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ABSTRACT

This thesis examines the statistics and dynamics of turbulent flow structures generated
by towing a grid through a tank of water. The structures were made visible by recording
the paths of aluminum tracers moving with the water surface. Flow patterns recorded
using a time-exposure method were manually analyzed to extract information on the
structure statistics. This two-dimensional flow field was found to be composed of closed
rotating ‘surface eddies’, open and largely translational ‘rivgr’ motion and stagnant re-
gions. Energy distributions of the eddies and rivers were obtained and characterized by
Bqltzmann type distributions. A newly developed computer-automated structure iden-
tification and flow field analysis system was used to study the structure dynamics. The
system analyzes digital images obtained from video recordings of the tracer motion. The
predominant evolution processes of initial vortex production, eddy pairing, viscous decay
and the omega decay were examined. Flow Reynolds numbers, based on bar spacing, of
about 10,000 were examined. The structure statistics and dynamics study was performed
in order to examine the validity and viability of a new model for turbulence. The model
predicts the evolution of a population of structures using rate equations where the rate
coefficients are determined by the individual structure dynamics. A summary of the
model is presented and contrasted with models based the the Reynolds stresses as well

as computational models.
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CHAPTER 1
INTRODUCTION

It is the basic contention of this thesis that the surface flow on grid-generated turbu-
lence is well described by the statistics of the coherent structures of which it is composed.
It is further argued that the coherent structure statistics are determined by the dynamics
of individual structures’ interactions and that these dynamics can be characterized by
simple interaction models which may in turn be used to predict the observed statistics.
This thesis supports these claims through an investigation of the statistics and dynamics
of coherent structures én turbulent grid-flow. In this thesis, turbulence is considered to

be a non-periodic and unsteady fluid flow.

Figure 1-1 shows a photo of the surface motion. Far from being a random veloc-
ity field, the flow is seen to be composed of local regions of coherently movihg fluid.
These “coherent structures” undergo either closed, predominantly rotational, motion
(the eddies) or are open and contain mainly translational kinetic energy (the rivers).
The experimental apparatus used to generate the flow was a towing tank previously de-
signed for flow visualization studies by the author. The fluid motion was generated by
a vertical bar grid that was towed through the water at speeds corresponding to a mesh
Reynolds numbér of ~ 10%. Fof the structure statistics study, the flow was recorded on

time-exposed photographs showing the paths of aluminum flakes moving with the fluid
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Figure 1-1 Time-Exposure of the Surface Motion.

surface. From ten photo series, each of 10 mesh width span and 40 mesh widths long,
2000 surface eddies were identified and studied. The velocities and positions of about
20,000 tracers were recorded and used to study the energy of the surface flow structures.
The predominant structure evolution mechanisms were identified and examined. In ad-
dition, both the available literature and subsurface flow visualization were used to study

the relationship between the surface and subsurface flow.

For the structure dynamics studies the same flow generation apparatus was used.

However, in place of a still camera, a video recorder was used to record the tracer motion.
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The recording was later digitized and analyzed using a computer-automated coherent
structure identification and flow field analysis system. The system was developed in the
course of this research by M. Sc. student Alexis Lau. It allowed for greater objectivity
in the identification and description of the flow structures. ‘It also is more suited to the

dynamics studies than the time-exposure method.

It was somewhat fortuitous that in the pursuit of an M.Sc. degree this author found
that coherent structures virtually covered the surface of the initial period of decaying
grid turbulence. Grid-generated turbulence has several properties which make it a useful
flow to study. The flow on the surface of a moderately agitated volume of heavy fluid is
very nearly two dimensional. As such, it allows for a relatively straightforward analysis
as compared with a fully three-dimensional flow. While a two-dimensional flow is not
a completely general turbulent fluid systerﬁ, much that can be learned from the surface
flow of grid-generated turbulence is pertinent to more complex flows. The relative ease of
flow field extraction and coherent structure identification make two dimensional flows well
suited to the study of coherent structure dynamics and statistics. A desirable feature
of the space-filling grid-flow is that individual structures are closely packed and thus
relatively stagnant in the fluid frame of reference. Also, the grid fills the entire cross-
section of the tank so that the bulk motion of the fluid is negligible. This allows for
ease in structure identification and tracking. A final point in favour of studying grid-
flow is the relative simplicity of the boundary conditions. The grid serves to generate the
vortical structures in a well defined manner but they are then allowed to interact free from
complicating boundary conditions. It is for the above reasons that the surface flow on

grid-generated turbulence was the main flow studied in this thesis work. However other



CHAPTER 1 INTRODUCTION 4

flows were examined in order to isolate and characterize specific. dynamical processes
observed in the more complex grid-flow. The major drawback of the grid-flow system
is that it is not strictly two-dimensional. This motivated the use of subsurface flow

visualization to examine the near surface fluid mechanics.

Part of the motivation for this thesis was to test and develop a model for turbulence
based on rate equations proposed by my supervisor Dr. Boye Ahlborn. This model de-
scribes how the statistics may be determined from the dynamics of coherent structures
using rate coefficients to characterize the dynamical processes. A detailed description of
this model can be found in reference [1]. The model uses a rate equation to predict the
evolution of a population of energetic flow structures from knowledge of their local dy-
namics and their probability of interaction. In order to be successful, the model requires
first that coherent structures be identified in a flow, second that they be characterized by
simple and meaningful parameters and finally that their evolution dynamics be described

by rate coefficients.

Structure has been known to be present in flows such as the von Karmén vortex
street for over seventy years [2]. However, the presence of coherent structures in what
were previously considered to be highly disorganized flows is a fairly recent discovery.
Brown and Roshko’s hallmark study of coherent structures in the mixing layer (3] was
published in 1974. Structures have been found to be a part, not only of flows in which
they are produced by the particular vorticity generation geometry, but also of highly
developed turbulence. This means that coherent flow structures are an integral part of

the non-linear unsteady fluid dynamics which govern the flow. As such, understanding
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their properties, dynamics and reasons for occurrence is essential to the understanding

of turbulent fluid flow.

The current interest in coherent structures is coincident with renewed use of flow
visualization techniques. This in turn is at least partly a result of the development of
high speed digital computers to the point ;Nhere image processing and analysis techniques
can be usefully applied to extract quantitative results from images of fluid flow. In this
thesis, computer-automated flow visualization has been used both for extracting the

velocity field and for the identification of regions of coherent flow.

The organization of this thesis is as follows. After this introduction, the second
chapter reviews the established models for turbulent fluid flows. This survey is included
to present the setting in which this thesis research has been conducted and provides a
basis for a comparison with the rate equation approach which is described at the end of
the chapter. The next chapter reviews experimental methods commonly used to study
turbulent flow fields as well as the manual and automated flow visualization methods

used for this thesis work.

Chapters 4 and 5 report the results of the work performed to examine first the
coherent structure statistics on grid-generated turbulence and then the dynamics of these
structures and finally how the two are related. The reader who is familiar with turbulence
research will find these chapters as well as the last sections of chapters two and three of
most interest as they contain the bulk of this stuae‘rxt’s original contributions. The thesis

ends with the conclusion.
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Much of the work presented in this thesis has been published elsewhere. Reference [1]

presents the rate equation approach to predicting the statistical evolution of turbulent
| flow fields. Some preliminary Structure dynamics observations were presented in reference
[4]. The structure statistics study of the fourth chapter was first published in short form
[5] with a more thorough presentation given'in reference [6]. A preliminary presentation of
the computer-automated coherent structure identification and flow field analysis system
was published as reference [7]. A more thorough presentation of the system together
with results of the structure identification study presented in the the fifth chapter of this

thesis has recently been submitted for publication (see reference (8)).
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CHAPTER 2
TURBULENT FLOW MODELS

“l am a firm believer in learning to understand the forces at work instead of
operating from a set of fixed rules. Obeying rules without an understand-
ing of the reasons behind them creates an approximation of competence
which leaves one vulnerable to the exceptions.”
from Safety: The Open Coast or All your eggs in one Kayak, by Matt
Broze (9]

The purpose of this chapter is to review the models currently used to describe and
predict the evolution of turbulent flow fields. There is no one generally accepted model for
predicting properties of turbulent fluid flows. In order to produce satisfactory results for
a given flow system, models invariably invoke assumptions which severely réstrict their
range of applicability. However, an appreciation of the various theoretical approaches
will add depth to our understanding of the experimental results to be presented. This
background is also presented to provide a framework from which to examine the rate
equation approach. A good presentation of the ‘standard’ models for turbulence may

also be found in reference 10.

The chapter is divided into six sections. The first section discusses the Reynolds
decomposition of the Navier-Stokes equations. The next two sections describe models

used to close the resultant Reynolds stress equations starting with the the eddy viscosity
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model for turbulent mixing and going on to more complex models of the Reynolds stresses.
The spectral energy transfer approach is discussed in the fourth section and the review
aspect of this chapter concludes with the computer based approach known as large eddy
simulation. The relationship between the models is shown in Fig.2-1. Our rate equation

model is summarized in the last section.

Navier-Stokes equations
+
v continuity condition
+
boundary conditions

AN

Reynolds stress
equations
+
boundary conditions

JAEERN .,

Computer

simulation

Eddy viscosity mode) Reynolds stress Large Eddy
of stresses models Simulation
Mixing length k — ¢ models Spectral dynamics | 4
models

v

Flow properties

Figure 2-1 Relationship between Navier-Stokes based turbulence models.
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2.1 The Reynolds Equations

The starting point with most turbulent flow models are the fluid equations of motion.

We begin by writing these equations for an incompressible fluid,

du; . Ou; 1 66,'1'

at Y dz; pdz;’ (2-1a)
and
ou,
—— 0. _
5e (2 — 1b)

The standard summation convention is implied and the indices range over the three
spatial dimensions. Here p, the fluid density, is assumed to be constant. The left side
of eqn.(2-1a) is the rate of change of velocity u; of a fluid element following its motion.
The right side contains the stress tensor 6;; which drives the motion. Equation (2-1b) is
the continuity condition which expresses the conservation of mass for an incompressible

medium.

Stokes’ relation is used to determine the stress 6,; from the rate of strain §;;(=

1(2&1
2\ 9z,

+ %%’})) and the fluid dynamic pressure p in an isotropic Newtonian fluid,
$] t

6"" = —}35,']' + 2#5.’1'. (2 — 2)

Here 6,; is the Kronecker 6 and u is the dynamic viscosity. Using the continuity condition
in the result we arrive at the equations of motion for an incompressible, isotropic and

Newtonian fluid:

3ﬁg+ﬁ.aﬁ,‘ _ 1 op . 0%, (2 - 3a)
ot  ’9z;  pdr; = 0z;0z;
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and

dii;
5 =0 (2 - 3b)

the Navier-Stokes and continuity equations. v(= p/p) is called the kinematic viscos-
ity. Together with the appropriate boundary conditions, both in space and time, these
equations are the starting point for almost all studies of incompressible, isotropic, and

Newtonian fluid motion.

The next step in the development of most turbulence models is to treat the dynamical

variables 4, and p as being composed of a mean and a fluctuating component:
u; = U; + u,, (2 — 4a)

p=P+p. (2 — 4b)

This procedure is called the Reynolds decompos;ition after Osborne Reynolds [11]. Here
U; and P are the average, either time or ensemble averaged, components of the velocity
and pressure fields. For some time dependent quantity a(t), the time average a(t) is
defined as,

1 t+T/2

a(t) = limr_ o a(t')dt’ (2-5)

T t'=t—-T/2

It is meaningful to speak of time-dependent time averages if,
da(t)/dt < \/(da(t)/dt)? (2-6)

which states that the averages must change much more slowly than the average change.
Flow fields for which the time-averaged quantities do not change with time are termed

statistically steady.

10
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The stress tensor 6;; can also be decomposed into mean and fluctuating components,

0ij = Xij + 045, 2-7)

where the time independent mean stress tensor X;; has the analogous Stokes’ relation,

Y= —Péb;; + 2uS;; (2 — 8)

and the zero mean fluctuation stresses are given by,

0i; = —pbi; + 2usi;. (2-9)

The mean strain rate tensor S;; and fluctuation strain rate tensor s;; are given by

1 /0U; an
Sy _5(&7+8I5> (2—10)
and
1 (Ou; Ou;
$ii = 5 (6:5_,- + 8.7:;) o e-n)
respectively.

The equations of motion for the mean flow may be obtained by substituting the
Reynolds decompositions into the fluid equations of motion, eqns.(2-1), and then taking
the time average of all terms in the resulting equation. Finally noting that, for physically
realistic flow fields, averaging commutes with differentiation the resulting equations for

the mean flow are,

6U,~ au,- 10
+ uj = -

aIJ' 8::,- p a.'L']"

U; Zij. (2-12)

11
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Using the continuity equation to rewrite the second term we have

aU,- 10
U] 61:,; = ;a—x.’ (E,J — pu;u,) (2 - 13)

or alternately using expression (2-8) for the mean stress

ou; 1 90 :
"a_z,- =3z, (=Péi; + 2uS;i; — puin;) (2 — 14a)
with the continuity of the mean flow
aU;
=0. -
7z, (2 — 14b)

The contribution of the turbulent motion to the mean stress is called the Reynolds stress

tensor,
Tij = —pusU;. (2 - 15)

We have now arrived at the starting point of the majority of the turbulence models being

used and studied at the present time.

The decomposition of the flow into mean and fluctuating components in the form of
either eqns.(2-4), or equivalently equations (2-7) through (2-9), allows for some tractable
analysis and useful results, witness to this being that this flow decomposition was first
introduced by Re)-'no]ds in 1895 and is stil] much used today. It should be emphasized
at this point however that by introducing eqn.(2-4) the number of unknowns has been
increased by four, three velocity components and one pressure variable, without increas-
ing the number of equations. The task for the turbulence modeller is to close the system

using a suitable model for the Reynolds stress tensor. In order to solve the new equations
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of motion, either physically motivated or empirically obtained information in the form of
additional relations must be added. That is the object of the eddy viscosity models such
as the mixing length and so called k¥ — € models as well as the more general Reynolds

stress models.

While the Reynolds decomposition is responsible for the considerable success in the
description and calculation of turbulent boundary layer and free shear layer flows it is
also responsible for the limited applicability of the approach. It can be misleading in
application and results, particularly if applied to flows for which the local flow struc-
tures coherently add to the mean flow field. If the dynamics of these local fluctuations
are inherently non-linear, exclusion of their coherent component will render physically

motivated modelling impotent.

2.2 Eddy Viscosity Models

The task is now to provide an expression for the Reynolds stress tensor 7;; so that the
partial differential equations of mean motion, eqns.(2-14), can be solved. The standard
approach is to write u;u; as proportional to the fluctuation stress tensor s,; in 2 manner
similar to how the mean strain rate S;; is related to the viscous stress. There, the viscous
term is uS;; with ¢ quantifying the rate of momentum transport due to molecular motion.
In an analogous manner an eddy viscosity is used to quantify the rate of momentum

transport due to turbulent fluctuations by writing

uu; = —2Urs;; (2 - 16)

13
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where vr is called the eddy viscosity. This re]ation_was first developed by J. Boussinesq
[12,13] starting in 1877. While the kinematic viscosity v is an intrinsic property of the
fluid the eddy viscosity vr is a property of the fluid flow and as such not generally a
local parameter as is implied by writing eqn.(2-16). Models based on this relation are
successful when applied to flows for which a local approximation for vr is not too grossly
violated. These are flows for which a turbulent length scale £ is much smaller than the

mean flow length scale L (E g—g%/%?) .

One of the oldest and most successful models for v is obtained by pushing the
analogy between turbulent and molecular transport a step further. The mixing length

hypothesis was first put forward by Prandtl in 1925 {14] when he suggested using,
vy = ¢ u'l (2—17)

for the eddy viscosity. Here u’ and £ are appropriately chosen velocity and length scales

while the constant ¢; must be experimentally determined for each type of flow. An

example of an appropriate choice for v’ and £ is for wall-bounded shear flow where u’ is the

velocity difference across the boundary layer and £ is the boundary layer thickness. The

derivation of this relation follows the lateral motion of momentum carrying fluid lurpps a

distance £ across a shear layer where it is surrounded by fluid of average velocity difference
' .

u’. The reader interested in the rationale behind eqn.(2-17) will find presentations by

either Tennekes and Lumley [15] or Schlichting {16] worth reading.

If the velocity and length scales were known everywhere in a flow and if the mixing
length model was realistic the closure problem would be solved. That this is not so is

partially due to the fact that in turbulent flows the largest eddies tend to have size scales
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comparable to the width of the flow. The largest eddies are also the most efficient at
extracting energy from the mean strain rate and thus contribute most to the Reynolds

stress influence on the mean flow.

Another significant aspect of turbulent flows for which eqn.(2-17) does not account is
the usual multiplicity of length scales. Many models have been proposed to describe the
length scale variation within a flow. A slight elaboration of the boundary layer model
described above has the velocity u’ given by the local fluid speed and £ determined as

the distance to the wall.

The more sophisticated models, the so called one-equation models, use a Navier-
Stokes derived partial differential equation to determine the energy k which in turn
defines the fluctuation velocity scale u’. Two-equation models use algebraic equations
with experimentally determined proportionality constants to describe both the length
and velocity scale in terms of k and the dissipation €. k and € themselves are determined
from Navier-Stokes derived partial differential equations. According to W.C. Reynolds
[17], as of 1976 only the zero-equation models, ones using only a partial differential
equation for the mean flow, were being used in practice by the “more sophisticated
engineering industries”. In a more recent review Ferzinger [24] states, “Mixing length
models work very well in two-dimensional shear flows. They can be modified to account
for extra effects such as pressure gradients, curvature, and transpiration. . . . The major

disadvantage of mixing length models is the difficulty they have with complex flows.”
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2.3 Reynolds Stress Models
Reynolds stress models were developed as a way of avoiding the eddy viscosity as-
sumption and the subsequent limitations. The basic approach is to use partial differential
equations to determine the Reynolds stresses. The equations used come from the fluc-
tuation counterpart of eqn.(2-14) obtained from the original Navier-Stokes equations in
the following way: The mean and fluctuating decomposition of the velocity and pres-
sure, eqhs.(2-4), are again substituted into the Navier-Stokes equations but the mean
equations of (2-14) are now subtracted to obtain equations for the fluctuating quantities.
The fluctuation equations are cross-multiplied by u; and then averaged to get equations
for the Reynolds stresses, the normal components of which are the fluctuation kinetic

energies. These equations have the general form

ougu;

ot

= Convection + Production — Dissipation + Redistribution (2-18)

Whereas the production term is prescribed, the convection, dissipation, and redistribu-
tion terms must be modelled. The closure problem still haunts us! Moreover the con-
stants in the model are more difficult to obtain due to the lack of experimental techniques
for the direct measurement of the quantities such as the pressure-strain correlations re-
sponsible for the redistribution of stress components. For these reasons Ferzinger [24]
has suggested using full-scale computer simulations to test the models. According to
Ferzinger, Reynolds stress models nearly doubled the éost of computing a givén flow
without yielding results significantly better than those produced by the two-equation

models mentioned in the last section.

16
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2.4 Spectral Dynamics

Development of models for the Reynolds stress tensor requires knowledge of the
dynamics of turbulence. The turbulent energy equations, the normal components of
eqns.(2-18) contain only mean products of fluctuating quantities at one point in space.
In order to study the length scales of the turbulent fluctuations we need to consider
fluctuating quantities which are measured at different points in space. The most general,
statistically steady, two-point spatial correlation between fluctuating velocity components

may be written

Cij (Z,7) = ui(Z,)u; (7 + 7,1) (2-19)
where 7 is the position where the correlation is defined and £ + 7 is the position where
the jth velocity component is defined.

The dimensionless correlation is called the correlation coefficient and is given by

-

) i -'s (T _‘1! .
Ri;(2,7) = wilB0uEL AL (2 — 20)

Vul(E t)y/u(Z + 1)

R forms a second rank tensor whose individual components are such that
-1 < Ri;(z,7) <1 (2-21)

This agrees with the interpretation that R;; is a measure of the degree of correlation
between the two velocity components. A typical spatial correlation curve for identical

velocity components appears in Fig.2-2.

At ¥ = 0 we see from eqn.(2-20) that R,, = 1. It is a property of turbulent flows

that fluctuating velocity components are uncorrelated for sufficiently large separations
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Figure 2-2 Spatial Correlation Curve.
and so we have
R;;(Z,7) => 0 for large | T | (2 - 22)

For homogeneous flows R;;(Z,7) => R;;(r). If the mean fluid velocity is in the z; di-
rection for example then R;;(ry) is called the ‘longitudinal correlation coefficient’ and
R32(r1) and Rgs(r;) are ‘lateral spatial correlation coefficients’. A simple measure of the

length scale of the energy containing fluctuations is given by

[o o]
L= / Ry (r})dr! (2 - 23)
=0

called the integral length scale, see Fig.2-2.

In some flow situations a useful measure of the length scales in the fluctuations can be
found from the temporal correlations. The auto-correlation curve is the average product

of the same quantity measured as a function of separation time T,

Coa(Z,T) = ua(Z,t)ua(Z,t + T) (2 —24)
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This curve is much more easily obtained from experiment than the space correlations
discussed above. Only one velocity measuring probe, a correlator and a signal delay
unit are needed. The auto-correlation curve is obtained by sweebing the delay time T
Jfather than physically moving a velocity probe. The time scale of the energy containing

fluctuations, the integral time scale T, is defined as
] _
T.= = / C(T')dT'. (2 —25)

The auto-correlation is of interest when one wants to examine structure dynamics as it
is most closely related to the time evolution of the flow. It is also useful in the study
of the spatial structure of turbulent fluctuations when it can be related to the spatial

correlations. This relationship and the conditions of its applicability are discussed below.

T
(X1/Uc)

U, probe

Figure 2-3 Taylor’s hypothesis. Equivalence of time and space coordinates.
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Consider a flow field moving past a velocity probe, see Fig.2-3. Assume the convec-
tion speed is the same for all fluid elements and the coherent structures do not evolve
appreciably in the time it takes them to flow past the probe. The probe measures the ve-
locity as a function of time. The space correlation is obtained from the time correlation of
the temporally varying signal by simply multiplying the time axis of the auto-correlation
by the probe speed, U..

Cap(T) = Cap(X/U.) (2 - 26)

the integral time scale can thus be related to the integral length scale by the relation,
T.=L./U, (2-27)

This coordinate transformation and the conditions when it can be applied are called
“Taylor’s hypothesis” after G.1. Taylor who first formalized it or alternately the “frozen”
turbulent field hypothesis. The important point to note is that Taylor’s hypothesis can
only be applied when the flow field does not change appreciably during the time if takes
the sampling probe to traverse a distance greater than the length scale of interest. In
addition the fluid elements must have a constant convection velocity, U.. For the purpose
of studying coherent structures Taylor’s hypothesis may be applied when the eddies have
a lifetime that is long cc;mpared with the probe transit time. Additionally the structure

drift velocity must be negligible compared with the probe speed.

Just as a fluctuating flow field can be described by the spatial correlations we can

describe it by the Fourier transforms of the correlations without loss of information. The
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Fourier transform of the spatial correlation tensor is called the three dimensional wave

vector spectrum,

&(k, %) = [(ZW)s]/;u,(z,t)u,(a:-i—r,t) zp(ik - F)d (2 — 28)

with | k |= 27/) being the wave number. It is impractical to measure or work with all

velocity components needed to define this spectrum.

Another spectrum which is simple enough to be useful is the three-dimensional spec-
trum. This spectrum is obtained by removing the directional information from the wave

vector spectrum by integrating Qij(l;,ﬂ over spherical shells centered at k= 0;

E(k) = %]{;@u(l?)da. (2 — 29)

It is most useful when applied to isotropic flows as information about flow orientation has
been removed. The factor of % is included to make the integral of the three-dimensional

spectrum E(k) equal to the kinetic energy per unit mass

o 1
/ E(k)dk = ~u7w;. (2 - 30)
0 2

Discussions of spectral dynamics in isotropic flows are presented in a number of texts
[15, 18]. A more rigorous presentation is given by Hinze [19]. Figure 2-4 shows the
qualitative variation of the three-dimensional spectrum E(k) for fully developed flows.
The energy is supplied to the turbulent spectrum at wavenumber k, = 1/L, where L,
corresponds to a characteristic length scale of the flow generation mechanism. For three-

dimensional flows the energy continually cascades to higher wavenumber due to the action
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Figure 2-4 The three-dimensional spectrum E(k) for fully developed turbulence.

of vortex stretching. The integral length scale of eqn.(2-23) is shown near the center of the
distribution of energy containing wavenumbers. The shape of the spectrum in this region
is dependent on the flow generation mechanism and the boundary conditions. In 1941
Kolmogorov hypothesized the existence of a universal equilibrium regime where the flow
is independent of the shape of the spectrum at lower wavenumbers ‘[20]. The idea is that
in the energy cascade to smaller size motion the flow loses all information about the large
scale geometry. The shape of the spectrum is solely determined by the dissipation € and
the kinematic viscosity v. For extremely high Reynolds numbers, Kolmogorov further
hypothesized the existence of an inertial subrange where the shape of the spectrum can
only depend on the rate of energy transfer through the spectrum. This transfer rate is
equal to the dissipation as the inertial subrange carries all the energy that is dissipated
in the viscous dominated small scales near k4. A simple dimensional analysis leads to the

now famous €2/3k~%/3 functional form of E(k). k—5%/3 inertial subranges have been found
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in many high Reynolds number flows including a tidal channel flow [21]. Stewart and
Townsend (53] have shown that the conditions necessary for the existence of the inertial
subrange are not met in laboratory conditions. This does not, however, prevent k—5/3

spectra from being found in the lab as often happens*.

While inertial ranges are expected in two-dimensional turbulence, see ref. [23], the
'spectral dynamics are quite different from what is found in three dimensions. Vortex
stretching , the predominant mechanism of energy transfer in three-dimensional flows, is |
not possible for two-dimensional motion. Also, in the two-dimensional inertial range the
mean-square vorticity as well as the kinetic energy per unit mass are constants of the
motion. This has the effect that transfer upward in wavenumber must be accompanied
by comparable or greater downward transfer through the action of eddy pairing. In two-
dimensional turbulence the energy cascade is to lower wavenumber with inertial ranges

found at larger size-scales than the scale at which the energy is fed into the fluid system.

Turbulent flows are modelled using the three-dimensional spectrum by Fourier de-
composition of the Navier-Stokes equations. The equations are then closed in a manner
similar to that in which the Reynolds stresses are estimated. A spectral energy trans-
fer function is introduced which describes how processes at one wavenumber affect the
amplitudes at another. The problem is, however, that eddys are not stationary waves
and so the spatial Fourier decomposition is not a natural description of them. Eddys are
localized in space and so are associated with many wave numbers and the phase relation
amongst them in a non-trivial way. Spectral energy transfer functions are thus either

quite complex or very restricted in applicability. However insight into spectral dynamics

* 1. S. Gartshore private communication
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of the tractable case of isotropic and homogeneous turbulence provides conceptual tools
by which other flows can be appreciated. Also, the spectral dynamics of isotropic and

homogeneous flows are thought applicable to the small scale motion of a broad range of

fluid flow systems.

2.5 Computational Models

The Navier-Stokes equations allow for a complete computer simulation only at very
low Reynolds numbers. As the Reynolds number increases the range of length scales in
the flow increases. The Large Eddy Simulation (LES) technique suggested by Leonard in
1973 [25] handles this problem by solving filtered Navier-Stokes equations for the large
“eddies” while modelling the action of the small “eddies” using subgrid scale terms. The
term eddy is now being used as in the language of Fourier analysis where it is treated as

synonymous with a disturbance over a narrow range of wavenumber.

What follows is a fepresentative outline of the filtering and subgrid scale analysis
as presented by Aupoix [26]. It is common to deal with the Fourier transform of the

Navier-Stokes equations. The transformed equations read:

9. - o kik L s
—6—tu,-(k) + vk*i(k) = —ik;(6i — —k—zl) / / 6(k — p~ QJu;(p)w(q)d®p d°F (2 — 31a)

for the momentum equation and

kiiii(k) = 0 (2 — 31b)
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for the continuity equation. Here #(k) is the Fourier transform of the velocity field and
6(1;) is the Dirac function. The right hand side stands for both the advection and pressure

term. Each wave vector k interacts with all wave vectors p and ¢ such that k= P+q.
The velocities and pressure are next decomposed into two terms, a large-scale com-

ponent, @, and a small scale component, u’ = u — @, using a convolution filter G. The

filtered value of a velocity component reads

i;(7) = /u,-(i")G(i:'— T')d3z (2 - 32)

i(k) = a(k)G(k) (2 - 33)

For convenience a step-function low pass filter is employed artificially to separate
the large |k| < k. and small k| > k. scales in the flow. What results is a governing
equation for the large scale eddies with a subgrid scale term which must be modelled.
The subgrid scale term represents the interactions between wavenumbers above the filter
cut k. and those below it. This decomposition is similar to, but more sophisticated than,

the Reynolds decomposition of section 2.1. The closure problem remains however.

The Fourier transformed energy equation for an isotropic flow is

(—% + 2vk?)E(k) = T(k) = //S(k,p, q)d*pd’q. (2 - 34)

Here E(k) is the energy spectrum of eqn.(2-29) and T'(k) is the total energy transfer into

wavenumber k. Several models give expressions for the detailed energy transfer S(k,p, q)
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at wavenumbers p and ¢. The more recent two-point closures impose the equality of
ensemble-averaged energy transfer between wavenumber k and the small scales. Older

models simply imposed energy conservation across the cut, k..

An implementation of the modelling is presented by Aupoix as follows: “At each
time step the energy spectrum of the large scales is calculated. With the knowledge of
the energy spectrum of both the large and the small scales, the EDQNM?* routine can
then compute oh one hand the subgrid scale transfer and the eddy viscosity vr(k) in the
large scales and, on the other hand, the energy transfer T'(k) in the small scales. So the

evolution of all scales can be computed.”

It should be mentioned that the LES models are more successful when applied to flows
for which a physical scale separation occurrs [28]. An example being the flow behind a
bluff body where the relatively homogeneous small scales produced by the separated

boundary layer interact with the shed vortices which are of the body dimension in size.

2.6 The Rate Equation Approach

In sharp contrast to the above models is our rate equation approach. As mentioned
in the introduction, much of the motivation behind this study of coherent structures
on grid-generated turbulence was to test and develop a model for turbulence based on
rate equations. This model was proposed by my thesis advisor Dr. Boye Ahlborn. The
model and some simple applications of it were described in a recent publication [1]. Its
essential feature is that the statistical evolution of energy-containing coherent structures

is described using a rate equation. The different types of evolution processes that a

* a statistical description of the small scale motion, see [27]
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structure can undergo are characterized by rate coefficients in a manner similar to that
by which the evolution of energy states in an interacting system of excited or ionized
atoms (a plasma) is modelled. In a sense, our model takes the analogy of flow structures
with atoms a step further than was done first by Boussinesq in the eddy viscosity model

and then by Prandtl in his mixing length approach.

The interactions of an energetic flow structure with its environment are classified into
three main typeé. A structure can interact with its fluid surroundings through viscous
dissipation, with its flow environment through the mean shear stress and with other
structures by eddy-eddy collisions. The rates of these dynamical processes are quantified
by the coefficients A, B and C respectively. The time rate of change of the number of
structures of a given type is then determined by the rate equation

-d—ng = i Askng + ZBaknk + ZC kinkne — Crad- (2 - 35)

dt k>a -k k.t i} i

There being one rate equation for each of the m distinct structure types. At present we
need not specify what physical parameters determine the structure type. For a given flow
system a structure may be uniquely characterized by its size and energy. In the statistics
analysis of section 4.4 we characterize the structures by either size or energy. The rate
coefficients must be derived from the local interaction dynamics and the probability
that a particular encounter will occur. The A coefficient quantifies the rate at which
structure type a is produced by viscous decay of structures having greater energy (thus
« forms the lower bound in the summation). The B coefficient describes the probability
that an o type structure will be produced when a k type structure interacts with a

shear stress in the fluid. The C coefficient quantifies the probability that structure
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Figure 2-5 Structure diagram of the rate equation model.
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types k and £ will collide and produce a structure of type a. If the rate coefficients
truly capture the essence of the structure evolution then equation (2-35) provides a
| general framework for describing the evolution of a population of structures. If the
structures are characterized by their size and energy then the rate equation describes
the evolution of the number of structures of a particular size and energy. This model
has the inherent quality of addressing one of the more vexacious problems in turbulence
modelling; namely locally deterministic evolution and long term unpredictability. The
approach allows one naturally to account for structure dynamics. The rate coefficients
may in principle be determined ei-ther through experimental observation or calculated
using the fluid equations of motion. Figure 2-5 shows a structure diagram of the rate

equation model.

In order to establish the validity and viability of the rate equation approach a number
of fundamental and practical questions need to be answered. Some of the fundamental
questions are:

1) Can the flow structures be identified and characterized by simple physical parameters?
2) Can the evolution of these structures be adequately characterized by rate coefficients?
3) Can the rate coefficients be determined by local considerations?

4) Do the coherent structures account for most of the unsteady flow in a turbulent fluid?
5) Can the initial production of structures be predicted?

6) Can the identification of a structure be made objective?

7) Can a coherent structure be identified unambiguously?

Some of the practical questions are:

1) Are there general unique ‘relaxed’ states to the structures?
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2) Can analysis of a fluid flow provide sufficient statistical data to evaluate the rate
equation model.

3) Are there flow structures which are common to many turbulent flow systems?

4) Can the recognition of a structure be automated?

5) Can the predicted structure populations be used to predict flow properties of practical

interest such as drag, mixing, heat transfer or gust levels?

This thesis advances the rate equation model by addressing many of these questions
in relation to grid-generated turbulence. Before going on to discuss the experimental
observations a description of the apparatus and visualization techniques used in this

research is presented along with a review of other methods used in the experimental

study of fluid flow.
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CHAPTER 3
FLOW FIELD ANALYSIS

“ Many turbulent flows can be observed easily; watching cumulus clouds or
the plume of a smokestack is not time wasted for a student of turbulence.”
from A First Course in Turbulence: by Tennekes and Lumley [15]

The purpose of this chapter is to describe methods used to produce, observe and
analyse flow fields in the study of turbulent fluid dynamics. There are basically two
experimental techniques available for the study of the fluid motion. Flow visualization
acquires two- or three-dimensional flow fields at discrete points in time while anemometry
provides continuous velocity time records at discrete points in space. Both method§ were
used in this study of grid-generated turbulence although the emphasis in this thesis is
on the flow visualization work. The first section of this chapter describes the towing
tank which was built to produce and study the turbulent grid-fiow. A review of flow
visualization techniques and the coherent structures decomposition of turbulent velocity
fields is presented in the second section. The third section describes the acquisition of
spectra and conditional sampling, methods which are rooted in the use of single and
rx‘mlti-point' velocity probes such as laser and hot-wire anemometers. Finally, the manual

and automated coherent structures analysis techniques used in this thesis are described.



CHAPTER 8 FLOW FIELD ANALYSIS 82

3.1 The Towing Tank

A turbulent ﬂow. field was generated in a water-filled towing tank using a vertical
bar grid of M=5.08cm spacing and d=1.26cm bar diameter. The surface flow field was
recorded using av35mm camera fixed in the lab frame of reference, see Fig.3-1. The camera
had a motor drive so that a series of photos could be taken as the flow evolved. For the
structure dynamics studies an underwater cart was fitted to the tank. This permitted
clearer visualization of the formation region near the towed models. The underwater cart
consisted of a plastic sheet which slide between tracks of aluminum U-channel mounted
near the tank bottom. The same drive system was used for both carts. The camera’s
shutter was triggered by an optical pick-up which detected reflective bands placed on the
drive cable. The cart speed, Ug, was controlled to better than 1% using a -;— horse power
constant speed motor. The speed controller setting and step pulley combination allowed
for a grid speed range of from 2 to 200 cm/sec. Kill switches were placed at either end
of the cartway to guard against operator inattention. A more detailed description of the

experimental apparatus may be found in reference [30].

For the surface flow investigations aluminum filing tracers of ~ 0.5mm size were
applied by scraping an aluminum block with a file. The tracers were illuminated with
four flood lamps placed at a low angle of incidence with respect to the fluid surface
in order to avoid reflection into the camera. Particular attention was paid to the water
surface. Periodic skimmimg was needed to remove contaminants which could significantly

alter the properties of the surface motion.
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Figure 3-1 The towing tank.

The tank was built with clear plastic side walls to facilitate subsurface flow visu-
alization. A slide projector was used to produce a sheet of light parallel to either the
water surface or the tank side wall. Either wood chips or biological entities were used
for the subsurface tracers. The latter were allowed to form in the tank over the course
of a few months. They were found fo be very nearly neutrally bouyant and reflected
light almost as effectively as the wood chips. In both the surface and subsurface studies

the tracers produced clearly visible streaks on time-exposed photographs. These streaks
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indicated the local flow velocity. For the structure dynamics study the video-camera

simply replaced the still camera.

3.2 Visualization and Coherent Structures

Before the development of the hot-wire anemometer, flow visualization was the ma-
jor method used to study the motion of fluids. Flow visualization provides flow field
information over entire areas or volumes of a fluid but usually for discrete points in time.

Moreover, quantitative analysis is much more involved than for anemometry.

The advent of hot-wire anemometry saw the decreased use of flow visualization in
the study of fluid dynamics. For many decades of research, flows of engineering and
scientific interest have been exteﬁsively investigated through its clear but narrow view.
The renewed use of flow visualization is thus not only due to the newly acquired capabil-
ities in image processing, but also to the diminishing returns in the use of point velocity
probes. With this new look at some well studied flows the setting was then ripe for a

more coherent view vis-a-vis the fragmented statistical concept of turbulence.

The interested reader will find a wealth of visualization techniques and novel varia-
tions in references [31,32,33] among others. An excellent collection of flow visualization
photos has been assembled by Van Dyke [34]. Figure 3-2 shows a general classification
scheme of flow visualization techniques used in the study of fluid flow. They are crudely
divided into methods which exploit light scattering from particles and those which make

use of variation in refractive index of a fluid depending on the flow conditions.
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Figure 3-2 Classification scheme of flow visualization techniques.

Interferometers yield a picture of the refractive index through a volume of compress-

ible fluid or mixture of fluids of differing optical properties. Spatial filtering is used in

the schlieren technique to produce an image of the average first derivative of the index

of refraction while the shadowgraph technique yields the mean second derivative.

Another visualization technique is to follow the motion of a convected fluid which

has been dyed with a material that is visually distinct from the background medium. A

common combination is ink in water. This technique is quite effective in showing the

outlines of structures responsible for mixing. It has been used most effectively in the
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study of coherent structures in turbulent boundary layers. An ingeneous extension of
this method is the use of a fluorescing dye in a flow illuminated by a sheet of laser light.
This method allows for visualization in planes throughout a flow ana allows one to ‘look
inside’ three dimensional flows. The dye technique does not lend itself to quantitative

extraction of velocity fields and its use has largely been confined to qualitative studies.

The newer (~1977) technique of speckle photography allows for acquisition of the
motion in a cross section of a fluid. The fluid is illuminated by a monochromatic sheet
of pulsed coherent light. A random pattern of speckle pairs with variable distance and
orientation is imaged at the photographic plane. The resulting specklegram can be recon-
structed to produce a speckle pattern in which the spacing and orientation of successive
speckles are directly related to the motion of the fluid. Additionally the speckles are
modulated by Young’s fringes which give the magnitu&e and orientation of the in-plane
components of the fluid velocity without the need for particle tracking. As Lauter-
born points out [35], the speckle method can be considered as an extension of the usual
multiple-exposure technique but makes use of Fourier space for direct orientation deter-
mination (the motion sense must still be determined by other methods). An extra bonus
wi‘;h this technique is the easy extension to smaller displacements through the inverse

resolution properties of space and the Fourier domain.

Holographic techniques allow the phase information from phase objects such as den-
sity variations or particle distributions to be stored and reconstructed later. The recon-
struction can be done with a new state of the flow system to produce an interference
pattern highlighting the differences between say a quiescent or steady flow state and a

more vigorous flow. This reconstruction can be performed for a single instant in time
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in what is known as double-exposure holographic interferometry. It can be doné con-
tinuously in the case of real-time interferometry. In order to overcome accuracy and
processing speed limitations of holographic interferometry, heterodyne reconstruction

can be used to increase the resolution by orders of magnitude.

Tomography is a method of image reconstruction from multiple projections. Accord-
ing to Lauterborn it shows promise but as of 1984 was just starting to be applied to the

study of fluid flow.

The use of flow visualization has elucidated the presence and role of structure in tur-
bulent flows, however most of the reports have been confined to qualitative descriptions
of the structure properties. A notable exception is the work of Hernan aLnd Jimenez [36]
who quantified the spatial extent of mixing structures in the developing mixing layer.
They used a computer-automated geometric identification on ciné film recordings of re-
gions of active mixing highlighted with reactive gases. The identification involved fitting
ellipses to the visually distinct mixing regions. They examined the growth and pairing
history of the elliptical structures. and growth evolution. Because of the visualization
method employed little could be said about the reasons for the observed evolution as the

velocity field cannot be extracted from such data.

The contouring of the hydrogen bubble wire visualization (an interesting variation of
the tracer method) and picture processing data of Utami and Ueno [39] are suggestive of
coherent structures. Mory and Hopfinger [40] used particle tracking to extract structure
functions in a rotationally dominated turbulent flow and Sheu et al [41] used a three-

dimensional measurement technique to extract bulk flow data from the motion of tracers

37



CHAPTER 8 FLOW FIELD ANALYSIS

in a mixing chamber.

Tracer particle techniques in general are well suited to quantitative analysis. The
time-exposure method has been used in the laboratory since the early days of fluid
dynamics research. Indeed, part of the inspiration for the prgsent work came from study
of a large private collection of photographs of fluid motion made by F. Ahlborn in the
early decades of this century [37]. In this technique, optically reflective particles are
placed either in a fluid for volume studies or on a fluid for surface studies. It has been
used for quantitative studies of two-dimensional laminar flows for nearly a century by
measuring streak properties from tracer images recorded on time exposed photographs.
A number of variations on the time-exposed particle tracking techn'ique have been used

in this thesis work.

Before going on to present the analysis methods used in this thesis to identify and
analyze coherent structures some observations of other authors is presented. The term
‘coherent structure’ is used to describe a region of flow which has a more predictable
structure and evolution internally than it does with its surroundings. Lumley [42] has
suggested that coherent structures are significant in “young” flows which are still in-
fluenced by production geometry. He suggests that the current discoveries of coherent
structures are partially a result of researchers looking in early flow regimes with flow
generation apparatus having more quiescent preconditions. This however, does not ex-
plain the emergence of large scale coherent structures from an initially random vorticity
computer modelled flow [43]. It is this author’s belief that coherent structures are in

some cases a property of the initial flow conditions and in others an intrinsic property
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of the subsequent fluid mechanics. It is quite possible that the mechanics governing the

motion of fluids allows for an infinite variety of behaviour.

At present there aﬁpear to be as many or more coherent structure identification al-
gorithms as there are researchers. This is due in part to the newness of the research
and in part to the variety of flows studied and tools used in these studies. Resealichers
using anemometers have been quick to supply prescriptions for coherent strﬁcture iden-
tification. Hussain [44] has tried to come up with the canonical aeﬁnition of a coherent

structure. He calls a coherent structure,

“A large scale connected region of fluid mass having a phase correlated vorticity
over its spatial extent.”

Hussain’s method requires a previous bias as to where or when the structures may be
found and will only work for structures repetitively generated. His use of anemometry is

evident in the expression, “phase correlated vorticity”.

Lumley [42] has proposed a recognition method which avoids the use of conditional
sampling which he feels allows for too much of the experimenter’s bias to enter into
the data collection. Lumley’s “eigenfunction” approach is an orthogonal decomposition
of a velocity record using gaussian vorticity distributions as the basis functions. The
method is rooted in the statistical description of turbulence and the use of point velocity
probes. It predefines the basis functions and so cannot be said to be a completely “non-
prejudicial” approach.

The definition used for the automated structure recognition in this thesis is;

A connected, large-scale fluid mass outlined by the closed contour of minimum
angular velocity, within which there exists one, and only one, local maximum in

angular velocity.
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Implicit in our definition is that it be applied to analysis of two dimensional flow
fields. The identification of structures based on this definition is described in section
3.3.2. While not strictly needed, the condition that the structure be “large-scale” is used
to remove angular velocity peaks of size too close to the resolution limits of the analysis

system.

It has been the advent of the high speed digital computer and image acquisition,
processing and analysis techniques which has opened the door for a truly quantitative
analysis of image derived velocity fields in unsteady and turbulent fluid flows. The
application of this technique is furthermore not limited to two-dimensional flows. The
flow analysis system used for the structure dynamics section of this thesis constitutes
a fully automated flow field acquisition, processing and analysis package. The work at
UBC appears to be the first to use particle tracking to obtain flow fields for coherent
structure analysis. The system has been described in detail in the M. Sc. thesis by Lau

[38]. A summary of its principles and methods appears in the next section.

3.3 Our Methods

3.3.1 Manual Analysis

For the structure statistics studies of chapter four a manual method was used to
identify the eddies. The raw data for those experiments were a number of time exposed
photographs of tracer particle paths such as Figs.4-1. The analysis of these photographs

consisted of identifying the visually observed regions of closed coherent motion by tracing
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the largest closed contour following the tracer paths. An eddy radius was then defined as
the radius of a circle having an enclosed area equal to that of the structure. The manual
recognition of the structure geometry was completed by assigning an eddy center as the
position about which the motion appeared to rotate. The internal velocity structure of
ihe eddy was then recorded in a mechanical though tedious procedure using a digitizing
table. While this method suffered from personnel subjectivity and fatigue* it was useful

in obtaining a description of the structure statistics.

3.3.2 Automated Analysis

The structure recognition was subsequently formalized and automated in the M.Sc.
work of Alexis Lau [38] and used for the structure dynamics part of the present thesis.
What follows is a summary of the method as presented in a paper recently submitted by

Lau, Loewen and Ahlborn [8].

Figure 3-3 shows the computer-automated flow field analysis system developed at
UBC. The flow was visualized by recording successive aluminum tracer positions on a
video tape. Each video frame was then digitized as a binary 256 x 192 pixel array by a
Micro-Works DS-65 digitizer residing on an Apple II microcomputer. Figure 3-4 shows
one of the less noisy digitized frames. The digitized data were transferred to the UBC

mainframe computer where all subsequent analysis was performed.

The procedure for the noise reduction was to fill in holes and remove isolated pix-
els while preserving meaningful connectivity. A dynamic tree search following adjacent

points (“on” pixels) was used to create a list of the position and size of each tracer for

* About 800 person-hours were needed to analyze the statistical data used below.
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all of the digitized frames. The flow history was then reconstructed by tracking and

connecting the successive tracer positions shown in Fig.3-5.

The tracking procedure was a bootstrap search using a polynomial fit to project the
most likely next particle position. For each new frame of data, the position and size of
candidate tracers determined the best match with the previously tracked paths. The final
result is a time connected list of tracer particle positions over the exposure time of the
run - a streak. Figure 3-6 shows a sample connection. Streak trajectories were then fitted
by polynomials to give various flow parametérs of interest over desired flow times. In
particular, the linear and angular velocities were determined from the successfully tracked
data. The scattered set of values were then interpolated onto an equally spaced grid to
provide angular and linear velocity fields for the subsequent analysis. In the automated
analysis the angular velocity is determined with respect to the point determined by the
local radius of curvature. This is different from the method used in the manual analysis
where the angular velocity was determined with respect to the visually assigned struvcture

center.

Coherent structures were identified by applying our definition to the field of angu-
lar velocity. From the interpolated mesh fields of linear velocities, each structure was
parameterized with properties like size, average linear and angular velocity and internal
kinetic energy. The flow kinematics, dynamics and interactions could then be studied

using these structure parameters.

The definition of a coherent structure must be understood before deciding which

parameters are to be extracted from the trajectories. Definitions based on vorticity are
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"commonly used in the literature. However our diagnostic technique together with the
close relationship between vorticity and angular velocity for our two-dimensional flow
motivate our use of a definition based on angular velocity. For the structure dynamics

studies a coherent structure -an eddy- is defined here as:

A connected, large-scale fluid mass outlined by the closed contour of minimum
angular velocity, within which there exists one, and only one, local maximum in
angular velocity.

To extract information about these coherent structures the streak data is first pro-
cessed to produce the interpolated mesh field of angular velocity. From this grid, local
maxima are located and then the bounding contour for each peak is found. As two or
more adjacent positions may have the same extremum value, the peaks cannot be located
just by local consideration (a coﬁlputationally efficient way to proceed). As Lau puts it
in his thesis, ‘The task is similar to the problem of finding a mountain top in a forest
when one is lost and cannot see too far. The motto is “keep on climbing up your steepest
track, do not descend or turn back on a level track.” If a non—decreasing track can no

longer be found, one must be at a local maximum.’

Figure 3;7a shows the results of applying our definition to a sample one dimensional
scalar field. The recognition process is implemented by first “climbing” from each point
on the grid until either a peak of a previously marked path is found. In the latter case
the climb is terminated and the path number is reassigned to equal the one encountered,
see Fig.3-7b. Corresponding to the actual angular velocity grid, an identification grid is

used to record the path numbers. Once expeditions have started from every grid point
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we have effectively determined distinct, internally connected regions within which a non-
decreasing path exists between any grid point and its peak. Each of these regions define

an extended region.

The second problem of finding a minimum closed contour around the peak is now
straightforward. We simply find the maximum angular speed among all the values of
the boundary points. Any contour value higher than this will definitely enclose the peak
without entering into another region. Once this value is found, the core of the coherent
structure is defined as the area within the extended region for which the grid-points
~ have values higher than this one. This completes the operational procedure to find the
- boundary of the coherent structure. It should be noted that in our procedure all points

in the flow field are associated with either the core or extended region of a coherent
structure. After the initial identification the data set is further refined to remove small
scale structures. This is consistent with our interest in large scale structures and is done
by removing possibly mistracked streaks which are inconsistent with the rest of the data.

The entire analysis procedure is then repeated on the refined data.

Figure 3-8 shows the coherent structures identified by applying the analysis to a
two-dimensional velocity field obtained from the grid-flow experiments. The identified
regions correspond closely to our intuitive notion of a coherent structure. Figure 3-9
shows the same plot but with angular velocity contours overlayed. The analysis system
just described was used for the structure dynamics studies of chapter 5. Before going on
to present the results of this work, a section on how anemometry based flow field analysis

is used in the study of structure in flows.



CHAPTER 8 FLOW FIELD ANALYSIS 50

pixel number

S S | Y - 4 "

L J
L
-

a

32.

- o qr) - \. <+
> o 4 ¢ s ¢ ¢ - %".ﬁ’\
Lo & @ & ¢ ¢ ¢ © o - - -EF: - -

32. su. . 120. 160. 192. 2.
pixel number

Figure 3-8 Identified structures. 1 second (30 frame) streaks. + indicates counter-
clockwise rotation - indicates clockwise rotation



CHAPTER 8 FLOW FIELD ANALYSIS

pixel number -

b ra—1
-

!

& &
L - & &
> &

160 Qs

> o
N
r

>

32. (TH 9. 128. 160, 192. 224,
pixel number

Figure 3-9 Contour plot of identified structures. + indicates counter-clockwise rotation
- indicates clockwise rotation '



- CHAPTER $ FLOW FIELD ANALYSIS 52

3.4 Anemometry Based Flow Analysis

It was the development of hot-wire anemometry in 1935, coincident with Taylor’s
statistical theory of turbulence [45] which allow:ed researchers to measure fluid velocities
at points in a flow continuously and accurately. The véry high frequency response and
reasonable spatial resolution of these devices makes them well suited for studying time
varying velocities. The impact of hot-wire anemometry to the study of turbulent fluid
flow has been enormous. The laser doppler anemometer is a less intrusive point probe
which produces data similar to the hot-wire. Pitot tubes are useful for measurement of

steady or slowly varying velocity fields.

Together with a suitably adjusted linearizer a hot-wire anemometer, in its most basic
configuration, produces a voltage signal proportional to the longitudinal speed of the flow.
This signal can be electronically averaged or high-pass filtered to obtain the mean and

fluctuating velocity components respectively.

The principles of the statistical approach to studying and modelling turbulence have
already been presented in the last chapter. In this study of grid-generated turbulence,
Fourier analysis of hot-film anemometry derived velocity records was used to examine the
near-surface fluid dynamics. The most convenient quantity to measure was the spectral
density of the u; fluctuating component, E;;(f) at a given position £. Ey;(f) is twice the
component of the kinetic energy per unit mass due to longitudinal velocity fluctuations,
u1, at temporal frequency f. The power spectral density can be obtained by Fourier ana-

lyzing the fluctuating velocity component u;(Z,t) measured with a directionally sensitive
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probe at a fixed position . To see this, we first write the time dependent longitudinal

fluctuating velocity U, (t) in its Fourier representation,

uy(t) = 27 /—00 df{a(f)cos(2m ft) + b(f)sin(27 ft)]. (3-1)

a(f) and b(f) are the Fourier coefficients for the periodic basis functions of frequency f,

a(f) = i /_oo dtus (t)cos(27 f1) (3 - 2a)
b(f) = ;r-/_oo dtu,(t)sin(27 ft). (3—2b)

The power spectrum, Ey;(f), is obtained from the Fourier coefficients as

En(f) = 2r*(a3(f) + () (3-3)

for sampling time 7.

The power spectrum may alternately be defined in terms of the autocorrelation

C11(T) of eqn.(2-24). These two functions form a cosine transform pair,

(e ]

Ell(f) = [) Cll(T)COS(27l’fT)dT (3 - 40)

oo

Cn(T) =4/ Eqyy(f)eos(2n fT)df (3 — 4b)
0
The limits of integration are from 0 to oo as Ey;(f) = E;(—f) and Cy,(T) = Cy;1(-T)
for statistically steady flows.

The two definitions of E,(f), eqns.(3-4a) and (3-3), are equivalent. To see this we
insert the Fourier representation for u,(t), eqns.(3-1), into the definition of the auto-

correlation, eqn.(2-24). Multiplying the velocity representations and integrating out the
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cross terms in a(f) and b(f) we have

Ci(T) = G+ T) = lime oo / "dfla*(f) + B(f)eos(2nft).  (3-5)

The cosine transformed quantity in this expression is equivalent to the definition for

E11(f) in eqn.(3-3). From eqn.(3-4b) we see that

Cu(0) = /0°° Ey\(f)df (3-6)

Using eqn.(2-24) for the autocorrelation we have

= [ Bay (3-7)

This equation identifies the total fluctuating kinetic energy u_'f with the area under the

power spectral density curve.

The temporal spectra at position £, E11(f, Z), may be related to the spatial structure
of the flow. Applying Taylor’s hypothesis to the power spectral density measurement we

arrive at the relation

&11(k,3) = 5-U.En(/,2). (-8)

The power spectral density is related to the k;;-wave number spectrum &,,(k, Z) through
the longitudinal convection velocity U, at which the probe sarﬁples the flow field. This
is the Fourier transform equivalent of the relationship between the spatial and temporal
correlations. This includes the same restrictive assumptions, namely that the convection

velocity U, is constant and that the flow does not change appreciably while the probe

54
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samples a distance greater than the length scales of interest. Using the definition of the

integral time scale T,, eqn.(2-25), in eqn.(3-4a) for f = 0 we see
En(O) =4ETC. (3—9)

And applying Taylor’s hypothesis in the form of eqn.(2-27) we see that the integral length

scale can be obtained from the power spectral density E;;(f) as
L. = U.E11(0)/(4u}). (3~ 10)

L. is interpreted as being the average size of the energy containing structures. It is one
of the most basic parameters used to describe the spatial structure of a turbulent flow
field. This length scale determination is used in the comparison of anemometry and flow

visualization presented in the near surface fluid dynamics study of section 5.1.

Over the last two decades, the technique of conditional sampling has been developed
for the study of structure in anemometry signals. According to a review by Antonfa [46]
it has been applied to the study of the turbulent-nonturbulent interface of shear flows,
shear layers perturbed by interaction with another field of turbulence, periodic flows and
to the study of c‘oherent structures in different shear flows. Conditional sampling is a
process used to highlight specific features of a flow by only sampling the flow field when
certain previously selected conditions are met. It has been used by the anemometry
community to provide quantitative information to complement qualitative observations

of coherent structures obtained from flow visualization studies.
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This chapter has presented some of the major experimental techniques available for
the study of turbulent fluid flow as well as the methods used in this thesis work. The next

chapter describes the statistical study of turbulent grid-flow performed by the author.
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CHAPTER 4
STRUCTURE STATISTICS

“One must learn by doing the thing; though you think you know it, you
have no certainty until you try.”
Sophocles 495-406 BC

The experimental methods have been presented in the last chapter. This chapter
describes an investigation of the statistics of coherent structures on the surface of a
turbulent body of fluid. After finding the structures it was necessary to see if they could
be identified and characterized in a simple but useful manner. Next, it was of interest to
see if the structure statistics could be simply described. Answers to both these questions
should contribute to our understanding of the role that coherent structures play in a
turbulent flow. The experimental observations are given first, followed by a statistical
analysis of the size and energy distributions of the open (river-flow) and closed (eddy-
flow) coherent motions. In the last section of this chapter, the measured eddy energy

statistics are used to infer values for the rate coefficients.
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4.1 Experimental Observations

The experimental apparatus has already béen described in chapter 3. Figures 4-
1(a),(b),(c) show a series of photos taken in the lab frame of reference with the cart
moving from right to left at the speed U, = 20cm/sec. The interframe separation is 3
seconds. The left side of Fig.4-1(a) shows the receding grid while the right side of Fig.4-
1(c) is at an average distance of X=200cm from the grid, corresponding to about 40 mesh
widths. A non-dimensionalized distance scale in units of mesh widths (X' = X/M) is
shown in Fig.4-1(a).

The exposure time of each frame is 1 sec. Hence a typical streak of 1cm path length
indicates a local speea of u, = lcm/sec. For distances greater than a few mesh widths
from the grid the flow patterns did not evolve significantly during the 1 sec exposure
time. The average speed thus corresponds closely to the instantaneous value. It should
also be noted that for photos taken in the fluid reference frame u, is small compared
to the cart speed of U, = 20cm/sec. Photos taken in the cart frame of reference show
practically straight streaks without clear indication of coherent structures and are not

suitable for this analysis.

The time evolution of the flow can be studied on subsequent frames by comparing
the same region of flow, for instance, the lower right corner of each photo in the sequence
of Figs.4-1. If one is interested in statistical averages, sections of the flow in some
interval AX centered about the average value X can be examined. Figure 4-1(b) shows

such a sample bin. The X scale given below each photo shows some overlap, so that

58
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1sec taken at time intervals of At = 3 sec.
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the distribution obtained from an interval at the right edge of Fig.4-1(b) should be

statistically equal to the distribution obtained from the left edge of Fig.4-1(c).

For the structure statistics analysis ten photographic series containing about 20,000
individual streaks were traced by hand and their endpoint positions were digitized and
transferred to computer memory. Streaks contained within a manually identified struc-
turé boundary were grouped while other streaks were considered to be part of the inter-
eddy (river) flow. The flow field was analyzed only in the center section of the towing
tank where it is not affected by the side walls. This thesis reports analysis results for
U, = 20cm/sec (a mesh Reynolds number of 10,000) although qualitatively similar results

were found for 30 and 40cm/sec grid speeds [30).

The flow photos show clear evidence of organized fluid motion. One can distinguish
relatively stagnant areas, where the filings produce points instead of traces, and moving
sections, where the streak length is proportional to the local fluid speed. The moving fluid
appears to undergo either locally rotating motion with closed streamlines (surface eadies),
where a local angular speed w can be defined, or it shows predominantly translational
motion that may be characterized by an average river speed u,. A small number of
rapidly decaying eddies were observed, but for the statistical analysis the surface flow is
considered to be composed of either eddies with angular speed w, rivers with translational
speed u,, or stagnz%nt fluid where u, and w are negligible. Both eddies and rivers can

store kinetic energy that contributes to the internal energy of the unsteady surface flow.

~ For the purpose of obtaining a statistical description of the eddies, their boundary

is determined by enclosing the largest area while drawing a closed line following the
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visible tracers. This definition is similar to that of “the minimum closed angular velocity
contour” for the automated recognition of structure cores described in the last chapter.
Typical eddy identifications using the manual method are shown in Fig.4-2. After the
structure is outlined, an eddy radius is assigned as the radius of a circle enclosing an area
equal to that covered by the structure. It was found that three observers independently
assigned radii that differed by less than 5%. Structure centers were assigned as the
position about which the surface eddies appeared to rotate.

omega
structure

~3cm
E—

Figure 4-2 Typical structure identification.
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For the 20cm/sec grid speeds vertical displacement of the fluid surface was observed
to be less than a few millimeters. Significant near-surfa,cé vertical motion must therefore
be accompanied by converging or diverging flow at the surface. This would appear as
relatively stagnant regions of the material surface. If the accompanying stress was strong
enough to overcome the surface incompressibility, one would record either convergent or
divergent tracer motion. For cart speeds less than 50cm/sec (grid Re =~ 25,000) no signs
of subsurface vertical motion were found on the flow photos. One can therefore consider

the surface motion for U; = 20em/sec as being two-dimensional.

The relative abundance of open and closed structures is easily determined. One
has to measure the surface area fraction or concentration ¢, = S./Ss, ¢, = S,/S;, and
cst = Ss1/Sp of eddies, rivers and stagnant areas. For this purpose the total surface areas
of all eddies S., of all the rivers S,, and of all the stagnant areas S,; were measured and

divided by the total area analyzed, the bin area S,.

Figure 4-3(a) shows the concentration of these flow components as a function of posi-
tion X. The statistical analysis was performed in AX = 20cm wide bins. The distance X
is the center of the bin. The downstream distance can alternately be quoted in terms of
the number of mesh widths (X’). Between X=0 and X=20cm (X’ = 4) the motion and
evolution is too rapid to be analyzed from photos such as Figs.4-1. The near grid eddy
concentration, ¢,, is obtained from a simple initial vortex production model described
in the next chapter. After the initial production the eddy area fraction ¢, decays while
the fractions of river area ¢, and the stagnant area ¢, increase. About 20 mesh widths
downstream, the river area fraction starts to decrease as well. This follows the ultimate

dissipation of the grid induced motion to a quiescent state. When the eddy area fraction
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c. 1s high one expects significant interaction between eddies, so that the eddy distribution
should be governed by eddy “collision” processes. When the eddy fraction becomes low,
their distribution will mainly change through (viscous) eddy-fluid and eddy-flow inter-
actions, hence Fig.4-3(a) is divided into the production range 0 < X’ < 6, a collisional
or equilibrium regime with 6 < X’ < 23 and a (collisionless) decay range with 23 < X'.
The production region is defined as the range in which the initial vortex generation is
observed to occur. The collisional or equilibrium region is where frequent structure inter-
" action results in an equilibrium energy distribution. In the decay region, the dynamics of
the widely spaced flow structures appear to be viscosity dominated. Shown in Fig.4-3(b)
is the eddy number density n, = N./Sp (where N, is the total number of surface eddies)
and the average eddy area @, = 1/n.. The latter curve shows a steady increase of the
average structure size with downstream distance. The energy density ratio of the two
flow types, e, /e, is also shown as a function of distance. Here, e, and e, are the average
kinetic energies per unit mass of the river and eddy flow structures. The determination

of these energy densities is discussed in the following two sections.

4.2 River Flow

The open structures (rivers) appear to have their origin in the momentum defect
“shadow” behind the grid bars. The resulting anisotropy in the river orientation decays
during the observation period and becomes negligible about X=200cm downstream of the

grid. This is in agreement with studies of the bulk flow in which grid-generated turbulence
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Figure 4-4 River-speed scatter plot. Bin averaged river speed u, as solid line.

is found to be approximately isotropic within 40 or 50 mesh widths downstream (about

200cm for our experiment) [47].

The speed and positions of a large number of tracers in the rivers were determined
from the digitized data. Figure 4-4 shows a scatter plot of these speeds for the grid
speed U, = 20cm/sec. The average speed, &, is drawn as a heavy line through the point
constellation. These raw data have again been divided into 20cm wide bins. The number

of points in these bins N(u,X) can then be used to generate energy and speed distribution
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Figure 4-5 Evolution of river-flow speed distribution.
functions. The net translational motion is negligible for this flow as the fluid is confined

to the tank and the grid fills the tank’s cross-section.
Figure 4-5 shows the speed distribution N(u,X). Figure 4-6 shows the distribution of

(4 —1a)

local kinetic energy
1
E, = Em,uz,

which can be extracted from the measured data as follows: Each bin in Fig.4-4 can be
characterized by an average value for the speed, u,. In addition, one must assign a

value for the average mass m, = pla, associated with each streak, because each streak
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Figure 4-6 River-flow energy distribution.

represents a local patch, of area a,, of coherently moving fluid. Here [ is the depth of the
observed surface pattern. The value of the depth which is represented by the surface flow
will differ depending on distance from the grid. In particular, the depth will grow with
distance downstream, see section 5.1. In the analysis that follows £ should be considered
to be the very shallow depth of the fluid surface. Assuming that the streaks are evenly
distributed one can estimate the average area per streak, a,, by dividing the total river
area S, = ¢, S by the total number of streaks, N,, in the AX range. Then m = pla, was

determined at nine X positions and it was found that the average surface area represented
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by each streak varied by not more than 10%. The average value is a, = 7.1cm? so that

the kinetic energy represented by each streak becomes approximately (in cgs units)
E =1/2pla,u? = (7.1/2)plu?. (4-1b)

It should be mentioned that the seeding density was much higher than the value of
a, indicates as only a representative sampling of the river speed was performed. Not
knowing how far the motion extends into the fluid the energy per unit depth, E=E /1,

is defined. Another useful quantity associated with the river motion is the energy density
e = E,/m, = u?/2 (4 —1¢)

Here e, contributes to the total energy density of the flow with the fraction e,c,.

As mentioned in the introduction to this chapter it was of interest to see if the
energy distributions of the structure populations could be characterized in a Simple way.
Figure 4-6 shows the energy distributions in semilog plots. The high-energy tail of the
distribution can be represented by aﬁ exponential characterized by a parameter 8,. The
curve has a half-width A#,. In addition, the low-energy part of the distributions were
plotted in log fashion and it was found that logN grows approximately proportional to

logE,. The data are therefore approximated by
N(E,) = const Efexp(—E,/0) (4 — 2a)

where N{E,) is the number of structures per unit energy interval having energy E,. The
experimental curves all have a well defined maximum N,, at the abscissa E,, = E(Ny,).

The function (4-2a) has its maximum at E,, = af,, so that @ = E,,, /0, can be extracted
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from the measured position of the maximum. The experimental result from the river

energy curves is

a=08%0.1. (4 — 2b)

Equation (4-2a) is similar to the Maxwell-Boltzmann function used to describe the
energy distributions of many interacting systems. Examples are the excitation, radiation,
and kinetic energy in plasmas, as well as the kinetic energy of gases. Boltzmann functions
are equilibrium distributions ana so are only found if the interaction time scale of the
system'’s constituents is small compared to the system’s evolution time. In such cases a
temperature can be defined for each energy mode by 8, the slope of the graph of N(E)
at large E, or Af, the width of the distribution at half the peak energy. In a plasma, the
temperatures of electrons, heavy particles, and electronic excitation or vibration, often

differ. We may expect a similar difference between the eddy and river distributions.

In the equilibrium region of the river energy distribution we can interpret the param-
éter 0, as a river “temperature” that describes the spread in the river energy distribution.
Knowing the constant a, 8, determines the most probable energy state E,,(= af,). The
distribution functions, Fig.4-6(a), remain Boltzmann type from X=30 to X=130cm. The
river energy mode must therefore be in a form of equilibrium that is maintained by a
high interaction rate between the structures in the flow. Figure 4-7(a) shows the river
temperature 6,, the energy half-widths A#, t_md the energy E,, at the maximum of the
distribution N,, as a function of distance from the grid. The statistical uncertainty of

any 6 value is less than 10%. It is surprising how much order exists in the distribution

69
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of these open flow structures. It will be interesting to see whether there is a similar

equilibrium for the energies of the closed surface structures.

4.3 Eddy Distributions

The closed surface flow structures (surface eddies) are connected regions in which the
fluid elements appear to rotate about a common axis. An important feature of our flow
visualization analysis is the characterization of the internal flow of the eddies. Typically,
eight streaks per eddy were recorded. The average angular speed for each structure was
then calculated ar;d averaged for all eddies in a particular size and distance range as
follows. We simplify the tracer path information and define the angular displacement
o of a tracer as the angle which the two endpoints of the streak subtend with respect
to the estimated eddy center. The angular speed w is then found by dividing o by the
exposure time. This angular speed at radius R from the eddy center defines a tangential

speed Up = wR. A typical eddy velocity profile is shown in Fig.4-8(a).

We further simplify each eddy’s velocity structure by least squares fitting a rigid body
profile (the heavy line) to the internal speeds. An angular ﬁpeéd is thus assigned to each
structure. This crude simplification of the internal velocity Structure is performed in
order to have a simple characterization for used in the structure statistics analysis. More
realistic proﬁles would have a smooth variation in velocity at the structure boundary
such as shown in Fig.5-9. Figure 4-8(b) shows how these values are distributed for all
eddies in the radius range 1.4 < R < 1.5cm which are located in a bin (AX = 20cm)

centered at X=70cm. An average angular speed was assigned to this sample range as
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Figure 4-8 Surface eddy flow structure. (a) Velocity profile for an eddy at X = 71 cm.
(b) Velocity profiles for all 25 eddies at X = 70 £+ 10 cm. (c) Angular speed distribution

of surface eddies.
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indicated by the circled line. Figure 4-8(
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c) shows the angular speeds of all surface eddies

as a function of structure size R and downstream distance X. The general trend is of

linearly decreasing w with increasing R and generally decreasing @ with downstream

distance X. The variation in w for the extreme values of R is due to low sample number.
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Figure 4-9 Averaged peripheral speed of eddies.

Plotted in Fig.4-9 are the averaged velocities Up = R® at the edge of eddies of

radius R for the distances analyzed. For comparison the average river velocities are also

indicated. It is seen that the small eddies move slower at their edge than the rivers and
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some large eddies move faster. However, on average the edge speed Ug is close to the

river speed u,

Ur = Rj(f)j ~ Up. (4—3)

This result can be interpreted as showing that on average the angular speed is inversely
proportional to structure size. This expefimental observation indicates an effective cou-

pling exists between the eddies and the rivers.

The energy content of eddies can be described by three quantities: the total eddy
energy (extracted from our model of rigid body rotation and cylindrical eddies of small
depth ¢£)

E; = (1/2)Ia} = (1/4)mR}®? = (n/4)pl R} wf (erg) (4-4)
(where I is the moment of inertia and p is the density of the fluid), the surface eddy

energy per unit eddy depth
E; = (7r/4)pR; u'Jf (erg/em), (4-5)
and the eddy energy density, or specific energy

e; = Ej/m; = (1/4) R} @} (erg/g). (4-6)

All three are functions of the average angular speed @ that is known from the statistical
analysis. It would be preferable to consider the mean square angular speed w? for this
energy analysis as opposed to the square mean @? used here. In further study of the
" structure’s speed profile, section 5.4, it is found that these two quantities are proportional

to each other. Our use of @? will thus affect the magnitude of our inferred energy



CHAPTER 4 STRUCTURE STATISTICS 175

quantities by a constant factor and not undermine the analysis to follow. With the
experimental observation of eqn.(4-3) one can give these energies as a function of the
river speed u, =~ R;w;

2
U,

'Z"

g

€; E;= (n/4)pRIul. (4-17)

The total energy density of the turbulent motion is the sum of the river and the eddy
energies,

e=¢e + € =ce, + Z cje; = (1/2)ullc, + (1/2)c.), (4 — 8a)
J

where c; is the concentration of eddies of radius R;, namely
¢j = N(Rj)7R?/Sp,ce = ) ¢, (4 — 8b)
p

Equation 4-8(a) indicates that the rivers may contain a significant fraction of the total

kinetic energy of the surface motion.

The eddy size spectrum N(X,R) can be used to characterize the spatial stricture
of the rotating coherent motion. The measured data for the 20cm/sec ﬂo;;v are shown
in Fig.4-10. Comparing the distributions at various distances from the grid it is seen
that the center of the eddy distribution shifts to larger size as the turbulence decays.
The increase of the number of large structures stops after about six seconds (X = 110cm
downstream), when the eddy concentration has fallen below ¢, =~ 30%, and the population

becomes dominated by viscous (spontaneous) decay processes.

The eddy flow represents a reservoir of rotational kinetic energy, which may be de-

scribed by an energy density e, that is averaged over the total surface area. More inter-
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Figure 4-10 Eddy size distribution N(X, R).

esting at this time is to consider the eddies as individual entities that have the energy E
per unit length stored within the observed surface layer of the flow.

For any eddy of given radius and known angular speed @ one can calculate an energy
E. Since the eddy size distribution N(X,R) is also known one can determine the eddy
energy distribution N|E(R)]. Again, we are interested in the form of the curve N[E]
versus E as characterized by the energy width and the slope of the high energy tail. For
that purpose the distribution is plotted in semilog fashion in Fig.4-11(a). In the range

50cm < X < 110c¢m, the high energy tail is well approximated by a straight line. When
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Figure 4-11 Eddy energy distribution N(X, E). (a) Evolution with distance. (b) Curve-
fit for X=70cm using eqn.(4-9a). 6, = 2.8erg/cm o = 0.86
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plotting the lower energy part of the distribution in log-log fashion it was observed that
N (E’) rises approximately proportional to E“. The experimental data can therefore be

represented by

N(E) = constE®ezp(-E/8,) (4 — 9a)

where N (E’) is the number of structures per unit energy interval having the energy E.
This energy distribution is again similar to a Boltzmann function. It is an indication
that frequent interactions are coupling the eddy energies. Figure 4-11(b) shows the curve

fit plotted over the single distance of X = 70cm.

Just as for the rivers, the position of the distribution’s maximum has been measured

in order to determine the exponent a(= E,/6.) with the result
a=09=%.1. (4 —99)

The river and eddy energy distribution’s values for a, eqns.(4-2) and (4-9) are seen to be

similar in value.

The slope of the tail of the distribution is characterized by the parameter 6., which
may be called the “eddy temperature”. The energy half-width Af. and the eddy tem-
perature 8, have been measured in the equilibrium range for various distances X. They
are shown together with E,, in Fig.4-6(b). The number of eddies in the decay range
X > 120cm is too small to assign meaningful values to these statistical parameters. It is
interesting to see that the eddy and river temperatures initially have the same magnitude

and decay at about the same rate.
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We investigated whether the eddy energy density could be obtained as the product
of eddy number and eddy temperature multiplied by some suitable constant and found

that the data in the equilibrium range could be approximated by the relation
ec= KO,N./S. = Kn,b., (4 -10)

where the numerical constant has the value K =~ 0.65. The empirical relation (4-10) is
analogous to the standard relation for the internal energy (e = const x NKT, where K

is the Boltzmann constant) of a system of particles in thermal equilibrium.

We have shown that the surface flow structures on grid-generated turbulence can be
identified and described by simple parameters. Furthermore, we have found that the
distributions of these structure properties follow meaningful trends as the flow evolves.
Also, to good approximation the distributions themselves may be characterized by simple

parameters.

Before going on to discuss the structure dynamics it will be of interest to analyze the
evolution of the structure statistics in terms of the rate equation model presented in the

second chapter.

4.4 Energy Decay of the Surface Flow

The velocity fields of eddies and rivers were recorded as a function of distance X from
the grid, and from these data we derived the size, angular speed and energy distributions.
The distance from the grid may alternately be considered as a measure of the age of the

turbulent motion, namely the time since the grid has passed the lab frame position
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t = X/U,. Thus, study of the structure statistics as a function of distance allows one
to investigate some aspects of structure dynamics. The total energy density and the
partial values for the eddy and the river modes are given in Fig.4-12. The observation
period has been divided into the production, the equilibrium, and the decay range. In
the equilibrium range there is strong coupling between and within the two modes. Eddies
and rivers have about the same temperature as shown in Figs.4-7, and the eddy edge
speed Ug is about equal to the average river speed u,. It is noted, however, that the
energy density of the two structure types decay at different rates. The energy losses occur

more readily in the rotational (eddy) motion than in the translational (river) motion.

The eddy-eddy interaction should contribute most significantly to the evolution of
the initial distribution, as frequent occurrence of such events requires a high number
density. The time variation of the distributions allow one to estimate whether eddy-eddy
interactions are important. For this purpose we write a rate equation for the change of
numbers of eddies N of some radius R where the A, B, and C coefficients are in general

dependent on the particular eddy radius and flow environment.

‘—’l‘EItX=(,‘1+1':‘)N+CN2 (4 - 11)

The rate coefficients A, B, and C quantify the evolution of the population of structures
due to interactions with the fluid (frictional decay), with the fluid flow surrounding the
eddies (pumping and tearing) and with other eddies (collisions) respectively. Equation
(4-11) is a simplification of the more detailed rate equation (2-35) where each of the
terms on the right-hand side is replaced by a sﬁmmation of contributions to a particular

eddy size’s population change from all other eddies in the distribution. Equation (4-11)
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contains only the dominant terms that are of interest here. The A and B coefficients are

local to the distribution so eqn.(4-11) is a first order model for the sum of these rates.

For our smoothly varying distribution adjacent structure numbers are nearly equal. The

coefficient C as written here is a gross simplification of the pairing process which would

involve interaction between structures of smaller size. The value found here should only

be taken as an indicator of the influence of collisional processes (i.e. non-local within the

distribution). At this point, it is not necessary to have any detailed knowledge of the

rate coefficients. However, a quadratic term (coefficient C # 0) must be present if the
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eddy concentration has any influence on the interaction dynamics. Here C is obtained
from a numerical evaluation of the size spectrum decay. For that purpose eqn.(4-11) and

the differentials are replaced by differences

1 AN .
Y:——: . —_
~ Ay = (A+B)+CN (4-12)

The left-hand side of eqn.(4-12) contains numbers that can be obtained from the data
by slicing through the N(R,t) distributions in the time direction, see Fig.4-13. When Y
is plotted as a function of N a straight line should result. The slope of this line is C and

the intercept gives the sum of A and B.

To demonstrate this approach an analysis was carried out for eddies of radius R=l.4cm;
and the results are shown in Fig.4-14. For R=1.4cm the linear least squares fit has the
intercept A+ B = —0.70sec™ 1,0 = 0.55sec™1, and the slope C = +4.6 x 10 3sec™!,0 =
6.3 x 10 3sec™!. A model estimate of the rate coefficient A will be presented in chapter
five. The line intersects the N axis at N=152. Here C is positive, implying the collisional
processes of two or more structures combining will increase the number of eddies of ra-
dius R=1.4cm. For large N the production of this size eddy by mergiﬁg of smaller ones
would tend to compensate for the two loss mechanisms. For small N one would expect
a rapid decay of eddies of this radius. This agrees with observation. Similar results were

obtained for data taken at other structure sizes.

The statistical properties of the eddies and rivers arise from the interaction of the
structures with their surroundings. The next step is to see if the dynamics of these
structures can be identified and quantified and then used in the rate equation model to

predict the observed statistics.
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Figure 4-14 Graphical determination of rate coefficients. Y = (1/N)(AN/At).
Experimental N values for R = 1.4cm are taken for time intervals in the range
1.5 < t < 9.5 sec and averaged with adjacent values.
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CHAPTER 5
STRUCTURE DYNAMICS

A crucial question for the rate equation approach is whether the dynamics of in-
dividual structures can be characterized and categorized. The present chapter reports
an experimental examination of the dynamics of the rotating flow-structures found on
grid-generated turbulence. In this chapter the river-flow is treated as belonging to the
background fluid flow in which the eddies evolve. The river-flow will predominantly
evolve through viscous decay although it is possible that eddies could be produced by an
inverse omega decay process. The analysis tools developed for this study have already
been presented in chapter 3. The first section examines the near surface fluid dynamics
in order to provide a more in-depth understanding of the observed surface motion. This
is followed by a survey of the way the structures are observed to interact. Section three
describes j,he initial vortex production and presents a simple kinematic model which pre-
dicts the initial structure population. A model for the viscous decay rate is given next
and is compared with experimental results from the grid-flow. Observations of the omega
decay and eddy pairing and tearing are then presented. The chapter ends by discussing

the prediction of statistics from the observed dynamics.



CHAPTER 5 STRUCTURE DYNAMICS

5.1 Near Surface Fluid Dynamics
The surface structures studied in this thesis are considered to be the “footprints™*
of more exotic creatures residing in the bddy of the fluid. It is therefore instructive to
investigate the dynamics of the bulk and near-surface motion. Contaminated surfaces are
known to have viscosities orders of magnitude higher than clean ones which in turn have
a viscosity much higher than the same fluid in bulk {48]. While not completely clean, the
surface flows studied in this thesis showed little effects of contamination; The elasticity
of the film of surface contamination will suppress vertical displacement and make the

surface act something like a rigid wall in relation to the subsurface flow.

The theory of homogeneous turbulence impinging upon a rigid wall has been exam-
ined by Hunt and Graham [49]. They found a growing viscous boundary layer adjacent
to the wall and a larger inviscid “source layer”, see Fig.5-1. In the source layer the
isotropic bulk flow reorients to eliminate vertical motions. The viscous boundary .layer
has a thickness 6, ~ 4(vX/U,)'/? (~ 0.5¢m for U, = 20cm/sec at X=30cm). The larger
inviscid source layer has a thickness 6, ~ L;o0, Where Lo is the streamwise integral
length scale in the bulk of the flow, see sectién 3.4. In reference [30], Lo, was found to
stéadily increase from a value of 1.3cm at X=30cm for U, = 20cm/sec. At the edge of the
viscous surface layer (z = 0) the kinetic energy of the turbulent motion (vZ, + '—’30) is the
same as -in the bulk of the fluid where it is equal to (v, + vZ,, + V%), but the velocity
component normal to the surface has vanished (v,o = 0). The energy in this component
has been partitioned (equally for an isqtropic bulk flow) to the streamwise vz and lateral

vyo motions. A similar phenomenon is observed in stratified flow in the laboratory (50,

* As aptly described by A. K. M. F. Hussain (private communication).
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Figure 5-1 Near surface boundary layers.

51}, the ocean, in magnetohydrodynamics [52] and the atmosphere [53] where layers of

constant density lock the turbulent flow into quasi-two-dimensional motion. One may.

think of a surface flow as a highly stratified fluid layer. It is also interesting to note that
a strong analogy exists between rotating and stratified unsteady flows [54] so that the
results reported here should be pertinent to geostrophic turbulence. Indeed a striking
similarity is seen between the flow fields on grid-generated turbulence and that observed

within a rapidly rotating volume of fluid, see the photos of Mory and Hopfinger [40).
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That we may expect results similar to those predicted by Hunt and Graham is sup-
ported by the experimental observation by Brumley [55] of the reorienting “source” region
for vertically oscillating grid-generated turbulence impinging upon a shear free surface
of water. Brumley also found evidence of the viscous boundary layer indicating (to him)

that his fluid surface may not have been perfectly cleaned.

A comparison of experimentally determined surface and bulk integral length scales,
L, and L. respectively, is reported in [30] for the present apparatus and a 40cm/sec
grid speed. The power spectral density, E11(f) of eqn.(3-3), was obtained through Fourier
analysis of velocity records measured with a hot-film anemometer. The integral length
scale of the bulk flow, L., was then calculated from an extrapolated value for E;;(0)
using eqn.(3-9). The surface length scale L., was calculated in a similar manner from
velocity records of surface flow genefated by computer using the observed structure statis-
tics N(X,R) and @(X, R). An alternate method of directly averaging the mean eddy chord
over the N (R) distribution was found to give a nearly identical length scale value. Near
the grid the magnitudes of these length scale measures were equal within the experimen-
tal uncertainties. As the flow evolved, the bulk motion length scale L., increased more
rapidly than L_,.

In the same report, the relationship between the longitudinal component of the tur-
bulent kinetic energy for the surface and bulk motions were compared for a 40cm/sec grid
speed. The energy decay curves were surprisingly similar in shape with the bulk motion
being consistently 20 times more energetic than the corresponding surface eddy energy

density. This factor will depend on the isotropy of the actual structure orientation, the
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eddy-river energy ratio and the degree of contamination of the fluid surface. The influ-
ence of surface contaminant induced viscosity on the surface motion was examined. It
was found that motion on a contaminated surface was initially less vigorous, decayed
more quickly and grew in size scale more rapidly than the flow of a freshly skimmed

surface.

A direct comparison between the surface and subsurface coherent structure properties
is not possible as subsurface structures have yet to be studied for this flow. However,
some qualitative subsurface flow visualization was accomplished using a sheet lighting
technique. The results showed two-dimensional flow immediately behind the grid and
just beneath the surface, see Figs.5-2. Figure 5-2a is a flow photo of the motion in a
2cm wide sheet parallel to and 3cm beneath the fluid surface. The image of the moving
grid can be seen at the top. The predominantly two-dimensional structures immediately
behind the grid soon appear disorganized. This indicates that a large fraction of the
motion is occurring normal to the sheet of light. The flow is becoming isotropic. Fig.5-
2b shows the motion in a few centimeter wide sheet of light parallel to the side walls of
the tank. In most of the photo as much motion appears to be occurring in the vertical
as in the horizontal direction. Predominantly horizontal motion can be seen very near
the surface and perhaps at the very left side of the light sheet were the grid has just
disappeared. The bulk of the flow is chaotic and three-dimensional and not amenable
to our present two-dimensional visualization and coherent structure analysis mgthods.
Similarity between power spectra of longitudinal velocity fluctuations generated from the
surface structure statistics and those measured with a hot-film anemometer [30] suggest

a similar velocity structure over large scales may exist. Also, the close agreement in
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| water
surface

Figure 5-2 Bulk motion of turbulent grid-flow. Sheet lighting: (a) parallel to and
3cm beneath the surface, (interpretation shown alongside photo) (b) parallel to side
walls.



CHAPTER 5 STRUCTURE DYNAMICS 90

the length scéles indicates that a similar size distribution may be found. The bulk flow
structures are three-dimensional in nature, have a more complex internal flow structure,
and will interact with their environment in the additional manner of energy pumping
through vortex stretching. It is reasonable to expect that the more complex subsurface

flow will evolve through some of the processes found in the surface flow.

As a final point it should be noted that implicit to the entire flow visualization analysis
has been the assumption that the motion of the tracer particles accurately represents the
motion of the underlying fluid. The difference between the tracer and fluid motion
was calculated following Zalutskii [56] and found to be less than 1% for the ~ 0.4mm
aluminum filings used. The difference in radius of curvature was similarly determined
to be less than 1% for the flow conditions generated. These calculations apply to the
interior of thé fluid. We expect even closer coupling between the filings and the surface

motion due to the action of surface tension and surface viscosity.

5.2 Structure Evolution

Figure 5-3 shows a classification scheme of the eddy decay dynamics observed in
time-exposed photographs and video sequences of the surface flow on grid-generated
turbulence. Five distinct types of evolution processes were distinguished. These were
the initial vortex production, eddy tearing, eddy pairing, viscous decay and the omega
decay. The initial vortex production is described in section 5.3. Eddy tearing is a very
rare occurrence in this grid-flow and was only observed once amongst the many structure

evolutions followed. That instance occurred a few mesh widths from the grid in the initial
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production region where the shear stresses are highest. A simple model for this process
has been proposed [1] and a rate coefficient determined. This process will be significant
for flows with high velocity gradients over areas large compared with the structure size

but is not a significant factor in the dynamics of grid-generated turbulence.

Eddy pairing is a frequently observed collisional process which is the dominant mech-
anism by which structure size is increased in the equilibrium region of the flow. Figure
5-4 shows a sequence of flow photos depicting the amalgamation of a number of struc-
tures. Eddy pairing is a well known phenomenon in which like-signed vortices combine to
form a single larger structure. This author first observed structure pairing as the growth

of a separated peak in the size spectra. Figure 5-5 depicts this evolution.

In grid-generated flow, structures of like rotation sense are occasionally brought to-
gether through the action of the surrounding flow. A stagnation zone of high pressure
will appear in the high stress contact patch, see Fig.5-5. Gradually more and more of
the flow from each structure is redirected around both structures. When all the flow
has been redirected the original structures have ceased to exist, leaving in their place a
single eddy with somewhat less energy than that of the two parent structures combined.

Similar local dynamics are responsible for the omega decay discussed in section 5.5.

The ultimate fate of all the fluid motion is viscous decay to a quiescent state. The
flow becomes viscous dominated at small scales and in the final period. Section 5.4

discusses the viscous decay of the structures in the near grid region.
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Figure 5-3 Structure evolution types.
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Figure 5-4 Eddy amalgamation. (seen in center of photo series) (a) ¢t = 3 sec, (b) t = 6
sec, and (c) t = 9 sec.
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Figure 5-5 Eddy pairing.

5.3 Initial Vortex Production

The flow field becomes amenable to the photographic analysis method at about X =
30cm (X' ~ 6) when the structures are fully formed and relatively stationary in the tank
frame of reference. In order to study the initial vortex production the flow was recorded
on a 30 frame per second (fps) video cassette recorder. A qualitative analysis of the
video sequence was then performed in order to obtain a description of the production
dynamics. The computer-automated coherent structure identification system described
in the third chapter of this thesis was then used to extract quantitative information.
The same flow conditions were used as for the structure statistics studies, namely: a 4:1

cylinder spacing to diameter ratio grid moving with a Reynolds number based on bar

separation of | 20,000.

At this grid speed of U; = 20cm/sec the inital vortex production did not resemble

isolated von Karman vortex streets of individual rods as might be expected; the major
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Figure 5-6 von Kirman vortex street. Flow photo from F. Ahlborn ~ 1905.

difference being the much more rapid growth in size of the vortices. The alternate
shedding of vortices from cylinders, see Fig.5-6, over a wide range of Reynolds numbers

has been known for many decades and was first examined by von Kérmén in 1911 [2].

Figure 5-7 depicts the formation dynamics determined by observing 13 sets of video
sequences of the flow between adjacent bars. Figure 5-8(a) shows a superposition of 20
frames of raw digitized data taken with the grid bars leaving the left hand side of the first
frame. Figure 5-8(b) shows the same “time exposure” but with the shed vortices traced

in by hand. This figure closely resembles the idealized flow of Fig.5-7. The picture of the
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Figure 5-7 Initial vortex formation.

formation dynamics is as follows: The vortices have their origin in the vortex shedding
region at individual cylinders and their production rate is found to be equal to that
of an isolated cylinder of diameter d. The shedding frequency f is determined by the
non-dimensional Strouhal number

§==—. 5-1
l U, ( )

The Strouhal number is well known [16] to be equal to 0.2 for circular cylinders over a wide

range of Reynolds numbers, including the present value of Re=2,500 based on cylinder

diameter. A curious additional feature is that the formation dynamics appear to be n
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(a)

(b)

Figure 5-8 Near grid video “time” exposure. (a) Raw digitized data, (b) Identification
superimposed
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radians out of phase immediately behind adjacent bars. The vortices rapidly (within~
1-2 M) grow to fill in the region between the momentum defect “shadows” of the grid
bars and simultaneously shift to the tandem arrangement shown in the downstream end
of Fig.5-7.

From these observations a simple kinematic model was advanced in a recent pub-
lication [6]. It was observed that in the resulting wavy configuration the vortices (or
eddies) are nested in a manner which reduées the overall strain in the fluid. The re-
sulting flow pattern exhibits phase locking between adjacent vortex streets. Alternate
eddies rotate in opposite directions so that points of common tangents experience little
shear stress. Also, their diameter is slightly smaller than the free space between the
rods: R < (M —vd)/2 = 1.9cm, where M is the mesh width and d is the bar diameter.
The eddies are slightly offset to the side where their edge velocity is parallel to the flow
in the momentum defect region, leaving a stagnant region to separate flows of opposing
direction (the shaded areés of Fig.5-7). The resulting initial eddy size at X' ~ 2M is
in reasonable agreement with the observed population peak of 1.6cm radius. The initial
concentration would be

C, = (TR*/M2R) = 0.59, (5-2)
which is consistent with the measured values shown in Fig. 4-3a.

Assuming these structures rotate in a strain free manner with edge velocity equal to
that of the adjacent moment defect region (U, = 5¢m/sec from observation), the initial

X

internal energy of the surface eddies will be approximately

E, = (7/4)pR?U? = 70(erg/cm) (5—3)
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and the energy density becomes e, =~ 6erg/g as indicated in Fig.4-12. The above scenario
was the most predominant evolution observed. On occasion however, the vortices were
observed to suddenly reorganized into a different geometry. A ]ikely reason is that the flow
field cannot simultaneously satisfy the constraints of the structure production rate, grid
speed and preferred structure size. The relationship between these effects was studied

using the computer-automated analysis system described in chapter three.

The system was used to study the properties of the structures when they were first
identifiable. Typically 3 or 4 complete structures were found within the viewing area of
11.3 x 8.5¢m (2.3 x 1.7M). For each run, about 3-4 seconds of the video recording was

digitized and analyzed. This corresponds to a distance of X’ = 12 — 16 mesh widths.

Part of the power of the automated system is that it extracts instantaneous informa-
tion about the velocity field from the polynomial fits to the tracer paths. The system thus
allows for the study of rapidly evolving flows which enables us to examine the prod_gction
regime, something that we cannot do with the photographic flow visualization. Typically,
the system was able to recognize structures starting from 6 video frames (¢ = 6/30sec)
after the grid passed out of the field of view. This corresponds to 0.8M from the moving

grid. The image dimension in the direction of the moving grid is 11.4cm (2.3M).

From contour plots of the recognized structures we can calculate the initial structure
production rate. Referring back to Fig.5-7, the number of structures with a given rotation
sense, produced per unit time by an individual rod is equal to the vortex shedding

frequency

f=Uy/A (5—4)
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This frequency was determined from a number of contour plots of recognized struc-

tures. Cast into its non-dimensional form using eqn.(5-1) the experimental result was
S = 0.20  0.01, (5 — 5)

which agrees well with the Strouhal number for isolated circular cylinders under the
same flow conditions. A prediction of the angle between edge adjacent eddy centers in
the fully formed wavy region may be obtained. Again, referring to Fig.5-7 we observe
the geomet;ric relation between the angle ¢, eddy radius R and longitudinal separation
A,

% = 2Rcos¢. (5—6)

As the structures are stationary in the tank frame of reference A can be used to determine
the shedding frequency (the rate at which like signed vortices are produced) using eqn.(5-

4) to get
Uy U,

A 4Rcos¢’

/= (5-7)

If we assume that the resultant structures grow to completely fill the region between the

momentum defect shadows we have
R=(M-4d)/2 (5-8)

which may be used in eqn.(5-7) to get

Uy

/= 2(M — d)cos¢’

(5-9)
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If we now assume that the initial eddy creation is determined by the dynamics of the
individual cylinder vortex shedding we have S = 0.2 and using eqn.(5-1) for the Strouhal

number we find

_fd_ d
5= U, 2(M - d)cos¢ (5 -10)

Calling n = M/d, the cylinder spacing to diameter ratio, and rewriting the above equation

to form a prediction for ¢ we have

1
¢ = Arccos (m) = 340 (5 - 11)

upon inserting the values n = 4 and S = 0.2. This equation describes a relationship
between the mesh ratio 5, the Strouhal number S, and the angle preferred by adjacent
eddies. The angle ¢ was measured from the plots of identified structures in the thesis of
Lau [38] and reported to be

¢ =3314° (5 —12)

for well formed structures. The result is in good agreement with the proposed model.
Further experimental testing of eqn.(5-11) and the proposed model by varying n would be
worthwhile. It should be mentioned that eqn.(5-11) implies a compression of the vortex
street in order to accomodate all new vortices produced between two bars. For a finite
span grid competition for space must occasionally destroy the orderliness of this locally

preferred pattern.

In the same experimental series the eddy diameters D were also measured. By

choosing well recognized structures at the initial times (¢t < 12/30sec or X' < 1.6M),
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it was found that the average initial diameter (calculated from the area by circular

approximation) of the structure was
D=08+01M (5 —13)

Using the assumption that the structures grow to fill the space between the “shadows”

of the cylinders, eqn.(5-8), to determine D we have
1
D=2R=(M—d)=(1—;)M=O.75M, (5 —14)

in good agreement with the measured result above.

As a final study of the initial vortex production the initial boundary speed of the
structures was determined. This was done by comparing the mean velocity of the rec-
ognized structure with that of an idealized rigidly rotating one. The mean speed in the
ideal structure is %Um where U,, is its boundary speed. Therefore, the boundary speed

of the structure can be estimated as
3.
Un = EU (5—15)

where U’ denotes the measured average speed within the structure. Similar considera-
tions on root mean squared speed also provides an estimate of U,,. Moreover, the speed
can be calculated from either the grid of tangential speed or from the grid of velocity
components. These four different estimates of U,, turned out to be in agreement with

each other and it was found that

U, = (0.28 £ 0.08)U,, (5 — 16)
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a value of U,, = 5.6 £ 1.6¢cm/sec for our 20cm/sec grid speed. This value is in good
agreement with the observed momentum defect velocity of U, = 5em/sec, thus support-
.ing the no slip assumption used to obtain eqn.(5-3). As a final point it should be noted
that a consistent difference was found between the mean square and square mean angular
velocity averagings. This was interpreted as evidence of departure from the ideal rigidly

rotating eddies. More will be said about these results in the next section.

5.4 Spontaneous Decay

The simplest decay archetype that can be characterized is the viscous decay of an
isolated rotating structure. In the introductory paper “A model for turbulence based on
rate equations” [1] a simple model was presented for the spontaneous decay rate. The

derivation is reproduced here.

A cylindrical eddy of length £, radius R and angular velocity w contains at a given

time the total energy

1
E = -Iu? (5-17)

2
where I = 1mR? = 7plR* is its moment of inertia. If R remains approximately
constant the energy will be lost at the rate ‘fi—f = wplRAww, where W is a negative

quantity.
A typical time 7, for the energy loss is used to define the energy decay rate A = 1/7,.

The energy loss from the assumed rigid body structure is due to the frictional drag acting

on its surface

Fy, = (area)pu% ~ 27r£Rpuu(6R) (5—18)
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giving a dissipation power Fy, u(R). Here 1%3) is the difference between the eddy pe-
ripheral velocity and the stagnant surroundings divided by the width § over which this
velocity change occurs. The width é of the boundary layer in which this dissipation
occurs steadily increases. The boundary layer growth rate is similar to the Rayleigh
problem of an inﬁnite flat plate starting suddenly from rest. There § = 4/, so that

the dissipation power can be written as
F; U(R) = 27pvR%w?/(4V1). (5 — 19)

This power dissipation must be equal to the power loss of the rotating structure. This

leads to

% Vila = viR. (5 - 20)

This relation can be integrated to yield the instantaneous angular velocity
w = woezp(—2Vvt/R) (5 —21)
and the eddy energy becomes
E = const w? = E.ezp(—4vvt/R). (5 —22)

A significant amount of the eddy energy will be dissipated during the e-folding time 7,

defined by eqn.(5-22), namely

7, = R?/16v. (5 — 23)

The energy decay rate is hence

A=1/1,=16v/R2. (5 — 24)
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This result shows that smaller structures have a higher frictional decay rate. The
interaction with the fluid (the spontaneous decay) therefore dominates the low end of
the eddy size distribution, while large structures suffer relatively little energy loss due to

frictional decay.

The above crude model motivated a more extensive study of the viscous decay of
two-dimensional axisymmetric flow structures [57]. The computer model was an attempt
to obtain rate coefficients from more physical velocity profiles than a rigid body. The
Navier-Stokes equations in cylindrical coordinates were used as a starting point. For
v = évg(r,t) only (é being the unit polar vector) and (7p)¢ = O by symmetry, the

Navier-Stokes equations reduce to

(5 — 25)

% U 6( a‘vo azvg la‘vg
3t  rar or? r or

since (v - )V = O for v = vg(r,t). Equation (5-25) is the simple diffusion equation for
fluid momentum. A discrete version of this equation was used to compute the evolution

of a given velocity profile vg(r).

At the end of the specified evolution time, plots were made of the eddy kinetic energy,
boundary layer thickness, boundary layer to core energy ratio, and the rate coefficient, all
" as functions of time. The total eddy kinetic energy per unit mass was found by summing
up the contributions from thé discrete radii. The evolution of this energy was then used

to determine the rate coefficient

A(E) = -=22 (5 — 26)
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Figure 5-9 Evolution of velocity profile. Computer modelled profiles at two different

Figure 5-9 shows the evolution of the velocity profile between two times.

The rate coefficient curves show that A depends on time. However, if one allows
the originally unrealistic velocity profile to evolve to a more physically meaningful state,
a relatively constant decay rate is found. Figure 5-10 shows how this A value varies
with 1/R2. The range bars for the A values reflect the weak time dependence over the
10 sec evolution interval in which the stable value was determined. An estimated line
through the bars yielded A ~ 8/R2? (6 =~ 4.2(5) x 10™2¢m?2/sec). Dimensionally one

must have A « v/R? implying that A ~ 4v/R? as v was taken as 1.0 x 10~ 2em?/sec in
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the computer modelling. The difference between the constant above and the value of 16

in eqn.(5-24) being the arbitrary choice of the e-folding time to characterize the decay

rate.
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Figure 5-10 Variation of rate coefficient A with structure size. Computer modelled.

The video-computer analysis system was used to study, experimentally, the decay of
stable surface structures in the initial period of the grid low. Due to the low resolution
of the present hardware the analysis system is inaccurate in determining the location

- of the structure outline, and hence the radius. The structure recognition plots were
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thus overlayed on the streak data to judge whether the boundary region has sufficient
information density for accurate size determination. A visual check was also made to
ensure a steady viscous decay was the dominant influence on the structure. Thus, only
well defined structures which underwent a steady decay, free from interference from other

structures, were chosen for this analysis.

— 15 crn/sEC

— 20 cm/seC

20cm/sec ©

-054 -2 slope

Figure 5-11 Proportionality constant determination for A = 8/R2.

Figure 5-11 shows a log-log plot of the decay rate against the eddy size R. The plot

shows a good power law relationship with an exponent of -2 as predicted by eqn.(5-24).
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However, the proportionality constant changes between different runs. For the left-most
curve the value for v, assuming 8 = 16v from eqn.(5-24), was 0.10 + 0.05cm?/sec.
This is an order of magnitude higher than the established bulk viscosity of water of
0.01cm?/sec. It was also found that the calculated viscosity values increased during the
course of the day long experimentation. This was interpreted as the effect of increasing
surface contamination. The order of magnitude difference has already been discussed in
section 5.1 on surface fluid mechanics. With this v value and the R = 1.4¢m structure
size of section 4.4 a rate coefficient for the spontaneous decay may be obtained from
eqn.(5-24), A = —1.6sec™ . This value is of the same order of magnitude as the value
A+ B = —0.7sec™',0 = 0.55sec”! obtained from the structure statistics analysis of
chapter four. A decay value obtained from a more thorough study of the statistics

evolution would allow for a more conclusive comparison.

Before going on to discuss other decay types some observations on the eddy’s internal
velocity profile are in order. In the course of testing the self consistency of the analysis
system it was noted that kinetic energies determined by a rigid body fit to the angular

velocity defined as

1
w'= % Y ve/IR- Roml (5 —27)

structure

were consistently larger than what was directly determined for the recognized structures
from the interpolated velocity grid. The rotational energy of the structure is calculated
as

2 (5 — 28)
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Figure 5-12 Relation between rotational energy and total energy. Non-unity propor-
tionality indicates systematic deviation from w = const profile.

Figure 5-12 shows a plot of this energy against the kinetic energy calculated directly from
the velocity grid (E;) for all the recognized structures. A consistent deviation between

the average squared data in the form of E, and the square averaged data of E;,
E, = (144 £ .17) x E, (5 — 29)

was found. This indicates the actual profiles were a consistent deviation, or members of

a family of deviants, from the assumed rigid body profile.
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(a)

2 2
RW-

0

key : = = = ideal profile without mixing

——=possible profile with mixing
Ey by definition

‘ — . —=rigid body profile
| E, by w72

(b)

Figure 5-13 Internal flow structure. (a) Angular velocity profiles. (b) Corresponding

velocity profiles.
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Considering eqn.(5-29) we realize that for the deviation from a rigid body profile to
produce a larger square average than average square the angular velocity profile must
be skewed with lower w at larger radius as shown in Fig.5-13a. This is consistent with
both our understanding of what viscosity will do to the profile and direct observation
of angular velocity plots. Unfortunately, at the present time, the data density available
ffom our analysis hardware is too low to merit a quantitative study of an individual

structure’s internal velocity profile.

5.5 The Omega Decay

The omega decay was first observed in the time exposed flow photos such as Figs.4-
1. These short lived structures comprise about one in twenty of the flow structures in
the equilibrium and decay flow regions. Figure 5-14 shows the omega decay dynamics.
The process is similar to that of eddy pairing described in section 5.2 except one of
the structures is infinitely large. In the present analysis the river motion is considered
to be part of the background flow environment. The omega decay is thus a type of

structure-fluid interaction and so would be characterized by a B coefficient.

In the course of a study of staggered cylinder flow dynamics a method was found to
produce, predictably, a flow situation which resulted in the omega decay. Its structure
is similar to that shown in Fig.5-7 of the initial vortex production. In this instance
however the structures are pulled into the oppositely moving momentum defect “river”
by the elastic nature of the fluid being pulled by the cylinder and dragged through the

surrounding fluid. Figures 5-15 show surface and subsurface time exposed flow photos of
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Figure 5-14 The omega decay dynamics.

this flow for an object speed of 20cm/sec. An omega decay structure can be seen very
near (~ 1M) to the two cylinders’ starting position in Fig.5-15a. The photo does not
show the phenomenon as clearly as can be observed by stepping through the video frames.
In the time exposure the rapid structure evolution and non-negligible drift velocity tend

to smear out the flow features.

Figure 5-15b is taken with a 3.5cm wide sheet of light parallel to the water surface

at a depth of 14cm. The pattern is similar to the surface photo in structure and velocity.
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omega decay

Figure 5-15 Time-exposed flow photo of two-cylinder flow. (a) surface flow showing

omega decay (b) sheet-lighting (20cm depth) parallel to surface showing predominantly
2-D flow.
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However, evidence of three dimensional motion is visible in the form of irregular tracer

paths.

An attempt was made to use the computer-automated analysis system to study the
omega decay in this flow. That attempt was unsuccessful due to the resolution limits and
lack of compensation for structure drift in the present analysis system. A more powerful

analysis system needs to be developed in order to study the omega decay.

5.6 Statistics from Dynamics

An initial vortex prodﬁction model] has been presented which agrees with the exper-
imentally determined structure population. Also, a simple model has been proposed for
the spontaneous decay rate A. It was also found to agree with experimental observation.
The remaining structure dynamics of eddy pairing and the omega decay have been ex-
amined but as yet no model has been developed for these processes. The real test of the
rate equation approach would be to use rate coefficients to predict the size, angular speed
and energy distributions measured in the last chapter. This would proceed by using the
rate equation, (2-35), on the initial distribution determined by the vortex production of
section 5.3. Such a comparison would be a powerful test of the rate equation approach
to describing the evolution of the ensemble of coherent flow structures in turbulent fluid
flow. The development of such a powerful predictive tool for turbulent flows should be

the primary objective of any research arising from this thesis work.
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CHAPTER 6
CONCLUSION

“ It was on a dreary night of November that I beheld the accomplishment
of my toils.”
in Frankenstein by Mary Shelly (1818)

This thesis has examined the validity and viability of a model for turbulence based
on rate equations by studying the statistics and dynamics of coherent structures on
grid-generated turbulence. The experimental study focussed on the surface motion of
grid-flow produced in a towing tank. For the structure statistics investigation surface
flow patterns were recorded as time-exposed photographs of tracer paths following the
motion of the fluid. The flow patterns were manually analyzed to determine the size and
velocity structure of the surface eddies. Structure dynamics were investigated using a
computer-automated structure identification and flow field analysis package. This system
analyzed video recordings of the tracer motion. Results from hot-film anemometry and

subsurface flow visualization were used to compare the surface and subsurface flows.
The flow photos revealed a profusion of coherent surface structures that either rotate

(surface eddies), translate (river flow), or are relatively stagnant. The size and angular

velocities of the surface eddies were determined and used to calculate the eddy energy dis-

tribution. Kinetic energy distributions of the river motion were also determined. When
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fitting empirical formulas to these distributions, equations similar to a Boltzmann energy
distribution for a system of particles in thermal equilibrium were found. This result has
two consequences: first, it implies that “collisional” interactions must dominate, and
second, it is possible to characterize an energy distribution by a temperature parameter.
Eddy and river “temperatures” were determined and it was found that 8, and 6, are
about the same in the equilibrium region. These temperatures slowly decay and the
distributions remain Boltzmann-like throughout the equilibrium region. As well, inter-
action and decay rates of the surface eddies were extracted from the evolution of the size
spectrum N (R, X). The surface flow is predominantly two dimensional and no source or
sinks of fluid were observed to penetrate the material surface. This is in sharp contrast

to the subsurface motion which rapidly becomes three dimensional.

Study of video sequences of the near-grid flow led to a model for the initial vortex
production. The model assumes that the structures are produced at the Strouhal fre-
quency of the individual cylinders but are constrained in size and spatial orientatibn by
the mesh-width. The model predicts values for structure size, initial population density
and angle between adjacent structure centers, all in good agreement with observation.
Further experimental study of this model using different grid speeds and mesh-width to
bar-diameter ratios would be both worthwhile and possible using the existing analysis
system.

In the rate equation model the change of the eddy distribution is attributed to three
distinct interactions that are characterized by rate coefficients A, B and C. Structure
interaction with the surrounding fluid is termed viscous or spontaneous decay and is

quantified by the rate coefficient A. Interaction with the fluid flow is quantified by rate
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coefficient B. Structures may gain energy from the flow environment as in the init_iai‘ o
vortex production region of the grid-flow or lose energy to the river-flow as in the omega
decay. They may also be torn apart in sufﬁciently high strain-fields. The process of
vortex stretching is not found in our two-dimensional surface flow. ‘Finally, structures

may interact with other structures as seen in the eddy pairing prdcess (C coefficient).

Study of video recordings of the surface motion showed the dominant evolution pro-
cesses to be viscous dissipation, eddy pairing and the omega decay. Relatively few eddy
splitting events were found. Analysis of the viscous decay of steadily evolving structures
was presented. These results were compared with computer and analytic models of iso-
lated vortex evolution. Agreement on the dependence of the decay rate A on structure
size (A o 1/R?) was found although there was some ambiguity about the value of the

proportionality constant.

The omega decay, a sudden relaminarization of a rotating structure, was found to be
a frequent occurrence in the production and equilibrium regions of the flow. This type
of evolution was found to occur when an eddy contacted a river motion with direction
opposite to that of the eddy contact point. Study of the omega decay rate would be a
good first application of the present analysis system once fit with more powerful image
acquisition hardware because of practical limitations of the existing analysis system.
There exists the possibility of eddy production by an inverse omega decay process. A

search for this river evolution may prove rewarding.

Many eddy pairings were observed in the flow photos and video sequences. Quan-

tification of the encounter statistics and pairing dynamics of this decay process is the
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last major step needed before the rate equation can be used for a meaningful prediction
of the structure population. The success in the statistical analysis and description and
in the isolation of the significant structure dynamics show the great promise of the rate

equation model for the statistics of the large scale structures in a turbulent fluid flow.

This thesis has presented a number of my original contributions to the understanding
of turbulent fluid dynamics. The discovery of surface flow structures on grid-generated
turbulence has already been reported in my M. Sc. thesis [59]. The statistical analysis
of the size, angular speed and energy distributions of the eddies and rivers (closed and
open flow structures) described in chapter four has been presented elsewhere [5]. The
size and angular speed distributions were used to predict an integral length scale which
was compared with one obtained from Fourier analysis of hot-film anemometry signals
measured in the bulk of the flow {30]. The results of this comparison were used in chapter
five of this thesis in a study of the relationship between the surface and subsurface flow.
The rafe equation model, originally proposed by Dr. B. Ahlborn (1], led to the discussion
of the energy distributions in terms of a temperature. My contributions to this approach
are contained in a recent publication (6] as well as in chapter four of this thesis. The
need to automate the recognition and analysis of a coherent structure led to the M. Sc.
work of A. Lau [38] which was used in the structure dynamics study of chapter five.
Although some earlier work on structure dynamics was published [4], the initia]}vortex
production model, comparison of the spontaneous decay experiment and theory, as well as
the isolation of the structure decay types on the surface flow of grid-generated turbulence

are original to this thesis.
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It is hoped that the results and approach presented in this thesis will stimulate further
research. In order to complete the demonstration of the rate equation approach, models
need to be developed to quantify the omega decay (B rate) #nd eddy pairing (C rate)
processes. Once this has been accomplished, the initial vortex production model provides
an initial structure distribution which should evolve according to the rate equation. The
observed statistics can then be compared with those predicted. As indicated in Fig.2-5,
the ultimate test of the model is to use moments of the predicted structure statistics to
determine such macroscopic flow properties as drag, mixing rates, and gust levels. In
fact, after further verification of the initial vortex production model presented in this

thesis it should be straightforward to predict the form drag acting on parallel bar grids.

While an attempt has been made to understand the coupling between the surface and
subsurface motions it would be desirable to repeat the statistics and dynamics study for a
system which is more closely two-dimensional. Structure identification and analysis could
then proceed using an automated analysis system such as the one describéd in section
3.3.2. Extension of the model to three-dimensional flows would require the inclusion of
vortex stretching into the B coefficient in addition to including the added dimension into
the interaction statistics. Whomever embarks on such an ambitious task faces many

years of challenging and interesting work.
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