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Abstract 

The radiative annihilation of K~p atoms to A 7 and E ° 7 is investigated using a non-

relativistic harmonic oscillator quark model. A nonrelativistic reduction of the first 

order Feynman diagrams is performed to yield a gauge invariant interaction, which is 

sandwiched between three quark wave functions. Pseudoscalar and pseudovector cou­

pling schemes are used for the strong vertex and the effects of SU(3)flavour breaking is 

explored. We obtain results which are in agreement with experiment for the E ° 7 but 

are somewhat high for the A 7 calculation. 
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Chapter 1 

Baryon Wave Functions in the Nonrelativistic Quark Mode l . 

1.1 Introduction 

When a kaon is captured in the Coulomb field of a proton a K~p atom is formed. Due 

to strong interaction effects, the K~p system will eventually annihilate. The atom may 

decay through any one of the following reaction channels [1]: 

-> E-7T+ (0.47) 

E°7r° (0.27) 

E+7T- (0.19) 

— • ATT0 (0.07) 

E ° 7 (0.00144) 

— • A 7 (0.00086) 

The experimental branching ratio for each channel is given in parenthesis. These reac­

tions are interesting in that they provide information on meson-nucleon interactions. 

In addition the kaon, since it contains a strange quark, has strangeness S = — 1. This 

enables us to examine effects of the strange quark in strong interactions. Since these 

are some of the simplest reactions involving strange particles it would appear prudent 

to explore them further. We will look at the K~p —• A 7 and K~p —>• E ° 7 branching 

ratios in this thesis. 

1 
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The small branching ratios of the A 7 and E ° 7 reaction channels make them very 

difficult to determine experimentally. However, the new experiment by Whitehouse et. 

al [1] measures the A 7 and E ° 7 branching ratios to better than 1 in 104. 

In chapter 2 we extract from a gauge invariant set of Feynman diagrams an in­

teraction which can be used to act on three-quark wave functions. The form of the 

three-quark wave functions will be developed in chapter 1. 

The impulse approximation is used to reduce the interaction to a sum of single 

quark transition operators. Both pseudoscalar and pseudovector coupling methods are 

employed at the strong vertices. 

In chapter 3 we will detail our methods for evaluating the amplitude and compare 

our results with those of other calculations. 

1.2 The Quark Mode l 

There is overwhelming experimental evidence that baryons and mesons are made up 

of quarks. Baryons are bound states of three quarks; the mesons are comprised of a 

quark and an anti-quark. 

Each quark comes in one of six different flavours, or type : u,d, s,c,t,b. Only 

the first three of which will be considered in this thesis. The proton is a baryon and 

consists of the quark combination uud; the neutron has ddu composition. The 7 r + pion 

has composition ud; the strange meson K~ consists of the combination us. 

Quarks are spin | particles. Three quarks will combine, by the conventional rules 

of addition of angular momentum, to a half-integral spin particle. Baryons, therefore, 

are fermions and obey Fermi statistics. Similarly mesons are integral-spin particles and 

obey Bose statistics. 

A quark of a given flavour is in one of three possible colour states. The A + + has 
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quaxk composition uuu and therefore is symmetric in flavour. It is also symmetric in 

spin and in the ground state, symmetric in space. The colour degree of freedom allows 

one to construct a totally antisymmetric wave function by insisting that the colour 

part of the wave function is antisymmetric with respect to exchange of quark positions. 

Such a state will obey Fermi statistics. 

1.3 Baryon Confinement 

Quarks[2],[3] belong to the fundamental triplet representation of the group 

SU(3)coiour- To form a baryon we combine three of these triplets. This gives a singlet 

state, two octets and a decuplet [4], 

3<8)3<8>3 = 1 0 8 © 8 e i O . (1.1) 

The confinement postulate states: 

All hadrons and all physical states are colour singlets. 

So the decuplet and octet states in (1.1) are not observed according to the confinement 

postulate. This rules out the possibility of observing states like diquarks or four-quark 

states. Since only colour singlet states exist in nature it follows that the confinement 

forces, between 3 quarks in a baryon, must depend on colour. 

In the nonrelativistic quark model (NRQM) the quarks are confined in an oscillator 

potential whose slope is independent of flavour. The assumption [5] that the confine­

ment potential is flavour independent (which is supported by studies of Q.C.D. on a 

lattice) means that the eigenstates of the zeroth order hamiltonian have flavour sym­

metry breaking only via explicit appearance of the quark masses in the kinetic energy 

part of H0. 
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1.4 Symmetry and the Total Baryon Wave function 

For a baryon (being a fermion) consisting of identical quarks, the total wave function 

must be antisymmetric with respect to the interchange of a pair of quarks. The wave 

function of a hadron has space, spin, flavour, and colour degrees of freedom. In a meson 

or baryon the colour degree of freedom separates out from the rest. In a baryon, the 

colour singlet wave function is a (3 x 3) determinant, antisymmetric under the exchange 

of a pair. This in turn means that the rest of the wave function, containing the space, 

spin, and flavour coordinates, be symmetric. 

\qqq)A — |colour),i x |space,spin,flavour)s 

The colour wave function has the same form for all baryons [6] (R="red", G="Green", 

and B="Blue") 

|colour)̂  = -^=(RGB - RBG + BRG - BGR + GBR - GRB), (1.2) 
V6 

so we will suppress it henceforth. 

In the S = — 1 baryons1 the strange quark mass differs from the non-strange quark 

mass. The three quarks are no longer all indistinguishable particles and so it is no 

longer necessary to construct baryon wavefunctions that are totally antisymmetric in 

space, spin, flavour, and colour. In this situation we are free to single out the strange 

quark as quark 3 and only the 1 <-* 2 symmetry of the states remains relevant. This is 

known as the uds basis and will be discussed further in §1.8.1. 

1.5 SU(3) Symmetry 

The set of the eight traceless, hermitian, Gell-Mann 3x3 matrices generate the unimod-

ular, unitary group in three dimensions, denoted Si7(3). For the group 517(3)flavour 
1Here S denotes the value of the strangeness quantum number for the state. 
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these operators act on the fundamental triplet, Here the i t , d, and s quarks are 

W 
considered three different quantum states of the same particle. This is analogous to 

isospin symmetry for the case of S(7(2)//atKmr. However in SU(3)fiavour the symmetry 

is more approximate due to the significantly larger mass of the strange quark. 

As a result of this symmetry breaking we treat the strange baryons in two ways: 

• mu/ma « 1. Here all quarks in the baryon are indistinguishable and it is appro­

priate to use the fully symmetrized "5(7(6) basis". 

• mu/ma « 0.6. Here the strange quark is distinguishable by virtue of its larger 

mass. This gives rise to the "uds basis" of Isgur and Karl where the symmetriza-

tion is carried out only between the two equal mass, light quarks. 

The 517(6) and uds bases are two physically distinct descriptions. 

1.6 Zeroth Order Eigenstates 

By taking the instantaneous limit of the Bethe-Salpeter (B.S.) equation one obtains [2] 

the three-particle Schrodinger equation with Breit-Fermi-type corrections. The Breit-

Fermi Hamiltonian can be written (neglecting spin-orbit interactions) 

H = J2rrii + H0 + U + Hhyp. (1.3) 
t=i 

mi is the mass of the ith quark. HQ contains the kinetic energy and a harmonic oscillator 

potential, which models confinement and 'asymptotic freedom'; U is some unknown 

potential which is included to incorporate the action of the Coulomb potential at short 

range and long range deviations from the harmonic oscillator potential; Hhyp is the 
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Q.C.D. analog of the hyperfine interaction. The colour hyperfine interaction between 

two quarks i and j in the same baryon, to order aa is, 

HhyJ> = \ £ Z ^ H T ^ • ̂ ) + ± [ * S i ' r l S r r 7 i - S • $•]}. (1.4) 

Where r,j = |r} — rj| and r\- is the position vector of the ith quark in the baryon. 

5,- = |cr is the spin vector operator for the ith quark in the baryon. ocs is the effective 

quark-gluon coupling constant. This piece will be discussed further in §1.11. 

We now wish to construct eigenstates of the hamiltonian in the case when 517(3) flavour 

is a good symmetry and when it is broken. 

1.6.1 The case of Unbroken SU(3)fiavour 

In the NRQM the zeroth order basis states are generated by the hamiltonian, 

Ho = ^ - + ^ - + ^ + lKj2\r-:-r--\\ (1.5) 
2mx 2m2 2m3 2 t<j 

pi, r~i, mi are the momentum, position and mass of the ith quark. 

In the 5 = 0 sector, or in 5 = —1 when 5t7(3)//avour is unbroken, the quark masses 

in the baryon are taken to be identical. 

m \ = m2 = 1^3 = mu 

We assume the eigenstates are of the form, 

* ( r i , r 2 , r 3 ) = ̂ r V I K ™ (1.6) 

That is we are assuming the baryon is in an eigenstate of total energy. In order 

to separate out the centre of mass motion it is convenient to transform to Jacobi 

coordinates, 

? =

 vV
7

*"*
1

 "
 rl)

'
 X =

 76{fl + r"2 ~
 2 r l )

' & = l(rl + * + ^ ( L 7 ) 
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p is antisymmetric with respect to interchange of the space coordinates of quarks 1 

and 2 and is a representation of mixed permutation symmetry of type M p , while A is 

symmetric with respect to interchange of the space coordinates of quarks 1 and 2 and 

corresponds to symmetry M\. By symmetry we mean with respect to quark positions: 

• S Fully symmetic. Exchanging any two quark positions gives the same state. 

• A Fully antisymmetic. Exchanging any two quark positions gives the same state 

times —1. 

• Mp The state transforms as p. That is antisymmetric with respect to exchange 

of quarks 1 and 2 but has no definite symmetry with respect to exchange of other 

quark pairs. We will denote this symmetry with a superscript p on the state. 

• M\ The state transforms as A. That is symmetric with respect to exchange of 

quarks 1 and 2 but has no definite symmetry with respect to exchange of other 

quark pairs. We will denote this with a superscript A on the state. 

Define 

M = 3mum3 (1.8) 
• —t —* —• —* 

mup, P\ = m\X, PCM = MR 

and X = 
dX 
dt ' 

In the case of unbroken 517(3)//, 'avour m\ = mu. From equations (1.7) we get 

r-3 = - R - y | A 

> (1.9) 
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* —* 

p~2 = Tn2r~2 

substituting these relations into equation (1.5), we find H0 reduces to 

p2 p2 o 

2M ' (1.10) 

The last term of (1.10) corresponds to the centre of mass motion of the baryon and 

does not play any role in the intrinsic spectrum of the baryon[7]. The centre of mass 

motion is a plane wave[8]. The eigenstates of HQ have the form, 

The elimination of the centre of mass coordinate R is crucial in the correct counting of 

the states. This is one reason why the nonrelativistic harmonic oscillator approach is 

so successful in baryon spectroscopy. 

The hamiltonian has been reduced to that of two independent oscillators each with 

spring constant 3K. The oscillator energy spacings 

for the p and A oscillators are identical in the S=0 sector where mu Ri ma,. The zeroth 

order energy of a state is then specified by the quantum number N 

*(R,p,\) = eiP™R$NL(p,\)e -iEt (1.11) 

(1.12) 

EN = 3mu + (TV + 3)nw, (1.13) 

where N = Np + Nx = (2np + lp) + (2nA + /A). (1.14) 
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The principal quantum number of the p, A oscillator, nPi\, takes on the values 0,1, • • • 

The orbital angular momentum quantum number of the p, A oscillator, lPt\, takes on 

the values 0,1, • • • 

The wave function of an oscillator, for example an r (where r = p or A) oscillator, 

is [9], 

Ki,m l r (ar) = i^ / r(ar)y, r m i p(n P), (1-15) 

where fl„r/r(ar) = Af{arfLn^{oir)e-^T\ (1.16) 

a = (mu)i (1.17) 

and Af = 2 " 3 " ' ! (1.18) ^ ^ F ( „ , + l r + l ) ( „ r + / r - ! ) . . . § x § 

YirTnir(Qr) are the spherical harmonics. We have used the convention [10] that 

y,;TO|p(nr) = (-i)m i'i r/ r-m, P(n P). (1.19) 

The Lln2(x) axe the associated Laguerre polynomials. Defined in terms of Binomial 

coefficients these are 

In+l+l\x 
L1:HX)= ^ ( - i r 

m=0 

2m 
2 

\ . ml 
n — m 

The states, ipnTirm,r, we require are listed in table 1.1. 

The total spatial wave function consists of products of these A and p oscillator 
—• —» 

states. The orbital angular momentum L of the baryon is obtained by coupling lp and 

h [11], 

L = i*p + fx, (1.20) 
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ôoo(ar) = y ^ e - § ° V y 0 0 ( f t r ) 

Table 1.1: Normalized linear harmonic oscillator states Vvirmî ar') (r = /> or r = A). 

h L 

0 i>oo(p)ipoo(^) 0 0 0 

1 V'oiĈ V'ooCA) 1 0 1 

V>oo(£)̂ oi(A) 0 1 1 

2 V'io(p)V'oo(A) 0 0 0 
—* 

0oo(p)0io(A) 0 0 0 

1 1 0 

[V>oiWoi(A)]L=1 1 1 1 

[V>oiWoi(A)]i=2 1 1 2 
—+ 

V>o2(p)̂ do(A) 2 0 2 

^00(^)^02 (A) 0 2 2 

Table 1.2: Product wave functions ^nTiT ( w e have omitted the m). [rp ij}]L indicates 
coupling lp and l\ to total orbital angular momentum L. N is obtained via equation 
(1.14) and the a dependence in the argument of i/> has been dropped. 
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To combine the harmonic oscillator wave functions to spatial states of definite per­

mutation symmetry ^^LML

 w e
 take linear combinations of the products 

The well known prescriptions to multiply two mixed representations [12] are 

S = AXA2 + P1P2, 

A = Aip2 - /?iA2, 

M" = piA2 + \xp-i, 

Mx = AXA2 - pip2. 

The oscillator states must also be coupled to give states of good orbital angular mo­

mentum L. The total spatial wave function can be written as the linear combination, 

$NLM =
 Z YJ H {h^miP^x,mix\L,M)^nplpmipipnxlxmix (1.21) 

The first harmonic oscillator wave function in a product always denotes the p oscillator 
—• —* 

state, and the second the A oscillator state. We will suppress the p or A dependence 

from now on. m;p; l\, mix\L, M) is a Clebsch-Gordan coefficient[13] obtained from 

the table in ref.[14] and Z is a normalization coefficient. The Condon-Shortley phase 

convention is used. Up to N = 2 the possible products are listed in table 1.2. 

For the N = 0 case we can only have (see Table 1.1) 

= 2(0,0; 0,0|0,0)V>oooV>ooo = (-^)3
e-^2('2+A2>. 

The e-§* 2<' 2 + A 2) is present in all the product wave functions. It is symmetric since 

p* + A2 = i((rl - r2f.+ (ri - ftf + {r2 - i=5)
A

) 

file:///xp-i
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is invariant under transposition of quark positions. We write 

K ' p m i p *nxt™, = K / p m 1 ^ n , / , m l A ( ^ ) 3 e - " a 2 ( ' , 2 + A 2 ) (1.22) 

and the symmetry of the product depends only on the symmetry of ^npipmi^nxixmi^ 

At JV = 1, L = 1 we can only have 

$11ML = V'OlMtV'OOO 

$UMl = ipoootpoiML 

Since V'oiAfLV'ooo ~ pY\ML($lp) which transforms as p under permutations. Similarly 

^ooo^oiAfi ~ WIML transforms as A under permutations. The states &UML

 a n d ®IIML 

are degenerate in the S = 0 sector but cannot be combined to make a state of definite 

permutation symmetry. 

At JV = 2 we have the states : 

L = 0 

$ 2 0 0 = U > m ^ ; 1 > m » A l M ) V W , P V ' 0 1 m , A  

m ' p ' m | A 

= -^(V'onV'oi-i + V'oi-iV'on - V'oioV'oio) 

$ 2 0 0 = 2 E V'npOO V'nxOO 

= ^(V'IOOV'OOO — V'oooV'ioo) 

$ 2 0 0 = 2 2 ^ " P ° ° ^ » * « » 
n p , n * 

= —^( '̂IOOV'OOO + V'oooV'ioo) 

L = 1 

$211 ' = X ! ( l . r a i p ^ i T O l j M W w ^ O l m , , 
TO,P'm,A 
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= ^ ( V ' o n V ' o i o - V ' o i o V ' o n ) -

At L — 2 we can form 

$ 2 2 2 = ^ ( ^ 0 2 2 ^ 0 0 0 + ^OOuVte) 

$ 2 2 2 = ^ ( V ' c m V ' o o o - ^ 0 0 0 ^ 0 2 2 ) 

$ 2 2 2 = V"011^011-

The relative signs of the p-type and A-type wave functions for a given N and L are 

important. Otherwise, the overall phases are arbitrary. Our definitions differ by a 

minus sign for the states $A

0 0, $ 2 0 0 $ 2 0 0
 a s compared to the phase convention of 

[15] and [16]. Note that there is an error in equations (A15) of reference [16]. The state 

[<̂ oic6oi]L=1 should have A symmetry and ip2

p

2 should read [ < £ o i ^ o i ] L = 2 -

The zeroth order eigenstates of HQ, in the S = 0 sector, are listed in table 1.3. 

1.6.2 The 5 = —1 Baryons when SU(3)jiavour is Broken 

In this section we consider the case when mu/ms 0.6. The analogue of equations 

(1.7) with ms ^ mu are 

1 , r 1 . _ O - A D rnu(n + fj) + mar3 

9 = ~ = ~ ^ = M ' ^ ^ 
where M = 2mu + ma. (1-24) 

Rearranging we get2, 

3̂ = ̂ +4(^-3) V6 V 

(1.25) 

2When SU(3)/iavour is a good symmetry and m, = mu = mj = mu we get m\ = m u and (1.25) 
reduces to (1.9) 
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$000 = ôoo(£)V>ooo(A) = 1 

$ I I M L = &OO(£WOIM
L
(A) = a\Y1ML(£lx) 

$ U M L = ^O\ML{p)^OOQ(X) = 2 ^ apY1ML(tiP) 

$200 = (̂̂ ooo(p)V>ioo(A) + V>ioo(£)V>ooo(A)) 

$200 = ^(^ioo(£)</>ooo(A) - </>ooo(£)</>ioo(A)) 
= > 2 ( ^ 2 - ̂ >2) 

$200 = (̂V>ou(/d)V>oi-i(A) + V>oi-i(̂ )̂ ou(A) - ôio(̂ )̂ oio(A)) 

$ 2 1 ± 1 = ±^(^01± l (^ )^01o ( A ) - ^010(^)V'01±l(A)) 

= ± f x /2aVA(r 1 ± 1 (n p )r 1 0 ( f iA) - Y10(np)Y1±1(ax)) 

$210 = ̂(V>on(p)V>oi-i(A*) - V>oi-i(p)V>ou(A*)) 
= f V ^ « V A ( F I I ( ^ ) F I - I ( ^ A ) - y i - i ( ^ ) F n ( « A ) ) 

$22A/ L = 75(^0 2A/ t(p)^OOo(A) + $ooo(p)i>02ML(X)) 

= 2jf5*\p*Y2ML(tlp) + \2Y2ML(Slx)) 

$ 2 2 M L = ^(^02Af L (p )^000(A) -^000(^02W i , ) (A) 

= 2 ^ a V W f t p ) - A 2F 2 M t(QA)) 

$ ^ 2 ± 2 = & I ± I ( P A I ± I ( A * ) = ?a 2pAyi±i(flp)yi±i(ftA) 

$22±i = ^(^oio(p)^oi±i(A) + V>oi±i(£)V>oio(A)) 
= f v/2^A(r 1 0(ft , , )y 1 ± 1(ft A) + ri±i(n P)y 1 0(ftA)) 

$220 = ̂ g(^oi-i(p)^oii(A) + ̂ on(/5)̂ oi-i(A) + 2V'oio(p)V'oio(A)) 

= f ^aVA(r i_i(n p )y i i ( f tA) + * i i ( « , ) * i - i ( f t A ) + 2F 1 0(^)y 1 0(o A)) 

Table 1.3: Baryon space wave functions $NLML = $ N L M L / ( ( ^ ) 3 E ~ * A 2 ( P 2 + A 2 ) ) W H E N 

5(7(3)// a„ o u r is unbroken. 
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• —* 

_^ - - (B I P . ^ / m A N N 

=
 m i r i

 =
 m u
(ie

 +
 - ^ + - ^ ( - ) ) 

• —+ 

=*p2 = m 2 r 2 = m u ( f l + _ + _ ( _ ) ) 

_ ^ . A . mx P3 = rn3r3 = m s(i£ + —=( 3)). 
V6 mu 

Now the harmonic oscillator hamiltonian, equation (1.5), becomes 

where PCM = Mi2; and PP = mup and P A = m>A. 

This hamiltonian generates the same p oscillator states (table 1.1 with r = p) as 

for the 5 = 0 case. However, due to the higher mass of the strange quark, 

a » ax = (ZKmxfl\ (1.27) 

in the A oscillator states. The same product states are formed but now the degeneracy 

between the A and p normal modes has been broken, 

fiK \*K 

u = J , wA = J 1.28 
V rnu V

 m

\ 
3 3 

andEN = 2mu + ms + (Np +-)huj + (Nx +-)hux (1.29) 

Here ux < UJ since mu < ms. 

Because of this frequency splitting, the three states $f0o> $2oo» $200 which in the 

degenerate case (5 = 0) have permutation symmetry S,MP, Mx respectively, break into 

A A , Xp, and pp excitations. For example A A corresponds to a double excitation in the A 

oscillator (the p oscillator remains in the ground state); that is Nx = 2. Although the 

complete permutation symmetry of the wave function is lost, we still have permutation 

symmetry between the u and d quarks. The zeroth order eigenstates of ff0 in the 

S = — 1 sector for the case of broken SU(3)jiavour are given in table 1.4. 
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*000 = V'oooĈ V'oooCA) = 1 

$ W = V>OOO(P)̂ OIA/l(A) = 2y^aAAFiML(nA) 

$ A A 
v 200 = ^oooWioo(A) = y | a 2

A ( ^ - A 2 ) 

v 200 = VWp>000(A) = Vl a 2(2^ - /=>2) 

$>PX 

*200 
= ^(^oii(^)^oi-i(A) + V>oi-i(£)V'oii(A) - ôio(̂ )̂ oio(A)) 
= ^ a c A p A C F n ^ ^ - x C ^ ) + yi_i(fl„)rn(ftA) - M ^ o ^ ) ) 

*21±1 = ±;̂ (V>oi±i(£)V>oio(A) - ^oio(p)^oi±i(A)) 
= ± f v^ « a ^ A ( F 1 ± 1 ( Q p)r 1 0 ( f i A ) - r 1 0(ft „ ) y 1 ± 1 ( f t A ) ) 

3>PX  
V210 = (̂̂ on(£)V'oi-i(A) - $oi-i(p)$oii(A)) 

= f v^aaApA(y11(ft p)y1_1(nA) - ri-iCft^rnCfiA)) 
A A A 
^ 2 2 ^ = ^000W02M L (A) = ^ « 2

A A 2 F 2 M i ( ^ A ) 

S>PP = ^02Mt(p)̂ ooo(A) = ^ a V l W ^ p ) 

*22±2 = ^oi±i(p)^oi±i(A) = faaxpXY1±1(ilp)Y1±1(Qx) 

g>PX 

*22±1 = ̂ (V'oio(/o)V'oi±i(A) + ^oi±i(p)^oio(A)) 
= f v5aaApA(y1 0(fi p)y 1 ± 1(n A) + y 1 ± i(fi p )y 1 0(fi A)) 

&>PX 

^220 = (̂̂ oi-i(£)V>oii(A) + ^on(/o)V'oi-i(A) + 2̂ oio(/o)̂ oio(A)) 
= fy/laa^pXiY^Q^iSlx) + Yll(np)Y1.l(Qx) + 2YW(QP)YW(QX)) 

Table 1.4: Baryon space wave functions $#£^ L = $ N L M j ( ( ^ ) 3 / 2 e ~ * ( a V + ' 
the S = — 1 sector when SU(3)fiavour is broken. 
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1.7 Deviations from Harmonic Confinement 

The formula for the energy in the 5 = 0 (1.13) sector states that all multiplets with 

the same N are degenerate and have equal spacing %UJ between multiplets. This is not 

observed experimentally; these deviations from the harmonic oscillator spectrum are 

consistent [5] with the action of a short range attractive potential. 

It can be shown [17] that any potential 17, in first order perturbation theory, will 

split a harmonic spectrum into the same pattern. This pattern can be described by 

only three constants. For example 

EQ = hyperfine unperturbed level of the ground state. 

= 3mu + 3u> + a = 1135 MeV 

The ground state refers to the N = 0 zeroth-order eigenstate. Eo is used as a fitting 

parameter to the baryon spectrum. Where a represents the energy shift due to the 

deviation from a harmonic potential. 

By allowing the zeroth order energies of the seven (up to N = 2) supermultiplets3: 

(notation La: Lis the total orbital angular momentum of the state; a the symmetry of 

the spatial wave function) Ss, PM, SM,PA,E*S, E*M to be independent parameters, 

Isgur and Karl [17] found excellent agreement with the energy spacings of the supermul­

tiplets predicted by first order perturbation theory. They then take the assumption, 

due to this confirmation of the first order result, that the harmonic oscillator wave 

functions remain an adequate approximation to the true zeroth order wave functions 

even though U is substantial. 

The U perturbation affects only EQ. We will see however (§1.11) that Hhyp will mix 

these states. 
3 A supermultiplet contains states of various np, n\, lp, l\ that combine to N,L and symmetry type 

(M,A,S) 
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Jp B Q/e I Iz Y S 
u 1/2+ 1/3 2/3 1/2 1/2 1/3 0 
d 1/2+ 1/3 -1/3 1/2 -1/2 1/3 0 
a 1/2+ 1/3 -1/3 0 0 -2/3 -1 

Table 1.5: Quantum numbers for the u, d and s quarks. 

1.8 Flavour Wave Functions when SU(3)fiavour is Unbroken 

Consider the case of a baryon which consists of three quarks. Each of which may 

have one of the flavours u,d, or s. The 33 = 27 states decompose into the irreducible 

representations [4] of 5l7(3)//ouotlT., 

where the symmetry of the representation is indicated by a subscript. This is the 

same decomposition into multiplets as for the SU(3)coiour case. Members of these 

representations must be combined to give the correct charge, strangeness and isospin 

of the resulting baryon. 

From table 1.5 it can be seen that the proton must be some permutation of quarks 

uud. Since the u and d quarks are members of an isospin doublet, they can be coupled 

together to form states of isospin / = | and / = | 

IJ>^>/l2 = £ (h,Izx;h, Irf|Ii2, £ 1 2 ) ^ 1 2 ; h, I*\I,\h,Izi)\h, 1,2)\h, 1,3) 

3 eg) 3 (8) 3 = 1 A 0 8 M p 8 8 M a © i o s , (1.30) 

(1.31) 

For example using table 1.5 we get that 

\I,L? = \\,W = ( 
1 1.11 
2 ' 2 ' 2 ' 2 |1,!)(!> Ij 2 ' 2 I 2 ' 2 •)l«)|t0|e9 

+ ( |,|;|,-||l,0)(l,0;|,|||,J)|«)|d)|«> 
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+ (l , _ l ; l , | | l , 0 ) ( l , 0 ; | , | | i , | ) | d ) | u ) | u ) , 

therefore |f, §)* = —\=(udu + duu - 2uud) = <£A. (1.32) 
V6 

The A superscript indicates that this state has M\ symmetry. It is a member of the M\ 

SU(3)fiavour octet. This symmetry arises from choosing the symmetric intermediate 

isospin state when combining the isospin wave functions. Alternatively, 

IM) 0 = ( i , | ; | . - | lo.o)(o.°i | . | l | . l>l u >l d >l«> 

+ (J , - i ;§ ,§ |0 ,0>(0 ,0;l |l|| >§)|d)|u)|u) 

= ~y^(uc^ " du)u = <f>p. (1.33) 

This state has Mp symmetry and is a member of the Mp SU(3)fiaVour octet. 

The zeroth order eigenstate for the physical proton contains a mixture of the fiavour 

states and </>A combined to give a totally symmetric space-spin-flavour wave function. 

The antisymmetric SU(3)flavour singlet state can only be formed by a combination 

three quarks each with different flavour [4]. 

It is chosen to be, 

<f>^ = -^(sdu — sud + usd — dsu + dus — uds). (1-34) 
V6 

All the states in the M\ or the Mp octets can be generated by the application of the 

SU(3)flavour raising and lowering operators [2], U±, I±, V±, on to one member of the 

SU(3)flavour multiplet. These operators act on states which are SU(2)fiaVour subgroups 

of 5'l7(3)//a„o u r (see Fig. 1.1). 1+ annihilates a d quark and creates a u quark. U+ 

annihilates an s quark and creates a d quark. V+ annihilates an s quark and creates a 



Chapter 1. Baryon Wave Functions in the Nonrelativistic Quark Model. 20 

u quark. That is 

l+\u) = 0, I+\d) = \u), I+|a)=0, 

I-\u) = \d), / _ | r f )= 0, / _ | 3)=0, 

U+\u)=0, U+\d)=0, U+\s) = \d), 

U-\u) = 0, U-\d) = \s), U.\s) = 0, 

V+\u) = \s), V+\d) = 0, V+\s) = 0, 

V_|u) = 0, V.\d) = 0, V.\s) = \u). 

When acting on a three particle wave function \q1q2Q3), such as a Baryon, I±, U±, V± 

act on each quark in turn, 

Jhiqiqa) = J(ki»l92«3> + \qi)J(\q2))\q3) + ki^dfe))- (1-35) 

Since the algebra of SU(2) is the algebra of angular momentum, the standard relation 

for raising and lowering angular momentum operators applies to these operators, that 

is, 

J±\l I) = y/J(J + l)-J,(J*±l)\l J* ± 1) (1-36) 

Here J and Jz represent the total J and its z component for the state. The square 

root factor in (1.36) is y/2 when acting on states within an SU(2)fiavour triplet; 1 when 

acting on states within an SU{2)jiav0UT doublet; and of course zero when stepping out of 

an SU(3)favour multiplet. So U- acting on the flavour wave function gives the state 

<f>z+. The other members of the S isospin triplet can then be generated by applying J_ 

[18]. 

U~(f>p — U-(—\=(udu + duu - 2uud)) 
v6 

= — —/=(usu + suu — 2uus) 

file:///q1q2Q3
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Y 

1/3 4 I<V 

- 2 / 3 " 

\ 

-1— 
- 1 / 2 

-1— 
1 / 2 

(a) 

u+ u + v_ u+ v_ 

H l-< ^ ft X >l+ 
,ir\ / A 

v+ v+ u_ v+ u_ u_ 

~i 1 1 1 r 
-» o 1 

(b) 

Figure 1.1: Illustration of the action of the SU (3) flavour raising and lowering operators 
in the Iz — Y diagram (Y = B + S) (a) of the quark triplet and (b) of the baryon octet. 
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= j=(dsu + usd + sdu + sud — 2dus — 2uds) 
V6 

y/12 

1 

(sdu + sud + dsu -f- w.sd — 2(c?M5 + uds)), 

(sdd + sdd + dsd + dsd — 2(dds + cMs)) 

(1.38) 

\/l2 

=>• ̂ >2_ = — =̂(sdd + dsd — 2dds). 
V6 

(1.39) 

A is an isospin singlet state at the centre of the M\ baryon octet. The centre 

member of the U-spin triplet which contains the neutron (U = 1, Uz = 1) and the S° 

(17 = 1, Uz = — 1) is a linear combination of the isospin eigenstates S° and A, 

\U = 1,UZ = 0) = « | ^ 0 ) + /3|̂ > 

U-\U = 1,U, = 1) = v5\U = l,Uz = 0) = v5(a\<f>'o) + p\<f>x

A)) (1.40) 

U-t* = U-(^T(dud + udd-2ddu)) 

(sud + dus + usd + uds — 2sdu — 2dsu) (1.41) 
V6 

I+U-ifc = I+y/2(a\fa) + fi\fi)) = 2a<j> x (1.42) 

because A is an isospin singlet. 

I+ commutes with £/_. This can be seen from the matrix representation[19] of the 

raising and lowering operators which act on the SU(3)jiavour triplet d 

\ s I 

l 0 1 0 

0 0 0 

0 0 0 

\ 1 0 0 0 ^ 

0 0 0 

0 1 0 

(1.43) 
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I + U - t i = U-I+4>x = U—<f>p = fa (1.44) 

Comparing (1.42) and (1.44) a = (1.45) 

Now since |a| 2 + |/?|2 = 1 we get |/?|2 = § 

/* = ± ^ (1-46) 

The sign of /? is not uniquely determined but we fix it to be positive for our flavour 

wave functions to agree with those of ref.[17]. From (1.40), 

u - * » = 7 2 ^ ° + /l̂ ' (L47) 

This is the centre member of the U-spin triplet. From (1.38) and (1.41), 

=> <f>\ = 7:(sud + usd — sdu — dsn). (1-48) 

Similarly for the Mp octet we can generate all the states in the mixed antisym­

metric octet. The baryon octet states are listed in table 1.6. 

The decuplet (fully symmetric) states are simpler than the octet states since there 

are no mixed states. All the states can be generated by applying the raising and 

lowering SU(3)flavour operators to one of the members of the decuplet[6], for example 

uuu. These states are listed in table 1.7. 

1.8.1 The uds Basis 

As mentioned previously, it has been proposed [20],[21] that the uds is a more appro­

priate basis than the fully symmetrized 5(7(6) basis when SU(3)flavour is broken. 

In the uds basis the strange quark is treated as distinguishable and singled out as 

quark 3. We only symmetrize between the two equal mass (u and d quarks). In this 
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x <t>p

x 

p — -^{udu + duu — 2uud) -^{udu — duu) 

n -^(dud + udd — 2ddu) -^{udd — dud) 

E + — -^(usu + suu — 2uus) -^(usu — suu) 

E° — -j=(sdu + sud + dsu + usd 

—2(dus + uds)) 2(dsu + usd — sud — sdu) 

E - -^(sdd+ dsd- 2dds) -^(dsd - sdd) 

A ^(sud + usd — sdu — dsu) -^=(sdu — sud + usd — dsu — 2(dus — uds)) 

E~ -^(dss + sds — 2ssd) -^(dss — sds) 

E° -^(uss + sus — 2ssu) -^(uss — sus) 

Table 1.6: Flavour wave functions in the baryon octet. The physical particle X is some 
mixture of the flavour states <f>x and <j>x to be determined later. 
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A + + uuu 

A + -^(duu + udu + uud) 

A 0 ^(ddu + dud + udd) 

A" ddd 

1 = 1 

E + -^(uus + usu + suu) 

E° -^(dus + uds + dsu + usd + sdu -f- sud) 

E~ ^(^ds + dsd + sdd) 

I 
2 

•^(ssu + sus + uss) 

•^(ssd + sds + dss) 
1 = 0 
(7~ sss 

Table 1.7: Fully symmetrized flavour wave functions in the baryon decuplet. 

basis the only two flavour states are, 

<f>\ = -X=(ud — du)s, (1-49) 
v 2 

and = —~(ud + du)s. (1.50) 
v 2 

<̂A has the u and d quarks coupling to isospin 7 = 0. <f>\ therefore corresponds to the 

flavour wave function of a A particle, has 1 = 1 and so corresponds to a E°. 

1.9 Spin Wave Functions 

Three spin | particles (for example quarks) may give rise to a total spin4 S = | or 5 = 

| . As in the case of flavour, the spin wave function for a proton can be obtained by 
4In this section S denotes the quantum number for the intrinsic spin magnitude. 
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combining spins of particle 1 and 2 to S = 1 and then coupling to the spin of particle 3 

to yield S = \. This gives a spin wave function with M\ type symmetry. Alternatively 

the spins of particles 1 and 2 can be combined to S = 0 and then coupled to the spin 

of particle 3 to yield S = | . This gives a spin wave function with Mp type symmetry. 

For the spin up state 

x\h = \\,W = <J,§;i,ili,i>(i,i;i,-JI§,J>IT>IT)U> 

+ (§lJ;J,-||i,0)(il0;|1||i |>|T)I1)IT> 

+ (|,-J;|,J|i,o>(i,0;i,i|i,|)U>|T>IT> 

therefore X l , i = " ^ ( U T + ITT "2 TTD- (1-51) 

The A superscript indicates that this state has M\ symmetry. This symmetry arises 

from choosing the symmetric intermediate spin state when combining the spin wave 

functions. Similarly, 

4.i = (i.|;|.-llo.o><o.o;MI|.i>IT>li)IT> 

+ (|,-|;l4lo,o>(o,o ;|,||i,i)U)|T>IT) 

= ^ ( U - I T ) T - (1-52) 

This is analogous to the flavour wave function <̂ £. Also, 

x§,f = (I b I 111 . i>(i. i ; h i\l 1)1 T)l T)l T) = I TTT) etc. ( 1 . 5 3 ) 

States of different ms follow from the Condon-Shortley convention. Note that for the 

case of coupling three spin | particles together (5C/(2)sp,n), the restriction to two pos­

sible spin directions means that only mixed symmetric and fully symmetric irreducible 

representations of 5t7(2)sptn can be formed. There is no fully antisymmetric state. 

That is 

2 ® 2 ® 2 = 4 S © 2 M i © 2 M p . ( 1 . 5 4 ) 
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1.10 Combining Flavour, Spin and Spatial Wave Functions. 

Each quark not only has 3 flavour types but two possible spin directions. We com­

bine the SU(2)apin and the SU(3)fiavour multiplet structure into SU(Q)SF (SF ^spin-

flavour) multiplets. 

For baryons, Young diagram techniques[4] give, 

6 Cg) 6 ® 6 = 56 s © 7 0 M a © 7 0 M p ® 20 A . (1.55) 

In the SU(6) basis we wish to construct states that are totally symmetric in space, spin 

and flavour so that when combined with the colour part we get a fully antisymmetric 

wave function. In the uds basis we construct states that are totally symmetric in space, 

spin and flavour only with respect to quarks one and two. 

1.10.1 Permutation Group Addi t ion Coefficients 

To combine wave functions of different permutation symmetry it is convenient to in­

troduce Permutation group addition coefficients [22]. These are completely analogous 

to the Clebsch-Gordan coefficients of the rotation group. For example to combine 

two wave functions of permutation symmetry Pa and P 2 respectively, to permutation 

symmetry P then, 

\ 

M ,«2 \ Ki K.2 K J 

1 if P{ = A,S,MX 

2 if Pi = Mp. 

The non-zero coefficients with phase factors chosen such that they are all real are, 

where Ki = < 
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= 1, 

M M M 
I 

In addition the spin must also be coupled to the orbital angular momentum to yield 

total angular momentum J for the particle. 

Using the notation[15] 

where X is the particle n,p, A etc; jx the SU(3)flavour multiplicity (that is whether the 

flavour wave functions are in the octet, decuplet, or singlet irreducible representations 

of 5(7(3)favour (see equation (1.30)); L,S,J is the orbital (S,P,D,F,... etc), spin, and 

total, angular momentum respectively; P is the parity of the spatial wave function; a is 

the symmetry of the spatial wave function or the symmetry of the SU(6)SF multiplet. 

P i P 2 

\XF»L0JP) = £ £ 
Kl,K2,*3 ML,Ms y Ki K2 K\2 J 

{ a a S 

Pl,*l J,P2,K2 

x (S,Ms]L,ML\J,Mj)x?^s<f>9'K2m3M-
(1.57) 

For our purposes we will need the Jp = | + states up to N = 2 (that is energy 2hu 

above the ground state). N = 1 provide only L = 1 states and so have negative parity. 

For L = 0 all the Clebsch-Gordan coefficients give 1. 
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1.10.2 The 517(6) Ground State 

At the ground state (N = 0) where we have only $QOO (X = N, A, S°), 

5 5 5 

1 1 1 

\ 
<i|;0,o|| i) 

$oooXi i<f>x 
2'2 

$oooXi i<f>x 

-4$o5oo(xii^ + x i i ^ ) -
V2 2 ' 2 2 ' 2 

1.10.3 The 517(6) Excited States 

Radial Excitations 

At N = 2 we have, 

KI ,*2 

Pi P2 
5 \ / 5 5 5 

«2 1 / V 1 1 1 / 
<|.|;0,o||,|) 

2 '2 

V2 2 ' 2 2 2 

(1.58) 

(1.59) 

The prime on the 5 indicates we are referring to the excited (TV = 2) symmetric spatial 

state, $foo5 rather than the ground state symmetric spatial wave function, $ooo-

/ D D A/f \ / 

l-^swl ) - £ 
«1 .«2,«3 

M M S 

\ K12 K3 1 
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v /I l . n fill l \ 6 M ' K 3 v f t . ' « i i f t , K 2 
X \2 ' 2 > U ' U l 2 ' 2/*200 X l 1 <PN 

2 '2 

= {̂$2
Aoo(xl M -xiijx) + *WxIi^i + xi i^)}. 

/ 2>2 2 ' 2 2 ' 2 2 ' 2 

For the SU(Z)flavour decuplet (of which out of X only S ° is a member) 

(1.60) 

PI S PI 12 
/ 

«i .«3 \ Ki 1 K i 2 

P 1 2 M S \ 

x <M;0,o|§,|)^bK 3xr ir i4 

M M S i s x 

<i>xX\ 1 $200 
1 1 1 / 2'2 

+ <£xXl 1$200 
2'2 

= - 7 i * 5 ( x L * i » + x i i *Soo)-
V2 2 2 2 ' 2 

(1.61) 

For the SU(3)fiav0Ur singlet irreducible representation, 

\X?SM\+) -
«1 .«3 

Pi A P 1 2 

V « 1 1 « 1 2 J 

l P X 2 M 5 

^ «12 K 3 1 

x (},i;o,oii>i>*5jir»x?r^ 
' 2 ' 2 

M A M \ / M M S 

1 1 1 1 1 
4>XXl 1$200 

2'2 

/ M A M \ / M M S 
+ **X'l 1$200 

I 2 1 2 / V 2 2 1 2'2 
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^xixiA-xlA)-
y/2 2'2 2 2 

(1.62) 

Orbital Excitations 

We combine L = 2, 5 = § states to give Jp = | + . In this case the Clebsch-Gordan 

coefficients are not all unity. 

' M M 5 

« 1 2 « 3 1 

A 1 + ^ ^ Pi P* M 

x (l,M 5;2 ,M L | i , i)$Xx| 1 ,^?" t 2 

+ -4xf i (*2Wx + *§2otfr) V5 2 ' 2 

- ^ x f . - j C f c ^ + fcWi) 

+ y|xf_|(*2A22^ + $ 2 2 2 ^ ) } . 

For the 5L7(3) / / 0 vour decuplet, 

l ^ 0

4 ^ f > = E 
Z ML,Ms 

s s s 

1 1 1 

5 5 5 

1 1 1 

(1.63) 

x ( | , M s ; 2 , M L | i , i ) $ f 2 M t x f M s <^ 

There exists no fully antisymmetric L = 2 spatial wave function to go with the 

SU(3)flavour singlet flavour state and the symmetric spin state. 
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We neglect the tensor part of the hyperfine interaction (§1.11), and so these or­

bital excitations will not contribute to the wave functions we use. We list them for 

completeness. 

1.10.4 The uds Basis States 

As mentioned previously when we take into account the different mass of the strange 

quark we require only symmetry with respect to the two light quarks which are in 

position 1 and 2. This corresponds to the total wave function possessing M\ symmetry. 

For example, the ground state lambda has spatial wave function $o00 and flavour wave 

function (j>\ (in the uds basis). It therefore must combine with a xp spin wave function 

to give a total wave function with M\ symmetry. 

The strange states in the uds basis are given in Table 1.8. 

1.11 Hyperfine Interactions 

With the zeroth order eigenstates established we can now turn to calculating the effects 

of the hyperfine interaction. 

Analogous to Q.E.D., in Q.C.D. one expects a hyperfine interaction of two quarks 

i and j in the same baryon, which to order aa is, 

i<j m » m j ° "ij rij 

Where = |rj — fj\, Si = \o is the spin vector operator for the ith quark in the baryon. 

as is the effective quark-gluon coupling constant, analogous to the electromagnetic cou­

pling constant a = 1/137, and is determined by calculating the TV — A mass difference. 

as depends on how large an oscillator basis is chosen[7], we take up to N = 2 states. 

The spin-orbit part of the potential has been neglected. Since it has been found 

experimentally that spin-orbit effects are reduced to a level of less than 10% of naive 
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I A
2 5) = ^ O O O ^ A X I i t h e A ground state 

2 ' 2 

| A 2 S P A ) = *&*Axi i 
2 ' 2 

\^2sPP) = *5WAX1 i 
2 ' 2 

|A25AA> = $ A O V A X ! i 
2 ' 2 

|A
4

A,A> = Em(2, m; | , (I - m)||, | > < O A X| i (i_ m ) 

| E 2 S ) = ^ooo ŝXi i t n e s ground state 
2 ' 2 

| S 2 S , A ) = *ft>*EXl 1 
2 ' 2 

| £ 2 S „ P > = ̂ Sofoxl i 
2 ' 2 

|S 25AA) = i 
2 ' 2 

\X4DPP) = £ m ( 2 , m; | , (i - m)|§, | ) $ « E X | , ( i _ m ) 

| £
4

DA A ) = Em<2, m; | , (§ - m)|§, | ) $ ^ s x f i ( i _ m ) 

Table 18: The uds basis states we will need, combined so that they have Mx symmetry. 
Notation \X2S+1 L„ia3). 
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expectations of one-gluon-exchange [17]. Isgur and Karl speculate that Thomas pre­

cession may cancel the spin-orbit effect. 

The Fermi contact term (the first term in equation (1.65) is operative only when 

the pair (i & j) have zero orbital angular momentum. 

The second term is the tensor term. There is an effective 'colour-magnetic' field 

due to the spin of the quark. It is directly analogous to the tensor term present in the 

nucleon-nucleon potential. The tensor force couples S and D states of the same Jp. 

The tensor operator gives zero when acting upon singlet states. We do not include 

effects of this tensor operator as its effect is negligible in the ground state baryons [23]. 

As a result there will be no D state admixtures in our wave functions. 

In the 5 = 0or5 = —1 sectors (1.65) can be written 

*KW = £ ( ! " (1 ~ x)(Su + Sja))Hi J

yp (1.66) 

where Hgp ^ f %{y S • 5 ^ ) + ^ ' ̂  ' r « - S< • Sj}} (1.67) 

and x = mu/ms. (1.68) 

Hhyp will not connect L = 1 and L = 6 states so matrix elements between the ground 

state (TV = 0) and N = 1 states will give zero. 

1.11.1 Hyperfine Mixing in the 5(7(6) basis 

In the 5(7(6) basis, Hhyv will lead to mixing within a given 5(7(6) multiplet and also 

between different 5(7(6) multiplets with the same isospin and Jp[21]. 

In the 5(7(6) basis x = 1, so the hyperfine matrix elements between the states <f>m 

and <f>n, take the form: 

ff^(6) = ( ^ ( 6 ) ( 1 , 2 , 3 ) | « , + + i f£ p ) |<C ( 6 ) ( l , 2,3)). 
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(1,2,3) denotes quark positions. In particular, 

(<e(6)U, 2 , 3 ) | i ^> f (6>(1, 2,3)) = 3,2)|£&|*f< f l>(l, 3,2)) 

= ( - l ) a ( ^ ( e ) ( l , 2 ,3 ) | J g p |^ 6 ) ( l , 2 ,3 ) ) 

Where we have relabeled the quark positions and then used the complete permutational 

anti-symmetry of the SU(6) baryon wave functions. That is the matrix elements H}^p = 

H\lp. Similarly we get H2

h% = Jf£2

p. Therefore 

<^)(1,2,3)| £ fl^f^l, 2,3)) = 3(^<6>(1,2,3)| J^ 0

5 U ( 6 ) (1 ,2 ,3)) . 

(1.69) 

517(6) Basis Compositions. 

Hhyp has non-diagonal matrix elements between different supermultiplets leading to 

wave function distortions and second order mass shifts. Using 

^ = _ L ( r W 2 ) 

and the relation 

in (1.67) with i = 1, j = 2, we get, 

H» = (i-7i) 

4rv ry 3 

with* = (1.72) 

We also need the relations: 

(x
p

JSi • S2\X

p

m.) = -lsm,m., (1.73) 
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(xi\Si • S2\xl) = -6m<m>, 

(*L\6\p)\*loo) = V>ooo(0)</>ooo(0) = 
a 

Try/ft' 

The relevant hyperfine matrix elements are 

(XgSs\Hhyp\X^Ss) = --6, 

{X^Ss'\Hhyp\XgSs} = ~ y ~ ^ ' 

(X^SM\Hhyp\X^Ss) = -^7~S-> 

y/Z a3 

(1.74) 

(1.75) 

(1.76) 

(1.77) 

(1.78) 

{A?SM\HHyp\AiSs) = 0, 

(EwSM\Hhyp\%ioSs) = 0, 

(1.79) 

(1.80) 

(1.81) 

(1.82) 

(1.83) 

where X = JV, A, S°. Using the masses and compositions of the excited states from 

ref.[17] given in table 1.9, along with the zeroth order ground state nucleon wave func­

tion, as a basis and taking 6 = 260 MeV [23] we get, for the nulceon hyperfine mixing 

matrix, 

/ 1005 138.5 132.8 

138.5 1405 0 

132.8 0 1705 

\ \ No 

JV(1405) 

Y 132.5 U 1YU0 j \ JV(1705) j 

JV0 represents the zeroth order ground state nucleon wave function, iJVg2^). 

We have used the results 

(1.84) 

1005 = 1135+(N8

2Ss\Hhyp\N8

2Ss) 
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X X£Ss> X£SsM Xi0SsM 

JV(1405) -0.99 -0.17 — 

JV(1705) +0.15 -0.94 — — 

A(1555) +0.99 +0.02 +0.10 — 

A(1740) +0.09 +0.30 -0.95 — 

A(1860) -0.04 +0.91 +0.29 — 

E(1640) -0.97 -0.23 — +0.08 
S(1910) -0.20 +0.91 — +0.17 
E(1995) -0.08 +0.27 — -0.23 

Table 1.9: Excited baryon compositions, in the SU(6) basis (from ref. [17]), adjusted 
to our phase convention. 

138.5 = ~0.99(X2SS'\Hhyp\X2Ss)-0.l7(X2SM\Hhyp\X2Ss) 

132.8 = +0.15(X8

2 Ss>\Hhyp\X2Ss)-0M{X2SM\H\X2Ss) 

The matrix in (1.84) has 

7V(941) = +0.95iV8

255 + 0.25NS

2SS> + 0.20N2SM (1.85) 

as its lowest eigenvalue (in MeV) and corresponding eigenvector. Similarly for the A 

and E° in the SU(6) basis we obtain 

A(957) = +0.97A8

255 + 0.18A2S5' + 0.16A25M - 0.01A?SM, (1-86) 

E(957) = +0.97E255 + 0.17E255' + 0 . 1 7 £ 2 S M - 0.00£2

0SW. (1.87) 

The low value for the mass is a result of neglecting the mass difference between the 

two light quarks and the strange quark. 

1.11.2 Hyperfine M i x i n g in the uds Basis 

When SU(3)f^our is broken we must use the uds basis and we can no longer use (1.69). 

Since the strange quark is always in the third position in this basis, we have using (1.66) 

#mn = (#f(l, 2,3)\(Hllp + x{H\lp + H £ p ) ) l C s(l, 2,3)) 
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= 2,3)\(HH + x{P$3H%pP23 + P}3Hl 2

ypP13))\<f>»ds(l, 2,3)) (1.88) 

{̂ " (̂l, 2,3))} axe the excited uds wave functions up to 7Y = 2, see table 1.8; P,j are 

permutation operators, transposing quark positions i and j. We have 

(1,2,-3)1^1^(1,2,3)) = (2,1,3)1^1^(2,1,3)) 

= (-l)2(tf(l,2,3)K3

p|^(l,2,3)) 

After relabeling and transposing the quark positions 1 and 2 and noting that the uds 

wave functions are antisymmetric with respect to exchange of quark positions 1 and 2 

only. Therefore 

Xnt = (^(1 ,2 ,3 )1 (^ + 2 x^^13 ) 1 ^ ( 1 , 2 , 3 ) ) (1.89) 

uds Basis Compositions 

The effects of a ^ a\ are small in the S = — 1 sector [24] and are neglected in the 

matrix elements of Hhyp. We will need to know how a function F (say) behaves under 

the permutation operator P 1 3. It can be easily verified that 

(1.90) 

(1.91) 

(1.92) 

(1.93) 
•± t 

Along with the relations 

<*2ool*3(#l$ooo) = 0, (1.94) 

« l * 3 ( ^ o o > = 1̂̂ , (1-95) 

(̂ ool<53(A)l$ooo) = 0, (1.96) 

PizF" = 
1 \/3\ 
2 P ~ T X > 

Pi3Fpp = -PP--XX- ^ A 

P13FX = 

P13FXX = 
1 „ 3 ^ \ 

~2~P 
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we get for the uds hyperfine matrix elements 

(A2S\H\A2S) 

(A2SPP\H\A2S) 

(A2SXX\H\A2S) 

(A2SPX\H\A2S) 

(E 2 5 | / f|S 2 5 ) 

(£X|/f|£2S) 

(£2S\\\H\H2S) 

(Z2SPX\H\I:2S) 

Due to the higher mass of the strange quark the zeroth-order energy (1135 MeV) now 

becomes5 

1135 + ma - mu - (1 - x)J%- = 1295 MeV 

Using the N = 2 wave functions for the A and E ° in the uds basis (table 1.10) we can 

construct the mixing matrix. When diagonalized this gives6, 

A(1113) » 0.95A25 + 0.07A25
A
A + 0.28A25pp + 0.08A2SpA, (1.105) 

S°(1209) « +0.98E25 + 0.17S25AA + 0.02S 25p p + 0.11S25pA. (1.106) 

for the ground state eigenvectors in the uds basis. 

We now take these compositions (1.85)-(1.106) and apply them to our problem of 

calculating the K~p —• Ay and the K~p —• E°7 branching ratios. 
5 A quark in a harmonic oscillator potential has ground state energy ^ = ^tiu = (H — 1) which 

gives p3 = a. 
6Reference uses a = 0.32, m u = 0.33, m, = 0.55 (GeV) but they point out that if m, — mu is increased 

to 0.28GeV with a corresponding increase in a to 0.41 there is little change in the compositions. 

= o, 

-x—6, 

-x^6, 

—x-^-S. 
4 

(1.97) 

(1.98) 

(1.99) 

(1.100) 

(1.101) 

(1.102) 

(1.103) 

(1.104) 
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X X2SXx x2spp X2SP\ 
A(1555) -0.75 -0.66 -0.09 
A(1740) +0.56 -0.69 +0.46 
A(1860) +0.34 -0.28 -0.85 
E(1640) -0.84 -0.53 -0.11 
E(1910) +0.23 -0.51 +0.56 
E(1995) +0.19 -0.31 +0.02 

Table 1.10: Excited baryon compositions, in the uds basis (from ref. [17]), adjusted to 
our phase convention. 



Chapter 2 

Theory 

2.1 Method 

We wish to calculate the branching ratios for the radiative capture reactions K~p —• Y-y 

within the N.Q.M., where Y represents A or E°. Within the context of this model we 

picture one of the u quarks of the proton being transformed into an s quark and so 

creating a A or £°. We take the approximation (as in ref.[15]) that the kaon is a 

point-like particle and ignore its internal quark structure. Also we take the standard 

hypothesis that photo-emission occurs via the de-excitation of a single quark. 

Since we are using the nonrelativistic wave functions given in chapter 1, it is appro­

priate to develop a nonrelativistic operator from the 

K~ + u —> 5 + 7 

interaction on a single quark. This operator will then be 'sandwiched' between the 

nonrelativistic wave functions corresponding to the proton and the Y. We will procure 

this operator from a nonrelativistic reduction of the interaction obtained from the 

lowest order Feynman diagrams contributing to the process (see Fig. 2.2). 

In Dirac notation the amplitude for the process is, 

SYp = (*Y\Y,V(i)\*P) (2.107) 
i=i 

where the sum is over the three quarks in the baryons and is the single quark 

transition operator which acts on the space, spin, and flavour of the ith quark. 

41 
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2.2 Symmetry considerations 

The Y and proton wave functions are given by three body wave functions, the form 

of which was described in the previous chapter. In coordinate representation they are 

dependent on the coordinates of each of the three quarks, suppressing the spin-flavour 

dependence of the baryon wave functions we get, 

SYP = j(*y|rllFaif3,*)(ri,ri,r3,t|(VW + V<2> + V<3>)|r* f* t') 

x ( ^ r ^ r ^ ' l ^ ) ^ ^ ^ (2.108) 

where rj is the position vector of the ith quark in the Y; f- is the position vector of the ith 

quark in the proton; and the interaction in coordinate representation, (f\, f2, r3,t\(V^+ 

y(2) -|_ V^)\f(, f2, r3,t'), is a sum of single quark transition operators 

{fur2,r3,t\(V^ + V™ + y(3))|r1',r2',r3',0 = VM(?ur>[,tJ)Pft - r%)83(f3 - f3') 

+ V<Va. *. O ^ i - ri)S3(r3 - r3') 

+ V&(r3, r3', t, 0* 3 (n - f^)S3(f2 - r2'). 

5(7(6) Basis. 

When we use the 5(7(6), or fully antisymmetrized, description of the baryon wave 

functions we can use symmetry considerations to simplify the interaction. Using the 

condensed notation, 

tf(r.) = *(Fi,f 2,r 3,0, 

dr = d3r\ d3f2 d3r3 dt, 

and dr' = d3^ d372 d% dt', 

we have 

SYP = / M r . O f V W C n . ^ t . O ^ - ^ ^ - r S ) 
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+ W\r2, f* t, O ^ C r i - ri)63(f3 - r3') 

+ V<3>(r3, rg, *, f ) * V i - r ? ) ^ - r*a')} 

x * p(r •) dr dr'. 

In particular 

/ Mri,ra , r ^ 1 * ) V W ( f i , r V 1 t > t')Ara " ̂ 3 ( r 3 - r * ) * , ^ , r 2 ' , r 3 ' , f ) Jrc/r' 

= J M ^ , r l f Fa,0V«(i?a.*?

a

,,t,O«S(*ii - ^ ( r , - ^ ^ ( r j . ^ f g , f ) drdr', 

where we have just relabeled quarks 1 and 2. Making a transposition of any two quark 

positions in an antisymmetric wave function will result in a change of sign of the wave 

function. Transposing fi «-• r 2 and f{ «-+ r 2 in the last expression we get 

(-1)2 J yY{^,r2,r3,t)V^\r2,r^^ 

= J * y ( r i , r 2, r3,*)VW(r1. *, t')*3(r2 - r2')£3(r3 - r%)9p(f{, r2', r3\ f) Jr dr'. 

By applying the same procedure, of changing the labels and transposing, to quarks 1 

and 3 and quarks 2 and 3 we obtain the result 

SYP = / ^ ( r i H V t V i . ^ t . O ^ - W r s - r g ) (2.109) 

+ V t V a . ^ . ^ O W - ^ C r s - r S ) (2.110) 

+ y(3)(f3,r3',t,i')<53(n - KWf3 - (2-111) 

x #p(rt')drdr'. 

= 3 | M n ) y ( 3 W % M 0 < $ 3 ^ (2.112) 

uds Basis. 

When we use the uds basis waveo functions the strange quark is always in the third 

position in the strange baryon. Since the model involves the transformation of one of 
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the u quarks in the nucleon, to an s quark it follows that only the term 

J *K(r,-)^ ( 3 ) (r 3 , *, W i - ?{)63(?2 - r*)* p(r$) dr dr' 

can contribute to the amplitude. 

Since only the interaction on the third quark is relevant, we drop the superscript 

on all references to V henceforth. 

2.3 The Impulse Approximation 

By singling out quark 3 in this manner, quarks 1 and 2 are being treated as specta­

tor quarks. This amounts to using the impulse approximation of nuclear physics. It 

states that the interaction occurs over a small enough time period that the momentum-

energy absorbed by the third quark has insufficient time to redistribute to quarks 1 

and 2. On physical grounds this statement can be justified [25] by noting that the 

energy uncertainty associated with the absorption of a kaon is of the order of the 

kaon mass. Therefore the strong interaction takes place over a time interval of the 

order of l/rriK ^ 2GeV - 1 . This interval is much shorter than the characteristic 

periodicity time associated with the binding of the quark which is of the order of 

l/(m p — 3m„) « 2QGeV~l (taking m„ = 0.33 GeV). Therefore the interaction may 

be thought of as an impulse during which the binding forces are unable to play an 

important role. The target quark is thus regarded as free and the binding forces serve 

only to determine what momentum components are present in its wave function. 

2.4 Fourier and Jacobi Transformations 

We now Fourier transform the interaction V(r3,r'3) in (2.112) to momentum space 

V W ) = /(p\r3)(r3\V]r'3)(r'3\p') d4r'3d4r3. (2.113) 
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Where the closure relations 

/ \r'3)(r3\c/V3 = 1 and J |r3)(r3| d4r3 = 1 (2.114) 

have been inserted. We get 

V(p,p') = / e - - y ( r 3 , r 3 ) e - « > ' - 3 ^ ^ (2.115) 

and the inverse relationship is 

V(rs, r3\ t, t') = J e-*»V(p, P ' ^ ' ^ ^ T - (2.H6) 

Now using (2.116) in equation (2.112) yields, 

SYP = T ^ / M ^ ) ^ - ^ ^ 

Where 6 = 3 when using SU(6) wave functions and 6 = 1 when using uds wave func­

tions. Separating out the time dependence in the bound state baryon wave functions 

(equation (1.6)), 

* r(r.) = Mri)eiEt 

and*p(rO = ^ 1 ) ^ ' , 

we obtain 

x V ' P(^Oe" , ( E i + E 2 +^ ) <'d*^'dVld 3r; ,dVV^V /rf(/)^ (2.117) 

Since we have a single quark interaction we have E\ — E[ and E2 = E'2. Performing 

the time integrals we get, 

S Y p = 7 ^ / W - P > ( ^ - ( p 7 ) ^ ( n ) ^ ( r l - r Y ) 
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x *3(r2 - F 2 y r V p V ( p , p y-Wiptfi) d3Ti dzfi d3pd3p'dp0 d(p°y. 

(2.118) 

Ei and E2 have been dropped from the time dependence as po is the zeroth component 

of the 4-vector, p, which must correspond to the energy of the interacting quark (E3) 

only. 

2.4.1 When SU(3)flavour is Broken 

We first develop a form for the amplitude when m s ̂  mu; appropriate for use with uds 

wave functions for the Y. We then generalize the amplitude to the case of unbroken 

SU(3)fiaV0Ur symmetry by letting ms -> mu. 

We switch to the Jacobi coordinates introduced in §1.7, 

P 

4(ri ' " *'), A' = -L(rJ' + ri' - 2r1'), = |(r1' + v2' + ri ')• 

(r1,r1,r1,r1',r1',r1') i-> (p,\,R,p',\\R'), 0 

Vv(»"1,r2,r-1) i-> *y(^,A,P) 

and Vv(
r

~i', rT, ri') •-• *
P
(p", A', i?'), 

and using the relations derived in §1.9, 
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-y/6 m u 

3mum8 

with m\ = 2mu + m s' 

we get, 
bJ J' 
( 2 * ) ' 

/ *(£3 -P°)S(E'3 -(/)') 

x A, R)S3(R -R'+ -j={p- p') + ^ ( ( ^ ) A - A')) 

x 6\R -R'- p>) + - ^ ( ( ^ ) A - A'))e i^^e-3)) P V ( p ,y ) 

x d3pd3\ d3R d3p' d3\' d3R! d3pd3p' dp0 d(P°y 

x e * ^ + ^ ( - " 3 ) ) pV(p, p° = E3, p', (p0)' = E3) 

x e-^'-v^')*'*^' = ^ + ^ ( i l - R') + ^ ( ( — ) A - A'), A',R') 

x d3pd3\d3Rd3X'd3R'd3pd3p'. (2.119) 

Where we have integrated with respect to p°, (p°)' and p' and the Dirac delta function 

property (1.70)) has been invoked. J and J' are the Jacobians 

J = 

3 
3n 

9fl dp 3A 

9r-a dri 
dp 3A 

drz 
dp 3A 

1 7 5 

1 " * •y/6mu 

1 /'"La 1 0 7 5 ^ - 3 ) 

(2.120) 
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—# 

Evaluating the R' integral we get 

x e - i l ^ l O J - * ) - V P W 4 ( ( ? , = - J<, # = j? + * ( ( * _ A')) 

x d3pd3Xd3Rd3X'd3pd3p' (2.122) 

x c - - ( ^ * ( ^ - v ^ ^ ' w = £ p , R ' = R+ )A - A')) 

x d3pd3\d3Rd3\'d3pd3p'. (2.123) 

The Jacobian transformation allows us to separate out the centre of mass motion, since 

Vy(p,\,R) = NY*Y(p,Z)e-iP~¥R (2.124) 

and Vpip', A', R') = Np$p{p',\')eip>n' (2.125) 

= i V p $ p ( ^ A ' ) e ^ - ( ^ v f ^ ) X - X ' » (2.126) 

—* —• 

Where Py is the centre of mass momentum for the Y final state and Pp is the centre 

of mass momentum for the proton. Ny is a normalization coefficient for the Y and Np 

is a normalization coefficient for the proton. 

The $x(p, A) contain normalized flavour and spin wave functions. The harmonic 

oscillator functions are normalized, over all space, to unity. The normalization coeffi­

cient Nx, therefore, contains a from the box normalization of the centre of mass 

plane wave. It will also include normalization factors associated with the Dirac spinors 

(§2.10.2). 

Srp = 

x e 
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x d3pd3Xd3Rd3\'d3p<Fp' 

21bNYNp{2ir) / R 3 / R ? _ , - - Rs ( = * - 3 ) 
= — - y * (*V-p + p ' - P p ) $ K ( / 9 , A ) e p ^ l - « ' 

x F(p>° = E3,p\(p0)' = E 3 )e^ ( ( - ) X - 3 X ' ) ? '$ p (p,A') 

x e^A&^')^^d

3Xd3X'd3pd3p' 

x e - ^ W ^ ^ - ^ ^ ^ X O e * ^ - ^ d3pd3Xd3X'd3p. (2.127) 

The delta function 

* 3 ( i V - P + P ' - PP) = <53((PP - p') - ( iV - P)) 

tells us that the momenta of quarks 1 and 2 remains constant throughout the process 

and allows us to perform the integration over p'. 

2.4.2 When SU(3)fiavour is Unbroken 

If 517(6) basis wave functions are used for the Y then (2.127) becomes (with ms —> 

m, m\ —* m) 

x V(p,p0 = E3,p' = Pp+p-PY,(p°y = E3) 

x d3pd3Xd3X'd3p. (2.128) 

We will return to the last two expressions after deriving the explicit form of V(p,p'). 
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2.5 The Form of the Interactions. 

We will now derive the form of the vertex functions and propagators for the interacting 

quarks and the kaon. 

2.5.1 Equations satisfied by an interacting field. 

Spin | particles: 

Spin | particles such as quarks obey the Dirac equation. The Dirac equation for a free 

particle is 

(7Mp" - m)V> = 0, (2.129) 

where m is the rest mass and p the 4-momentum of the Dirac particle. When the 

particle is in the presence of a potential V, the Dirac equation using Bjorken and 

Drell[26] notation becomes, 

(7Mp" - m)V> = Vrl>. (2.130) 

Integral-spin particles: 

Spin zero particles such as the kaon obey the Klein-Gordon (KG) equation. The KG 

equation for a free particle, 

(• + m ^ K = 0 , (2.131) 

where m#- is the kaon rest mass and • = —p^p^ = g~ gfj:- In the presence of a potential 

V the KG equation becomes, 

( Q + m ^ = - % (2.132) 
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2.5.2 Form of the vertex functions 

The electromagnetic interaction for a spin | particle: 

The minimal substitution1, pM —* p>* — eA**, introduces the coupling of a Dirac particle, 

charge e, to the electromagnetic field AM. Using the Feynman slash notation [26], 

4 = y^A" = y°A° - 7 • A, we get from (2.129) and (2.130) 

(̂ -m)V> = e^V (2.133) 

=• V^ac = e4- (2.134) 

This is the form of the electromagnetic interaction of a Dirac particle such as the spin 

1 quark. 

The electromagnetic interaction for a spinless particle: 

Again we use the substitution —• p*4 — efcA^, this time into (2.131) (ex is the charge 

on the kaon), giving, 

[ ( i / - - eKA\x)f - m2

K]M*) = 0 

[ n + m2

K + eK(A»(x)i— + A^x)) - e^A^A^x)}^^) = 0. 

So to first order (neglecting terms 0(e2) oc (y )̂) and using (2.132) 

V$(x) = ieK{A*(x)£- + -~A,{x)). (2.135) 

The form of the strong interaction: 

For the strong (K~p) vertex, consider the meson field in analogy with the electromag­

netic potential[26]. 
1This substitution is necessary to preserve local phase (gauge) invariance of the QED Lagrangian [6]. 
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The conventional choice for the electromagnetic transition current that generates 

A" in equations (2.134) and (2.135) is, 

r = ê V *̂'. (2.136) 

Where xj)x is the wave function of the particle before interacting with the electromagnetic 

field. ip* is the wave function of the particle after interacting with the electromagnetic 

field. 

(2.136) relates to the electromagnetic 4-vector potential, A", through Maxwell's 

equations. In the Lorentz gauge Maxwell's equations are 

DA" = J" (2.137) 

= e^VV>''- (2.138) 

For example in the case of photon exchange in electron scattering from a Dirac 

proton, ipf and ij>% would represent the final and initial proton wave functions, and e 

the charge on the proton. (2.138) would then define the M0ller potential of the Dirac 

proton. 

The 'Klein-Gordon' analogy to (2.138) is (A" ipK), 

(• + m2

K)i>K = i>YTxpp (2.139) 

(compare to equation (10.11) of ref.[26]). Also, 

r = gtcusijs for pseudoscalar (PS) coupling, (2.140) 

T = 9Kus fits for pseudovector ( P V ) coupling, (2.141) 

where q = p — p' and 75 = i7o7i7273 

p'(p) represents the up(strange) quark momentum, immediately before(after) the strong 

interaction. gKus/idKus) represents the strong coupling Ku —* s constant in the pseu­

doscalar /(pseudovector) coupling scheme for the process K~p —* Y 7 . It is the analogue 
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of e in (2.138). gnus and 9Kus a i e related by noting that the interactions taken over 

free quark states must be equal in the PS and PV coupling schemes. That is 

u(p)gKus7hu(p') = u{p)<JKus ilbu(p') 

= u(p)gKua(p'- p*)ysu(p'). 

Since the u(p) and u(p') are solutions of the free Dirac equation 

( / -m>(p' ) = 0 (2.142) 

and for the conjugate relation, 

u(p)O*-m.) = 0, (2.143) 

and noting the anticommutation relation 

7 „ 7 s + 757^ = 0, (2.144) 

we get that 

9KUS = - J ^ 2 - . (2.145) 

Now the equation for a proton absorbing a kaon (analogous to equation (2.133)), 

can be written, 

(̂ -mp)V>p = (V>/cr)V>P- (2-146) 

In the strong (K~p) interaction a u quark in the proton is transformed into an s quark. 

This corresponds to a V+ operator (see §1.8) acting on the third quark of the proton. 

It can be thought of as the combination of creation and annihilation operators 

a\au, 
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acting on the third quark of the proton. Where a\ creates an s quark and au annihilates 

a u quark. 

Therefore the form of the strong interaction can be written, from (2.146), 

VST = TV+i>K. (2.147) 

2.5.3 The Feynman Propagators. 

The Feynman propagator for a spin | particle. 

The Feynman propagator Sx(y—x) (or Green's function) for a Dirac particle X, satisfies 

the Green's function equation 

(• J7y - mx)Sx(y -x) = 6\y - x), (2.148) 

where V y is the 4-vector gradient 

This operator acts on functions of y only. Sx(y — x) represents the wavefunction ip(y) 

at space-time point y produced by a unit source (ip(x) = S4(y — x)) at space-time point 

x; the evolution of il>(x) is governed by the free Dirac equation (2.129). 

By Fourier transforming to momentum space we get [26], 

f d4q e--«-(»-«) 
= 7(2^7^7 

Now, 

1 _ j+rn 
4-m {4-m)(4 + m) 

_ 4+m 
f-m2' 
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and by the anticommutation relation 

T ' V + 7"7" = 2flT, (2.149) 

it is easily found that 

£ = q.q = g2. (2.150) 

r d4o e-«'</(!/-*) <£4g c-w.(v-*) 
(2TT)4 g2 -m2

x +iey 

The small positive imaginary part added to the denominator in equation (2.151) as­

sures that (2.151) meets the desired boundary condition of propagating only the positive 

frequencies forward in time (particles) and the negative frequencies backward (antipar-

ticles). 

The Feynman Propagator for a Klein-Gordon particle. 

The Feynman propagator for a Klein-Gordon particle K is the solution of the equation, 

(•„ + m2

K)AK(y -x) = -6\y - x). (2.152) 

Afc(y — x) represents the wavefunction ib(y) at space-time point y produced by a unit 

source (tp(x) = 84(y — x)) at space-time point x; the evolution of ip{x) is governed 

by the free Klein-Gordon equation (2.131). By once again, Fourier transforming to 

momentum space we find [26], 

^'-'Wp^-mH - f c - ( 2 1 5 3 ) 

2.5.4 The kaon wave function 

The kaon and proton form a hydrogenic atom immediately prior to capture. Leon and 

Bethe [27] suggest that the kaon capture by the proton is most likely from an S state. 
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In fact, the fraction of K mesons reacting from P states is less than 1%. However, the 

capture can occur from one of many different states with principal quantum number 

n. The bound state wave function for the kaon can be written 

M*) = NKxPK(z)e-iEKt, (2.154) 

where NK is a normalization constant. The probability density for a Klein-Gordon 

particle is given by 

which for xp given by equation (2.154) is 

p = 2EK\NK\2\tJ>K(?)\2. 
Normalizing to a box of volume V we get 

NK = J — (2.156) 

with j | ^ ( i ) | 2 d3z = 1. (2.157) 
J v 

In terms of its Fourier transform 

*K(*) = NKe-*«j^^Jj*«'*4K{pK)#pK 

= ^T2J^iPK-ZMPK)d3pK. (2.158) 

Where 4>K(PK) is the bound state momentum space wave function. 

2.5.5 The photon wave function 

AM(iy) has the form, with box normalization [26], 
- J i g t ' f c . U I 

= =/V76Vfc-, (2.159) 

with 7\L = . 1 . (2.160) 
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(2.160) is the photon "wave function" and describes the emission of a photon with 
—* 

momentum k, energy k , and polarization 4-vector eM. 

2.6 Derivation of the explicit form of V 

We now derive the explicit form of the interactions corresponding to the Feynman 

diagrams in Fig. 2.2, first in coordinate, and then in momentum representation. 

From the Feynman graphs (Fig. 2.2) it can be seen that the structure of the 

interaction Vi, associated with the ith graph is, 

ViCiirs) = VEM(r3)Sa(r3-r3)VST(r3), (2.161) 

V2(r'3,r3) = VST(r3)Su(r3-r'3)VEM(r'3), (2.162) 

V3(r'3,r3) = VST(r3)S\r3 - r'3), (2.163) 

V4(r'3,r3) = VST(r3)6\r3-r3)VEM(r'3). (2.164) 

VEM is the form of the interaction at the electromagnetic vertex. 

VST is the form of the interaction at the strong vertex. 

Sa(r3 — r3) is the Feynman propagator for a Dirac particle — the strange quark. 

<Su(r3 — r'3) is the Feynman propagator for a Dirac particle — an up quark. 

Note that all the interactions act only on the quark in the third position, as was 

shown in §2.2. 

2.6.1 Coordinate Representation 

Using equations (2.134), (2.151), and (2.147), and since the interactions act only on 

the third quark of the Y and proton, we get2, 

^ i ( r 3 , r 3 ) = V^a\r3)Sa(r3-r'3)VsT(r'3) 

Suppressing the +ie term in the denominator. 
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/

f}4 (finv p-*<l(r3-r'3) 

(2TT) 4 (2TT)
3

/
2

 g 2 - m 2 

= T 2 ^ 7 f / * * * * * + rna)TV+MPK), 

(2.165) 

where m s, es is the mass and charge of the strange quark. 

V2(r'3,r3) = VST(r3)Su(r3 - r'3)V^ac(r'3) 
t dAa cPnis e~ipK-r3e~iq-(r3~r3) •, , 

= ( 2 ^ 7 ? / * * * * * qTZ^ rV
+
(4 + mu) &

k
(PK), 

(2.166) 

where mu, eu is the mass and charge of the up quark. Using equation (2.147), 

V3(r'3, r3) = VST(r3)6\r3 - r'3) (2.167) 

The kaon wave function, IPK(?Z)I to be inserted into VST of equation (2.167) for 

graph (3) is a solution of the Klein-Gordon equation in the presence of a potential 

Vgjf, equation (2.132). 

(•r3 + m2
K)tpK(r3) = -V^(r3)xpK(r3). (2.168) 

From equation (2.152) we have, 

(•r, 4- m2

K) J AK(r3 - w)V™(w)xpK(w) d4w = -Vg°(r3)ipK{r3) (2.169) 

comparing equations (2.168) and (2.169), we get that the kaon wave function at r3 after 

scattering off the potential V£M at w is, 

xpK(r3) = J AK(r3 - w)V{w)TpK(w) d4w. (2.170) 
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Where the form of the interaction between the kaon and the electromagnetic field at w 

is known from equation (2.135). 

V(w) = ieK(A"(w)£- + £-Mv,)) 

Using this along with (2.170) and (2.153) we get, 

(2.171) 

Where indicates the derivative operator acts to the left and indicates the 

derivative operator acts to the right. The minus sign arises from integrating 
/• e-ig-(r3-v>) g 

J d 4 q d w V ^ i e K d ^ i M w ) M w ) ) 

by parts. The boundary term is omitted as the potential AM is taken to vanish as 

t, \w\ —• ±oo. 
Substituting for V'K'(w) a n d A^(w) into (2.171) and evaluating the derivatives we 

get, 

Mr*) = \^yi/2 J d'qd^pKd'w ^ _ ^ e ^ j f + q)^e^<f>K{pK) 

NisN P i s t p-ir3-(PK-k) 

after performing the integrals over w and q. Therefore, 

(2.173) 
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Where m -̂, e# is the mass and charge of the kaon. 

The contact term comes from the minimal substitution 

in the kaon-nucleon pseudovector Lagrangian [28]. That is, 

T = igKus P'KIS = igKusip'- p")75 

igicM ~ e* 4~ p" + 4)75, (2.174) 

The term 

i9Kus(-es 4 + e« 4)75 

in (2.174) corresponds to the radiative process, graph (4) of Fig.2.2. Since ea — eu = 

we get the result 

V<(r'3,r3) = -NKN^K ^ j ^^ig^^V+e-^MPK)^ - r'3) 

(2.175) 

2.6.2 Momentum Representation 

In the next section we wish to examine the effect of a gauge transformation on our 

interactions (i = 1,2,3). To do this it is convenient to Fourier transform the 

interactions Vi to momentum space. By inserting the closure relations (2.114) in V\ 

(2.165) we get, 

e » ' f c . r 3 - « q . ( r 3 - r J ) - » P i f . r ^ - j p ' . r J + « ' p . r 3 

KM) = ^ § / A ^
3
d S d

3

p V (2^)19/27 - * " ' 3 - ' a - ™ ? 2 _ m 2 

x f\4+m.)TV+4>K{pK) 

= j AdV
3
d

3

pV
e

g 2
_

m 2
 M+m.)rv+tK(pK) 
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x (2TT)4 S4(k - q + p) 

= l2^ldpK (k+py-m* S (P« + P ~ (K + P»MPK). 

(2.176) 

For V2

 w « have, using (2.166), 

p NisN r f,ik.r'3-iq.(r3-rl
3)-ipK.r3-ip'.r'3+ip.T3 

x rV +(^+m t t) 
9 2 - ™ u 

f 7WJV /• e-'(i+k-p')-r3 

X (2TT)4 64(q-(p-pK)) 

= l ^ W ] d p K (p-PKy-ml HPK+p-(k+P))MPK). 

(2.177) 

With (2.173), 

= J *
 r

*
d  r a d  P K

 {PK-kf-ml 

x rV + (2p K - fc).e<54(r3 - r3)< (̂Ptf) 

= ^ § / ̂
 ( P K

 _
 t )
, _

 m
, rn(2 P , - » w 

= J d p K ( p K - k Y - m l
S ( P K + p

-
( k +

 P»**M-

(2.178) 
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And for V4 we get from (2.175), 

x <f>K(PK)6\r3 - r'3) 

= ~(2^y J ^ i y j c « 7 . V + e - ^ ^ ^ - ^ ^ ^ ( f i c ) 

= -^Jy/i JD3?K ^9KUS75V+<I>K(PK)S\PK +p'-(k+ p)). 

(2.179) 

Notice the appearance of the energy-momentum conserving delta function for these 

processes. From this it can be seen that p corresponds to the 4-momentum of the s 

quark in the outgoing baryon (Y); and p' corresponds to the 4-momentum of the u 

quark in the incoming baryon (p). 

2.7 Gauge Invariance. 

2.7.1 Choice of Gauge 

In the Lorentz gauge specified by 

dpA
1

* = 0 (2.180) 

we get the constraint, using (2.160), 

k.e = 0. (2.181) 

This is a covariant condition which must be true in any frame. Within this gauge we 

can exploit the residual gauge freedom [29], 

yiM A" - d'x, (2.182) 

provided x satisfies 

• X = 0, (2.183) 
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which keeps us in the Lorentz gauge. For a real photon satisfying the free field equation 

[29], 

•O4" = 0, (2.184) 

with plane wave solutions of the form (2.160), the photon 4-momentum k must satisfy, 

the massless condition, 

jfĉ Jfc" = 0 k° = \k\. (2.185) 

The transformation (2.182) corresponds, by equations (2.181) and (2.185), to 

e" ̂  e" + 0Jfc". (2.186) 

We choose (3 so that e° vanishes. This fixes A*. It is known as the Coulomb gauge and 

makes manifest the transverse nature of the electromagnetic field. 

2.7.2 Proof of Gauge Invariance 

To check invariance under a gauge transformation (within the Lorentz gauge (2.180)), 

we note that the amplitude SYp, corresponding to the ith graph in Fig. 2.2, is linear in 

the polarization vector e. That is 

under a gauge transformation. Then if the set of Feynman diagrams in Fig. 2.2 is 

gauge invariant we must have 

E W = 0, (2.187) 
i-l 

where JV is the number of graphs. 
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We ignore binding between the quarks for the purpose of determining the behaviour 

of the interactions under a gauge transformation3. Replacing e with k in (2.176) 

w = u(P)vr\p,p>(p') 

= ~(2^jru(p) J d P K (k + pY-m* ^(PK+P~(k+p)Hp), 

where u(p) and u(p') are Dirac 4-spinors which are solutions of the free Dirac equation 

for the third quark. Using (2.150) and (2.185) we get, 

-( M/e~fc/ >\ ( >\  e * N K N y ^ f J 3 - (m 3 Ji+ P fiTV+JKJpK) 

« ( P ) ( p , P )u(P) = -^jruip) J d P K p 2 + 2 k p _ m 2  

x 8\pK + p' - (k + p))u(p'). 

Using the anticommutation relation for the Dirac gamma matrices (2.149) we find that 

Ji f> = 2k.p- p1 ft. (2.188) 

Employing (2.188) and the Einstein mass-energy relation 

p2 = m 2 , (2.189) 

and(p')2 = rn-l, (2.190) 

we get, 

- / N T ^ f c , / \ , eaNKN^_f f 3 ^ (2k.p-{p1-ma) )i)TV+(f>K(pK) u{p)Vx (P,p)u(p) = ——Tu(p)jdpK — 
( 2 7 r )3/2 J " 2 k p 

X S\pK + p'- (k + p))u(p'). 

Using (2.143) we get 

u(p)Vr\p,P>(p') = e-^^-u(p) J d*pKTV+MPK)u(p')8\pK-rp'-(k+p)). 

(2.191) 
3However, in general we will lose gauge invariance when we fold the interaction over three quark wave 

functions. 
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Replacing e with k in (2.177) 

«(P)V2 (P,P)U(P) = -^-fFu{p)jdPK {p_pKy_ml  

x 64(pK+p'-(k + p))u(p'). 

Noting that p - pK = p' - k and using (2.150), (2.185), (2.190), and (2.188) we get, 

euNKN^_, , f _ rV+(/>K(PK)(2p'.k- }i(f -™
u
)) 

(2^)3/2 v̂ yy -2p'.fc 

x S4(pK + p'- (k + p))u(p'). 

From the relation (2.142), 

u(p)VrK(P,P>(p') = - ^ 7 T " ( P ) / ^r^jr(fif)«(p')^(pJc+p'-(*+p)). 
(2.192) 

Replacing e with A; in (2.178) 

U(P)V 3 (P,P)«(P) = -wvr»(p)JdPK i P K _ k y _ m 2 K 

x £ 4(P*+p'-(fc + p))«0>')-

As before we get, 

fi(p)v3~ P>(P') = -ê )I7"(p) / fpx W+MPKMP') 8\pK + p'-(k + p)). 

(2.193) 

W i t h P S Coupling 

Here we use the substitution (2.140) 
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From our condition for gauge invariance (2.187), and noting that eu = |e, es = — |e, e# = 

—e, where —e is the charge on the electron, we have, 

J2 w = u(P)(vrkM)+vrk(p,p')+vrk(p,p')Hp') 
»=i 

JS K i v / 

= ^ 2 7 r ^ 3 / 2 ^ « ^ ( p ) ( e 8 - eu - eK) J d3pK 1SV+<J)K(PK)U(P') 

x 64(PK + p'-(k+p)) = 0. 

Thus our interaction is gauge invariant at the level of free quarks, in PS coupling, using 

only the first three diagrams of Fig. 2.2. 

With P V Coupling 

Here we use the substitution (2.141) 

T i-¥ gKus j#75. 

For graphs (1) and (2) of Fig. 2.2 q = PK- However for graph (3), q = PK — k, since 

the kaon radiates prior to capture. Now we have 

J2 w = *(p){vr fc(p, p')+vrk(p, p') + vrk(p, P')HP') 
I=I 

= ^yJ2igKuSu(p) J d3pK (es i>K - c„ i>K- eKifa- P))lhV+<j)K{PK)u{p') 

x 8\pK+p'-(k + p)) 

= ^^WKUMP) J D3PK eK h5V+(f>K(pK)u(p') S\pK + p' - (k + p)) 

± 0. 

Therefore we need the contact graph (Fig. 2.2 (4)) in order to obtain a gauge invariant 

interaction in the PV coupling scheme. 

Vr"(P,P') = -^f-2i~9Kusu{p) j d3pKeK V15V+MPKMP')6\PK+P' ~ (k+p)). 
(2.194) 
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2.8 Kinematics 

In this section we derive the magnitude of the photon momentum in the kaonic atom 

rest frame. 

The photon momentum is kinematically constrained to take on the value, = 

k° « 281MeV when Y = A, and k° « 2l9MeV when Y = £°. This can be seen from 

conservation of energy-momentum in the K~p atom rest frame, 

P£ + P?< = k» + PP = 0. (2.195) 

The zeroth component gives, 

mK + mp = k° + \l\PY\2 + mY, (2.196) 

and the 3-vector components give, 

PY + k = 0 \Py\ = \k\. (2.197) 

From (2.196) we get, 

(mK + mp)2 + (k0)2 - 2k\mp + mK) = \PY\2 + mY, 

with k° = \PY\ =• k° = (rnp + mKy-mjr 

Inserting the values [30], 

mp = 938.27231Mey, 

mK = 493.67Mey, 

mA = 1115.63MeV, 

mEo = 1192.55MeV, 

we get, for the reaction K p —• A 7 , \k\ = k° = 281MeV and for the reaction K p —> E°7, 

k° = 219MeV. 
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2.9 Observations 

It is generally assumed [31],[32] that the kaon momentum is approximately zero prior 

to the formation of the kaonic atom. This can be seen heuristically by modeling the 

kaonic atom with the Bohr model[33]. The binding energy of the kaon will then be 

given by, 

E a = . l * ™ e V = ( 2 . 1 9 9 ) 

where HK is the proton-kaon reduced mass; fie the proton-electron reduced mass; and 

n is the principal quantum number of the kaonic orbit. The total energy of the atom 

is the sum of the kinetic and potential energies, 

EB = K + U. 

Taking a circular orbit 

mv2 e2 

2 r 4TT€0r 
-e2 1 

along with U = and K = -mv2 

6 47T£ 0r 2 

gives EB = 
e2 e2 

8ire0r 4ir€0r 
-\PK? 
2nK 

\PK\ = \j-2uKEB 

5.591 x 1012

 T r 

2 eV-

As mentioned in §2.5.4 almost all captures take place from a relative S state. In 

addition, half the captures are said to take place for principal quantum number n > 10 

and less than 4% survive to n = 4. We take then, as a reasonable estimate, n = 10. 
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This gives, for the kaon momentum, 

\pk\ « 0.236MeV. 

It can be seen that |p#| is far smaller than the other momenta (\Py\ = \k\ « 281MeV) 

and masses (mu = 330MeV, ms = 550MeV) in the problem; we therefore neglect \p~k\. 

Since |p#| w 0 we take the normalized momentum space wave function to be 

MPK) = \I{^-63(PK). (2.200) 

Inserting this into (2.158) we get 

ipK&t) = NKe-iE^4>K(0). (2.201) 

with ̂ (5) = -~ (2.202) 

so that it retains the correct dimensions. That is the radial wave function of the kaon 

is approximately constant and so must go as l/y/V to satisfy equation (2.157). 

From our choice of the Coulomb gauge we had (§2.7.1) 

k.e = 0 and eo = 0. 

Inserting these conditions into V3{p,p') (2.178) and letting px —+ 0, we see that the 

contribution to the amplitude from graph (3) of Fig. 2.2 is zero. However, it was 

necessary to include this diagram to preserve gauge invariance (§2.7). For Vi(p,p'), 

^(PiP 7) a n d V*(P,P') we get 

V1{p,p') = e3NKN^
 Af+J + ro'>rV+ 8\PK +p'-(k+ p))i>K(0), (2.203) 

(fc + py — m* 

V2(P,P') = euNKN,TV+{pi- m" 2
} U \ P K +p'-(k+ p))^(0), 

(2.204) 

VAM) = -eKNKN^i~gKusls8\pK+p' - (k + p))V+ipK(0). (2.205) 
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2.10 The Nonrelativistic Reduction. 

In this section we approximate V by an expansion in p/m, consistent with our use of 

nonrelativistic wave functions. 

2.10.1 Validity of the Nonrelativistic Reduction. 

The NQM assumes the quarks are approximately at rest in the hadron rest frame. That 

is the hadron has negligible internal momentum. However most models tend to predict 

that the momentum of a quark in a hadron, can be sizeable. For example a particle of 

mass M , localized within a volume of radius R, has momentum p, by the uncertainty 

relation, 

(P2)> ~ ^ (2-206) 

The identity[9], Ap = {(p— (p))2)* with (p) = 0 in the hadron rest frame, has been used. 

R is the radius of the ground state wave function. The analysis of various hadronic 

processes indicates [34] that, 

R2 ~ 6-12GeV-2 =• \ ~ 300MeV. (2.207) 
R 

In our calculations we use the constituent quark mass4 [24] 

mu = 330 MeV 

ms = 550 MeV 

So we get, 

M i < i . (2.208) 

*Note that 3m„ > mp due to the binding energy of the baryon. 
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This suggests that taking (p/m)2 <C 1 may be reasonable, although not (p/m) <C 1. 

In addition Capstick and Isgur [11] point out that the hadronic wave functions (of 

chapter 1) derived from the harmonic confinement potential depend only on the quark 

coordinates. In QCD however, the hadronic wave function must also depend on the 

state of the glue. 

Despite these shortcomings in the NQM, the agreement with experiment (predicting 

masses, magnetic moments, and decay amplitudes) has been excellent. It is claimed 

[11], that this can be attributed to choices of effective parameters such as quark con­

stituent masses and ota (which can absorb the effect of relativistic modifications of spin 

dependent interactions). 

Looking at the derivation of the effective Hamiltonian one can see that the typical 

approximations like 

V7™2 + |p|2 - m + H£ 

are not that bad for (p/m) = 1 (6% difference). Furthermore, some of the approxima­

tions will probably be compensated by a renormalization of parameters [35]. 

Koniuk[36] points out that relativistic models, once their parameters have been 

chosen, give essentially the same results as nonrelativistic models. In addition, it is 

argued [5], that neglected terms in the Hamiltonian equation (1.3) 

i 

such as relativistic corrections and other one-gluon exchange effects, seem to be rela­

tively unimportant at the level of 10-20%. 

From its considerable success in the past it appears the model can give good quali­

tative agreement with the observed properties of low-lying baryons. With the caveat, 

however, that the model should not be take too seriously quantitatively. It is still a 
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source of some debate as to why the NQM works as well as it does. We believe that it 

is a acceptable model of confinement; suitable for our purposes. 

2.10.2 The Nonrelativistic Reduction Prescription. 

In chapter 1 we treated spin nonrelativistically, that is we introduced it in a purely 

'ad hoc' fashion. Had we used the Dirac equation for our wave functions, spin would 

have arisen naturally. The Dirac equation for a quark of mass mg, in the presence of a 

potential, V{nt is, 

= (* • p + Pmq + Vint)xp. (2.209) 

Vint represents the internal confinement with relativistic corrections experienced by the 

quarks in the baryon. In the representation 

ec= I ° ° |,/9 = 
S 0 

1 0 

0 -1 

\ 
(2.210) 

where o are the Pauli spin matrices and <f> and x 8 X 6 two component spinors, (2.209) 

becomes 

/ <f> 
dt 

0 a • p 

^ a • p 0 

& p\ X | +mq 

(l o \ 
+ 

[ 0 - 1 ) 

[ ' ) + vint 

\-x) { x 

m„ 
<f> 

X 
+ Vi int 

(2.211) 

We separate out the time dependence in xp 

xp = 

\ X J 
= e-iE<* 

\X ) 
(2.212) 
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where (j> and x are constant with respect to time and Eq is the total energy of the state 

ip. Inserting (2.212) into (2.211) and cancelling the common exponential factor we get, 

E„ 
<f> 

— a • p int (2.213) 

The second equation of (2.213) gives, 

X = 
a • p 

-<f> T, r (2-214) Eq + mq - Vint 

X are the "small" components of the Dirac 4-spinors. They are reduced by v/c compared 

to the "large" components <f>. Because of relation (2.208) we conclude that the small 

components of the quark Dirac spinors are of the same order as the large. 

To treat this relativistic situation we follow Yaouanc et. a/.'s [34] prescription of 

replacing the Pauli spinors \ \ m the spin wave functions 

X.+ =T= 

by Dirac spinors 

u = 
Ei + m, 

2m,-
Xi 

V Ei+mi Xi J 

(2.215) 

The subscript i refers to the iih quark in the baryon. We have choosen normalization 

so that 

uu = 1, (2.216) 

as in Bjorken and Drell [26]. This yields an over all normalization factor, from normal­

izing the total baryon wave function, 

\N\2 J tfttf dV = 1 
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_ _ L _ / m u / m « /m u  
A p " Vvv *?V 
TV _ _L_ / m" / m"  ms 

Y ~ y/v\l Ei^J E2)j E3' 

Using (2.215) amounts to adopting the spinor structure of free quarks. Since we are 

using the impulse approximation (§2.3) this seems reasonable. 

The interaction involves only the third quark. Therefore the spectator quark spinors, 

as a result of (2.216), give unity when folded together. We are left with 

x < 
E'+mu 

}<f>p(p')d4

Pd4p'. 

(2.217) 

This is expanded and a nonrelativistic reduction carried out. We 

• Expand the interaction and discard terms of order (p/m)2 or higher, 

• treat the denominator of the propagators and phase space factors relativistically. 

Therefore the expression of the full matrix element is valid up to order (p/m)2 (p is 

any momentum and m any mass). 

Applying this prescription to the { } in (2.217), we get for V = VX (equation (2.203)), 

f 1 F - z £ - ) ^ + > + m ' ) ' y « 
&3 +  ms 

I \ 

\ 3'v' I 
\ E'+mu / 

we get (with e° = 0) 

(1 —a • p 
E3 + m3 

0 —o • 6 

a • e 

( m 3 + k0+p0 -<?.(£ +p) 

^ a.(k + p) ma-k°-p° 

0 1 

1 0 ~~/ 
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? ( m , + *<> + p ° ) - ± J L - + J^l-a • ea.(k + p) 
E3 + m3 

E'3 + mu E3 + ms 

a • pi 
- a -ea.ik + p)—— a • e (ms - k - p ). 

Now we neglect terms 0(p/m)2 or higher, and get 

vPS(n ni\ _ -NKN^e,igKu3V+ij>K(0)a • e (m. - k° - p°) 4 ri.,n\\ 
V> {k+pY-ml 6(PK+p-(k+p)) 

(2.218) 

(2.219) 

in PS coupling. With PV coupling we get 

(1 —cr • p 
E3 + ms 

( 0 -a • e \ I m3 + k° + p° -a.(k + p) \ 

EK 0 

a-t 0 

\ 

0 —EJ K ) 

0 1 

1 0 

o.(k + p) m3-k°-p° j 

E'+mu. / 

vr(p,p') = 
NKN^igKusV+ipK^a • emK(ms - k° - p°) 

(k + p)2 — m2 64(pK+p'-(k + P)) 

(2.220) 

9Kus -trPSf l\ 
mK*\ (P ,P) 

9Kus 

since EK — mx when PK = 0. 

Similarly we get from equation (2.204), 

rps( /x _ NKN^eJgKu3V^K{Qi)& • e(mK - p° + mu) 
VriP,p') = 

(P - PK)2 - ml 
S\PK + p'- (k + p)) 

(2.221) 

for PS coupling and 

v2

pvM) = NKNyeuigKuaV+^K(0)a • emK(mK -p° + mu) 
(p-pK)2-ml 64(pK+p' ~(k+p)) 

(2.222) 

gKv 
mKV{sM) 
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for PV coupling. Recall from equation (2.145) that 

QKus 1 

For the contact graph the interaction (2.205) becomes 

V4

pv(p,p') = NKN^eKigKutV+ipK(0)a • e8\pK + p' - (k + p)) (2.223) 

in the nonrelativistic approximation5. 

2.11 The Problem. 

Now that we know the form of the interactions and their Fourier transforms we can 

substitute them into (2.127). We write 

V(p,p') = V(p,p')NKN^K(0)S4(pK+p'-(k + p)). (2.224) 

V is the total interaction: 

VPS = + v * s for PS coupling, 

yPV = yPV + yPV + yPV for p y c o u p H n g > 

We get, 

SYp = ZC(2n)4S\pK + Pp-(k + PY)) 

x J *Y(p, A ) e i A V ^ ( - - 3 ) t / ( p , p ° = E3,p' = PP + P - PY,(p0)' = E'3) 

x e ^ ( ( ^ ) ^ ' ) . ( ^ + P - ^ ) $ p ( ^ X ' ) e ^ & - X , ) d3pd3Xd3\' d3p. (2.225) 

That is 

SYp = Z{2it)A8\pK + Pp-{k + PY))M (2.226) 
5If we use the on-shell condition (2.142) before we take the nonrelativistic reduction, we find that 

the sum Vfv + V2

PV + Vfv reduces to V ^ 5 + V2

PS. Since we intend to use bound state quark wave 
functions we discard this approach and the PV amplitude will differ from PS amplitude. 
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where 

M 

Z 

W,P) 

and C 

C jlY{p,fiVIp(^d*pd*p, 

/ $ p ( ^ A ' ) e S ^ + 3 ( ^ ) ) d 3 X ' 5 

276 
(27r)32v '̂ 

The normalization constants are given by 

1 
N K = 

1 

Nr, = 
1 /mu frn^ 

vl; V £ i V E2 V #3 

(2.227) 

(2.228) 

(2.229) 

(2.230) 

(2.231) 
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Figure 2.2: Feynman diagrams contributing to the process K p —• Yj. 



Chapter 3 

Calculations 

In this chapter we wish to evaluate the integral (2.227) in order to get an expression 

for the invariant amplitude Ai. This calculation can be divided into evaluating the 

flavour, space, and spin contributions. 

3.1 Flavour Space 

The only flavour dependent piece in V is V+ (see §1.8). V+ acts in the flavour space of 

the third quark; transforming a u quark to an s quark. From table 1.6, table 1.7, and 

equation (1.34) we get the flavour matrix elements listed in table 3.11. 

3.2 Momentum Space 

With the flavour matrix elements determined we have, for the momentum space part 

of the amplitude, 

MMS = $YeiX™ d3\] V [/ $peiX' d3\' d3pd3p (3.232) 

where qY = 4=((~)Py - 3p) (3.233) -y/6 rnu 

qp = (3.234) 

We have already taken care of the flavour dependent part of the potential V+. Also 

note that the spin dependent term a • e in the potential, acts only in the spin space of 

79 
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- v i ' (tii\v
+
\4>) = 0, 

V * A | V + | ^ ) = 1, (K\v+\<i>x

P) = 0, 

= o, (4>*\v
+
\4>i) = 0, 

(ri\v+\*i) = 0, (tf\v+\<n) 1 

<<&\v
+
\4>) = 0, = 0, 

(<h\v
+
\4$ = 0, {&\v+\<H) = o, 

(<i>i\\v+\<i>x

P) _ 
3 ' ( W W ) 1 

_ 1 
— 3' (^\v+\<t>p

p) = 0. 

Table 3.11: Flavour matrix elements 

the third quark. Therefore we separate out the spin piece and denote it 

(SP) = (X

J

f\a-e\Xf). 

XJ~° denotes xp a n d XJ=1 corresponds to %A- This term will be evaluated in §3.3. 

Since V is a function of p only, we can use the orthonormality of the p oscillator 

wave functions to write the general momentum space matrix element (3.232) in terms 

of the A oscillator wave functions. This will involve combinations of the terms 

aY = J V'ooo(A)e'̂ A :d3A, (3.235) 

ap = / V-ooo(A')e -̂*'d3A', (3.236) 

by = / V>ioo(A)e'̂ -A :d3A, (3.237) 

bp = / V'ioo(A')e''p- (3.238) 

cy = / V>oio(Ay?^ ld3\, (3.239) 

cp = / ^oio(A')e«'f'--X'd3X'. (3.240) 

Integrals involving the harmonic oscillator wave function V'oim with m ^ 0 give zero 
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when integrated over all space. Now defining 

a == J aYVapd3p, (3.241) 

6 = J aYVbpd3p, (3.242) 

c = J byVapd3p, (3.243) 

d = jbyVbpd3^ (3.244) 

9 = J cYVcpd3p, (3.245) 

and Q = (3.246) 

a = 

From table 1.3 and table 1.4, we obtain table 3.12. 

See Appendix B for details on the evaluation of aY, ap, by, bp, cY, cp. The results 

are 

(—Ylu (3-247) \aat\/ 

( ^ l )
f

 <'« - fr* + * M + foM/,). (3.250) 

—16 / 7r \ r 

d = 

(—Y I5. (3.251) \aa\J 

Where 

Ij = ^ijjk (k is an index which sums over the diagrams), 
k 

and Ilk = I e 2al Vke 2q2 d3p, (3.252) 

J2fc = y|9P|2e M Vke ^ d3p, (3.253) 

/a* = y |^|2e ^ I 4 e ^ ^ p , (3.254) 

file:///aa/J
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( *S»WI*S»> a, <*5»IGI*S») 

(*5»WI*aoo) = -?56> <*5»WI*$oo) = 0, 

(SfoolQWo) = (*fooM*foo> = | (« + <0, 

<*fool<?l*200> = <*foolQI*20o) = 0, 

<*AoolQI*ooo) = -72c' <*$ool<?l*£») = J(a - rf), 

(*^00lQI*U = i(a + rf), <*2\)oM*200> = 0, 

(*UQ\*ioo) o, (*5oolQI*£») = 0, 

(*5JQI*$oo> = o, (*SJQI*Soo) = ^/3, 

<*SSolQI*S»> = o, <*SSolQI*S») = 7!a' 
<*5SoWI*W = 72a> (*SSoWI*5oo> = 0, 

< *& IG I * S»> = c, <*&IQI*£x>> 

(^o A olQI*W — M , 
\/2 ' 

<*&IQI*SoO> = 0, 

= o, (^oolWfoo) = 0, 

<*&IGI*2bo> = o, (*&IQI*Soo> = 17/3. 

Table 3.12: Matrix elements of the harmonic oscillator wave functions in terms of 
—* —* 

a,b,c,d,g. The Dirac bracket denotes integration over p, A, A' and p. 
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hk = J\qP\We~^Vke~^ d3p, (3.255) 

= /l?pll9y|e ^ d 8 ^ . (3.256) 

Since neither V, qY or qp have any <f> dependence the integral over (f> simply yields 

27T. The piece which is common to all the momentum integrals 

can be written 

where 

Similarly 

Aj, = e 1 2 OA , ax = —y, &i = — T ( — ) P Y 

e-%F = e - ^ ( l ^ l 2 + | P l 2 - 2 ? . ^ ) = ^ e - a i P 2 ^ ' . ? 

where A p = e ^ ' * , oj E i j , 6/ = ± P Y . 

Finally we get 

h = ax + ai, (3.257) 

s2 = ft^+^^ + M ) ^ . ( 3 . 2 5 8 ) 

3.2.1 Including the Potentials 

With PS coupling we had, from the previous chapter, 

yPS = yPS + yPS 

T , ^ ( -es(ms - k0 - E3) eu(mK + mu - E3) \ 
(k + p)2 -m2 + ie (p - pK)2 -m2

u + ie 
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With PV coupling 

yPV = V

p v + Vpv + Vpv 

T / - - J es(ms - k0 - E3) eu(mK + m u - E3) eK \ 
= iQKusV+a • emK I v —4- + — i —-L + -H-K 

[{k + p)2 - m2 + te (p-pK)2 -ml + ie mK J 
Diagram 1: radiating s quark 

The denominator of V\ can be written 

(k+p)2-m2 + ie = (k° + E3)2-\k + p\2-m2

s + ie 

= -(\H\2-(k° + E3)2 + m2

s-ie), 

where we have employed the substitution 

—• 

u = p + k 

Now we get after integration of equations (3.252)-(3.256) with respect to the 6 and <f> 

coordinates of vector u. (See Appendix B for details) 

IJX = *0«Alim f°° „ GjM . du J = 1, • • • ,4 (3.259) «-»o Jo u2 — \{ — le 

with A2 = (Jb° + £ 3 ) 2 - m 2 

and gcc —+ gr ûs in PS coupling 

gcc -* rnKgKus in PV coupling. 

Gj(u) has the form1 

5 

Gj(u) = 2*ApAye-hu2 2»7.-j(«'e' l U + (-tO'e^1*), (3.260) 
i=l 

where C 2 = e . K - i 0 - ^ - ^ , (3.261) 

* i = (2fc-ci)fc, (3.262) 
,m\ 3a\. 1 

1For J = 5 the 0 and u integrals must be done numerically. 
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The rjij are constants (but depend on J) defined through equations (B.306-B.309) and 

u* denotes u raised to the power of i. 

The integrand has a pole at u = Ai. To deal with this we separate the integrand 

into two parts: one containing the pole, and a part which is bounded over the whole 

integration range. That is 

„ r „u = f ^MfOAhl i u + u r i u . (3.264) 
e-o Jo u2 - Af - it Jo u2 — A? £-*o Jo u2 - \ \ - i e 

The first integral in (3.264) can be evaluated numerically (Appendix A), the integrand 

is plotted in §3.2.2. 

The second integral in (3.264) can be evaluated by contour integration techniques 

(see Appendix B). The result is 

<W.) f , \ , • * • = q ^ V M - (3-265) Jo u2 — Af — it 2Ai i
2

-XI- it 2AX 

Therefore 

IJI — igccC2 
' / c o Gj(u) - GJM DU G ^ A i K 
Jo u2 — A2 2AX 

(3.266) 

Diagram 2: radiating u quark 

The denominator of V2

 c a n be written 

(P ~ PK)2 -m 2

u + it = -(\pf + (ml - (E3 - mKf) - it). 

Now defining 

A2 EE ml-(Ez-mKf (3.267) 

and C3 = - e „ K + mu - E3). (3.268) 

A2 > 0 so the integrand has no singularity and therefore can be integrated directly. We 

get after performing the angular integrals 

Ij2 = iQccCz lim f ° f ^ . dp, J = 1, • • •, 4 (3.269) t-̂ o JQ p* + — ê 

file://-//-ie
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The integration over 8 in I 5 2 must be carried out numerically. Fj(p) has the form 

Fj(p) = 2«ApAye-h>2J2vu(piea2P + (-p)ie-°2Pl (3.270) 

(3.271) 

and the rfu are constants and s2 = \s2\> 0. 

The integrand of the integral in equation (3.269) is plotted in §3.2.2. 

Diagram 4: the contact term 

V4 contains no propagator, so we get simply 

J j 4 = rFj(p)dp. (3.272) 
rnji Jo 

We make the replacement, since E3 is the energy of the third quark in the Y baryon, 

E3 —• m3. 

3.2.2 Plots of the Integrands 

We perform Gaussian numerical integration on the following integrands. As can be seen 

from the plots, they are well behaved and converge rapidly to zero above momenta of 

1 GeV. The plots labelled (a) show the integrands of I\k for k = 1,2,4. (b),(c),(d) 

denote the integrands of J2jt, hk and Zjfc. The following symbols are used : 

• = uds basis, Y = A 

x = SU(6) basis, Y = A 

• = uds basis, Y = E° 

+ = SU(6) basis, Y = S° 

The I5k must be integrated numerically over 8 and momentum. Surface plots are 

given for the A uds basis case only. One axis is labelled by cos 8 +1 and so goes between 
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0 and 2. 6 is the angle between the vector p(u for the case of the radiating Y diagram) 

and the z axis. Surface plots for the other cases have the same behaviour and so were 

omitted. 

All integrands are multiplied by the constant 

1 
2wApAy' 
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Momentum in GeV 
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COS0+1 
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cosfl+i 
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3.3 Spin Space 

We wish to calculate the spin piece 

(Xj

f\f-e\x?), 

where xj
 1 S

 the spin wave function in the final state in which quarks 1 and 2 are 

combined to spin J and all three quarks are combined to spin S/, with z component 
mS't Xi' is the spin wave function in the initial state in which quarks 1 and 2 are 

combined to spin J' and all three quarks are combined to spin Si, with z component 

Now 

m'a,M' 

and [x
J

f
\ = E ( • 7 > M l 2 ' m i ; l^2){Sf,mf\J,M;\,mz)(\,mx\(\,m2\(\,mz\. 

ma,M 

Where the ma under the summation sign denotes mi,m2,m 3 , similarly m'a denotes 

m\, m'2,m'3. We have, since the interaction acts only on the third quark, 

(X/l*-e1xf) = E (J,M\\,mx;\,m2)(SJ,mI\J,M-\,m3) 
ma ,M,m'a ,M' 

x {\imi\\,m\)(\,m2\\,rn2)(\,m3\v • «1|'m3) 

x (Im^lm^J^M'^J^M^lm'^mi) 

E (J,M\\,mu\,m2)(\,m\-,\,rn'2\J',M') 
{Sf,mf\J,M; \,mz) 

x (J',M'; |,m3|5i,mi)(|,m3|o f- el|,m3) 

E (J,M|i,m 1;i,m 2)(i,m 1;i,m 2 |J',M') 

x (5 /,m /|J,M;|,m 3)(J ,,M';i,m 3|5,-,m i)(|,m 3|a -t\\,m'3). 
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From the unitarity properties of the Clebsch-Gordan coefficients (equation (3.5.4) of 

ref.[13]) 

]T {J,M\j1,m1]J2,rn2){JuTn1;J2,m2\J',M')=6MM>6j>j,, (3.273) 
771J , TT12 

we get 

(X / I ^ x f ) = D 6M,M'8j,j>{Sf,mf\J,M]i,m3)(J\M'^,m3\Si,rni) 
T7i3 ,M,m 3,M' 

x (\,m3\& • t[\,m3) 

= D (5/,m
/
|J,M;|,m3)(J /,M;|,m 3 |5,-,m t)(|,m3|a- e\\,m'3)8j,j,. 

m3,M,m'3 

Now 

a.6-=^e_ f l C r f l (- l) f i (3.274) 
fl 

in spherical tensor notation. 

The Wigner-Eckart theorem (equation (5.4.1) of ref.[13]), 

(j>,m'\T(k,q)\j,m) = (_i)i-~ 0"> m'^-^K q) (j'\\nk)\\j), (3.275) 

(T is a tensor of rank k, component q), in our case becomes, 

Il I 11 /\ / i \ i - m l (I'm 3' 2'
 _ m 3 | l ) -̂ ) / l II - . M 1\ 

Equation (3.275) defines the reduced or double-bar matrix element. The reduced matrix 

element is easily calculated from (3.275) with j = |, m = | , j ' = | , m' = | , (and 5 

denotes |5|), 

i 2 ' 2 ' 2 ' 2 I 
i 2 ' 2 l " l 2 ' 2 / — V "V • r—~~— \ 211"^ 112 > 

=> (§11̂ 111) = 

since (in natural units) 5 = -o\ 

file:///i-ml
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So, 

(X/l^-elxf) = £ ^/.m/IJ.MjI.msX/.AfjI.mJI^m,-) 
m3 .M.trij ,R 

v/3 
•y/e(-l)Re.RSJvl. 

y/2S, + l y/3 (-1)1—3 R 

, A r m ' « ( - i ) j - 2 + ^ ( - i ) j - 2 + m ' ( - i ) 2 - 2 + f i ; 

VEs, 3,3' 
Si ( 1 

2 

^ M m'3 —m,- ^ m3 — m 3 —R K M m3 —rnj 

Where we have converted our Clebsch-Gordan coefficients into '3-j symbols'. The 

definition of the '3-j symbols' is given by (equation (3.7.3) ref.[13]) 

/ 
J \ 32 J3 

\ mi m2 m3 

-J2-"13 
•(Ji,mi;J2,m2\j3, -m3). 

V/2j3~+T 

Using the symmetry properties of these symbols [13] we obtain 

(3.276) 

and 

Now we have, 

x 

\ 

—m3 m'3 R j 

£ (̂2S> + 1)(25,- + l ) ( - l ) - 2 J + f- m/- m i- m3 e _ f l V6 6J,J, 
rnj, M,m'3,R 

( 

m.- —mo 

J 

-M 

\ t 1 
2 

Sf J 

^ m3 —mf M i 

I 1 \ 
2 2 

^ — m3 m3 R i 

(3.277) 
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This can be expressed in terms of the '6-j symbol' defined by, 

J l J2 J3 

h h h 
E 0 'i»mi;i2,»w2li3»»T»i+ m2> 

yf(2j3 + l)(2/3 + 1) m, ,m2 

x { J 3 > m i + m 2 ; / i , M - m i - m 2 | / 2 , M ) 

X (j 2, m 2 ; / i , M - m a - m 2 | / 3 , M - mx)(jx, m a ; / 3 , M - m^k, M ) . 

(3.278) 

Hence, as a consequence of the reality of our Clebsch-Gordan coefficients, the 6-j symbol 

is real. Comparing (3.277) with equation (6.2.8) of ref.[13] 

E (-1) _1 Vl+'2+'3+Ml+M2+M3 

/ i 7 1 \ t 

\ ™ 1 7̂ 2 -7^3 / 

J l J2 J3 

mi m 2 m 3 

' l J2 *3 

\ -Pi rh2 7 i 3 7 

J l J2 J3 

/ i / 2 *3 

h h Js 

(3.279) 

and noting that 

rrif = M + m 3 , 

m, = M + m 3 , 

_ ^ ( _ 2 ) - 2 J + | - m / - m i - m ^ _ ( _ ^ l + J - m 3 - m ^ - M x 

we get (since J is an integer), 

(_l)-2-J+!-m; 

(-1) J+i 

( X ^ l ^ ^ l x f ) = (-l)-J+>-miV66JtJ,J(2Sf + l)(2Si + 1) < 
5,- 5/ 1 

2 2 J 

x E e-A 
5,- 5, \ 

R \ m,- —m/ J2 y 

For the square of the spin amplitude we have, 

W ' l ^ l x f n x ^ - e l x f ) = ( - l ) - W H 1 - 2 -6(25/ + l)(25i + 1) 
Si Sf 1 

2 2 J 
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x 
Si Sf 1 
1 i 7 
2 2 J 

R> R 

\ 
X 

Si Sf 1 

m,- —my 7?' y 

5,- 5/ 1 

m,- —m/ 72 ) 

but (—l) 1 - 2 m « = 1 since the intrinsic spin of the proton 5",- is half-integral2. Summing 

over polarization states A and using the identity [26] 

(3.280) 

which in the transverse gauge becomes, 

£ < ( A ) e j ( A ) = <$,-,• 
A 

(3.281) 

we get 

(x
J

s
'\t-Ax?Y(x

J

}
\t-Axi) = 6(25, + \){2Si + 1) 

Si Sf 1 
1 1 7/ 
2 2 J 

x < 
Si sf 1 

1 i 7 
2 2 J 

E 
5,- 5, 1 

^ rrti —trif R j 
(3.282) 

3.3.1 Evaluation of the 6-j symbols 

Using relation (6.3.4) of ref.[13], 

Jl 32 J3 

1 • _ 1 • _ 1 
2 J 3 2 '2 2 

' i i i 2 2 A 

1 5 0. 

(-1) h+h+h (jl + J2 + J3 + 1)(J2 + J3 - jl) 
\| 2j2(2j2 + l)2j3(2j3 + 1) 

(3.283) 

= 1/4. 

We consider only S state mixings in our compositions so, since the total angular momentum J = 
for the Y or proton, 5,- and Sj are both one-half. 

_ 1 
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In addition relation (6.3.3) of ref.[13] gives us, 

Jl J2 J3 

2 3% 2 2 

1 1 1 
2 2 

1 1 1 
2 2 

= 1/36. 

Ui + J2 - J3 + + J3 - ia) 
\ (2j2 + l)(2j3 + 2)2;3(2j3 + 1) 

(3.284) 

3.3.2 Evaluation of the 3-j symbols 

The 3j-symbol can be evaluated from the relation ((3.7.10) ref.[13]) 

_ (—1 )J1 ~J2 +mi +m2 
{ ji J2 Ui + h) 
^ ma m2 —(mi + m2) 

1 
(2j1)!(2j2)!(j1 +j2 + mi + m2)l 

(2ji + 2j2 + l)!(ii +m,)! 

x 

/ i 
2 

y rrii —rrif R j 

U1+J2 - (mi + m2))! 

\j (ji ~ mi)\(j2 + m2)\(J2 - m2)\ 

[( ^m^^ + mj-mj^l + Ry. 

(3.285) 

3.3.3 Spin summation and squaring the amplitude 

Assigning equal a priori probabilities to each of the initial spin states and summing 

over the possible final spin states 

i ; 
W = 2 c T l S , A " a 

For example with J = 0, J' = 0, 5, = | and 5/ = | 

£ l ( x ' / I^W = 12 < 
1 1 1 
2 2 
1 1 0 
2 2 U 

E 
m / =±i ,mi=±if l=±l 

/ 1 
2 

(3.286) 

\ 

^ rrii —mj R j 

(3.287) 
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With J = 1, J' = 1 Si = \ and S, = \ 

\ E K#-e1x
A

>|
2

 = 12 j ' 1 1  

2 m '« I I I 1 
2 
9 ' 

For the cross term: 

5 E (xJI^-ilxfrUjl^-e-X?) = 12 « 

1 

1 1 1 
2 2 ± 

i i O 
2 2 u 

> < 

m / = ± | , m , = ± | H = ± l 

_2 
~3" 

(3.288) 

i i i 
2 2 A 

1 1 1 
2 2 

/ 1 1 , \ 
2 2 1 

^ m,- — m , i2 y 

(3.289) 

3.4 Ful l Ampli tude 

The full invariant amplitude is now obtained in terms of the expressions (3.241)-(3.245), 

with the assistance of the SMP algebraic manipulation package. The full wave functions 

were coded, along with the matrix relevant elements, into the file "WAVEFN.DEF". 

These definitions were then used (within the SMP environment) to simplify the ampli­

tude as much as possible. A FORTRAN formula for the amplitude was generated. The 

relevant input data and commands, along with the output, is detailed in Appendix C. 

3.5 Determination of the Strong Coupling Constant 

We need to insert a value for gKus into the invariant amplitude. Unfortunately, the 

strong coupling constant for interactions at the quark level is not known. However it is 

possible to express the proton-kaon-Y vertex in terms of quark-kaon-quark vertex. We 
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Figure 3.3: Strong vertices for relating gxua to gtcpY 

follow the treatment in ref.[37], in which the process is assumed to be a single quark 

transition. We first consider the strong vertex at which a u quark absorbs a kaon and 

is transformed into an s quark as in Fig.3.3 (a). The amplitude for the process is 

t=i J 

in coordinate representation. The sum is over the three quarks in the baryons. $y 

and $ p include spin-flavour dependence and are given by equation (1.58). We now do 

a two component reduction and take the nonrelativistic limit (Ea,ms are the energy 

and mass of the quark in the final state, the s quark; Eu,mu the energy and mass of 

the initial state quark, the it quark). Neglecting terms of 0(p/m)2 and disregarding, 

for the purposes of this calculation, the difference in mass between the strange and up 

quark, we get, 

/ + <?M • ps • pu 

,• J & 3 + ms JtLu + mu 

x V+ $p(xi, x2, x3) d3xa d3x2 d3x3 
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o f j3- j 3 - ,3- f- - -> \(°' • W f ( ^ ) w / ( 3 ) x / - —» —• \ 

= 3gj<:uay drxld5x2dix3^\{x1,X2,xz)(< ^ )V+ '^(^1 ,^2,^3) 

(3.290) 

The complete permutational symmetry of the baryon wave functions allows us to write 

the interaction in terms of the third quark. The V operator in (3.290) arises from 

taking PK = Pa — Pu and so acts only on the kaon wave function. 

Applying this procedure to the analogous baryon-meson-baryon vertex, Fig. 3.3 

(b), we find in terms of the baryon centre of mass X 

HKpy = gKpy J 4 ( I ) ( " ^ ( i ) V + M i ) *X. 

Where (F|V+|p) = 1. 

Neglecting the difference between the centre of mass and the position of the third 

quark and equating the amplitudes we find 

2mp 2m u

x 1 1 + z 1 " 

Where P and Y are the 3-quark spin-flavour wave functions. The j indicates we are 

taking the spin up state for the Y and proton. Therefore using table 3.11 and the spin 

matrix element results 

(xpM3)\xx

+) = o, 

(xA>i3)ix;> = o, 

(X>i3)lxi> = -1/3, 

we get 

9KUY = A) = (3.291) 
o mp 

andgKUS(Y = X°) = ^ ^ 9 v ^ . (3.292) 
o mv 
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Using the values 

9KpA = —13.2, 

9Kp£,° = 6.0, 

obtained from ref.[31], we get 

9Ku.(Y = A) = -4.83, (3.293) 

and ^ „ , ( y = S°) = 11.40. (3.294) 

Form factor corrections to these coupling constants will be small [38] due to the 
—• —• 

fact that the decay momenta (\Py\ and |A;|) are equal. 

3.6 P h a s e s p a c e 

Recall that the amplitude for the process was given by 

SYp = Z(2v)464(pK + Pp-(k + PY))M 

Squaring this amplitude, summing over final and averaging over initial spin states, and 
dividing by VT gives us the transition probability per unit time per unit volume 

]£!! = (2*)4f>4(PK + PP-(k + PY))\A4l2l^(0)|2m>, (E3 + ms)(E'3 + mu) 

VT AmKkPV^EiEsE'^E's Amuma 'l ' ' 

However3 we want the decay rate per decaying K~p atom; therefore we divide by the 

number of decaying particles per unit volume. Since there are y K~p atoms per unit 

volume we divide (3.295) by ̂ . 

The decay rate is given by the transition probability per unit time per decaying 

particle, integrated over the number of final states in volume V, 
(2K)48\Pk + Pp-(k + PY))\M\2\ipK(0)\2m4

u(E3 + m3)(E'3 + mu) Vd3k Vd3PY 

16mKk0V2EiE2E3Ef

1E2E3 (2TT) 3 (2TT) 3 

3The bar in S and Ai indicates that the spin summation has been carried out. 
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S(mK + m p - (fc° + EY))\M(PY = -k)\2\M0)\2<(E3 + ms)(E'3 + mu) 3~ 
6ATr2mKk°E1E2E3E'lE2E'3 

(3.296) 

Taking Ei = E2 = E[ = E'2 = mu, E3 = ma and using conservation of energy for the 

third quark E'3 = E3 + — k°, we find 

r = f2* r r S(mK +mp~ (EY + k°))\M(PY = -k)\2\xpK(0)\2(ma + mK-k° + mu) 
J<t>=o JB=O Jk=o 32ir2mKk°(ms + mx — k°) 

x sm6d$d<f>\k\2d\k\. 

Substituting 

„r r, ,o dW EY + k° W 
W = * + * * W = - E Y - = E y -

we get 

T = r 6(mK + mp - W)\M(PY = - f c ) | 2 l ^ ( 0 ) | 2 ( m a + mK - k° + mu)k°EY dW 
Jw=mY 8TrmK(ms + mK — k°)W 

= + "« - k° + ">')\M(?r = -j)?. (3.297) 
STrmK(mK + mp)(ma + mK - k°) 1 v " v ' 

Where EY = jrriy + (k0)2. 

As mentioned previously the principal (§2.5.4) quantum number for the kaon wave 

function from which capture takes place is not precisely known. However, if we assume 

the kaon wave function at the origin is the same for all decay modes, it cancels in the 

branching ratio. 

Unit Conversion 

The decay rate for the process 

K p —• all modes 
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is given by Burkhardt et al. [39] as 

FaU = 2 W P | « 0 ) | 2 

with4 Wp = (0.560 ± 0.135)GeV fm3 

Since we have used natural units throughout and taken masses and the confinement 

parameter to be in GeV, our invariant amplitude is in units of 1/GeV; as it must 

in order to yield the dimensions of a decay rate. In order to get T/\IPK(0)\2 to have 

dimensions GeV fm3 we multiply by 

( y ^ ) 3 = (0.19732705359GeV/m)3. 

The branching ratio, therefore, for the process K~p —> F 7 is given by 

BR - k°EY(m° + m K ~ k ° + mu) \M(PY = -fc)|2(0.197Gey fm)3 

8irmK(mK + mp)(ms + mK - k°) 2WP 

3.7 Results and Discussion 

Table 3.13 lists the branching ratios to A 7 and E ° 7 in the uds and SU(6) basis with 

both PS and PV couplings. The confinement parameter and the quark constituent 

masses are taken from previous analyses [15],[24]. We take the same values as used in 

the previous NRQM calculation by Darewych et. al [32]. 

From table 3.13 it can be seen that only the E° uds (PS) prediction agrees with the 

current experimental rangefl] of (1.4 ± 0.2)10~3. The experimental value for the A 7 

branching ratio is (0.86 ± 0.07)10-3. 

The fact that the uds calculation is closer to experiment than SU(6) suggests that 

taking into account the strange quark mass difference is important. Setting m3 = mu 

in the uds amplitudes does not yield the same result as the SU(6) amplitude. The two 

bases are not equivalent physical descriptions. 
4It is interesting to note that if the experimental width of the Is level[40] T i , = 620eV is taken, along 

with a hydrogenic Is orbital we get Wp = 0.565GeV fm3 in good agreement with the result of ref.[39]. 



Chapter 3. Calculations 107 

BRxlO"3 
U<£s SU(6) 

PS PV PS PV 
F = A 7.08 12.54 49.99 52.09 
Y = E° 1.36 3.71 3.50 3.17 

Table 3.13: Branching ratios for K~p F 7 (Y = A,E°). Results obtained 
from PS and PV couplings within the uds and SU(6) basis are also tabulated. 
a = 0.41, m u = 0.42, ms = 0.70 GeV (parameter set 1). 

BRxlO"3 uds 5*7(6) 
PS PV PS PV 

Y — A 6.39 8.82 68.92 73.44 
Y = E° 1.18 1.57 11.59 14.07 

Table 3.14: Calculated branching ratios for K~p —• F 7 (F = A,E°). 
a = 0.41, mu = 0.42, ma = 0.70 GeV. Here only the largest component of the proton 
and Y wave functions is included. 

BRxlO"3 uds SU(6) 
PS PV PS PV 

F = A 10.52 18.29 69.24 70.70 
F = E° 2.87 6.30 4.77 4.41 

Table 3.15: Calculated branching ratios for K~p -> F 7 (F = A,E°). 
a = 0.32, m u = 0.33, ms = 0.55 GeV (parameter set 2). 

A/A 0 (%) (%) 
PS PV PS PV 
14 63 7 67 Proton diagram off 
40 126 56 115 Y diagram off 
— 9 — 2 Contact diagram off 

Table 3.16: Contributions from the various diagrams to the invariant amplitude in 
the uds basis. A/A 0 (%) denotes the percentage of the original A 7 branching ratio 
and E°/E° (%) the percentage of the original E°7 branching ratio, when one of the 
diagrams is 'switched off', a = 0.41, mu = 0.42, ms = 0.70 GeV. 
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BRxlO"3 uds SU(6) 
PS PV PS PV 

Y = A 1.46 2.59 10.33 10.76 
Y = E ° 1.36 3.71 3.50 3.17 

Table 3.17: Branching ratios for K~p -> F 7 (Y = A , E ° ) . a = 0.41, mu = 0.42, 
ras = 0.70 GeV. Here <7A"U«(A) is set equal to <7A-US(E°). 

Contributions from the Diagrams 

In PS coupling graphs (1) and (2) (Fig. 2.2) add constructively. However graph (2), the 

proton radiation diagram, dominates. As can be seen from table 3.16, turning off the 

contribution from this graph reduces the amplitude to 14% for the lambda and 7.5% for 

the sigma of the original. The amplitude is nearly all imaginary; the real part coming 

entirely from the radiating Y diagram (Y = E ° , A). Turning off this real part changes 

the amplitude to only 1-2% (PS) and less than 1% (PV) of the original amplitude. This 

is contrary to the assumption made in ref.[32] where they neglect graphs (2),(3), and 

(4). 

In PV coupling there is destructive interference between graphs (1) and (2) of Fig. 

2.2 and the contact term graph (4) dominates. Table 3.16 shows that removing the 

contact term reduces the uds amplitude, to 9% for A and 2% for the E ° , of the original 

amplitude. The large contribution from the contact term is in agreement with that 

found by Workman and Fearing [31] where they perform an analogous calculation to 

ours within a pole model. 

The branching ratios in the PS and PV coupling schemes were found to be roughly 

the same within the SU(6) basis but the PS/PV ratio is about 0.56 in the uds basis 

for both parameter sets. As mentioned in §2.10.2, the PS and PV results should be 

identical for an interaction taken over free quark states. Presumably, PS/PV ^ 1 is a 

result of the off-shell nature of the quarks in a baryon. 
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Turning to the ratio 

K~p -» S°7 
(3.299) K~p —• A 7 ' 

which is independent of the uncertainty in Wp and so is perhaps more reliable than 

either of the individual branching ratios. Here most of the theoretical models do poorly; 

none predict the experimental result [1] of 1.71 ±0.30 for the ratio in (3.299). We obtain 

values in the range 0.19 - 0.29 for PS and PV in both uds and SU(6). Changing 

the constituent quark masses and the confinement parameter to ma = 0.55, mu = 

0.33, and a = 0.32 GeV we get 0.18 - 0.26 for the E°/A ratio. This is in contrast 

to the other NRQM calculation, ref.[32], where they obtain 0.76 for the ratio (3.299). 

However our result agrees roughly with ref.[31] where they get 0.16 - 0.18 for (3.299), 

including only the Born diagrams. When the contribution from the A(1405) resonance 

is added they find, with a variety of parameters, the E°7 branching ratio to be 'several 

times larger' [31] than the A 7 branching ratio. The cloudy bag model (CBM) [41] 

appears to do best here. They obtain 1.1 - 1.2 for the ratio (3.299), but is still below 

the experimentally observed result. It is interesting to note that when we use the same 

quark coupling constant for the A and E°, which is what one would expect from a 

quark model, we get (see table 3.17) 0.93 (PS) and 1.43 (PV) for (3.299) in the uds 

basis, close to the experimental result. 

It can be seen from tables 3.13 and 3.15 that, unfortunately, many of the results 

appear to be sensitive to the confinement parameter and the quark masses. 

Comparing table 3.14 and 3.13 it can be seen that adding the excited components 

has only a small effect on the PS result but gives a large increase in the PV calculation. 

Differences due to the kinematics (the photon momentum is larger in the A 7 reaction 

as compared to the E°7) and phase space factors contribute to the value of the A/E° 

ratio. However, our high value for the A 7 branching ratio may be a result of omitting 
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the A(1405) resonance. Since the interaction in our calculations involves two spectator 

quarks and a freely propagating third quark it would describe broad resonances. How­

ever, there is insufficient binding between the three quarks in the intermediate state 

to generate a sharp resonance such as the A(1405). Its contribution was found to be 

significant in refs.[32] and [31] (where they found it to interfere destructively with the 

other Born diagrams). 

It would be interesting to see a future calculation including the A(1405), along with 

the graphs we have estimated. However, further terms in the invariant amplitude would 

be needed to obtain a gauge invariant result for bound propagating quarks. 

Our value of the ratio in (3.299) can be partially attributed to symmetry consider­

ations: the E° has isospin one and therefore has (within the uds basis) a flavour wave 

function with M\ symmetry. This must be combined with a symmetric (ground state) 

spatial wave function and a x A spin wave function to yield an overall symmetric space-

spin-flavour wave state. On the other hand, the A has isospin zero which gives rise to a 

Xp spin wave function. These symmetry constraints on the quark spin wave functions 

lead to an an extra factor of 3 (from the 6-j symbols) in the K~p —• A 7 amplitude and 

therefore the branching ratio will increase by a factor of 9. This causes the A to have 

a larger branching ratio despite gKuaiX = A) < gKua(Y = S°). 

Thus our results appear to be qualitatively reasonable but not quantitatively rigor­

ous, as was to be expected from the NRQM. 
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F O R T R A N PROGRAMS 

The following program (KAONCAPTURE) calculates the branching ratios K~p —* Yj 

using the methods outlined in chapter 2. The Gaussian integration routines are called 

from the routine SETWX. This routines returns the gaussian points and their weights. 

The boundary points of the intervals and the number of points in an interval can be 

changed. This was done many times with the same result so we are satisfied that the 

estimated integrals are reliable. 

PROGRAM Kaoncapture 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay Jby,spik,qint 

. , a l i , b l i , b 2 i , c l i , c 2 i , d l i , d 2 i , d 3 i , d 4 i , g l i 

. , V I ( 5 ) , c l l u , c l 2 u , c l 3 u , c l 4 u , c s l u , c s 2 u , c s 3 u , c s 4 u 

. , e l l , c l 2 , c l 3 , c l 4 , c s l , c s 2 , c s 3 , c s 4 , c p l , c p 2 , c p 3 

.,A(6),I2(6),I3,L,I1, 

.gt,gs,gl,mp,mtb,msb,mlb,mst,ms,mu,f,b,sixj 

DIMENSION Mps(2,2),Mpv(2,2) 

mp=0.93827231 ! proton r e s t mass 

111 
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mK=0.49367 

mlb=l.11563 

msb=l.19255 

mu=0.42 

ms=0.7 

pi=3.141592653589793238 

e=dsqrt(4*pi/137.035989561) 

convfac=(0.1973270539)**3 

eu=2*e/3 

es=-e/3 

ed=es 

eK=-e 

alps=(0.41)**2 

kaon r e s t mass 

Lambda baryon r e s t mass 

Sigma baryon r e s t mass 

d e f a u l t u quark mass 

d e f a u l t s quark mass 

elementary charge 

converts from GeV~-2 to GeV fnT3 

charge on u quark 

charge on s quark 

charge on d quark 

charge on kaon 

d e f a u l t confinement parameter 

Wp=0.56 ! t o t a l r a t e Kp->Y gamma=2WpIpsiKI"1 ( i n GeV fm~3) 

cpl=0.95 

cp2=0.25 

cp3=0.20 

! proton admixture c o e f f i c i e n t s 

cllu=0.95 

cl2u=0.07 

cl3u=0.28 

cl4u=0.08 

! Lambda uds admixture c o e f f i c i e n t s 

cll=0.97 

cl2=0.18 

! Lambda SU(6) admixture c o e f f i c i e n t s 
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cl3=0.16 

cl4=-0.01 

C 

cslu=0.98 ! Sigma uds admixture c o e f f i c i e n t s 

cs2u=0.18 

cs3u=0.02 

cs4u=0.11 

C 

csl=0.97 ! Sigma SU(6) admixture c o e f f i c i e n t s 

cs2=0.17 

cs3=0.17 

cs4=-0.00 

C 

gl=-13.2d0 ! strong coupling constant f o r Kp->sigma 

gs=6.0d0 ! strong coupling constant f o r Kp->lambda 

C 

C a l l INTEGRATE 

C 

C *** MAIN LOOP *** 

C When : 

C J l = l — > Yp= Lambda 

C Jl=2 — > Yp= Sigma 

C J2=l — > Basis= uds 

C J2=2 — > Basis= SU(6) 

C 

Type *,'Enter 1 to a c t i v a t e proton diagram (0=off)> 
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Read (5,*) u l 

Type *,'Enter 1 to a c t i v a t e imag part of Y diagram (0=off)' 

Read (5,*) u2 

Type •.'Enter 1 to a c t i v a t e r e a l part of Y diagram (0=off)' 

Read (5,*) u3 

Type *,'Enter 1 to a c t i v a t e contact diagram (0=off)' 

Read (5,*) u4 

Type *,'Enter 1 f o r parameter d e f a u l t s ' 

Read (5,*) L 

i f ( l . e q . l ) go to 2 

Type *,'Enter alpha ( i n GeV): ' 

Read (5,*) alpha 

alps=alpha**2 

Type *,'Enter mu ( i n GeV): » 

Read (5,*) mu 

Type *,'Enter ms ( i n GeV): ' 

Read (5,*) ms 

Type *,'Enter 1 f o r f u l l wave f u n c t i o n s ' 

Read (5,*) L 

i f ( l . e q . l ) go to 2 

cp l = l 

cp2=0 

cp3=0 

c l l u = l 

cl2u=0 

cl3u=0 
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cl4u=0 

c l l = l 

cl2=0 

cl3=0 

cl4=-0 

c s l u = l 

cs2u=0 

cs3u=0 

cs4u=0 

c s l = l 

cs2=0 

cs3=0 

cs4=-0.00 

DO 30 J l = l , 2 

DO 15 J2=l,2 

q l = J l 

q2=J2 

CALL TRANS(ql,q2) 

mlt=3*mu*mst/(2*mu+mst) 

E3=mst 

alpst=alps*dsqrt(mlt/mu) 

kt=((mp+mK)**2-mtb**2)/(2*(mp+mK)) 

ht=0.75*(l/alpst+l/alps) 

Cc=(27*b*f)/((2*pi)**3*2*dsqrt(2.OdO)) 

Api=dexp(-(0.75*kt**2)/alps) 

Ayi=dexp(-(mlt*kt/mu)**2/(12*alpst)) 

photon momentum 

h i n t e x t 

C i n t e x t 

Ap i n t e x t 

Ay i n t e x t 
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cl=(mlt/mu+3*alpst/alps)/(2*alpst) 

c2=dexp((cl-ht)*kt**2)*es*(mst-kt-E3) 

c3=(E3-mu-mK)*eu 

s ( l ) = c l * k t ! s2 i n t e x t 

s(2)=Abs((2*ht-cl)*kt) ! s i i n t e x t 

pl=(mu**2-(E3-mK)**2) 

p2=(kt+E3)**2-mst**2 

rtp2=dsqrt(p2) ! pole of integrand 2 (1 i n te x t ) 

!lambda2 i n t e x t 

llambdal i n t e x t 

qint=0 

a l i = ( 4 * P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) 

b l i = 4 / d s q r t ( 3 . O d O ) * ( 2 * P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) * ( - 1 . 5 ) 

b 2 i = 4 / d s q r t ( 3 . O d O ) * ( 2 * P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) / a l p s 

c l i = 4 / d s q r t ( 3 . O d O ) * ( 2 * P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) * ( - 1 . 5 ) 

c 2 i = 4 / d s q r t ( 3 . O d O ) * ( 2 * P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) / a l p s t 

d l i = 1 2 * ( P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) 

d 2 i = - 8 / a l p s * ( P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) 

d 3 i = - 8 / a l p s t * ( P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) 

d 4 i = 1 6 / ( 3 * a l p s * a l p s t ) * ( P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) 

g l i = - 1 6 / d s q r t ( a l p s * a l p s t ) * ( P i / d s q r t ( a l p s * a l p s t ) ) * * ( 1 . 5 ) 

C 

C 10 i n t e g r a l 

ap=l 

ay=l 

bp=0 

by=0 

c a l l s e t y i ( l ) ! evaluate F l ( p ) 
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c a l l s e t y i ( 2 ) ! evaluate Gl(u) 

c a l l c a l c ( l ) 

C 

C Ip i n t e g r a l 

ap=3*kt/Dsqrt(6.OdO) 

bp=3/DSQRT(6.0dO) 

ay=l 

by=0 

c a l l s e t y i ( l ) ! evaluate F2(p) 

ap=0 

c a l l s e t y i ( 2 ) ! evaluate G2(u) 

c a l l c a l c ( 2 ) 

C 

C Iy i n t e g r a l 

ap=l 

bp=0 

ay=-mlt*kt/(mu*DSQRT(6.OdO)) 

by=-3/DSQRT(6.0dO) 

c a l l s e t y i ( l ) 

ay=(3-mlt/mu)*kt/DSQRT(6.OdO) 

c a l l s e t y i ( 2 ) 

c a l l c a l c ( 3 ) 

i f (u.eq.l) go to 15 

C 

C Ipy i n t e g r a l 

ap=3*kt/DSQRT(6.OdO) 
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bp=3/DSQRT(6.0dO) 

ay=-mlt*kt/(mu*DSqRT(6.OdO)) 

by=-bp 

c a l l s e t y i ( l ) 

ap=0 

ay=(3-mlt/mu)*kt/DSQRT(6.OdO) 

c a l l s e t y i ( 2 ) 

c a l l c a l c ( 4 ) 

C 

C Iq i n t e g r a l 

q i n t = l 

ap=3*kt/DSQRT(6.0dO) 

bp=3/DSQRT(6.0dO) 

ay=-mlt*kt/(mu*DSQRT(6.OdO)) 

by=-bp 

c a l l s e t y i ( l ) 

ap=0 

ay=(3-mlt/mu)*kt/DSQRT(6.OdO) 

c a l l s e t y i ( 2 ) 

c a l l c a l c ( 5 ) 

C 

17 DO 23 11=1,5 

cxpart=c3*GIl(Jl, 3 2,II)*ul+c2*GI2(JI, 3 2 ,II)*u2 

r p a r t = p o l e ( I l ) * p i / ( 2 * r t p 2 ) * c 2 * u 3 

VI(I1)=DCMPLX(rpart,cxpart) 

23 CONTINUE 
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mgamp=DIMAG(VAMPL(ql,q2))**2+DREAL(VAMPL(ql,q2))**2 

Mps(JI,J2)=mgamp*(2*pi*gt*Cc*Ayi*Api)**2 

DO 24 11=1,5 

cxpart=c3*GIl(JI,J2,II)*ul-c2*GI2(JI,J2,II)*u2+ 

.GI3(JI,J2.I1)*eK/mK*u4 

r p a r t = p o l e ( I l ) * p i / ( 2 * r t p 2 ) * c 2 * u 3 

VI(I1)=DCMPLX(rpart,cxpart) 

24 CONTINUE 

mgamp=DIMAG(VAMPL(ql,q2))**2+DREAL(VAMPL(ql,q2))**2 

Mpv(JI,J2)=mgamp*(gt/(mst+mu)*mK*Cc*Ayi*Api*2*pi)**2 

Ey=dsqrt(mtb**2+kt**2) 

E3p=mst+mK-kt 

phase=Ey*kt *(E3p+mu)/(8*pi*(mK+mp)*mK*E3p) 

300 FORMAT(' Y= Lambda, Basis=uds',$) 

310 FORMAT(' Y= Sigma, Basis=uds > ,$) 

320 FORMATC Y=Lambda, Basis=SU(6) : ' ,$) 

330 FORMAT(' Y=Sigma, Basis=SU(6):',$) 

open(unit=6,carriagecontrol='FORTRAN',status='OLD') 

i f ( ( j l . e q . l ) .and. (J2.eq.l)) type 300 

i f ( ( j l . e q . 2 ) .and. (J2.eq.l)) type 310 

i f ( ( j l . e q . l ) .and. (J2.eq.2)) type 320 

i f ( ( j l . e q . 2 ) .and. (j2.eq.2)) type 330 

TYPE *,'M~2 (PS)=',Mps(Jl,J2) 

Mps(JI,J2)=phase*convfac*Mps(JI,J2)/(2*Wp) 

TYPE *,'Ratio (PS)=',Mps(JI,J2) 

TYPE *,'M~2 (PV)=',Mpv(Jl,J2) 
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Mpv(Jl,J2)=phase*convfac*Mpv(Jl,J2)/(2*Wp) 

TYPE *,'Ratio (PV)=',Mpv(Jl,J2) 

15 CONTINUE 

30 CONTINUE 

STOP 

END 

SUBROUTINE s e t y i ( I ) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5) , 

.s(2),y(5,2) , 31 ,32 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

a0(l,I)=ap**2 

aO(2,I)=2*ap*bp 

aO(3,I)=bp**2 

bO(l,I)=ay**2 

bO(2,I)=2*ay*by 

bO(3,I)=by**2 

i f ( q i n t . E q . l ) GO TO 34 ! i f doing 15 do cos t h e t a numerica 

y ( l , I ) = - a O ( l , I ) * b O ( l , I ) / s ( I ) + a O ( l , I ) * b O ( 2 , I ) / s ( I ) * * 2 

.+a0(2,I)*b0(l,I)/s(I)**2-2*a0(2,I)*b0(2,I)/s(I)**3 

y ( 2 , I ) = a 0 ( l , I ) * b 0 ( 2 , I ) / s ( I ) + a 0 ( 2 , I ) * b 0 ( l , I ) / s ( I ) 

.-2*aO(2,I)*bO(2,I)/s(I)**2 

y(3,I)=-aO(l,I)*bO(3,I)/s(I)-aO(2,I)*bO(2,I)/s(I) 
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.+aO(2,I)*bO(3,I)/s(I)**2-aO(3,l)*bO(l,I)/s(I) 

.+aO(3 , I)*bO(2 , I)/s(I)**2 

y(4,I)=aO(2 , I)*bO(3 , I)/s(I)+aO(3 , I)*bO(2,I)/s(I) 

y(5,I)—aO(3,I)*bO(3fI)/s(I) 

34 RETURN 

END 

C 

SUBROUTINE c a l c ( I ) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(lOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

pole(I)=FF(rtp2,2) 

spik=pole(I) 

CALL DOINT(I) 

RETURN 

END 

C 

SUBROUTINE d o i n t ( I ) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 
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.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

GI1(J1,J2,I)=0 ! I n t e g r a l f o r proton r a d i a t i o n diagram, 

GI2(J1,J2,I)=0 ! f o r Y r a d i a t i o n diagram, 

GI3(J1,J2,I)=0 ! and the contact graph. 

DO 10 11=1,LIM 

GI1(J1,J2,I)=GI1(J1,J2,I)+WW(I1)*F1(XX(I1)) 

GI2(J1,J2,I)=GI2(J1,J2,I)+WW(I1)*F2(XX(I1)) 

GI3(J1,J2,I)=GI3(J1,J2,I)+WW(I1)*FF(XX(I1),1) 

10 CONTINUE 

11 RETURN 

END 

C 

FUNCTION F1(X) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

Fl=FF(X,l)/(X**2+pl) 

RETURN 

END 

C 

FUNCTION F2(X) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 
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COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

.s(2),y(5,2),J1,J2, 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

F2=(FF(X,2)-spik)/(X**2-p2) 

RETURN 

END 

C 

FUNCTION FF(X,I) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

.s(2),y(5,2),J1,J2, 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik.qint 

I f (qint.EQ.O) GO TO 36 

FF=sing(X,I) 

GO TO 37 • 

36 tl=0 

t2=0 

DO 35 11=1,5 

t l = t l + y ( I l , I ) * X * * I l 

t 2 = t 2 + y ( I l , I ) * ( - X ) * * I l 

35 CONTINUE 

tlp=DEXP(-ht*X**2) 

FF=0 
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IF (tlp.Eq.O) GO TO 37 

FF=tlp*(DEXP(-s(I)*X)*tl+DEXP(s(I)*X)*t2) 

37 RETURN 

END 

C 

FUNCTION sing(X,I) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(lOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

tl=0 

DO 10 11=1,LIM2 

tl=tl+WWT(Il)*q(XXT(Il),x,I) ! Do numerical cos t h e t a i n t e g r a t i o n 

10 CONTINUE 

s i n g = t l 

RETURN 

END 

C 

FUNCTION q(u,X,I) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5) , 

.s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 
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.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

tl=dexp(-ht*x*x)*X**2 

IF (tl.EQ.O) GO TO 38 

t2=u-l 

tlp=dexp(s(I)*X*t2)*dsqrt(aO(l,I)+aO(2,I)*t2*X+aO(3,I)*X**2) 

.*dsqrt(bO(1,I)+b0(2,I)*t2*X+bO(3,I)*X**2) 

38 q = t l * t l p 

RETURN 

END 

C 

FUNCTION VAMPL(Yp.bas) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

. , a l i , b l i , b 2 i , c l i , c 2 i , d l i , d 2 i , d 3 i , d 4 i , g l i 

. , V I ( 5 ) , c l l u , c l 2 u , c l 3 u , c l 4 u , c s l u , c s 2 u , c s 3 u , c s 4 u 

.,cl1,cl2,cl3,cl4,cs1,cs2,cs3,cs4,cpl,cp2,cp3 

C 

C Main formulas f o r the amplitude as generated by SMP. 

C Includes s p i n summations, f l a v o u r and space matrix elements. 

C 

IF (Yp.EQ.2) GO TO 94 

C Yp=Lambda 
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IF (bas.Eq.2) GD TO 92 

C uds LAMBDA 

VAMPL = (1.DO/18.D0)*((VI(1)*(18*A1I*CL3U*CP2+18*B1I* 

$ CL1U*CP2+18*CL2U*CP2*D1I+18*2 ** 0.5D0*A1I 

$ *CLlU*CPl+9*2 ** 0.5D0*AlI*CL3U*CP3+(-9)*2 

$ ** 0.5D0*B1I*CL1U*CP3+18*2 ** 0.5D0*C1I*CL2U 

$ *CPl+(-9)*2 ** 0.5D0*CL2U*CP3*D1I)+VI(2)*(18* 

$ B2I*CLlU*CP2+18*CL2U*CP2*D2I+(-9)*2 ** 

$ 0.5D0*B2I*CLlU*CP3+(-9)*2 ** 0.5D0*CL2U*CP3* 

$ D2I)+VI(4)*(l8*CL2U*CP2*D4I+(-9)*2 ** 0.5D0* 

$ CL2U*CP3*D4I)+VI(3)*(18*CL2U*CP2*D3I+18*2 

$ ** 0.5D0*C2I*CL2U*CPl+(-9)*2 ** 0.5D0*CL2U* 

$ CP3*D3I)+(-2)*CL4U*CP3*GlI*VI(5)) / 2 ** 0.5D0) 

GO TO 99 

C SU(6) LAMBDA 

92 T l = VI(2)*((-36)*B2I*CL1*CP2+18*CL2*CP3*D2I+18* 

$ CL3*CP2*D2I+(-18)*CL4*CP2*D2I+18*2 ** 0.5D0* 

$ B2I*CLl*CP3+(-18)*2 ** 0.5D0*CL2*CP2*D2I+(-9) 

$ *2 ** 0.5D0*CL3*CP3*D2I)+VI(4)*(18*CL2*CP3* 

$ D4I+18*CL3*CP2*D4I+(-18)*CL4*CP2*D4I+(-18) 

$ *2 ** 0.5D0*CL2*CP2*D4I+(-9)*2 ** 0.5D0+CL3* 

$ CP3*D4I) 

T2 = VI(3)*((-36)*C2I*CL2*CP1+18*CL2*CP3*D3I+18* 

$ CL3*CP2*D3I+(-18)*CL4*CP2*D3I+18*2 ** 0.5D0* 

$ C2I*CL3*CPl+(-18)*2 ** 0.5D0*CL2*CP2*D3I+(-9) 

$ *2 ** 0.5D0*CL3*CP3*D3I)+2 ** 0.5D0*(9*A1I*CL4 



Appendix A. FORTRAN PROGRAMS 127 

$ *CP3*Vl(l)+(-18)*ClI*CL4*CPl*VI(l)+(-18)*C2I* 

$ CL4*CP1*VI(3)+9*CL4*CP3*D1I*VI(1)+9*CL4*CP3* 

$ D2I*VI(2)+9*CL4*CP3*D3I*VI(3)+9*CL4*CP3*D4I* 

$ VI(4)+2*CL4*CP3*GlI*VT(5))+2*2 ** 0.5D0*CL3* 

$ CP3*G1I*VI(5) 

VAMPL = ((-1.DO/36.D0))*((VI(l)*((-18)*AlI*CL2*CP3+(-18)* 

$ AlI*CL3*CP2+18*AlI*CL4*CP2+(-36)*BlI*CLl* 

$ CP2+(-36)*ClI*CL2*CPl+18*CL2*CP3*DlI+18* 

$ CL3*CP2*DlI+(-18)*CL4*CP2*DlI+(-36)*2 ** 

$ 0.5D0*AlI*CLl*CPl+(-18)*2 ** 0.5D0*A1I*CL2* 

$ CP2+(-9)*2 ** 0.5D0*A1I*CL3*CP3+18*2 ** 0.5D0* 

$ B1I*CL1*CP3+18*2 ** 0.5D0*ClI*CL3*CPl+(-18)* 

$ 2 ** 0.5D0*CL2*CP2*DlI+(-9)*2 ** 0.5D0*CL3*CP3 

$ *D1I)+T1+T2) / 6 ** 0.5D0) 

GO TO 99 

C Yp=sigma 0 

94 IF (bas.EQ.2) GO TO 96 

C SIGMA uds 

VAMPL = (1.D0/6.D0)*((VI(1)*(2*A1I*CP2*CS3U+2*B1I*CP2 

$ *CSlU+2*CP2*CS2U*DlI+2*2 ** 0.5D0*A1I*CP1 

$ *CSlU+(-l)*2 ** 0.5D0*AlI*CP3*CS3U+2 ** 0.5D0 

$ *BlI*CP3*CSlU+2*2 ** 0.5D0*ClI*CPl*CS2U+2 

$ ** 0.5D0*CP3*CS2U*D1I)+VI(2)*(2*B2I*CP2*CS1U 

$ +2*CP2*CS2U*D2I+2 ** 0.5D0*B2I*CP3*CSlU+2 

$ ** 0.5D0*CP3*CS2U*D2I)+VI(4)*(2*CP2*CS2U*D4I 

$ +2 ** 0.5D0*CP3*CS2U*D4I)+VI(3)*(2*CP2*CS2U* 



Appendix A. FORTRAN PROGRAMS 

$ D3I+2*2 ** 0.5D0*C2I*CPl*CS2U+2 ** 0.5D0*CP3* 

$ CS2U*D3I)+(-2)*CP3*CS4U*GlI*VI(5)) / (2 ** 0.5D0 

$ *3 ** 0.5D0)) 

C type *,cpl,cp2,cp3 

C "tyP e *,cslu,cs2u,cs3u,cs4u 

C type *,VI(1) 

C t y p 6 *,Vampl 

GO TO 99 

C SIGMA SU(6) 

96 T l = VI(2)*((-4)*B2I*CP2*CSl+(-2)*CP2*CS3*D2I+2* 

$ CP2*CS4*D2I+(-2)*CP3*CS2*D2I+(-2)*2 ** 0.5D0 

$ *B2I*CP3*CSl+(-2)*2 ** 0.5D0*CP2*CS2*D2I+(-l 

$ )*2 ** 0.5D0*CP3*CS3*D2I+2 ** 0.5D0*CP3*CS4* 

$ D2I) 

T2 = VI(4)*((-2)*CP2*CS3*D4I+2*CP2*CS4*D4I+(-2) 

$ *CP3*CS2*D4I+(-2)*2 ** 0.5D0*CP2*CS2*D4I+(-l 

$ )*2 ** 0.5D0*CP3*CS3*D4I+2 ** 0.5D0*CP3*CS4* 

$ D4I)+VI(5)*(2*2 ** 0.5D0*CP3*CS3*GlI+2*2 ** 

$ 0.5D0*CP3*CS4*GlI)+VI(3)*((-4)*C2I*CPl*CS2+( 

$ -2)*CP2*CS3*D3I+2*CP2*CS4*D3I+(-2)*CP3* 

$ CS2*D3I+(-2)*2 ** 0.5D0*C2I*CPl*CS3+2*2 ** 

$ 0.5D0*C2I*CPl*CS4+(-2)*2 ** 0.5D0*CP2*CS2*D3I 

$ +(-l)*2 ** 0.5D0*CP3*CS3*D3I+2 ** 0.5D0*CP3* 

$ CS4*D3I) 

VAMPL = ((-1.DO/36.D0))*((VI(l)*(2*AlI*CP2*CS3+(-2)*AlI 

$ *CP2*CS4+2*AlI*CP3*CS2+(-4)*BlI*CP2*CSl+ 
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$ (-4)*ClI*CPl*CS2+(-2)*CP2*CS3*DlI+2*CP2* 

$ CS4*DlI+(-2)*CP3*CS2*DlI+(-4)*2 ** 0.5D0*A1I 

$ *CPl*CSl+(-2)*2 ** 0.5D0*AlI*CP2*CS2+(-l)*2 

$ ** 0.5D0*AlI*CP3*CS3+2 ** 0.5D0*AlI*CP3*CS4+( 

$ -2)*2 ** 0.5D0*BlI*CP3*CSl+(-2)*2 ** 0.5D0+C1I 

$ *CPl*CS3+2*2 ** 0.5D0*ClI*CPl*CS4+(-2)*2 ** 

$ 0.5D0*CP2*CS2*DlI+(-l)*2 ** 0.5D0*CP3*CS3*D1I 

$ +2 ** 0.5D0*CP3*CS4*D1I)+T1+T2) / 2 ** 0.5D0) 

99 RETURN 

END 

C 

SUBROUTINE TRANS(Yp,bas) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(IOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 

. , a l i , b l i , b 2 i , c l i , c 2 i , d l i , d 2 i , d 3 i , d 4 i , g l i 

. , V I ( 5 ) , c l l u , c l 2 u , c l 3 u , c l 4 u , c s l u , c s 2 u , c s 3 u , c s 4 u 

. , e l l , c l 2 , c l 3 , c l 4 , c s l , c s 2 , c s 3 , c s 4 , c p l , c p 2 , c p 3 

.,A(6),I2(6),I3,L,I1, 

.gt,gs,gl,mp,mtb,msb,mlb,mst,ms,mu,f,b,sixj 

IF (Yp.Eq.2) GO TO 110 

C Yp=Lambda 

mtb=mlb 
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gt=gl/3*mu/mp*dsqrt(6.OdO) 

f= (l.D0/12.D0)*(2*3 ** 0.5D0*(2*CLl*CLlU+(-l)* 

$ CL2U+CL3+2 ** 0.5D0*CL2*CL2U+2 ** 0.5D0*CL2* 

$ CL3U)+2*3 ** 0.5D0*CL3*CL3U+2*6 ** 0.5D0*CL3 

$ *CL4U+2*6 ** 0.5D0*CL4*CL4U+12 ** 0.5D0*CL2U 

$ *CL4+(-l)*12 ** 0.5D0*CL3U*CL4) 

f = l 

GO TO 120 

C Yp=sigma 0 

110 mtb=msb 

gt=gs/3*mu/mp*9*dsqrt(2.OdO) 

f= (l.D0/12.D0)*(2*3 ** 0.5D0*(2*CS1*CS1U+CS2U* 

$ CS3+2 ** 0.5D0*CS2*CS2U+2 ** 0.5D0*CS2*CS3U)+ 

$ (-2)*3 ** 0.5D0*CS3*CS3U+2*6 ** 0.5D0*CS3* 

$ CS4U+2*6 ** 0.5D0*CS4*CS4U+(-l)*12 ** 0.5D0* 

$ CS2U*CS4+12 ** 0.5D0*CS3U*CS4) 

f = l 

120 IF (bas.EQ.2) GO TO 130 

C uds b a s i s 

mst=ms 

b=l 

f = l 

GO TO 140 

C SU(6) b a s i s 

130 mst=mu 
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140 RETURN 

END 

C 

FUNCTION FAC(q) 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

IF (q.GE.O) GO TO 40 

TYPE *,'Argument of F a c t o r i a l l e s s than zero!' 

GO TO 55 

40 FAC=1 

IF (q.LT.2) GO TO 55 

DO 45 J=2,q 

FAC=FAC*J 

45 CONTINUE 

55 RETURN 

END 

C 

C Subroutine to determine the po i n t s and weights f o r e v a l u a t i n g the i n t e g r a l s . 

C 

SUBROUTINE INTEGRATE 

IMPLICIT REAL*8 (A-H,K,M-U,W-Z) 

IMPLICIT COMPLEX*16 V 

COMMON /WXCOM/ XX(lOO), WW(IOO), WXXVEC(IOO), LIM, 

.XXT(IOO), WWT(IOO), LIM2,GI1(2,2,5),GI2(2,2,5),GI3(2,2,5), 

. s ( 2 ) , y ( 5 , 2 ) , J l , J 2 , 

.a0(3,2),b0(3,2),pole(5),ht,pl,p2,rtp2,ap,bp,ay,by,spik,qint 
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. , a l i , b l i , b 2 i , c l i , c 2 i , d l i , d 2 i , d 3 i , d 4 i , g l i 

. , V I ( 5 ) , c l l u , c l 2 u , c l 3 u , c l 4 u , c s l u , c s 2 u , c s 3 u , c s 4 u 

., e l l , c l 2 , c l 3 , c l 4 , c s l , c s 2 , c s 3 , c s 4 , cpl,cp2,cp3 

.,A(6),12(6),I3,L,I1 

11=4 

A(l)=.5 ! I n t e r v a l s f o r numerical cos t h e t a i n t e g r a t i o n 

I2(l)=16 

A(2)=1.0 

I2(2)=16 

A(3)=1.5 

I2(3)=16 

A(4)=2.0 

I2(4)=16 

13=0 

42 CALL SETWX(I1,I2,A,I3) 

LIM2=LIM 

DO 48,I1=1,LIM2 

XXT(I1)=XX(I1) 

WWT(I1)=WW(I1) 

48 CONTINUE 

C 

11=6 

A(l)=.25 ! I n t e r v a l s f o r numerical momentum i n t e g r a t i o n 

I2(l)=16 

A(2)=.5 

I2(2)=16 
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A(3)=.75 

I2(3)=16 

A(4)=1.0 

I2(4)=16 

A(5)=1.25 

I2(5)=16 

A(6)=1.5 

I2(6)=12 

13=8 

43 CALL SETWX(I1,I2,A,I3) 

RETURN 

END 
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Details of Integrals 

To evaluate the integrals used in chapter 3 we will need the following results [42] 

/ A3sin(Ag)e 2 a A dA = v v * e 2 ° 2 , 

7o v 8a5 

Using (B.300) we get 

ay= [Voooe'^A = - L \ ^ / e ^ ^ ^ A 

Similarly ap — 

= j V>io0e,A" » yd3A = 
2 1 M / ( | _ a

2 A 2 ) e - ^ 2 ^ 2 + i X ^ d 3 A 
y/lt J 2 

(B.300) 

(B.301) 

(B.302) 

(B.303) 

(B.304) 

V3v/4lr"\ 

4fy^\ §

( ( ^ ) 2 3 
V3V" A / U « A

; 2 ; 

Similarly 6P = 

134 
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Finally cY = J ^oioe*X'fy d3A 

^ IaxXe-^lx2+iX^cos\l^-cos9A2sin9dOd<f>d\ 
\ 0 \ y/lt J V 47T 

Ai fy/ir^ 

Similarly c„ = 

Angular integrals 

Ai (sfii^ 

-A 
qye K 

3 

— — 9Pe ^ . a \ a I 

When performing the angular integrals we will need the general formula (u = cos 9) 

f1 espu(ai + a2pu + a3p2)(6i + b2pu + b3p2)p2 du = £ (̂p'e"^ + (-p)''eps) 
Ju=—1 

(B.305) 

where m = — ^ - + + — — , (B.306) 

_ axb2 a2bx 2a2b2 r}2 = + 5—, (B.307) 
-ai6 3 a262 a2fe3 a3&! a362 773 = + — + - T - , (B.308) 

s s s* s sz 

_ a2b3 a3b2 _ a3b3 rji 1 , 775 = . (B.309) 
s s s 

All the angular integrals can be evaluated from this result by appropriate choice of the 

a,- and 6,-. 

Contour Integration 

Since the integrand of the second integral in equation (3.264) is an even function of u, 

r°° 1 G / f A i ) r°° 1 
GJMI 2 x2 • du = ^ i - ^ l i m / . du.- (B.310) 

Jo r - A i - i e 2 0 J-00 u2 — \{ — le 
Neglecting terms of 0(e)2 and defining 
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we have 

f°° 1 fR
 1 

/ ~~5 ~du = lira / — du. 
J-oo Ul — Af — It R-KX> J-R (u + z)(u — z) 

= y^[l(±±*fL
du
_l ( H ± £ t l d u \ (B .311) 

fl-+oo [ y c U — Z J C R U — Z J 

The contour C is to be closed on the top half of the Argand plane. Contour CR 

represents the semi-circle part of C. Since C is an anti-clockwise contour it is postive. 

From the Cauchy residue theorem [43] 

/(*) i c (x — a) 
dx = 2mf(a), (B.312) 

we get 

7T2 lim lim £ ^ ^— du — lim , • = — 
fl-oo £̂ o Jc u - z t-+o 2 A a + f- A i 

We must now show that the integral over contour CR yields zero. It follows from the 

triangle inequality [44] that, 

\u + z\\u-z\>\\u\-\z\\2. 

On CR, \U\ = R and we get 

Jc, 
du < 

irR 

\R-\z\\2 TcR (u + z)(u - z) 

where irR is the length CR. The desired limit is now evident; that is, 

1 lim f 
R—>oo Jc R-*co JCR (u + z)(u — z) 

du = 0. 
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SMP Procedures 

The following commands define the wave functions and rules for evaluating the matrix 

elements within the SMP environment. They are contained within the file "WAVEFN.DEF". 

The following translations may be useful: 

p s i p = p s i l = *jv 

p s i s = N82ss= N^SS etc 

L2S= A 2 5 etc cr=x
p  

c l = xA
 P l = <f> A 

ps= <f>L p r l = 4>P

A 

p l l = <f>\ etc Ps000= 

P r l 2 0 f = $^oo etc. 

Where the / denotes final state; that is the spatial wave function for the Y. 

For the matrix elements: 

p l * p r p denotes (cf>A\V+\4>P) 

cr~2 denotes (x
P

\<?• t\x
p

) 

PsOOf *Ps000 denotes ($ooolQI$ooo) 

psip:cpl*N82ss+cp2*N82ssp+cp3*N82sm /* Proton wave f u n c t i o n 

p s i l : I f [ u d s = l , c l l u * L 2 S + c l 2 u * L 2 S l l + c l 3 u * L 2 S r r + c l 4 u * L 2 S r l , \ 

cll*L82ss+cl2*L82ssp+cl3*L82sm+cl4*L12sm] /* Lambda wave f u n c t i o n 

137 
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psis:If[uds=l,cslu*S2S+cs2u*S2Sll+cs3u*S2Srr+cs4u*S2Srl,\ 

csl*S82ss+cs2*S82ssp+cs3*S82sm+cs4*S102sm] /* Sigma wave f u n c t i o n 

N82ss:(cr*prp+cl*plp)PsOOO/Sqrt[2] 

N82ssp:(cr*prp+cl*plp)Ps200/Sqrt[2] 

N82sm:(P1200*(cr*prp-cl*plp)+Pr200*(cr*plp+cl*prp))/2 

L 8 2 s s : ( c r * p r l + c l * p l l ) P s O O f / S q r t [ 2 ] 

L 8 2 s s p : ( c r * p r l + c l * p l l ) P s 2 0 f / S q r t [ 2 ] 

L 8 2 s m : ( P 1 2 0 f * ( c r * p r l - c l * p l l ) + P r 2 0 f * ( c r * p l l + c l * p r l ) ) / 2 

L12sm:(P120f*cr-cl*Pr20f)pal/Sqrt[2] 

S82ss:(cr*prs+cl*pls)PsOOf/Sqrt[2] 

S82ssp:(cr*prs+cl*pls)Ps20f/Sqrt[2] 

S82sm:(P120f*(cr*prs-cl*pls)+Pr20f*(cr*pls+cl*prs))/2 

S102sm:(P120f*cl+cr*Pr20f)pss/Sqrt[2] 

L2S:PsOOf*pl*cr 

L 2 S l l : P 1 1 2 0 f * p l * c r 

L 2 S r r : P r r 2 0 f * p l * c r 

L 2 S r l : P r l 2 0 f * p l * c l 

S2S:Ps00f*ps*cl 

S2Sll:P1120f*ps*cl 

S 2 S r r : P r r 2 0 f * p s * c l 

S 2 S r l : P r l 2 0 f * p s * c r 
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'Flavour Matrix element r e s u l t s 

pl*prp:1 

p l * p l p : 0 

p r l * p r p : S q r t [ 2 / 3 ] 

p l l * p r p : 0 

p a l * p r p : - l / S q r t [ 3 ] 

p r l * p l p : 0 

p l l * p l p : 0 

pal*plp:0 

ps*prp:0 

p s * p l p : - l / S q r t [ 3 ] 

prs*prp:0 

prs*plp:0 

pls*prp:0 

p l s * p l p : - S q r t [ 2 ] / 3 

pss*prp:0 

p s s * p l p : - l / 3 

'Space Matrix elements 

Ps00f*Ps000:a 

PsOOf*Ps200:b/Sqrt[2] 

PsOOf*P1200:-b/Sqrt[2] 
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Ps00f*Pr200:0 

Prl20f*Ps000:0 

Prl20f*Ps200:0 

Prl20f*P1200:0 

Prl20f*Pr200:g/3 

Prr20f*PsOOO:0 

Prr20f*Ps200:a/Sqrt[2] 

Prr20f*P1200:a/Sqrt[2] 

Prr20f*Pr200:0 

P1120f*Ps000:c 

P1120f*Ps200:d/Sqrt[2] 

P1120f*P1200:-d/Sqrt[2] 

P1120f*Pr200:0 

Ps20f*PsOOO:c/Sqrt[2] 

Ps20f*Ps200:(a+d)/2 

Ps20f*P1200:(a-d)/2 

Ps20f*Pr200:0 

P120f*PsOOO:-c/Sqrt[2] 

P120f*Ps200:(a-d)/2 

P120f*P1200:(a+d)/2 

P120f*Pr200:0 

Pr20f*PsOOO:0 

Pr20f*Ps200:0 

Pr20f*P1200:0 

Pr20f*Pr200:g/3 
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'Spin Matrix elements 

c r ~ 2 : s f r 

c r * c l : 0 

c l * c r : 0 

c l - 2 : s f l 

SMP 1.6.2 

Mon Feb 4 16:14:28 1991 

u d s : l ; /* uds b a s i s 

<"wavefn.def"; /* Load d e f i n i t i o n s 

p s i l p s i p ; /* C a l c u l a t e <Lambda|V|proton> amplitude 

Ex[/,]; /* Expand l a s t expression (using d e f i n i t o n s ) 

Rat [°/,] ; /* R a t i o n a l i z e l a s t expression over a common denominator 

F a c [ % ] ; /* F a c t o r i z e l a s t expression 

CbC'/.^a.b.c.d.g}] /* Combine c o e f f i c i e n t s i n l a s t expression 

1/2 

a ( 6 c l l u c p l s f r + 3cl3u cp3 s f r + 3 2 c l 3 u cp2 s f r ) 

1/2 

+ b ( - 3 c l l u cp3 s f r + 3 2 c l l u cp2 s f r ) 

1/2 

+ d (-3cl2u cp3 s f r + 3 2 c l 2 u cp2 s f r ) 

1/2 
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+ 6c c l 2 u c p l s f r + 2 c l 4 u cp3 g s f l 

#0[7]: 

1/2 

6 2 

p s i s p s i p ; /* C a l c u l a t e <Sigma 0|V|proton> amplitude 

Ex ['/.]; 

Rat ['/.] ; 

Fac ['/,]; 

Cb[,/.,{a,b,c,d,g}] 

1/2 

- ( a (6cpl c s l u s f l - 3cp3 cs3u s f l + 3 2 cp2 cs3u s f l ) 

1/2 

+ b (3cp3 c s l u s f l + 3 2 cp2 c s l u s f l ) 

1/2 

+ d (3cp3 cs2u s f l + 3 2 cp2 cs2u s f l ) 

1/2 

+ 6c c p l cs2u s f l + 2 cp3 cs4u g s f r ) 

#0[12]: 

1/2 1/2 

6 2 3 
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uds:0; /* Now do same t h i n g i n SU(6) b a s i s 

<"wavefn.def"; 

p s i s p s i p ; /* f o r the Sigma 

Ex ['/.]; 

Rat [*/.] ; 

Fac ['/.]; 

Cb[,/.,{a,b,c,d,g}] 

- ( a (12cpl c s l s f l + 6cp2 cs2 s f l + 3cp3 cs3 s f l - 3cp3 cs4 s f l 

- 3 2 cp2 cs3 s f l + 3 2 cp2 cs4 s f l 

1/2 

- 3 2 cp3 cs2 s f l ) 

1/2 

+ b (6cp3 c s l s f l + 6 2 cp2 c s l s f l ) 

1/2 

+ c (6cpl cs3 s f l - 6cpl cs4 s f l + 6 2 c p l cs2 s f l ) 

+ d (6cp2 cs2 s f l + 3cp3 cs3 s f l - 3cp3 cs4 s f l 

1/2 1/2 

1/2 1/2 

+ 3 2 cp2 cs3 s f l - 3 2 cp2 cs4 s f l 
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1/2 

+ 3 2 cp3 cs2 s f l ) 

+ g (2cp3 cs3 s f r + 2cp3 cs4 s f r ) ) 

#0[19]: 

1/2 

36 2 

p s i l p s i p ; /* and f o r the Lambda 

Ex[°/.]; 

Rat [Fac ['/.] ] ; 

Cb[%,{a,b,c,d fg}] 

- ( a (-24cll c p l s f r - 12cl2 cp2 s f r - 6cl3 cp3 s f r + 6cl4 cp3 s f r 

1/2 1/2 

- 6 2 c l 2 cp3 s f r - 6 2 c l 3 cp2 s f r 

1/2 

+ 6 2 c l 4 cp2 s f r ) 

1/2 
+ b ( 1 2 c l l cp3 s f r - 12 2 e l l cp2 s f r ) 

+ c (12cl3 c p l s f r - 12cl4 c p l s f r 
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#0[25] 

1/2 

- 12 2 c l 2 c p l s f r ) 

+ d (-12cl2 cp2 s f r - 6cl3 cp3 s f r + 6cl4 cp3 s f r 

1/2 1/2 

+ 6 2 c l 2 cp3 s f r + 6 2 c l 3 cp2 s f r 

1/2 

- 6 2 c l 4 cp2 s f r ) 

+ g (-4cl3 cp3 s f l - 4 c l 4 cp3 s f l ) ) 

1/2 
24 6 
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