
O N T H E F E A S I B I L I T Y O F U S I N G S T A R L A N T O I M P L E M E N T T H E

F A S T B U S S E R I A L N E T W O R K

B y

Richard Cam

B . A . Sc. (Engineering Physics) University of British Columbia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E DEGREE OF

M A S T E R OF APPLIED SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES

PHYSICS

We accept this thesis as conforming

to the required standard

T H E UNIVERSITY OF BRITISH COLUMBIA

October 1988

© Richard Cam, 1988

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. 1 further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department-of THV<, I CS

The University of British Columbia
Vancouver, Canada

Date 3-8 OCTOggR / ^ g F

DE-6 (2/88)

Abstract

During the inception of F A S T B U S , an autonomous data link, informally known as the

F A S T B U S Serial Network, was conceived as an auxiliary communications channel to be

used in diagnostic applications for debugging F A S T B U S systems. Since then, there have

been several attempts at implementing this serial network, all of which have produced

somewhat mixed results.

This thesis describes the latest attempt to implement a prototype F A S T B U S serial

network. B y using a new L A N specification called S t a r L A N , some promising results have

been obtained. These results show that S t a r L A N can be successfuDy adapted to imple­

ment the serial network without requiring major modifications. Furthermore, S t a r L A N

seems to have the desirable characteristics of simplicity, low cost, an 'acceptable' data

rate, and having multiple vendor support — advantages that previous implementation

attempts had not possessed simultaneously. As such, S t a r L A N is the most promising

solution to the serial network problem to have appeared so far.

This document wil l begin with a background discussion of F A S T B U S , the F A S T B U S

Serial Network, and S t a r L A N . It wi l l then discuss, in detail, how the prototype network

was built, followed by a description and analysis of the performance measurements that

were taken. It wi l l also discuss considerations and options for a practical implementation

of the serial network, based on experience from the work done with the prototype. Finally,

a summary of the key results and an assessment of the S t a r L A N approach is given to

conclude the thesis.

It is hoped that this document wi l l be able to resolve many outstanding questions

about a StarLAN-based serial network. Perhaps, F A S T B U S users can now decide on

whether or not to use S t a r L A N to implement the F A S T B U S Serial Network.

m

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgement xi

1 Introduction 1

1.1 F A S T B U S 1

1.1.1 Basic Operational Description of F A S T B U S 2

1.1.2 Motivation for the F A S T B U S Serial Network 5

1.1.3 Historical Background of the F A S T B U S Serial Network 7

1.2 S t a r L A N 14

1.2.1 S t a r L A N in the Framework of the OSI Model and Other I E E E 802

Protocols 15

1.2.2 Basic Operational Description of S t a r L A N 21

1.2.3 S t a r L A N and the F A S T B U S Serial Network 32

1.2.4 Variations to Standard S t a r L A N 36

2 Building the Prototype Serial Network 40

2.1 A Simple S t a r L A N Network 40

2.2 Using S t a r L A N in a F A S T B U S Environment 43

IV

3 Measurements 55

3.1 Electrical Characteristics of S t a r L A N Signals in the F A S T B U S Backplane 55

3.2 Network Performance Measurements 65

4 System Implementation Options 97

4.1 Topology 97

4.2 Bi t Rate 99

4.3 Access Scheme 100

5 Summary of Results and General Assessment 103

Appendices 105

A P A L A S M Listing, Notes on Transceiver and H u b Circuits 105

A . l P A L Device Logic Equations 105

A.2 Functional Description of the S t a r L A N - F A S T B U S Transceiver 105

A.3 Functional Description of the S t a r L A N Hub Circuit 107

B Photographs and Table of Electrical Measurements 109

C Tables of Preliminary Performance Data 129

D Calculation of Software Overhead Time 135

E Notes on the Automated Network Driver Program 138

Bibliography 152

v

List of Tables

B . l Propagation delay and pulse jitter measurements 110

C. 2 Network configurations for preliminary performance measurements. . . . 129

C.3 General transmission data for 72-byte frames 130

C.4 General transmission data for 532-byte frames 131

C.5 General transmission data for 1526-byte frames 131

C.6 Distribution of Collision Resolution Interval for 72-byte frames 132

C.7 Distribution of Collision Resolution Interval for 532-byte frames 133

C. 8 Distribution of Collision Resolution Interval for 1526-byte frames 134

D . 9 Overhead times for different field lengths 137

VI

List of Figures

1.1 F A S T B U S Segments 3

1.2 Interconnected F A S T B U S Segments 6

1.3 Single line direct routing scheme 8

1.4 Single line repeater-based scheme 9

1.5 Two-line connection 11

1.6 OSI 7-Layer Reference Model 17

1.7 I E E E Local Area Network Architecture 19

1.8 I E E E 802 Protocols 20

1.9 Star Topology 22

1.10 Bus and Ring Topologies 23

1.11 Manchester Encoding and RS-422 Voltage Levels 24

1.12 Token-passing Access Method 26

1.13 S t a r L A N framing format 26

1.14 Worst-Case Scenario for Collision Detection 28

1.15 Collision Presence Signal 30

1.16 Infinite Loop in a S t a r L A N Network 31

1.17 S t a r L A N in an integrated office 33

1.18 S t a r L A N network using intra-building telephone cables 34

1.19 StarLAN-based serial network on F A S T B U S 35

1.20 Bussed S t a r L A N network 36

1.21 Node connection schemes for bussed S t a r L A N 37

vi i

1.22 Bussed S t a r L A N in the F A S T B U S Serial Network 39

2.23 S t a r L A N Network Configurations 42

2.24 Schematic diagram of the S t a r L A N - F A S T B U S tranceiver 45

2.25 Block Diagram of Hub Circuit: I / O Section 50

2.26 Block Diagram of Hub Circuit: Downstream Section 51

2.27 Block Diagram of Hub Circuit: Upstream Section 52

2.28 Schematic Diagram of Hub Circuit with WD83C510 Controller 53

3.29 Sample capacitor load for the F A S T B U S backplane 58

3.30 Reference points for edge transitions 60

3.31 Schematic diagram of electrical measurements 62

3.32 Schematic diagram of electrical measurements (continued) 63

3.33 Typical oscilloscope traces (ref. 25) 64

3.34 Oscilloscope trace of bumpy edge transition (ref. 17) 65

3.35 Average throughput for a single-PC network 72

3.36 Average throughput for a 2 -PC network 74

3.37 Average offered load for a 2-PC network 75

3.38 Number of deferrals expressed as a fraction of offered load 76

3.39 Average throughput for a 3-PC network without frame receptions 80

3.40 Fractional standard deviation of throughput 81

3.41 Average offered load for a 3-PC network without frame receptions 82

3.42 Fractional standard deviation of offered load 83

3.43 Number of collisions expressed as a fraction of offered load 84

3.44 Number of deferrals expressed as a fraction of offered load 85

3.45 Number of unresolved collision intervals as a fraction of offered load . . . 86

3.46 Average throughput for a 3-PC network with frame receptions 87

vin

3.47 Average offered load for a 3-PC network with frame receptions 88

3.48 Deferred transmissions expressed as a fraction of the offered load 89

3.49 Collisions expressed as a fraction of the offered load 90

3.50 Lost frames expressed as a fraction of the total number of received frames. 91

3.51 Buffer overflows expresssed as a fraction of the total number of received

frames 92

3.52 Number of unresolved collision intervals as a fraction of offered load . . . 93

3.53 Fractional standard deviation of throughput 94

3.54 Fractional standard deviation of offered load 95

A . 55 Logic Equations for P A L device of Intel S t a r L A N board 106

B . 56 Reference number 7 I l l

B.57 Reference number 8 112

B.58 Reference number 9 113

B.59 Reference number 10 114

B.60 Reference number 11 115

B.61 Reference number 12 116

B.62 Reference number 13 117

B.63 Reference number 14 118

B.64 Reference number 15 119

B.65 Reference number 16 120

B.66 Reference number 17 121

B.67 Reference number 18 122

B.68 Reference number 19 . 123

B.69 Reference number 20 124

B.70 Reference number 21 125

ix

B.71 Reference number 23 126

B.72 Reference number 24 127

B.73 Reference number 25 128

E.74 Subroutine Flowchart of Driver Program, Part 1 of 3 139

E.75 Subroutine Flowchart of Driver Program, Part 2 of 3 140

E.76 Subroutine Flowchart of Driver Program, Part 3 of 3 141

E.77 Header Files 142

E.78 Header Files (continued) 143

E.79 Header Files (continued) 144

E.80 Header Files (continued) 145

E.81 Header Files (continued) 146

E.82 Header Files (continued) 147

E.83 Header Files (continued) 148

E.84 Sample Master Program , 149

E.85 Sample Slave Program 150

E.86 Sample Output File 151

x

Acknowledgement

The author gratefully acknowledges the contributions of the following individuals for

their assistance in the course of the project that has culminated in this thesis. Of the

staff at T R I U M F ' s microprocessor laboratory, Brian Evans and David Morris gave useful

technical advice. The work area in the lab was borrowed from Robert Skegg. Layouts

of all the printed circuit boards were done by Peter Bennett. Graham Waters was most

helpful in showing how to access the laser printer through the network. P C ' s for the

later performance measurements were generously provided by Prof. Glen Young and the

Department of Harvesting and Wood Science at U B C . Consultation was sought on several

occasions from Dr. H . Lee, formerly with the Department of Electrical Engineering at

U B C , but who has since moved to Carleton University. Finally, I would like to thank my

three supervisors, Bob Dobinson (now at C E R N) , Ken Dawson of T R I U M F , and Dr. Ed

A u l d of the Department of Physics at U B C , for guiding me safely through the past two

years.

x i

Chapter 1

Introduction

1.1 F A S T B U S

F A S T B U S is a data bus system used primarily in nuclear and particle physics experiments

for high-speed data acquisition, processing, and control. It was developed from the late

seventies through the early eighties in response to requirements from the high-energy

physics community for a bus system with higher throughput in data acquisition and

processing. Its development was prompted by the realization that existing data busses

would be unable to cope with requirements imposed by future experiments. Improve­

ments in accelerator technology as well as the increasing complexity of many experiments

were leading to faster event rates and more measurements for individual events—factors

which demanded higher data throughput than ever before in spite of the fact that most

of the events measured in those experiments did not contain relevant data. F A S T B U S

was designed to alleviate this problem through two routes: first, by having higher data

transmission rates (i.e., by 'brute force'), and second, by offering a multisegment architec­

ture that allowed simultaneous data acquisition and processing (and therefore, real-time

data reduction), thus reducing the load placed on the bus by the transmission of largely

irrelevant data.

F A S T B U S has been and still is used in many experiments at virtually all major

nuclear and particle physics research facilities around the world. Although F A S T B U S

was designed for high-energy physics experiments, its capabilities do not limit it to those

1

Chapter 1. Introduction 2

applications. In general, it is feasible for any system that requires a bus with high data

rates and multiprocessing capability. In 1984, F A S T B U S was adopted as a formal A N S I

and I E E E specification, the A N S I / I E E E 960 Standard.

1.1.1 Basic Operational Description of F A S T B U S

F A S T B U S 1 is a modular, segmented bus system: a typical application might have several

'Segments', each with its own set of devices. Each of these Segments operate indepen­

dently but can also dynamically link with other Segments for inter-segment operations.

A Segment has 32 multiplexed address/data lines plus additional lines for power distribu­

tion, control, t iming, arbitration, and other functions. There are two types of Segments:

One is a 'Crate Segment' where devices (i.e., electronic circuit cards) plug into connectors

on a backplane in much the same way as peripheral cards plug onto the motherboard of a

microcomputer. The other is called a 'Cable Segment' which, as the name suggests, links

attached devices by multi-conductor cable. There are five types of devices which can at­

tach onto a segment: 'Masters', 'Slaves', 'Processor Interfaces', 'Segment Interconnects',

and 'Terminators'. A Master is a device which can acquire control of a segment (or other

segments, in the case of inter-segment operations) and initiate operations. Slaves can

only respond to instructions issued from Masters and cannot independently take control

of the bus. Processor Interfaces link a Segment to a host processor (e.g., an external

computer). Segment Interconnects link two or more Segments together temporarily so

that inter-segment operations can be done. Segments are terminated at both ends by

Terminators, which provide impedance-matching (to reduce reflections on signal lines).

Crate segment Terminators are usually mounted on cards which contain electronic cir­

cuits to support functions related to timing, control, and addressing. Figure 1.1 shows

the simple schematic diagrams of these two segments along with some attached devices.

1see [1], [2], and [3] for more details.

er 1. Introduction

C R A T E SEGMENT

0 ©

HDST
PRDCESSDR

C A B L E SEGMENT

HDST
PRDCESSDR

K E Y :

S l a ve ^\J_^J ^ e r n i n a ^ o r

SI Segment I n t e r c o n n e c t

p a r t o f c a b l e segment

P r o c e s s o r I n t e r f a c e

M a s t e r

PI

M

Figure 1.1: F A S T B U S Segments

Chapter 1. Introduction 4

F A S T B U S is different from man}' other busses in that more than one Master can be

attached to the bus. This allows independent multiprocessing operations but complicates

the system since a bus arbitration scheme is needed to decide which Master takes control

of the Segment(s) in the event that more than one Master wants to use the bus at the

same time. Furthermore, there is the possibility of 'starvation' among other Masters if

one Master controls the bus for a disproportionate amount of time. Such a situation

can occur because a bus Master may not be interruptible. (In F A S T B U S , this problem

can be avoided i f all masters abide by the Assured Access protocol.) Nevertheless, the

advantages of a multiple-master bus outweigh the added complexity by such a large

margin that the current trend of high-performance busses is towards multiple-master

systems (e.g., NuBus, used in the Apple Macintosh II microcomputer).

Inter-segment communications are dynamically established by Segment Interconnects

attached to the corresponding Segments. A Segment Interconnect physically couples a

Backplane to a Cable Segment. These devices are responsible for handling inter-segment

information traffic in a 'transparent' manner such that devices in different segments can

be accessed as if they were intra-segment devices. They perform the dual tasks of isolating

a segment from the rest of the system during intra-segment operations and connecting two

or more segments together as if those were one contiguous segment when inter-segment

operations are required. Route tables are used to determine the data path during inter­

segment operations. The capability of inter-segment operations allows a multiple-master

system to exploit its multiprocessing power not just within isolated segments (with their

limited number of attached devices) but to the whole system. Furthermore, F A S T B U S

does not specify the topology for Segment interconnections. It does not specify which

Segments should be linked or which should not. This gives the system designer maximum

flexibility in adding inter-segment connections to suit the particular application and to

maximize system throughput. For example, segments which often communicate with

Chapter 1. Introduction 5

each other should be grouped closely together so as to reduce inter-segment propagation

delay. In addition, they should also have direct links to each other instead of indirect links

(which pass over other Segments) so as not to disrupt intra-segment operations in those

Segments. Figure 1.2 shows schematic diagrams of several interconnected Segments.

The number of Segments used in a F A S T B U S application can run from as few as one

to as many as several hundreds.

1.1.2 Motivation for the F A S T B U S Serial Network

Regardless of the number of Segments, problems with a F A S T B U S system can occur. Be­

cause of its complexity, it is usually not a trivial task to debug the bus system, especially

if there are many inter-connected Segments and a large number of attached devices.

Hence, as F A S T B U S evolved, the F A S T B U S Serial Network (FSN) was conceived to

provide a system-wide communication network for diagnostic purposes. This network is

autonomous from the rest of the bus system. Hence, it can remain effective even when

the remainder of the system is not functional.

A typical F A S T B U S diagnostic scenario might occur as follows: A faulty Segment

Interconnect device is suspected to be causing problems with inter-segment operations.

Data traffic between the affected Segments must be examined to determine if this is indeed

the case. However, the F A S T B U S system cannot be used to transfer data between those

Segments because it is not operating properly—a broken F A S T B U S system cannot be

used to diagnose itself. Hence, the data must be sent either through an external facility

or through an unaffected, internal, autonomous communication link.

Although the F A S T B U S Serial Network was originally conceived for diagnostic pur­

poses, its scope of application is not restricted to that area alone. The F S N can be used

as the data channel in a 'backdoor initialization' scheme for starting up a F A S T B U S

system. For example, data for initializing route tables could be sent through the serial

Chapter 1. Introduction 6

Chapter 1. Introduction 7

network. Another application that could use the F S N is a system sentinel which monitors

the F A S T B U S system for abnormal operating temperature and power supply voltages.

F A S T B U S devices could periodically send data through the serial network to inform the

sentinel of their operating conditions without placing an additional load on the inter­

segment links. The F S N can also be used for remote switching of F A S T B U S devices. A

device can be controlled from a remote terminal through the serial network, which would

be used to transmit programming data to the device and send back status information

to the terminal. A n operator would no longer have to open a crate and physically access

the device to change its switches or read its status lights.

In spite of the wealth of applications which could use a separate data network, the

F A S T B U S Serial Network is, as of 1988, not yet operational. Formal specifications have

not yet been given or agreed upon for either its implementation or applications. A brief

history of the F S N (from [4]) is given in the next paragraphs to summarize past efforts

and to put the current work into perspective.

1.1.3 Historical Background of the F A S T B U S Serial Network

In mid-1979, a single line (SL) on the Crate backplane Segment was reserved for the

F A S T B U S Serial Network. This was done with the idea that some single-line, industry-

standard network, such as Ethernet, could be used. However, there were problems with

using only one line. For example, it was not practical to route the serial links in from one

end of the Segment and out at the other end because each Segment would then contribute

a large lumped capacitance to the line, resulting in impedance mismatches which, in

turn, would cause enormous signal reflections (see figure 1.3). The line capacitance of

the network would be very high since all transmitters and receivers (along with their

load capacitances) were connected to the same line. A repeater could be used to link the

external line to the Segment (figure 1.4). It would act essentially as a bridge, relaying

Chapter 1. Introduction

E t h e r n e t line

y

y

y

EQUIVALENT CIRCUIT:

L a r g e c a p a c i t a n c e s due t o d e v i c e s
a t t a c h e d t o e a c h segment .

Figure 1.3: Single line direct routing scheme

Chapter 1. Introduction

Figure 1.4: Single line repeater-based scheme

Chapter 1. Introduction 10

signals between the line and the Segment, while isolating the Segment's capacitive load.

This was an expensive solution. Moreover, Ethernet, the candidate standard at that

time, limited the number of such repeaters to only two per network. So, by October

1980, a second line (SLR) was added. (The current F A S T B U S standard refers to these

lines as 'Serial T X ' and 'Serial R X ' .) W i t h this scheme (figure 1.5), one line would be

used by all devices for transmitting while the other line would be used for receiving. A

network 'bridge' would link data between the two lines and an external line. Overall

capacitance load on the transmit and receive lines was also reduced since transmitters

and receivers in each Segment were now connected to their respective lines instead of

having to share one line.

A t this point, Ethernet looked to be a very promising standard for the F A S T B U S

Serial Network. If integrated circuits that implemented Ethernet became available (as

usually happens for popular industry standards), then it would be an easy task to use

Ethernet for the F S N . However, Ethernet, was also an evolving local area network (L A N)

standard at that time and its specifications were not yet fixed. The data rate of Ethernet

was initially set at 1 Mbps. This would have been ideal for the F S N since simple collision-

detection circuitry could be used. However, that data rate was changed to 10 Mbps for

higher L A N throughput, complicating not only the task of detecting collisions but also

that of processing data faster. It was still possible, in principle, to use Ethernet, but

it would require more expensive electronic circuits and, more significantl}', more circuit

board area. Hence, the idea of using Ethernet for the F A S T B U S Serial Network was

dropped and the search was on for suitable alternatives.

In October 1980, a research group at the Stanford Linear Accelerator Center (S L A C)

began to develop a prototype serial communication network based on an S D L C (Serial

Data Link Control) chip (the Zilog Z80-SIO). This system had a data rate of up to several

hundred kbps and occupied only 13 c m 2 of circuit board area. The hardware was built in

Chapter 1. Introduction

Figure 1.5: Two-line connection

Chapter 1. Introduction 12

1981 and some support software was developed shortly afterwards. However, the S L A C

group was reluctant to implement the prototype because they were still hoping for an

industry standard network to evolve that would fit their needs.

The same group then tried to use the AppleTalk(tm) network. This network was

based on a newer S D L C chip, the Zilog Z8530, and required only 1 in2 of board area. It

had a data rate of 230400 bps, which was slow enough for data processing without using a

D M A (Direct Memory Access) controller (which would have been required for higher data

rates, such as that of Ethernet). It was also compatible with the two-line serial network

scheme and was already supported by commercial software for data transfer. This system

was not implemented either, in spite of its promising characteristics, because the group

wanted to delay standardization until the 'last possible moment' just in case a better

system became available.

A n d , perhaps, a better system may have arrived. S t a r L A N , a new L A N standard,

seems to have most, if not all of the features desired for the F A S T B U S Serial Network.

It has a data rate of 1 Mbps, which is not too slow, but slow enough to allow the use

of simpler collision detection schemes and less expensive electronic circuitry. It still

requires D M A support, but D M A controllers are less expensive now than they were

before. Furthermore, C P U s with built-in D M A controllers are now available. But the

most important aspect of S t a r L A N is that it is an industr}' standard, with wide multi-

vendor support. S t a r L A N is similar in many respects to Ethernet (already a very popular

and widely used L A N standard) and hence, can be easily connected to that network by a

StarLAN-Ethernet 'bridge'. Many integrated circuit manufacturers have developed chips

for S t a r L A N controllers, making it possible to build circuits occupying very little board

space. Although S t a r L A N is more expensive than AppleTalk(tm), it has better prospects

for long-term use and expansion. As of this time (late 1988), a better alternative to

S t a r L A N has yet to come. S t a r L A N is a fairly young standard (it was standardized in

Chapter 1. Introduction 13

early 1987) and thus, is not expected to become 'obsolescent' at least for the next few-

years. Preliminary work on a StarLAN-based serial network has been done at T R I U M F

(and perhaps also in other places). The contribution from T R I U M F is the subject of this

thesis.

Chapter 1. Introduction 14

1.2 S t a r L A N

S t a r L A N , officially known as the I E E E 802.3 1 B A S E 5 standard 2 , is a new local area

network (L A N) standard designed for office integration and automation. (Local Area

Networks are short-distance data communication facilities connecting computers at dis­

tances of between a few meters to several kilometers apart, typically within a single or

a localized cluster of buildings.) It was developed as a low-cost alternative to Ethernet

(an earlier L A N standard) 3 for use in systems based on personal computers. These

systems typically do not require the high performance of Ethernet, and consequently,

cannot justify the higher connection cosis associated with "those networks. A t that time

(early 80's), existing L A N standards were designed primarily for centralized mainframe

and minicomputer systems. A study dome i n 1985 [7] showed that only a small fraction

of the estimated 10 milhon PCs being used were networked. This finding was especially

significant in office environments, where P C s have become increasingly popular but func­

tion more efficiently when networked together with other resources in the office such as

printers and mass storage media (data l)ases). These unconnected P C s represented a

huge, untapped base of users waiting for a more affordable L A N . W i t h the number of

P C s expected to reach up to 20 million units by 1990, the development of cheaper L A N ' s

became ever more urgent—and lucrative. S t a r L A N is one of the most recent entries in

this class of L A N ' s .

S t a r L A N derives its lower costs from three characteristics. Firstly, it uses a relatively

low data rate (1 Mbps) , so that slower, said therefore cheaper, electronic circuits can be

used. Secondly, it is designed to use, as the "transmission medium, existing spare tele­

phone cables in a building, eliminating additional costs of Touting new cable. Telephone

companies typically put more telephone "wiring i n a building than is initially required

2see [6]
3see [5]

Chapter 1. Introduction 15

because it is cheaper and easier to tap spare telephone wires than to route new ca­

ble through the building when more telephone lines are needed. Finally, S t a r L A N is

an international standard with wide, multi-vendor support. Users can select S t a r L A N

products from many manufacturers instead of being 'captive' customers, which usually

happens with communication protocols developed by a single vendor (because they are

not compatible with those of other vendors).

1.2.1 S t a r L A N in the Framework of the OSI Model and Other I E E E 802

Protocols.

A complicated series of operations is usually required when data are sent between com­

puters. These operations comprise two basic sections: coding and routing. The coding

section is concerned with how data from the source computer is presented or 'shown' to

the destination computer. Source and destination computer systems may use different

internal character collating sequences (e.g., A S C I I and E B C D I C) , in which case text

messages wil l have to be translated so as to have the same appearance in the destination

computer. Data containing confidential material may have to be encrypted for the pur­

pose of privacy. The routing section is responsible for sending the coded data reliably

and efficiently from source to destination. Error detection and/or correction codes are

usually appended for use by the destination system to check for integrity of the message

received. In a complicated network, the source data must be sent through intermediate

points before reaching its final destination. Efficient and robust routing algorithms are

required in such cases to select the (sub-)optimal path through the available intermediate

points. The physical media for data communications are diverse and include, to mention

a few, coaxial or fibre-optic cable, point-to-point radio-frequency Hnks, and microwave

satellite channels. Protocols, or sets of rules, are agreed upon between the sender and

receiver for all aspects of data transfer such as the operations described above, as well as

Chapter 1. Introduction 16

for initiating and terminating transfers and recovering from situations where some part

of a message is either lost or received with error(s).

The operations involved in moving data from one point to another are components in

a communication system which help to implement its only goal: to send data reliably from

the source to its destination. The sheer complexity involved in sending computer data (of

which only the essential details were outlined above) requires a 'structured' scheme for

all data-transfer operations. Several computer corporations, as well as national and in­

ternational organizations have developed schemes, or 'architectures', for organizing these

data-transfer operations. Of these, two will be discussed briefly as they are very closely

related to S t a r L A N . The first is the 0S1 (Open System Interconnection) 7-Layer Refer­

ence Model specified by the International Standards Organization (ISO) and the second

comprise the I E E E protocols, which are being developed by the I E E E 802 Standards

Committee of the Institute of Electrical and Electronics Engineers (I E E E) in the United

States.

The OSI Reference Model

OSI is a complete architecture for data communication. It is defined by a hierarchy of

seven operational 'layers', each of which has its own set of functions, independent of the

other layers. OSI does not specify the protocols for these layers, it only outlines the

duties and responsibilities for those protocols. Figure 1.6 shows a schematic diagram of

the seven layers. The application layer contains application-specific programs for the data

communication requirement at hand. The presentation layer is responsible for functions

such as character code conversion, text compression, and data encryption. The session

layer sets up and maintains connections between applications. It is responsible for user

authentication and for re-establishing interrupted or lost connections. The transport

layer makes data transfer between applications as independent of the underlying network

Chapter 1. Introduction 17

APPLICATION

\ /

SDURCE
/

DESTINATION
\
\
\

PRESENTATION
7K

, ^
SESSION

TRANSPORT

NETWORK
7 \

DATA LINK
"7J\~

PHYSICAL

L a y e r I n t e r f a c e

NETWORK NETWORK
/

\

\

/

/

\

\

/

DATA LINK DATA LINK
/

\

\

/

/

\

\

PHYSICAL PHYSICAL

I n t e r n a l N e t w o r k (i f any)

Figure 1.6: OSI 7-Layer Reference Model.

APPLICATION
/

\

\

/

PRESENTATION
/

\

\

/
SESSIDN

/

\

\

/
TRANSPORT

/

\

\

/

NETWORK
/

\

\

/
DATA LINK

/

\

\

/
PHYSICAL

Chapter 1. Introduction 18

as possible. These four highest layers cover 'end-to-end' protocols because they concern

source and destination applications only and are independent of the network used to

physically connect them.

The lowest three layers specify network access protocols, whose functions concern only

the network, independent of the particular application involved on the higher layers. The

network layer provides services for setting up and maintaining the flow of messages in

a network. It is responsible for directing message packets towards their destinations.

Since source and destination users may not be connected by a direct physical link, the

network layer is also responsible for routing and switching data messages through any

intermediate junction in a network. The data link layer is responsible for message frame

synchronization as well as error detection and correction. It is responsible for retransmis­

sion of message frames received in error. In general, it provides an apparently error-free

connection between a transmitter and receiver. The physical layer specifies electrical

and mechanical parameters for a direct physical link. These include the type of medium

used (such as coaxial or fibre-optic cable), the signalling method (modulation technique,

amplitude and period of electrical signals, etc.), as well as the connection scheme (e.g.,

number of connector pins, types of connectors or plugs). It is concerned with transmitting

and receiving bit streams of message frames sent by the data link layer.

A communication network may not require all of the layers. Local area networks for

example, typically do not use the transport, session, and presentation layers. Each layer

must be 'open' to adjacent layers, that is, a protocol implemented at any one layer should

be able to interface to any protocol of the adjacent layers. This means that a protocol

at a layer should not have to know the implementation details of the other layers. If

the implementation of one layer has to be changed for any reason, only the interfaces

connecting that layer to adjacent layers wi l l have to be changed, while protocols for the

other layers remain unchanged. The OSI reference model provides an architecture for

Chapter 1. Introduction 19

ISD IEEE

N o t e s l i g h t
f u n c t i o n a l
o v e r l a p
b e t w e e n l a y e r s .

Figure 1.7: I E E E Local Area Network Architecture.

easing the task of developing and, just as important, maintaining a data communication

S3rstem.

The I E E E 802 Protocols

The I E E E , through its 802 Standards Committee, has developed protocols for local area

networks. These protocols are designed to resolve incompatibilities that could exist in

L A N equipment supplied by different vendors. They do not conform exactly to the OSI

model but are based on a closely related architecture shown in figure 1.7. As can be seen,

the differences involve primarily the network access protocols.

The I E E E model essentially splits the OSI data link layer into two sublayers, one re­

sponsible for logical link control (L L C) , the other for medium access control (M A C) . The

M A C layer implements the access method used in the network, which may be C S M A / C D ,

token ring, or token bus (to be discussed later). The L L C layer provides the remaining

A P P L I C A T I O N

P R E S E N T A T I O N

; E S S I D N

T R A N S P O R T

N E T V D R K

DATA L I N K

P H Y S I C A L

H I G H E R -
L E V E L

P R O T O C O L S

L O G I C A L
L I N K

C O N T R O L

MEDIUM
A C C E S S

P H Y S I C A L

Chapter 1. Introduction 20

IEEE
HIGHER

PROTOCOLS

LDGICAL
LINK

CONTROL

MEDIUM
ACCESS

PHYSICAL

802.3

IEEE 802.1

802.2

802 .4 802.5 802.6

I S O

HIGHER
LAYERS

DATA
LINK

PHYSICAL

includes StarLAN

Figure 1.8: I E E E 802 Protocols

data link services, independent of the medium access technique used. I E E E 802 proto­

cols conform to this modified architecture. They are enumerated below and a diagram

showing where these protocols He in the I E E E local network reference model is given in

figure 1.8.

I E E E Standard 802.1 Describes the relationship between other 802 protocols and

their relationship to the OSI reference model.

I E E E Standard 802.2 Common logical link control.

I E E E Standard 802.3 Group of protocols that use the C S M A / C D access method.

I E E E Standard 802.4 token-passing access method, bus topology.

I E E E Standard 802.5 token-passing access method, ring topology.

Chapter 1. Introduction 21

I E E E Standard 802.6 metropolitan area network.

S t a r L A N is a subset of the 802.3 group. It defines the implementation for a local area

network at the physical and M A C layers. As such, it defines parameters for physical

connections and the access method which, in the case for 802.3 protocols, is C S M A / C D .

1.2.2 Basic Operational Description of S t a r L A N

S t a r L A N , as the name suggests, has a star topology as shown in figure 1.9. The simplest

form of the star topologj r is analogous to a bicycle wheel with a hub at the center, from

which spokes radiate outwards. Message frames transmitted by connected nodes are sent

to 'hubs' which in turn relay them to higher-level hubs in the network. Of course, there

are a finite number of hub levels. The single hub at the highest level, at which there is

no further connection to a topologically 'higher' level, is called the header hub. A l l other

hubs are called intermediate hubs. When a message reaches the header hub, it is sent

back down by that hub to be propagated to the rest of the network by lower-level hubs.

There are essentially two other network topologies for interconnecting nodes in a net­

work. These are the bus and ring topologies, shown in figure 1.10. Two I E E E standards,

802.4 and 802.5, use bus and ring connection schemes respectively. Ethernet, another

I E E E 802.3 protocol, also uses the bus topology. This is one significant difference between

Ethernet and S t a r L A N .

S t a r L A N does not specify which transmission medium should be used to connect hubs

and nodes in the network. It only requires any node-node or hub-node link to have a

maximum propagation delay of 4 bit times and no more than 6.5 dB attenuation in the

signal frequency spectrum between 500 kHz and 1 M H z . There is no limit to the number

of connections at each hub layer but a maximum of only five hub layers are allowed in

the network. Data bits are transmitted at a rate of 1 Mbps using Manchester encoding

on
C!

5?

HUB LAYER 3

HUB LAYER 2

'UPSTREAM'-
I/D

HUB LAYER 1

4 < s ignal l o o p e d b a c k t o
lower l a y e r s ,

< H e a d e r Hub (HHUB)
(a t h i g h e s t l a y e r)

J < I n t e r m e d i a t e Hub
(IHUB)

6

< node

v l A d j a c e n t numbers i n d i c a t e t h e e v e n t s e q u e n c e
o f d a t a p r o p a g a t i o n f r o m s o u r c e node A.

•S
n

>1

o
c
n
o'

D a t a d i r e c t i o n t o w a r d s HHUB => u p s t r e a m d i r e c t i o n .
D a t a d i r e c t i o n away f r o m HHUB = > d o w n s t r e a m d i r e c t i o n .
N o t e : s e p e r a t e u p s t r e a m and d o w n s t r e a m l inks

a r e shown as s ingle l ines c o n n e c t i n g h u b s
t o nodes o r o t h e r hubs .

to
to

Chapter 1. Introduction 23

Figure 1.10: Bus and Ring Topologies

Chapter 1. Introduction 24

BIT

DATA

MAN.
CODE

R S - 4 2 2

DATA mid-cel l
t r a n s i t i o n

1 t

0
VoUcf Manchester dato atwoys
hove rttd-ceU transitions.

> t
1 m i c r o s e c . (= 1 b i t t i n e)

Figure 1.11: Manchester Encoding and RS-422 Voltage Levels.

and RS-422 voltage levels as shown in figure 1.11.

Since no signal multiplexing scheme is used, only one channel is available for all users

connected to the network. It has to be shared and this means that only one user or

node can be in the process of transmitting a message frame at any given time. Two or

more simultaneous transmissions wil l result in a 'collision' where the messages involved

become superimposed and consequently garbled. In S t a r L A N (and Ethernet as well), all

nodes employ an access method called C S M A / C D (Carrier Sense Multiple Access with

Collision Detection) when sending message frames. This method is described below.

When a node has a message to send, it first checks its receive line to make sure

that no other node is transmitting. If no one else is using the network, the node begins

transmission. Otherwise, it waits for the other node to complete transmission first. That

was the 'carrier sense' part of the access method. The 'collision detection' part* now

follows. Because there is a finite propagation delay (due to hub processing and cable

transmission delays) for a signal from one node to reach all the others, the remaining

Chapter 1. Introduction 25

nodes in the network wil l , for a brief interval, not know that a transmission has already

started. If one or more of those nodes begin transmission on the erroneous assumption

that no one else is transmitting, then a collision wil l occur. When a transmitting node

detects a collision (by monitoring the signal on its receive line), it halts its current

transmission and sends a brief j am pattern to enforce the collision (i.e., increase the

level of collision) so as to ensure its detection by other nodes involved with the colliding

transmissions. After the jam pattern has been transmitted, each node 'backs off' by

ceasing transmission for a random length of time before retransmitting the entire message.

This reduces the probability of having two or more nodes with the same back-off period,

which wil l result in another collision when those nodes begin retransmission. When the

backoff period expires, the node then waits until the channel is free before retransmitting

its message frame. A collision can occur again during any retransmission attempt. If

that happens, the backoff process described earlier is repeated again.

C S M A / C D belongs to a class of access methods which rely on channel contention

or 'channel grabbing' to send messages. Another way for accessing a common channel

avoids contention altogether by providing a transmission sequence for users connected

to the network. This technique, called token passing, involves the passing of a 'token'

(a special message frame giving the node receiving it the sole right to transmit) around

the network (see figure 1.12). A node possessing the token uses the network during its

allocated time for any messages to be transmitted. When its time is up, the node passes

the token onto the next node in the ring. In that way, only one node transmits at a time,

avoiding collisions. As mentioned before, this is the access method used in two related

I E E E protocols, 802.4 and 802.5.

A S t a r L A N message frame is composed of several fields as shown in figure 1.13.

Message transmission always starts with the preamble which is used for synchronization.

The end of the preamble is marked by a start-of-frame delimiter (SFD) . Source and

Chapter 1. Introduction

TDKEN BUS

Figure 1.12: Token-passing Access Method.

NUMBER
DF

BYTES

MAX = 1500
7 1 6 6 2 MIN = 46 4

PREAMBLE SFD DA SA LEN INFORMATION r e s

P R E A M B L E D S E R I E S D F 10101010....
S F D = S t a r t o f F r - o n e D e l i m i t e r : 10101011
D A = D e s t i n a t i o n A d d r e s s
S A = F r a n e A d d r e s s
F C S = F r o n e C h e c k S e q u e n c e
L E N - L e n g t h o f I n f o r m a t i o n F i e l d

Figure 1.13: S t a r L A N framing format

Chapter 1. Introduction 27

destination address fields then follow the S F D . These identify the node from which the

message originated and the node to which the message is intended respectively. A l l

nodes check the destination address field of an incoming frame to determine whether or

not they should receive the remainder of the frame, which consists of the information field

followed by the frame check sequence (FCS) . The information field contains data used

for the particular communication application while the F C S is a cyclic redundancy check

(C R C) code which is calculated by an algorithm that uses the bits of the address and

information fields. When a node receives a frame, the C R C is recalculated and compared

with the F C S , which was calculated when the message was originally transmitted. If

the two do not match, then an error exists in the frame (which may have been caused

by, among others, noise in the tranmission medium). Not all errors can be detected

by a C R C . The effectiveness of a C R C (and F C S) depends on the algorithm as well as

the amount and distribution of bit errors in a message. 100% error detection cannot be

guaranteed for all circumstances by any C R C algorithm.

S t a r L A N specifies a minimum interframe spacing (LFS) of 96 bit times (96 fisec).

This is the minimum time between adjacent frames sent in the network. Its purpose is to

give processors in receiving nodes enough time to 'recover' between receptions of back-

to-back frames. Received frames are usually not processed immediately on reception, but

are temporarily stored in buffers. The interframe spacing gives receivers some time to do

short tasks after receiving a frame such as switching receive buffers so that each received

frame is stored in its own buffer area. A node waiting for another one to complete

transmission has to wait an additional IFS period before transmitting, to ensure that all

frames are spaced apart by at least this minimum separation time. When a S t a r L A N

node detects the absence of carrier (when no other node is transmitting), it waits for an

additional IFS period, after which it transmits regardless of whether or not the channel

has become busy (by another transmitting node) after that period.

Chapter 1. Introduction 28

A _ ^ 1 J T ^ . A beg ins _ t r o n s n i s s i o n

IB
A f t e r a w h i l e (p r o p a g a t i o n ^ o i n u i

A ' s s i g n o l r e a c h e s E,

B u t B b e g a n " to t r a n s m i t
j u s t b e f o r e r e c e i v i n g
A ' s s i g n a l .

'///A T h e g a r b l e d j a n p a t t e r n e v e n t u a l l y r e a c h e s a l l n o d e s ,
<J i n c l u d i n g A , w h i c h s h o u l d r e a l i z e t h a t a c o l l i s i o n (a n d h e n c e ,

a n u n s u c c e s s f u l t r a n s m i s s i o n) h a s o c c u r r e d .

Figure 1.14: Worst-Case Scenario for Collision Detection.

S t a r L A N specifies several parameters related to collision detection and recover}*. M i n ­

imum jam time (set at 32 bit times), is the minimum length of time that a node transmits

a jam pattern when a collision is detected. Slot time (set at 512 bit times), determines

the backoff times when a collision occurs as well as the minimum message frame length.

The slot time is computed as the jam time plus the longest time taken for a signal to

reach the farthest node and return back (the 'round-trip' propagation delay). It is the

worst-case time for a collision to be detected. Figure 1.14 shows how this conclusion

is arrived at. A node must still be in the process of transmitting a message to detect

a collision. If it completes its transmission without detecting a collision and a collision

actually occurred, the frame is not retransmitted and is lost. For this reason, message

Chapter 1. Introduction 29

frames sent in a C S M A / C D environment must be longer than the slot time. A collid­

ing node backs off an integral number of slot times so as to avoid overlapping into any

collision interval that might occur with nodes retransmitting (and still colliding) at an

earlier time. This number is determined in S t a r L A N by what is called a 'truncated bi­

nary exponential backoff' algorithm. The number of slot times to back off after the kth

retransmission attempt (of the same frame) is randomly selected from the range of [0, 2"),

where n is the smaller of k and 10. Hence, the range of slot times from which a colliding

node randomly selects its backoff time is doubled each time a backoff period fails to re­

solve the initial collision. This doubling stops after the 10th retransmission attempt to

simplify the algorithm's implementation. Clearly, the probability of having a collision on

retransmission decreases as the range for selecting the backoff period increases. S t a r L A N

limits the number of retransmission attempts (stemming from the original collision) to

15. In other words, a node has up to 16 chances to successfuDy transmit a frame. If

that l imit is reached, the node ceases further retransmission and informs the higher layer

protocol of the unsuccessful frame transmission, otherwise, it indicates that the frame

was successfully transmitted.

In a S t a r L A N network, collision detection is performed first by the hubs. When a hub

senses that more than one of its 'downstream' input bnes is transmitting simultaneously

it begins to transmit a collision presence signal (CPS) . This is nothing more than a

bit stream with Manchester code violations (see figure 1.15). Other hubs higher up in

the network wil l receive this signal and transmit their C P S upstream. The header hub

then relays this signal back down the network so that all nodes receive the C P S and are

thus informed that a collision has occurred. Collision enforcement and backoff is then

performed by the nodes which transmitted the colliding frames. Hubs stop transmitting

their C P S when transmission ceases on all of their downstream inputs.

Hubs are also responsible for jabber inhibit ion— a hub should shut off its link to

er 1. Introduction

E n s u r e s two missing mid-cel l t r a n s i t i o n s will o c c u r e v e r y
5 m i c r o s e c o n d s (c y c l e time) f o r e i t h e r b i t c e l l r e f e r e n c e
point .

Figure 1.15: Collision Presence Signal

Chapter 1. Introduction 31

Figure 1.16: Infinite Loop in a S t a r L A N Network.

any downstream input that transmits for an inordinately long time. This prevents long

transmissions from tying up the network. Such a situation can occur if an upstream and

downstream line are accidentally connected together. When that happens, the down­

stream signals wi l l be coupled upstream and be transmitted through the network in an

infinite loop (see figure 1.16). When one of a hub's downstream inputs is transmitting

much longer than it should, the hub responds by sending a C P S (forcing a collision back­

off sequence) to get all nodes to cease transmission momentarily. If its offending input

does not cease transmission, then that input is logicahy disconnected from the network

Chapter 1. Introduction 32

(by simply being ignored by the hub). A n inhibited input wi l l be readmitted to the

network only when the hub receives a transmission from that input while no signal is

being sent downstream from the higher hub layers—this wil l never occur if the upstream

and downstream lines are short-circuited together as discussed previously.

Figure 1.17 gives a schematic diagram of a ' typical ' S t a r L A N network in a hypothetical

office. Users can up/download files and application programs from remote data bases and

computer systems. Electronic mail can be sent between users while output devices such

as printers can be shared. The wiring details for a sample office are shown in figure 1.18.

Note how the star topology blends neatly with the structure of the telephone wiring

system. S t a r L A N was designed with this environment in mind.

1.2.3 S t a r L A N and the F A S T B U S Serial Network

As mentioned earlier, S t a r L A N also seems to be a very promising candidate for imple­

menting the F A S T B U S Serial Network. One more reason for why this is so is the star

topology, which allows F A S T B U S crate segments to be easily connected to a S t a r L A N

network. Figure 1.19 shows a schematic diagram of a StarLAN-based serial network on

a hypothetical F A S T B U S system. Masters, Slaves, and Segment Interconnects attach to

the serial network as S t a r L A N nodes. The S E R I A L T X line is used by the nodes for

transmission while the R X line is used for reception. A S t a r L A N hub, mounted on a

card, is plugged at a slot in the back of each F A S T B U S crate segment. These hubs are

connected to higher-level hubs as in an orthodox S t a r L A N network. So, it can be seen

that the serial network is just like an ordinary S t a r L A N network except for the lowest

hub level (at each F A S T B U S crate), where the nodes and hubs' downlink portions are

connected in a bus topology, using different voltage levels (E C L as opposed to RS-422

for orthodox S t a r L A N) . Crate segments can be easily connected to or disconnected from

the network by adding or removing their own link to the higher-level hubs. Although

Chapter 1. Introduction 33

modem

Mainf rame

IX1XEIII3S BBXI!!!

m i c r o c o m p u t e r s M a s s S t o r a g e

Fi le S e r v e r

StarLAN components
I n t e r m e d i a t e

Hub (IHUB)

H e a d e r
Hub

(HHUB)
LAN B r i d g e

Figure 1.17: S t a r L A N in an integrated office

er 1. Introduction

<<<

\ /

i |&!Mjj]]!J]]j]j]J]l i t i i

~o a D _
= 0 D B =

Telephone System Components

Wiring C l o s e t • Te l ephone J a c k

Figure 1.18: S t a r L A N network using intra-building telephone cables

Figure 1.19: StarLAN-based serial network on F A S T B U S

Chapter 1. Introduction 36

Figure 1.20: Bussed S t a r L A N network

F A S T B U S segments can be connected in an arbitrary fashion, data paths during inter­

segment operations are determined by route tables which prevent crosspoints and loops

from occurring (they do not occur in S t a r L A N because of jabber inhibition as well as the

star connection topology). Hence, operations in the StarLAN-based serial network and

inter-segment operations in a F A S T B U S system function with equivalent topologies.

1.2.4 Variations to Standard S t a r L A N

S t a r L A N without Hubs

Spurred by the drive to reduce network connection costs even further, some designers,

principally at Advanced Micro Devices (A M D) , took the step of designing a variant of

S t a r L A N which ehminated hubs entirely ([18], [19]). This variation, known as 'bussed'

or 'hubless' S t a r L A N , eliminates hubs, the most expensive component in a standard

S t a r L A N network. In this scheme, all nodes are connected together in a bus topology

as shown in figure 1.20. Figure 1.21 shows two possible ways for connecting the nodes

Chapter 1. Introduction 37

node

T" CDNNECTIDN

i i i i i

i t i i
node

DAISY CHAIN

Figure 1.21: Node connection schemes for bussed S t a r L A N

together. In the T connection, the cable (typically coaxial cable) is tapped by a connector

which penetrates the insulation and outer shield to make contact with the inner conductor

(which carries the signal). In the daisy-chain configuration, adjacent nodes are connected

by pieces of cable. Each node splits the cable terminations into two, one for the node itself,

the other for connection by another length of cable to the next node in the chain. As of

this time, the daisy chain configuration seems to be the more feasible mode of connection.

Two observations can be made immediately about a bussed S t a r L A N network. First,

intra-building telephone cable can no longer be used because of the bus topologj-. This

means that additional wiring has to be used, increasing network connection costs to some

extent. Second, node connection and disconnection is now more complicated, especially

for the daisy chain scheme favored by A M D . Furthermore, bussed S t a r L A N is not yet

an official I E E E standard. Detailed specifications are still being developed for approval

by the I E E E 802 Standards Committee. A t any rate, bussed S t a r L A N may have some

useful features in the context of the F A S T B U S Serial Network. Two possible connection

Chapter 1. Introduction 38

schemes are shown in figure 1.22. Figure 1.22a shows a completely bussed network while

figure 1.22b shows a hybrid scheme using both standard and bussed S t a r L A N . Finally, it

must be emphasized that, unlike the connection scheme illustrated in figure 1.19 (using

standard S t a r L A N) , the bus schemes have not yet been prototyped for feasibility studies

and performance evaluation.

10 Mbps S t a r L A N

In the latest twist to the S t a r L A N saga, a high-speed, 10 Mbps version of standard

S t a r L A N is being developed [8]. This version was conceived in response to consumer

demand for a local area network that was faster than S t a r L A N but could still use intra-

building telephone cable. Apparently, many L A N users (or budding L A N users) prefer

the data rate set by Ethernet at 10 Mbps and are unwilling to use a cheaper 1 Mbps L A N

even though the lower data rate is perfectly suitable for their applications. The lOBaseT

Study Group of the I E E E 802.3 Standards Committee is in charge of the development for

this new L A N standard and has discussed specifications to be adopted. The Electronic

Industries Association (EIA) is expected to publish the maximum running length of

unshielded twisted-pair wire for 10 Mbps S t a r L A N soon.

Chapter 1. Introduction 39

Figure 1.22: Bussed S t a r L A N in the F A S T B U S Serial Network.

Chapter 2

Building the Prototype Serial Network

2.1 A Simple S t a r L A N Network

A t the start of the research (early 1987), S t a r L A N was still an emerging local area net­

work (L A N) standard. Nobody in the laboratory staff had any working knowledge of

S t a r L A N in both hardware and software. Hence, two S t a r L A N design kits were procured

from Intel to expedite the task of building a working network. These kits contained

a total of four printed circuit boards designed to plug into I B M P C expansion slots.

The kits also included some components (such as the Intel 82588 L A N controher chip),

software for driving the boards, as well as documentation that proved to be helpful for

newcomers to S t a r L A N ([9], [7], [10]). Other parts, including wiring and a S t a r L A N hub,

were obtained separately. A P A L (Programmable Array of Logic gates) chip was also

required for each board. This chip's programming instructions were given in the Abel

P A L programming language. However, only one P A L 'compiler', called P A L A S M 2 (from

Monolithic Memories), was available at the laboratory. Hence, the programming instruc­

tions had to be translated to P A L A S M 2 code before the chips could be programmed. A

short simulation program was' also written to verify the translated code. A listing of the

programming code and simulation results is given in appendix A . l .

Experience in electronics hardware development had shown, time and time again, that

hardware bugs could be very difficult to solve (much more so than software bugs). Hence,

a very cautious approach was taken which, though somewhat tedious, greatly reduced

40

Chapter 2. Building the Prototype Serial Network 41

the chances of unpleasant surprises and frustration when everything was soldered and

plugged in. The Intel circuit design was thoroughly checked so that the circuit's operation

was understood in detail. The schematic was also cross-checked with the printed circuit

layout. A l l minor board components were tested before being soldered or plugged in .

Intermediate hardware tests were done at various stages of assembly. Nothing (well,

almost nothing) was left to chance. A l l of these precautionary steps were also taken during

the construction of other electronic circuits that followed. The boards were carefully

assembled and then tested with three I B M X T compatible computers using the software

supplied with the kits (see [9] for more details). No problems, major or minor, were

encountered. A diagram of the network connections for the tests is shown in figure 2.23a.

Three sets of twisted-pair telephone cable, each 25 feet long, were used to connect the

Intel boards from their telephone jacks to the telephone jacks of a Retix HB-6 S t a r L A N

hub. 1 This hub could connect up to six nodes together. It could also be switched to

function as either an intermediate or a head hub.

W i t h this rudimentary S t a r L A N network, message frames could be sent from one

P C to another. The Intel software allowed the user to load a message in hexadecimal

or A S C I I format and to set the message length. Another useful feature was a 'repeat

transmit' mode which was used to continuously send messages. However, the transmis­

sion rate could not be altered. S t a r L A N parameters, such as source and destination

addresses, could also be set by the user. A 'transmission session' could be initiated by

starting transmissions in repeat-transmit mode and terminated at any time by keyboard

entry. Statistics from transmission and reception of frames were updated in real time

on the terminal screen. Detailed collision data (i.e., the distribution of the number of

retransmission attempts to resolve a collision) could be displayed at the end of a trans­

mission session. To check the system for reliable operation, each P C was set to transmit

1see [11] for more details.

Chapter 2. Building the Prototype Serial Network 42

(a) o r t h o d o x S t a r L A N
c o n n e c t i o n .

(b) s inp le FASTBUS
r e p e a t e r ,

RS-422 - ECL > <̂ >
i n t e r f a c e

< TX line s igna l s r e p e a t e d on
RX line

BUBHEIIi

(c) S t a r L A N - F A S T B U S hub with
o r t h o d o x c o n n e c t i o n t o h i g h e r
S t a r L A N hub l a y e r , link f o r o p e r a t i n g

FASTBUS hub a s
an IHUB

Figure 2.23: S t a r L A N Network Configurations

Chapter 2. Building the Prototype Serial Network 43

to another P C in a circular fashion. Three transmission sessions were done, one each for

information field lengths of 48, 512, and 1500 bytes. The 48-byte length corresponds to

the shortest field length that can be transmitted without producing a 'short frame' error

in the program. Although the shortest field length allowed by S t a r L A N is 46 bytes, a

small bug in the L A N controller chips restricted the shortest length to 48 bytes. The

1500-byte length corresponds to the longest field length for S t a r L A N frames while a 512-

byte length was chosen to be the 'intermediate length' frame. A transmission session was

started by programming each P C , one by one, to transmit repeatedly. After some time

had elapsed, say 5 minutes, the P C transmissions were stopped in the same sequence

as they were started. The statistics displayed on each terminal were first checked for

unusually large transmit or receive errors. Only a few errors were observed, so they were

assumed to be caused by random processes in the course of the transmission session.

Next, the number of 'good' transmissions from each P C was compared to the number of

'good' receptions at the corresponding destination P C . The good receptions were either

equal to the good transmissions or were slightly less by only a very small amount. These

implied that the number of lost frames were miniscule in comparison to the total number

of transmissions that were reported as being 'good'. Hence, it was concluded from the

tests that reliable communications were established in the network.

2.2 Using S t a r L A N in a F A S T B U S Environment

After the completion of this rudimentary S t a r L A N network, an interface system that

would enable S t a r L A N signals to be routed through a F A S T B U S backplane was developed

after verification tests on the basic S t a r L A N network were completed. The interface

system consisted of two major parts: the first was a S t a r L A N - F A S T B U S transceiver

(essentially an RS-422-ECL signal translator; the F A S T B U S backplane uses E C L logic

Chapter 2. Building the Prototype Serial Network 44

whereas S t a r L A N uses RS-422 voltage levels) and the second was a S t a r L A N hub designed

to work on the F A S T B U S backplane.

A Transceiver Between S t a r L A N and F A S T B U S

A schematic diagram of the S t a r L A N - F A S T B U S transceiver is shown in figure 2.24. This

circuit is a transceiver between standard S t a r L A N and the F A S T B U S backplane that pro­

vides a transparent interface between three-state RS-422 S t a r L A N signals and two-state

E C L voltage levels. Figures 2.23b and 2.23c shows how The transceiver is used to con­

nect the Intel S t a r L A N boards (constructed earlier) to a F A S T B U S backplane. Standard

S t a r L A N signals are fed into the transceiver, converted to E C L voltage levels, and sent

through a line in the backplane. Signals received from the corresponding backplane line

are converted back to StarLAN-specification RS-422 signals and relayed to the S t a r L A N

board.

A not-too-small part of the transceiver's design was borrowed from a section of the

Intel S t a r L A N boards. The task of incorporating some of Intel's design was not too

difficult after some reverse-engineering was done on the board's schematic diagram. A

T T L - t o - E C L translator chip was used to drive the backplane while an E C L - t o - T T L

translator received the backplane signals. Special E C L bus driver and receiver chips

were not used because other F A S T B U S circuits developed in the laboratory were known

to work without the use of these chips. A description of how the transceiver works is

given in appendix A .2 .

The transceiver is more than just a voltage level translator. E C L logic has two

states: high (1) and low (0), and the low logic level is used for the quiescent state when

nothing is being transmitted. On the other hand, S t a r L A N RS-422 signalling for twisted­

pair telephone cable has three states: differential high (1) (when the voltage difference

between the reference wire to its pair is positive), differential low (0) (when the difference

Chapter 2. Building the Prototype Serial Network

> fo UJ :f\J cr OJ

r
o —

-t r—•

-I 5

•

Figure 2.24: Schematic diagram of the S t a r L A N - F A S T B U S tranceiver.

Chapter 2. Building the Prototype Serial Network 46

is negative), and inactive (when the line is released to its quiescent state by shutting off

the RS-422 driver's output). S t a r L A N transmissions begin with a differential low from the

inactive state and voltage swings occur as defined by the Manchester-encoded bit stream,

whose end is marked by a differential high lasting approximately two microseconds long,

after which the line is released back to its inactive state. Hence, it takes more than

just a simple voltage translation to map the three S t a r L A N RS-422 signal states to the

corresponding E C L logic levels and vice versa.

Four boards were made, one for each Intel S t a r L A N board. A simple backplane

repeater was constructed as well. This repeater would simply relay the logic levels at

the transmit line (B57) to the receive line (B58). Thus, the backplane could be tested

as a bus topology network without a hub. The repeater consisted of an E C L - t o - T T L

translator which was cascaded to a T T L - t o - E C L translator. The input of the first chip

was connected to the transmit line while the output of the second chip was connected to

the receive line. Those particular chips were chosen simply because they happened to be

immediately available (spare chips for the transceiver boards).

The connection diagram for this simple bussed network is shown in figure 2.23b.

Three X T compatible microcomputers were used, as was done before when the S t a r L A N

boards themselves were tested. The transceiver boards and repeater were plugged into

the rear section of an unused F A S T B U S crate. Three sets of 25-foot telephone cable were

used to connect the telephone jacks of the transceivers to similar jacks on the S t a r L A N

boards. Again, the tests of the simple S t a r L A N network were repeated in this network.

No anomalies were observed and, as with the previous network, it was concluded that

reliable communications were achieved.

Chapter 2. Building the Prototype Serial Network 47

A S t a r L A N H u b for the F A S T B U S Backplane

The development of the S t a r L A N - F A S T B U S hub (or 'crate hub') was complicated be­

cause it was not at all certain that one could obtain, in a reasonable time, an integrated

circuit which would implement the functions of a S t a r L A N hub. This chip, the West­

ern Digital WD83C510 2 , was just about to be introduced to the market at that time

(May-June 1987). It was not possible to obtain this chip from local sources or even di­

rectly from Western Digital . No other semiconductor company was known to be closer

to mass-production of a S t a r L A N hub IC than Western Digital . A n attempt was made

to obtain this chip indirectly through an associate at the University of Illinois Center

for Supercomputing. Nevertheless, the possibility of obtaining even one sample chip was

not assured. So, in the mean time, a crate hub that did not use the WD83C510 was

designed.

In general, standard S t a r L A N hubs cannot be coupled directly to a bussed line. This

is because a collision in S t a r L A N is defined as the condition where more than one node

is transmitting at the same time. Since collision detection is a function of the hub and

only one node is assumed to be connected to each 'downstream' input channel, a hub

would only have to watch out for simultaneous transmissions from any of its 'downstream'

channels in order to detect collisions. In the case of a F A S T B U S backplane, the transmit

line can be connected to several nodes. If the signals on this line were simply connected

to a standard S t a r L A N hub by, say, the transceiver circuit described previously, the

S t a r L A N hub would 'see' only one channel and erroneously assume that only one node

was connected to that channel even though that would not generally be the case. It is

possible that a collision involving any of the nodes in a F A S T B U S backplane could slip

through without being detected by the hub. That of course depends on the particular

'details given in [12]

Chapter 2. Building the Prototype Serial Network 48

hub's design. The only way to 'rigorously' catch these bus collisions as well as any

anomalous signals in the backplane is to detect them by a separate circuit that watches

for missing mid-cell transitions and pulses of improper width. The output of such a

circuit could then be connected to another hub input. It would transmit an arbitrary

S t a r L A N signal to that input upon detecting a collision. The hub would then sense

at least two inputs transmitting simultaneously (one from the backplane line, the other

from the auxiUiary collision detection circuit) and flag the collision. This scheme would

require two hub inputs per F A S T B U S crate, a somewhat clumsy, but nevertheless feasible

idea. Later on, it became clear that a rigorous collision detection function was a major

design component of a crate hub anyway and the decision was made to design a complete

self-contained crate hub for the F A S T B U S backplane rather than implement the separate

collision detector - external hub scheme as described above. The effort required to go all

the way and design a crate hub was justified by the hub's elegance. The crate hub would

be connected to all the nodes of the crate in a bus topology and itself would connect with

a higher-layer hub as part of a star topology network.

The first version of the hub (that did not use a S t a r L A N hub chip) was a fully

synchronous digital circuit whose block diagram is shown in figures 2.25, 2.26, and 2.27.

A n initial attempt was made to design the entire circuit heuristically, but it soon proved

to be not only an awkward but ultimately, an impossible method given the complexity

involved. So, the circuit was designed with a combination of formal and heuristic digital

design techniques. One technique would be used when the other seemed to be more

complicated. This circuit never got past the design phase because a prototype sample

of the WD83C510 arrived, thanks to the efforts of Bob Downing from the University

of Illinois. The hub controller chip probably saved at least a month of work to get a

functioning hub, even though this meant starting over to design a new circuit based on

the WD83C510. Figure 2.28 shows a schematic diagram of the resulting circuit, showing

Chapter 2. Building the Prototype Serial Network 49

a dramatic simplification of this implementation over the design that did not use the a

hub chip. This was due, in part, to the design of the WD83C510 itself, which 'rigorously'

detected collisions in each of its inputs, ehminating the need for a robust external collision

detector (the 83C510 wil l flag a collision if an input receives pulses of improper widths

or with missing mid-cell transitions, as well as if more than one input is receiving data).

Another chip used in the circuit that is worth mentioning here is the SN75061 from Texas

Instruments. This chip is a T T L - R S - 4 2 2 transceiver designed especially for S t a r L A N

applications. It provides the functions that would have previously required two separate

chips (e.g., Am26LS30 and Am26LS32, which were used by the transceiver circuit when

the TI chip was not yet obtained). Appendix A.3 explains how the hub circuit works.

The circuit was built (very carefully, since only one WD83C510 was available and it was

unlikely that another one could be quickly obtained) and tested. Figure 2.23c shows

a diagram of the system used to test the circuit. As was done during previous tests,

three X T compatibles with Intel S t a r L A N boards were used. Twenty-five-foot lengths of

telephone cable coupled the S t a r L A N boards to their corresponding S t a r L A N - F A S T B U S

tranceivers, which were plugged at the back of a F A S T B U S crate. The hub circuit was

also plugged into the back of the F A S T B U S crate to connect its 'downstream' channel

to the transceivers. Its 'upstream' channel was connected to the Retix HB-6 S t a r L A N

hub. This system allowed one to test the hub circuit for proper operation either as an

intermediate or a header hub (by leaving the 'upstream' link connected or disconnecting

it respectively). It also allowed the hub-detection logic of the WD83C510 to be tested.

Briefly, the hub-detection logic is used by the WD83C510 to sense if it is connected to

a hub at a higher level in a S t a r L A N network. The hub-detection logic works as follows.

Suppose the chip is functioning as an intermediate hub. If, after a short waiting period, no

signal is received from its upstream channel, it assumes that it is not connected to a higher

hub level and automatically proceeds to function as a header hub (if there was a higher

Chapter 2. Building the Prototype Serial Network 50

o

LJ

C J

3
a

a
t—t

2 U
—! 2 i i—i
PQ h-

V

A

CL

o

•
1 C/)

<n
CL
U u

:z
U

a

A

O
•

o

\

C J

a
_ j
u

i—i a:
L J

A A A

•
_ l
C J

N
X

o
o

C J
a
_i
u

•
_i
C J

LJ
C J

C J C£

• ZD
_ l • o C/)

A LJ

>\3Vr 3NDHd

Figure 2.25: Block Diagram of Hub Circuit: I /O Section

Chapter 2. Building the Prototype Serial Network 51

o
o

•

->-
->-

A
a
o

o

u

Ld ^ ^
0 0 U o

Q i a

A

->-

<C UJ
(_) 0 0

00

« / \

Q
h-
U
0 0
L J
C£ _\

L J
• =5
b l L J
~ ZD

L_ a

ZD

•

a ^/
L J
LD
O
L J
L_

A

a:

L J L_

A

A A

A

V

L J Q,

I -
£ d

00

X
a.

a t—
C J

L J L J
CD I—
Q L J

L J a

->-

5-9=

'So

\

0 0

I —

m

A

0 0
Q_
C J

C J A
o
_i
u
\

A

u
a
o
L J
\

A
3
•

A

A

A
0 0

A

u

J
cn

. L J
_ l _J
_ l Q£
a i—
u u

— 7 \
oo

i d en CP L J

C J
a
_i

C J
•
_ J
C J

z M
o
o
<3-

A

L J L J i—i
CQ I — X
CQ <X C J
<E h- <E
~) O0 2 1

->-

or
0 0

a

A

A

a

o
L J g 3

I M U

0 0 C J o

A =3
a;
L J
Qi
U

A

Figure 2.26: Block Diagram of Hub Circuit: Downstream Section

Chapter 2. Building the Prototype Serial Network 52

ZD

0̂

\

u
n o
_i a
u _i
\ u

o
a
_i
u

Figure 2.27: Block Diagram of Hub Circuit: Upstream Section

Chapter 2. Building the Prototype Serial Network

9 § a s
p p p p

=17
lis

5_

l § 3 S S|^

S11111$

55
S o n
s i 8

5*,
<r » S

AlA lA 3

Figure 2.28: Schematic Diagram of Hub Circuit with WD83C510 Controller

Chapter 2. Building the Prototype Serial Network 54

hub level, the higher hub would have either repeated the lower hub's transmission or, in

the event of a collision, sent a collision presence signal (CPS)). When the chip operates

as a header hub, all downstream signals are immediately looped back. Now suppose that

signals are received on the upstream channel of the hub chip in header hub mode. The

hub-detection logic assumes that these signals must have come from a higher-level hub

and the hub chip switches its operation from a header hub to an intermediate hub. A

frame wil l be lost i f it is transmitted during an intermediate-to-header hub transition

because the hub chip wil l loop back only the remainder of the frame downstream when

it switches to a header hub. This usually results in a C R C error. Two or more frames

may be involved in a colhsion during a header-to-intermediate hub transition if a frame

is received on the upstream channel while the hub is looping back a downstream frame.

As before, the Intel program was used to drive the system and collect performance

statistics. Fortunately, everything worked perfectly right away without any problems.

The on-chip hub-detection logic was tested by alternately connecting and disconnecting

the link to the Retix S t a r L A N hub. The hub chip was observed to switch properly

without causing a major disruption. The tests showed that data could be transferred

reliably when the circuit was operating in either intermediate or header-hub mode. For

the first time, data communications were successfully established in a prototype of the

envisioned two-line StarLAN-based serial network.

Chapter 3

Measurements

3.1 Electrical Characteristics of S t a r L A N Signals in the F A S T B U S Back­

plane

S t a r L A N describes a protocol for data communications at the media access control

(M A C) sublayer and the physical layer. The M A C sublayer specifications are fixed but the

physical layer has some flexibility. In particular, S t a r L A N does not specify the medium

of propagation for data transmission between a node and a hub (or between two hubs).

It only requires the propagation delay of a node-hub/hub-hub link to be no greater than

4 bit times and that the signal (pulse) jitter should not exceed 62.5 ns per link (pulse

jitter is defined as the amount of time by which a pulse edge deviates from when it is

expected to occur). Furthermore, up to five hub levels are allowed, with no restriction

on the number of nodes per hub level.

In an ordinary S t a r L A N network, RS-422 signals are sent through unused intra-

building twisted-pair telephone lines in a star topology. On the other hand, E C L signals

must be used to transmit data on the serial lines in the F A S T B U S backplane, which

connect the nodes within the crate in a bus topology. In departing from standard Star-

L A N , it is important to stay within any specified timing parameters at the physical layer

so that reliable performance wil l not be compromised. To this end, measurements were

taken to compare parameters and characteristics of the StarLAN-based serial network to

those required in an orthodox S t a r L A N network. Measurements of propagation delay and

55

Chapter 3. Measurements 56

pulse jitter were made for different capacitive loading configurations in the backplane.

E C L signals have very small voltage swings (of the order of I V difference between

they are used in high-speed applications but are more difficult to work with than slower

logic signals such as those from C M O S or T T L . In general, electrical connections for

E C L signals have to be treated as transmission lines because the propagation delays of

such connections are often much longer than E C L transition times. To keep this thesis

from getting any longer than it already is, a detailed discussion of E C L characteristics

and transmission lines wil l not be given here. Instead, the reader is referred to journal

articles and books listed in the bibliography ([13], [14], [15], [16], [17]). Nevertheless, in

order to relate the effect of capacitive load in the backplane to electrical parameters such

as propagation delay and pulse jitter, it is necessary to introduce some of the results from

transmission line theory.

Two transmission line parameters of interest are the propagation delay and the char­

acteristic impedance of the line. For an unloaded line, the propagation delay, tpd, and the

characteristic impedance, Z0, are constants at high frequencies (relevant to fast signals

like E C L , which have significant high-frequency components) and are given as follows.

tpd — V LC (sec./m.)

L and C are the inductance and capacitance per unit length respectively. For a loaded

backplane bus, the corresponding parameters, and Z0i, are given by the following

relations.

logic states) and short transition times (typically, Ins). Because of these characteristics,

Z0 - y/L/C . {ohms)

{sec./m.)

Z0 {ohms)

Chapter 3. Measurements 57

Cl is the additional load capacitance (from attached devices) per unit length. It

can be seen from the equations above that the effect of added capacitance is to increase

the propagation delay and to reduce the characteristic impedance of the line. Since the

characteristic impedance changes with the backplane load, it is not possible to terminate

a backplane line with a perfect impedance match for all loading conditions. When an

impedance mismatch exists at any point in the line, the incident signal is reflected back,

the extent of which depends on the amount of mismatch. Small amounts of reflections

can influence the characteristics of signal transitions and hence, contribute to pulse jitter.

If reflections become large enough, it may even be impossible to transmit reliably at all.

It is because of the reasons given above that one has to consider the effect of loading

conditions on the characteristics of a backplane.

Capacitors were used to approximate the loading effects of E C L devices connected to

the backplane lines. The maximum signal line capacitive load for a F A S T B U S device is

12 pF . Since F A S T B U S cards can be plugged into both the front and back of a F A S T B U S

crate, the maximum load per slot position is 24 pF . As a first attempt, the backplane's

serial lines were loaded with 33 pF capacitors per slot position to simulate an overloaded

backplane. A diagram of one capacitive load is shown in figure 3.29 (which shows a 15

p F capacitor, the load that was used later on). Twenty-six of these capacitor loads were

made, one for each slot position in the F A S T B U S crate. The leads of the capacitors were

terminated with gold-coated A M P 87000 series contacts which were crimped on by an

A M P crimp tool (model number 90340-1).

Two termination cards were built, one for each end of the backplane. Each card con­

sisted of a F A S T B U S card edge connector and a 20-turn trimmer resistor, both of which

were mounted on a piece of phenolic plugboard. The trimmer resistors were adjusted to

56 ± 0.1 ohms.

A P C was connected to a transceiver and was set to transmit continuously to generate

Chapter 3. Measurements

FASTBUS s q u a r e

15 pF c a p a c i t o r s

56-ohm
t e rm ina t i on
r e s i s t o r

JLJL

B57
B58

15 pF
l o a d

c a p a c i t o r

Figure 3.29: Sample capacitor load for the F A S T B U S backplane.

Chapter 3. Measurements 59

S t a r L A N signals in the backplane. Waveforms of the signals were observed by attaching

an oscilloscope probe to a short stub that could be inserted into slot pins at the backplane.

The oscilloscope system was based on a Tektronix 7904 mainframe which used a 7B92A

dual time base and two 7A18 amplifiers, which had a bandwidth of 75 M H z . Standard

10 M o h m 13pF oscilloscope probes were used. There was some concern as to whether

or not the system would be capable of tracking the fast E C L signal swings. However,

the oscilloscope was observed to adequately track l V / n s square waves (simulating E C L

pulses) from a signal generator. Hence, the existing setup was used. Observations showed

that there was an enormous amount of reflection when E C L signals were sent through

the serial line. These reflections were causing oscillations in the E C L signals, resulting in

spurious state transitions. A less 'stressful', but more realistic capacitive load was then

evaluated instead.

A new set of 26 15pF metal film capacitor loads were made (see figure 3.29). Each

capacitor was checked to be within ± 1 0 % of 15 p F with a capacitance meter. Two-line

capacitor loads were made although only one line had to be loaded for the measurements

because these loads would be required for communication tests later on. A board with an

E C L - t o - T T L translator was also built to convert E C L signals at the receiver end to T T L .

Signals were measured at the input to the T T L - E C L translator at the transmitter (signal

source) and at the E C L - T T L translator output at the receiver. These measurement

points were chosen because they were buffered from the backplane and, as a result,

showed cleaner transitions, leading to more consistent measurements. Figure 3.30 shows

the reference transition points for the signal source and the receiver.

Clearly, it was impractical to consider all possible backplane loading configurations.

Hence, only a 'canonical' subset was selected for the measurements of propagation delay

and pulse jitter. Diagrams of these test configurations are shown in figures 3.31 and 3.32.

Capacitor loads were placed in each slot position at the loaded sections. Measurements

Chapter 3. Measurements 60

74HCT00:
4.5V

2 .35V

0.2V

HIGH

r e f e r e n c e p o i n t s f o r
log ic l e v e l t r a n s i t i o n s

LDW

Figure 3.30: Reference points for edge transitions.

Chapter 3. Measurements 61

of pulse jitter and propagation delay were made for each configuration and are tabulated

in appendix B . The amount of pulse jitter was obtained by taking the absolute value

of the difference in propagation delay between the rising and falling edge of the source

pulse to the corresponding pulse edges that were triggered at the receiver. Photographs

of oscilloscope traces were taken. They are also shown in appendix B . Each photograph

shows three traces, one on the top half, and two on the bottom. The top trace shows the

E C L signal as seen at the receiver. The bottom traces show two T T L edge transitions.

The first edge corresponds to the source at the input to the T T L - E C L translator. The

second edge that occurs afterwards is from the receiver at the output of the E C L - T T L

translator.

Most of the traces appeared to be well-behaved, as a sample in figure 3.33 shows.

However, there was one exception (as shown in figure 3.34) where there is a bumpy

transition in the output of the E C L - T T L translator (bottom trace). This is a little

strange because the E C L signal on the top trace is not oscillating and thus, should

not trigger the gbtch at the translator output. A t any rate, an LS T T L logic gate

was connected to the translator output in that configuration and was not observed to

be affected by the glitch. The largest amount of pulse jitter was measured to be 6 ns

and this occurred in the fully loaded backplane when the source and receiver were both

near the midpoint of the line (reference number 18). The longest propagation delay was

measured to be 16.2 nsec. and this occurred, as expected, when the source and receiver

were placed at opposite ends of a fully loaded backplane (reference number 21). These

measured values for the worst-case pulse jitter and propagation delay are well within the

S t a r L A N limits of 62.5 ns and 4 microseconds respectively.

Chapter 3. Measurements

LEGEND:

a p p r o x i m a t e p o s i t i o n o f E C L
s i g n a l s o u r c e

(e .g . , n e a r e n d o f b a c k p l a n e l i n e)

a p p r o x i m a t e p o s i t i o n o f E C L r e c e i v e r
. / <e.g., n e a r m i d p o i n t o f b a c k p l a n e l i n e)

u n l o a d e d (n o c a p a c i t o r s) s e c t i o n

l o a d e d (w / c a p a c i t o r s) s e c t i o n

REFERENCE
NUMBER

u n l o a d e d
e n d - t o - e n d

A

REFERENCE
NUMBER

12

h a l f - l o a d e d e n d - e n d
(a t l o a d e d s e c t i o n)

y 13 y

u n l o a d e d m i d p o i n t - t o - e n d h a l f - l o a d e d
l o a d e d e n d t o m i d p o i n t

_3L
T

y

u n l o a d e d m i d p o i n t - m i d p o i n t

14

f h a l f - l o a d e d
l o a d e d e n d t o u n l o a d e d e n d

10 A
u n l o a d e d e n d - t o - m i d p o i n t

y 15 A

h a l f - l o a d e d
m i d p o i n t t o u n l o a d e d e n d

T y

u n l o a d e d e n d - e n d

16

h a l f - l o a d e d
m i d p o i n t t o l o a d e d e n d

Figure 3.31: Schematic diagram of electrical measurements.

Chapter 3. Measurements

REFERENCE
NUMBER

REFERENCE
NUMBER

17

f u l l y - l o a d e d
n i d p o i n t - t o - e n d

h a l f - l o a d e d
u n l o a d e d e n d u n l o a d e d e n d

f u l l y - l o a d e d
" n c ' p o i n - t - i i ; d p o i n " t

19

f u l l y - l o a d e d
e n d - t o - n i d p o i n t

20

f u l l y - l o a d e d
e n d - e n d

2 4

h a l f - l o a d e d
u n l o a d e d e n d t o n i d p o i n t

h a l f - l o a d e d
u n l o a d e d e n d t o l o a d e d e n d

f u l l y - l o a d e d
e n d - t o - e n d

Figure 3.32: Schematic diagram of electrical measurements (continued).

Chapter 3. Measurements 64

Figure 3.33: Typical oscilloscope traces (ref. 25).

Chapter 3. Measurements 65

Figure 3.34: Oscilloscope trace of bumpy edge transition (ref. 17).

3.2 N e t w o r k P e r f o r m a n c e M e a s u r e m e n t s

The fully loaded prototype serial network was expected to behave just like an orthodox

S t a r L A N network after the pulse jitter and propagation delay were found to be very

small. Nevertheless, there was still a lingering trace of doubt in that expectation because

the nodes in the crate were connected in a bus topology whereas standard S t a r L A N nodes

are connected in a star topology. Perhaps a difference in the connection topologies could

lead to different network behaviour. Hence, tests were made to compare the performance

characteristics of the serial network to that of standard S t a r L A N .

The equipment setups for the performance measurements were identical to those used

when the serial network was built and tested. This time, however, the backplane was

fully loaded with 15 pF capacitive loads in every slot position. The four configurations

for these measurements are shown in figure 2.23. As was the case with the earlier tests,

Chapter 3. Measurements 66

the Intel program was used in all three computers to drive the network. A better program

than the one supplied by Intel would have been more helpful since the frame transmission

rate could not be controlled through the program and all of the data had to be manually

copied from the terminal screen from each computer. To make matters more difficult,

the numbers in the screen were shown in hexadecimal format which had to be converted

to decimal base later. The program was used anyway to obtain some preliminary results.

As before, three different information field lengths were used: a 'short' length 48

bytes long, a 'medium' length of 512 bytes, and a 'long' 1500-byte length. The PCs

were programmed to transmit to an address that was different from any of their source

addresses. This would allow the P C s to transmit as fast as they could without receiving

frames. Statistics from the data transmissions were recorded at the end of each trans­

mission session (using the software in 'repeat transmissions' mode). The software was

an interactive program that responded to input from the keyboard. Hence, it was not

possible to 'trigger' all three computers to start and stop simultaneously with the Intel

program. Instead, the following procedure was adopted. One computer was selected to

start transmissions first. The second computer would start its transmissions 10 seconds

after the first one and the third 10 seconds after the second. The transmissions were

then stopped five minutes after the first computer was started, beginning with the first,

followed by the second and the third computers 10 seconds apart. The duration of the

transmission sessions was chosen to be long enough such that the 20-second starting and

ending sequences would not comprise a considerable portion of the transmission session.

The results of these transmissions are tabulated in appendix C . It can be seen that

the data from all four configurations do not differ very much. They all tend to behave

similarly for the frame lengths chosen. The differences in the data between different

configurations are due in part to statistical fluctuations and differences in overall prop­

agation delay and hub characteristics. From the data, one can conclude that the serial

Chapter 3. Measurements 67

network behaves just like a standard S t a r L A N network. In other words, the subnetwork

of nodes in a F A S T B U S crate 'look' like star-topology nodes to hubs at higher levels in

the network.

While the performance data showed encouraging results, there was a peculiar pattern

in the distribution of the retransmission attempts. The distribution of the number of

retransmissions in a collision resolution interval should taper off to zero as the number

of retransmissions required to resolve an init ial collision increases. Such a distribution

is expected because the range of the random backoff periods is doubled for each of the

first ten unsuccessful retransmission attempts. This means that the probability of two

or more stations choosing the same backoff period becomes smaller with more retrans­

mission attempts. However, the data showed a gap in the distribution from about nine

retransmissions to the maximum of 15. It seemed that if a collision was not resolved

within a short number of retransmissions, then it would not be resolved at all. This

peculiarity could be due to the pseudorandom nature of the way the backoff period is

computed by the L A N controllers. Perhaps, two or more L A N controllers may happen

to compute identical backoff periods in some collision intervals. One question that was

not addressed by these measurements was the amount of variability in the data if the

transmission session was repeated over and over again. A few transmission sessions were

repeated and the resulting data were found to change only slightly. Nevertheless, the gen­

eral statistical variability of the data was not yet known. The performance data would

be more meaningful if some measure of their variability could be given as well. Hence,

an extension of the preliminary performance measurements was planned. This new set

of measurements would span the entire range of frame lengths allowed by S t a r L A N in

small increments. The measurements for each frame length would be repeated so that

the variance in the data could be estimated.

The deficiencies of the Intel program (as a tool for data collection) gradually became

Chapter 3. Measurements 68

more obvious as more performance measurements were made. Each transmission ses­

sion involved the monotonous task of manually starting and stopping the transmissions,

followed by copying the data off the screen and converting them from hexadecimal to

decimal base. Clearly, it would be impractical to use the Intel program to collect data

from a large number of transmission sessions, as would be the case for the new set of

measurements. The initial test transmissions and performance measurements had shown

that data could be transmitted reliably over both the orthodox S t a r L A N and the serial

networks. It would seem ironic i f further performance measurements did not involve an

automated scheme which would use the network itself to collect data from all the PCs .

So, an automated network driver program was conceived to replace the Intel program

for the next set of performance measurements. There would be two versions of the driver

program, a 'master' program which would control the 'slave' programs. The two versions

would work as follows. The network master program sends initialization data through the

network to each slave prior to a transmission session (the master also initializes itself).

The initialization data sets the length of the frame, its destination address, the duration

of the transmission session, and a delay parameter to control the transmission rate. A

'start transmitting' signal is then broadcasted by the master to begin the transmission

session. Each slave pauses for a short time before starting so that the master can prepare

itself. During the transmission session, data are collected by the master and every slave.

Slaves do not respond to commands that the master may give until after the end of the

transmission session. A l l transmissions cease after the elapsed time has exceeded the

programmed duration. However, frames will continue to be received for a short time

afterwards to allow for a margin of error in the local timing of each P C . After a pause at

the end of the session, the master prompts each slave, one by one, for the data collected

during the session. Each slave responds to the prompt by sending the data over to the

master via the network. The master then stores the data in a disk file, which completes

Chapter 3. Measurements 69

the data collection for a transmission session. B y programming the master to set up

transmission sessions in sequence, the task of obtaining performance data can be left

to the networked computers, thus saving a poor graduate student from what would be

repetitive, boring, and tedious (as well as humbling!) work.

The first attempt to write the driver program was a dismal failure. It was written

in Pascal and was compiled with the Microsoft Pascal (version 3.2(2)) compiler running

under DOS 3.2. Pascal was chosen because the author had a lot of experience with

writing programs in this language. The Microsoft compiler was selected because it had

been used before without any problem (although none of the earlier programs compiled

under it were anywhere as long as the driver program). These choices for the language and

compiler thus seemed sensible initially as program development could proceed without

delays from having to learn another language (such as C) or to use another compiler. So,

the program was expected to be completed quickly without too much trouble. However,

events that were to come later on soon extinguished all traces of the initial optimism.

The basic problem with the program was that it would crash and render the operating

system inoperable when an interrupt from the Intel board occurred. The exact cause

of the problem has never been determined. Of course, the possibility of a subtle bug

in the source code cannot be ruled out but it is also possible that the compiler was

not generating the correct code for handling interrupts. The compiler had either been

stalling or generating spurious compiler-failure messages from time to time when the

driver program was compiled. This annoying problem was eventually fixed by reducing

the compiler's stack size, a solution that came only by chance after attempts to solve the

problem by increasing the stack size were unsuccessful. None of the compiler problems

occurred when short programs were compiled. The problems seemed to occur only if the

compiler was 'stressed' by long programs (the driver program was about 1500 lines long).

At any rate, the compiler's behaviour only fueled doubts of its overall reliability. Even

Chapter 3. Measurements 70

if compilation was successful, the executable code could not be 'trusted' to have been

generated correctly. This lack of trust made the task of debugging the program very

difficult. One could not determine which part of the program's problems were due to the

compiler (if any) and which were caused by programming errors. The interrupt nature

of the problem did not make debugging any easier because of its random nature. The

exact behaviour of any program crash could not be repeated. After about three months

of fruitless work, the effort was abandoned and the decision was made to switch to a

different programming language (C) and compiler (Borland Turbo C v l .5) .

Rather than translate the Pascal program into C (and possibly copying any bugs over

as well), a new driver program was written from scratch. After some time was spent to

debug and enhance the code, a working driver program was completed A T L A S T . One

'slave' version and four 'master' versions of the driver program were developed. Each

version of the master program collected data for a particular network configuration.

Data analysis programs were then used to reduce the data down to a few meaningful

parameters. Input data files containing (x,y) coordinates of data points were then made

from the reduced data and were transferred from the P C system to M T S at U B C . Plots

of these files were made by using Cuechart and Tellagraf (plotting programs). For each

network configuration, transmission data were collected from each P C for information

field lengths ranging from 50 to 1500 bytes long in 50-byte increments. Ten 5-minute

transmission sessions were run for each field length. This allowed means and standard

deviations to be computed for-a sample size often. A l l P C s were programmed to transmit

as much as possible (without any delay loop to reduce their transmission rate) during the

transmission sessions. A n orthodox S t a r L A N topology was used for all configurations.

The earlier performance data (from the Intel program) had shown that there was no

fundamental difference between the behaviour of the serial network and an ordinary

S t a r L A N network. Therefore, it was felt that the new data could be safely generalized

Chapter 3. Measurements 71

to the case of the serial network as well. Appendix E contains a flowchart of the entire

driver program.

Figure 3.35 shows a plot of the average throughput for a single-PC network (through­

puts for a 2- and 3-PC network (discussed later) are also shown for comparison). Through­

put, often abbreviated as S, is denned as the number of successful transmissions per unit

time, normalized to the bit rate, which in the case of S t a r L A N , is 1 Mbps. It is always

less than 1. A n estimate of the software overhead time used by the program to prepare a

frame for transmission was calculated (see appendix D) and translated to the field length

of a frame which would take a L A N controller the same amount of time to transmit.

The calculated values for overhead time varied for different frame lengths, but not by

much. The mean overhead time was computed to be 5632 microseconds, which is the

time required to transmit a frame whose information field length is 678 bytes long. The

translated longest and shortest overhead times were 682 and 674 bytes respectively. The

significance of the overhead time wil l be discussed later.

The throughput for a P C running the driver program was calculated to be about one-

sixth (for short frames) to about seven-tenths (for the longest frame) of the throughput

when the Intel program was used. This showed that the Intel program was far more

efficient (shorter overhead time) than the driver program. Therefore, results obtained

with the driver programs were not expected to reproduce the performance data collected

with the Intel program. At any rate, no attempt was made to compare the data because

the amount of variance in the earlier data was not known. Furthermore, the old data

covered only three field lengths while the new data covered a comprehensive range of

field lengths.

Figure 3.36 shows a plot of the average throughput for a 2 -PC system (' P C 3 ' and

' P C 4 ' are just labels for the two P C s ; note also that they have the same curve and

cannot be distinguished separately in the graph). The individual throughputs level off

Figure 3.35: Average throughput for a single-PC network.

Chapter 3. Measurements 73

at approximately 700 bytes when the total throughput approaches the channel bit rate.

Figure 3.37 shows a plot of the corresponding offered load. Offered load, or G , is defined

here as the total number of attempts to access the channel (successful transmissions,

collisions, and deferred transmissions) per unit time, normalized to the bit rate. It can

be greater (even much greater) than 1. A t about 650-700 bytes, it increases sharply due

to a sudden increase in the number of deferred transmissions, as shown in figure 3.38,

which plots the number of deferrals as a fraction of the offered load. These transitions

occur at just about the equivalent software overhead time of 678 bytes. Before the

transition point, the frame transmission time is longer than the time it takes to prepare

a frame for transmission. The frame transmitted by one P C is completed before the

other P C has prepared the next frame for transmission. Hence, the two PCs more or less

take turns when transmitting and deferrals are relatively rare. (PC4 defers more often

than P C 3 because it probably runs somewhat faster, and therefore, can prepare a frame

for transmission sooner than P C 3 . Every now and then, it 'catches up' with P C 3 and

is consequently forced to defer transmission until P C 3 finishes.) Beyond the transition

point, when the frame transmission time becomes longer than the overhead time, one

P C wil l still be transmitting while the other has already prepared another frame. The

other P C then has to defer transmission until the transmitting P C has finished. Both

P C s still take turns transmitting but must now defer transmission at every attempt to

transmit. Collisions rarely occurred in the two-PC system. The amount of fluctuation

in throughput and offered load was very small and wil l not be shown.

Figure 3.39 shows the average throughput for a 3-PC network where frames are not

received by any P C (the destination addresses of the frames are different from their source

addresses). ' P C I ' , ' P C 3 ' and ' P C 4 ' are labels to identify the three P C s . Throughput

saturation occurs at approximately 350 bytes but fluctuations in the average throughput

do not occur unti l after 650-700 bytes. A plot of standard deviation in throughput

Chapter 3. Measurements 74

Figure 3.36: Average throughput for a 2-PC network.

Chapter 3. Measurements

Figure 3.37: Average offered load for a 2-PC network.

Chapter 3. Measurements

Figure 3.38: Number of deferrals expressed as a fraction of offered load.

Chapter 3. Measurements 77

expressed as a fraction of the average throughput is shown in figure 3.40. Note the sudden

increase in the fractional deviation at about 650-700 bytes. B y contrast, the fractional

deviation of the total throughput remains close to zero. Similar behaviour is observed

in the fractional deviation and the average of the offered load, as can be seen in figures

3.41 and 3.42. Plots of the number of collisions, deferred transmissions, and exhausted

retransmission attempts, all expressed as a fraction of the offered load, are shown in

figures 3.43, 3.44, and 3.45. At the point of throughput saturation (350 bytes), all P C s

begin to defer at about every other transmission attempt. Note the large number of

deferrals by P C I before the 350-byte point. This indicates that P C I is probably running

faster than the other P C s (as explained earlier in the 2-PC case for figure 3.38). Collisions

are rare until about 700 bytes, where there is a sharp increase in the number of collisions

and exhausted retransmission attempts (which indicate unresolved collision intervals).

As with the 2 -PC configuration, the transition point occurs when the frame transmission

time becomes as long as the overhead time. For field lengths equal to or longer than the

equivalent overhead time of about 678 bytes, two P C s wil l have prepared their frames

for transmission while the third P C has not yet finished transmitting. This ensures that

channel contention between two P C s wil l occur once the third P C has finished. The

chaotic situation that results from the contention leads to more unpredictable behaviour

as is shown in the plots of fractional deviations.

The last configuration to be discussed is a 3-PC network where one P C transmits

to the other P C in a circular manner so that each P C is the receiver of another PC ' s

transmissions. Since the P C s are now receiving as well as transmitting frames, the effec­

tive overhead time for preparing a frame for transmission is somewhat longer. (Received

frames have to be processed before a transmit command can be sent to the L A N con­

troller.) Hence, the transition point is expected to shift to a longer field length. Figures

3.46 and 3.47 show the average throughput and offered load for different field lengths.

Chapter 3. Measurements 78

Note the dip in both graphs at 800 bytes and the increased fluctuation of the individual

P C curves which begin at about the same field length. The cause of the dip in both

graphs is seen in the average number of deferrals on figure 3.48, which shows a notch

(indicating a sudden drop in the fraction of deferrals by all three PCs) at about 800

bytes. Associated with this notch is a sharp increase in the number of collisions which

shows up as a spike in figure 3.49. This shows that the frequent collisions obviously had

a detrimental effect on not only the throughput of the individual P C s , but also the total

throughput of the network as well. The drop in deferrals (figure 3.48) is a peculiarity

that probably arises from the transmission sequence of the P C s and the nature of their

transmissions (to transmit as often as possible whenever there are no received frames to

process). A plot of the number of lost frames (good transmissions which were not received

at all), expressed as a fraction of the total number of frames received is shown in figure

3.50. A sharp increase in the number of lost frames occurs at 800 bytes for one P C while

slight increases occur for the two other P C s at 850 bytes. A satisfactory explanation

has not been found for this observation. The number of buffer overflows (frames which

could not be received because the frame buffers were full; the driver programs have 16

receive buffers) is shown in figure 3.51. Note the sudden increase which begins at around

800-850 bytes. The increase is probably due to the increased frequency of bad received

frames, which take a longer time to process (to identify the type of error) than good

frames. This indicates that the transmission rate for any P C is generally faster than the

processing rate of bad received frames. To round out the remaining graphs, plots for the

number of exhausted retransmission attempts, and fractional deviations of throughput

and offered load are shown in figures 3.52, 3.53, and 3.54. A l l three parameters increase

sharply at around 800 bytes (although the fractional deviation of the offered load is

also high between 50 and 450 bytes). B y extending the results from the configurations

Chapter 3. Measurements 79

discussed earlier, it was concluded that the effective overhead time increased to approxi­

mately 800-850 information field bytes since this was the region in the graphs where the

onset of drastic changes in network behaviour and adverse performance characteristics

were observed. The increased overhead time is expected in view of the fact that each

P C has to process received frames. If a frame is received, the currently running task

is interrupted and another buffer is allocated for the next incoming frame. Hence, the

time to prepare a frame for transmission is lengthened i f frames are received during the

preparation interval for a transmission.

The results of these measurements have implications that should be considered when

a small number of nodes are continually transmitting frames at a high rate in a network

where the propagation delay is short. A reduction in communication reliability as well

as throughput can occur if the frame transmission and overhead times are roughly equal.

Sharp changes in network behaviour occur when the frame transmission time is equal

to or longer than the overhead time. In general, fluctuations of throughput and offered

load increase sharply beyond a critical transition point. Before the critical point, channel

access can be characterized as essentially free from contention. Beyond the critical point,

there is a marked increase in the amount of contention for channel use, which influences

the variability of many transmission characteristics. Network performance may be opti­

mized to some extent i f test transmissions are evaluated to determine the transmission

and reception behaviour for the application at hand. The results of these performance

measurements also show that one can indirectly estimate the software overhead time for

frame transmission by locating the critical transition point from transmission data of a

2- or 3-node network (as described earlier).

One interesting question about the performance data obtained here is how they com­

pare to theoretical results and measurements from other network configurations (such

Chapter 3. Measurements

Figure 3.39: Average throughput for a 3-PC network without frame receptions.

Chapter 3. Measurements

20

1600
Information Field Length (bytes)

Figure 3.40: Fractional standard deviation of throughput.

Chapter 3. Measurements 82

2.2

Figure 3.41: Average offered load for a 3-PC network without frame receptions.

Chapter 3. Measurements

20

1600
Information Field Length (bytes)

Figure 3.42: Fractional standard deviation of offered load.

Chapter 3. Measurements
84

Figure 3.43: Number of collisions expressed as a fraction of offered load.

Chapter 3. Measurements 85

1600
Information Field Length (bytes)

Figure 3.44: Number of deferrals expressed as a fraction of offered load.

Chapter 3. Measurements 86

o 10

0 200 400 600 800 1000 1200 1400 1600
Information Field Length (bytes)

Figure 3.45: Number of unresolved collision intervals as a fraction of offered load

Chapter 3. Measurements 87

Figure 3.46: Average throughput for a 3-PC network with frame receptions.

Chapter 3. Measurements

2.2

OH i i i i i i i
0 200 400 6 0 0 800 1000 1200 1400 1600

Information Field Length (bytes)

Figure 3.47: Average offered load for a 3-PC network with frame receptions.

Chapter 3. Measurements 89

Figure 3.48: Deferred transmissions expressed as a fraction of the offered load.

Chapter 3. Measurements 90

Figure 3.49: Collisions expressed as a fraction of the offered load.

Chapter 3. Measurements 91

14

12

10

0 s

E
00

0)
o

00

8 -

6

4 -

2 -

Legend
P C I

P C 3

P C 4

200 400 600 800 1000 1200 1400

Information Field Length (bytes)

1600

Figure 3.50: Lost frames expressed as a fraction of the total number of received frames.

Chapter 3. Measurements 92

Figure 3.51: Buffer overflows expresssed as a fraction of the total number of received
frames.

Chapter 3. Measurements 93

Figure 3.52: Number of unresolved collision intervals as a fraction of offered load

Chapter 3. Measurements 94

Figure 3.53: Fractional standard deviation of throughput.

Chapter 3. Measurements 95

Figure 3.54: Fractional standard deviation of offered load.

Chapter 3. Measurements 96

as, say, 10 or more nodes). No comparisons were made in either case, but a compara­

tive analysis for a related C S M A / C D standard, Ethernet, is given in [20]. The general

results from that reference may be extended to some extent to the case of S t a r L A N ,

which is similar in many respects to Ethernet. For Ethernet, the influence of the number

of stations on throughput for a given offered load is minor for long frames but can be

significant in a network with a small number of nodes (less than 20) if the frames are

short and the offered load is large. A discussion on the similarities (and differences)

between measurements of and theoretical results for maximum throughput can be found

in [20] and wil l not be given here. In general, the data obtained from the performance

measurements are somewhat restricted in the sense that they apply only to a system

with a short propagation delay where a few nodes transmit continually. A part of the

difficulty here is due to the fact that it is essentially impossible to generalize results from

a very small number of nodes. Nevertheless, the results obtained here provide the basis

for, i f necessary, more exhaustive measurements.

Chapter 4

System Implementation Options

Several alternatives are available to the system designer should S t a r L A N be selected as

the bottom-layer protocol for the F A S T B U S Serial Network. These alternatives fall into

roughly three areas: topology, bit rate, and access scheme.

4.1 Topology

As was discussed earlier in the Introduction, two topologies are available for S t a r L A N .

The first one is a star topology that uses hubs, as was originally conceived by the I E E E

802.3 Working Group. The second one is a bus topology which does not use hubs. This

topology has been promoted most notably by Advanced Micro Devices. The choice of

interconnection topology depends on a number of practical considerations and these are

discussed below.

The star topology allows nodes and hubs to be easily attached or removed from the

network. In a star topology serial network, each F A S T B U S crate would contain a hub

that connects to higher hub layers in an orthodox star configuration while linking the

nodes downstream (the devices plugged into the crate) as a two-line backplane bus.

Only nodes are allowed to be connected downstream of a crate hub. This means that

F A S T B U S crates can be removed from the network by simply disconnecting the crate

hub from the upstream hub. There is no need to reconnect lower hub layers back to the

network since there aren't any. However, there is a problem with jabber control. If a

crate hub cannot stop a node from jabbering, all nodes in the same crate are disconnected

97

Chapter 4. System Implementation Options 98

from the network. This form of collective punishment can occur because the nodes are

connected together in a bus topology which appears to the hub as just one node input.

The crate hub cannot select the node to be disconnected. In fact, it cannot identify

the erring node(s) within the crate. Granted that jabbering nodes are expected to be

very rare, the only solution to this problem is to provide all nodes with jabber control

circuits, transferring the jabber control function from the hub to each and every node.

The Am7961 bussed S t a r L A N transceiver has such a function. However, the chip uses

RS-422 (S ta rLAN) signal levels for the bus data lines which would have to be translated

to E C L logic voltages. Another concern centres on the reliability of the hubs themselves.

A single hub failure can disable the network to different extents, depending on where it

is located. In the worst case, the entire network could be disabled. Hence, all hubs in

the network must be very reliable, much more so than the nodes. In fact, the S t a r L A N

specifications require hubs to have a mean time between failures (M T B F) of at least five

years of continuous operation.

In a bussed (hubless) network, each node communicates by a bus transceiver, such as

the Am7961, which is connected to the L A N controller. In the case of the Am7961, an RS-

4 2 2 - E C L converter is needed since its bus interface uses StarLAN-type RS-422 voltage

levels. Insofar as the Am7961 is the only S t a r L A N bus transceiver on the market today,

the need for a voltage converter could prove to be a nuisance. A t least one chip will be

needed to convert between RS-422 and T T L signals (e.g., TPs SN75109) while two chips

wil l be needed for T T L - E C L conversion (e.g., Motorola MC10K124 for T T L - t o - E C L ,

and MC10K125 for E C L - t o - T T L) . Hence, at least five chips are needed per node (L A N

controller, bus transceiver, three voltage converters) if the Am7961 is used. Note that

this figure does not include support chips that may be required by the L A N controller (it

does, however, include a clock source since the Am7961 has a clock output). A node in a

hub-based network would not require a bus transceiver, although such a device might be

Chapter 4. System Implementation Options 99

useful if it has a jabber control function, as was mentioned previously. Another aspect

of a bus topology serial network is that repeaters are required at each crate if E C L

voltage levels cannot be used in the cables that connect the crates together. Even if E C L

voltages could be used, repeaters would probably be needed anyway to avoid impedance

mismatches between crate-connecting cables and the backplane. Repeaters are crucial

elements in the operation of a bussed network. Even a single malfunctioning repeater can

disable the entire network, depending on the nature of its defect. Just as the reliability of

hubs is a matter of concern in a star-topology network, so is the case with the reliability

of repeaters in a bus network. As mentioned in the introductory section on S t a r L A N ,

there are two ways for connecting crates together in a bussed S t a r L A N scheme. The first

is a T connection while the second is a daisy chain. For either connection scheme, the

task of attaching a crate to (or disconnecting it from) a bussed serial network seems to

be less straightforward compared to that in a hub-based network.

4.2 Bit Rate

The decision on whether to use a bit rate (the rate in which data is transmitted and

received) of 1 Mbps or 10 Mbps involves a trade-off between implementation complexity

and network capacity. A higher bit rate wil l involve a probably more costly and complex

hardware solution since higher clock speeds and faster circuits are involved compared

to that for a lower bit rate. The higher bit rate may also result in a somewhat less

robust operation in heavily loaded backplanes compared to a lower bit rate. There has

to be a serious discussion among F A S T B U S system 'experts' as to what data rates are

expected for the proposed applications of the serial network. It is important to look not

only into average capacity requirements but also into peak demand. Depending on the

application, a 1 Mbps network may be sufficient during normal operations but may suffer

Chapter 4. System Implementation Options 100

from unacceptable delays during peak transmission periods.

4.3 Access Scheme

S t a r L A N , being a C S M A / C D protocol, is inherently a random access system. There is

no guarantee that a frame wil l be transmitted immediately after it is sent to the L A N

controller. This may be a problem in some applications if, for example, a response must

be received before a certain time limit. A deterministic access scheme may be required

in such cases. S t a r L A N can still be used for a deterministic access system if higher-layer

collision-avoidance protocols are used. Of course, it then becomes a valid question to ask

if S t a r L A N is really suited for implementing the serial network in the first place.

Token-passing is one scheme that allows all nodes in the system to have guaranteed

access to the network in a deterministic time interval. The performance characteristics

of a token bus (I E E E 802.4) have been compared to a C S M A / C D standard (I E E E 802.3

Ethernet) in [21]. The results from that reference may also apply to the case of Star-

L A N as well since S t a r L A N is quite similar to Ethernet in many respects. In general,

shorter delays are associated with C S M A / C D compared to token-passing (token bus)

while token-passing achieves greater maximum throughput than C S M A / C D . In partic­

ular, the maximum throughput for a token bus is much less affected by the network

propagation delay than is C S M A / C D . It is not known, however, just how much more

complicated the serial network's implementation wil l become if token-passing is used in­

stead of S t a r L A N although it is expected to be much more complex. A description of a

protocol that effectively implements token-passing wil l be described later.

Another deterministic scheme is the master-slave method that is currently used in

F A S T B U S systems. A n analogous system is described here for the serial network. At any

point in time, the network is composed of slaves and, at most, one network-master. Only

Chapter 4. System Implementation Options 101

the master node can initiate transmissions. The rest of the nodes in the network can only

transmit in response to prompts or commands from the master. When the master has

completed its operations, it relinquishes control of the network, after which other nodes

can contend for network mastership. A l l contending nodes 'apply' for network mastership

to the master arbitrator by transmitting 'request frames' using ordinary C S M A / C D to a

centralized 'master arbitrator'. The arbitrator decides on which node becomes the next

master (by a first-come-first-served rule, for example) and broadcasts the address of the

next master. This scheme has two attractive features. Firstly, it can be programmed to

assign network mastership to all nodes sequentially, thus effectively implementing a token-

passing scheme if that is desired. Secondly, it acts as a network 'super master' that settles

'master disputes' where, because of a misunderstanding, more than one node thinks it is

the network master, or when one or more non-master nodes initiate transmission without

realizing that a master has been assigned control over the network. In such cases, the

arbitrator can simply rebroadcast the address of the valid master to correct the erring

nodes. However, the centralized arbitrator system is not robust for if anything goes

wrong with the arbitrator, the entire master-slave scheme collapses.

One way out of this problem is to do away with the central arbitrator altogether.

In this 'distributed' scheme, a node contends for network mastership by broadcasting a

master-request frame and relinquishes its mastership by broadcasting a master-release

frame. 'Master disputes' (as defined previously) are resolved by a pre-determined prior­

itization order that is known by each and every node. If a master finds that other nodes

are initiating transmissions, it can rebroadcast a master-request frame to reassert its mas­

tership. If it receives a master-request frame from a higher-priority node, then it loses its

mastership immediately. To reduce transmission overhead, commands or prompts may

be piggy-backed onto master-request frames. Likewise, single-frame responses can be

piggy-backed on master-relinquish frames (In this case, the responding node relinquishes

Chapter 4. System Implementation Options 102

the mastership of the prompting node. This is useful for simple command-response ap­

plications.).

Note that it is possible for starvation to occur in the two master-slave schemes de­

scribed above just as starvation can occur in a F A S T B U S system. It should also be noted

for either the centralized or the distributed schemes that some time can elapse before a

node gains complete mastership of the network (when there is only one master and all

other nodes are aware of it) . This can occur if the L A N controller of a node happens to

be deferring transmission to a master request frame of another node. In this case, the

deferring node wil l transmit after an IFS interval at the end of the master request frame

because its transmission cannot be aborted immediately. The received request frame has

to be processed first before the node finds out that it can no longer initiate transmissions.

Application programs should make allowances for this possibility.

It is expected that some applications running in the F A S T B U S Serial Network will

involve mainly command-response-type operations (where the response has to be received

within a time limit) and other operations which do not require deterministic access to the

network. If that indeed is the case, then S t a r L A N , along with a higher-layer master-slave

protocol, can be used to allow both groups of operations to coexist. A node wil l first have

to contend for mastership of the network before proceeding with a time-critical operation.

Operations that do not depend on a time limit can proceed (without having to reserve

the network) during the intervals when network access is not restricted by a master.

The arrangement described above takes advantage of the throughput and simplicity of

a C S M A / C D scheme for random access applications, yet wil l allow deterministic access

when required.

Chapter 5

Summary of Results and General Assessment

The following section is given below to summarize the major points of the three previous

chapters.

• The prototype network was composed of a F A S T B U S crate, a standard S t a r L A N

hub, a S t a r L A N hub specially constructed for the F A S T B U S backplane, and three

P C compatible computers which accessed the backplane via R S - 4 2 2 - E C L tranceiver

cards.

• Signal jitter and propagation delay in the backplane were measured for different

configurations of capacitive loads. The largest amount of signal jitter was measured

to be 6 ns while the longest propagation delay was measured to be 16.2 ns. Both

of these values fall well within the S t a r L A N specifications of 62.5 ns for jitter and

4 bit times for node-hub / hub-hub propagation delay.

• Data communications were established by the three P C s through the prototype

network without any problems whatsoever. The crate hub was successfully operated

either as an intermediate hub (where the standard hub was used as the header

hub) or as a header hub. The general behaviour of data transmissions in the three-

node prototype network were similar to those for an orthodox S t a r L A N network,

indicating that the F A S T B U S hub level appears as just another S t a r L A N hub level

to the rest of the network. It also indicates that the bus topology of a F A S T B U S

hub level does not cause the network behaviour to differ from that of a star topology.

103

Chapter 5. Summary of Resulis and General Assessment 104

• Performance measurements of a three-node orthodox S t a r L A N network show some

interesting results. The length of the transmitted frame and the preparation time

for frame transmission can have a profound effect on network performance. In

particular chaotic behaviour and reduced reliability were observed if the frame

transmission time is equal to or greater than the preparation time.

Most of the work for the StarLAN-based serial network has been done as far as the

physical and media access control layers are concerned. A n implementation of the bussed

S t a r L A N scheme is one area of work that has yet to be done. At this stage however, there

does not seem to be an overwhelming advantage in using bussed S t a r L A N as opposed to

standard S t a r L A N to implement the serial network. Protocols for the higher layers have

yet to be developed and are expected to depend very much on what F A S T B U S users

want to use the serial network for in the first place.

The prototype network was built without much difficulty at all and this shows a

certain amount of inherent 'compatibility' between S t a r L A N and the F A S T B U S Serial

Network. The work on the prototype network has shown that S t a r L A N is an effective,

simple, affordable and easily adaptable standard to implement the F A S T B U S Serial

Network. The onus should now be on the detractors, if there are any, to make their case

against a serial network based on S t a r L A N .

Appendix A

P A L A S M Listing, Notes on Transceiver and Hub Circuits

A . l P A L Device Logic Equations

A listing of the P A L programming program is given below in figure A.55. The logic

equations are equivalent to the programming information given in [9]. A fuse plot and

results from simulations produced from the P A L A S M 2 program have not been included.

The simulations essentially show that the equations are correct while the fuse plot shows

connections in the logic device that were specified by the equations.

A.2 Functional Description of the S t a r L A N - F A S T B U S Transceiver

The following section explains how the transceiver circuit of chapter 2 works (see figure

2.24). The transceiver is composed of two subcircuits: one for signals in the downstream

direction (into the backplane) and another for signals in the upstream direction (from

the backplane).

U6 and U7 are used for clocking the two subcircuits. RS-422 signals from the upstream

source appear at lines U D P and U D N . R l is an impedance-matching resistor, nominally

100 ohms for twisted-pair telephone wiring. T l is a dual transformer used for D C isolation

of the differential RS-422 signals. U2 is an RS-422 receiver that converts RS-422 signals

to T T L . Resistors R2 to R5 are used for voltage squelch (as specified by S ta rLAN) .

O U T A of U2 is the unsquelched signal while O U T D has the squelched signal which is

used by U4, U7, and U9 to filter the signal from O U T A . U9 also doubles as a T T L to

105

Appendix A. PALASM Listing, Notes on Transceiver and Hub Circuits 106

TITLE Translated PAL program f o r I n t e l StarLAN Design K i t .
PATTERN StarLAN.pal
REVISION 2
AUTHOR (o r i g . , Adi Golbert, I n t e l ; t r a n s l a t e d by Richard Cam)
COMPANY I n t e l , TRIUMF
DATE 22 May 1987
CHIP M u l t i f u n c t i o n PAL16L8
A9NANDA8 A7 A6 A5 A4 IOWR AO AEN REQ1 GND
REQO LDPORT RESET DACK3 DACK1 DREQ3 DREQ1 CS BUSEN VCC
EQUATIONS
/CS = /AEN * /A9NANDA8 * /A7 * /A6 * /AS * /A4 * /AO
/LDPORT •= /AEN * /A9NANDA8 * /A7 * /A6 * /A5 * /A4 * AO * /IOWR
/DREQ1 = /REQO * /DACK1 + /REQO * /DREQ1 + RESET
/DREQ3 = /REQ1 * /DACK3 + /REQ1 * /DREQ3 + RESET
/BUSEN = /DACK1 + /DACK3 + /AEN * /A9NANDA8 * /A7 * /A6 * /A5 * /A4
;/CS.TRST •» VCC
;/LDPORT.TRST = VCC
;/DREQ1.TRST = VCC
; /DREQ3.TRST = VCC
; /BUSEN.TRST •= VCC

Figure A.55: Logic Equations for P A L device of Intel S t a r L A N board.

Appendix A. PALASM Listing, Notes on Transceiver and Hub Circuits 107

E C L translator that drives the Serial Transmit line of the F A S T B U S backplane.

E C L signals from the Serial Receive line of the backplane are converted to T T L

by U8 and from T T L to RS-422 by U l , an RS-422 driver. Capacitors C2 and C3 are

used for trapezoidal modulation (they increase the slew rate of RS-422 signals to reduce rf

emissions from unshielded telephone cable. Two J K flip-flops (U5) are used to implement

a divide by 4 circuit whose output is used to clock U3, a shift register which is used

to enable the output of U l . U3 disables the output of U l at the end of a S t a r L A N

transmission (when a high logic level is detected for approximately 2 microseconds). The

other capacitors are used for power supply bypass purposes. They reduce the magnitude

of supply voltage spikes that occur when T T L devices change states.

A.3 Functional Description of the S t a r L A N H u b Circuit

This section describes how the S t a r L A N crate hub of chapter 2 works (see figure 2.28).

Note that there are two corrections to the original schematic diagram (dated 30 July

1987). First, a 100-ohm resistor across pins 10 and 8 of T l is missing. Second, the

S E R - T X (A58) and S E R - R X (A57) lines are interchanged (A58 should connect to U5

while A57 should connect to U6).

E C L signals from the Serial Transmit line (going in the upstream direction) are con­

verted to T T L by U6 whose output is fed into U4, the hub controller. The output and

output enable pins of U4 are connected to U3, a S t a r L A N driver/receiver, which converts

the T T L output to RS-422 and drives the telephone cable via an isolation transformer,

T l . RS-422 signals from the telephone cable (in the downstream direction) are isolated

by T l and filtered by an R C L circuit which has a cut-off frequency of approximately 2

M H z . The filtered signal is then converted to T T L by U3 (which has a built-in squelch

circuit). The signal and squelch output of U3 is connected to the upstream port of U4.

Appendix A. PALASM Listing, Notes on Transceiver and Hub Circuits 108

The retimed output is then converted to E C L by U5, which drives the Serial Receive

line of the backplane. U5's output is enabled by a high logic level through R7. U2 is

used to clock U4. A debounced switch (to reset U4) is implemented by SI , R5, D l , C l ,

and U l . U4 has three outputs for driving L E D ' s (pins 15, 16, and 19) and these are

buffered by U l , which drives the L E D ' s through dropping resistors R2 to R4. R l and

DS1 implement a power-on indicator. The remaining capacitors are used for bypassing

the -5.2V and 5.0V power supply lines.

Appendix B

Photographs and Table of Electrical Measurements

Measurements of propagation delay and pulse jitter are tabulated in table B . l . The

corresponding oscilloscope photographs are shown in figures B.56 to B.73.

109

Appendix B. Photographs and Table of Electrical Measurements

Reference Propagation Delay (nsec.) Pulse
Number first edge second edge Jitter (nsec.)

7 11.6 9.4 2.2
8 7.8 9.4 1.6
9 6.2 7.6 1.4
10 9.2 8.4 1.2
11 7.0 6.2 0.8
12 9.4 9.6 0.2
13 12.2 12.2 0.0
14 14.8 12.6 2.2
15 10.8 10.2 0.6
16 9.2 9.6 0.4
17 14.6 12.4 2.2
18 .13.2 7.2 6.0
19 13.8 12.8 1.0
20 9.6 9.0 0.6
21 16.2 16.0 0.2
23 7.8 6.8 1.0
24 12.8 12.2 0.6
25 15.2 14.2 1.0

Table B . l : Propagation delay and pulse jitter measurements.

Appendix B. Photographs and Table of Electrical Measurements 111

Figure B.56: Reference number 7

Appendix B. Photographs and Table of Electrical Measurements

Figure B.57: Reference number 8

Appendix B. Photographs and Table of Electrical Measurements 113

Figure B.58: Reference number 9

Appendix B. Photographs and Table of Electrical Measurements 114

Figure B.59: Reference number 10

Appendix B. Photographs and Table of Electrical Measurements

Figure B.60: Reference number 11

Appendix B. Photographs and Table of Electrical Measurements 116

Figure B.61: Reference number 12

Appendix B. Photographs and Table of Electrical Measurements 117

Figure B.62: Reference number 13

Appendix B. Photographs and Table of Electrical Measurements 118

Figure B.63: Reference number 14

Appendix B. Photographs and Table of Electrical Measurements 119

Figure B.64: Reference number 15

Appendix B. Photographs and Table of Electrical Measurements 120

Figure B.65: Reference number 16

Appendix B. Photographs and Table of Electrical Measurements 121

li
1E3I311 m II

F1HHTT1P aw
Figure B.66: Reference number 17

Appendix B. Photographs and Table of Electrical Measurements

Figure B.67: Reference number 18

Figure B.68: Reference number 19

Appendix B. Photographs and Table of Electrical Measurements

Figure B.69: Reference number 20

Appendix B. Photographs and Table of Electrical Measurements 125

Figure B.70: Reference number 21

Appendix B. Photographs and Table of Electrical Measurements 126

Figure B.71: Reference number 23

Appendix B. Photographs and Table of Electrical Measurements

Figure B.72: Reference number 24

Photographs and Table of Electrical Measurements

Figure B.73: Reference number 25

Appendix C

Tables of Preliminary Performance Data

This appendix contains tables of preliminary performance data that was obtained with

the Intel program. Three P C compatibles were used to drive the network. Tables C.3,

C.4, and C.5 show general transmission statistics for three frame lengths while the de­

tailed collision data are shown in tables C.6, C.7, and C.8. A l l numbers are in base

10. The 'mode' field code is used to identify the network configuration of the data and

is described below in table C.2. The data show that each P C behaves similarly under

different network configurations. There are only minor differences in performance, and

they should not be a cause for concern at all.

Mode Description Figure
A crate header hub 2.23c
B crate intermediate hub with Retix HB-6 header hub 2.23c
C simple repeater 2.23b
D orthodox S t a r L A N network 2.23a

Table C.2: Network configurations for prehminary performance measurements.

129

Appendix C. Tables of Preliminary Performance Data 130

P C Mode Total tx Collisions Good tx Deferred tx
P C I A 155904 1727 154177 142438
P C I B 140551 1861 138690 127256
P C I C 155606 1733 153873 141697
P C I D 139762 1826 137936 126490
P C 3 A 220139 1318 218821 217307
P C 3 B 218546 1318 217228 215763
P C 3 C 220886 1345 219541 218062
P C 3 D 221227 1369 219858 218462
P C 4 A 89026 2201 86825 75860
P C 4 B 103543 2127 101416 89727
P C 4 C 89939 2184 87755 77257
P C 4 D 105835 2153 103682 93044

Table C.3: General transmission data for 72-byte frames.

Appendix C. Tables of Preliminary Performance Data 131

P C Mode Total tx Collisions Good tx Deferred tx

P C I A 26197 1460 24737 21850
P C I B 25747 1564 24183 21359
P C I C 26326 1540 24786 21835
P C I D 26715 1480 25235 22337
P C 3 A 25245 1489 23756 23044
P C 3 B 24651 1542 23109 22416
P C 3 C 25175 1527 23648 22859
P C 3 D 25599 1472 24127 23368
P C 4 A 25946 1519 24427 21542
P C 4 B 27048 1452 25596 22684
P C 4 C 25972 1529 24443 21585
P C 4 D 25356 1568 23788 20695

Table C.4: General transmission data for 532-byte frames.

P C Mode Total tx Collisions Good tx Deferred tx

P C I A 10181 1398 8783 7260
P C I B 10321 1401 8920 7400
P C I C 9916 1465 8451 7021
P C I D 10532 1436 9096 7560
P C 3 A 9583 1463 8120 7474
P C 3 B 9903 1439 8464 7766
P C 3 C 9885 1407 8478 7756
P C 3 D 9881 1431 8450 7731
P C 4 A 10417 1415 9002 7478
P C 4 B 10032 1484 8548 7041
P C 4 C 10456 1430 9026 7456
P C 4 D 9828 1487 8341 6917

Table C.5: General transmission data for 1526-byte frames.

Appendix C. Tables of Preliminary Performance Data 132

PC

" P C T
PCI
PCI
PCI
PC3
PC3
PC3
PC3
PC4
PC4
PC4
PC4

Mode

A
B
C
D
A
B
C
D
A
B
C
D

698
663
687
610
962
979

1030
1024
441
499
408
506

100
67
91
84
44
51
51
51
43
67
44
56

11
9
8
8

25
27
25
38

7
14
9

17

Collision Resolution Interval
(number of retransmission attempts)

2
2

T
8
9

6
3
3
2
8

14
8
7
4
2
1
1
2

8 10 11 12 13 14
1

5
5
4
6

15 Failed
49
64
52
64.

101
89

101
89

Table C.6: Distribution of Collision Resolution Interval for 72-byte frames.

Appendix C. Tables of Preliminary Performance Data 133

Collision Resolution Interval
PC Mode 'number of retransmission attempts)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Failed
PCI A 452 15 23 15 7 5 49
PCI B 487 17 31 14 10 2 52
PCI C 458 19 27 16 9 1 53
PCI D 489 14 15 20 11 4 1 47
PC3 A 469 14 26 14 9 1 1 50
PC3 B 451 22 12 25 8 3 3 52
PC3 C 484 23 22 20 11 2 49
PC3 D 480 22 22 15 10 1 1 47
PC4 A 502 18 19 21 10 1 49
PC4 B 474 17 21 19 10 2 1 46
PC4 C 495 23 32 13 9 1 49
PC4 D 450 17 26 13 12 5 54

Table C.7: Distribution of Collision Resolution Interval for 532-byte frames.

Appendix C. Tables of Preliminary Performance Data 134

P C

" P C T
PCI
PCI
PCI
PC3
PC3
PC3
PC3
PC4
PC4
PC4
PC4

Mode

A
B
C
D
A
B
C
D
A
B
C
D

Collision Resolution Interval
(number of retransmission attempts)

378
361
382
407
357
404
351
397
391
366
390
353

21
23
25
22
20
30
22
19
23
23
18
21

2
1
1

5_
2
1
3

J _
1
1
2
2

12
9
5

12
11
6
7

14
11
11
11
19

17
20
22
18
21
25
20
20
17
17
18
15

6
11
11
11
7

16
12
13
9

14
14
14
9

3
3
6

10
3
1
6
2
6
6
4
3

8

2
3

2

1
1
1

10 11 12 13 14 15 Failed
47
47
48
44_
49
46
46
47_
45
50
47
52

Table C.8: Distribution of Collision Resolution Interval for 1526-byte frames.

Appendix D

Calculation of Software Overhead Time

Software overhead time is defined as the time required to prepare a frame for transmission.

For a system that uses an Intel 82588 L A N controller, several operations have to be done

before a frame can be transmitted by the L A N controller. These include, as a minimum

requirement, initialization of a D M A controller (for data transfer to the L A N controller)

and sending a T R A N S M I T command to the 82588. The software overhead time per

frame transmitted, tD/,, can be estimated by computing the difference between the total

time to prepare and transmit a frame, ttot, and the time required to transmit a frame

through the network (by the L A N controller), ttx.

toh — ttot ~~ ttx

The frame transmission time, ttX} in seconds per frame, is given by

where L is the frame length in bits, I is the interframe spacing (96 bits), and C is the

channel bit rate (1 Mbps for S t a rLAN) . The total transmission time, ttot, in seconds per

frame is given by

_ L
ttot - ~s

where S is the measured throughput of the transmitter.

This calculation does not take into account the time involved in deferring transmission

or in resolving a collision. Hence, it can only be used for data obtained from a single-node

135

Appendix D. Calculation of Software Overhead Time 136

network where there is no contention for channel use. The overhead time for different

information field lengths is given in table D.9. (to obtain the frame length, add 26 bytes

to the field length).

The average overhead time was calculated to be 5632 microseconds, which can be

converted to the field length of a frame that would take roughly the same amount of time

to transmit. For a 1 Mbps channel, this would correspond to a frame whose information

field length is 678 bytes ((678+26fo/fes){&bits/byte)/(1Mbps) = 5632microseconds). The

longest overhead time was 5661 microseconds while the shortest was 5596 microseconds.

These values correspond to transmission times for frames with field lengths of 682 and

674 bytes respectively. So, the mean field length is bound to within approximately 4

bytes from the data obtained.

Appendix D. Calculation of Software Overhead Time 137

Field toh
Length Throughput (u.secs.)
(bytes)

50 0.096 5629
100 0.149 5661
150 0.197 5643
200 0.240 5629
250 0.279 5610
300 0.313 5628
350 0.345 5615
400 0.373 5633
450 0.399 5640
500 0.423 5644
550 0.445 5651
600 0.467 5620
650 0.486 5624
700 0.504 5620
750 0.521 5612
800 0.536 5624
850 0.550 5638
900 0.564 5631
950 0.576 5652

1000 0.589 5631
1050 0.600 5643
1100 0.612 5615
1150 0.622 5621
1200 0.632 5615
1250 0.640 5646
1300 0.649 5641
1350 0.657 5651
1400 0.665 5651
1450 0.673 5641
1500 0.682 5596

Table D.9: Overhead times for different field lengths.

Appendix E

Notes on the Automated Network Driver Program

Flowcharts of the routines in the program are shown in figures E.74 to E.76. A brief

description of each routine is given in the header files of the different program modules

as shown in figures E.77 to E.83. Figures E.84 and E.85 show a sample master and slave

program respectively. A sample output file (as produced by a master program) is given

in figure E.86. Apart from the flowcharts, no documentation has been produced for this

program. However, there are many comments (in the source files) at device-dependent

subroutines which interact with the 82588 L A N controller of the Intel board (these are

expected to be more difficult to understand than other parts of the program). Interested

readers should contact the author for more details.

138

Appendix E. Notes on the Automated Network Driver Program 139

•START!. S £ L F _
TK

S T A T I S T I C S

588

BU<= R S R S

ALLOCATE,

2 .

DO_ SC-Al/E.

QU(£T-

FRAMES

S € T T U P _ (A .

5 ? ? 5S8

TRAAJSÂ 'T—
5 S ?

RCA/_ S T A B L E .

585?

B O A R D

Figure E.74: Subroutine Flowchart of Driver Program, Part 1 of 3

Appendix E. Notes on the Automated Network Driver Program 140

CcorvrTD.")

A B e>£T_
PR/N'T-FIUE

•START. -r/AYg " / M £ _ U P

T

<5£"T^?TAT5

F R A M E S

SEt-F_
IA

PEVA/IT_
AJOD6 $ T A t T _ T y ABORT-TV .

S&TUP_ (A. TRAAVSM/T_ sa?

Figure E.75: Subroutine Flowchart of Driver Program, Part 2 of 3

Appendix E. Notes on the Automated Network Driver Program 141

58?

Qute~T.

DMA

TRANSMIT.
5XS 5 g ^

"STOP.

683?

5S2

VUMP-588

PRER_ P M A

6>u (£TT_

PROCESS- FRAME?

5 e T u P _ t A .
5 ^ £ T A T l S T l C 5

Figure E.76: Subroutine Flowchart of Driver Program, Part 3 of 3

Appendix E. Notes on the Automated Network Driver Program 142

/•
Richard Cam
93523827

Primary set of local appl icat ion routines.
Header f i l e : autout l l .h
System: IBM PC's , compatibles, and variants thereof.
Compiler: Turbo C version 1.5 ml Compact memory model
Version: 2.1 20 June 1988

void 1n1t_node t) ;
/ • I n i t i a l i z e buffers and 82588 V

void change_self_conf1g (Int confO, Int c o n f l . Int conf2, 1nt conf3,
int conf4, Int conf5. 1nt conf6, Int conf7,
1nt conf8. 1nt conf9):

/ • change 82588 configuration of local node • /

void change_self_1a (int new_1a0, int new_ia1, int new_ia2, int new_ia3,
int new_ia4, int new_1a5);

/ * change 82588 individual address of local node "/

void program_se1f_tx (unsigned int tx_durat1on.
unsigned 1nt delay_period, unsigned Int 1nfo_f1eld_1en,
1nt targO. Int t a r g l . 1nt targ2, int targ3,
1nt targ4, int targ5);

/ • change repeated-transmission parameters of local node • /

void s tart_sel f_tx (int master);
/ • i n i t i a t e repeated transmissions • /

void do_slave_tx (Int master);
/ * slave version of start_se1f_tx V

void abort_self_tx t) ;
/ * force fu l ly halt local nodes transmissions • /

void deinit_node ();
/ * normal termination of program • /
/ •

Richard Cam
93523827

Buffer Management Routines.
Header f i l e : buffmgr.h
System: IBM PC's , compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 2.1 06 June 1988

V

#def1ne MAX_*LLOC_TRIES 3 / • max. number of attempts for make_buffer to
al locate memory space In the heap for the
specif ied buffer size without crossing page
boundaries. • /

void al locate_buffer (address *buff, unsigned int num_elements);
/ • a l locate memory space for a block of s ize num_elements bytes such that

it does not cross page boundaries * /

Figure E.77: Header Files

Appendix E. Notes on the Automated Network Driver Program 143

void create_buffer9 (address *config_buff, address *1a_buff,
address 'dump_buff, address *tx_buff,
address r x _ b u f f l) . int num_rx_buffs,
address *sub_tx_buff, address *sub_rx_buff);

/ ' a l locate memory space for buffers used In the program. V

void exchange_buffers (address *buff_a. address *buff_b);
/ * exchange contents of address structures . * /

/ •
Richard Cam
93523827

Global Declarations.
Header f i l e : g lobals .h
System: IBM PC's , compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 2.1 06 June 1988

V

fdefine TRANSMIT 1
fdefine RECEIVE 0

fdeflne CHANNEL_1 1 / * equate CHANNEL_1 to channel 1 of 8237A OMAC V
fdefine CHANNEL_3 3 / * equate CHANNEL_3 to channel 3 of 8237A OMAC V

fdeflne MAX_RX_BUFFS 17 / • max. number of receive data buffers V

fdefine CONFIG_BUFF_SIZE 12 / • s ize of 82588 configuration block V
fdeflne IA_BUFF_SIZE 8 / * s ize of 82588 6-byte ind i . addr. block V
fdeflne DUMP_BUFF_SIZE 63 / • s ize of 82588 register dump block */
fdeflne MAX_TX_BUFF_SIZE 1508 / ' s ize of largest 82588 transmit data block V
fdeflne MAX_RX_BUFF_SIZE 1514 / • s ize of largest 82588 receive data block V

fdeflne 0CW2 0x20 / • 8259A E0I or spec i f i c E0I register V

fdeflne UNMASK LINE_5 OxDF / • AND mask b i t pattern to enable l ine 5 V
fdeflne SE0I_LINE_5 0x65 / • spec i f i c E0I code for line 5 V

fdeflne INTR_VECT_13 13 / • vector table entry for hardware
Interrupt 1ine 5 * /

fdeflne INTR_LINE 5 / • hardware Interrupt l ine V

typedef struct { / * memory block information record */
unsigned char *ptr; / • pointer to block • /
unsigned int segment, offset; / * 8088/8086 segment-offset of block's

s tart ing address" ' /
unsigned char lowaddr. hlghaddr, page; / " 8237A DMA paged-memory form of

block's s tar t ing address, lowaddr and highaddr ere the low and high
bytes for the DMA start address; the page register
(of the DMA channel) in the IBM PC is loaded with the value
of page. V

unsigned char lowcount, highcount; / • low and high bytes of block size * /

Figure E.78: Header Files (continued)

Appendix E. Notes on the Automated Network Driver Program 144

unsigned Int s ize; / * s ize of block in bytes • /
unsigned Int frame_1en; / • actual s ize of block • /

) address;
/ •

Richard Cam
93533827

Routines for simple appl Icat1on-layer commands.
Header f i l e : mldut i l .h
System: IBM PC's, compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 2.1 10 June 1988

fdeflne N0_0PERATI0N 0 / * nop • /
fdeflne PR0GRAM_TX 1 / • command code for program transmission parameters V
fdeflne CHANGE_IA 2 / ' . . . for remote indlv. address change V
fdeflne CHANGE_C0NF1G 3 / • " . . . for remote configuration parameter change * /
fdeflne GET_STATS 4 / • command code for tx/rx s t a t i s t i c s fetch bperation • /
fdeflne START_TX 5 I' ... for In i t ia t ion of transmission session • /
fdeflne AB0RT_TX 6 I' ... for forced termination of transmission session • /

typedef struct {
unsigned Int src_addrt6J, dest_addr16], configurat1on[10];
unsigned 1nt delay, duration;
unsigned int frame_len;
unsigned long good_tx, bad_tx, good_rx, bad_rx;
unsigned long co 111s 1on9[17) , defers, lost_cts , lost_crs , under_runs;
unsigned long buffer_overflows;
unsigned long crc_errs , srt_frms, a lg_errs , no_eofs, over_runs;

) stats_record;

void c lear_stat1st ics (stats_record 'stblk);
/ * clear performance data part of s t a t i s t i c s block V

void program_tx (Int master. Int destO. int d e s t l , Int dest2, int dest3,
Int dest4, int dest5. unsigned Int tx_durat1on,
unsigned int delay_per1od, unsigned int Info_f1eld_len,
Int targO, Int targt , int targ2. int targ3, int targ4, int targ5);

/ ' remote-programs the repeated-transmission parameters of a node V

void change_1a (1nt master, int destO, Int d e s t l , int dest2, int dest3, int dest4,
int dest5, int new_iaO, Int new_ia1, int new_ia2, int new_ia3,
int new_ia4, Int new_ia5);

/ • changes the 82588 1ndiv. address of another node * /

void change_conf1g (int master, Int destO, int des t l , Int dest2, int dest3. int dest4,
int dest5, int confO, int conf l , int conf2, int conf3,
int conf4. int conf5, int confB. int conf7, 1nt confS,
int conf9);

/ * changes the 82588 configuration of another node V

void get_stats (int master, int destO. int d e s t l , 1nt dest2, int dest3, int dest4.
Int dest5, stats_record "tx_rx_stats);

/ * fetches s t a t i s t i c s from another node * /

void start_tx (1nt destO, 1nt d e s t l , int dest2, int dest3. int dest4.

Figure E.79: Header Files (continued)

Appendix E. Notes on the Automated Network Driver Program 145

Int dest5);
/ * i n i t i a t e s repeated-transmission sequence of other node(s) • /

void abort_tx (int destO, int d e s t l , int dest2, int dest3, int dest4,
int dest5);

/ * hal ts repeated-transmission session of other node(s) * /

void pr1nt_screen (stats_record tx_rx_stats);
/ * pr in t s contents of s t a t i s t i c s block to console * /

void pr1nt_f11e (FILE ' f i l e p t r . stats_record tx_rx_stats);
/ • p r i n t s contents of s t a t i s t i c s block to an output f i l e V
/ •

Richard Cam
93523827

Routines for 82588 Operations and Events.
Header f i l e : opevents.h
System: IBM PC's , compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 2.1 06 June 19B8

V

•define LAN_CTRLR 0x300 / * I/O port address of 82588 V

•define DONE 1 / * f lag value: operation was acknowledged by 82588 V
fdefine PENOING 0 / • f lag value: acknowledgement pending • /
fdefine PASSED 2 / • f lag value for diagnose-passed event • /
fdefine FAILED 3 / * f lag value for diagnose-fai led event * /
fdefine SUCCESSFUL 4 / * f lag value for successful transmission • /
#def1ne COLLISION 5 / • f lag value for c o l l i s i o n during transmission • /
fdefine N0T_0K 6 / • f lag value for unsuccessful transmission not caused by

a co111s ion • /

fdefine NOP 0 / • 4-bit operation f i e l d code for no-operation command V
fdefine IA_SETUP 1 / • . . .code for ia-setup command • /
fdefine CONFIGURE 2 / • . . .code for configure command • /
fdefine TX 4 / • . . . code for transmit command */
fdefine DUMP 6 / * . . . code for dump command V
fdefine DIAGNOSE 7 / • . . . code for diagnose command V
fdefine RCV_ENABLE 8 / " . . .code for enable receiver command • /
fdefine RCV_DISABLE 10 / • . . .code for disable receiver command V
fdefine ST0P_RCV 11 / • . . .code for stop receiver command V
fdefine RETX 12 / * . . . code for retransmit command */

fdefine IA_SETUP_DONE 1 / • 4-bit event f i e l d code for 1a_setup-done event V
fdefine CONFIGURE_DONE 2 / ' . . . code for configuration-done event V
fdefine TRANSMIT_D0NE 4 / • . . .code for transm1t-done event • /
fdefine DUMP_D0NE 6 / • . . .code for dump-done event V
fdefine DIAGN0SE_PASSED 7 / • . . .code for diagnose-passed event * /
fdefine ENO_0F_FRAME 8 / * . . .code for end-of-frame event V
fdefine RECEPTI0N_AB0RTED 10 / • . . .code for reception-aborted event • /
fdefine RETRANSMIT_D0NE 12 / • . . .code for retransm1t-done event • /
fdefine DIAGNOSE_FAILED 15 / • . . .code for diagnose-fa 1 led event V

fdefine CHNL_588_0 0x00 / • 1-bit CHNL f i e l d to select channel 0 of 82588 V
fdefine CHNL_588_1 0x10 / * . . .channel 1 of 82588 V

typedef void interrupt (* 1ntrfn_ptr)();

Figure E.80: Header Files (continued)

Appendix E. Notes on the Automated Network Driver Program 146

/ ' 1ntrfn_ptr <--> pointer to an Interrupt function • /
typedef intrfn_ptr *ptr_ intr fn_ptr;

/ • ptr_1ntrfn_ptr <--> pointer to Interrupt function pointer .*/

void Ins ta l l (1ntrfn_ptr newhandler, unsigned 1nt int_num,
1ntrfn_ptr 'oldhandler);

/ • save o ld Interrupt vector of table entry int_nura and replace 1t with
new Interrupt vector • /

void Interrupt event_handler ();
/ • 82588 interrupt handler • /

void setup_1a_588 (address 1a_buff. address dump_buff I;
/ • set up and ver i fy 82588 individual address V

void conf1gure_588 (address conf1g_buff. address dump_buff);
/ • configure and veri fy 82588 configuration • /

void dump_588 (address dump_buff);
/ • dump 82588 reg is ters • /

void d1agnose_588 ();
/ • run internal 82588 diagnosis test V

void rcv_enable_588 ();
/ • enable 82588 receiver and prepare f i r s t receive buffer * /

void rcv_d1sable_588 ();
/ * immediately disable 82588 receiver * /

void stop_rcv_588 ();
/ • disable 82588 receiver as soon as no frame is being received • /

void quiet_transmit_588 (address tx_buff);
/ • no-screen-echo version of transm1t_588 • /

void qu1et_process_frames (1nt master);
/ * no-screen-echo version of process_frames • /

void transm1t_588 (address tx_buff);
/ • transmit frame * /

void process_frames (Int master);
/ * process received frames (i f any) * /
/•

Richard Cam
93523827

Timer U t i l i t i e s
Header f i l e : sysclock.h
System: IBM PC's , compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 2.1 10 June 1988

Figure E.81: Header Files (continued)

Appendix E. Notes on the Automated Network Driver Program 147

void pause (Int master, unsigned Int interval);
/ * pause for Interval seconds (and continue to process Incoming frames).

void delay (unsigned int interval);
/ * delay for Interval for loops * /

void start_t1me (unsigned 1nt interval);
/ • I n i t i a l i z e the timer • /

long t1me_up ();
/ • check If interval seconds have elapsed, return -1 i f interval seconds

have not yet elapsed, return the excess seconds otherwise */
I'

Richard Cam
93523827

U t i l i t y Routines for DMA/Interrupt Operations.
Header f i l e : s y s u t l l . h
System: IBM PC's, compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 2.1 06 June 1988

V

fdeflne DMA_MASK OxOA / • 8237A single mask register • /
fdefine FLIPFLOP OxOC / • 8237A f i r s t / l a s t byte pointer f l i p - f l o p V
fdefine CH1_ADDR 0x02 / • 8237A channel 1 base address register • /
fdefine CH1_C0UNT 0x03 / • 8237A channel 1 block length register V
fdefine CH3_AD0R 0x06 / • 8237A channel 3 base address register • /
fdeflne CH3_C0UNT 0x07 / • 8237A channel 3 block length register • /
fdefine 0MA_M0DE OxOB / • 8237A mode register V

fdefine CH1_PAGE 0x83 / • page register in PC for channel 1 V
fdeflne CH3_PAGE 0x82 / * page register in PC for channel 3 * /

fdefine CH1_TX 0x49 / • memory-to-I/O transfer on channel 1 * /
fdeflne CH1_RX 0x45 / • I/O-to-memory transfer on channel 1 • /
fdeflne CH3_TX 0x4B / * memory-to-I/O transfer on channel 3 * /
fdeflne CH3_RX 0x47 / * I/O-to-memory transfer on channel 3 * /

fdeflne MASK_CHANNEL_1 0x05 / * mask channel 1 V
fdeflne UNMASK_CHANNEL_1 0x01 / * unmask channel 1 • /
fdeflne MASK_CHANNEL_3 0x07 / • mask channel 3 V
fdefine UNMASK_CHANNEL_3 0x03 / • unmask channel 3 V

fdefine 0CW1 0x21 / • 8259A mask register • /

fdefine B0AR0_P0RT 0x301 / ' I/O address of StarLAN board enable port * /
fdeflne ENABLE_ALl_ OxFF / * enables a l l board functions ' /

void disable_dma (unsigned int dma_channel);
/* disable dma channel */

Figure E.82: Header Files (continued)

endix E. Notes on the Automated Network Driver Program 148

void prep_dma (address buffer ,
unsigned char dma_channe1, unsigned char d irect ion);

/ * prepare dma channel for transmission or reception • /

void quiet_prep_dma (address buffer ,
unsigned char dma_channel, unsigned char d irec t ion);

/ * prepare dma channel for transmission or reception • /
/ ' no screen echo version • /

void 1n1t_pic (unsigned int interrupt_l ine);
/ * I n i t i a l i z e programmable Interrupt contro l ler • /

void enable_board ();
/ * enable a l l functions in the Intel 82588 StarLAN board V

Figure E.83: Header Files (continued)

Appendix E. Notes on the Automated Network Driver Program

Richard Cam
93523827

Master Driver Program for 82588 StarLAN Network.
Source f i l e : run 1m.c
System: IBM PC's, compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 1.0 24 June 1988

f lnclude <stdio.h> / • standard I/O l ibrary • /
•Include "globals.h" / * global def in i t ions V
#Include "opevents.h" / • Interrupt handler & loader: 82588 commands • /
(Include "mldut 11 .h" / * remote programming c a l l s • /
Unc lude "autout 11 .h" / * local control c a l l s • /
(Include "sysclock.h" / • timer c a l l s * /

(define MASTER 100

extern stats_record stats_blk, saved_stats_blk;
extern Int repeat_transm1ssions;

stats_record foreign_stats;

unsigned int ia_block[IA_BUFF_SIZE J = { 8, 0, 1, 1, 0, 0. 0, 0);
unsigned 1nt conf1g_b1ock[C0NFIG_BUFF_SIZE] = (10, 0. 0x08. 0x00, 0x28. 0x00,

0x60, 0x00. 0xF2, 0x04, 0x88. 0x40 };

FILE ' f i r o u t f i l e . • secout f l l e .
unsigned 1nt 1, j ;

'thloutf11e;

main()
(

puts! '
puts!"

Run #1: r ing pattern tx data for 50
In 50-byte increments . \n");

1500-byte info, f i e lds \n");

f i r o u t f i l e = fopenl"run 1m.mOI",
secoutf l le = fopenl"run 1m.s03",
t h l o u t f l l e = fopenl "run 1m.s04",
1nit_node();
i f (MASTER) (

for (j = 0; j < 10; j*+) {
for (1 = 50; 1 <= 1500; 1

program_tx(MASTER, 1,
program_tx(MASTER, 1,
program_self_tx(300, 0

' i f
wt"
' i f

•= 50) {
3, 0. 0,
4. 0. 0,

i . 1.

0. 0.
0, 0.
3. 0,

300, 0,
300, 0,
0, 0, 0

OxFF. OxFF, OxFF);

0, 0, 8foreign_stats);

start_tx(OxFF, OxFF. OxFF,
3tart_self_tx(MASTER);
get_stats(MASTER, 1, 3, 0. 0.
pr1nt_screen(fore1gn_stats);
print_f11e(secoutf i le , foreign_stats);
get_stats(MASTER, 1. 4, 0, 0, 0, 0. &foreign_stats);
print_screen(foreign_stats);
p r i n t _ f i l e (t h i o u t f i l e , fore1gn_stats);
pr1nt_screen(saved_stats_b1k);
p r i n t _ f i l e (f i r o u t f i l e , saved_stats_blk);

0, 0.
0, 0,

)))
puts! " » > End of runlm. ");

)

Figure E.84: Sample Master Program

Appendix E. Notes on the Automated Network Driver Program 150

Richard Cam
93523827

Slave Oriver Program for 82588 StarLAN Network.
Source f i l e : run1s3.c
System: IBM PC's , compatibles, and variants thereof.
Compiler: Turbo C version 1.5 w/ Compact memory model
Version: 1.0 25 June 1988

•I

(Include <std1o.h> / * standard I/O l ibrary • /
(Include "globaIs.h" / • global def in i t ions * /
(include "opevents.h" / • interrupt handler & loader; 82588 commands * /
(include "midut11.h" / * remote programming c a l l s 'I
l inc lude "autout11.h" / • local control c a l l s * /
(Include "sysclock .h" / • timer c a l l s * /

(define MASTER 0

extern stats_record stats_blk, saved_stats_b1k;
extern 1nt repeat_transm1ss1ons;

stats_record fore1gn_stats;

unsigned Int 1a_block[IA_BUFF_SIZE) = { 6 . 0 , 1, 3 , 0 , 0 , 0 , 0) ;
unsigned 1nt conf1g_block[CONFIG_BUFF_SIZE 1 = (10, 0, 0x08. 0x00, 0x26. 0x00,

J 0x60. 0x00, 0xF2, 0x04. 0x88. 0x40):

Int 1;

main!)
{

putst" Slave Program (1: for use with a runtm master.\n");
puts!" Station Number 1 3 0 0 0 0, \n");

1n1t_node();
If (MASTER == 0) {

1 = 0;
for (; ;) {

process_framesl MASTER);
i f (repeat_transm1ss1ons) {

pr1ntf("\n repeated tx session number: %d.\n", 1);

)
do s1ave_tx(MASTER);))

de1nit_node();
puts!" » > End of Slave Program (1 for stat ion 1 3 0 0 0 0.");

)

Figure E.85: Sample Slave Program

Appendix E, Notes on the Automated Network Driver Program

Sample Output F i l e (par t of run lm .mOl) :
Each ' p a r a g r a p h ' of numbers co r responds to da t a
f o r one PC from a t r a n s m i s s i o n s e s s i o n .

1 1 0 0 0 0
8 0 38 0 96 0 242 4 136 64
1 3 0 0 0 0
300 50 0
40156 253 39966 0
28869 0 0 0
253 126 49 8 0 1 0 0 0 0 0 0 0 0
0
0 0 0 0 0

1 1 0 0 0 0
8 0 38 0 96 0 242 4 136 64
1 3 0 0 0 0
300 100 0
37649 23 37749 0
26309 0 0 0
23 12 4 1 0 0 0 0 0 0 0 0 0 0 0
21
0 0 0 0 0

1 1 0 0 0 0
8 0 38 0 96 0 242 4 136 64
1 3 0 0 0 0
300 150 0
35556 0 35657 0
20456 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
19
0 0 0 0 0

1 1 0 0 0 0
8 0 38 0 96 0 242 4 136 64
1 3 0 0 0 0
300 200 0
33934 0 34034 0
11994 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
17
0 0 0 0 0

Figure E.86: Sample Output File

Bibliography

[1] Costrell, L . , Dawson, W . K . , " F A S T B U S Modular High-Speed Data Acquisition Sys­

tem", repr. from I E E E Int ' l Conf. on Communications, I C C '82, June 13-17, 1982,

Phi la . , P A .

[2] Costrell, L . , Dawson, W . K . , " F A S T B U S for Data Acquisition and Control", IEEE

Trans, on Nuclear Science, Vol . NS-30, No. 4, August 1983.

[3] IEEE Standard FASTBUS Modular Data Acquisition and Control System, I E E E

Inc., 1985.

[4] personal communication from David Gustavson to W . K . Dawson and R . W . Dobin-

son, 31 July 1987 electronic mail.

[5] 802.3-1985 (ANSI/IEEE) (Draft International Standard) Standard for Local Area

Networks: Carrier Sense Multiple Access with Collision Detection (CSMA/CD),

I E E E Standards Catalog (Fall 1988) order number SH09738.

[6] 802.3a,b,c and e - 1988 (ANSI/IEEE) Supplements to Carrier Sense Multiple Access

with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifica­

tions, I E E E Standards Catalog (Fall 1988) order number SH11411.

[7] Golbert, A . , Gandhi , S., Implementing StarLAN with the Intel 82588, Intel Appl i ­

cation Note AP-236, Intel Corp., 1986.

[8] Derfler Jr., F . , "Making Connections: Fast Performance over Telephone Wire" , PC

Magazine, Vol . 7, No. 15, 13 Sept. 1988.

152

Bibliography 153

[9] 82588 Design Kit Users Guide, Order Number 296098-001, Intel Corp., 1986.

[10] Local Area Networking (LAN) Component User's Manual, Order Number 230814-

003, pp. 6-1 to 7-60, Intel Corp., Sept. 1985.

11] Retix, 1547 Ninth St., Santa Monica, C A 90401, U . S . A . , phone: (213) 829-4922.

121 WD83C510 S t a r L A N Hub Controller, Document Number 79-000104, Western Digi­

tal Corporation, 1987.

13] Gustavson, D . , Theus, J . , " W i r e - O R Logic on Transmission Lines", IEEE Micro,

June 1983.

14] Wilson, R. , "The Physics of Driving Backplane Buses", Microprocessors and Mi­

crosystems, V o l . 10, No. 2, March 1986.

15] Southard, R. , "Interconnection System Approaches for Minimizing Data Transmis­

sion Problems", Computer Design, March 1981.

16] Blood Jr. , W . , MECL System Design Handbook, 4th ed., 2nd printing, Motorola

Inc., 1983.

17] Del Corso, D . , et al., Microcomputer Buses and Links, Academic Press, 1986.

18] Mokhoff, N . , "Transceiver Does Away W i t h Central Hub in S t a r L A N " , Electronic

Design, June 25, 1987.

19] personal communication with Ray Duley (A M D Aust in, Texas).

20] Hammond, J . , O'ReiLby, P., Performance Analysis of Local Computer Networks,

Addison-Wesley, 1986. pp. 381-390.

[21] Ibid., pp. 390-401.

