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FEYNMAN'S QUANTUM MECHANICS

Abstract

This thesis consists of two independent parts, both of
which-are“applications'of“the quantum mechanical methods.
developed recently by R.;P. Feymmane.

Part I is concerned with the non=relativistic theory, and
appiies~Fejnman?e formelism to the simple problem of -the
scattering of a particle by a potential field. The method end
results are compared with those of the familiar"BornhﬁpprOXe
imations The two procedures are shown to be equivalent and to
be valid under the same conditions; Feynman's-forﬁulae are
used to calculate the'first”and“second‘order.terms of the
scattered particle wave function, with an arbitrary scattering:
potential.

Part II uses the relativistic Feyrman theory, and ireats:
the scattering of positrons by electrons, and of two electrons.
The calculation checks the work of H..J..Bhebha and C. Mdller,
who have obtained the same results by other methods. . The.
differential cross-sections.for the two scattering processes:
are calculated to first order, and an estimete is made.of the
feasibility of an experiment to determine whether the exchange
effect described by Bhabhe actually occurs in positron;electron

scattering.
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FE Y NMAN'S QUANTUM MECHAN I c$S

APPLIED TO SCATTE R I NG PRO B LEMS

Introduction. -

Part I of this thesis desls with two methods of treating
scattering*probleme“in‘quantum mechanics which differ'ﬁidely'in
approach: One, the well-known Borm approximation, is a perturba-
tion theory solution of the Schr&dinger equations The other,
describéd in recent papers by Fe&nman,l’z’5 deals directly with
the solutions of the'wave eqﬁation, rafher than with the equation
itself. o |

In view of the fact“tﬁat'Feynmaﬁlé approaéh leads to a-
simplified formulation of quantum eleétrodynamical.proﬁleme, it
seems desirable to establish a link between this procedure and
the familiar Born approximation. This thesis accordingly
carried out explicitly Feymmen's treztmeht of a éimple.scatter~

ing problem and demonstrates the equivalence of the two methods:

1 R..P. Feynman, Rev. Mod. Phys. 20, 367, (1948).
2 R..P. Feynman, ~Phys. Rev. 76, 749, (1949), hereafter
“referred to as I.

R. P..Feynman, Phys. Rev. 76, 769, (1949), heredfter
referred to as II.



The Born Approximation.

----- Suppose that 'a' -partlcle of mass m and initiel momentum K

is scattered by a-potential field V(¥). To apply the Born
~approxmation, we-set ¥(T,t) = u(r)e 19t with @ = ‘hk*/2m, and
proceed to seolve the .time-‘;.ndepend'ent‘ Schr8dinger equation

(9% K= (2oy/B* )V(R)}u(?) = o.

The. method.is well kmown, and we include her.eeonly.thoae«equa‘bions
ﬁhichuwill be compared directly with the: Feynman-solution. .The
olk T,

wave function for the incident particle is u,= Gfeen's

solution of the first order equation is

u, (7)) = (2on)f6(?,,7, )W(F Ju(F )dr, , (1)
where the Green's function G(7 ,¥, ) = -(4!1'!?,;-17), Iy’ eik’;l"?v,
satisfies the equation -

{92 ke ,r, ) = S(F.-T) ). (2)
We write dTr = dxdydz; unless: otlﬁerwise- eﬁecifiéd's- the integrat'i‘on.'.»
is to be taken over all space. The subscript 2 on V* means that
it operates on the variables. r,., and: 8(¥,-r )= 8(x -x,)é(yl-y,
S(z -z, ) | ) '

For solu‘bione at large r, we make. the. approxmatlone

IT,-T,| = r, - Tn/r, ~ r, (3)

.in the exponent and denominator respectively of the Green's

functions The first and second order solutions are then:>

m elkr:

s (v@ et (KK 7 g2 (4)

u‘(?z) = -

Sv(ra)e‘lk T, i;kr SV( )el(k'k“>) r, d7, 47, (5)



Feymnman's Formulation.

Fé&nﬁan‘s'method‘is based on the probability esmplitude for-
a parficle té'move"from one spéce—time point;towanother3. This
function, called the kernel, is a sum of contributions eis/lfl from .
each possible path, where 8'is the'glaasical action along the
path. Denoting the point ¥,,t, by 1 and T,,t, by 2, XK(2,1) is
the amplitude for‘a particle known to be at ¥, at the time t, to
arrive atvfl at,thé time t,. . The wave function ¥(2), represen;ing'
the amplitude for the particle to be found at fi,tz, is then given:
by the expression |
W2) = Sr(2,1)¥(1)dF, . (6)
Feymnman shows thaf fhe'kefnel'ié ﬁhat‘solution of. ‘
{1nafh t. - BAK(2,1) = m8(2;1) (7
which vanishes for t1<£., where ﬁ-isﬂthe Haﬁilténian.operator fér‘
the particle (the subscript 2 indicating that it acts on the
varisbles 2), and 5(2,1) = &(T.-T, )3(t,-t,)s The kernel for a:

free particle is shown to be (for t,>%, )

3 N hd -3
K((2,1)= [—B___ )7 ex [&E.l!;:!i_]
0(_ ’ ) [2"11-1(1"1-1.'1)] p 2h (t’z‘-t') ¢ (8)
For a perturbation theory treatment of a particle in a

potential V(?), Feymman shows that the kernel mey be expanded in

increasing powers of: V:

K(2,1) = K, (2,1) + K,(2,1) + K,(2,1) + ... (9)

where
K, (2,1) = =(1/8){Ko(2,3)V(3)Ko (35 1)d%5 (10a)
K,(2,1) = (-1/8Y ((K.(2,3)V(3)K,(3,4)V(4)K, (45 1)dT; d=, (10b)

etcs, using dr=4dfdt. The time integration is limited to the

interval t,>t,>t, in (10a), t,>t,>t,>t, in (10b), by the condition



K(2,1) = 0 for t,<%,.
' The decisive advantage of  Feymman's theory is the inter-
p;!‘etafion' of the above formulae in 'ben;m"of' successive scatter-
inge In (l0a) for example we view the particle as moving freely
from.-lhto-5 (:;.mp‘li.tude K,(351) ‘), being scattered by the
potential at‘:5 (amplitudet-(i/“ﬁjv(j)dtg), ‘and moving as a free
particle again.;fo 2 (K°(2,5) Yo Thie is summed over all points
3, thus giving the ter,m::K.,(2,i). The successive terms of (9)
are regarded as emplitudes for the particle to be scatter,eci 0, 1,
2, etc. times by ‘t.-he-potential Ve.

Corresponding to the expansion (9) of the kernel, the
perturbed wave function may-be ,wri‘btén

V(2) = 4(2) + H(2) + ¥(2) + ... (11)

where: ¥(1) is the wave function of the incident free particlé,

and

(@) = §Eo(2,1)%(1)ed, (12a)
R (2) = -(/n)§K,(2,1)V(1)%(1)dr, (12b)

etes

g_m:;iaéﬁi?';};a_he Methodss

- F‘rom the forego:.ng .d;iscussion.. it is .possible to show a.close
correspondence between the two methodse The similarity of
equations (12b) and (1). suggests identifying '

| | 'G(?;,F’, Yeita = _(in/2m)(R (2,1)e 19t as, . (13)
Opé}ating on (13) with {ih’b/i)t,_+ (r"/2m)V, Y gives -on .ihe left,
by (2), |

O (emie e (B,7, )emiob - (W2m)S(F,-F Yol
end on.the right, using (7) with H=- (ﬁi/am,)v‘,

-(in/2m){1n8(2,1)e M at, = (B*/2m)8(F, -1 Je~ivta,



The equivalence of these two expressions does:nol  prove equation
(15), eince*an‘arbitrary*solution"of‘theﬁSchrBdinger‘equationt
éan:still be added to one side. It does:show however- that there:
is an exsct-parallel between the two methods in'spite'ofvthe”widea
difference*in‘approachs‘ Without giving a full proof.of equation
(13), we will study the correspondence of the two methods from
énoﬁher point of view.

.The n*P order perturbed golution is obtained by using for
 the kernel the first ntl terms of the series:(9).. We now seek
to modify'the‘Hamiltonian of the particle by introducing a |
potential function V,(¥) such that K _(2,1)*...*k,.(2,1) is the
exact kernel for a pafticlevmoving in.thelpotentiél V;(?)q‘
Applying equation (7) givess A

{1001, + (h¥/2m) %= V,(2)}{K,(2,1)+. . *K,(2,1)} = 1h&(2,1) (14)

which @efinés'the"functiénfv;(?). - ‘ o

‘A general éxpression’for"the nth order kernel is

Ko (2,1) = ~(1/8)§K,(2,3)V(3)K .., (3,1)d 530
Using the frée‘parficleufqrm'of equAtioh'(7j‘givés therefore
{1hdot, + (%/2m)UIE(2,1) = V(2)Kay(2s1)e

Thus we see that Vh(z)“is giégn.by'the equafién »_

Vo(2){Ko(25 1) 4 e K (2,108 = V(2){Ko(251) %0 e ot Kana(2, 1)}
Multiplying this equation by ¥(1) end integrating over dr,, we.

obtain

v, (2){(2) e v W20} = V(2) {N2) re et R(2)F (15)
From the definition of V,, the wave function %h..t V¥
must satisfy the modified Schrbdinger equation conteining this

potential:
{ihd/ot + (n*/2m)V=v, {{ %t .+ b} =0,



Using the expression (15) for V,, this becomes: ,
{iha/«')t + (?j’/Zm)Vll i"k,fo . o"”V"ng = V { 1I’b+o . of"k‘q’g ’ .
and subtracting the-corrésponding equation with n.lowered by one

givess

1Rt + (B/2m)T W, = Vb (16)

This is exactly the nth 6rder'equatiqn‘of the Born~approximation;
We have thue proved that the Born end FeynmanAéolutions‘are"
identical, provided that the same incident particle wave function
¥, is chosens

The condition for validity of either approximatidnuie.that
the terms of the series expansion of the wave.function,(li)
should decrease rapidly, i. e., that |¥,]1<<\¢y,] = 1. Since‘the
two methods give the same result for ¥,, it is clear that they

are valid‘under the same.conditionse.

Explicit solution by Feyrman's method:.

To illustrate the equivalence of the two methods; we will

use Feymman's formulee to calculate explicity the first and
éecoﬁd'ordeé terms of the wave function. We set W, (1) =

22 .
-el(k'rt'wt'>' for the wave function-.of the incident particle.
The zero-order wave function (12a) should of course be the same.
This is eaéily verified by direct integration ueing the
expreeeionw(8) for the kernel.

The first order term, from (12b), is:
ta

. 2 s D2
im Jra-ril ]V(?, )ei:(k.r, ~wt, )d?, dt,

Maab e b ten

; i : I
- =(i/m)e Wt (T(|F,-F ] V(T ) ik Tiar
where B |
3. 2 .
T(r) = §(emint/m)7elur /2hbeiot 4y
(=4



(using r=\r,-¥,| y t = t,-t, ) is the integral on the right of
equation (13), multiplied by elwta, |

Now éccérding”to*Feynman'svinterpretationjof the perturba-
tion formulae, 1V(2) is'due‘té pérticles*scattered“once‘at“l and
then proceeding as free particles to 2. Since & free’particle
has a definite veloclty‘hk/m, we should expect a contribution to
T(r) only”from the neighbourhood of the point t = (m/fk)r. We

rearrange the exponent; end meke the substitution t = (m/hk)r(1+§)~

T(r) :.( n ) Stz ex p[%ikpgi £.+-%ikrhk t]dt

2rih
(a3 (@)1 0 (il o1y
) 213.?1\2"1) .. S )Ji inkr;?l‘l*t?dg

The coefficient of if{ in the exponent is kr¢/(1+&). For
fairly energetic particiea‘at large distances r,, kr>> 1. Hence
except for: the region £« the exponential is a very rapidly
-oscillating function of §. The function (l+§)ﬁ% varies slowly
(except at{—> -1, and here the exponentiai oaéillates with
infinite frequency), and hence the integral vanishes except for
very emall velues of §. Thus the physical reasoning of the
previous paragraph. is. confirmed. = For smell §, we take 1+§ =
and then, since kr >1, extend fhe lower limit to0 -o. The
integral becomes * oikr

(r) = 2wih(g:;)&

ge-(kr/zi)vdg

= (m/2ﬂih)eikr/;.

r

*  In spite of the approximations used, this result is exect.
With x = 1+§, p- -ia= ~4ikr, the integral is §;x -} o-Px+ia/x4y,

This can be evaluated by using a table of lLaplace Transforms, such
as.W. Magmis and F. Oberhettinger, "Special Functions of Mathemat-
ical Physics" (Chelsea, New York, 1949), p. 127. Thé: method used
has the advantage of affording a physical interpretation.

s



Comparing this with the Green's function, we see that equation

(13) is verified.
" Applying the asymptotic approximationa (3), the first order

wave function becomes -

\l)(z):" i} éi(krz"utz)

1(E-K,) T, g2
P o SV(:?' Je o dr, (17)
which agrees exactly with the Born approximetion result (4).

From (10b), the second order wave function is:

‘1’,1(2 )

(=1/8) KL (2,3)V(3)Ko(3 V(L) %l 1), dv,

- - . . - - - - .- - - - - - ._, _’ ‘—' N
(+1/n) o™it (§T(V 2, 2,1 YW(E,)T(IF, -7, | V(T Jelk T, aF, ar)

i

- () S (oot 20 ()

R
¥ ei(i-K,)- T, g2 az, (18)
using again the approximations (3). Thi; is identical with the
Bérn result (5). o
‘ It'willAbé noted that the successive integrations involved
in the higher order approximation do not-lead to & more com-
pliceted time  integral (es might be expected), but rather to
simple products of the.same function T(r). This is due to the.
separation of the time dependence of equﬁtion (13) in the factor
e~1¥t1, 14 is clear, in fact, that this time integral of the
kernel will always give the same. function providedvonlj that the
wave function can be separated in this way. Thus this integra-
tion, the most difficult step in the Feymman caleulation, need

not be repeated in every probleme.



Introduction.

" In Part II Feymman's formalism for ﬁarticles satisfying the
Direc wave equation'wili be applied to the typical.problem of
fhe first order scattering of two eiectrone. A particuler case
of this problem is the interaction between a single positive
energy electron and an unoccupied negative energy state (i. e.,
a positron). This case is of special interést since it makes:
possible a direct verification of the hole theory of positrons.
For if the positron is really a vecant negative energy electron
state; then an exchange effect will occur in the interaction.

‘ which will contribute an extra term to the scattering cross~
gection. If however the two pa?ticlés are quite different,;the
exchange term will be absent. .

This fact was pointed out by BhaSha,4 who calculated the-
two cross-sections. This calculation will be repeated here
using Feymman's simplified formalism. The cross-seﬁtion for
"electronpéleciron scattering will also. be obtained by e very
slight change in the calculetion and will be compared with the

result given by Mgller.>

4 He.J:.Bhabha, Proc. Roy. Soc. A 154, 195, (1936).
5 Ce Mﬂ‘ller, . ,Am- de. Phyeo ‘_l_li’ 551’ (1952)0
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Notation.

""" Fdf relativistic problems the following notation is conven=
ient:- If p is a four-vector with components P. (/L=1, 25 3y 4),
then 3"denotés the three space components of'pa ~We use the
summation convention p,q, =Dp.q, -3-€ssp.q. Also, if Py is not a
matrix, p =p.7. is a metrix associated with the vector p, where
Y are the four Direc matrices /3,52,(3. The latter satisfy

Yo¥o + Yo¥p = 28 where &,,=1, &, = 5,,=6,=-1, and other S are
zero-. Then ¢,,p, = Pus X,.,fl&. Note that p = p-p is a pure
number,'not“a nagtrix. ‘

We write dp=dp,dp,dp; and dqu=&§dp¢. In';articﬁlarg X,
is.the four-vector ?, t (we use natural units H=c =1, so.that
X,=1)s dr = dxdydz, and dv = dBdte Finally, V= VPQ/Dx,,;p’c)/z)_t& (3&'-6
where /7%, means J/Jt for p=4 and -9/0x, -9/oy, =I/dz for

Ib-zlp 2, 3.

Feymman's Formalism.

Feymuan's reletivistic formalism is -essentially the same as:
that described in Part I, except that the wave function is now
a solution of the Dirac equa'tiqn having four'components, and the
kernel is a four by four matrixe. The Dirac equation for a partlcle

moving in the vector and scalar potentials (tlmea e) A is

(iV - m)'\/‘ AY ’ (1)
and the free particle kernel satisfies- 7' o |
(19, - m)K,(2,1) = 15(2, 1) (2)

by enalogy with equation (7) of Part I. The particuler solution

of this equation that must be chosen is (Feymman, I, p. 752)
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(2 1) = Z4> (2) Pn(1)e~1En(ta=t))  por ¢ >4,

'"z:4h(2)<?"(l)e'iE (t -t ) for t,<t, .Fi?
Here ¢, aré elgenfunctiona of "the free partlcle Dirac equationy
and E, the corresponding energy valués. It is convenient through-
out to replace the usual Hermitian _c‘onjugéte QDT by $ =¢’fﬂ .

From (3) it is seen that elecfrona mey be propaggted~either
forwards in time with ppsitiQe energiés, or backwards in time with
negative energiess An electron propagating towards the past is
recognizea‘ae a positron. The above choice of the kernel is
exactly equivalent to the hole theory of positrqna;

' The enalogue of equation (6) of Part I.is
W2) = §ky (2, )Ny, (4)

ﬁhere the iniegratién'ia over a é-diﬁeﬁaional surface in&apace;"
time enclésing the point 2, and N,.(1) is an inward unit normel
to the surface at the point 1. In pérticular, if the surface
congists of all space at a time £|4t% and all space at a time t{>tz,
this becomes '

W(2) = §x,(2, l)mbu)dr -fx2anpvanad ()
Because of (5), only electron states in'?(i) aﬁd posiﬁroﬁ atétési
in 4#(1') contribute to the integrals.

If}two particles are present; the amplitude that particle. o
goes from 1 to 3 while b goes from 2 to 4 (assuming no interaction)
is the product (Feyrman, I, p. 755) ‘

K(354;1,2) =.K+a(5’1)K+L(4’2) ' (6)
"The subscripts a and b indicate that the matrices K, operate on
the wave funétions of pafticles a and b respectively. Matricess

with sﬁbscript a and those with subscript b always commutee.
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Since the two particles are identical, another process is:
possible involving“aﬁ exchange between them. The exclusion
principle requiree:that the emplitudes for the}two processes be
aubtraéted, giving the net amplitude

K(3,4;1,2) - K(4,3;1,2) ' (7)

When the two particles interact; (6)~n0'longer holdss The
effect of the interaction of two electrons to first order in e*
(regarded as the exchange of one virtual qﬁantum) is given
(Feymman; II, p. 772) by
K7(3,451,2)= 10" Ik, (3,5)K, (4,6 ), K, L5: 1)K,(6,2) §,(8})dv, dv, (8)
This formuia can beviﬁterﬁrefed as follows: Electron o travels:
88 a free particle from 1 to 5 (amplitude K, (5,1) ), emits a=
_photon ( v.u), and travels from.5 to 3 (X,,(3,5) ), while electron
b goes from 2 to 6 (X,,(6,2) ), ebsorbs the phéton“(vgﬁ), and
goes on from 6 to 4'(K+;(4,6)v). Meanwhile the photon proceeds
from 5 to'6, with amplitude & (sZ). This is summed over all
polarizations p of the photon, ‘end 1 points 5 and 6. If o>t
we would'say that b emits and a absorbé the photon, but this msekes:
no differenée in the formula.

Equation (8) can describe several processes, depending on
the time relations of the points 1, 2, 3, and 4. Feymman répre-
senfs theée)processes by simple. space-time diagrame.' Thus Fig. 1
illustrates the scattering of two electrons as described by (8),
together with the interfer;ng process whose amplitude is
Ku’(4,3;1,2)7‘ The same kernels deseribe the. interaction of an -
eleétroh with a positron simply.by re&ersing the time:relation
of points 2 and 4, as illustrated in Fig. 2. Positrons are dis-

tingdished by the direction of the arrows on their paths.
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TIME

Kis(‘a’)

K(3,4;1,2) | K"(4,3;1 2)

-Fig. l.” Interaction of two electrone.

‘34-(1) Q-(’) 9‘*(1 )

&_('). -h(“)
K'(3,451,2) K"(4,5;1,2)

N Fig.-2. In&éraction of electron witﬁ positrone.

General Expression for the Cross-section. .

The principal aim of this thesis is to calculate the cross-
section for the process 111ustrated in Fig. 2. We assume that
1n1t1ally (1n tlme) there are present an electron in the state
£ (1) and o posltron in the state £.(4), and that flnally these
particles are found in the states g _(3) and g.(2) reepectlvely.
These stetes are shown in Fig. 2. The subscript + will be used
alwaya on quantities referring to positron atates, and the sub~
scrlpt ~ for electron states.

It is necessary to compute the matrix element of the kernel
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given by (7) and (8) for the transition from the state f_(1)g,(2)
to the state g_(3)f,(4)s. This matrix element-is:: -
My = 16 0 E L (5)F, , (6) Yop thu S (8202 (54 4(6)dr; o )

+ 165052, (5)2_4(6) tep o 8 (82)E_o (5D (6)amsd s,

after carrying out thé'é—sufféce integfalé ovér(dﬁ ;’éfi, a7, ,

-
dr, , such as:

1

SK,.(51)p.£_.(1)dF, = £_(5)
. - - .

SE (KL (4,6)dF, = F,4(6)
according"ié;equatioﬁ.(5); The éuﬁscriptha%on M, is used because
thie matrix element defeﬁds on the ‘spine .of the various statess

Ve take as the.initial and finsl states;qf the two part-
icles the Dirac free particle wave functions
£, = L upe IPe%, g,_=L"3iv_+_e"iqfx, (10)
where u,and v, are coﬁstant”spinors satiszingtthe:Dirac equation'
(p - m)u=0, and pj;, q+ are the momentum-energy four=vectors of
ihe pgfticles in each stete. These solutions are:pormaiized in
a cubic box of volume L’. The three spacé édmponenta of each
momentum~véctor assume the discrete valués 2vn/L (n an integer),
while the fourth component varies contimucusly. |

| The Fourier transform of §.(sl) is:
su(ey) = orfEteie (k) (aaiak. (1)

Beéauee of the box normalization, the integral over the three
space éoﬁponenia,of k must be replaced by.a sun, with dk =2m/L: |
| 5+(%;) = -Zﬂféé&ggie'ik'(xs'x6)dk¢$ (11#) i
In order to obtain a tra;sition probability per unit time,

we assume that the interaction is "turned on" only for a finite

time T. We now substitute the above expreseione (10), (11a)
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into the matrix-element M; and carry out the integrations over.
dr,, d%, as follows: The spacé-coordinates of each point are-
integrated over the renge ~3L- to L. One time coordinate
(say ts) is integrated from O to T¢ The other (ts) from - oo to
+®, These integrals from the flrst term of Ms are:

SSL‘ iq,x;Lz ip’x,L e-lk (x -x,)Lz ~ip- fo‘e“ierédT-d?‘
= 20178(q, 0k ,-p,,) (72FT- 1/(-47)
provided f)’_+ﬁ - a,__f ?L- k- p O' otherwise the integral '
venishes. We define F= Pt Ky~ Q.. The second term of M; iss
identical, except that f, and g , and therefore p, and q_, are.
interchangede. | |

Thus in the first term k=q,-p,, and in the second term

k=q,~q.. The other conditions are the same for both terms:

-

;—"'a)q--;-\--q—: 0 (128.)

D+ d,,~ D, - qq F | ' (12b)
The first of these expresses the conservation of momentum, aﬁd '
the second defines the quantity F.

The final expression for M, in terms of the initial and

final'momenta is:

boie e '1FT-1[ ' -2
MS= L2 ( 1F> ~a +l>7ld/~{bl»*(3+-2+) LA qm 5¥AP'{5#(9-+ 3--) -o.v+!=]

= br1e* (e FT1)/(-1F) | (g,=p0) (Toopr) (T4uv,) (13)
- (gema-) (Tdos) (Togpvs )
The transition probability from the initial to the final state
iss IM,! MM, end since v,=4, this isc
juf = 6T AT (g, p (@ v Toi) (T, T, o)
+ (g V(T Ay u T ) (Ty VT v v,)
= (-4 (@ ) 2Re(T st T, T, v, T, ypv.) | (14
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This transition probability cen be summed over final state spins:
and averaged-cver initial state spine by using the projection
operator.'e‘m(ZpL‘} )_".(_pjm)%"' The result isc-

" = %E(Ml = L% (p,s, ) (sa.n %-FT/F s ()
wherec " » o
55= (a,-2.) sp{(nem) Warm)hY sp{(a m) (e m)s ] |
| { _+(ﬂ+-9.- ) Sp{(.v;*rm) yo (2,rmyd SP{(srm)vv(gﬁm)vﬁs (16)

- (2,720 (0. ) 2Re8p {(a rm) o (prm) o m) bl rmd ]
The Pirst term only of § would be obtained if the two imter—
écting paiticles were.notvideniicai. The second and last terms
are due té the exchange effects

The spurs occurrlng in \M) are evaeluated with the help of
the follow1ng relationa for the spurs of the matrices &%
their products.w .
Sp(—{r) O, 85(V» 4 W) = 0; ;‘bc., for od.d.~ pro&uc‘bé}
Sp(4 ) = 45,“ S otk ok e )= 4085 S = By S 6y ok
SPWNF% Jo Ao 4) = é),ﬁp(vevv Yoe) = Sy Ve 1) (17)
' +3>vSP(‘h~v’< I ¥x) = Sp(wdv V’r)*‘é»c Sp(»/»vm/n/f )» ‘
veté., for even products.
The result (see Appendlx A) is ‘ ‘
552l -2 (220, (B0 (2. )(aa,) —mM(ea) = (pra, ozm’)
OTBECEREEBEICEBEERENCERIENCERE-
- (2-2)7 (-3 {200 )(pia) . o (18)
v (e ¢ (pia)» (i) +(2op) + (pra) + (pya)] —2m”l)

Now IM\ is the probebility for a tran91tlon in the time T

* This projection operator includes the correction factor pq/m
requlred by Feynman's normalization (I, p. 757-8).
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from & state" characterized by -the momenta p_,p. to a state q. ,4+.
To  obtain & differential scattering cross=section we must find
the ‘tr_ansi:‘bi'on“ probability per unit time' and-per unit- incident:
flux, summed over-all final. vstat'es‘ in" which the particles mov'e
within a 'specified sol.id angle. We may write- -
aQ = (77)" § 111" $2 ., (19)
“ q-“ - - R
The incident flux: is J = v, /L} where v, is the relative V‘eldcity
of the"'collid;ng-particles. --Becau_se-of' the momentum conser-
vation condition; we need-to-sum-over the final states of only
oﬁe i)ar‘ticie, say the electron. We multiply by the energy density
of states (dn/dq.,) and integrate-over the energy dq,. The
familiar"férmula' for: the number of 'momen'bum states in e box of
side L, within a-solid angle dfl, is
¢ r
4_%—3__: (é%;) (¢ )—-—“f;—q—_T an (20)
- (2e) o, [ T e
Recalling that F = p-,4q+,-?+q-qw, (12b) we put dq., = dF.
The cross-section becomes A

e’ ( )dnSQ-JQ.:~ m sin EFT

da =
O I PesPyQuyGy - 7

SdF (21)

As usual we meke use of the fact that the only importent con-
tribvution to the in;begral is at F -—O, and that all functions
except ein ‘gFT/F are slowly varying and may be te.ken outgide the
integral. The integral becomes }w (sin‘iFT/F* )dF"—z-nT. We
therefore‘ have

Ig’s-m” _
mpwp,q,, Sd0 (22)

and the condition F=0 expresses the conservation of energy:

p-.{*’ q'f\f -~y = O. ' . (25)
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Cross-section for Positron-electron Sca‘bter:@g.

We w1ll now find an expresslon for dQ in the center of ‘mass
co-ordinaft;;e‘ system of the two part_i'c-les‘." Let the "bwo *-parti-cles
move in opposite directions along the zeaxis with equal vel-
ocities V‘ar;d' energies =p, - p.,~ E-7me (It is here the:rb‘we
first ‘make"eip‘li"ci‘b' use of the fact that"p ; describes a negative
energy s;l;.ate.) Let the electron be scattered through an angle 6.
Then pt,-; pg=(.), P.,= P= -[E*-m** Ve apply the conservation

laws (12a), (23).p_+q,=p,+ q_e Then

[

q+3. = ph: -p_; + 4. q.; for i = 1’2’5

it

| q,, ~P.,.~-P, * 4, =q; -2E
Since q:q,=qd.q. - n*, we have
e mt e Tl ats Tl - g
or q, =+q_, s and therefore q_~ ~q,, = E. Finally we have
f;, p.q.= (E -m) cosf. We-then get the following expressions
for the séélar f)roducts of the various four-vector momenta:
P:q.=~Dq, = E -(E ~m")cosd = m (v~ (4 -1)cos 6]
p.q, < pq s-E -(E -n")eos8 = -n" {1 (4 -l)cose] (24)
p-p, =q:q, =B -(B-n")  =-m*(2y’ -1) | |
Introduclng these values into the expreasmn (18) for S gives
S= 4[{(1 -1} ein’26V {1+ 4(y*-1)cos™ %0 + 2(+4” -1 (1+cos ‘%0)}
+ V(33 br=1) + (1) (1roos™0)} (25)
- I¥i(y*-1)ein'36Y {5 +8(4"=1)cos 30 +4(y* 1) cos‘%—G}]

The incident Plux is J = 2v/L’= 2/E*-w*/I’E. The cross-section

* Because of i_:eyman's treatment of positrons, the momentum
as well as the energy of a positron has the opposite sign to that
of an electron following the seme path..
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dQ therefore becomes A
dQ = (e*/8E™)d1(%8). - (26)
To express the crosaaéection'in'iérﬁe"of'a~1aboratory" o
coordinate“system in which the electron is initially at rest; we
apply & Lorentz-transformationz Fig. 3 shows:the various momenta:
in the two coordingte- systemse We‘deﬁote'quantitiea.in;the
laboratory system by primes. The positron and electron are

. ) N ’
'y Ly S

1 v

Xl xi ,

/ Pe . i P+I \0;'
/ ~ P: -~ -:L,— —— o o—

4. Center of mass Laboratory

system

Y

system NE

> o>
Fig. 3. The transformetion from center of mass
o to laboratory coordinates.

*y

scattered through'anglea 6! and 0! respectively with the direction
of the incident- posltron- -If we iet -pL = 2mTsm, ql, = 2mﬂkm,

then since 2m l. 02 Meve, T and V are very nearly the kinetlc

R N i

energles in Mev. of the incident positron and the scattered

electron respectlvely.

The relative velocity of the laboratory system with respect.
to the center of mass.system is =v = - Jy*=1/y. Hence (1-v15i=r¥.

The Lorentz transformetion equations are therefore:

—m( 2 11-1 )

o m(21+1) = B} = (1v*)(p,yvpy) =
- m(2V+1) = g, = (1—V‘)'l‘(q-:Vq~},)i = m[y=(1"~1)cos 4]
. -m[(2V+1) -1 8inb! =g = q,=-m[7-1 sin8 ) (27)

]

-n J(2T-2V+1) -1 8in0} =qj,_ q,l"—'-m-“‘-l sind -

These equations gives
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T = 4*=1 v '
(v7-1)sin %0 (28)
(+"=1)cos-50 | o

i

T=V

n

>cotQ?=‘Vtén%9

: 29"
cot 8} = ycobdd (29)

The relation between the-two'scattering angles is therefore
cotBlcotd! =T + 1 . (30)

Since‘the'croeaasectiOn ie aniarea perpendicularnto“ther
relative”vélocity“of"theftwotcoofdinaﬁe'systems;.dq' = dQ.

Suﬁstituting"the'above‘valuesaigtq"the expressionufor'thetu
. cross;séctioh; and arranging the result in powers qf thg enérgy
* V.transferred to' the:electron, we'éet”' -

(31)

4q = 3rraf(m+1) [ (1e1)* (2m+1) v (T41) (BT +16147)V
o o+ (12T% 247+13) ~4(2T+1)V+4v?] -

where.n,; e'/mc* is the classical rédiﬁarofﬂtheieleétfon; I
the exéhange effect is neglected by teking only the first term
of 8 in-equﬁtion_(25§, the crOBW4§ection.becomesé |

dq, = rran (1)’ [ crsryv™ - 4(T+1)v"+2] (%)
.The cross-section for eléctrén—eléctron sc&ttefing is derivéd'inﬁ

Appendix B.

Comparison with Other Results.

The preceding values of the cross-sectibne-are~in:agreement,
up to a constant factor, with those of Bhabha* and Mgller.””*

(The reéuifs given here are in each case just twice those of thec

* The notation of Mgller and Bhabhazdiffers from that used
here.. Théir {*, 0* are our Y, 8. Their 4 equals 2T+l. Bhabha's
€ is V/To R .
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other authors.) Within this factor; Bhabha's equation (15),
p. 202, is identical with (26) and 25) above, and Mgller's
equation (74), p. 568, is équivaleﬁf“%o*the electron-electron
croas-secéioﬁ'(Bz) given in Appendix B.

Certain véluéa given by Mott and Maseey6 appeaf to" be
incorrecﬁ; Their expressions (15) for scattering neglecting

exchange and-(lé) for poeitron;electron scattering both contain

a number of errorse.

Feasibilitj of an Exﬁerimenta

A ——'TéAfééiiiféfé.fﬁé.éidﬂfing of numericgl fesulté; we introduce
ae & varieble G='$WT, the fraction of the kinetic energy of the
incident éoeitron that is transferred to the electron. Each of

the preceding'croae-seetions may be written

dq - $rra0 {5 T 6 (nhe) (33)

,wl.qere the function $(T,€) hae the values- J
oo -(-gEplerEE e o
fof scattering.with no exchange effect, and »
41 -y (2 -may) (B (o ey
| - 2(25?1)(53_1)? * (E%%)l( Eif'l')leq

for positron-electron scattering with exchenge.

(35)

If no attempt were made to distinguish positrons from elec-

trons in a scattering experiment, the measurements would correspond

6 N. F} Mott and H. S. W..Massey, "The Theory of Atomic ¢ :'-
Collisions," (Sécond Edition, Oxford, 1949) pp. 371-2.
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to one oé the functions
b= () (2 ) 4, (1-¢) (36)
% ¢*<e>+(16) $a-0 D)

depending on whether or not the exchange‘effect is present. For
electron-electron scattering, ¢(T,e) in (33) becomes o
o=t v (gg:i)(l-ee\ (38)

In equations (36) to (38), we may take ¢T to be the kinetic |
énergy‘(in Meé) 6f thé léast.energetic of the two scattered
particlés, whether it is & positron or an electron.
| Since ¢(T,¢) =1 for most vaiues of T and €, the quantity
%~%%. gives the order of magnitude of the scattering cross-section
per unit solid angle. Thie quantity is plotted (on & logarithmic
scale) against ¢ for several values of T in Fig."4.

in“Fig.,ﬁ, ¢, and 4& are‘piotted as functions of €, and in
Fig. 6 ¢, 6;, and @; are plotted for €4 0.5, all for several
values-of T. » - |

The relation betweént:and the scattering angle is

E=-shf%6
= {1+ (T+1)tan%]”

where « ig the scattering angle of the particle with enefgy T
(=18 or P! according as ¢T=V or T-V). The engle for the
other‘partiéle is of course the same function of l-¢. An angle
scale for different values of T is sﬁown as well as the ¢ scale
in Fig. 5.

A péssible experiment would coneist of directing a well-
collimatéd,and reasonably monoenergetié beam of positrons onto a

scattering foil, and then recording the scattered positrons and
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electrons at various apgles by means of counters in coincidence.
The etomic electrons in the foil will acf as free electrons
ﬁrovided that the energies of both particles after the collision
are much larger thaﬁ the binding energies iﬁvolved. This sets

a lower limit of say 50 to 100 kev for V and T-V. The foil

should be of a low meaferial (eeges éarben) to keep the binding
energies small, and slso to reduce scattering by nuclei. ‘The
latter has the seme order of megnitude as scattering by electrons,
but is proportionsl to Z* instead of Z7(see-Mott and Massey,6
ps 81). ‘

It is clear from Fige. 4, 5, and 6 that a successful
experiment, while not impossiblg, would require careful fech—
niquee The cross-section is very sméll, and the difference
efPect to be sought for is at most points not large. The aim
should be to compare the relative shapés of the experimental and
theoretical curves for4’ae a funf:tion of €, rather than to mske:=
an absolute measurement of the-éross-sectiona

This means-that an experiment using the curves in Fig. 5,
(i.e., distinguishing positrons from electroﬁs) would be most
likely to succeed at energieé‘of 3 Mev and_gréater, for which ¢,
increases as €—1l. The two curves for T=%, for instance,
although they differ by about 40%, are nearly parallel in the

‘range 0.2 < €< 0,8. Unfortunately, the positrons from the most
common emitters have energies under 1 Mev.

Reference to Fige 6 suggests that low energy ?oeitrons“might
be used by comparing the scattering of positrons with that of

electrons (without distinguishing the two particles in the

positron case)s. At T=% the curves for ¢.andai coincide exactly,
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while<#fdiffers appreciably. This method, in contrast to 'that

using Fige 5, would be less adiantageoua at higher energiees‘

Apgendix‘Aé Evaluation of Spurs.

It is requlred to evaluate the spurs in the expression' (16)
for S, using the relations (17) for the spurs of products of
vthe matrices 7p.

One of the spurs in the first term of S becomes
8P {(pxchrm) %( G +1) 7’»} = 4p_, Q-‘:( Sxv Sgp= Sne dup +5)F,£‘,,) + 4§,

‘ o = B(p,grepany) tM(mTopiq ) Spy

The other factor simply has §+, p, replacing p;, q-e The first
term of 8 is therefore
16(fg+-_p+)¢{ Pl B,a. + (0 =poq )40t { o p, * a0 b, + (m-pig,) ,5@:1}
=32(q,=p. ) " Upoa, ) (peal) * (Rope) (a:q,) -™(poa-) ' (pra,)+2m!d
The second term of S differs only in that p, end q- are inter-
changeds It is ther;foreﬂ

52(q;-q ) {(p.q+) (pea-) +(poq- )(p1q+)' -n"(p.p,) -m (q ‘qy +212x"}

The spur in the lest term of 8 can be expanded as follows°
"QInP-¢Pre Qe SP({rTnve e dpdeb) + m Sp(irv/m’r W)
+ mig-ap. esp( Irpe v V) + 1G5 Pye 8P(Aa J,n'v To Y Av) (13)
¥ W, 4y SP(da Vi v Y dx ) + M0 Do SB(Ymve o 7 1)

+ m P-e qWSP(\IFV(: Iy ) * P.u,—quP('/rw'v Vo VA o)

To evaluate these terms.we will mske use of the fact that the spur
ef a product is unchanged by a cyclic permutation of the matrices:
in the product. We first set down the results of e summation

~ over certain indices in some of the equations (17):
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SP(¥» 4o Y dp ) = 48p(ade ) = 165y,
Sp( Yr e f») h(f,r c»" e dpp t 3,\,. ,f) = =8 dxp (a4)
8p(yy vy Vth) = -8 dpp = = 32 -
sp(vmle vwsvr Jp) 163»« - —4(£ec51x-5n o + 50 dor) ~Bbncdp (450)
+8 dos§rr 4(5\,) Sec= éPF iy +s‘,,5,\,)
=16 8xpdsx
Sp(v’n',~4e Mﬁ») A(sr,éa - Spvbor +dex d62)=16 8,5, +16 S,\, S
~16 872906 T B(S3 850 = Jn&wé»r&w)
—-B(Bar&w =SS +har Spe)

(a5b)

The six coefficients of m* in the expreaaion (A3) can be brought
by cyclic permutatlons into one of the followzng two forms,
obtained from equation (A5a): |
8p(fr Yy dep ) = 16 3>,J¢,~ = 164xs
| SP( T ‘/c Jyiudv) = 16 ‘Svh =16 S?«i’

From the precedlng expresslons the first term of (A3) can be

(46)

'calculated:

SP(‘(m{r\(r Yvie 7’»‘17 v’v) "8(5er5>r - derdee + 5 750)"16‘5"(;56? +16 ‘Sﬂ‘g'”‘

-16 5)1 S‘,? + 165)‘? ém =16 S}‘y 396
’—8(50 567 - Se' 5?\1‘ +§7r SM)
= - 52 é)o’ ép'r (A7)

The complete expression for the spur in the third term of 8
is finally obtained by substituting in (A3)e It is:
-32(p-q,)(p;q.) +16m [pa_~p -+ q:q,+ p:p, + Poq, + B, q,] -32m” (48)
S8ince this is.of course real, the third term of S is
-32(q,-p.) (q:-q-) {—2(p_‘q+)(p+-q-)
, , (49)
+ [ Poq% Pya + 9:q, PPy PIq, + Peq,y] -2m*}

Combination of the expressions (Al), (A2), and (A9) obtained for
the three terms of 8 gives equation (18).
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Appendix:Be Electron-electiron Scattering.

The precedlng calculation can be easily adapted to give the
crosabsectlon“forbelectronaelectren'scatterlng; The der;vation .
of all‘egugtiops:up'to (23) is exactly!the same,'éxcept“that
P-s Q4+ &re now the‘initiél'ﬁbmehta and ¢_, p, the final momenta,
end of course:all energies ‘are’ po%itlve.

We then P'ut p_ q.‘.“ "E’ p—; = -q-n JE~-m ’ p )l. q-t-l Z.

and T = (E qﬁ)cosa._'The scalgr products of the momenta

‘aresthem
Pq.= P;q, = m"[i’“—(vt-l)cose] = m*(2V,+1)
Pig,= Bq. = m*(2¢"-1) = w*(21+1) (B1)
2P, = qeay = mt ¥+ (¢ =1)cosf] = m*(2V,+1) o

The Lorentz transformatlon ta 8 1aboratory coordlnate system is
carried out as'befores V, and V,, which replace V and T-V in
equation (28), are the kinetic énergles in Mev of the two electrons
after‘theycoiiision. | | |

Ve note that the scalar products p-q_=p,-q, are exactly the
seme as in the equation (24), and that the other tw; pélrs are
interchanged'and reversed in sign.  Since the latter two occur
syﬁmeprically and always squarea in the first term of é, the first
tefm of the electron-~electron crose-séction is just dQ, With Vi

replacing Ve The second term is identical, except that Va replacea V, .

‘The electronpelectron scattering crosa-sectlon is therefore:

dQ=dx et anfra1) [{er1) v 4(re1)v; + 2}
” -+ {(er)y .4(T+1)v”+z} - (4'1' -1)(7, ]
»=ér:dSL(T»1)_|{TX(2T+1)1 (v,vl)_ - (8T'+12T43)(V,V,) _+,l+] (82)
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