employed in such studies. One exception is the recent study by Field
et al. where MQ-NMR was used to determine the proton geometry of the seven-spin sys-
tem 1-bromonaphthalene [75]. In this case the one-quantum spectrum was too difficult
to solve, even with the aid of MQ spectra. A major limitation of MQ techniques in such
cases is the inability to obtain linewidths of the order that may be obtained for conven-
tional one-quantum NMR spectra. As in many 2-D NMR experiments, significant line
broadening results from signal truncation due to limitations in the number of evolution
time increments achievable under practical conditions. Consequently, the accuracy with
which the frequencies of transitions, and therefore the dipolar coupling constants, may
be determined suffers greatly. The logical solution is to use the information obtained
from the MQ spectra as a starting point in the solution of the one-quantum spectrum,
where linewidths of the order of 1 Hz are easily achievable. Far more accurate values for
the dipolar coupling constants may be then obtained. Surprisingly, few studies have been
reported in which MQ spectral information has been utilized to solve one-quantum spec-
tra. Yet, the study by Rendell et al. in which MQ information was used (and required)
to solve the one-quantum spectrum of the six-spin system 1,3-dichloro-2-ethenylbenzene
[76] clearly demonstrates that it is possible under practical conditions. It fnust be noted,
however, that in the limit of increasing complexity of a spin system the one-quantum spec-
trum degenerates into a broad mass of unresolvable, overlapping lines, rendering analysis
impossible. Even when the spectral lines are resolvable but very numerous, small inac-
curacies in the dipolar coupling constants obtained from MQ spectra may significantly
alter line order and intensity in the calculated one-quantum spectrum, providing little
additional advantage in assignment of lines to the experimental spectrum.

In this chapter, we present a study of oriented biphenvlene. The molecular structure

of biphenylene is shown in Figure 2.3. The NMR spectrum of -this eight-spin system,

shown in Figure 2.4, is very complex, despite the high degree of molecular symmetry
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Figure 2.3: Atomic Labeling and Axis System for Biphenylene.
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of this planar molecule. An ai)proximate geomeprjr determined by an early electron-
diffraction experiment was available and provided a useful starting point in the solution
of the spectrum [77]. Yet initial attempts to solve the spectrum without any additional
information were unsuccessful. A solution of the one-quantum spectrum alone may be
possible with sufficient patience. However, this seemed an ideal spin system of medium
complexity to probe the usefulness and drawbacks of MQ techniques for such problems.

A simple pulse sequence commonly used to generate and detect MQ coherences is

given by

i T ™ .
(Z)e =T — (%) —t1 — () — 7 — ta(acquire). (2.41)
2 2 2
Various one-quantum coherences evolve during the preparation time 7. The second RF
pulse converts them to coherences of all orders. These range from —n to n for an n

spin-1/2 system. The coherences evolve during the evolution time ¢;. The third pulse

partially converts the M(Q coherences back into one-quantum coherences which then
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Figure 2.4: Calculéted and Observed NMR Spectra of Partially Oriented Biphenylene.
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evolve into the I, or I, coherences detected directly during the detection time ¢;. A 2-D
fourier transform of the resulting interferogram followed by a projection onto the f; axis
yields a MQ spectrum with lines corresponding in principle to transitions of all orders
permitted by symmetry selection rules. In practice, intensities of coherences of all orders
are modulated in a very complex way by 7 and it is often necessary to coadd spectra
obtained with several preparation times to ensure that all predicted lines are observed
with sufficient intensity.

Selective detection of £p-order cohefences is accomplished by the repeated application
of pulse sequence (2.41), where the phase ¢ of the first and second pulses is incremented
2p times by an amount A¢ = 7_T/p [52]. Alternate addition and subtraction of the
resulting signals cancels all but thosé contributions resulting from evolution of £p-order
coherences during t,. While in principle this phase-cycle filter also permits the detection
of 'i/cp—order coherences where k=1,2,3,..., in practice this is rarely a problem since for
an n spin-1/2 system, n is the highest attainable order, and it is the n—1, n—2 and n—3
spectra that are of most interest. A longer phasé-cycle of 4p steps in increments of 7/(2p)
steps with the receiver phase increme.nted in steps of 7/2 permits quadrature detection
of p-order coherences [78]. Refocusing 7 pulses may be inserted mid-way in the evolution
time t; to reverse the effects of magnetic field inhomogeneities, to which a p-quantum
coherence is p times as sensitive compared to a one-quantum coherence. However, this
will also refocus the effects of chemical shifts—information that may be very important
when ultimately attempting to solve the one-quantum spectrum. In addition, unless a
technique such as Time Proportional Phase Incrementation (TPPI) [71] is implemented,

the frequency offset typically used to separate the detected orders in the M(Q spectrum

will also be destroyed. Consequently, refocusing pulses were not used in this study.
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2.2 Experimental

The sample was prepared as a 5 mol% solution of biphenylene in a liquid crystal mixture
of 55 wt% Merck ZLI 1132 and EBBA. This liquid crystal mixture has been the subject
of an ongoing investigation in our lab as it has been shown to possess a vanishing average
electric-field-gradient at 301.4K [31], although this feature is of no importance for the
material in this chapter. The 5mm o.d. sample tube was fitted with a capillary tube
containing acetone-dg, used to provide the lock signal. Experimenfs were carried out on
a Bruker AMX-500 spectrometer at 500 MHz at a temperature of 301.4K.

The six- and seven-quantum spectra were acquired using pulse sequence (2.41) with
preparation times of 6, 7and 8 ms and a recycle delay of 3 s. There were 256 data points
acquired in ¢, and 1024 increments in ¢;. Selective-detection phase cycles employiné 12
steps of 30° increments for the six-quantum spectra and'14 steps of 25.75° increments for
the seven-quantum spectra were used. The f; dimension was zero-ﬁllea to 4096 prior to
the 2-D magnitude fourier transform. The MQ spectrum was obtained by using a summed
projection of the 2-D spectrum onto the f1 axis. The summed projection has been
demonstrated to give a significantly better signal-to-noise ratio than the application of the
“skyline” projection [75] or use of a to=0 cross section of the time-domain interferogram
[79]. Peak positions were calculated using the standard Bruker UXNMR peak-picking

routine.

2.3 Results and Discussion

The one-quantum spectrum of oriented biphenylene is shown in Figure 2.4. A linewidth

of just under 3 Hz at half-maximum was achieved. The lines are clustered in two dense

regions spaced roughly 5000 Hz apart, each subdivided into two slightly overlapping
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regions about 1000 Hz apart. The presence of this overall feature proved useful in ob-
taining first order estimates of the two independent, non-vanishing order parameters S,
and S, both defined in the coordinate system of Figure 2.3. An estimate of the proton
geometry of biphenylene was used based on a gas phase electron-diffraction study [77].
While the calculated carbon geometry was accurately determined in this study, the C-H
bond lengths and C-C-H bond angles were far less precisely measured, and are the key
structural parameters sought in the present study. Trial guesses of the molecular order
parameters were used to calculate sets of dipolar coupling constants and therefore spec-
tral simula‘tion's. A chemical shift difference between the two chemically distinct proton
sites of 50 Hz was used initially, based .on.an isotropic chemical shift difference of 0.10
ppm reported for biphenylene [80]. Similarly, the indirect spin-spin coupling constants
were assigned their isotropic values and are not expected to deviate significantly. The
overall structure of the spectrum was fairly insensitive to variation of the chemical shift
difference by up to £300 Hz, and was therefore mainly determined by the (larger) dipolar
coupling constants. The values of S., and S,, were varied until the simulated spectra
roughly mirrored the experimental spectra. .Of particular use in this “fit” were the two
doublets (not clearly resolvable as such in Figure 2.4) at the outer edges of the spectrum,
each with about a 10 Hz splitting and clearly separated from any other lines of significant
intensity. In fact, these were the only lines that could be unambiguously assigned from
the initial calculated spectrum which was otherwise able only to reproduce the gross
spectral structure. All efforts to assign other individual lines failed to yield a satisfactory
convergence. Clearly, both the line positions and intensities are extremely sensitive to
slight deviations in molecular geometry, the chemical shift difference and the molecular
order parameters.

Typical six- and seven-quantum spectra are shown in Figures 2.5 and 2.6, respectively.

The seven-quantum spectrum is particularly simple, having only four predicted lines
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Figure 2.5: Six-Quantum 'H NMR Spectrum of Biphenylene
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Figure 2.6: Seven-Quantum 'H NMR Spectrum of Biphenylene
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due to the Dy, spin symmetry, one doublet for each magnetically ineqﬁivalent proton.
While the outer doublet has a very strong intensity, the inner doublet is less clearly
visible with one peak dipping into the noise. Other seven-quantum spectra acquired
with other preparation times (6 and 8 ms) unambiguously fix the position of this elusive
peak. This situation is fairly typical of MQ spectra where it i‘s often impossible to clearly
observe all predicted peaks with a single preparation time. While there are only 11 lines
clearly visible in the six-quantum spectrum of Figure 2.5, a total of 15 different lines
were observed in all of the acquired six-quantum spectra. Since the MQ spectra were
acquired at different times under potentially slightly different experimental conditions
(e.g. temperature), the spectra were not actually coadded. The linewidths were typically
50~60 Hz, determined mainly by magnetic field inhomogeneities and signal truncation in
the £; domain.

The frequencies of the six- and seven-quantum spectral lines are presented in Ta-
ble 2.1, each centered about the product of the MQ order and the average chemical shift.
These values are the averaged frequencies of spectra obtained with the three different
preparation times. The variations of the frequencies of the lines that were observable in
different spectra were small, roughly 2-3 Hz for the more intense lines and 5-10 Hz for
the weaker lines. The fact that these variations are considerably smaller than the average
linewidth indicates that the Bruker UXNMR peak-picking routine was able to adequately
determine peak positions in these experiments. The six- and seven-quantum averaged
spectral frequencies were fit simultaneously using a version of the program LEQUOR [81]
modified for use with MQ spectra. Initial MQ spectra were simulated using the dipolar
coupling constant parameters estimated from the earlier “fit” of the one-quantum spec-
trum. These calculated spectra were remarkably similar to the experimental spectra with
line positions deviating by only about 100 Hz or less from their measured values. Since

the average line spacings are of the order of kHz here, this presents few problems with
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Table 2.1: Experimental and Calculated Frequencies (Hz) of Observed MQ Transitions.

MQ Order Experimental Calculated (1)2* Calculated (2)¢

6-Q —6854.1 —6852.2 ~6853.4
' -5504.8 ~5499.6 -5494.7
~4792.3 ~4793.0 -4790.9

-3660.1 -3663.5 -3658.7

—2252.9 -2251.3 -2253.9

-1101.2 -1101.5 -1097.3

~78.7 -84.8 -86.1

79.7 82.6 85.5

1101.2 1099.6 1097.6

2245.2 2249.2 2253.9

3646.7 3646.0 3642.7

4823.8 4820.1 4820.8

5421.9 5423.9 5418.9

5617.5 5618.5 5618.2

6681.4 6682.9 6681.9

7-Q -3500.7 -3502.5 -3501.8
~1165.4 -1168.5 -1161.8

1250.2 1249.7 1247.9

3414.0 3416.3 3415.7

°Fit directly from MQ line frequencies by varying the proton coordinates (z;, z;) and
Sez/ Sz, with S,, fixed.

‘RMS=2.8 Hz. _,

¢Calculated from the fitting parameters obtained from the fit of the one-quantum spec-
trum.
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spectral line assignment.

In the initial attempt to fit the six- and seven-quantum spectra, the 10 independent
dipolar coupling constants and two chemical shifts were varied. The indirect spin-spin
coupling constants were fixed at their isotropic values. The spectra were easily fit, and
the coupling constants and chemical shift values obtained were used to simulate a one-
quantum spectrum. Upon close comparison, however, lines could not be unambiguously
assigned, and it did not appear to be a significant improvement over the initial calculated
one-quantum spectrum. Again, all attempts to assign lines from this starting point
failed. At this point, five-quantum spectra were acquired and incorporated into the
analysis in the hope that assignment of additional lines would improve the accuracy
in the fitting process. Since the ﬁve—quantﬁm spectrum is considerably more densely
clustered with lines than the six- and seven-quantum $pectra, most lines could not be -
unambiguously assigned. A total of 9 five-quantum lines, located mainly at the fringes of
the spectrum, sufficiently well separated from any others, were included in the spectral
fit. The fitting quickly converged, but again the values of the dipolar coupling constants
and chemical shifts obt.a.ined were unable to assist in the assignment of lines in the one-
quantum spectrum.

The difficulty in obtaining reliable estimates of the coupling constants and cheniical
shifts clearly stems from the low ratio of the number of assigned lines (19 from the six-
and seven-quantum spectra alone, and 28 from the five-quantum spectrum as well) to the
number of fitting parameters. To reduce the number of fitting parameters, 5 geometric
and ordering parameters (the  and z coordinates of the two distinct proton sites and the
ratio of S;;/S.,, with S, scaled to a realistic value) replaced the 10 independent dipolar
coupling constants in the fit. The six- and seven-quantum spectra were again fit with
an RMS=2.8 Hz. The positions of the fitted lines are shown in Table 2.1. The dipolar

coupling constants calculated from these parameters, listed in Table 2.2, were then used
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to simulate the one-quantum spectrum, and this time with considerable success. The
lines in the simulated spectrum accurately matched those in the experimental spectrum,
both in relative intensity and order. At this point the solution of the one-quantum
spectrum was trivial. A total of 144 lines were assigned and fit with an RMS=0.13 Hz
varying the J-couplings as well as the dipolar coupling constants and chemical shifts.
While it might have been possible to assign more lines, care was taken not to assign
lines that were overlapping, particularly in the denser portions of the spectrum. The
fitted spectrum is shown in Figure 2.4, and the fitting parameters are listed in Table 2.2
and compared with the isotropic values. Although the fitted J-coupling constants do
not significantly deviate from the isotropic values, the fitted chemical shift difference is
over three times the measured isotropic value, clearly the result of a large chemical shift
anisotropy. Frequencies of MQ spectral lines simulated with parameters obtained from
the one-quantum fit are also presented in Table 2.1.

The dipolar coupling constants. were used by the program SHAPE [82] to determine
directly the molecular geomefry and molecular order parameters. The C-H bond length
and C-C-H bond angles (determined using the r, geometry of the biphenylene carbon
skeleton ) were calculated and are listed in Table 2.3 along with the molecular order
parameters. The scale was fixed by setting the C-H bond lengths of the two distinct
protons to be equal. A second fit was performed using a version of the program SHAPE
modified to correct for the non-negligible effects of molecular vibrations on the dipo-
lar coupling constants (83, 84, 85]. A set of force constants calculated in the electron
diffraction experiment by Yokozeki et al. [77] were used to calculate the mean-square
amplitudes of vibration required for the correction [86, 87]. Vibrationally corrected fitted
parameters are also shown in Table 2.3. One notable effect of the vibrational corrections

is to decrease slightly the value of the C-H bond length by about 0.02 A. In either case,

the C-H bonds come within 2° of bisecting both C-C-C bond angles. The complete r,
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Table 2.2: Fitting Parameteérs (Hz) from the Multiple-Quantum and One-Quantum Spec-

tral Fits.
Parameter MQ 1-Q Isotropic®
D12:D34:D5G=D78 ‘16172 ‘1627418(12) -
Diys=Dy; -641.5  -645.505(40) —
Dy3=Dg7 - 229.1 235.308(51) —
Dy7=Dog=D3s=Dyg | ~151.1  -153.094(14) —
Dy3=Days=Ds7=Des -81.5 ~80.698(16) —
D16:D25:D38:D47 —722 —73101(16) -
DQ7:D36 ' -68.5 —69478(47) —
Dys=Dj; ~54.9 ~55.523(47) —
Dis=D.s ~44.0 ~44.997(47) —
Dyy=Dss 25.0 24.986(47) —
|AS] 163.824  168.916(54) 50.0
J12?134:J56:J78 - 677(7) 6.8
J18=J45 - ) “008(14) 0.0
J23:J67 - 828(09) 8.24
J17:J28:J35:J45 - 008(06) O 0
J13:JQ4=J57-_—J68 . — 075(04) 0.74
J]G:J25:J38:J47 - . 015(03) 00
Jar=J36 — 0.47(12) 0.0
Jog=Ja7 — -0.17(09) 0.0
Jis=Jus — -0.10(09) 0.0
J14—_—J53 - 107(09) 1.08

“From ref. [80] .
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Table 2.3: Geometric Parameters from Fit of Dipolar Coupling Constants.

Parameter Fitted Value(1)* Fitted Value(2)
C-H 1.1315(25) A 1.11(1) A
<C(8b)-C(1)-H(1) 124.54(8)° 123.9(4)°
<C(1)-C(2)-H(2) 119.41(3)° 117.5(2)°

S.. 0.3236(8) 0.313(3)

Sue ~0.02888(5) ~0.0224(2)

“From fit without vibrational corrections.
From fit with vibrational corrections. The carbon skeleton was fixed to the r, geometry
given in ref. [77], and the C-H bond lengths were set equal.

structure is given in Table 2.4.

2.4 Conclusions

In this study, MQ spéctra were used to assist in the solution of the one-quantum spec-
trum of partially oriented biphenylene. This eight—spin system produces a complex one-
quantum spectrum, which despite the high degree of molecular symmetry, is very diffi-
cult to analyze using conventional line-assignment techniques. By contrast, the six- and
seven-quantum spectra are very simple, and assignment of calculated to experimental
“line frequencies was trivial when an estimated proton geometry for this rigid molecule
was used. Since the MQ spectral line frequencies were far less accurately measured .than
the one-quantum line frequencies, and, since there were many fewer lines in the MQ
spectra than in the one-quantum spectrum, the initial fits of the MQ spectra could not
yield sﬁfﬁciently accurate estimates of the coupling constants to aid in the solution of
the one-quantum spectrum. It was found necessary to reduce the number of fitting pa-

rameters by replacing the dipolar coupling constants with a lesser number of geometrical

(proton positions) and molecular order parameters, thereby fully utilizing the molecular
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Table 2.4: The r, Geometric Parameters for Biphenylene.

Parameter Value
C(1)-C(8b)® 1.365(12) A
C(1)-C(2) 1.415(12) A
C(2)-C(3)® 1.359(15) A
C(4a)-C(8b)® 1.427(18) A
C(4a)-C(4b)® 1.518(6) A
C-H 1.108(10) A
<C(4a)-C(8b)-C(1)® 122.5(6)°
<C(8b)-C(1)-C(2)* 115.0(2)°
<C(1)-C(2)-C(3)" 122.5(2)°
<C(8b)-C(1)-H(1)* 123.9(4)°
<C(1)-C(2)-H(2)" 117.5(2)°

¢ From ref. [77].

® From the present study.

symmetry of biphenvlene, to obtain the required accuracy from the MQ fit. Dipolar cou-
pling constants obtained from the fit of the one-quantum spectrum were used to obtain a
vibrationally corrected proton geometry. This is one of the few studies in which analysis

of MQ spectra was shown to simplify considerably the analysis of a complex one-quantum

spectrum.




Chapter 3

Multiple-Quantum NMR of Oriented Solutes (II): Conformational and

Orientational Behaviour of Butane

The material presented in this chapter has been published in ref. [88].

3.1 Introduction

With only one conformational degree of freedom, butane is the simplest flexible alkane.
As such, it has attracted much interest and has been the subject of many studies, both
exi)erimental and theoretical /computational, concerned with the influence of condensed
phases on the equilibrium conformational behaviour of non-rigid molecules. Early on,
Flory had suggested that the average potential of hydrocarbon molecules should closely
correspond to the unperturbed form with the configurational space populated according
to the Boltzman distribution over intramolecular energy with intermolecular effects being
ignored [89]. Later, this view was challenged by Chandler et al. whose rigorous statistical
mechanical theory of hydfocarbon systems predicted an increase in the gauche conformer
population as a result of short-range packing in the liquid {90, 91]. There is extensive
experimental evidence to suppdrt the latter view. Gas phase studies typicallyvreport the
trans-gauche energy, Eyy, to be 3.3-3.7 kJ/mol. [92, 93, 94, 95, 96], though a recent FTIR
study has suggested that it may be as low as 2.9 kJ/mol [97]. Experimental studies of
butane, both as liquid and dissolved in other isotropic liquid solvents, consistently report
lower values for F,, generally in the range 2.1-2.5 kJ/mol [98, 99, 100).

The effect of a condensed phase environment on the conformational equilibrium of

57
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butane has also been studied extensively using Molecular Dynamics (MD) and Monte
Carlo (MC) computer simulations. These studies have generated less consistent and
often confusing results over the last two decades. The earliest MD simulations of liquid
butane [101, 102] and of butane in liquid carbon tetrachloride [103] appeared to indicate
that there was a significant shift toward higher gauche populations. Another MD study
of liquid butane found a negligible effect [104], as did the MC simulations of Jorgensen
[105, 106, 107] who cited insufficient run time and inadequate convergence as explanations
for the apparent MD shortcomings. Improved MD calculations suggested a significant
solvent effect on conformer pbpulations [108, 109, 110]. In this case it was argued that
the MC calculations were in error since they Had employed a étrong attractive methyl-
methyl potential which may neutralize the packing effects [110]. More recent MDV and M C
calculations have again concluded that there is no significant shift {111, 112]. Another
recent study suggests that the conformational behaviour of butane is highly sensitive
to minor details in the molecular structure and the intermolecular forces used in the
calculations [113].

An understanding of the behaviour of flexible hydrocarbons in condensed phases is
particularly important in the field of liquid crystals. Most molecules that form liquid
crystal phases have hydrolcarbon chains that are attached to rigid cores. These alkyl
tails appear to be an important component of the orienting mechanism for the meso-
gens. Knowledge about the conformational and orientational behaviour of alkanes in
nematic liquid crystals then should contribute to an understanding of the ordering of
liquid crystals. The behaviour of longer alkanes in anisotropic fluids has been the subject
of several recent NMR studies. While early NMR studies had relied on an analysis of

quadrupolar coupling constants of deuterated alkanes [46, 114, 115], recent advances in

two-dimensional NMR techniques combined with random deuteration of the chains have
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made it possible to measure the dipolar couplings between proton pairs, greatly increas-
ing the amount of information available about these systems [43, 44, 45, 116, 117]. A
detailed analysis of the dipolar couplings for alkanes ranging from hexane to decane were
used to study the effects of the nematic environment on their conformational equilibria
[44, 45, 49]. These studies indicate that there is a shift towards higher populations of
conformers with more gauche bonds, an effect corresponding to a lowering in E,, relative
to the gas phase values, similar to that observed for butane in isotropic liquids. More-
over, this effect appeared to result from the isotropic “solvent pressure” of the condensed
phase: the anisotropic component of the solute-solvent interaction was found to influence
only marginally the conformer probabilities by favouring elongated conformers slightly
[45]. Similar results were found in a MD study of hexane incorporated as a solute in a
model liquid-crystal solvent [66].

An essential component in the analysves‘ for the NMR studies discussed above involves
the use of mean-field models to describe the orientation of molecules in a nematic envi-
ronment. These models are used to calculate the molecular order parameters for each
conformer, which are, in turn, used to calculate the experimental dipolar cou'pling con-
stants. Thus, the ability of each model to fit the experimental couplings may be used to
provide a critical test of each model. One orientational model, developed by Burnell and
co-workers, describes the interaction between solute and liquid crystal as arising from
the size and shape anisotropy of the solute [32, 33, 34, 35, 36, 64]. The study by Rosen
et al. [45] concluded that early versions of this model [33, 34] were inferior to the chord
model, developed by Photinos et al. [47, 48‘, 49], in which C-C bond orientations relative
to the director and correlations with orientations of neighbouring C-C bonds were the
kev factors in the molecular ordering. Another approximation used in the analyses of

these studies was the three-state rotational isomeric state (RIS) model [89] to describe

the accessible conformational states of each C-C torsion bond of the molecule. Though
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its application permits a convenient analysis of the data, it was judged to be a severe
approximation. Later, it was shown that the inclusion of torsion-angle fluctuations about
the RIS trans and gauche states can significantly improve the quality of the fits [118].
In this chapter, we present a Multiple-Quantum (MQ) 'H NMR study of butane in a
nematic liquid crystal. We view this study as an extension of previous experimental and
computational work on the effect of condensed phases on the conformational behaviour
of butane, and as a continuation of the study of alkyl chain behaviour in a specifically
anisotropic fluid. The simplicity of this alkane offers some advantages. First, the NMR
spectrum of butane is sufficiently simple that, with the help of straightforward MQ
experiments, its analysis is possible without the need to resort to either specific or random
deuteration. In this way, one may measure the dipolar coupling constants much more
precisely than was done for the longer alkanes. As well, certain assumptions used in
studies of longer alkanes, such as the equivalence of the internal rotational potential for all
C-C bonds along the chain; are unnecessary. One goal of this study is the determination of
E,, for butane in a condensed phase, and its dependence on both isotropic and anisotropic
contributions from the solute-solvent interactions. However, since the use of mean-field
models to describe the molecular orientation in a nematic liquid crystal 15 a key part of
the analysis, an equally important aspect of this work is the investigation of the model-
dependence of the results. The influence of both the mean-field model and the details of
the geometry, including the trdns-gauche dihedral angle and the RIS approximation, are

discussed.
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3.2 Theoretical Background

3.2.1 Dipolar Coupling Constants

NMR has proven to be an excellent technique to study the conformational behaviour and
orientational ordering of molecules in anisotropic fluids. Most studies to date that have
investigated the behaviour of hydrocarbons have used “H NMR spectroscopy to measure
quadrupolar splittings, Avg, of C-?H bonds of deuterated molecules. The 2H-NMR
spectra consist of a set of doublets, each with a splitting given by

_3e2qQ
4h

Sc-p (3.42)
where the order parameter Sc_p is given by
Sc_p = <g cos?Oc_p — %> (3.43)
and where fc_p is the angle that the C-?H bond makes with the static magnetic field,
along which the nematic phase director is aligned. Thus, the ?H-NMR spectra readily
provide information through S¢_p about orientational ordering of individual methylene
segments along alkyl chains. On the other hand, the Avg’s provide no direct information
about inter-methylene correlations. Also, the number of distinct Avg’s is limited to the
number of independent carbon units aloﬁg the chain. Thus, the information contained in
quadrupolar couplings tends to be inadequate for studies in which detailed information
about molecular orientational ordering and conformational behaviour is sought.
Dipolar coupling constants, by contrast, provide much more detailed information
about flexible molecules. The dipolar cdupling constant between protons 7 and j on a

partially oriented molecule is given by

Dijz—

(3.44)
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where r;; is the internuclear distance and GiZj is the angle between the internuclear vector

and the static magnetic field. The factor of rif is significant because it provides infor-
mation about the average distance between methylene groups on flexible alkyl chains.
This feature, as well as information about the average orientation of internuclear vectors

resulting from the dependencé on 87, causes the D;; to be highly sensitive to the molec-
ular conformation and orientation. As well, there are many more independent dipolar
coupling constants than quadrupolar coupling constants, a factor which greatly increases
the information about molecular properties that may be extracted from the experimental
data. In the case of butane, there are seven independent D;;’s and only two Avg’s.
Although there is a clear advantage in determining dipolar coupling constants, these
are often difficult to obtain in all but the simplest molecules. The complexity of the
'H one-quantum NMR spectrum of partially oriented molecules increases rapidly with
the size and complexity of the corresponding molecular spin system. In large molecules,
including the nematogens themselves which have ~20 'H spins, the large number of
spectral lines results in severe overlap in which individual lines cannot be resolved, ren-
dering any spectral analysis impossible. In moleculés of intermediate complexity such
as butane, this is not a major problem; however, the spectrum can still be sufficiently
complex to hinder its analysis. In such cases, it is useful to analyze first high-order
Multiple-Quantum (MQ) spectra: Such spectra have far fewer associated transitions, a
feature that makes it much easier to aésign lines of trial simulated spectra to those of
the experimentdl spectra. The dipolar coupling constants obtained as fitted parameters
may then be used as a starting point in the analysis of the one-quantum spectrum. The
dipolar coupling constants obtained in the second stage of analysis are highly accurate.
We have shown the usefulness of Multiple-Quantum spectroscopy as a tool in the analysis

of one-quantum spectra for molecules of intermediate complexity in previous studies on

the structural determination of the eight-spin molecule biphenylene [67], presented in
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Chapter 2, and the six-spin molecule 1,3-dichloro-2-ethenylbenzene [76].

A significant alternative to this method that is suitable and necessary for molecules
of greater complexity is the approach taken by Pines and coworkers [43, 44, 45, 116,
117]. In this case, random deuteration of the molecules, combined with MQ-filtered
Correlated Spectroscopy (COSY) NMR experiments and 2H double-quantum decoupling,
were used to obtain spectra that are superpositions of subspectra comprised of a single
splitting. These subspectra arise from isotopic species that have a single pair of protons
.and therefore yiéld directly the D;; associated with each proton pair. This technique was
used successfully to measure dipolar coupling constants for a series of oriented alkanes
in a study [44, 45] that is highly relevant to the present work and on which we shall

comment further.

3.2.2 Flexibility

A common approach to analyzing dipolar coupling constants of partially oriented flexible
molecules is to assume that the molecule exists in several discrete conformations, each
of which has its own distinct Saupe order matrix. This assumption is justified as long
as the correlation time associated with the reorientation of the molecule, 7, and the
rate of exchange, k, between the different conformations satisfy k7p <1 [41, 42]. An
important model used for approximating the conformations of hydrocarbon chains is
Flory’s Rotational Isomeric State (RIS) model [89] in which each C~C torsion bond is
assumed to exist in three states, trans and = gauche, with dihedral angles of 0° and +¢,,
respectively, corresponding to the angles at the minima of the rotational potential profile.
These two approximations form the basis for the analysis of the D;;’s in the present study,

as described below.

One can show that an experimentally measured dipolar coupling constant between

protons ¢ and j for a flexible molecule satisfying the condition described above is given
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Di; = ZP” Z SasDijap | (3.45)
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where p" is the probability of the n** conformer, and where Syp, the Saupe order matrix

th

for the n'* conformer, is defined by

3 1
ap = <—2~COSQZ’ZCOSQZ$Z - §5a[3> (3.46)

where 6, ; is the angle between the a-molecular axis of the n'" conformer and the nematic
director, which, for many liquid crystals, is aligned with the static magnetic field along

the Z-axis. D} ;5 is a tensor defined by
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where %" is the angle between the internuclear. vector, 7i;,, and the n** a-molecular

axis.

3.2.3 The Mean-Field Potential and E,

A useful approach to the analysis of the dipolar coupling constants is to model the solute
energy with a mean-field potential, U, (w), which is a function of both the conformation
and the orientation of the solute in the uniaxial nematic solvent. The potential can be
divided i_nto

Un(w) = Uintn + Ueatn(w) (3.48)
where U,y ,, is the internal energy associated with the conformational state of an isolated

molecule, and Uz »(w) is the orientationally dependent energy of interaction between the

solute and the external mean field. The latter term can written in terms of a spherical

harmonic expansion which can be used to define the isotropic, U%? . and anisotropic,
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Ueniso()), components of the external field:

ext,n
even |
Uemt,n(w) = C(T)l,OS/O,O + Z E C;l,m /2,771(07 QI))
=2 m=-1
= Ugin+Ugin’ () (3.49)

Note that the odd terms in the expansion for U2 (w) vanish as a result of the apolarity of
the nematic phase. Also, since Usp, 5, is purely isotropic, we shall omit the “ext” subscript
on the anisotropic component of the external potential energy, U"*°(w), since it is only
the external component of the solute energy which has an associated anisotropy. The
isotropic component of the full solute potential energy, therefore, is the sum of internal
and external contributions:

Uise = Uise 4+ U (3.50)

int,n ext.n

We define the effective trans-gauche energy difference, Ey,, as the difference in the total

isotropic botential energy for the trans and gauche states of the butane molecule:

E — 150 _ TS0
tg — gauche trans

= E+ E - (3.51)

lg

where Ef;” is the internal energy difference between the trans and gauche states, and
where

E = UL — Uise (3.52)

ext,gauche ext,irans

is the external perturbation to the internal energy difference due to the condensed phase
environment.

The anisotropic component of the mean field, U%"°(w), gives rise to the orientational
ordering of the solute in the nematic environment. The elements for the Saupe order
tensor for each conformer may be calculated by

f (% cos 8} ; cos 3 , — %&,ﬂ) exp(—U™*°(w)/kT)dw

n

(3.53)

of = [ exp(=U0 () /5T dw
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One can show that the conformer probabilities can be written as

n_ Grexp(=Ur°/kT) [ exp(=Ut™*°(w)/kT)dw
Y, Grexp(—Ui°/kT) [ exp(—=U2™*(w)/kT)dw

p (3.54)

where G™ = \/m is a rotational kinetic energy factor, dependent on the principal
values of the moment of inertia tensor for each conformer, I7,, that arises from integrating
out the molecular angular momenta from the full singlet probability distribution for
flexible molecules. Eq. (3.54) clearly shows the dependence of the conformer probabilities

on the anisotropic mean-field potential.

3.2.4 Modeling of U™ (w)

In order to extract conformational and orientational information from the experimental
dipolar coupling constants using the relations described above, it is necessary to employ a
suitable model for the anisotropic potential, U#™*°(w). This is required since, in the limit
of fast internal exchange between conformers, the conformer probabilities and molecular |
order parameters appear as products in the expression for D;; in Eq. (3.45), and cannot
be determined separately in a fit. Using a model for U2"*°(w), however, the dipolar
coupling constants may be calculated by optimizing the model parameters and E,,, which
generally are separately determinable, in the fit of the experimental D;;. The p™ and S;4
are calculated using Eqgs. (3.53) and (3.54). In the present study, we restrict the analysis
to models that are characterized by a single parameter. We feel thaf this is a necessary
restriction since we are limited to only seven independent 'H dipolar coupling constants
for butane. As well, by employing a wide variety of orientational models, we hope to
bound Ej, to a limited range of values and thereby obtain a model-independent estimate
of this quantity. |

Below, we review briefly the important features of the models used in this study.

More detailed descriptions may be found in the references cited.
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3.2.4.1 Model A: Size and Shape Potentials

Burnell and coworkers have developed a series of related mean-field models for the ori-
entational potential of solutes of arbitrary nature in a nematic liquid crystal [32, 33, 34,
35, 36, 64]. All of these models treat the solute as a collection of van der Waals spheres
placed at the atomic sites in the molecule in order to approximate the molecular struc-
ture. It is the anisotropy in the shape of the solute interacting with the uniaxial nematic
field that gives rise to the orientation dependence of the potential energy. There are six
different varieties of this “Size and Shape” (SS) interaction that we describe below. First,
however, there are two important considerations that we discuss.

(1) The general mean-field model developed by Burnell and coworkers consists of a
contribution from the long-range interaction between the molecular electric-quadrupole
moment (QM) with the average electric-field gradient (EFG) of the liquid crystal, in addi-
tion to thé short-range SS interactions that we consider here. There is direct evidence of
the QM-EFG interaction in the case of ?H,, where it is the dominant orienting mechanism
[13, 14, 119]. In addition, it was shown that one can construct liguid crystal mixtures
in which the average EFG sampled by ?H, vanishes [31]. These zero-EFG mixtures were
the nematic liquid crystals chosen for the experiments in which the SS potentials were
developed, since the model predicts that the QM-EFG interaction vanishes in this case,
leaving the short-range interaction as the sole mechanism responsible for solute orienta-
tion. While it is true that the average EFG experienced by an arbitrary solute will not
be the same as that experienced by ?H, or any other solute, the high quality of the fits
to expérimental order parameters calculated under this assumption suggests that it is
a reasonable approximation, though there has been some recent criticism of this claim

[29]. Therefore, we use a zero-EFG nematic mixture in the present study, in keeping

with these considerations. Previous studies of alkane behaviour in liquid crystals that
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emploved two of these models did not use a zero-EFG mixture nor comment at all on
this matter [44, 45].
(2) It is very important to note that in all of the SS potentials developed by Burnell

and coworkers, there a residual isotropic component; that is,

n n 1 n "
(Uls) = choYao = o [Uls()dw #0, (3.55)

where Ugg(w) represents any of the mean-field potentials discussed by Burnell and
coworkers based on solute size and shape anisotropy that we discuss below. The residual
isotropic component presents no difficulties in the case of rigid solutes where it has no
effect at all on the predicted order parameters since these quantities depend strictly on
the purely anisotropic component of the potential, U"*°(w). The situation for flexible
molecules is quite different. Inspection of Eq. (3.54) clearly shows that in calculating
the conformer probabilities, any isotropic component contained in a mean-field potential

used to model the supposedly anisotropic U%™*°(w) will be absorbed into the calculated

false

Ui°, and will thus affect the resulting value of E,,. Thus, an improperly calculated Ef

will be obtained, where
false trans gauche -
El;" = Eig+ (Ugs™) — (Uss ™) , (3.56)

This point was not considered in any of the previous studies of oriented flexible molecules
that used a SS model, and calls into question the values for E;, that were obtained. We
return to this point later in the discussion section of this chapter. To calculate properly
the conformer probabilities, it is necessary simply to subtract out the isotropic component,
of Ugs:

Up™**(w) = Ugs(w) — (Uss) (3.57)

Model A;. This is the original SS model, in which the mean-field orientation-dependent
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potential energy is given by [33]

. n 1 N )
Ugs(w) = ik(Cn(w))z, (3.58)
where C,(w) is the minimum circumference traced out by the projection of the solute

onto a plane perpendicular to the nematic director, as shown in Figure 3.7.

Model A,. This model is a slight xrariation of A (33]:
n 1 2 =
Us(w) = k(Daw)), (3.59)

where D, (w) is the maximum circumference traced out by the projection of the solute
onto the plane perpendicular to the nematic director, as shown in Figure 3.8

Model Aj. This two-parameter model was the first extension of A, [34] in which
. 1. , 1
Ugs(w) = §k(cvl(w)) - 551’36’71(“))271(“}) (3.60)

where Z,(w) is the length of the projection of the solute along the nematic director (see
Figure 3.8). In order to use this as a one-parameter model, we fix the second parameter
to £€=3.9, the Qalue obtained from a fit to the order parameters for a collection of 46
solutes using this model in which both k and € were treated as free parameters [36]. This
should be a valid assignment since the model parameters associated with a particular
zero-EFG mixture are, in principle, solute-independent.
Model A,. The model potential is given by [36]
1 Zmazn
Uts(w) = —k, /Z ez Wiz (3.61)
where Z is the position along the nematic director bounded by the minimum, Z;p ,,
and maximum, Zz », points of the orientation-dependent projection of the solute along

this axis. C,,(Z,w) is the minimum circumference traced out by the solute at position Z

along the director. Thus, C,(Z,w)dZ is the area of an infinitesimally thin ribbon that
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Figure 3.7: Illustration of Orientation-Dependent Parameters Used in Size and Shape
Models (I).

A hypothetical solute constructed from van der Waals spheres. The mean-field potentials
of models A;, As, A, and A; depend on parameters defined in this figure. See the text
for a further description.
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Figure 3.8: Illustration of Orientation-Dependent Parameters Used in Size and Shape
Models (II).

Ay (W)

A hypothetical solute constructed from van der Waals spheres. The mean-field potentials
of models A;, and Ag depend on parameters defined in this figure. See the text for a
further description.
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traces out this circumference, and the integral is the area of the full projection of the
surface of the molecule onto a plane parallel to the nematic director (see Figure 3.7)'.“
Thus A4 can be interpreted as an anisotropic surface potential. Note that the equation
for A, is a generalization of the second term for the potential A3 which can be obtained
if one neglects the Z-dependence of C,(Z,w) and sets all values equal to C,,(w). This
model is similar to another by Ferrarini et al. [37] in which surface area elements of the
van der Waals spheres contribute an energy pr’oportional to Py(cosp)ds, where 1) is the
angle between the surface normal and the nematic director, and ds the area of the surface
element. In Model Ay, the interaction energy effectively is proportional to | sin | ds.

ModelA;. This model is a combination of models A; and Ay:

1 1 'Zmaz,n .
5() = SECu@))? = 5k [ 77 ColZ,0)dz  (362)

Again, it is necessary to fix the ratio of parameters to the value obtained from the
previous study by Zimmerman et al. [36], where k;/k=23.529. Note that this particular
model was the most successful for predicting order parameters for molecules oriented in
a zero-EFG liquid crystal mixture.

Model Ag. The potential is given by [36]
Ugs(w) = 2kay Ay (w) — k: Dy (W) Zn (w) (3.63)

where, again, D, (w) is the maximum circumference traced out by the projection of the
solute onto the plane perpendicular to the nematic director.Z-aXis, and Z, is the length
of the projection of the solute along the Z-axis. Also, A7, is the area of the projection
contained within the maximum circumference, D, (w), as shown in Figure 3.8. For this
study, we fix k,/k;;=0.327, the optimal value obtained in ref. [36]. Note that the quality

of the fit to experimental order parameters for the solutes in that study using Ag was

comparable to the best fit obtained using As.
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3.2.4.2 Model B: Moment of Inertia Model

Model B uses a mean-field poten.tia.l based on the expansion of U"*°(w) in Equation (8)
truncated to second rank:
) :
Upteo(w) = mZQCE‘,m 2.m(0,9) (3.64)
The expansion coefficients, cj,,, are parameterized by using a model developed by Stra-
ley [120] in which the interacting molecules are represented by .parallelepipeds. The

symmetry of the parallelepipeds causes this expansion to be reduced to [44, 45]

-anis . 3., . ‘ .
Uy (w) = ¢y Yoo + \/;cfz’z sin?(0) cos(2¢) (3.65)
‘For a solute modeled as a parallelepiped of length, L, width, W, and breadth, B:

1 |
o= 3¢ 6LBW + L(W? 4 B?) — 2W(L? + B?) — 2B(W? + LQ)] (3.66)

o= (12 - BW)(EB - )] (3.67)

for L > W > B, where € is a parameter that characterizes the solute-solvent inter-
action. The parallelepiped dimensions can be calculated in terms of the principal-axis
components of the moment of inertia tensor, I}, for each conformer, n [46]:

. 2\/5(1'5[, +1In —1In)
¢ 2m

(3.68)

where L, B and W are written as the elements [,.

3.2.4.3 Model C: The Chord Model

Photinos, Samulski and coworkers have developed a mean-field model for molecular orien-

tation in a uniaxial phase that is specially tailored for molecules comprised of repeating

identical units [47, 48]. Thus, it is not surprising that this model gives remarkably
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good results in the analysis of 'H dipolar coupling constants of oriented hydrocarbons
[45, 49, 118]. Indeed Rosen et al. [45] concluded this to be the superior model in their
study of oriented alkanes. This potential is derived from the leading terms in a rigorous
expansion of the mean-field interaction. Photinos et al. [49] write
Ugmo(w) = = Y [Py (s', ') + i Pa(s', s7) (3.69)
i=1
where s’ is a unit vector describing the orientation of the i** C-C bond of the hydrocarbon
chain, and where the sum is over all of the bonds in the chain. The factors P,(s*, s"*™)
are given by
o 3 : ‘ 1. .
Py(s',8™) = 5 cos 6%, cos 05™ — §s’ L gt (3.70)

where 6 is the angle between the it

bond and the nematic director, which aligns with
the static magnetic field direction albng the Z-axis. The parameters, ,,, are propor-
tional to the liquid crystal order parameter. The first term in Eq. (3.69) corresponds to
the independent alignment of separate C-C bonds that may arise, for example, from the
anisotropy of the polarizability of the bonds [121]. The second term incorporates cor-
relations between adjacent-bond orientations, and therefore distinguishes between con-
formations that may have equal numbers of trans and gauche bonds but significantly
different shapes; thus, it accounts for shape-dependent excluded-volume interactions. In
the present study, we consider the specific case, wo=w,. This is called the “chord model”,
since it can be shown to be equivalent to a model in which the chords connecting the
midpoints of the C-C bonds are the elemental submolecular units interacting with the
external field.

The mean-field potential defined in Eq. (3.69) can be written in a more convenient

form. Following Rosen et al. [45], we define the components of a second rank tensor:

1 A .
Uas = —2w02[ na(s,st) 2(Tog(sl s + T,p(s", %)) (3.71)
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where

Top(st,s™) = st 4™ — Z§,58" - 5T 3.72
ﬂ (a3 ﬁ 3 ﬁ

where s?, is the a-component of the " C-C bond vector. The principle-axis components

of uap, uss > U > u11, can be used to parameterize the leading terms in the expansion

Urflmiso(w) — 0721’0}/2’0 + \/gcg,2 Sin2(9) COS(Z@) (3.73)
according to
Gy = = (2us— w1+ 122)) (370
= — |Z2U32 — U u ’
50 NG 33 11 22
1 -
Cp = Hluz—un) (8.75)

3.2.5 Other Details of the Calculations
3.2.5.1 Torsional Fluctuations

While the RIS model provides a convenient method for the analysis of experimental data
to obtain information about the conformational behaviour of hydrocarbons, the high
quality of the experimental dipplar coupling constants that may be obtained for these
systems means that the crudeness of this approximation may be the limiting factor for
the accuracy with which information can be determined. The principle restriction of this
model is the limitation of the dihedral angle, ¢, to the three angles, 0°, +4¢,, associ.;ited
with the trans and £gauche states. Thus, it would be useful to examine the role of
torsional fluctuations of ¢ about these minima of the rotational potential energy. A
simple approach is provided in a study by Photinos et al. [118] in which the dihedral
angle can assume values at £A¢ about the RIS state values, in addition to the RIS

values themselves. For butane, this corresponds to nine conformers with dihedral angles

of § = 0°, £A¢, +¢,, and £(¢, = Ap). We use this extended-RIS model in addition
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to the regular RIS model to determine the importance of torsional fluctuations on the
determined Ej,, conformer probabilities and molecular order parameters. We fix the
population ratios of each extended-RIS triplet to 1:2:1 and set A¢p=20° to approximate

roughly the shape of each peak in the torsional probability distribution.

3.2.5.2 Dihedral Angle

Experimental estimates of the dihedral angle, ¢,, vary widely, ranging from 110° from
an electron diffraction study [122] to a value of 118° obtained from an analysis of the
Raman spectrum [94]. Because the dipolar couplings have a sensitive dependence on ¢,.

we examine the variation in the results of our analysis to changes in ¢,.

3.2.5.3 Methyl Groups

Since four of the seven butane dipolar coupling constants involve protons in methyl
groups, it is important to model the rotation of these groups in a reasonable way. We
employ a methyl group rotation barrier of 12.5 kJ/mol and sample different molecular

geometries in steps of 5°, with probabilities weighted by the Boltzman factor.

3.3 Experimental

A liquid-crystal mixture of 55 wt% Merck ZLI 1132 and 45 wt% EBBA was prepared.
Approximately 500 mg of the mixture was placed into a 5 mm o.d. standard NMR tube
and was thoroughly degased through several freeze-pump-thaw cycles. Enough gaseous
butane was condensed into the tube at liquid nitrogen temperature to achieve a ~5 mol%
solute to liquid crystal ratio under the assumption that all of the gas dissolved in the

liquid crystal. The tube was then flame-sealed under vacuum. Since a fraction of the

gas in the tube filled the space above the sample, the true solute concentration was
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<5 mol%. To provide a lock, the NMR tube was equipped with a capillary tube, filled
with acetone-dg, that was held coaxial to the NMR tube with teflon spacers.
The ?H—NMR spectra were acquired on a Bruker AMX-500 spectrometer at 301.4 K

at 500 MHz. The MQ spectra were acquired using the following pulse sequence:

<.g>¢ 7 - (g>¢ —t - (%) — 7' ~ ty(acquire)

To detect selectively a £n-quantum spectrum, the phase ¢ of the first two pulses relative
to the third pulse were cycled through 2n steps in increments of n/n with alternating
addition and subtraction of the signal for each value of ¢; [52]. Thus, the acquisition of
the seven-quantum spectrum reqﬁired a phase cycle employing 14 steps of 25.7°, while
that of the eight-quantum spectrum used 16 steps of 22.5° increments.

ABoth spectra were acquired using a preparation time, 7, of 12 ms, a recycle delay of
3.5 s, and a t; increment time of 41.7 us, which corresponds to an f; sweep width of 24
kHz. There were 1250 increments of t; collected for the seven-quantum spectrum and
1200 increments for the eight-quantum spectrum. Fo_r both spectra, a delay of 7'=1 ms
was used to minimize the contribution of the liquid-crystal signal that is generated after
the third pulse. For every t; increment, there were 1024 data points collected in to. The
total time for acquisition of each spectrum was approximately 20 hours.

Both data sets were zero-filled to 2048 in the ¢; dimension prior to the 2D magnitude
fourier-transform. Each MQ spectrum was obtained by performing a summed projection
of the 2D spectrum onto the f; axis. Peak positions of both the one-quantum and
MQ spectra were calculated using the Bruker UXNMR peak-peaking routine. The one-
quantum spectrum was analyzed using the computer program LEQUOR; the MQ spectra

were analyzed using a sﬁitably modified version of LEQUOR.
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3.4 Results and Discussion

3.4.1 NMR Spectra

The experimental one-quantum spectrum of partially oriented butane is shown in Fig-
ure 3.9. The 'H-NMR spectrum of bufane consists of a thick mass of lines spanning
a frequency range of 10 kHz with essentially no notable features and sits on the broad
liquid-crystal 'H spectrum. A horizontally expanded region of the spectrum is shown
in the lower half of Figure 3.10. It is apparent that while the spectral-line density is
high, overlap is not S0 severé as td make it impossible to determine the frequencies of
most of the lines; thus, a fit of the experimental spectrum is certainly possible. How-
ever, the complexity of the spectrum makes it extremely difficult to do so without \%CI')’
accurate initial estimates of the coupling constants and chemical shifts. Small deviations
from the true values of these parameters would alter the line frequencies and intensities
enough to generate a spectrum with significantly different fine structure from that of the
experimental spectrum. |

These problems cah be circumvented with the help of MQ spectra. The seven-
quantum and eight-quantum spectra for oriented butane are shown in Figures 3.11 and
3.12. There are far fewer lines than appear in the one-quantum spectrum, though they
are spread out over a comparable frequency range. The strategy used to fit these spectra
employed the Model As described earlier, with parameters optimized to the zero-EFG
liquid-crystal mixture according the results of an earlier study [36] to predict molecular
order parameters and thus dipolar coupling constants. A value for Eyy of 3.0 kJ/mol
was used to generate initial conformer probabilities. Chemical shifts and J-coupling
constants were initialized to their isotropic values [123]. The trial spectrum that was

generated provided an adequate starting point to fit simultaneously the two MQ spectra.

In total, 19 lines from the eight-quantum spectrum and 35 lines from the seven-quantum
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Figure 3.9: Experimental (bottom) and Simulated (top) Spectra of Partially Oriented
Butane.
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Figure 3.10: Expanded Region of Experimental and Simulated Spectra of Partially Ori-
ented Butane.
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Figure 3.11: Experimental and Simulated Seven-Quantum Spectra of Partially Oriented
Butane. '
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For the simulated spectrum, the line intensities have been arbitrarily set equal since the
intensity of each MQ transition is a complicated function of the preparation time 7 and
the parameters in the spin Hamiltonian, and does not provide any information for the
present study. ’
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Figure 3.12: Experimental and Simulated Eight-Quantum Spectra of Partially Oriented
Butane. .
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For the simulated spectrum, the line intensities have been arbitrarily set equal since the
intensity of each M(Q transition is a complicated function of the preparation time 7 and
the parameters in the spin Hamiltonian, and does not provide any information for the
present study.
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spectrum were fit successfully. Figures 3.11 and 3.12 show the frequencies of all of the
lines calculated in the fit of the MQ spectra. A large number of these lines in the experi-
mental seven-quantum spectrum have very weak intensity and are barely discernible, if at
all, from the fluctuations in the noise. Note that the line intensities have a very complex
and sensitive dependence on the preparation time, 7. Ideally one uses an optimum 7, if
one exists, for which all of the associated MQ coherences are appreciably populated. A
practiéal approach is to coadd a series of spectra acquired with different values of 7. In
the present case, we found the spectra acquired with a single 7 to be sufficient.

The trial one-quantum spectrum that was predicted from the fit of the MQ spectra
proved to be an excellent starting point in the fit of the experimental one-quantum
spectrum; assignment of spectral lines was tedious, but trivial. A simulated one-quantum
spectrum using the fitted dipolar coupling constants, chemical shift difference and J-
(:OI;plings is shown in Figure 3.9 with the experimental spectrum. The high quality of the
fit is more evident in the expanded plot of a region of the spectrum shown in Figure 3.10.
Table 3.5 lists the final values of the fitting parameters obtained in both the one-quantum
and MQ spectral fits. The protons are labeled according to Figure 3.13. Note that the
predicted coupling constants and chemical shift difference are almost exactly the same
for both fits; the J-couplings are shifted only slightly from their literature values. Thus,
an analysis of the MQ spectra for this particular ten-spin system is shown to provide
information sufficiently accurate for the type of analysis that we describe below. This is
a significant point when considering the accuracy of MQ spectral information of molecules

of slightly greater complexity for which the one-quantum spectrum cannot be analyzed.

3.4.2 Conformational and Orientational Behaviour of Butane

Table 3.6 summarizes the results of the fit of the experimental dipolar coupling con-

stants using the eight mean-field models described in Section 3.2.4, for three different ¢,
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Table 3.5: Fitting Parameters (Hz) from the Multiple-Quantum and One-Quantum Spec—.

tral Fits.

Parameter MQ 1Q
Dy, 817.8(2) 817.63(3)
Dy, -199.6(2) -199.57(5)
D -389.2(2) -388.84(2)
Dqg -196.4(2) -196.14(2)
Dys 1601.3(3) 1601.09(4)
Dy 65.3(5) 65.61(8)
Dy . 34.5(5) 33.98(8)
01 — 04 309.5(2) 309.40(7)
Jia 7.4% 7.37(5)
J1g —0.2¢ -0.19(2)
J4G 5.7¢ 6 04(2)
J47 8.6¢ 8 83(2)

“Isotropic values from Ref. [123].

'Figure 3.13: Labeling of Butane Protons
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- dihedral angles, with and without corrections for torsional fluctuations about the RIS
states. Among the SS models, A;, A, and Aj; yield fits of comparable quality, with
root-mean-square (RMS) deviations of approximately 30 Hz, regardless of the variation
in the geometrical parameters. Models A4, A; and Ag yield fits of substantially improved
quality with RMS values roughly half those of the fits with the other three models. This
trend is entirely consistent with the results of the study by Zimmerman et al. [36] in
which these SS models were tested on a series of rigid solutes oriented in the same zero-
EFG liquid-crystal mixture. This probably is due to the fact that models A4, A5 and
-AG incorporate much more detail into their.descriptions of the molecular size and shape
than do the others. Model B yielded by far the poorest fit of the experimental dipolar
coupling constants. This is surprising in light of the results of Rosen et al. [45] in which
this model yielded particularly good fits, especially so for the shorter alkanes. Model C
gave the best fit, consistent with the results of Rosen et al. and as one may expect for a
model specially tailored for molecules composed of identical repeating units. The quality
of the fits for all mean-field models is generally insensitive to the value of ¢,, and is
only marginally improved by incorporating torsional fluctuations into the fits. Table 3.7
lists the experimental and calculated dipolar coupling constants for all of the mean-field
models for the case of ¢,=116° and A¢=20° and clearly highlights the relative success of
each model in describing the orientational ordering of butane. Note that the simulated
dipolar coupling constants for all models do not fall within the uncertainties of the highly
accurate experimental coupling constants. This discrepancy is due to a variety of factors,
including small uncertainties in the molecular geometry, molecular vibrations, as well as
the limitations in the mean-field models themselves.

The principal goal of the present study is an accurate determination of E,,, the

effective energy difference between the trans and gauche states of butane in an anisotropic

condensed phase. The results summarized in Table 3.6 clearly show that the value for
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Table 3.6: Results of the Fits to the Experimental Dipolar Coupling Constants.

 $,=112° $,=116° $,=120°

Model Parameter : Agp=0° 20° Ap=0° 20° Agp=0° 20°
A, Ey /kJ-mol™! 222 222 233  2.34 243 2.45
k /10 N-m~! 581  5.92 575  5.86 569  5.80

RMS /Hz 327 32 20 29 26 26

Ay By /kJmol™' - 235 236 243 245 250  2.54
k /10° N-m~! 464 474 462 472 460  4.69

RMS /Hz 34 33 30 30 27 27

Ay B, /kJmol™' 227 226 - 237  2.38 247  2.49
k /10 N-m™! 474 481 470 477 466  4.73

RMS /Hz 32 32 29 29 26 27

Ay By /kJ-mol™! 2.58  2.67 274 284 290  3.01
k, /103 N-m™! 704 710 68.8  69.6 67.2  68.1

RMS /Hz 17 15 19 19 22 20

A; By, /kJmol™! 248  2.54 262  2.68 275  2.82
k, /10° N-m™! 464 47.0 456 46.2 44.7 454

RMS /Hz 17 15 16 14 17 15

A¢  Ey /kJ-mol™ 262  2.70 278  2.85 293  3.01
kzy /10* Nom™! 185 187 181 183 17.7  18.0

RMS /Hz 13 12 15 14 18 17

B  F, /kJ-mol™! 294  3.07 318  3.32 346  3.59
e /104 kJ-m™3 450  4.56 437 4.4 423 432

RMS /Hz 44 41 48 44 52 48

C By /kJ-mol™! 2.09  2.09 215 217 222 2.26
Wo /kJ-mol ™! 0.736  0.744 0.725 0.734 0.713  0.723

RMS /Hz 12 11 9 7 9 7
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Table 3.7: Experimental and Calculated Dipolar Coupling Constants (Hz) for ¢,=116°
and A¢=20°. :

Dij Exp. A1 AQ Ag A4 A5 AG B C

D, 8173 8429 8225 843.0 821.7 829.8 8225 776.6 821.8
Dy, -199.6 -195.3 -2079 -194.7 -211.3 -206.2 -2079 -206.5 -192.2
Dy -388.8 -392.2 -360.5 -393.5 -352.6 -366.6 -360.5 -339.4 -390.0
Dig  -196.1 -229.2 -199.9 -229.2 -198.7 -208.7 -199.9 -160.6 -203.0
Dys 16011 1536.2 1609.1 1535.1 1615.3 1588.7 1609.1 1700.9 1591.0
Dy 65.6 70.1 63.5 70.8 66.1 67.9 63.5° 66.0 66.5

Dy 34.0 66.8 42.0 67.1 34.3 46.4 42.0 -13.4 52.7

RMS - 29 30 29 19 14 14 44 7

this quantity obtained from an analysis of dipolar coupling constants is sensitive to the
model used to describe the orientational ordering. Model C yields an E;, of ~2.1 kJ/mol,
the lowest estimate of any of the models. Model B gives the highest value, with E;;, ~
2.9-3.6 kJ/mol, while the various SS models predict values that lie between these two
extremes. Thus, the estimates for Ey, are spread over a fairly wide range. Note that while
increasing the value of ¢, consistently leads to higher estimates of Ly, the range of values
obtained from each model is small compared to differences between the predictions of
different models, with the exception of some of the SS models which predict very similar
values of E,,. Including torsional fluctuations in the calculations causes only a very siight
_shift towards a higher E,,.

To assess the accuracy of each model prediction we must consider the quality of each
fit to the experimental dipolar coupling constants. Since model B yielded such a poor
fit, the high calculated E;, values must be treated skeptically. The poorness of this

fit relative to those for other models is emphasized in Table 3.7. The dipolar coupling

constant D7, for example, which is highly sensitive to Ey,, is actually predicted to have a
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different sign from the experimental value. In light of this considera.tion; we exclude the
range of values of Ej, predicted by model B. The low value of E,, obtained using model
C mirrors the results of Rosen et al., in which a consistently low Ey, for alkanes of various
lengths was determined. Thus, we take 2.1 kJ/mol as the lower limit in our estimate of
E,,. The values for E,, predicted by the SS potentials span a fairly wide range, 2.2-3.0
kJ/mol. Of particular importance are models A; and Ag, which account for the oriented
molecule’s shape in the most detailed manner and thus yielded the best fits among the
SS models. These models also gave the highest estimates of £, with a range of 2.5-3.0
kJ/mol, and thus provide an upper limit to the estimate of E;, for butane in this study.
To summarize, our analysis of flle 'H. dipolar coupling constants of partially oriented
butane using a variety of mean-field models suggests that Ey, ~ 2.1-3.0 kJ/mol.

While a model-independent estimat,e of Etg would have been preferred, the results
of our analysis are significant, nevertheless. The range 2.1-3.0 kJ/mol is below most
experimental gas-phase values which lie in the range 3.3-3.7 kJ/mol [92, 93, 94, 95,
96], with the exception of the value of 2.9 kJ/mol reported in ref. [97]. Thus, our
study provides evidence that gauche-conformer populations of butane in an anisotropic
condensed phase are enhanced relative to the gas-phase values, in accord with much
experimental evidence for butane in isotropic condensed phases [98, 99, 100].

Table 3.8 lists the trans—staté probabilities calculated for the various models employed
in our analysis. As expected the probabilities increase with increasing calculated Ey,,
with model B predicting the highest probabilities and model C predicting the lowest.
Considering only the successful models that were used to establish a range of values for
E,,, we estimate that the trans probabilities lie in the range 0.54-0.62. Also shown in
Table 3.8 are the trans probabilities for an isotropic phase obtained by setting U2"°(w)=0

in Eq. (3.54). The isotropic probabilities are consistently slightly lower than the nematic-

phase probabilities, indicating that the anisotropy in the mean-field has the effect of
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Table 3.8: Nematic (N) and Isotropic (I) Phase trans Probabilities.

¢,=112° $,=116° $,=120°
Model Phase Ad=0° 20° Ap=0° 20° Ad=0° 20°
A, N 0.547 0.549 0.559 0.561 0.570 0.573
I 0.537  0.539 0.549  0.551 0.560 0.544
A, N 0.559  0.562 0.562  0.572 0.577 0.582
I 0.550  0.552 0.559  0.562 0.567 0.572
A, N 0.551  0.553 0.563  0.565 0.573  0.576
I 0.541  0.543 0.553  0.555 0.563  0.567
A, N 0.580  0.590 0.596  0.607 0.612 0.624
I 0.573  0.584 0.589  0.600 0.606 0.618
As N 0571 0.606 0.585  0.592 0.599  0.607
I 0.563  0.570 0.577  0.585 0.591  0.599
Aq N 0.585  0.592 . 0.600  0.608 0.615 0.624
I 0.577  0.586 0.592  0.602 0.609 0.618
B N 0.615 0.629 0.638  0.652 0.664 0.677
I 0.608 0.622 0.632  0.646 0.658  0.671
C N 0.535 0537 0.543  0.546 0.551  0.555
I 0.523 0.531 0.534 0.538  0.544

0.526
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Table 3.9: Calculated Principal Axis System (PAS) Order Parameters, and PAS Euler-
Angle, for trans and gauche Conformers of Butane. '

Model Conformer S,, S5,,-S;z Brot

Ay trans 0.177 0.007 43.6

gauche 0.107 -0.037 25.6

A, trans 0.175 0.010 43.3

gauche 0.108 -0.035 27.2

As trans 0.177  0.006  43.5
gauche 0.108 -0.037 25.7

Ay trans 0.151 0.034 - 44.6

-~ gauche  0.101 -0.616 25.0

As - trans 0.160 0.025 44.1

gauche  0.103 -0.053 23.2

Ag trans 0.154 0.028 44.1

gauche 0.100 -0.059 24.3

B trans. 0.140 0.061 420

gauche 0.078 -0.064 23.8

C trans 0.179 0.013 41.6

gauche 0.089 -0.07 23.6

Calculated for ¢,=116° and A¢=20°. For both conformers, the PAS y-axis bisects the
C-C-C—C dihedral angle, and the PAS z-axis makes an angle of (., with the central
C-C bond towards the methyl groups.
favouring the elongated trans state relative to the gauche states. Since these shifts are
very small, it appears that the conformational distribution is essentially determined by
the isotropic “solvent pressure” of the liquid crystal, in agreement with the findings of
Rosen et al. for longer alkanes.

Table 3.9 summarizes the model-dependence of the calculated Principal Axis System
(PAS) order parameters for both the trans and gauche states of butane for the special
case of ¢,=116° and A¢=20°. It is interesting to note that the calculated principal order

matrix component, S, for the trans state varies inversely with the calculated Ey; and

trans state probabilities. Thus, the calculated S,, is lowest for model B and highest for
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model C. Also shown for both conformers is the Euler angle 3,,, defined as the angle
between the central C-C bond and the Principal Axis System (PAS) z-axis. As the results
clearly show, the PAS orientation is not particularly sensitive to the choice of models used
to describe the orienting potential. Thus, an interesting result of these calculations is
that the orientation of the PAS system predicted for each model is essentially identical
to that for the PAS system of the moment of inertia tensor for both conformers, which
is the axis system calculated using model B.

An important result of the present study is the fact that, with the exception of model
B, all of the mean-field models for molecular orientation in a nematic phase employed
here yielded physically reasonable results in the fits of the experimental dipolar coupling
constants. This is in marked contrast to the results of Rosen et al. [45] who concluded
that the SS models that were tested (models A; and A;) were deficient and unable to
adequately describe the orientation of flexible alkanes. One major complaint against
model A,, for example, was that the calculated Ey, was unusually high, and found to
increase with increasing alkane chain length. However, it is important to note that these
calculations failed to account for the fact that each SS potential is not purely anisotropic,
but has a residual isotropic component (see Eq. (3.55)) that must be subtracted away
from the potentials defined in Egs. (3.57)—(3.63) in order to calculate correctly E;,. In the
case of butane, failure to incorporate this correction leads to an incorrect value, Etfg“lse
defined by Eq. (3.56), that was found to be ~10% higher for model A; compared to the‘
correct value, a result of the fact that (Ug§™) > (Ugemchey Tt is entirely conceivable
that this effect may become more pronounced as the shape anisotropy increases with
increasing hydrocarbon chain length and yield results similar to those of Rosen et al.
Their results for model Aj contain unrealistically low values for E;,. For butane it was

found that (U§e™) < (U§e*™®), the opposite of what was observed for model A; as a

result of the large negative term in Eq. (3.60), which vielded Etfg“l“ < Ej,. Thus, the
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apparent deficiencies in the SS models may arise from the failure to account for the
isotropic component inherent to all of these potentials. In addition, the results of the
present study strongly suggest that the more recent forms of the SS potentials are much
more successful than aré the earlier versions in fitting experimental dipolar coupling

constants and therefore of describing the orientation of flexible molecules.

3.5 Conclusions

In this chapter, we have investigated the conformational and orientational behaviouf of
butane aligned in a nematic liquid crystal. Information obtained from the analysis of
the seven-quantum and eight-quantum 'H-NMR spectra provided an excellent starting
point to analyze the highly complex one-quantum spectrum and thus to obtain extremely
accurate estimates of the seven independent 'H dipolar coupling constants. An analysis
of the coupling constants was carried out with the aid of several different mean-field
models for molecular orientation in a nematic environment. It was found that recent
versions of the “Size and Shape” potential proposed by Burnell and coworkers, and, in
particular, the Chord model proposed by Photinos et al., were able to describe successfully
the intermolecular interaction of butane in a liquid crystal, while a model based on the
molecular moment of inertia tensor was found to be inadequate. An effective trans-gauche
energy difference in the range of 2.1-3.0 kJ/mol was determined, suggesting that the
gauche-state probabilities are enhanced in a condensed anisotropic environment relative
to the gas-phase values. Varying the dihedral angle, ¢,, between trans and gauche states,
and inclusion of torsional fluctuations about the internal rotational potential minima
were found to have only small effects on the results. The anisotropic potential was found
to cause a very minor shift towards higher probabilities of the elongated tmnsv conformer

relative to the isotropic values, in agreement with studies of longer alkanes, suggesting
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that the conformational behaviour of butane is similar to that found in the neat liquid

phase.




Chapter 4

Monte Carlo Simulations of Oriented Solutes (I): Shape Anisotropy and
Mean-Field Models

The material presented in this chapter has been accepted for publication in Molecular

Physics.

4.1 Introduction

The task of elucidating by experimental means the details of the intermolecular forces
that induce orientational order in nematic liquid crystals is challenging. In the case of
NMR studies, acquiring information from direct probing of the nematogens is complicated
by their structural complexity and significant conformational freedom. An alternative
approach that has been fruitful has been to study small, rigid molecules dissolved in ne-
matic solvents. The basic assumption is that these molecules will probe the forces present
in the ordered fluid, which may be observed indirectly through the orientational ordering
of the probes. The choice of probe molecules permits some means of disentangling the
many factors that influence the behaviour of liquid crystalline systems. An important ex-
ample is the case of dideuterium, in which the interaction between the molecular electric
quadrupole moment with the average electric field gradient sampled by the molecule was
shown to be the principalk interaction responsible for its orientational ordering [13, 119].
More recently, studies of halogenated alkanes with localized dipole moments havé indi-
cated that the dipole-dipole interaction is also an important orienting mechanism [47, 48].

In both cases, it is postulated that these interactions are significant for the orientational

94
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ordering of the nematogens as well.

While long-range electrostatic forces contribute to the orientational ordering in ne-
matics, it is the anisotropic short-range repulsive forces that are generally believed to be
the dominant orienting mechanism. These short-range repulsive interactions have also
been incorporated into the analysis of orientational order of probe molecules. The ba-
sic approach is to construct a mean-field orientation-dependent potential characterized
by one or two parameters that is sensitive to the details of the size and shape of the
molecule. This potential then is used to fit the experimentally measured molecular order
parameters for a collection of solutes. The values of the model parameters give a measure
of the strength of the short-range repulsive forces that give rise to the ordering. Several
mean-field models proposed by Burnell and coworkers [33, 34, 35, 36] and a closely re-
lated model due to Ferrarini et al. [37] have been highly successful, yielding fits where
the calculated principal molecular order parameters are within 10% of their experimental
values. Generally, the models Which are most sensitive to the details of the molecular
shape provide the most accurate description of orientational order.

It is interesting to note that these models are formulated as anisotropic surface inter-
actions or as ari elastic distortion of the liquid crystal; but are assumed to arise physically
from the short-range reprulsive forces between molecules. Thus, some insight into the re-
lationship between the mean-field models and these interactions may be gained by using
computer simulations to study orientational ordering of solutes in model systems in which
molecules interact solely by short-range forces. The ability to focus on the effects of spe-
cific forces without the complicating effects of the other interactions is an important
advantage of the computer simulation épproach, and provides an additional tool for the
interpretation of experimental data.

Computer simulation techniques have been a very effective method to study liquid
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crystal systems. In these studies, mesogens have been modeled to various degrees of com-
plexity, ranging from simple hard convex bodies (HCB’s) [6], to models of intermediate
complexity such as the Gay-Berne mesogen [26, 124, 125, 126], which inciude long-range
attractive forces, to models which attempt to incorporate full molecular detail [38, 39].
The case of HCB’s such as hard ellipsoids has attracted much attention over the last
decade [5, 60, 127, 128]. For this model, the basic requirement of non-overlap between
the bodies approximates the effects of short-range repulsive forces sufficiently to induce
the formation of orientationally ordered mesophases for systems of sufficient density.
The purpose bf the prlesent study is to investigate the general nature of the size
and shape dependence of solute orientational ordering in a nematic solvent without at-
tempting to simulate the behaviour of any particular real molecule. We model both
solvent-solvent and solvent-solute interactions with hard-core repulsive forces in an at-
tempt to elucidate the role of this important ordering mechanism. Specifically, solvent
and solute molecules are modeled as hard ellipsoids. We follow the approach taken in
experimental NMR studies and study the second-rank orientational order parameters of
a large collection of solites of a variety of sizes and shapes. In addition, we investigate
the detailed orientational behaviour of two dissimilar ellipsoidal solutes, including an
examination of the singlét orie‘ntationa.l distribution function and the dependence of the
degree of solute orientational order on the nematic order parameter, p{"e™  The MC
results are analyzed in terms of four mean-field potentials that were designed to describe
orientational order for arbitrary solutes in a uniaxial nematic phase. The simplicity of
the approach used here contrasts with and complements that taken in two recent studies
which investigated the orientational and dynamical behaviour of benzene [65] and the

conformational behaviour of hexane [66] as solutes in a liquid crystalline solvent modeled

using the more complex Gay-Berne potential.
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4.2 Monte Carlo Simulations

4.2.1 Order Parameters for a Collection of Solutes

Constant-volume Monte Carlo (MC) simulations were conducted for a system composed
of 95 liquid crystal molecules and one solute. The usual periodic bbundary conditions
were employed. Nematogens were modeled as hard prolate ellipsoids of revolution with
an axis ratio of 5:1. Solutes of a variety of sizes and shapes also were modeled as hard
prolate ellipsoids of revolution. Solute shape anisotropy was varied by adjusting the axis
length ratio. Overlap between ellipsoids was tested for trial moves using the procedure
described by Vieillard-Baron [129]. All calculations were performed using a reduced -
density of p* = Nuvy/V=0.488, where N=96 is the number of particles confined to the
cell, vy is the volume of a solvent ellipsoid, and V' is the volume of the cell. Although the
true density of the system varied between calculations b).f <1% as a result of varying the
solute volume, changes in the ordering of the solvent were negligible and too small to be
detected to within statistical uncertainty.

Particles were randofnly chosen for trial moves, which consisted of a simultaneous
translation and rotation, the maximum magnitudes of which were chosen so that the
translation and rotation would contribute about equally to the likelihood that the move
would be rejected. The overall acceptance ratio was 30-40%. Solute trial moves were
attempted as frequently as those for individual solvent ellipsoids; no configurational bias-
ing technique was used to increase the sampling rate for the solute. For each translation,
a random displacement vector was calculated with individual components in the range
of [—4,6]. The orientational displacements were generated by adding a vector of fixed
length r but with an orientation chosen at random from an isotropic distribution to the

unit vector specifying the orientation of a given particle. The resulting vector was nor-

malized to yield the new orientational unit vector. The values of § and r were chosen to
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give an a,verbage acceptance ratio of the combined translation-rotation move of 30-40%.
Further, the ratio of 6 and r was fixed by the requirement that a translation and rotation
contributed about equally to the likelihood that a particle would be rejected. The values
of § and r for solute ellipsoids varied consi'derably and were generally larger than those
for the larger solvent ellipsoids.

nem)

The orientational order parameter of the nematic solvent, PQ( , was measured by

finding the largest eigenvalue of the average second-rank tensor defined by

1 &3 1
Q=+ z_: <§&1U1 - §I> : A (4.76)

where 4; is a unit vector describing the orientation of the i**

solvent ellipsoid. The
nematic director is given by the axial-symmetry axis of the principal axis system of this
tensor. Solute orientational order was monitored by measuring the second-rank order
par'amet,er Py = (Py(cosf)), where 6 is angle between the solute symmetry axis and the
nematic director. An equilibration period of 1-2x10% sweeps was used, where one sweep
represents an attempt to move on average each particle once, starting from an initial
configuration where the particles were perfectly aligned and plla‘ced on an FCC lattice.
Typically 80-90 block averages of 10* sweeps each were used to calculate the ensemble
averages and provide an estimate of the uncertainties. A total of 31 calculations were
performed, each with a solute of a different size and shape. Solute dimensions were
chosen to span the range of dimensions less than those of the solvent ellipsoids and were
not intended to r'epresent those of real molecules.

The nematic order parameter P{™™ was determined to be 0.883+0.004, and is con-

sistent with the results of Samborski et al. [128]. In order to check that the small size

of the system did not in any way influence the outcome of the simulations, several cal-

culations were repeated using a larger system of N=240 particles and yielded identical
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results. Attempts to conduct simulations for a system with a lower degree of orienta-
tional order that is more comparable to that measured in a typical nematic phase weré
found to be not practical for conducting a large number of simulations invoiving different
solutes. While reducing the density lowers P{"*™ it also brings the system close to the
nematic-isotropic phase transition at p*=0.37 [128] where we found the effects of using
a small system (N=96) to be severe, generally resulting in an overestimate of P{"".

Since an appropriate increase in the system size required an unacceptable increase in

computation time, the higher density was used.

4.2.2 Further Simulations for Two Solutes

Since an important objective of the study is to compare the results of the simulat-ions \%fith
experimental results, it is necessary to have a means to scale the results to correspond .
to a system having a realistic value of —2("””). To this end, additional simulations were
performed for a dissimilar pair of ellipsoidal solutes in the model nematic liquid crystal
at lower densities. The simulation method is almost identical to that described in the
previous section. In this case, however, a larger system size of N=240 particles was
used to minimize finite-size effects. Solute A had dimensions of [=2.0 and w=1.0, while
solute B had dimensions of [=3.33 and w=0.25, where [ and w are the dimensions of
the ellipsoid parallel and perpendicular to the symmetry axis, respectively, and where
the dimensions are measured in units of the solvent ellipsoid width d. Simulations were
performed for both solutes at a density of p*=0.388, where the nematic order parameter

P{"*™ =0.634, the value reported for the order parameter of

was found to be very close to
the analine ring of the nematogen EBBA in the experimental NMR studies of Burnell and
coworkers [33, 36]. Simulations were  also conducted for solute A and B at intermediate

densities of p*=0.444, 0.425 and 0.405, as well as those at p*=0.488 and 0.388, in order

nem)

to study the solute orientational ordering as a function of P,
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In addition to calculating the second-rank order parameters P,, the full singlet ori-
entation distribution functions were also calculated for these solutes. The probability
distribution was calculated for cosf ranging from 0 to 1 in increments of 0.01. Solute
orientations were measured with respect to the local director which was recalculated after

every 1000 attempted moves per particle.

4.3 Mean-Field Models

The MC simulation data were analyzed using four mean-field model potentials that have
been used previously for the analysis of molecular order parameters obtained from NMR
data for solutes in nematic liquid crystals.

Model I. The first potential, introduced by van der Est et al. [33], is given by

Ulw) = %k((](w))? (4.77)

where C'(w) is the circumference traced out by the projection of the solute onto a plane
perpendicular to the nematic director, and where w=(f, ¢) are the angles describing the
orientation of the nematic director in the molecular frame. For the axially‘symmetric
solutes considered here, the ¢-dependence vanishes. This model. was also employed in
Chapter 3 (Model A;). See Figure 3.7 for an illustration of the orientation-dependent
solute parameters.
Model I1. The second potential is an anisotropic surface potential introduced by
Zimmerman et al. [36), and is given by
. 1 Zmaz
Uw) = -3k /Z " o(2,w)2 (4.78)
where Z is the position along the nematic director bounded by the minimum, Z,,;,,

and maximum, Zy,,, points of the orientation-dependent projection of the solute along

this axis. C(Z,w) is the circumference traced out by solute at this position along the
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director. Thus, C(Z,w)dZ is the area of an infinitesimally thin ribbon that traces out
this circumference, and the integral is the area of the full projection of the surface of the
solute onto a plane parallel to the nematic director. For the case of the convex model

solutes studied here, the potential of Eq. (4.78) may also be written as
1
Uw) = —iks/dSﬁ | sin 6 | (4.79)

where 7 is the unit vector normal to a solute surface-area element dS;, and 6 is the
angle between 7 and the nematic director. This model was also used in Chapter 3 in the
study of butane (model A,). See Figure 3.7 for details.

Model III. Third, we consider another anisotropic surface potential due to Ferrarini
et al. [37] given by

U(w) = f/dSﬁPQ(COS 0:) (4.80)

which has a form similar to that of the previous potential. A noteworthy point regarding
this potential is that it may be expanded in terms of second-rank spherical harmonics
generally, and is proportional to Py{cos ) for axially symmetric molecules, where 6 is the
angle between the symmetry axis and the nematic direcpor.

Model IV. Finally, we consider the two-parameter potential formed by combining

the potentials of Models I and 1I [36] (Model Aj of Chapter 3):

Ulw) = 2E(C(w))? - -;-_ks /Z C(2,w)dZ (4.81)

2 Zmin
The four mean-field potentials described above were designed to fit experimental

solute orientational order parameters according the following relation:

Sap = / (g cos B, cosfg — %60[3) flw)dw, (4.82)

where the solute orientational distribution function is related to the mean-ﬁeld'potentials

according to

exp(—U(w)/ksT)

flw) = (4.83)

~ [exp(=U(w)/kpT)dw’
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The mean-field potentials are of the following form:
U(w) = ch(w), (4.84)

where ¢ is any of the solute-independent solvent parameters (k, ks and €), and h(w)

gives the orientational dependence of the potential, specific for each solute. Model IV is
simply a sum of two such terms. Defining a reduced potential U*(w) = U(w)/kgT, we
can rewrite Eq. (4.83):

flw) = exp(-U’(w)) _ _exp(=ch(w))
Jexp(—=U"(w))dw ~ Jexp(—ch(w))dw’

(4.85)

where ¢* = ¢/kgT (i.e. k* = k/kgT, k¥ = ky/kgT and € = €/kgT). To apply these
models to fit the order parameters generated in the MC simulations, we must first recog-
nize that the hard-particle system is not characterized by a temperature, since it is fixed
at one finite energy value, while also noting that the orientational distribution function
in Eqs. (4.83) is defined in terms of temperature. To circumvent this problem, we simply
reinterpret Eq. (4.85) as the definition of the mean-field potential U*(w), characterized
by the parameters k*, k¥ and €* for the four models above, which, for a system that is
characterized by temperature, may be used to define U(w), A ks, and €. In a real sys-
tem, the temperature-dependence of k*, k} and €* can be correlated to the variation of
degree of nematic solvent orientational order with density which is an inverse monotonic
function of the temperature. Thus, these fitted reduced interaction strength parameters

for simulation and experiment may be compared directly in the case of equal nematic

solvent order parameters.
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4.4 Results and Discussion

4.4.1 Order Parameters for a Collection of Solutes

Solute order parameters vs. solute length for the 31 solutes in a nematic solvent with a
density of p*=0.488 are plotted in Figure 4.14. The solute length and width are measured
in units of the solvent ellipsoid width, d. For solutes of the same width, there is a smoothly
varying increase in P, with increasing length. For the case of solutes with a width of
w=1.0 (Figure 4.14(a)), P initially rises rapidly with increasing length, and levels off as
it approaches the solvent order parameter for a length of /I=5. For smaller widths, this
change in the slope of the graph is less pronounced. Interestingly, there is only a slight
decrease in P, at the maximum length, that is when the solute length is equal to the
solvent length, as the width is decreased to w=0.25.

The solute order parameters calculated from the four fits are plotted with the MC
results in Figure 4.14. Each fit corresponds to using one model potential to fit simultane-
ously the order parameters of all 31 solutes. Thus, the fitting curves shown in Figure 4.14
correspond to a single value of the model parameters for each potential for all four solute
widths employed. The root-mean-square (RMS) deviations and the values of the model
parameters (Value(1)) for each of the fits are presented in the second and fourth columns,
respectively, of Table 4.10.

The curves calculated using the potential of Model I demonstrate that this potential
is unable to calculate accurate order parameters for both short and long soiutes simulta-
neously for any solute width. For example, in Figure 4.14(a), the P, for short solutes are
underestimated while those for longer ones are fit fairly well. The calculated P, for nar-

rower molecules shown in Figures 4.14(c) and 4.14(d) are reasonably accurate for short

molecules, but significantly overestimated for longer molecules. This model deficiency
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Figure 4.14: Solute Order Parameters vs. Solute Length
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Fits were calculated using the four model potentials. (a) Solute width of w=1.0; (b) w=
0.7241; (¢) w=0.5; (d) w=0.25. In each simulation, a system of 95 solvent ellipsoids and
one solute was used.
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Table 4.10: Comparison of Results for Fits of MC and Experimental Solute Order Pa-
rameters. :

Model RMS Parameter Value(1)® Value(2)>¢ Value(3)>¢ Value(4)** Exp.%/

I 0.087 k* 0.45 0.028 0.0093 0.010 0.013¢
IT 0.083 k; 10.7 0.67 0.20 0.21 - 0.187
III 0.080 €* 2.4 0.15 0.049 0.053 0.05"
1Y 0.031 k* 0.16 0.0099 0.0031 0.0034 0.00497
k; 6.1 0.38 - 0.12 0.13 0.1159

¢Units of d=2.

Units of A~2.

“Value(2) obtained from Value(1l) by fixing the length scale by setting the length of a
solvent ellipsoid to be 20 A . For a system with P{"™ = 0.883.

4Value(3) calculated by scaling Value(2) by the ratios for the model parameters for so-
lute A listed in Table 4.13. For a system with P{"*™ = 0.634.

¢Value(4) calculated by scaling Value(2) by the ratios for the model parameters for so-
lute B listed in Table 4.13. For a system with P{"™ = 0.634.

- /Experimental values for a nematic mixture of 55 wt% 1132/EBBA. Order parameter of
the analine ring on EBBA given by P{**™ = 0.634.

9From Ref. [36].

"From Ref. [37].
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was also noted previously in analyses of experimentally measured molecular order pa-
rameters. In that case, P, calculated for solutes like 1CB, whose length approaches that
of the nematogens, were overestimated when using this potential to fit order parameters
of a collection of otherwise predominantly small solutes [34].

The fits using models I and III show the opposite trends. In this case, the tendency is
to either overestimate P, for shorter solutes or underestimate P, for longer solutes. Again,
this trend has been noted previously. For example, model 1II was found to underestimate
the orientational order of the nematogen 5CB using an interaction strength parameter
suitable to a collection of shorter solutes [37]. Also noteworthy are the near identical
predictions of these two potentials. This is perhaps not surprising, given their similar -
forms. Both are anisotropic surface potentials in which surface area elements have similar
orientation dependencies with respect to the nematic director. RMS deviations for fits
of the order parameters of the solutes using models II and III are similar to that of the
fit using the model I.

The two-parameter pot'ehtial of model IV yields by far the best fit to the MC data.
The RMS deviation of this fit is less than half of those using the three other potentials.
In this case, the deficiencies of models I and II cancel out, yielding accurate fits to
solute order parameters for both long and short solutes for all solute widths studied.
This is a significant factor underlying the high quality of this fit despite the fact that
varying two parameters generally should give an improved fit relative to that of one-
parameter models. Among the several models investigated in the study of Zimmerman
et al. [36], this potential gave the most accurate fit to experimental data. In that case,

the deficiences of the individual terms of the potential canceled out in an analogous

manner to that observed here.
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4.4.2  Analysis of Singlet Orientational Distribution Functions for Two So-

lutes

To gain further insight into the mean-field models, we focus on the detailed orientational
behaviour of two very differently shaped solutes from the full collection analyzed above.

Specifically, we investigate the singlet orientational distribution function, f(#), and the

angular-dependence of the corresponding reduced mean-field potential, U*(6).

Figures 4.15 and 4.16 show the singlet orientational distribution functions and the
corresponding orientation-dependence of the mean-field potential for solutes A (=2,
w=1) and B (1=3.33, w=0.25).  The potentials of Figures 4.15(b) and 4.15(b) are
defined to be zero for #=0. The orientational distribution functions and mean-field
potentials calculated using the model parameter values obtained from the fits of the P,
of the full collection of 31 solutes are also shown in the figures.

For the case of solute A in Figure 4.15, the strength of the interaction described
by model I clearly is underestimated, leading to an underestimate of the probability for
orientations parallel to the director and an overestimate of the probability for orientations
perpendicular to the director. In contrast, the strength of the interactions described by
models II and III are overestimated, which results in the opposite behaviour for the
orient‘ational distribution function. Finally, the interaction strength for model potential
IV is exactly right, vielding a very accurate description of orientational order for this
solute. This behaviour is consistent with the predictions of P, for this solute, as shown
in Figure 4.14(a), which is underestimated by model I, overestimated by models II and
ITI and accurately predicted by model I'V.

For the case of solute B in Figure 4.16, model potential I significantly overestimates the
degree of solute orientational order, while potentials II and III underestimate the order.

Model IV by far gives the most accurate description of orientational order. As expected,
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Figure 4.15:
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Singlet Orientational Distribution Functions and the Correspond'ing
Mean-Field Potential for Solute A (=2, w=1)
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MC calculated distribution and potential (squares). Model predictions calculated using
model parameter values obtained from the fit to the P, of 31 solutes. For the simulation,
a system of 95 solvent ellipsoids and one solute was used.
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Figure 4.16: Singlet Orientational Distribution Functions and the Corresponding
Mean-Field Potential for Solute B (1=3.33, w=0.25)

T

LI T I Pt T 1T TTTT7T4H

20

| |

(a)

15

Illlll

210

T 717 ] LRI I LU | TT 1T ]

> a'f::

114 |

(RS T R T S T L)
1 11 4l I

O 0.2 04 06 08 1
cos(9)

L O Y LD B (O
. -

d 1‘\[11\;11

(b) &

U*(6)

IllllllllllllllllllL

Illll|l||lllllllllll

‘_“:u"
Olllllllillllllill]

0O 20 40 60 80
0 (degrees)

MC calculated distribution and potential (squares). Model predictions calculated using
model parameter values obtained from the fit to the P, of 31 solutes.” For the simulation,
a system of 95 solvent ellipsoids and one solute was used.




Chapter 4. Shape Anisotropy and Mean-Field Models 110

these results are consistent with the model predictions of P, shown in Figure 4.14(d) for
this solute.

In the analysis of the orientational distribution function and the corresponding mean-
field potential for the two solutes above, the predictions from the model potentials used
model parameter values based on the fits to the P, for the full collection of solutes. An
alternative approach is to fit the distribution functions with each model potential directly.
Comparison of the fitted and calculated curves provides more detailed insight into the

nem

strengths or deficiencies of the models. Further, an analysis of the ]52( )—dependence of

the fitted model parameters would provide a means of scaling the results of the fit above

to a system with a more realistic PQ"em)

. In this way, the results of the MC simulations
can be compared directly to those of experimental studies.

Singlet orientational distribution functions were calculated by MC simulations of so-
lutes A and B in the model solvent with densities of p*=0.488, 0.444, 0.425, 0.405 and
0.388. Each distribution function was fit using the four model potentials. For the fits
using the two-parameter potential of model IV, the ratio of parameters were fixed to the
value of k*/k*=0.0262 obtained from the fit of the P, of the 31 solutes above. Rather
than showing the fitted singlet orientational distribution functions, we present instead
the corresponding calculated mean-field potentials together with the model predictions.
These are shown in Figures 4.17 and 4.18. The presentation of the results in this form
amplifies the deficiencies of the models more clearly. Again, we choose a potential energy
of zero at #=0.

Fdr each solute, the anisotropy. of the potentials calculated in the MC simulations
decreases with decreasing density. This is qualitatively the same behaviour expected for
solutes in real nematic systems as the temperature is increased. In either case this is

related to a decrease in P(™™). The potential energy profiles predicted from fits to all

the model potentials are generally better for the wider solute (A) than for the narrow
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Figure 4.17: Orientation-Dependence of the Mean-Field Potential for Solute A (I=2,
w=1). )
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Calculated for p*=0.488 (triangles), 0.444 (squares), 0.425 (pentagons), 0.405 (hexagons)
and 0.388 (heptagons). The predictions of model potentials I, II, III and IV were obtained
by optimizing the model parameters in fits to the corresponding singlet orientational dis-
tribution function. The potential energy is chosen to be zero for #=0. A system of 239
(p*=0.444, 0.425, 0.405, 0.388) or 95 (p*=0.488) solvent ellipsoids and one solute ellipsoid
was used for each simulation.
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- Figure 4.18: Orientation-Dependence of the Mean-Field Potential for Solute B (1=3.33,
w=0.25). '
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The predictions of model potentials I, II, III and IV were obtained by optimizing the
model parameters in fits to the corresponding singlet orientational distribution function.

The potential energy is chosen to be zero for #=0. A system of 239 (p*=0.444, 0.425,
‘ 0.405, 0.388) or 95 (p*=0.488) solvent ellipsoids and one solute ellipsoid was used for
‘ each simulation.



Chapter 4. Shape Anisotropy and Mean-Field Models 113

solute (B). This is evident both from the ploté in the figures and in the relative size of
the RMS deviations of the fits listed in Tables 4.11 and 4.12. Also noteworthy is the
significant difference in fhe shapes of the mean-potential pfoﬁles predicted by models
IT and III. This feature contrasts with the fact that orientational order predicted by
these potentials for a collection of sélutes tends to be very similar, as illustrated in the
fits to the order parameters in Figure 4.14. Thus, while the similarity in the forms
of these two anisotropic surface potentials leads to a similar parameterization among
solute shapes, the difference in the details of the surface interaction is manifested in the
angular-dependence of the potentials.

The results of the fits for solutes A and B are presented in Tables 4.11 and 4.12,
respectively. There are two important resullts. (1) The solute order parameters have been
calculated from the predictions of the model potentials using the model parameter values
from these fits. For both solutes, these calculated values fall within ~5% of the MC values.
This suggests that fitting solute order parameters using model potentials gives essentially
the same results as fitting the orientational distribution functions which provide complete
information about one-particle orientational behaviour. Thisisa signiﬁcant. consideration
for the analysis of NMR experiments which yields only the solute order parameters.
(2) Although the model potentials provide comparable descriptions of the orientational
distribution functions when separately fitting the data from individual solutes, this is
not true if the results are analyzed simultaneously. This is evident from a comparison
of the values of the same model parameters for solutes A and B. Since the purpose of a
‘model potential is to provide an accurate description of orientational order for solutes of
arbitrary size and shape, the parameter corresponding to the same model and nematic
solvent should be independent of the characteristics of the solute. However, the parameter

values for the potentials of I, II and III vary roughly by a factor of two between the

different solutes for all values of 2{"*™. By contrast, the parameter values for potential TV
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Table 4.11: Results of Fits to Singlet Orientational Distribution Functions for Solute A
with Dimensions of [=2 and w=1. '

ot Pireme Py Model Parameter Value/d=? Py(calc) RMS®

0.488 0.886(2) 0.58(1) I k* 0.614 0.575  0.097
11 K 8.36 0.604  0.049
I11 €* 1.81 0.583  0.062
Ive K 6.15 0.597  0.037
0.444 0817(2) 0.44(1) I k* 0.418 0.416  0.082
1T K 5.48 0.441  0.056
I1I €* 1.22 0.422  0.066
Ive K 4.08 0.435  0.051
0.425 0.780(2) 0.38(1) I k* 0.368 0.367  0.047
II K 4.48 0.367  0.051
I11 € 1.07 0.372  0.035
Ive ke 3.56 0.383  0.038
0.405 0.729(3) 0.30(1) I k* 0.304 0.287  0.049
11 k? 3.89 0.303  0.040
111 ¢ 0.884 0.295  0.040
ve k! 2.91 0.299  0.035
0.388 0.636(6) 0.21(2) I k* 0.171 0.199  0.037 -.
11 K 2.11 0.208  0.034
I11 €* 0.494 0.201  0.033
Ive k: 1.60 0.206  0.031

2Uncertainties in the last digit are given in parentheses.

bRoot-mean-square deviation from fits to singlet orientational distribution functions.
“Fixing k*/k*=0.0262 as obtained from the two-parameter fit of P, for the full set of
solutes at p*=0.488.
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Table 4.12: Results of Fits to Singlet Orientational Distribution Functions for Solute B
with Dimensions of [=3.33 and w=0.25.

pt Pfreme P¢  Model Parameter Value/d~? Py(calc) RMS®

0.488 0.883(2) 0.69(1) I k* 0.235 0.663  0.067
II k: 18.5 0.695  0.123
111 ¢ 3.48 0.667  0.053
Ive k* 6.03 0.676  0.047
0.444 0.821(2) 0.53(2) I k* 0.164 0518  0.10
II k: 12.2 0.557  0.106
111 ¢ 2.42 0.522  0.087
Tve k? 4.14 0.533  0.078
0.425 0.782(2) 047(2) I k* 0.145 0.466  0.080
II k? 10.5 0.502  0.187
I € 2.13 0.468  0.093
Ive k? 3.62 0480  0.11
0.405 0.712(5) 0.39(3) 1 k* 0.115 0.369  0.063
11 k: 8.13 0408  0.13
111 e 1.69 0.379  0.066
Ive K 2.85 0.389  0.078
0.388 0.616(9) 0.26(3) I k* 0.078 0252  0.070
II k: 5.28 0.273  0.051
111 ¢ 1.14 0.253  0.069
Ive k? 190 0260 0.054

¢Uncertainties in the last digit are shown in parentheses.

bRoot-mean-square deviation from fits to singlet orientational distribution functions.
“Fixing k*/k*=0.0262 as obtained from the two-parameter fit of P, for the full set of
solutes at p*=0.488.
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are very close for the two solutes. This is consistent with the results shown in Figure 4.14
which illustrates the superiority of this model in its ability to predict order parameters
- for an arbitrary collection of solutes simultaneously.

The dependence of the model parameter values on nematic order parameter P{"*™
is shown for the two solutes in Figure 4.19. The parameter values have been scaled
to be unity for the highest density of p*=0.488. For each solute, the values scale very
similarly for all four models. Further, the P{"*™-dependence for both solutes is very
similar despite the substantially different shapes of the two solutes. For each case, there

is a significant increase in the slope of the curves with increasing P{"*™.

4.4.3 Comparison with Experiment

We now compare the results of the MC simulations with those of previous experimen-
talNMR studies of solute orientational order in nematics. Specifically, we compare the
interaction strength parameters obtained from the previous fit to the MC solute order
parameters for each of the model parameters with those obtained from a fit to the exper-
imental values. In order to make this comparison it ié necessary to scale the parameter
values in two ways.

First, it is necessary fix the length scale of the MC system. In the experimental NMR
studies of Burnell and coworkers [33, 36], a 55 wt% ZLI 1132/EBBA mixture was used as
the nematic solvent. Thus, we fix the solvent ellipsoid length to 20 A | the approximate
length of an EBBA nematogen and roughly the average length of the various components
of the ZLI 1132 mixture. For a length to width ratio of 5:1 for the solvent ellipsoids used
in the MC simulations. this corresbonds to a nematogen width of 4 A . This is narrower
than a phenyl-ring width of ~5 A, but wider than the thickness of the biaxial nematogen.

Thus, this is a quite reasonable approximation to the nematogen size and shape given

that we are employing an axially symmetric ellipsoid.
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Figure 4.19: Model Parameter Values vs. P{"™™ for (a) Solute A (I=2, w=1) and (b)
Solute B (1=3.33, w=0.25). .
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Table 4.13: Scaling Ratios from Results of Fits to Singlet Orientational Distribution
Functions for Solutes A and B at P{"*™=0.884 and P{"*™=0.634.

Solute A® Solute BY
Model Param. Value(1)>¢ Value(2)%¢ Ratio/  Value(1)®? Value(2)?%9 Ratio’
I k* 0.614 0.205 0.333 0.235 0.0843 0.358
11 k; 8.36 2.55 0.305 18.5 5.77 0.312
IT1 € 1.81 . 0.592 0.327 3.48 1.24 0.355

A k; 6.15 - 1.92 0.313 6.03 2.07 0.343

?Solute A has dimensions of =2 and w=1.

Solute B has dimensions of [=3.33 and w=0.25.

“Value(1) calculated for P{"™=0.884.

4Dimensions of d~2. '

eValue(2) calculated for P{"*™=0.634.

fRatio = Value(2)/Value(1).

9Interpolated value using the results of Table 4.12.

"Fixing k*/k?=0.0262 as obtained from the two-parameter fit of P, for the full set of
solutes at p*=0.488.

Second, it is necessary to scale the results of the fit of the MC solute order parameters

nem

to correspond to the lower experimental value of P, )=0.634. We therefore scale the
values of the model parameters by the ratios of the values obtained by fitting the orien-
tational distribution functions for P{"*™=0.634 and 0.884. The scaling ratios have been
calculated separately for all model potentials for solutes A and B. For solute B, the ne-
matic order parameter was slightly smaller than that for the experimental value; hence, it
was necessary to interpolate the model parameter values to correspond to P{"™=0.634,
althoﬁgh the correction was very small. For solute A, a similar correction was negligible.
The scaling ratios are listed in Table 4.13. It is encouraging that the differences in the

ratios between the two solutes are small despite the significantly different shapes of the

solutes.
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The scaled model parameter values corresponding to the fit of the MC simulation order
parameters is compared to those obtained from a fit to experimental order parameters
in Table 4.10 The parameter values are remarkably close, independent of whether the
scaling ratio for solutes A or B was used. The agreement is particularly noteworthy for
the two-parameter potential of model IV, for which the potential strength is partitioned
between its two components very similarly for fits to experimental and MC data. The
fact that MC order parameters, calculated using very crudé models for nematogens and
solutes, reproduce the basic results observed for experimental data when analyzed using
the model potentials is highly significant. It firmly establishes the physical origin of these
potentials as arising from the short-range repulsive interactions in the nematic solvent.
As well, it highlights the ability to gain significant insight into the nature of liquid crystal

systems without the need to resort to complex intermolecular interactions.

4.5 Conclusions

Monte Carlo simulations were used to study the orientational behaviour of solutes in a
uniaxial nematic liquid crystal and its dependence on thé solute size and shape. Solvent
and solute molecules were both modeled as hard ellipsoids. The results were analyzed in
terms of four model mean-field potentials. There was remarkable agreement between the
results of these simulations and those of previous experimental studies in the analysis
of solute orientational order parameters: the values of the model parameters and the
trends of the model predictions were very close between simulation and experiment.
The results confirm that the model potentials closely approximate short-range repulsive
forces in nematic liquid crystals. Further, the detailed orientational behaviour of two
differently shaped solutes was investigated. The models were able to describe the angular

dependence of the mean-field potential reasonably well generally, though more poorly for
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the narrower solute. Finally, the degree of orientational ordering scales with the nematic

order parameter 2{"*™ in a solute-independent manner.




Chapter 5

Monte Carlo Simulations of Oriented Solutes (II): Shape Anisotropy and

Quadrupole-Quadrupole Interactions

5.1 Introduction

There is significant experimental evidence that anisotropic short-range repulsive interac-
tions provide an important orienting mechanism for molecules in liquid crystal phases.
The orientational order parameters for a wide variety of solutes used to probe the environ-
ment of a nematic solvent can be predicted accurately by using various empirical mean-
field potentials which are sensitive to the details of the size and shape of the molecules.
The importance of molecular shape in describing orientational order has been seen as
evidence that short-range forces are the dominant ordering mechanism. In Chapter 4, we
presented results of a computer simulation study which firmly established the connection
between the model potentials and the underlying repulsive forces. In this case, there were
no anisotropic long-range interactions incorporated into the model system; thus, there
was no ambiguity in the interpretation of the results.

While molecular shape anisotropy is a key factor in the ordering behaviour of solutes
in a nematic phase, there are other important contributions to orientational ordering
as well. These include long-range electrostatic and dispersion interactions. The former
arise from the presence Qf permanent electrostatic multipole moments, while the latter
arise from correlated fluctuations of the charge distributions of polarizable molecules.

Interactions between permanent and induced moments are also present in such systems.

121
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An experimental study of deuterated molecular hydrogen as a solute in a nematic
liquid crystal provided direct evidence that a specific electrostatic interaction provides
a mechanism for orientational ordering [13, 14]. In particular, it was found that the
interaction of the molecular quadrupole moment of both D, and HD with a measured
average electric-field gradient (EFG) provided an accurate description of orientational
ordering for these particular solutes. The important results of this study were summarized
in Section 1.3.2.1 of this thesis. A reasopable conclusion from this study is that all probe
solutes experience a similar interaction between their quadrupole moments and an average
EFG. However, to apply this result to the analysis of order parameters of other solutes, it
is necessary to assume that the EFG is a property of the nematic solvent alone, and not
influenced significantly by solute properties. This approximation is necessary because the
EFG can only be measured directly for the deuterated hydrogens, where the internal EFG
contribution to the NMR quadrupolar coupling constant can be calculated accurately.

Emsley, Luckhurst and coworkers have discussed the significance of the EFG and
its effects on orientational ordering in the context of a theory for orientational ordering
which is closely related to the Maier-Saupe theory of nematics [22, 24, 25]. The im-
portant results of their studies were sunnﬁarized in Section 1.3.2.2. It was shown that
the nematogen quadrupole moment was the lowest order multipole that provided a non-
vanishing contribution to the EFG. Further, it is possible to derive an expression for
both the EFG and the contribution to a potential of mean-torque arising from the pres-
ence of the EFG. However, the expressions for these quantities are complicated by their
dependence on the orientational distribution of solute-solvent intermolecular vectors, a
property which is not readily determinable by experimental methods. Thus, the theory
and its assumptions cannot be tested easily by an analysis of available experimental data.

The description of the contribution to orientational ordering from electrostatic inter-

actions by means of a solute-independent average EFG has been criticized by Photinos
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et al. [27, 28, 29]. They provided experimental evidence that the intefaction between
local dipole moments on solute and solvent molecules, in conjunction with short-range
repulsive forces, provide an additional ordering mechanism [27, 28]. In the context of the
electrostatic mean-field approach introduced by Burnell and coworkers and developed
theoretically by Emsley and Luckhurst, solute dipole moments interact with an average
electric ﬁeld,.which is necessarily zero for an apolar nematic phase; thus, the contribution
to the mean-field potential should vanish. Further, Terzis et al. have constructed a the-
ory to account for the contribu.tions from both short-range repulsive forces and-arbitrary
electrostatic interactions [29]. A surprising result of this study was that electrostatic
interactions were predicted to provide a cbntribution to orientational ordering which was
roughly equal to that from the anisotropic repulsive forces. In addition, it was shown that
the mean-field electrostatic model of a solute molecular quadrupole moment interacting
with a solute-independent mean EFG was inconsistent with their theoretical calculations.
The results from these studies were sumrﬁarized in Section 1.3.2.3.

The studies of Emsley, Luckhurst et al. and Photinos et al. represent the only at-
tempts to date to provide a theoretical understanding of the orientational behaviour of
molecules in nematic liquid crystals. The goal of these theories is to derive a mean-
field orientational potential which incorporates the molecular properties, such as shape
anisotropy and electric multipole moments, that give rise to the intermolecular interac-
tions responsible for the alignment of molecules. There have been many other mean-field
models developed to describe orientational ordering, such as those examined in Chapter 4,
but these are empirical in nature and cannot be related directly to molecular pro.perties.
In the derivation of true theoretical models, there are two types of approximations em-
ployed whose validity determines the accuracy of the theory: (1) the modeling of the

molecules and the pair potential, and (2) the statistical approximations required when

integrating over the pair potential to obtain the mean-field potential. Unfortunately, it is
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difficult to test the theory and the validity of the approximations using the experimental
data alone. This problem is due to the fact that there are multiple contributions to
orientational ordering. Experiment provides only a few orientational order parameters
per solute, and no estimate of the relative magnitude and effect from each contribution.

Computer simulations of solutes in nematic solvents can provide an effective bridge
between experiment and theory. The molecular models employed in the various theories
can easily be incorporated into the simulations. A comparison of the simulation results
with theory and experiment can then provide valuable insight into the validity of the
models for the pair potential and the statistical approximations used in the theory. In
addition, it provides a simple method for examining the importance of each component
of the intermolecular pair potential as an orienting mechanism and how the complex
interplay between the different contributions varies with the properties of the solute.

In this chapter, we einploy the Monte Carlo computer simulation method to study
the combined effects of shape anisotropy and electrostatic interactions on orientational
ordering of solutes in a nematic' phase. We employ a minimal model in order not to
obscure the interpretation of the results. Specifically, we model both the solvent and
solute molecules as cylindrically symmetric hard ellipsoids with point quadrupoles placed
at their centres. The modeling of the molecular shape is precisely that used in Chapter 4,
and approximates the effects of shape anisotropy on the short-range repulsive forces while
keeping the model computationally convenient. In the study presented in the previous
chapter, this model yielded results that were quantitatively similar to those observed in
earlier experimental studies.

The use of point quadrupoles to describe the electrostatic properties of the solvent
and solute molecules is likely a far more drastic approximation. At short intermolecu-

lar distances, the quadrupole-quadrupole interaction may. yield an unrealistic estimate

of the electrostatic interactions between molecular charge distributions. This limitation
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may be particularly problematic at the high densities typical of a condensed phase. Nev-
ertheless, there are important reasons why this model deserves to be investigated. It is
important to determine the simplest model which can reproduce the main qualitative be-
haviour observed experimentally in real nematic systems. Further, the molecular models
used in the theories of orientationally ordering described above also employ point elec-
trostatic multipole moments. Thus, the simulations can provide a test of the statistical
approximations employed in the derivation of the theoretical mean-field potentials. We
focus on the effects of quadrupole moments alone, since a principal goal of this study
1s to investigate the interaction of the solute quadrupole moment with the EFG gener-
ated by the solvent, and because the quadrupole moment is the lowest order _multi_pole
that the Emsley-Luckhurst theory predicts to contribute to a non-vanishing EFG. There
are also important practical considerations for choosirig this model. More realistic de- -
scriptions of the molecular charge distributions, such as the distribution of several point
multipole moments within the volume of the molecule, would involve considerably more
computational effort to calcuvla,te the pair potential in the MC simulations. As well,
quadrupole—quadruﬁolé iintera‘ctions decay as r°, which may be sufficiently rapid to ne-
glect very long-range contributions to the total energy. This also has a major influence
on determining the speed with which the calculations can be performed. Dipole-dipole
interactions, by comparison, decay as 73 ;i.nd require the inclusion of much longer range
contributions to the total energy, as well as the use of Ewald sums to induce the conver-
gence of the total energy with increasing system size [130]. The result is a much more
time-consuming calculation.

To summarize, the description of a solvent or solute molecule as a hard ellipsoid
with a point vquadrupole represents a simple model with the following attributes: (1) it

is computationally convenient; (2) it can be used to test the statistical approximations

in current theories of solute ordering; (3) it is a starting point to determine the basic
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molecular properties required to explain orientational behaviour of solutes in nematics;
(4) it can be used to investigate the individual effects of the contributions to orientational
ordering from shape anisotropy and electrostatic interactions, information which is not
readily obtained by experiment.

In the following section, we outline the basic ideas of the theoretical models developed
by Terzis and Photinos (TP) [29] and Emsley and Luckhurst et al. (EL) [19, 22, 24].
Section 5.3 describes the technical details of the Monte Carlo simulations. In Section 5.4
we present the results of the simulations and discuss their significance in terms of both
theoretical predictions and experimental observation. Section 5.5 summarizes the key

results of this study.

5.2 Theory

5.2.1 TP Theory

Terzis et al. have developed a theory for the description of orientational order of solutes
in a nematic solvent which can incorporate dispersion, induction, short-range repulsive,
and electrostatic interactions between the solute and solvent molecules [29]. We present
a brief outline of the derivation of the mean-field orientational potential, considering only
the effects of the latter two interactions.

The theoretical approach involves the reduction of the singlet distribution function of

the solute, which is given by the following exact expression:

: ' N

P()() = Z_1 /d){ld_XQ,..dXNPN(Xl, 1\72, ...,XN) exXp |— Z ’U,(X, Xl)/kBT y (586)
=1

where X = (F,w), Py(X1, X3, ..., Xn) is the N-particle solvent distribution function in

the absence of the solute, u(X, X;) is the pair potential between the solute and the it

solvent molecule, and Z is a normalizing factor. The principal approximation of the
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theory is to neglect the correlations between solvent molecules,
Py(X1, Xy, ..., Xn) = P(X))P(X,).. P(Xy), (5.87)
which simplifies the expression of the solute distribution function to the following:
, : N
P(X) ~ [/ dX'P(X) exp (—u(X, X') /ksT) (5.88)

Short-range repulsive forces are approximated by a hard-core (HC) interaction between
molecules, which can take the values of zero or infinity depending on whether the
molecules overlap. Anisotropic long-range interactions are restricted in this treatment to

electrostatic forces. Thus, the pair potential can be written as
U(‘X—, Xl) = uHc(X, X.L) + U-ES(/Y, _Xi) (589)

Further, for spatially homogeneous systems, P(X) = f(w)/V and P(X) = f(w)/V.
Thus, the solute orientational distribution function can be written as the following:

N

Flw) ~ {v-l / ' drf() {1 - K(Fw,)}| =1 - (K (5.90)
where
K(7,w,w') =1— gycexp(~ups/ksT), (5.91)
and where
gnc = exp (—uyc/kpT) (5.92)

Note that K = 1 for overlapping particles and decays to zero with increasing r, though

/3

2> is of the order of a

it has appreciable values for a small localized volume v,, where v

few molecular diameters. The solute distribution function may be written

f(w) ~exp (Nn(1 - (K))). (5.93)
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Expanding the logarithm and neglecting terms of order (v,/V)? and higher, it is trivial
to show that

f(w) ~ exp [-N(K (w))]. (5.94)

This corresponds to the following terms for the mean-field potential:
U(UJ) = UHc(w) +UE5(w), (595)

where
Unc(w)/kgT = p/df'dw'f(w') 1 - gnc(Fw,w)] (5.96)

and
Ugs(w)/kpT = P/ didw' f(w') [1 — exp (~ups (7, w, ') /ksT)] gne(Fw,o')  (5.97)

As a final remark on the mean-field potential, we note that the contribution from the

hard-core component of the pair potential can be written as
Uno(w)/ksT = p [ d'Vealw, ) (), (5.98)

where V. (w,w’) is the orientation-dependent solute-solvent excluded volume. As dis-
cussed in Sectioﬁ 1.3.2.3, this is the same form of the potential that appears in the
self-consistent expression in Onsager’s theory for the distribution function for a system.
of long hard rods [7], as described in Section 1.2.2.1. This is not surprising, since both
theories consider the effects of interactions of pairs of molecules while neglecting corre-
lations due to three and more particles. Onsager’s theory is valid in the limit of very
long rods where the effects of these higher order correlations are negligible. While the
typical nematogen and solute molecules do not satisfy this condition, Terzis et al. have
argued that neglecting solvent-solvent interactions should have minor effects if the system
is sufficiently far removed from the phase transition. This assumption can be tested by
comparing the results of computer simulations and the theoretical predictions for solutes

in nematic systems.



Chapter 5. Shape Anisotropy and Quadrupole-Quadrupole Interactions 129

5.2.2 EL Theory

A theoretical model for describing the orientational ordering of solutes in a uniaxial
nematic solvent which was developed by Emsley, Luckhurst et al. [19] was introduced in
Section 1.3.2.2. The approach of this theory is closely related to that used in the Maier-
Saupe theory of nematic liquid crystals. A mean-field orientational potential is derived
using some simplified model for the pair potential between solvent and solute molecules
and averaging over the magnitude and direction of thé intermolecular displacement, and
over the orientation of the solvent molecules. The relationship between the mean-field

and pair potentials is giveri by:

U(wy) = p/df'dwgu(F, w, wa) f (wa)g(7) (5.99)

where w; = (61, ¢1) and wy = (6, o) are the polar angles describing the orientation of
the nematic director in the solute and solvent molecular frames, respectively. Also, 7 is
the intermolecular displacement, p is the number density of the solvent, u(7,w;,ws) is
the solvent-solute pair potential, f(wg) is the solvent orientational distribution function
(ODF), and ¢(7) is the pair correlation function. The crucial approximation of this theory
involves neglecting the orientational correlations between molecules, i.e. g(7,wi,w2) =~
9(7).

Most applications of the Emsley-Luckhurst theory to the analysis of experimental
data have employed long-range anisotropic dispersion forces, though the incorporation of
an electrostatic interaction between quadrupoles to the pair potential has been discussed
[22, 24]. Below, we derive the mean-field potential between quadrupoles for the case of

axially symmetric molecules.

The energy of two interacting axially symmetric quadrupole moments may be written
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as
{u) ~(v)
; . [14 Q
ugo(Fwi,wy) = (4m)% E(#{):{,O) Y. C(224;m1,ma, m) Y 1, (wi)
my,mz2,m
XY2,my (w2) Y7 m (W), (5.100)

where C(224;m;, my, m) are Clebsch-Gordon coefficients, w = (9,&5) describe the ori-
entation of the intermolecular vector in the frame of the nematic director, and Qg?t)) =
\//sz , where Q%) is the principal cartesian component of the quadrupole moment
tensor for the solute (o = u) and solvent (o = v). Substitution of Eq. (5.100) into
Eq. (5.99) yields

V2807 WM i i Yo
U®) = Tp(QﬂQ‘) > C<224;ml,mQ,mn/g,ml(wl)m,m»< . >
3 47T60 mi,ma,m T
(5.101)
where
(Yo,m,) /dwzf Wa) Y, m, (wa), (5.102)

and where

<£ﬂ>:/ll’zm( “) (Fr2drdw. (5.103)

rd 5

In the case of axial symmetry considered here, Eq. (5.102) reduces to

<)/§,mg> = H 4TP2ne'm 57119 0 (5104)

is the second-rank nematic order parameter, while Eq. (5.103) reduces to

<)/T* >‘_ 6f5mo/é’+(—:2,g(r—)dﬂ (5.105)

where B{me™

where

Pi(r / d6 sin 8P, (cos §) P(6; 7), (5.106)

and where P(f;r) is the probability of finding a solvent molecule at angle 6 relative to

the nematic director for a particular intermolecular distance r given that the solute is at
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the origin. Finally, substitution of Egs. (5.104) and (5.105) into Eq. (5.101) yields

U(8) = 60mp <%> Prem { / wdr} Py(cos 6) (5.107)
0

Noting that the form of the interaction between a quadrupole moment and an EFG is
given by

1 .
U(@) = _'Z'FZZszPQ(COS 9), (5108)
Eq. (5.107) can be used to define an average EFG:

Py (r)g(r)

r3

Fpy = —120mpQW) P{™ / dr (5.109)

It is convenient to rewrite the expressions for the mean-field potential and the average

EFG in terms of dimensionless quantities. We define a reduced mean-field potential

U*(6) = U(6)/ksT"

d3 . ﬁ+ * *

U*(0) =60rQ.Q:p" (—) [/ 4_(7"47“_)6“*] Py(cos8), (5.110)
Vg (7'*)'

where Q7 = Q\%)/VA4meokgTd>, p* = pug, r* = r/d, vy is the solvent ellipsoid volume,

and where d, the diameter of the solvent ellipsoid, is used to fix the length scale in the

svstem. Further, we define a dimensionless EFG:

= F d® d? (v) = (nem -P_+ * *
Fj, = 2 = —120mp" (—) ( Q(zj) > i )/ Mdr*. (5.111)
l sz Yo | sz l (T ) ’

Finally, comparing Egs. (5.110) and (5.111), we can write
_ . |
U'(0) = —5F2z | Q) | QuP(cos0). (5.112)

In the context of the theory presented above, an essential requirement for the observa-
tion of a non-vanishing average EFG is a non-spherical distribution of solute-solvent inter-

molecular vectors. If this distribution had spherical symmetry, then the factor defined in

Eq. (5.103) would vanish for all values of m, along with the magnitude of the EFG. This
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point was first noted by Emsley et al. who incorporated this factor into the derivation
of the contribution to the mean-field orientational potential from quadrupole-quadrupole
interactions [22]. However, this derivation had implicitly assumed the separability of av-
eraging the pair potential over the magnitude and direction of the intermolecular vector

T

(%)~ 0™ ~ Aol (5113)

ro

However, the computer simulations of Emerson et al. [26] indicate that the foufth—
rank order parameter P;, which describes the non-sphericity of the intermolecular-vector
distribution, is strongly dependent on the molecular separation r, and that therefore the
separability of the averaging in Eq. (5.113) is invalid. The mean-field potential derived
above for the quadrupole-quadrupole pair potential differs from that derived originally
by Emsley et al. by using Eq. (5.105) rather than Eq. (5.113) for averaging over the

intermolecular coordinates.

5.3 MC Simulations

The methods employved in the simulation of solutes in a nematic solvent are similar to
those used in Chapter 4. The calculations were performed at constant volume for a
fixed number of particles confined to a rectangular box subject to the usual periodic
boundary conditions. The calculations used a system of 239 solvent particles plus one
solute particle. Nematogens were modeled as cylindrically symmetric hard ellipsoids
with an axis ratio of 5:1. Solutes were also modeled as cylindrically symmetric hard
ellipsoids, though with a variety of sizes and axis ratios. An equilibration period of 1-
2x10° trial moves per particle was used, étarting from an initial configuration where all
of the molecules were orientationally aligned and positioned on a FCC lattice.

The sequence of system configurations was generated using the Metropolis algorithm,
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which was described in Section 1.5. In some of the simulations, only a hard-core pair
interaction between molecules was considered. In this case, trial orientational and trans-
lational moves for each randomly chosen particle were rejected if it resulted in overlap
with any of the other particles, and accepted if there was 1o overlap—precisely the
same procedure as described Chapter 4. However, in the present study, most of the
calculations involved systems of particles with an additional interaction between point
quadrupoles positioned at the centres of the ellipsoids. For such systems, the Metropo-
lis algorithm is applied as follows. Trial configurations are first tested for overlap. If
particles overlap, then the configuration is rejected. If the particles do not overlap, the
quadrupole-quadrupole energy of the total system is calculated and compared to that of
the previous configuration. If AE <0, then the move is accepted; if AE >0, then the
configuration is accepted with a probability given by e~2E/ksT  The maximum displace-
ments and rotations were chosen to contribute approximately equally-to the likelihood
that a particle move would be rejected, and to yield an overall acceptance ratio of in the
range of 40-60% in order to achieve equilibrium as rapidly as possible.

The solvent-solvent quadrupolar pair potential was calculated using the following

relation for the interaction between axially-symmetric quadrupoles:

3 WO\ ‘
2 <Q22 Q&; ) [1—5cos*8, — 5 cos® f + 2 cos” b1
dmegr

+35cos? 6, cos® 0y — 20 cos 6 cos 6 cos b12), (5.114)

where 6, and 6, are the angles between the quadrupole symmetry axis and the dis-
placement vector between the point quadrupoles, and 6, is the angle between the two
quadrupole symmetry axes. The EFG at the site of the solvent was calculated using the

following expression for the EFG due to a point quadrupole moment:

F, = V,E,=-V,V,¢
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1
= ;75[_2@;“/ + 10QauTamy + 10QuaTaly + 5Qas a0

—~35Quagtafatuf); (5.115)

where 7 is a unit vector describing the orientation of the displacement between the
quadrupole pair, and where we have used the Einstein summation convention for repeated

indices. The solute-solvent pair potential is a function of the EFG due to the solvent:

1
uQe = _EQ#VF#V

1
= —EQS;)COSHQ#COSHQ,,FHU, - (5.116)

where ), and ngj) are the quadrupole moments in the laboratory and principal axis
system (PAS) frames, respectively, and cosb,,, is the angle between the PAS a-axis and
the laboratory p-axis.

‘The total energy is obtained by summing the pair potentials over all of the particles
in the system and averaging over the sequence of configurations which are generated by
the Metropolis algorithm. In certain cases for long-range interactions, it is necessary
to include contributions to the total energy from particles that are very widely spaced
in order to minimize truncation effects. For a finite-sized simulation system, this often
requires a summation over molecules in repeated images of the system. However, this
greatly increases the time required to perform a simulation. In the present case,- the
quadrupole-quadrupole pair potential decays as r=°, which was found to be sufficiently
rapid to eliminate the need to perform such a lattice summation. The energy of a single
molecule was calculated by summing over the pair potentials between it and all other
molecules within a radius given by half the smallest dimension of the sample cell. For

a density of p*=0.42, this corresponds to a distance of r=4.96d, where d is the width of

a solvent ellipsoid. When this maximum distance was doubled, the calculated energy of

the system and of each of the molecules, and the EFG sampled by the solute, was found
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to change by <1% for each of several different system configurations. Further, ensemble
averages of various quantities of interest were not affected by increasing the sampling
range. |

Most of the simulations for the quadrupolar systems were performed at Q) = —v/2.5
and p*=0.42. The choice of @} falls at the lower end of a range of values (| Q; |~ 0.75-4.0)
suitable for 7=300 K and d ~5 A using the results of a study which employed a simple
a,tom—dipole method for approximating the quadrupole moment for rigid conformers of
various real nematogens. The use of higher values of @) was found to promote the
formation of a smectic phase in the model system and was therefore avoided. Note that
we neglect the axial asymmetry of the fog tensor present in real molecules.

The nematic order parameter P¢™ was determined by calcula.tihg the largest eigen-
value of the following matrix:

. N
Q)= %Z_‘; <guu - %I> , (5.117)

where N is the number of solvent molecules, and 4; is a unit vector describing the

orientation of the it*

solvent molecule. The brackets ( ) denote an ensemble averaging
over the sequence of configurations generated by the MC Markov process. The nematic
director is given by the eigenvector'éorresponding to this eigenvalue. In addition to the

nematic order parameter, the following functions were also calculated:

e the solvent orientational distribution function f(6)
e the solvent-solvent pair correlation function g,,(r*)

e the second-rank solvent-solvent orientational correlation function P{*)(r*) defined

as follows:
N

PQ(UU)(T*) — m_l___]j ; <P2(COS 9ij)> \ . (5118)

where @;; is the angle between solvent ellipsoids < and j
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the solute orientational order parameter P,

e the solute orientational distribution function f(6)

o the average EFG tensor at the center of the solute Fi4 in the frame of the nematic

director
e the solute-solvent radial distribution function g,,(r*)

e the solute-solvent orientational correlation function ]52(””)(7"*), defined in an analo-

gous manner as P"(r*) above

e the fourth-rank orientational order parameter for the distribution of solute-solvent

intermolecular displacements P;" (r*) defined in Eq. (5.106)

"All of the measured quantities described above were calculated by averaging over
typically 8-9x10° configurations. In order to calculate properly all quantities that are
measured with respect to the nematic director, which undergoes orientational fluctua-
tions over the course of a simulation, the director was recalculated after every 10'-102
attempted moves per particle. All calculated quantities which are functions of orientation
with respect to the director were calculated for cos 6 in the range of 0 to 1 in increments

of 0.01. Further, the quantities which depend on the intermolecular separation r were
calculated to a distance of half the minimum dimension of the sample cell (e.g. 4.96d for
p*=0.42) in increments of 0.05d. Solute and solvent orientational order parameters and
EFG tensor components were calculated in 80-90 block averages of 10* sweeps through

the system. The fluctuations of these averages were used to provide an estimate of the

uncertainties of these quantities.
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Table 5.14: MC and Theoretical Solute Order Parameters for a Hard-Core System

0" 1*  w* P, (MC) P, (Th)® Ppem
0.388 0.65 1.0 -0.05(1) -0.030 0.627(4)
20 1.0 024(1) 0077  0.626(4)
2.0 05 023(1) 008  0.629(4)
50 1.0 063(1) 0308  0.626(4)
044 065 10 -0.13(1) -0.043 0.814(d)
20 1.0 050(1) 0077 0.811(4)
2.0 0.5 034(1) 0124  0.810(4)
50 1.0 081(1) 0458 0.811(4)

¢ Units of solvent ellipsoid width d.
b Calculated using Eq. (5.96).

5.4 Results and Discussion

5.4.1 Hard-Core System

Orientational distribution ‘functions for four different solutes were calculated for two dif-
ferent densities for a sy.stem employing only hard-core interactions. The MC distributions
are shown in Figures 5.20 and 5.21. The corresponding second-rank solute orientational
order parameters are listed in Table 5.14. The variation of the distributions with solute
shape and solvent density is similar to that observed for the calculations described in
Chapter 4. Increasing the length of the solute results in an increase in the degree of
orientational ordering. This is evident in Figure 5.20 which shows distributions for.so-
lutes with dimensions of [=5.0 and w=1.0, and [=2.0 and w=1.0. Further, increasing
the solvent density, and therefore the degree of solvent orientational order, leads to a
corresponding increase in solute orientational order. Note that the oblate solute with

dimensions of 1=0.65 and w=1.0 prefers to orient with its symmetry axis perpendicular
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Figure 5.20: Calculated and Theoretical Solute Orientational Distribution Functions for
+ a Hard-Core System (I)
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MC data (squares) and predictions from TP Theory using Eq. (5.96) (solid line).
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Figure 5.21: Calculated and Theoretical Solute Orientational Distribution Functions for
a Hard-Core System (II)
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MC data (squares) and predictions from TP Theory using Eq. (5.96) (solid line).
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to the nematic director resulting in a distribution maximum at #=90° and a negative
order parameter.

We use the results of these simulations to test the predictions of the TP theory
using the mean-field potential due to hard body interactions given by Eq. (5.96) or
equivalently by Eq. (5.98). The orientation-dependent excluded volume V., (w, w'), which
for axially symmetric ellipsoids is a function of only the angle between the symmetry axes,
was calculated through a numerical integration over the magnitude and direction of the
solute-solvent intermolecular vector. The results for the case of identical 5:1 ellipsoids
were consistent with those reported by Tjipto-Margo et al. [12] Note that the potential
of Eqgs. (5.96) and (5.98) is expressed in terms of the solvent orientational distribution
function f(w) Thus, in order to calculate the solute distribution, we use the solvent
distribution calculated in the MC simulation. Note that in the study of Terzis et al.,
the mean-field potentials were rewritten in terms of the solvent order parameters pfrem
and ™™ with higher order contributions neglected. The values of these quantities are
not reported and thus were estimated; values were chosen in order to yield calculated
order parameters to be consistent with experimentally measured order parameters for
several molecules. Clearly, the MC technique provides a superior method to test the
approximations of the théory.

The calculated theoretical distribution functions are overlaid on the plots of the MC
distributions in Figures 5.20 and 5.21 for the four different solutes for the densities of
p*=0.388 and 0.44. In all cases the TP theory drastically underestimates the degree of
orientational order observed in these hard-core systems. This contrast is further illus-
trated by comparing ﬁhe theoretical and calculated second rank order parameters P, in
Table 5.14. A notable case is that of the solﬁte which is identical to the solvent particles
(=5, w=1). In this case, the MC orientational distribution function of the solute is iden-

tical to the solvent distribution which was used in the calculation of the theoretical solute
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ODF; thus, the very poor agreement between theory and simulation hfghlights the lack
of internal self-consistency of the theory. Clearly, the hard-core component of the TP
mean-field potential given by Eq. (5.96) gives an inadequate description of orientational
'ordering for hard-core systems.

The flaw in the TP theory must be due to the approximation of neglecting solvent-
solvent correlations, which is expressed in Eq. (5.87). This is not a surprising finding
given the high density of the nematic phase, coupled with the short-range nature of the
interaction. It is analogous to the poor quantitative predictions of Onsager theory, which
accounts for only two-particle correlations, when applied to hard particles of realistic
length/width ratios. In the study by Tjipto-Margo et al. [12], an additional term in-
volving the third virial coefficient (which accounts for three-body correlations) in the
expression for the free energy for a system of hard ellipsoids with a dimension ratio of 5:1
was included; this approach yielded an adequate quantitative description of nematogen
ordering. Similarly, the TP theory requires a more careful treatment of many-particle
correlations, beyond the consideration of solute-solvent effects alone, in order to provide
a reasonable description of solute orientational behaviour. Such a modification, however,

may be difficult to incorporate into the framework of the theory.

5.4.2 Quadrupolar Systems

Table 5.15 lists the P, and F}, calculated for simulations employing a Wide variety of
solute shapes and quadrupole moments. The nematic solvent was characterized by a
reduced density of p* = 0.42, and by quadrupole moments with values of Q:j = —+/2.5.
The nematic order parameter was found to be P{"*™ = 0.76 + 0.01, with some minor

variations between systems with different solutes; specific values are listed in Table 5.15.

Further, the table shows the theoretical F3, calculated using Eq. (5.111) and theoretical

predictions of P, for spherical solutes using the reduced mean-field potential of Eq. (5.112)
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Table 5.15: EFG and Order Parameters for Several Solutes at p*=0.42 and (Q})?=2.5

Shape  Dimensions Q:Q:° Fj,(MC)® F3,(Th)® B, (MC) P, (Th)e BI™

Spherical I=1.0 -2.5 1.8 (2) 1.5 0.26(2) 0.50 0.749(3)
w=1.0  -20 1.0 (1) 0.9 0.15(2) 019  0.750(3)

1.5 0.5(1) 0.5 0.07(1)  0.08  0.761(2)

0.0  0.05(3) 0.15 0.01(1) 00  0.751(3)

1.5 0.5(1) 0.4  -0.03(2)  -0.05  0.756(2)

2.0 1.4(1) 1.4 -010(2) -0.22  0.756(2)

25  2.2(2) 24  -0.16(2) 032  0.758(2)

Spherical  1=0.75  -1.5 3.8(2) 3.9 0.29(2) 059  0.757(2)
w=0.75  -1.0 1.1(1) 1.1 0.09(1) 012  0.754(2)

0.0 0.04(3) 0.07 0.01(1) 0.0  0.761(2)

1.0 1.8(1) 1.7 -0.06(1) -0.14  0.757(2)

1.5 5.4(3) 49  -019(2)  -0.36  0.757(2)

Oblate  1=0.65  -15  -0.8(1) 09 -0.11(1) —0.739(2)
w=10  -0.75  -0.32(4)  -0.39  -0.12(1) - 0.751(2)

0.0  -0.01(3)  -0.05  -0.09(1) - 0.756(2)

0.75  2.1(1) 20 -0.14(1) - 0.761(2)

15 11.8(4) 155 -0.37(2) ~0.752(2)

Prolate 1=2.0 -2.5 2.7 (1) 30 0.56(2) - 0.762(2)
w=10  -1.5 1.0 (1) 1.0 0.39(3) ~0.758(2)

0.0  -001(3)  -0.02  0.30(2) - 0.753(2)

1.5 -0.39(3)  -0.39  0.37(2) - 0.768(2)

25  -0.66(4)  -0.70  0.40(2) ~0.761(2)

Prolate =50 2.5 3.5 (1) 46 0.81(1) - 0.768(2)
w=1.0 0.0  -0.043)  -014  0.80(1) - 0772(2)

25  -1.16(3)  -1.50  0.78(2) ~0.763(2)

“Calculated using Q) = —/2.5 < 0; using Q¥ = +v/2.5 > 0 simply reverses the sign
of F},.

bCalculated using Eq. (5.111).

¢Calculate using Eq. (5.112).
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of the EL theory. Note that F;, calculated in both the MC simulations and by EL theory
is proportional to Q¥ (see Egs. (5.115) and (5.111)). Thus, the sign of F}, is determined
by the sign of Q{¥), which in the present calculations was taken to be QW < 0. Using a
positive value of Q%) simply reverses the sign of F, but otherwise has no effect on the
calculated quantities.

The most striking result is the strong dependence of F, on the shape and quadrupole
moment of the solute. This is in contrast to the solute-independent model put forward
by Burnell and coworkers. For the case of spherical solutes, F 77 increases in magnitude
for increasing | Q7 |, though it is approximately symmetric with respect to changing the
sign of @, since the sign of F}, is consistently positive. This is clearly not the case
for the non-spherical solutes where the shape anisotropy breaks the symmetry and £,
undergoes concomitant change in sign with Q. Thus, for the oblate solute, £, < 0 for -
Q:Q: < 0, and Fj, > 0 for Q:Q? < 0. The trend is the reverse for the small ﬁl‘o]ate
solute ({=2, w=1).

The dependence of Fj, on Q7 is qualitatively consistent with the behaviour of
the measured orienta.t.ionalv order parameters P, in the contexﬁ of a mean-field EFG-
quadrupole moment interaction given by Egs. (5.108) or (5.112). In the case of the
spherical solutes, the consistently positive F' zz 1 predicted successfully by Eq. (5.112)
to give P, > 0 for Q7 > 0 and P, < 0 for Q% < 0 (for the present case where Q: < 0).
This is also consiétent with the expected behaviour of P, based on a consideration of the
quadrupole-quadrupole pair potential alone. For axially symmetric quadrupole moments
of the same sign, the minimum energy orie-ntationa.l configuration is a perpendicular
arrangement of the symmetry axes; thus, a negative order parameter is expected. For
quadrupole moments of opposite signs, a parallel configuration corresponds to the lowest

energy, and thus, a positive P, is predicted.
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The asymmetry of Fj, for the non-spherical solutes is also consistent with the be-
haviour of the calculated orientational order parameters P, referenced with respect to
the systems with Q*=0. For the case of the oblate solute, the negative P, is enhanced
by the positive F,, which is present for Q:Q* > 0. Again, this is consistent with
the expectation based on the orientation-dependence of the quadrupole-quadrupole pair
potential. However, a somewhat surprising result is the (minor) enhancement of the neg-
ative P, for t‘he case of opposite signs of solvent and solute quadrupole moments, where
the lowest pair potential energy configuration corresponds to a parallel arrangement of
the quadrupole symmetry axes. While the corresponding case for spherical solutes gave
rise to an alignment of the sdlute's.ymmetry axis along the nematic director, the nature
of the shape anisotropy for the oblate solute appears to frustrate that outéome.

The analogous situation is present for prolate solute with dimensions of [=2 and w=1.
In this case, the expected enhancement of the positive value of P, relative to the case
of Q*=0, for Q:Q; < 0 is observed, as well as an unexpected enhancement of P, for
Q:@Q > 0. Again, the increase in solute orientational ordering with | Q Q7 | regardless
of the sign of @)} ()} is consistent with the change in sign of Fgé. .

In the case of the large prolate solute.7 with dimensions equal to those. of the solvent
ellipsoids (1=5.0, w=1.0), F}, has a similar dependence on Q:Q; relative to the case
of the smaller prolate ellipsoid. Note however that the orientational ordering is not
significantly affected by the details of the electrostatic interactions. Thus, orientational
ordering of highly elongated particles in a dense nematic phaée appears to be dominated
by entropic considerations, in keeping with the belief that molecular shape anisotropy,
in conjunction with short-range repulsive forces, is the dominant ordering mechanism for
nematogens.

The full orientational distribution functions for three solutes are plotted for Q;Q; =

0, 2.5 in Figure 5.22. The trends present in the behaviour of the P, for each of the solutes
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Figure 5.22: Solute Orientational Distribution Functions at (Q7)?=2.5 and p*=0.42
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is mirrored by the behaviour of the distributions. Only in the case of the spherical solute
is the orientational ordering consistent with an interaction between the solute quadrupole
moment and a Fj, of a constant sign. The behaviour of the solute-solvent orientational
correlation functions pQUU)('r*) for the same solutes, shown in Figure 5.23, provides some
additional insight into the perturbing influence of the quadrupole-quadrupole pair in-
teractions on the ordering of the solutes. Note that in the limit of wide separation 77,
P{)(r*) = By - P{"™™ Thus, the long-range limit of these functions provides a measure
.of the degree of solute orientational order. For all cases, except that of the spherical
solute with Q7 = 0, there are both short-range and long-range orientational correla-
tions. In the case of the spherical solute, both long-range and short-range correlations
have the same pattern: enhancement of parallel configurations for solute and solvent
quadrupole moments of the opposite sign, and enhancement of perpendicular configura-
tions for quadrupole moments of the same sign. Note that the short-range correlations
are indeed very short-range as they vanish within approximately one solvent ellipsoid
width d from the nearest approach distance.

The case of the prolate solute is more interesting. While oppositely signed solute and
solvent, quadrupole moments corresponds to an enhancement of both short-range and
long-range parallel configurations, quadrupole moments of the same sign lead to a slight
enhancement of long-range parallel configurations, but a significant reduction of short-
range parallel configurations. The latter feature is more in keeping with the expectations
based on the orientation-dependence of the quadrupole-quadrupole pair potential. In the
case of the oblate solute, there is no noticeable effect of the quadrupole-quadrupole pair
potential on the short-range orientational correlations.

At this point, it is instructive to compare qualitatively the results of the simulations
with certain previous experimental results. Table 5.16 lists the values of S,, for D, ben-

zene, hexafluorobenzene and acetylene measured in three different liquid crystals. The
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Figure 5.23: Solute-Solvent Orientational Correlation Functions for (Qr)?=2.5 and.
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Table 5.16: Experimental Order Parameters for Three Solutes

Solute Q.."° S,,? ,
EBBA® 55%¢ 1132¢
dideuterium 0.649 -0.00965  -0.00082  0.00731
benzene -7.8(2.2)7 -0.1157 -0.1756 -0.2519
hexafluorobenzene 9.59 -0.3144 -0.2280 -0.2144
acetylene 5.5(2.5)" -0.0585 0.1123 0.1912

aUnits of 10726 esu-cm?.

*From ref. [16].

°F,,=-6.42x10" esu for Ds.

1, ,=0.0 esu for D,.

¢F77=6.07x10" esu for D,.

/ Average value of those reported in refs. [131] and [132].
9From ref. [133].

" Average value of those reported in refs. [134] and [135].

EFG has been measured for D; and HD in these nematics and was found to be positive
for ZLI 1132, zero for the 55 wt% 1132/EBBA mixture and negative for EBBA [13, 31).
Further, benzene is known to have a large negative quadrupole moment, while hexaflu-
orobenzene has a large positive value; approximate values are listed in the table. The
magnitude of the negative value of P, was found to increase with increasing Fzz, while
the opposite trend was observed for hexafluorobenzene. This behaviour can be explained
by the interaction of the molecular quadrupole moments interacting with an external F,
which has a sign that is consistent with that measured by molecular hydrogen for the
three nematics. The values of orientational order parameters of acetylene are likewise
consistent with this solute-independent mean-field prediction. In particular, note the
negative value of P, for acetylene in EBBA, a feature which is not easily rationalized ex-

cept by an interaction between its positive @,, with a negative Fz. Further, note that
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benzene and hexafluorobenzene have approximately the same shape, despite the large
difference in quadrupole moments. Thus, the differences in P, for the two molecules
in the same liquid crystal likely arise principally from the difference in quadrupole mo-
ments. Again, the trend is consistent with a mean-field interaction between a quadrupole
moment and a Fy, with a sign which is independent of the solute Q,,: the magnitude
of the negative P, is enhanced for Q,,Fz;z < 0, and reduced for Q,,Fz; > 0, where,
again, we use values of Fz; measured using D,. The slightly larger magnitude of P, of
hexafluorobenzene in the 55% mixture (where Fuy = 0), compared to that of benzene,
is probably due to the fact that hexafluorobenzene is slightly more oblate than benzene.
To summarize, certain key experimental results strongly suggest that molecules of very
different shapes and quadrupole moments interact with an average Fy, which, at the
very least, has the same sign.

Clearly, the experimental results conflict with the results of the MC simulations which
employ a simplified quadrupole-quadrupole[ potential to approximate the electrostatic
interaction between molecules. As stated earlier, for example, the oblate solute in the
simulations samples an average £, whose sign was directly proportional to the sign of
the solute @ which was further manifested in an enhancement of | P, | for increasing
| Q: Q7 | relative to the case of @;=0 independent of the sign of Q);,Q);. At this point, we
cannot pinpoint precisely the origin of this sharply contradictory behaviour, but it is very
likely a result of using such a highly simplified form for the electrostatic pair potential.
At short range, the convergence of the multi.pole expansion is very slow. Thus, in dense
systems, an interaction between point quadrupoles may be a very poor approximation
and produce the kind of artifacts observed here. A significantly improved model of
electrostatic interactions may be required to reproduce the qualitative trends observed

in experimental studies. This consideration is important with regard to any theory of

solute orientational order which uses such a highly simplified pair potential.
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The EL theory has been applied to analyze the present results. Egs. (5.111) and
(5.112) were used to calculate values of £, and P,. However, note that the calculation
of these averages requires Pjnem), Guu(r*) and P;(r*), quantities which also must be
calculated in the MC simulations. Thus, the “theory” simply provides a prediction of
the relationship between various quantities that may be measured for the system, rather
than a theory which requires exclusively external system parameters. Thus, it is not of
a form which may be used to study real nematic systems using NMR spectroscopy, for
example, since gy, (r*) and P} (r*) are not measurable with this technique.

The results of the predictions of Fj, and P, are summarized in Table 5.15 along
with the values measured in the MC simulations. Note that P, can only be calculated for
spherical solutes, since the non-spherical solutes experience an additional orienting mech-
anism due to the shape anisotropy coupled with the short-range repulsive forces. The
theoretical predictions of F, are consistently good for all solute shapes and quadrupole
moments. This is true for both the signs and magnitudes of F},. Considering this
point, we may gain some insight into the dependence of ng on solute properties by
investigating more closely the results in the context of the theory.

In Figures 5.24 and 5.25 we show the three solvent-solute pair distribution func-
tions gy (r*), Py (r*) and Py (r*)g(r*)(r*)73. Note that both the mean-field potential
U*(6) (Eq. (5.110)) and F3, (Eq. (5.111)) are directly proportional to the latter func-
tion. Figure 5.24 shows the distribution functions for a prolate solute ({=2, w=1) for
Q:Q; = 0,£2.5. For zero quadrupole moment, there is only a vague shell structure visi-
ble in g,,(r*), while there is a very strong enhancement in minimum-distance positional
correlation for Q% Q* = —2.5 and a smaller enhancement at Q;Q; = 2.5. The strong peak
for Q1 Q7 = —2.5 is consistent with the a strong minimum in the quadrupole-quadrupole
pair potential for parallel configurations between axially symmetric quadrupoles of op-

posite signs. The P;f(r*) distribution also undergoes noticeable changes with varyving
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Figure 5.24: Solute-Solvent Distribution Functions for Solute with Dimensions of [=2.0
and w=1.0 at p*=0.42 and (Q?)? = 2.5.
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Figure 5.25: Solute-Solvent Distribution Functions for Solute with Dimensions of [=5.0
and w=1.0 at p*=0.42 and (Q})*> = 2.5.
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Q: Q% increasing Q) @; results in a decrease in the minimum-distance positive peak and
a deepening of the negative “well” to the right of this peak. These effects result in sig->
nificantly different P;(7*)gu,(r*)(r*)~% functions. Clearly, integration of the functions
result in a F3, > 0 for Q;Q: = —2.5, F}, < 0 for Q;Q; = 2.5, and a near-vanishing
F3, for Q:Q: = 0.0. The results for the longer prolate ellipsoid (I=5, w=1) are virtually
identical. Thus, changes in the F}, arise from changes in the structure of the solvent in
the vicinity of the solute as a result of changes in the solute properties.

The theoretical predictions of P, for the spherical solutes listed in Table 5.15 are
generally poor and deviate from the measured values typically by a factor of two. This
result is somewhat surprising given the accuracy of the célcula’ced F,, whose theoretical
expression (Eq. 5.111) is defined by the mean-field potential (Eq. 5.112) which ié used to
calculate P,. At the very least, however, the signs of the order parameters are accurately .
predicted. A comparison of the calculated and theoretical solute orientational distribu-
tion function for one spherical solute (I = w = 1) is shown in Figure 5.26. Note that
the accuracy of the predicted curves appears to be poorer as the magnitude of the solute
quadrupole moment increases. This discrepancy between the degree of orientational or-
dering calculated in theory and simulation suggests that the statistical approximations
used in the EL methodology may be too severe to yield a useful and accurate theory
for solute orientational order. Given that the theoretical predictions are slightly better
for weaker solute-solvent couplings for the systems studied here, it may be generally a
more accurate theory in the limit of small solute quadrupole moments. It is interesting
to note that in the case of Dy and HD, the only solutes for which the average EFG and
order parameter can be simultaneously measured, the mean-field model gives excellent
predictions of the measured P,. Perhaps it is significant that the solute quadrupole mo-

ments for these molecules are very small, in keeping with this argument. Unfoftunately,

it is very difficult to test this hypothesis using MC simulations for solutes with very weak
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Figure 5.26: MC and Theoretical Orientational Distribution Functions for Spherical So-
lutes with (Q:)?=2.5 and p*=0.42
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Table 5.17: EFG and Order Parameters for Several Solutes at p*=0.39 and (Q;)?=2.5

Shape  Dimensions Q1Q:* Fj;,(MC)* F3,(Th)® P, (MC) P, (Th)e pfrem

Spherical ~ I=1.0 25 1.8 (1) 1.2 0.26(2)  0.34  0.637(4
w=1.0 ‘15 0.29(5) 0.29 0.04(2)  0.04  0.645(4

00  0.04(3) 0.05 0.01(1) 0.0  0.641(6

1.5 043(6) 035  -0.01(1) -0.05  0.622(7

2.5 1.5 (2) 1.5 0.09(2)  -0.18  0.636(4

Prolate 1=2.0 2.5 2.0(1) 1.1 0.44(2) - 0.638(4)
w=1.0 15 0.63(5) 0.45 0.30(2) - 0.636(4)

0.0 0.01(2) 0.06 0.23(2) - 0.639(4)

15 -0.33(3) 021 0.25(2) - 0.657(5)

25  -0.48(4) 030 0.29(2) - 0.635(2)

sCalculated using Q) = —v/2.5 < 0; using Q¥ = 4++/2.5 > 0 simply reverses the sign
of F3,.

bCalculated using Eq. (5.111).

¢Calculate using Eq. (5.112).

quadrupoles: the statistical fluctuations of the measured F}, and P, rapidly become
very large relative to their average values, a feature that greatly increases the statistical
uncertainties of these averaged quantities.

To investigate further the details of solute orientational behaviour in a nematic sol-
vent, we have conducted simulations for solutes in a nematic solvent at a lower density,
and.therefore, with a lower degree of orientational order. Table 5.17 presents results
for the EFG and order parameters of spherical and prolate solutes with a variety of
quadrupole moments oriented in a solvent at a reduced density p*=0.39 and with an

order parameter of P{"™=0.64+0.01. As expected there is a significant reduction in
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both F}, and P, as a result of the decrease of the degree of nematic ordering; otherwise,
there is no qualitative difference with the results for the systems at p* = 0.42.

Finally, we consider the effects of solvent-solvent correlations on the behaviour of
solute average properties. In Section 5.4.1, it was shown that the TP theory drastically
underestimates the degree of solute orientational order in hard-core systems. The cause of
this problem was the severity of the approximation neglecting solvent-solvent correlations
induced by the solvent-solvent hard-body interaction. A.consideration which is related
to that result concerns the importance of the solvent-solvent correlations due to the
solvent-solvent electrostatic interactions on the solute properties. We have investigated
this point by performing simpla,tions in which solvent and solute interact both via hard-
core and quadrupole-quadrupole interactions, but where solvent particles interact only
with a hard-core pair potential. A comparison of the results of average solute properties
with the corresponding results where all interactions have been properly included may
provide some insight into this matter.

In Table 5.18, we present the calculated values for £}, and P, for three solutes with
and without the solvent ‘quadrupole-quadrupole interaction turned on. In the case of
the spherical solute, there is a small difference in F%, and no change in P,. However,
for the prolate solﬁte with Q¥ # 0, there is a significant variation in both £}, and
P,. The difference is reduced by setting Q; = 0 for a solute with the same shape.
Thus, it appears that solvent-solvent correlations induced by solvent-solvent electrostatic
interactions can indirectly affect solute properties, though in a way that clearly depends
on the properties of the solute. Note that these differences do not arise from a change
in the nematic order parameter: as shown in Table 5.18, P{™™ s not significantly
affected by the presence of solvent quadrupole-quadrupole interactions of the magnitude

considered here. Nevertheless, there is a significant difference in the structure of the

solvent between the hard-core and the hard-core plus quadrupole systems. This difference
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(4]
=1

Table 5.18: Comparison of MC Results With and Without Quadrupole-Quadrupole In-
teractions Between Solvent Ellipsoids

Q,-Q: of* Q0-Q: o’
Dimensions Q:Q:¢  F3, P, plrem) F3, P, plrem)
=1, w=1 25  26(2) -0.16(2) 0.764(2) 2.2(2) -0.16(2) 0.758(2)
[=2, w=1 2.5 -1.03(5) 0.49(2)‘ 0.766(2) -0.66(4) 0.40(2) 0.761(2)

=2, w=1 00 007(3) 032(2) 0.765(2) -0.01(3) 0.29(2) 0.763(2)

“Solvent-solvent quadrupole interactions turned off.
Solvent-solvent quadrupole interactions turned on; Q; = —V2.5.
“Qr @7 gives the solute-solvent interaction strength.

is manifest in the solvent-solvent pair distribution and orientational correlation functions

shown in Figure 5.27.

5.5 Conclusions

In this chapter, we have presented a MC simulation study of the combined effects of
shape anisotropy and one specific electrostatic interaction on the orientational order of
solutes in a nematic solvent. Solute and solvent molecules were constructed using a
minimal model to describe pair interactions. Anisotropic short-range repulsive forces
were approximated by using a hard-core potential, and axially symmetric ellipsoids of
rotation were used to describe the molecular shapes. Electrostatic effects were studied
by incorporating an interaction between point quadrupoles embedded in the centers of
the hard ellipsoids. We have analyzed the results of the simulations using two current

theories of orientational ordering of solutes in nematic liquid crystals.
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Figure 5.27: Comparison of Solvent-Solvent Pair Distribution and Orientational Corre-
lation Functions for (@)% = 0 and 2.5 at p*=0.42.
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In a purely hard-core system, solute orientational order varies in a predictable manner:
increases in solute shape anisotropy and solvent density enhance the degree of ordering.
The orientational distribution functions were analyzed using a theor).r due to Terzis et
al. which was found to drastically underestimate the solute ordering. This discrepancy
is due to the complete neglect of solvent-solvent correlations in the derivation of the
solute mean-field orientational potential. The severity of this approximation calls into
question the results of the study which employed the theory to analvze orientational
order parameters of solutes measured in previous NMR experiments.

In the quadrupolar systerﬁs, the relationship between the hard-core and electrostatic
contributions to solute orientational ordering wés investigated ih detail. The behaviour of
the properties for a large collection of solutes of varying shapes and quadrupole 'fnomént,s
was examined. As well, we were particularly interested in testing the accuracy of a
mean-field model proposed by Burnell and coworkers in which the interaction between
the molecular quadrupole moment and a solute-independent average EFG sampled by
the solute constitutes an important orientational ordering mechanism. To this end, the
relationship between the measured average EFG and orientational order parameters was
examined in detail. Further, a theoretical mean-field potential and average EFG can be
derived using a method due to Emsley, Luckhurst and coworkers. The theory provides
a simple relationship between the solute order and solvent-structure functions in the
vicinity of the solute. This approach was found to give some insight into the solute
orientational behaviour.

A significant result of the simulations employing the point quadrupole electrostatic
model was that the measured EFG sampled by the solute was found to be highly sensitive
to the details of the properties of the solute, in contrast to the model put forward by
Burnell and coworkers. In the case of non-spherical solutes, the EFG was found to expe-

rience a concomitant change in sign with the solute quadrupole moment. This result is
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in sharp contradiction with certain key expérimental NMR results for which it was found
that the order parameters of several molecules conform to the mean-field model where
the solutes interact with an EFG which, at the very least has the same sign. The origin
of this discrepancy is very likely the inadequacy of using point quadrupoles for dense
systems for which the Conver_gencé of the multipole expansion at short distances becomes
an important consideration. Thus, an improved description of molecular electrostatic
interactions will likely be essential in order to generate solute orientational behaviour
consistent with that observed experimentally.

Despite the problems with the molecuiar model outlined above, the observed orienta-
tional ordering was qualitatively consistent with the predictions of the mean-field model,
using the measured.values of the EFG for each solute individually. In addition, the EL
theoretical prediction of the solute EFG, which is related to the local solvent structure,
was quite accurate. The EL prediction of the orientational order of spherical solutes, for
which there is only the electrostatic contribution to ordering, was qualitatively correct,
though quantitatively rather poor. Thus, the statistical approximations of the EL theory
appear to be too severe. Note that the theory requires a simple form for the pair po-
tential in order to vield a simple, tractable expression for the mean-field potential. Yet,
as we described above, the interaction between point moments to represent electrostatic
interactions was found to be inadequate for dense systems. Thus, given the combined
inadequacy of both the basic electrostatic pair potential and the statistical approxima-
tions of the theory, an accurate theoretical description of the electrostatic contributions

to the orientational ordering of solutes in a nematic liquid crystal is not yet available.




Chapter 6

Conclusions

In this thesis, we have presented several studies concerned with solutes partially oriented
in nematic liquid crystal solvents. There are two main components to this work: the first
part involves the application of Multiple-Quantum NMR spectroscopy as a tool to inves-
tigate the orientational, structural and conformational properties of specific molecules;
the second part employs the Monte Carlo simulation technique to complement previous
experimental studies and invéstigate the influence of various molecular properties on ori-
entational ordering. In this chapter, we review the important results and present our
final comments on the ma‘terial..

A key component of the experimental work presented in Chapters 2 and 3 involved the
application of MQ spectroscopy as an aid for the spectral analysis for oriented solutes with
spectra which are highly complex, but which nevertheless.are composed of resolvable lines.
High-order MQ spectra have considerably fewer lines and are much more straightforward
to solve. Estimates of the dipolar coupling constants obtained from such fits can provide
excellent predictions of the conventional NMR spectrum, rendering its analysis trivial.
Possible limitations of this approach as a standard method for the studies of oriented
solutes include the difficulty of obtaining high-order spectra of sufficient signal/noise, and
the inaccuracy of the estimates of the dipolar couplings as a result of the broader lines
typical of 2-D NMR spectroscopy. It is important to note that the experimental methods
employed in the present work were developed more than a decade ago. While standard

MQ NMR is ideal for many studies of oriented solutes, this technique has been virtually
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ignored in recent years. Thus, the subject of the present work is not a development of
novel variations on the experiment, but is simply an illustration of the usefulness of the
basic method.

In Chapter 2, we presented a study of biphenylene which was used as a simple illus-
trative example to demonstrate the effectiveness of MQ spectroscopy as an aid in spectral
analysis. Solutions of the six-quantum and seven-quantum spectra were used to solve the
one-quantum spectrum; the‘resu'lting dipolar coupling constants were used to determine
a vibrationally averaged structure for this simple molecule. Clearly, this system is of
very limited interest in its own right. However, the study did show a possible limitation
of the MQ method: the fact that there were a large number of fitting parameters (ten
dipolar couplings and two chemical shifts) resulted in an initially poor estimate of the
one-quantum spectrum. Only by a reduction in the number of parameters, obtained by
fitting the spectrum directly to the proton geometry and molecular order parameters,
was a sufficiently good estimate of the spectrum obtained.

In Chapter 3, the MQ experimental method was applied to the study of oriented
butane, a far more interesting system. The NMR spectrum of this ten-spin molecule
is highly complex and essentially featureless, and presents a significant challenge to the
most. courageous spectral-analysis enthusiast. However, the relatively straightforward
fitting of sufficiently good quality seven-quantum and eight-quantum spectra provided
highly accurate estimates of the coupling constants and chémica] shifts and rendered
trivial the analysis of the one-quantum spectrum. Clearly, MQ spectroscopy is a very ef-
fective experimental technique that deserves far more serious consideration as a standard
approach among NMR spectroscopists.

The principal focus of Chapter 3 was the elucidation of the conformational and ori-
entational behaviour of butane in an anisotropic condensed phase, from an analysis of

the dipolar coupling constants. The considerable attention given to butane over the last
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two decades stems from the fact ‘that it is the simplest multi-conformational alkane. One
important question concerns the effect of the condensed-phase environment on the con-
formational equilibrium relative to that of the gas phase. We performed an extensive
analysis of the coupling constants. This involved the use of mean-field models to de-
scribe the orientational ordering of the solute for each of its distinct conformations. We
employed several very different models in order to avoid the pitfall of obtaining model-
specific results. Iﬁ addition, tors‘ional fluctuations and the uncertainty of the gauche-state
angle were considered. From the analysis of the couplings, the trans-gauche energy dif-
ference was established to be in the range of Ey, ~2.1-3.0 kJ/mol. This range of values
is considerably lower than the values typically reported for gas-phase butane. Thus, it is
clear that there is an enhancement of thé gauche conformation of butane in a condensed-
phase environment. Finally, the analysis suggests that the conformational biasing is
primarily a result of the isotropic solvent “pressure”; the anisotropy of the external field
has only minor effects. This latter observation is consistent with the conclusions of other
studies of the conformational behaviour of longer alkanes oriented in a nematic solvent.

As described above, in the analysis of the dipolar coupling constants of butane, it
was necessary to employ mean-field models which are designed to describe orientational
ordering of solutes in uniaxial anisotropic solvents. Such models are necessary generally
for flexible molecules for which the dipolar coupling constants involve a summation of
products of conformational probabilities and orientational order parameters. Since sev-
eral different models were used, the analysis could also be used to test the ébility of each
of the models to accurately predict the orientational ordering of the solute. In accord
with previous studies of alkanes, the “Chord Model” of Photinos et al. [47] was found
to give the highest quality fit of the coupling constants, and thus, the best description

of orientational ordering. However, recent versions of the “Size and Shape” model of

Zimmerman et al. [36] which employ potentials that are more sensitive to the details
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of the molecular shape, also gave excellent results. Further, it was explained that all
previous studies that used the size and shape models for flexible molecules are in error:
an accurate estimate of the trans-gauche energy difference Ey, of alkanes can only be
obtained if the non-vanishing isotropic component implicit to all of these potentials is
removed to yield a truly anisotropic external mean-field potential. Failure to account
for this factor yields erroneous results. For example, the improper application of early
versions of this model to a series of oriented alkanes produced values of E;, that varied
considerably with the length of the chain, and which were well outside the “acceptable”
range of values. In light of our results for butane, we propose the following project:
the considerable collection of coupling constants for alkanes ranging from hexane to de-
cane should be analyzed using the mean-field models of Zimmerman et al., in which the
isotropic components are properly removed. We expect significantly better results than
thbse obtained by Rosen et al. [45] Further, we propose that a corresponding analy-
sis of existing dipolar and quadrupolar coupling constants of nematogens be performed.
Unfortunately, time limitations precluded such an analysis forvthis thesis.

A principal goal of studying the orientational ordering of collections of solutes in liquid
crystals is to examine the nature of the anisotropic intermolecular forces which underlie
the ordering of the liquid crystal molecules themselves. NMR spectroscopy is an excellent
experimental technique for measuring the degree of solute order via second-rank orien-
tational order parameters. An analysis of the ofder parameters themselves can be used
to elucidate the role of various ordering mechanisms. In this way, previous experimen-
tal studies were able to show, for example, the importance of short-range repulsive and
electrostatic interactions. Nevertheless, there can be some ambiguity associated with the
interpretation of experimental results. For this reason, the use of computer simulations
of suitable model systems can complement and test the interpretation of experimental

results. Further, this method can be used to investigate the accuracy of current empirical
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and theoretical models which have been recently developed and applied extensively to
the interpretation of NMR data. In Chapters 4 and 5, we employed the Monte Carlo
simulation technique to study solute ordering in nematic solvents. In contrast to many
recent MC studies of ordering in nematics, we employ minimal models to describe the
molecular properties and interrholecular interactions. Further, the work focused specifi-
cally on the role of short-range repulsive forces and long-range electrostatic interactions,
the subject of many previous stud@es by Burnell and coworkers.

In Chapter 4, we investigated the role of short-range repulsive forces, modeled as
hard-core interactions, between molecules. The shapes of the constituent molecules were
treated in a highly simplified manner: solvent molecules were modeled as har_d pro_late
ellipsoids of revolution with an axis ratio of 5:1; solute molecules were also treated as
hard ellipsoids, though with a variety of shapes and sizes. Orientational order parameters .
and distribution functions were measured under a variety of conditions. The results
were analyzed in terms of several empirical mean-field models in order to provide a
bridge between simulation and experiment. It was very interesting ﬁo note that the
application of the moael potentials not only provided good fits to orientational order
parameters and distribution functions, but also yielded the same patterns of accuracy and
inaccuracy as observed in fits of experimental data. Further, the values of the interaction
strength parameters, obtained from a simultaneous fit for each model to all measured
order parameters and scaled in an appropriate manner, were found to be remarkably
close to those obtained from a fit to experimental order parameters obtained from NMR
measurements. These results clearly demonstrate the importance of anisotropic short-
range forces on orientational ordering in nematic liquid crystals, and firmly establish the
connection between the various shape models with these interactions.

In light of the conclusions described above, we recommend that the importance of

molecular shape be investigated further. We propose the following: (1) The solvent
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molecular shape should be more accurately modeled, but without incorporating unnec-
essary detail. For example, the hard ellipsoids of revolution could be replaced by general
ellipsoids that approximate the shape biaxiality present in all nematogens. Previous
studies have demonstrated the importance of nematogen “flatness” on -stablizing the
nematic phase [136], and on predicting magnitudes of phase-transition discontinuities
more consistent with those observed experimentally [137]. In the present case, such a
refinement of the solvent shape would very likely alter the structure of the solvent, and
therefore influence the orientational behaviour of solutes. (2) Solute molecules should be
realistically modeled in order to facilitate a more direct comparison with experimental
results. A very useful approach could be to construct model solutes using hard van der
Waals spheres for each of the atoms. This essentially is the approach taken in each of the
“Size and Shape” models. With such a model, the complete Saupe order matrix could
be calculated. Deviations between simulated a.ndl experimental order parameters could
be used to assess the importance of additional interactions on the orientational ordering
of specific solutes.

In Chapter 5, we presented results of a further study which employed MC éimulations
to study orientational ordering of solutes in nematic liquid crystals. As in Chapter 4,
the solvent and solute molecular shapes were approximated by hard axially symmet-
ric ellipsoids. However, in most of the simulations, an additional interaction between
point quadrupole moments, fixed at the centers of the ellipsoids, was included. This
simple model was employed to investigate the relative importance of different ordering
mechanisms. In addition, two current theoretical model potentials, applied previously to
analyze experimental data, were investigated. The advantage of using computer simula-
tions is that it can separately test two different types of approximations: (1) a comparison
of the MC results with experiment provides a test of the molecular model; (2) a compar-

ison of the MC results with the theoretical predictions provides a test of the statistical
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approximations employed in the theory.

Simulations of solute orientational ordering in hard-core systems were used to investi-
gate a theory due to Terzis et al. [29] The theory was féund to underestimate drastically
the degree of orientational order for a variety of solutes and at different solvent densities.
This deficiency is a result of the approximation of completely neglecting the solvent-
solvent correlations in the reduction of the full distribution function of the complete
system. Clearly, a more careful treatment of these correlations is essehtial in order for
this theory to provide an accurate prediction of the contribution to orientational order
due to short-range repulsive forces.

The principal focus of Chapter 5 was the investigation of the effect of electrostatic
interactions, in addition to that of shape anisotropy, on orientational ordering of solutes
in a nematic solvent. Particular interest was given to a mean-field model in which the
solute molecular quadrupole moment interacts with a solute-independent average EFG
which arises from the presence of solvent quadrupoles. A quantitative expression for
the average EFG and contribution to the mean-field potential, derived using a method
described by Emsley, Luckhurst and coworkers, was uséd to aid in the interpretation of
the MC data.

" There are several important results of this study. First, the average EFG sampled
by the solute in the simulations was found to be highly sensitive to the properties of the
solute, in contrast with the Burnell model. For example, the EFG was found to undergo
a concomitant change in sign with the solute quadrupole moment for many solutes. This
feature contradicts certain experimental results, in which solutes of a variety of sizes
and quadrupole moments appear to interact with an average EFG which has a sign
consistent with that which was measured directly using D, and HD. We believe that this

contradiction is a result of the very simplistic form of the pair potential: at short distances

the point quadrupole approximation may be inappropriate to describe a generally very
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complex interaction between molecular charge distributions. This defect is not surprising,

- considering the high density of the systems investigated here. Thus, in order to produce

results from MC simulations which afe more consistent with experimental data, a better
model of the electrostatic interactions must be developed. The new model must provide a
more realistic description of the pair potential at short distances. One possible approach
may involve a distribution of point electrostatic moments throughout the volume of the

hard ellipsoids in a manner which preserves the net quadrupole moment and long-range

pair potential behaviour.

Although the model employed in the MC simulations yielded results in which the
EFG was highly solute-dependent, the orientational behaviour was nevertheless qualita-
tively consistent with the picture of the solute quadrupole interacting with this average
field. However, quantitative theoretical predictions of order parameters and orienta-
tional distribution functions were found to deviate significantly from those measured in
the simulations. Thus, it appears that the statistical approximations of the theory are
not sufficiently valid. Given the poor model for the intermolecular pair potential em-
ployed, the present theory is currently inadequate to describe the effects of electrostatic
interactions on orientational ordering of solutes in liquid crystals. We believe that fur-
ther simulations employing improved molecular modeling will be required to guide the

development of the theory to a sufficiently reliable form.
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