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Abstract 

External electric and magnetic fields affect the orientation of liquid crystal 

molecules. Several aspects of these effects have been studied in the liquid crystal 4-n-

pentyl-4'-cyanobiphenyl (5CB) with special attention focused on geometries where one 

field is applied along the direction of initial orientation and a second field is applied 

perpendicular to this direction to break the uniaxial symmetry of the sample. 

Preliminary studies involved measuring the magnetic susceptibility of a nematic 

liquid crystal; for the first time, these measurements were made with a SQUID 

magnetometer. Details of the nematic ordering in 5CB over the temperature range of 

15-40°C and in a magnetic field of 0.060T have been deduced from these measurements. 

The influence of fields on molecular ordering has been studied theoretically by 

extending Maier Saupe mean field theory to include two fields. The influence of fields 

on fluctuations of the nematic director has been studied using continuum theory. These 

studies show that the effect of fields on fluctuations of the nematic director should 

dominate the experimental observations. . Optical measurements are reported which 

demonstrate for the first time that a biaxial nematic phase can be induced by applying 

two fields to a sample with positive susceptibility anisotropics. This biaxial phase was 

studied in 5CB at 33.4°C for magnetic fields between .08-.42T and electric fields 

between 0-6xl0 4V/m. The results agree with those predicted from fluctuation theory. 

As the magnitude of the symmetry breaking field is increased, a transition to an 

elastically deformed state takes place; this Freedericksz transition is usually second 

order. Theory and measurements are reported here which show for the first time that 

this transition can be first order in a number of geometries for the liquid crystal 5CB. 

In conjunction with these measurements, a novel modulated phase has been, observed. 



This appears to be a stable, equilibrium phase in which the director remains in the 

plane defined by the initial alignment and the distorting field. Experimental 

investigations, of this phase are presented and a simple model is proposed which predicts 

this behavior. 
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Chapter Xi Introduction 

Liquid crystals are primarily liquids but also share properties of crystalline 

materials [see, for example, de Gennes, 1974]. Usually, liquids are characterized by 

isotropic macroscopic properties and by the ability to flow while crystals are 

characterized by long range positional order which leads to anisotropic macroscopic 

properties. Like liquids, liquid crystals exhibit fluidity. They are made up of organic 

molecules characterized by anisotropic molecular properties and by short range 

molecular interactions which couple over many molecular diameters to produce long 

range orientational order. These characteristics result in anisotropic macroscopic 

properties as seen in the diamagnetic and dielectric susceptibilities and in optical 

birefringence. 

There are several types of liquid crystalline order which lead to a variety of 

phases. Schematics of a few of the most common phases are shown in Figure 1. 

The nematic phase is the least ordered liquid crystalline phase, being 

characterized by only long range orientational order. It is usually a uniaxial phase in 

that macroscopic properties are different along the direction of order and perpendicular 

to that direction. The standard physicists' view of the nematic phase is a uniaxial 

phase formed from hard, rod-like molecules ordering like pencils in a drawer.. More-

realistically, the molecules should be considered to be lath- or book- like and flexible. 

Theoretical considerations of book-shaped molecules lead to predictions of biaxial phases 

[Straley, 1974]. Biaxial nematic phases have been found experimentally in lyotropic [Yu 

and Saupe, 1980], thermotropic polymer [Hessel and Finkelmann, 1986] and recently 

thermotropic monomeric systems [Malthete et al., 1986]. 

Most of the other liquid crystal phases are smectics: as well as possessing long 

range orientational order these phases are characterized by varying degrees of positional 

order - the molecules organize themselves-in layers and can even.have order within the 
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Fig. 1. Schematics of various liquid crystal phases, a)'nematic, ,b) smectic A and c) 

smectic C. Each rod depicts the average direction of molecular orientation in the 

surrounding region. 
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layers, for example the hexatic phases where the in-plane ordering is hexagonal. Some 

of these phases are biaxial; here macroscopic properties described by second rank 

tensors are characterized by three components. This is the case for the tilted smectics 

where the director lies at an angle of 10-25 degrees to the axis perpendicular to the 

planes of the molecules. 

Transitions between liquid crystal phases are the result of several mechanisms. 

In thermotropic liquid crystals, transitions occur from phases of • lower to higher 

symmetry as the temperature is increased. In lyotropic liquid crystals, these transitions 

occur primarily as the concentration of rod-like aggregates in a liquid substrate is 

decreased. 

The main concern of this thesis will be with nematic liquid crystals, in particular 

the effect of external fields on these systems. For theoretical purposes, the molecules 

will be considered be to uniaxial. In the nematic phase, molecules tend to align with 

partial ordering of their symmetry axes. This ordering can be described by an order 

parameter tensor S where 

where 1 is a unit vector along the symmetry axis of the molecule and the brackets < > 

denote a volume average. In the principal axis frame, S is diagonal and the order of a 

uniaxial phase can be described by the largest eigenvalue of the tensor. The frame is 

usually chosen so that this is the z component, so that the order is described by Szz 

where ' 

S z z = S = i < 3 cos20 - 1 >. [1.2] 

Here 6 is the angle between the cylindrical axis of the molecule and the eigenvector 

associated with the largest eigenvalue and the average is taken over available 

configurations. This definition has the property that if there is no orientational order 

and the system is isotropic, S — 0, while when the order is complete and all the 

molecules line up along the same axis, S = 1. The eigenvector associated with the 
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largest eigenvalue of S_ in the principal axis frame is defined to be the director. In 

principle, the director can vary in space and time, though in a well aligned sample, the 

variations of the director will be small. To take these fluctuations into account, the 

order of the system in the lab frame is represented by the matrix 

S a / ? (r) = i S(r) [ 3 n a(r) n^(r) - SA0 } [1.3] 

where n(r) is a unit vector along the director at a point r in the fluid. The directions 

n(r) and — n(r) are equivalent. The molecular order parameter is given by 

S(r) = 1 < 3 cos20 - 1 > y ( r ) [1.4] 

and the average is taken over a volume V(r) small compared to the wavelength of the 

director deformations. 

The most important properties of liquid crystal phases, at least from a 

technological point of view, are related to their response to external electric and 

magnetic fields. External fields affect the liquid crystal by changing both the local 

ordering of the molecules and the thermal fluctuations of the director. These changes 

affect the properties of the bulk sample. Several aspects of these phenomena, 

particularly those related to. the nematic phase, will be considered in this thesis. 

Theory and measurement of the magnetic susceptibility will be discussed in the 

second chapter. The determination of the susceptibility of liquid crystals to applied 

fields is a fundamental problem in the study of these materials for several reasons. 

Firstly, the order parameter of the sample can in principle be determined by analyzing 

measurements of any second rank tensor property of the bulk material. Secondly, most 

applications of liquid crystals depend on their response to applied fields, and as this 

response is partly determined by the susceptibility anisotropy, knowledge of the 

susceptibilit}' is of practical interest. In addition, information about the susceptibility 

anisotropics is sometimes necessary for the determination of other physical parameters, 

such as the elastic constants. One of the early projects of this thesis work involved the 

measurement of the magnetic susceptibility of a nematic liquid crystal with a SQUID 
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(Superconducting QUantum Interference Device) magnetometer. SQUID 

magnetometers had not been used previously in the measurement of magnetic properties 

of liquid crystals and the intrinsic sensitivity of the SQUID suggested that a more 

accurate measure of the order parameter might be obtained by using this method. This 

work was further motivated by the fact that magnetic susceptibility measurements are 

the easiest to relate to the order parameter. While the results for dielectric properties 

are difficult to analyze due to local field effects, the order parameter can be accurately 

determined from magnetic susceptibility measurements because the small magnetic 

susceptibility of liquid crystals makes the inclusion of local field corrections unnecessary 

in the analysis of the data. 

The second aspect of the influence of fields on nematic liquid crystals studied 

was the effect of fields on the nematic order, particularly where fields were used to 

break the uniaxial symmetry of the sample. As a precursor to the experimental work, 

theoretical investigations were carried out to extend existing theories to the case of two 

fields. There are two contributions to the order of the bulk sample: (i) local 

orientational order of the molecules and (ii) fluctuations of the local order. Both of 

these are affected by external fields. The two contributions are usually considered 

separately; mean field theory can be used to discuss molecular ordering and continuum 

theory is used to discuss fluctuation effects. These theories are developed in Chapter 3. 

These two contributions affect different aspects of the macroscopic properties. 

Changing the orientational order of the molecules affects the average of the molecular 

polarizabilities and hence the macroscopic properties. The fluctuations of the director 

in a particular region of the sample change the principal axis frame of the anisotropic 

macroscopic properties in that region and so any change in the fluctuation spectrum will 

change the average properties for the sample. The magnitude and nature of the effects 

on the macroscopic properties are compared. In the last section of the chapter, other 

experiments investigating field induced order are discussed and .finally, the experiments 
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performed for this thesis are described and the results are compared to theory. 

External fields may compete with the elasticity of the bulk sample to influence 

the equilibrium distortions of the director. Distortions of the director may be viewed as 

being made up of the three principal modes shown in Figure 2. There are three elastic 

constants associated with the principal modes; the splay constant, K x , the twist 

constant, K 2 , and, the bend constant, K 3 . Nematics can be distorted by competing 

boundary conditions and/or external fields. Boundary conditions are imposed by 

treating the container walls so that the molecules align at some specified direction to 

the walls. For example, conditions where the molecules are aligned to be perpendicular 

(homeotropic alignment), to be parallel (planar homogeneous alignment) or to be tilted 

with respect to the boundary can be obtained. If the fields are large enough to 

overcome the restraining elastic torques, bulk reorientation of the sample will occur. 

The fourth chapter deals with theory and experiment related to these phenomena, 

focusing on the effect of competing electric and magnetic fields. 

The fifth chapter discusses a new modulated phase discovered in the course of 

the measurements described in Chapter 3. Phases where the director is modulated 

rather than uniform in space are not uncommon in the study of liquid crystals, and the 

various classes and mechanisms will be discussed. Theoretical and experimental 

characterization of the unique modulated phase discovered here will be described and 

related to previous results. 
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a. 

Fig. 2. Deformation modes possible in a nematic liquid crystal, a) undeformed state, 

b) splay mode, c) bend mode and d) twist mode. 
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Chapter 2l Magnetic Susceptibility of Liquid Crystals 

2-1: Theory 

Consider the effect of a magnetic field H on a nematic liquid crystal. The 

magnetic induction B is given by 

B = no ( M + H ) [2.1] 

where M is the magnetization, H is the applied field and Ho is the permitivity of free 

space. The magnetization is 

M a = Y f t / j H , • [2.2] 

where \ap a r e elements of the diamagnetic susceptibility tensor \ - I n a uniaxial 

nematic liquid crystal with director along z, this tensor is given by 

x ± 0 0 

x - 0 x ± 0 [2.3] 

0 0 Xll 

where x± a n ( l Xy are the components of x perpendicular and parallel to the director. 

The average susceptibility is given by 

x = I [x,| + 2 x ± ] [2.4] 

and the anisotropy of the suseptibility is defined as 

A Y = X | , - x j . = \ - x]- [2.5] 

It is interesting to note that while both xy and X _ L a x e negative, the anisotropy is 

positive for most liquid crystals. This is because the largest contribution to the 

molecular diamagnetisin comes from the induced current carried by the delocalized 

electrons of the aromatic rings present in most liquid crystals. This makes a large 

negative contribution to the component of x perpendicular to the director. Also note 

that here x is a volume susceptibility; the mass susceptibility is related to the volume 

susceptibility through the density of the material p; x m = xlP-

It is convenient to define the anisotropic part of the magnetic susceptibility 
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tensor, 

[2.6] 

This is a traceless, second rank tensor which will be zero in the isotropic phase. 

Interpretation of the anisotropic magnetic susceptibility in terms of the local 

microscopic order S as defined in Chapter 1 involves considering the relationship 

between microscopic and macroscopic susceptibilities. In the simplest case, the 

molecules are assumed to be uniaxial with components of the molecular magnetic 

susceptibility parallel (Ky) and perpendicular (KJJ to the long axis of the molecule. The 

z component of the molecular magnetic moment a induced by a field H acting along z 

of such a molecule oriented at an angle 6 with respect to z is given by 

fiz = «|| H cos20 + K J _ H sin20. [2.7] 

The average component of the magnetization per unit volume along z is then 

M z - Pn <Hz> '— Pa 
9 "\ •> K + ^ A K <^ cos" >4>]H [2-8] 

where pn is the number density and < > denotes an average over the sample volume. 

The susceptibility parallel to the director can be written 

Pn 7c + | A K S [2.9] 

where the molecular susceptibility anisotropy and the average molecular susceptibility 

are defined as 

and 
K | | + 2KJ^ 

[2.10] 

Similarity, the magnetic moment of a molecule oriented at an angle 0 with respect to z 

and tj> with respect to x, for H acting along x, is 

p x = /c|| H sin2^ sin20 + K J _ H sin2<p cos2#. [2-H] 

and so the average component of the magnetization per unit volume along x is 

H [2.12] M x = Pn L ~ 3 A k <\ c o s 2 6 » - i > 

where the <f> dependence averages out because the sample is cylindrically symmetric. 

The susceptibility perpendicular to the director can be written 

X±=Pn « - ^ A K S 

Thus, for a uniaxial nematic made up of uniaxial molecules, 

9 
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X = Pn « ' [2-14] 

AX = pn A « S. [2.15] 

Then, the z component of the anisotropic' part of the magnetic susceptibility tensor 

given by 

Qzz = jj A * = ! /? n A/e S [2.16] 

is proportional to the order parameter of the nematic. 
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2-2: Measurements of the diamagnetic susceptibility of 4-n-pentvl-4f-cyanobiphenvl  

(5CB) using a SQUID Magnetometer 

Measurements of the diamagnetic susceptibility are complicated by the fact that 

the susceptibility of liquid crystals is very small, typically Ax ~ 10~6 MKS. A variety 

of sensitive techniques have been employed to measure this property. Most methods 

measure \-y as they rely on the fact that a nematic sample placed in a strong magnetic 

field aligns along the field and will have a magnetization proportional to xy-

Measurements of x are made in the isotropic phase so that full information on Ax can 

be obtained. The Faraday-Curie method [de Jeu and Claassen, 1978; Sherrell and 

Crellin, 1979] measures the magnetic force on a sample suspended in an inhomogeneous 

field. In this method, a small field gradient is present in the main, aligning field in the 

direction perpendicular to the director. The sample experiences a force in the direction 

of the field gradient proportional to the susceptibility; this force is measured with a 

sensitive balance. The Gouy balance method [Kneppe et al., 1982] measures the force 

on a cylindrical sample whose ends are placed in two uniform fields of different 

magnitude. 

For this thesis, magnetic susceptibility has been measured with a SQUID 

(Superconducting QUantum Interference Device) system [Frisken et al., 1986]; here the 

magnetization induced in a sample by the stable, homogeneous field of a 

superconducting magnet is detected by a superconducting pick-up coil coupled to a 

SQUID magnetometer. It has been known for some time that SQUID devices offer the 

greatest potential for sensitive measurements of magnetic susceptibility, though there 

are practical challenges. SQUID devices operate at liquid helium temperatures while 

most liquid crystalline materials exhibit mesomorphic behavior near room temperature. 

The large temperature gradients necessitated by the close proximity of the sample and 

the superconducting pick-up coil make it difficult to achieve the full sensitivity inherent 

in a SQUID system. This general problem has been studied by Philo and Fairbank 
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[1977] among others. 

The design of the SQUID susceptometer used was similar to that developed at 

Stanford [Philo and Fairbank, 1977; Day, 1972; Philo, 1977]. The system featured a 

direct access sample space which could be temperature controlled to within ±10 mK 

over the temperature range 100 K - 330 K. The temperature of the sample and the 

heat flow from the sample to the helium bath were controlled by a set of shields. A 

typical choice of shield operation temperature resulted in a helium loss rate of 12 1/day 

at a sample temperature of approximately 300 K. The temperature of these shields was 

regulated to ±10 mK to minimize contributions to the SQUID signal from temperature 

dependent paramagnetism of the shields. The sample magnetization was monitored by a 

pair of astatically wound superconducting pick-up coils which constituted the primary 

winding of the flux transformer. This was connected to a commercial SHE 330 SQUID 

system. A superconducting (NbTi) shield surrounding the pick-up coils and sample 

space stabilized the externally applied field and shielded out extraneous magnetic noise. 

The applied field was provided by a small superconducting magnet which was capable 

of producing fields up to 1 T, uniform to within ± 0.1% for a distance of 25 mm along 

the coil axis measured from the center of the coils. The maximum operating fields were 

limited to 0.1 T. Independent optical measurements showed that this field was 

sufficient to align the liquid crystal sample. 

The liquid crystal sample used was 5CB or 4-n-pentyl-4'-cyanobiphenyl. This 

liquid crystal was used in all of the experiments discussed in this thesis. It is a simple 

liquid crystal in that it has only a nematic phase; homologues of this system with 

longer alkyl chains show smectic phases as well. It is frequently used by scientists 

investigating liquid crystal properties because it is chemically inert and longlived and 

has a nematic phase around room temperature. Also, its physical properties are well 

known, making it a suitable choice for the study of new phenomena as well as for the 

testing of new measurement techniques. 
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A portion of the sample material used in this experiment was obtained from 

B D H while the rest was synthesized by Dr. Gordon Bates at the University of British 

Columbia. The BDH sample was used without further purification. Approximately 200 

mg samples were contained in 5 mm o.d. NMR tubes attached to quartz support rods. 

The sample assembly could be raised and lowered by a computer controlled servomotor 

and was contained in a helium atmosphere. At the beginning of each run, the sample 

tube was lowered and raised through the pick-up coil region at a fixed temperature and 

field, producing a signal as the sample tube passed through the coils. The signals 

produced by the astatic coils were opposite in polarity and the absolute susceptibility of 

the sample was obtained from this data. The accuracy of these results was limited by 

noise resulting from movement of the sample. Once the absolute susceptibility was 

obtained in this way, more accurate measurement of the relative susceptibility was 

made by holding the sample in one of the coils at a position of maximum signal and 

varying the temperature. With the sample in this position, it was heated above the 

nematic-isotropic transition temperature (35.3°C) in a field of 0.060 T. The sample was 

then cooled slowly in stages. At each stage the sample was equilibrated for at least 20 

minutes; the output voltage of the SQUID system was monitored during this time. 

After reaching equilibrium, data were recorded every minute for a further ten minutes. 

The instrument was calibrated using spectro grade benzene with a mass 

susceptibility of 8.82xl0"9 m 3 /kg [Handbook of Chemistry and Physics, 1970]. For a 

273 mg sample of benzene in a field of 0.060 T, the flux appearing in the SQUID due to 

the sample corresponded to 54 flux quanta. Over a temperature range of 25°C, the 

susceptibility was found to be constant to within .02%. This represents the accuracy to 

which changes in the susceptibility could be measured in this apparatus. Absolute 

susceptibility (relative to benzene) could be determined to within 10%. 
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2-3: Results and Discussion 

In the nematic phase of 5CB, the susceptibility tensor consists of two 

components, x y a nd X±- The susceptibility anisotropy of 5CB is positive and the 

sample aligns with the director parallel to the magnetic field. The experimental 

configuration allowed for the measurement of susceptibility parallel to the field ( x y ) -

Assuming that the molecular diamagnetic susceptibility is independent of temperature, 

the average mass susceptibility \ m is also independent of temperature and can be 

measured in the isotropic phase. Then A x can be determined from 

A m m m 3 / m _ m \ ro 171 
A x = \|| - x± = 2 ( ,Y|| - x i s o )• [2.17] 

The determination of A , x m requires corrections to be made for the temperature 

dependence of the susceptibilitjr of the quartz sample tube. This was done by 

subtracting the signal due to the empty tube which was measured separately. It was 

also necessary to correct the data for a quasi-linear drift in the output ( < i flux 

quantum/hr) associated with the decrease in liquid helium level in the cryostat. The 

correction was calculated by a linear fit to the drift rate measured with the sample in 

thermal equilibrium. 

The absolute value of the mass susceptibility in the isotropic phase was 

determined to be 8.37 ± 0.08xl0"9 m 3/kg. This differs by 1% from the value of 

8.43xl0"9 m 3 /kg emoted by Sherrell and Crellin [1979]. This is well within the expected 

accuracy. 

The results for the anisotrop}' of the susceptibility as a function of temperature 

are shown in Figure 3. Using the form of A x m employed by Sherrell and Crellin [1979] 

A x m ( T ) = Ao + A X ( T N I - T ) n + A 2 ( T N I - T) + A 3 ( T N I - T ) 2 [2.18] 

the results presented here can be compared to those of the above authors. A non-linear 

least squares fit of the data below the transition to this form gives A 0 = 8.338xl0"10, A_ 

= 2.887xl0"10, A 2 = 6.510x10"", A 3 = 3.520xl0"13 and n = 0.63 with T N , = 35.3°C 

where the results of Sherrell and Crellin [1979] are T N , = 35.7°C, A Q = 8.873xl0"10 
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m 3 /kg, Al = 3.414xl0"10 m 3 / k g / K n , A , = 1.652xl0"10 m 3 /kg /K, A 3 = 7.277xl0"13 

m 3 / k g / K 2 and n = .7935. The data can also be compared to that of Buka and de Jeu 

[1982] if it is fit to an equation of the form 

A X

m ( T ) = AXc i - y # - n Z [2.19] 

Here, the best non-linear least squares fit provides values y=.9993, z=.1443 and 

Axo=2.36xl0"9 m 3 /kg while Buka and de Jeu [1982] give values y=.9995, z=.141 and 

Axo=2.14xl0"9 m 3 /kg with T N , = 34.5°C. Chi-square x2 is 8.02xl0"22 for the first fit 

and 1.68x10"21 for the second where 

i i 

y- are the data and y£ are the results of the fit to the data points. <r- are the weighting 

factors of the data points. These are assumed to be equal to unity for all the data 

points. The temperature dependence of the measured anisotropy can be related to the 

order parameter through Eqn. [16]. 

The results shown in Figure 3 are comparable in accuracy to those obtained 

using more conventional techniques. This is in contrast to the four or five orders of 

magnitude of improvement which might be expected when using the SQUID technique 

[Philo, 1977b]. The accuracy of our results is limited by the low applied field, by noise 

and drift and by variations in the sample temperature. In the absence of field 

dependent noise, the sample magnetization and hence the SQUID sensitivity increases 

with applied field. Unfortunately, the apparatus used was originally designed for 

different experiments involving small applied fields. The theoretical limit on applied 

fields imposed by the Nb tubing shielding the pick-up coil leads was 0.15 T at the 

operating temperature of the shield. In practice, the Nb shield was effective only up to 

0.06 T. In principle, the use of NbTi to shield the pick-up coil leads would allow the 

use of applied fields to at least as high as 5 T, but in practice, the full sensitivity 

implied by this field is difficult to attain. (For detailed discussion of the limitations 
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imposed by magnetic field noise, see Philo [1977b].) The range of improvement 

expected by increasing the applied field to 5 T is between one and two orders of 

magnitude, however, the extensive modifications required to change to NbTi shielding 

on the pick-up coils leads were not pursued. Noise and drift in the detected signal were 

due to many sources [Philo, 1977b], but the limiting factor appeared to be magnetic 

impurities in the aluminum form on which the SQUID pick-up coil was wound. This 

form contributed both to low temperature susceptibility noise and to drift due to 

temperature variations. Control of the temperature of the coil form was less effective 

(about 50 mK) than that employed by Philo [1977a, 1977b]. The temperature control of 

the sample was limited by the small sample space and the proximity of the helium 

bath. The sample space size was chosen to minimize liquid helium losses and to 

maximize the effectiveness of the shielding. With this experimental configuration, 

millidegree stability of the sample is obtainable but not the microdegree stability 

desired for detailed measurements close to the phase transition. 

In summary, the sensitivity achieved in these measurements is comparable to 

that obtained by other techniques. Improvements to the apparatus should increase the 

sensitivity by about two orders of magnitude making it more sensitive than the 

Faraday-Curie and the Gouy balance techniques. 
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Chapter 2l Field Induced Order 

3-1: Molecular Field Theory 

3-1 (i): Field effects on 0 1 • -ntational order 

In the presence of two fields, the ordering will in general be biaxial, and two 

scalar order parameters which couple simultaneously to both fields will be required to 

describe the nematic ordering. Both the order of the nematic liquid crystal sample and 

the phase behavior of the system are affected by the presence of electric and magnetic 

fields [Frisken et al., 1987]. 

The effects of fields on molecular ordering can be described by two types of 

theories; both are mean field theories in that they ignore fluctuations. Previous 

theoretical work on biaxial phase behavior in the presence of external fields has mostly 

employed a phenomenological Landau-de Gennes expansion [Fan and Stephen, 1970; 

Priest, 1975; Keyes, 1978; Palffy-Muhoray and Dunmur, 1983; Gramsbergen et al., 

1986]. Here the free energy of the system is expanded in terms of an order parameter 

with the addition of extra terms to describe the field energies. This type of expansion is 

complicated by two observations: that the expansion parameters may be field 

dependent [Palffy-Muhoray and Dunmur, 1983] and that the coefficients may take on 

different values in different regions of the phase diagram. Another problem with this 

approach is that the expansion is valid only for small values of the order parameter and 

thus may not provide an appropriate description of first order transitions. 

Alternatively, theories considering molecular interactions using a combination of 

attractive and repulsive potentials can be used to study the global features of the phase 

diagram.' Various types of molecular statistical theories have been considered in 

discussions of liquid crystalline order, see for example Gelbart [1982]. 

We have used a molecular statistical model to describe the effect of fields on 

molecular ordering. The particular model used here is the Maier Saupe model [Maier 
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and Saupe, 1958; 1959; I960]. This model, in spite of its simplicity, has been quite 

successful in describing the first order nematic-isotropic transition and has been 

extended to include the effect of a single field [Wojtowicz and Sheng, 1974] as well as 

other situations of interest to liquid crystals, for example binary mixtures [Palffy-

Muhoray et al., 19S5]. In this approach, the intermolecular interactions are replaced by 

an effective self-consistent pseudo-potential. 

To expand the Maier Saupe theory to include the presence of external fields, we 

consider a nematic in the presence of an electric field E and a magnetic field H. The 

molecules are assumed to be nonpolar and to have intermolecular interactions as well as 

electric and magnetic susceptibilities with cylindrical symmetry about the same axis. It 

can be shown that the general situation in which the fields are oriented in arbitrary 

directions is then equivalent to one in which one has a magnetic and an electric field 

oriented along two perpendicular axes. The free energy per molecule is written 

F = - k B T ln z [3.1] 

The partition function, z, can be expressed in terms of a single particle pseudopotential 

£ so that 

z = J d 2l exp(-/?e(l)) [3.2] 

where j3 — (kgT)"1. 1 is a unit vector along the symmetry axis of the molecule and d 2 l 

= dsl/47r = sin0 d6 d(f> / in. The pseudopotential is given by [Palffy-Muhoray et al., 

1985] 

e(l) = PI - I P U Sap \a3a - J SBa~\ - i DaB aQa [3.3] 
'0a ~ § ^Pa 

where 7 is the isotropic liquid potential, p is the density and U represents the 

interaction strength. Summation over repeated Greek indices is assumed. The tensor 

order parameter is trace free and symmetric. It will be shown later to be given by the 

expression 

In the principal axis frame the order parameter has three components, S x x , Syy and 
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S z z . It is convenient to define two new order parameters Q = <q> = <czz> a n < l P = 

<p> = <crxx — ayy>i known as the uniaxial and the biaxial order parameters 

respectively. The order parameter tensor can now be written 

S = 
-J(Q-P) o 

0 - i ( Q + P ) 

0 0 

0 

0 

Q 

[3.5] 

The generalized tensor field D is defined as 

D a / ? = 1 [A« H a +Aa E a [3.6] 

where E a and H a are cartesian components of the electric and magnetic fields, 

respectively. The molecular properties are assumed to be uniaxial; the anisotropies of 

the magnetic and electric molecular polarizabilities are given by 

A K = — and Ac* = ory — a _̂  [3.7] 

where || and X denote the components of the molecular susceptibility parallel and 

perpendicular to the long axis of the molecule. 

The equilibrium free energy F e q can be found by minimizing the trial free 

energy of Eqn. [3.1] with respect to S, 

dF 
3S 

0 . 

a/3 
[3.8] 

This results in self-consistent equations for the components of S_: 

Sa0 = lj& "a/? e x P ("/Ml)) = <%/?>• [3-9] 
An expression for the equilibrium free energy can then be obtained by substituting this 

solution for S_ into Eqn. [3.1]. F e q is then no longer a function of S_ and in fact, it can 

be shown that S_ is conjugate to Q. This can be shown by differentiating F e q with 

respect to D Q^ 

^ e q _ + J F _ [ 3 . 1 0 ] 

5D a/3 dD a/? 

so that 
3F, SI = 

a/3 

< * A F 3 > + 0 

2 0 



There are two useful properties of 2 that simplify the order parameter 

calculations. The first is that an arbitrary configuration of constant electric and 

magnetic fields is equivalent to a situation in which two fields are oriented along two 

perpendicular axis. To see this, consider the field tensor D which is real and symmetric 

and therefore diagonizable. D only enters the formalism through the term D a ^ c r ^ a in 

the pseudopotential. In the principal axis frame for L}, this term can be rewritten 

Ba(3a (3a = ^xx^xx + D y y O y y + Dzz^zz-

Since £ is traceless, an arbitrary term linear in Tr can be added to the field term, 

Bal3crl3a = ̂ a^pa + a ha(3a()a t3-1 2] 

where a is a constant. If a = -Dyy, 

I)aPa0a ~ (Dxx"Dyy) c rxx + ( D zz-Dyy)°"zz [3-13] 

and therefore the field term in the pseudopotential appears to involve only two fields 

oriented along two perpendicular axis. The two new field tensor components ( D x x -

Dyy) and (DZz~Dyy) will be functions of the original fields and the molecular 

anisotropics. Therefore, for a given non-orthogonal set of E and H fields, there always 

exists a set of orthogonal fields E and H which give the same tensor D a ^ and thus the 

same free energy. Thus in studying the behavior of the liquid crystal on D we need 

only look at orthogonal electric and magnetic fields. The second property involves the 

relationship between the principal axis frames for D and S_. The equilibrium free 

energy, F e q , is a function only of the generalized field tensor L} and the temperature T. 

It contains scalar terms made up of the field tensor. There are only two such terms: 

D a / ? V a n d D a / ? D / ? T

D T a - [3-14] 

Since the order parameter is conjugate to the field tensor, 

S „ , = - | £a [3.15] 
ulJa/3 

so ^ will contain terms like 

D / ? a and D / 3 7 D 7 a . [3.16] 

In the principal axis frame for D, D is diagonal and only the diagonal elements of S will 

survive. Therefore, a principal axis frame for 2 will also be a principal axis frame for 
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For special values of the fields degenerate situations may occur in which the order 

parameter is free to rotate about some axis at no energy cost. 

Now consider the case where the magnetic field is applied along z and the 

electric field is applied along x. In the principal axis frame, the pseudopotential 

becomes, 

U Qq - \ Q 2 + \ ( Pp - \ P 2 ) - Hq + \ e ( q - P ) ] [3.17] 

where the field parameters h and e are 

h = ^ f l ! a n d e = ^ l 2 . [3.18] 

Negative values of h and e correspond to negative susceptibility anisotropics. 

Minimizing the free energy yields self-consistent equations for the average values 

of the order parameters 

Q = l / d 2 l q e x p ( - / ? £ ( i ) ) [3.19] 

and P = I Jd2\ p exp (-pe(\)) . 

Thus, the behavior of Q and P as a function of the three thermodynamic variables T , e 

and h can be determined. By expressing these equations in terms of integrals involving 

complex error functions and solving numerically using fixed point iteration for given 

values of the fields and the temperature, the order paramenters P and Q, the phase 

transition temperatures and the spinodal points can be calculated. Once the order 

parameters are known the corresponding free energy can be computed from [3.1]. The 

program used for these calculations is listed in Appendix A. 

The calculations are simplified by the fact that the different regions of the e,h 

phase plane are symmetry related. It turns out that it is only necessary to compute the 

order parameters and the free energy for 0<e<h. Since the two fields in Eqn. [3.6] 

couple to the order parameters in the same way, the case e > h can be handled by 

relabelling the electric and magnetic fields. In the case of a field with negative 

anisotropy parameters, we can use the fact that cra^ is traceless to subtract a null term 

b(5a^cr^a, where 6ap is the Kronecker symbol, from the pseudopotential given by Eqn. 
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[3.3]. If we choose b to be the largest of —e or —h we see that a field with negative 

anisotropy is equivalent to fields with positive anisotropy along the two perpendicular 

axis. Also, since the molecules are assumed to be nonpolar, positive and negative 

directions of the fields are equivalent. It is also important to note that there are 

equivalence relations between order parameters corresponding to a relabelling of the 

coordinate axes [Palffy-Muhoray et al., 1985]. 

The effect of a single field acting along the director of a material of positive 

susceptibility is well established [Wojtowicz and Sheng, 1974]. The first order isotropic-

uniaxial nematic transition temperature increases with the field and ends at a critical 

point. The order parameters and the free energy for various values of h with e=0, 

reproducing results of Wojtowicz and Sheng [1974], were calculated from Eqn. [3.19] and 

[3.1] and are shown in Figure 4. Temperatures are given in units of the zero field 

nematic to isotropic transition temperature T N ) , while the free energy is given in units 

of k B T N ( . The transition can be located by following the lowest free energy branch. 

Metastable states are expected between the transition and the spinodal points. As 

expected, the biaxial order parameter P is always zero. 

The phase diagram for e=0 and both positive and negative h is shown in Figure 

5. For positive h, the first order line ends in a critical point at h = .0097. For negative 

h, the first order line becomes a second order line at a tricritical point at h = —0.042. 

Accurate calculation of the tricritical point is made difficult by the fact that the free 

energy lines corresponding to different solutions have the same slope. The best method 

for calculation of the tricritical point calls for a series expansion in P of the free energy 

around the point; as knowledge of this value was not considered crucial for this work, 

this method was not pursued. As h —• — oo the ordering becomes two-dimensional as 

the director will be forced to lie in the plane perpendicular to the magnetic field, 

corresponding to Q = — i when H is along z. At high temperatures the molecular 

symmetry axes will be distributed uniformly in this plane and the system will be 
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uniaxial. At a certain temperature Too there will be a symmetry breaking transition to 

a biaxial phase with P ^ 0. By expanding the free energy in P for Q = — i , Too can 

be calculated to be 1.703. Numerical results show that the transition temperature 

approaches 1.703 monotonically from below; this result is different from that of the 

usual Landau approach [Palffy-Muhoray and Dunmur, 1983] where the transition 

temperature has a maximum for a finite field. The spinodals are shown as dotted lines. 

To study the induced biaxiality, nonzero values of e are considered. Figure 6 

shows the order parameter and the free energy for certain values of h = e. By 

symmetry this situation is equivalent to the case h < 0, e = 0 with h acting along y. 

The biaxial order parameter is a maximum at the nematic-isotropic transition and goes 

to zero as Q—'1. 

Figure 7 shows a projection of the phase diagram onto the e-h plane, with a 

three-dimensional plot of the phase diagram shown in Figure 8. The surface of first 

order transitions looks somewhat like an umbrella that has been turned inside out by 

the wind and with spokes in the —e,T and —h,T and e=h, T planes. In addition to the 

surface of first order transitions shown in Figure 8 there are three vertical sheets of 

transitions between twro phases in which the biaxial order parameter P changes sign. 

There is neither latent heat nor spinodals associated with these transitions, which can 

take place continuously through a rotation in the x-y plane. The transition temperature 

T N | has an absolute minimum T N ( for e = h = 0, and for small fields this temperature 

increases by an amount which is proportional to e or h (i.e. proportional to the field 

squared). 

26 



C H ° 

cu 
2-

CU o 

y° 
rcj - H 
S-, d ca 
(Xm 

o 
C H ° 

CU 

° 
O m 

• a 
a 

0.0 
O q 

p 
C O 

C H T 
cu 
G 
cu 
cu 
cu o 

cn 
U H I 

o.a 

0.9 1.0 

0.9 

h= o.nooo c= o.nonn 
h = 0.0150 e= 0.0150 

h = 0 .0500 e= 0.0500 

1.1 1.2 

1.1 1.2 

Temperature 

Fig. G. Order parameters Q and P and free energy F for e=h and various values of h. e 

— =%| L Q- and li = ~ T h e temperature is expressed in units of the nematic-

isotropic transition temperature T N ! and the free energy is expressed in units of k B T N ! . 

27 



0.06 h 

0.05-

-0.06 J 

Fig. 7. Projection of the phase diagram on to the e-h plane. A surface of first order 

transitions is suspended between three symmetry related tricritical points and bounded 

by lines of ordinary critical points, e — —£-Jf- and h = AT-TT--

28 



29 



3-1 (ii): Effects on bulk properties 

The fields needed to reach the critical or tricritical points are so large that the 

nature of these points cannot be investigated experimentally. For example, for 5CB 

where T N ) = 308 K, the ordinary critical point should occur at 1.045 T N , = 322 K. 

With known [Frisken et al., 1986; Buka and Bata, 1986] values of the anisotropics Ax 

and Ae, the critical field h=0.0097 would correspond to a magnetic field of 847 T or an 

electric field of 7.8xl07 V / m . In the case of the tricritical point at h = e = 0.042, T = 

1.078 T N | — 332 K and the tricritical fields are 1765 T for the magnetic field and 

1.62x10s V / m for the electric field. 

It remains then to calculate how big an effect the induced biaxiality of the 

molecular ordering will have on measurable quantities. The induced biaxiality can be 

detected by measuring the change in birefringence of the sample with a laser incident 

along the axis of initial alignment of the sample placed between crossed polarizers. 

Birefringence is the macroscopic property which can be measured with the highest 

accuracy, measurements of changes of the birefringence of liquid crystal samples on the 

order of 10"7 have been reported [Malraison et al., 1980]. The birefringence of the 

sample is a bulk property and depends on both the molecular polarizability and the 

orientational order of the molecules. 

When an electric field (such as that due to the incident laser beam) is present in 

the sample, the resulting electric displacement depends both on the applied electric field 

E and the polarization P of the system, 

D0 = eoE0 + ?0. [3.20] 

The bulk dielectric tensor t is defined 

D^ = e o S 3 7 E 7 . [3.21] 

Combining Eqn. [3.20] and Eqn. [3.21], an equation for the polarization can be obtained 

, '•: -V ?3 = «> ( V 7 - h-y) E T - [3-22] 

The polarization of the system has twro sources: the permanent dipole moments 
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of the molecules and the molecular polarizability of the molecules. At optical 

frequencies, there is no contribution to the polarization from the permanent dipole 

moments. Then the polarization is due to the dipole moment induced by the local field 

F where the local field consists of the fields due to the dipole moments of the other 

molecules as well as the applied field. The dipole moment of the i t h molecule r> is 

P i / 3 = ^ 7 L F i T * [3.23] 

where ^ is the molecular polarizablility tensor in the lab frame and F^ is the local field 

seen by the i t h particle. As with the case of the molecular magnetic susceptibility, the 

polarizability tensor in the molecular frame can be represented by a diagonal tensor 

a± 0 0 

0 0 [3.24] 

0 0 
a l l 

where Q J _ and ay are the polarizabilities perpendicular and parallel to the symmetry 

axis of the uniaxial molecule. Transformation of the uniaxial molecular polarizability 

tensor to the lab frame involves the rotation matrix T for two angles 

In the lab frame, 

that is 

cos <j> cos 9 sin <j> cos 9 

—sin 4> cos 4> 

cos <j> sin 9 sin <f> cos 9 

—sin 

0 

cos 6 

[3.25] 

Q / ? 7 L = a M hi + A a M f 3 hp h7 ~hJ 

[3.26] 

[3.27] 

J^J = 1 (a||+2aj_) is the average polarizability, Aa^j = | ( a|| — a ± ) ^ s ^ e where a 

anisotropy of the molecular polarizability and 1- is the unit vector along the long axis of 

the i t h molecule. 

The polarization of the sample is then 

P = Pn < > ' - = Pn["l + A Q S I • E [3.28] 
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where I is the identity matrix, pn is the number density, ^ is the order parameter 

tensor defined in Eqn. [3.5] and F is the average local field. In deriving this relation, we 

have assumed a mean field view of the local field, that is, that the local field does not 

care about the orientation of the molecule so that the average over molecular 

orientation can be carried out independently of the average over F-. 

Before continuing with considerations of the local field, it is worthwhile to 

summarize the extension of this derivation to the case of non-uniaxial molecules. In 

this case the polarizability tensor, as seen in the principal axis frame of the molecule, is 

written 

" i 0 0 

0 0 [3.29] 

0 0 "3 

Now the rotation matrix which will transform from the molecular frame to the lab 

frame will involve all three Euler angles. After averaging over all of the molecules in 

the sample, the anisotropic part of the polarizability tensor can be written [Bergersen et 

al., 1988] 

- i ( Q - p ) 0 0 

0 -1(Q+P) 0 

0 0 Q 
+ <*! — a 2 

| ( D - C ) 0 0 

0 

0 

1 (D+C) 0 
0 D 

[3.30] 

where in this case, there are four molecular order parameters (Q,P,D,C) which axe given 

by 

Q = i < 3 L 3 Z

2 - l > [3.31] 

P = 2 ^ ^ J 3 x " — L 3 y 2 ' > 

"L 2z 2> 

C — !<L 1 X ' ! —L 2 x 2 — L 1 y-+L 2 y ' ! >. 

L- (i=l,2,3) are the vectors in the principal directions of the molecular polarizability. P 

and C are order parameters for the biaxial phase, while D is the contribution to the 
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uniaxial phase made by biaxial molecules. Even in a uniaxial phase, measurements of 

different macroscopic susceptibilities will reflect different linear combinations of the 

order parameters due to different molecular susceptibilities. 

Calculation of the local field is a complicated problem. In principle, the 

calculation should sum the contributions of all of the induced dipoles as well as of the 

applied field, while, in practice, a variety of approximations have been used to simplify 

this problem. In order to obtain an order of magnitude estimate of the effect of 

molecular ordering on the birefringence, I will only consider the simplest model, 

proposed by Vuks [1966]. This assumes an isotropic form for the relation between the 

local and applied fields 

F = i ( e + 2 ) E , [3.32] 

where T is the average dielectric constant. Then the relation between the molecular 

polarizabilities and the dielectric constants can be written 

The refractive indicies N- are simply related to the dielectric constants 

N; 2 = e{i. [3.34] 

For uniaxial molecules, the relation between the birefringence, the molecular 

polarizabilities and the biaxial order parameter is given by: 

AN = N x - Ny ~ P n

3

( ^ + 2 } Aa P [3.35] 

For B = 0.44 T, E = 3xl0 4 V / m , and using data from Dunmur and Tomes [1983], we 

find that AN = 3.7xl0"8, which should be just measurable with careful technique. 
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3-2: Continuum Theory 

3-2 (i): Field effects on fluctuation amplitudes 

In the continuum model, nematic liquid crystals are characterized by a director 

field n(r) which defines the local principal axis of some second rank tensor property. 

The director field exhibits thermal fluctuations which are opposed by elastic torques 

and which may be influenced by external magnetic and electric fields. The external 

fields couple to the director fluctuations via the anisotropic susceptibilities; for a 

material of positive susceptibility anisotropy, a field along the director will quench the 

fluctuations while one applied perpendicular to the director will enhance fluctuations 

parallel to the field. In the latter case, the uniaxial symmetry of the system is broken, 

and the sample becomes biaxial. 

The amplitude of these fluctuations can be calculated by considering the effect of 

deformations of the director on the free energy developed for the continuum model by 

Frank [1958]. This calculation was first carried out by de Gennes [1968]. The 

derivation, extended to include two perpendicular fields, is outlined below. 

Consider a sample with its average director along z with small variations of the 

director through the sample. These variations correspond to nonzero x and y 

components of the director; as the fluctuations are assumed to be small, n z >> n x ,ny. 

In the continuum model, the free energy density of the system due to elastic effects is 

F f = 1 K ^ V - n ) 2 + i K 2 (ii-Vxn) 2 + 1 K 3 (nxVxn) 2 [3.36] 

where n = (cos0sin0,sin<£sin0,cos0), <j> and 9 are the azimuthal and polar angles, K 1 ? K 2 

and K 3 are the splay, twist and bend elastic constants. Small fluctuations result in the 

elastic free energy increasing by an amount 

AF f=iK 1(a xn x+5 yn y) 2+lK 2(a yn x-a xn y) 2+lK 3[(3 zn x) 2+( (9 zn y) 2] [3.37] 

where <9-=>-!=L 
i di 

The experimental geometry under study makes use of a magnetic field H applied 

along the direction of initial alignment, z, and of a voltage applied so as to result in an 
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electric field E (in the undistorted sample) perpendicular to this direction, say along x. 

Because of the different magnitudes of the electric and magnetic susceptibility 

anisotropics, the two field energy terms have to be considered differently. In the case of 

the magnetic field, the susceptibility anisotropy is of the order of 10"6 MKS so that the 

magnetic field H and the magnetic induction B are essentially parallel. In the case of 

the electric field, the susceptibility anisotropy is of the order of 10 and the electric field 

E cannot be assumed to be parallel to D. 

The applied magnetic field results in a magnetization of the sample 

M a = ,\'j_H a + (x|| - xj_) n a n ^ H ^ 

where \j_and xy a r e the bulk susceptibilities transverse and parallel to the director. 

The free energy density due to the magnetic field is given by 

F m = - i B-H [3.38] 

with the magnetic induction given by 

B = no ( H + M )• [3.39] 

The free energy density associated with the magnetic field is then 

F m = - \no [H 2+M-H] = - 1 HO [ H 2 + x ± H 2 + ( x,| - x ± ) ( H • n ) 2]. [3.40] 

The orientation dependent part of the free energy density resulting from the action of a 

magnetic field applied along z in the presence of a small fluctuation is 

A F m = 1 ^ (n x

2 +n y

2 ) = \ h (n x

2 +n y

2 ) [3.41] 

where /z0 is the permeability of free space, B ~ p Q H is the magnetic induction and Ax 

= *|| -

The application of a voltage to electrodes parallel to the magnetic field results in 

an electric displacement D 

D a = t o £ j _ E a + fo(f| |-fj_) n Q n^E^ [3.42] 

where e0 is the permitivity of free space and ej_ and ty are the bulk dielectric 

susceptibilities transverse and parallel to the director. The sample volume is enclosed 

by one pair of metal surfaces, and two pairs of non-conducting surfaces. Assuming only 
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z dependence of D and E , V- D = 0 implies that D z is a constant and since the only 

charges are on the electrodes, D z ' = 0. By symmetry, Dy = 0, as well. The set of 

equations [3.42] can then be written 

D x = eQe± E x + « 0 ( £ | | - £ _ L ) ( n x E x + n y E y + n z E z ) n x [3.43] 

0 = e0ej_ Ey + e0(e j| —€ j_) (n x E x +nyEy+n z E z ) ny 

0 = e0e_i_ E z + e0(e||-ej_) (n x E x +nyEy+n z E z ) n z . 

For ny.= 0, E y = 0. VxE=0, requires that E x be a constant, in this case equal to V/d, 

where V is the applied voltage and d is the spacing between the electrodes. Solving the 

equations above, we find that there is a z component to the electric field 

E z = - u n * n z E * [3.44] 
1 - u n x 

The x component of the displacement is given by 

Dx = [3-45] 
1 - u n x 

and the electric field contribution to the free energy density is 

F e = - | D x E x = - I [3.46] 
e e ±

 2 2 l _ u n x 

where u = 11

 e - . This form for the free energy due to a voltage applied parallel to 

the boundary planes was first derived by Arakelyan et al. [1984]. For small 

fluctuations, the corresponding change in the orientation dependent part of the free 

energy density is 

A F e = - I eo^u n x

2 E x

2 = - i e n x

2 . [3.47] 

Then the total change in the free energy averaged over the volume of the sample 

V is 

F = JAF = J d 3r ( A F f + A F m + A F e ) [3.48] 

Once the free energy is known., the probability of a particular director configuration 

occuring is given by 
-/3F(n) 

P(n) = & — [3.49] 
/ a n e 

where the integral is over all possible configurations. 
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Following Martinand and Durand [1972], the spatial variation of the director 

is expressed in terms of Fourier components 

n Q ( l ) = ̂  J2 n °^) e x l J (_ia-£) [3-5°] 
where 

1 V V 

[3.51] 

Now the free energy can be expressed as a sum over q, 

F = 2 T ^ { K i ( n x q x + n y q y ) 2 + K 2 ( n x ^ [ 3 - 5 2 j 

With the goal of expressing the free energy in diagonal form, the summand can be 

written in the form n a A a ^ n ^ where 

A = 
K 1 q x - + K 2 q y - - r K 3 q z - + h - e ( K 1 - K 2 ) q x q y 

( K 1 - K 2 ) q x q y K 1qy 2+K 2qx 2+K3q z

2-(-h 

a b 

b c 
[3.53] 

The normal modes of the system are found by diagonalizing A with a rotation 

transformation using the matrix P where 

P -
cos 7 —sin 7 

sin 7 cos 7 
[3.54] 

and 

cos 7 ~ - \ 
1 ( c - a ) " ' 
2 ^4b 2 +(c-a) 2 

[3.55] 

The eigenvalues are given by 

c+a . 1 [7u2 J 4 b 2 + ( c - a ) 2 [3.56] 

[3.57] 

A ± ~ ~ T ~ x 2^ 

with eigenvectors 

n_j_ = -:os 7 • n x + sin 7 • ny 

n_ = — sin 7 • n x + cos 7 • ny 

Now the free energy can be written in quadratic form in terms of the amplitudes of the 

normal modes 

F ~ 9I7 Y Y n°2 Acv' " = +'~ [3.58] 
q Q 
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Once the normal modes are known, the equipartition theorem can be used: for a 

classical system with free energy quadratic in the amplitudes na(gj, the average energy 

per degree of freedom at thermal equilibrium is equal to i kgT so that the amplitudes 

of the normal modes can be expressed by 

< n a

2 ( a ) > T - [3.59] 

The amplitudes of interest here will be the average value of the fluctuation amplitudes 

<n x

2 +n v

2 > and the difference in the amplitudes <n x

2—ny 2> where, in terms of the 

eigenvectors, 

<nx

2(a)+ny

2(a,)> = <n1

2(o.)+n2

2(cl)> = <n1

2(a,)>+<n2

2(a)> [3.60] 

<nx

2(a)-ny2(a)> = <n1

2(g,)(cos2(T)-sin2(7))> - <n 2

2(gJ(cos 2( 7)-sin 2(T))> 

for <njn2> = 0. If the amplitude difference is nonzero, the uniaxial symmetry of the 

sample is broken and the sample appears biaxial. 

Solutions for these expressions for the amplitudes of the fluctuations can be 

found in three cases: 

case (i): E=0, one constant approximation (i.e. K 1 = K 2 = K 3 = K ) 

In this case, A_|_=A_=Kq2+h, where q 2 =q x

2 +qy 2 +qz 2 and 

<nx

2(a)+ny

2(ci)> = | ^ [3.61] 

<nx

2(a)-ny2(gj> = 0 

These are the amplitudes in q-space. In r-space, 

<n x

2(r) + n y

2(r)> = 1 £ <n x

2 ( a ) + n y

2 ( a > [3.62] 
q 

If there is a continuum of wavevectors, the sum can be replaced by an 

integral over q. Then 
q M 

+ V « > = - f ^ / S [3-63] 
1m 

= [qM-qm-^[arctan( c;qM)-arctan(cfq m)J 
where £ = ^ ^ . The integral extends over a volume in q-space bounded by qm and q ^ . 
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q m is fixed by the sample dimension, and may be assumed to be zero for a macroscopic 

sample, q^j can be related either to the distance scale that defines local order, or to a 

fixed number of fluctuation modes. Both approaches result in a cutoff wavelength on 

the order of the intermolecular distance. 

case (ii): E = 0, K,^K2^K3 

In this case, 

A + = K 1 q_ L

a +K 3 q 2
2+A. 

A_ = K 2 qj_ 2 +K 3 qz 2 +b 

[3.64] 

where qj_2 = qx 2 +q v

2 . The fluctuation amplitudes are given by 

q M 

<nx-<r)+ny'(r)> = M, ? J j U / ^ for « = + ,-
Qm 

d 3 q 

q ^ + f 1 qza+h 
[3.65] 

k T r 

< n x 2 ( ' r )- n y 2 ( r )> = 7 ^ T 2 J d<t> qx d qj_ dq z (cos 2 ^-sih 2 <£) 

q M 

(2») qm 

K 1 q ± ^ K 3 q z - + h K 2 q ±

2 + K 3 q z

J + h 

Introducing a stretched momentum vector into the first integral 

q ± ' = q_L a n d ^ ! = \ ) 

the average fluctuation amplitude is 

K 3 

IT q z 

<n x

2(r) + n y

2(r)> = [3.66] 

with £ a = ^^p- The difference term averages to zero on integration over </>, as 

expected for the case of no symmetry breaking field. 

case (iii): E^O, one constant approximation. 

This case provides the closest approximation to the experimental situation under 
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study. The eigenvectors of the two modes are given by 

A + = Kq 2 +h [3.67] 

A_ = Kq 2 +h-e 

where the mean squared amplitude of the component of the normal modes of the 

director fluctuations perpendicular to B and 

(a) along E is 

<n x

2(gj> = — j i -
v ' 2TT2 Kq 2 +h-e 

and 

(b) perpendicular to E is 

Finally, the average amplitude of the fluctuations is 

[3.68] 

<nx

2(r) + ny

2(r)> = ^ . ^ 
k T 

2 ^ {2qM-2qm-I[tan- 1(^qM)-tan- 1(^iqm)] - ^ [ t a i f H £ a q M ) - t a n H^Qm)]} 

while the difference of the fluctuation amplitudes is given by 
<n x

2(r)-n y

2(r)> = [3.70] 
k T 
^ { - I J j t a n ^ i q j ^ - t a n '(^qm)] + ^[tan" 1(€2qM)-taa" 1(^qm)]} 

with £ i = « ^ and f 2 = . =-̂ —. Thus, the electric field breaks the rotational symmetry 
Nh \|h—e 

of the sample by enhancing director fluctuations in the x-direction. 
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3-2 (ii): Effects of fluctuations on bulk properties 

The effect of the fluctuations on the intensity of light transmitted through the 

sample can be calculated in two ways. The dielectric tensor is given by 

ej_ and cy are calculated from the molecular polarizabilities as outlined in Section 3.1 (ii) 

and the anisotropy of the dielectric constants is given by Ae = cy — ej_. The bulk 

dielectric tensor is calculated by averaging over the fluctuations of the local order in the 

sample 

<ea/?G0> = e±SaB + A e <na(r)n^(r)> [3.71] 

but <na(r)n^(r)> = 0 unless a = 8 as the fluctuations are uncorrected so that 

<£cm(r)> = e± + Ae <n a(r)n a(r)>, [3.72] 

for a = x,y,z, with corresponding refractive indices 

<N a

2(r)> = <e a a( £)>. [3.73] 

A difference in the mean square amplitudes of the modes leads to an induced 

birefringence for light propagating along the magnetic field. 

Experimentally, the measured quantity is the average intensity I transmitted by 

the sample between polarizers crossed at ±45° to the electric field. This can be 

expressed 

I = ?2 <i _ cos 6> ~ h <62>. [3.74] 

I 0 is the incident intensity and the phase difference 5 induced by the sample is given by 

^ ^ [ N x - N y ] . ^ ^ - ^ 2 ] [3.75] 

where I is the thickness of the sample and A is the wavelength of the incident light, n-

are the volume averaged fluctuation amplitudes. Then the intensity due to the induced 

birefringence is given by 

Alternately, the intensity can be calculated from light scattering theory as the 

scattering of light is governed by fluctuations of the dielectric tensor (de Gennes, 1974). 
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A light scattering experiment involves choosing the initial angle of polarization i and 

momentum L of ingoing light and the final angle of polarization f arid momentum of 

the outgoing light. The differential scattering cross section a is given by 

2 
W CQ <li-x(a)-fl2> 

where g, = k - . For i 1 £ at ±45° to the electric field and a = 0, 

Ae 2 <[n x

2 -ny 2 ] 2 > 
A 2 N 2 

[3.77] 

[3.78] 

with N the average refractive index and A = ?JL£. The transmitted intensity will be 
Nw 

proportional to cr: 

I = f IQ a = f Io 4^£o 
A 2 N 2 

Ae 2 <[n x

2 - n y

2 ] 2 > [3.79] 

where f is a geometrical factor related to the size of the detector. 

In our theoretical calculations, we have considered the average of the difference 

of the squared fluctuation amplitudes <n x

2(r)—n y

2(r)> rather than the average of the 

square of the difference of the squared fluctuation amplitudes. This latter quantity can 

be written 

<[n x

2(r)-n y

2(r)] 2>=< [[n x

2(r)-n y

2(r)]-<n x

2(r)-n y

2(r)>] 2>+<n x

2(r)-n y

2(r)> 2[3.80] 

where the first term represents the fluctuations about the mean. In principle, we could 

calculate the average <[nx

2(r)—ny

2(r)]2> using Eqn. [3.49]. This calculation is involved 

and comparison of theory and data shows that pursuing this calculation is unnecessary 

in this case. Instead we make the assumption that the first term is a constant, at most 

contributing to the background intensity.1 In this case, the average of the square of the 

difference of the fluctuation amplitudes can indeed be written in terms of the square of 

the average 

1This problem could be avoided by measuring the light scattered at nonzero q 

where the intensity is proportional to <n x

2(r) —ny

2(r)>. There will, however, always be 

a field-dependent background birefringence in this case as the probe beam is not 

traversing the cell along ri. It would be difficult to demonstrate biaxiality from data 

obtained in this way. 
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<[n x

2(r)-n y

2(r)] 2> = <n x

2 (r ) -n y

2 (r )> 2 . [3.81] 

Using this approximation and the results of the previous section, we find in both 
2 

~Pb~~ cases that the.intensity increases as e 0 £j_uE 2 —• * p ; however, it should be noted that 

this result was obtained assuming that the fluctuations were small. 

To compare the magnitudes of the effect of the fields on molecular ordering and 

on fluctuations, the birefringence induced by field effects on the fluctuations can be 

calculated from 

AN = N x - N y = A | e J _ - ( - A £ < n x

2 > - N | € _ L + A e < n y

2 > ~ 2 A = [ < n x

2 > - < n y

2 > ] [3.82] 

For B=0.4 T and E=3xl0 4 V / m , 

AN = 2.9xl0"5. [3.83] 

Thus, the birefringence due to the fluctuations is expected to dominate the 

experimental observations. To observe birefringence due to molecular ordering, it would 

be necessary to investigate a situation where fluctuations were reduced. Such a 

situation occurs in the smectic phases where the splay and bend elastic constants 

diverge making fluctuations less favorable [Dunmur et al., 1985]. 
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3-3: Measurements of the Field Induced Biaxiality  

3-3 (i): Summary of previous experiments 

Several experiments investigating field induced birefringence in thermotropic 

nematic liquid crystals have been attempted by a number of workers. The various 

geometries and other experimental parameters are summarized in Table I. The table 

shows a diagram of the geometry used, specifies the type (and method) of alignment, 

the material used, the susceptibility anisotropy being exploited and the cell thickness (/) 

and attempts to summarize both the conditions under which the measurements were 

undertaken and the results. There are three types of boundary alignment used in liquid 

crystals: planar or homogeous alignment refers to the director being parallel to the 

boundary at least in the region of the sample close to the boundary, in homeotropic 

alignment the director is perpendicular to the boundary. The alignment at the 

boundary can also be tilted. 

Experiment 1 was the first to study the effect of fields on the orientation 

fluctuations. This experiment used the light scattering technique to show that both the 

intensity and the damping time of the fluctuations decreased as a stabilizing electric 

field was applied to the sample. Experiments 2-6 looked at the excess birefringence to 

study the effects of fields on the fluctuations, as in the experiments performed for this 

thesis. This is the most sensitive technique available; changes in the birefringence of 

the order of 10"5 - 10"8 can be measured, depending on the details of the technique used. 

Generally, the aligned sample is placed between crossed polarizers and the intensity of 

light passing through the apparatus is monitored with a photodiode. For experiments 

2, 3, 5 and 6, this meant that the change in birefringence was observed in addition to 

the large birefringence of the field-free sample, making it necessary to experimentally 

subtract the zero-field birefringence using a Pockel's cell. Experiment 4 avoids this 

problem by using a negative magnetic anisotropy material. A magnetic field is applied 

along the direction perpendicular to the alignment. The effect of applying a field to a 
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Table I.. Summary of experiments investigating the effect of fields on director 
fluctuations. I is the cell thickness. References: 1. Martinand and Durand [1972] 2. 
Poggi and Filippini [1977] 3. Malraison et al. [1980] 4. Seppen et al. [1986] 5. Dunmur 
et al. [1985] 6. Dunmur et al. [1987] 7. Frisken and Palffy-Muhoray [1989]. 

Ref. Geometry Alignment Material anisotropy /(«m) Measurements/Results 

1 planar 
(rubbing) 

MBBA At<0 50 
0<E<6xl0 5 V /m 
T=22° f=5KHz 
light scattering showed 
fluctuation quenching 

2 Planar 
(SiO) 

7CB *x>0 150 0<H<2xl0 5Oe, T=32.5° 
AS H 

3 Planar 
(SiO) 

8CB Ax>0 200 T=37° , 0<H<2xl0 5Oe 
AS H 3 Planar 

(SiO) 7CB, 8CB d X >0 200 T N A < T < T N I 
AS vs T 

4 
Homeotropic 

(hexadecanol-1) 
nematic 
mixture 4X<0 180 

0<H<12T, 
T=22,62,42.1° 
AN H 
2 5 < T < 7 2 ° , H=10T 

AN vs T , induced biaxiality 

5 
Homeotropic 

(?) 
5CB Ae>0 15 

55 
111 

T = 2 8 ° , 0 < E < 5 x l 0 6 V /m 
AN E\ small fields 
AN E, large fields 

5 
Homeotropic 

(?) 

8CB Ac>0 24 T=24.7° , 0<E<5xl0 6 V /m 
AN E^-all fields (Smectic) 

6 Planar 
(?) 

CN55 A€<0 20 T = 5 0 ° , 0<E<1.6xl0 6 V /m 
AN E 6 Planar 

(?) 
FDE55 AC<0 25 T = 2 2 ° , 0<E<1.6xl0 6 V /m 

AN E 

7 Homeotropic 
(silane) 

5CB AOO 

AX>0 

500 
T = 3 3 ° 
0<B<.5 T 
0<E<6.0xl0 6 V /m 
induced biaxiality 
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negative anisotropy material is to quench the fluctuations in the direction parallel to 

the field. This makes the formerly uniaxial sample biaxial and the light propagating 

along the direction of the initial alignment is observed to increase from zero. However, 

negative magnetic anisotropy materials are rare (the one used in this experiment is 

actually a mixture of several liquid crystals) and this experimental method limits the 

range of materials that can be examined. Some recent theories have explored the effects 

of magnetic fields on mixtures of materials of positive and negative diamagnetic 

anisotropy [for example Kventsel and Sluckin, 1987]. 

In the case of the application of a single field, theory suggests that the 

birefringence will depend on the modulus of the applied field. The increase of the 

birefringence was observed to be linear with the increase of the applied magnetic field in 

Experiments 2-4. In Experiments 5 and 6, an ac electric field was used and the 

magnitudes of the frequency components (specifically the components at twice and four 

times the applied frequency) of the resulting intensity were shown to be consistent with 

a modular dependence of the fluctuation amplitudes on an applied field. Experiment 5 

showed that the fluctuations are affected by the walls containing the sample; these act 

to quench the fluctuations as well. These authors also showed that at low field 

strengths and in the smectic phase the induced order varies as the square of the field 

strength, indicating that field-induced microscopic order is more important in this 

regime than fluctuation quenching. 

Experiment 7 is the one attempted for this thesis; like Experiment 4, it 

measures field induced biaxial order. In this case, two fields are applied to a material of 

positive susceptibility anisotropy. The magnetic field is applied along the direction of 

initial alignment of the sample to stabilize the initial alignment. An electric field is 

applied perpendicular to this direction to break the uniaxial symmetry by enhancing, 

rather than quenching, the fluctuations in this direction. Assuming good initial 

alignment, the intensity of a probe laser transmitted by the sample between crossed 
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polarizers along the direction of initial alignment should be due to biaxiality induced by 

the competing electric field. The geometry does not restrict the experiments to a 

narrow range of materials and so studies of temperature and material dependence are 

possible. The details of this experiment will be considered in the next section. The 

results and a comparison of the results to the theory discussed earlier in the chapter can 

be found in the last section of the chapter. 
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iL3 (ii): Experimental Details 

Figure 9 shows the experimental apparatus used to study field induced biaxiality 

in the nematic liquid crystal 5CB. 

The first type of sample cell constructed for these measurements consisted of two 

glass plates (1.25 cm x 5 cm x .1 cm) separated by two stainless steel strips (.5 mm 

thick and 3 mm wide), and held together by Miller-Stephenson 907 epoxy. The two 

stainless steel strips were separated by about 2 mm to allow room for the laser beam to 

pass between them. The final sample volume was 2 mm wide, 5 cm long and .5 mm 

thick. Observation in the polarizing microscope of the switching characteristics of this 

cell indicated that the electric field was not very uniform inside the sample. Therefore, 

a second type of cell using larger electrodes was constructed. The cell consisted of two 

slender, rectangular pieces of glass (30.0 mm x 3.3 mm x 1.0 mm) separated by .5 mm 

and sandwiched between two stainless steel electrodes (30.0 mm x 12.5 mm x 0.5 mm) 

so that the electrodes were separated by 3.3 mm. This geometry required a special 

gluing procedure because of the small area for bonding. Armstrong 271 epoxy was 

found to make the best bond between the glass walls and the stainless steel electrodes. 

To prevent it from spreading over the glass, the glue was cured for one hour before 

being applied to the area to be bonded.' 

With a thickness of 500 pm, both types of samples are quite thick in comparison 

to the usual liquid crystal cell thickness of 10-25 /mi. This choice was motivated by the 

fact that the optical phase shift is proportional to the thickness of the cell and thus the 

intensity will be proportional to the square of the thickness. This should make a large 

difference in the sensitivity of the apparatus to induced biaxiality. Following the 

calculations of Section 3-2 (ii), the phase shift induced by the field will be 7.2 mrad in a 

25 /mi cell and 0.14 rad in a 500 /jm cell. The problems associated with working with a 

thick cell include the fact that fluctuations will be larger in thicker samples, decreasing 

the quality of the alignment and increasing the background intensity. 
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To generate an electric field in the sample, a sinusoidal 1kHz voltage from a HP 

3312A function generator was amplified in a Kepco bipolar amplifier and then applied 

to the stainless steel spacers via a step-up and isolation transformer. Experimentalists 

applying electric fields to liquid crystals usually use fields of frequencies of the order of 

1 kHz or more as the director cannot follow these frequencies and sees instead the rms 

voltage. To ramp the voltage applied to the cell, a Bourne 3501S 10-turn lOkfi 

potentiometer was used as a voltage divider. This potentiometer features highly linear 

resistance wire treated with a conductive coating to reduce jitter. By driving the 

potentiometer with a .25 rev/hr motor, a very uniform, linear ramping voltage could be 

obtained; at 115 V, a ramp of .2744 V/hr with a standard deviation cr of 4.75 mV per 

point was measured by a Keithley 197 Multimeter via an IEEE bus. 

Alignment of the liquid crystal perpendicular to the glass plates (homeotropic 

alignment) was accomplished by two methods: by treatment of the glass surfaces as 

well as by application of a magnetic field. Lack of surface treatment lead to 

inhomogenieties in the director field at the surface. Surface treatment involved several 

steps. The glass was washed in an ultrasonic cleaner in a mixture of Liquinox detergent 

and diluted N H 3 O H for 30 minutes. This was followed by a two hour rinse in distilled, 

de-ionized water. Next, the glass was soaked for 30 minutes in a .1% solution of Dow 

Corning X9-6136 silane and a 50-50 water-propanol mixture and then baked at 80°C for 

30 minutes. This method consistently produced very satisfactory homeotropic 

alignment. Alignment was checked in a polarizing microscope. The liquid crystal used 

in the experiments was 5CB (4-n-pentyl-4'-cyanobiphenyl) synthesized by G.S. Bates at 

the Department of Chemistry, University of British Columbia. The nematic-isotropic 

transition temperature for the material studied here was measured to be 34.9°C 

measured with calibrated thermistors in a custom built temperature-controlled 

microscope stage. 

The sample was contained in a thermostatted housing which was temperature 
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controlled in two stages. (See Figure 10.) Coarse temperature control was 

accomplished by circulating water from a temperature controlled bath through an outer 

jacket around the sample block. Fine control was obtained by passing current through 

heater wire wound around the inner sample block. The current applied to the wire 

heater was determined in a feedback loop. The temperature was sensed by a thermistor 

located in the block which was compared to a reference resistance in a Wheatstone 

bridge. The offset voltage from the bridge was detected and amplified in a null meter 

designed and built at UBC and the resulting voltage was used in the 

proportional/integral control of a Kepco OPS 40-0.5 operational power supply which 

provided current for the heater wire. The temperature was monitored by a second 

thermistor located in the sample block. A third thermistor in the sample block was 

used as a reference in the water bath temperature control circuit which caused the duty 

cycle of the water heater to vary according to how close the water temperature was to 

the set temperature, typically lower than the sample block temperature by 1-2°C. 

Using this temperature control procedure, the sample temperature was regulated to 

within ± 1 mK. 

Thermistors were used as the temperature sensing elements because they are 

easily calibrated and exhibit a large change of resistance with temperature 

(approximately ten times greater than platinum) in the temperature range of interest. 

The thermistors used were Fenwal GB41J1. They were calibrated using a HP 2804A 

quartz thermometer which was in turn calibrated against a triple point cell. 

Thermistors have a finite magnetoresistance. Rosenblatt [1981] found a change in 

temperature A T proportional to the square of the applied magnetic field 

A T = (1.025± 0.015)xl0~3mK kOe"2 • H 2 . [3.84] 

As the experiments performed for this thesis were done at constant magnetic field and 

the relative temperature was of more interest than the absolute tempterature, this was 

not considered to be a problem. 
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th4: control thermistor for water bath temperature 

Fig. 10. Schematic diagram of temperature control apparatus. 
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The thermostatted housing was placed between the poles of a water-cooled 

Harvey Wells electro-magnet powered by a Walker Scientific power supply. With a 

pole gap of eight inches (necessary to accomodate the thermostatted housing) the 

maximum field obtainable was 0.7 T. The field was stable to 1%. The sample was 

aligned so that the magnetic field was parallel to the initial sample alignment; l " 

diameter holes in the poles of the magnet made it possible to pass a laser beam through 

the sample parallel to the magnetic field. The field was calibrated in terms of the 

magnet current with a Rawson-Lush 824 rotating coil gaussmeter. 

It was important to ensure that the direction of alignment of the liquid crystal in 

the sample cell was parallel to the direction of the magnetic field. Calculations showed 

that a misalignment of even a tenth of a degree would result in a birefringence which 

would increase with increasing magnetic field with a magnitude comparable to the effect 

due to the electric field. Minimizing this effect minimizes the background intensity. To 

facilitate aligning the magnetic field along the optic axis of the sample, the 

thermostatted housing was placed on a platform around which the magnet could be 

rotated independently. 

The optics consisted of a PRA 5 mW HeNe laser (632.9 nm), polarizers and 

detection system. The polarizer/analyzer pair were Glan-Thompson prism polarizers 

supplied by Karl Lambrecht Corp. and had an extinction ratio of 10"6. Such a high 

extinction ratio was necessary in order to make the zero field birefringence as small as 

possible to facilitate measurement of the induced biaxiality. The polarizers were 

mounted in holders which allowed for 3D positioning so that the direction of 

propagation of light through the prisms could be adjusted to be as close to the optic 

axis of the prisms as possible. The polarizer holders allowed rotation of the polarizer 

around the beam axis with a resolution of 0.005 rad. The direction of polarization of 

the analyzer was set to 45 degrees from the direction of the electric field and the 

polarizer was set at 90 degrees to the analyzer. The detection system consisted of a 
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Hamamatsu photodiode and a custom built amplifier. The specifications for this 

photodiode indicate an output voltage linear over fourteen decades of input intensity. 

Data collection was performed by an A T & T PC 6300 personal computer. 
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3-3 (iii): Results 

Before starting the experiments on field induced biaxiality, attempts were made 

to investigate a second aspect of biaxiality and fluctuations. Fluctuations from the 

direction of initial alignment make the sample instantaneously biaxial; a stabilizing 

field should inhibit this biaxiality. By applying a stabilizing field at a frequency of the 

order of 5-10 Hz, it should be possible to follow the quenching of the fluctuations. To 

attempt this, a cell was constructed from two pieces of glass coated with indium tin 

oxide (ITO) and separated with .5 mm teflon spacers. The glass was treated so that the 

director would align homeotropically at the boundaries. By applying a voltage to the 

ITO surfaces, a low frequency electric field was induced along the initial director 

orientation. As a result, a large signal was observed which had frequency components 

which were harmonics of the frequency of the applied voltage. We found, though, that 

the signal observed at frequencies of the order of 10 Hz was due to an 

electrohydrodynamic instability as described by Nakagawa and Akahane [1983]. 

Using the cell described in the. previous section, the behavior of the nematic 

sample in the presence of two fields was studied. A magnetic field was applied along 

the direction of initial orientation and a 1 kHz electric field was applied perpendicular 

to this direction to break the uniaxial symmetry of the sample. Typical results for the 

intensity transmitted by the sample between crossed polarizers while under the 

influence of two fields are shown in Fig. 11. The applied magnetic field is 0.33 T. As 

the voltage across the sample is increased (at a rate of ~ 50 V/hr), the intensity 

increases gradually at first and then abruptly at the reorientation transition, known as 

the Freedericksz transition. This transition will be discussed more thoroughly in the 

next chapter. The threshold voltage for this transition is found from the voltage at 

which the steep increase in intensity is seenand is shown on the graph as V ^ . In this 

way, an estimate of 128.6 V for the threshold voltage can be obtained for this data. 

Above the transition, the birefringence continues to change as the reorientation 
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Fig. 11. Intensity transmitted by the sample between crossed polarizers. The applied 

magnetic field was 0.33 T and the voltage was ramped at a rate of 50 V/hr. The 

intensity increases abruptly at the threshold voltage, V ^ . 
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progresses. The intensity of light transmitted fluctuates wildly because the thickness of 

the sample (~1000 A) accentuates any non-uniformities of the sample. Fig. 12 shows 

that the behavior of the intensity is similar for different magnetic fields except that the 

reorientation threshold voltage increases with increasing magnetic field. 

In most cases, the Freedericksz transition is second order [de Gennes, 1974]. In 

investigating the nature of the pretransitional behavior, a search for the critical 

divergence of the transmitted intensity associated with a second order transition was 

made. No critical divergence was observed, however, and the pretransitional increase in 

intensity can be adequately described by the theory for the orientation fluctuations 

discussed above. Fig. 13 shows the pretransitional intensity increase for the data of Fig. 

11. The background has been subtracted. The solid curve shows the result of a least 

square fit of the data to the theoretical expression from continuum theory (Eqn. [3.76]) 

using the absolute amplitude of the intensity and the value of the threshold voltage as 

fitting parameters. The result of the fit is = 131.1 V while the observed voltage is 

128.6 V. This result is consistent with results of Chapter 4 which show that a first 

order transition occurs before the second order transition which previous work on 

Freedericksz transitions in static fields had led us to expect. The agreement of the fit 

to the data is very good, particularly in view of the approximations made in the theory. 

Fig. 14 shows the pretransitional intensity increase for the five sets of data of Fig. 12. 

The different magnitudes of magnetic field change the threshold voltage for the 

reorientation transition but not the shape of the pretransitional curves. 

In the process of searching for the critical divergence of the transition, slower 

voltage ramps were made. During these runs, a pattern of diffraction spots was 

observed on the face of the photodiode holder. By direct observation, vertical stripes 

were seen in the cells. These results and their interpretation will be discussed in 

Chapter 5. 

57 



5-n 

> 
CD 4 

-4-1 

O 3 
> 
CD 

T j p . 
O * 

• t — i 4 

O 

o 
PL, 

0 
0 

c ' D r 

7 7 

0 0 m v 

* * X 
X * 0 

\ 1 * x % ^ 

+ * * X ^ 

5 0 1 0 0 

V o l t a g e ( V ) 

0 0 
0 

0 B = . 4 1 6 T 
X B = . 3 3 1 T 
+ B = . 2 4 7 T 
V B = . 1 6 3 T 
• B = . 0 8 5 6 T 

1 5 0 2 0 0 

Fig. 12. Change in threshold with increasing magnetic field. 

58 



Fig. 13. Increase of the transmitted light intensity below the Freedericksz transition 

due to fluctuation enhancement by the electric field. The background has been 

subtracted. The solid curve is a least squares fit to the data using Eqn. [3.76]. 

59 



l . O - i 

• f—I 

CD 

•CD 
O 

CD 
PS 

0.4-

• 
v 
+ 
X 

o 

B = 0 . 0 8 5 6 T 
B = 0 . 1 6 3 T 
B = 0 . 2 4 7 T 
B = 0 . 3 3 1 T 
B = 0 . 4 1 6 T 

0.2 0.4 0.6 0.8 1.0 

R e d u c e d V o l t a g e ( V / V t h ) 

Fig. 14. Increase of the transmitted light intensity below the Freedericksz transition 

due to fluctuation enhancement by the electric field for several values of stabilizing 

magnetic field. The background has been subtracted and the data have been scaled by 

the threshold voltage and the maximum intensity at the threshold voltage. 
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4. Field Induced Order - Freedericksz Transitions 

4.1 Theory 

4.1 (i) Overview 

A liquid crystal sample uniformly aligned between two parallel plane boundaries 

can undergo a transition to an elastically deformed state under the influence of external 

electric or magnetic fields. This transition, first observed by Freedericksz and Zolina 

[1933], has been the subject of considerable study. 

Three different sample geometries may be distiguished. If the direction of 

molecular alignment at the boundaries is constrained to be perpendicular to the 

boundary planes, the initial deformation caused by the applied field is a bend. If the 

alignment is parallel, the initial deformation can be either a splay or a twist depending 

on whether the field is applied normal or parallel to the boundaries. For the case of a 

single static field applied either parallel or perpendicular to the boundaries, theoretical 

results [Gruler et al., 1972] predict all magnetic field induced transitions to be second 

order. Treatment of the electric field induced bend and splay transitions [Gruler et al., 

1972; Deuling, 1972] suggests that these transitions should be second order as well. In 

these calculations for the electric field induced transitions, the bend geometry has been 

considered as a simple extension of the splay geometry and inhomogenieties of the 

electric field are ignored. After more careful consideration of the electrostatic problem, 

Arakelian et al. [1984] used a Landau approach to show that the electric field induced 

bend transition is expected to be first order; their results do not appear to be widely 

known. In general, the electric field induced bend and twist transitions have not 

received much attention, probably due to the unusual experimental geometry associated 

with applying an electric field parallel to the boundary planes. 

For static fields, first order transitions have also been predicted to occur in 

systems of large conductivity anisotropy [Deuling and Helfrich, 1974] and have been 
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predicted and observed in systems where feedback is present [Wang et al., 1987]. First 

order transitions have been observed [Onnagawa and Miyashita, 1974] and studied 

theoretically [Motooka and Fukuhara, 1979; Fei and Lasene, 1986] for the case where 

the alignment at the boundary surfaces is tilted. First order transitions have been 

predicted in geometries where there are two fields, both perpendicular to the initial 

alignment direction [Barbero et al., 1988]. Several authors [Zel'dovich et al., 1981; 

Durbin et al., 1981; Ong, 1983] have suggested that the Freedericksz transition could be 

first order for systems with specific material properties if the transition is induced by an 

optical field. First order transitions have been predicted [Nersisyan and Tabiryan, 1984] 

and observed [Chen and Wu, 1988] if the transition is induced by an optical field in the 

presence of an additional electric field. They have also been predicted [Ong, 1985] and 

observed [Karn et al., 1986] for an optical field induced transition in the presence of an 

additional magnetic field. • .' 

In this chapter, theoretical and experimental aspects of the Freedericksz 

transition in the presence of two fields are investigated [Frisken and Palffy-Muhoray, 

1989]. In the next section, expressions for the continuum free energy are derived for a 

variety of geometries. A simple Landau expansion of the free energy is used to 

investigate the equilibrium deformation qualitatively and to relate characteristics of the 

transitions to material properties. Because some of the transitions are found to be first 

order, exact solutions minimizing the continuum free energy are considered as well. To 

study the transition experimentally, dielectric measurements were made on samples of 

5CB (4-cyano-4'-n-pentylbiphenyl) in the bend and twist geometry in the presence of an 

additional field stabilizing the initial alignment. The results of these experiments are 

compared with theory. 
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4.1 (ii) Introduction 

As mentioned in the preceding section, there are three possible geometries for the 

Freedericksz transition; these can be labelled splay, twist and bend depending on the 

nature of the small angle deformation. If we consider Freedericksz transitions involving 

static fields and. materials of positive susceptibility anisotropics, the transition can be 

induced by either a magnetic or an electric field perpendicular to the direction of initial 

alignment. In our case, we wish to consider the situation where a second field is applied 

along the direction of initial alignment to stabilize, the alignment. The six possible 

experimental configurations satisfying these constraints are shown in Figure 15. For 

completeness, the nature of the deformation for all six transitions will be considered. 

The bend transition (geometries 5 and 6) will be considered first in full; results 

for the other geometries ' are summarized in Table II and Table III. In the bend 

geometry, initial alignment is perpendicular to the glass plates. The director is assumed 

to be confined to the x-z plane so that it can be expressed in terms of the angle 6 only: 

n = ( sin 6 , 0 , cos 6 ) [4.1] 

where 6 — 6{z) is the angle between the director and the direction of alignment at the 

boundaries. Note that it is assumed in all six cases that the distortion depends only on 

z. The cell area in the x-y plane is A and the thickness (along z) is /. At the center of 

the cell, (z=//2) the deformation angle is a maximum (6 = 9m) and here 

e' = fz = o. [4.2] 

The Frank free energy due to elastic deformations in this geometry is, in units of 

AK 3ff/2/, 

F f = J [l - K sin2*] e'2 dz [4.3] 

0 . 
where z has been scaled by l/ir. 

The field contributions to the free energy are different for the case of magnetic 

field induced bend and electric field induced bend. In both cases, the free energy due to 
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e) f) 
Fig. 15. Six possible geometries for Freedericksz transitions, a) geometry 1, magnetic 

field induced splay b) geometry 2, electric field induced splay c) geometry 3, magnetic 

field induced twist d) geometry 4, electric field induced twist e) geometry 5, magnetic 

field induced bend and f) geometry 6, electric field induced bend. 
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the magnetic field is calculated from Eqn. [3.32]. For a magnetic field along x, the 

magnetic contribution to the free energy is 
TT 

Ay P F m = - H 2 / sin2e9 dz [4.4] 

This geometry calls for application of an electric field along z. In this case, the x and y 

components of D are zero and, from the requirement that V- D = 0, the z component is 

independent of z, though it will depend on 0(z). Then, following Deuling [1972], 

F e = - / D z E z dz = - P D z / E z dz. [4.5] 

VxE = 0 implies that E can be expressed as the gradient of some potential, U, in this 

case the geometry requires that E z is the only nonzero component of E as U = U(z). 

The potential applied across the sample is 

V = | I E z dz [4.6] 
o 

The relationship between D z and E z is given by 

D z = £ 0 E z (e^sin2)? + £||COS20) [4.7] 

By substituting [4.7] into [4.6], D z can be expressed as a functional of 0(z) 

D z = ̂  e^LlH [4.8] 
dz 

sin~0 + €||Cos 6) 

and the electric field contribution to the free energy density in this geometry is 

e 0 £ | | V 2 / K 3 

Fe = - - n - 3 [4-9] 
/ dz 
J 1 - u sin2t? o 

On the other hand, if the applied electric field is along x and the magnetic field is along 

z, then the magnetic contribution to the free energy for the electric field induced bend 

deformation is 

F m = _ A*>A\r H 2 / cos26J dz [4.10] 

while the electric field contribution is 
-.2 n « T 

F e ~ K , JLl / dz u in 
.TrdJ J 1 - u sin20 1 ' J 

where V is the voltage applied to the cell, u = 1 — and ej_ and ty are the principal 
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values of the dielectric tensor, and d is the width of the cell. 
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Table II. Free energy terms for geometries 1-6. The geometries are shown in Fig. 15. 

u=Af, w==^, «=1— 7=1—^3. h = ^ ^ ^ , and the free energies are expressed in || -L K 3 ' K x noK-y 5 v 

AK-7T 

units of g | where i=l for geometries 1 and 2, i=2 for geometries 3 and 4, and i=3 for 

geometries 5 and 6. 

Geometry n F f F m Fe e 

1 (cos*,0,sin*) y"(l-7sin 2 *)*' 2 -yh sin2* / e/w e 0 w V 2 f e | | 1 (cos*,0,sin*) y"(l-7sin 2 *)*' 2 -yh sin2* 
J 1+w sin2* K ^ 2 d 2 

2 (cos*,0,sin*) y"(l-7sin2*)*'2 -yh cos2* 
e /w e 0 A e V 2 

(cos*,0,sin*) y"(l-7sin2*)*'2 -yh cos2* 
/ 1 

7 1+w sin2* 

3 (cosc/>,sin ,̂0) ~yh sin2<£ 
/• e /w e 0 w V 2 / 2 £ | | 

(cosc/>,sin ,̂0) ~yh sin2<£ 
7 l + w sin2* K 2 7T 2 d 2 

4 (sin< ,̂cosci,0) !*" -Jh. cos2^ 
/ e / u 

(sin< ,̂cosci,0) !*" -Jh. cos2^ 
J 1-u sin2<£ K 2 * 2 d 2 

5 (sin*,0,cos*) J ( l-Ksin 2 *)*' 2 >yh sin2* 
e /u e o A e V 2 

(sin*,0,cos*) J ( l-Ksin 2 *)*' 2 >yh sin2* 
/ 1

 2 V l - u sm * 
K 3 

6 (sin*,0,cos*) y"(l-Ksin2*)*'2 ~yh cos2* / e / u e 0 u V 2 / 2 e J _ 
6 (sin*,0,cos*) y"(l-Ksin2*)*'2 ~yh cos2* 

7 l - u sin2* K 3 ^ 2 d 2 
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4.1 (iii): Landau Theory 

Landau theory provides a qualitative description of phase transitions from which 

much can be learned about the physical nature of the system being studied. It is based 

on the assumptions that near the critical point, the order parameter of the system is 

small and that the free energy can be expanded in powers of this order parameter. 

Once the free energy is known, all other thermodynamic quantities of the system can be 

calculated. . . . 

A Landau free energy can be constructed by assuming a deformation of the 

director field of the form 

9 = 6M sin z [4.12] 

and expanding the free energy F .= + F e + F m in terms of the order parameter 0 M . 

In order to investigate whether the transition is first or second order, the expansion 

must include powers of 9M up to sixth order. In this way, the dimensionless Landau 

expansion is obtained: 

!f = ^ m 2 + ^ m 4 + | « m 6 [4-13] 

where the coefficients are given explicitly in Table III for the six cases considered. (The 

twist deformations are assumed to have a form <j> = </>m sin z.) Minimizing 9 with 

respect to 0M results in three solutions for 0M, whether or not they have physical 

meaning depends on the parameters of the system. The null solution (0M=0) is always 

an extremum. Minimizing T yields an expression for 0 m in terms of the coefficients of 

the free energy expression, 

2 _ - b ± ^ | b 2 - 4 a c r 4 > 1 4 j 
7 m 2 c: 

The transition is second order for b,c > 0 and the transition occurs when a=0. A first 
q U 2 

order transition will occur for b < 0, c > 0 when a = ^yP- . At the first order 
16 c 

transition, the value of the order parameter is given by 

0m — fc. [4.15] 

The third solution corresponds to. a local maximum of the free energy and occurs when 
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Below the transition, <0m> = 0- However, the mean square deviations from the 

average are not zero, and these fluctuations can be expressed [Landau and Lifshitz, 

1980] 

« W > = k B T 
de 2 

7 m 
For the electric field induced bend transition, 

[4.16] 
J 0m=O 

<^2> = r ^ e ^ 

Thus, fluctuations of the order parameter diverge as e —• 1+h. 

Using the material parameters for 5CB [Bunning et al., 1981; Frisken et al., 

1986; Dunmur et al., 1978], b is positive and the magnetic field induced bend transition 

and electric field induced splay transition are second order if they are induced by a 

magnetic field, b is negative and the transition is predicted to be first order: 

1) when the bend transition is induced by an electric field with and without a 

stabilizing magnetic field 

2) for both types of twist transition with and without a stabilizing field and 

3) when the splay transition is induced by a magnetic field in the presence of 

a stabilizing electric field. 

The tricritical point occurs at a, b = 0 and should be accessible in some of these 

transitions in materials with appropriate dielectric and elastic constants. 

Several details indicate that the quantitative predictions of Landau theory may 

not be entirely accurate. The Landau expansion will be most accurate in the vicinity of 

the tricritical point and less accurate when the transition is first order. The value of the 

order parameter at the first order transition is large, suggesting that the transition is 

strongly first order and that Landau theory may not provide a good description. The 

results are unsatisfactory in other ways; 9m has values greater than ir/2, which is 

unphysical but is not surprising as there are no constraints on 6m in this theory. As 
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well, when solving the equations describing the twist deformation, c goes negative for 

> .6, which indicates that the expansion should include higher terms. 
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Table III. Coefficients of the Landau expansion for geometries 1-6. The geometries are 

shown in Fig. 15 and the symbols are defined in Table II. 

Geometry a b c Criteria for 
first order 

1 1+e-h i[-7+h-e(3w+l)] |[7-2h+e(15w2+10w+2] 1-7 e> —-~ 3w 

2 1+h-e i[-7-h+e(w+l)] J[7+2h-e(3w2+4w+| h -7-1-w 
- w 

3 1+e-h l[h-e(3w+l)] |[-|h+e(15w2+10w+| e>-l-~3w 

4 1+h-e ±[-h-e(3u-l)j i |h-e(15u 2-10u+| h > l - 3 u 
- 3u 

5 1+e-h i[-K+h-e(l-u)] i[K-2h+e(3u2-4w+|] e<^i 

6 1+h-e I[-«-h-e(3u-l)] | [ « + | h - e ( 1 5 u 2 - 1 0 u + | h > l - 3 u - « 
_ 3u 
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4.1 (iv): Exact Solution 

Experiments were performed to investigate the electric field induced twist and 

bend deformations. Because these transitions were expected to be strongly first order, 

an exact minimization of the continuum free energy was pursued in order to enable 

comparison between theory and experiment. The free energies for these two geometries 

(see Table II) are minimized by the Euler-Lagrange equation 

oe dz oe' 
where I is the integrand of the free energy integral. For the bend geometry, 

I = (1 - K sin2e) e'2 e/u 
h cos20. [4.19] 

1 - u sin2 e 

This equation covers the twist geometry as well, if we set K=0 and replace K 3 by K 2 in 

the definitions of e and h. Solutions of the Euler-Lagrange equation are extrema of the 

free energy. Solving Eqn. [4.18] and Eqn. [4.19] gives, at the center of the cell, 

I • (1 — K sin20)(l - u sin2t?)(l - u sin 9m) \[e - h (1 - u sin20)(l - u sin 20m)](sin 20m - sin20) 
d9 [4.20] 

which can be solved for 9m at a given voltage and magnetic field. Once 9m is known, 

the free energy F and capacitance C can be calculated from 

, [e + h cos20 (1 - u sm29)~\i 

p m 

F ( 0 m ) = 2 J de (1 - K sin26>) 0' (1 - u sin20) 9' 
[4.21] 

^m 
C ( ( M ) = 2 C „ / d9 

(1 - u sin20) 9' 
yj 

where C Q is the cell capacitance when #m = 0 and 

[e - h (1-u sin 20)(l-u sin 263m)](sin 2^m-sin 2f9) 

\ | ( 1 - K sin 20)(l-u sin 26i)(l-u s in 2 0 m ) 
[4.22] 

The integrals in Eqn. [4.20,4.21] are badly behaved in the limit 9m —• ir/2; they are 

usefully expressed in terms of elliptic integrals as outlined by Morris and Palffy-

Muhoray [1986]. Since the transition is first order, Eqn. [4.20] will be satisfied by two 

non-trivial values of 9m for voltages in the range V m - n < V < V*, where V m - n and V* 
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are the stability limits of the transition. An iterative numerical method was used to 

solve Eqn. [4.20] for e, given 6nl and h, and then the free energy and the capacitance 

were calculated. The listing of the program used for these calcuations can be found in 

Appendix B. The capacitance, order parameter 9m and free energy as functions of 1/e 

for several values of h are shown in Fig. 16. The e-h phase diagram for the bend 

transition is shown in Fig. 17. The results for the twist transition are similar, although 

for 5CB this transition is less strongly first order. 
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Fig. 16. Capacitance C, order parameter 0m and dimensionless free energy F for the 

electric field induced bend transition as a function of the inverse of the electric field 

parameter e. The magnetic field parameter h is a) h=.573, b) h=0.0, c) h= —.489 and 

d) h=-.632 where h =
 AX

TP ^. e = C ° A e \ ( / 1 and C 0 is the capacitance of the cell 

when 0in = 0. 
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Fig. 17. Phase diagram for the electric field induced bend transition as calculated from 

theory for u = ^ £ = . 5 6 , K=1-£I= .14 . Here, e = f ° " V f ' L and h = Negative 
£ | | K 3 K37x2d2 PoK37r-

values of h correspond to negative diamagnetic anisotropy. The solid line indicates first 

order transitions, the dashed line second order transitions and the dotted lines the limits 

of the spinodal region. The inset shows detail near the tricritical point which occurs at 

h=-.489 and e=.511. 
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4.2: Experimental Details 

Two types of cells, using different methods of surface treatment, were 

constructed for use in investigating the electrically and the magnetically driven 

transitions. To apply an electric field parallel to the boundary planes, cells were 

constructed with large stainless steel electrodes and slender glass plates as described in 

Chapter 3. In order to apply an electric field perpendicular to the boundary planes, the 

second type of cell consisted of two pieces of ITO (indium tin oxide) coated glass 

separated by two .5 mm teflon spacers 3.5 mm apart. The ITO coating acts as a 

transparent conductor. To induce director alignment parallel to the glass, the plates 

were treated with a solution of poly(vinyl formal) and chloroform and wrere buffed when 

dry [Gleeson, 1988]. The liquid crystal used in the experiments was 5CB. The cells 

used to investigate the electric field induced bend transition could be placed in the 

thermostatted housing with temperature control of ±1 mK described in Chapter 3. The 

other cells were mounted directly on the support between the poles of the 

electromagnet. 

The transition was investigated by measuring the capacitance of the cell. (Fig. 

18). The capacitance monitors the average deformation of the cell rather than the 

deformation in the small area probed by the laser beam. The capacitance was measured 

with a GenRad 1615-A capacitance bridge. Cells constructed to measure the electric 

field induced transitions typically had capacitances of the order of 2 pF which could be 

measured accurately to ~ 1x10"3 pF. The measurements were made using an external 

signal from a HP3312 function generator amplified by a Kepco BOP 72-5 operational 

amplifier followed by a transformer. A lock-in amplifier (EG&G 5102) was used to 

detect the null. Measurements were made at 2 kHz, with voltages across the sample 

ranging from 0-60 V r m s applied via the bridge. In the case of the electric field induced 

bend transition, the sample approached equilibrium slowly at voltages near the critical 

voltage; data points were taken once an hour, 0.25 V apart. Samples undergoing the 
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Fig. 18. Diagram of apparatus used to stud}- Freedericksz transitions. 
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magnetic field induced bend transition approached equilibrium much faster; here 

measurements were made every 10 minutes. Measurements of the electric field induced 

twist transition were made at a variety ramping speeds. 
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4.3: Experimental Results 

Typical sample results for the magnetic field induced bend transition are shown 

in Fig. 19. They show no evidence of hysteresis within experimental error, in agreement 

with the predictions of theory that the transition should be second order. 

Fig. 20 shows experimental results for the electric field induced bend transition 

in the presence of a 0.12 T magnetic field applied so as to stabilize the initial alignment. 

These are typical results for this geometry, showing clear evidence of hysteresis. V j 

and V * are estimated from the voltages where the derivative of the capacitance with 

respect to voltage is a maximum, and the threshold voltage is estimated to be the 

average of these. Table IV shows the experimental values of the threshold voltage 

and the transition width A V together with theoretical values calculated using the 

material parameters of 5CB. There is good agreement between measured and predicted 

values in all cases except that the experimentally observed width of the transition at 

nonzero magnetic field is significantly less than predicted by theory. Although this 

discrepancy is not wholly understood at this time, it is worth noting that the theoretical 

results are sensitively dependent on the form of the electric field contribution to the free 

energy. For example, if inhomogenieties of the electric field are ignored, the transition 

is predicted to be second order. In our system, l/d = .15, and higher order terms in 

Eqn. [4.21] may play a significant role. 

Initial capacitance measurements of the electric field induced twist transition 

resembled the results for the bend transition shown in Fig. 20. Further experiments 

involving a variety of voltage sweep speeds show that the hysteresis decreases as the 

ramping speed is decreased. Fig. 21 compares results from measurements at a variety of 

run speeds in zero magnetic field showing decreasing hysteresis. As the capacitance 

bridge must be nulled manually, the minimum ramp speed is determined in part by 

how long the experimentalist can stay awake. (The minimum ramp speed is also 

determined by the stability and resolution of the capacitance bridge and associated 
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Table IV. Comparison of theoretical and experimental data for the electric field 

induced bend and twist Freedericksz transitions. B is the applied magnetic field, is 

the threshold voltage for the transition and AV is the width of the transition. 

Transition Temperature B Theory Experiment 

Geometry (•C) (T) Vth(V) AV(V) V t h (V) AV(V) 

Bend 33.4 0 6.14 0.50 5 . 1 ± . l 0 . 5 ± . l 

0.12 46.9 19 4 3 . 5 ± . l 1 .8± . l 

Twist 22.5 0 6.62 1.39 7 .8± . l 0 . 5± . l 
0.12 57.1 38.5 5 0 ± . l 0 . 5± . l 
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Fig. 21. Experimental results for the electric field induced twist transition at various 

ramping speeds. 
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electronics. This was typically on the order of 1x10"3 pF/day.) According to the 

results shown in Fig. 21, the hysteresis will tend to zero at infinitely small run speeds. 

Attempts have been made to investigate experimental reasons for this discrepancy from 

a theory which was so successful in the case of the bend transition. 

The first experimental aspect considered was the homogeneous planar boundary 

alignment required for a twist cell. In this case, the director rotates in the plane of this 

boundary and the deformation is opposed by the in-plane rather than the out-of-plane 

anchoring of the director. The in-plane anchoring potential is typically smaller than the 

out-of-plane one by a factor of ~10. A related problem is that there seems to be a 

difference in the stability of the alignment for glass treated with silane (homeotropic 

alignment) and glass treated with PVF (planar alignment). The alignment of samples 

made with glass treated with P V F seems to deteriorate over a time period of weeks 

while the alignment of samples made with glass treated with silane persists unchanged 

over a period of months. 

The usual calculation of the threshold characteristics for the Freedericksz 

transition involves the assumption that the anchoring is infinitely strong. This 

calculation can be extended to include finite anchoring by introducing an anchoring 

potential per unit area 

W(0) = i\Vo* 2 . [4.23] 

A finite anchoring potential leads to a nonzero angle 0O at the boundary between the 

director and the direction of the alignment or easy axis. When the anchoring term is 

included, the twist free energy (in units of —^f— with z scaled by l/w) is given by 

F = / dz \0n - h cos2* + ^ [ 6 ( z = 0 ) +*(z=*)l) [4-24] 
J 1 — u sin~# ^2 L - i } 

u e £ ° £ ± V 2 [ / 1 2 A i A \ ;B 2 

where U = T 7 ~ — - M and h — —-— A trial solution is 
u K 2 IrdJ / / 0 K , 

0 = 0o + (9m - 8Q) sin z. [4.25] 

The angle 80 can be determined from the boundary conditions which result from 
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minimizing the free energy 

K 2 0' - W o 0 = 0 => K 2 (6m-6Q) f - Wo^o 0. [4.26] 

and thus e, 
6 m _ ^m 

o = /Wo 1 + 1 + 
K ,7T 

Expanding the free energy in 0 up to order 6m

6 and 0O", yields 

[4.27] 

where 
1 + W TT" (1 + W ) 2 

(e-h) 

1f(3u-l)e+h]n_2a;-fu;2 

2L TT2 J (1+c)2 

and 

These expressions reduce to the previous results as u>-*oc. Out of plane anchoring 

strength for 5CB is ~ 3xlO~ 4J/m 2 [Gleeson and Palffy-Muhoray, 1989], so that with 

K 2 ~3xlO" L 2 N and I — 5xl0"4m, u ~ 104. Thus, allowing for finite anchoring does not 

appreciably change the characteristics of the phase transition. 

Another possibility is that adjacent domains of opposite orientation form during 

the transition, and eventually anneal into a uniform sample. These transient domains 

are often associated with Freedericksz transitions (more in Chapter 5). Regions of mis

alignment were occasionally observed in the twist cell, though mainly when the voltage 

was swept quickly through the threshold voltage. It is possible that the evolution and 

movement of these domains obscures the hysteresis of the twist transition. With this 

conjecture in mind, a more careful proceedure was developed to check for hysteresis in 

the capacitance. The voltage was held constant at a voltage below the transition while 

a magnetic field was applied at an angle about 5° off of the initial alignment. In this 

way, the symmetry of the deformation is broken and the formation of domains as the 

cell goes through the Freedericksz transition is suppressed. The voltage was then 

increased to a value well above the transition for zero magnetic field and the 
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capacitance was allowed to equilibriate. After equilibriation, the magnetic field was 

slowly decreased. After equilibriating again at this high voltage without the magnetic 

field, the voltage was ramped down to a voltage Vx halfway through the transition and 

the capacitance was allowed to equilibriate again to C^ign' Keeping the voltage 

constant, the magnetic field was increased to realign the sample, after it was decreased 

the capacitance was allowed to equilibriate to C j o w - The difference between C n - g n

 a n d 

^low w a s * a ^ e n *° ^ e due to hysteresis. In this way, the capacitance difference between 

the high and low state could be measured without changing the voltage. This was 

advantageous because the hysteresis seemed to be sensitive to electrical and physical 

noise. Following this method, a small (~.006pf) hysteresis was measured in the twist 

cell at 7.25 V (B=0.0T) in an experiment lasting 4 hr. 

In principle, it should be easier and more accurate to measure the hystersis 

optically as this probes a smaller area of the cell. Thus the results should not be 

affected by defects in the cell as long as a defect-free region can be selected. In practice, 

it is not possible to measure the twist transition optically as the polarization of the light 

follows the optic axis of the sample and reemerges parallel to the incident direction of 

polarization. (This adiabatic approximation holds as long as the length scale of the 

deformation is longer than the wavelength of light.) In the case of the bend transition, 

the transition is to a modulated rather than uniform phase and optical detection is 

obscured by the periodic variations in the local anisotropy. (The modulated phase 

observed in conjunction with the electric field induced bend transition will be described 

in Chapter 5.) 

Optical methods were used to measure the transition voltage as a function of 

applied field. Fig. 22 shows results for the electric field induced bend transition voltages 

as a function of magnetic field for T=33.4 C. The transition was indicated by an abrupt 

increase in the intensity of light transmitted by the sample between crossed polarizers 

(as described in Chapter 3). These data for the threshold voltages can be compared to 
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the values calculated by exact minimization of the free energy as outlined in Section 4.1 

(iv), but agreement with theory depends critically on the values of elastic, dielectric and 

diamagnetic constants used. This critical dependence on material parameters is shown 

in Fig. 22 where the dashed and dotted lines show two curves calculated for different 

values of physical constants taken from different sources. The agreement of the data 

with the second set of parameters is probably fortuitous rather than indicative of the 

accuracy of this particular set of parameters as it was found that these slopes could be 

made to vary by significant amounts by making slight changes in the temperature even 

within the same source of material parameters. 
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Chapter 5i Modulated Phases 

5-1: Summary of Modulated Phases in Nematics 

The initial goal of this thesis was to investigate the effect of two perpendicular 

fields on the molecular and long range orientational order of a nematic liquid crystal. 

As discussed in Chapter 3, it was observed that as a transverse electric field was applied 

to a homeotropic nematic sample, the light intensity transmitted by the sample 

between crossed polarizers increased and that this increase was adequately explained by 

continuum theory. At higher fields, the sample reoriented. In order to investigate the 

transition region more carefully, slower voltage sweeps were made. During these runs, 

a line of diffraction spots was noticed, and it was discovered that the uniform nematic 

phase had deformed into a phase in which the director was modulated in space. 

This discovery was unexpected and led to interesting theoretical and 

experimental investigations of the properties of the modulation. These will be discussed 

in the following sections, but first, a brief review of the types and mechanisms of 

modulated phases in nematics is provided to help put this discovery in perspective. 

There are two main classes of modulated phases in nematics, distinquished by 

the presence or absence of material flow within the sample. 

The first class can be further categorized by the mechanisms responsible for 

creating the flow. Flow can be attributed to charges injected at the electrodes. Flow 

can result from the formation of space charges inside the sample which is caused by 

dielectric and conductive effects. Modulated structures are sometimes seen in 

conjunction with the reorientation of the molecules in a field, especially if the field is 

applied quickly, and these are associated with a coupling of flow and reorientation - this 

last example is a transient effect and disappears as realignment is completed. The first 

and second mechanisms require the action of an electric field; the third can occur for 

any reorienting field. The different mechanisms can be distinquished by their 
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dependence on the frequency of the applied field, by their dependence on the presence of 

a magnetic field and by their dependence on time. The first two mechanisms received a 

great deal of attention early in the study of liquid crystals, with a more recent 

resurgence of interest in these effects due to connections with the fields of turbulence 

and chaos. Transient effects and stable, non-flow related modulations are a more recent 

topic of investigation. The mechanisms will be discussed briefly below. 

A dc or very low frequency ac ( < 10 Hz) voltage applied to a sample can result 

in an instability at a threshold voltage which is of the order of a few volts. The applied 

voltage is found to cause injection of carriers at the electrodes of the sample cell 

[Nakagawa and Akahane, 1983a and 1983b] and the effect is frequency dependent 

because carrier injection is suppressed at higher frequencies. The forces caused by the 

external field applied to the non-uniform carrier concentration leads to convective flows. 

This instability can be observed in isotropic liquids, in the nematic phase of liquid 

crystals and for nematics of both positive and negative dielectric anisotropy. It was 

first described by Felici [1969] and is similar to the Benard instability which occurs in 

liquids and is attributed to the competing effects of temperature gradient and 

gravitational effects. 

The second mechanism for instabilities occurs mainly in nematics where the 

conductivity anisotropy and the dielectric anisotropy have opposite sign so that there is 

a possibility of a competition between the effects due to these two material parameters 

[Williams, 1963]. These instabilities are usually studied at frequencies greater than ~ 

20 Hz so that the possibility of carrier injection is diminished. The competition of 

conductive and dielectric anisotropies leads to the formation of space charge in the 

sample, the resulting field causes a flow of ions through the liquid crystal. The director 

is reoriented by the flow, disrupting the initial alignment. A schematic diagram of the 

standard experimental configuration is shown in Figure 23. The cell typically consists 

of a nematic liquid crystal between two glass plates which are coated by transparent 
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Fig. 23. Cell geometry for observation of Williams domains. 
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electrodes and are treated so that the director lies in the plane of the glass, along x. 

The thickness of the cell is usually of the order of 50/jm. A voltage is applied between 

the electrodes; at 60 Hz in the liquid crystal MBBA, the threshold voltage for the 

instability is about 6.7 V. The instability results in a periodic distortion of the director 

with a wavevector along x and a wavelength on the order of the cell thickness. At 

voltages just above the threshold voltage, the sample is composed of cylindrical 

domains, called Williams (or Williams-Kapustin) domains. Because the material is 

birefringent, these convective cells are easily visible. The threshold voltage for the 

instability is observed to increase wirh frequency [The Orsay Liquid Crystal Group, 

1970], essentially because a larger field is necessary to compensate for the shorter time 

period available for space charge build-up. At larger voltages, more complex structures 

are observed [Joets and Ribotta, 1986]. Because the instability involves a realignment 

of the director, the threshold for this effect is affected by a stabilizing magnetic field. 

The threshold voltage increases and the period decreases as the magnetic field is 

increased [Berman et al., 1976]. 

Spatially periodic, transient instabilities are often observed in a sample 

undergoing a Freedericksz transition [de Jeu et al., 1972; Carr, 1977; Guyon et al., 

1979; Hurd et al., 1985]. Even though both the initial and the final equilibrium states 

are spatially uniform, the transition from one to the other can involve th- formation of 

adjacent domains with opposite reorientation. The resulting textures eventually relax 

to a uniform state and the dynamics of the formation have been discussed in terms of 

the elastic and viscous anisotropy, the field strength and the boundary conditions of the 

sample. Interest in this phenomenon has revived with the study of lyotropic liquid 

crystals. These systems are characterized by longer relaxation times so that the 

textures are longer lived and more dramatic than in the case of thermotropic liquid 

crystals. It is still a relatively short lived phenomenon; even in the lyotropics, the 

domains form on time scales on the order of 20-40 s. 
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The second class of modulated phases are equilibrium states and do not involve 

flow; two types have previously been reported. Both are associated with large elastic 

constant anisotropy. 

The first was reported by Cladis and Torza [1975] and involves the observation of 

a stable, striped phase as a bent nematic is cooled into the smectic A phase. Further 

experimental and theoretical analysis is discussed by Chu and McMillan [1977], Gooden 

et al. [1985] and Allender and Hornreich [1987]. A bent nematic is obtained either by 

applying a magnetic field perpendicular to the initial homeotropic alignment, thus 

forcing a reorientation of the sample, or by preparing a sample with homeotropic 

boundary conditions on one plate and planar boundary conditions on the other. As the 

smectic A transition is approached from above, the elastic constants associated with 

bend (K 3) and twist (Iv,) deformations diverge. The bend deformation is unfavorable 

energetically and the director splays out of the plane defined by the field and the 

direction of the director at the boundary. In this case the transition to the modulated 

phase occurs above the threshold field for the Freedericksz transition; the stripes grow 

out of the deformed nematic as the elastic constants diverge. It has been found that the 

wavelength of the deformation is somewhat smaller than the sample thickness and that 

the wavelength decreases with increasing field. 

The second observation of a stable periodic phase was made more recently by 

Lonberg and Meyer [1985]. In this case, a periodic twist-splay deformation replaces the 

expected uniform splay distortion at the Freedericksz transition in a polymer liquid 

crystal where the splay elastic constant is much larger than the twist elastic constant. 

The experimental conditions are those of the traditional splay Freedericksz transition; 

the polymer is contained between two glass plates treated to induce planar alignment at 

the boundaries and a magnetic field is applied perpendicular to the plates. Instead of 

the expected uniform distortion, over a time period of several hours in a field greater 

than the critical field a periodic phase develops. This periodic phase is also 
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characterized by a director which has a component perpendicular to the plane defined 

by the initial alignment and the field; this configuration reduces the deformation 

energy associated with the large splay elastic constant. Lonberg and Meyer [1985] were 

also able to show that the wavelength of the distortion is expected to decrease with 

decreasing splay constant, going to zero at KJK2 ~ 3.3. However, it is difficult to find 

experimental systems where this parameter can be varied by substantial amounts. 

Further theoretical studies [Miraldi et al., 1986; Zenginoglou, 1987] have investigated 

the role of weak anchoring and a stabilizing field in this deformation. 
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5-2: Experimental Results and Discussion 

In the case of the electric field induced bend transition when the competing 

magnetic field is nonzero, we have observed that the transition is not to a uniform but 

rather to a modulated phase. Figure 24 shows this modulated phase, viewed along the 

magnetic field direction (z) with a single polarizer oriented with its direction of 

polarization parallel to the direction of the electric field (x). The value of the magnetic 

field here is 0.33 T. The wavevector of the stripes is primarily in the direction of the 

electric field, and we have observed wavelengths ranging from 0.2 / to 1.1 / in a variety 

of cells under different conditions (for the example shown, / = 0.5 mm and the width of 

the sample is d = 5.3 mm). For voltages slightly above the threshold (~ 3 - 5 %) the 

stripes form slowly (~10 min) and persist indefinitely. If the voltage is increased, the 

stripes disappear. Details of the experimental studies of this deformation will be 

discussed in this section. The last section will describe the theory. Modulated 

structures were not observed in association with either the magnetic field induced bend 

transition or the electric field induced twist transition. 

The modulated phase observed in conjunction with the electric field induced 

bend transition was studied optically. The sample was illuminated with a uniform 

white light source. A Wild KM339 travelling telescope was used for direct observation. 

To photograph the cell, a lens with a focal length of 50 cm was used to magnify and 

focus the image onto Kodak T M A X film in a 35 mm Nikon F G camera. Photos were 

taken at ASA 1600 with exposures of ~ 0.25 s. The fdm was developed and the photos 

were printed in house. 

As the modulated phase forms slowly, the most uniform examples of the 

distortion are obtained when the voltage near the transition is increased at a rate < .5 

V/hr. The uniformity is also dependent on the cleanliness of the sample and on the 

uniformity of the thin layer of epoxy between the glass and the electrodes. As the 

voltage is increased, the first indication of the approach of the transition is that the 
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sample appears to have a more grainy appearance. The grain size grows as the voltage 

is increased and the dotted pattern seen in the photos of Fig. 24 develops. The stripes 

grow out of the dotted pattern, basically parallel to the electrodes and perpendicular to 

the magnetic field; the wavevector of the stripes is along x. The contrast in the image 

is best if a single analyzer is used after the cell with its direction of polarization parallel 

to x. The transition can be monitored quantitatively by measuring the capacitance, the 

first visible distortions are accompanied by increases in the capacitance. At higher 

voltages, the stripes disappear by annealing together, sometimes leaving disclination 

lines which are slow to disappear. The chronology and geometry of the stripe growth is 

very reproducible for increasing voltage; the pattern always forms from the same area 

with similar defects. When the voltage is decreased, the pattern can be quite different; 

the stripes are not very uniform and they tend to lie along x, i.e. writh a wavevector 

along This is consistent with the observation that the transition is first order and 

that the same voltage will be associated with a different 0 m . 

When the modulations were first observed, some effort was put into ascertaining 

whether or not the effect was electrohydrodynamic in nature. The optical properties of 

Williams domains, the most common electrohydrodynamic modulation, are similar to 

the domains observed here in that the best contrast is observed when a single analyzer 

is oriented with its direction of polarization perpendicular to the axis of the domains, 

and the domains are not visible when this analyzer is oriented parallel to the domains. 

The most compelling evidence that the domains observed at the electric field induced 

bend transition are not associated with flow lies in the comparison of the frequency 

dependence of the two effects. The measurements were generally done with an ac 

voltage of 1-2 kHz where as Williams domains are typically studied at 50-200 Hz. 

Figure 25 shows the frequency dependence of the threshold voltage for a cell of width 

5.3 mm in the presence of a 0.33 T stabilizing magnetic field. The electrohydrodynamic 

effects due to both carrier injection and the formation of space charges with 
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accompanying ion flow are highly frequency dependent, this dependence is absent here 

where the threshold voltage appears to be essentially constant in frequency over three 

orders of magnitude. To check the frequency dependence of the threshold for Williams 

domains, a 40 /mi planar cell with homogenous alignment was filled with M B B A , a 

liquid crystal with negative dielectric anisotropy and positive conductivity anisotropy. 

Figure 26 shows the frequency dependence of the threshold voltage for Williams 

domains in this cell, in striking contrast with the results for the stripes observed in 

conduction with the electric field induced bend transition. As well, it was obvious that 

the modulated phase observed here was not a transient effect with associated backflow, 

as the stripes persist in a stable configuration at constant voltage and magnetic field 

over a time period of days. Under microscopic observation, the flow of particles can be 

detected in a Williams domain cell. Unfortunately, such observation was not possible in 

this geometry. 

It is interesting to note that even though the threshold voltage is essentially 

constant, the nature of the deformation seems to vary somewhat with frequency. At 

200 Hz, the stripes start in the center of the 5.3 mm cell, while for higher frequencies 

the tendency is for the stripes to start along the walls. At lower frequencies of 200 and 

500 Hz, the beaded phase is not noticeable, at 1 and 2 kHz, the beads precede the 

vertical stripes while at higher frequencies, the beads persist longer and the sample has 

a tendency for horizontal stripes. 

The wavelengths of the modulations were measured from the film with the aid of 

a microscope with a micrometer driven x-y translation stage. The wavelength increases 

slightly as the voltage is increased but the magnitude of the applied magnetic field has 

the most noticeable effect. Figure 27 shows the dependence of the inverse wavelength 

on the magnitude of the magnetic field for two cells of different width. The linear 

relationship between the inverse wavelength and the applied field is in agreement with 

the wavelength dependence of the modulated deformations discussed in the last section. 
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The periodic modulated deformation observed here is significantly different from 

other modulated phases. It is a static, equilibrium deformation in the same class as the 

stable modulated phases observed by Lonberg and Meyer [1985] and Cladis and Torza 

[1975]. In contrast to these two stable phases, however, the modulated phase observed 

during the electric field induced bend transition is characterized by the director staying 

in the plane of the initial orientation and the fields. The conditions necessary for the 

existence of this phase are discussed in the next section. 
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5.3: Theory 

Complete theoretical treatment of these stable periodic structures involves 

solving the Euler-Lagrange equations, a set of coupled nonlinear equations, for the 

deformation which minimizes the Frank free energy. As it turns out, this is not a very 

tractable approach, and so a variety of simplifications have been made in attempting to 

obtain solutions corresponding to the stable modulated phases outlined above. The 

periodic distortion associated with splay avoidance is the easiest to solve as the 

transition to the modulated phase precedes the transition to the uniform phase. As the 

transition is second order, the distortion amplitude should be small close to the 

transition making it possible to linearize the equations and solve for the corresponding 

deformation [Lonberg and Meyer, 1985]. On the other hand, the periodic phase 

associated with the bend Freedericksz transition with diverging bend elastic constant 

takes place at a field slightly higher than that at which the transition to a uniform 

distorted phase occurs. The second transition occurs when the uniform phase becomes 

unstable to the formation of a periodic phase. Solving this problem involves testing the 

local stability of the uniform distorted phase to a periodic modulation using an 

experimentally motivated form of the distortion [Allender and Hornreich, 1987]. Recent 

computational results minimizing the free energy for a finite dimensional director field 

also offer solutions to these problems [Cohen et al., 1986; Cohen, 1988]. 

The experimental studies made on the stable periodic structure observed as part 

of this work on the electric field induced bend transition suggest that this Freedericksz 

transition is directly to a modulated phase. However, as the transition is first order, the 

assumption that the distortion is small at threshold is not valid. As a first attempt at 

the theoretical solution to this problem, it can be shown that a modulated distortion 

can give a lower free energy than a uniform distortion [Allender et al., 1989]. These 

calculations are outlined below. Future work will include optimizing the form of the 

distortion to give the lowest free energy. 
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First it is worth discussing what may be learned from a theoretical treatment of 

the periodic distortion. Summarizing the experimental observations: 

- the stripes are observed in the electric field induced bend transition, but not in the 

electric field induced twist transition, 

- they develop as the sample is reorienting and disappear at higher voltages and 

- the wavelength of the distortion decreases with increasing magnetic field. 

It is interesting to note the correlation between the existence of the modulated 

phase and nonzero values of the z component of the electric field in the sample, E z , 

given by 

E z = - u n * a z E * [5.1] 
1 — u n x 

where 

n = ( sin 0, 0, cos 0 ). [5.2] 

Below the transition, n x = 0 and there is no modulation. Above the transition, n x is 

close to unity and n z = 0. The modulated phase exists in the transition region where 

E z is nonzero. 

In analyzing this distortion, the director is assumed to be in the z-x plane, 

defined by the boundary conditions and the applied fields. The director lies at an angle 

0 with respect to the z axis. In previous calculations, the angle 6 was assumed to 

depend only on z. Now, however, the angle 6 is allowed to depend on x as well as z, i.e. 

6 — 0(:.,z). The free energy due to elastic deformation and field effects (in units of 

K 
2 N 

now takes the form 

F=J / d 3 r ( ( K + K s i n 2 0)0 x

2 + Ksin20 0X0Z + (1 -Ks in 2 0)0 z

2 - + r - + hcos2f?) [5.3] 
£J t ' 1— usin"0 J 

where 0 X = etc. and the coordinates are expressed in units of j . Here we define K = 

J ^ , K = 1 — K, and recall that e = ° T j -
K 3 R , 

2 " 2 A \ B 2 " ' l 2 J _ 
Trd 

and h 
K 3 

0(x,z) can be written as the sum of the solution of the unmodulated phase 0o and 

a modulation term 6i 
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0(x,z) = 60{'i) + 0i(x,z). [5.4] 

For simplicity, we approximate Q0 by 90(z) = 0 m sin(z) as before and use a trial 

function for 6X of the form 

9X = 89 [cos(z) cos(qx) + r sin(2z) sin(qx)̂ ]. [5.5] 

The amplitude 89 is assumed to be small and r and q are variational parameters. The 

free energy is expanded in 80 to order (89)2 and then in 9 m to order 0 m

b . The resulting 

expression for the free energy is 

where 

c 0 = eu - h [5.6] 

cx — 3eu2 — c 0 

c2 = 15eu3 - 10eu2 + | c Q 

•7 4 <i 3 i 7 2 1 

c 3 = 7eu — <eu + ^eu — ;jgco 

" = | c 0 + Ic^m 2 + ^c 2 6> m

4 + | | c 3 0 m

6 

P = | c 0 + |ci(?m" + j7jgC 2 f m

4 + g^-c 30m

6 

/ - 5 y m - jgt'm + 144 m 

c _ 5 f l 2 5 „ 4 , 49 g 6 
5 - 16 f l m ~ W m + (144)(40) m 

n = 3^ m - | ^ m 3 + J |^ni 5 

/ i = 30 m " - g^m1 + f)Sm6 

„ _ l/l 2 5 /) 4 , 7 /) 6 

" - T m ~ W m
 + 720 m 

If the coefficient of the (89)2 term is negative, the periodic solution is more stable than 

the uniform solution. 

Minimizing the free energy with respect to q and r to optimize these parameters 

yields a quadratic equation for r 2 in terms of the above parameters, and an equation for 

q in terms of r: 

16 (1 - 2{8-6K)) (KI/+K)2 r 4 + 8 (1 - 2(0+6K)) (/cp+4K) (KI/+K) r 2 + 

(1 - 2{3+6K)) («/i+4/c) 2 - ^f- (/^+4K) = 0 [5.7] 
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The range of e for which metastable unmodulated solutions of the Landau free energy 

exist was examined for solutions to Eqn. [5.7] and Eqn. [5.8]. The modulation makes a 

negative contribution to the free energy for a range of u values, when .15<K<.8 and h 

= 0.0 for a range of e around the value of e at the first order transition. For example, 

for K=.5, the contribution to the free energy is negative for .682<u<.688. Figure 28 

shows the dependence of 0 m , the free energy and the wavelength of the deformation on 

the parameter e. 

The theory described above shows that a periodic distortion of the form assumed 

can minimize the free energy for certain values of the parameters. The form of the 

distortion assumed may not be appropriate when considering the effect of the magnetic 

field as including a magnetic field term decreases the range for which a periodic solution 

exists. Future work will attempt to examine a broader class of functions in order to 

better describe the deformation. 
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Fig. 28. Dependence of 0m, the free energy due to the deformation F m Q ^ a n d the 

wavenumber q of the deformation on the voltage parameter e. e = —j4 
T d 

l2 
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Chapter 6_i Conclusions 

Several aspects of the interaction of electric and magnetic fields with nematic 

liquid crystals have been studied. 

For the first time, a SQUID magnetometer has been used to study the order 

parameter of a nematic liquid crystal by measuring the diamagnetic susceptibility. The 

results are consistent with those of other authors, both in absolute and relative 

accuracy. Proposed modifications to the experimental apparatus could significantly 

improve the sensitivity of the magnetometer. Further work could usefully involve the 

study of the effect of the magnitude of the aligning field on the order parameter. 

Mean field theory has been used to study the phase behavior of nematics in the 

presence of arbitrarily oriented electric and magnetic fields. Calculations of the field 

dependence of the order parameters and the transition temperatures have been carried 

out. The results have been used to estimate how the molecular ordering induced by a 

transverse electric field in a sample of nematic 5CB in the presence of a stabilizing 

magnetic field would affect the optical properties of the sample. 

The effect of a transverse electric field on the director fluctuations in a 

homeotropically aligned sample of nematic 5CB in the presence of a stabilizing 

magnetic field has been studied. The first observation of field induced biaxiality in a 

nematic with positive susceptibility anisotropies due to the differential enhancement of 

director fluctuations has been made. The measured effects of the induced biaxiality are 

in good agreement with the predictions of continuum theory. 

Freedericksz transitions have been studied in geometries involving two fields, 

where one is applied along the direction of initial alignment to stabilize the alignment 

and the other is applied perpendicular to this direction to induce the transition. Landau 

expansions and calculations of deformations which minimize the free energy exactly 
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both predict that some of these transitions will be first order. Dielectric measurements 

have been carried out which show clear evidence of hysteresis in the case of the electric 

field induced bend transition. Results for the electric field induced twist transition 

show a small hysteresis. Furthermore, the threshold voltages both in r'\e absence and in 

the presence of a competing magnetic field are in good agreement with theory. The 

width of the transitions in the presence of a competing magnetic field is significantly 

less than predicted by theory. This discrepancy is not wholly understood at this time. 

The discovery of a first order Freedericksz transition suggests the possibility of optical 

bistability in these systems; exploring this effect with a view toward device applications 

is an objective for future work. 

A new, static modulated phase associated with the electric field induced bend 

Freedericksz transition has been observed. This phase is different from static 

modulated phases previously reported in that the nematic director appears to remain in 

the plane defined by the initial alignment and the distorting field. ooretical studies 

demonstrate that for a film in the bend geometry with an electric field in the film 

plane, the non-periodic Freedericksz state is unstable against the formation of a periodic 

state having a wave vector parallel to the field for certain values of the physical 

parameters. Future work will attempt to achieve quantitative agreement with 

experiment. 
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Appendix A: 

program nmx 
c 
c this program calculates values for the order parameter and 
c temperature of a rod like nematic in crossed fields 
c using the maier saupe model and integrating with the 
c calling function dquank. choose the field strengths 
c and iterate delta to find the order parameters 
c 
c output to 7 
c 

implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
real̂ S lwbnd,upbnd 
integer bl,b2,b3,cl.c2,c3 
common /ab/ alpha,delta,pi,sqrtpi 
external fz,fq,fp 

c 
c data 
c 

ndelta=1000 
pi=2.d0*darcos(0.d0) 
lwbnd=0.dO 
upbnd=2.d0*pi 
sqrtpi=dsqrt(pi) 
deps=l.d-5 
write(7,10) 

10 format(lx,'alpha',8x,'q ,12x,,p,,12x,'t',12x,T) 
c 
c choose field strengths 
c 

a=4.541458d0 
write(5,*) 'Enter magnetic field strength, b' 
read(5,*) b 
write(5,*) 'Enter direction of b, eg. 1 0 0' 
read(5,*) bl,b2,b3 
write(5,50) b,bl,b2,b3 
ba=-0.5dO*bl*b-0.5dO*b2*b+b3*b 
bd=0.5d0*bl*b-0.5d0*b2*b 
write(5,*) 'Enter electric field strength, c' 
read(5,*) c 
write(5,*) 'Enter direction of c, eg. 0 1 0 ' 
read(5,*) cl,c2,c3 
write(5,60) c,cl,c2,c3 
ca=-0.5d0*cl*c-0.5d0*c2*c+c3*c 
cd=0.5d0*cl*c-0.5d0*c2*c 
write(5.*) ba,bd 
write(5,*) ca,cd 
write(7,50) b,bl,b2,b3 
write(7.60) c,cl,c2,c3 

50 forniat(lx, ,b=',gl2.5,'*(',il,',',il. ,.',il,')') 
60 format(lx, ,c=',gl2.5,'*(',il. ,,',il. ,, ,,il,')') 
c 
c choose alpha, delta 
c 
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70 format (Ix,'nalpha=',i2,lx.'stepsize=',gl5.7) 
delta=0.d0 
do 500 ialpha=l,100 

write(5,*) 'Enter the minimum value of alpha required' 
read(5,*) alpmin 
if (alpmin.eq.O.dO) go to 600 
write(5,*) 'Enter the maximum value of alpha required' 
read(5,*) alpmax 
write(5,*) 'Enter the number of alpha values required' 
read (5,*) nalpha 
stepsz=(alpmax-alpmin) / (nalpha-1) 
write(5,70) ualpha,stepsz 
do 100 j = l,nalpha 

alpha=alpmin+stepsz*(j-l) 
if (alpha.eq.O.dO) go to 100 

c 
c calculate order parameters using dquank 
c 

do 200 i=l,ndelta 
zz=dquank(fz,lwbnd,upbnd,deps,tolz,fifthz) 
q=dquank(fq.hvbnd,upbnd,deps,tolq,fii'thq) 
qq=1.5d0*q/zz-0.5d0 
p=dquank(fp,lwbnd,upbnd,deps,tolp,fifthp) 
pp=1.5d0*p/zz 

c 
c calculate t and new delta and check criterion 
c 

t=(qq+ba-t-ca)*a/alpha 
deltal=(pp/3.d0+bd+cd)*a/t 
diff=dabs(deltal-delta) 
delta=deltal 
if (deltal.ge.l.d-4) go to 250 
if (diff.ge.l.d-7) go to 200 
go to 260 

250 reldif=dabs(diff/deltal) 
if (reldif.ge.l.d-4) go to 200 

260 f=(qq*qq+pp*pp/3.d0)/2.d0-t*(-l.d0*dlog(4.d0*pi)-alpha/2.d0 
# +dlog(zz))/a 

if (b3.ne.l) then 
if (bl.eq.l) then 

qq=-0.5*(qq+pp) 
pp=-0.5*(-3.*qq+pp) 

else if (b2.eq.l) then 
qq=-0.5*(qq-pp) 
pp=-0.5*(3.*qq+pp) 

endif 
endif 
write (6,210) alpha,qq,pp,t,f 
write (7,210) alpha,qq,pp,t,f 
go to 100 

200 continue 
100 continue 
210 format (lx,5(dl2.5,lx)) 
220 format (14x,2(dl2.5,lx)) 
500 continue 
600 stop 
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end 
c 
c 
c 
c 
c this is the integrand for calculating z 
c 

double precision function fz(x) 
implicit real*8(a-h,o-z) 
common /ab/ alpha, delta, pi,sqrtpi 
complex* 16 arg,y 
aa:=delta*dcos(2.d0*x) 
gmmasq= 1. 5d0* (aa-alpha) 
if (gmmasq.eq.O.dO) go to 11 
kb=0 
if (gmmasq.gt.O.dO) kb=l 
gmmsq=dabs(gmmasq) 
gmma=dsqrt(gmmsq) 
gmmar=kb*gmma 
gmmai=(1 -kb) *gmma 
arg—dcmplx(gmmar,gmmai) 
call cerf(arg.y) 
r=((l-kb)*dimag(y)+kb*dreal(y))*sqrtpi/gmma 
go to 10 

11 r=2.d0 
10 fz=dexp(1.5d0*aa)*r 

return 
end 

c 
c 
c 
c 
c this is the integrand for q 
c 

double precision function fq(x) 
implicit real*8(a-h,o-z) 
common /ab/ alpha, delta, pi,sqrtpi 
complex* 16 arg,y 
aa=delta*dcos(2.d0*x) 
gmmasq=1.5d0*(aa- alpha) 
if (gmmasq.eq.O.dO) go to 11 
kb=0 
if (gmmasq.gt.O.dO) kb=l 
gmmsq=dabs(gmmasq) 
gmma=dsqr t (gmmsq) 
gmmar=kb*gmma 
gmmai=(1 -kb) * gmma 
arg=dcmplx (gmmar,gmmai) 
call cerf(arg,y) 
r=((l-kb)*dimag(y)+kb*dreal(y)) 
ff=(r*sqrtpi/2.d0-gmma*dexp(-l.d0*gmmasq))/(gmma**3)*(2*kb-l) 
go to 10 

11 ff=2.d0/3.d0 
10 fq=dexp(1.5d0*aa)*ff 

return 
end 
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c 
c 
c 
c 
c this is the integrand for p 
c 

double precision function fp(x) 
implicit real*8(a-h,o-z) 
common /ab/ alpha, delta, pi, sqrtpi 
complex*16 arg.y 
aa=delta*dcos(2.d0*x) 
gmmasq—1. 5d0 * (aa- alpha) 
if (gmmasq.eq.O.dO) go to 11 
kb=0 
if (gmmasq.gt.O.dO) kb=l 
gmmsq== dabs (gmmasq) 
gmma=dsqrt(gmmsq) 
gmmar=kb*gmma 
gmmai=(l-kb)*gmma 
ai"g=dcmplx(gmmar,gmniai) 
call cerf(arg.y) 
r=((l-kb)*dimag(y)-rkb*dreal(y)) 
partl=r*sqrtpi/gmma 
part2=(r*sqrtpi/2.d0-gmma*dexp(-l.d0*gmmasq))/(gmma**3)*(2*kb-l) 
go to 10 

11 partl=2.d0 
part2=2.d0/3.d0 

10 fp=dcos(2.d0*x)*dexp(1.5d0*aa)*(partl-part2) 
return 
end 

c 
c 
c 
c 
c this program looks for crossings in the free energy 
c 

program cross 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
dimension q(1000), p(1000), t(1000), f(1000), slope(lOOO) 
dimension alp(1000) 

c 
c input data 
c 

read(4,30) kkk 
read(4,35)b 
read(4,35)c 

30 format (a2) 
35 format(3x,gl2.5) 

npts=0 
do 40 ip=l,1000 

read(4,*,end=45) alp(ip),q(ip),p(ip),t(ip),f(ip) 
npts=npts+l 

40 continue 
45 do 100 i=l,npts 

deltat=t(i+l)-t(i) 
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100 

if (deltat.eq.O.dO) go to 490 
slope(i)=(f(i+l)-f(i))/(t(i+l)-t(i)) 

continue 
do 200 i=l,npts 

nb=i 
ii=i+2 
do 300 j=ii,npts 

if (t(j).gt.t(i+l)) go to 300 
if (t(j + l).lt.t(i)) go to 300 
if (f(j).gt.f(i+l)) go to 300 
if (f(j + l).lt.f(i)) go to 300 

if (deltas.eq.O.dO) go to 300 
deltat=t(j)-t(i) 
tt=(slope(j)*t(j)-slope(i)*t(i)+f(i)-f(j))/deltas 
ff=(slope(i)*slope(j)=t:deltat-r-slope(j)*f(i)-slope(i)¥f(j))/deltas 
na=j 
write(6,565)tt,ff 
if (tt.ge.t(j)) go to 330 
go to 300 

330 if (tt.le.t(j-fl)) go to 340 
go to 300 

340 if (tt.ge.t(i)) go to 350 

200 continue 
write(6,540) 
go to 570 

490 write(6,530) 
go to 570 

500 tni=tt 
ql=(q(nb+l)-q(nb))/(t(nb+l)-t(nb))*(tt-t(nb))+q(nb) 
q2=(q(na+l)-q(na))/(t(na-fl)-t(na))*(tt-t(na))+q(na) 
write(6,550) tni 
write(6.555) ql,q2 
write(7,520) 
write(7,560) b,c,ff,tni,ql,q2 
if (i.ne.npts) go to 200 

520 format(lx,'b^l2x,'c^l2x, ,f^l2x,'tni',10x, ,ql ,,llx,'q2 ,) 
530 format(lx,'there are two identical adjacent temperatures') 
540 format(lx,'no crossing was found') 
550 format(lx,'the crossing of f occurs at t='.gl5.8) 
555 format (lx,'above the transition, q=',gl2.5,' below, q=',gl2.5) 
560 format(lx,6(gl2.5,lx)) 
565 format(lx,2(gl5.8,lx).i 
570 stop 

350 
300 

go to 300 
if (tt.le.t(i+l)) go to 500 

continue 

end 
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Appendix B_: 

program frng 
c 
c Calculates maximum deformation angle, free energy and capacitance 
c for bend freedericksz transion in two fields 
c Input thm, h, calculate e and free energy 
c Output to unit 7 
c 

implicit real*8(a-h,o-z) 
implicit inte<"r*4(i-n) 
character*6-t filename 

c 
c e=reduced voltage parameter 
c h=reduced magnetic field paramenter 
c F=free energy 
c THM=maximum deformation angle 
c 

common /a / ineg 
common / d / u,ek.h,pi 
common /ee/ etasq 
common /{/ flnO,fldO,flO 
external fcne,fcnf,fcnc 

c 
c material parameters and other ata 
c u=(epspar-epsperp)/epspar, this changes sign 
c when e < O.dO 
c ek=(k3-kl)/k3 
c d=3.3mm, width of cell in x direction 
c cl=.5mm, length of the cell in the z direction 
c ch=2.54cm, height of the a 1 (y) 
c 

pi=2.d0*dacos(0.d0) 
e0=8.85d-12 
eperp=8.5d0 
write(*,*) 'Input elastic parameter 1 ;>pa 
read(*,*) ek 
write(*,*) 'Input dielectric parai >te i' 
read(*,*) u 
d=3.3d-3 
ch=2.54d-2 
cl=5.d-4 
epse=l.d-5 

c 
c set up input/ou >ut tiles 
c 

write(*,*) 'Data to devce:iiiename' 
read(*,l) filename 

1 format (a) 
open(7,iile=filename,stat, -'new') 

c 
c input magnetic field 
c 
2 write(*,*) 'Input magnetic field parameter: 1 

read(*,*) h 
write(*,3) h 
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write(7,3) h 
3 format(lx,'Magnetic field parameter is',el0.5) 

write (7,*) 
write(7,5) 

5 format(lx,2x,'theta max',2x,3x,'e parameter',3x,lx,'free energy',lx, 
* lx,'capacitance') 

c 
c now we want to vary thm, iterate to find 
c e and then calculate f for 
c each value of the voltage and find where f=fO 
c 

write(*,*) 'Lower bound on thm?' 
read(*,*) thmin 
write(*,*) 'Upper bound on thm?' 
read(*,*) thmax 
write(*,*) 'Number of steps?' 
read(*,*) nthm 
iflag=0 
ineg=0 
do 25 i=l,nthm 

20 if (ineg.eq.l) then 
u=-l.d0*u 
iflag=l 
ineg=0 

end if 
thm=float(i-l)/float(nthm-l)*(thmax-thmin)4-thmin 

c 
c can now calculate numerator and denomenator without e for 
c fl for phi=pi/2 
c 

etasq=dsin(thm)**2 
flnO=(l.-ek*etasq)*(l.-u*etasq) • (l.-u*etasq) 
fld0=-h*(l.d0-u*etasq)*(l.d0-u*etasq) 

c 
c set limits for e 
c 

if (h.lt.O.dO.and.iflag.eq.O) then 
elow=0.0 
ehigh=l.d5 

else if (h.lt.O.dO.and.iflag.eq.l) then 
elow=h*(l.d0-u*etasq)**2+l.d-6 
ehigh=0.d0 

else if (h.ge.O.dO.and.iflag.eq.O) then 
elo\v=h* (1 .d0-u*etasq)+1 .d-6 
ehigh=l.d6 

end if 
c 
c iterate to find e, criterion ejJse 
c 

e=rtbis(f cne.elow ,ehigh,epse) 
c 
c calculate free energy and capacitance 
c 

call frngcap(thm,e,f,c) 
c=2.d0*e0*eperp*ch*cl/d*c 
write(*,30) thm,e,f,c 
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write(7,30) thm,e,f,c 
c 
c new theta max 
c 
25 continue 
30 fonnat(lx,4(dl3.6,lx)) 

write(*,*) 'Continue (y or n)?' 
read(*,l) check 
if (check.eq.'n') then 

go to 100 
else 

go to 2 
end if 

100 stop 
end 

c 
c 
c 
c 
c function to find e by bisection method, criterion epse 
c further documentation in Press et al. [1986] 
c 

function rtbis(func,xl,x2,xacc) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
parameter (jmax=40) 
fmid=func(x2) 
f=func(xl) 
if (f*fmid.ge.0.) pause 'Root must be bracketed for bisection.' 
if(f.lt.0.)then 

rtbis=xl 
dx=x2-xl 

else 
rtbis=x2 
dx=xl-x2 

endif 
do 11 j=l,jmax 

dx=dx*.5 
xmid=rtbis+dx 
fmid=func(xmid) 
if(fmid.lt.0.)rtbis==xmid 
if(abs(dx).lt.xacc .or. fmid.eq.0.) return 

11 continue 
pause 'too many bisections' 
end 

c 
c 
c 
c 
c function to be zeroed 
c 

function fcne(e) 
implicit real*8(a-h.o-z) 
implicit integer*4(i-n) 
common / d / u,ek,h,pi 
common /ee/ etasq 
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common jij flnO,fldO,flO 
external fcnl 

integrating to precision epsint 

ck=dsqrt(l.dO-etasq) 
cappa=cel(ck.l.dO,l.dO,l.dO) 
epsint=l.d-5 
flO=dsqrt(flnO/(e+fldO)) 
gl=simp(e,0.d0,pi/2.d0,epsint,n,fcnl) 
fcne=gl-f fl0*cappa-5.d-l 
return 
end 

function to calculate integrand for fcne 

function fcnl(e.phi) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
common / d / u,ek,h,pi 
common /ee/ etasq 
common /f/ flnO,fldO,flO 
ysq=dsin(phi)**2 
fa=(l.dO-ek*etasq*ysq)*(l.dO-u*etasq*ysq)*(l.dO-u*etasq) 
fd=e-h*(l.dO-u*etasq*ysq)*(l.dO-u*etasq) 
fcnl=(dsqrt(fn/fd)-flO)/dsqrt(l.-etasq*ysq) 
return 
end 

function to perform integration via adaptive simpsou's rule 

function simp(e,a,b,error,n,ffn) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
dimension as(1000),bs(1000) 
if(a.eq.b) then 

simp = O.dO 
return 

endif 
do 3 i=l,1000 
as(i) = O.dO 
bs(i) = O.dO 
continue 
i = 0 
s = 0. 
imax=0 
eps = error 

calculate error criterion 
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err=dabs(eps/(b-a)) 

initialise stacks 

i=i+l 
as(i)=b 
bs(i)=ffn(e,b) 
i=i+l 
c=(a+b)/2. 
as(i)=c 
bs(i)=ffn(e,c) 
i=i+l 
as(i)=a 
bs(i)=ffn(e,a) 

update stacks 

tal=as(i) 
tbl=bs(i) 
i=i-l 
ta2=as(i) 
tb2=bs(i) 
c=(as(i-l)+ta2)/2. 
as(i)=c 
bs(i)=ffn(e,c) 
i=i+l 
as(i)=ta2 
bs(i)=tb2 
i=i+l 
c=(ta2+tal)/2. 
as(i)=c 
bs(i)=fm(e,c) 
i=i+l 
as(i)=tal 
bs(i)=tbl 

evaluate error 

if(i.ge.imax) imax=i 
xil=bs(i)+4*bs(i-2)+bs(i-4) 
xi2=bs(i)+4*bs(i-l)+bs(i-2) 
xi3=bs(i-2)+4*bs(i-3)+bs(i-4) 
diff=xil-0.5*(xi2+xi3) 
if(dabs(diff).le.err)then 

s=s+xil*(as(i-4)-as(i))/6. 
i=i-4 
if(i.le.l)then 

simp = s 
go to 2 

endif 
endif 
go to 1 
continue 
n=(imax-5)/2+l 
return 
end 



subroutine to calculate free energy and capacitance 
once thm, e are known 

subroutine frngcap(th,eknown,fr,cap) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
common / d / u,ek,h,pi 
common fee/ etasq 
common /g/ f20,f30 
external fcn2,fcn3 

calculate free energy for thm=0 

f0=(-eknown/u-h)/2.d0 

calculate integrands for phi=pi/2 

fnO=(eknown-h* (1 .dO-u*etasq) * (1 .dO-u*etasq)) 
fdO=(l.dO-ek*etasq)*(l.dO-u*etasq)*(l.dO-u*etasq) 
gthO=dsqrt(fnO/fdO) 
aO=0.dO 
bO=(eknown/u+h*(l.dO-u*etasq)*(l.dO-etasq))/(l.dO-u*etasq) 
f20=a0*gth0-b0/gth0 
f30=l./(l.-u*etasq)/gth0 

complete equation for free energy 

ck=dsqrt(l.dO-etasq) 
cappa=cel(ck,l.dO,l.dO,l.dO) 
epsint=l.d-5 
g2=simp(eknown,0.d0,pi/2.d0,epsint,n,fcn2) 
epsint=l.d-5 
g3=simp(eknown,0.d0,pi/2.d0,epsint,n,fcn3) 
fr=g2+f20*cappa-f0 
cap=g3+f30*cappa 
return 
end 

function to calculate integrand for free energy 

function fcn2(e,phi) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
common / d / u,ek,h,pi 
common /ee/ etasq 
common /g/ f20,f30 
ysq=dsin(phi)**2 
m=(e-h*(l.dO-u*etasq)*(l.dO-u*etasq*ysq)) 
fd=(1 .dO-ek*etasq*ysq) * (1 .dO-u*etasq*ysq) * (1 .dO-u*etasq) 
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gth=dsqrt(fn/fd) 
alpha=(l.dO-ek*etasq*ysq)*etasq*(l.dO-ysq) 
beta=(e/u+h*(l.dO-u*etasq*ysq)*(l.dO-etasq*ysq)) 

/(l.dO-u*etasq*ysq) 
fcn2=(alpna*gth-beta/gth-f20)/dsqrt(l.d0-etasq*ysq) 
return 
end 

function to calculate capacitance 

function fcn3(e,phi) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
common / d / u,ek,h,pi 
common /ee/ etasq 
common /g/ f20,130 
ysq=dsin(phi)**2 
fn=(e-h^l.dO-u*etasq)*(l.dO-u*etasq*ysq)) 
fd=(l.dO-ek*etasq*ysq)^l.dO-u*etasq*ysq)*(l.dO-u*etasq) 
gth=dsqrt(fn/fd) 
fcn3=(l./(l.-u*etasq*ysq)/gth - f30)/dsqrt(l.-etasq*ysq) 
return 
end 

function to evaluate elliptic integral 
qqc is l-k*k 
for integral of the first kind, pp=aa=bb=l 
further documentation in Press et al. [1986] 

function cel(qqc,pp,aa,bb) 
implicit real*8(a-h,o-z) 
implicit integer*4(i-n) 
parameter (ca=.0003, pio2=l.5707963268) 
if(qqc.eq.O.)pause 'Failure in CEL' 
qc=abs(qqc) 
£1—clcl 

b=bb P=PP 
e=qc 
em=l. 
if(p.gt.0.)then 

p=sqrt(p) 
b=b/p 

else 
fz=qc*qc 
q=l.-f 
g=l--P 
f=f-p 
q=q*(b-a*p) 
p=sqrt(f/g) 
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a=(a-b)/g 
b=-q/(g*g*p)+a*p 

endif 
1 f=a 

a=a+b/p 
g= e/p 
b=b+f*g 
b=b+b 
P=g+P 
g=em 
em=qc+em 
if(abs(g-qc).gt.g*ca)then 

qc=sqrt(e) 
qc=qc+qc 
e=qc*em 
go to 1 

endif 
cel=pio2*(b+a*em)/(em*(em+p)) 
return 
end 
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