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Abstract 

Details of.the Standard Solar Model and experiments measuring neutrinos produced 

inside the sun and in the upper atmosphere are reviewed. Inconsistencies between theo

retical calculations and experimental measurements are discussed, establishing the need 

for new physics beyond the Standard Model of Particle Physics. 

Neutrino oscillations are introduced as a viable solution and the phenomenology in 

the two flavour case is reviewed. Calculations of neutrino oscillations at long baseline ex

periments are performed using realistic spectra and source/detector combinations. Both 

vacuum and matter enhanced oscillations of solar neutrinos are computed to account for 

the solar neutrino data, and allowed regions of parameter space are found. 

New analytical results are presented which determine the three family hamiltonian in 

matter. Oscillation probabilities in vacuum are calculated, and methods to account for 

matter effects are outlined. • • . 

A numerical treatment to determine the C K M parameters in matter is shown to be 

identical to existing analytical results'in the literature. Computer codes developed to cal

culate long baseline neutrino oscillation experiments through the earth's variable density 

are discussed. Several techniques used in a second set of programs written to determine 

solar neutrino survival probabilities in the three neutrino case are also reviewed. 

Symmetries between four different mass hierarchies which have two well-separated 

mass scales are studied. A two-fold degeneracy noted in the literature is shown to be 

inherent in experiments which only measure muon neutrino oscillations, and an expression 

relating the two sets of C K M parameters is calculated. Detailed computations illustrate 

how long baseline experiments can determine the C K M parameters. First order matter 
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effects are included and numerical work shows where matter effects are likely to break 

some of the symmetries. 

The phenomenon of C P violation in both vacuum and matter is studied in the three 

neutrino scenario. Exis t ing work on first order matter and C P corrections to oscillation 

probabilities at long baseline experiments is extended to second order. It is argued that 

since C P effects are very likely to be smaller than matter, second order corrections are 

necessary. In detailed calculations, second order effects are clearly apparent. A t high 

energies the approximation breaks down, but numerical results yield accurate answers 

allowing further study. Several strategies to isolate C P violation from competing matter 

effects are suggested, including tuning the neutrino beam.energy and a novel approach 

which combines data sets from accelerator and reactor based experiments. Final ly , new 

analytical work is presented showing that C P violation may modify the ratio of /.i-type 

to e-type neutrinos in the atmospheric flux. The magnitude of the effect is estimated 

and found to be significant. 

New techniques allow solar neutrino survival probabilities to be calculated including 

three mixing angles and two mass scales. A preliminary survey is performed assuming 

one relevant mass scale but including the three angular parameters. A distinct three 

neutrino solution is found by allowing the large neutrino mass squared difference to drop 

somewhat below the atmospheric neutrino data's best fit solution of 3 x 1 0 ~ 4 e V 2 . Then 

the high energy ta i l of the 8 B neutrino flux is converted to u T by a second resonance 

in the sun, leaving unique spectral characteristics to differentiate it from two neutrino 

models. 
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Chapter 1 

Theoretical and Experimental Background 

1.1 Introduction 

Since it was first postulated by Pauli in 1930, more as a mathematical convenience than 

an element of reality, the neutrino has continued to be elusive. Detection did not come 

until 1953 when Reines and Cowan observed antineutrinos from the nuclear reactor in 

Hanford, Washington using the reaction veA- p —> e + + n. Even recently, when the LEP 

experiment established that there are exactly three light neutrinos, they did so indirectly 

by measuring the width of the Z° resonance. 

Neutrinos are a favoured candidate to solve the astrophysical dark matter problem, 

they may close the universe, and two of them are produced each time four protons are 

bound together to form a helium atom in the reactions that heat the sun. Their elusive 

behaviour comes about because they do not interact via either the strong nuclear or 

electromagnetic forces. But as a result, they also provide a unique probe of the weak 

force unhindered by other interactions. 

Neutrinos are also at the forefront of particle physics today because there are two 

anomalies in which experimental measurements differ from theoretical calculations: the 

Solar and Atmospheric Neutrino Problems. Neutrinos produced deep in the interior of 

the sun propagate out into space in all directions, and some of them are detected by 

experiments on earth. However, only between one third and one half of those expected 

are actually seen, depending on the experiment. Interactions of cosmic rays in the upper 
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Chapter 1. Theoretical and Experimental Background 2 

atmosphere produce two different types of neutrinos in predictable ratios. But the ratio 

measured by earth-bound detectors does not match, a discrepancy which defines the 

Atmospheric Neutrino Problem. 

The resolution of these two anomalies is not just a necessary step in furthering our 

understanding of particle physics, but also opens a window on fields like stellar modelling, 

cosmology and Big Bang nucleosynthesis. There is a ready theory to explain these phe

nomena, a minimal extension of the Standard Model of particle physics which in some 

ways simplifies that model. By assuming that neutrinos have a finite mass and that 

there is mixing between the leptons, in direct analogy with the quark sector, it may be 

possible to resolve the Solar and Atmospheric Neutrino Problems. At the same time, an 

additional parallel between the quarks and leptons would be manifested. 

This thesis will develop some of the mathematical details in this extension of the 

Standard Model. It will use these to calculate how it affects the interpretation of the 

experiments, and hopefully, move the process a small step forward. Finally, it will offer 

some new ideas for study, which serve to confirm or refute this extension as a plausible 

explanation of the behaviour or nature. Neutrino masses, mixing and oscillations will 

purposely not be mentioned beyond the introduction of this chapter, in order to pursue 

a purely empirical approach; demonstration of the need for new physics will precede its 

introduction. 

Section two will be a detailed review of the Standard Solar Model, with some discus

sion of unsuccessful attempts to modify it to explain the Solar Neutrino Problem. Next, 

section three will discuss the solar neutrino experiments themselves, and an argument 

will be presented which shows that some of the experiments contradict each other under 

very general conditions almost independent of the solar model. Finally section four will 

define and discuss the atmospheric neutrino anomaly. 

Chapter two will introduce neutrino masses, mixing and the oscillation formalism in 
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the simple case of two neutrinos. It will be used to study long baseline neutrino oscillation 

experiments at accelerators using a realistic simulated neutrino beam. The oscillations 

will then be applied to solar neutrinos to set constraints on the mixing parameter space 

based on measurements by the solar neutrino experiments. 

Chapter three will discuss the necessity of going beyond the simple two neutrino 

formalism to consider all three flavours. A formalism will be developed in analogy with 

the two neutrino case, and several new analytical results will be presented. 

Chapter four will discuss the numerical methods used to compute neutrino oscillation-

s, especially in the three flavour scenario. Two distinct set of codes have been developed, 

one to calculate the oscillation of beams of neutrinos in earth bound experiments, and 

another to compute detection probabilities for neutrinos originating in the solar interior. 

Several techniques used will be discussed and, where possible, it will be verified that the 

numerical calculations can accurately replace analytical ones. 

Chapter five will extend some of the analytical results from Chapter three to specific 

cases and combine them using the numerical methods in Chapter four. Long baseline 

neutrino oscillation experiments will be studied in four cases in which the neutrinos have 

a hierarchical mass structure. Detailed numerical calculations will again be performed, 

and some new analytical work will also be done to interpret them. Similar techniques 

will be used to study the violation of the CP symmetry using accelerator and reactor 

experiments. New ideas will be presented to look at the atmospheric neutrinos as a 

measure of the CP violation effect. Solar neutrino detection rates will be calculated with 

the three neutrino formalism to show that new regions of parameter space open up with 

the addition of the third neutrino. 

Finally, Chapter six will conclude the discussion. 



Chapter 1. Theoretical and Experimental Background 4 

1.2 The Standard Solar Model: A Review 

The sun is a medium sized star about half way through the hydrogen burning or "Main 

Sequence" phase of its life. The Standard Solar Model (hereafter the SSM) consists of a 

set of assumptions about the physics which takes place in the sun, coupled with the most 

current experimental inputs and combined in a set of computer codes that calculate the 

current properties of the sun based on those inputs. 

The idea behind the SSM is to begin with a one solar mass protostar and evolve it for

ward to the sun's current age of 4.5 billion years. The model assumes an initial chemical 

composition, a hydrostatic equilibrium throughout its life, energy transfer mechanisms its 

interior and nuclear energy generation networks. Its major predictions are the luminos

ity, radius, temperature, neutrino spectra, chemical composition and oscillation modes, 

though a total of about 20 independent parameters are used as constraints [1]. 

In the section which follows, the Standard Solar Model will be discussed in some 

detail. The general assumptions of the model and the initial chemical composition will 

be outlined, the nuclear reaction mechanisms which provide its energy and the thermo

dynamics of the transfer of that energy will be discussed, and the general ideas of the 

computer codes which combine these inputs to calculate the model will be reviewed. 

Results from the recent SSM calculations by Bahcall and Pinsonneault [2] will then be 

presented. Finally, an overview of the model will be given discussing how modifications 

to it would affect neutrino fluxes. 

This discussion will focus almost exclusively on the solar interior because that is where 

that the solar neutrinos are produced. Among the most comprehensive SSM calculations 

are those done by Bahcall and Pinsonneault [2] using the most up to date chemical 

abundance measurements, state of the art equation of state and opacity computations, 

and accounting for elemental diffusion in the solar interior. Their model will be used as 
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an input to all solar neutrino calculations which follow, and will be referred to as BP95. 

1.2.1 Solar Formation 

The Pre-Main Sequence evolution of a star takes place in two stages over about 5 x 107 

years, or 1% of the total age of the sun [3]. The first stage is the Dynamic Phase in which 

a dense cloud collapses to a much smaller object with high density. It is characterised 

by matter falling inwards freely, and is followed by the Hydrostatic Phase where internal 

gas pressure provides sufficient support to slow the rate of contraction. This latter stage 

ends when the fully ignited star enters the Main Sequence. 

It is here that most solar models begin. The radius and luminosity are about O.89i?0 

and 0.731/0 respectively (i?Q and L Q are the current values), the central temperature is 

about 1.3 x 107K and the convection zone contains about 3% of the mass. Today the 

sun's central temperature is about 1.5 x 107K and the convection zone contains about 

2% of the mass. 

1.2.2 Solar Model Assumptions 

Early in this century, astronomers noticed that scatter plots of the surface tempera

ture Teff versus luminosity L of observed stars populated only certain sections of the 

plot. Scatter plots of stars drawn on axes of log(Te//) and \og(L/L&) are referred to as 

Hertzprung-Russell diagrams, as shown in figure 1.1 [4]. Most stars, including our sun, 

populate a chord referred to as the "Main Sequence" of this diagram, where hydrogen is 

fused to form helium. 

Arthur Eddington realised that neither chemical nor gravitational energy would be 

sufficient to heat the sun for the several billion years which it had been shining, and 

wrote in 1926 that the sun must derive its energy from nuclear processes [5, pp. 292-293]. 

However the temperatures required for a proton to overcome the classical Coulomb barrier 
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Figure 1.1: Scatter plot of observed stars on a log — log plot of temperature (horizontal 
axis) and luminosity (vertical axis). The region labelled Main Sequence denotes those 
stars which are in their hydrogen burning phase. [4] 

were extremely high. In 1928 George Gamow showed quantum tunnelling provided a 

mechanism to penetrate this barrier at a much more reasonable temperature [6]. By the 

late 1930's Bethe, Weizsacker, and Critchfield [7] had determined that the proton-proton 

(pp) and Carbon-Nitrogen-Oxygen (CNO) cycles were the two possible mechanisms to 

convert hydrogen to helium producing the nuclear energy which heats the sun. Except 

for filling in some additional details and improving the estimates of the cross sections, 

the modern view has not changed. Early models to predict the solar mass, luminosity, 

and radius have evolved to today's SSM which attempts to accurately predict a much 

wider variety of properties. 

An essential element of any solar model is to predict the current luminosity and 

radius of the sun given its mass and age. The present age of the sun is estimated to be 

4.57 ±0.02 x 109 years [2, Appendix A, by G.J. Wasserburg]. It is determined by placing 
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upper and lower bounds on objects in the solar system which were present just before 

and just after the sun's formation. An upper bound of tQ < 4.576 x 109 years is given 

by the age of crystallized refractory condensates, containing different isotopic ratios than 

terrestrial matter, that were formed from presolar materials. Measuring the age of the 

oldest "Cl chondrite" asteroids which were formed after the sun provides a lower limit 

tQ > 4.563 x 109 years. 

The Standard Solar Model makes four general assumptions [8]: 

1. Hydrostatic Equilibrium: The model begins by assuming that the sun is spher

ically symmetric, and that the pressure gradient at each point exactly balances the 

gravitational force. This equality requires that: 

dP(r) = Gm(r)p(r) 
dr r 2 1 ' ' 

where P(r), m(r), and p(r) are the pressure, contained mass, and density of the 

sun at radius r. The pressure is governed by the Equation of State and will be 

discussed in section 1.2.7, while the mass and density are related by the continuity 

equation 

• ^ ) = 4 ^ r V ( r ) ' (1-2) dr 

2. Energy Transport: Energy in the interior of the sun is transported radiatively 

by photons with a contribution by electrons in the deep interior. The plasma at the 

centre of the sun is in a local thermodynamic equilibrium so diffusion approximation 

can be used to describe energy transport [9],[10]. Nearer the surface of the sun, 

heat is transported by convection. 

3. Nuclear Energy Generation: Solar energy is generated by the conversion of 

hydrogen to helium via two series of nuclear reactions, the pp chain and the CNO 
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cycle. A complete description of these mechanisms will be discussed shortly. The 

rate of energy generation as a function of radius must also satisfy a continuity 

equation: 

where L(r) and en(r) are the luminosity and rate of nuclear energy generation at 

radius r. 

4. Changes in Elemental Abundances: In most solar models, changes in the 

radial abundance of all elements in the sun are presumed to be due only to nuclear 

reactions. Cox et. al. [11] showed that other mechanisms such as the gravitational 

settling of heavier elements and thermal diffusion have a small effect and most SSM 

codes used to exclude them, however recent models including BP95 do account for 

elemental diffusion. 

1.2.3 Initial Elemental Abundances 

The SSM begins with a chemically homogeneous sun and changes to that uniformity 

over time are calculated by the model. The usual notation for elemental abundances 

in the SSM are X, Y, and Z which denote the fraction of the solar mass which is 

made up of hydrogen, helium, and heavy elements respectively. Anders and Grevesse [12] 

compiled experimental measurements and found the ratio X : Y : Z to be 70.683 ±2.5% : 

27.431 ± 6% : 1.886 ± 8.5%. Grevesse and Noels later updated the analysis without 

significant changes [15]. 

Estimates of the heavy element abundances are very important to the SSM be

cause they determine the radiative opacity of the solar interior. This affects the central 

temperature of the sun, and determines the relative rates of different nuclear reactions, 

which in turn influences the neutrino spectra. Calculations have gradually improved over 

dL{r) 
4irr2 p(r)en(r) (1.3) 

dr 
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the last 20 years [12], [13], [14] and today the state of the art is the work of Grevesse and 

Noels [15]. 

Elemental abundances are determined by comparing elemental ratios in C l chondrite 

meteorites to independent spectroscopic measurements of the solar photosphere, corona 

and the solar wind. Recent improvements in the latter method have reduced the sys

tematic errors in important opacity calculations in the SSM, although most authors were 

already using the meteoritic values where the two measures disagreed [16]. 

Figure 1.2 taken from Anders and Grevesse compares the meteoritic and solar abun

dances of different elements showing that of those whose spectroscopic content can be 

well determined most agree within 10% with some notable exceptions. Lithium and 

Beryllium are depleted by nuclear interactions at the bottom of the convection zone. 

1.2.4 Nuclear Reaction Rates 

The SSM calculates the rate at which different reactions occur using a combination of 

statistical mechanics and nuclear physics. The notation reviewed here is that of Parker 

[17], but is similar to treatments elsewhere. The rate R12 at which reactions between 

species 1 and 2 occur is given by: 

where Ni and N2 are the number densities of species 1 and 2, 5 i 2 is unity if species 1 and 

2 are identical and zero if they are not, and (crt>)i2 is the cross section multiplied by the 

relative velocity v between the two particles when averaged over the Maxwell-Boltzmann 

velocity distribution $(v). This last term is given by the integral: 

i?l2 — 
NxN2 

1 + <$12 
(1.4) 

(av) = / dv[vo(v)]$(v) (1.5) 
Jo 

(1.6) 
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Figure 1.2: Comparison of elementalabundances in the sun using spectroscopic and me-
teoritic measurements. Open symbols show those elements which are poorly determined 
from spectroscopic data. Li and Be are affected by thermonuclear reactions in the sun, 
while most other elements agree quite well. Of the five (W, Fe, Mn, Ge and Pb) which 
do not agree, Fe was the most problematic because it is more abundant and has a strong 
effect on the solar opacity. However, later photospheric measurements improved the 
discrepancy. [12] 
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where fj,, k, and T are the reduced mass of the two particles, Bpltzmann's constant, and 

temperature respectively. Temperatures at the centre of the sun are much smaller than 

nuclear masses (on the order of a few keV compared to mp = 938 MeV). Transforming 

the integral to one. over energy using E = \pv2 results in a more useful expression: 

(ov) = £dE[Eo{E)]oq>(- —) (1.7) 
[iTn(kT)\ 

The low energy cross section a(E) is dominated by the Coulomb barrier. Its energy 

dependence can be conveniently expressed through the "S-factor" S(E) which is defined 

by writing the cross section it in the form 

S(E) ( 27 re 2 Z 1 Z 2 \ ^ " a(J!) = - L 2 o p ^ j j jLJJ (1.8) 

where the eZi are the electric charges of the interacting nuclei. The exponential term is 

often written as exp(—2Trn) and referred to as the Gamow barrier penetration factor. By 

making the substitution v = (2E/p)1^2 and defining EQ = 2 / / (7rZ 1 Z 2 e 2 / f t ) 2 , the energy 

dependence of the exponential term in cr(E) becomes explicit and it can be written as 

exp(y/Ea/E). The velocity average cross section factor in equation 1.7 simplifies to 

(av) = 
8 2 r°° I En E \ , j dES(E)^Uf-w) (1.9) 

_7T/i(fcT)3J 

Experiments measure the energy dependence of the nuclear S-factors at energies as 

low as possible in the laboratory and the results are extrapolated to zero. When the 

S-factor is approximated with the first few terms its Taylor expansion at zero energy, 

equation 1.9 can be evaluated as the sum of standard integrals. 

Experiments which determine the S-factor require a correction for the screening by 

inner electron shells which surround the atomic nucleus. They measure the energy depen

dence of the cross section for colliding ions, whereas in the solar interior the electrons are 

stripped from the atomic nuclei. Salpeter [18] first calculated a "weak-screening" which 
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is of the order of a few percent. More recently, Assenbaum et al. [19] have modelled the 

effect of electron screening in the solar plasma, where electrons tend to cluster around the 

nuclei. Just as the valence electrons in Salpeter's treatment screen incoming projectiles 

from the full Coulomb potential of a target nucleus, the electrons in the plasma sea also 

screen incoming projectiles. 

One critical caveat must be considered when extrapolating the S-factor down to zero 

energy. The above analysis neglects the possibility that a nuclear resonance exists below 

the lowest energy measured in the laboratory. If such a resonance does exist then the 

cross section for the process can increase dramatically. While it is possible to calculate 

the effect of such a resonance on (av) [20], if an unknown resonance exists then the 

extrapolation to zero energy of the experimentally measured S-factor would not be valid. 

It is therefore important to try to measure the relevant S-factors at energies as low as 

possible, and then carefully rule out any nuclear resonances which might exist. 

1.2.5 The Proton-Proton Chain 

The proton-proton chain, which accounts for about 99% of the sun's luminosity, is shown 

in figure 1.3. The first two reactions in the chain produce deuterium (2H), with pp 

occurring about 500 times as often as pep. This is the slowest process in the cycle and 

therefore dominates the overall rate of energy production. It is very difficult to measure 

the cross section directly—with a typical experimental apparatus one would expect pp 

reactions about once every 106 years [21]. The idea is that as two protons come into 

close contact with each other for a short period of time, one undergoes a /?-decay to 

form a neutron and they bind together to form a deuteron. The rate is calculated using 

electroweak theory with the largest uncertainty being the neutron lifetime. 

The next reaction in the pp chain is 2H + p —» 3He. Because it occurs very quickly, 

it does not affect the overall rate of 4He production. The 3He now combines with either 
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Figure 1.3: The Proton-Proton (pp-chain) reactions for converting hydrogen to helium 
in the sun, and the energies of the neutrinos produced. 
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another 3He nucleus or 4He. The hep reaction p + 3He —> 4He + e+ + v occurs at a very 

low rate, but it may be measurable in future precision experiments because the energy 

of the outgoing neutrino can be as high as 18.77 MeV [2]. 

The vast majority of 3He in the sun burns via 3He + 3He —» 4He + p + p and 
3He + 4He —> 7Be + 7 in an 85 : 15 ratio. The relative rate of these two reactions, once 

a major source of uncertainty, has very important implications for neutrino fluxes because 

the 3He- 3He reaction does not produce neutrinos. If there was a nuclear excited state of 
6Be with energy on the order of 10 — 15keV, then the rate of 3He- 3He interactions would 

increase dramatically and the number of 7Be and 8 B neutrinos which solar models predict 

would decrease substantially [21]. Krauss et al. [22] have measured the S-factor for this 

interaction from 350 keV down to about 25keV and no resonance was found. Figure 1.4 

shows the energy dependence of this S-factor and illustrates that the experiment does 

probe energies which are relevant to the solar interior. Figure 1.5 taken from Hilgemeier 

et al. [23] shows the measured energy dependence of the 3He- 4He interaction and a 

theoretical model on the range 200 — 700 keV. These and similar experiments determine 

the 85 : 15 ratio. 

The last important branch of the pp chain are the two mechanisms which destroy its 
a 

7Be. The reaction e~ + 7Be 7Li + ue burns 99.87 % of the sun's 7Be and p + 7Be -> 
8B + 7 destroys the remaining 0.13 %. The e~-7Be interaction has a 2-body final state 

including a 0.862 MeV neutrino in 89.5 % of interactions and 0.384 MeV neutrino in the 

remaining 10.5 % [24]. The p- 7Be reaction destroys only a small fraction of the 7Be but 

produces the all-important 8 B neutrinos in subsequent decays. 

A recent study by Johnson et al. [25] carefully reexamined both these rates to account 

for additional effects. Their study reduced the p- 7Be rate by 7%, and their analysis has 

been incorporated into BP95. 
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Figure 1.5: Energy dependence of the astrophysical S(E) factor for the reaction 
3He + 4He —» 7Be + 7. The solid line shows a model prediction fitted to the 7-ray data 
[23]. 
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Figure 1.6: The CNO-cycle reactions which catalyze conversion of hydrogen into helium 
in the sun, with the energies of the neutrinos produced. 

1.2.6 The C N O Cycle 

The CNO-cycle is a minor reaction in the sun and accounts for only about 1.5 % of 

its luminosity [26], mainly because the heavier elements have a higher Coulomb barrier 

to overcome than reactants in the pp chain. It consists of a series of proton capture 

reactions and @ + decays involving carbon, nitrogen and oxygen, which act as catalysts 

to the reaction. There are several "sequences" of interactions as shown in figure 1.6, with 

the most important cycle involving the six elements in the upper left of the diagram. 

The rate at which this mechanism produces energy depends on the abundance of the 

elements which catalyse the reaction. The slowest CNO reaction is p + 1 4 AT —> 1 5 0 + 7 
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so its S-factor and the 1 4 N abundance largely determine the rate. The cross sections for 

the interactions in the CNO cycle are fairly well established experimentally, and careful 

studies which have shown that the effect of low energy resonances is smaller than 1 % 

[27]. 

1.2.7 The Equation of State 

The general idea of an Equation of State is to relate the density, temperature, and 

pressure of a gas. The simplest reasonable model for the sun would be to assume that 

the Equation of State of the solar interior is given by the ideal gas law relating these 

quantities to the mean molecular weight, and Boltzmann's constant k: 

Because the sun is not an ideal gas, this equation must be corrected for several effects, 

such as Coulomb interactions, partial electron degeneracy, and radiation pressure which 

can lead to partial ionisation of the plasma. There are two general methods for calculating 

the Equation of State called the Chemical Picture and the Physical Picture and the two 

lead naturally to different treatments of the opacity. The two methods do agree quite 

well, but the latter has recently emerged as the preferred method in solar modelling. 

In the Chemical Picture every bound state of every element in the plasma is treated 

as a separate species. An equation for the free energy of the plasma is constructed based 

on the "external" parameters temperature, volume, and concentrations of the different 

elements in the plasma. This free energy is numerically minimized in order to determine 

the configuration which realises thermodynamic equilibrium, and the temperature, pres

sure, and entropy are calculated by differentiating the free energy at this minimum. The 

philosophy behind the Chemical Picture is to construct the free energy based on those ex

ternal parameters which are adjustable by the experimenter, and allow the minimization 
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procedure to determine the "internal" parameters—those which are specified by nature 

[28]. 

Until recently, this method had been used in the majority of Equation of State cal

culations for the solar interior. It has the advantage that all quantities calculated are 

explicitly thermodynamically consistent by construction. However, it involves a divergent 

partition function and some cutoff procedure must be applied. At low densities where 

the gas is nearly ideal, the partition function is independent of the cutoff. However, at 

very high densities more complicated models must be employed. 

In the last few years the Physical Picture has emerged as the preferred method to 

calculate the Equation of State in solar models. Whereas the Chemical Picture can be 

considered a thermodynamic approach to the problem, the Physical Picture is a statistical 

mechanical approach. In this method, only electrons and different nuclei are considered 

to be different species, and bound states are calculated explicitly using the Hamiltonian 

describing the interactions between the components of the plasma. 

1.2.8 T h e O p a c i t y 

Opacity is a measure of the transport of radiation through matter and may be thought 

of as the inverse of the mean free path to absorption. In the solar interior most energy is 

transported via photons, but in the deep interior electrons also play a role. The opacity 

is dependent upon the chemical species which are present and the different interactions 

which they have with photons. It is also contingent on the thermodynamic variables, of 

the plasma, and hence it is intimately connected to the Equation of State. 

The interior of the sun consists of a plasma which has both high density and high 

temperature. In these collision dominated conditions the free electrons are well described 

by a Maxwell velocity distribution, and the occupation of bound electrons obeys a Boltz-

mann distribution. In addition, radiation is nearly in equilibrium with matter so that 
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both follow a Planck temperature spectrum. These three conditions define a Local Ther

modynamic Equilibrium [10], and Rosseland showed in 1924 that they are sufficient to 

permit radiation transport to be approximated by diffusion with a coefficient propor

tional to the temperature gradient [9]. The Rosseland mean radiative opacity k# can be 

shown to be: 

where the extinction coefficient K' is a measure of how far a photon travels before it is 

absorbed by the plasma. 

Deep in the interior of the sun where the temperature and density are very high, elec

tron conduction also provides significant resistance to energy transport and an effective 

The Rosseland mean opacity coefficient measures the least resistance to radiation flow. 

There are no laboratory experiments which can simulate the details of the interior of the 

sun so the calculation of this coefficient relies on theoretical models which are based on 

quantum mechanics, statistical mechanics, atomic spectral properties, and nuclear cross 

sections. , 

To determine KR in the sun, one needs to know the abundance of all chemical ele

ments in the plasma, as well as their energy levels and radiative transition probabilities. 

These atomic properties are in turn dependent on the temperature and density of the 

surrounding plasma. There are two general methods for modelling the plasma which are 

then used to calculate the radiative opacity: the Explicit Ion Approach and the Mean 

Ion Model. 

The Explicit Ion Approach is used when there are fewer atomic species present and 

the temperature is relatively low. This method requires comprehensive experimental data 

detailing all atomic energy levels and splittings. It treats each species of ion separately, 

(1.11) 

opacity neff must be used. 
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and the partition function of each ionic species is a weighted sum over all excited states 

of the ion. Additional interactions between the ions and the plasma are calculated as 

perturbations to the relative populations of each species. This method is reminiscent 

of the Chemical Picture calculation of the Equation of State and is typically used in 

conjunction with it. However the calculations are only tractable when there are a smaller 

number of species in the plasma with well known energy levels, typically elements with 

Z < 30 [10]. 

In order to model plasmas at high temperature and density in which the atomic energy 

levels are perturbed from their well known laboratory values and where the number of 

species is too large for the Explicit Ion Approach to be tractable, the Mean Ion Model is 

employed. The idea behind the model is to construct an average ion which will provide 

a gross indication of the ionization and excitation of ions in the plasma. There are 

several methods [10, and references therein] of constructing approximate energy levels 

for each ionization state of the mean ion to make it sufficiently similar to real ions based 

on statistical mechanical ideas, making it particularly amenable to being used with the 

Physical Picture of the Equation of State. 

In many real calculations of the opacity of stellar plasmas a combination of these two 

models is used. For low Z elements the known atomic levels are used, while the high 

Z elements are treated with a Mean Ion Model. This was the method used by the Los 

Alamos Opacity Library which produced the stellar opacity tables used in most solar 

models throughout the 1980's and into the early 1990's. The recently developed OPAL 

code, which was employed to compute the opacities used in BP95, uses the Explicit Ion 

Approach on a reduced set of elements. The opacity calculation was optimized by remov

ing elements from the plasma mixture (and increasing the abundances of neighbouring 

elements to conserve the number of particles and molecular weight) to see which elements 

were important in determining the opacity. Iglesias and Rogers [29] were able to reduce 
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the number of elements to 15: H, He, C, N, 0, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and 

Ni. In doing the study they found that cutting out the five least significant elements of 

these 15 (namely. Na, Al, Ar, Ca, and Ni) only lead to an change in the opacity Of 1 % 

to 3%. . . . .: 

Once all of the ionization state abundances and excited state occupation probabilities 

have been determined the next step in the opacity calculation is to calculate the cross 

sections of the photon interaction processes which specify the opacity. There are four 

physical processes which can absorb or emit a photon or change its motion: bound-bound, 

bound-free and free-free scattering with ions, and Thompson scattering which requires 

the presence of an ion. 

1.2.9 E l e m e n t a l Di f fus ion 

Cox, Guzik, and Kidman [11] studied diffusion of both light and heavy elements in 

the sun. The distribution of these elements affects the equation of state, which in turn 

determines the opacity, temperature, and therefore rates of production of solar neutrinos. 

They found increases of less than 1 % in the abundance Y of helium and Z of heavy 

elements in the core of the sun, its central temperature, and density. Their model did 

predict an increase in the number of 7Be and 8 B solar neutrinos of about 5% to 7%. 

Abundances Y and Z also showed noticeable reductions of just over 10% in the outer 

regions, but these surface corrections dd not affect neutrino generation. 

In their first collaborative effort, Bahcall and Pinsonneault [16] included the effect of 

helium diffusion but not heavy elements. They found that it increased the number of 7Be 

and 8 B solar neutrinos by about 6 % and 12 % respectively as a result of small increases in 

the central temperature and a slight shift of energy generation towards the centre of the 

sun. BP95 includes a more accurate calculation of elemental diffusion, including heavy 

elements, based on a paper by Thoul, Bahcall, and Loeb [30]. It predicts still larger 7Be 
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and 8 B neutrino fluxes. 

1.2.10 T h e N u m e r i c a l M o d e l 

The SSM begins with a sphere of gas at time t = 0 in which the heavy element abun

dances are given by experimental measurements (the most recent results are those of 

Grevesse and Noels [15]), and the helium abundance Y is guessed. The assumptions of 

hydrostatic and thermal equilibrium, and the continuity equations discussed.in section 

1.2.2 are used to constrain the mass density of the sun at each radius. The nuclear re

action rate formalism developed in section 1.2.4 and the astrophysical S-factors for the 

different reaction chains determine the rate at which nuclear energy is generated by each 

process. The rate of diffusion of this energy is then determined by the Equation of State 

and opacity as a function of radius. The differential equations which define the solar 

structure are solved subject to the above constraints at the initial time. BP95 does this 

by integrating from the solar surface inward and from the centre outward and requiring 

that the two solutions match at some intermediate radius (typically at r = 0.2 R®). 

Once a consistent model is obtained for the initial time, a later time step is chosen. 

Based on the rates at which the nuclear reactions are occurring in the first time step, 

changes in nuclear abundances as a function of radius are calculated for the later time. 

Then the differential equations at the second time step are used to produce a consistent 

model at this time. This process is iterated until the current age of the sun tQ = 4.57 x 109 

years is reached, and may take as few as 10 steps or as many as 200. steps depending on 

the accuracy performed at each step. 

The model takes two important variables as inputs: the initial helium abundance 

Y and an entropy-like parameter that is significant in the convective zone defined as 

S = 2.5 log T — log P. Given the initial estimates of Y { arid Si the model is iterated 

forward to the present time, and the radius RQ and luminosity LQ are compared with 
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Figure 1.7: Fits to the electron density based on the 1995 model of Bahcall and Pin
sonneault [2] with helium and heavy element diffusion. The data beyond OAR® was 
extrapolated, and the derivative of the density was calculated. 

those observed. If the predicted parameters R® and L® do not match, a new Yi and 

Si are chosen and the process is repeated until R® and L® are correct within some 

tolerance, usually on the order of one part in 105 [8]. In addition to the primordial values 

of the parameters Y{ and Si the SSM model also predicts the current density, elemental 

abundances, luminosity, temperature and neutrino production rates as a function of 

radius. Figures 1.7 and 1.8 show the solar electron density and neutrino production as 

a function of solar radius predicted by BP95. These elements of the model are the most 

important for neutrino oscillation calculations and will be used later. 

Among the predictions of the SSM axe the changes which occur throughout the lifetime 

of the sun. Figure 1.9 shows the time dependence of the radius and luminosity. In addition 

to those two quantities, the central temperature of the sun also increases: as hydrogen is 

converted to helium the mean molecular weight p increases in the solar core, there must 
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Figure 1.8: Radial dependence of the rate of production of different solar neutrino fluxes. 
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Figure 1.9: Time dependence of the radius and luminosity of the standard solar model. 

be a proportional increase in pT in order to maintain hydrostatic equilibrium (which for 

an ideal gas requires that P — kpT/p) [31]. This increase in temperature results in an 

increase in the rate of production of 8 B neutrinos. 

1.2.11 Solar Oscillations 

Leighton et. al. [32] first noticed vertical oscillations in the sun's photosphere.by mea

suring doppler shifts of the matter on its surface. If an acoustic wave travels into the 

sun at an oblique angle it gradually refracts because the speed of sound vB increases at 

it moves to the hotter, more dense interior. When in reaches a point where the local 

phase velocity is equal to vs it reverses direction and moves outwards. As it approaches 

the outer surface of the sun, it is reflected back by surface layers. Standing waves, or 

p-modes are formed at certain frequencies, and the calculation of which stable modes can 

exist reduces to an eigenvalue problem that is dependent on the speed of sound in the 

sun [33]. 

The oscillations can be described by the product Of a radial term, a spherical harmonic 
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term, and a time dependent term and have the form [34]: 

E(l,m,n)=Kla{r)Yr(9,ip)e (1.12) 

The speed of sound in the sun vs is given by the equation 

p{r) \d\np)s 

(1.13) 

where P(r) and p(r) are the pressure and density, and the subscript S implies that the 

partial derivative is to be taken at constant entropy. The penetration depth of the wave 

increases with its frequency, so these waves is may be used to probe successively deeper 

into the interior of the sun. 

Using numerical techniques, several of which are described by Christensen-Dalsgaard 

and Berthomieu [35], stable modes can be calculated given the pressure and density 

profiles of a given model of the sun. Inverting the p-mode data to place constraints on 

the solar interior is another difficult numerical problem which has been studied in the 

last several years [36], [37], [38]. 

These latter investigations showed that the sun is hotter in the outer part of the 

radiative interior than was previously thought, and the new OPAL opacity tables have 

produced models in much better agreement with the measured p-mode oscillation fre

quencies. The BP95 model, which includes both helium and heavy element diffusion 

and uses the OPAL tables, predicts a convective zone depth of O.712i?0 which com

pares very favourably with Christensen-Dalsgaard et. al. [38] who measured it to be 

0.713 ± O.OO3i?0 using p-mode oscillation data. Without diffusion the same SSM pre

dicts a depth of 0.726-R© and the fit to p-mode data is much less accurate. 

1.2.12 D i s c u s s i o n o f the So lar M o d e l 

There are a number of independently produced Standard Solar Model codes discussed in 

the literature, using different numerical techniques and slightly different inputs, but the 

file:///d/np
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results show remarkable agreement. Table 1.1 lists several of the principle predictions 

for different solar models including the neutrino fluxes. Note that different models use 

slightly different abundances, Equations of State, opacity tables, and nuclear S-factors, 

but the inputs are generally quite similar. Those models which include elemental diffusion 

are on the right of the table. 

It is apparent that the pp neutrino rates are very stable, while the 7Be and 8 B neutrinos 

are more sensitive to the details of the model, particularly the temperature. However 

it is clear that the neutrino fluxes of all of the models are far above the measured rates 

at the four neutrino experiments. It is also notable that in the most up to date model 

[2] in which heavy.element diffusion has been incorporated and which fits the p-mode 

oscillation data, the neutrino fluxes have increased. The increases come about because 

elemental diffusion raises the central temperature of the sun by about 2 %, which increases 

the temperature sensitive 7Be and 8 B neutrino production rates. 

Bahcall and Pinsonneault calculated the errors in their model from different inputs 

including different reaction rates, heavy metal abundances Zi, solar luminosity L 0 , age of 

the sun te, opacity, and diffusion. These results are summarized in table 1.2. Note that 

the errors from most of the different sources are uncorrelated so they must be combined 

in quadrature. Moreover, since the theoretical errors in the model are not dominated by 

one or two errors, it is unlikely that a single major improvement in the model will reduce 

the overall error substantially. 

Neutrino production rates calculated by the SSM are much lower than experiments 

measure. This discrepancy has been known for over 25 years and was first measured in the 

Homestake experiment. Since that time many researchers have looked for ways to reduce 

the predicted neutrino fluxes in the SSM, but no one has found any mechanism to reduce 

them to a level anywhere nearly consistent with the experimental data. Many of the ideas 

which have been pursued in the past are now being ruled out by the helioseismological 
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Model BU SBF BPML TCL Pa BPa BPb BPc Pb 
Diffusion No No No No No No H, He Yes Yes 
<j>{pp) x IO"10 6.00 6.00 5.93 6.01 6.03 6.01 6.00 5.91 5.91 
4>{pep) x 10"8 1.40 1.29 1.40 1.39 1.43 1.44 143 1.40 1.39 
d>(hep) x IO"3 

(j)(7Be) x IO"9 

7.58 6.49 n/a n/a 1.25 1.27 1.23 1.21 1.20 d>(hep) x IO"3 

(j)(7Be) x IO"9 4.69 4.23 4.47 4.42 4.60 4.53 4.89 5.15 5.18 
4>(8B) x IO"6 5.76 5.80 5.40 4.71 5.01 4.85 5.69 6.62 6.48 
(P(13N) x IO"8 6.09 3.99 5.71 4.00 4.50 4.07 4.92 6.18 6.40 
cj)(l50) x IO"8 5.22 3.09 4.81 3.39 3.81 3.45 4.26 5.45 5.57 
0( 1 7F) x IO"6 5.16 4.23 4.96 n/a 4.58 4.02 5.39 6.48 6.79 
N(S7Cl) 7.9 7.68 7.43 6.78 7.14 7.0 8.1 9.3 9.02 
N(7lGa) 132 125 127.7 124 127.3 126 132 137 136.9 
Tc (107 K) 1.564 1.543 1.555 1.543 1.523 1.556 1.567 1.584 . 1.581 
Rcz/ R® 
PC(B) 

0.74 n/a 0.721 0.725 0.721 0.726 0.707 0.712 0.712 Rcz/ R® 
PC(B) 1.48 1.466 1.519 1.469 1.633 1.524 1.542 1.562 1.559 

Table 1.1: Standard Solar Models and their Predictions. Models referenced are as follows: 
BU (Bahcall and Ulrich [8], 1989), SBF (Sackman, Boothroyd, and Fowler [39], 1990), 
BPML (Berthomieu et. al. [40], 1993), TCL (Turck-Chieze and Lopes [41], 1993), 
Pa (Proffitt [42], 1994), BPa (Bahcall and Pinsonneault [2], 1995), BPb (Bahcall and 
Pinsonneault [16], 1992), BPc (Bahcall and Pinsonneault [2], 1995), Pb (Proffitt [42], 
1994). Fluxes for each solar neutrino source are shown in number neutrinos arriving on 
earth per cm2 per second, as well as the rate for 37CCl and 71Ga targets quoted in SNU, 
central temperature of the sun Tc, radius of the convective zone Rcz, and central solar 
density pc-

Source of error pp pep 7Be 8£ 
p — p reaction rate 0.2 0.3 1.0 3.0 

3 He —3 He reaction rate 0.2 0.0 2.0 2.0 
3He —4 He reaction rate 0.2 0.3 3.0 3.0 

p —7 Be reaction rate 0.0 0.0 0.0 9.0 
p —14 N reaction rate 0.2 0.2 0.0 0.0 

Heavy element abundance Z/X 0.4 0.9 3.0 8.0 
Luminosity L 0 0.3 0.3 1.0 3.0 
Solar Age tQ 0.0 0.0 0.0 1.0 

Opacity Tables 0.3 0.5 3.0 5.0 
Elemental Diffusion 0.6 0.9 4.0 8.0 

Table 1.2: Percentage uncertainties in the principle neutrino sources in the Solar pp chain. 
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constraints made by inverting p-mode oscillation frequencies. Three recent ideas studied 

to reduce the neutrino output of the SSM include modification of nuclear cross sections, 

rotation or mixing effects, and changes to the opacity. ' 

Most of the astrophysical S-factors have not been measured under conditions which 

are equivalent to the centre of the sun so some researchers feel that changes in these 

quantities could resolve the solar neutrino problem. Fbr example if the pp S-factor was 

increased, then this interaction could occur more easily and at a lower temperature, and 

the 8 B and 7Be neutrino fluxes would drop. However studies such as Castellani et. al. [43] 

have looked at what constraints can be obtained on solar model parameters, including 

the S-factors, by looking at the rates measured in the solar neutrino experiments. 

For example, using the 3He + 4He reaction as the main mechanism to burn 3He 

would reduce the pp neutrino flux by a factor of 2, but would increase the 8 B and 7Be 

fluxes markedly, contrary to the Kamiokande data which already finds these rates too 

low. Reducing the S-factor Sn for the p+ 7Be reaction would reduce the number of 8 B 

neutrinos, but because Kamiokande is only sensitive to these neutrinos there is a limit 

to how much this could be reduced, and Berezinsky et al. [44] concluded that varying 

both 5i7 and temperature were not sufficient to explain any two types of solar neutrino 

experiments. The most plausible change in nuclear physics which could reduce the solar 

neutrino fluxes would be a low energy resonance in the cross section for the reaction 
3He + 3He —> 4He + p + p. This reaction could then dominate the burning of 3He and 

reduce the 8 B and 7Be fluxes. However section 1.3.5 will show that with assumptions 

which are almost completely independent of the S-factors and the solar model itself, the 

different experimental results are irreconcilable with each other. 

Experiments have been performed to dramatically reduce the energy region in which 

such a resonance could occur [22], and the LUNA experiment at Borexino will probe to 

still lower energies. But because the Kamiokande experiment does see 8 B neutrinos, such 
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a solution is still a poor fit to the experimental data [43]. 

If the solar core rotates faster than the exterior, then there would be a change in the 

equations governing hydrostatic equilibrium which would reduce both the pressure inside 

the sun and the neutrino fluxes. However calculations have shown that the inner core 

would have to be rotating 1000 times faster than the exterior, which not only creates very 

serious dynamical problems, but also leads to predictions of p-mode frequencies which 

do not match observations [26]. Mixing of the contents of the sun would increase the 

abundance of hydrogen in its core and allow it to burn at a lower temperature. However 

no plausible mechanism has been proposed to create mixing to the degree necessary or 

at a sufficient rate; it has been shown that about |M© would have to have been mixed 

in the last j^tQ in order to solve the solar neutrino problem [45]. 

Many ideas to reduce the opacity in the solar interior have been investigated. This 

would make the sun more transparent and thereby reduce the temperature (for a fixed 

luminosity), and hence decrease the 8 B and 7Be fluxes. Possible mechanisms include 

decreasing the heavy element abundance Z, imposing an overall reduction in the opacity 

tables, assuming that some of the iron in the solar interior precipitates, or making changes 

to the Equation of State. However p-mode oscillation data implies that the opacities 

tables used in the early eighties (LAOL) were too low, and newer models with higher 

opacities (OPAL) provide much better fits [46]. This view is consistent with the study 

by Turck-Cheize and Lopes which rules out opacity and Equation of State solutions to 

the Solar Neutrino Problem [41]. Moreover some authors have concluded that attempts 

to reduce the neutrino fluxes by decreasing the interior temperature of the sun have been 

ruled out by experimental results [43]. 



Chapter 1. Theoretical and Experimental Background 31 

1.3 The Solar Neutrino Experiments 

Among the major predictions of the Standard Solar Model (SSM) are the fluxes of solar 

neutrinos from the different nuclear interactions. In 1963, the Homestake experiment 

began measuring the flux of solar neutrinos, and it has continued to do so for over 30 

years. The rates measured have consistently been much lower than those predicted by 

solar models. However, because most of the signal comes from the relatively rare 7Be and 
8 B neutrinos which are particularly sensitive to the central temperature in solar models, 

the anomalous results were not taken as seriously as they might otherwise have been. 

In 1987 the Kamiokande experiment began taking data and also found a deficit in 

solar neutrinos although it too, is only sensitive to the high energy tail of the 8 B neutrinos. 

The early 1990's saw the completion of the gallium experiments Gallex and SAGE and 

they, too, found a deficit in the solar neutrino flux compared to the SSM. What is 

significant about these latter experiments is that the energy threshold for measuring 

neutrinos in gallium is low enough that they measure the nearly model independent pp 

and pep neutrinos. The newer experiments, combined with the progress in the SSM 

over the last three decades, have made the Solar Neutrino Problem very apparent. Our 

understanding of particle physics and the sun cannot be considered complete without 

resolution of this serious discrepancy. 

In this section each of the four experiments currently measuring solar neutrino fluxes 

will be reviewed. Table 1.3 summarizes their results and figure 1.10 shows the solar 

neutrino fluxes with the energy thresholds for the different detectors marked at the 

top. The Solar Neutrino Problem, in its simplest form, is that all of the experiments 

measure fewer neutrinos than predicted by the SSM. However, as will be shown in section 

1.3.5, the experiments do not agree with each other under very general conditions almost 

independent of the solar model. 
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7 1Ga t/h 37C1 l/h ' KIl.t/h 

Neutrino Energy [MeV] 

Figure 1.10: Spectrum of all sources of solar neutrinos based on relative rates in [2]. Con
tinuum sources are given in number arriving on earth in units cm~ 2 s _ 1 MeV _ 1 , while fixed 
energy sources are given in cm _ 2 s _ 1 . Neutrinos from the pp-chain are shown with solid 
lines, while those from the CNO-cycle are shown with dashed lines. Energy thresholds 
for the different experiments are, marked on the top of the figure. 
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Experiment Homestake Kamiokande Gallex Sage 
Target 37'Cl in C2Cl4 Hydrogen 7 1 Ga in HCl metallic 7 1 G a 
Size 3.8 x 105 I 2,140 t H20 30.3 t Ga 57 t 
Em 0.814 MeV 7.5 MeV 0.2332 MeV 0.2332 MeV 
Reaction 37Cl(ue,e-)37Ar ueH -» veH 71Ga{ue,e-)71Ge 71Ga(ue,e-)71Ge 
Depth [mwe] 4100 2700 3300 4700 
T1/2 (product) 35 days n/a 11.4 days 11.4 days 
Exp. Rate 2.55 ±0 .17 ±0 .18 1.0 79 ± 10 ± 6 74+13+5 

' 4 - 1 2 - 7 

No Diff 1.64 126̂ j 126±6

6 

Diff 2.22 1371? 1371? 

Table 1.3: Summary of features of solar neutrino experiments and their rates [49] relative 
to the BP95 model [2] with and without helium and heavy element diffusion. Note that 
measured and predicted rates (with an without diffusion) for the geochemical experiments 
are in SNUs, while the Kamiokande rates are relative to the BP95 model. 

1.3.1 The Homestake 3 7 C1 Experiment 

The Experiment 

Construction of the 3 7C1 experiment began in 1965 in the Homestake Gold Mine in Lead, 

South Dakota, and it has been running almost continuously since 1970. The mine is at 

a depth of 1478 m, or 4100 mwe (metres of water equivalent). It consists of a large tank 

containing 3.8 x 105 I of C2CI4 (perchloroethylene) liquid, with a total mass of about 615 

tonnes and containing 2.19 x 1030 3 7C1 atoms. Solar neutrinos produce about 0.5 atoms 

per day through the reaction 37Cl + ve —> 37Ar + e~. 

The threshold for this reaction is Eth = 0.814 MeV making it mainly sensitive to the 
8 B and 7Be neutrino fluxes, but not the pp and pep fluxes as shown in figure 1.10. The 
3 7 A r produced in the detector has a half life of about 35 days and decays by electron 

capture, the reverse of the reaction above. While there are many excellent reviews on 

this experiment, what follows is based on those by Bahcall [26], Davis and Cox [47], 

and Rowley, Cleveland and Davis [48]. Recent results were presented at Neutrino 94 by 

Cleveland et. al. [49]. 
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Although the experimental procedure has been refined over the years to reduce back

grounds, the basic method has endured. A typical run begins by adding a known quantity 

(normally about 0.2 cm3) of either 3 6 Ar or 3 8 Ar, alternating each run. This stable carrier 

isotope is used to monitor the efficiency of argon removal from the tank. The tank is 

then exposed for a period of time, usually on the order of one to three months. 

After exposure the tank is pumped with 4 x 1051 of He gas which removes the argon 

from the C2CI4. The gas then passes through a condenser, a molecular sieve, and finally 

a charcoal trap which is cooled to 70 K. This process removes about 95 % of the argon 

and collects it in the charcoal. The trap is heated to remove the argon gas and after its 

volume has been measured, it is combined with low tritium methane gas and placed in a 

• proportional counter to measure the 3 7 Ar. 

The two major sources of background in the experiment are high energy interactions 

caused by cosmic ray muons and fast neutrons produced by uranium decays in the rock 

walls of the mine. Background events from radioactive uranium and thorium have been 

removed with H 2 0 shielding and cosmic ray neutrino interactions have been determined 

to be negligible. 

R e s u l t s a n d D i s c u s s i o n 

The most recent results published for the chlorine experiment [49] find a neutrino produc

tion rate of 2.55 ±0.17±0.18 SNU, which becomes 2.55 ±0.25 SNU when the uncorrelated 

errors are combined. This compares to a predicted rate of 9.31̂ 4 SNU predicted by BP95 

[2]. This difference between the Homestake experiment and the SSM was the first signal 

of a solar neutrino problem. 

Direct calibration of the Homestake experiment with a neutrino source has not been 

performed to date. There was a proposal in the 1970's to produce a 6 5 Zn source at a 

nuclear reactor, but the experiment was found to be prohibitively expensive. 
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There was also some speculation based on limited statistics during the 1980's that 

there was an anticorrelation between the solar neutrino rates measured by the Homestake 

experiment and the number of sunspots on the solar surface. Bahcall et. al. [50] demon

strated that the effect was dependent on how the errors were measured, which was a clear 

inconsistency. It was again tested in the early 1990's when the sunspot number increased 

from a minimum to a maximum. Neither Homestake nor the Kamiokande experiment 

[51], which provides real time neutrino data, measured any effect. 

1.3.2 The Kamiokande Water Cherenkov Experiment 

The Experiment 

The Kamiokande detector is located at a depth of 1000 m (2700 mwe), in a mine in 

Kamioka, Japan. It consists of a large tank containing 2,140 tonnes of water, 680 tonnes 

of which are used as a fiducial mass for solar neutrino measurements. The water is 

viewed by 948 photomultiplier tubes (PMTs) on a l m x l m grid which provide about 

20 % coverage of the inner surface. The detector has an anticounter layer which consists 

of 123 outward facing PMTs which monitor background effects. The following review is 

based on papers by Bahcall [26], Nakamura [52], and Hirata et. al. [53] and [54], with 

the latter being the most complete review. 

The Kamiokande experiment began in 1983 to measure the proton lifetime, and was 

upgraded to Kamiokande II in 1987 in order to record solar neutrinos. It took 1040 live 

days of data, and was subsequently upgraded to Kamiokande III which took an additional 

700 days of data after 1990. 

Neutrinos are detected by elastically scattering with the 2.27 x 1032 electrons in the 

detector in the reaction v + e —» v' + e'. After collision, (if the electron is travelling faster 

than the speed of light in water), a cone of Cherenkov light is produced. This light is 
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picked up by the PMTs and the opening angle.of the cone determines the energy of the 

electron. The cross section for neutral current interactions is about one sixth that of 

charged current interactions, so u^s and i/T's produce fewer events than UgS. 

In addition, the direction of the neutrino is correlated with that of the electron and 

for elastic scattering, 
in \ l + me/Eu 

. c o s W = ( i + 2mjT,yn . 
where Ev and Te are the energy of the neutrino and electron respectively. From this, 

Kamiokande confirmed the neutrinos do.originate from the direction of the sun. The 

threshold of the detector has gradually decreased to about 7.0 MeV (see figure 1.10), but 

it is only sensitive to the 8 B and hep neutrinos, the latter having a very small flux. 

• A major upgrade to the detector has.taken place and SuperKamiokande began taking 

data earlier this year. The detector increased in size to 50, 000 tonnes total, providing 

a fiducial mass of 22,000 tonnes for solar neutrino experiments [55]. A total of 11,200 

PMTs were placed' in an array in the detector, and the energy threshold decreased to 

about 6.5 MeV. The anticipated event rate is about 100 times greater than Kamiokande. 

There are three major backgrounds in the detector which can mimic solar neutrino 

events: radioactivity from heavy elements such as radon and uranium in the water, pho

tons coming from the rock surrounding the detector, and spallation products from inter

actions with cosmic ray muons. Steps have been taken to reduce these backgrounds and 

determine their rates. Directional information is also very useful because backgrounds 

are isotropic while the solar signal has a definite source. 

The detector water was kept hermetically sealed and heavy metals and radon gas are 

removed using ion exchangers and a degasification system reducing uranium and radon in 

the system to negligible levels. The detector is also covered with a black plastic sheet and 

a layer of water surrounds the central part (or fiducial volume) of the detector where the 
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neutrino signal is measured. Anticounter PMTs veto photons which come from the outer 

part of the detector towards its centre and, combined with the shielding reduce these 

events to between one and two per day. Spallation products of high energy cosmic ray 

muons which interact with oxygen typically include 1 2 B and 1 2 N which /3-'decay producing 

photons picked up the the PMTs. However these decays have lifetimes on the order of 

tens of milliseconds, so they can be correlated both temporally and spatially with muon 

tracks and cascade showers to discriminate them from signal events. 

Energy calibration is done by comparing three known photon sources: an external Ni 

source introduced into the detector, the known spectrum of cosmic ray muons stopping 

in the detector, and decays from 12P> and 1 2 N spallation products. This combination 

calibrates the energy within about 3 %. . 

The measured flux of 8 B events above 7.5 MeV is 3.0 ± 0.41 ± 0.35cm"2s_1, which 

corresponds to only 45% of the flux predicted by BP95 [2]. Preliminary results from the 

first 306.3 days at SuperKamiokande show a 8 B flux of 2.44 ± O.O6+0.09 for the flux above 

6.5 MeV [56]. This represents about 37 % of the BP95 predicted rate. 

Kamiokande has taken real time data over a period where the sunspot number went 

from a minimum to a maximum and has found no correlation with the neutrino flux, nor 

have they found evidence for either day/night effects or seasonal/semi-annual variations. 

By assuming that the 8 B neutrino spectrum is not altered by any effect traversing from 

the point of production to the earth, the Kamiokande rate implies that 8£? neutrinos 

should contribute 2.8 SNU to the chlorine experiment. 
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1.3.3 The Gallex 7 1 G a Experiment 

The Experiment 

Neither the Homestake nor the Kamiokande experiment is sensitive to the pp neutrino 

flux which has a peak energy of Emax = 0.420 MeV, well below their energy thresholds. 

However, the pp flux is the most basic reaction in the pp chain and solar models are 

basically in agreement on its rate. Kuz'man realised in 1966 [57] that gallium is a 

suitable target for a radiochemical solar neutrino experiment which would detect the 

pp neutrinos via the reaction 71Ga(u, e)71Ge. It has a very low energy threshold Eth = 

0.2332 MeV, large cross section and 7 1 Ge has a half life of 11.4 days making it suitable 

for an experiment. 

The Gallex experiment is one of two radiochemical experiments which use 7 1 Ga as a 

target. It is located in the Gran Sasso Underground Laboratory in central Italy about 

6 km from the entrance to a mountain tunnel at an effective depth of 3300 mwe (metres 

of water equivalent) [58]. It has two large cylindrical tanks (only one of which is in use 

at any given time), 2 m in diameter and 7m high. The target consists of 30.3 tonnes of 

gallium in an 8.13 Molar aqueous solution in HC1. The total mass of the target is 101 

tonnes, of which about 12 tonnes is 7 1 Ga. 

A typical run begins with the introduction of 1 mg of a stable germanium carrier, 

alternating between 7 2Ge, 7 4Ge, and 7 6Ge. The tank is then exposed for several weeks, 

then purged with N 2 gas which removes about 99 % of the germanium in the form of 

gaseous GeCU. A series of chemical scrubbing processes extracts the germanium and it 

is converted to GeH4 which is measured and placed in proportional counters to record 

the Ge decays [59]. 

Two major backgrounds have to be considered: process which produce 7 1 Ge and those 
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that mimic 7 1 Ge decay. Cosmic ray muons create fluxes of protons deep underground pro

ducing germanium via 71Ga(p, n)nGe and adding about 3.7±1.1 SNU to the experiment. 

This must be subtracted from raw measurements. Radon gas, 2 2 2 Rn, which enters the 

detector from the mine air undergoes a series of three a-decays and two /3-decays which 

are picked up by the proportional counters. Because all five decays occur within about 

three hours they can be vetoed, introducing about 4 % dead time to the proportional 

counters but reducing the background to 2 ± 1 SNU. 

R e s u l t s a n d D i s c u s s i o n 

On completion of the second phase of the experiment, Gallex II, 30 runs gave a combined 

results of 79 ± 10 ± 6 SNU from solar neutrinos. The results are based on a total of 148 

measured events, 136 of which have been attributed to solar neutrinos. This compares 

to previous SSM predictions in the 125 - 130 SNU range and 137 SNU for BP95. 

Gallex also performed 19 blank runs in which the gallium was not exposed for a 

significant length of time. They measured a signal of — 1 ± 7 SNU which is consistent 

with the expected null result. The data's maximum likelihood fit to the half life of 7 1 Ge 

is 17 ± 3 days, while the known result is 16.49 days. 

Gallex is also the only solar neutrino experiment to date which has been calibrated 

with an external neutrino source. A 36 kg sample of chromium enriched in 5 0 Cr, depleted 

in 5 3 C r and low in impurities, was exposed to neutrons at the Siloe reactor in Grenoble, 

France. The irradiated sample was rich in 5 1 Cr which decays by e~~ capture: 

51Cr + e- -> blV + ve (1.15) 

The two-body chromium decay produces a monoenergetic neutrino with energies 4.26, 

4.31, 7.46 or 7.51 MeV in known ratios. In eleven runs ranging in length from 3.35 to 21 

days exposure time, the ratio of 7 1 Ge produced in the experiment to that predicted from 
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the activity was found to be = 1.04 ± 0.12 [60]. 

1.3.4 The S A G E 7 1 G a Experiment 

The Experiment 

The Soviet-American Gallium Experiment. SAGE began taking data in 1990. It is located 

in a laboratory under Mount Andyrchi in the Caucacus mountains in southern Russia 

at a depth of 4700 mwe. Like Gallex, SAGE employs a 7 1 Ga target which is converted 

to 7 1 Ge by neutrino interactions and as such, many of the details and backgrounds are 

similar. 

SAGE consists of eight 2 m 3 teflon-lined vessels, which each hold about 7 tonnes of 

gallium. Heaters and mixers keep the gallium above its 29.8° melting point, and the 

experimental procedure is described in detail in the literature [61],[62],[63]. It begins 

with the introduction of about 700/xg of an isotope of Ge (other than 7 1 Ge) in the form 

of a GaGe alloy, followed by exposure for periods ranging from three to six weeks. The 

extraction begins with the addition of HC1, H2O2 and water to the tanks to remove the 

germanium, followed by a procedure similar to that used in Gallex to reduce it into a 

manageable volume. The final product of the extraction, GeH4 gas, is mixed with Xe 

and placed in proportional counters. The extraction procedure is about 80% efficient. 

Backgrounds in the experiment are the same as those in Gallex, the main one being 

external protons which produce germanium by nGa(p, n) nGe. Detector shielding, use 

of low activity materials, a Nal coincidence/anticoincidence detector and cuts made to 

the data combine to reduce backgrounds to less than 0.025 events per day. 
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Results and Discussion 

The SAGE experiment began taking data in the middle of 1990, but several problems 

with the equipment emerged. Data were lost or considered unreliable as a result of 

instabilities with the electronics, vacuum accidents, counter failures, contamination from 

radon and 6 8Ge, and the theft of an unknown quantity of the target gallium [64]. Early 

results were very low leading to questions about the reliability of the experiment as the 

rate measured based on the 1990 data was 201^ ± 32 SNU. 

Throughout 1990, problems with the detector were gradually rectified and its reli

ability increased. The solar neutrino rate measured by SAGE for the 1990-92 data is 

74J1J2-7 SNU [65], which is in agreement with the results from Gallex. Future plans for 

the detector are to continue to take measurements in order to increase its statistical 

accuracy, and there are plans to do a direct calibration of the detector using a 5 1 Cr 

source. 

1.3.5 The Solar Neutrino Problem Almost Independent of the Standard So

lar Model 

The solar neutrino problem was traditionally thought of as the discrepancy between 

the experimental data and the SSM. However, recent calculations have shown that the 

different experiments are not in agreement. Bahcall [66] has argued that there are two 

solar neutrino problems: the incompatibility of the 3 7C1 and Kamiokande results and the 

low counting rates in the gallium experiments. 

Kamiokande measures the high energy region of the 8 B flux. If it is assumed that no 

energy dependent mechanism affects those neutrinos, then it provides a measurement of 

the 8 B flux. That value can then be used to determine how many 8 B neutrinos should 

be measured by the 3 7C1 experiment. Kamiokande's result implies that 3.5 ± 0.5 SNU 
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should be recorded at Homestake, but only 2.55 ± 0.25 SNU are seen, making the two 

experiments incompatible at level of about 2a, even if the 7Be neutrinos aren't there. 

The gallium experiments do measure the pp neutrinos which have a very strong lower 

limit on their flux which comes from the solar luminosity—if the pp neutrinos aren't there, 

then the sun could not be shining as brightly as it is. Using the luminosity constraint, 

the pp neutrinos alone are able to explain the gallium experiments' signal, not including 

the solar model independent pep flux or the 8 B flux measured by Kamiokande. 

Several authors [67] have analyzed the experimental data and compared it to standard 

and non-standard solar models to highlight these discrepancies. Extending the simplified 

argument given by Parke [68] to include all neutrino sources and using the newest SSM 

[2] makes it even more compelling. The analysis makes four assumptions: 

• the pp cycle is the dominant source of solar energy, 

• the sun is in a quasi-equilibrium a time scale of about 106 years, 

• neutrinos are not affected propagating from the sun to the detector, and 

• the detector cross-sections are well known. 

The pp cycle consists of the conversion 4p + 2e~ —> 4He + 2ve. The 26.731 MeV of 

energy liberated is split between the kinetic energy of the neutrinos and the sun in the 

form of heat. One of the neutrinos converted is either a pp or a pep neutrino, while the 

second can be any one of pp, pep, 8 B, 7Be, or hep, depending on which of the paths in 

figure 1.3 is taken. The mean energy taken by these five type of neutrinos is 0.265, 1.442, 

0.861, 7.0, and 9.4 MeV respectively. The ratio of the pp to pep neutrinos is given by the 

relative cross sections and is well understood to be 0.9976 : 0.0024. 

The CNO-cycle consists of three possible cycles producing two different neutrinos 

with energies in the range 1.2 — 1.74 MeV. For simplicity, we will consider only the first of 

the three cycles which is believed to produce the vast majority of CiV O-cycle neutrinos. 

Note, however, that the argument which follows does not depend on that assumption 
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because of the similarity in the CiVO-neutrino energies. In effect, the three cycles are 

being lumped into one, and the SSM theoretical flux used will be from 1 3 N neutrinos. 

Using the different possible paths for producing neutrinos, the quasi-equilibrium solar 

luminosity LQ gives the following constraint: 

= [(0.9976)(25.0 MeTO + (0.0024)(23.8 Mel/)] $ p e p + 

[(0.9976)(19.5 MeV) + (0.0024)(18.3 MeV)] $8fi+ 

[(0.9976)(25.6 MeV) + (0.0024)(24.4 MeV)] $?Be+. 

[(0.9976)(17.1 MeV) + (0.0024)(15.9 MeV)]$hep+ 

(13.1 MeV) - $ p e p - $ 8 B - &Be -$hep] + (23.8 MeV) $ C N O 

(1.16) 

where L 0 = 3.844 x 1033erg/s and RAU = 1.496 x 1013cm. Each pair of terms in the 

first four lines has one term for the energy produced with a pp neutrino and one with a 

pep neutrino. The energy in the pp term in the last line is divided by two because two 

neutrinos are produced, and the CNO term uses neutrino energies of the upper cycle in 

figure 1.6. 

Defining the ratio of the actual neutrino fluxes to those given by the BP95 model 

(p* = $V^*BP95) the luminosity constraint can be written as follows: 

1 = 1.95 x 10 -V e p + 4.97 x 1 0 -V S + 7.55 x 10" V"^ + (1-17) 

5.67 x lO^V^ + 0.908^ + 1.72 x lO'V^ (1.18) 

Computer programs which will be discussed in the next chapter determine the con

tribution to the total rate from each source, for each of the three neutrino experiments 

using the BP95 fluxes (and assuming they do not change as they propagate to earth). 

The results are: 

S% = 6.86v?8B + 1.62<p?Be + 0.206<^ep + 0.532^13jV + 4.27 x 10"Vep (1.19) 
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S^a = 16.0</B + 37.8</-Be + 2 . 8 V e p + 10.1<p"N + 8.35 x 10 "V e p + 78.7 (1.20) 

SKam = * 8 j B + 1-28 x 10- 5$ f t e p (1.21) 

where the 3 7C1 and 7 1 Ga rates are given in SNU, and the Kamiokande results are normal

ized so that the $*B coefficient is equal to unity. The luminosity constraint has been used 

to remove the (p™ term from SlQa. The results are then compared to the best experimental 

results, with their statistical and systematic errors combined in quadrature: 

S% = 2.55 ± 0.25 S N U • (1.22) 

Se
G

x
a = 74±9.5SiVC7 (1.23) 

SeKam = (0.51 ± 0.072) 4B

F 9 5 (1.24) 

Because the hep coefficients in equations 1.19 to 1.21 are about four orders of magni

tude smaller than the largest term in the radiochemical experiments they are dropped. 

They are too small to be relevant and their contribution in these equations would only 

strengthen the arguments to follow (but by a negligible amount). The hep contribu

tion is also dropped from S^am because the coefficient is O(10~5) that of the 8 B term. 

Combining the theoretical and experimental results yields: 

6 .86^ ± 1.62</Be + 0.206<^ep + 0.532y>13jv = 2.55 ± 0.25 (1.25) 

16.0^B + 31.9</Be + 2.74<^ep + 8.71(p13N = -4.65 ± 9.5 (1.26) 

i p B = 0.51 ±0 .072 (1.27) 

Substituting <pB from the third of these equations into the first shows the inconsis

tency between the Kamiokande and 3 7 Cl results discussed by Bahcall [66] because even 

with ipBe = ippep = (p13N = 0, the LHS of the equation would be much larger than the 

RHS. The second problem identified by Bahcall results from the negative value on the 
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RHS of the second equation especially when the 8 B neutrinos seen by Kamiokande are 

included, although this effect is not as pronounced. 

One can then look for the best fit to the experimental data using the parameters ip*8 

and <p?Be subject to the constraint <p7Be > 0. Three different cases will be considered: (i) 

ipPeP = tp1^ = Q j (Jj) ppep = 1 a n d = 0 ) a n d (££1) ppep = = ^ T h g firgt c a g e i g 

the most, conservative effort to try explain the lower than expected experimental results 

independent of the SSM. The second case is almost as conservative, since the pp and pep 

fluxes are fixed by the luminosity constraint and are therefore almost independent of the 

details of the solar model given that the relative size of the cross sections for the two 

reactions are quite well known. The last case will evaluate at what level the experimental 

results differ with the SSM. 

A maximum likelihood estimate of the parameters for each of the three cases above 

is given by minimizing the parameter x2 which is defined by: 

i=Cl,Ga,Kam 

Figure 1.11 shows contours of constant x2 a * intervals one standard deviation apart 

as a function of <pB and (pBe. The standard model with 3o errors is also shown on the 

plot, as well as the relative dependence of the two fluxes on the sun's central temperature. 

In (a), the Homestake-Kamiokande plot rules out the SSM at the 3o level, even with the 

central temperature at its optimal level and the pep and CN O-cycle neutrinos arbitrarily 

excluded. A similar plot in (b) with Gallex/SAGE and Homestake leads to a similar 

conclusion at a level of about 2.25cr and in (c), the Kamiokande and Gallex/SAGE data 

together exclude such a model at greater than 3a. These results imply that any pair of 

experiments rules out an unrealistic SSM in which the sun's central temperature is varied 

to a best fit value, contrary to the solar oscillation data, and the pep and CNO fluxes 

are removed. 

(1.28) 
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0.25 0.5 0.75 1 

Figure 1.11: Experimental constraints on (f>Be and <j>B of (a) Homestake and Kamiokande 
data, (b) Homestake and SAGE/Gallex data, and (c) Kamiokande and SAGE/Gallex 
data. Three standard deviations from the SSM results are shown, as well as the effect on 
the ratio of the two fluxes resulting from changes in the central temperature of the sun. 



Chapter 1. Theoretical and Experimental Background 47 

1.5 

0 - 0.25 0.5 0.75 1 1-25 

0 0.25 0.5 0.75 1 1.25 

Figure 1.12: Experimental constraints on 0 B e and <f>B of combined Homestake, 
Kamiokande and SAGE/Gallex data. Three standard deviations from the SSM results 
are shown, as well as the effect on the ratio of the two fluxes resulting from changes in the 
central temperature of the sun. Figure (a) excludes pep and CNO fluxes, (b) includes 
pep fluxes but excludes CNO fluxes, and (c) includes'pep and CNO fluxes predicted by 
BP95. 
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Figure 1.12 compares the same contours, except with all three experiments combined. 

In (a), the same restrictive assumptions above are made, and the experiments rule out a 

SSM with arbitrary central temperature at a level of 4cr. In (b), the pep neutrinos are 

included—their flux is proportional to the pp flux and not the details of the SSM, and 

the experimental fits are poorer. If the CNO-cycle neutrinos are included at SSM levels, 

then the experiments rule out any type of SSM with a best fit temperature at the So-

level. 

Figure 1.12(b) also shows that the experiments rule out <//Be > 0 at 2cr for any solar 

model, and any SSM-like model where the temperature varies at 4cr. It should also 

be noted that the central temperature in the sun is an important determinant of. solar 

oscillation frequencies. The SSM model fits the experimental data well, while models 

with different central temperatures do not. 

1.4 T h e A t m o s p h e r i c N e u t r i n o A n o m a l y 

Two large underground water Cherenkov detectors, Kamiokande and 1MB, began taking 

data in the early 1980's in order to measure the lifetime of the proton. At the time, the

oretical models which unified the strong force with the electroweak predicted the proton 

would decay with a time constant on the order of 1030 years. While these experiments 

did not see such a decay and could only set lower limits on the proton lifetime, they did 

look at other phenomena. 

Among them, was the observation of neutrinos produced by cosmic ray interactions 

in the upper atmosphere. In particular, they found that flux of e-type neutrinos (ve 

and ve) was larger than expected relative to the flux of //-type neutrinos [y^ and P^) , 

and Kamiokande [69] and 1MB [70] collected several years worth of data. Three other 

experiments have also published results. While the statistical significance of the effect is 
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still up in the air, the disagreement between the predicted and measured fluxes is now 

referred to as. the Atmospheric Neutrino Problem (hereafter the A N P ) . 

1.4.1 Predicting the Flux of Neutrinos from Cosmic Ray Interactions 

Many independent groups have modelled the interactions of cosmic rays in the upper 

atmosphere [71], [72], [73],[74]'. The calculations begin by estimating the content, flux and 

spectra of cosmic rays hitting the upper atmosphere. These are dependent on several 

factors, including the rate of solar activity and the geomagnetic latitude. The models 

also estimate the content of the upper atmosphere itself. 

Then, using measured nuclear cross sections, Monte Carlo programs simulate the 

interactions of the cosmic rays with the atmosphere and follow the reaction chains to 

determine the final neutrino fluxes they ultimately produce. The majority of reactions 

eventually end up with nuclei, nucleons, pions and kaons. These latter two particles 

decay to produce a muon and muon type neutrino, either TT+, K+ —» fx^ + u^ or 7r~, K~ —> 

p~ + Some kaons decay to pions, which follow as above. The muons, in turn, decay 

to electrons producing one /x-type and one e-type neutrino (via p+ —» e + + ue + or 

pr -> e" + ve + Vy). 

Naively, from the above analysis, one expects that the ratio of /J-type to e-type neu

trinos arriving on earth would be 2 : 1. In the more advanced models the ratio turns 

out to be closer to 1.8 : 1, largely because of the effect of muon polarisation. In addition 

to the ratio, however, the models calculate the absolute fluxes of neutrinos produced by 

cosmic rays. 

The different analyses only agree on the absolute rates to within about 30 %, depend

ing on the energy. The source of the discrepancies are known—the major difference is 

how each model treats the production of low energy pions in collisions between protons 

and nuclei in atmosphere [75]. In spite of differences in the absolute fluxes, the ratio 
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Experiment Method Data Size 
[kt-yr] 

Double Ratio 

K / e L j(R»/<)„n 
Kamiokande Water Cherenkov 4.92 0.601^ ± 0.05 

SuperKamiokande Water Cherenkov 300 days 0.635 ± 0.033 ± 0.010 ± 0.052 
1MB Water Cherenkov 7.7 0.71 ± 0 . 0 5 ± 0 . 1 1 

Soudan 2 Iron calorimeter 1.52 0.72 ± 0.191^? 
Frejus Iron calorimeter 1.56 1.06 ± 0 . 1 8 ± 0 . 1 5 

NUSEX Iron calorimeter 0.74 0.96±g;ii 

Table 1.4: Measurements of the double ratio of /i-type to e-type neutrino fluxes by six 
experiments. Errors are quoted as statistical then systematic, and SuperKamiokande 
quotes statistical, statistical—Monte Carlo, and systematic respectively. 

of the //-type to e-type fluxes in the calculations all agree within 5 %, again depending 

on the energy. With the smaller variance, it is this ratio which is normally used by to 

compare the calculated fluxes to those measured by underground experiments. 

1.4.2 Experimental Measurements of Atmospheric Neutrinos 

Besides Kamiokande and 1MB, atmospheric neutrino fluxes have been measured by two 

older experiments Frejus and NUSEX, while the new Soudan 2 detector has released 

preliminary data. The results from the five different experiments are summarised in 

table 1.4. 

NUSEX and Frejus are two iron calorimeter detectors which, like Kamiokande and 

1MB, were originally built to measure the proton lifetime. NUSEX (nucleon stability 

experiment) was a 3.5 m cube with an active mass of 150 tons located in the Mont Blanc 

tunnel in eastern France, and took data from 1982 to 1988 [76]. Frejus was a Similar but 

larger detector located in the Laboratoire Souterrain de Modane in the French Alps [77]. 

Neither detector found a deviation from the predicted ratio of //-type to e-type neutrinos, 

however as the table shows, the statistics are very low. In fact, neither experiment is 

inconsistent with Kamiokande or 1MB. 
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Both water detectors measure rings of Cherenkov light produced by e± and p±, typ

ically having energies below 1 GeV, created and stopping in the detector. Depending 

on the interactions of the leptons, either single- or multi-ring events are observed. By 

analysing the geometry and intensity of the Cherenkov light, the single-ring events can be 

tagged accurately as either //-type or e-type by comparing the results of several different 

algorithms. While p± produce sharp, well-defined rings, e± tend to produce diffuse ones. 

The experiments quote the ratio of ix- to e-type events, (i?M/e) , and compare it 
\ / d a t a 

to the ratio predicted by Monte Carlo programs using the atmospheric neutrino fluxes dis

cussed in the last section, (-RM/e) • Table 1.4 shows the double ratio (Rp/^ / [R^/^J 

which is typically reported in the literature. This reduces the errors in the Monte Carlo 

generated fluxes, because ratios of the different groups' calculations models agree much 

better than their absolute fluxes do. 

In addition to the fully contained events, both detectors also record stopping and 

through-going muons which are produced outside the detector.but do enter into it. The 

muons are produced by neutrinos interacting with rock outside the detector in the reac

tions + p —> p+ + n and u^, + n —¥ pT + p. They tend to come from neutrinos which 

are higher in energy than the "fully-contained" events which are created and stop in the 

detectors. While these events are not used in determining the p- to e-type ratio, they 

are used to study the atmospheric neutrino flux, and can be used to constrain some of 

the explanations for the ANP. 

Kamiokande has also measured an anomaly in fully-contained events with energies 

greater than lGeV (multi-GeV), and have studied the dependence of the ratio on the 

zenith angle [78]. They found an anomaly in {Ry,/^ ^ '/ {Rule) M C similar to their earlier 

(sub-GeV) results as well as a weak angular correspondence. The double ratio is peaked 

in the downward direction, although the effect is not statistically overwhelming. 

The Soudan 2 detector is another iron calorimeter, but is much larger than NUSEX or 
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Frejus and has different detection techniques. It consists of 224 modules each weighing 

4.3 tons located at a depth of 710 m in the Soudan Underground Mine State Park in 

Minnesota, USA. Preliminary data presented in table 1.4 was taken between 1989 and 

1993 during construction, beginning with 275 tons and ending with the full 963 ton mass 

[79]. While the data set is not large enough to definitely confirm or oppose the water 

Cherenkov experiments, future results certainly will be. 

Finally, SuperKamiokande has reported some preliminary results based on 300 days 

of taking data [56]. While the data is based on a small time period, it has more events 

than the Kamiokande results. The ratio (Ru/e) I [Rule) agrees well with previous 
V / data V H l / M C 

measurements in both the sub-GeV and multi-GeV ranges, and there is again weak 

indication of distortion in the zenith angle dependence. Over the coming years, the 

statistical significance of these results will increase and SuperKamiokande will be able to 

bin the data by energy to look for spectral distortions. 

1.4.3 Discussion 

If taken at face value, the atmospheric neutrino results clearly imply physics beyond 

the standard model. However, some questions about the experiments and statistical 

significance of the results still need to be worked out. 

Initially it was noted that the water Cherenkov detectors saw an anomaly in the double 

ratio (-̂ We)̂  / (̂ /e)MC while the iron calorimeters, albeit with very low statistics, 

did not. Once it has been running for a few years Soudan 2 will resolve this difference. 

Early indications appear to show an effect similar to that 1MB and Kamiokande, but the 

data so far only shows an anomaly at about 1.5a. 

It has also been suggested that the over-abundance of e-type neutrinos is the result 

of backgrounds that were not accounted for. Ironically, there was an early suggestion 
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[80] that the detectors saw additional neutrinos from the proton decay reaction p —> 

e + + ve + Pe, although this was ruled out [78]. More recently, it was suggested that 

neutrons enter the detectors and produce pions which mimic e-type neutrino events [81]. 

Kamiokande has argued that they have accounted for this background in their analysis, 

and Soudan 2 has studied neutrons entering the detector and concludes that they could 

not account for the anomalous double ratio results seen by the water detectors. 

A second criticism of the statistical significance of the calculations. Perkins studied 

the models which generate the neutrino fluxes used to compute (-RM/e) M and argued that 

the errors have been underestimated. In particular, the spectrum of pions and kaons with 

large transverse momentum have not been accurately measured, and large extrapolations 

are built into the calculations. He also argued that there are still significant discrepancies 

on the order of 15 % in vertical muon fluxes measured at sea level, which are used to 

normalise the neutrino flux calculations. Finally, he suggested that the neutrino cross 

sections for upward going muons measured by Kamiokande and 1MB may not have been 

estimated correctly, adding an error of 6 — 12 %. The conclusion of his paper is that 

the errors associated with calculations of the atmospheric neutrino fluxes may have been 

underestimated, thus reducing the statistical significance of the anomaly [82]. 

More recently, Fogli and Lisi have criticised the statistical analysis of the experimental 

results [83]. They point out that while taking the ratio of /i-type to e-type neutrinos 

reduces the errors in the theoretical neutrino flux calculations, it changes the type of 

distribution of the statistical variate. While the sum, difference and product of two 

gaussian variates is again gaussian, the ratio of two gaussian variates is described by a 

Cauchy distribution, and the tail of a Cauchy distributed variate is highly non-gaussian. 

Fogli and Lisi went on to carefully reanalyse the atmospheric neutrino data using the 

absolute neutrino fluxes. They found that the Kamiokande sub-GeV, 1MB and Soudan 

2 data imply anomalies from the theoretical neutrino fluxes at statistical levels of 3er, 2o 
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and la respectively. As a comparison, the Kamiokande sub-GeV data using the ratio of 

//-type to e-type neutrinos, R^/e — 0.61 ± 0.075 would erroneously suggest an ANP at a 

level of more than 5cr. 

New measurements of the muon fluxes at different heights in the atmosphere will help 

refine the theoretical calculations of atmospheric neutrino fluxes in the coming years. The 

new underground iron calorimeter Soudan 2, with different systematics than Kamiokande 

and 1MB, will confirm (or refute) the anomaly measured by the water Cherenkov detec

tors. Combined with the large volume SuperKamiokande detector now on line, it will also 

increase the accuracy of measurements of the atmospheric neutrino fluxes, and hopefully 

settle the question of the anomaly and its statistical significance once and for all. 



C h a p t e r 2 

N e u t r i n o O s c i l l a t i o n s w i t h T w o F l a v o u r s 

2.1 I n t r o d u c t i o n 

Many different suggestions have been made over the years to account for the solar neutrino 

problem, some which proposed changing the solar models while others involved new 

neutrino properties. A fairly obvious extension to the Standard Model of Particle Physics 

(SMPP) is to allow the neutrinos to have a mass. All other elementary fermions do, and 

the only reason neutrinos have been considered massless is that to date, no one has 

been able to measure one. The formalism also provides a natural explanation for the 

atmospheric neutrino anomaly which was measured years later. The masses that are 

implied by the SNP and ANP are much less than current experimental limits for direct 

measurements, so they do not disagree with any existing results. 

Upon accepting neutrino mass, it is no longer possible to use linear combinations of 

the weak eigenstates to diagoriaiise the Hamiltonian: the weak eigenstates may differ 

from the mass eigenstates. A similar effect has long been known in the quark sector. 

It leads to mixing of neutral kaons and B mesons, CP violating effects and many other 

interesting phenomena, some of which can be expected in the lepton sector with massive 

neutrinos. But because the neutrinos do not interact as readily as the quarks, the effects 

are much more difficult to measure. 

In this chapter, two massive neutrinos and their effect on both long baseline oscil

lation experiments and solar neutrinos will be studied. Section two will introduce the 

55 
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notation used to describe neutrino oscillations in the simple case of two neutrino flavours 

two different ways: the standard approach and that originally derived by Mikheyev and 

Smirnov. Section three will apply the theoretical results to long baseline neutrino oscil

lation experiments using a simulated neutrino beam, and make quantitative statements 

about what regions of parameter space could be studied with different configurations 

of detectors. Section four will use the neutrino mass formalism to derive limits on pa

rameters based on the solar neutrino experiments, for both vacuum and MSW enhanced 

neutrino oscillations. 

2.2 Theoretical Background 

2.2.1 Neutrino Oscillations in Vacuum 

The suggestion that neutrinos may have nonzero mass and undergo oscillations was made 

as early as 1968 [84]. Although no direct experimental evidence .to date has found evidence 

for nonzero masses, the charged leptons and quarks are all massive Dirac particles. Limits 

on the masses of the three neutrino flavours are mVe < 10 — 15 eV with 95% confidence 

level, mVti < 170 keV with 90% confidence level, and ra„T < 24 MeV with 95% confidence 

level [85]. 

Early work [86] examined the implications of the assumption of nonzero mass, and 

showed that oscillations can occur between weak eigenstates as they traverse the vacuum. 

Several excellent reviews exist, including [26] and [87] which define the notation that has 

become commonplace in the literature. 

The mass eigenstates of massive neutrinos will not, in general, coincide with the 

eigenstates that participate in weak interactions. These two pairs of basis states are then 

related by a unitary transformation. For a system of two neutrino states it is common 

to define the mass eigenstates jẑ i) and |i/2), and weak eigenstates \ua) and \vp). The 
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transformation relating them is described by a single parameter, the mixing angle 9V as 

follows: 

V V0 

I cosdv sinO v \ 

y —sinQv cos9y J 

\ 
(2-1) 

The time evolution of diagonal mass eigenstates of momentum k is given by: 

"dt V 
k 

\J k2 + m 

0 

V 

2fc2 

Jk2^ 
0 

ml 

1 + 2fe2 

\ 
(2-2) 

V2 J 

where the last step is valid in the ultrarelativistic limit k2 > mf. It is customary to 

subtract [k + (m\ + ml)/Ak} times the identity from the Hamiltonian (leaving it traceless 

and changing only the overall phase of the wavefunction) to obtain 

1 
4E 

I -Ami 0 \ 

V 0 Am2 

v ) 
(2.3) 

where Am2, = m\ — m\ and E « k in the high energy limit. 

Neutrino oscillations become apparent upon calculation of the probability that a pure 

| va) produced at the origin is still a | ua) after travelling a distance L. Combining the 

equation above with (2.1) determines the time evolution of a weak eigenstate: 

ua{t)) = cos{6v)ei^t | Vl) + sm(6v)e-i-iSLt \ v2) (2.4) 

One can then calculate the probability that a weak eigenstate | ua) produced at position 

L = 0 will still be a | ua) after traversing a distance L. The probability is given by 

calculating \(va(t) \ fa(0))|2 which is easily shown to be: 

P{va{0) -> ua(L)) = sin2{20v)sin2 1.27- v 

E 
(2.5) 
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Figure 2.1: Feynman diagrams showing weak current scattering of neutrinos off electrons. 
At left, all three neutrino flavours participate in neutral current scattering, while the 
charged current channel on the right is open only to electron neutrinos. 

where the constant 1.27 is equal to (Ahc)"1 expressed in units [GeV][eV]~2[km]_1 which 

prove useful for analyzing the oscillations of typical accelerator produced neutrino beams. 

It is also common to write the Hamiltonian in the weak eigenbasis by applying the 

transformation (2.1) to equation (2.3) to obtain 

d 
i — 
dt (Va) 

Ami 1 

4E 
-cos(26v) sin(29v) 

\ sin(29v) cos(29v) 

\ ( 
(2.6) 

2.2.2 Neutrino Oscillations in Matter 

The next major development in neutrino came with Wolfenstein's realisation [88],[89] 

that when electron neutrinos pass through matter the Hee component of the Hamiltonian 

acquires an additional term. Electron neutrinos can scatter off the electrons in matter 

via both the charged and neutral currents, whereas muon and tau neutrinos have only 

neutral current interactions as shown in figure 2.1. 

The standard model contribution to the Hamiltonian from charged current part of 



Chapter 2. Neutrino Oscillations with Two Flavours 59 

(2,7) 

the interaction is given by [87] 

Hee = : ^ e r u ( l - 7 5 H ( l - ' 7

5 ) e 
= \flGp v^ave^ae 

where Fierz reordering and the assumption that all neutrinos are left-handed while elec

trons are unpolarised is used to obtain the final expression above. For forward scatter

ing the electron momentum is unchanged so only the 7 0 component contributes leaving 

Hee = V2GFNe. 

Adding this term to the Hamiltonian in the weak eigenbasis and subtracting one half 

its value times the identity matrix again yields a traceless matrix which has the form: 

/ 
v. Amj, 

4E 

4E 

-cos(29v) + ^ F N e E sin{29v) \ \ 

sin(29v) cos(29v) - 2^<E j 

—cos(29M) sin(29M) 

^ sin(29M). cos(29M) 
(2.8) 

The last step writes the equation in a form where the Hamiltonian in matter is 

identical to that in vacuum, except that the mixing angle and mass squared difference 

have been modified in matter. The new parameterisation is dependent on the energy E 

of the neutrino and the number density 7Y e of the electrons. It is conveniently expressed 

by defining the quantity 

DM = 2 ( ' ^ ) O M ( 2 ( ? o ) + ' ( ^ (2.9) 

where the vacuum oscillation length in dimensionful units Lv. and neutrino interaction 

length Le are given by 

• Lv = AnEhcj Aml-c4 (2.10) 

Le = V2Trhc/GFNe (2.11) 

file:///flGp
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Figure 2.2: Matter enhancement of the neutrino mixing parameter sin2(20A*r)- The reso
nance occurs when Lv/Le = cos(20M), and its width increases with sin2(20v), 

Using these definitions, the mixing parameters in matter can be easily related to those 

in-vacuum using as follows: 

Am2

M - DM X Am 2 , (2.12) 

. x sin(26v) sin(28M) = ^ V> (2.13) 

What is notable about the matter oscillations is that there is a resonant density. When 

Ne = A r ^ ^ g ^ v ^ > t n e n Lv/Le = cos (26v), equation (2.9) reduces to DM = sin(20y) and 

sin(2^M) = 1 which implies that mixing is maximal. 

The matter enhanced mixing angle is illustrated as a function of electron density in 

figure (2.2), which shows that the width of the resonance increases as sin(20y) increases. 

The behaviour of the two squared masses is shown in figure (2.2). The minimum difference 

between the masses occurs at resonance, when (Amf^)^ = sin(2f5y)Am2

/. 

The mixing angle 6M defined above diagonalises the Hamiltonian and provides a 

unitary transformation to the effective mass eigenstates in matter. Applying the inverse 
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Figure 2.3: Matter enhancement of the mass eigenstates as a function of electron density. 
Note that the vertical scale has been set so that m\v — 0. The masses approach m\v and 

-\-2\f2GFNeE.asymptotically at large density. As sin2(20y) increases, the difference m 
between the masses at resonance increases. 
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of the analogous transformation in vacuum 2.1, a new basis can be defined as follows: 

\ ^ 2 , M / 

COSOM —sindM 

sin0M COSOM 

( u \ 

\vf>) 

(2.14) 

In this new basis, the Hamiltonian equation has the same form as it did in vacuum 

except that the mass squared difference now takes its modified form: 

\ 
di. V2,M ) 

1 
AE 

-Am2

M

 0 

0 Am2

M j 
(2.15) 

\ ^ 2 , M / 

and the probability that a neutrino produced in the weak eigenstate \va) which is mea

sured after propagating a distance L through matter at constant electron density is then 

given by: 

P(ua(Q) - » ua(L)) = 1 - sin2(20M)sin 2 ( L 2 7 ^ | ^ (2.16) 

2.2.3 The Mikheyev-Smirnov Approach 

In their series of early papers [90],[91],[92], Mikheyev and Smirnov took a different ap

proach to solving the system which is presented here for completeness. They defined two 

parameters M(Lv,Le) and m(Lv, Le, Ne) as follows: 

2M = ~ sin(20V) ; m = ^-(cos(20V) -

Ly Ly \ Le / 
(2.17) 

Next they wrote the probability P that a ve produced at time t = 0 will still be a ve 

at a later time t, and two transition amplitudes as follows: 

P = (ue{t)\ue){ue\ue(t)) 

Ri + i h = ( ^ M * ) ) 

R2 + i h • = ( z ^ K ( O ) 

(2.18) 

(2.19) 

(2.20) 
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where the amplitudes have been explicitly broken up into their real and imaginary parts 

and the time dependence is expressed in the obvious way. Differentiating these quantities 

with respect to time and using 2.8 above gives a series of equations: 

dP 
dt 

d2P 
dt2 

= -2M {R2h + Rih) (2.21) 

= 2M 2 (Rl + T\ - R \ - II) + 4Mm (RXR2 + IJ2) (2.22) 

^ = - m / i + MI2 ; ^ = mRi - MR2 (2.23) 
dt dt 

^ = MIX + ml2 ; ^ = -MRX - mR2 (2.24) 
dt dt 

By taking successively higher order derivatives of these quantities, the amplitude 

terms can be eliminated, leaving a differential equation for P: 

d3P dmd2P A . 9 „ , o , • nl,rodm. „ ' „ . 
m *r-^^+ 4 -("> 2 + ̂ - ^ V ( 2 p - 1 ) = 0 • ( 2 ' 2 5 ) 

The initial conditions come from the definitions in 2.18 tp 2.20 and are P(0) = 1, 

P(0) = 0 and P(0) = —2M2. This general form of the equation can be used to calculate 

neutrino oscillations in a variable density medium. In a fixed density medium, = 0 

and it reduces to 

* P + 4 ( I B » + • (2.26) 

which admits a periodic solution of the form 

P(t) = Asm (^) + Bcos (^) (2.27) 
\LM/ \LM/ 

where the matter oscillation length is given by LM = 4:nEhc/ AmMc4 in analogy with 

that in vacuum. Applying two initial conditions determines A = sin2 (26M) and B = 0. 

Integrating this solution and including the last initial condition produces a result identical 

to 2.16 upon applying t = ~: 

P(t) = 1 - sin2 (20M) sin2 (^-) (2.28) 
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2.3 Long Baseline Neutrino Oscillations with Two Flavours 

Computer codes developed by the author calculated oscillations for neutrinos passing 

through the earth and displayed the results. Unless otherwise specified, all calculations 

in this section were done with these, codes. For fixed densities, exact evaluation of equa

tion 2.16 was possible. However Runge-Kutta methods were also employed to integrate 

equation 2.8 and take into account the variable density of the earth. Details of the code 

and the Runge-Kutta methods are given in the next chapter. 

2.3.1 Experimental Notes 

Early long baseline experiments were based at nuclear reactors which provide copious 

fluxes of electron antineutrinos [93],[94],[95]. Detectors which measured the reaction 

ve +p —y e+ + n were placed at different distances from the source to determine whether 

the rate drops off as the inverse square of the distance from the detector. The longest 

baselines for reactor experiments to date are on the order of 100 m, although new ones 

up to 1 km will be coming on line soon and proposals for lengths as high as 13 km have 

been made [96] V-

Reactor-based investigations have the advantage that the neutrino energy is very 

low, in the range of several MeV which is about three orders of magnitude below typical 

accelerator-based neutrino energies. This means that it is possible to probe to much 

lower mass-squared differences because, as is evident from equations (2.5) and (2.16), 

neutrino oscillations become apparent when 1.27'An£L is on the order of 7r/4. 

However such experiments also have several disadvantages. Because nuclear reactors 

are isotropic sources of antineutrinos, only a fraction of those produced actually enter 

the detector. The cross-section for the antineutrino reaction o(uiN —> l+X) pa 3.25 x 

10~38 cm2 at low energies is less than one half of the corresponding neutrino reaction 
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o-(uiN —> l~X). Moreover, the sign of the matter contribution to the Hamiltonian is 

opposite that of neutrino and as a result, matter'suppresses antineutrino oscillations 

rather than enhancing them. 

Several accelerator-based experiments have also been performed to date, while many 

others have been discussed [97],[98],[99],[100] with baselines ranging from less than one 

kilometre to substantial fractions of the diameter of the earth. In these experiments, 

neutrino beams are produced by focusing a high energy particle beam at a target in 

order to produce copious numbers of secondary hadrons, mostly pions and kaons [101]. 

Those with positive electric charge are then focused into a well collimated beam and 

enter a long decay tunnel where the mesons can decay via the reaction 7r+, K+ —>• p^v^. 

Since CTp+ = 659 m, a relativistic muon (which would also include a time dilation factor) 

is unlikely to decay in a tunnel on the order of 100 m. Contamination of a typical z/M 

beam by ve is generally on the order of about one half of one percent. 

In the calculations presented, oscillations are calculated for a typical accelerator-

produced neutrino flux. The fluxes computed were based [99] on the AGS accelerator at 

Brookhaven National Lab. Calculations were redone assuming a higher proton current 

which would have been available at the then proposed KAON factory, but with the same 

28.3 GeV beam energy. While neither the BNL oscillation experiment nor the KAON 

factory will be constructed, the neutrino fluxes are typical for low energy accelerator 

neutrino beams so they serve as a reference beam from which to work. Figure 2.4 shows 

the Vy, P M , ue and ve, fluxes used in the calculations which follow. 

The neutrino energy spectra in the figure peak at about 1.7 GeV. Since the neutrinos 

are produced in the decay of kaons (rriK+ = 494 MeV) and pions (m„+ = 139.6 MeV) 

into muons (mfi+ = 105.7MeV), such a flux is approaching the lower limit in energy at 

which a well collimated fM beam can be produced. At much lower energies it becomes 

difficult to focus the kaons and pions, and the energy released in their decays will spread 
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Figure 2.4: Neutrino and antineutrino fluxes produced by an intense 28.3 GeV primary 
proton beam and focussing pions and kaons into a 200 m decay tunnel. Raw fluxes from 
the Monte Carlo program were scaled to GeV _ 1 cm~ 2 s _ 1 . Note that the apparently poor 
fit in the ve fit is a result of low statistics in the Monte Carlo. 
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out the beam. This observation, coupled with the fact that the fluxes were generated 

using a very high current machine, will provide an estimate of what regions of neutrino 

oscillation parameter space could possibly be ruled out with today's technology. 

Accelerator experiments consist of generating a neutrino beam and measuring its flux 

and content with two or more detectors. One detector is located near the end of the 

decay tunnel and calibrates the neutrino beam at its source, while distant detector(s) 

look for changes in that beam farther downstream. These experiments look at two 

channels: one disappearance and one appearance. The former signal would be apparent 

if a measurable reduction in the flux at the distant detector (beyond the 1/L2 factor 

as the beam spreads out). The latter signal would be an increase in the ve or vT flux. 

2.3.2 Characterising Long Baseline Neutrino Oscillations 

Bernstein and Parke [97],[98] discussed long baseline experiments, noting that the prob

ability of a transition in a long baseline experiment is given by 

Paa = 1 - sin2(20M)sm2 ^ 1 . 2 7 ^ ^ ^ (2.29) 

They defined e as the limit that a particular experiment can put on Pap = 1 — Paa, 

assuming that it does not find positive evidence for oscillations. The value of e depends 

on the level of contamination of the neutrino beam, uncertainty in flux calculations, 

experimental acceptance, and backgrounds. 

In the limit of large Am2, (in vacuum, the subscripts M in equation 2.29 revert to 

V), many oscillations take place along the baseline and the second sinusoidal term in the 

equation averages to 1/2. Such an experiment can then probe sin2(26v) > 2e. If e <C 1, 

then in the limit of maximal mixing when sin2{2dv) = 1 the experiment can rule out 

i\mv s 1 2 7 L . 
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Figure 2.5: Contours of P Q Q ( A m y , sin2(20y)) for neutrinos in vacuum, with a flat spec
trum and energy on the range 0.9 to 1.1 GeV. 

Figure 2.5 shows calculations of contours of constant probability for Paa in vacu

um on a (Am2/, sin2(20v)) plane for four different values of the parameter e, assuming 

a flat neutrino spectrum on the range E £ [0.9,1.1] GeV. Varying the baseline (and 

therefore L/E) illustrates that the contours shift vertically in proportional to Also, 

when l21^™vL — | ; paa reaches the first minimum and the contour extends down to 

sin2(26v) = 1 - e. 

Figure 2.6 shows similar plots for oscillations of neutrinos and antineutrinos in vacuum 

and in matter. As L increases towards the length of one oscillation at resonance, and 

provided that Am2, is small enough that ^ —> 2 v ^ ^ l

2

J V e £ ; , matter effects enhance the 

neutrino oscillations. This enhancement manifests itself in the middle column of figure 

2.6 as the contours jut out to the left at the resonance mass, especially at the L = 

10,000 km baseline. This allows an experiment to probe to a much smaller mixing angle. 
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In the column on the right, it is apparent that matter suppresses mixing of antineutrinos 

compared with vacuum. The matter term in the Hamiltonian has opposite sign in the 

antineutrino case and DM > 1 grows with larger density. As a result, the mass difference 

between the two states increases and the mixing angle decreases. 

Figure 2.7 plots the electron density of the earth as a function of radius based on 

a code provided by Stephen Parke [102], as well as the length of a baseline tangent to 

that radius. The figure illustrates that Ne varies slowly except at several radii where 

jumps occur. The most pronounced increase occurs at the transition to the liquid iron 

core, where the density rises by about 80 percent over a very short distance. However, 

the figure also shows that any baseline less than 10, 700 km in length would not probe 

deep enough to encounter that core, so most calculations in this field have estimated the 

average density along the path and assumed that it is constant. This usually provides 

an accurate estimate because in order to probe to the lowest possible Amv, experiments 

involve a small number of oscillations along their baseline. 

As a neutrino traverses along an arc through the earth, Ne gradually increases until it 

reaches the midpoint, after which it slowly decreases. The matter oscillation length will 

be slightly longer at the beginning and end of the path and shorter in the middle, or vice 

versa depending on whether its energy places it above or below the resonance density. 

However because there are only a few oscillations, one can usually approximate 7V e with 

its mean value, and the neutrino will undergo almost the same few oscillations. 

Figure 2.8 plots Paa(Amv, sin2(2dv)) contours with two different baselines using the 

reference neutrino spectrum on the range 0.9 to 1.1 GeV, assuming constant Ne and 

one which varies with the radius of the earth. In the former case, ah exact calculation 

can be performed very quickly while in the latter, a fourth-order Runge-Kutta method 

must be used to integrate the neutrino wave function along its path. The two methods 

yield very similar results at 10,000km. At 12,800km (the diameter of the earth), there 
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Figure 2.6: Contours of P a a ( A m y , sin2(20y)) for neutrinos in matter with constant den
sity Ne = 2.1 g/cm3, with a flat spectrum and energy on the range 0.9 to 1.1 GeV at 
baselines of 100, 300 and 1000 km. 
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Figure 2.7: Electron density of the earth as a function of radius (right axis), and length 
of a baseline through the earth which is tangent to that density (left axis). The latter 
function is given by the formula 2yJp\ 2 _ n2 

earth r ' 

is a noticeable change. There are two resonant densities—one inside the core and one 

outside, so there are two different Amy's which match the resonant condition causing 

the contours jut out to the left in the figure. However this effect will be smoothed out in 

any real experiment because a wider distribution of energies which will wash it out. 

2.3.3 Existing Experimental Results 

Many long baseline experiments running over the past decade have gradually lowered the 

limits on possible values of the parameters Amy and sin2(20y). They have examined 

both appearance and disappearance channels and considered oscillations between all three 

flavours of neutrinos. Except for the LSND detector at LAMPF, no experiment to date 

has reported positive evidence for neutrino oscillations, and so far the LSND results have 

not been confirmed. Table 2.1 lists several characteristics of some of the more significant 

recent programs. • , 
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Figure 2.8: Comparison of contours for Paa(Amv, sin2(20y)) using an exact solution and 
assuming fixed density and numerical solution with Runge-Kutta method and using the 
variable density of the earth. The exact solution assumes Ne = 2.3 and 4.0 g/cm3 at 
L = 10,000 and 12,800 km respectively. 
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Experiment Ev 

[GeV] 
Baseline 

[m] 
Reaction , ( A m v ) m i n 

[eV2] . 
Minimum 

(sin2 (20vj) 
\ / m i n 

Gosgen 0.0035 38,46,65 Ve D 0.02 0.14 
Bugey 0.0035 15, 40,95 Ve D 0.01 0.04 
Krasnoyarsk 0.0035 57,231 Ve D 7.5 x IO"3 0.05 
LAMPF 0.05 30 vu -> Ve 

A n/a n/a 
BNL E776 3.0 1000 -> Ve Ve 

A 7.5 x n r 2 0.03 
CCFR 140 900,1400 -> Ve Ve 

D 1.0 4 x 10~3 

CCFR 140 900,1400 - 7 VT VT D 1.0 0.01 
CDHSW 3.2 130,885 Vu D 0.26 0.053 
FNAL 531 30 440 vu -> VT 

A 0.9 4 x IO"3 

FNAL 531 30 440 Ve -> vT 
A 9.0 0.12 

NOMAD 25 820 - 7 vT 
A 0.7 3 x 10"4 

CHORUS 25 820 vu -> VT 
A 0.6 3 x 10~4 

KARMEN 25 17.5 - 7 Ve 
A 0.2 0.1 

KARMEN 25 17.5 v* -> Ve A 0.1 0.02 

Table 2.1: Best limits set on neutrino oscillation parameters by recent and future long 
baseline experiments. Gosgen [95], Bugey [103] and Krasnoyarsk [104] are reactor-based, 
while LAMPF [105], BNL E776 [106], CCFR [107], CDHSW [108], FNAL 531 [109], 
NOMAD [110], CHORUS [111], and KARMEN [112] use accelerator produced neutri
nos. Note that D and A in the reaction column refer to disappearance and appearance 
experiments respectively. 
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Figure 2.9 shows the excluded regions for the newest experiments. The reactor exper

iments are still among the best experiments at excluding low Amv because the antineu-

trino energy is relatively low, on the order of a few MeV. Accelerator based experiments 

with focussed beams have higher statistics and can probe lower mixing angles and newer, 

more sensitive experiments are now taking data. The KARMEN experiment is setting 

new limits in the v^v^ domain, while CHORUS and NOMAD use muon neutrinos from 

CERN to investigate V^VT oscillations and should reduce current limits on sin2(26V) by 

an order of magnitude [110]. 

The LAMPF experiment did issue two papers [113], [114] with new data claiming to 

have a positive signal for the appearance channel of —» ue. The result is surprising 

because it implies an allowed region with mass-squared difference in the range above 

10 _ 1 eV2, more than four orders of magnitude greater than the regions implied by the 

solar neutrino results and well above the Am 2 suggested by the atmospheric neutrino 

experiments. Moreover, it has been noted [115] that much of the allowed region has been 

ruled out by other experiments. Figure 2.10 shows the LAMPF allowed regions along 

with the best exclusion regions from other experiments. However, to date, their results 

have not been confirmed. 

2.3.4 Future Prospects 

Accelerator-based neutrino oscillation experiments are limited in the range of Amv which 

they can probe. The baseline cannot be longer than the diameter of the earth, and the 

energy of a well focussed beam cannot drop far below 1 GeV. However it is instructive 

to see just how low in A m 2 such an experiment might be able to probe. Using the 

reference spectrum from the proposed BNL/KAON beam, it is possible to predict the 

best limits such an experiment could be expected to see. Two possible experiments will 

be examined: a 250 km baseline with a 5kT detector and a 10,000 km baseline with a 
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Figure 2.9: Most sensitive limits on neutrino oscillations at 90% C L . (a) —» ve ap
pearance from the (1) E776 and (2) E734 experiments at BNL. (b) —> De appearance 
from the (1) KARMEN and (2) E645 experiments, (c) P e disappearance from the (1) 
Bugey, (2) Gosgen and (3) Krasnoyarsk reactor experiments, (d) disappearance from 
the (1) CDHS and (2) CCFR experiments. Also shown is the limit from the (3) E531 

—> vT appearance experiment [113]. 
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Figure 2.10: Plot of the LSND Am 2 vs sin2(26) favoured regions. The method used to 
obtain these is described in [113]. The darkly-shaded and lightly-shaded regions corre
spond to 99% and 90% likelihood regions after the inclusion of the effects of systematic 
errors. Also shown are the 90% C L . limits from KARMEN at ISIS (dashed curve), E776 
at BNL (dotted curve), and the Bugey reactor experiment (dot-dashed curve) [113]. 
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32 kT detector. 

The first of these experiments would involve building a reasonable sized single purpose 

detector on the same order as ones which have been proposed for other experiments. 

The statistics from such a configuration would provide sufficient data, provided that 

oscillations were found, to accurately determine the mixing parameters. This could be 

achieved by examining the spectrum of the detected neutrinos. 

The second experiment has a baseline of 78 % of the diameter of the earth, but its path 

misses the liquid iron core where the electron density jumps. The detector size was chosen 

to match the fiducial volume of the SuperKamiokande detector. This should provide an 

accurate estimate of the lowest possible A m y which is accessible to accelerator-based, 

long baseline experiments. 

Figure 2.11 plots Paa(Amv, sin2(26v)) contours for va —> va in both vacuum and 

matter and Pa —> va in matter, with constant Ne = 1.34mol/cm3. From the figure it is 

clear that matter effects are very small, so the plots which follow at the 250 km baseline 

assume vacuum oscillations. 

Figure 2.12 shows the rates for different interactions assuming 100% efficiency in 

the detector. With 70, 000 pT events per year, one can naively estimate a standard 

deviation of a1/^/70,000 = 0.3 %, so that e « 3<r would be on the order of 1 %. From 

figure 2.11, at large mixing, this experiment could rule out sin2(29v) > 3 x 10"3eV2 

for Am 2/ > 4 x 10~3eV2, while in the limit sin2(29y) = 1 it could probe down to 

Am 2 /= 5 x 10~4eV2. 

What is perhaps more interesting about this experiment, however, is that if oscilla-

tions were found with, say, A m y > 0.01 eV2 then the statistics are sufficient to bin the 

data by energy. The left-hand column of figure 2.13 shows Paa(E) for three different val

ues of A m y . The right-hand column plots the spectrum of the muons with and without 
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Figure 2.11: Probability contours Paa(Amv, sin2(20y)) for neutrinos in vacuum, and 
both neutrinos and antineutrinos with JVC — 1.34 g/cm3 using the reference neutrino 
spectrum. With this energy and density, a 250 km baseline is too short for significant 
matter effects to be observed. Solid lines show contours for neutrinos in vacuum, while 
dashed and dotted lines show P a a ( A m y , sin2(20y)) for neutrinos and antineutrinos in 
matter, respectively. 
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Figure 2.12: Yearly rates for neutrino interactions from the reference flux hitting a 5 kT 
target at 250 km. The bottom right figure gives the rate for v^n -> prp, while all others 
are for the inclusive reaction yN —> IX. 
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oscillations, with rates per year based on bin widths of 1/8 GeV. Because neutrino oscil

lation models predict a well-defined energy dependence, the structure of this spectrum 

could be used to confirm the theory and provide precision measurements of the masses 

and mixing angles, as apparent in the figure. 

To probe to the lowest possible Amv with a long baseline experiment, it is necessary 

to extend the baseline to a substantial fraction of the diameter of the earth. Figure 

2.14 plots Paa(Amv, sin2(2<V)) using the reference flux and a 10,000km baseline. With 

vacuum oscillations, the experiment rules out sin2(2#y) > 0.1 for Amv > 2 x 10 _ 4 eV 2 

and Am 2/ > 3 x 10~5 eV2 in the limit of large mixing, in both cases assuming that 

£ = 0.05. 

Matter enhancement of the oscillations is apparent down to a few times 10~4eV2, 

somewhat below the resonance at 2 x 10~3eV2. The reference flux would produce about 

270 events per year in the detector (assuming no oscillations). In order to make the 

experiment more feasible, a neutrino flux four times as great would be required. This 

would raise the rate to about 1,000 events per year. However the experiment would not 

be able to detect ve — oscillations in the 10~5 eV2 range implied by the solar neutrino 

experiments, and it is unlikely that an experiment this large will be performed in the 

forseeable future. 

The reference flux spectrum peaks at about 1.7 GeV, and it is very difficult to produce 

a focussed neutrino beam below 0.5 GeV because the kinetic energy released in the decay 

which produces the neutrino would perturb its direction. Reducing the peak energy by a 

factor of three would move the contours in figure 2.14 down by a factor of three, still not 

approaching 10 _ 5eV 2, but the cross section would also drop by a factor of three. Thus, 

even with a lower energy and much higher flux (or larger detector), accelerator-based 

long baseline experiments are unlikely to confirm or rule out the regions of parameter 

space implied by the solar neutrino experiments. 
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Figure 2.13: Energy spectrum for muon neutrinos measured in a 5 kT detector and a 250 
km baseline with mixing sin2 (20v) = 0.25 for Amv = 0.01, 0.02 and 0.04 eV2. Figures in 
the left column show Paa(E), while the right column plots the neutrino spectrum without 
oscillations (solid lines) and with oscillations (dashed lines). The rates in column two are 
normalised assuming bin widths of 0.125 GeV. 



Chapter 2.. Neutrino Oscillations with Two Flavours 82 

s i n 2 s i n 2 ( 2 ^ ) 

Figure 2.14: Neutrino oscillations on a 10,000 km baseline. Top row shows vacuum 
oscillations (relevant to —> vT), while bottom row includes matter effects. Left column 
plots Paa while right column plots number of interactions per year assuming a detector 
with 32 kT fiducial mass. 
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2.4 Neutrino Oscillations and the Solar Neutrino Problem 

2.4.1 Early Development and Analytical Results 

In one of the two early papers in which Wolfenstein revolutionised neutrino physics by 

introducing matter enhancement of the oscillation parameters [88],[89], the sign of the 

matter term was reversed. Unfortunately, in their early work, Mikheyev and Smirnov 

used the incorrect sign and concluded that if neutrino oscillations were to solve the solar 

neutrino problem, it was necessary to assume that mVe > mVix. Langacker [117] clarified 

the situation, and a paper by Bethe [118] in 1986 renewed interest in neutrino oscillations 

as a plausible explanation for the observed deficit in solar neutrinos. 

In his paper Bethe noted that if mVli > mUe in vacuum are in the right range, such that 

mUe > mVll at the centre of the sun, then the ve may emerge from the sun as a v^. Figure 

2.15 shows that at large density, the electron neutrino produced closely corresponds to 

the heavier mass eigenstate v2. If the density of the sun changes gradually enough that 

the neutrino eigenstate propagates out of the sun as a v2 (the adiabatic condition), then 

it will emerge from the sun in the mass eigenstate which approximately corresponds to 

fM in vacuum. 

A more realistic possibility is that there is some probability that the neutrino jumps 

from the u2 state to the v\ state. If so, it is much more likely to happen near resonance 

when the difference in the masses is the smallest. Parke [119] calculated the amplitude for 

a ve produced in matter at high density at time t, which propagates through a resonance 

at time tr, and is detected as a uein vacuum at time t' to be: . 

(2.30) 
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Figure 2.15: A ve produced at very high density at the centre of the sun corresponds 
approximately to the v>2 eigenstate. If the density changes slowly enough, it will remain 
a as it propagates outwards and will emerge in a state which closely corresponds to 
the Vp weak eigenstate. 
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Ax{t) = cos 6v[ax cos 0N exp J* dt Am2 {t)j - (2.31) 

-— / dtAm2(t) 
4E Jtr J 

A2 (t) = sin6v[a2 cos 6N exp J*'dt Am2(t)j + (2.32) 

— —— / d£Am 2(£) 
4£/ 7<r ; 

The exponential terms come about by applying phases of exp ± | / dt AE to the effec

tive mass eigenstates |^I ,M ) a n d \V2,M) when they propagate far from resonance. Here the 

dependence of Arn2

M on the changing density as the neutrino passes through the sun is 

expressed by the parameter t. The coefficients a± and a2 are the amplitudes for a pure v\ 

state to remain a v\ or transform to a v2 as the neutrino passes through the resonance, so 

they satisfy ja-! j2+|a.212 = 1. The term a\ cos 8N cos60 exp /t'p dt Am 2(i)j exp {—^!lr dt A 

is the product of five terms which come about as follows: 

• cos0/v is the amplitude for the ve being initially projected onto u2, 

• exp //^ di Am 2(i)j is the phase the v2 picks up moving from t to r.r, 

• ai is the amplitude for remaining a v2 when crossing resonance, 

• exp (—^ Jtr dt Am2(t)j is the phase the v2 picks up moving from tT to t', and 

• cos#y is the amplitude for the v2 to be projected onto a ve on detection. 

Upon squaring the amplitude Parke found two complex phases which represent the 

phase of the wavefunction when it enters the resonance and when it is detected. By 

averaging the result over the resonance and detection positions he found the probability 

simplified to 

P(ue -» ue) =.\ + [\~  piump) cos(20JV) cos(20y) (2.33) 

where PjUmP — |<J2|2 is the probability that the neutrino jumps from one mass eigenstate 

to the other when it crosses the resonance. 
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The calculation of Pjump for a simple level crossing was solved simultaneously in 

1932 by Landau [120] and Zener [121] in reference to the crossing of atomic levels. The 

derivation requires that the off-diagonal terms in the Hamiltonian at resonance are much 

smaller than the kinetic energy, the transition region is sufficiently small that the mass 

The Hamiltonian can then be expressed as a second order ODE which can be converted to 

Weber's equation by a change of variables, solved for the initial conditions, and converted 

back. Parke applied the result to the neutrino resonance crossing and showed that [119]: 

2.4.2 C h a r a c t e r i s i n g the results 

A Monte Carlo computer code written by the author calculated solar neutrino survival 

probabilities, and some details of it are given in the next chapter. All results presented 

in this section were produced using that code. It first calculates the probability that a 

neutrino emerges from the sun as a ue depending on where it was produced in the sun. 

It then computes vacuum oscillations of neutrinos as they travel from the sun to the 

earth, including corrections for the eccentricity of the earth. Finally, it accounts for the 

regeneration of neutrinos as they pass through the earth on the way to the detector. 

Figure 2.16 shows the contours of constant probability for two different hypothetical 

sources with discrete energy spectra at 1 MeV and 10 MeV, in which the neutrinos are 

always produced at the centre of the sun. The contours are identical except that the 

1 MeV curves are shifted down the A m 2 axis by a factor 10. In the centre of the triangular 

contour, a large percentage of neutrinos are converted even though sin2(20)/cos(20) ~ 

O(10~2). Mikheyev and Smirnov identified the different regions of the MS diagram and 

labelled them accordingly [123]. 

differences can be approximated by a linear function and all other quantities are constant. 

(2.34) 
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Figure 2.16: Probability that neutrinos from hypothetical sources with (a) E = 1 MeV 
and (b) E = 10 MeV will arrive in an underground detector as electron neutrinos. All 
neutrinos from both sources are are assumed to be produced at the centre of the sun. 
Contours in the figure have been scaled by a factor of 1000. 
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The horizontal contours along the top define the adiabatic limit—as A m 2 drops, it 

reaches a point where the solar density is large enough for MSW conversion to take place. 

The adiabatic regions in figure 2.16 are compressed in the vertical direction because the 

hypothetical neutrino sources used have fixed energy and their radial production dis

tribution is fixed at the centre of the sun. The vertical contours on the right occur 

because at very large mixing, half of the neutrinos arriving on earth will be ue irrespec

tive of what happened in the sun. The diagonal line from upper left to lower right is 

referred to as the non-adiabatic line. It determines how low Am 2 can drop (depending 

on sin2(20)/cos(20)), before adiabaticity breaks down and neutrinos jump from one state 

to the other when they cross the resonance. 

The spike jutting out to the left in the bottom left contour is a result of neutrino 

regeneration in the earth. It occurs at a value of Am 2 which matches the resonance 

condition for the earth's density and the neutrino's energy. The sharpness of the contour 

is a result of the fixed energy of the neutrino source. The region at the bottom right of 

the diagram shows very rapid vacuum oscillations as the neutrino travels from the sun 

to the earth. 

Figure 2.17(a) to (c) plots contours of constant neutrino detection for the different 

experiments. The Kamiokande results are given as a fraction of the no MSW hypothesis 

while the Homestake and SAGE/Gallex results are given in SNU. With no conversion, 

these latter experiments would produce 9.22 and 138 SNU respectively. The adiabatic 

limits for the 8 B, 7Be and pp neutrinos are apparent, and the density of contour lines 

provides an estimate of the relative contribution of the different sources. It is also clear 

that Kamiokande only sees 8 B neutrinos, Homestake sees both 8 B and 7Be, while SAGE 

and Gallex see 8 B, 7Be and pp neutrinos. 

In 2.17(d), the %2 parameter is calculated for the combined results of the four exper

iments. There are three local minima with %2 = 1.37 in the upper left, %2 = 2.75 in the 
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Figure 2.17: Contours of ve survival probability for the neutrino experiments as a function 
of the matter enhanced oscillation parameters. Kamiokande results (a) shown are a 
fraction of the total predicted by the SSM, while Homestake (b) and SAGE/Gallex (c) 
are absolute rates in SNU. In (d), the %2 parameter is calculated at each point using the 
rates measured by the four experiments. 
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upper right, and x2 = 12.9 in the lower right region of the diagram. The probabilities 

that a x2 variable with two degrees of freedom (four experiments less two parameters) 

would yield values larger than 1.37, 2.75 and 12.9 are 0.50, 0.25 and 0.0016 respectively.' 

Thus, the two upper minima provide very good fits to the data while the lower one does 

not. If the hypothesis corresponding to the x2 = 1-37 minimum is accepted, then the 

contour line X2 = 10 approximately corresponds to a 98.7% confidence level, while for the 

region around the x2 = 2-75 minimum, the same contour represents a 97.3% confidence 

level. 

The MSW mechanism is an energy dependent effect, so the spectrum can be used to 

differentiate solutions. In figure 2.18, the spectra of solar neutrinos on a gallium detector 

are shown assuming sin2(20)/cos(20) = 0.01 with Am 2 = IO"7, 3 x 10~7, 10"6, 3 x 10~6, 

10~5, 3 x 10 - 5 and 10~4eV2. It is clear that as Am 2 decreases from a large value, 

first the 8 B then the 7Be and finally the pp neutrinos are suppressed as their respective 

adiabatic limits are crossed. Then as Am 2 continues to drop, the 8 B, 7Be and pp fluxes 

return in that order as the nonadiabatic limits are crossed. Unfortunately, none of the 

radiochemical experiments provide any spectral information. 

Figure 2.19 shows the neutrino spectra for the three minima in x2 using a water 

Cherenkov detector with a threshold of 5 MeV which will be achieved at SuperKamiokande. 

While there are minor differences in the three spectra, very high statistics would be re

quired to differentiate the three solutions. 

2.4.3 V a c u u m O s c i l l a t i o n Solut ions 

Before Wolfenstein showed that matter could enhance the neutrino oscillation parameters, 

vacuum oscillations were considered as a solution to the solar neutrino problem. Most 

authors today prefer the MSW effect because there is a small angle solution and vacuum 

oscillations require the earth-sun distance to be on the order of the oscillation length for 
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Energy [MeV] 

Figure 2.18: Neutrino conversion probability as a function of energy for different values of 
Amv with a fixed value sin2(29v)/cos2(29v) = 0.01. Notice that as Amv drops, first the 
high energy then successively lower energy neutrinos cross the adiabatic limits. Similarly, 
as it continues to drop first the high energy then successively lower energy neutrinos hit 
the non-adiabatic limit and are no longer converted. 

Energy [MeV] 

Figure 2.19: Neutri
no energy spectra for the three parameter sets (Amv, sin2(29y)/cos{29v)) defined by 
the local minima in figure 2.17. , 
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Solution Type A m y [eV2] Angular Parameter V 2 . A m m F (X ) ^ Xmin 

MSW 5,5 x IO"6 0.0075 . 1.37 0.50 
MSW 5.5 x IO"6 0.175 2.75 . 0.25 
MSW 1.6 x IO"7 0.55 12.9 0.0016 

Vacuum 5.20 x 10~n 31 10.2 0.0061 
Vacuum 9.00 x 10~n 5 4.79 0.091 
Vacuum 1.05 x K T 1 0 25 • 4.62 0.099 
Vacuum 2.45 x IO' 1 0 62 11.7 0.0029 

Table 2.2: Local minima for the x2 variable for the solar neutrino experiments using 
the MSW and vacuum oscillation models. The column Angular Parameter refers to 
sm2(26>y)/cos(20y) for the MSW solutions and sin2(2cfy)/cos2(20y) for the vacuum os
cillation solutions. The last column in the table gives the probability that a x2 would 
have a value greater than the local minimum by chance. 

8 B neutrinos, which is seems somewhat unnatural. However, there are still regions of 

parameter space where vacuum oscillations provide a plausible solution [124]. 

Figures 2.20(a) to (c) show rates of neutrinos measured at the four experiments 

as a function of the vacuum oscillation parameters. Note that the horizontal axis is 

now sin2(2#y)/cos2(2#y)—the additional factor of cos(20y) in the denominator further 

stretches out the large angle region. The Kamiokande contours shown are the first two 

oscillation envelopes, so that the 8 B neutrinos would have to reach the earth near the 

first minimum for vacuum oscillations to solve the solar neutrino problem. 

Figure 2.20(d) shows contours for the x2 parameter, and table 2.2 shows, the details 

of the local minima for both the MSW and vacuum oscillation hypotheses. Only the two 

smallest local minima in the vacuum calculation provide plausible solutions to the data 

with two degrees of freedom. A x2 variate with two degrees of freedom larger than 4.62 

and 4.79 would be produced by chance in about 10% of experiments. Thus the vacuum 

oscillation model should not be ruled out, but the fit which it provides to the data is 

much less impressive than the MSW fit. 

Figure 2.21 shows the energy spectrum of the four fits vacuum oscillations in table 2.2. 
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Figure 2.20: Contours of ve survival probability for the neutrino experiments as a function 
of the vacuum oscillation parameters. Kamiokande results (a) shown are a fraction of the 
total predicted by the SSM, while Homestake (b) and SAGE/Gallex (c) are absolute rates 
in SNU. In (d), the %2 parameter is calculated a,t each point using the rates measured by 
the four experiments. 
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Energy [MeV] 

Figure 2.21: Neutrino energy spectra for the four best vacuum oscillation fits to the solar 
neutrino data identified in table 2.2. 

The two most plausible parameter sets have similar spectra but could be differentiated 

by an experiment with sufficient statistics. More importantly, differences between this 

figure and 2.19 are very apparent and spectral information from SuperKamiokande will 

eventually be able to differentiate the two solutions. 



Chapter 3 

Analytical Results with Three Neutrinos 

3.1 Introduction 

In spite of experimental evidence that there are three light neutrinos, most early work on 

neutrino oscillations assumed that just two families were present. The reason was simple 

practicality; the first investigations examined the feasibility of neutrino oscillations as a 

solution to the Solar and (later) Atmospheric Neutrino Problems, and early attempts at 

solving the three neutrino case were wrought with mathematical difficulties. 

The two neutrino case has one independent mass difference, and the mixing matrix 

contains one angular parameter. However with three neutrinos, there are two indepen

dent mass differences and a mixing matrix which contains four angular parameters. To 

determine the mass differences in matter, it is necessary to first solve a complicated cubic 

equation. While this is possible in principle, it is not easy to obtain a simple solution 

which algebraically isolates the mass differences and angular parameters in matter as a 

function of the corresponding parameters in vacuum and the matter density. 

In 1980, Barger et. al. considered three neutrinos in a medium of uniform density, 

and concluded that "unfortunately, the algebra is rather impenetrable" [125]. They wrote 

formal solutions for the mass eigenstates in matter but not the angular parameters, and 

then constructed approximate solutions in the two cases when the matter density is very 

small and very large relative to the mass differences, but neither case is useful for the SNP. 

Kuo and Pantaleone wrote in 1986 that "The expression for the mass matrix, analogous 

95 
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to [the two neutrino case], is quite complicated. The exact solution can be written down, 

but its implications are not transparent" [126]. Petcov and Toshev noted in 1987 that 

"the physical interpretation of these [analytical] expressions is rather difficult" [127]. 

Even today, authors make extensive simplifications in order to make the analytical 

calculations tractable. The most common is the one mass-scale dominant (OMSD) case, 

in which the heaviest neutrino is assumed to be larger than any other mass scale in the 

problem: m\ 3> m2,, m 2, A, where A is the electron density at the centre of the sun. This 

removes the heaviest neutrino from the solar neutrino problem, and removes two angular 

parameters from relevance. It will be discussed later in this chapter. 

Pantaleone [128] was among the first to discuss reasons for going beyond two families 

in the analysis of neutrino oscillations. The obvious one is that there are three known 

families in the standard model and, as the LEP experiment has confirmed, three light 

neutrinos, so the system should be analysed as such. In spite of its difficulties, the three 

neutrino solution has a much more robust structure and can therefore accommodate a 

much wider variety of phenomena. 

The two neutrino solutions for the atmospheric data indicate that at least one of the 

mixing angles is large. In addition, the vacuum and one of the two matter enhanced 

oscillation solutions to the SNP also have a large mixing angle. Pantaleone pointed out 

that the reduction of the three neutrino system to a pair of two neutrino systems treated 

separately is only valid in the case when the mixing angles are small. Since the data 

do not indicate that this assumption is necessarily valid, more investigation is in order. 

He also noted that theoretical work into neutrino masses and mixings using the group 

SO(10) does not necessarily produce small angle mixings. 

By itself, the ANP suggests consideration of three neutrinos. Early analyses have 

always looked at either •-» vT or —> ve oscillations separately, but clearly there 

may be a combination of both. Pantaleone also proposed looking for ue appearance at 
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long baseline experiments, which would be a signature of —> vr —>• ue, a strictly three 

neutrino effect [129]. 

In order to determine whether or not neutrino oscillations present a viable solution 

to experimental data, to accurately measure the values of the parameters using existing 

and future experiments, and to decide what new experiments should be done to further 

our understanding, a full three neutrino analysis is absolutely necessary. 

There are also compelling reasons to analyse the three neutrino case without the 

constraints of OMSD. Recent results by Fogli et. al. [130] show that combining all the 

existing upward-going muon data with both the sub-GeV and multi-GeV atmospheric 

neutrino data does not rule out Am^ on the order of 5 x 10~4 eV2 or even slightly 

lower. This would place that mass squared almost within an order of magnitude of that 

favoured for A m ^ to solve the SNP, thus invalidating the OMSD assumption. Moreover 

if Am 2 ! is that small, some zve's produced at the centre of the sun may cross two separate 

resonances on the way to the surface, and solar neutrino parameter spaces would have to 

be reexamined. Alternately, the SNP might be solved by a combination of, for example, 

a ve —y resonant solution in the sun followed by ue <-» -H- vT vacuum oscillations as 

it travels from the sun to earth. 

In what follows, new work on the three neutrino Hamiltonian will be developed. While 

an exact expression for it in the weak eigenbasis will be presented, difficulties in making 

use of the result in practical problems will become clear. A perturbative solution for small 

mixing angles will be presented. Then the existing literature on the analytical treatment 

of three neutrinos will be reviewed, detailing the various assumptions including OMSD 

which are made by other authors. Next, exact expressions for all neutrino oscillation 

probabilities at fixed density will be calculated without any simplifications. Finally, 

some comments will be made on how to do MSW oscillations with three neutrinos, and a 

neutrino wave function will be propagated from the point of production in the sun across 
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two resonances and then through space arriving at the earth. An expression to describe 

it will be shown to simplify to a Classical one when averaged over the phase at the points 

of production, resonance and detection. 

3.2 Developing the Three Neutrino Mass Matr ix 

Several different parameterisations of the mixing matrix are commonly used. Kuo and 

Pantaleone popularised one in their important 1989 review of the field [87]. It has the 

advantage of being a product of four matrices, the first two of which commute with the 

matrix added to the Hamiltonian in the presence of matter. As a result, two parameters 

can be explicitly rotated away when the matter term is added. 

The parameterisation chosen here, which is more common in the literature, is the 

classic Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is chosen for consistency with 

the quark sector and because most authors use it. If CP is conserved in nature, so 

that the complex phase S in the matrix is set to zero, then all standard choices of mixing 

matrices used in the literature are the same. Calculations of probabilities from the various 

mixing matrices are also identical. 

Harari and Leurer [131] recommended a standard parameterisation for N x N mixing 

matrices which can be simply extended to any number Of generations. When N = 3 it is 

the CKM matrix, and can be decomposed as follows: 

/ 1 0 0 \ / C13 0 $13 ^ / 
Cl2 - S'l2 0 \ 

Voi = 0 C23 0 ;',. 1 0 S l 2 Cj2 0 

\ 0 - 5 2 3 C23 / V 0 Cl3 / V 0 0 1 / (3.1) 
C12C13 S12C13 5 i 3 e 

-S12C23 - c12s23S13elSl3 c12c23 - s12s23s13elSl3 s 2 3c 1 3 

V S12S23 - C l 2 C 2 3 5 i 3 e ^ 1 3 -C12S23 - 5i 2C 2 3Sl3e J < 5 1 3
 C23C13 ) 
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where ĉ - = cos(0jj) and Sij = sin(0jj). Each of the three mixing angles is in the range 

0 < Oij < | while the complex phase can have any value from 0 to 2ir. Clearly if 

any two of the mixing angles vanish (and <513 = 0 if S12 = S23 = 0), then one neutrino 

decouples and Vai reduces to a normal two-dimensional mixing matrix. . 

The weak neutrino eigenstates can now be related to the mass eigenstates via the 

CKM matrix: 

2̂ (3.2) 

By definition, the mass eigenstates diagonalise the Hamiltonian, so the time evolution 

is given by: 

' £1 0 0 

0 E2 0 
1^ 

•A 
%~dt 

"2 

0 0 E-3 J 

"2 (3.3) 

In analogy with the two neutrino case, assuming the neutrinos are ultrarelativistic, one 

can approximate E{ = ^k2 + m 2 » f c ( l + ^ ) . Subtracting k times the identity matrix 

from the Hamiltonian only adds an overall phase to the wavefunction and replaces each 

Ei in equation 3.3 with ^ ~ JE- Then subtracting a further | ^ (m2 + m 2 + m\) 

times the identity, again changing only the phase, renders Hamiltonian traceless. Using 

3.2 to switch bases, the time evolution equation for the weak eigenstates can be written 

as: 

.d_ 
% dt 

-Am2

n Am2

2l 

0 

0 

2Am\1 Am 2 ! 

0 

0 

2Am| 1 A m ^ j 

v, 

(3.4) 
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where Am?- = mf — m2. Calculating the Hamiltonian in matter, using the definitions 

given in 3.1 is a straightforward task, but one which is non-trivial because of the number 

of terms. Defining HeilT to be the Hamiltonian operator on the right hand side of equation 

3.4 one can write its components as follows: 

(^).= ( 4 4 - i ) ^ + ( 4 , - i ) . . # 0.5) 

(#e/xr W = (C12C23 _ 3 '+ 512 S13 S23 ~ 2S12C12S13S23C23C*) ^ X 

4. (r2 S2 - M A m 3 1 + ^C13S23 3) 2E , 

(HeflT)TT = (cl2sl3 - § + Si 2 Sl3 C 23 + 2s12Ci2Sl3S23C23C<5) 

+ (C13C23 — 3 ) 

2E 

(3.6) 

(3.7) 

2E 

{HeilT)w = s12c13(c12c23-sl2s13s23e i S ) ^ ^ + s13c13s23e i S - ^ (3-8) 

{HeflT)eT = -S12P13 (c 1 2 5 2 3 + s i2Si3C 2 3 e
 iS) ^ + sl3c13c23e iS^§± (3.9) 

{He^r)fj,T = [S23C23 {sj^ - cl2) + S12C12S13 ((sl3 - cl3)cS + ISS)} ^ L 

' , 2 Ami, 
+ci3s23c23^ 

where Sij = sin(^) and Cjj = cos(0jj) as before, c$ = cos(5) and s$ — sin(5). Noting that 

(i7 e / i T) a /3 = (HeilT)^a, this defines the Hamiltonian in vacuum in the weak eigenbasis. 

What is obvious is the complexity of the matrix compared to the two neutrino case. 

Following the analogy with the last chapter, one would then add a term \f2GpNe to 

(HeiXT)ee and solve the cubic equation. Many authors note that, at least formally, this 

procedure solves the system in matter. However, even when Zaglauer and Schwarzer 

wrote explicit expressions for (s2A , (Am2.) ,8M as functions of the vacuum param-

eters Am t

2-, s?-, 8 and Ne [132], it was not obvious how to apply the unwieldy result to 

experiments. 

(3.10) 
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3.3 Perturbation solutions with small angles 

The majority of work in three neutrino oscillations has assumed that the heaviest neutrino 

mass is much larger than any other in the problem, so that perturbations can be calculated 

assuming a fixed Am^. However, another perturbative solution assumes that the mixing 

angles are small and the matter density does not place the system at resonance. It puts 

no other restrictions on the size or hierarchy of the masses. The mixing angles in the 

quark sector are small and there is a small angle solution to the solar neutrino data, 

although atmospheric experiments seem to suggest at least one large angle. Then the 

Hamiltonian can be diagonalised to fixed orders of the sin(0jj)'s. 

The CKM matrix can be written, to first order in the mixing angles, as 

^ 1 0 0 ̂  

0 1 0 

0 0 1 

+ £ 

0 

V -xe 

1 + 0(e2) (3.11) 

1 xe 

P y 

-y 0 

where e = si2, xe = s 1 3 and ye = s 23- Now converting the mass eigenstate Hamiltonian 

to weak basis version and adding a matter term to Hee Hee + A, the modified masses 

in matter can be shown to be: 

(Am2) -(Am2) A I 2s*2 ( A m & v A i sh(^mn)vA • 0(A\ ( 3 u ) [Am21)M - [Am21)v A + _ A + _ A + ° [£ ) 

( A < ) = ( A < ) - A + 2f* + S}\ A

 + 0 (e*) (3.13) V njM V 3 i y v (Am&y-A {Am2

21)v - A V J ^ 

where the assumption that A is not close to either mass squared difference in vacuum is 

used in the calculation. Note that neither 0 2 3 nor 8 enters at this level—matter is only 

dependent on those mixing angles which are directly coupled to the v\ state at this order. 
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3.4 Review of existing three neutrino work 

In order to make additional progress in three neutrino solutions, some assumptions have 

been made. The difficulty these calculations face is that with too many simplifications, 

the system becomes little more than a two neutrino analysis; too few make any useful 

calculation, like an estimate of the number of solar neutrinos seen by experiments, ana

lytically unfeasible. A second challenge is to illustrate the results of calculations—with 

six parameters it is not obvious how to present the data. 

Early work by Barger et. al. [125] looked at two approximations, one in the limit of 

small matter density and one at very large density. The former may be relevant to long 

baseline experiments and the latter may be of use in neutron stars, but neither case is 

important to solar neutrinos. 

Toshev and Petcov did some analytical work to determine matter enhanced parame-

terisations in the limit of small mixing angles [133], [127]. In the second of these studies, 

they assumed the mass hierarchy mi < m 2 < ra3 and examined three cases when the 

matter oscillation length Le = ^ ? p N was smaller, in between, and larger than the two 

vacuum oscillation lengths Ly = and L\) = ^ . But with little experimental 

data, few quantitative statements could be made. 

Vacuum mixing of three neutrino flavours has also been studied. Acker et. al. [134] 

considered two regions of parameter space which provided solutions to the solar and 

atmospheric neutrino problems. With three large mass squared differences, they found 

that P(ue -> i/e) w | is allowed by solar neutrino experiments with a 90% confidence 

level. Then dropping S dependence, they found a solution with 0.48 < |sin#13| < 0.65 

and 0.6 < | s in1 < 0.8. A second solution assumes that Am?,! < IO - 6 eV2. In that 

case they find that the atmospheric neutrino experiments set limits 0.44 < |sin ̂ 231 < 1-0 

and 0 < |sin0i3| < 0.92 while the solar neutrinos are solved by essentially two neutrino 
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oscillations with 0.55 < |sin#12| < 0.70. 

Maximal mixing solutions have also been studied by C.W. Kim and collaborators 

[135], [136]. They found that the mass hierarchy splits so that A m 2 1 ~ 10~1 0eV2 solves 

the SNP while A m | x = 10~3 - 10 _ 1 eV2 solves the ANP. These results are essentially 

vacuum oscillation results. Joshipura and Murthy showed that with three neutrinos, 

if maximal mixing exists between any two eigenstates at resonance, then the problem 

reduces to a two neutrino case with the third neutrino decoupled [137]. 

Petcov studied the three neutrino problem with two different situations: the large 

neutrino mass hierarchy (LNMH) case in which mi C m 2 < m3, and the small vacuum 

mixing angle (SMVA) case in which S i 2 , s 1 3 <C 1, Am^ — A m ^ 3> 5 1 2 A m 2 1 + s^Ara^ 

[138]. Under these conditions, Petcov wrote a formal, analytical expression for the prob

ability that a ve produced at the centre of the sun emerges as a ue. He noted that the 

probability does not depend on either the complex phase 5 or the mixing angle 023, al

though regeneration effects in the earth were not included. Because of the complexity 

of the expression, however, no numerical result related to rates at real solar neutrino 

experiments were presented. 

Shi and Schramm [139] calculated allowed regions of parameter space in the LNMH 

case based on the solar neutrino experiments. They, too, showed that the angles S and 

0 2 3 can be dropped, and plotted MS-type diagrams for fixed values of #13. Bilenky et. al. 

also studied oscillations with this assumption [140], and found constraints on parameters 

from the atmospheric neutrino experiments assuming that A m 2

x is the relevant squared 

mass to solve the solar neutrino problem. 

A more popular treatment of the three neutrino case involves the assumption that 

> y/2GpNe, which has been dubbed the one-mass scale dominant (OMSD) 

scenario. The mass condition is chosen so that neutrinos leaving the solar interior only 

cross one resonance, not two, which simplifies the calculation. . The rationale for this 
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choice, is that if m\ < m2 < m 3, then ra2 must be on the order of 10~ 3eV 2 or larger in 

order to account for the atmospheric anomaly. The matter induced mass at the centre of 

the sun is less than 10~ 4 eV2, so choosing m 3 that large effectively prevents it from being 

relevant to solar neutrino calculations. 

This has been the choice of two of the groups doing the most advanced work to date in 

this area. Narayan et. al. considered OMSD solar oscillations with three neutrinos [141]. 

They dropped the angles 0 2 3 and 6, and assumed that A m ^ >̂ A m 2

1 ; A where A is the 

matter term. Next, they subtracted m 2 / 3 from the diagonal mass matrix, multiplied it 

by the two-parameter CKM matrix, and added the matter term. They decomposed the 

result into the form = Am^M^ + AMA + Am\xM2i as follows: 

Mi = Am 31 

S f 3 0 5 1 3 C i 3 

0 0 

S13C13 0 

(l 0 °1 
+ A 0 0 0 + (3.14) 

) . ° 0 
0 J 

Amlx 

r 2 s 2 

c 1 3 * 1 2 

0 

„2 

2 \ 
C13S12C12 - C 1 3 S 1 3 S 1 2 

C l 3 * 1 2 C l 2 

, 2 

C j 2 - S 1 3 S 1 2 C i 2 

\ ^ C i 3 S 1 3 5 j 2 - 5 i 3 5 i 2 C i 2 s f 3 S 2

2 

Now rather than solving the eigenvalue problem algebraically, they treated AM A and 

Am2,!-/!^! as small corrections to Am^M^ and solved the system perturbatively. The 

eigenvectors thus obtained specify the matter enhanced mixing matrix, and expressions 

relating the matter enhanced parameters in terms of the vacuum values and A were 

calculated. 

With this formalism, Narayan et. al. found two solutions to the solar neutrino data in 

which 613 is small, in analogy with the two solutions present in the two neutrino analysis. 

In addition, they found three new solutions with larger #13—these are non-trivial three 

neutrino effects. 
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In another paper, Narayan et. al. [142] used a similar formalism to examine the 

ANP. In that case they dropped the complex phase 8 for simplicity, and argued that 

A m j ! <C 10~3 eV2 is too small to be relevant for earth-bound oscillations, so they also 

dropped the mixing angle 912- They calculated the new mass eigenvalues m2, and m3 as 

well as the matter enhanced 6i3, and noted that 623 is not affected by the presence of 

matter. Regions of allowed parameter space to explain the ANP were analysed, and the 

group found that 8° < 0 1 3 < 40°, 0 < 623 < 90° and 0.005 eV2 < Am2

31 < 5eV2. 

Fogli et. al. [144] assumed that the CKM matrix is diagonally dominant, in particular 

sjj < | i which guarantees a unique determination of sin(0jj) given a value for sin2 (20 )̂. 

In later work they relaxed these angular conditions, but did assume that m i = 0, 5m2 = 

ml < 10"4eV2, m2 = m\ > 10"3eV2 [145]. They also argued that CP-violating effects 

are unobservable, so 8 is not relevant. In this framework, the solar neutrino problem is a 

function of 5m2, Q\2, and #13, while m 2 oscillations are "averaged out." The atmospheric 

neutrino problem is a function of m2, 913, and $23 while 8m2 oscillations are "frozen 

out." They went on to analyse the solar neutrino problem with one additional angular 

parameter, 8, and found that although there are no solutions with 9\2 > \ , there are 

solutions with #13 > f • . 

Fogli and Lisi [146] also considered the LBNO experiments, and defined the quantities 

nQfj,, nlfl, N0fl, Niu to be the number of events with zero or one muon produced at near 

(n) and far (N) detectors. Next they defined t = ni"+n , T = N l ^ N o i i and proposed 

two tests to describe long baseline neutrino oscillations: the T-test QT = 1 — j and the 

far/near-test Q t i n = 1 ^ T 2

f a T . Both quantities deviate from unity if oscillations are 

present. 

In a more recent paper, Fogli et. al. [147] carefully analysed the ANP results with 

a Cauchy distribution. They found that — ve oscillations provide a better fit to the 

experimental data than — vT, while three neutrino oscillations marginally improve the 
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fit with 6 x 10~ 4eV 2 < m2 < 6 x 10" 2eV 2. Finally, they noted that regions of parameter 

space which solve the SNP and ANP don't necessarily satisfy the OMSD assumption that 

5m2 <C m 2 . 

Kuo and Pantaleone have written extensively on this subject over the years. They use 

a parameterisation of the mixing matrix based on the Gell-Mann A matrices of the form 

U = exp(iip\7)T exp(i<f>\5) exp(zu;A2), where T — diag (l,elS,e~lS^J. With this choice, 

xp, (j) and UJ correspond to #23, #13 and #i 2 respectively. The first two terms of this 

parameterisation commute with the induced mass term, so the mass of the ve in matter 

is independent of both ip and 5 [148]. 

In their early work, Kuo and Pantaleone looked at the three neutrino problem in the 

small mixing angle approximation [126], and later at a case where the mass scales are well 

separated or the mixing angles are large [149]. This latter paper also plotted contours of 

constant probability for the chlorine experiment with fixed mixing angles as a function of 

the two mass differences, and as a function of m2 and |C/E2|2 when the ratios m 2 / m 3 and 

I ̂ 21 / \Ue3\ were held constant. In a subsequent paper, Harley, Kuo, and Pantaleone 

calculated the survival probability of neutrinos leaving the sun as a function of m| , m | 

and l ^ l 2 for fixed |(7 e 3 | 2 and m 2 , |{7e2|2 and |i7 e 3| 2for fixed m\ [150]. These calculations 

assumed that the angle 8 vanishes, and did not include vacuum oscillations on the path 

from the sun to earth or the regeneration effect, so #23 is not relevant either. 

Zaglaur and Schwarzer [132] were able to calculate analytical expressions for the 

matter enhanced parameters. The complexity of these solutions has prevented them 

from being used in many practical calculations in the literature. However, they will be 

used extensively in Chapter 5 to calculate oscillation probabilities to second order in 

Am^ a ^ A m i , ' 

They wrote the matter term as D - 2^/2GFNeE (note the change in notation— 

thus far A has been used for the matter term, while Zaglauer and Schwarz used A as 
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denned below), and quote the following expressions for the matter enhanced squared 

mass differences: 

m\M = m a + 4 _ 1^2 - 3 B S - ^-VA2 - WVY^S2 (3.15) 

m\M = ml + ^ - 1 ^A2 - 3 B S + ^ V A \ - 3 B y / l ~ : r S 2 (3.16) 

< M = ml + | + ^ V ^ ^ S S S (3.17) 

where quantities A, B, C and S are given by 

A= (Aml1)v + (Aml1)v + D (3.18) 

5 = (Am2

21)v (Aml^ + D [(Am2

31)vc2

3 + ( A m ^ (c 2

3 c 2

2 + s 2

3)] (3.19) 

C7 = J D ( A m 2

1 ) y ( A m 2

1 ) v c 2

3 c 2

2 (3.20) 

5 = cos 
1 /2^43 - 9^5 + 27C7N 

arccos 3" " V 2 ( 4 2 - 35)3/2 y j ( 3 - 2 1 ) 
These solutions were previously written by Barger et. al. [125]. However Zaglauer 

and Schwarzer continued the calculation and obtained the eigenvectors and therefore the 

mixing angles in matter [132]. Their work will be applied to help obtain the numerical 

solution of the mass matrix in the next chapter, as well as to test that solution. Their 

results are as follows: 

(m\M - amltM + P) ( A m ^ ) ; >M 
12'M (Am2

32)M (m\M - ctm\M + (3) - (Am2

31)M ( m ^ M - am\M + (3) 
(3.22) 

2 _ ™\,M - AM3,M + P ro 90^ 
% ' M " ( A < ) M M 2 ) M ( J 

2 _ ff2^ + F 2 c ^ 3 + 2EFc23S23Cs 
S23,M ~ E2 + F2 

(E2e-i8 _ F2eiS} S 2 3 C 2 3 + EF(C2

23 - S 2

3 ) 

yJ{E2s2
23 + F 2 c | 3 + 2EFc23s23c5) {E2c2

23 + F2s2
23 - 2EFc23s23cs) 

(3.24) 

(3.25) 
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Figure 3.1: Matter enhancement of the mass eigenstates as a function of electron density 
with three neutrinos. It is assumed that the electron neutrino corresponds most closely to 
m i in vacuum and the mixing angles are given by sin2(26\3) = 0.01 and sm 2 (2#i 2 ) = 0.05. 

where the quantities a, (3, E and F are given by: 

a = m 2c 1 3 + m2

2 (c 2

3c 2

2 + s1 3) + m\ (c 2

3s 2

2 + s\3) 

(3 = m 3c 2

3 {mlc\2 + m 2s 1 2) + ra2m2s 2 
13 

(3.26) 

(3.27) 

E = [Am 2! (m 2

) M - m2) - Am^ (m\M - m2) s 

F = ( m 3 , M - m 3 ) A m 2 ! C i 2 S i 2 C i 3 

C l 3 S l 3 
(3.28) 

(3.29) 

3.5 Oscillation probabilities with fixed density 

The existing work analytical work in the literature can be extended, and exact expressions 

for neutrino oscillation probabilities at zero or fixed density will be given. In certain 

situations, particularly earth-bound long baseline experiments, it is possible to assume 
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that the electron density is either zero or constant. The last chapter found that, at least 

with two neutrinos, matter effects do not come into play except at very long baselines 

on the order of hundreds of kilometres. So for shorter baselines, it should be possible 

to calculate the probability of neutrino flavour conversion with three neutrinos using 

vacuum oscillations. 

Moreover, it was also found that fairly accurate predictions could be obtained for 

very long baseline oscillation experiments by assuming an average density over the entire 

path. Thus, if the oscillation parameters at fixed density are calculated, oscillation 

probabilities in matter can be obtained from the vacuum results by inserting the effective 

parameters (modified by matter) in place of their vacuum counterparts. Either the 

analytical calculation of the CKM parameters in matter by Zaglauer and Schwarzer [132] 

can be substituted, or the numerical solution presented in the next chapter. While the 

exact solution is much faster to calculate, the numerical result is more stable because it 

was designed for the approximate floating point arithmetic performed by computers. 

Analytical calculation of the neutrino oscillations with three neutrinos has been done 

in the literature in several limited cases in which some simplifications are made to reduce 

the number of CKM parameters. What is presented here, however, extends that work by 

calculating neutrino oscillation probabilities in vacuum without any assumptions about 

the values of those parameters. The results can be extended to fixed electron density by 

replacing all parameters with the corresponding effective values in matter. 

The amplitude and probability for a neutrino produced as a va at time t — 0, propa

gating through space and being detected as a up at a later time t is given by: . 

(3.30) 

Pa/3 = P(ua^vl3;t) = \(v0(t)\va)\2 (3.31) 
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(3.33) 

(3.34) 

where the CKM matrix Vai given in equations 3.1 and 3.2 defines the relation between 

the weak and mass eigenbases. Converting time parameter from t to length parameter 

L, the individual probabilities can be shown to be: 

Pee (L) = 1 - 45 2

2 c 2

2 cf 3 Si 1 - 4c 2

2 5 2 3C 2

3 S 2

1 - 4 S

2

2 S

2

3 c 2

3 S | 2 (3.32) 

Py.ii (L) — 1 — 4[ s 2

2 C 2

2 (c23 — 5 2

3 5 2 3 ) + S i 3 S 2 3 C 2

3 — 4 S i 2 C 2

2 S 2

3 S 2 3 C 2 3 c | 

-2s 1 2Ci25l3523C23C,5 ( s 2

2 - c\2) (c\3 - S ^ S ^ ) ]S^ 

- 4 c 1 3 S 2 3 [S12C23 + C12S13S23 + 2*12^2513523^3^] S§ x 

- 4 C 2

3 « 2 3 [C12C23 + 512 s13 523 ~ 2s 1 2 Ci 2 Sl3S23C23C«] S|j2 

PTT (L) = 1 — 4[s2

2c2

2 (s23 — s2

3c2

3) + s 2

3s 2 3c 2 3 — 4s 2

2 c 2

2 s 2

3 s 2

3 c 2

3 c 2 

+2si2Ci 2 s 1 3 5 2 3 c 2 3 c, j (sf2 - c\2) {s2

23 - s\3c2

23) }S2

21 

-4C2

13CJ3 [s\2sl3 + c\2s\3C2

23 - 25120125155250230,$] S|j 

- 4 C 2

3 C | 3 [c\2s\3 + s\2s\3C2

23 + 2Si 2Ci2Sl3523C23Q] S§ 2 

Pzfj, {L) = 4 s 2

2 c 2

2 c 2

3 (c23 — s2

3s2

3) S 2 i + 4c 2

2s 2

3e 2

3s 2 3S 3 1 

S 13 C 13 S 23S 3 2 + 4 S i 2 C i 2 S i 3 C 2

3 S 2 3 C 2 3 X (3.35) 

(512 — C12) + C12S21+5 ~~ S12S21-5 + ~~ 

PET {L) = 4s 2

2 c f 2 c 2

3 (s23 — s\3c\3) + 4 c 2

2 s 2

3 C i 3 c 2 3 S 3

! i 

+ 4 5 2

2 

S13C13C23S32 ~ 4 S i 2 C i 2 S i 3 C i 3 5 2 3 C 2 3 X (3.36) 
(512 — C12) S| + C l 2 S 2 i + ^ — S12S21-5 + S 2 i _ 5 — S32_^] 

{ T \ A\ 2 2 2 2 2 2 2 2 2 2 / i 2 \ ̂  
° / J T ( £ ) = 4 [ S 1 2 C 1 2 5 1 3 + 5 1 35 23C 23 — 5i2 c12 523C23 U + S13) 

+2Si2Ci2Sl3S23C23Q (5?2 - c12) (S23 - 4$) ~ 4S?2C12S13S23C23C5]S21 

+ 4 c 2

3 S 2 3 c | 3 ( « i 2 — c12 s13) 3̂1 + 4c 2

3 52 3 C 2

3 {c\2 — s\2s\3) S| 2 

+ 4 S i 2 C i 2 S i 3 C 2

3 5 2 3 C 2 3 [ {sj2 - c\2) (s\3 - cj3) Sj + S2

23 (S2

31_s - S | 2 _j ) 

— c 2 3 (^ii+,5 — S 2

2 + ( j ) + (s\2c\3 + C 2

2 S 2 3 ) S | 1 + 5 — ( 5 2

2 s | 3 + C 2

2 C 2 3 ) S 2i_ 5] 

(3.37) 

http://Py.ii
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PA0(8,L) = PF3A{-8,L) (3.38) 

where Sij = sin(^), C;J = cos(%), 5,5 = sin(<J), Q = cos(5) and S 2

i ± < 5 = sin2
 ^ 1 - 2 7 A ™ j i L ± | 

Note that these probabilities are valid in the ultrarelativistic limit where El 3> m 2. 

While the algebra required is tedious and might otherwise be prone to error, there are 

several independent checks for accuracy. First, the unitarity condition J2 Pa/3 = 1 Vet 

was verified. Second, all nine oscillation probabilities were calculated and the relation 

3.38 was used to compare Peu, PeT and PUT to Pue, PTe and Pru respectively. Third, 

a CKM matrix symmetry Vua (523,^23) = VTa (C23, — S23) admits two more condition-

s, Puu(s23,c23,L) = PTT(c23,-s23,L) and P e / X (s23, c2 3, L) = P e T [c23,-s23, L). Thus 

P e e (L), the easiest term to calculate has one check, while all other results have either 

two or three independent checks. Finally, simplifying the calculated probabilities to the 

OMSD scenario and setting 8 = 0 allows them to be verified against other results in the 

literature. 

3.6 T r a n s i t i o n p r o b a b i l i t y across m u l t i p l e resonances 

3.6.1 J u m p p r o b a b i l i t y w i t h three neutr inos 

Following Parke's application [119] of Landau and Zener's results [120],[121] for the tran

sition probability at a level crossing, the problem of level crossing is considered assuming 

three neutrinos. Figure 3.1 showed the three masses as a function of electron density 

based on equations 3.15 to 3.17. It is clear that if the mass hierarchy in vacuum follows 

mi <m2 < m3 and m e « mi in vacuum then there may be two resonance crossings. 

Kuo and Pantaleone modified the the jump formula and applied it to the three neu

trino case, assuming that the two resonances can be treated separately [149]. They found 
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that at the 1/1 — v2 and v\ — i/3 resonances are given by: 

y / 2 i r Am^s^c^ 
Pjump ~ e X P 

Pjumv ~ e X P 

2(1 + c2

3) E2GFhc\dNe/dr 

jump 

2Ehc 

(3.39) 

(3.40) 
AE2GFhc\dNe/dr\re 

The condition L = ci 3> f̂?^? ensures that they do not cross. For a typical 15 MeV 

neutrino with A m 2 = IO - 5 eV2 this implies that the extent of the resonance region is 

r 2Ehc 2(1.5 x 107eV) (1.97 x 10-7eV • m) „ . n / o ., 
= - i — ~^7-2 ^ ^ e x l O ^ ^ g x l O - X 3.41 

Am"* 10 ^eV1 

It should be noted, however, that as the mass difference Am 2 decreases the resonance 

region increases. If Am 2 ?a 10~7 eV2 (corresponding to the weak third solution to the 

SNP which was ruled out by the two neutrino analysis in Chapter two), the condition 

on the resonance region in 3.41 becomes L >̂ 0.09 i? 0 , which would not be possible to 

satisfy if a third neutrino were present. Thus, if a second resonance exists inside the sun, 

it is not necessarily valid to treat the two resonances separately. 

3.6.2 Propagating the neutrino across multiple resonances 

It has now been established that, as long as the two resonances are well separated, a 

neutrino crossing a resonance in the three neutrino system can be treated in a manner 

identical to the two neutrino case. Now consider a neutrino propagating across more than 

one resonance in succession, but still provided that they are sufficiently well separated. In 

particular, suppose that a neutrino produced at the centre of the sun propagates outward 

and that the electron density at the point of production is large enough that it crosses 

two resonances on its way out of the sun. 

This situation is illustrated in figure 3.2 in which a neutrino is produced at time ti at 

density in the top right of the figure. It propagates downward to the left and passes 
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Figure 3.2: Path of a neutrino which crosses two resonances, beginning at high density 
at the top right and moving downward to the left as it leaves the sun. 

resonance density p2 at time tr2. It continues traversing the solar interior and passes the 

outer resonant density p\ at time tr\, after which it exits the sun at t$ and arrives on 

earth at ts- Beginning at U we write the neutrino wave function at successive times as 

it travels to the earth at ts'-

\V{U)) = \ue) = VeMlUi) + Ve2{Pz)\v2) + K 3 ( p 3 ) h ) 

= + A2{U)\v2) + AMWa) 

(3.42) 

Propagating to a time tr2 — | just outside the resonance at density p2, where r is the 

width of the resonance, yields 

2E 
( rtr2-r/2 ml(p)} 

+A2(U)expl-i Jt dt-Zj^-Ui*) 

(3.43) 

(3.44) 
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+ ^ f e ) e x p { - ! £ ' 1 " r / 2 * ^ } | , 3 ) (3.45) 

When the neutrino crosses the resonance at p r 2 there will be an amplitude for level 

crossing between the \u2) and Î 3) states, parameterised by coefficients a i and a 2 where 

|«i | 2 + |«212 = 1- The off resonance neutrino \vi) does not participate, so that 

+ 

+ 

dt „ . 
T / 2 - 2E J 

T T 1 

aiA2(tr2 - -) + a 2 A 3 ( i r 2 - .̂ O M 

-a;A 2 ( t r 2 - )̂ + aMs(*r2 - |^3) 

(3.46) 

(3.47) 

(3.48) 

= Ai (tr2 + 0 + A2 (tr2 + ^ \v2) + A 3 (t r 2 + 0 |i/3) 

The neutrino then propagates to the edge of the outer resonance at density p\ at time 

tri, where a is the (temporal) width, and 

, / r \ f . ftn-v/z , m2(p) 
-A2 [tr2 + - exp -z / 

V • 2/ [) Jtr2+r/2 
2E "2 

+A3 ( * p 2 + - ) exp 
2 + T / 2 2£; j 

(3.49) 

(3.50) 

(3.51) 

= ^1 (t p l - 0 |i/x) + A2 (trl - I) 11/2) + ^3 (*rl - I) l̂ s) 

At the second resonance, the \u\) and |f2) states come in^close contact while the 

\uz) does not participate. Parameterising the transition between the two states with 

coefficients 61 and b2 such that |&i|2 + |&2|2 = 1, the neutrino state after passing through 

the resonance is 

H*r l+ g )> = M l ( * r l - | ) + M 2 ( * r l - | ) 1̂ (3.52) 
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-bm

2A1(trl-^) + blA2(tri-^)] + 

+A3 (trl - - J exp < -i 

v2) 

/2 2E 
ptrl-\-< 

1̂ 3) 

(3.53) 

(3.54) 

M (tri + I) Wi) + A2 (trl +. 0 \u2) +A3 (trl + 0 \u3) 

After passing through the last resonance the neutrino propagates to the surface of 

the sun at ts 

\u(tS)) = AX (trl + I) e X P { _ i / 
m|(p) 

2E + A ( ^ + | ) ^ . { - * £ + . / , * 

= ^1 K ) + M its)\v2) + A 3 (ts) h ) 

(3.55) 

(3.56) 

(3.57) 

Finally, the neutrino state propagates from the surface of the sun to the earth at 

time tE. Because the masses are constant, the integral in the exponent can be evaluated 

exactly to obtain 

m W(tE)) = A1{ts)exp{-i'-^-(tE-ts)\\u1 2E 

m. +A2 (ts) exp I -i ^ (tE - ts) j> \u2 

m 
+A3 (ts) exp j - i ^ (tE - i s ) j |̂ 3> 

Ax (tE) \ux) + A2 (tE) 11/2) + ^3 (tE) N 

(3.58) 

(3.59) 

(3.60) 

Although each step is straightforward, the algebra has only been kept manageable by 

redefining the amplitudes A{ at each time. The full expression can be simplified somewhat 

by assuming that the resonance regions are small compared to the total distance travelled 
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through the sun. Then the resonance crossings are completely parameterised by the 

coefficients a\, a 2, h and &2, and the widths of the resonances r and o vanish. 

Introducing the notation Uei = Vei(p3), r}{ = ^r(tE - ts) and Xi(h, h) = Ji*2 dt 

the neutrino wavefunction on arrival at earth can be simplified to 

The probability that the neutrino arrives on earth as an electron neutrino state is 

given by 

P(ue -r I/.) = |[MV?i(0) + (V2\V;2(0) + (v3\Ve*3(0)+]\v (tE))\2 . (3.62) 

The details of the calculation are quite tedious, but can be performed. It can be shown 

that the result takes the form: 

P(uE->VE) = | K l | 2 {(1 - ^2) |t/el!2 + (1 - |CTC 2| 2 + PXJP2 jt/esi2} 

+ | K 2 | 2 {P2 \Uel\2 + (1 - PX)(1 - P2) \Ue2? + Pl(l - P2) \Ue3\2} 

+\ve3\2{p1\ue2\2 + (i-p1)\ue3\2} 

+2 E-=i A i c o s (arg(Ai) + Efc X) 

+2 E;=i Bi3 cos (772 - r)! + arg(Si3) + E* x) 

+2 E L i 5 i 2 cos {n3 -m + arg(Si2) + E* x) 

+2 E L i #*I cos (773 - r?2 + arg(S i l) + E f e x) 
(3.63) 

where Vei = Vei(0)|p=o is the CKM matrix in vacuum, and Pi = |a 2| and P 2 = |62| are 

the jump probabilities at the two resonances. The coefficients Ai and Bij are different 

(3.61) 

+6>2C/e3e-iX2(.tr2'ts)e-'X3(*i't'-2)]|^2) 

+e-i?73[ - a ;L / e 2 e - i X 3 ( t r 2 ' t s ) e - i X 2 ( < i ^ 2 ) + atC/ e 3e- i X 3 ( t i'* s )]k 3) 
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products of the form VeiV^UekU^ x a$b£K The terms expressed J2k X a r e sums of 

terms of the form Xi(ti, t2) which come from integrating the neutrino wavefunction as it 

propagates through the sun. 
t Tn? (p) • 

However, the Xi(ti,t2) = ft* dt terms each have endpoints of the integration 

which are two of: the point of production, inner resonance, outer resonance, and point of 

measurement. The probability calculated above is therefore dependent on the phase of 

the wavefunction at these points, and it is necessary to average over them. In doing so, 

all cosine terms in the expression drop out (they average to zero), and the probability is 

simply given by 

P(Ve-+Ue) = | K l l 2 { (1 - ^ 2 ) |C /e l i 2 + (1 - ^ l ) ^ 2 | C / e 2 | 2 + 

+ \Ve2\2 { P 2 \Uel\2 + (1 - P0(1 - P2) \Ue2\2 + P j ( l - P2) \UeZ\2} 

+ | V ; 3 | 2 { P 1 | ( 7 e 2 | 2 + ( l - F 1 ) | c / e 3 | 2 } 

(3.64) 

In practice, solar neutrinos are even less coherent. The point of production varies 

spatially, so neutrinos travel different distances before encountering the resonances (or 

encounter different resonance structures as will be discussed in the next chapter) reducing 

coherence. Because the solar density varies, the Vei terms in equation 3.63 will be vary 

from neutrino to neutrino. In addition, the oscillation lengths are also dependent on 

energy, and since most neutrino reactions have a distribution of energies, any coherence 

is washed out even more. 

The important thing to glean from this section is that there are no coherent effects. 

To calculate the probability that the ve has been converted to any flavour along the way, 

compute probabilities. First compute the projection of the wavefunction at production 

into the mass eigenbasis, then apply the probability of jumps at each resonance succes

sively, calculate vacuum oscillation probabilities for a neutrino propagating from the sun 

to earth, and project the result onto'the weak eigenbasis at the point of measurement. All 
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coherent effects are washed out not only because of the distribution of points of produc

tion and energies, but also due to averaging over the phase at the points of production, 

at each resonance and at the point of measurement. 



Chapter 4 

Numerical Methods 

4.1 Introduction 

Two different types of neutrino phenomena are studied: oscillations by neutrinos through 

vacuum and/or the earth's interior where the neutrinos are produced by accelerators, and 

oscillations by neutrinos created in the solar interior which emerge from the sun and travel 

to earth. The first of these is a straight oscillation problem with either fixed or variable 

density, while the second has the additional effect of crossing up to four resonances on the 

way out of the sun (the neutrino may cross each of two resonances twice if it is produced 

outside the resonance radii on the side of the sun opposite the earth). 

Two sets of computer codes were developed to calculate rates for these two different 

situations. This chapter briefly details those programs, discusses some of the numerical 

techniques used, and addresses the accuracy of the calculations. In the Section Two, 

numerical treatment of the CKM matrix is discussed, and results are compared to the 

analytical solutions presented by Zaglauer and Schwarz [132]. It will be shown that the 

two different methods produce exactly the same results. While the analytical solution is 

much faster to calculate, it does break down for certain values of the parameters and when 

the mass differences become large. The numerical solution was designed for approximate 

floating point arithmetic and does not break down. So in practice, a combination of the 

two methods is used to.maximise speed of calculation while maintaining stability of the 

solutions. The two sections following that outline the long baseline and solar numerical 

119 
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calculations, and discuss some of the details of the algorithms used. 

4.2 Numerical Treatment of the C K M Matrix 

The hamiltonian operator in the weak eigenbasis in matter is given by 

0 0 \ 

0 ml 0 

V 

( 1 0 0 ^ 

V " 1 + V2GFNe 0 0 0 

0 0 0 

(4.1) 

0 0 ml i 

There are well known numerical methods for determining the eigenvectors and eigen

values of an n x n matrix, especially hermitian matrices which have distinct eigenvectors 

associated with distinct, real eigenvalues. Hermitian matrices are particularly well be

haved because the eigenvalues and eigenvectors are not sensitive to small changes in the 

original matrix, thereby making numerical routines more stable. 

Diagonalisation of the hamiltonian was performed with the EISPACK subroutines ch, 

htribk, htridi, tql2, tqlrat, pythag and epslon. The method of solution, called the House

holder algorithm, involves performing a series of similarity transformations to reduce 

the matrix to tridiagonal form, after which a transformation can be used to diagonalise 

it. The product of the matrices used to diagonalise the hamiltonian define a non-unique 

similarity transformation relating the weak eigenstates to the mass eigenstates in matter. 

The EISPACK procedure decomposes the hamiltonian as follows: 

( di 0 0 ^ 

(HeflT)M = W 0 d2 0 

0 0 d. 

( m 

~ 2 E V M 

1,M 

0 

0 

3 / 

m 

(4.2) 

2,M 

m 

0 

0 

2 / 
3 , M / 

V, -1 
M 
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where VM and di = define the CKM matrix and mass eigenstates in matter. The 

approximation in the last step comes about because the EISPACK routines do not nec

essarily produce a matrix identical to the standard CKM matrix, which has positive 

determinant, four positive real elements in the first row and third column, and a partic

ular structure for the complex phase. 

The mixing angles can, however, be determined directly from W as follows: 

sin2(2013,M) = IWeaJ 

sin2(2012,M) = 

sin2(2023,M) = 

\W( e2 

1 - sin2(2013,M) 
2 \w, M31 

(4.3) 

(4.4) 

(4.5) 
1 - sin2(2013,M) 

Zaglauer and Schwarzer suggest a transformation of the form ei(aT3+bY)We-i(cT3+dY) 

which helps to determine the phase parameter cos(5). The constants a, b, c and d must 

be determined and the matrices T 3 and Y are given by 

1 1 0 0 ^ ( 1 0 0 ^ 

and Y = 0 - 2 0 

0 0 1 

(4.6) 0 0 0 

0 0 - 1 

Correctly chosing the parameters a through d does not, however, recover the CK-

M matrix in its original form. In addition to multiplication by an overall phase fac

tor, the form of equation 4.2 allows multiplication of any row or column of the ma

trix W by a factor of —1. Noticing that the form of the CKM matrix is such that 

{VniVT2 — VriV^) Ve3 = sin2 (#13), suggests multiplying W by an additional overall phase 

factor of us = f arg [(V^V^ - VnV^) Ve3\. . 

By writing the elements of the matrix as Wai = waie5ai it can be shown that chosing 

a = - - (w e i + ^ e 2 + &V3 + 3u)S) (4.7) 
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b = ^ (-<x>el - Ue2 + Vfi3 ~ ^T3 ~ ^s) 

1 , 
C = - - [UJE2 + UJy.2, + U J t 3 + Sus) 

d = ~ (2cjel - ue2 + W M 3 + UJt3 + 3UJS) 

produces real terms in the elements Ve\, Ve2, and Vr3. The range of the angular 

parameters #12, #13 and 023 always admits positive, real elements in these positions of 

the matrix. Multiplying one of the first two columns or the second or third rows of the 

matrix by —1 can render each of these real elements positive. Finally, if the determinant 

of the resulting matrix is —1, then multiplying the first row and first and second columns 

of the matrix by —1 will flip the parity of the matrix while leaving the real elements 

positive. This completes the process of putting the raw similarity transformation into 

CKM matrix form and the last parameter, cos 8 is given by 

C 0 S { 6 m ) = sW2fl 3 ) ( 4 " 8 ) 

Figure 4.1 compares the mass differences and CKM parameters calculated numerically 

using the methods presented above to the analytical formulae given by Zaglauer and 

Schwarzer, which have been shifted upward slightly in each plot to differentiate them. 

It is clear from the figure that the numerical method correctly calculates all parameters. 

As a result, the two methods of obtaining the matter enhanced CKM matrix are used 

interchangeably in the codes which generate the results in the chapters which follow. 

4.3 L o n g Base l ine C a l c u l a t i o n s 

4.3.1 B a s i c L o n g Base l ine C o d e 

Figure 4.2 gives a conceptual view of the code used to calculate long baseline neutrino 

oscillations. The program incorporates details of the neutrino spectra, and given a range 
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Figure 4.1: Effective neutrino masses and CKM parameters in matter as a function of 
the matter term A. Analytical results of Zaglauer and Schwarzer are shifted upwards for 
readability, (a) M?M with A m 2

i v = 10Am| i y , s\2 = 0.05 and s\3 = 0.01. (b) M 2

M 

with A m | l v = l . l A r a 2

l v , s\2 = 0.05 and s 2

3 = 0.01. (c) s\2M with A m ^ l v = 2Am2iy 

and s\z = 0.1. (d) s\3M with A m | i v = 2Am 2 , i y and s2

2 = 0.1. (e) s\3M with 
A r a 2

i v = 2 A m 2

1 ) V and s\2 = sf3 = 0.1. (f) cm with Am\iv = 2 A m | 1 K , s\2 = s\3 = 0.1 
and s2, - 0.2. 
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of CKM parameters and mass squared differences, a range of neutrino energies, and a 

path, it calculates neutrino oscillation probabilities and rates for different reactions at a 

distant water based detector. Oscillation probabilities as a function of distance along the 

path can also be calculated. 

The code steps through the CKM parameters and energy in small gradations and 

calculates the probability at each step. The earth's electron density can be treated as 

constant, as a series of step functions, or a gradually changing function. If the constant 

density is chosen, then the CKM matrix in matter is calculated and an exact formula 

is used to determine the probability. The step function model is treated as a series of 

constant densities, and the solved sequentially in a similar manner. If a variable density 

is chosen, then a numerical integration is performed to calculate the final oscillation 

probabilities. This last approach, while more realistic, takes much longer to compute. 

Fortunately, for many practical problems the other two methods are sufficient. 

The treatment of sudden density changes was carefully examined because there are 

several sharp variations in the earth's density. The Runge-Kutta method was modified so 

that when it encountered a large density change across one step, that step was broken up 

into many small ones across which the density change was very small, and the integration 

proceeded. The results were compared to two simpler methods: one in which the normal 

Runge-Kutta method integrated across the large density change in a single step, and a 

sudden approximation across the interface. The modified Runge-Kutta showed that the 

sudden approximation did not produce correct results while the unmodified Runge-Kutta 

method did. The conclusion was that because the neutrinos interact very weakly, sudden 

changes in the density do not noticeably affect the oscillation probabilities—it is almost 

as if the oscillations average over the densities encountered. This also explains the results 

found in Chapter Two that using an exact solution with an average density along the 

path produces results which are almost identical to integrating along the neutrino path 
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Runtime inputs 
output file names 
oscillation parameter ranges 
energy range 
path (baseline) 
method (exact or Runge-Kutta) 
density (fixed or variable) 

C headers 
neutrino energy spectra 
physical/mathematical constants 
complex variable definitions and 
mathematical operations 

Program Setup 
compute fits to neutrino spectra 
parameter initialisation 
flux conversion/scaling 

Calculation 
loop through oscillation parameters 

• loop through energy range 
• obtain initial fluxes 
• calculate oscillation probability 

using chosen method 
• compute final fluxes 
• fold in cross sections to determine 

rates 
• tabulate rates integrated over energy range 

cleanup and output results 

Program Outputs 
fits to neutrino spectra 
neutrino spectra at detector 
oscillation probabilities along 
baseline and at detector 
event rates for detector 

Figure 4.2: Structure of the long baseline neutrino oscillation code showing inputs, out
puts, and basic organisation. 
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using the earth's varying density. 

4.3.2 Approximation of the Earth's Density Structure 

The earth's density structure, seen in figure 2.7, can be approximated by a series of step 

functions. The simplest of these would be to assume a single density across the entire 

path of the neutrino from production point to detection. Then, once the eigenstates and 

CKM matrix in matter are determined, the exact solution for constant density is easy to 

calculate. The amplitude for neutrino flavour conversion is given by the matrix A, where 

Aa(3 = A(va -r is given by 

l e\r1-^) 0 

t , 2.54Am^I ^ 

( A A A ^ 
-™-ee -^fie -"̂ re 
A A A 
•f^efi -^/J-fi -"-TIM 

A A A 
•^er ^-fxr -^TT 

= V , M 

\ 

0 

.0 

0 

0 

\ 

0 

VM1 (4.9) 

and the probability of conversion is given by P(ua —> vp) = |AQ /g| 2. 

This simple model proved to be effective in most cases when analysing two neutrino 

oscillations in chapter two. The method does, however, break down when the neutrino 

path probes deep into the earth where liquid iron core has much higher density. The three 

neutrino code has an intermediate solution between the constant and variable density 

cases. In it, the earth is divided into eight spherical shells, and the mean density along 

the path through each shell is calculated as shown in figure 4.3. The infinitesimal length 

element dl is given by 
Rda Ri sin (di) da 

dl = 7TT = —r^n I 4 - 1 0 ) sin(ai + 0j) sin2 (ctj + 0j) 

where the symbols are as defined in the figure. Applying a change of variables a -> a-6{, 

the path length Lj and mean electron density (Ne(Li)) can be written as 
Oi+ai 

Li = Rism(6i) j 
Oi 

da 
1 Ri sin (ojj) 

sin2 (a) sin (a, + #;) 
(4.11) 
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dl 

RdcT 

R 

a R i-1 

Figure 4.3: Geometry used to calculate the mean density along a path through a spherical 
shell in the earth. 

Li J sin2 (a) 
Si 

(4.12) 

The electron density used, which was provided by Stephen Parke [102] consists of a 

series of eight cubic functions of the radial parameter. Substituting a cubic for Ne(R) 

in equation 4.12 yields a series of integrals of the form ginn(a), which can be evaluated 

exactly to determine the mean density along the neutrino's path. 

The neutrino wavefunction is then calculated along a sequence of up to 16 separate 

paths at different densities, before it is squared to give the individual oscillation prob

abilities. This method will prove to be more accurate than assuming a single density, 

while requiring much less calculation time than a full numerical integration. 
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R=Nh 

x0=oJ 
Xn-1 Xn,Ne(pn) Xn+i,Ne(pn+l) 

X N=R 
Xn+h/2 

P O _ P e a r t h Pn+1 

Figure 4.4: Division of the path of a neutrino beam through the earth into N discrete 
subsections. The Runge-Kutta method uses the electron density at the midpoint and at 
both ends of the segment in order to integrate the differential equation from xn to x n + i . 

4.3.3 R u n g e - K u t t a M e t h o d s of S o l u t i o n 

In contrast to an exact solution along a path of one or more fixed densities, Runge-

Kutta iterative techniques have been employed to calculate neutrino oscillations on paths 

through the earth's gradually varying density profile. Equation 2.8 can be written as: 

dij; (r) 
dr 

1 ve(r) X 

H(r) ip (r); ij) (r) = Mr) 
uT[r) 

(4.13) 

where the dependent parameter has been switched to r = ct, the distance along the 

neutrino's path. The electron density is determined by finding the distance p from the 

centre of the earth at point r along the path, so that Ne = Ne (p(r))as shown in figure 

(4.4). 

In order to integrate the D.E. on a path from r = 0 to r = R, the path is divided 
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into N sections of length h = R/N, such that H(r) is almost constant over any single 
—> —> 

segment. The functions are discretised by defining ipn(rn) m .ip (nh) for n — 0,1,... N. 

Beginning with the initial conditions ^o(r0), Runge-Kutta methods integrate the system 

one step at a time along the path, normally using a combination of ipn, H(rn), H(rn + |) 
and H(rn + h) in order to calculate V V K - A general first order Runge-Kutta method 

[151, §15.1], defines the vectors ki and k2 and iteratively calculates Vn+i as follows: 

h 
ki = hH (rn) ipn; k2=hH rn + 

V 
. (4.14) 

tpn+'1^7pn+k2+0{h2) . (4.15) 

By making / i very small, the error in each iteration is small, and after N iterations 

tj)N m if; (R) is determined. As h = R/N decreases, the error at each step decreases as 

h2 while the number of steps only increases by l/h, so the total error decreases linearly 

with h. 

A fourth order Runge-Kutta method can be used to eliminate higher order error terms 

in h and reduce the number of steps, but requiring increased calculation at each step. It 

defines four vectors ki to k4 and determines ipn+\ as follows: 

t1=hH(rn)~i; kZ = hH(rn + ^\ + ^ 

-» - / h" 
k3 =hH I r n + -

V 
fc4 = h H (rn + /i) (ipn + h 

tpn+1 = i/jn + — 
2

+t± + h + 0(hs) 

(4.16) 

(4.17) 

(4.18) 
3 3 

The error at each step decreases as h5 while the number of steps still increases as l/h, 

so that the overall error decreases as h4. 
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Because the Hamiltonian H is not explicitly dependent on xj;n, it is possible to replace 

the 3 x 1 column vector ipQ with a 3 x 3 identity matrix as "initial conditions." The 

Runge-Kutta iterations then reduce to a series of matrix multiplications with the result 

that the components of the final result are oscillation amplitudes 

( A(ue -> ue) A(uu -» ue) A(uT -> ue) ^ 

(4.19) A(ve -> v^) Aiy^-rv^ A(uT v^) 

\ A(ue -> vT) A(i/p -> vT) A(yT -> vT) ) 

The probability for oscillations is then given by P(ua —> v$) = \A(va —7 i^)]2. 

4.4 So lar N e u t r i n o C a l c u l a t i o n s 

4.4.1 B a s i c So lar C o d e 

In contrast to the LBNO code, the solar neutrino code is a hybrid between two distinct 

styles of calculation. Probabilities are computed at each discrete grid point of over a 

range of squared mass differences and CKM parameters, but many random neutrinos at 

each grid point are generated by chosing random energies and production points within 

SSM distributions in the style of a Monte Carlo program. The reason for the approach 

is that there are too many parameters to take the sequential approach with all of them. 

The mass squared differences and CKM parameters—those which are explicitly plotted 

in figures—are treated by calculating rates in discrete steps along a range of values. A 

runtime input number of iterations for each neutrino reaction at each grid point deter

mines the number of random neutrino events which are generated and propagated to the 

underground detector. A conceptual view of the program is shown in figure 4.5. 

For each sample neutrino event, an energy, radius and azimuthal angle is chosen at 

random. The CKM matrix at the point of production is estimated, and the locations of 
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Runtime inputs 
output file names 
oscillation parameter ranges 
neutrino source reactions 
number of Monte Carlo events 
target reactions 

Program Setup 
compute fits to solar properties 
counter initialisation 
fit target cross section 
fit neutrino energy and radial 
production probabilities 

Calculation 
loop through oscillation parameters 
• calculate vacuum CKM matrix and hamiltonian 
• determine resonance radii as a function of 

energy and fit to spline 
• calculate CKM matrices as function of E and p 
• loop through sources & Monte Carlo iterations 

chose random E, p, and azimuthal angle cp 
compute resonance radii, jump probabilities 
estimate CKM matrix at production point 
calculate exit probabilities from sun 
calculate vacuum oscillations to earth 
calculate earth regeneration probabilities 
calculate final rate at detector 

• scale and print rates at given grid point 
cleanup and output results 

C headers 
neutrino source data from SSM 
target element properties 
data types 
physical/mathematical constants 
complex variable definitions and 
mathematical operations 

Program Outputs 
fits from input data 
resonance radii fits 
actual distribution of Monte 
Carlo variables 
probability and rates at detector 
neutrino spectra at detector 

Figure 4.5: Structure of the solar neutrino oscillation code showing inputs, outputs, and 
basic organisation. 
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the resonance crossings are calculated. The ue is projected into the mass eigehspace, and 

the probability of being a v\, v2 or z/3 is determined. The components are propagated 

outwards across resonance crossings to determine the probability of each mass eigenstate 

when it leaves the sun. As discussed in the previous chapter, coherent effects are washed 

out so only probabilities need to be evaluated. Then the length of the path from the 

surface of the sun to the earth is calculated, including a correction for the eccentricity 

of the earth's orbit. The vacuum oscillations traveling from the sun to the earth are 

factored in to determine the probability of each neutrino flavour on arrival at the earth's 

surface. 

In the two neutrino code used in Chapter two, a path from the point of entry into 

the earth to the detector is also calculated, assuming random seasonal variation and 

time of day (to average the seasonal and day/night effects). The neutrino is propagated 

through the earth at fixed density, and the detector characteristics are then used to 

determine the effective rate with and without an MSW effect. It was shown in Chapter 

Three that averaging the phase of the wavefunction over the point of production, at 

resonance crossings and at the point of measurement removes coherent effects, which is 

why probabilities are calculated at each step. 

In order to reduce the time to do what are extensive calculations, some parameters 

are fitted with natural cubic splines, and the fits are used to interpolate the parameters 

in later calculations. The electron density and its first derivative in the sun, which are 

used in determining the resonance radii and jump probabilities are fit. The resonance 

radii for a given set of oscillation parameters are fit as a function of neutrino energy so 

in the three neutrino code the resonance parameters can be quickly interpolated, and the 

CKM matrix itself is fit as a function of energy and density. Finally, the cross section 

for interaction in the detector is fit as a function of energy. Because these functions are 

smooth, the interpolation is accurate. Natural cubic splines, which consist of a series of 
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quadratic functions connected sequentially, were chosen to fit the functions. While they 

are slower to calculate, they provide extremely smooth fits if the data points are very 

accurate. 

4.4.2 Treatment of Monte Carlo Parameters 

Each "event" consists of randomly chosing several parameters. The azimuthal angle <p of 

the neutrino production point relative to the centre of the sun and axis passing through 

the centres of the sun and earth is chosen. As will be shown in a later section, this 

angle will determines the resonance crossing structure and affect the jump probabilities. 

Because neutrino production in the sun in spherically symmetric, <p has a flat probability 

distribution. 

Next, a random energy and radius of production are chosen. The probability distri

bution function (PDF) for each solar neutrino source reaction as a function of energy and 

fraction of the solar radius have been calculated and are among the outputs of BP95. 

These PDFs have been summed to produce cumulative distribution functions (CDFs), 

and the results are stored in C header files. The CDF for the energy distribution C (E), 

for example, is a monotonic increasing function whose domain is the span of energies of 

neutrinos produced by a given reaction, and whose range is from zero to one. C (E) is 

the probability that a neutrino produced by the reaction has energy less than or equal to 

E. By chosing a random number CR E [0,1] and interpolating the CDF to determine the 

unique ER such that C (ER) = CR, a random energy is obtained which conforms to the 

distribution defined by the corresponding PDF. A similar procedure is used to choose a 

radius of production. The situation is illustrated in figure 4.6 which shows the fit to the 
8 B neutrino energy spectrum. 
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Neutrino Energy [MeV] 

Figure 4.6: Cumulative distribution function for neutrino energy in 8B neutrinos. Given 
a random number between zero and one, determining the energy at which the CDF has 
that value will produce a random energy which is distributed with the 8 B spectrum. 

4.4.3 Fitting the C K M Parameters 

With on the order of 104 events generated at each grid point in MS diagrams in a typical 

run of the solar neutrino code, it is impractical to diagonalise the CKM matrix for each 

event. Instead, a 50 x 50 array of 3 x 3 CKM matrices is generated and diagonalised for 

50 neutrino energies and 50 densities. The energies are linearly spaced on the minimum 

range needed, based on the detector threshold and neutrino sources being used, while 

the densities range linearly from zero to the density at the centre of the sun. 

Then for each event generated, elements of the CKM matrix are interpolated linearly 

inside the array. The formula used to determine VapiM (E, p) for Ei < E < Ei+i and 

Pj < p < Pj+i where E{, Ei+i, Pj and pj+i are nodes at which the CKM matrix was 
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diagonalised is given by 

IE:, lit, A 
(4.20) 

+ ̂ T̂ k ftCT-ft- V a l 3 < M ( E i + 1 ' 

The interpolation is a weighted average of the four nodes which is a two-dimensional 

extension of linear interpolation in one dimension. Figure 4.7 shows the interpolation for 

a typical set of parameters with a grid which is coarser than that used in the calculations 

by a factor of two in both directions. Clearly all parameters are sufficiently smooth that 

the interpolation will accurately estimate the CKM parameters in matter. 

4.4.4 M u l t i p l e Resonance Possibi l i t ies 

For each neutrino event, there are multiple possible resonance structures. With two 

neutrinos there is only one resonance radius, and the structure is fairly simple. If the 

neutrino is produced outside the resonance radius, then either it does not cross any 

resonance or it crosses the resonance radius twice on the way to the earth. If it is 

produced inside the resonance radius then it necessarily traverses a level crossing once. 

The situation is illustrated in figure 4.8 which shows the three possible paths and the 

effective jump probability for each. It also demonstrates how the path affects ^ 
l a r . res 

which modifies the jump probability. In particular, the density gradient is given by 

cos(a) because the neutrino does not cross the resonance in the radial 
i . — i T e a 

direction. 

Circumstances are much more complex with three neutrinos. There can be two res

onant radii with six distinct paths possible, and the ve which is produced has three 

components instead of two. Figure 4.9 illustrates the different paths a neutrino event can 

"dJV \dN 
dr eff [ dr 
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Figure 4.7: Oscillation parameters as a function of neutrino energy and electron density 
for ranges relevant to the solar interior. Mesh size used in interpolating parameters in so
lar neutrino calculations is one half the size shown in both the Ev and Ne directions. Vac
uum parameters for the plots are m\ = 0 eV2, m\ = 7.5 x 10"6 eV 2, mf, = 1.0 x 10"4 eV2, 
s2

2 = 0.25, s 2

3 = 0.10, 5223 = 0.15 and ss = 0.5. 
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(b) eff 2P,(1-P,) 

(c) P7 

^ j T \ > 
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\ ( d N / d r ) e / / K d N / d r ) r e , cos a 

/ \ \ a 
ipSin cpi 1 

Figure 4.8: Three possible paths with the effective jump probability for each one. Note 
the cos(a) term which modifies the neutrino density gradient at the resonance crossing. 
The angle is defined by sin(a) = ZxiisM 

have when it leaves the sun. The jump probability at each resonance is again modified 

because the effective density gradient has an added factor of cos(ojj) as in the previous 

case. 

Defining Vai and Uai to be components of the C K M matrix in vacuum and in matter 

at the point of production respectively, and Pi and P 2 to be the jump probabilities at 

each of the two resonances modified by the terms cos(ai) and cos(o;2), the probability 

that a ve produced in the sun emerges as a ve along the six possible paths is given by: 

ee,(i) •= Pelf | K l | 2 + \Ue2\2 | K 2 | 2 + Pesf \Ve e3| 

ee,(ii) \Uel\2{(l - 2P2 + 2P2

2) | K i | 2 + 2P2 (1 - P2) I K 2 I 2 } + 

\ue2\2 {2P2 (1 - P 2) | K i | 2 + (1 - 2P2 + 2P2

2) |ye2|2} + 

(4.21) 

(4.22) 
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Figure 4.9: Six possible paths which a neutrino can take when leaving the sun with two 
resonance radii. The density gradient at the two resonances is modified by factors of 
cos(a1) and cos(a2) just as it was in the two neutrino case. 

Pee,(iii) = |t/e l|2 {(1 - ^2) |^el|2 + ^2 + 

\ue2\2 {P2\vel\2 + (1 - P2)\ve2\2} + \ue3\2\V*\ 

(4.23) 

ee,(iv) \Uel\2{[(l - P2)2 + P\ ( l - 2PX + 2P2)] | K i | 2 + (4.24) 

2P2 (1 - P2) ( l - Pi + Pi) | K 2 | 2 + 2P2Px (1 - Pj) |V e 3 | 2} + 

|t/e2|2 {2P2 (1 - P2) ( l - Pi + P 2 ) iVeil2 + 

[P2

2 + (1 - P 2 ) 2 ( l - 2PX + 2P2)] I K 2 I 2 + 2(1 - P2)PX (1 - Px) |K 3 | 2 } + 

|C7e3|2 {2P2 (1 - Pi) P 2 IKi | 2 + 2P, (1 - Px) (1 - P2) | K 2 | 2 + 

( l - 2 P 1 + 2P1

2)|V;3|2} 

Pee,W = l ^ e l | 2 { ( l - P 2 ) | K l | 2 + P2|V;2| 2}4 

| t / e 2 | 2 {( l -2P 1 + 2 P 2 ) P 2 | K i | 2 + 

(4.25) 
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(l - 2PX + 2P2) (1 - P 2)\V e 2\ 2 + 2A (1 - Px) |K 3 | 2 } + 

\Ue3\2{2P1(l-P1)P2\Vel\2 + 

2Pi (1 - Px) (1 - P2) | K 2 | 2 + (l - 2PX + 2P 2) |K 3 | 2 } , 

Pee,(vi) = |^el | 2 {( l-P 2 ) |V;i | 2 + JP2|V; 2 | 2}+ (4.26) 

\Ue2\2 {(1 - PX)P 2 | V e l | 2 + (l - P a)(l - P2) |V e 2 | 2 + P2 |K 3 | 2 } + 

l ^ l 2 {PiP2 IKil 2 + A ( i - P 2 ) |v;2|2 + (i - P 2) |v;3|2} 

After averaging out the phase of the neutrino wave functions across each resonance 

crossing and the point at which it leaves the sun, each term in the formulae above can 

be interpreted as the product of a series of probabilities at each step—phase effects are 

not present. The neutrino point of production relative to the resonance radii determines 

the path across resonances in the sun, and it is a geometric problem to determine which 

of the six probabilities above to use to translate the neutrino out of the sun. 

4.4.5 Seasonal a n d D a y / N i g h t Effects 

Seasonal and day/night effects are included in the calculation of neutrino oscillations, 

as illustrated in figure 4.10. Neutrinos which arrive on earth at night have much longer 

paths through the earth's interior and may undergo matter enhanced oscillations. Two 

coordinate systems XYZ and X'Y'Z' are defined as shown, such that Z is perpendicular 

to the plane of the solar system, Z' is the axis of rotation of the earth and X = X'. The 

Y'Z' axes are rotated 9 = 23° relative to the YZ axes. 

Given the azimuthal angle 7 of the detector with respect to Z' (90° minus latitude), 

the angles a in the X'Y' plane and (3 in the XY plane define the time of day and time 

of year respectively fully parameterise a neutrino path from the sun to the earth. The 

position vector of the detector is rotated from the primed coordinates to the unprimed 
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Z = galactic north 

Figure 4.10: Coordinate systems used to determine the path length of the neutrino 
through the earth. The XY axes define the plane of the ecliptic, while the X'Y' define 
the equatorial plane. The angle 7 is the azimuthal angle of the detector about the axis of 
rotation of the earth. The angle a defines the degree of freedom in the earth's rotation 
and determines the time of day at which the neutrino arrives. The angle (3 defines the 
angle which the earth makes relative to the sun, and determines the time of year. 
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as follows: 

'y 

\rz J 

rdet 

1 0 0 

0 ce sg 

\ 0 -se ce J 

s^ca 

V c 7 J 

^det CQS1S(X + sec1 

y —ses^Sa + cec1 J 

(4.27) 

where sn and cv are defined to be the sine and cosine of the angle r\. The path of a 

neutrino through the detector when the earth is at angle j3 in the XY plane is defined 

by the line 

cpx + spy = cprx + spry (4.28) 

z = rz 

Combining these equations with x2 + y2 + z2 = r 2

a r t h determines two solutions (x, y, z) 

which define the two points where the neutrino path crosses the earth's surface. Elimi

nating x and z using equations 4.28 yields the equation 

y2 - 2s0 (cprx + spry) y + (r2

z - r2

earthj + (c0rx + s0ry)2 = 0 (4.29)' 

The discriminant for this quadratic equation can be reduced to 

4ac = Aci earth 
Tlet + (S0rx ~ CpVyf > 0 (4.30) 

which is positive definite and guarantees two real solutions, one short path and one 

long path. If the neutrino arrives in the daytime (the short path solution) the constant 

density Ne = 1.34mol/cm3 is used in regeneration calculations corresponding to the 

electron density of the earth crust. For nighttime neutrinos, a density closer to the 

average through the earth is used, and regeneration is calculated with Ne = 2.1 mol/cm3. 

4.4.6 Stability of the Results 

One last question which must be addressed is the level of statistics required for the Monte 

Carlo method to generate accurate results—how many events are required to accurately 
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Source Chlorine Gallium 
Reaction Rci [SNU] o~ci o~ci/Rci RGa [SNU] 0~Ga 0~Gd/RGa 

hep 4.27 x IO"3 2.4 x 10" - 5 0.55 % 8.33 x 10"3 7.0 x 10-- 5 0.84 % 
8B 6.87 8.9 x 10" - 2 1.3% 15.9 0.13 0.81% 
pep 0.204 5.6 x 10" - 9 0.0% 2.86 4.0 x 10" - 8 0.0% 
7Be 1.60 3.9 x 10" - 3 0.25 % 37.7 8.2 x 10-- 2 0.22 % • 
pp 0.0 0.0 n/a 71.4 0.43 0.61 % 

1 3 AT 0.156 1.1 x 10" - 3 0.71 % 3.85 1.7 x 10-- 2 0.44 % 
150 0.371 2.8 x 10" - 3 0.75 % 6.24 3.2 x 10" - 2 0.52 % 

4.47 x IO"3 3.3 x .10" - 5 0.74% 7.47 x IO"2 3.7 x 10-- 4 0.49% 
Total 9.21 8.7 x.10" - 2 0.95% 138.1 0.41 0.30 % 

Table 4.1: Mean standard model neutrino rates for chlorine and gallium detectors from 
ten different trials generating 10,000 events for each neutrino source with different pseu
do-random number generator seeds. 

calculate neutrino oscillation probabilities on earth? In addition, how accurately are the 

energy and radial distributions of the neutrino sources reproduced by a given number of 

events? 

The first of these questions can be answered by calculating the event rate for a given 

number of events using different initial random number seeds. Table 4.1 shows the mean 

and standard deviations in event rates for each of the eight neutrino sources on both 

chlorine and gallium targets based on 10, 000 neutrino events with ten different random 

number seeds. Almost all of the sources have standard deviations which are less than 

one percent of the mean, and the discrete energy neutrinos have much more accurately 

determined rates. The rates for the chlorine and gallium experiments have errors of 0.95 % 

and 0.30 % respectively. 

In calculating the MSW effect in a plot with typically a 41 x 41 grid, the average 

standard model (no MSW) event rate is calculated over all events and all eight neutrino 

sources (41 x 41 x 10,000 x 8 = 1.34 x 108 events). Then the MSW rate at the ij grid 

point rateijtMsw is multiplied by the ratio of the overall standard model result with the 
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standard model rate rijtsTM at that grid point. 

rateij<MSW;corrected ~ TClteij^MSW 
412 E i , j rateijtSTM 

rateijtSTM 
(4.31) 

This further reduces the statistical error in the calculation. Grid points where the 

MSW rate is low as a result of statistical variations will will also produce low standard 

model results, but the multiplication factor corrects this. 

The second possible concern with the Monte Carlo procedure is that the energy 

and radial distributions will not be correctly reproduced, either by coding errors or 

by problems with the pseudo-random number generator. Figure 4.11 shows the actual 

frequencies for random numbers and neutrino production as a function of the solar radius 

and energy with the actual distributions. It is clear from the figure that the frequency 

of pseudo-random numbers generated is consistent with a flat distribution, and that the 

Monte Carlo reproduces both the radial and energy distributions of neutrino production. 
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Figure 4.11: Monte Carlo reproduction of statistical distributions based on 10,000 events 
for each of five pp-cycle neutrino sources, (a) Frequency of generation of random numbers 
between 0 and 1. (b) Frequency of generation of neutrinos as a function of solar radius for 
five different neutrino sources. Thick smooth lines show actual probability distributions, 
(c) Frequency of generation of neutrinos as a function of energy, with actual distributions 
shown as dotted lines. Note that discrete source lines have been separated horizontally 
to differentiate them, and that values on the energy axis must be divided by 40 for the 
pp distribution which has a maximum energy of 0.42 MeV. 



C h a p t e r 5 

N u m e r i c a l C a l c u l a t i o n s w i t h T h r e e N e u t r i n o s 

5.1 I n t r o d u c t i o n 

Chapter three introduced the notation to describe mixing of three neutrinos and discussed 

reasons why two neutrino analyses may not be sufficient to describe nature. This chapter 

will extend that analytical work in specific cases, and study three neutrino phenomena 

using the computer codes developed and described in Chapter four. 

Section two will make some preliminary notes on oscillation lengths and mass hier

archies that will be used later on. Section three will study neutrinos oscillations in the 

one mass scale dominant mass hierarchy, but without the assumption of small matter 

effects. Indirect oscillations of -> ve will be shown to be possible even when Am2,! is 

very small—a distinctly three neutrino effect. 

Symmetries of the oscillation probabilities will be studied, and it will be shown that 

normal accelerator experiments will find a two-fold degeneracy in the neutrino oscilla

tion parameters. While this effect has been noted in the literature, it is described here 

analytically and the relation between the degenerate parameter sets is derived. Regions 

of parameter space that can be surveyed in four possible OMSD scenarios will be illus

trated, and detailed calculations will show that matter effects may become apparent at 

relatively short baselines (250 km) in some schemes. Finally, matter effects which occur 

on very long baselines will be plotted. 

Section four will look at the phenomenon of CP violation, and discuss where it might 

145 



Chapter 5. Numerical Calculations with Three Neutrinos 146 

be seen. Conditions required for the next generation of neutrino oscillation experiments 

to be able to make quantitative inferences will be discussed. After denning the notation 

used to describe CP violation the existing literature, most of which is less than a year old, 

will be reviewed. New analytical results describing CP violation to second order in two 

small parameters (matter effects and ratio of the neutrino mass scales) will be presented. 

Second order effects will be apparent in the data presented, and it will be argued that 

because matter effects are likely to be larger than CP, the additional accuracy is needed 

to correctly interpret future experiments. 

These results will be applied to long baseline experiments to make accurate estimates 

of the magnitude of CP violation likely to be seen at the KEK to SuperKamiokande and 

MINOS experiments, which has not been done to date. Strategies to isolate CP violating 

effects from larger matter effects will be applied to these experiments. Using the second 

order terms presented, measurement of CP violation in the matter dominated regime— 

a phenomenon which cannot be described at first order—will be. discussed. However, 

numerical calculations will allow CP violation to be studied even when the second or

der approximation breaks down, a regime thus far unexplored in the literature. It will 

be shown that nuclear reactor results can be combined with accelerator experiments to 

isolate CP violation from matter analytically, an effect which will also be studied numer

ically. Finally, calculations showing that CP violation does impact the ratio of /x-type to 

e-type neutrinos measured in the atmospheric flux, and the magnitude will be estimated 

to be up to several percent for reasonable estimates of the neutrino masses and related 

parameters. 

In section five, three neutrino effects on solar neutrino experiments will be discussed. 

Existing work with two mixing angles and one mass squared difference will be extended 

to include three mixing angles and two mass squared differences. New calculations will 

modify the allowed regions of Am 2 ! and s\2 as a result of the third neutrino, in accordance 
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with experimental results on atmospheric neutrinos. Through three neutrino vacuum 

oscillations on the way to the earth, the mixing parameter will be shown to materially 

affect the solar neutrino results. In addition, the possibility that the third neutrino 

converts some of the high energy 8 B neutrinos will be quantitatively considered. 

5.2 P r e l i m i n a r y N o t e s 

5.2.1 Base l ines r e q u i r e d for osci l lat ions a n d m a t t e r effects 

The vacuum oscillation length between two neutrino flavours is given by Ly = 4^^c • 

Multiplying the constants and putting factors in typical dimensional units gives 

E eV2 

Lv = 2A8km-—-— (5.1) 
GeV Am2 

Or put another way, an experiment with baseline L = Ly/A and neutrino peak energy E 

which is capable of measuring the first minimum in a neutrino oscillation will rule out 

Am2>0.62eV2-^--k^ (5.2) 
GeV L 

Further, if a neutrino travels straight down and arrives at its first minimum when emerg

ing on the other side of the earth, then L = 2R&. Substituting this gives an approximation 

of the smallest mass scale which can be probed on an earth bound experiment: 

Am2

min = 4.8 x K T 5 eV2 (5.3) 

In order to probe to masses differences below these limits, it is necessary to have: (i) 

sufficient statistics to allow measurement of an effect before the first oscillation minimum 

is reached, (ii) neutrino energies below the lGeV level, or (iii) some observable matter 

effect which increases the mass difference. 
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The effect of matter on neutrino masses can be estimated by writing the matter term 

added to the hamiltonian in dimensional units to obtain 

TTmat _ 2V2GFNANeE 
(he) 

= 1 . 5 x l O - 4 e V 2 ^ - ^ - 3 
CreV mol / cm° 

(5.4) 

Except at baselines above 10,000km, the earth's density is below 2.5mol/cm3. Using 

an average of 2.0mol/cm3 and substituting H™at for Am? in equation 5.1 produces an 

estimate of the baseline at which matter effects would clearly be evident: 

jjmat 

« 2050 km (5.5) 

At this length, the matter-induced mass of the electron is equal to mass which reaches a 

minimum at the detector, so some effect must occur. However, matter dependence does 

become apparent on much shorter baselines. 

5.2.2 N e u t r i n o mass hierarchies 

The experimental data suggests that there are two different neutrino mass scales—one 

which is in either the 10~10eV2 (vacuum) or 10~5eV2 (MSW) range to solve the solar 

neutrino problem, and another in the 10~4 —10~2 eV2 range to account for the atmospheric 

neutrino anomaly. In the work which follows the masses which are considered will go 

somewhat outside those suggested by the strict interpretation of the experimental results 

in order to allow for possible changes in them, and because the intuition from two neutrino 

oscillations may not always apply in the three neutrino situation where six parameters 

are present. 

The mass of the electron neutrino will be assumed to be slightly smaller than one other 

neutrino, and the third neutrino mass will be left arbitrary. If vacuum oscillations solve 

the SNP, then the ue mass must be within about 10~10 eV2 of one of the other masses. 
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Figure 5.1: Four possible mass structures for three neutrinos given that the V\ mass must 
be slightly less than one of the other neutrino masses. 

Whether it is just above or just below is irrelevant in terrestrial experiments because the 

oscillation length given by equation 5.1 would be orders of magnitude larger than the 

diameter of the earth at any measurable energy. In this case, an inverted hierarchy with 

mVl = mVi + O (IO - 1 0 eV2) would produce results identical to mvi = mVi — O (IO - 1 0 eV2). 

Alternately, if the MSW effect explains the SNP, the ve mass must be smaller than at 

least one other neutrino, by an amount on the order of a few times 10 - 5 eV2 or less. 

These restrictions reduce the number of unique mass structures to four cases, labelled A, 

B, C and D and illustrated in figure 5.1. 

5.3 The One Mass Scale Dominant Structure 

If one mass squared difference in the neutrino mass hierarchy is so small that the oscil

lation length is many times the diameter of the earth, then the system simplifies greatly. 

Most authors further simplify the problem by assuming that the complex phase 8 van

ishes and that matter effects are small. In what follows, however, the situation will be 

clarified and it will be shown that the first of these assumptions is unnecessary and the 

second will not be valid on baselines on the order of a few hundred kilometres where 

matter effects will be apparent. 
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5.3.1 Two types of O M S D and oscillation probabilities 

The four mass structures in figure 5.1 each give rise to distinct OMSD scenarios. Setting 

A m ^ = 0 in hierarchies B and C reduces the probabilities in equations 3.32 to 3.37 to 

the following simplified form: 

POMSD-I{L) = i - ^ c f s S ? ! .(5-6) 

POMSD-l{L) - = 1 - 4 C 2 3 ^ 3 ( 1 - C 2

3 5 2 3 ) S 2

1 (5-7) 

pOMSD-l,L) = l - 4 C

2 3 C

2

3 ( l - C

2 3 C y S 2

1 (5-8) 

pOMSD-l{L) = ^ j C j j ^ S ^ (5-9) 

pOMSD-i{L) = 4 5

2

3 c 2 3 C

2

3 S 2

1 (5-10) 

pOMSD-i { L ) = 443sl3cl3S*31 (5-11) 

Note that none of the oscillation probabilities depend on either the mixing parameter 

s1 2 or the complex phase.S, so that six parameters have been reduced to three. Fogli et. 

al. [147] have correctly noted that since S 3 1 = sin2 is an even function of 

Am^, hierarchies B and C are indistinguishable in vacuum. However, matter enhances 

neutrino oscillations and suppresses antineutrino oscillations in scenario C, and will have 

the opposite affect in scenario B. 

A similar reduction in the oscillation probabilities occur in hierarchies A and D when 

A m | x = 0. However, naively applying these equalities to equations 3.32 to 3.37 produces 

only slightly simplified expressions which depend on all three mixing angles and the 

complex phase. Symmetry of the mass structure intuitively suggests that it should be 

possible to write the oscillation probabilities with expressions with a similar functional 

form to those in equations 5.6 to 5.11. It turns out that the more complex expressions 
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come from the form of the CKM matrix which was defined in equation 3 .1 . The oscillation 

probabilities can be simplified with a redefinition of the parameters so that 

P O M S D - 2 { l ) = i _ 4 g? a ^ 2 S » 1 (5-12) 

P O M S D - 2 { l ) = i _ 4 0 1 ^ 3 ( 1 - ^ 3 ) 8 1 , (5 .13) 

pOMSD-2{L) = 1-4C-2

2513(1-C12S-13)S11 ( 5 .14 ) 

P O M S V - 2 { l ) = 4 ^ 5 2 , 8 ^ (5'.16) 

P°MSD-2(L) = Aci2s\AA (5-17) 
where the redefined angular parameters are given by: 

s 1 2 = S12C13 (5 .18 ) 

5ia=[l-*? ac?s] 1 / 2 ( 5- 1 9) 

(5.20) S23 = 

C23 

C?2 S23 + 2S l2Cl 2 5 1 3 S 2 3C23C,5 + S2

l2s\3C2 

1 -she2 

23 

12c13 

1/2 

C12C23 ~ 2-Sl 2Ci 25l 3g23C23Q + S\2S13S23 
1 Q2 p2 
1 s12 c13 

1/2 

5.3.2 Ind irec t ly c o u p l e d vu - ve osci l lat ions 

(5.21) 

Pantaleone [129] has suggested that one purely three neutrino effect would be ve appear

ance without direct ve — mixing. His result will be reproduced for completeness and to 

verify the computer codes written. In the OMSD-1 scenario above, A m 2 1 is too small to 

be of consequence, but P^e{L) is non-zero because —> vT —> ve oscillations can occur. 

The contours are identical to those in two neutrino mixing, except that P°™SD~l(L) 

has the additional factor of s\3 which could be absorbed into an effective #13. Figure 
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5.2 shows an attempt to roughly reproduce the figures in that paper in order to test the 

three neutrino long baseline code. 

The figure shows contours of constant P^L) as a function of sin2(2#i3) and Ara^ for 

both neutrinos and antineutrinos, with sin2(023) = 0.03 and 0.3. The reference neutrino 

spectrum is used with the neutrino energy is tripled so that its peak is closer to the 6 GeV 

peak of the FNAL neutrino spectrum. The probabilities are scaled by the neutrino flux 

and energy (the latter because o oc E). The first and second rows show contours at 6400 

km and 11, 400 km respectively. The results compare favourably to Pantaleone's, with the 

only visible difference being the height of region where matter enhancement occurs. This 

difference stems from the wide energy spectrum of the FNAL neutrino beam, compared 

to the relatively sharp peaked reference spectrum used to generate this figure. 

The method of calculation is varied in each column, and the results are more accurate 

(but take longer to compute) moving from left to right. In the left column, a constant 

density along the path through the earth is assumed. In the middle column, the earth's 

density profile is divided into eight shells and the mean density along the neutrino's path 

through each shell is determined as discussed in Chapter 4. In the rightmost column, the 

hamiltonian is integrated using a fourth order Runge-Kutta iterative calculation to obtain 

Pfj,e(L). The figure shows that on shorter baselines, both approximate methods reproduce 

the numerically integrated calculation. On the longer baseline, the shell method does a 

better job of reproducing the correct result than the fixed density method, although it is 

not perfect either. 

It is also notable that increasing the baseline does not necessarily provide a probe to 

lower A m 2 in this case because at increased depths, the earth's electron density increases. 

Going from L = 6400 km to L = 11,400 km, A m 2

e 5 oc Ne has increased about as much 

as the baseline, so the minimum mass difference probed does not change. However, the 

longer baseline would survey smaller mixing angles. 
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Figure 5.2: Contours for == 1 % (solid lines) and P^ = 1 % (dotted lines) at L = 6400 
km and L = 11,400 km with mixing parameter s 2

3 = 0.03 and 0.3. In the left column, a 
fixed electron density along the path is used (2.1 mol/cm3 at 6400 km and 4.0 mol/cm3 

at 11,400 km). In the middle column, the earth's density profile is divided into eight 
shells, and the mean value along the neutrino's path through each shell is calculated, as 
discussed in Chapter 4. In the right column, the neutrino wavefunction is integrated along 
2048 steps using a fourth-order Runge-Kutta method. Note that this method eventually 
breaks down at large Am 2 as the number of steps per oscillation gets too small. 
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5.3.3 Symmetries of the Pa(g(L) and measuring the C K M parameters 

Several symmetries in the oscillation probabilities are apparent. For example, notice 

that the probability P ° p M S D ~ 2 (s2

2, c2

2, s\z, c|3, Am^, L, E) is functionally identical to 

the probability P ° p S D ~ l (sf3, c2

3, S23, c23> Ara 3 1 , >̂ E) where a' = e,fi,r when a = e, r, / i 

respectively and similarly for )3' (i.e. the role of fi and r are reversed). The redefinition of 

the OMSD-2 oscillation parameters restored this symmetry. Moreover, since accelerators 

produce beams of vu (P M ) and measure P p e , PM M and PM T , making inferences in the OMSD-

2 scenario is equivalent to making inferences based on P r e , P T T and PTU with OMSD-1. 

There are two additional symmetries which are of interest. The first comes from the 

observation that P ^ M 5 D _ 1 (sĵ , c2

3) = P°f,SD~l (c?.3, s2

3) where again a' = e,/i, r when 

o = e,T,fi respectively and similarly for /?'. Combining these two symmetries gives the 

relation: 

pOMSD-2(-2 p 2 -2 -2 A 2 r E A _ p O M S D - V ( 2 2 2 2 A 2 r E A 
•'a/S \ * 1 2 > c 1 2 ) * 2 3 ) c 2 3 > / - i ' , t 2 l 5 ^ ' ^ ~ ra/3 \ b l Z i L 1 3 ' c 2 3 > *23> ^ A " t 3 1 > - ^ y 

(5.22) 

Because these probabilities are what the experiments measure, it is not possible to 

differentiate between the two different OMSD scenarios using oscillations in vacuum or, 

as will be shown shortly, first order matter effects. For each set of parameters and 

confidence level in OMSD-1, there is an equivalent set of parameters with an identical 

confidence level in OMSD-2. In effect, scenarios A and B are indistinguishable from each 

other, and so are C and D. 

A more 'accidental' symmetry occurs when measuring oscillations of muon neutrinos 

or antineutrinos—typical of accelerator based experiments. In a recent paper Fogli and 

Lisi [146] found a two-fold ambiguity in the allowed region when results from —» ve and 

Vn —> vr experiments were combined. The parallel solution can be calculated by looking 

for a second set of angles which produce the same oscillation probabilities P / f a

M S D " 1 (L) 



Chapter 5. Numerical Calculations with Three Neutrinos • 155 

for a = e,n,T. Since these three probabilities sum to unity, it is only necessary to find 

0 1 3 and 0 2 3 which satisfy . 

p O M S D
 1(L) = 4s 2

3c 1 3S2 3S3i = 4s2

3c1 3S23S3i (5.23) 

P°MSP\L) = AslAAA = 4444^1 .(5.24) 

Combining these equations and yields a quadratic equation which admits two solu

tions, the trivial one in which the new angular parameters are equal to the. original ones 

and a second one: 

«2 r2
 <s2 1 - 9r2

 s 2 + r 4 s 2 

6 1 3 L 1 3 * 2 3 - 2 _ 1 z c 1 3 * 2 3 ' C 1 3 A 2 3 
^ 1 3 ~ 1 2 2 ' : ^ i 3 - — 1 2 2 

1 ~ c 1 3 s 2 3 . 1 — c 1 3 ' s 

(5.25) 
23 

_ (1 c13s23) 2 _ C 1 3 5 2 3 C 2 . 
2 3 _ 1 _ Or2 <?2 4 - r4 <2 : ' 2 3 _ 1 - ?r2 «?2 4- r4 <t2' 1 ^ C 1 3 6 2 3 - r - t - 1 3 A 2 3 1 z c 1 3 6 2 3 T L -13A23 

Thus, even with accurate measurements of both —)• zve and —> vT oscillations, 

the two mixing angles cannot be uniquely determined. Writing P^MSD-I j n terms of 

the second solution shows that the symmetry does not carry over to the other oscillation 

channels. 

A~2 - 2 - 2 o 2 _ 4 2 2 2 c 2 C 1 3 - S 2 3 _ C 1 3 S 2 3 . pOMSD-1 (r 9 7 \ 
* * 1 3 C 1 3 V 2 3 ° 3 1 — ^ * 1 3 c 1 3 c 2 3 ' - , 3 1 v .2 „ 2 ^ 1 „ 2 „2 • e-r. ^ O . Z / J 

1 c 1 3 s 2 3 1 c 1 3 s 2 3 

Unless the CKM parameters conspire to satisfy c\zs\z = | , then this two-fold sym

metry will be broken, and the two solutions can be differentiated by measuring any one 
Q £ pOMSD-l pOMSD-l Q r pOMSD-l 

5.3.4 First order matter effects on O M S D parameters 

At baselines greater than about 100 km, which will be probed in the next generation 

of long baseline neutrino oscillation experiments, first order matter effects do come into 

play. Such.effects can be used to differentiate mass structures A and B, where the V\ and 

r2 - c 1 3 a 2 3 < - 2 3 fr 2 f i x 
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its nearly degenerate mass partner are heavier than the other neutrino, from structures 

C and D, where the i/2 is the lightest neutrino. In the latter case matter enhances 

oscillations as the V\ mass approaches the third neutrino while in the former, it inhibits 

neutrino oscillations and enhances those of antineutrinos. 

Assuming that m\ v = m\ v '•= 0, m\v = M2 and A = 2y/2GFNeE, the mixing 

parameters can be calculated to first order using equations 3.15 to 3.27: 

m\M = 0 (5.28) 

m 
2 = c 2 A (5.29) 2,M — 1̂3 

ml „„ = M2 2 A_ 
1 + S 1 3 M 2 

2 _ 2 
S23,M — S23 

2 _ 2 
S13,M — 513 

2 A 
1 + 2 c " 5 J 

(5.30) 

(5.31) 

(5.32) 

„ 2 2 /'1.27M 2L\ o 2 IMsLAL /2 .54M 2 L\ 
S 3

2I,M = sin2 y J = S2

31 + ^ — sin y J (5.33) 

The parameter most likely to show matter effects is s\ZM which, assuming that s 2

3 is 

quite small, has a first order coefficient of about 2. Figures 5.3 and 5.4 show contours of 

equal P^, PM M and P^T in the OMSD-1 and OMSD-2 scenarios (the latter was actually 

calculated as PTe, PTT and PTIX in OMSD-1). The plots in the two scenarios are very 

similar, and are identical under the transformation s2 3 <-¥ c|3 when the fixed value s 2 3 = 

0.1 and logarithmic scale on the horizontal axes are taken into consideration. 

Note that the figures also give an indication of where contours for vacuum oscillations 

would occur in other experiments (ie. between the solid and dotted lines). For example, 

the Palo Verde experiment will search for ve oscillations using a 12 ton detector at a 

distance of 800 m from the Palo Verde generating station outside Phoenix, USA. The 
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Figure 5.3: Contours of (solid lines) and P^a (dotted lines) on a 250 km baseline in 
the OMSD-1 scenario. Columns 1, 2 and 3 show P^, P w and P^T, respectively. Rows 1, 
2 and 3 fix s 2

3 = 0.1, s 2

3 = 0.1 and M2 — 0.01 eV 2, respectively. Initial spectra are given 
by the reference spectra, and calculations are done using the shell method. Note that 
all contours greater than one are percentages. 
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Figure 5.4: Contours of (solid lines) and (dotted lines) on a 250 km baseline in 
the OMSD-2 scenario. Columns 1, 2 and 3 show Pue, P w and PUT, respectively. Rows 1, 
2 and 3 fix s 2

3 = 0.1, s\2

 = 0-1 M2 = 0.01 eV2, respectively. Initial spectra are given 
by the reference spectra, and calculations are done using the shell method. Note that 
all contours greater than one are percentages. 
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shape of P e energy spectrum is remarkably similar to the reference spectrum except 

that the energies are three orders of magnitude smaller (MeV instead of GeV). Equation 

5.4 clearly shows that matter effects would not be present. The contours in the figures 

are identical if the mass is scaled so that A " e

2 l is kept invariant: 

Amly = p ^ A m ? ' L " f = 0 .3 lAm 2

e / . (5.34) 
Lpv iLref 

Thus, probability contours for the Palo Verde experiment would be similar to those 

in figures 5.3 and 5.4 with the mass parameter scaled up by a factor of 1/0.31. Note, 

however, that this is an approximation since the cross-section would differ. 

While the overall matter effects in the 250 km experiment are small, there is a signif

icant first order effect in the second row of the OMSD-2 plot in the first two columns. It 

occurs here because the theoretical bias assumes that s2- < c.2.-. 

Matter does not affect s2 3 at first order, and has little effect on cf3 provided that s 2

3 is 

small ( c 2

3 M = c 2

3(l — 2s2

3-^j)). This rules out matter effects in while the smallness 

of s 2 3 rules them out in - P ^ M 5 £ ) _ 1 , leaving pOMSD-2 j j a v m g a significant matter effect 

depends on the term S\2MC\2M = s\2c\2 1 + 2(c2

2 — s \ 2 ) • The parameter s2

2 must 

be small enough that there is a significant matter effect, but also large enough that there 

is a measurable oscillation. 

Figure 5.5 illustrates the first-order matter effects. It shows that the ratio of proba

bilities P°e

MSD~21P°-MSD-2 increases with larger s2

2, passing through unity at s\2 = 0.5. 

Although the individual oscillation probabilities P°e

MSD~2 and pOMSD-2 b o t h r e a c h t h e i r 

maximum magnitudes at that point, they are equal. Thus, a balance with moderately 

small (or large) s\2 must occur so that oscillations will be measurable, but with a signif

icant difference in the effect of matter on neutrinos and antineutrinos. 

Figure 5.6 shows oscillation probabilities for an initial (P^) beam with s 2

2 = 0.1 

and 5 2 3 = 0.25 as a function of energy. In mass hierarchies C and D, P^ is enhanced 



Chapter 5. Numerical Calculations with Three Neutrinos 160 

Am 2 [GeV] Am 2 [GeV] Am 2 [GeV] Am 2 [GeV] 

Figure 5.5: Matter effects as a function of Am 2 for different values of s\2. In each plot, 
the black lines (refer to left axis) show the ratio P°e

MSD~2 / PPB

MSD~2, while the dark and 
light grey lines show pOMSD-2 a n ( j pOMSD-2 r e s p e c t i V ely with ordinates on the right 
axis. 

while is inhibited, while in scenarios A and B the reverse holds true. Thus, if P^e 

corresponds to neutrinos and Pf^ to antineutrinos then the mass structure D is in effect, 

otherwise the neutrinos follow mass structure A. Symmetry in the oscillation probabilities 

showed that hierarchies A and B are identical under the transformation s 2

3 <->• c 2

3, and 

likewise for C and D. 

In addition, the location of the maxima and minima in the curves will accurately 

determine the mass difference between the non-degenerate neutrinos. Figure 2.13 ih 

chapter 2 noted that with bin widths of 1/8 GeV, there would be between 500 and 1000 

neutrinos per year in all bins from 0.75 GeV to 3.25 GeV at a 5 kT detector, a result 

which must be multiplied by six to account for SuperKamiokande's 32 kT fiducial mass. 

5.3.5 O M S D solutions with very long baselines 

In the very long baseline regime, matter effects become much more important, and the 

potential for enhancement of neutrino oscillations is much greater. Figures 5.7 and 5.8 

show iso-probability contours on a very long baseline—10,000 km. At this length, mat

ter effects axe clearly apparent and not surprisingly, the mixing angle s 2

3 is the more 
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Figure 5.6: Matter effects on the energy spectra of detected neutrinos given vacuum 
parameters s\2 = 0.1 and s 2

3 = 0.25. P^e, P w and P M T are shown in figure (a). Neutrino 
oscillation probabilities are shown in grey while for antineutrino lines are black. In (b), 
the reference spectrum for neutrinos is added to show the number of ue and events per 
year in 1/8 GeV bins (ur events would not be seen below about A GeV). Antineutrinos 
would have about half the number of events as neutrinos due to a smaller cross section. 

interesting angular parameter. Matter drives up the ue — and ue — vT mixing allowing 

much smaller angles to be probed. On the other hand — vT mixing (in the last column 

of the figures) appears to change only when there is a significant reduction in the flux of 

v^s resulting from large mixing in the ve — sector. 

5.4 C P Violation and Neutrino Oscillation 

CP violation has already been observed in the quark sector, and with the presence of a 

third family comes the possibility that it is also violated in the lepton sector through 

a non-zero complex phase 8 in the CKM matrix. Assuming a mass hierarchy with 

mi < m? < m 3 , the effect is proportional to Am^i/Am^. Like the quark sector, 

CP violation is a very small effect in neutrino oscillations, and will require precision 

measurements to quantify it. The most likely candidate to see CP would be the KEK 
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Figure 5.7: Contours of (solid lines) and P^ (dotted lines) on a 10,000 km baseline 
in the OMSD-1 scenario. Columns 1, 2 and 3 show P^, Puu and P^r, respectively. Rows 
1, 2 and 3 fix s%3 = 0.1, s 2

3 = 0.1 and M2 = 0.01 eV2, respectively. Initial spectra are 
given by the reference spectra, and calculations are done using the shell method. Note 
that all contours greater than one are percentages. 
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Figure 5.8: Contours of (solid lines) and (dotted lines) on a 10,000 km baseline 
in the OMSD-2 scenario. Columns 1, 2 and 3 show P^, P w and P M r , respectively. Rows 
1, 2 and 3 fix s 2

3 = 0.1, s2

2 — 0.1 and M2 = 0.01 eV 2, respectively. Initial spectra are 
given by the reference spectra, and calculations are done using the shell method. Note 
that all contours greater than one are percentages. 
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to SuperKamiokande long baseline experiment. However, KEK would need a very sig

nificant upgrade to produce extremely high fluxes. In addition, the rock surrounding 

SuperKamiokande would have to be used to increase its effective mass, as has been done 

in analysing the multi-GeV atmospheric muons, and even then event rates may not be 

high enough. However, its significance to particle physics makes it an exciting topic. 

Theoretically, the CP symmetry can be conveniently studied in vacuum, but it be

comes significantly more complex in matter which is not CP invariant. The result is a 

contamination of measurements which, in practice, is likely to be larger in size than the 

CP violation itself. Several strategies have been discussed in the literature to sort out 

these two competing effects, and new ones will be added here. To isolate the CP violating 

terms in the oscillation probability, both a leading order term and two first order (in small 

parameter) matter terms must be cancelled. In experimentally feasible scenarios involv

ing oscillations at an accelerator, which would likely measure Piy^ —> ve) — P(^M —> ue), 

only the leading order term cancels, while the matter terms do not. 

Existing work in the literature will be extended by examining long baseline neutrino 

oscillation experiments using realistic, detailed calculations for two likely to be built 

experiments. K2K, with an upgraded KEK accelerator beam, will produce neutrinos 

detected at SuperKamiokande at a distance of 250 km and the 10 kT MINOS detector 

will measure a neutrino beam produced 732 km away at FNAL. Methods to tune the 

energy to reduce the matter effect will be discussed. It will be shown that for reasonable 

values of the CKM parameters the first order calculations done in the literature are not 

sufficient to describe the physics analytically and second order results will be presented. 

In some cases, these will also break down, but exact numerical calculations can still be 

used to compute the size of CP violating effects. Next, in a novel suggestion for study, it 

will be demonstrated that it is possible to cancel both the leading order and first order 

matter terms by combining data from accelerator and reactor experiments. Finally, a 



Chapter 5. Numerical Calculations with Three Neutrinos 165 

new result will show that CP violating effects may be present in the atmospheric neutrino 

measurements and the size of that effect will be estimated. 

5.4.1 Characterising C P Violation in Vacuum 

CP violation in the absence of matter can be characterised in neutrino oscillations by the 

product of two terms: a constant which depends on the angular parameters in the C K M 

matrix and an oscillatory term which depends on the neutrino masses. In particular, 

A c p P Q / 3 = P (ua -» up) - P (ua -» Pp) = ±4Jf (5.35) 

for a ^ /3, where J = Si2Ci2Si3C2

3S23C23S<s is referred to as the Jarlskog factor, and the 

oscillatory term / = sin {^™ E

l L) + sin (^r|f^) — sin = 4S21S31S32. The sign of 

AcpPefJ,, ACPPfiT and ACPPTe are positive in this definition, while ACPPfie> ACPPTfJ, and 

AcpPer are negative. 

T violation is defined with the probability difference 

ATPap = P ( i / Q -> vp) - P (up -> ua) = ±43 j (5.36) 

where the signs are identical to above. T violation extends easily in the presence of 

matter to ATP™p = ±4Jmfm where Jm and fm are direct analogues of their counterparts 

in vacuum. CP violation does not translate simply, because the effect of matter on the 

neutrino oscillation probability is different from the antineutrino oscillation probability. 

5.4.2 Review of the Literature 

Several authors have begun to look into CP violation using long baseline neutrino oscil

lation experiments in the last year. Discussions have focussed on where to look for CP 

violation and how to separate it from matter effects. 
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Arafune and Sato [152] studied the oscillatory term / when A m ^ <C Am 2 ! , and 

showed that it oscillates regularly with linearly increasing amplitude. They also found 

oscillatory behaviour when the two mass differences were comparable, and looked at the 

effect of matter on the Jarlskog factor. 

Arafune et. al. [143] assumed a small matter effect and a neutrino mass hierarchy in 

which A, Am2-! <IC Am^. They calculated the neutrino probability difference ACPPfie to 

first order in the two small parameters and found that it consists of two matter terms 

with the factor - A - and one CP violating term proportional to ^ "Y . They noted that 

all three terms oscillated with the same frequency but exhibited different behaviour as 

the ratio of the baseline to neutrino energy |? increases: one matter term decreased as 

and the other was constant, while the CP violating term increased linearly with -|. 

They suggested that one way to single out the latter term would be to examine the 

energy dependence of neutrino oscillations. Another way would be to measure AP^ e at 

baselines L\ and L2, with energies Ei and E2 respectively, such that = | £ . They 

showed that the combination L\ A P ^ e ( L i , E\) — LiAP^Li, E2) cancelled the two matter 

terms but left the CP violating term intact. 

Minakata and Nunokawa [153],[154] also considered the standard mass hierarchy 

A M 2 = Aml2 ~ A m ^ > Am\ = Am 2 . They first assumed that A M 2 « 5 - 100 eV 2 

motivated by the dark matter scenarios and Am 2 s=s IO - 3 — IO - 2 eV2 as suggested by 

atmospheric neutrino results. In this case the large mass oscillations are very rapid and 

average out, and oscillation probabilities can be written as 

P{vp -> va) = Apa + Bpa(\ - cos A) + Cpa sin A (5.37) 

where A = 2 E

l and the third term Cpa — 2 J is the one which violates CP. They suggest 

placing a second detector at a distance L/3 and tuning the energy so that A = | at L/3 

and ^ at L. This would eliminate uncertainties in the normalisation of the beam if the 
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energy is tuned instead. Then by subtracting oscillations at the two detectors the first 

two terms in equation 5.37 cancel isolating the CP violating term for measurement. They 

did note, however, that the additional detector would have to be installed at depths of 

1.1km and 9.3 km in the K2K and MINOS long baseline experiments, respectively. The 

straight path from the point of production to the last detector reaches these depths at j 

and again at ~ due to the curvature of the earth. 

They looked at two mixing angle combinations: small s i 3 , small s23 in which the ANP 

corresponds to ve — vu mixing and large S13, arbitrary s23 where vT — vu oscillations solve 

the ANP In the former case, they found the matter contamination in A P ^ was larger 

than the CP violating effect, but noted that the opposite is true for AP M T . In the latter 

case, they found that the CP violating term dominated matter and hence it can be more 

easily studied. 

Minakata and Nunokawa also considered the case in which A M 2 IO - 3 — IO - 2 eV 2 

accounts for the ANP and Am 2 « IO - 6 - 10 _ 4eV 2 explains the SNP. They found that 

the oscillation probability can be written as 

P(vp -r va) = (1 - cos A) + BpaA sin A + C / 3 a A ( l - cos A) (5.38) 

where in this case A = A ^ L and C$a = 2 J . In order to remove the first two terms they 

suggest building two additional detectors at L/3 and 2L/3, and again tuning the energy 

so that A = | , 7T and ^ at distances L/3, 2L/3 and L respectively. Then the linear 

combination P + 3P (f) - 2P(7r) would select out the third, CP violating term. 

Tanimoto [155] examined CP violation under the assumption of two mass scales 

A M 2 « 1 — beV2 motivated by the LSND indications of neutrino oscillations and 

Am 2 « IO - 3 — lO^eV 2 suggested by the ANP. He considered two mass hierarchies: 

HI has A M 2 = A m ^ ~ Am^, Am^ = Am 2 so — uT mixing solves the ANP, and 

HII with A M 2 = Am31 ~ Am^, Am\2 = Am 2 in which va — ve mixing solves the ANP. 
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In both cases he found a near cancellation in the oscillatory factor / , and the large mass 

scale oscillations were averaged out. He also considered two regions of CKM parameter 

space suggested by the ANP: in A, the ve has large mixing with the non-degenerate mass 

eigenstate while the has small mixing with it, and in B both of these mixings are 

small. 

The study showed that the CP violating effect in A P M T was largest, up to about 8 % 

in HI B, and at most 3 % in the other three regions. In HI, he found the matter effect 

was always small, while in HII it could be anywhere up to 8 % depending on the value 

of S12 for reasonable test parameters. 

5.4.3 Analyt ical Results 

To date, all analyses in the literature make approximations to first order in small pa

rameters. However, that may not always be sufficient. Minakata and Nunokawa [153] 

estimated one expansion parameter they used to be about 13 % when applied to the K2K 

baseline of 250 km. That parameter was proportional to the baseline, so they concluded 

their results could not be applied to the 732 km MINOS experiment. For large neutrino 

energies or when the larger of the two mass differences is relatively small, second order 

effects will be apparent. 

In calculating A? a ^, the leading order term in the oscillation probability cancels, 

leaving two matter terms and one CP violating term. The "game" people play is to find 

ways of cancelling the matter terms to leave only the CP term, using either the energy 

spectrum or multiple detectors. However, it cannot be assumed that the two small 

parameters (matter and small mass scale) are necessarily equal in magnitude. Even if 

the first order matter term is cancelled through a multiple detector configuration or by 

tuning the energy, the second order mass terms may be as large as the first order mass 

scale ratio term. The matter effect for a 1 GeV beam traversing the earth's crust is about 
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twenty times as large as the lower mass scale predicted by the solar neutrino experiments. 

Thus, it is necessary to do the expansion to second order. 

In what follows, the mass hierarchy M2 = A m ^ ~ A m ^ >̂ A m ^ = A m 2 is 

assumed. Define two small parameters representing the ratio of the matter effect to the 

large mass difference and the ratio of the two mass scales as follows: 

MV ( 5 - 3 9 ) 

= £ . (5.40) 

The neutrino masses in matter, the CKM matrix angular parameters, the Jarlskog 

factor J and oscillation parameter / , neutrino oscillation probabilities and CP and T 

violating terms A P will be calculated in that order, simultaneously to second order in 

the two small parameters. The only exception is the CKM mixing parameter s\2 which 

will only be calculated to first order as a result of a cancellation of the leading order term 

in both the numerator and denominator. However, neither s\2 nor c\2 appears in the 

leading order of any term in the oscillation probabilities, so they can all be computed to 

second order. 

Separate calculations were performed for the three cases E\ = 0, e2 = 0 and e\ — e2 

to verify the e2, £ 2 and EIE2 terms in each expression. Unitarity and symmetries in the 

CKM matrix provided additional consistency checks of the calculations, and first order 

terms were corroborated with results which have appeared in the literature this year. 

C K M Parameters to First and Second Order 

Zaglaer and Schwarzer's paper uses the general solution of a cubic equation to derive 

expressions, quoted in Chapter 3, for the masses and all mixing angles in matter in terms 

of the vacuum values and magnitude of the matter term [132]. Calculating the neutrino 
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masses to second order in the small parameters E\ and £ 2 yields: 

( M D 2 [{eA^e2){\-i) + e\s\,clA^-^-^ 
+eiea«?s*(C - 1) ] + O (e»a) 

( M 2 " f = [(^iC 23 + £ 2 ) ( l + 0 + ^ i 3 « - C C - l ) 

(M 3™) 2 

- £ l £ 2 S

2

3^(C-i)] + o(42) 
M 2 [l + £ l 5 2

3 + £ 2 5 2

3 C 2

3 ] + O ( £

3

 2 ) 

where the parameters £ and £ are defined by: 

4 £ 1 £ 2 c f 3 c f 2 

( e i c 2

3 + e 2 ) ' 

1/2 

. = 2 £ 2 C 4

3 + 3 £ i £ 2 C 2

3 (1 - 2 C 2

2 ) + £ 

{eAz + S2? 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

Observe that £ is a positive definite parameter and that M^M i—> M$M under the 

transformation £ <—> — £. In the limit S\ —> 0, £ —> 1 and ( —> 2, while in the limit 

£ 2 —0, £ —>• 1 and £ —>• 1- Also note that the expression O ( c i i 2 ) refers to terms of the 

form el, e\e\, e\e\ and £ 2 . 

Zaglauer and Schwarzer's paper also gives expressions for the C K M parameters. Using 

the masses above, these can be shown to be: 

K s ) 2 = 4s {l + eic?3 [2 + 2£ 2s 2

2 + 3 £ l (c 2

3 - 5 2

3 ) ]} + O (e?,2) 

(s?2f = - { ( £ l C

2

3 + £ 2 ) ( l + 0 - 2 £ 2 C 2

2 

+ £ l 5

2

3 [ £ l c 2

3 (C - 2) + £ 2 (C - 1) (1 - 2c2

2)] } + O (£2,2) 

S12C12513C23Q" 
(S23) — S23 1 + 2 £ i £ 2 -

1 + . ? £ i £ 2 

«23 

^12^12^13 (̂ 23 ~ 523) SS 

523C23 

+ 0 {4,2) 

+ o (42) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

Because of the 0 (e^) term in the denominator, (s^)2 only appears to O (e] i 2). 
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T h e Jaxlskog F a c t o r a n d O s c i l l a t o r y T e r m 

The Jaxlskog factor contains s i 2 and C i 2 among its elements, so it can only be calculated 

to first order in the small parameters. It is given by 

A Tm A „m „m „m am nm „m 
<ij — " ± A i 2 t - 1 2 6 1 3 6 2 3 c 2 3 6 ( 5 

= 4 J i ( I ^ [ 1 + £ l ^ 3 C + l - 4 ^ ) ] 

The oscillation factor in matter is equal to 

(5.50) 

/
m A cm Cm cm 

— 4 o 2 1 o 3 1 o 3 2 (5.51) 
= / e ( £ 1 t 3 + £ 2 ) i 1 + g* [̂ 13 ( i - 0 + n cot ri ( 3 ^ -1)]} 

where ri = ^f^- Multiplying these two results gives ATPa/3, because the effect of matter 

is the same on the two probabilities in the difference. 

4 J m / m = 4J/ [ l + e 1 ( l -3s 2

3 ) ( l -r icotr i ) ] (5.52) 

P r o b a b i l i t i e s to S e c o n d O r d e r 

Combining the mass differences and CKM parameters in equations 5.41 to 5.49 with 

the oscillation probabilities in 3.32 to 3.37 yields the neutrino oscillation probabilities to 

second order. It was previously noted that PpQ (5) = Pap (—5), and since the matter term 

is reversed for antineutrinos one can also write that PI^ (<5, e\) = P ^ (—8, — £ i ) . These 

two relations, combined with the unitarity condition, allow all eighteen possible neutrino 

oscillation probabilities to be determined from the six shown below. Notice the additional 

symmetries P™(s 2 3 , c 2 3 ) = P™(c 2 3 , -s 2 3 ) and P™(s 2 3 , c2 3, 5) = P^(c 2 3, - s 2 3 , -5) which 

all stem from the particular form of the CKM matrix. The oscillation probabilities are 

given by: 

P£ = 1 - 2s 2

3c 2

3 (1 - --Can) [1 + 2ea (c2

3 - sj3)} 
{o.bo) 

+45 2

3c 2

3QS 2n [ei (c13 - s2

3) + £ 2 s 1 2 ] 
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P£ = 1 - 2 C 2 3 5 2 3 ( 1 - C 2 n ) [ l - C 2 3 5 2 3 - 2 £ 1 S

2

3 ( 1 - 2 C 2 3 5 2 3 ) ] 

-4c2

3s2

23nS2n[ElS

2
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3s2

23) (5.54) 

~ £ 2 ( C ? 2 C ^ 3 - 2Si2C12S13S2$C23Cs + S i 2 5 i 3 S 2 3 ) ] 

P% = 1^2c2

3c2
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23 - 2ElS
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- £ 2 (c?2s23 + 2 s i 2 c 1 2 s i 3 5 2 3 c 2 3 c 5 + s 2
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-t-2£ 25 1 2c 1 2si 3c 2

3S23C 23Q (s|3 - c2

23) {eis\3 - e2c\2) } 

The leading and first order terms in the expressions above are in the first and fifth line 

of P™ and P™, and in the first, sixth and seventh line of P£L. 

Probability Differences to Second Order 

As noted at the beginning of this section, calculation of the difference between two 

probabilities, the A c p P a / 3 and ATPap, cancels the leading order term. Because the 

definition of AT includes only neutrinos (or antineutrinos, as opposed to ACP which 

includes both), the effect of matter on the two components is the same and it is much 

easier to calculate. In fact, A T P a / 3 = ± 4 J m / m where Jm and fm were calculated above. 
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Thus 

ATR P{ye-^vil)-P(vii^ve) 

8e2s1.2C12S13Cj3S23c23sj.fi (1 - C 2n) x 

[1 + ex (1 - 3s2

3) (1 - fi cot n) - e2fi cot fl) 

(5.59) 

Two other T violating probability differences are identical, ATP^T — ATPTe = ATPefl, 

while ATPap = — ATPpa and for antineutrinos, ATP&p (5, ej) = A T P Q / g (—8, —ej). 

The situation is much more complex for the CP violating probability differences 

ACPPap. While the matter term increases the mass of the ue and enhances its mix

ing, it decreases the mass of the Pe and reduces its mixing. It is possible to compute the 

expressions, and A ^ P ^ and ACPPril are given below. ACPPer can be inferred from 

A C P P M e with the substitutions s23 —> c 23, c 2 3 -» — S 2 3 . Note that the first order terms in 

the expressions below appear in the first two lines. 

ACPP,e = Sej^cjv 2^ (c2

3 - s2

3) (1 - C 2 n - fiS2n) 

- 8 e 2 S j 2 C j 2 S j 3 C j 3 S 2 3 C 2 3 S ( j r i (1 - C2n) 

+ 16eje2Si3C?3ri2
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+ 8 e j e 2 c 2 3 (1 - C2n) [ s 2

2 s ? 3 s 2

3 ( c 2

3 - s\3) (1 - 2ri2) 

+ . s i 2 c i 2 s i 3 s 2 3 c 2 3 c 5 (s\3 - fi2 (1 - 3s2

3)) ] 

(5.60) 
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http://8e2s1.2C12S13Cj3S23c23sj.fi
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ACPPTfl = l^s2
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2 S 2

3 - 1) 
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(5.61) 

5.4.4 Strategies to Isolate the C P Violation Parameters 

A recent comprehensive study by Fogli et. al. [130] combined all available upward-going 

muon data from Kamiokande, Baksan, MACRO, 1MB and SuperKamiokande with all of 

the atmospheric data in both the sub-GeV and multi-GeV energy ranges. They plotted 

allowed regions in the tan2 ip — tan2 <p plane (tan2 #23 — tan2 813 in the notation here) for 

values of A m ^ ranging from 3.2 x 10~4eV2 to 1.8 x 10 - 1 eV2 assuming that A m 2 1 is 

so small that the oscillation length it induces is greater than the diameter of the earth. 

They found viable solutions in most of this mass range, noting that the results are still 

sensitive to the experimental inputs so additional data will be needed to accurately pin 

down the CKM parameters. 

Using the centre column figure six from their paper, five different possible sets of 

CKM parameters were chosen for the study which will follows. The parameter sets all 

come from within the 90 % confidence levels, but without fine tuning them to optimise 

CP violation. They are labelled F[a] to F[e] and are shown in table 5.1 along with values 

of Sl they would produce for three experimental configurations to be studied. 

The analytical results so far have found that with a hierarchical mass structure, CP 

violation in the lepton sector is proportional to the ratio of the squared mass differences 
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Label A M 2 [eV2] s2 s2 
A 2 3 2SI250 2SI732 2f2150o 

F[a] 10 - l 0.86 0.95 35.3 20.7 212 
F[b] 1.8 x 10~2 0.80 0.96 6.35 3.71 38.1 
F[c] 1.8 x IO - 2 0.13 0.90 6.35 3.71 38.1 
F[d] 3.2 x 10~3 0.33 0.83 1.13 0.66 6.77 
F[e] 5.6 x IO"4 0.91 0.67 0.20 0.12 1.18 

Table 5.1: Table defining five different CKM parameter sets within the 90% confidence 
regions in figure 6 of [130]. Labels in the first column will be used to identify the 
parameter sets. 

£2 = ^jpi- Thus, one expects that schemes F[d] and F[e] in the table will produce the 

largest CP violating effect. 

Most work in the literature has been concerned with differentiating bona fide CP 

violation from matter effects which come about in trying to measure ACPPfie, using 

energy spectra or tuning the energy at neutrino beams and placing additional detectors 

at fractions of the distance between the source and detector. For very long baselines, 

this latter suggestion requires new excavations several kilometres deep into the earth's 

crust—it is unlikely that two mines of the correct depth already exist at locations exactly 

one third and two thirds the distance along the line between any potential accelerator 

and detector pair! 

In what follows, detailed calculations of the CP violating effect will be done. Although 

the analytical work presented in the preceding sections was to second order and helps 

understand the effects, the numerical work which follows is exact. If conditions are such 

that the second order approximation breaks down, the computer calculations will still be 

valid. Neither second order effects nor equivalent numerical computations have appeared 

in the literature. 



Chapter 5. Numerical Calculations with Three Neutrinos 177 

L o n g Base l ine E x p e r i m e n t s 

Several challenges must be overcome to measure CP violation. The signal, which is found 

by subtracting one oscillation channel from another, must not only be sufficiently large 

that it can be measured but also dominated by the CP violating terms. Accelerators 

typically produce beams of (and z?M) and oscillation signals comparing the rate of 

appearance of ue to ve (or vr to uT) at a downstream detector relative to the initial fluxes 

would be required. If CP violation represents an effect of size e, then on the order of ^ 

events would be needed to see it. 

The next generation of long baseline experiments, K2K and MINOS, combine much 

higher flux beams with substantially larger detectors than have been available in the 

past. They will have very high neutrino production rates and long baselines, allowing 

significant statistical inferences while probing to very low masses. However, as will be 

shown, CP violation will very likely elude MINOS which has a baseline of 732 km and 

a 10 kT detector. K2K, at 250 km and with a 50 kT detector, could come much closer 

so seeing a CP violating effect but will still probably fall short of being able to measure 

it unless the KEK beam receives a very substantial upgrade and the experiment is able 

to increase the effective size of the detector by measuring muons produced in.the rock 

surrounding the detector. 

Matter presents a second challenge. A 1 GeV neutrino beam traversing the outer crust 

of the earth with electron density Ne = 1.34mol/cm3 has e\
 2x l^ iJ2

eV'2
 according to 

equation 5.4. This is substantially larger than e2 ~
 10

A^f2
 implied by the solar neutrino 

results. The obvious way to reduce the matter term is to lower the beam energy, but 

because the neutrinos are come from decaying muons and mM = 105 MeV, there is a limit 

to how far this can be done without the beam spreading out. Moreover, the detection 

cross section scales with energy, so reducing the matter effect in this manner also reduces 
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the signal. It is also important to note that as E increases and E\ gets large, it is the 

mathematical expansion in small parameters which breaks down, but not necessarily the 

ability of experiments to measure CP violation. 

When the small parameter approximation is valid, the first order terms in equations 

5.60 and 5.61 consist of a matter term proportional to E\ (1 — C 2 n — fiS2n is often treated 

as two separate terms 1 — C2Q and QS2Q which have different spectral behaviour), and 

a CP violating proportional to e2 on the second line. In the small ri-regime, the leading 

order ri-dependence1 in Taylor expansion the matter term is 0(fi 2), but so is the CP 

violating term. Going to smaller energy (thus larger Cl = 1-27A^/[2l} increases the CP 

term as l / .£7 2 , but only increases the matter term as 1/E1 because e\ oc E. 

Figure 5.9 shows AP^P, expressed as percentages, with s$ = 0.0, 0.5 and 1.0 for 

three different sets of conditions. The first two columns, F[d] and F[e] have the C K M 

parameters given in table 5.1 using the standard reference neutrino spectrum and a 

baseline of 250km. The last column, F[ee], has the F[e] CKM parameters, but the 

energy spectrum is shifted uniformly downward by a factor of two. The last row in the 

figure shows the difference 100 x [AP^P\SS=I — AP£p\ss=oj which is a measure of the 

maximum CP violating effect. 

For F[d], the oscillation probability difference is small, on the order of 0.25%. It 

came from subtracting two oscillation probabilities of 15%. Note that AP^e

p\ss=o in the 

upper left plot is dependent on s2

2, unlike the first order term in equation 5.60, at a level 

of several percent. This shows that the first order approximation has already begun to 

break down when E = 1.8 GeV and Am^ = 3.2 x 10~3eV2. At this point, E\ « 0.11, 

e2 ~ 0.013 and there are no e\ terms. However, by computing the magnitudes of the 

second order E\E2 terms in the equation it becomes apparent that they do contribute 

several percent to AP°f. 

In the middle column the CP violating effect is several times larger because Am\x is 
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Figure 5.9: Study of CP violation a,t an experiment with a baseline of 250 km using the 
reference neutrino spectrum. Contours of constant A£f P are shown for ss = 0.0, 0.5 and 
1.0, expressed as percentages. The bottom row of figures shows the difference between 
the Ss = 0.0 and ss = 1.0 plots in the column, scaled by a factor of 100. The left and 
centre columns use the CKM parameter sets F[d] and F[e] and reference spectrum, while 
the right column uses F[e] with the neutrino energy spectrum scaled down by a factor of 
two. 
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. smaller and e2 c< A ^ ~ - However the matter parameter ^ . w 0.357 at E = 1 GeV, so not 

only are several of the e 1 £ 2 terms in equation 5.60 as large as the e2 term, even the third 

order terms could be expected to contribute to AP^P. At A m ^ « 10~5eV2 as suggested 

by solar neutrino experiments, CP violation of 0.02 % would have to be pulled out of an 

oscillation difference in the range AP^P « 0.5 %, a 4 % effect. 

The situation gets much better in the third column, where the F[e] CKM parameters 

are used again but the energy spectrum is reduced by a factor of two. Although the 

magnitude of the CP effect is reduced, the first order matter term declines much farther 

and AP^f is almost completely dominated by it. Thus, any measured difference between 

P^e and P^g would be a signal of CP violation. The oscillation probabilities themselves 

are quite small, about 1.2%. 

Concentrating on a limited range of neutrino energies, either by focussing the beam 

energy or analysing only data from neutrinos in certain energy bins will also improve the 

clarity of the CP signal, albeit at the cost of reducing the total number of events. Figure 

5.10 shows contours of AP^P for F[e] in which the region of the asymmetric neutrino 

spectrum considered is successively decreased. Going from the first to second column, 

the CP violating signal drops (ie. the "Difference" row) probably partly because cutting 

out the high energy end of the spectrum decreases the average value of E\. Moving from 

the second to third column where a still smaller energy region is used, the CP violating 

signal does not drop significantly but the probability difference does become dominated 

by it, again making an unambiguous signature for CP. 

The MINOS experiment, which has a longer baseline and significantly higher neutrino 

energies, opens up the possibility of vT appearance in addition to ve. Although the CP 

terms at first order are the same for AP^P and AP^P, the 250 km results above showed 

that it is necessary to go to second order with both CKM parameter sets F[d] and F[e]. 

While Q oc ^ decreases for MINOS when compared to K2K, the matter effect grows in. 
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Figure 5.10: Study of CP violation by varying the region of the neutrino reference spec
trum used, with a baseline of 250 km. Contours of constant A ^ f P are shown for s<$ = 0.0, 
0.5 and 1.0, expressed as percentages. The bottom row of figures shows the difference 
between the ss = 0.0 and ss = 1.0 plots in the column, scaled by a factor of 100. Moving 
from left to right, the neutrino energy spectrum is successively compressed. 
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proportion to energy. However, that larger matter effect will enhance some of the second 

order CP violating terms in the oscillation probability differences. 

Figure 5.11 illustrates what would be seen at MINOS using the reference spectrum 

scaled upwards by a factor of five and a baseline of 732 km. It shows AP^P using F[d], 

and both APj?p and APf?p with the F[e] parameter set. The size of the CP term in 

APj?T

p is somewhat larger than in AP^f for F[d] and the oscillation probability difference 

is smaller, so it would provide an easier signal to detect. Both P M T and PTfl are about 

27%. 

As expected, the CKM parameter set F[e] produces a larger CP violating term because 

it has a smaller Am^. Although AP^P is larger in magnitude than AP^P, it induces 

a larger violation of CP and the relative contribution of that violation to the oscillation 

probability difference is about the same—less than \ %. This ratio is notably less than 

F[d] in the first column where AP^P was much smaller. However, with only about 20,000 

charged current events per year, MINOS will not be able to measure an effect as small 

as CP violation. 

Next, consider an experiment with the standard reference spectrum and a detector 

1500 km away. The longer baseline probes to lower values in the mass differences and 

increases the parameter Q, which in turn raises the magnitude of the first order CP 

violating term. Figure 5.12 shows AP^e

p for three different cases beginning with the 

CKM parameters F[d]. The CP term is very small, and much smaller than the oscillation 

probability differences. 

However by tuning the neutrino energy, in this case scaling the reference spectrum 

downwards by a factor of 0.75, the spectrum peaks at 1.35 GeV. Then at the peak energy, 

Q, « 2.33, and 1 - C 2 n - ^ S 2 0 = 0. The result is that AP°e

p drops by about 40 %, while 

the contribution of CP the violating term is increased by about 50 %. While he effect is 

not dramatic in this case, it would improve if a smaller region of the spectrum was used 
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Figure 5.11: Study of CP violation at an experiment with a baseline of 732 km using 
the reference neutrino spectrum modified by scaling the energy upwards by a factor of 5. 
Contours of constant A^f P and A^fP for CKM parameter sets F[d] and F[e] are shown 
for ss = 0.0, 0.5 and 1.0, expressed as percentages. The bottom row of figures shows the 
difference between the s$ = 0.0 and s$ = 1.0 plots in the column, scaled by a factor of 
100. 
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Figure 5.12: Study of CP violation at an experiment with a baseline of 1500 km using 
the reference neutrino spectrum. Contours of constant Aj^fP are shown for s$ = 0.0, 
0.5 and 1.0, expressed as percentages. The bottom row of figures shows the difference 
between the s$ = 0.0 and s$ = 1.0 plots in the column, scaled by a factor of 100. Column 
1 uses the CKM parameter set F[d] and the reference neutrino spectrum, while column 
2 scales the energy down by a factor of 0.75. In column 3, the C K M parameters defined 
by F[e] are combined with the reference spectrum. 
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to increase the region over which the matter term was cancelled. 

The third column shows contours of the oscillation probability difference for the C K M 

parameter set F[e]. Because the baseline is longer, this experiment can probe to lower 

mass differences. The oscillation probabilities in this case are 12 %, CP violation con

tributes an absolute magnitude of about 0.2 % which is about ten times as large as was 

found using a 250 km baseline. However, the number of events falls as the square of the 

baseline, so the advantage gained in a larger effect is more than lost to reduced statistics. 

Finally, figure 5.13 shows the oscillation probability difference spectrum using Ffe] for 

each of the three baselines discussed. In each plot, the upper curve shows AP^P with 

s<5 = 1 while the lower curve uses Sg = 0. Note that E\ reaches the value 1 when the 

neutrino energy is 2.8 GeV, at which point matter begins to dominate the probability. 

It is clear that the best signal would be obtained in the low energy region of the 

250 km experiment. Here, matter does not play a large part and Q is relatively small. 

By going out to 1500 km, fl becomes large and the oscillatory terms in AP^P wash out 

the CP violating signal. Thus, bigger is not necessarily better. 

5.4.5 Combining Reactor and Long Baseline Experiments 

The last section highlighted the importance of separating matter effects from CP vio

lating effects using long baseline experiments. The reason that most authors calculate 

the difference AP^P = P M e — P^ is to cancel the leading order term in the oscillation 

probabilities. The e\ terms also cancel because P̂ g(̂ i)<̂ ) — Pfie (~£i, — S), which is a 

fortunate side-effect given that S\ is probably larger than £2 . 

A new approach emerges if the two terms are added together instead of subtracted 

from one another. In that case, both the first order matter terms as well as the first 

order CP violating terms proportional to sg cancel. This leaves the leading order, CP 

even (in 5) and second order terms. But that leading order term is identical to the one 
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Energy |GeV] Energy [GeV] 

Figure 5.13: Oscillation probability differences ACPPfie and ACPPjJ,T as a function of 
neutrino energy for baselines of 250, 732 and 1500 km, using the CKM parameter set 
F[e]. Black curves compare probabilities with ss = 1.0 to grey curves with s$ = 0.0. 
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in Pep, at a nuclear reactors (even if that's not what is measured). Although they have 

much lower energy, they have much shorter baselines and typically have similar values 

of -|. Moreover, the MeV energies of reactor neutrinos reduce the matter effect by three 

orders of magnitude compared to accelerators, so the matter term can be ignored. 

But because reactors measure the disappearance of Pe's, it is Pep + Pef = 1 — Pee which 

will have to be used to cancel the leading order term. This necessitates multiplying the 

reactor probability by a factor of s2 3 in the expression below. Thus, one can define: 

AA~RP,e = Pte + PA-2sl3[P«+px\£i=o 

= 8e2QS2nS12C12S13cl3S23C23CS 

+4e2s2

3c23S^{2n2 (c2

3 - s2

3) + 4QS2n [s2

3c2

3 - (c2

3 - s2

3)2] 

+ (1 - C2Q) [(4c2

3 - 1) (1 - 4s2

3) - 2tt2 (c2

3 - s2

3)] } (5.62) 

+ 8 £ 2 , f 2 2 C 2

3 { s 2

2 C 2

2 (4, - sj3) - 2S?2C12513523C23C (5 

+ (1 - C 2n) s12c12sl3sl3c23c$} 

+8cTie2^si2Ci25i3C 2

3 s 2 3 c 2 3 s < s (1 - 3s2

3) [s2

3sl3 (1 - C 2n) - flS2n] 

where the superscripts A and R refer to accelerator and reactor, respectively. It is 

assumed that the probabilities are measured at the same 

This type of subtraction, while analytically easy, would be experimentally difficult. 

It would have to be done over a limited range of energies because the accelerator beam 

is unlikely to exactly match the shape of the reactor spectrum. The accelerator energy 

would also have to be tuned so that the ratio ^ is the same for both experiments. 

Moreover, some systematic errors cancel out in the pure accelerator experiment because 

the baseline is identical for the and and this would not be the case here. Finally, 

reactors measure the disappearance of ve signal, so it is statistically more difficult to 

measure a small oscillation probability than in an accelerator appearance experiment. 

However if these challenges can be overcome, then the three different experimental 
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measurements (ie. PA

e, P~ and P?--\-PR) allow the cancellation of both the. leading order 

and O (s\) terms. In addition, if s$ happens to be small, then the first order CP violating 

effect in the pure accelerator experiment will be negligible. Equation 5.62 measures c$ in 

the O (el) term, and this would be close to unify if s$ is small. 

Figure 5.14 plots contours of constant AA~RP/J,e as a function of Am^i and si2 and 

the maximum CP violation, similar to the last section except now eg varies in successive 

rows. The accelerator is assumed to have a 250 km baseline while the reactor neutrinos 

are detected 500 m from where they are produced. The neutrinos are limited to a small 

region of their total spectrum for comparison in the plots, although one would expect 

that in any real experiment the data would all be kept binned by energy. 

In the first column, neutrinos in the 2.8 — 3.0 GeV range at the accelerator are com

bined with 5.6 — 6.0 MeV reactor neutrinos with the CKM parameter set F[c], which has 

a large A m ^ = 1.8 x 10 _ 2eV 2. Here, both ei and e2 are small and the second order 

terms contribute very little. As a result, AA~RPfie is dominated by the first order CP 

violating term. 

The centre column plots the oscillation probability difference using the scheme F[d] 

with 0.7 — 0.9 GeV and 1.4 — 1.6 MeV neutrinos. As might be expected the magnitude of 

the CP violation is larger because Am^ is lower. The signal is not as clean because matter 

terms have AA~RPne has increased, making it more difficult to unambiguously assign a 

measurable change in it to CP. However, CP violation is about 0.1 % for A m ^ = IO - 5 

eV2. 

Finally the last column shows the F[e] CKM parameter set with neutrino energies 

of 4.8 — 5.0 GeV and 9.6 — 10.0 MeV. The second order matter terms are much more 

apparent, while the CP violating effect has, not increased in the lower regions of the 

Difference plot. It is, however, still in the range 0.1 %. 

Because the magnitude of CP violation for these combined experiments has increased 
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4 x l O - 4 

0 0.25 0.5 0.75 10 0.25 0.5 0.75 10 0.25 0.5 0.75 1 

sin 2(i? 1 2) sin 2(i9 1 2) sin 2(i5 1 2) 

F[c] L / E = 86.2 F[d] L / E = 312.5 F[e] L / E = 51.0 

Figure 5.14: Study of CP violation by combining long baseline accelerator and reactor 
experiments with constant L/E. Contours of constant AA~RP are shown for cs = 0.0, 
0.5 and 1.0, expressed as percentages. The bottom row of figures shows the difference 
between the c«$ = 0.0 and cs = 1.0 plots in the column, scaled by a factor of 100. Each 
column uses a different CKM parameter set and ratio L/E as labelled. 
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compared to the purely accelerator case, fewer events would be needed to measure a CP 

signal. Approximately 106 events would be required. However, scaling the baselines at 

the Chooz and Palo Verde reactor experiments to 500 m would produce one the order of 

100 events per day, or about 30,000 per year. Thus, the detectors would have to be scaled 

up by about an order of magnitude to approach the event rates required to contribute to 

a measurement of CP violation. 

Using reactors to subtract off the leading order terms can also be applied to the 

dimensions of the MINOS experiment, but with less success. With the higher neutrino 

energies, £i is relatively larger than e2. Matter effects do not dominate AA~RPfie at 

MINOS in CKM parameter sets F[b] and F[c] but they are large enough to prevent a 

clean CP violating signal from being seen. F[d] has larger A m ^ and the e2 terms in 

equation 5.62 are beginning to approach the size of the e\ terms, so that matter effects 

again compete with CP violation. In Ffe], e\ is close to unity so cancelling the first 

order matter term offers no significant advantage and the approximation breaks down. 

However the numerical results indicate that CP still does not contribute enough of a 

signal to be measured. 

5.4.6 C P V i o l a t i o n a n d A t m o s p h e r i c N e u t r i n o s 

At particle accelerators, experimentalists decide whether to produce a beam of neutrinos 

or a beam of antineutrinos by focussing a beam of either positively or negatively charged 

mesons. They first produce neutrinos and measure P^, then antineutrinos to measure 

Pfxe- If the two oscillation probabilities differ, it must either be due to a CP violating 

effect or the presence of matter (which is not CP invariant). In this case, the choice to 

study either matter or antimatter is explicitly made by the experimentor at the neutrino 

source. 
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The situation with atmospheric neutrinos is quite different. There, the "source" con

sists of four different neutrinos: identical and fluxes, combined with ve and ve 

fluxes of equal magnitude, but which differ from the v^. However, because the detection 

processes are dominated by matter they see the four neutrino types differently. In par

ticular, the cross section for detecting a ve is different from that of a i>e, and the rate of 

production of pT from impinging on nucleons is different from the rate of p+ produced 

by *V 

So, whereas accelerator based experiments can measure CP violation by alternately 

producing neutrino and antineutrino beams at the source and looking for differences in 

the oscillation rates, atmospheric neutrino experiments can allow the natural detection 

processes differentiate the two identical fluxes. It.turns out, as will be explicitly calcu

lated, that the experiments need not be able to differentiate p~ events from p,+. CP 

violation modifies the ratio of e-type to /u-type events. 

First, define the four neutrino fluxes and ratio A as follows: 

$ M = $ ^ = $ ^ (5.63) 

* c = $ „ . = $ P e = A $ „ (5.64) 

Next, make the following definitions about the detection cross sections of the neutrinos 

and the ratios between them: 

: • <rUll=<r • (5.65) 

or„M = \oVii = X^a (5.66) 

<jVe = roVfl = ra (5.67) 

aUe= XeaUe = r\ea (5.68) 
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Using these definitions, the number of p-type and e-type atmospheric neutrino events 

measured by. detectors would be given by: 

= S^OT [ A P e e + AA ePee + Pye + KPfie] 

NV>1 = S ^ P ^ o ^ + SvP-wO-Vv + ^ V e P e ^ + ^ D e P m a ^ 

= $ M < 7 [ P w + ' A M P ^ + A P e / 1 + AA M P g p] 

Taking the ratio of these two, $̂ <T cancels leaving 

(5.69) 

(5.70) 

^ /r> \ = . r [ A P e e + A A e P g e - + P ^ + A ^ g ] . 

NUii W")*** P^ + X.P-^ + AP^ + AX^ V-n) 

By substituting for the oscillation probabilities, the ratio can be evaluated. However, 

even at first order, it is quite complicated and not terribly enlightening for purposes of 

this discussion. The general form of the ratio is 

/ D \ _ r ( l + A E ) A + 2 ^ 3 C L ( S 1 2 - A ) ( 1 - C 2 n ) 
\ n e ^ ) d a t a .(1+AM) l + 2 c ? 3 , l 3 ( A ^ 3 + c ? 3 , | 3 - l ) ( l - C 2 N ) X 

/ I _i '. f£ia x 
[ A + 2 ^ 3 c 2 3 ( , 2 2 _ A ) ( 1 _ C 2 n ) ] [ l + 2 c ? 3 ^ 3 ( A ^ 3 + c ? 3 ^ 3 - l ) ( l - C M ) ] 

[ £ i 5 2

3 (1 - C 2 n - n S 2 n ) ( 2^3^ (1 - C 2 n ) + Xx) 

-e 2 si 2 c 1 2 5i35 2 3 c 2 3S ( s^ (1 - C 2n) (2c2

3JV2 (1 - C 2 n ) + X2)-

+e2nS2n(2c2

13(l-C2tt)(Y2 + Y2

scs) + (z2 + Zs

2cs))}} 
(5.72) 

where the coefficients W\; Xi, W2, X2, Y2, Y2

5, Z2 and Z2 are functions of A , A e , A M and 

the three CKM mixing angles 8i2, 913 and 023. Dependence on the CP violating phase is 

shown explicitly. * 

The factor given on the first line of equation 5.72 is the ratio that would be measured 

by atmospheric neutrino detectors in the absence of matter when the small mass difference 

is degenerate. The magnitude of the matter and CP effects on the ratio when A m ^ ^ 0 
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can be estimated by comparing the relative sizes of the respective terms in the square 

brackets to the "1" in the'second line of the equation. 

To estimate the likely size of the CP effect, chose fl = 7r, SO that S2n vanishes and 

1 — C 2 n = 2. The difference contributed by CP term under this condition, compared to 

unity, is given by 

8 7 r £ 2 S l 2 C i 2 S i 3 C 2

3 S 2 3 C 2 3 5 ( 5 (4c2

3W2 + ^2) 

[A + 4s 2

3c 2

3 (s2

23 - A)] [1 + 4c2

3s|, (As2

13 + c2

13s2

23 - 1) 

where the functions W2 and X2 are given by: 

(5.73) 

W2 = ) ^ s l 3 (As2

13 + c2

3s2

23 - l) + Y T ^ A * ? , (4, - A) (5.74) 

* - T ^ t A ' ^ (B.7B) 

The ratio of the cross section for production of both e + to e~ and p+ to pT as a 

function of energy were calculated in Gaisser arid O'Connell [156]. At low energies, both 

Ae and AM are about | , while at higher energies they both increase to about | . The 

table will use the low energy value for both parameters. The ratio of e-type to //-type 

neutrinos in the atmospheric flux is known to be A = y .̂ Combining these values with 

the different CKM parameter sets used throughout this section gives an expectation of 

the CP violating effect on the atmospheric neutrinos. Table 5.2 shows its magnitude in 

the column labelled "Estimate 1" where s<j = 1 and s\2 = 0.5 have also been assumed. 

A second measure of the effect, labelled "Estimate 2" in the table, would be to set 

Cl = 2.33, so that the matter term vanishes completely. Then 1 — C2Q = ttS2n = 1.69, 

and the fractional contribution of CP violation to the ratio is given by 

4 ( 1 - 6 9 ) ^ 

[ A + 2 « ; 3 ^ , ( « J a - A ) - ( l . « 9 ) ] [ l + 2 ^ , « 5 3 ( A « ? 3 + c j 3 8 3 3 - l ) ( 1 . 6 9 ) ] 

[ - S12C12S13S23C23S* (2-33) (2c2

3W2 (1-69) + X2) (5-76) 

+ (2c2

3 (1.69) (y2 + Yjcs) + (Z2 + Zs

2cs)) ] 
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Label Estimate 1 Estimate 2 
sin(8) 

Estimate 2 
cos(8) 

£2 

F[a] ' 0.363 0.544 0.803 IO"4 

• F[b] 0.440 0.554 0.857 5.56 x IO"4 

F N 1.43 0.998 1.28 5.56 x IO"4 

F[d] 2.34 1.76 2.30 3.13 x IO"3 

F[e] 0.585 . 1.07 1.05 1.79 x IO"2 

Table 5.2: Estimates of the fractional contribution of the CP. violating for three different 
schemes discussed in the text. The last column shows.e2 assuming A m ^ = 10~5 GeV2. 
This factor multiplies those in the middle three rows to. determine the contribution of 
CP to the atmospheric neutrino ratio. , 

s2 

' 2 3 

(5.77) 

(5,78) 

(5,79) 

(5.80) 

where the additional functions in the last line are given by 

Y2 •= 5 1 3 (A — S23) S 1 2 + C 1 3 S 2 3 + S12 S13 S23) 

Y2

S = S12C12S13S23C23 [-4JC23 + S13 ( A . - S 2 3 ) 2 

Z2 = s\2s\3 (A - s2

3) (l + As 2

3) - Ac 2

2 c 2

3 5 

Z2= s i 2 c 1 2 si 3 S23C23 [l - A (A - 2s23)] 

In the table, two contributions to Estimate 2 are shown. The first, labelled "sin (S) " 

is given by the second line of equation 5.76 with s$ — 1 and s2

2 = 0.5. The other is given 

by the sum of the contributions of Y2 and• Z2 with cs = 1 and s\2 = 0.5 and is labelled 

"cos ((>>)." 

The table shows that CP could modify the atmospheric neutrino results by as much as 

fraction of 2tt2) which could be on the order of several percent depending on how small e 2 

is. This provides a novel, new approach to the measurement of CP violation in the lepton 

sector. Based on accelerator presented earlier, and given that the atmospheric neutrino 

flux has GeV energies, matter effects would be expected to dominate in the higher energy 

regions particularly with long path lengths through the earth's higher density core. The 

effect would also be difficult to see by detectors with poor energy resolution. However, 
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with new detectors able to bin the data by azimuthal angle and with sufficient energy 

resolution, a CP violating signal might be seen in the atmospheric neutrino signal. 

5.4.7 D i s c u s s i o n 

The CKM parameter sets chosen in this study were based on one particular paper by 

Fogli, Lisi and Marrone [130], who also noted that their fits are still quite sensitive to 

changes in the experimental data. As a result, they may yet shift around. The particular 

choices F[a] to Ffe] were somewhat arbitrary, and were not tuned to maximise the,CP 

violating effect but rather to give a wide range of mass differences from the most plausible 

regions of parameter space in the central figure iri that paper. 

In practice, the rates for CP violation may increase when better measurements of the 

other CKM parameters are made, but probably by factors of three or four rather than an 

order of magnitude. For example, if s 2

3 in F[e] was reduced from 0.91 to 0.25, then the CP 

violating term proportional to s 1 3c 2

3 would increase by almost 4.5. However, the matter 

term in ACPPfMe would increase too, and it is likely that the oscillation probability would 

as well, so there would be a much smaller total advantage. This study should provide a 

reasonable estimate on CP violation unless the value of the CKM parameters happen to 

be "just right." 

While the idea of building several detectors (besides the one near the source to cal

ibrate the neutrino beam) at oscillation nodes is theoretically attractive, it is probably 

prohibitively expensive given that they would need to be placed deep underground. The 

main tool open to the experimenter is to tune the beam energy and try to adjust the 

relative sizes of the matter and CP violating terms to best investigate the latter. In 

addition, high flux experiments can bin observations by energy, and the CP violating 

term has a different energy dependence than the two matter terms. 

K2K shows better potential to isolate CP violation than MINOS for two reasons. 
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First, the lower energy at K2K makes it easier to separate CP violating terms from 

matter terms. For reasonable sets of parameters, it may it may be possible to tune the 

energy so that the oscillation probability difference is dominated by CP. Second, the 

longer baseline and smaller detector at MINOS reduce the rate to a level far below that 

required to quantitatively measure CP violation. 

That said, K2K is unlikely to achieve the event rates required to measure CP viola

tion either, unless several factors work in their favour. First, the upgraded flux at KEK 

would have to be larger than the intense beam used to generate the reference spectrum. 

Nishikawa et. al. suggested that' for a modest cost, KEK could attain about 6 x 1012 

protons on target per second, only about 1% of the number delivered to produce the 

reference spectrum. Thus KEK would need a major upgrade. In addition, the beam 

would have to be better focussed to reduce the rate at which it spreads out and thus 

increasing the number of neutrinos which impact the detector. The effective size of the 

SuperKamiokande could also be increased if the muons produced in the rock surrounding 

it were also measured. This is already done successfully with the atmospheric neutrinos. 

Finally, nature would probably have to cooperate too. The magnitude of CP violat

ing effects discussed here could be increased if the CKM parameters were chosen more 

optimally. 

Reactors can be used in a limited way to help quantify CP. Although they measure a 

CP invariant quantity, it is within a constant factor of the largest term in the oscillation 

probability. Because the energy is very low, matter corrections are negligible so they 

measure that leading order term in the oscillation probability very cleanly. As a result, it 

may be possible to use reactors to subtract off the leading order term from an accelerator 

data set which has the same -|. However, the systematics of combining the experiments 

and the disappearance nature of reactor measurements will be challenging to overcome. 

Looking beyond standard laboratory experiments, the atmospheric neutrinos should 
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not be ignored as a potential source to study CP violation. Because the detection process 

is not CP invariant, the cross sections for neutrinos are different from antineutrinos. Even 

with identical fluxes of //-type and (separately) e-type neutrinos, CP violating interactions 

will change the ratio of the measured events [Re/u) • With SuperKamiokande binning 
V / data 

its data by both azimuthal angle and energy, a statistically challenging but tractable 

analysis may be able to make a quantitative statement about the magnitude of the C K M 

phase parameter s$. 

5.5 Three Neutrino Solar Results 

Studies of neutrino oscillation solutions to the solar neutrino problem in the literature 

generally reduce the system to a three parameter fit: they keep only the small mass 

difference A m ^ and two mixing angles 01 2 and 013. The reason for that is partly practical 

and partly based on experimental evidence. It is much easier, both analytically and 

conceptually, to study the problem with three parameters instead of four or five. However, 

the atmospheric neutrino results suggest that Am^ is above the threshold to participate 

in resonant neutrino oscillations (the MSW effect) in the sun making the reduction at 

least somewhat justifiable. 

Several authors have used this approximation. Harley, Kuo and Pantaleone calculated 

the neutrino survival probability at the solar surface as a function of A m ^ and the CKM 

matrix elements |V r

e2|2 and \Ve3\2 which are only functions of 912 and #13 [150]. They 

also fixed I K 3 I 2 and considered that probability when Am31 is allowed to drop below 

10 _ 4eV 2 . Fogli, Lisi and Montanino [144] and more recently Liu and Petcov [157] have 

employed the approximation 

Pzu (Ve »e) = 4, + c\jP2v (Ue ~r Ue) (5.81) 

where P2v (ve —> i/e) is the standard two neutrino survival probability. This is valid when 
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Am2.! is large and s|3 vanishes. 

However, it will be illustrated that these approximations may not be valid for reason

able models of nature, in which there are a total of six independent oscillation parameters. 

One of these, namely the complex phase 8, will not be studied here. The neutrino is as

sumed to propagate adiabatically out of the sun, except at resonance(s) where it might 

jump from one mass eigenstate to another. The jump probability does not depend on 8, 

and its affect on vacuum oscillation is likely to be weak. Since the experiments measure 

only P [ye —i> ve) or P (ue —> ue, v^, vT) but not P [ye —r v^) or P (ve —>• vT) this parameter 

can be safely dropped. 

Whether A m 3 1 is significant to the solar neutrinos depends strongly on its magnitude. 

If it is larger than about 3 x 10~4 eV2 no solar neutrinos will be converted to z/3 in the sun. 

Because such a mass has an the oscillation length many orders of magnitude less than 

an astronomical unit, vacuum oscillations between the sun and earth can be averaged 

out. Whether Ara 3 1 = 3 x 10 - 4 eV2 or 500 TeV2, the result is the same. If, however, 

Amjj drops below that level, some of the high energy 8 B neutrinos will be converted 

adiabatically in the sun. While this runs contrary to the strict interpretation of the 

atmospheric neutrino data, it is only marginally so. 

The mixing angle # 23 d ° e s not affect the jump probability at either of the two reso

nances possibly crossed by a neutrino leaving in the sun. But that doesn't mean that the 

detection probability is independent of it. If s\3 is large, then neutrinos emerging from 

the sun in the v2 mass eigenstate have a second channel into which they can oscillate 

travelling to earth and as a result, fewer will be converted back to u1. Similarly, s 2 3 has 

the potential modify the regeneration of neutrinos traversing the earth at night, although 

that effect is not studied here. 

In this section, solar neutrinos will be studied as a function of up to five mass differ

ences and CKM parameters. First, the dependence on the detection probability will be 
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considered assuming that A m ^ > 3 x 10~4 eV2. In this case, all three mixing angles and 

the small mass parameter affect P (ue —> ve). Next, the CKM parameter sets defined in 

table 5.1 and used extensively in the study of CP violation will be shown to generate 

rather poor fits to the solar neutrino experiments. Finally, A m | x will be allowed to drop 

to a level where some of the 8 B neutrinos can be converted to v3 inside the sun. This 

will be shown to provide a nice solution to the solar neutrino problem because there is a 

second mechanism to reduce the 8 B flux thereby making room for the 7Be neutrinos. 

5.5.1 F o u r P a r a m e t e r F i t s to the Solar N e u t r i n o P r o b l e m 

Numerical routines calculated the probability that electron neutrinos produced in the sun 

were still i/e's when detected on earth by each of the five experiments, assuming that A m ^ 

is large. Vacuum oscillations between the sun and earth were included, but regeneration 

inside the earth was not. With the additional data from SuperKamiokande, there are 

now five independent solar neutrino experiments, compared with four parameters. Figure 

5.15 shows 16 plots of "iso-x2" (constant %2) contours as a function of Am\\ and tan2 Q\2 

(hereafter t\2). Moving from left to right and bottom to top, s 2

3 and S23 respectively 

increase through 0.05, 0.35, 0.65 and 0.95. 

The bottom left plot in which both s2

3 and s2^ a r e small, best resembles the two 

neutrino figure in Chapter two. There is a clear trend moving from left to right in the 

plot. As 5 2

3 increases, the neutrino survival probability depends less and less on Ara^ 

and t\2 because it becomes increasingly dominated by v\ — v$ vacuum oscillations. 

There is also a clear dependence on s2

3, which is apparent when either of the other 

two mixing angles gets large. When s\z is large, the V\ and 1/3 states have a large overlap 

and can mix freely. However if s|3 is also large, then the vz also overlaps with the u2, 

so in a sense, some of the v\'s which have oscillated to u3 are leaking into v2 thereby 

further reducing the V\ content detected on earth. This also washes out the structure 
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t a n 2 ( i ? 1 2 ) t a n 2 ( i ? 1 2 ) 

L a r g e r s i n 2 ( r 3 1 3 ) 

Figure 5.15: Contours of constant x2 f ° r f°m parameter fit to the five solar neutrino 
experiments. The value of sf3 in the first through fourth column is 0.05, 0.35, 0.65> and 
0.95 respectively. The fourth through first rows have equal to 0.05, 0.35, 0.65 and 
0.95 respectively. Solid lines show x2 of 80, 160 and 240, while dotted contours are at 
10, 20, 30 and 40. 
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Figure 5.16: Surface plots showing how the minimum value of x 2 f ° r the small and large 
angle solar neutrino solutions changes with s\z and s2

3. 

of the contour plot, which can be seen in the last column of the figure. A similar but 

less apparent effect is also seen in the large (t\2) mixing region of the first column, where 

increasing s\z does shift the contours. 

Two solutions are still apparent in most of the plots in figure 5.15. In the bottom left 

plot there is a small angle solution with (Am^,^) equal to (10 - 5 eV2, IO - 3) and a large 

angle solution at IO - 5 eV2 in which t\2 cannot be well determined, corresponding to the 

two neutrino preferred values of the parameters. The small angle solution is quite stable 

until the other angles get very large and vacuum oscillations take over. The large angle 

solution moves to larger C±m\x and smaller t\2 relatively quickly. 

Figure 5.16 roughly maps out the minimum x 2 for the two solutions on a 4 x 4 grid. 

Numerical study of the x 2 parameter showed that the small angle solution prefers a 

smaller value of s\z and has a weak preference for small s\z. It reached a minimum of 

X 2 = 7.01 with s\z = 0.05 and s2

z = 0.05. While a x 2 distribution with one degree of 

freedom would only be expected to be larger in value in about 0.8 % of random trials, the 

parameter was decreasing with smaller s2

3 and larger 5 2 3 in the surface plot in figure 5.16, 
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so this is by no means its minimum. Alternately, s2

3 and s\3 have not been allowed to 

vary arbitrarily—both have been restricted to one of four values, so neither one represents 

a completely free parameter. 

. The same study found that the best large angle solution in the same 16 trials came 

when 5 2

3 = 0.65 and s 2

3 = 0.05. It had A m ^ ~ 10 - 4 along the adiabatic branch of the 

MS diagram and t\2 < 10° could not be exactly determined. The minimum %2 = 11.5 

occurred at t\2 ~ IO - 3 , corresponding to a 0.07% probability by random chance. But 

again, s 2

3 and s2

3 were chosen at the minimum of 16 different trials, not at the actual 

minimum for the four parameter fit. 

Figure 5.17 illustrates the spectra of the x2 = 7.01 small angle and %2 = 9.70 large 

angle fits. It is clear that the large angle fit is a vacuum oscillation solution in which 

neutrinos of all energies are equally likely to survive. By contrast, the small angle fit 

converts about one half of the high energy 8 B neutrinos and progressively more as the 

energy drops. The greatest suppression occurs at 1.44 MeV, below which the survival 

probability increases. The result explains the Kamiokande and SuperKamiokande exper

iments with a moderately strong suppression of the upper tail of the 8 B flux, and very 

strong reduction for the rest of the 8 B and the "missing 7Be" neutrinos at Homestake. 

Still lower in the spectrum, in the region of the pp flux, more neutrinos survive thus 

accounting for the relatively larger rates observed by the gallium experiments. 

Figure 5.18 shows the rates and %2 for SuperKamiokande, Homestake and the gallium 

experiments given s 2

3 = 0.05 and s\3 = 0.05. The small angle fit falls on the non-adiabatic 

line of the MS diagram for SuperKamiokande, (Kamiokande) and Homestake. There, the 
8 B and some 7Be neutrinos are produced inside the resonance radius in the sun. However, 

their energy is large enough that many jump across to the v\ eigenstate at resonance and 

thus emerge in the state which is nearly ve. Only a few of the pp neutrinos seen by the 

gallium detectors are produced inside the resonance for conversion in the sun because 
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Neutrino Energy 

Figure 5.17: Energy Spectra of neutrinos from the small and large angle solutions to 
the Solar Neutrino Problem. Probabilities are given by the scale on the right axis, while 
the number of neutrinos are also shown with an arbitrary scale. The small angle (SA) 
solution corresponds to Am 2 = 10~5 eV2, t\2 = 10 - 3 and s 2

3 — s\3 = 0.05. The large 
angle (LA) solution has Am 2 = 10 - 4 eV2, t\2 = IO - 3 , s\3 = 0.65 and s2

23 = 0.05. 

their energy is so low, but those that are do get adiabatically converted to u^. 

Finally, figure 5.19 shows the same contours for the large angle solution. Notice that 

the survival probabilities are reduced by one half or more for all experiments, independent 

of Am21 or s\2. Large mixing between the v\ and v3 eigenstates converts the neutrinos on 

the path through vacuum from the sun to the earth. Since there is no energy dependence, 

all experimental rates are reduced equally. 

5.5.2 Combined Atmospheric Best Fit Parameters and Solar Neutrinos 

It is worthwhile considering the compatibility of the solar and atmospheric neutrino 

experiments. Solar neutrino survival probabilities were calculated for the five C K M 

parameter sets F[a] to F[e] which very recently appeared in the literature as best fit 

solutions to the ANP. By fixing Aro^, sf3 and s23 there are only two free parameters, so 
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(a) SuperK (b) Homestake (c) SAGE/Gallex 

t a n 2 ( ^ 1 2 ) 

Figure 5.18: Contours of constant probability (SuperK) and experimental rates iso-SNU 
contours (Homestake and SAGE/Gallex) for the small angle solution to the solar neutrino 
experiments at the best fit values s\3 = 0.05 and s\z = 0 - 0 5 - Kamiokande results would 
be very close to SuperKamiokande. Bottom plot shows iso-x2 contours: solid lines at 80, 
160 and 240, and dotted lines at 10, 20, 30 and 40. 
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t a n 2 C i 9 1 2 ) 

Figure 5.19: Contours of constant probability (SuperK) and experimental rates iso-SNU 
contours (Homestake and SAGE/Gallex) for the large angle solution to the solar neutrino 
experiments at the best fit values s 2

3 = 0.65 and s\3 = 0.05. Kamiokande results would 
be very close to SuperKamiokande. Bottom plot shows iso-x2 contours. 
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Figure 5.20: Contours of constant x 2 f ° r n v e solar neutrino experiments for the C K M 
parameters sets F[b], F[c] and F[d] defined in table 5.1. 

the corresponding x 2 variate (with five experiments) has three degrees of freedom. 

F[a] to F[e] produced minimum values of x2 of 13.9, 12.1, 10.1, 12.2 and 18.5 respec

tively. F[a] and F[e] are extremely poor fits to the data, while a x 2 variate with three 

degrees of freedom would randomly give larger values than F[b], F[c] and F[d] in just 

0.70%, 1.8% and 0.67% of trials respectively. None of the fits are phenomenally good, 

but F[d] is slightly better than the two neutrino solution with sf3 = s 2

3 = 0, where the 

same analysis found x 2 = 10-2- Figure 5.20 plots iso-x2 contours for the best three fits 

F[b], F[c], and F[d]. 

F[b] and F[d] are large mixing angle solutions, having s 2

3 close to unity and s 2

3 > | . 

Both solutions are similar to the large mixing angle solutions illustrated in figure 5.15 

with Am2,! « 10"4eV2. With its relatively small ui - u3 mixing, the best fit for the 

parameter set F[c] corresponds to the small mixing solution with Ara^ « 10 - 5 eV2 and 

t\2 « 10 - 3. By fitting the atmospheric data with a parameter set with smaller s2

3 the fit 

to the solar data would improve. 
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5.5.3 Solar Neutrinos with Two Small Mass Parameters 

While both the large and small angle two neutrino solutions to the SNP do reduce the 

survival probability, neither one is entirely natural. The large mixing angle solution 

requires t\2 to be on the order of unity, which runs counter to experience in the quark 

sector where the mixing angles are small. While t\2 drops in the three neutrino extension 

of the large angle solution, s 2

3 ~ 0.65 whereas in the quark sector the mixing angle across 

two families is extremely small. The large angle spectral results also conflict with signals 

from the experiments: the fit has all neutrino energies are equally suppressed whereas 

the data suggest an energy dependence. 

The small angle two neutrino solution is much better in this regard, admitting a 

solution with small mixing angle. The mass scale is arranged so that the low energy 
8 B and the 7Be neutrinos are strongly suppressed, the high energy tail of the 8 B flux 

does not entirely satisfy adiabaticity and often jumps across eigenstates at resonance 

thus emerging as Ui, and the pp neutrinos' resonance occurs deep in the solar interior 

often inside the radius of production so they are never converted. These phenomena 

use energy dependence, namely the "pit" in PSA(ve) in figure 5.17, to rationalise the 

relatively large number of 8 B neutrinos seen at SuperKamiokande against the apparent 

lack of 7Be neutrinos seen at Homestake. In a more intuitive solution, however, one might 

expect a more uniform suppression of neutrinos across the spectrum but still allowing for 

some energy dependence. 

This can be accomplished in the three neutrino scenario, but at a cost. By dropping 

Am2,! to about one one quarter of the lowest value suggested by the atmospheric neutrino 

results, some of the 8 B neutrinos will be converted to the v$ eigenstate at the first of two 

resonances in the sun. Those produced outside the radius of the first resonance or which 

non-adiabatically jump to the V\ eigenstate may again be converted to v2 at the second 
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resonance. This additional suppression would leave more room in the experimental data 

for some 7Be neutrinos to emerge. Until the Soudan 2 experiment is able to verify the 

water Cherenkov atmospheric neutrino results and the theoretical atmospheric neutrino 

flux calculations converge, this scenario should be considered. 

The computer codes discussed in Chapter four again calculated electron neutrino 

survival probabilities at small steps in Am^ and t\2. The large mass scale targetted was 

from 1 — 2 x 10 - 4 eV2 to convert some 8 B neutrinos while leaving the 7Be and pp neutrinos 

unaffected. The mixing parameter s 2

3 was kept small, varying from 0.01 to 0.1 but still 

allowing for large conversions along the adiabatic branch of the MS diagram, while s 2 3 

was calculated at 0.5 and 0.75. This latter choice does represent large mixing, but only 

across one generation and in keeping with the preferred values required to explain the 

atmospheric neutrino data given the requirement of small s2

3 and £ 2

2 . The s 2 3 dependence 

was, however, very weak due to the low values of both t\2 and s2

3. 

Figure 5.21 shows contours of constant neutrino survival probability for the solar 

neutrino experiments as well as iso-%2 contours when they are combined. The "large" 

mass scale was A m 3 1 = 1.5 x 10~4eV2, s 2

3 = 0.03 and s 2 3 — 0.75. The minimum value 

of the x2 was 3.79 at Am^ « IO - 5 eV2 and t\2 « 3 x 10 - 4. A plot with s\z = 0.5 was 

almost indistinguishable and gave a minimum of %2 = 4.01. Note that this treatment 

breaks down when the two resonances cross (ie when Ara 2 1 « 1.5 x 10~4 eV2) but should 

be valid at the minimum where they are well separated. 

Since s 2 3 was determined by the atmospheric neutrino results and the dependence on 

it is very weak, it is not really a free parameter and the data can be analysed with five 

experiments fitted by four parameters. A x2 parameter with one degree of freedom could 

be expected to be larger than 3.85 (an approximate mean over the range of externally 

determined s23) by random chance about 5 % of the time. Moreover, only a discrete few 

values of A m 3 1 and s2

3 were surveyed, so a more comprehensive study would probably 
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Figure 5.21: Contours of constant probability (SuperK) and experimental rates iso-SNU 
contours (Homestake and SAGE/Gallex) for the two mass scale solution to the solar 
neutrino experiments at A m ^ = 1.5 x 10 - 4 eV 2 and s 2

3 = 0.03. Kamiokande results 
would be very close to SuperKamiokande. Bottom plot shows iso-x2 contours: solid lines 
at 80, 160 and 240, and dotted lines at 10, 20, 30 and 40. 
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lower the minimum %2 value somewhat. Even so, this four parameter fit with two mass 

scales does provide a viable alternative to solve the solar neutrino problem, and which is 

distinct from the small angle two neutrino solution. 

Figure 5.22 compares the spectra produced by this three neutrino solution with the 

two neutrino small angle one. There is a clear difference. The three neutrino solution 

suppresses the high energy tail of the 8 B flux with the second resonance crossing. As a 

result, there is less suppression of the low energy 8 B and 7Be fluxes, while the low energy 

behaviour relevant to the pp neutrinos is identical. SuperKamiokande will eventually have 

enough data to bin their results by energy, and it will be possible to differentiate these 

two scenarios. Notice that the 7Be neutrinos are not suppressed as much in the three 

neutrino fit, while the high energy tail of the 8 B flux is much more strongly suppressed. 

5.5.4 Discussion 

The three neutrino scenario does provide additional solutions to the solar neutrino data 

beyond the simplest one in which only s2

3 is added as a free parameter. The mixing 

angle s\3 clearly affects the large mixing angle solution to the SNP when the calculation 

of ve survival probability includes vacuum oscillations between the sun and earth. By 

analogy, when regeneration of neutrinos arriving at night which traverse the earth's core 

is also calculated, the magnitude of s2

3 will again come into play. 

Although the atmospheric neutrino CKM parameter sets chosen did not admit likely 

extensions for the solar neutrino problem, this was not a complete study. F[a] and F[e] 

were chosen from the best fits over a wide range of Am^, and there were other regions 

of the parameter space which would have given lower %2 minima. In particular, by 

chosing fits to the atmospheric data with smaller s2

3, better results could be expected. 

In addition, Fogli et. al. noted in their paper that the best fit regions shown were still 

sensitive to changes in the experimental data and would probably shift around somewhat 
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Figure 5.22: Energy Spectra of neutrinos from the two neutrino small angle solution 
and two mass scale fit to the Solar Neutrino Problem. In the two neutrino (2v) fit, 
Am 2 = 1(T5 eV2 and t\2 = IO"3. In the two mass scale fit (3z/) has A m ^ = 1CT5 eV2, 
A m ^ = 1.5 x IO - 4 eV2, t\2 = IO - 3 , s\z = 0.03 and s|, = 0.75. Probabilities are given 
by the scale on the right axis, while the number of neutrinos are also shown with an 
arbitrary scale. 
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[130]. 

Most intriguing is the possibility of a second resonance in the sun. The lower limit 

on Amjj is based on two water Cherenkov experiments which have yet to be confirmed 

by an iron calorimeter with large statistics. Soudan 2 is now taking data and will either 

confirm or oppose those results. Then, once the atmospheric neutrino flux calculations 

are in better agreement, it will be possible to make more definite statements about the 

ANP and what regions of oscillation parameter space it allows. 

By extending the allowed value of Am^ so that some high energy 8 B solar neutrinos 

are converted, a new solution to the solar neutrino problem becomes possible. In it the 

high energy tail of the 8 B flux crosses two resonances and becomes more suppressed than 

in the small angle two neutrino solution. This eases the pressure on the 7Be line and 

allows some of the Homestake signal to be assigned to it—thus P3u(ue) > P2u(ue) at the 
7Be neutrino energies in figure 5.22. At very low energies, this solution is identical to its. 

two neutrino counterpart. 



Chapter 6 

Conclusions 

Neutrinos with finite mass and mixing provide an inviting theoretical analogy with the 

quark sector. It also offers a possible solution to two major conflicts in particle physics 

today, the Solar and Atmospheric Neutrino Problems, with a very minimal extension to 

the Standard Model. The masses and mixings implied to resolve theory with the exper

iments do not conflict with any other laboratory measurements to date. Early studies 

of oscillation effects simplified the problem significantly by analysing just two neutrinos. 

While they did establish the field and show that massive neutrinos could provide viable 

solutions to the SNP and ANP, they were not accurate models of nature which does have 

three light neutrinos. The additional complexity of the full parameterisation offers a much 

richer phenomenology, with new effects discussed throughout this thesis. It provides more 

ways of explaining the existing results and in the future will be better able to deal with 

the many new experiments coming on line in the next decade. SNO, Borexino, Hellaz 

and others will provide additional data on solar neutrinos, while SuperKamiokande and 

Soudan '2 are currently extending the accuracy of atmospheric neutrino measurements, 

and the long baseline experiments K2K and MINOS will complement the others. These 

new experiments will allow physicists to make more precise quantitative statements about 

the neutrino oscillation parameters, so three neutrino analyses will be absolutely required 

to interpret them. Chapter one of this thesis discussed two discrepancies between theo

retical calculations and experimental measurements, in both the solar and atmospheric 

213 
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neutrinos, and established the need for additional physics in order to explain them. More

over, it updated recent arguments which show that the solar neutrino experiments are 

in conflict with each other under very general assumptions. Chapter two developed the 

ideas of oscillations with two neutrinos, and applied the results to realistic long baseline 

experiments and the solar results. The latter included the effect of regeneration of night 

time neutrinos in the earth which has appeared in the literature in the last few years. 

Chapter three developed the three neutrino formalism using a CKM matrix identical to 

that in the quark sector. Several new analytical results, including a complete calculation 

of the hamiltonian in the weak eigenbasis and exact oscillation probabilities were present

ed. The second of these was used extensively later. Chapter four outlined the numerical 

methods used to accurately compute long baseline and solar neutrino oscillations with 

three neutrinos thus removing the need to make severe approximations. They also cor

rectly computed results even when those analytical approximations broke down. Three 

detailed studies were produced in Chapter five. The first reduced the oscillation proba

bilities from Chapter three to four different hierarchies in which the two mass scales are 

widely separated, the OMSD scenarios. Symmetries between these four scenarios were 

examined, and an exact relation describing the two-fold degeneracy in accelerator based 

muon neutrino oscillation experiments already noted in the literature was given. A realis

tic, detailed study of neutrino oscillation experiments on baselines of 250 km and 732 km 

showed what regions of parameter space could be studied and where matter effects are 

likely be seen. Fluxes which would be measured at a high statistics experiment were also 

show to be able to accurately determine some of the CKM parameters. Section four of 

Chapter five investigated CP violation using accelerator and reactor based experiments. 

Analytical work extended results from the literature in the last year to include an approx

imation to oscillation probabilities to second order in both the ratio of the mass scales 

and the ratio of matter effects to the large mass scale. The first detailed calculations of 
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neutrino oscillations at the K2K and MINOS experiments showed that neither is likely 

to have the opportunity to measure CP violation in the lepton sector. K2K does come 

closer, but would need major upgrades in order to see an effect. Both the first-order and 

eventually the second-order approximations did break down, but the numerical solutions 

were able to give accurate quantitative results when they did. Specific strategies unique 

to each experiment for isolating the effect were outlined. Finally, an analytical calculation 

showed the effect CP violation would have on the ratio of /i-type to e-type neutrinos in 

the atmospheric flux. The best estimates of the CKM parameters from the atmospheric 

neutrino experiments were shown to produce a CP violating effect that may be as large 

as a few percent. Finally, the survival probability for solar electron neutrinos was cal

culated in the three family scenario. Results showed that even with one mass scale, the 

simplest three parameter extension of the two neutrino calculation does not accurately 

approximate the full system when the mixing angles are large. By allowing the large mass 

scale to drop below the limit suggested by the water Cherenkov atmospheric experiments 

a new, statistically viable solution of the solar neutrino problem was found. It reduces 

the suppression of the 7Be neutrinos so part of the Homestake signal can be assigned to 

them. Over the next decade, many new experiments will provide additional data on the 

Solar and Atmospheric Neutrino Problems, as well as related phenomena. Six-parameter 

three neutrino analyses will have to be performed, not just to correctly interpret those 

new data, but also to offer legitimate ideas about what additional research should be 

carried out. What has been presented in this thesis are some numerical techniques and 

new analytical results to do that, as well as detailed studies on the phenomenology at 

the next generation of experiments. The challenge to those future experiments will be 

to either reject or confirm the neutrino oscillation hypothesis as a viable description of 

nature and, if it is the latter, quantify the parameters which characterise it. 
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