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F E Y N M A N ' S Q U A N T U M M E OH A.'N I -0 S  

A P P L I E D TO S P A T T E R I N G P R O B L E M S 

Abstract 

This thesis consists of two independent parts, both of 

which are"applications of the quantum mechanical methods 

developed recently by R. P. Feynman. 

Part I is concerned with the non-relativistic theory, and 

applies Feynman!s formalism to the simple problem of the 

scattering of a particle by a potential field. The method and 

results are compared with those of the familiar Born-approx­

imation. The two procedures are shown to be equivalent and to 

be valid under the same conditions. Feynman1s formulae are 

used to calculate the-first and second order terms of the 

scattered particle wave function, with an arbitrary scattering^ 

potential. 

Part II uses the relativistic Feynman theory, and treats:-

the scattering of positrons by electrons, and of two electrons. 

The calculation checks the work of H..J.Bhabha and 0. Miller, 

who have obtained the same results by other methods. The 

differential cross-sections for the two scattering processes 

are calculated to first order, and an estimate is made.of the 

feasibility of an experiment to determine whether the exchange 

effect described by Bhabha actually occurs in positron-electron 

scattering. 
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F E Y N M A N * S Q U A N T U M M E O H A H 1 0 3  

A P P L I E D T O S P A T T E R I N G P R O B L E M S 

Part I 

NON-RELATIVISTIC SPATTERING OF PARTICLES BY A POTENTIAL FIELD 

Introduction* 

Part I of this thesis deals with two methods of treating 

scattering-problems i n quantum mechanics which differ widely i n 

approach. One, the well-known Bona approximation, i s a perturbas­

t i o n theory solution of the Schrftdinger equation. The other, 

described i n recent papers by Feynman, 1 , 2»5 deals directly with 

the solutions of the wave equation, rather than with the equation 

i t s e l f . 

In view of the fact that Feynman1s approach leads to a 

simplified formulation of quantum electrodynamical problems, i t 

seems desirable to establish a link between this procedure and 

the familiar Born approximation. This thesis accordingly 

carried out expl i c i t l y Feynman1s treatment of a simple scatter­

ing problem and demonstrates the equivalence of the two methods* 

1 R..P. Feynman, Rev. Mod. Phys. 20, 567, (1948). 
2 R. P. Feynman, Phys. Rev. J 6 , 749, (1949), hereafter 
referred to as I. 
5 R. P.,Feynman, Phys. Rev. J 6 , 769, (1949), hereafter 
referred to as II. 
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The Born Approximation. 

Suppose that'a p a r t i c l e of mass m and i n i t i a l momentum hk 

i s scattered by a potential f i e l d - V ( r ) . To apply the Born 

approximation, we-eet "f ( r , t ) = u ( r ) e r i u t , with <J = "hkV2m, and 
proceed to solve the time-independent Schrodinger equation 

t W k x- (2m/h")V(r)}u(r) - 0. 

The method i s well known, and we include hereeonly those equations 

which w i l l be compared d i r e c t l y with the ,Feynman solution. The 

wave function for the incident p a r t i c l e i s u„= e 1 K . Green's 

solution of the f i r s t order equation i s 

u,(?J = (2m/h')\G(?z,?, )V(? t )u 0(?, )d?,, (1) 

where the Green 1 s function G(r t ,r, ) = -(4nrlr,.-r>
11 )"'e3^ r*-"*ri1 

s a t i s f i e s the equation 

{ ^ 4 k^0C?„?,)- S f c - ? , ) . (2) 

We write dr = dxdydzj unless otherwise specified*'- the integration 

i s to be taken over a l l space. The subscript 2 on V7"means that 

i t operates on the variables i\, and ) = ^(x l-x l)<S(y 1-y ; ) 

$(zx-z,). 

For solutions at large r x we make the approximations^ 

| r L - r f | ~ r z - r, • ? l / r 4 ~ r z (5) 

i n the exponent and denominator respectively of the Green's 

function.: The f i r s t and second order solutions are then: 

where k t ~ kr., /rx , k 3 = kr 3 / r , . 
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Feynman*a Formulation. 

Feynman* s method is based on- the probability amplitude for 

a particle to-move from one space-time point to another. This 

function, called the kernel, is a sum of contributions from. 

each possible path, where S .is the classical action along the 

path. Denoting the point r,,t, by 1 and r\ , t t by 2, K(2,l) is 

the amplitude for a particle known to be at ?, at the time t, to 

arrive at r*t at. the time t t . The wave function "^(2), representing 

the amplitude for the particle to be found at r^,t,, is then given 

by the expression 

V<2)- $K(2 f lWl)d? , . (6) 
Feynman shows that the kernel is that solution of, 

{atf/Jt,.- H^K(2,1) = ihS(2,l) (7) 

which vanishes for t z<t (, where H is the Hamiitonian operator for 

the particle (the subscript 2 indicating that-it acts on the 

variables 2).,. and £(2,1) = &(r^-r, )£(tt-t, )• The kernel for a: 

free particle is shown to be (for t1>t, ) 

K ( 2 , l ) = f JS -1* expfJa j ^ - ^ l 

UvihCt^-t.JJ l 2 h (t x -t, ) J. (8) 

For a perturbation theory treatment of a particle in a 

potential V(r), Feynman shows that the kernel may be expanded in 

increasing powers of: 7: 

K(2,l) - K e (2,l) + K ,(2,l) -- K .(2,l) * ... (9) 
where 

K ,(2,l) = -(i/h)5K 0 ( 2 , 5)V ( 5)K 0 ( 5,l)dr 3 (lOa) 
K ,(2,l) = (-i/li) A^K 0 (2,5.)V(5)K 0 (5,4)V(4)K 0 (4,l)dr Jd^ (10b) 

etc., using dr = drdt. The time integration is limited to the 

interval t,>t,>t, in (10a), tt>t7>ty>t, in (10b), by the condition 
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K(2,l) = G for t ^ t , . 

The decisive advantage of Feynman1s theory I B the inter­

pretation of the above formulae in terms of successive scatter­

ing. In (10a) for example we view the particle as moving freely 

from, 1 to 5 (amplitude K e ( 5,l) ), being scattered by the 

potential at 5 (amplitude -(i/h)V(5)d-tr3), and moving as a free 

particle again,:to 2 (K 0 (2 ,3) ). This is summed,over a l l points 

5, thus giving, the. tem.:K,(2,1). The successive terms of. (9) 

are regarded as amplitudes for the particle to be scattered 0, 1, 

2, etc. times by the potential V. 

Corresponding to the expansion (9) of the kernel, the 

perturbed wave function may-be written 

AK 2) - i i ( 2 ) + f,(2) + V*(2.) +• . . . (11) 

w h e r e a^l) is the wave function of the incident free particle, 

and 

-\f.(2) = $K 0 ( 2 , l H(l)dr, (12a) 

^,(2) ^ -(i/h)5K ( ,(2,l)V(l)^(l)dr ( (12b) 

etc. 

Comparison- of the Methods. 

From the foregoing discussion, i t is possible to show a.close 

correspondence between the two methods. The similarity of 

equations (12b) and (l) suggests identifying 

G(?t,r, ) e - i w t * = -(in/2m)5Ke>(2,l)e-i^t' dt, . ( l 5 ) 

Operating on (1J) with {ihtyat,,* (h72m)V*Ogives on the left, 

by (2), 

( ^ 2 m ) K + k ^ G (?,,?, ) e ~ ^ = ($/2*)!>(r^ ) e " ^ , 

and on the right, using, (7) with B>- (hV2m)v^, 
- ( ^ m ^ i h ^ l j e - ^ ' d t , = (hV2m)S(rl-?; )e- i t J t i. 
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The- equivalence of these two expressions doestnot' prove equation 
(13), since-an arbitrary solution of ther Schrodinger equation:, 
can s t i l l be added to one side* It does show however that there: 
i s an exact parallel between the two methods i n spite of the widee 
difference i n approach. Without giving a f u l l proof of equation. 
(13), we w i l l study the correspondence of the two methods from 
another point of view. 

The n t h order perturbed solution i s obtained by using for 
the kernel the f i r s t n+1 terms of the series (9)• We now seek 
to modify the Hamiltonian of the particle by introducing a 
potential function 7^(r) such that K0(2,1)+...,-+^(2,1) i s the 
exact'kernel for a particle moving i n the potential V n ( r ) . 
Applying equation (7) givess 

[ i h ^ t x + (hV2m)Vx*- V„(2)UKo(2,l)-»-...+Kvl(2,l)V- ih£(2,l) (14) 
which defines the function V„(r). 

A general expression for the n^ 1 , order kernel i s 
KA(2,1) = -(i/H) l3K 0 (2 ,5)7(5)K„ . 1 (3,l )dT } . 

Using the free particle form of equation (7) gives therefore 
[Uib/Ztx + (*V2m)^K B (2,l) = 7(2)K«.,(2,1). 

Thus we see that "^(2) i s given by the equation 
7„(2)^K0(2,l)+...+Kw(2,l)\ - V(2){K0(2,l)+...+K^(2,l)\. 

Multiplying this equation by 1k(l) and integrating over dr^, we 
obtain 

Vw(2)^(2)-e... + ^(2)\ = V(2)^(2)+...^(2)V (15) 

From the definition of V^, the wave function ^* 
must satisfy the modified SchrBdinger equation containing this 
potential: 

{lXi*/dt + (nV2m)^V'V>,\^.t..+^\ = 0. 
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Using the expression (15) for Vn, this becomes-, 

t + (n72m)Vi K + . . = V { %+.. .+*-,\ , 

and subtracting the corresponding equation with n lowered by one 

givesP 

tifid/dt + (tf/2m)^\4>* = 7i.„ (l6) 
This is exactly the n1*1 order equation of the Born approximation. 

We have thus proved that the Born and Feynman solutions.are 

identical, provided that the same incident particle wave function 

"Vfe is chosen* 

The condition for validity of either approximation, is that 

the terms of the series expansion of the wave function (11) 

should decrease rapidly, i . e., that h M ^ W t l = 1« Since the 

two methods give the same result for i t is clear that they 

are valid under the same conditions. 

Explicit solution by Feynman1a method. 

To illustrate the equivalence of the two methoda§ we will 

use Feynman's formulae to calculate explicity the f i r s t and 

second order terms of the wave function. We set " ^ ( l ) — 

ei(k-r, -t^t, ) f o r t h e v & v e junction'iof the incident particle. 

The zero-order wave function (12a) should of course be the same. 

This is easily verified by direct integration using the 

expression (8) for the kernel. 

The f i r s t order term, from (12b), i s : 

* ( 2 ) = - T f e f r y H ) e i < e' ?' ) d ? ' d t < 
-co 

where 
T(r) « I (^int/ m r e ^ V S f e t g i o t d t 
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(using r'=\r,,-r,| , t — t^-t; ) is the integral on the right of 

equation ( l j ) , multiplied by e^u^*. 

Now according-to-Feynman's interpretation of the perturba­

tion formulae, ^,(2) is due to particles'scattered once at 1 and 

then proceeding as free particles to 2. Since a free particle 

has a definite velocity tik/m, we should expect a contribution to 

T(r) only from the neighbourhood of the point t = (m/hk)r. We 

rearrange the exponent* and make the substitution t = (m/ftk)r(l+S): 

T(r) = l-^-Y U * expfeikr— — + ^ i k r ^ t ] d t ' I2irih/ ) T 8 i . rJ 
. - - o 

The coefficient of i£ in the exponent is ibkr$/(l+£). For 

fairly energetic particles at large distances r^ , kr»l. Hence 

except for the region $<*1 the exponential is a very rapidly 

oscillating function of £. The function (1+1=) T varies slowly 

(except at{j-?-l» and here the exponential oscillates with 

infinite frequency), and hence the integral vanishes except for 

very small values of \% Thus the physical reasoning of the 

previous paragraph is confirmed. For small we take 1+| « 1, 

and then, since kr»l, extend the lower limit to The 

integral becomes * L ? , 

- CO 

- (m/2irih)ei k r/r. 

* In spite of the approximations used, this result is exact. 
With x = l+i, p=-ia=-|-ikr, the integral is Cx"* e - P x + i a / X d x . 
This can be evaluated by using a table of Laplace Transforms, such 
as W. Magnus and F. Oberhettinger, "Special Functions of Mathemat­
ical Physics" (Chelsea, New York, 1949), p. 127. The method used 
has the advantage of affording a physical interpretation. 
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Comparing this with the Green's function, we see that equation 

(lj) is verified. 

Applying the asymptotic approximations (3), the fir s t order 

wave function becomes 

^ - - s k ^ y i to >ei(2"ej'?'d?' ( l 7> 
which agrees exactly with the Born approximation result (4). 

Prom (10b), the second order wave function i s : 

^(2) = (-i/h)xS^K0(2,3)V(3)K0(3,l)V(l)'V'(,(l)dr,d^ 

- (^iAf e ^ M W ^ I )V(fy)T(|?,-?,l)V(?()eiS-?.d?1dr: 
/ m \ * A i ( k r i - U ' f c * ) f ^ -1 Aikr 3 r = ( 2 ^ .,.rl W ^ ) ^ - - r ™ W > > 

Xe^ ^ O-^d^.dr; (18) 

using again the approximations (5). This is identical with the 

Born result (5). 

It'will be noted that the successive integrations involved 

in the higher order approximation do not lead to a more com­

plicated time integral (as might be expected), but rather to 

simple products of the. same function T(r). This is due to the 

separation of the time dependence of equation (13) in the factor 

e - i ( J t l # ^e clear, in fact, that this time integral of the 

kernel will always give the same function provided only that the 

wave function can be separated in this way. Thus this integra­

tion, the most difficult step in the Feynman calculation, need 

not be repeated in every problem. 
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Part II 

THE SPATTERING OF POSITRONS BY ELECTRONS 

Introduction. 

In Part II Feynman1s formalism for particles satisfying the 

Dirac wave equation will be applied to the typical problem of 

the first order scattering of two electrons. A particular case 

of this problem is the interaction between, a single positive 

energy electron and an unoccupied negative energy state ( i . e., 

a positron). This case is of special interest since i t makesv 

possible a direct verification of the hole theory of positrons. 

For i f the positron is really a vacant negative energy electron 

state, then an exchange effect will occur in the interaction 

which will contribute an extra term to the scattering cross-

section. If however the two particles are quite different, the 

exchange term will be absent. 

This fact was pointed out by Bhabha,^ who calculated the 

two cross-sections. This calculation will be repeated here 

using Feynman1s simplified formalism. The cross-section for 

electron-electron scattering will also be obtained by a very 

slight change in the calculation and will be compared with the 

result given by Miller.^ 

4 H.,J..Bhabha, Proc. Roy. Soc. A 154, 195, U936") 
5 0. M/ller, Ann. d. Phys. 14, 531, (1932). 
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Notation. 

For relativistic problems the following notation is cdnven-

ient: If p is a four-vector with components p^ (y«- = l , 2, J, 4 ) , 

then p denotes the three space components of p. We use the 

summation convention P̂ q̂ = P̂ <1̂  -p-qsp-q. Also, i f p^ is not a 

matrix, £=P^7^ is a matrix associated with the vector p, where 

are the four Dirac matrices The latter satisfy 

YrVl' + /v//< - 2 5 A „ , where S^-lt = &lx=$n=-l, and other ^ are 

zero. Then < ŵp„ = p^, <f^=4. Note that p_*= p-p is a pure 

number, not a matrix. 

We write d^=dp,dptdp3 and d̂ p = dpdp^. In particular, x^ 

is the four-vector r, t (we use natural units -ft" = c =1, so that 

x f = t ) , dr = dxdydz, and d̂ r= d?dt. Finally, V= V^/2x^ = /̂ /at/+|3«-V 

where x^ means 2/2t for/^=4 and -^Ox, -2/2y, -?3/Qz for 

•̂ = 1, 2, 3 . 

Feynman's Formalism. 

Feynman's relativistic formalism is-essentially the same ass 

that described in Part I, except that the wave function is now 

a solution of the Dirac equation having four components, and the 

kernel is a four by four matrix. The Dirac equation for a particle 

moving in the vector and scalar potentials (times e) A^ is 

( i V - m ) V " A ^ (1) 

and the free particle kernel satisfies 

(iV, - m)K+(2,l) - 15(2,1) (2) 

by analogy with equation (7) of Part I. The particular solution 

of this equation that must be chosen is (Feynman, I, p. 752) 
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K+(2,l) = £$.(2) ̂ M)e'±E^'^ ) for tx>t, 

^ - H ^ j ^ C l j e " 1 2 " ^ * - * ' ) for t ^ t , 

Here $>n are eigenfunctions of the free particle Dirac equation, 

and E„ the corresponding energy values. It is convenient through­

out to replace the usual Hermitian conjugate by <̂  ~PP* 

From (5) i t is seen that electrons may be propagated either 

forwards in time with positive energies, or backwards in time with 

negative energies* An electron propagating towards the past is 

recognized as a positron. The above choice of the kernel is 

exactly equivalent to the hole theory of positrons. 

The analogue of equation (6) of Part I is 

lK2)= \K+(2,l)N(lH(l)<i?V, (4) 

where the integration is over a ̂ -dimensional surface in space-

time enclosing the point 2, and N^(l) is an inward unit normal 

to the surface at the point 1. In particular, i f the surface 

consists of a l l space at a time t,<tx and a l l space at a time t'>tz, 

this becomes 

i<2) = ̂ K +(2,l)p^(l)di? -$K +(2,l')/$^l ,)dry (5). 

Because of (5), only electron states inV^l) and positron states 

in ^ ( l 1 ) contribute to the integrals. 

If two particles are present, the amplitude that particle 0-

goes from 1 to 5 while b goes from 2 to 4 (assuming no interaction) 

is the product (Feynman, I, p. 755) 

K(5,4;l,2) = K+ f c(5,l)K+ t(4,2) (6) 

The subscripts a and b indicate that the matrices K + operate on 

the wave functions of particles CL and b respectively. Matrieess 

with subscript a- and those with subscript b always commute. 
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Since the two particles are identical, another process is . 

possible involving an exchange between them. The exclusion 

principle requires that the amplitudes for the two processes be 

subtracted, giving the net amplitude 

K(5,4;l,2) - K(4,5;l,2) (7) 

When the two particles interact, (6) no longer holds. The 

effect of the interaction of two electrons to f i r s t order in e 1 

(regarded as the exchange of one virtual quantum) is given 

(Feynman, II,. p. 772) by 

This formula can be interpreted as follows: Electron a travels? 

as a free particle from 1 to 5 (amplitude K + t (5»l) )» emits a« 

photon ( Y ^ ) , and travels from 5 to 5 (K+ 0.(5»5) )» while electron 

b goes from 2 to 6 (K + ( ) ( 6 , 2 ) ), absorbs the photon ( Vj,^), and 

goes on from 6 to 4 ( K + b ( 4 , 6 ) ). Meanwhile the photon proceeds 

from 5 to 6, with amplitude & +(s^). This is summed over a l l 

polarizations of the photon, and all points 5 a n d 6. If tj.>ttf 

we would say that b emits and a. absorbs the photon, but this makes: 

no difference in the formula. 

Equation (8) can describe several processes, depending on 

the time relations of the points 1, 2, 5> a n < i 4. Feynman repre­

sents these processes by simple space-time diagrams. Thus Fig. 1 

illustrates the scattering of two electrons as described by (8), 

together with the interfering process whose amplitude is 

K 1 , ) ( 4 , 5 J 1 , 2 ) . The same kernels describe the interaction of an 

electron with a positron simply by reversing the time Relation 

of points 2 and 4, as illustrated in Fig. 2. Positroiis are dis­

tinguished by the direction of the arrows on their paths. 
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F i g . 1» I n t e r a c t i o n o f two e l e c t r o n s * 

F i g * 2. I n t e r a c t i o n o f e l e c t r o n w i t h p o s i t r o n * 

G e n e r a l E x p r e s s i o n f o r t h e C r o s s - s e c t i o n * , 

The p r i n c i p a l a i m o f t h i s t h e s i s i s t o c a l c u l a t e t h e c r o s s -

s e c t i o n f o r t h e p r o c e s s i l l u s t r a t e d i n F i g . 2. We assume t h a t 

i n i t i a l l y ( i n t i m e ) t h e r e a r e p r e s e n t a n e l e c t r o n i n t h e s t a t e 

f _ ( l ) and a p o s i t r o n i n t h e s t a t e f + ( 4 ) , and t h a t f i n a l l y t h e s e 

p a r t i c l e s a r e f o u n d i n t h e s t a t e s g_(5) and g+(2) r e s p e c t i v e l y . 

T h e s e s t a t e s a r e shown i n F i g . 2. The s u b s c r i p t + w i l l be u s e d 

a l w a y s o n q u a n t i t i e s r e f e r r i n g t o p o s i t r o n s t a t e s , a n d t h e s u b ­

s c r i p t - f o r e l e c t r o n s t a t e s . 

I t i s n e c e s s a r y t o compute t h e m a t r i x e l e m e n t o f t h e k e r n e l 
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given by (7) and (8) for the transition-from the state f_(l)g + ( 2 ) 

to the-state g„(5)fV(4)» . This matrix element i s : 
M, = - i e ̂ g_ ( 5 ) 7 + b ( 6 )V^y b /.^(s; 6)f_ ( 5).g +b ( 6)dr ydr, 

(9) 

+ ie^5^ f c ( 5)I . f c ( 6 ) V ^ V^^(8-)f_ B L ( 5)g + A ( 6 ) d r f d - r . , . . 

after carrying out the 5-surface integrals over dr, , dr^, di^ * 
dr^ , such as: 

iK + f c ( 5 , l)p a tf - f t ( l ) d ? 1 - f _ ( 5 ) 

- i f + b ( 4)(i bK t t ( 4 , 6)dr;= f +i<6) 
according to equation (5)• The subscript sson Mt i s used because 
t h i 8 matrix element depends on the spins of the various states. 

We take as the i n i t i a l and f i n a l states:of the two part­
icles the Dirac free particle wave functions 

f t = L 1 o t - e - 1 ^ , g t=L l :v ±e- i (l* x, ( 1 0 ) 

where u^and are constant spinors satisfying the Dirac equation 
(j> - m)u = 0 , and pj, q ± are the momentum-energy four-vectors of 
the particles i n each state. These solutions are normalized i n 
a cubic box of volume L*. The three space components of each 
momentum vector assume the discrete values 2fn/L (n an integer), 
while the fourth component varies continuously. 

The Fourier transform of ^(s^) i s : 
j + (a*) = - t f ' j k - V 1 1 ^ ^ - * * ) (2V)Vk. (11) 

Because of the box normalization, the integral over the three 
space components of k must be replaced by a sum, with dk^= 2-v/Li 

£ ( • £ ) , « - 2L"EVk 1e- i k( x.-^)dk^ (11a) 
In order to obtain a transition probability per unit time, 

we assume that the interaction i s "turned on" only for a f i n i t e 
time T. We now substitute the above expressions (10), (Ha) 
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into the matrix:element Ms and carry out the integrations- over 
dr r, &f6 as follows: The spaed coordinates of each point are 
integrated over the range -§-L' to -§L. One time coordinate 
(say t r ) i s integrated from 0 to T.: The other ( t 6 ) from - <*> to 
+00. These integrals from the f i r s t term of Mj are: 

= 2 » L ^ ( ( e - i F T - l ) / ( - i F ) 
provided p_+k - q_'= q +- k - p^^O; otherwise the integral 
vanishes. We define F = p.̂ -t- k^- q.̂ . The second term of Mj iss 
identical, except that f + and g_, and therefore p + and q_, are. 
interchanged. 

Thus i n the f i r s t term k = q +- p+, and i n the second term 
k = q +-q_. The other conditions are the same for both terms: 

p- + q+ - p+ - q- = o (12a) 

The f i r s t of these expresses the conservation of momentum, and 
the second defines the quantity P. 

The f i n a l expression for M$ i n terms of the i n i t i a l and 
fi n a l momenta i s : 

Ms= — (_iF) L V^Vv/^(il*-£ +) u-Ab -V-i,VV ( a +" f l :- )
 U - V + t J 

= W L J ( e - i F T - l ) / ( - i F ) [ ( l ^ j V - V O ( u + ^ v + ) 

- (fl.t-.a-) ( v - ^ v + ) J 
The transition probability from the i n i t i a l to the f i n a l state 
iss |M $ ( = MSM<;, and since -yv~iv this isc 

< = ^ ^ [ ( ^ - E , ) V i v . v 4 u . ) C^VwU^V-) 
+ ( ^ - q - ^ f f ^ ^ u ^ u , ) (^.V„v_5-V / Uv +) 

- (SU-E. +•) t(a.+-g.-r2Re(v:V^u.u_^u+ff+V^%. V . / v - ) ] ^ l ^ 

http://fl.t-.a-
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This transition probability can be summed over final state spinsc 

and averaged over initial state spins by using the projection 

operatorss(2plf) (p.+m)** The result isc 

| n r - i ' ? i M . r ' - = ^L6ev(p.yp^q.vq,)'(8inWFnSf (15) 

wheree 
S S = (o^-p^)^Sp\(^tm^(^m)V\Sg{(a.^m)^(^m)7^] 

+ ii*-1- )V Sp{(l- + m) Vv (£+*m)/4 SP t(s*;-~m) V* (flr-+ m)y^ (16) 
i 

- (ai--J»+.) (fl.+-fl.--) 2ReSp\(£-+m)V^(£.+m)yi>(£+tm)V^+i-m)Yvl 

The first term only of S would be obtained if the two inter­

acting particles were not identical. The second and last terms 

are due to the exchange effect. 

The spurs occurring in \u} x are evaluated with the:help of 

the following relations for the spurs of the matrices 7^ and 

their products: 

Sp(Vr) = 0; S5p(V* -{h Vv) = 0; etc., for odd products; 

S P ( Y / T V ) = Sp(V>VWf VJ = ^ ( S V ^ V - i^S^ + i ^ i ^ i 

Sp(V>v^VPVVV^VT) = V s P ( V ? V v v„v-r) -SvSp(V^yy Vr-Yr) (17) 

+ Ŝ SpC-ŷ Vt Vr +r) -^sp(v rv ey^ y?) A T Sp(y^vWvV. )r 

etc., for even products. 

The result (see Appendix A) is 

33= 52[(a.+-^)''[(p'q+)(pvqj) -v(p.p+)(q.-q+) -m^p.q.) -m* (pvq+)+2m*} 
+ (a**<L- )""I(P--<l*)(Pvq-) + (P-q-)(P+q+) -**(P.-P+) -mx(q_-q+)+2m<^ 

- (a+-£-r(i+-i-);l[-2(p.q+)(p+.q_) (18) 
+ m*[(p-qj + (p+q-)+ (q-qj +(P,P+) *• (p̂ q-) + (p;q+)] -2m* t] 

Now | MI * is the probability for a transition in the time T 

* This projection operator includes the correction factor p^/m 
required by Feynman's normalization (I, p. 757-8). 
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from a' state characterized by the momenta p_»p+. to a state q_,q +. 

To obtain a d i f f e r e n t i a l s c a t t e r i n g cross-section we must f i n d 

the t r a n s i t i o n p r o b a b i l i t y per u n i t time* and-per- u n i t incident 

f l u x j summed over a l l f i n a l states i n which the p a r t i c l e s move 

wit h i n a • s p e c i f i e d s o l i d angle. We may-write-

dQ=(JTri|M| l dadq. y (19) 
aq-v 

The incident f l u x i s J = Vr/L* where v r i s the r e l a t i v e v e l o c i t y 

of the c o l l i d i n g p a r t i c l e s . Because of-the momentum conser­

v a t i o n c o n d i t i o n * we n e e d t o sumover the f i n a l states of only 

one p a r t i c l e , say the electron. We m u l t i p l y by the energy density 

o f - s t a t e s (dn/dq.^) and integrate over the energy dq^. The 

f a m i l i a r formula f o r the number of momentum states i n a box of 

side L, with i n a s o l i d angle d-ft, i s 

= ( L/2*-)' q., -ml d J l 
R e c a l l i n g that F = p.¥+ q + l t -p+v. -q^,, (12b) we put dq.v * dF. 

The cross-section becomes 

As usual we make use of the f a c t that the only important con­

t r i b u t i o n to the i n t e g r a l i s at F^O, and that a l l . functions 

except sinl-g-FT/F* are slowly varying and may be taken outside the 

i n t e g r a l . The i n t e g r a l becomes S ( s i n ^ F T / F ^ d F - -§-TTT. We 

therefore have 

and the condition F-0 expresses the conservation of energy: 
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Orose-aection for Positron-electron Scattering. 

We w i l l now find an expression for dQ i n the center of mass 

coordinate system of the two particles. Let the two particles 

move i n opposite directions along the z^-axis with equal vel ­

ocities v and energies -p+(f = P-f= E = Vm. ( i t i s here-that we 

f i r s t make explicit use of the fact that p + describes a negative 

energy state.) Let the electron"be scattered through an angle 

Then p t l- p± x=0, pt>= p^--/E ^ H D^.* We apply the conservation 

laws (12a), (2j) p_+ q += p + r q_. Then 

q + l = -p.- + q-; - q-(- for i - 1,2,5 

q4^ - p^ -p_v
 + q.¥ = q., -2E 

Since q;q +^ q_q. •= mx, we have 

q+̂  = m r i t ; = m + 7 q- * » 

or - ±q , and therefore q_v= -q.^ = E . Finally we have 

Ep_. q.: - (E -m) cos0. We then get the following expressions 

for the scalar products of the various four-vector momenta: 

P-'q- - P>-"q-i- - EZ-(E1"-m'L)cos0 = mHv ^ (V^-lJcos 

Pjq v= P.q- •= - E M E W ' J c o s f l ^ (^-1)0036] (24) 

P.-E, =q--qt = -EV (aW) = -ml(2y*-l) 

Introducing these values into the expression (18) for S gives 

S =4 [[( f ^ - l f sin ief i l + 4 ( ^ - l ) c o s ^ + 2 ( r - l ) X (l*oos*£fi)} 

- V^5 + 4(-y-l) +("/ a-l)'(l^cos l5)} (25) 

- WXf-l)einxiQX\5 ^8(y 1-l)cos 1 i 6 +4(V* -lfcoe%e\] 

The incident flux i s J = 2v/L*= 2JE Tntf :/L , E . The cross-section 

* Because of Feynman's treatment of positrons, the momentum 
as well as the energy of a positron has the opposite sign to that 
of an electron following the same path. 
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dQ therefore becomes 
dQ - ( e V 8 E x ) d I U £ s ) . (26) 

To express the cross-section in terms of a laboratory-

coordinate system in which the electron is initiall y at rest* we 

apply a Lorentz transformation. Fig. J shows, the various momenta 

in the two coordinate systems. We denote quantities in the 

laboratory system by primes. The positron and electron are 

Fig. 5» The transformation from center of mass 
to laboratory coordinates. 

scattered through angles 0+ and ©J respectively with the direction 

of the incident-positron. If we let -p'w = 2mT+m, q.'v = 2m?+m, 

then since 2m -1.02 Mev., T and V are very nearly the kinetic 

energies in Mev. of the incident positron and the scattered 

electron respectively. 

The relative velocity of the laboratory system with respect 

to the center of mass system is -v = - j y M / y . Hence (1-v*)'*•*-/. 

The Lorentz transformation equations are therefore: 

-m(2T+l) - R«, = (l-v^Cp^vp.,) » -m(27VL) 

m(27+lj = qi = (l-vl)l(q,-vq.,) - mf/-(-»"-l)cos:9J 

- -m/(2V+l)v -1 sind.' =q.',= q.^-mJT^ eiriQ (27) 

-m](2T-2v+ir-l sinG+' = q+^ - = -nn/Al sin-fl 

These equations give: 
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T = f-l 

V = (v " - l ) s in - | e ( 2 8 ) 

T - V = ( - V " - l ) c o s -§-6 

c o t e j = -y t a n § - 0 

c o t e + ' = icoifee ^29^ 

The r e l a t i o n b e t w e e n t h e t w o ' s c a t t e r i n g a n g l e s i s t h e r e f o r e 

c o t ^ c o t e ] = T + 1 (30) 

S i n c e t h e c r o s s - s e c t i o n i s a n a r e a p e r p e n d i c u l a r t o t h e 

r e l a t i v e - v e l o c i t y o f t h e two c o o r d i n a t e s y s t e m s * dQ' = dQ. 

S u b s t i t u t i n g - t h e a b o v e v a l u e s i n t o t h e e x p r e s s i o n f o r t h e 

c r o s s - s e c t i o n * and a r r a n g i n g t h e r e s u l t i n powers o f t h e e n e r g y 

V t r a n s f e r r e d t o t h e e l e c t r o n * we get 

dQ •= ^ r 0
, " d i l ( T + l ) " ; > [ ( T 4 - l ) a ( 2 T + 1 ) * V ~ * - ( T + l ) ( 8 T x+16T+7)V " ' ^ ^ 

+ (12T +24T+13) - 4 ( 2 T + l ) V * 4 V l ] 

w h e r e r 0 = eYmc* i s t h e c l a s s i c a l r a d i u s o f t h e e l e c t r o n . I f 

t h e exchange e f f e c t i s n e g l e c t e d b y t a k i n g o n l y t h e f i r s t t e r m 

o f S i n e q u a t i o n (25!)» t h e c r o s s — - s e c t i o n becomes? 

dQo = i r ^ d i U ^ l ) ' ' [ (2T+1)-V~* - 4(T+1)V"'+2] (32) 

The c r o s s - s e c t i o n f o r e l e c t r o n - e l e c t r o n s c a t t e r i n g i s d e r i v e d i n / 

A p p e n d i x B . 

C o m p a r i s o n w i t h O t h e r R e s u l t s . 

The p r e c e d i n g v a l u e s o f t h e c r o s s - s e c t i o n s a r e i n a g r e e m e n t , 

u p t o a c o n s t a n t f a c t o r , w i t h t h o s e o f B h a b h a ^ and M i l l e r . 5 * 

(The r e s u l t s g i v e n h e r e a r e i n each- c a s e j u s t t w i c e t h o s e o f t h e e 

* The n o t a t i o n o f M / l l e r and B h a b h a ^ d i f f e r s f r o m t h a t u s e d 
h e r e . T h e i r •{ + , 0 * a r e o u r V , T h e i r V e q u a l s 2T+1 . Bhabha;? s 
e i s V / T . 
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other authors.) Within this factor* Bhabha's equation (15)> 

p. 202, i s identical with (26) and (£5) above, and Miller's 

equation (74), p. 568, i s equivalent to the electron-electron 

cross-section (B2) given i n Appendix B. 

Certain values given by Mott and Massey^ appear to be 

incorrect'. Their expressions (15) for scattering neglecting 

exchange and (l6) for positron-electron scattering both contain 

a number of errors. 

Feasibility of an Experiment. 

To f a c i l i t a t e the plotting of numerical results, we introduce 

as a variable € = V/T, the fraction of the kinetic energy of the 

incident positron that is transferred to the electron. Each of 

the preceding cross-sections may be written 

d Q . K * a | ^ - * t •(«..•) (55) 

where the function: <^(T,e) has the values: 

for scattering with no exchange effect, and 

^ = 1 " ( 1 _ (2Ttl)1)(2"(2T+2)'-)* + [z^l)(?* (2^2))^ 
(25) 

" 2 \ 2 T * 1 / I T+ 1 / (2T+lJ \T+1/ 

for positron-electron scattering with exchange. 

If no attempt were made to distinguish positrons .from elec­

trons i n a scattering experiment, the measurements would correspond 

6 N. F. Mott and H. S. W.-Massey, "The Theory of Atomic (.':•• 
Collisions," (Second Edition, Oxford, 1949) pp. 571-2. 
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to one of the functions 

4 o ( 0 + ( j ^ ) x < U i - « ) (56) 

depending on whether or not the exchange'effect is present.. For 

electron-electron scattering, <KT,0 in (53) becomes 

In equations (36) to (58), we may take eT to be the kinetic 

energy (in Mev) of the least energetic of the two scattered 

particles, whether i t is a positron or an electron. 

Since (/)(T,e)al for most values of T and 6, the quantity 

gives the order of magnitude of the scattering cross-section 
y> an. 

per unit solid angle. This quantity is plotted (on a logarithmic 

scale) against t for several values of T in Fig. 4. 

In.Fig. ,5, <j>0 and <j>+ are plotted as functions of and in 

Fig. 6 $0 , and <f>+ are plotted for e & 0.3, a l l for several 

value8zof T. 

The relation between fc and the scattering angle is 

e = sinN^S 

= [ l + (T+l)tan«]"' 

where «• is the scattering angle of the particle with energy *T 

(<*= 6J or 91 according as *T = V or T-V). The angle for the 

other particle is of course the same function of 1-t. An angle 

scale for different values of T is shown as well as the e scale 

in Fig. 5« 

A possible experiment would consist of directing a well-

collimated and reasonably monoenergetic beam of positrons onto a 

scattering f o i l , and then recording the scattered positrons and 



Fig. 4. Mognltude of the Cross-section 
per Unit Solid Angle. 

Fig. 5. ond 4, as Functions 
of « and a. 

Fig. 6. and J + as 
Functions of «. 
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electrons at various angles by means of counters in coincidence. 

The atomic electrons in the f o i l will act as free electrons 

provided that the energies of both particles after the collision 

are much larger than the binding energies involved. This sets 

a lower limit of say 50 to 100 kev for V and T-V. The f o i l 

should be of a low Z material (e.g., carbon) to keep the binding 

energies small, and also to reduce scattering by nuclei. The 

latter has the same order of magnitude as scattering by electrons, 

but is proportional to Z* instead of Z: (seec-Mott and Massey,^ 

p. 81). 

It is clear from Figs. 4, 5» a n j i 6 that a successful 

experiment, while not impossible, would require careful tech­

nique. The cross-section is very small, and the difference 

effect to be sought for is at most points not large. The aim 

should be to compare the relative shapes of the experimental and 

theoretical curves for <̂  as a function of e, rather than to makes 

an absolute measurement of the cross-section. 

This means that an experiment using the curves in Fig. 5> 

(i.e., distinguishing positrons from electrons) would be most 

likely to succeed at energies of 5 Mev and greater, for which 

increases as 6-»l. The two curves for T = -§,» for instance, 

although they differ by about 40$, are nearly parallel in the 

range 0.2 < « < 0.8. Unfortunately, the positrons from the most 

common emitters have energies under 1 Mev. 

Reference to Fig. 6 suggests that low energy positrons might 

be used by comparing the scattering of positrons with that of 

electrons (without distinguishing the two particles in the 

positron case). At T=-§- the curves for ̂ Land <J>e coincide exactly, 
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while differs appreciably. This method, in contrast to that 

using Fig. 5» would be less advantageous at higher energies* 

Appendix A. Evaluation of Spurs. 

It is required to evaluate the spurs in the expression (16) 

for SJ using the relations (17) for the spurs of products of 

the matrices V̂ . 

One of the spurs in the fi r s t term of S becomes 

Spl(p-v/*->-m) Vy(q_f^ + m)^} = 4p.vq.f ( <$>w <^ r- ^+S^£e*)+1tai'&/.v 

= 4(p_v.q.^+P.fkq-») +4(m*-p_-q.JV" 
The other factor simply has q+-» p+ replacing p_, q_. The f i r s t 

term of S is therefore 

l60q+-p J *{ p.„q_, • sq., +• (mV-p_-q_)i^l { q+„ p • q p^ + (m'-p^) 5„ \ 
~ ~ . (Al) 

= 52(qv-p+)"+[(pjq + )^(p+.q_) + (p_p+) (q_qj -m*"(p_-q_) -m^p^qJ*2m*l 

The second term of S differs only in that p + and q_ are inter­

changed. It is therefores 

22(q*-q-)"*l(P-q+) (P*q-) ••"(P-q-KP.-qJ -mV(p_p+) -m"(q_-q+) + 2m*} 
• .. (A2) 

The spur in the last term of S can be expanded as follows: . 

q : x P - ? p t t r q + r S p ( y > . W f YW<r v M O + nfspCy^VW/^) 

+- nrq^ p.p Sp( V* Vv h V ^ ) +• mvq_N p+<r Sp( y> Vv-V. 7 v ) 
„ (A3) 

+ mvq^>q^Sp(-/>y^VvV/.Vt-^) + m p.f p^ Sp( V^yPyv y r V/-V/) 
+ axP^, q+-tSp(Vhyf VvV^VrYv) + m"p+rq+^Sp(V/.y„ y W W r V V ) 

To evaluate these terms we will make use of the fact that the spur 

of a product' is unchanged by a cyclic permutation of the matrices 

in the product. We first set down the results of a summation 

over certain indices in some of the equations (17)* 
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Sp( V> V̂ Ve ) = M V V - W + *vW) * ~ 8 J x r ( a 4) 
sp(^v, »̂ yj= - 8 V s - 52 

- 16 &*pSs-c 

Sp(VW/--Vr V W r V ) =4(ifj<5TN - Jf-r + i e > ^ r ) - l 6 ^ f +16 S A a 

- , (A5b) 

The six coefficients of mz i n the expression (A3) can be brought 

by cyclic permutations into one of the following two forms, 

obtained from equation (A5a): 

Sp( W Vy V r y . V„) - 16 •= 16 «• 
(A6) 

S p C ^ y ^ V f V W ^ ) - l 6 i y ^ f > ; = i6S > f , 

From the preceding expressions the f i r s t term of (A3) can be 

calculated: 

Sp(V>y^Vf "Jv.v* y^y T y )̂ = -8(>ie,rS?.T - ^p>Ssr - i - S p - r ^ x ) - ^ ^ ^ - ^ - l d ^ i - ^ 

- 1 6 S ' f r + l 6 ^ p 5 C T -16 <f*r i?s 

= - 3 2 5 > f f hfT (A7) 

The complete expression for the spur i n the third term of S 

is f i n a l l y obtained by substituting i n (A3). It i s : 

-32(pjqJ(p +-q_) + l6n~[p_q_ + p+q_+ qjq + + p :p + + p.q+ + pvq^j -32m* (A8) 

Since this i s of course real, the third term of S i s 

-32 ( q +-p + )~ " ( q+ -q - ) { -2 ( p.- q +) ( p+- q. ) 

" " " " r i o n ( A 9 ) 

+ m [ p_q ̂  p+'q_ +- q̂ q,. +- p_-p«. +• p.- q + + p̂ q,.] -2m* \ 

Oombination of the expressions (Al), (A2), and (A9) obtained for 

the three terms of S gives equation (18). 
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Appendix;B« Electron-electron Scattering. 
The preceding calculation can be easily adapted to- give the 

cross-section for electron-electron scattering. The derivation 
of a l l equations up to (22) i s exactly the same, except that 
p_, q^ are now the i n i t i a l momenta and q_, p + the f i n a l momenta, 
and of course.all energies are positive. 

We then put p_f - q v v = E, p_> * -q + 7 = /E^-nf , p ^ q^,^ = 0, 
and p*_ • q*_ - (E^~-m)cos0. The scalar products of the momenta 
are them 

"P--q-= P+<U * * * (>*- (/-l)co S e] = m 4 (2V , -H) 

PJq+* I V ' = m*(2y*-l) •= mv(2T^l) (Bl) 
P-P+ = q--q* = m l[vV(y %-l)cose] - mz(272-+l) 

The Lorentz transformation to a laboratory coordinate system i s 
carried out as before. V, and 7̂  , which replace V and T-V i n 
equation (28), are the kinetic energies i n Mev of the two electrons 
after the col l i s i o n . 

We note that the scalar products P_-q_ = p+q+- are exactly the 
same as i n the equation (24), and that the other two pairs are 
interchanged and reversed i n sign. Since the latter two occur 
symmetrically and always squared i n the f i r s t term of S, the f i r s t 
term of the electron-electron cross-section i s just dQ0 with 7t 

replacing 7. The second term i s identical, except that 7 Z replaces 7, . 
The electron-electron scattering cross-section i s therefore: 

dQ_ =.ir* diUTXl)"'[{(2Ti-l)*" 7;* -4(T+1 )7,"' + 2) 

- + {(2T+l)*7j* -4(T+l)7;' + 2} - (4T^-1)(7I7T):'] 
s ^ d S U T * ! ) " ' [ ^ ( 2 1 + 1 ^ ( 7 , 7 ^ - (8TVI2T+3)(7,7;l)~I +-.4] (B2) 
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