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ABSTRACT

The interaction of nuclei of spin I’} and non-
vanishing quadrupole moment with their surroundings in a

crystal consists of two parts: magnetic and electrostatic. In

the absence of any external field, the interaction is mainly the

quadfupole interaction of the nuclei with the electric field
gradient of the crystal, since the crystalline magnetic field
is often small and contributes only to the broadening of the
quadrupole lines. When an external magnetic field is added, a
Zeeman effect is introduced and both interactions are present
at the same time,

In this thesis a study is made of the resonance
absorption spectrum of a nucleus subjected to both fields when
the ratio of the two interaction energies assumes any given
arbitrary value,

After a brief survey of the theory of both
interactions, and the various perturbation approximations, the
problem for a nucleus of spin I- 5/2 is stated explicitly and a
brief analysis shows that the solution is particularly simple in
the cases where the external magnetic field coincides with one
of the principal axes of the electric field gradient. For
other directions of the magnetic field, the problem cannot be
simplified in any obvious way and leads to much longer numerical

calculations,
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The problem is completely solved numerically in
a special case for K127 in a spodumene crystal for one particular
crystal orientation, but over the entire experimentally interesting
range of the external magnetic field so as to fit directly the
conditions of an experiment proposed in Dr. Volkoff's laboratory
in order to aid in the evaluation of its feasibility. The
expected variation of the frequencies and the relative intensities
of the resonance lines as a function of the applied magnetic field

is exhibited in a series of graphs,
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NTRODUCTIO

The study of nuclear resonance absorption lines
in crystals gives information about both nuclei and crystals,
The properties of the nuclei to be obtained are the spin I, the
magnetic moment j and the electric quadrupole moment e@.

With regard to crystals this method gives information on the
electric field gradient which is closely related to thevsymmetry
properties of crystalline structure (C2, T1, C3), on relaxation
mechanism (B2, B3, P3, P4, P5, W2) and also on the position of
special nuclei @2, 11, P1),

Analysis of the various spectra obtained is
valuable to chemists (&1, D1, L2, Ml), Townes and Dailey (T1)
discuss some of the implications of the results obtained by
this method for the theory of chemical binding..

| Much work has been done in yhis field during the
last few yeérs. Here we will attempt only a brief survey of
that part of the field in which the present thesis lies.

In crystals investigated by nuclearAresonance
methods, we have to deal with two general kinds of interactions
of nuclei with their surfoundings: magnetic and electrostatic
interactions,

Magnetic interactions. Nuclei with spin I # 0
possess a magnei:ié dipoie',&; 'gB -I’. where g is the gyroﬁzagnetic
ratio of the nucleus and A the nuclear magneton. The nuclear

dipoles in the presence of a magnetic field will assume a
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:finite'number of orientations corresponding to definite energy

lévels. The magnetic fields to be considered are external
magnetic fields to which the crystal is subjected in experiments,
and magnetic fields produced in the crystals themselves.

The energy levels of a magnetic dipole in the
presence of a uniform magnetic field i only are the'equidistant
Zeeman energy levels giving rise to a unique transition freqqency
%,=f%g « formed by the superposition of transitions between
adjacent levels according to the selection rule Awm==x) .

| Usually in a crystal, at the site of the nucleus,
other magnetic fieids are also present, These are due to the
presence of neighboring dipoles. In some cases this field turns
out to be quite strong and well oriented, as when two (P1),
three (A2), four (I1) protzons are present in a closely spaced,
well defined group and interact with each other, The net result
is a splitting of the single Zeeman transition line into many
components, since the energy levels are perturbed and no longer
~ equidistant. But on top of this effect, and even when this
strong interaction exists, the other nuclear dipoles distributed
in the crystal create at the site of the nucleus under considerat-
ion a weak but non-negligible magnetic field. Since the
macroscopic effect to be observed depends on a great number of
similar nuclei in analogous positiqns in each unit cell, and since
the microscopic fields can vary frgm one cell to another because

~ of the varying contributions of the other dipoles, the line or



lines are broadened (V1), The effect of these two different
internal magnetic fields usually appears as a perturbation on
the Zeeman éffeét and can be called respectively "structure"
and “diffuse" perturbation,

Electrostatic Interactions. On the other hand
crystalline structure expdses nuclei to microscopic inhomogeneous
electric fields, repeated in each unit cell, that cannot be
produced in the laboratory. If these nuclei are not electrically
of spherical symmetry, they possess an electric quadrupole moment
eQ, which interact with the gradient of the electric field,

The energy of interaction wili depend on the
orientation of the nucleus giving rise to a finite number of
quadrupole levels that the nuclear resonance methods can detect,
provided the spacing between these levels exdeeds the line ﬁidth
due to magnetic dipole-dipole interaction mentioned above.
Transitions between energy levels resulting from this interaction
alone have been observed in cases where the field gradient does
4or does not possess an axial symmetry., The theory has been
given by Kruger (K1),Bersohn (Bl). Many results can be found
in Kruger (K1), Dehmelt and Kruger (D3-D4), Kruger and Meyer-
Berkhop (K2, K3), Dean (D2), Livingstone (L1), From these
results one can obtain the value of the quadiupole.coupling
constant jﬁ%ib_ where 9%9 is the largest eigenvalue of the
tensor when this tensor is taken in anéigggggg; in which it is
diagonal, and the asymmetry parameter 7 .

When the splitting between the quadrﬁpole levels

3.
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is comparable to the dipole-dipole interaction, the quadrupole
interaction will merely contribute to the line broadening, This -
effect has been considered by Bersohn, In polycrystalline samples
where all unit cells are not.oiiented in the saﬁe direction but
randomly distribdted the transition linesvare broadened. Even

in single crystals, the field experienced by similarly situated
nuclei may vary from cell to cell due to crystal imperfections and
impuritieé and the lines are also broadened by this diffuse

perturbation effect.

If we subject to an external magnetic field a
crystal in which there is an electric quadrupole interaction, the
Zeeman levels will be perturbed, and the single Zeeman line will
be split into many components. According to the ratio of the
Zeeman and quadrupole energy, either effect can become a perturﬁation
on the other,

\ At one extreme we have the case where the magnetié
interaction of each dipole with an external magnetic field produces
Zeeman levels separated by energies Quite large compared to the
splitting due to quadrupole interaction of the nucleus with its
surroundings. In these instances, the quadrupole interaction is
taken as a perturbation on the Zeeman effect., This perturbation
theory giving information on the perturbed energy levels, and
the transition lines from which the quadrupole coupling constant,

the orientation, and asymmetry of the field gradient may be



obtained, has received much attention. Carr and Kikuchi (C1)
have obtained an expression for the frequencies to the first
order in the ratio _%éégﬁL o Pound (P6) extended it to the
third order in case of axially symmetric field, and this theory
has been further extended to case of asymmetry by Bersohn (Bl)
and Volkoff et al (V2, V3),

At the other extreme, Dehmelt and Kruger (Ki, D7)
have investigated theoretically and experimentally the pure
quadrubole case and have obtained information on the quadrupole
coupling constant jn case of axially symmetric crystals. The
theory was then extended to non symmetric crystalline field
gradient by Kruger (K1) and observationﬁrgabiished by Dehmelt
and Kruger (D6, D3, 04; D5) giving the value of quadrupole
coupling constant as well as the degree of asymmetry of the field,
Bersohn (Bl) gives a general expression for the perturbation in
terms of an axial asymmetry parameter up to the fourth order.

The introduction of a weak extérnal magnetic
field can be treated as a perturbation on the pure quadrupole
levels., Kruger (K1) obtained a first order expansion in.terms
of the magnetic field strength. Observation of this effect is
reported by Kfuger and Meyer-Berkhout (K3) and Dean (D2).
Bersohn (Bl) has calculated also a second order perturbation.

As the external magnetic field is increased the
A perturbation theory from this side breaks down while the perturba-

tion theory where the quadrupole interaction energy appears as
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a perturbation on the magnetic levels is not yet valid. The
object of our thesis is first to give a brief description of, and
then to link together the two extreme regions and to show that a
complete knowledge of the energy levels, and the frequencies and
intensities of transitions between them can be obtained by a
direct numerical solution of the secular determinant. Unfortunately
~this method of solution can not be carried out with much generality,
Our method is somewhat similar to the one used by Weiss(W3) for
the study of the paramagnetic resonance spectrum of Chromic Alums,
In our discussion we will disregard completely the diffuse
perturbafion, magnetic and electrostatic,giving rise to broadening
of the lines,

The purpose of ob;aining the information on the
dependence of the transition frequencies and intensities on the
external magnetic field strength is to aid in the evaluation of
the feasibility of a proposed experiment of observing the
resonance absorption spectrum of A/* in spodumene over a complete
range of values of the magnetic field showing the gradual
transition from a pure quadrupole spectrum to the other extreme
of a single Zeeman line split into a number of closely spaced
components. Such an experiment will yield no further new informa-
tion on nuclei or on crystals which cannot be obtained by
experiments in the ranges of H where one or the other perturbation
theory is valid, but it will serve as a contribution to the field

of resonance spectroscopy.
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We also compare the exact solution with a
perturbation expansion, showing the limit of validity of the latter,

In section I we review briefly the principal aspects
of the pure quadrupole interaction both in the presence and
absence of axial symmetry of the field. In section iI, the
introduction of an external magnetic field is discussed, In
section III, we obtain an explicit form for the secular determinant
for the case of I=5/2, We solve this determinant for the
particular case of the external magnetic field applied in the
direction of one of the principal axes of ehejg;ys%al. We then
calculate the transition frequencies and their relative intensities,
and present theiinformatioﬁlih graphical form, We also discuss
briefly thefcase of the‘magneticvfield along the two other
principal axes giving an explicit exaﬁple.

We conclude that the problem leads to a simple
solution only if the external magqetic field is along one of these

axes. Other cases require larger amount of numerical work.
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I, PURE QUADRUPOLE SPECTRA

To obtain an expression for the energy of
interaction of the nuclear electric quadrupole moment with the
gradient of the electric field of the crystal, one must find
first an expression for the general electrostatic interaction
energy of the system. Then it is possible to isolate from it
the Quadrupﬁle term F, This has been done previously (€2, P5)
and here we will quote only the results necessary for our
calculations,

F can be written as a complete scalar productwof

two tensors:

F'=-€i°§ﬂ§ : (1)

Where &’ is the nuclear Quadrupole tensor, and VE the electric
field gradient tensor of the crystal taken at the site of the

- nucleus, Using the methods of group theorj. it is possible to
wfite both tensors in terms of their irreducible components.r
The irreducible compoﬁénts of the quadrupole moment tensor
involve a single scalar eQ and the angular momentum operators,
The VE tensor may be expressed in terms of the second derratives
of ¢ ¢ the electric potential, Then the matrix elements of F
are easily found., The scalar nuclear quadrupole moment e is
defined in the oonvential manner in the Ivn; representation by:
(II«-'? e n; (3 con® 9@1)’11) where the nuclear charge e; is
at a distance x; from the originband makes with the direction of
quantization of f} an’ angle 6 . For our purposes, it is

sufficient to write VE in its simple diagonal form. This is
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possible since the tensor is symmetric (5555—=-5§3;,etc.) and this
in turn guarantees that a set of axes x, y, Z, can be found to
put this tensor in its diagonal_form. These axes x, y, Z, are
called the principal axes of the field gradient tensor, and in
‘this system the irreducible components of VE are simply:
675)6= E3 *f;p

(2)
( Vf)ﬂ: 0

(VE)J%“ UPM - ‘Pq-j)

where 9%; for instance is the second derivative of the electro-
static potential 7’with respect to z taken at the site of the

nucleus.

In this particular case the energy operator can

be written as:

O T A I

Where f‘_is the angular momentum operator whose matrix elements
in the I1n3 representation are well known,

Except when otherwise stated I will always be
understood to be some odd multipe of Zh, When I is an even
multiple of h, the discussion is slightly different (W1),

&, Case of Axial Symmetry.

in a crystal depends on all the charges outside the nucleus:
.valence electrons, inner core of electrons, aind ions at a distance

of an atomic radius or more from the nucleus in question (T1),
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In many cases the main contribution to the field gradient (which
‘decreases as the inverse cube of the distance) is from the atoms
forming the unit cell around the nucleus under consideration, so
that geometrical consideration of their charges help in predicting
the nature of the field gradieni:° The simplest case of interest
is when the field gradient is axially symmetrical (the case of
spherical symmetry is of no interest since them all components of
VE are zero). A good example of a practical ca:e is B CH, (K1)
at the site of Br, the symmetry axis passing through Br and C.
Here F has a particularly simple form since (ux = %%7-~-q%,1f we
remember that V-£F=0 at the position occupied by the nucleus.
Then the operator is:

k- -7?) | @)

=133 (3 1
4[ (21-1)
In the 1173 representation Fs is diagonal and the energy eigen-

values are the diagonal elements:

{F - eQ ¢ T [(I+) _ (5)
Eoms = I75) = g2y 1372 ]

E3”5= Elng.and each level is doubly degenerate and belbngs to

two eigenfunctions: ([/,.,,3 and ¢m2. I} transitions can be induced
between the I+ 3% adjacent levelis. If we agree to take My >0 »
-then the éllowed magnetic transitions Y7y = z»,—/»have frequencies

. - Z

which form:}n3 £.4,,.. are in the ratio 1:2: 3i..0
If the complete spectrum can be obtained in a

particular case, the number of levels will give I, while <?§2§1

the quadrupole constant can be easily obtained from the knowledge-



of the values of the transitions frequencies, The quadrupole
constant involving the quadrupole moment and the biggest component
‘in absolute value of the field gradient of the crystal is
characteristic of a paiticnlar nucleus at a well defined site in
a given crystal,

Let us‘note.at once that the vs are independent
of the angle ¥ ‘that the r.f. magnetic field“l)l1 used io detect
them, makes with the z-axis of the gradient. The intensity of the
spectral lines on the contrary faries as_mm?x o enabling us to
determine experimeﬁtally the direction of the z axis. Cohen (C2)
has given an expression for the transition probability. We will
reproduce it showing how it is derived,

The intensity of transition lines between state m
and state m' is proportional to the square of‘the absolute value
of the‘matrix element mm* of the time dependent perturbing
operator 75 . Let the angular frequency of the rotating field

Hl be w . The energy operator is:

1,

/‘2{/, :'_f/g n.‘f _"; ~—//g[#xf;"’47f7 +H3f3] (7)
For an oscillating field choowt' lying in the xz plane and
making an angle y with respect to the z-axis, we have:
H!' Hl w) me’t

- 8)
H7= 0

H;: H, eo’-;z eon b
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2L f can then be rewritten as:

2p - -;ﬁ H, eonwt Aiicy I(fx W fy) (T - 27,':, )] - ©)
//ﬁl/, eon ot Cory },

when w» is near the transition frequency between two adJacent

energy levels we will have induced transitions if{w, - l=1.

The square of the (wm,,m; —1)-matrix elements are:

[ty 1 iy DI - 2 g7 Wisicty [TCr-) —omycmy=0T 10)

and the intensity will be proportional to this term, The intensity
is then expected to decrease as I,/ increases,

Since the intensity of spectral lines is propottionél '
to 5@3x + two rotations will be necessary to locate the z:axis;
The first arbitrary rotation will indicate by its minimum a plane
in which the z axis lies. A second rotation around an axis perpen-
dicular to this plane will give the direction of the z axis at zero

intensity.

B, Case of No Symmetry -

'In cases where the structure of the crystal is
such that the electric field gradient does not show any symmetry,
it is useful to describe its departure from axial synimetry by
means of an asymmetry parameter % . Taking the largebt component
in absolute value of 1;,he diagonal tensor as Z,ései ° now ﬂ,‘#f},v
and the directions of the x and y principal ”axes-are no more
arbitrary. It is useful to express them all in termsof the scalar

eq and to define Hox = -Efﬁ:lL. from which it follows that
2

5&77 =-e£[/+’.») . The parameter % 1is then defined by
a -

2= | B - By - | (a
733 | g
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From equatlon (3)

Fa ;E??—I—)—[(‘ﬂ -7 +(1) —I *)7] (12)

with the non-zero matrix elements in thel Mt}rgpresentation:

(Wber\Mdg)" Wi [3m7 -I(re)] : a3

Aqriar-
(w9)F4|w,,iz)=_€;g__ €0,y 1 1)
4L(er-1) ,
where F (L, m,) F i (I-mg + )L w00y ) (T-0my) (L 4wz 40)
The eigenvalues are obtained by the solution of the secular
determinant:

|F;'m9 My - E _Jw}wf; |=0 ’ (14)

For any given [>2 the determinant can be rearranged, leading to
the problem of solving two equivalent equations of degree 7+3 .
The eigenfunctions belonging to each degenerate eigenvalue are no
longer linear colmbinatiom‘of only two functions \ij Mcﬁm)as in
the case of axial Symmgtrx,but of all the angular momentum
eigenfunctions of the representation. The double Krémers
degeneracy is not removed by the introduction of the axial asymmetry
when I is an odd multiple of +h, and so the eigenfunction belonging
to each eigenvalue appears as any linear combination of two sets
- of functions themselves give;flinear combination of I+ 4 angular
momentum eigenfunctions., The right linear combination of the
two sets can be found to fit Qontinuous;y when the degeneracy is
removed by some magnetic field.

Perturbation‘calculations can be carried out when

the departure from axial symmetry is small, ie, when %, << le
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These calculations have been carried through to the fourth order
inm by Bersohn (Bl), For all practical purposes an iteration
procedure gives also an expansion in power af%z which converges
rapidly for small value of 4 . This of course requires the
explicit expression of the secular equation of degree I+ % from
equation (14), bany caSes of interest have been investigated
namely: I=3/2, 5/2 (K1), I1=7/2 (D7) and I=9/2 (C2). Cohen
obtains his approximations using a method of continued fractions,

As an example we have plotted in fig. 1 the
energy eigenvalue E; =A;€C¥g(i==l. 2, 3) as a function ofi
for the special case I=5/2 and compared the values obtained by
exact éolution of the secular determinant with those obtained by
iteration expansion up to the fourth order in% . The secular
equation is:

No 2L (reg 2N -5 (omt) =0 (15)

while the expansions are:

Y, :‘T'(H 0.8055%%¢0.0297%)
 )2 =-35(1-1.50097%+ 0.958%9) (16)

Ay = - = (L vo0.44U4 92 =+0.235%9)

We can see that the expansions are reasonably accurate for % <o0.7,
The use of higher terms in - will not improve the situation for
Y >0-1 (except for the highest eigenvalue) because addition of

terms will result in an oscillation around the true value,



15,

No simple algebraic formula for transition frequency
has been obtained. In practice the transition frequencies are
more easily obtained by calculating the energy levels either by
exact solution.of the determinant equation (14),.or by iteration
method or else by pertabation theory (Bl) (the f(LW"g) have been
tabulated for half integral values of the spin by Bersohn in his
thesis - or can be easily computed) and then by taking their
differences divided by h, Transitions take place between adjacent
levels only, when % is small, though other transitions have a
small but not negligible transition probability as soon as % +O .
When %+t , information about transition probabilities can be
obtained by exact solution ofvthe secular determinant, equation (14),
which gives compatible simultaneous equations for the eigenfunctions,
The knowledge of the unitary matrix that diagonalizes Fa enables
one to find the matrix elements of the perturbing operatoi of
which the squares are proportional to the transitions probabilities,
The procedure is explained in some details in Cohen's thesigfyand
will not be repeatéd hexre since it gives no simple way of finding
the direction of the principal axes contrary to the situation when

the field is axially symmetric.
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When a nucleus with“spin I is‘placed in a constant
. -
magnetic field H. in the absence of all other interactions the

- Hamiltonian has the simple form:

HH‘ = - 3‘@ I’—';o .:.f_ (17) .

Where i is the angular momentum operator in theiﬂwﬁ representation,
A, Pure Zeeman Effect

| ' When nuéléi with spin I and zero quadrupole

moment located in a'crystallare subjected to a constant external
magnetic field TL o the net effect is the appearance for each
nucleus of definite equidistant energy ievels. if we neglect all
kinds of'dipole-dipole interactions mentioned in the Introduction,
vThe single frequency of transition observéd isxgnfgéﬁ and it is
formed by the superposition of the 21 allowed transitionsv |

between the 2I+1 Zeeman levels of each nucleus,

We want to consider here the effect of this
external magnetic field'ﬁ: when_it is imposed on a crystal in:
- which we have the quadrupole interaction diécussed in the previous
section and to study what happens when'ﬁ; assumes larger and
| larger constant values., When 7{ is small; the energy due to
Zeeman effect is small éompared with the energy of the quadrupole
coupling, As FL increases, the energy of the two interactions

—_—%

becomes comparable and finally, for still larger value of H, ,
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the Zeeman energy is greater than the quadrupole energy. In this
way the problem naturally splits into three regions of investigation,
At both extremes we have the situation where either effect can be
considered as a perturbation on the other, and in between, the
region where both effects are equally important. -~ We will first
treat the case of a c:ystal placed in a weak magnetic field
perturbing the quadrupole spectra, |

To compare energies we use the following useful
ratio: The magnetic energy given by equation (17) has its
maximum absolute value when the spin is almost aligned with the
magnetic field,.ie. when the magnetié quantém number my =T o
The quadrupole energy also has its maximum energy whem wy =TI ,
So for the ratio of magnetic to electric quadrupole energy we

‘shall use:

R = m)j{gH = apm H
&‘933_'[3 "”; -T(T+n : € @'933
‘{I(?I-D) ma=|

Here again we introduce the useful division between
axially symmetric and non symmetric field gradient cases., In

case of an axially symmetric field gradient (7 = ¢) the Hamiltonian is

= eQ¢ 12 - F2) - o1 (18)
Hs 75ff§f%%§‘[3:F5 I ] 6;7A?14 L 18

-
If the external magnetic field #. coincides with the direction of
symmetry axis, the problem can be solved'exactly for any value

-— .
of H, 4 since }é is diagonal and the energy levels are simply:

E . el L - ¢4 H, (19)
Ll ﬁ}%}i f3‘mo’ I(,I'H)] J H /»2 19

Al]l other cases appear as more or less important deviations from
this very simple case, For this reason we will discuss it to some

extent,
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Figure 2,° Energy levels for the case I=5/2, %~ 0 and
the magnetic field in the direction of the :
z-axis, as a function of H, , facing page 18, -
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The introduction of the magnetic field has split
the previous doubly'degeneréte quadrupole energy levels into two
non degenerate ones.equally spaced from the original by:lmgczngm
We have sketched roughly in fig. 2 the energy spectruzas a function
- of ﬁ; for the case of I=5/2, For large values of'ﬁ6 we obtain
the Zeeman spectrum perturbed by comparatively small quadrupole
“interaction, |

‘There are 2I allowed transitiqns between the 21+ 1
levels, since each energy>eigenva1ue belengs to only oneleigen-

function of the To4, representation. These frequencies are
" P s

given by: - _lefas -1 = s
_ ‘)mual—»]m,)-l = 4—1_[%—'5 3(02"‘:95 : ’) r//'? H, I’ AM,—’A
with ¢ 51'7« oF R Y '
amd - sira it Wy = +lw} } (20)
and Vet o2t = 1 94Hol = v (H)
2772 V% ° °

When ﬁ; or R is large, and when we are well in the
region in which the Zeeman energy is large compared to quadrupole
energy; the spectra for half intergral I can be described in
terms of the central component >. (P6,V2,V3,P2)which is
surrounded by (21 - 1) satellites appearing symmetrically in
pairs on each side of it.

If the c-A magnetic field W is perpendicular to
ii as is usually the case, the relative intensity of each line
is proportional to: t

T HE [T(xan) -y (g -1)] | (21

and so for the region of large magnetic field Hy the central

component Vo(; ) is the most intense with the first, second,
p e {) .
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etc., satellites on each side appearing with decreasing intensities,
As soon as we depart from this very special caéé,
the problems become much more involved. If 9=0 but the constant
external magnetic field H, is no more parallel to the z axis of the
crystal we already have complications, Assume that the magnetic |
field lies in the x-z‘plane (where the x axis is arbitrary) and
let the angle between the direction of H, and the z axis be 6 .

Then from equation (18) we have for the Hamiltonian:

22 = 2 ¢ =
Hs =;I_g%% ):31_}-12] —;/H,(L_swé-f I €on D) (22)

with the matrix elements given in equation (5) supplemented by the
new elements:

(my] 24 [m3) = —f/:”f/-lo ™, eond (23)

(my 1% 1 M5 1) = — g BHo o JTUT ¥ 1) = oy Loy —1)  siul
2D %‘2——'\/ ke ) J _ “

The energy levels are obtained exactly by solving the secular

determinant of }/, for E which is of the form: '%waw; - € duey e |0

But ifhﬁ<<) a perturbation calculation (degenerate case) can

be performed in which the quadrupole partAiS considered as the
unperturbed Hamiltonian and the magnetic as the perturbation,

The expression for the energy levels are given by Kruger (K1)
who also discusses the spectra to be obtained. He shows that we
have for certain orientation of the crystal a non negligible
transition probability between levels other than adjacent - which
at first glancevseems to violate the selection rules for magnetip
dipole transitions, Expansions of this type hold as long as the

energy levels have not already started crossing each other,
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The next and.last complicatioh comes in when we
consider that the electric field gradient is not axially symmetric
(v +0) . The Hamiltonian in this case is given by equation (lé)

to which we add the asymmetric part of the quadrupole interaction:

Hy-H, + eCms (17 -If)q (24)
qrc2z-1) _ _

The problem can be solved exactly with the resulting secular
determinant. But again if ;i is small the energy levels can be
obtained by an expansion in powers of ﬁ?around the unperturbed
energy levels which are in this case the quadrupole levels that
can be found in case of axial asymmetry by the methods discussed
in the previous section, either approximately or exactly. This
piocedure is carried out completely to the third order by
Bersohn (Bl), His expansion requires that A, ,% and & (the
angle between fz and the z axis) be small, Pérturbation'theory
along this line is cumbefsomé and does not in general lead to

formulae of great applicability.

quadrupole energy, ie. when;dL>>fqgﬁ;. then the qpadrupole effecﬁ
can be considered as a perturbation on the Zeeman pattern
(section II A), This perturbation theory has been extensively‘
treated by'vaiious authors, The spectrum is usually described

in terms of the central component ». , which appears when I is
half integral, and which can be shifted, and pairs of sateilites.

whose distances from the central components are functions of the
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orientation of the crystal with respect to the constant magnetic
field TL . By rotation of the crystal in the field Ff: o the
orientation of the principal axes can be recognized. Explicit
expressions for this perturbation can be found in the literature
for axially symmetric (P6) as well as for the asymmetric (V2, V3)

cases,
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III. EQUALLY STRONG QUADRUPOLE AND ZEEMAN INTERACTIONS 4

We are now left with the problem of a double
interaction where the electric quadrupole interaction is comparable
with the Zeeman énergy; This problem requires the cdmplete
solution of the secular determinant, since as we have seen in the
previous section both perturbation theories break down in that
region. In this section we will proceed to set up this secular
equation in the case I=5/2 and to give the solution for two
particularly simple cases. We have used in the discussion that
follows the date obtained in Dr, Volkoff's laboratory for the case
of &127 in a spodumene crystal and have stated our result in a

form that will fit directly a proposed experiment.

A, Secular determinant for the case I1=5/2,

' ~ We have set up in eq. (24) the Hamiltonian for a
nucleus with spin I, magnetic momentif » quadrupole moment eQ,
placed in a crystai with non axially symmetric field gradient
submitted to‘a constant external magnetic field H making with the
z-axis an angle 8 in the x-z plane. It should be emphasized at this
point that the particularly simple form of eq. (24) results from
the fact that the xyz axes have been chosen to coincide with the
principal axes of the field gradient tensor, which accounts for
the ébsenée of cross terms.of the form ix fy, etc, We also know
what the non-zero matrix elements are from equations (19) and (23).
Examination of the problem reveals that we have to deal with 4
parameters: 1,2 ,6 , R, MNoreover the secular equation to be
solved is 6f'degree 21 +1 in general, which means for our

particular choice of I, the 6th degree; hence there is no hope of



obtaining a general analytic solution,
We want to find the solution of the time-independent
Schrodinger equationg

K Y 7E X.- | | (i=1,2,3,4,5,6) (25)

" where 'Xi is a linear combination of the eigenfunctions of the

I,m,, representation. Let the latter be #ig, ,%,yzi,l#%,Qu%,l*§;
then: 4 ) (26)
) GRS R & |

Eq. (25) can be thought of as a matrix equation where J/, is a

6X6 matrix and 1‘ a column matrix of the form

fai.s/z
ai,3/2
3i,1/2
ai,-1/2

aj,-3/2

aj -5/2

the equality sign in eq. (25) will hold for certain values of Ej
only, those values which make the system of simultaneous equations
compatible; ie., the E; which make the determinant of the
coefficients vanish, In matrix language this also means that

we find the new representation in which Jiﬂis diagonal; the
unitary transformation by which this is to be effected, S, will

be given by the coefficients aj,me



For I1=5/2, the secular determinant is:

a g h 0 0 O
g b i j 0 0
h i ¢ k j O o
- = 0 27)
-0 k d i h
0 0 § i e g
0O 0 0 h g¢g ¢
where a = -E; -Beeyd +-4A | d =_-E’¢+£%Q‘ %
< E: . 3Beend _ A ' © .3 A
b=-E - ;“, s e -_E; & B‘;aag A
ca-F -Bexb_ A f <_Ei 4 Bew® + A
s 5 . 9
g-_ Bsubd j = 3A% h- A% k - - 3Bsid
R deve ave >
i<. VBBwb and'B = pH A = e@@j
=

The 73 terms of the expansion reduce to the following 6th degree

equation:

Zcr-:s =0

370

where cg = 1

05 —"=.0

1]

c4 -Z_.. Zlé:_ Ié._fz"

200 200

e - - &3 | pmp?? _ gaan?? _ oman , |, &
200 125 125 125 -



cp - 25081 _ A% | 123a%8%2 gt g;gz_szq_?+
625 125 2500 160000 1250
(]nggpz 13428242 )? , 49ad 21
625 2500 80000 160000
¢; . aB%p3q2 , seapipd _ 44aBiqd | 106ABp2q2 | 342B3pq2 -
625 625 625 T 625 - 625
zAé_anz 13822 | 2185 ( 44a8%q2 _ 3438242
- 17 5000 8000 625 2500
10836%2 | mOR22 . ;S ),z _
- S - B )7 v 2”
_ 15 _ » 4
80000

o = - 9B0p0 _ 9BOqO _ 2480pdq2 _ zzﬁp.%q_+3&a§p_q_ N
625 625~ 625 ,_6,25

, T1a2B%pd lLBAqu_ a2 161a%B2%p2 _ 41A2R2¢2
5000 5000 160000 160000

O ( 428422 | 13a28id A:4qug_) ‘

160000 1250 1250 4000
+(_9&2£‘.p4 1382822 _ amafel@ | 1aZeid ) 2
5000 | 80000 80000 5000 80000/ 2
+ &4B242 9xdp2 ) 7
2000 160000 160000

and where p = cos® and q = siné . (28)
The six eigenvalues of the problem are the roots of this equation.
Once they are known, the a;j p.c can be found with

any five of the six simultaneous equations (25) and their values
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in terms of any one of the a's with an additional condition of

normalization:

¥ 2
T (m@m) =) Qo =1 (29)
m ’ ”m : .

The determinant hés aj‘partlzi'cularly simple form in
the case of B= 00, since the Zeeman énergy is then diagonal in
the representation chosen. We wili seellatei_' that it is possible
to apply a transformation and to obtain a determinant of the same
form in case where the field Eis in the direction of the two

other principal axés (section III C), Two paranieters R and 9

are then left that are to be fixed later,

B. Case of 9=Q.°

The determinant (27) has the form:

= 0 (30)
o j' o ' o h'
0 0 j' 0 e O
"0 0 .0 hn' 0 f
with: a' =N -C+37 | d' =—).‘+-5£_'-—3’=
b' = _At-.af_&; e' - -M@r'-i'a
c’:—);-_n—_'_ f' -_-:_).:.‘.r'{-‘_'
s 7
Vo 2073 A A 19
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By interchange of columns (the 3rd, one to the left
and the 5th, two to the left) and of rows (the 3rd, one up and the

5th, two-up) det (30) now looks:

a' h' 0 0 0 0
h'.' ¢! j ' 0 0 0
0o j' e o0 o0 o
= 0 (31)
0 0 0 b' j' ©O
0 0 0 j' d* n'
-0 0 0 0 ' £
or in block determinant:
L 0 . : A
= 0 (32)
0 M

So the prébleﬁ is reduced in this.case to the solution of two
3X3 determinants giving us the required six roots of (31), If
now(we expand the two determinants wé have two independeht cubic
equations to be solved:

F2

FromL: -5 -2 P 4 (B r. 6, 275k 20 ) )
rom L : - (—2; “3s 4 ;,'az")

+ [53.5)“ b2 (S__J‘ﬂié el

_/1,2 (33)

04 2¢

‘and from M : _ +3,—1)\ *(/3,1.’_5;‘1_‘/ fé fqzoz),\“_ (34)

- [T;%—P’;i:‘ '(?Z'J 34 )F‘wo I "Zaa zj 0
The supercripts are being placed to indicate in the following
discussion from which detefminant the roots come from, since as
we will then see each set of three roofs belongs to a particular

set of eigenfunctions,
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Figure 3, Energy levels for the special case, I =5/2, _
M = 0,95 and 6-0° as a function of R, facing page 28,
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Equations (33) and (34) can now be.solved exactly |
for X as a function of I’ for a particular value of 2 orasa
function of » for a particular value of /* o The A being
eigenfunctions of a physical problem are real, and so the cubic
equations have to be solved by trigonometric method, but the
analytic ekpressions obtained do not furnish algebraic expressions
that can be handled easily.

As we have already stated we proceed to solve the
problem with numerical values oflimmgdiate interest in an actual
experimental case. We refer to the case of A127 in spodumene
crystal, for which the orientation of the principal axes xyz of
the field gradient tensor, the axial asymmetry parameter % = 0,95,
the magnetic moment i’ and the quadrupole ,constante;@ge;; =‘Z‘?€ = 2.960M< fgec
are known, Using these data we investigate the behavior of the
eigenvalues, transition frequencies and probabilities as a function
of the external magnetic field.ﬁ.which can assume any constant
value from O upwards, thus covering the complete range of energy
ratio R, The r.f, field'ﬁi, used to detect the transition lines
is assumed to be at 90° from H,

Hawing inserted % = 0.95 in equations (33)and (34)
we have solved numerically these equations for X\ as a function
of r*=_gi « The eigenvalues are plotted in figure 3 for O< Rt 4,

The three regions mentioned in section II are
0 £ R<<], where the perturbation theory of a small Zeeman perturbation
on a large quadrupole effect holds; R~ 1 where no perturbation
theory can be applied successfully, and R>> 1 where the pgrturbation
theory of the Zeeman levels by sﬁall quadrupole interaction applies

successfully,
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It can be seen at once that the behavior of th}e'
eigenvalues is diffe;:ent from that we have sketched in fig. 2 for
the simplest éos_sibie case of doublé interactions, The eiger’n‘values
do not all cross each other, but some of them do, while others
just come near and repel each other as R increases. & clear
,unvderstanding of this behavior will be available when the eigen-
functions will be found,

By considering how equations (33) and (34) were
arrived at, ie., how the det (31) was obtained it should be clear
thét the X, belong to a linear combination of tﬁ;,t/]i and Js
while the N; belong to a linear com_bina’tiqn of W‘%—"‘P-'z and LP% .
The coefficients of the eigenfunctio,ns belonging to the )Li are

found through equation (25):

Qi =d2rB=) arg,
4,3 = Z ag,d
- I . h ?
¢ (“\l"' %,‘ "—_1'5)

? z - ... .
aé,_;i-t Q,r;,_'z. + Q.._—l%..-‘ =1

(35)

A similar expression can be derived for the eigenfunctions
M
belonging to the }i.The corres pom me coefficiants are denoted by bs (n ﬂg.b’.

Now, the squares of the a will give the

. i.m's
probability for the nucleus to be found in the state LH. when
its eigénvalue is A, We have plotted in'fig. 4 and 5 these
probabilities for all A; as a function of R between O and 4,

- In the case of pure quadrupole interaction (R=0)
with 2 ¥ O the degenerate state with the highest eigenvalué

consistsalmost entirely of )‘/%—_ and W—i; o while the probability of

finding the nucleus in the states (,U% /P t,U.'_z and (#1.' is less
2
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altogether than 5%, The state of intermediate energy consists
mostly of ‘{/g and "P-g o and the chance of finding the nucleus in
the states ll/_z and \P-i ahd “#oin Lk«,;_ and W-g Ais about 18%. Finally
the state of lowest energy consisty n;ostly of \P-_L and W-LL « but
again there is a contributi_on of 18% from Wg andv/—g o and 1%
ffom l//% and \P-g » So we now can expect a non-zero transition
probability from the higheét to the lowest levels, which wag
- completely forbidden in the case of axial symmetry. In this latter
case the highest eigenvalue would belong entirely to llé;_ and\[).i;,
the middle to Lsz and IP-% ¢ and the lowest to LVL?_ and U)é : so that
transitions between the highest and the lowest levels would be
strictly forbidden by the selection rule for magnetic dipole
transitions. In this case also the introduction of a magnetic
field E along the z-axis would split the degenerate levels as
indicated on figure 2, resulting in the crossing of the eigenvalues,

| In the present‘ case, however, the situation is quite
different. The-state‘as are divided into two classes (or "races"
to employ the term that Heitler for instance uses in a similar
situation) (W).The class L consist of a linear combination of ll}'?i . '

d)i and W};_ . while the class M consist of a linear combination
:of (P_s_; ' l,l).;." and 4/;_ o Levels belonging to different classes may
cross each other, but levels of the same class will "repel” each
other. Let us study closely the states of class L, as a function
of R. If we consider graph @) in fig. 4, we can see that the state
Ly up to R 0,4 consists mostly of \]J{ o Then as R increases it
becomes mostly char_:écterized by L}'% » the more so as R further

increases. So we would be justified to label this eigenvalue ’”’9-"37:
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for sufficiently large values oflR as this is how we usually label |
it in the pure Zeeman effect; id other words, if it were not for the
axially asymmetric quadrupole interaction this eigenvalue would
belong uniquely to q{%, |

A consideration of the state L2 now will explain
what exchange of character has taken place and how the phenomenan
of "repulsion‘of levels of the same class" can be explained in
terms of the eigenfunctions. Lo is mostly characterized by lkLé
ub to R~0,4. Then as R increases its eigenfunction shows a large
amount of ‘Pg‘. Ll and [2 have exchanged their respective roles,
But eventﬁally L, would become a m,=4 Zeeman level, and it is
clear that it must again exchange role this time with Lg. This
we can see again by looking at the graphs in fig. 4.

The states of class M consist of:linear combinations
of the Y-£ ,Y-+ and Y2 ; a similar analysis bf their behavior
can be made with the help of the three graphs of fig. 5. The
eigenvalues of class M will cross these of class L, since there is
then no possibility of an exchange of characters, whereas among
themselves they will only come near each other and repel each other
as R increases. M), consisting mostly when R=0, of qA§ is
already in its piopoe position for the Zeeman effect and its

characteristics simply become stronger and stronger as R increases,

TRANSITION FREQUENCIES: The selection rule for
magnetic dipole transitions |m — m'| = 1 indicates at once that
transitions are to be expected only between levels belonging to

different classes, but not between levels of the same class, ie.,
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oniy between the L and the M levels. There are 9 such possibilities
as shown in fig, 3. Five of them, numbered from 1 to 5 are the
expected Zeeman transitions, those lines that tepresent transitions
between adjacent levels, The four other transitions are from this
point of view "forbidden". Three of them, numbered from 6 to 8
are sums of three Zeeman lines and the last, 9, is obtained by
adding together the 5 Zeeman lines.

We have plotted in figure 6 the frequencies of these
9 transitions as functions of R, The frequencies in Mc/sec have
been fixed with the help of the value of the quadrupole constaﬁt
for K127 in spodumene (P2): 2,960 Mc/sec. The frequencies are
given by »; =¥ - A ifitz}_

The central Zeeman component - (the one which in
equation (20) was called . ) takes on its usual significance
only when R >1,6. For large magnetic fields it is the central
‘line discussed in the literature on quadrupole perturbation on
the Zeeman effect.,

Of these 9 lines, some will be toovweak to be
observed, while others will escape detection because of their very

low frequencies,

»

TRANSITION PROBABILITIES: The net number of
transitions between two energy levels, L; and N& is proportional
to the difference in population of the two levels and to the
square of the absolute value of the ij-matrix element of the time

dependent perturbation operator causing the transitions., The

energy difference involved in the transitions between the various
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orientations of the nuclei is very small compared to the energy of
‘thermal agitation, The population of the levels is given by NL‘MG_%
where N, is the population of the ground level and E; is the enefgy
difference between the given level and the ground level. Since
Ej <<kT for all i, all levels are almost equally populated, their
population being given in first approximation by N; =Ny (- &£ )

Hence the fractional difference in population between the J"L"

_ at room tempenaturme
and the ground state is given by ]%L' (of the order of 10-6/\ if
¥ =30 Mc/sec. Thus the net nuiiber of transitions between two
states will depend on the frequency of transition and on the square
of the absolute value of the matrix element.

Since the relative intensity of the expected lines
is thus seen to be determined to a large extent by the syuare of
the absolute value of the matrix element we now proceed to calculate
it and to plot it as a function of R for each of the I lines for
which it does not vanish identically, |

If the r-f magnetic field ﬁ:is perpendicular to ;1.,.
the perturbing operator is simpiy

’ -, = 'w -~ e {w?
My WL (B Ty ) it (B <8 de ] (3e)

and the transition probabilities are given by:

W < AT IE (7)

where }4fis taken in the system of representation which diagonalizes.
/., . But we already know the unitary transformation S which

diagonalizes //, now that we know exactly the A m's* Hence:

H «S"HS. (38)
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Figure 7. Sqﬁare of the matrix elements of the perturbing
: ' operator X (in arbitrary units) as a function
of R. B ) . facing page 34.



And so:

W, = HE1S™(T, -*if,)SI]‘)I2'4.‘ 39)
We have plotted with an arbitrary ordinate the Wj_,j in fig. 7

as a fﬁnction.of R between O and 4, for the 9 lines. They appear
in two groups. In a) we have the five Zeeman lines, and in b) the
four “forbidden lines",

Of the Zeeman lines,»,,Y, and ¥, are very weak in
the region of lérge qua@rupole effect and their transition
probability increases rapidly around R=0,8, »4 and ¥s are expected
to be observed for all values of R through %4 might be too weak in
region 0,8<R <1,6 and Vs of too low frequency for all R <4,

When R>2,8, we have the same kind of spectrum as observed for the
'paae of a 1arge ZEeman.enefgy perturbed by a‘sméll quadrupole
effect, (P.6), The central component »; usually denoted by >
has the greafest intensity; while the inner satellites are weaker
‘but of equal intensity, and the outer satellites weaker still,

It is to be reharked that the so-called “forbiddqn'
lines" received their mame from the fact they cdrrespond to |
transitions between energy levels that are not adjacent. Bﬁt.the
detailed analysis we have given above of the eigenfunctions should
make it clear that they are as allowéd as any other inasmuch>as they
contain a cé:tain amount of Y for one of them andVAqffor'the other,
where |m - m'] =1. For instance, inspection of graph c) fig. 4,
aﬁd of graph b) fig. 5, will show that a transition is to be
expected between levels )C and A; » Since a transition between the

eigenfunctions ¥s in and Y: in Lo, as well as a transition
z 2 .



35.
between\Pi in Ly and U% in M, are possible, In fact these transitions
are responsible for the large intensity of the line~; as shown by
graph b) of figure 7 when 04 R< 2,8, Of the forbidden lines
might also be expected in the region of small R, It is one of the
components 6f the allowed transitions for the pure quadrupole,
the other being 2 . The forbidden transition of the pure
quadrupole which is in fact formed,by the superposition of
and v is very weak, Its components will not be detected when H
increases, except perhaps ¥ around R~0,8,

More precise information od the frequencies and
the squares of the matrix elements will be obtained from Table I
for R from O to 4, at intervals of 0.4, On the other hand we have
tried to brin&fthis informatibn on the graph of fig, 6 by using
plain lines for relatively intense transitions (>1 in air unit)

and dashed ones otherwise.

COMPARISON WITH PERTURBATION THEORY: It is
interesting to comparé the approximation given by a third order
perturbation theory expansion of the type used for large R, Using
the formula derived by Dr; Volkoff, (V8) for the frequencies we
have tabulated in Table II the values so obtained as compared
-~ to the exact solution obtained through a solutioq of the sécular
equation for R=2,0, 4, 8, 20. In our case the perturbation

foxmula used for the 5 Zeeman transitions reduces to:

= VY 2Mm-1 2 Wy A 2% ) 3y
Vo amey = P 3“.7 A2 ‘e ) A % o )k,(m),\} (40)

with. ¢ (m) = 9.[9 ~4(m-1)"]
k’@ s 2]185 5 mlw-D-6]
Yo -2mP _ 20z ) - 360> 3

54 S h ’ 20(5) M H sr
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We have again made use of the value 2.96 Mc/sec for the quadrupole
coupling constant, It is séen from Table II that the expansion is
certainly vélid for R> 4,
| For all values of R> 4, there dré no difficultiés
and the problem is more easily solved by a perturbation expansion
of this:type. Then only the transitions between adjacent levels |
are allowed and their frequencies can be calculated with sufficient

accuracy by this shorter method,

" TABIE I

Y, - Ve %]

=

SO 7 e N E e i v IR

0,000 0,107 0.789 0,243 0,000 0,000
0,572 0,230 0,623 0,560 0.252 0,014
1.035 4.064 0,531 5,483 0,371 2.679
1.190 4,959 0,702 6,983 0.148 3.35%4
1,320 5,000 0.861 7,476 0,122 3.562
1,446 5,011 1,003 7,716 0.392 4.593
1.569 5,014 1,135 7,830 0,624 6.413
. 1,691 5,013 1,261 7.888 0.804 7,809
1,813 5,013 1.385 7.922° 0,948 8,426
1,935 5,012 1,507 7,940 1,078 8.671
2,054 5,009 1,627 7.949 1,201 8,784 -
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0.0 0.758 3.147 0.000 7,014 0,789 . 4,757
0.4 0.888 2,867 0,035 6,656 0.943 4,727
0.8 0.963 1.112 0.046 5,553 1.195 0.935
1.2 0.789 0,590 0.024 4,364 1,744 0,053
1.6 0,643 1.176 0.021 3,777 2,303 0,030
2,0 0.542 2,304 0.061 3.926 2,840 0,011
2.4 0.504 4,340 0.063 4,590 3.328 0,009
2.8 0.533 6.126 0,009 5,012 3.757 0,007
3.2 0.605 7.030 0.080 5,111 4,146 0,005
3.6 0.698 7.442 0.185 5,109 4,518 0,004
4.0 0.801 7,645 0.297 5,090 4.882 0,003



m

-5/2

~3/2

-1/2
+1/ 2
+3/2

=

® & © o

PRBPPPEEOOD
OO NOO_ROONOEO

Y

0,758
0,671
0.638
0.664
0,744
0,873
1,066
1.328
1,634
1,961
2,299

V;
1 Il
0.933

1.707

2,921
4.086
4,505
3.800
2,180
0.890
0.354
0,157
0,072

~t

z >

1,547
1,259
1.123
1,342
1.626
1,937
2,263
2,598
2,939
3,282
3,629

175"

0.005
0.000
1.015
0.857
0.431
0.216
0.115
0.065
0.040
0.025
0.017

Vo

Vv

1,547
1.866
2.204
2,556
2,925
3.321
3.770
4,281
4,832
5.402
5.980

" Transition frequencies (in Mc/sec)
and square of the matrix elements
(arbitrary units) for 0«R<4, at
intervals of R=0.4,

TABLE II
R=2 R=4 " R=8
PVC Cale, PVC Cale. PVC Calc.
1.43 1.4 2,05 2.05 3.25 3.25
0.891 1.00 1.67 1.63 2.81 2.8l
0.659 0.392 1,21 1,20 2,38 2.38
0.293 o‘.sqé 0.786 0.800 1.94 1.94
- 0,061 0,277 0.297 1,47 1,47

Frequencies of the Zeeman lines

1951

0.251
0.124
0.064
0,034
0,018
0,008
0,003
0.001
0.000
0.000
0,000

R =20

. PVC

Cale.

6.80  6.80

6.36
5.93
5.48

5.03

obtained by a quadrupole inter-
- . PVe)
action perturbation theorf c¢ompared

with the frequencies calculated

directly for the special case of
I=5/2,% = 0,95, 6 = 0% and quad-
rupole constant C, =2,960 Mc/sec,
for R=2, 4, 8 and 20,

6,36
5.93
5.48
5.03

378
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C. Ot ientati £ ¢l . E'Il—ﬁ
~ When the quadrupole energy matrix is written down
in a representation in which the xyz axes, to which'ix, iy and
iz are refeﬂ@d, coincide with the principal axes of the crystal,
it has'.'diagonal and [m - m'f= 2 non vanish'ing matrix elements,
In a coordinate wystem that does not coincide with the principal
axes, the {m - m'| = 1 matrix elements also do not vanish,
| The magnetic matrix has only diagonal elements if
the axis of quantization of spin coincides with the direction of
the magnetic field ﬁ. Otherwise it has non-vanishing{m - m'| = 1
matrix elements as well,

So if, and only if,_ﬁ coincides with any one of the
principal axes of the crystal can the lm.- mfl = 1 matrix elements
of both interactions be made to vanish simultaneously. The
abové analysis (section'III, B) is then applicable, For then
a "checkerboard" determinant can be obtained from eq. (30) by
a simple relabelling of the axes and it splits up into two sub-
determinants. For half integral I we have two "races" of
eiéenvgctors of I+1/2 members each, The transitions are possible
‘only between members of different races and we have (I +1/2)2
lines instdad of I (2I+1),

A | For example if the field is along the x-axis,
we have to change the definition of A andy in eq. (30) by the

following transformation:

A._') A”c __2 (,,1’) ’ (41)

. 3+%

o /

‘2—9'7':
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0 019 08 .2 1.6 20 21 2.8 2.2 3.6 - 4.

 Figure 8. Energy levels for the case:l =5/2.’rz= 0.95
and 6-90° (field along the x-axis) as a
function of R, facing page 39,
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The secular determinant is then:

o B 0 " 0 o0

= 0 ' (42)
0 ” 0 d" o h" .
0 0 j" 0 e" O
0 0 0 " 0 £
" :_..L - - —A ' " =.—!— = 8 -~
where a L Al-%)-B d" = Al b7+—b: A
b" =1L°A(0-'r) -§_8~A e":—q'—éA(I—Z)-}:;_B-I)
" _ %) - B _ "o oL AL~ B -
c_7'za(m,) _s_,\ .fv~ e/-\lntg)+ A
B - A (34 i"=_22 (343

VB ‘ “a0v2
| After rearranging the terms in eq. (42) the
secular equations were obtained and solved for A :;éiges a
function of R, The result is given in graphigal form in fig. 8.
The pattern obtained differs from the one obtained for the field
along the z-axis (cf. Fig. 3).

The difference between the two patterns is explained
if we iealize that the eigenfunctions belonging to the puee
quadrupole levels (R=0) in this new representation are not
nearly pure eigenstates of the spin operator as they were in
the previous case (cf. page 30 for the discussion),

Using the transformation matrix to pass from a
representation with the axis of quantization along the z-axis to
that along the x-axis and the known values of the coefficients

of the eigenfunctions for the pure quadrupole levels in the Im,

representation the squares of the coefficients of the angular
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momentum eigenfunctions denoted by (i, in the new representation
Im, were found and tabulated in Table III, They can be compared
with the squares of the coefficients of the \Pw, (fdr. R =0) in

figs. 4 and 5.

TABLE III

Squares of Coefficients of

i()é; and fs (P_:__andﬂ% ‘/'iand <P—§_

HIGHEST LEVEL 0,17 0.51 0,32
MIDDLE LEVEL 0.64 0.00 0.36
LOWEST LEVEL 0.19 0,49 0,32

Squares of the coefficients of the

eigenfunctions for the case of the

magnetic field along the x-axis,

R=0,

When the magnetic field is applied along the
x-axis, the double degeneracy is removed and we have two classes
of eigenfunctions, Class L' consists oftf.g_ ,Lﬂ'i and tﬁ-;r and
class M', of L,Dg ,;ﬂé and Sﬂ‘—f_ o An analysis very similar to the
one givén in section III, B, can be made, For instance: the
state L{ consists, when R= 0, of 51% of eﬁ; o 31% of Y1 , and
17% oflP_; +» As R increases l/-gwill become predominant. When

2 . .
R #0 but very small, the corresponding eigenvalue does not increase
with R at first. We can visualize the system in this state as
being composed of 51% of spins in thetlo_g state, 31% in : and

. z

17% in C‘f_@. The Zeeman effect on the spin in statef—-;’-: is an

3 ;
increase in energy when R increases and a decrease in energy for
the spins in the states % and?_g . Since we have in all 51% of

. 2

the first against 49% of the others, the net result is that this
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level is almost constant at the start as we can see in fig. 8.
But as R increases further;lﬂé beeomes predominant., In this
manner the dependence of the eigenvalue on R can be explained
readily.
~In this case the gradual change of character of
the eigenstetes is not so obvious from the energy level diagram
of fig. 8, but could be traced easily by drawing graphs similar
to those of figs. 4 and 5, |
If the r-f field used to investigate the frequency
spectrum is placed at right angles towii then, as before, we
shall expect only 9 transitiohs between different classes,
| In the most general case when-ﬁ does not coincide
with any of the principal axes of the crystal there will always
"be the |m -~ m'] = 1 non—#anishiﬁg matrix elements preseht no matter
what representation is used. The "cheekerboard effect” is lost,
and all six levels involve all six angular momentum eigenfunctions,.
Then a (2I +1) degree equation (cf. eq.b(28) ) has to be solved,
and (2I+1)I lines are expected with varying intensities, No
detailed calculations of this case have been carried out, but the

procedure to be followed has been outlined above,
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SUMMARY AND CONCLUSION
A complete numerical solution has been obtained

-5
for the dependence on the uniform external magnetic field H of

the expected line frequencies and line intensities for the nuclear

resonance transition spectrdﬁfg; spodumene for one paiyi;ular
crystal orientation‘(ﬁ along one of the principal axé;?f

At H= 0, the pure quadrupole spectrum will consist
of two strong lines of almost the same frequency (0.789 and 0.758
Mc/sec) plus a weaker line at the sum of these two frequencies as
shown in fig. 6.

As H incréases, the spectrum gradually changes as
shown in fig, 6 or in Table I1I, uniil eventually the Zeeman line
split into five components by the quadrupole interactionvis

established, At intermediate fields (around 260 gauss) there is
apparently a chance of finding "extra. lines", as shown in fig. 6
( v for 200 < H< 400 gauss and +, for 100< H< 750 gauss),

As long as Elis along one of the principal axes
a maximum of 9 components is possible, although some may be of
too low intensity or of too low a frequency to be observed.

If E'is at an angle to all the principal axes,

15 components become possible in principié, although again some
may not be observable for reasons of léw intensity or frequency.
crystal

The complete spectrum can be calculated for any,orientation by

the method used in this thesis,
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