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Abstract

A comprehensive theory of nuclear magnetic relaxation in S = 1 Haldane gap ma

terials is developed using nonlinear-a, boson and fermion models. We find that at tem

peratures much smaller than the lowest gap the dominant contribution to the relaxation

rate comes from two magnon processes with T’ ‘- e_m/T, where Lm is the smallest

gap corresponding to a polarization direction perpendicular to the field direction. As

the gap closes, we find that the dominant contribution comes from one magnon pro

cesses, and the result depends on the symmetry of the Hamiltonian. Overall the models

agree qualitatively, except near the critical regime, where the fermion model is shown

to be the best description. We include a thorough discussion of the effects of interchain

couplings, nearest neighbour hyperfine interactions and crystal structure, and introduce

a new theory of impurities corresponding to broken chain ends weakly coupled to bulk

magnons. The work is then applied to recent measurements on NENP. We find overall

fair agreement between available T’ data and our calculations. We finish by suggesting

further experimental tests of our conclusions.
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Chapter 1

Introduction and Background

1.1 Introduction

In 1983, Haldane derived his famous result stating that integer spin one dimensional

Heisenberg antiferromagnets featured a gap in their low energy excitation spectrum [1].

Since then, much effort has been devoted to further exploration of such systems, both

experimentally and theoretically. The purpose of this work is to develop a theoretical

framework for the understanding of low energy experiments on one dimensional Haldane

gap materials. In particular, we focus on the nuclear magnetic relaxation rate, T’,

although the work has relevance to many other techniques. By studying this thesis, it

is hoped that the reader can become familiar with the tools used to understand integer

spin Heisenberg antiferromagnetic chains with anisotropies, and can apply these tools to

the analysis of real systems.

There are, essentially, three important models that have so far been used to describe

the system. In the later sections of this chapter we review the competing descriptions

of S = 1 antiferromagnetic spin-chains, paying some attention to their advantages and

shortcomings. We start by outlining the traditional spin-wave theory’ used to model

antiferromagnetism in higher dimensions. After illustrating the deficiencies in this ap

proach, we describe the Nonlinear a (NLa) model in some detail. This is followed by

an analysis of a simplified yet closely related Landau-Ginsburg boson model. Last, we

discuss a free fermion model used recently to successfully treat the case of anisotropic
1 [2] for a comprehensive discussion of this topic

1



Chapter 1. Introduction and Background 2

spin-chains. We end the chapter with background on the nuclear magnetic relaxation

rate, 1/T1, for nuclear spins coupled to the spin-chain through hyperfine interactions.

Chapter Two focuses on the details of the models, building the tools necessary for a

detailed analysis. We discuss the temperature and magnetic field dependence of the NLu

model and its possible relevance to the spectrum of the boson model, as well as cite some

exact results available in cases of high symmetry. We also diagonalize the free boson and

fermion field theories, including on-site anisotropy effects. We derive matrix elements of

the uniform part of the spin operator (fourier modes near wave vector zero) between one

particle states of magnetic excitations. These are used to compare the different models.

Chapter Three explicitly describes the calculation of NMR T1, considering various

symmetries of the Hamiltonian. We identify the leading mechanisms for low temperature

relaxation in the presence of a magnetic field. We discuss three regimes corresponding

to different magnitudes of the applied external magnetic field, giving expressions for the

rate in each case. We discover that at temperatures much lower than the smallest gap

the uniform part of the spin operator contributes most to the relaxation rate; in the

absence of interactions, this corresponds to two magnon processes. The rate is found

to be T1’ e_m/T, where Lm is the smallest gap corresponding to a polarization

direction perpendicular to the magnetic field. As the externally applied magnetic field

approaches a critical value, one of the gaps closes and we find the dominant process to be

one magnon, corresponding to contributions from the staggered part of the spin operator

(fourier modes near wavelength ir/a, where a is the lattice spacing). In this regime, we

show that the fermion model is the best description and that the expression for T1

depends on the symmetry of the Hamiltonian.

Chapter Four deals with intrinsic effects which must be taken into account when

analyzing experimental data. We discuss nearest neighbour hyperfine interactions; we

show that these will contribute to order A/A, the ratio of the nearest neighbour coupling
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to the local coupling. We also consider interchain couplings and show that they introduce

a natural infrared cutoff to the diverging density of states at the gap; for sufficiently long

chains, they also densely fill the energy intervals between states along a finite chain.

Finally, we introduce a new impurity theory to explain the effects of nearly free spin-i

chain end degrees of freedom. We find that the states formed by such end spins in the

gap, can give rise to non-trivial relaxation when coupled to the bulk excitations.

Chapter Five applies the theory to recent experiments on the well studied material,

Ni(C2H8N2)2N02(C104)(NENP). We take a close look at the crystal structure of NENP

and identify possible terms which may be present in the Hamiltonian. We also note the

fact, hitherto neglected, that NENP possesses two inequivalent chains in each unit cell.

The results of Chapters Three and Four are then used to analyze experimental data. We

find reasonable agreement for a magnetic field placed along the crystal c-axis of NENP,

and an unexpected discrepancy for a magnetic field placed along the chain axis. The

impurity theory is used to model low field data with qustionable results.

The final chapter proposes further experimental tests of the theoretical predictions of

this work. We suggest elastic neutron, electron spin resonance and further NMR studies

to verify our own.

1.2 Spin-wave Theory

The Heisenberg Hamiltonian describing the isotropic antiferromagnetic spin-chain is

H=J
• Ii+1 J>O (1.1)

This arises naturally from the Hubbard model for insulators at ‘half’ filling [3]. To

understand where this might come from, we follow the case where there is a triplet of

possible spin states per site. On each site there are a number of valence electrons (eight

valence electrons in the d shell of Ni+2, for example); the degenerate electronic levels
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are split in a way determined by Hund’s rules2 and the symmetry of the crystal fields

surrounding the ion. In some special cases (as with Ni+2 in a field with octahedral

symmetry), a degenerate triplet of states lies lowest. The ensuing low energy physics can

be essentially described using effective spin 1 operators [4]. By ‘half’ filling, we mean that

there is an effective S = 1 triplet of states for every site in the chain (ie. there are two

singly occupied orbitals on each site. Other orbitals are either empty or doubly occupied.

Spins in singly occupied orbitals are aligned by Hund’s rules.) Antiferromagnetism comes

from allowing a small amplitude for nearest neighbour hopping which is highly suppressed

by coulomb repulsion from the electrons already occupying the site.

In the quantum case, the spin operators have the commutation relations:

[S,S] = j5 fabc5c,
. = s(s + 1) (1.2)

where is the Kronecker Delta Function and is the completely antisymmetric Levi

Civita symbol.

It is easy to see that the classical Néel ground state with alternating spins is not the

quantum ground state. To this end we write the Hamiltonian in terms of raising and

lowering spin operators:

S Sx±iSY

H = j [s:s7+1 + + S1S1)] (1.3)

The Néel ground state is composed of spins alternating in quantum numbers SZ between

sites.

INéel>=s=+1,s=—1,s=+1,...,4=—1> (1.4)

2Hd’s rules maximize the total electronic spin and the total angular momentum of the electrons in
the valence shell.



Chapter 1. Introduction and Background 5

This state is clearly not an eigenstate of the above Hamiltonian since upon acting on

it, the StS1 terms in the Hamiltonian generate states with m = 0. To proceed in

understanding the low energy properties one usually assumes that the ground state is

approximately Néel with quantum fluctuations. The picture is that of zero point motion

about the positions of the classical Néel spins. What we will shortly see is that the

assumption of small fluctuations breaks down in one dimension.

The conventional approach makes use of the Holstein-Primakov transformation. One

begins by dividing the chain into two sublattices, “A” and “B”, with adjacent sites on

separate sublattices. On sublattice “A” one defines

S=s—aa, S1=a/2s—aaj (1.5)

On sublattice “B” we have

S1 = —s + S = b/2s — bb (1.6)

a and b are usual bosonic operators with commutation relations:

[a, at] = [b, bt] = 1, [a, a] = [b, b] = 0 (1.7)

It can be checked that (1.5) and (1.6) preserve the correct spin commutation relations

and the constraint , = s(s + 1). The Néel ground state is one without bosons.

So far no approximations have entered into the picture. However, to make progress, we

assume that s is large. This is equivalent to a semi-classical approximation since for

s —+ oo the commutator of the spins will have much smaller eigenvalues than the square

of the spin variables

[Sa, Sb] =
fabc5lc = 0(s) <<0(s2) (1.8)

We expand the spin operators to give

S=aV’, Sj1=b/ (1.9)



Chapter 1. Introduction and Background 6

To leading order, the Hamiltonian reduces to

H = J [_s + s(2aa2 + 2bb2 + ab + b_1a+ ba + ab_1)+ 0(1)] (1.10)

Fourier transforming:

N

a3 = > ei27Nak (1.11)

with a similar expression for b; N is the number of sites on each sublattice. Ignoring the

constant term, we rewrite (1.10) as

H = 2Js> [aLak + l4bk + (1 +e2tha)(akb_k + b)aL)] (1.12)

2a is the sublattice spacing and k = irn/Na for n e [—j, ]. We now make the Bogoli

ubov transformation,

Ck = ukak — Vkb!k

dk = Ukb_k — vka (1.13)

where,

Uk (1 + csc(ka))’12

—ika/2

Vk= (—1+csc(ka))112 (1.14)

The d’s and c’s are spin wave operators corresponding to magnetic excitations (magnons)

with SZ = ±1 respectively. This transformation preserves the commutation relations and

the Hamiltonian can now be written as

H=2Jssin(ka) (cck+c4cik) (1.15)

We see that this low energy description implies the spins are in some coherent state

of a’s and b’s built on the Néel state, but there are long wavelength Goldstone modes
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with dispersion relation = 2JsIka which allow each of the sublattice magnetization

vectors to make long wavelength rotations. To ensure consistency, we now look at the

expectation value of the magnetization (say, on the “A” sublattice), hoping to see that we

get the semi-classical result < S >= s — 0(1). We invert the Bogoliubov transformation

to get

ak =ukck+vkdk (1.16)

and compute

<S>=s—<aa>=s—jZ<aak>

= s—af---IvkI = s— af —(csc(ka) —1) (1.17)

The last line follows from (1.16) and the fact that the true ground state has zero spin

wave occupation number. The problem is now apparent: low wavelength modes cause

< s — SZ > to diverge logarithmically. The semi classical picture of a Néel-like ground

state is completely off. This is special to 1 dimension and actually arises as a general

consequence of Coleman’s theorem [5]; it states that in (1 + 1) dimensions, infrared

divergences associated with Goldstone bosons will always wash out the classical value of

the order parameter rendering spontaneous symmetry breaking of continuous symmetries

impossible. One is therefore forced to look elsewhere in order to describe the low energy

physics of the Heisenberg model.

1.3 Non-Linear a (NLa) Model

The most consistent continuum model derivable from Eqn. (1.1) is the Nonlinear a model.

In addition to being a continuum model (valid only in the long wave length limit), it is

also based on a large s approximation. One introduces two fields: — corresponding to
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the Néel order parameter, and r the uniform magnetization. The spin variable, S is

defined in terms of these fields via

(x) = (_1)xs(x) + Y(x) (1.18)

The conventional derivation defines these variables on the lattice and a continuum limit

is taken in the semi-classical large s approximation to arrive at the NLu model Hamil

tonian [6]. There are several problems with this approach. First, parity is broken in

intermediate steps and is eventually restored in the continuum limit. Second, and more

importantly, the crucial topological term which is found in the continuum Hamiltonian

is derived without clear notions of how 1/s corrections may be made. A much more

elegant approach will be reviewed here. We will make use of path integral formalism

based on independent derivations by Haldane [7] and Fradkin and Stone [8]. These were

motivated by similar questions about topological terms in 2-D quantum models thought

useful in attempting to describe high temperature superconductors.

One begins by defining a coherent basis of states for the S = s representation of

SU(2) [9]:

n > + s> (1.19)

where + s > is the eigenstate of 5Z with eigenvalue s, ñ = cos 6 and (xñ) is a unit

vector perpendicular to both i and . We see that I > is the state with spin s in the

ñ direction (ie. i >= sñ >.) This basis is over-complete and not orthogonal. We

now make use of two identities:

<nun2 >= eis 1,2)
(1 + fli n2)

(1.20)

1
= 2s± f

d3ñ
. — 1)In>< (1.21)

3We note that the derivation in reference [8] is somewhat in error. We correct their mistakes using a
similar derivation due to Ian Affleck (unpublished).
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(n1,n2) is the area enclosed by the geodesic triangle on the sphere with vertices at

, n2 and the north pole. There is an ambiguity of 4ir in this definition, but this makes

little difference when exponentiated since e48 = 1 for s integer or half-integer. The first

identity is most easily proved by using the , ..., > representation of SU(2) while the

second follows from the first. We can now use these states to write the partition function

or path integral of the system:

= rf [N_i 2s± 1d3()] <(Tm)Ie_T(Tm_i)> (1.22)
1=1 m=2

A1IT = /3, Tm — Tm_i = T, T1 = TN

With zXT —+ 0, we expand the exponential to order O(z.T) to get

<ñ(Tm)Ie_THI1i(Tm_i) >< (Tm)ñ(Tm_i) > — <fl(Tm)IHfl(Tm) > LT

= ei (ñ(Tm),(Tml))
(1 + (Tm) (Tm_i))8

— <(Tm)IHI(Tm) > T (1.23)

In the limit N —* cc, the path integral can be written,

Tre’ cc f [Dñ(T)] e_S (1.24)

S = [<(Tm)IHI(Tm) > T — (1((Tm)(Tm_i) +ln(1
+(Tm) . (Tm_l)))]

m=2

The last term can be written to second order in LT as

SZT ST

——i— f d-(i-) Ofl() = —i--. f dT (ôñ(T))2 (1.25)

This vanishes in taking the limit tT —÷ 0. The sum over the phases is just the area

enclosed by the vector ñ(T) as it traces its periodic path on the surface of the sphere.

Parametrizing ‘i as

= (sinOcosq, sinOsinq5, cosO) (1.26)
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we can write

—is f dA== _isf dq(1—cosO) = —is fdt (1—cosO) (1.27)

The Hamiltonian, Eqn. (1.1), is a sum over a chain of spins. We must therefore

extend the path integral to all sites. This is done by indexing each of the coherent states

with a position label, x, and making the substitution

(Tm) >+ ® fi(Tm,3J)> (1.28)

Note that

<ñ(T,x)I (x)n(r,x) >= sñ(’r,x) (1.29)

It is useful to write I(r, x) in terms of a staggered and a uniform part which are slowly

varying in the limit of large s:

i(r,x) (—1)(r,x) + tr,x)/s (1.30)

To leading order in 1/s and derivatives of the slowly varying fields, this produces the

constraints

(r, x) . (r, x) = 1 (r, x). t(T, x) = 0 (1.31)

Setting zx = 1 (the fact that the fields vary slowly over this interval is justified a

posteriori), we find that the leading contribution of the Hamiltonian to the action in the

continuum limit is

ffdxdr (()24r/2) (1.32)

We add up the phase terms by combining them in pairs:

—isA = f dx (A ((T, x + 1) + t(r,x + 1)/sj + A [_(r,x) + 1(T, x)/s]) (1.33)
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Because A is an oriented area with respect to its argument, changing the sign of the

argument also changes the sign of the area. Eqn. (1.33) can be written,

-isA = -f f dx (A [(r, x) + ó(T, x)j - A [(r, x)}) (1.34)

where to leading order, ö(r, x) = O(r, x) + 2 f/s. This then gives,

—isA =
—- f dx ((r, x) x S(T, x))

-f f dx dr (r, x). (6(T, x) x 8(r, x))

= f dx dr ((r x) (ô(T, x) x ôT(T, x)) - 2 ((r, x) x 8(T, x))) (1.35)

If we compactify so that —* constant for 1x2 + -r2 —÷ oc, and maintain the constraint

= 1 (valid to 1/s2), one can recognize the integral

Q=_-fdtdxc.(84x8) (1.36)

as measuring the winding number of the sphere onto the sphere. The integrand is the

Jacobian for the change of variables from compactified coordinates on the plane to those

on i-space (also a sphere). Q is an integer corresponding to one of the countably many

topologically inequivalent ways there are to smoothly map the sphere onto the sphere;

thus the phase term can be written as —2irisQ. For s an integer, a sum over all possible

topological configurations will not affect the path integral. For s half-integer, however,

we can expect a drastic difference, since the path integral will be the difference between

partition functions with even and odd Q’s. It is important to stress that this is a purely

quantum mechanical result which has no analogue in the 2-D finite temperature classical

Heisenberg model (there is a well known equivalence between (d, 1)-dimensional quantum

field theory and d + 1-dimensional finite temperature classical statistical mechanics [10]).
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A detailed discussion of how a half-integer s will affect the physics will be omitted here;

the reader is instead referred to [6] and references therein.

We can solve the equations of motion for f

—. i /—* —*\

(1.37)
gv

Not surprisingly, ris the generator of rotations. After integrating out the rfields, the

final action is,

S= —2irisQ+ ffdxdr (8)2+ !ff’drdx (Ovrc5)2 (1.38)

Where we now define,

v = 2Js g = -, (1.39)

The action can be written

S = 2irisQ +
- f dx dr 8D’ (140)

It is clear how 1/s corrections entered into the calculation of the topological term. More

over, we did not break parity to derive (1.40).

We are interested in integer s (in fact, s = 1). To this end we may ignore the

topological term in the action, as discussed, and consider the nonlinear u-model:

Js2 2
£ = = 1 (1.41)

We now motivate the idea that, contrary to spin-wave theory, this model features a gap

in its low energy spectrum. We first do this in the spirit of reference [10]. We can deal

with the constraint by incorporating it into the path integral as a Lagrange multiplier:

-. _ij-fd2x (o+A(;_1))
Z cc J DebVAe (1.42)
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The constraint is now enforced by the equation of motion for ). The fields can be

integrated out in the usual way to give

cc (1.43)

where N is the number of components of . As N —* cc the path integral is concentrated

near the smallest value of the argument of the exponential. Minimizing this argument

with respect to ). we solve for the saddle point, ):

Js2 Nv 1—=—<xI (1.44)
2 2

using the standard rules for functional differentiation. The RHS of the above is simply

the Green’s function for a boson field with mass v\/;

1 1 •1 rd2k 1<xl < - > Ix >= r (1.45)
i (2K)2kPk+),

1 A2
= —log-=

4K A

where A is an ultraviolet cutoff, d2k = dk dw/v, and kJLk = k2 +2/v2. Solving for the

square of the mass, A:

A = A2e_462 (1.46)

Another way to see the presence of a mass gap is to integrate out ultraviolet modes

and apply the renormalization group. We start with the Lagrangian Eqn. (1.41) and

parametrize the fluctuations in terms of slow and fast modes. One then integrates out the

fast fields. This calculation is logarithmically infrared divergent. One then renormalizes

by subtracting out the offending terms from the effective Lagrangian. Equivalently, one

can achieve the same effect to the same order in perturbation theory by redefining the

coupling constant in terms of its bare value. A calculation of this sort (for the 0(N)
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model) is done in reference [10]. The renormalized coupling constant becomes

g(L)
1— lnL

(1.47)

With g0 = 2/s, we now see that the coupling constant is of order unity for length scales

e6 (1.48)

Keeping in mind that this is a Lorentz invariant’ theory, there must be a corresponding

mass scale, :

oc (1.49)

There are other similar heuristic calculations that suggest a mass gap; none are iron

clad, but the sum of them together makes for strong evidence that indeed the s = 1 1-D

Heisenberg antiferromagnet is disordered at all temperatures and is well described by

the NLo- model. Better justification comes from exact S-matrix results and numerical

simulations. The exact S-matrix results are due to work by Zamolodchikov and Zamolod

chikov [11], and Karowski and Weisz [12]. The 0(3) invariance of the NLu model allows

for an infinite number of conservation laws. These imply strong constraints on S-matrix

elements and, consequently, on on-shell Green’s functions. One characteristic of such an

S-matrix is factorizability. This means that N-particle scattering can be expressed as

products of 2-particle scattering matrix elements. The simplest such S-matrix consistent

with the symmetries of the NLu model has a triplet of massive soliton states with an

effective repulsive local interaction. This conjecture has been checked in perturbation

theory in 1/N (for the 0(N) NLu model [12]) to order 1/N2.

Numerical results have been pursued since Haldane made his conjecture in 1983 [13,

14, 15, 16]. They have all essentially confirmed Haldane’s picture and the validity of

the NLo- model. To date, the best numerical work has been due to White’s method of
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the density matrix renormalization group [14] and recent exact diagonalization [15]. The

former predicts a gap = .41050(2)J, while the latter has L = .41049(2)J. Numerical

investigations of the spin operator structure factor [16], S(k), for the isotropic chain

show remarkable agreement with the ‘exact’ S-matrix result for two magnon production

over a region larger than expected; two magnon production is known to dominate at low

momenta, k < .3ir, from numerical studies [16]. This can be probed in neutron scattering

experiments [17]. For higher momenta, one must include one magnon contributions which

dominate as k —* K. The intermediate region in momentum space, .3K k .8K, is not

expected to be well represented by the NLu model; this is because the fields, and f
describe low energy (and therefore large wavelength) excitations about k = K and k = 0,

respectively. The same study also determined the correlation length, = 6.03(1), the

velocity, v/J ‘..‘ 2.5 and the coupling constant, g ‘-.‘ 1.28 in rough agreement with the 1/s

expansion result [18] g “.‘ 1.44 and the value derived above, g = 2/s = 2.

This ends the introductory discussion of the NLu model. A more in-depth approach

will be taken when we consider anisotropies and develop the necessary tools to calculate

the NMR relaxation rate in Chapter 2.

1.4 Boson Model

Although the NLu model is convincingly accurate in describing the low energy physics

of the Heisenberg 1-D antiferromagnet, it has several deficiencies. First, off-shell Green’s

functions are not known; and second, anisotropies are not easily tractable within the

framework of the model (the 5- matrix is no longer factorizable, as earlier discussed, since

one loses the infinite number of conservation laws). A happy compromise which contains

all of the qualitative aspects of the NLu model and yet allows for more computability
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and generalization is the Landau-Ginsburg boson model [20]

= vj2 +
(.)2

+
+ (1.50)

where the constraint = 1 has been relaxed in the Lagrangian of the NLu model, and a

interaction has been added for stability. The Hamiltonian, (1.50), possesses the correct

symmetries, three massive low energy excitations, and a repulsive weak interaction. As

with the NLu model, the field acts on the ground state to produce the triplet of massive

excitations or magnons. We note that this model becomes exact in taking the N -4 co

limit of the 0(N) NLa model [10] (recall that N is the number of components of the

field ). As in Eqn. (1.37), the generator of rotational symmetry (the uniform part of

the spin operator) is

(1.51)

where 11 (we absorbed the coupling constant,g, into the definition of in (1.50).)

Expanding in terms of creation and annihilation operators, we see that 1 acts as a two

magnon operator producing or annihilating a pair, or else flipping the polarization of a

single magnon. This picture is obvious in this simpler model, whereas the same analysis is

only confirmed by the exact S-matrix results and the gratifying agreement with numerical

work in the case of the NLu model. The gap, Li can be phenomenologically fitted to

experiments such as neutron scattering as can be the velocity of light’, v. Including

on-site anisotropy

Haniso =
(D(sfl2 + E((S)2— (S)2)) (1.52)

simply amounts to introducing three phenomenological masses. This will be discussed in

more detail in Chapter 2.
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On comparison of the predictions of both models one finds overall qualitative agree

ment in studies of form factors [16, 191. As one moves away from zero wave vector the

agreement between the models weakens. This makes for one of the disadvantages of the

bosons. Also, in attempting to calculate certain Green’s functions, such as the staggered

field correlation function, one is forced to rely on perturbation theory in ). Although

can be phenomenologically fitted, there is much ambiguity in choosing the interac

tion term. One can equally put in by hand any positive polynomial term in This

is because the fields carry no mass dimension making all polynomial interaction terms

relevant. It should be understood that this model is phenomenological and is introduced

for its simplicity. In the final analysis, justification for its use must come from numerical

and real experiments.

1.5 Fermion Model

Before introducing the next model, we would like to begin by apologizing for the cryptic

description of the concepts to be mentioned in this section. A deeper understanding

would require a diversion into conformal field theory tangential to the main lines of the

thesis. Instead, the reader is invited to investigate the literature.

There is another model exhibiting some of the desirable properties of the boson model.

This is an analogue of the Landau-Ginsburg model but phrased in terms of a triplet of

relativistic fermions:

1—. d — 1-.. d —
7-1(x) = ,bLzv— — bR+

X )- (Rx R) (1.53)
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The fields ‘ are Majorana (Hermitean) fermions with equal time anticommutation rela

tions

{‘/4(x),’z/,(y)} = 6ss’ö1 6(x—y) S,S’ = L,R (1.54)

The L and R label left and right moving fields, respectively. This model is not trivially

related to either of the models described above; it was first introduced by Tsvelik [21]

to achieve better agreement with experimental data on the anisotropic Haldane Gap

material NENP. The motivation comes from a model sitting on the boundary between

the Haldane phase and a spontaneously dimerized phase [22], with the Hamiltonian

H = J> i: i+1
— ( g. g)2] (1.55)

This Bethe Ansatz integrable Hamiltonian features a gapless spectrum and has a con

tinuum limit equivalent to a k = 2 Wess-Zumino-Witten (WZW) NLu model. This, in

turn, is a conformal field theory [23] equivalent to three decoupled critical Ising models.

The well known mapping of the critical Ising model to a massless free Majorana fermion

[24] brings us to write (1.55) as

t(x)=(’L.-1L_ (1.56)

Reducing the biquadratic coupling in (1.55) moves the Ising models away from their

critical point. Symmetry allows the addition of interactions corresponding to mass and

four fermi terms, as in Eqn. (1.53). The four fermi term proportional to ) is the

only marginal one allowed by 0(3) symmetry. It will generally be ignored or treated

perturbatively, in a similar phenomenological spirit to that of the Landau-Ginsburg boson

model (ultimate justification for this, as for the boson model, comes from numerical and

real experiments). For weak interactions (which is the case assumed) all Green’s functions

will have simple poles at the phenomenological masses and will be trivial on-shell. The
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off-shell behaviour depends on the interaction terms chosen and is therefore very much

model dependent.

It can easily be checked that (1.54) gives the right commutation relations for the

SU(2) algebra, [l(x), 13(y)] = i6(x — y)euidl(x), with

r=j(LxL+RxR) (1.57)

This allows us to identify rwith the generator of global rotations or the uniform part of

the spin, . Expanding ‘z].R and 1];’L in terms of creation and annihilation operators, we

see that, here too, ris quadratic in such operators. Notice that this representation for

r does not couple left and right movers. This is in sharp contrast to the boson or NLa

models (where one can write the boson operator as a sum of left and right moving parts).

We will later see that this point can potentially give experimental predictions which will

contrast between the models.

The particles created by the fields, ‘, are identified with massive magnons. The

masses can be fixed by hand to agree with the experimental dispersions so that on-

site anisotropy terms coming from Eqn. (1.52) can be easily parametrized, as in the

boson model. Other interaction terms which might arise from breaking the symmetry

are usualy ignored for ease of calculation. As always, ultimate justification for this is

found in numerical and real experiment.

As mentioned above, fis again a two magnon operator. It is also possible to represent

the staggered magnetization (the analogue of ) in this approach, but it is considerably

more complicated (one can use bosonization techniques [23]). Near the massless point,

this operator reduces to the fundamental field of the WZW model, or equivalently to

products of the order and disorder fields, b and ji, of the three Ising models [25, 26].

These operators are highly non-local with respect to the fermion fields. The corresponding

correlation functions can be expressed in terms of products of Painlevé functions [24,
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27]. They exhibit poles at the fermion masses together with additional structure at

higher energy. Unlike the free boson model, a simple interpretation of the staggered

magnetization density as a single magnon operator doesn’t hold. This complicates the

use of this model.

One way to justify the use of the fermion model without resorting to complicated

explanations is to notice that in the long wave length limit of the 0(3) symmetric case, all

models are in agreement (see Chapter 2). For smaller wave lengths, the different models

correspond to different continuum representations of the lattice model. 0(3) symmetry is

broken differently in each model (for example, see the different results for matrix elements

of fin Chapter 2). The idea is that we have three (two, for lesser symmetry) workable

descriptions whose ultimate merits can only be decided phenomenologically.

1.6 Nuclear Magnetic Relaxation Rate

Experiments on condensed matter systems typically measure observables which are di

rectly related to Green’s functions. This is no surprise since most such experiments

measure the response of the system to an external probe. This is in contrast with par

ticle physics experiments which usualy examine the nature of scattering into asymptotic

states. Formally the difference is that particle physicists measure time-ordered Green’s

functions while their friends in condensed matter physics measure retarded Green’s func

tions. The nuclear magnetic relaxation rate, 1/T1, measures the local correlations of the

system at low frequency. The probe is the nucleus of some atom in the sample which

has a non-zero nuclear maglietic moment weakly coupled to the system of interest. In

the case of the Heisenberg l-D antiferromagnet, we assume that in addition to the spin

Hamiltonian, H5, there is also Zeeman coupling, H, to a uniform magnetic field, .&,
by both the nuclear and Heisenberg spins, and that there is a hyperfine coupling between



Chapter 1. Introduction and Background 21

the two systems, HHyper. We also assume for simplicity that the nuclear spins do not

directly couple to each other.

HTot = H8 + Hz + HHyper H0 + HHyper

=HSBftGe a-1zNfl.GN i;+ i; (1.58)

Ge and GN are the gyromagnetic tensors for the electron and nuclear spins, respectively.

A3 is the hyperfine tensor coupling the nuclear spin on site j to the electronic spin on

site i. We now define the characteristic frequency

WNjNH (1.59)

In nuclear magnetic resonance (NMR) experiments one strives to temporarily achieve

a non-equilibrium population difference between nuclear spins with different spin eigen

values along the uniform field direction. This is normally achieved with pulses of RF

electromagnetic radiation possessing ac magnetic fields perpendicular to the externally

applied uniform magnetic field. As is well known, a resonance phenomenon occurs at

RF-frequencies near WN (in reality it is easier to tune the uniform field to resonate with

a fixed RF field).

In the presence of a non-equilibrium occupation of states, the nuclear spins “relax”

towards an equilibrium configuration by making transitions between states of different

spin eigenvalues. This would not normally be possible if the nuclear spins were completely

free. Coupling to another system is necessary in order to conserve energy during the

transitions. The energy given off or absorbed must induce a corresponding transition into

a different energy state in the system which couples to the nuclear spins. Let us illustrate

the situation with an s = 1/2 nuclear spin. In the absence of hyperfine interactions, we

assume that I is a good quantum number (where z is the direction of the static magnetic

field), and that GN is isotropic (these are generally good assumptions). The rate equation
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for the number of nucleii, N, with I + is

d N

dt
=—N÷Q+_+NL (1.60)

Where the transition probabilities per unit time are given by We can rewrite this

in terms of the total number of spins, N and the population difference, n:

= N(L÷ — — n(÷ + (1.61)

Now, if we define

(-+ + +-) (1.62)

then we see that in the limit that the transition rates only depend on time scales much

shorter than those characteristic of the experimental probe, and in the limit of linear

response (ie. Q is independent of n) the solution to (1.61) is

n(t) = o + a e_t’T1 (1.63)

Where n0 is the equilibrium population difference (at finite temperature, states with an

energy difference will necessarily have a population difference). We see that the relaxation

rate, 1/T1, describes the evolution of the nuclear system towards thermal equilibrium, or

likewise, the decay of the population inversion magnetization achieved by RF pulses in

NMR.

We now derive an expression for the rate, 1/T1. For a system with more general

I, 1/T1 for a transition from an initial state with P = m to one with IZ = m + 1 is

normalized by the factor 1(1 + 1) — m(m + 1). To begin, we need an expression for

the transition rate m—*m+1 describing a nuclear spin at site j starting in the state with

I’ = m and ending up with I = m + 1. It does not matter which nuclear spin we pick

if we assume translational invariance; since there is no nuclear spin-spin coupling4,the

“In NENP, the dipolar nuclear spin-spin couplings are roughly 200 times smaller than the hyperfine
coupling.
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relaxation rate for one is the relaxation rate for the whole system. Let us assume that

the initial and final Heisenberg spin state are given by the labels n and n’, respectively.

Then Fermi’s Golden Rule gives

=

e_Ef1T
2irI <1 = (m + 1), fl’HHyperII. = m, fl> 126(EI (m--1),n! — Eirm,n) z (1.64)

Notice that we multiplied the normal expression for the Golden Rule by the Boltzmann

probability that the Heisenberg spin system is in the initial state, I >. The only part

of HHyper which will contribute is SrAI:

=

e_/T
2ir(I(I + 1) — m(m + 1)) <n’ISflri> 2ö(E — E — UN) (1.65)

i,y

The analogous expression for is

IJrr(m+i),n’—*IJ=m,n =

-E,/T

2ir(I(I + 1) — m(m + 1))IA <nSfln’> 26(E —

— UN) (1.66)

Since Af = (A_)* we get for the relaxation rate

(e_En/T + e_/T)
= 2irI >A <n’ISIn>I26(E’ — — UN) (1.67)

We now sum over all possible transitions to arrive at 1/Ti:

1 f —E,/T + —E/T
- =21r>Af <n’IS:11n> 26(E —E—wN)

e
(1.68)

1
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Since the sum over the states n and m’ is a trace over states in the Heisenberg spin system,

we can conveniently restrict ourselves to that system only and write

1 0O I ‘1

= f dt e’ < > AS’(t), AS(O) > (1.69)
1

°° m, )

where <> denotes a thermal average. This is the famous expression derived in [28]. As

promised, when A3 is well localized, we see that 1/T1 is related to the low frequency

local correlation function.



Chapter 2

Details of the Models

In this chapter we discuss in detail the three models introduced in the last chapter. We

will derive the necessary tools to calculate the relaxation rate 1/Ti and mention some

pertinent issues which can be important in investigating 1-D Heisenberg antiferromagnets

(1DHAF’s) using other means.

2.1 NLu Model: Temperature and Field Dependence of the Spectrum; Exact

Results

2.1.1 Temperature Dependence of the Gap

In this section and the next we will discuss how the excitation energies of the lowest

modes change with varying parameters. This is especially important when one chooses

to perform calculations using the Landau-Ginzburg boson model. Since this model im

plicitly adopts the gap parameters from the NLu model, any dependence of the gaps on

magnetic field or temperature must first be calculated within the framework of the NLu

model. The results can become useful in interpreting experimental data using the simple

boson model.

We would like to begin by extending some recent work by Jolicur and Golinelli [29]

on the temperature dependence of the low energy spectrum. It may seem strange or

even contradictory at first sight to speak of a spectrum as being temperature dependent.

What one must keep in mind is that the low energy description of the NLu model as three

25
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massive bosons with relativistic dispersion, is an effective one. The true excitations of

the model are collective, and if we insist on maintaining a single particle description we

should not be surprised that the effective single particle interactions will be temperature

dependent (as, therefore, will be the effective one-particle spectrum). A similar approach

is taken in BCS theory where the BCS gap has a temperature dependence arising from

a consistency condition.

In Chapter One we introduced a consistency equation, Eqn. (1.44), for the classical

or saddle point value of the Lagrange multiplier field, A, in the NLu model. This result

always holds to lowest order in the fluctuating field A(x), regardless of the value of N in

the large N expansion. Of course, it only becomes exact for N —* cc. We can also look

at the consistency equation as a constraint equation guaranteeing that the two point

function is unity when evaluated at the origin; when N = 3,

1 =< (x) (x) >= G2(O)
= (2 kk+

(2.1)

where we’ve assumed a renormalized mean value for A [10]. Notice, also, that we’re

choosing to work in Euclidean space. One can likewise see that the constraint equation

is nothing more than a minimization of the zero point energy of the system with respect

to the fluctuating field A:

Eo=3fwk — AJ (2.2)

where = vkILk, + A. If we choose to add on-site anisotropies to the model, as

in Eqn. (1.52), then the contribution to the Lagrangian (modulo irrelevant terms which

also break ‘Lorentz invariance’) is

— E((S)2 — (Sfl2) —* D((x))2— E((q(x))2— (Y(x))2)) (2.3)
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We can always find some axes, xyz, so that the addition to the Lagrangian is in the

above form. We can read off the new constraint equation on the Green’s function

v2 ,rdkdw( 1
1

= I (2 w2 + v2k2 + 2 +

1 1
+2 +v2k2+ 2 +

+
w2 + v2k2 + 2

—

(2.4)

Where we’ve once more assumed renormalized masses with the correspondence, v2A +

2vD ++ L2 + L and v2A ± 2vE / ± . As usual, making this model temper

ature dependent consists of replacing the integral over w by a corresponding sum over

Matsubara frequencies. Eqn. (2.4) becomes,

T2 dkf 1
1

= 2ir + v2k2 + L2(T) + L

1 1
+2 + v2k2 +2(T) +

+
w +v2k2+2(T)

—

(2.5)

In summing over the frequencies we use,

1 1 1 cot(’-)
w + v2k2 + m2 = 2 iwk

=—_(i+
2

(2.6)
2wk \. e/3’k

— 1)

where Wk = s/v2k2+ m2. We also need the following two integrals

1 2 e_m_2/2m

f dk
— (ek

— 1)
2f dk

k2 +

= (2.7)

rd/c 2
J —

—log(2Av/m) (2.8)
Wk V
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where A is an ultraviolet cutoff and we made the approximation /3m>> 1. Gathering all

of the above, we can set Eqn. (2.4) equal to Eqn. (2.5) to arrive at

/A2frr\A2 1m\A2fm\ —/T —I+/T —I_/T
j -ok’) e e e

log z ) 2v” + + (2.9)

where + L and z = 4%/± z. Eqn. (2.9) implies a cubic equation for

the square of the temperature dependent gap, L2 (T). Once more making the approxi

mation, j3 >> 1 we can linearize the equation and solve for L(T):

/7f -1/T -/T -t_/T 11 1 1
- + +

- -)
In the 0(3) symmetric case this reduces to the formula derived in [29]. We would like to

say a few things about Eqn. (2.10) before going on to the next section. First, notice that

we implicitly assumed that only the expectation value of the fluctuating field A acquired

a temperature dependence. The renormalized values of the anisotropies, Li and do

not. This is because renormalization occurs at T = 0 first. At non-zero temperatures the

free energy may acquire a term linear in the fluctuations of A; the constraint equation,

Eq. (2.1), amounts to cancelling that contribution in the Lagrangian. The exponential

terms logically appear as a result of calculating

<A >= Tr [e”A] (2.11)

and then subtracting < A > from the Lagrangian. We would also like to point

out that the validity condition for this analysis, /31-sm >> 1, where -m is the smallest

gap, is more robust than seems. It is well known that for a value of the anisotropy,

D J [30, 18], the lower gap closes and the system goes through a critical point, into

a phase with a new singlet ground state (the order parameter is a non-local operator

in spins, and in fact, this transition is not reproduced correctly via the NLu model)

and a gap. At large negative values, D — .4J, the system goes through an Ising
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transition into an antiferromagnetically ordered phase. The bottom line is that D must

be small in comparison with z. Similar, but more obvious, cautionary remarks apply

to E. Moreover, as discussed in [29], the NLu model is not expected to remain valid

at temperatures of order twice the gap. This is because the model does not exhibit a

maximum in the heat capacity and in the magnetic susceptibility as shown in numerical

studies at these temperatures.

Finally, notice that the difference in gaps will close as T increases. This is no surprise

since at high temperatures the mass scales are irrelevant and we expect a restoration of

0(3) symmetry.

2.1.2 Field Dependence of the Gap

We will be interested in adding a magnetic field term to the Hamiltonian. To do so

consistently, we must couple the magnetic field to the generator of rotations (the total

spin operator), > .. In terms of the continuum fields, we couple the magnetic field, fi,
to lvia, —gepB -U

. J dx ix), and add this to the NLu Hamiltonian. The corresponding

Euclidean space Lagrangian is

£ =
- (Ia/ot + x + v2(8/8x)2

- 2vD()2- 2vE(()2- (q5Y)2)) (2.12)

—.2
751

where h = ge/LB ii. In the 0(3) and U(1) symmetric cases, where the field really couples

to a conserved charge, no other terms are allowed in (2.12). In the case of lower symmetry,

we retain this as the simplest form, realizing that other, more complicated terms may

arise. This time, when we integrate out the fields, the eigenvalues of the propagator

are not as trivial. However, if we assume that the field is placed along a direction of
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symmetry, say the z-direction, then the Tr log will be over eigenvalues of the matrix

w2 + v2k2 + z2 — h2 + 2wh 0

0 (12.13)

0 0 w2+v2k2+2+}

Where, again, we’ve assumed renormalized values for the masses. The eigenvalues, rj,

are

773 = w2 + v2k2 +L2(h) + LX

= w2 + v2k2 — h2 +z2(h) ± iJ_4h2ô2 + $ (2.14)

We can write the constraint equation as

d2kI 1 1 11 (2)2 w2 + v2k2 + 2 +
+

w2 + v2k2 + 2 +
+

w2 + v2k2 + 2 —

rd2k/1 1 1
2 I (2.15)

.i (2ir) \773 77+ ?7_J

The integrand on the right hand side has poles at the negative solutions of the equations

of motion

= (k2+z2(h)+)

= (k2 + h2 + L2(h) ± 4h2(k2 +z2(h)) + (2.16)

Integrating over these poles gives

(_L +
— k2 — z2(h) + h2 — — k2 — z2(h) + h2

(2 17)J 2K 2w3 w+(c4_w) w_(w—w)

Before continuing, we mention that the T dependence can easily be worked in by mul

tiplying the terms in the integrand above by 1 + e—1’
respectively. It is possible to

simplify Eqn. (2.17) further to read

rdk/1 1 1 4h2
I—(—+—+—— I (2.18)

J 4K w3 w w_
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where it is now clear that (2.15) is satisfied for h —* 0. This can be shown to be the same

result obtained by minimizing the zero point energy. To solve for z(h), one must decide

on a sufficiently large ultraviolet cutoff and resort to a numerical root finding routine.

In Figure 2.1 we plot the energy gaps of Eqn. (2.16) unconstrained by Equ. (2.15). To

compare, we also plot the field dependent gaps of the fermion model which are generally

considered in agreement with experiment [47] (at least for the material NENP). The zero

field gaps are fitted to the gaps found in NENP: za = 1.17meV, Lb = 2.52meV and

= 1.34meV. The subscripts, ‘a, b’ and ‘c’ refer to appropriate crystal axes of NENP.

The dispersions differ most at higher fields, and for large L. In Figure 2.2 we replot the

gaps but this time correct for the constraint implied by Eqn. (2.17). The lower branches

show good agreement right up to fields close to critical. There is, however, a greater

discrepancy in the gap corresponding to the field direction.

We now turn our attention to a seeming infrared catastrophe which occurs as h

approaches the critical value given by

= 2(h) — (2.19)

this is where the lower gap closes and the integral (2.18) diverges logarithmically in the

thermodynamic limit. At first sight one may hope that for k = 0, the last two terms

in (2.18) conspire to eliminate the divergence for some value of h and LSh) satisfying

(2.19). This, however, requires that

= &(h) ( +
1+

16))
(2.20)

be simultaneously satisfied; this is impossible unless E = 0. In fact, for E = 0, z(h)

is independent of h. This can be seen directly from Eqn. (2.18) or by understanding

that the variation of the zero point energies w = ‘/v2k2+ zS ± h with respect to L.2

is independent of h. Let’s try to get a deeper feeling as to what’s happening. Instead
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of starting with a finite E we can place the magnetic field near the U(1) critical value,

= z(h), and turn on the anisotropy. We write

w(k = 0) = I((h) — h)2
—

(2.21)

We now see that the limits h —+ h and E —+ 0 don’t commute after taking the derivative,

Regardless of the limit at which we start, we can expect trouble when

(2.22)

This is true even for h = 0, which is the simplest case where this problem appears.

Essentially the trouble arises because, returning to the NLu action, we integrated out

low energy modes. In the U(1) case the day was saved by symmetry which prevented the

variation of < A > with magnetic field. There is no such luck in the Z2 x Z2 x Z2 scenario

and for a sufficiently large value of E, it is no longer correct to integrate out all the q fields

even for large N. In the case of large N, one can integrate out all modes but the gapless

one to arrive at a critical theory. This should be done when log (-) N/g. For

N = 3 this criteria may be too restrictive, and instead one can adhere to E << L(h) — h

as the regime where the analysis of this section is valid.

2.1.3 Exact Results

In this section we note some important results which will be useful in the calculations

of Chapter 3. As was mentioned in the last chapter, the 0(3) model possesses special

properties that allow for some integrability. In particular, at long wavelengths one can

say much about the matrix elements of the spin operator even after the 0(3) symmetry

is broken to U(1) by a magnetic field.

As will become clear in the next chapter, we are mostly concerned with matrix el

ements < k, a 82 (O)q, b>, where < k, a denotes a single magnon state created by the
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staggered magnetization operator, q (this acts as a free boson operator in the large N

limit) with norm

<k, alq, b >= 27röabS(k — q) (2.23)

a and b denote polarizations of the magnon states. Clearly, < k + q, aI(O)Ik, b >= 0.

This is obvious when the bosons are completely free; interactions do not change this

picture since they must all be even in bosonic operators. The two magnon operator,

1i(o), is expected to contribute.1 The matrix element is given by the Karowski and Weisz

ansatz [12],

<k,a1(0)q,b >= ie+G(&) (2.24)

where cJJk = /k2v2+ z2 and the rapidity variable, 0, is defined via

sinh(0’ — iir) = k

sinh(8” — iir) = q

0 = 6’ — 0” (2.25)

with

G(6) = exp (2 [ dx (e_2x
— 1)sin2[x(iir — 0)/2ir]

(2.26)
Jo x (ex+1)sinh(x) )

This ansatz is believed to be exact for the 0(3) NLu model, but is only approximately

true for the s = 1 Heisenberg model; however, numerical simulations [16] are in excellent

agreement with this form at least half way through the Brillouin zone. Since we will

largely be interested in 1k — qv < L <<irv, this ‘exact’ expression is more than sufficient.

speaking, since ris qnadratic in , we expect it to be a two magnon operator only in the
large N limit.
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Some particular limits of interest are k q and k —q, corresponding to forward

and back scattering, respectively; in the former case, 8 ilr while in the latter, 0

i-ir + 2kv/.

G(iir + 2kv/Z) 1- (- +

2

(2.27)

This expression is a different result than for free bosons and reflects the effects of inter

actions. We will later see how this might affect experimental predictions.

The above results change when a D type anisotropy is added. Essentially, the dif

ference is that the function, G(0) changes and the gap in the energy of states on the

SZ = 0 branch will be shifted. There are no exact results for this model which is why the

phenomenological boson and fermion models are important. We can, however, give some

universal (ie. model independent) results which only depend on the conservation of total

spin in the z-direction, when the momentum exchange is small, v(q
— kI << Li. The only

part of Sz(0) which will contribute will be, essentially, S_k f dx S’(x). Since this is

a conserved operator, we can write down the one-particle matrix elements immediately:

<k,sZ=±1Sz(O)q,sZ=+1
> ±1 (2.28)

Also true for all values of vlq — are the following

< >= 0

< k,sZ=1sZ()q,sZ=_1
>= 0 (2.29)

In Chapter 3 we will show that it is largely this universal behaviour which determines

the relaxation rate, 1/T1 in anisotropic media.

Note that adding a magnetic field to the 0(3) or U(1) system will break the symmetry

in the 0(3) case (we naturally assume that in the U(1) case, the field is placed parallel to

the U(1) axis), but will hardly change any other results in either model. This is because
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in adding a magnetic field all we have done is add a term to the Hamiltonian proportional

to the conserved charge l = f dx 1’ (x). Since l commutes with the Hamiltonian, they

can be simultaneously diagonalized with all low lying states labeled by their l quantum

number, +1, 0 or —1. Matrix elements of operators can only differ, at most, by some

cumulative phase which corresponds to turning on the field sometime in the past.

2.2 The Free Boson and Fermion Models

We now turn our attention to the phenomenological models introduced in Chapter 1.

After introducing the formalism which we will require to perform calculations, we will

compare and contrast the energy spectra and fundamental matrix elements.

2.2.1 Diagonalization

To do the necessary calculations we need to have a basis of eigenstates for the non-

interacting Hamiltonian and know the expansion of the field operators in terms of cre

ation/annihilation operators for these states.

Bosons

—.2
Relaxing the constraint çb = 1 in(2.12) we see that we seek to diagonalize

2 1 )] (2.30)

For now we assume that the mass and gyromagnetic tensors, D and G respectively,

are simultaneously diagonalizable and work in this diagonal basis (this is rigorously true

when the crystal field symmetry is no lower than orthorhombic — a sketch of a proof is
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found on p. 750 of [41)

Li 0 0 9i 0 0

0 zi 0 G= 0 92 0 (2.31)

0 0 L 0 0

Also, we mention that we’ve set fl = 1 = a, where a is the lattice spacing. This has the

effect of measuring energy in units of inverse seconds or inverse mass:

[E] “..‘ [s]’ [M]’ ‘-.‘ [v] []2 (2.32)

Diagonalizing (2.30) is tedious (especially when the field does not lie in a direction of

symmetry, for then all the branches mix) but the idea is to find the right Bogoliubov

transformation. Working in momentum space, we define

-. 1
4(k,t=0)= ak] (2.33)

fl(k,t = 0) = i/[ —k — ak] (2.34)

[ai, aV] = 27r66(k — k’) (2.35)

w0 is an arbitrary quantity with the dimensions of energy. We need such a quantity to

represent the fields and ]i in terms of creation and annihilation operators. It turns

out that when one writes k and ilk in terms of the creation/annihilation operators

which diagonalize the Hamiltonian, the dependence on w0 disappears. Furthermore, the

eigenvalues of the Hamiltonian are also independent of w0, as might be expected. We

will now restrict ourselves to the case where the field lies in a direction of symmetry.

This leaves (2.30) with Z2 x Z2 symmetry. Now only the excitations transverse to the
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direction of the applied field mix and we need only solve a (4 x 4) set of equations for

the diagonalizing creation/annihilation operators. Without loss of generality, we take the

field to lie in the 3-direction, and set g3 = 1. All told, the Hamiltonian, Eqn. (2.30), for

the mixed states is
p00

H=J Hkdk
-00

= Ak + akA a_k + + akB a_k (2.36)

A=I+—ho2 (2.37)
4 4w0 2

B=-I+-- (2.38)
4 4w0

where o2 is the usual Pauli matrix, and

(zS+v2k2 0
K=I I (2.39)

0 i+v2k2))
The momentum space Hamiltonian can be written in terms of a single matrix M:

Hk= (, a_k)M ( 0)_k)

(2.40)

As discussed in [31], we seek the eigenvectors of the (non-hermitian) matrix jM, where

(A B\ (io\
iM= I = I I (2.41)

\\_B* _A*) \0 —1)

This comes from requiring the new diagonal creation/annihilation operators to have the

standard commutation relations. This also imposes the unusual normalization condition

on the eigenvectors: = 1.
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Summarizing the above, we need to solve:

0 = (+
—

— 2 4 + 4(4)0 (2.42)
—I—--—1ho —I\ 4 4w,j 4 4w 2 2 2

which can be manipulated to give

0
((wo — w)I — hcT2 —(wo + w)I — h2

(
KIho.2 +ôI+ho2 )

The eigenvalues of r1M are already known, as they are the solutions to the classical

equations of motion and come in pairs ±w. These are naturally the same frequencies

given in Eqn.(2.16) with the proper substitutions made for the gaps

w=k2+LS

= k2 + h2 + ± 4h2(k2 +
2) + ( ;

2)2

(2.44)

Ix
Furthermore, we need only work to find one eigenvector of each pair because if

(y*
is a right-eigenvector of iiM with eigenvalue w, then J is a right-eigenvector of

x*)
M with eigenvalue —w (X and Y are themselves two-component vectors).

The bottom rows of (2.43) give the following set of equations

0 = (z +v2k2)±,i — wow±&,1+ ihw0,2 (2.45)

0 = (L +v2k2),2—w0w,2— ihw0,1 (2.46)



Chapter 2. Details of the Models 41

where it turns out to be convenient to work with x X + Y and X — Y. The top

rows can be manipulated to give

o = (h2 — — ihwo&,i + wow±&,2 (2.47)

o = —(h2
—

— ihw0,2— wow±&,1 (2.48)

These can then be worked to give

(z + v2k2 + w —h2)±,i = 2cL.0w,1 (2.49)

(z22 + v2k2 + w —h2)±,2= 2w0w,2 (2.50)

(h2 + L + v2k2 — = —2ih0,2 (2.51)

(h2 + zi + v2k2 — w)Xth,2 = 2ihw0,1 (2.52)

Note that if we fix the phase of Xi to be real then must also be real as X2 and 2 must

be pure imaginary. The normalization condition, XtX — YY = 1, now allows us to solve

for the eigenvectors which form the columns of the transformation matrix between the

old and diagonal bases of creation/annihilation operators. In terms of x and this is

X±,i&,i — X±,2’±,2 = 1 (2.53)

The solution is

— ( wow±(h2+ + v2k2 — w)
1/2

X±,i
— (? + v2k2 + w — h2)(h2+ + v2k2 — wi))

(2.54)

?+v2k2+w — h2
— (2.55)

2wow±
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2zhw0
X±,2

= h2 + Ls + v2k2 —

(2.56)

A2 j 2i2 i 2 j..2
2-” -rW±1&

c±,2 = X±,2
2wow±

With the inclusion of the trivially diagonal unmixed component (ie. the three com

ponent), we can define the three by three matrices x and with the columns labeled

by the eigenvalues (+, —, 3) and the rows labeled by the original masses (1, 2, 3): X33
2k2

V!+v2k2
and

= V
3v

. One easily verifies that

ak= [xk+k k+(X-) bk] (2.58)

Where the b’s are the operators which diagonalize H. Equations (2.54)—(2.58) are the

main results of this section. Before ending, we give some limiting forms for x and . In

the limit h —* 0,

/ Lp 0 0
V /+vk

x =

= :

________

(2.59)

I+v2k2

While in the limit L2 —* ,

/wp / wp

V 2.f2+v2k2 V 2v’2-fv2k2

— —1f — —i / wp / Wp 0X — V 21&+v2k2 V 2./2+v2k2

0 0 Wp

V \/+v2k2

Fermions

We would now like to repeat the diagonalization procedure for the fermion model. The

free Hamiltonian with minimal coupling to the magnetic field (ie. coupling only to
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and simplest parametrization of the mass terms (corresponding to anisotropies and giving

zero field dispersion branches = + k2v2) is

= VãxL —

3

i
— L,iR,i) + i ( X L + R X R)] (2.61)

with, setting v = 1,

°°dk
= f _ + et_,k) (2.62)

I)L
= f°° (e_itãL,k + et4,k) (2.63)

{a, aV} = 2ir6(k — k’) (2.64)

Notice that we coupled the magnetic field to the generator of global rotations,

f dx ix), given by (1.57). the Hamiltonian density in k-space becomes

Hk = c4Mk k (2.65)

where

IIk—iix ii
M=I I (2.66)

—i, —Ik—iix )

-* ( aR,k”\

= i i (2.67)
\ aLk

The idea now is to diagonalize this matrix and find the eigenvalues and eigenvectors.

In other words, find the unitary transformation which diagonalizes H. Once more, we
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assume the field is in a direction of symmetry so that we need only diagonalize a 4 x 4

matrix. Given that the field is in the 3 direction, the eigenvalues are:

w=k2+

= k2 + h2 + ± 4h2(k2 + (1 ±2)
+ ( ;

2)2

(2.68)

It may be more illuminating to write out M in a basis that is more natural to the

U(1) problem. Using

(ak ‘ — 1 (i 1 ‘ (4,k

aJ,J ) 2 —i ) \ a

/ it\ /1 \/ +t\
aL,k — 1 1. aL,k

(2 70)
a)-i i)a)

In this basis, M becomes

( kI — ho3 i1o1 + iSI
M= I (2.71)

—iLo1 — iSI —kI + her3 )
Where L = 12 and ó = 12• The equations for the components of the eigenvectors

possess the symmetries

u1+-u2,u3++u4,h+->—h (2.72)

(2.73)
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where w is the eigenvalue. After some algebra,

2iL(k — w)

= w2+2_(k+h)2_62U1 (2.74)

2i6(k—w)
U3 (w_h)2_k2+2_2U1 (2.75)

2iL(k+w)
U2

= w2 + 2
— (k + h)2

— 62u3 (2.76)

Using the normalization condition,

Iu = 1 (2.77)

we set the phase of u1 to be real for positive eigenvalues; the above symmetries allow us the

freedom to choose a convenient phase for the ui’s corresponding to negative eigenvalues.

U’ = 26(k+w)(w2+LS2—(k+h)2—62)± (2.78)

[482(k + w)2((w2+ — (k + h)2 — 62)2 + 4/2(k — w)2) +

((w+h)2—k2+S2—i2)2((w2+z2—(k+h)2_62)2+4/X2(k+w)2)]

We define the 6 x 6 diagonalizing matrix with columns given by the eigenvectors i4

as

= (L ui,, u,3, uL+, uL,u3) (2.79)

(2.80)
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11 0 000

i —i 0 0 0 0

1 0 0 0 0 0 (v 0
U=—1= (2.81)

V2 o 0 1 1 0 o vu1)
0 0 0 —i i 0

0 0 0 0 0 v’

The diagonal operators, 13k are defined as:

-. ICk’
Ik I I (2.82)

\ dk)

Our freedom in choosing the phases for the eigenvectors corresponding to negative

eigenvalues allows us to write

IR T”\
X= (2.83)

T R)

Each index of this matrix runs over six states; the first and last three correspond

to right and left movers respectively. In the case of U(1) symmetry or higher, each set

would correspond to states of definite spin.

The d’s and c’s correspond to left and right moving fermions, respectively. This

becomes clear in the limit i —f z2 —* 0. Some limiting forms of R and T are:

$ /0

R(h-0)= /EE \/EE 0 (2.84)

0 0
V W3
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T(h — 0) = _/k o (2.85)

o o _i\/2z

o o
o o (2.86)

o

0 0

T(ö_÷0)= o o (2.87)

o o

2.2.2 Discussion: Comparison of Spectra and Spin Operator Matrix Ele

ments

The spectra for the boson and fermion models are given by Eqns. (2.44) and (2.68),

respectively. In the case of U(1) symmetry, L = z, the two sets of formulae agree.

However, with the lower orthorhombic symmetry, the two models are in agreement only

for low magnetic field, h << Min(z1,/.2). The difference is most significant at the critical

field where the lower gap vanishes. The boson model predicts h = Min(L1,L2), while

the fermion model gives h = “LiL2 (see Fig. 2.1 and 2.2). Experimental evidence

seems to favour the fermion model, but there are some subtleties which have previously

been ignored. The data supporting the fermion dispersion comes from neutron scattering

and NMR relaxation rate experiments performed on the anisotropic 1DHAF material,

NENP. In analyzing the data, however, crucial structural properties were neglected in

the interpretation (namely, the fact that the local chain axes did not coincide with the
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crystallographic axes). This, we believe, also led to a seeming contradiction with ESR

data on the same substance which seemed to side with the boson dispersion [47].2 Aside

from material properties, the possible temperature and field dependence of the mass

parameters, zj, has also been ignored so far. Since the boson model derives from the

NLu model, one should incorporate such field and temperature dependence into these

basic parameters. We showed that considering field dependent masses brought closer

agreement on the lower branch dispersion between the models up to fields given by Eqn.

(2.22).

We mention in passing that the Hamiltonian, Eqn. (2.30), is not the oniy quadratic

one possible when the magnetization density is no longer conserved. It is possible to

construct a modified boson Hamiltonian including extra terms designed to reproduce

gaps identical with the fermion model [32]. The only constraint on such terms is that

they do not mix the sz
= 0 modes corresponding to the degree of freedom parallel to the

field. It is not obvious, however, what justifies such a modification other than a more

convenient spectrum which replicates the fermion model at low energies.

The fermion model is expected to become more accurate close to the critical field.

The nature of the critical point was established in Ref. [33]. With U(1) symmetry, the

phase transition is in the two dimensional zy universality class. The lowest lying mode

of the Landau-Ginsburg boson model can be reduced to a single free boson (a phase field

corresponding to the Goldstone mode), but the parameters of the resulting low energy

Lagrangian must be renormalized to give the correct critical exponents of the xy-model.

One does not have to resort to such lengths with the fermion model which correctly

describes the transition without interactions. This is expected on several grounds. First,

the many body ground state wave-function for a dilute gas of repulsive bosons is simply

that of free fermions multiplied by a sign function to correct for the statistics. Second,

2For more details on these matters, please see sections 5.1 and 6.3.
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the U(1) fermionic modes can be represented as particles and holes using a single Dirac

fermion with chemical potential h (this can be seen in the matrix equation (2.71));

this means that at h > z the ground state will be occupied by fermion states, each

with SZ 1, and hence non-zero magnetization. The simplicity of the coupling to h

guarantees that interactions will be as important near h as they are near h = 0. In

particular, they will be negligible in the dilute gas limit. We thus see that interactions

become progressively more important close to criticality in a boson theory, while the

opposite takes place in an equivalent fermion theory.

In the Z2 x Z2 case we expect an Ising-like transition corresponding to the breaking of

one of the Z2 symmetries remaining. Here things are even clearer. Mean field theory for

the boson model is completely hopeless as is evidenced by the unphysical behaviour of the

lowest lying gap at h> Min(z1,z2). This function always possesses a zero even at non-

vanishing k-vectors. Moreover, it is imaginary for fields iJ2v2 + Min(L, /.) < h <

1Jk2v2 + Max(t?, z). The spectrum for the low lying fermion, in contrast, shows all the

desirable properties, vanishing at h = /z1L2 only for k = 0; in addition, the effective

gap, Li — hj, is as expected in the Majorana fermion representation of the critical

Ising model and so is the relativistic dispersion for long wavelengths. Finally, when we

integrate out the more massive fermionic modes we are left with a strictly non-interacting

free Majorana fermion theory regardless of any zero-field interactions in (2.61); this is

because all interactions will be polynomial in the one Majorana field left, and will vanish

by fermi statistics. Thus we see that in contrast with the boson description, the free

fermion theory is actually best near h = h.

To summarize, on general grounds, one can expect qualitative agreement between

both models up to magnetic fields close to h where the fermion model is expected to be

a better description of the system.

We now wish to look at some important matrix elements as phrased in the two models.
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We start by defining,

la,b(k, q) < a, k i0)q, b> (2.88)

we use x ii for bosons to write

l,b(k, q) = — (t(k) x(q) + x(k) (q)) (2.89)

where we define the cross product matrix with the Levi-Civita symbol by E =

Using, r= (L X + bR x ‘j)R) for fermions, we write the analogous expression

la,b(k,q) =

( RV VR + TtaVt Va1T RV V*T* + Tta1Vf V*aiR*
—ii — —

_, I (2.90)
‘ T’V Y2VR + RToiVT EVa1T TTVT DV*T* + RTa1VT V*uiR*)

x , V, a1, R and T were all defined in the sections on diagonalizing the models. As can

be explicitly checked, the 0(3) free bosons are analogous to the NLa model with the

function, G(O), defined in Eqn. (2.24), set to one. This is the general result for the 0(N)

model for large N, and makes sense, since the Landau- Ginsburg model is a large N

approximation to the NLa model. In case of axial symmetry, one need only substitute

the correct gaps into the energy factors:

b
<k,a1i(0)q,b>=jfk

‘ (2.91)
2/

with w = /k2v2 + .

The 0(3) fermion model exhibits a non-trivial G(O)-function. We can use the results

from Eqns. (2.86) and (2.87) in Eqn. (2.90) to calculate that

G(O) = —sech(O/2) = [V(wk — k)(wq — q) + k)(wq + q)]
Wk ± Wq

(2.92)
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To obtain the U(1) results we, again, make the gap substitutions as done in Eqn. (2.91).

This result is quite different than the boson prediction. It, in fact, vanishes with the gap

for backscattering, k ‘ —q. This is because the fdoes not couple left and right moving

fermions while the opposite holds true with the bosons (and NLu model). For small

momentum exchange, all the models give universal predictions for matrix elements of

8Z (0). However, matrix elements of S± (0) at small momentum exchange are somewhat

sensitive to the ratio of the gaps, in the boson model, while not at all so in the fermion

model. In Chapter 6 we discuss experiments which might investigate this behaviour

further.

When the symmetry is orthorhombic there are few conservation laws to restrict the

form of matrix elements of spin operators. Furthermore, when a magnetic field is added,

Lorentz invariance is explicitly broken. We can, however, say that correlations among

spin operators are still diagonal: This is true by virtue of the Z2 x Z2 symmetry. We also

know that the new energy eigenstates, labeled by + and —, are mixtures of eigenstates

of S3 with eigenvalues SZ = ±1. This guarantees that

<k, — >oc: 6j3 (2.93)

It isn’t terribly illuminating to write down the actual matrix elements. We can say, how

ever, that in the boson model, for h —+ h, all matrix elements of form, < —, kIlz(0)Ib, q >,

which are not zero by arguments given above, diverge at k = 0 as fractional powers of

(h — h). Everything is nice and finite with the fermions. This is another symptom of

the sickness of the free boson model near criticality. Again we see that interactions are

expected to play a crucial role in the boson description.

We finish by describing some matrix elements near zero magnetic field. We expect

that the intrabranch matrix elements, < ±,kS3(O)I±, q >, vanish at k = q with the

field. Fork=q=Oandh-+O,
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h 2 32

<—,OI1(O)I—,O >=
(Ls?-:

2) bosons

2h
= fermions (2.94)
i2

where we’ve assumed, L > Li2. The result for < +, OIl(O)I+, 0 > is obtained by

exchanging 2 and 1. Notice that this limit does not commute with the U(1) limit,

—÷ /.. This is to be expected since these matrix elements are constant in the axially

symmetric case.



Chapter 3

Model Predictions for T1’

Let’s recall the expression for 1/T1, Eqn. (1.69), derived in Chapter 1:

= f dte_rt < {S’(t),s(o)}> (3.1)

where h is taken to be in the direction. As discussed in (2.2.2), only diagonal compo

nents of the spin correlation function will contribute. We also assume that the hyperfine

tensor, A23, is local

A2, = Aö, (3.2)

Thus we can write

= A2f dt e_t < {V(
= 0, t), SL(o)}> (33)

where we’ve used translational invariance to evaluate the correlation function at the

origin. We can now take a step back to Eqn. (1.68) and write the above as

1 ( —E,,/T + —E/T

= 2 IAI2I<n!ISV(0)In>I26(E’ — E — WN)
e e

(3.4)
1 fl,Th’,L’

We will concern ourselves largely with the limit, WN <<T << min (note that WN lmK

for H ‘-.‘ 1.5 T), so that the last factor in (3.4) can be set to 2e_EfIT.

Consider now the operator in question, (O) = (0) + (0) x ti(0). We wish to

investigate whether dominant contributions to (3.4) come from the staggered field, (0),

or the uniform part of the spin, (0) x fl(O). Let us first use the boson model to analyze

53
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Figure 3.1: First non-vanishing contribution to relaxation due to the staggered part of
the spin

the staggered contributions. This will be1

cc <n’I(O)In>I26(E’ —
— wN)eEfhT (3.5)

Tistagg n,ni

We assume, that we are in the regime T << min(”’), where 1min(h) is the lowest

(possibly field dependent) gap, or in other words, that the magnetic field is well below

h, and we are therefore well justified in using the boson model (or NLu model) to describe

the situation. Since (O) is a single magnon operator in the noninteracting theory, it

only has matrix elements between states whose energies differ by a single magnon energy,

w(k, h); since qS is evaluated at the origin, k can be arbitrary. In particular, there are

no matrix elements with energy difference, WN (which is essentially zero, compared to

the other energy scales around). Including interactions, there will be contributions at

finite T. The simplest process is shown in Fig. 3.1. It involves aq4-type interaction, as

might occur in the Landau-Ginsburg or NLa model. The vertical line represents the field

1There will not be contributions from cross terms between the staggered and uniform fields. These
vanish because for< njIm > 0, one needs the number of magnons, n + m, to be odd, while this in
turn implies <n urn >= 0. Certain types of strnctural perturbations, such as discussed in Chapter 4,
may change this analysis at high temperature and/or high fields.

a

E= 2
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çb. The incoming line from the right represents a thermally excited magnon of non-zero

momentum, k, and energy 2z (for simplicity, we use the isotropic model at zero field to

make this argument; extending this to the anisotropic models is straight forward). The

two outgoing lines to the left represent magnons at rest (recall that the wave vector, k,

is actually shifted by ir, and so the lowest energy antiferromagnetic spin excitations vary

spatially as e). This diagram gives a non-zero matrix element proportional to )/&

(where ) parametrizes the ‘ interaction). Note, however, that since the initial and final

state energies must be at least 2z, there will be a Boltzmann suppression factor ofe_2/T

to this contribution. Thus

oc A2e_2T (3.6)T1 Stagg

Including anisotropy and a finite field will give various contributions of this type. The

greatest will be suppressed by exp(—2min(h)/T). It is also consistent to interpret this

result as giving the single magnon a finite width at T 0. This, however, cannot change

the conclusion that there is a double exponential suppression factor contrary to the model

proposed by Fujiwara et. al. [34].

Let us now consider the contributions to 1/T1 from the uniform part of the spin:

oc <n’l(0)In> 26(E — E — N)eT (37)
TiUnif

As discussed in Chapter 2, the 1-particle matrix elements selected above are non-zero

in general, even in the non-interacting boson or fermion model. This is because ib(o)

is a two magnon operator, able to create one magnon and annihilate another. In the

presence of anisotropy and magnetic field, the three magnon branches are split, so we

must distinguish between interbranch and intrabranch transitions (see Fig. 3.2). This

is possible since contributions may come from all wave vectors. One set of important

processes (ie. the ones corresponding to transitions between the lowest energy magnon
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Magnon Dispersions For Lowest Two Branches
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Figure 3.2: Inter- vs Intrabranch transitions
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states) will come from single particle intrabranch transitions along the lowest mixed

branch (intrabranch transitions are not allowed along the branch corresponding to sZ = 0

since h is parallel to z). This will be one of the leading effects with Boltzmann suppression

of e- (h)/T, where i (h) is the lowest field dependent gap. It is important to realize

that these will only be present if the hyperfine coupling, A+z, is non-zero. In fact the zero

field gap structure and the choice of direction for placing the magnetic field will affect

whether there are competing transitions. The next contribution, possibly as significant

as the one just described, can come from intrabranch transitions along the second lowest

branch and/or interbranch transitions between the lowest mixed branch and one of the

other two branches. The Boltzmann suppression factor will, again, favour the lowest

energy processes which occur at the gap to the highest branch involved in the transition.

The important point is that the Boltzmann suppression factor for any of these processes

is larger than that associated with contributions from the staggered field. To summarize,

the dominant contribution to 1/T1 at T << min’ will come from Eqn. (3.7).

As we approach the critical field, the above analysis breaks down. As discussed

previously, interactions are expected to become large in the boson model. Moreover, as

the gap closes, the Boltzmann factors will fail to discriminate between the contributions

of the uniform and staggered fields to 1/T1. Arguments involving the fermion model

are tricky because the staggered field has no simple representation in terms of fermionic

operators. However, we explicitly show later in this chapter that the staggered component

will dominate sufficiently close to h.

Above the critical field, the analysis depends on the symmetry. For U(1) or higher

symmetry, the system remains critical and the staggered correlator remains dominant.

For lower symmetry, the gap opens up once more, and sufficiently far above the critical

field, we expect the uniform correlator to dominate once more.
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3.1 T1 for h <<he

In this section we concern ourselves with the regime discussed above, WN << T <<

‘min(1) We calculate the relaxation rate in the isotropic, U(1) and Z2 scenarios.

We begin by deriving a general result valid in this regime, and proceed to discuss its

application in the different cases of symmetry.

Consider a contribution to 1/T1 coming from transitions between branches r and s.

Without loss of generality, we assume that r has a higher or equal gap to s (r, in fact,

could be the same branch as s). We call the corresponding contribution to Eqn. (3.4),

*rs
This will be a sum over single particle states on r and s:

rs
= 4K AI2f 6(ws(q) — r(k) — wN)e )/T, <k, r1i(O)q, s> 2 (3.8)

Note that there will be a similar contribution with the labels s and r exchanged, if s

and r are different branches. This corresponds to scattering an initial particle on the

s branch through the hyperfine interaction to a final magnon on the r branch, or the

reverse process. We take account of both of these possibilities later. Also, we are keeping

WN finite to cut off infrared divergences which crop up in the intrabranch processes. We

now do the integral over q to get

-— 4IAI2 [°°dk(Wr(k)+WN)

Tirs j JO 2K Q(k)

eT (Il,6k,Q(k))12+ Il8(k, _Q(k))12) () (39)
q q=Q(k)

where Q(k) is defined by w8(Q(k)) = r(k) + WN, and l is as defined in (2.88). When

Lr(O) >> T, the above integral will be strongly peaked at k = 0. Moreover, we can

neglect WN in wr(k) +WN. The only factors in the integrand for which we should retain a

k-dependence are the exponential and the possibly infrared divergent denominator, Q(k).
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We therefore write

-11
=

2IAw(0) Q(o))12+ I1(0, -Q(o))2)

P00 e(k)/
I dk

Q(k)
(3.10)

Jo

It is not too difficult to show that to first order in small quantities, k2 and N, one has

(8w’’ Iaw’\
(3.11)Q2(k2) Q2(0) +

l )q=Q(O) )q=o

We can also expand the exponent:

w(0)/T+ (3.12)r(k)/T

( ( k

2wr(0)T )
The relevant integral over k then becomes

() k2

g=o
e 2wr (O)T

/ dk (3.13)
i”’ “-‘ kJO Q2 (0) + oq2 ) q=Q(O) 8q2 } q=O

(2)
k2

By changing variables,
2r(

—+ k, we can write (3.13) as

—k2a’ 00f6w\ (0w\
J dk (3.14)

Jq=o )q=o ° yk2+ €rs(T, h)

where

c8(T,h)
— Q2(o)

()qQ(O)
(3.15)

— 2wr(0)T

The h-dependence of c will largely come from its dependence on r(0). The integral

can be expressed in terms of special functions:

lOw 2

eT,2Ko (rs(T, h)/2) (3.16)
/ q=Q(O)
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where K0 is the zero order modified Bessel Function. When the gap, Wr(0), is very large

compared to the typical momentum, Q(0), exchanged in the transitions, (this is the case

for intrabranch transitions), crs —* 0. In this limit

e8(T,h’’2Ko (ors(T, h)/2) —+ — log (crs(T, h)/4)
—

(3.17)

where ‘y = 0.577216... is Euler’s constant. We can now summarize

I = 2IA2)r(0)
(il,(o, Q(°))12+ 1(0, -Q(°))12)eT(0)1T

Tirs j ir

(O4) 2 (4) 2

e(T,2Ko (ors(T, h)/2) (3.18)
q Q(0) q 0

The full expression for the relaxation rate is

(3.19)

The effect of interchanging s and r in (3.8) is therefore included in the above.

An important thing to learn from the above calculation is that contributions from

transitions between states involving small momentum exchange (Q —+ 0) will dominate

due to the logarithmic divergence in (3.18). This is particularly the case with intrabranch

versus interbranch transitions. In intrabranch transitions one is allowed momentum ex

changes as small as Q ‘s.’ 2Lr(0)WN/V. This will typically be much smaller than the

smallest allowed interbranch momentum exchange, Q ‘‘ (Lr(0) —8(0))/v. The conclu

sion is that, unless the branches in question are extremely close to each other, interbranch

transitions will play a secondary role to intrabranch processes, even ignoring the more

obvious suppression due to different Boltzmann factors. Of course, if the hyperfine inter

action has high symmetry, one will not see intrabranch transitions at all. This suggests

that an NMR relaxation study could provide information as to the nature of the hyperfine

tensor.
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Before expounding on this result in the individual cases of different symmetry, we

would like to mention the effects of higher temperature, or correspondingly, including

the k-dependence of the various terms approximated at k = 0. In the more general

Z2 x Z2 situation2,we are strictly justified in expanding the exponent in Eqn. (3.12) only

for T << (h). For higher temperatures, one expects contributions from k > Lr (h)/v,

where the expansion is not convergent; in this case one is better off numerically integrating

(3.10) (making the k = 0 approximation for the other terms is still valid, as we will see).

In either case, we can estimate the error in neglecting terms of order k2. First, notice

that all gaps are always greater than v2k2 + L — h, where is the smallest zero

field gap. We therefore write

—c,.(h,k)/T

f dkk_e f dkk21e_V22_1m/T

Jk2 + Q2(k)

=

-— i: dwe_Tw(w2— 2)Th_1
< e_(m_h) (2Max(T 1m))2fl

(3.20)

The last estimate is actually quite generous, especially for large n. In the worse case

scenario of the Haldane phase, /v ‘ 1/4. This allows us to expect an error of at most

10% in neglecting the k-dependence of the terms in (3.10).

We still have to estimate the error incurred in making the expansion in the exponential

at T << The next term in the expansion is with v
= ()qo•

This will

give a contribution,

‘ kv e_k2/2(0)T Te_(O)/T
e_/’T I dk r

_______

(3 21i 8zT /k2+Q2 4Lr

This is potentially more serious as T —÷ /.x,. or —* 0. To summarize, Eqn. (3.10)

is generally a very good approximation; when T << r, one can safely expand the

exponential, while for T , one is better off numerically integrating (3.10).

2One is more fortunate in the U(1) case; because of the simplicity of the gaps, the expansion is good
for k &L, regardless of the value of h.
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A

Intrabrancil Transitions

Interbranch Transitions

Figure 3.3: The gap structure for 0(3) symmetry.

3.1.1 Isotropic Symmetry

In the case of 0(3) symmetry, the field dependent gap structure is as in Fig. 3.3. The

lowest and highest branches correspond to magnons with sZ = ±1 respectively. The

middle branch corresponds to Z
= 0. The interbranch gap is h. Using the result of

the previous section and that of 2.1.3 we can immediately write down the intrabranch

contributions to 1/Ti:

-—
= A2±[1og(4T/w)

— 7] (e__!T + e_T) (3.22)
Tijntra irv

where in this case, Q = 2wNL/v2. It is quite likely that higher dimensional effects may

cut off this contribution at energy scales larger than WN. For example, weak interchain

couplings, J1, would replace WN in the above expression by a quantity of order J1.



Chapter 3. Model Predictions for T’ 63

The interbranch contributions between the lower two and higher two branches can be

likewise calculated to give

!
= (IAI2+ IAI2)e/2TKo((h + + e_T)(3.23)

T1 Inter ltV 2

Following Fujiwara et. al. [34], we write

=
--- + ---- F(h,T)eT (3.24)

T1 TiJntra TiJnter

We see that the nature of F(h, T) depends largely on the form of the hyperfine coupling. A

less general and somewhat more qualitative version of this formula was given by Jolicceur

and Golinelli [29], and by Troyer et. al. [35], independently of our work. Jolicceur and

Golinelli discussed the isotropic NLu model and derived only the leading exponential

dependence on temperature; Troyer et. al. considered the Heisenberg ladder problem,

which has a low energy one-magnon excitation spectrum identical to that in the isotropic

NLu model, and only included the leading interbranch transition in their expression.

3.1.2 Axial Symmetry

Here we are faced with two possible situations: the sz 0 branch can lie above or below

the doublet. In the former case, the larger the interbranch gap between the doublet and

the singlet branches, the more suppressed will be the interbranch contributions to l/T1.

On the other hand, in the latter scenario, inter- and intrabranch contributions will always

be on the same footing (see Fig 3.4). The expression for the intrabranch transitions will

be essentially identical to the one in the 0(3) case:

I = IAI24[log(4T/N) —7](e_(_/T + e_+T) (3.25)
Tijntra 7rv

where zj is the gap to the SZ = ±1 branches and L3 is the gap to the SZ = 0 branch.

The corresponding formula for the interbranch transitions is somewhat more subtle and
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(a) (b)

Intrabranch Transitions A3
---- Interbranch Transitions

Figure 3.4: The gap structure for U(1) symmetry. (a) / > &L; (b) z3 <
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(zS.—h)2— — Q(O)v2 h < —
_) 2T — 2tT 3

2rs 2 2 2 2(ta+h) —z — Q2(O)v —
23T 23T 3

I &L—hM(h)—h h<L—Li3
M(h) = - (3.29)

(Ls3=M(h)

A seeming catastrophe occurs when two of the branches cross at h = I3 — The

interbranch contribution to 1/T1 diverges logarithmically. There are essentially two ef

fects that would cut off this divergence. Higher dimensional couplings can be counted

on once more to replace Q(0) as it approaches zero, with a quantity of order 10J1/J as

derived in Eqn. (4.40) in Chapter Four. Also, the divergence in the integrand leading

to this problem is 1
. This will be cured by a field with finite width. One

i/h— I
still expects a peak in the relaxation rate, but this will be smoothed by the mentioned

effects.

3.1.3 Z2 x Z2 x Z2 Symmetry

There isn’t much more to say which would be illuminating in this case. We can, however,

easily give the results for intrabranch contributions. These behave as the analogous

expressions from the more symmetric situations.

1 4Aj2
= (log(4T/wN) — y) x

lijntra

(l(0o)2W(o)
() -1

e(0T + (- +)) (3.30)

1_ (0, 0)12 depends on h as per Eqn. (2.94). The formulae for interbranch transitions will,

again, depend on the positions of the branches and the relative gaps between branches.

Note that if there are intrabranch transitions allowed by the hyperfine coupling, then

there will also be transitions between the + and — branches. Finally, from Eqn. (2.94),

we see that (3.30) vanishes quadratically with the field.
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3.2 Close to the Critical Field

In this section we give qualitative results on the behaviour of the relaxation rate and

in the process prove that the contribution from the staggered correlator becomes crucial

as h —+ h. We assume that we are now in the regime Ih — hi << T. In this limit,

intrabranch processes along the lowest branch will dominate. Even if the hyperfine tensor

possesses high symmetry (thereby ruling out intrabranch contributions from the uniform

spin operator), we expect intrabranch contributions from the staggered part of the spin.

Since the fermion model becomes exact in this limit, we will rely on its predictions. Long

wavelength modes are now expected to play the most important role; we therefore write

the dispersion relation of the lowest branch as

w(k, h) = f (h — h) + v2k2 0(3) and u(1) cases
(3.31)

( (Z2)3 case

where v = and the effective gap is = 2(h — h)h/(L1+ /2). Now

that the gap is actually smaller than the temperature, we must include multiparticle

processes. This is simply done by replacing the Boltzmann weight by the appropriate

occupation factors, f (w) (1—f (w)). The derivation is straight forward and can be found

in standard texts on many body physics (for example, see [36]). The uniform contribution

to the relaxation rate is given by

(Ti-’) = 41A iilz(oo)I2fOOdk(w+WN)ff(W)(l - ff(w)) (;)-‘ (3.32)

Due to the simple form of the density of states in the isotropic or axially symmetric case,

one still obtains logarithmic behaviour for the above formula. In the anisotropic case,

things are a bit different. We can combine the last expression with the results from 2.2.2

to get

— 4iA’ 2 z1z2
dk

(w + wN)sech2()
3 331 )Unif — 71V2 (‘ — z2)2 Jo i/(w + WN)2 —
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At criticality we set /e = 0. We may simply rescale the integration variable to obtain

(T_1)Ufljf oc T (3.34)

This is expected from the Ising model where the uniform part of the spin corresponds

to the Ising energy density operator3,, of scaling dimension 1. In terms of Majorana

fermions this operator is ‘/L?’R = . The correlator of the energy density operator on

the infinite Euclidean plane is known from its scaling dimension and the restrictions of

conformal field theory to be [24]

< f(z)E(0) >= 1/jz2 (3.35)

If periodic boundary conditions are placed in the time direction (corresponding to finite

temperature), the correlator can be obtained by making a conformal transformation from

the Euclidean plane into the cylinder (see [24, 37]), z =e28T:

1irT1 ‘2

<f(z)f(O)>
lye)

(336)
sin(Tirz)12

Setting z = it + 6, we can get the contribution to T by integrating over f dtet:

1dt -jwNt (irT/ve)2
1 ) Unif e

sinh(T7r[t — iö]) 2

Changing variables, and assuming the integral is analytic as UN —* 0 (this can actually be

proven by contour techniques), we see that by rescaling the time variable we reproduce

Eqn. (3.34).

We now turn our attention to the behaviour of the staggered correlator at criticality.

We know the form of this function in both U(1) (and therefore 0(3)) and Ising cases

from Ref. [33]. On the infinite Euclidean plane we have

<t(z)(O)>zI U(1)
(338)

<u(z)u(0) >r Z Ising

3The rest of the analogy goes as follows: the magnetic field plays the role of temperature as is obvious
from the form of the spectrum; the inverse temperature is analogous to the size of the system in the
Euclidean time direction; finally, the staggered magnetization corresponds to the disorder field, ci.
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The field = q + iq’ is the charged U(1) field of the boson model; there are no

problems in using this (in the U(1) case) as long as we account for the interactions. u

is the disorder operator of the Ising model. It is highly non-local in fermionic language,

and aside from its dual, the order operator, and the energy density operator, is the only

primary operator in the model. Once more, making a conformal transformation into the

cylinder of circumference 1/T,

<t(z)(0) >
(2T/v U(1)

I sin(irzT)I (339)
< a(z)a(0) (-T/v Ising

sin(irzT)I

Once more, setting z = it +6 and integrating over time, we get that in the experimentally

important limit, T >> WN,

(TI’)stag cc (2rTL/v2)_ + O(WN) U(1)

(TI’) stag ° (irT/ve)* + O(WN) Ising

(3.40)

For both symmetries, this implies a significantly stronger contribution from the staggered

part than the uniform part. In fact, as long as we are sufficiently close to the critical

regime, perturbation theory tells us that the above result will only be suppressed by

factors of order O(Ih — hI/T). In order to observe this behaviour experimentally, one

must have T sufficiently large (having a large anisotropy,
— 2, would also help), so

that the decrease in relaxation with temperature is obvious. This would require that the

experiment be done over a broad range of temperatures so that any constant contributions

to 1/T, could be subtracted. In any case, the above should at least serve to clarify that

the staggered contribution becomes important in this regime.

Farther still from criticality, the analysis breaks down. We do, however, expect the

staggered spin contribution to influence TI’ through to the region T Ih — hI.
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3.3 Above the Critical Field

Far above the critical field, h — h >> T, the situation becomes even simpler. In the

0(3) and U(1) case the system remains critical. The relaxation rate will be dominated

by the staggered part of the spin. The fact that develops a vacuum expectation value

(or likewise, the non zero magnetization of the ground state) will have no effect on the

relaxation rate since WN isn’t strictly zero:

f dt < 0IS(t,0)0 >< 0S(0,0)0> eLvt = 21r(M)2ö(wN)/L2 (3.41)

where ii is the magnetization. We can therefore say that for the 0(3) and U(1) models,

the relaxation rate (assuming WN <<T) has the simple temperature dependence

cc (2irzT/v2)’’ (3.42)

where is the critical exponent of the staggered spin correlator. Haldane argued ij =

+ 0(p), where c = I 1I/L [38]. Thus the field dependence of 1/T1 is only through i.

When axial symmetry is broken, the gap reappears for h> h. In this case, one can

use the fermion model to calculate the relaxation rate. This is made much simpler since

the gaps to the two upper branches are presumably much higher than the lower gap (by

at least 2L_ (h)). Therefore only intrabranch processes along the lower branch need be

considered. The result is

1 = () l(0,0)2(log(4T/wN)
- ) (3.43)

At sufficiently large magnetic field, h >> Li
—
L2, some of the expressions simplify:

l,_(0, 0)12 1 —÷ h
—

(z2 +z1)/2

2v2 / ‘2+11’\

2 + — 2 ) (3.44)

The rate will drop exponentially with increasing magnetic field.
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3.4 Summary

We would like to summarize the main results of this section. At temperatures much lower

than the lowest gap4, Lm (this can be below the critical field or far above it in the case of

Z2 symmetry), T’ e_m/T. This is due to the dominance of two magnon intrabranch

relaxation processes. In the case of axial or higher symmetry, the only temperature and

field dependence comes from

--- cx [log(4T/wN) — (3.45)
T1 Intra

Given such symmetry, this is a model independent result. Including anisotropies and

interbranch processes, the relaxation rate is given by Eqns. (3.18) and (3.19).

When the lowest gap is much smaller than the temperature, the dominant contribu

tions come from one magnon processes (due to the staggered part of the spin). When the

field reaches its critical value, whereupon the gap vanishes, the relaxation rate is given

by Eqn. (3.40). Above the critical field, the system remains critical with axial symmetry,

and the rate is then given by Eqn. (3.42). With Ising symmetry, the gap reopens and

eventually becomes large once more.

4We refer to the lowest gap corresponding to a polarization direction perpendicular to the field.
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Material Properties and Possible Effects on Experiment

4.1 Hyperfine Tensor

Here we briefly discuss the effect of the nature of the Hyperfine tensor, A, on the NMR

relaxation rate. As a reminder, u and v are spin indices while i and j are spatial indices

coupling the nuclear spin at site j to the atomic spin on site i.

Assuming the magnetic field lies in the z direction, if Aj’ is isotropic in its spin

indices, only AI2 will contribute in Eqn. (1.69). In particular, there will be no

intrabranch contributions as these require a coupling to S. Interbranch transitions

will not be limited, but no contribution to them will come from the term proportional

to These statements still hold true for a hyperfine tensor diagonal in the

Heisenberg spin basis. Note that this implies that for the 0(3) model, intrabranch

transitions are prohibited so long as one assumes that the nuclear gyromagnetic tensor

is simultaneously diagonalizable with the hyperfine tensor.

In general, especially if the NMR nucleus does not coincide with the magnetic ion

giving rise to the effective spin in the 1DHAF, the anisotropies on the spin chain will

not be simultaneously diagonalizable in the hyperfine tensor basis. Moreover, if there

is more than one nuclear moment per spin contributing to the signal, it is unlikely that

the effective will have the same symmetry as the nuclear Zeeman interaction. Thus

conditions have to be quite convenient for intrabranch transitions to be missing from

the rate. This can be important at very low temperatures where we can experimentally

72
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distinguish between the processes. First of all, intrabranch transitions along the ‘—‘

branch will increase exponentially with field (for example, in the 0(3) symmetric case,

the behaviour is e_(_1)/T). This can be a most obvious difference at low temperatures.

However, as is clear from the discussion in the last chapter, the —‘ gap can lie above the

= 0 gap (for example, if one places the field along the a-chain direction in NENP);

thus both inter- and intrabranch processes will feature the same exponential rise with

field. Also, it is possible that the lower gap depends very weakly on the field for certain

magnetic field directions. This is true for anisotropic materials where it is difficult to

place the field along a direction of symmetry local to the chain. There are two ways

to distinguish the transitions in these cases. The simplest solution is to repeat the

experiment changing the magnetic field direction until one clearly sees the e_(l)/T

behaviour. Alternatively, one can try to extract information out of the low temperature

behaviour, rather than field dependence. For T h, F(h,T) in Eqn. (3.24) will behave

as log(T/wN) — ‘y if intrabranch transitions are allowed. If they are prohibited, F(h, T)

will more likely behave as /T/(6 + h) where S is roughly the smallest interbranch gap

at zero field.

In principle, if one has enough information about the gap structure of the chain, it is

possible to deduce the relative values of the hyperfine matrix elements from the relaxation

rate. This may be done by comparing the ratios of the rates measured with magnetic

field along each of the effective gap directions (or in case of high symmetry, any three

perpendicular directions); assuming one has extracted the intrabranch contributions from

the measurements of 1/T1, one can then work backwards using

— cc A3I2 (4.1)
Tilntra

(3 corresponds to the field direction) to arrive at ratios of the hyperfine matrix elements.

This will be, presumably, model dependent even in the low field limit. In Chapter 6, we
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suggest experiments which would distinguish between the models.

Finally, we discuss nearest neighbour effects of At’. When these exist, contributions

to 1/T1 will come from the correlation function,

<S(t)S1(O) >= <S(t)S”(O)> (4.2)

where S is the nth fourier mode. Taking N —+ cc, we write

<S(t)S÷1(O) >=< S(t)S(O) >
+ f (e _i) <S(t)Sk(O)> (4.3)

Expanding in k, the odd contributions in k from the second term will vanish when

integrated over all states. From the work done in the last chapter, we know that powers of

k2 will give small perturbations of order 2L2/v2.We see that including nearest neighbour

contributions, the relaxation will be essentially given by making the substitution,

—* A + Aj (4.4)

in all previous expressions where, A, is the nearest neighbour hyperfine coupling.

4.2 Impurities

So far, we have dealt with a single, infinitely long spin chain. In real experiments,

however, chains are always finite, and they come in three dimensional crystals, and so

there are many chains of varying lengths in each sample. In this section we deal with the

fact that these chains often end or have defects. This is what we mean by impurities.

Of course one can introduce doping (for example, replace some Ni sites in NENP with

Cu) to explore the issue further; we will restrict ourselves to ‘pure’ samples, although

our treatment can be extended to doped samples.

We start by describing a ‘finite’ chain. Exact work on a related S = 1 Hamiltonian

— the ‘valence bond solid’ [39], which also features a unique ground state (in the ther

modynamic limit) and a gap — has indicated that at the ends of a finite chain there are
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free spin-i degrees of freedom. It is expected that the same holds true for finite chains

of the Heisenberg antiferromagnet. Indeed, there has been convincing numerical and

experimental evidence for this conjecture [40, 41]. The same evidence also supports the

notion that these nearly free end spins can interact with each other, essentially exchang

ing virtual NLu bosons. The interaction is exponentially decaying with the size of the

chain:

H1 ( i)Le_L/ 4o SL (4.5)

Here, the correlation length, , is roughly six lattice spaces. For experimentally realizable

lengths, this interaction is negligible and the finite chain has a fourfold degenerate ground

state.

In a ‘pure’ sample, these finite chains will lie end to end, or be separated by some

non-magnetic defect. It is therefore reasonable to presume that two adjacent end spins

will interact with an effective exchange coupling, J’, that will vary in strength from zero

to something of order J. Recent work [42] has explored this situation in depth. For weak

coupling between adjacent end spins the effective Hamiltonian can be written,

H=J’1•g22j. g (4.6)

where is a spin-i operator and c is the projection of a spin-i end spin into a spin

subspace. From numerical work [41, 16], we know that c 1. This immediately

gives a low lying triplet above a singlet with a gap zE = o2J’ (we assume that J’ is

antiferromagnetic. The ferromagnetic case is expected to give similar results, reversing

the order of the singlet and triplet, but numerical work has not yet been done to support

the analysis in this limit). This triplet will sit inside the Haldane gap. The triplet

corresponds to bound states at the chain ends; this has been seen numerically in [42],

which also demonstrated that the above first order perturbation theory result for
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Figure 4.1: Impurity level diagram when D’ = 0.

is accurate up to JE ‘- .3J. The embedded states become delocalized and join the

continuum at about J’ .7J. This picture is unchanged up to about J’ “-‘ 2J, after

which the triplet returns as a bound state in the Haldane gap to merge with the singlet

state as J’ —+ oo. In the type of chain we are considering, J’ is unlikely to become much

greater than J; it is much more likely that defects in a pure sample will serve to reduce

the effective coupling between sites rather than enhance it.

To understand the effect on NMR relaxation we explore the environment of NMR

nucleii near the end spins’. Take, for example, the nuclear spin coupled to . It sees the

Zeeman split level diagram shown in Fig. 4.1. If we assume that the ‘free end spins’ are

not completely free, but are weakly coupled to the magnons on the chain, then relaxation

can occur in two ways: when two levels are WN apart the chain end spin could make a

transition — this will happen for a fields h .‘ J’. Alternatively, a thermal magnon coupled

to the chain end could decay into another magnon with or without the accompaniment

of an end spin transition — again, the energy difference between initial and final states

‘We would like to thank D. MacLaughlin for privately communicating his suggestions on the effects
of end spin excitations in NMR.
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must be WN. Marked on the diagram are the transitions that can be induced by g: solid

arrows represent possible transitions that potentially do not require coupling to the rest

of the chain; dashed arrows represent transitions that could occur only if the impurity

is coupled to the rest of the chain; solid circles represent spectator transitions which,

again, require magnon assistance. It is easy to see that in all the above scenarios, the

transition will be broadened by thermal magnons. This implies that the characteristic

width will have a temperature dependence exponential in the Haldane gap. There is an

additional mechanism, which we now discuss, that can, in general, affect this picture.

If the material is anisotropic, with for example, a D-type anisotropy, we must add the

following term to the chain-end effective Hamiltonian, Eqn. (4.6),

HE —÷ HE + ci2D ((S1)2 + (SI)2) + D’S’S’ (4.7)

The first term is the familiar on-site anisotropy; it will only contribute a c-number to the

effective Hamiltonian. The second term is allowed by symmetry, and we presume that it

is a consequence of the defect (which arguably, would manifest itself in accordance with

the available symmetry). We assume D’ > — J’, so that the exchange interaction is still

antiferromagnetic in the z-direction. As a result of this, the two Z
= levels will shift

by —, while the SZ = ±1 levels will be shifted by . The transitions induced by the

hyperfine interaction are shown in the new level diagrams in Fig. 4.2. It is this more

general case for possible transitions which we now carefully analyze (further anisotropic

purturbations will not qualitatively change the picture).

We begin by characterizing the interaction between the bulk magnons and the end

spin. Since we have no information as to the nature of this coupling we will parametrize

it in the spirit of Mitra et. al. [43] using free bosons which after scattering with the

impurity obtain a phase shift. We make two assumptions: first, that leakage across the

impurity site is negligible, and second, that the impurity spin coupling to the boson does
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Figure 4.2: Impurity level diagrams for D’ # 0.

not allow for exchange of spin (this is consistent so long as J’ is sufficiently weak); bosons

on each side of the impurity will have wave-functions of form:

C(k) (e — e_2i6e_?j (4.8)

where i refers to the boson branch, k is assumed positive, IC±(k)12 = 1/2L and ± refers

to the sector of the impurity spin with SZ = ±. The boundary condition, q(L) = 0,

gives

k = (nir — k))/L (4.9)

We assume that the phase shifts are small and grow with increasing energy. This is

tantamount to assuming a large step potential barrier of infinite extent (thus allowing

no leakage for states below the barrier). This is certainly true in the limit J’ —+ 0. A

D’>O

k >

itt>

It i,> kJ+D’/2

It k

144>

Itt>

It >-I t>It >— I t>
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heuristic ansatz which has this behaviour is

6(k) (4.10)

Notice that the ‘s need not be orthogonal to the q’s, since these states are in separate

Hubert Spaces. The energy of one of these bosons at low temperatures is given by the

free form

v2(ki±)2
(4.11)

Before going on we note that WN is typically much smaller than the energy level spacings

due to finite size, for typical chain lengths. For example, in NENP, 5E .04 Kelvin for

chains L -‘ l000a. One may therefore question the validity of boson assisted transitions

when the bosons lack the ability to ‘fine tune’ a transition so that the difference between

initial and final states is WN. What saves the day, in this case, are higher dimensional

effects. For sufficiently long chains or sufficiently strong interchain couplings, these will

densely fill the spacings in energy levels along the chain direction. Assuming this is the

case, (we show the conditions for this explicitly in the next section) we will not worry

about this point further.

Consider the coupling of a nuclear spin to one of the impurity spins, say S (from

here on we will implicitly write S = S’, for ease of notation). The familiar formula for

the transition rate can be cast as

1
j- =—j dte”tIA12

11 n,l,n’,l’

{ < n1; lIe t)(HHSILIe_it(J:1+HE)Ir; 1’ >< n,; l’IS’ mi; I >

+ < n1; lIe_(HHSIn,; 1’ >< ni,; lIeit ô+H)SILIe_it(H HE)1j; 1 >} (4.12)

where ji = —/2 = ±, 0. Hb is the free boson Hamiltonian; Ii; m1> denotes a state of the

impurity spin (ie. an eigenstate of HE), which for brevity, we denote as 1 >; n1 denotes
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the boson content of the state; in general, ni; I > will contain two different multiparticle

free boson states that have projections onto the S = ± subspaces of 1; m1 > (with

appropriate phase shifts). To elaborate and make things a bit clearer, take the S’ = 0

state from the triplet.

ni,0; 1,0 > (I t, > øIn > +1 t t> ®In>) (4.13)

where the states d: > correspond to the phase shifted bosons with S’ = ±, respec

tively. Making the approximation, a = 1, we return to the relaxation rate:

1 2 roo
— =

— I dt —ZWNt 2

11 —00 IL

ez’) cos(t[E1 — + e — Ei’])I < IlSILhIl, > 1l <ntn, > I (4.14)
n,1,n’,l’

Let’s pick a particular transition and work it through. Consider ,u = +, 1 >= 1, 1 >

and It’ >= 1, 0 >. This transition could be of the type we’ve been discussing where for

h ‘ D’/2, we expect strong resonance if D’ > 0. The expression for the rate becomes

I’, i) = e_’’/2_ L dt e_tIA_+l2

Re e n+eit(En E_!)1
< 2 (4.15)

I,. )

Since the boson multiparticle states, < n, are direct products of symmetrized free N

particle states, and since the energy of such a state is the sum of single particle energies,

we can write the last equation in terms of single particle states:

1’, ) = —e(J’/2) L dt etIAI2

Re {eith12ExP (_z1 + e_+eit+__,)I <n iIn’;i> 12) } (4.16)
n,n,,i,j
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where we’ve used the fact that the grand partition function for noninteracting bosons

is the exponentiated partition function for a single boson. n and n’ now index single

boson states, and i and j denote boson branches. The overlap of the boson states can be

calculated from the form given by Eqn. (4.8),

I <;iln’;j> 12 = 8
(sin(6?fk)±6(k)) — sin(8k)_8(k)))2

(4.17)

where we have parametrized the momenta of n and ri’ with k and k’, respectively. Finally,

we write the one particle partition function (we can ignore the phase shifts for this

purpose) as

=e3El+ <n;iln;i>

= I <n; ilri; i> I (4.18)
n,i

Combining all of this allows us to write the exponential in Eqn. (4.16) as

e_/Tf
dkdk’4

(k2k)2

(i
—

(k2 —k’2)v2
xe_)2k2/2i(eit 2

— 1) (4.19)

8T 00 1 —

= — elT
v22

(i — i)2 j dx dx’e { (_ x’)2 ] e(t) (4.20)

The effect of the phase shifts is contained in the factor, c\i — ,\i)2, as seen from Eqn.

(4.10). Corrections to this due to 0(k3) contributions to 6(k) will be suppressed by

factors of 2L1T/v2.The imaginary part of e(t) will shift the resonance from h = D’/2.

This shift, at low temperatures, will be negligible. We are interested in the long time

behaviour of e(t). In this limit, the real part of e(t) becomes:

Ree(t) —

— i)2f dx dxIe5m(r
— x’)Tt/2)
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—* _e_j IT8iT(
—)2tI —F(T)ItI (4.21)

The expression for the relaxation rate becomes

1 A2
— (1, 1’, )

< dt e_t cos (t(D’/2 — h)) e_ItT) (4.22)

‘ A—--2 F1T
=

‘2
e_(J’+UJ’/2_1) I (4.23)

ZE P2(T) + (h — D’/2)2

This is the most important equation of this section. The other transitions can be treated

the same way to arrive at analogous results. The key issue to note is that the impurity

relaxation rate is an extremely sensitive function of the temperature and field. At tem

peratures well below the gap it is essentially a delta-function of h. As the temperature

increases and becomes comparable to the gap, the rate broadens rapidly.

Before summing up, we discuss the other possible transitions. First, notice that

changing ,u has the same effect as reversing the sign of h and exchanging 1 and 1’:

JL —+ ü —* h —h ÷—* 1 -* 1’ (4.24)

Note that in this simple model of boson-impurity coupling there are no transitions via

S2’, and therefore no transitions between the singlet alkd the s2 = 0 state of the triplet.

In other words, the solid circles in Figs. 4.1 and 4.2 are ignorable as are the dashed lines

from Ii, 0 > to 0>. This is expected in all but the most extreme of anisotropic exchange

impurity models. Furthermore, the effect of reversing the spin states on the triplet is the

same as reversing the sign of magnetic field:

m1, mj’ —+ —m1,—m1’ +—+ h —+ —h (4.25)
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Finally, the result of exchanging the 0, 1 > state with the singlet amounts to adding J’

to the associated energy factor in the Lorentzian. A final expression for the impurity

relaxation rate involving all eight possible impurity level transitions is
1 4 2 A—Ui2
-- ““ D’—4’ ,—13Ei

‘‘ (426rp ‘ — ‘- j’—’

‘ P2”T’ E211 i1 f1 ‘—‘E ) T fi

where E1 denotes one of the four possible initial impurity states, and Ef is the difference

in energy between the initial state and one of the two possible consequent final states.

The factor of two represents the contribution of both end spins on each chain (we neglect

surface effects). Now it can be seen more clearly that all but two of the elements in the

sum above will contribute little due to the narrow gaussian form. The important terms

are those where the energy in the gaussian is small; this can happen for certain magnetic

fields: h ID’/21 and h J’ + D’/2. In Heisenberg chains we might expect J’ >> ID’I
for most defects. Furthermore, the impurity contribution should be most evident at

lower fields where the gap still lies high. Consequently, in experiment, one expects the

h ID’/21 transition to dominate the picture of impurity contributions to 1/T1.

In a real sample, the NMR signal from the impurity will be proportional to the density

of the impurities. Moreover, since defects will vary from chain to chain, one would be wise

to average over a random distribution of couplings, J’ and D’. In practice, experimental

data could be analyzed for the ‘peak’ values of J’ and D’. One could then model the

distribution of couplings with the appropriate peak values. This could, in principle be

checked against low temperature ESR measurements which ought to concur with the

impurity model.

A final expression for the relaxation rate due to impurities is

(---) = fdJ’ dD’ p(J’ — J’)p(’ — D’)1 (J’,D’) (4.27)T1 Imp T11

where ñ is the density of impurities (or inverse length of the average chain); p is some

distribution function.
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4.3 Interchain Couplings

In previous sections we mentioned the effects of interchain couplings on various aspects

of the physics. We now examine these in more detail.

Nearest neighbour interchain couplings will enter the Hamiltonian as

H—H+J1 ‘• (4.28)

where < i, j > index nearest neighbour spins not on the same chain. We can return to the

derivation of the NLu model to see the effect of this additional term. Taylor expanding

the continuum representation for ,., and assuming reflection symmetry about a site,

Eqn. (1.38) will change to

S = 2irisQ
+ 2LxLy fd4x(ö)2

+ 2LxLy f dx(

2LxLy
fd4x(8vT)2 (4.29)

where we chose the z-direction to be along the chain, and the vector, , is the dis

placement vector to the ith nearest neighbour of a spin not on the same chain (again,

we assume that is smaller than the correlation length. Note that the correction to

dynamical part of the Lagrangian will correspond to J —* J + J1. Presumably, Jj << J,

meaning that we were justified in ignoring this term. Setting the lattice spaces, x, /y,

to 1, we can now write an effective Landau-Ginsburg Hamiltonian to describe the physics;

Eqn. (1.50) will read

?() V2 V
(4.30)

The leading relevant interaction terms will always be local. Ignoring these, the resulting

equations of motion are

=

(v8 — + 2J1s ( )2) (4.31)
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The dispersion relation becomes,

w2=v2k2+2+vi( (4.32)

where v± cx %/J7. It is from this last formula which we now extract qualitative infor

mation about interchain coupling effects.

First, recall that we claimed that for finite chains of certain lengths in real experi

mental situations, we no longer need to concern ourselves with 1-D finite size effects. In

other words, we said that energy levels arising from interchain couplings will densely fill

the small gaps between magnon energy levels, Let’s calculate this length in

terms of J and J1. We start by assuming a simple form for the interchain contribution

to the dispersion:

k’)2=vai(k+k) (4.33)

where a± is some typical interchain distance, and expected to be 0(1). The size of the

interchain band will be
vo,r2

Setting this equal to the gap in the magnon levels we get

L2-=L (434)
VL I

In NENP, for example, this corresponds to lengths of approximately 100 lattice units.

There is also the issue of cutting off divergent integrals which we discussed in Chapter

3. In calculating transition rates, one often encounters integrals such as

f dk dq 6(4 — — E)f(k) (4.35)

When E is close to the gap between the branches, wL and w, this integral can diverge

logarithmically in the infrared. If one introduces interchain couplings, the integral over

the delta function becomes

(2ir)4 f dq d2kd2q±6(w — — E)
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_ii2 _i2 2,2 2,2 2 2 2 2

d
UJj U q±61v I’u Vjj — V q — vq

436
j

q
(4)2a4 2, 2L 2/

where we have assumed a simple form for the interchain dispersion. For ease of calcula

tion, we now assume that L = /.j z. The integral becomes

L dk dq
k2 2k2 2 2

82av J vk2 + vk — vq
+ v — vqj

=42v2a4vf dkIv2k2 + vIk (4.37)

At low momentum, k, where we need a cutoff, this integral is approximately

Lir
(4.38)

6v±va±

If we write the integral in Eqn. (4.35) as

1dk
f(k)

(439)
v2J v7-C

then the cutoff, C, is seen to be

144va
(4.40)

2V2 J

We recall that the for intrabranch transitions, Q 2LwN/v2.Comparing this to C, we

find that the cutoff becomes important for WN <7OJjaI. For example, in NENP, where

J1 ‘‘ 25 mK, we expect the cutoff to significantly dominate over the Larmour frequency.

4.4 Crystal Structure

When analyzing experimental data in terms of the idealized Heisenberg model with on

site anisotropies, one must keep in mind that the symmetry of the proposed spin-chain

Hamiltonian may be constrained by the symmetry of the crystal and the local symmetry
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about the magnetic ion. Additional terms may be added or subtracted to accommodate

the structure of the substance, and these can have a great effect on the interpretation

of data. Some important questions which must be asked before deciding on a model

Hamiltonian for the material are: is the local crystal field symmetry about the magnetic

ion commensurate with the symmetry of the unit cell? Is there more than one chain

per unit cell? If so, are all chains identical? Is there more than one magnetic ion of a

single chain per unit cell? If so, is there true translational symmetry from one spin site

to another?

In the next chapter, we analyze experiments performed on NENP. In so doing, we

will address such considerations.



Chapter 5

NENP: Direct Comparison with Experiment

5.1 The Structure of NENP and Experimental Ramifications

A schematic diagram of Ni(G2H8N2)2N02(G104)(NENP) is shown in Fig 5.1. Each

chain is comprised of Ethylenediamine-Nickel chelates separated by nitrite groups. The

magnetic ion is Ni2+; experiments indicate that these ions interact antiferromagnetically

along the chain with coupling J 55K. There is a large single ion anisotropy, D ‘.‘ 12K,

as well as a small axial symmetry breaking anisotropy E 2K. Interchain couplings are

estimated at J1/J iO [44].

It is important to realize that two neighbouring Ni2 along the b-direction are not

equivalent; rather, one is related to the other by a ir rotation about the b axis. Also, the

angle along the N — Ni —0 bond is not exactly r, meaning that the Ni site is not truly

centrosymmetric. Most importantly, the local symmetry axes of each Ni ion are rotated

with respect to the abc (crystallographic) axes. To demonstrate this we now note the

coordinates of the Nitrogen atoms in the Ethylenediamine chelate surrounding the Nickel

(placing the Nickel at the origin): [45]

Atom a (A) b (A) c (A)

N(1) 2.053 (3) .162 (3) .338 (3)

N(2) .619 (3) —.184 (3) —1.971 (3)

88
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Figure 5.1: NENP
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C

a

Figure 5.2: Local and crystallographic axes projected onto the ac-plane in NENP

The other Nitrogen atoms in the chelate can be obtained by reflection through the

Nickel. One easily sees that projecting this structure onto the b plane yields symmetry

axes (in the b plane) rotated 60° from the ac-axes. This is shown in Fig. 5.2. The

inclination of the local Nickel axes from the abc system can be obtained by taking the

cross product of the two Nitrogen vectors (ie. the normal to the plane described by the

N(2)

C,

N(1)

a’

•_.. Projection of the Canting
b’ Vector
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four Nitrogen atoms in the chelate:

n = (—.06 (1), .98 (1), —.11 (1)) (5.1)

The local Ni b’-axis makes a -‘ 100 angle with the b-axis, while the azimuthal angle

in the ac plane is —28° from c. The 10° tilt is roughly about the a’ direction of the

local symmetry axes.

One may worry that the NO group may distort the local symmetry axes, but re

markably enough, when projected onto the ac plane, the three atoms in the molecular

ion sit on the c’ axis. This reinforces our suspicion that the local symmetry axes are

indeed the above.

Next, we consider the whole space group of NENP. The most recent attempt to solve

for the crystal symmetries has concluded that the true space group of the material is

Pri21a [45]; this is a non-centrosymmetric space group with a screw 2 symmetry about

the b axis, diagonal glide plane reflection symmetry along the a axis, and an axial glide

plane reflection symmetry along c. Experimentally, attempts to solve the structure in

Pn21a have not been successful; rather, it seems that Pnma gives a better fit. The

main difference between the two is the presence in Fnma of a mirror plane parallel to

b at i-b, centers of symmetry at various locations in the unit cell, and two-fold screw

axes separating these centers of symmetry. The reason for the experimental discrepancy

is attributed to disorder in the orientation of the nitrite group, the perchlorate anions,

and the existence of a local or pseudo center of symmetry lying very close to the Ni

(thousandths of an Angstrom) [45]. A crucial point is that both space groups share the

axial glide planes along a, the diagonal glide planes along c and the 2 screw symmetry

about b. These generate a total of 4 Ni sites per primitive cell and two chains through

each cell. The two chains are such that the Ni chelates on one are the mirror image of the

other. Figure 5.3 shows a projection of this picture onto the ac plane. The presence of the
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Figure 5.3: A projection of the NENP unit cell onto the ac-plane showing two chains per
unit cell
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2 screw symmetry about each chain axis introduces staggered contributions to the local

anisotropy and gyromagnetic tensors. This is because, as motivated above, these are not

diagonal in the crystallographic coordinate system. The resulting spin Hamiltonian is

(5.2)

We make the assumption that the symmetry of the anisotropy and g-tensors is the

same (ie. that at each site they can be simultaneously diagonalized). This is rigorously

true when the crystal field symmetry about the magnetic ion is no lower than orthorhom

bic (a sketch of a proof is found on p. 750 of [4]). We can get the required parametrization

for the g-tensors from high temperature uniform susceptibility data [45]. This is based on

the idea that at high temperatures the Ni atoms will behave as an ensemble of uncoupled

spins (s = 1) with the same gyromagnetic tensor as in the antiferromagnetic case. With

this in mind we get

G’ cos2(O) + Gfr sin2(0) 0 0

0 Ga’ 0 (5.3)

0 0 Gj,cos2(O)+Gesin2(6)

0 0 sin(O) cos(0)(Gb’ — Ge’)

g= 0 0 0 (5.4)

sin(0)cos(O)(Gw—Ge) 0 0

Here 0 ‘-.‘ 100, and Ga’ = 2.24, G1/ = 2.15, G’ = 2.20 are the values for the local

G-tensor that give the observed high temperature 9-tensor when averaged over the unit

cell. Correspondingly, the anisotropy tensors must have the following form:

D’ 0 0

D 0 Da’ 0 (5.5)

0 0 D1,



Chapter 5. NENP: Direct Comparison with Experiment 94

o o tan(26)
(Db’ — Do’)

d= 0 0 0 (5.6)

tan(28)
(Db’ — D) 0 0

The parameters Dat, D, D,, are to be fitted by experiment to the model used to

describe the system. The boson Hamiltonian can now be written

fl)+ (5.7)

-.d(x
i).gfl2)2]

The term containing d breaks the Z2 symmetry along the a’ (lowest mass) direction.

It will also renormalize the masses. The second effect can be ignored in the approximation

that the ç term is ignored if we assume the masses are physical. Symmetry breaking,

however, leads to the presence of a static staggered field even below a critical magnetic

field. . gap will always persist. The staggered field term will break the Z2 symmetry

along c’ or b axis, depending on whether the field is applied in the b or c’ direction,

respectively. A static staggered moment will likewise appear due to this term. The

effect on the relaxation rate will be small, although there may be consequences in other

experiments [32, 46].

We would now like to discuss the effect of having two inequivalent chains per unit cell,

with local axes different from the crystallographic axes. We label the two chains found

in a unit cell of NENP ‘chain 1’ and ‘chain 2’ corresponding to the chains in the upper

left and lower right corners of Figure 5.3 respectively. The dispersion branches of chain 1

are given by Eqn. (20) of [47] (the expressions are roots of a complicated cubic equation

and we feel that citing them will not prove illuminating) only the field is — 300 from

the c’ axis where is the angle of the field from the crystallographic c-axis. Similarly,

the dispersion branches of chain 2 are calculated with the field a — 150° from the c’ axis.
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Experiments which average over signals, like susceptibility or NMR T’ measure

ments, must consider their results an average of two different measurements (correspond

ing to the two different chains with their relatively different applied field configurations).

On the other hand, experiments such as ESR, should show a separate signal for each

chain. The NMR relaxation calculations performed in Chapter 3 assume the field is

placed along one of the crystal axes. In this special case, the dispersions for the two

different chains are identical. Although the dispersions will be more complicated as will

be the matrix elements, lb(O, 0), we do not expect great qualitative differences between a

calculation as done in Chapter 3 and one which accounts for the actual symmetry when

the field is placed along a crystal axis. There will also be contributions due to the i— r
correlator; these are also expected to be small. There are, however, important manifes

tations of having two inequivalent chains. These will be discussed in the next chapter

when we suggest further experiments.

In conclusion, consideration of the crystal structure introduces both symmetry break

ing terms and two inequivalent chains per unit cell. The symmetry breaking terms will

give small corrections to the relaxation rate.

5.2 Analysis of the Data

By far, the most studied Haldane gap S = 1 material is NENP. The most recent measure

ments of the relaxation rate, 1/T1, on this substance have been made by Fujiwara et. al.

[34]. Before directly comparing our results to the data we discuss the expected results on

a pure (infinite) system. The three gaps are given by neutron scattering: /a = 1.17meV,

= 2.52meV and La = 1.34meV. We use v = 10.9meV, and the generic value of 2.2 for

the electronic g-factor. Since we do not have an accurate description for the hyperfine

coupling of the Ni ion to the protons in its surrounding chelate, we assume a uniform



Chapter 5. NENP: Direct Comparison with Experiment 96

value for all the contributing hyperfine matrix elements in a given direction of the applied

field. Writing

T’ = F(h, T)e_(1)/T (5.8)

we use the results from Chapter 3 to plot F(h,T) for bosons and fermions and for fields

along the chain a, b and c directions. The results are shown in Figs. 5.4 - 5.7.

We included multiparticle transitions by simply replacing the Boltzmann factor by

appropriate occupation factors in Eqn. (3.18): fb(1+fb) = cosech2(j)/4 for bosons, and

fj’(l
— f) = sech2(j±)/4 for fermions [36]. Within approximations used, multiparticle

effects amount to multiplying the final expressions by (1 ±e)2.At higher tempera

tures it is also necessary to include the k-dependence of the integrand past the peak at

the origin. We expect that at temperatures T • and fields h the numerically

integrated results would differ by about 10 percent.

F(h, T) is shown for fields up to 9 Tesla even though the (/3w >> 1) approximation

is no longer valid at such fields. This is done to contrast the predictions of the boson

and fermion models. It’s easy to see that the boson result for F(h, T) diverges at the

critical field, while no such catastrophe is present in the fermion result. This divergence

is logarithmic and infrared. It will persist even after account is made for the staggered

part of the correlation function. Multiparticle scattering will in fact worsen the effect,

since the bose distribution function diverges as 1/w with vanishing energy w. This again

is evidence of the inadequacy of the free boson model close to criticality.

In NENP, when the field is along the b direction, we expect relevant interbranch tran

sitions only for small field. In this regime, one must also be careful to include intrabranch

transitions in the second lowest branch. All these processes are of the same order. Even

though the intrabranch rates vanish at low fields, the interbranch contributions are sup

pressed by the absence of low momentum transitions (ie. Q for the interbranch transitions
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Figure 5.5: Fermion F(h, T) for fields along the b and c chain directions.
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is O(1JL
—

as opposed to O(WN).) For this case, only i need be calculated.

When the field is along the c direction (corresponding to the middle gap), we restrict

ourselves to calculating intrabranch transitions along the lower branch and interbranch

ones between the lower and c branch. There are no intrabranch processes along the c

axis. Calculating the interbranch transitions amounts to calculating and

When the field is along the a direction, the calculation proceeds as above. The crossing

of the branches provides for the interesting effect mentioned earlier. The peak in 1/T1

can be used to locate the true ac-axes for the chain

Notice that F(h, T) for the field parallel to the b axis is nearly field independent over

a large range of the magnetic field. This behaviour is quite easy to understand from

the universal results valid in the axially symmetric case, discussed in Chapter 3. When

the field is along b, the system is only slightly anisotropic, and so the axially symmetric

results roughly apply. F,, is roughly independent of field with axial symmetry since l_

is nearly h independent (in fact, F,, exhibits a logarithmic divergence as h —* 0). On the

other hand, F vanishes quadratically as h —* 0. Including the small breaking of the axial

symmetry corresponding to z — = 2°K, F,, is essentially constant down to low fields

of order L — iT, before rapidly decreasing as seen in in the figures.

We now proceed to directly compare our results with those of Pujiwara et. al. Since

the hyperfine coupling is not known, we find a best fit to it using the experimental data.

This is best done for mid-sized fields: in the low field regime impurities may dominate,

and in the high field regime the staggered part of the spin is expected to contribute. Figs.

5.8 and 5.9 are such fits to the boson and fermion models.

In producing these fits we get different values for A, the hyperfine coupling for a
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field placed along the w-direction:

1 8.5 MHz fermions
Ab ‘ (5.9)

( 7.0 MHz bosons

(17.7 MHz fermions
(5.10)

112.0 MHz bosons

These values are reasonable for dipolar hyperfine couplings between a nuclear spin (s =

1/2) and the Ni spin at a distance of about 2)1:

A IN/B 2 MHz (5.11)
r3

Also, we can get a similar feeling for the size of the hyperfine couplings from Knight shift

[51] and magnetic susceptibility [44] data for a field placed along the b-axis.

A,uoX3H (5.12)

At about 4K, the susceptibility is roughly a fourteenth of its maximum value. Given that

XMax 1/J, and that the Knight shift at large fields is about 10, we get A .‘ 8 MHz.

It should be noted, however, that these are order of magnitude estimates; an accurate

evaluation of the hyperfine matrix elements is still unavailable. Overall, the fermion fit

is the better of the two. This is more obvious at high fields when the anisotropy —

is high (ie. when the field is along the c-axis). For both models, the fit to the HIb

data becomes progressively worse as the field is increased. Fitting to the lower field data

seems to give better overall agreement than fitting to the higher field results. This is not

the case for the hIIc data (at least with the fermions). Since the field in the experiment

was not actually placed along the chain c-axis, we might expect even worse agreement

between this set of data and our calculations! In fact, as mentioned before, we expect a
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very weak field dependence for the hub data which would result from being close to U(l)

symmetry. This was the universal result of Chapter 3.

As is evident from the figures, the slope of the hIb data and the calculated results

agree. This implies that the relaxation is largely mediated through thermal bosons and

that the calculation is off by a T-independent multiplicative factor. For small anisotropy,

h >> E, this effect cannot come from the matrix elements for the transition or the

density of states. We believe that we have taken account of the obvious mechanisms for

relaxation. Terms coming from the structural properties of NENP into the Hamiltonian

(as discussed in the last section) are too small to be responsible for such a large increase

in the relaxation at the mid-field range. Moreover, they would be expected to play

a similar role when the field is placed along the c-axis. There are 16 protons in the

chelate surrounding each Ni ion. Nuclear dipole-dipole interactions among them are

energetically negligible, and thus could not be the cause for the increase in relaxation.

It is certainly conceivable that the averaged hyperfine coupling is highly anisotropic, but

it’s hard to explain why there would an additional dependence on the magnitude of the

field. Perhaps the discrepancy is due to reasons intrinsic to the experiment.

Next we attempt to fit to the low field measurements taken for field along the b-axis.

We find that for fields less than 4 Tesla, it is not sufficient to consider the bulk theory

alone. The relaxation rate decreases with increasing field in this regime (see Fig. 5.10).

We can try to apply the impurity model to explain the data. Assuming the phase shift

constants, )4, in Eqn. (4.10) are 0(1), the impurity resonance width, F, derived in

the last chapter can be graphed as in Fig. 5.11. As is clear from the plot and Eqn.

(4.26), the impurity relaxation rate is essentially one delta-function peaked at D’/2 = h

and another peaked at D’/2 + J’ = h. This means that we expect two bumps in the

relaxation rate due to impurity effects. The width of the bumps should correspond to

the width of distribution of impurity couplings. The problem arises when we see that the
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Figure 5.10: Relaxation rate for field along the b-axis.
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Figure 5.11: F(T)—the width of the impurity resonance

temperature dependence of the low field data is roughly exponential: e_J’/T, where

the impurity coupling J’ is about 4.7K. Furthermore, the sharp decrease from zero field

relaxation suggests D’ = 0. By analyzing Eqn. (4.26) we see that the second bump

should have little temperature dependence. This means that assuming the first bump

sits near h = 0, the second must be larger and separated by about 3.5T. This is clearly

not the case. Indeed, we would need a complicated distribution of couplings, J’ and

D’, to get a proper fit. Adding an E type anisotropy will not change these conclusions.

We thus do not have a satisfactory explanation for the low field behaviour. One should

take notice, however, that the data was taken for a field along the b-axis, where other

problems were present at mid-field.

Finally, we would like to mention some recent NMR data collected on the 1-D S = 1

spin chain AgVP2S6by Takigawa et. al. [48]. This material is highly one dimensional
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with a large gap (z 320K) and very nearly isotropic (3 4K). These characteristics

make it ideal for analysis using our results. There are, however, some questions about the

properties of the material which would have to be analyzed before an understanding of

the NMR results is possible within the framework proposed here. The gap deduced from

studies on the Vanadium atom (z ‘-.‘ 410K) conflicts signiflcalltly with those performed on

the phosphorus sites and with neutron scattering data. In addition, the material has very

low symmetry (corresponding to the space group P2/a) and very little is known about

the possible small E and D terms in the Hamiltonian and their corresponding symmetry.

There is fair qualitative agreement between the 31P NMR data and our theory, and it is

possible to explain some of the discrepancies using a temperature dependent anisotropic

gap structure, but we feel that not enough is yet understood about gross features of the

material to justify such speculation at this time.



Chapter 6

Suggested Experiments and Curious Predictions

We finish by pointing in this final chapter towards further experimental work which could

serve to both better understand S = 1 1DHAF’s as well as corroborate and clarify some

of the issues raised in this thesis.

6.1 Experimentally Testable Conflicts Between Models

When discussing the matrix elements, < k, aSi(O)q, b >, within the different models,

we noticed that there were some discrepancies between predictions. We now examine

this hoping to offer experiments that would resolve the issue in favour of one model or

another.

We start by discussing experiments on isotropic systems. In this case, the major

differences between the predictions of the models concern large 0 transitions, where we

recall from Chapter 2 that

< k,ai(O)q,b > jfiabG(O) cosh(O) = —v2kq)/z2 (6.1)

This is especially dramatic in the case of backscattering. The problem with an experi

ment which probes large 0 transitions is that contributions from matrix elements of the

staggered part of the spin may be large as well. This can be cured by looking for a low

temperature experiment (T << ), where the energy exchanged with the probe is small.

As shown in the analysis of 1/T1, the staggered contributions will be suppressed by a

109
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double Boltzmann factor, e_2/T. A good candidate for such an experiment1 is elastic

neutron scattering at zero or near zero magnetic field. The cross section is proportional

to the spin correlation function; for elastic scattering, this is

S(Q, 0) cc <n (0)m> 26(w — cc.rn)6(Q — k + km)e_m’T (6.2)
n,m

At sufficiently low temperatures, this expression is simpler than the analogous one for

the relaxation rate thanks to the momentum conserving delta function. The energy

conserving delta function ensures that only backscattering will contribute to the cross

section. Using the results of Chapter 3 we easily integrate this to give

S(Q,0) cc G(0)222e_wQ/2/T (6.3)
vQ

The NLa model gives

G10 2 — ir4 1 + (0/ir)2 tanh(0/2)
6 4“ ‘I

— 64I1+(0/2ir)2 0/2

At large Q this will behave as 1/ log2(vQ//.S. This is very different from the free boson

prediction of G(0) = 1, and from the free fermion prediction of G(0) —*z2/(vQ)2 for

large Q. We need to qualify what we mean by ‘large’ Q. As discussed in Chapter

1, the field theoretic models introduced are expected to be accurate only for Q near

zero and K. If we want to explore the two magnon nature of the structure function,

we must be near Q 0. What we mean by ‘large’ momentum elastic scattering is

the investigation of the structure function near the border region where the field theories

begin to diverge from numerical simulations [16]; a region which satisfies all the criterion is

.27r Q < .4ir. This corresponds to energies three to six times that of the gap. We expect

that the differences between the models should be discernible in this range. The reason we

suggest the experiment be done at zero or nearly zero magnetic field is to ensure that only

‘T’ relaxation is not an appropriate tool since the transitions are dominated by small momentum
transitions
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backscattering transitions contribute. For nonzero field, interbranch transitions can occur

at large momentum which will not necessarily select oniy backscattering events. This will

not serve to make the interpretation transparent. The condition for backscattering even

in the presence of a magnetic field is

Q>> h/v (6.5)

In the case of axial symmetry, we can suggest the same technique to investigate the

difference between the zero field predictions of the boson and fermion models. Regardless

of the size of D, if one only considers the cross section for scattering with Qv > J,

then the fermion model predicts a result that vanishes as while the boson

model prediction only involves the exponential factor. The same comments apply to the

case where axial symmetry is broken as well. This is no surprise since at large enough

momentum, 0(3) symmetry is effectively restored.

Elastic neutron scattering is a good probe for the matrix elements involving large

momentum and small energy exchange. Other techniques which explore the opposite

regime are electron spin resonance (ESR) or far infrared absorption experiments. In both,

one subjects the magnetic system to an external source of electromagnetic radiation (the

microwave frequency value of the radiation depends on the transitions one is interested

in investigating). The RF field couples to the spins in the same way that a magnetic field

does, assuming that the electric dipole moment of the electrons on the magnetic ion is

much smaller than the effective spins.2 The interaction Hamiltonian is therefore

H1= flRFG. cos(ôt) (6.6)

Since the coupling is to the total spin of the system, the resonant transitions implied

by Fermi’s Golden Rule will involve energy w and zero momentum exchange. At low

2A rigorous treatment would try to treat the coupling to the electric dipole moment; this can be done
within the spin manifold using the Wigner-Eckart theorem. We will not bother with such a treatment
here, but we note that it may be crucial in understanding some experiments on NENP [32]
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temperatures, the power absorbed when a uniform field is applied to the system will be

1(w) cc <rilSom>I26(w(h) — wm(h) — w)S(k — km)e_wm/T
n,m

1< a;k,w(h)ISoIb;k,w(h)> 2e/Tk (6.7)

where a and b denote one magnon states and k satisfies, 4(h) — w(h) = w. Since

the density of states factor in the above is divergent for k = 0, it stands that 1(w) will

have a peak at the value of h for which z(h) — LP(h) = w. (The divergence will be

cured by higher dimensional effects as discussed previously.) In a typical experiment,

one judiciously chooses the RF frequency, w, to be in the vicinity of desirable transitions,

and the uniform field is then tuned to the peak in the absorption power. This is much

easier to do than to fine tune the RF field.

Let us now relate the ESR matrix elememts to la,b(0, 0), calculated in Chapter 2.

<a;0IS0Ib;0 >= f dx <a;0jS(x)Ib;0
>= f dx

= f dx <a;OIS(0)lb;0 > Ll(0,O) (6.8)

Interesting conflicts between the models can be seen when there is some kind of, preferably

large, anisotropy. For example, considering axial symmetry with a large D anisotropy,

Il_(0, 0)12
(z3/z+ L./z3+2) Bosons

(6.9)
2 Fermions

The maximal difference corresponds to L3/&L 2 which leads to a discrepancy of about

13% between the models. The closer the two branches lie, the better the agreement be

tween the models. This suggests the following experiment on highly anisotropic materials

(NENP being a prime candidate). One chooses two RF frequencies. The first should cor

respond to the large interbranch gap, D, and the peak absorption ought to be measured
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with a low field placed along the direction of the D anisotropy. The second RF frequency

should be 0(E) if the material breaks axial symmetry, or 0(h) if the material is axially

symmetric. This should then be used to measure the absorbed ESR power with the posi

tions of the uniform and RF fields exchanged. This second transition will involve matrix

elements which will be gap independent in both models. The matrix elements from the

first transition can be extracted and compared to that of the first. If the boson model

is a better description even at these low fields, then the two matrix elements should be

identical.

One may argue that it is redundant to make both measurements since, if the gaps

are known, Eqn. (6.7) should give the correct description. The problem lies in cutting

off the infrared divergence at the absorption peak. This will introduce an unknown

proportionality constant. This divides out when comparing the two measurements. The

ratio of the two measurements would be

1(wi) 1 — e_whIT /3
0

2
6 101(w2) — 1 — e2/T ( , ) ( . )

where we assume a small field, h << &L, and small E << D.

To end this section, while on the subject of ESR experiments, we would like to propose

additional experiments to test the impurity model presented in Chapter 4. ESR is ideal

for such tests. Used in conjunction with T’ measurements on a given sample, it would

be possible to characterize the couplings J’ and D’ of the end spins

6.2 Measuring Small Anisotropies

Recall that we expect a peak in T’ whenever two branches cross. Experiments on

Haldane Gap materials have yet to look for these. The sharpness of this peak depends

on the interchain couplings which cut off the diverging integral in the calculation of

the relaxation rate. Often, this will be broad because intrabranch transitions will share
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the same cutoff (ie. when J1 > &.‘N). However, the bump should be experimentally

observable. We propose that information about the anisotropy tensor can be extracted

from this phenomenon. Essentially, one looks for the lowest field at which this bump

occurs. This would give the direction of the lowest branch and the size of the anisotropy.

We now explain this further.

We assume the material in question has a well resolved D anisotropy and a seem

ingly degenerate doublet unresolved by other experimental techniques, such as neutron

scattering. One begins by placing a uniform magnetic field in the plane perpendicular to

the axial direction (ie. somewhere in the xy-plane). The magnitude of the field should

be h2 > 6(/a —
where is the uncertainty in resolving the doublet. One then

proceeds to measure T1 for different angles in the xy-plane spanning a region of at

most 1800. If there is an E type anisotropy, one ought to see some structure to the data

as a function of angle. Moreover, if there is such structure, we expect a bump at the

angle where the branches cross. Once this angle is found, the experiment is repeated for

somewhat lower field. The angle where the new bump should be seen would be greater

than the old. There is actually enough information in these two measurements already

to determine the anisotropy tensor. The dispersion relations are a function of the angle

of the field (relative to some axis), the field magnitude and the gaps. The only unknowns

are the absolute angle (or location of the axes of the anisotropy tensor) and the difference

in gaps, I — .
The two measurements could be used to solve for these two unknowns.

In principle, one could also continue lowering the field and looking for the bump angle

until it’s clear that signal is being lost when the field is reduced further. At this point,

one has located the minimum crossing field which must lie along the direction associated

with the middle gap. This field also gives the anisotropy: I —
=h2/ILD

— I.
It would be interesting to perform such an experiment on NENP. Presumably, one

would find two angles corresponding to the two inequivalent chains in each unit cell.
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Moreover, one would be able to verify the claims made in the last chapter regarding the

positions of the local anisotropy tensor in NENP.

6.3 ESR for NENP

In the last chapter we noted that NENP has two inequivalent chains per unit cell. Fur

thermore, their local anisotropy tensor was argued to have symmetry axes which did not

correspond to the crystal axes. These facts have important ramifications for ESR ex

periments on NENP. Figure 6.1 shows the dispersions for chains 1 and 2 (bold and light

lines, respectively) when the field is ?r/3 from the crystallographic c axis in the ac-plane.

This is an example of how transitions at two field strengths ought to be possible in the

ESR experiment.

Figure 6.2 shows the resonance field versus orientation of field in the crystallographic

ac-plane. The lower branch denotes transitions in chain 1 while the upper branch cor

responds to transitions in chain 2. The transitions were calculated at .19 meV. corre

sponding to 47 0Hz. In addition the experimental results of Date and Kindo [49} are

represented by the circles. One immediately sees that the data does not compare well

with the predictions based on the models we’ve used so far, for instead of following one of

the branches, the experimental results lie between them. Furthermore, it seems unlikely

that perturbations will cause such a significant shift in the resonance field. One sees that

the discrepancy is ‘.‘ ±1 Tesla. One possible explanation is that since the ESR signal in

[49] was also ‘—‘ ±1 Tesla in width and symmetric (in conflict with the predictions of [47]),

the signal from the resonances in both chains was somehow smeared and interpreted as

one single peak. Seen that way the model predictions are in good agreement except for

the large field regime. One also has to keep in mind that the high-field boson dispersions

are not accurate and therefore the predictions at larger angles could easily be .5 Tesla
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for a uniform field placed 600 from the crystallographic c-axis.
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Figure 6.2: Resonant field vs. field orientation in the ac-plane for .19 meV transitions.
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(or more) off the mark. We propose that further ESR experiments be done on NENP

which specifically look for the double resonance predicted here.

To end this discussion, we’d like to elaborate on a previously made statement re

garding the assignment of masses to the local Ni symmetry axes. It’s easy to see that

switching the masses around is tantamount to a ir/2 shift in Figure 5.2 (the fact that

the gyromagnetic constants are not the same in orthogonal directions will not change

the ESR resonance graph much since the ratio of the gyromagnetic constants is 0.98).

Redrawing Figure 6.2 with this geometry misses the experimental results by 4 Tesla at

0 and 90 degrees, where the two chain resonances coincide. This determines the proper

labeling of the local symmetry axes.



Chapter 7

Concluding Remarks

With the increasing theoretical interest in low dimensional systems, there has been a

proportionate increase in the number of both realizable physical systems and experiments.

This work offers a comprehensive analysis of NMR relaxation in Haldane gap materials,

taking account of anisotropy and other material properties. As well, our analysis has led

to predictions pertaining to other types of experiments. It is hoped that our efforts will

aid in both extending and clarifying existing knowledge of the subject.
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