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Abstract 

Optical techniques were used to study the critical behaviour of the pure fluids C H F 3 , 

CCIF3 and Xe, and binary mixtures He-Xe and nicotine + water. We find that for 

all these substances, the order parameter is described by a power law in the reduced 

temperature t = (Tc - T)/Te with a leading exponent 0 = 0.327 ± 0.002. Also, we 

determine the first correction to scaling exponent to be A = 0.43 ± 0.02 for the pure 

fluids and A = 0.50 ± 0.02 for the He-Xe system. 

The coexistence curve diameter in CHF3 and CCIF3 exhibits a deviation from recti­

linear diameter, in agreement with a modern theory which interprets this behaviour as 

resulting from three-body effects. In contrast, no such deviation is observed in Xe where, 

according to that theory, it should be more pronounced than in other substances. 

In the polar fluid CHF3, the order parameter, isothermal compressibility and the 

chemical potential along the critical isotherm were simultaneously measured in the same 

experiment in an effort to ensure self-consistency of the results. From the data, two 

amplitude ratios which are predicted to be universal are determined: TQ /T~ = 4.8 ± 0.6 

and DQT^BQ'1 = 1.66 ± 0.14. 

In the binary liquid system nicotine + water, the diffusivity was measured both by 

light scattering and by interferometry. The results agree qualitatively, but differ by a 

factor of w 2. From the light scattering data, the critical exponent of the viscosity is 

found to be *„ = 0.044 ± 0.008. 

The interferometric experiments on Xe and He-Xe furnish a direct way to maesure 

the effects of wetting: From the data, the exponent of the surface tension is found to 

be n = 1.24 ± 0.06. The similarity of the order parameter and compressibility in Xe 
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and a He-Xe mixture containing 5% He indicate that the phase transition in this He-Xe 

mixture is of the liquid-gas type rather than the binary liquid type. 
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Chapter 1 

Introduction 

1.1 Critical Points 

The thermodynamic state of a pure fluid at pressure P and temperature T can be de­

scribed by an equation of state [1,2] 

/ ( P , 2 » = 0, (1.1) 

where p is the density. This equation defines a two-dimensional surface in the three-

dimensional space (P, T, p). In some regions on this surface, the system is not thermody-

namically stable. These regions are bordered by lines called the coexistence curves. The 

projection of these lines onto the P — T plane is shown in figure 1.1: There is a region 

of solid phase at low temperatures and high pressures, a region of gas phase at high 

temperatures and low pressures, and in between a region of liquid phase. At the triple 

point all three phases coexist. The liquid-vapour coexistence curve ends at a critical 

point (TC,PC). Therefore it is possible to take the system from any point in the liquid 

region to any point in the vapour region without crossing a phase boundary. Figures 1.2a 

and 1.2b show projections of the coexistence curves onto the T — p and P — p planes. In 

the T — p plane, the coexistence curve divides the plane into a single-phase region (above 

the curve) and a two-phase region (below the curve) in which liquid and vapour coexist. 

In general, the critical point of a system is characterized as a point in the parameter 

space at which a continuous transition between two phases occurs [3, 4]. In pure fluids 

the critical point is the end point of the liquid-vapour coexistence curve, at which point 

1 



Chapter 1. Introduction 

Figure 1.2: Phase diagram of a pure fluid in the T — p plane (a) and the P 
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the liquid and vapour densities become the same, and in binary liquids it is the point at 

which the concentration difference between the two coexisting phases goes to zero. Close 

to the critical point, phenomena occur which are universal in two respects: 

• They are present in a wide range of very different physical systems: Pure and binary 

fluids, magnets, superconductors, etc. 

• Certain thermodynamic quantities diverge or go to zero close to the critical point as 

powers of the temperature difference or density difference from the critical values, 

with exponents which are quantitatively the same in very different systems; their 

values depend only on a few very general characteristics of the system. 

In the last two decades, great progress has been made both experimentally and the­

oretically towards an understanding of critical behaviour and a determination of the 

critical exponents to very high accuracy. As theories make more and more precise pre­

dictions and as large computer power allows for more and more sophisticated numerical 

calculations, there is a need for very accurate experiments to test the theoretical pre­

dictions. Thus, experiments are carried out to approach the critical point as closely as 

possible so as to measure the true asymptotic behaviour. 

The advantage of performing experiments on systems in their fluid state (i.e., on 

gas-liquid systems or on binary fluids) over experiments on solids is that the constituent 

particles are free to move within the system, and complications due to the underlying 

crystal structure, lattice defects etc. do not have to be taken into account. Also, trans­

parent fluids can be probed using optical methods. However, in binary liquids and pure 

fluids the effects of gravity can hinder the observation of true critical behaviour as dis­

cussed below. In order to approach the critical point as closely as possible, systems and 

experimental methods have to be chosen carefully so as to reduce gravitational effects. 
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This can be attained by matching the densities of multi-component systems, or by choos­

ing experimental techniques which are inherently less susceptible to gravitational effects. 

Optical interferometry is an example of such a technique which minimizes the effects of 

gravity. Whenever this method was not applicable, as for measuring diffusivities using 

light scattering, we chose a binary liquid system which is closely density matched. 

As we will demonstrate in this thesis, these methods are precise and furnish results 

that are easy to interpret. 

1.2 Order Parameter, Susceptibility and Critical Isotherm 

In order to characterize the different thermodynamic phases, one defines an "order pa­

rameter" \P which has the property that, upon approach to the critical point in the 

two-phase region, it goes to zero continuously, and it is identical to zero in the one-phase 

region. For pure fluids, the order parameter is proportional to the density difference 

between the coexisting liquid and gas phases oc pi — /?„), whereas for binary liquids 

(of molecular species A and B) it is proportional to the concentration difference of one 

species (say A) in the two coexisting phases I and 77: \& oc x\ — x^. Close to the critical 

temperature Tc, ^ obeys a power law with an exponent 0 in the reduced temperature 

t = (Te- T)/Tc: 

= B0tp. (1.2) 

Experimentally, the exponent /3 was found to be a have the same value for a variety 

of systems [1]. These systems are said to belong to the same "universality class". The 

universality class of a given system is determined by its dimensionality d, the number 

of components n of the order parameter, and whether the interparticle forces are short-

or long-range. Both binary liquids and pure fluids have d = 3, n = 1 (scalar order 

parameter) and short-range, van der Waals-like interactions and thus belong to the same 
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universality class. This is also the universality class of the three-dimensional Ising model, 

in which each site in a three-dimensional square lattice is occupied by a spin which can 

point either up or down and interacts with the other spins in the lattice. As the Ising 

model is easier to handle theoretically than microscopic theories of gases, most theoretical 

results have been obtained for this model. There is a one-to-one correspondence between 

the variables of an Ising model with those of the so-called "lattice gas" model [5]. In the 

lattice gas model, each site of the lattice can either be occupied by a molecule or it can 

be empty, with interactions between occupied neighbouring sites. The lattice gas is thus 

a model of a real fluid. 

Besides the order parameter, there are also other quantities that exhibit power laws 

with universal exponents close to the critical point. One of them is the generalized 

isothermal susceptibility xt above (+) and below (—) the critical point: 

x f = r f C F * ) " 7 * (1.3) 

For pure fluids, xt OC (dp/dP)T is the compressibility, whereas for binary liquids, xt OC 

(dx/d(i)T is the "osmotic compressibility" (with p, the chemical potential and x the 

concentration of one of the species). 

Also, along the critical isotherm, the chemical potential p — pc is expected to obey a 

power law in the reduced density: 

(1.4) 

Here, pc is the critical density, pc = p(Tc, pc) the critical chemical potential, and 6 is 

another universal exponent. 

The exponents /?, 7 and 6 have been calculated for the three-dimensional Ising model 

both by high-temperature series expansions [6, 7] and e-expansions [8, 9]. Recent results 

obtained by these methods agree well and yield values of /? in the range from 0.325 to 

= D0 

P~ Pc 
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0.327 and 7 + = 7 " between 1.237 and 1.241. The quantities B0, TQ and D0 defined in 

the above equations are called the critical amplitudes. They are nonuniversal, i.e., their 

values depend on the particular system under consideration. 

1.3 Universality of Amplitude Ratios 

Scaling theory [4, 10] states that the three exponents firf* and 6 are connected by the 

two scaling relations, 7 + = 7 " and 7 * = — 1). Given /? and 7 ± , 6 thus can be 

calculated. One obtains 8 between 4.79 and 4.82 [11]. Scaling also predicts that, even 

though the individual critical amplitudes are system dependent, certain combinations 

of them are universal. For example, the ratios T~\/T~~ and DOTQBQ"1 are expected 

to be the same for all systems in the same universality class [12]. Measurements of 

these amplitude ratios have been reported earlier [13, 14]. In these publications, results 

obtained from different experiments were combined to determine the amplitude ratios. 

This method, however, is subject to errors due to the different data evaluation methods 

and different samples used in the different experiments and, in particular, susceptible to 

effects caused by different determinations of the critical temperatures, which affect the 

critical amplitude ratios considerably. For a consistent determination of the amplitude 

ratios, all the amplitudes should therefore be extracted from a single experiment. In this 

way, the critical temperature can be determined independently in the evaluation of the 

various quantities, and agreement is an important check on the consistency of the results. 

This approach was followed by Weber [15] and later improved by Pestak and Chan [16, 

17] who used a stack of capacitors to measure the density as a function of chemical po­

tential in Ne, N2 and HD. Their results are very self-consistent and show good agreement 

with theory. However, close to the critical point, their data are affected by gravitational 

rounding, which they correct for by analyzing it using the restricted cubic model [18,19]. 
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We have measured these amplitude ratios in the pure fluid system CHF3, a strongly 

polar fluid. By using an optical interference technique [20, 21] which is less susceptible 

to gravitational rounding, we minimized gravitational effects [22]. Like the capacitor 

method, our method allows measurements of the coexistence curve, compressibility and 

critical isotherm in a single experiment. By confining the sample to a thin cell, gravity 

effects are negligible even close to the critical point, so that no corrections due to grav­

itational rounding have to be made. We used a cell only 1.86 mm thick, which enabled 

us to approach the critical point as closely as \t\ « 10~6 without encountering appre­

ciable errors due to gravitational rounding. For measurements on the critical isotherm, 

only reduced densities Ap* = \p — pc\/pc > 4 x 10 -4 were used for the evaluation, for 

which beam bending errors are less than 0.1% [23]. We have thus obtained values of the 

amplitude ratios Tq /T~ and D0Tq Bq'1 which are probably the most accurate to date. 

Our data are in excellent agreement with theoretical predictions. They also agree well 

with measurements performed on nonpolar fluids [17], and are thus in accordance with 

the universality principle. 

1.4 The Coexistence Curve Diameter and Dipolar Interactions 

Another quantity of interest is the coexistence curve diameter p*^ defined as the average 

of liquid and vapour densities: 
. _ Pl + Pv , , Pd ~ — ( L 5 ) 

In early experiments, the diameter was found to vary linearly with t, a property known 

as the "law of rectilinear diameter" [24]. In the'framework of scaling theory, however, 

due to the lack of particle-hole symmetry in real fluids, there is a deviation from linear 

behaviour close to the critical point, and the diameter takes the form [25] 

pm

d = A0 + A^t1-" + Art. (1.6) 
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Recently, this expression has been interpreted by Goldstein et al. in terms of the mi­

croscopic interactions of the system [26]. Within this model, the term A\-atl~a results 

from three-body interactions, and the amplitudes A\-a and A\ are related to the rel­

ative strengths of three-body and two-body interactions. If the dominant three-body 

interactions are of the Axilrod-Teller type [27], then the order parameter amplitude Bo, 

the diameter slope A\ and the strength of the deviation from rectilinear diameter are 

expected to be proportional to the dimensionless quantity ctppc, the so-called "critical 

polarizability product" [28]. (Here ap is the molecular polarizability and pc is the critical 

density). 

Recent precise measurements on a number of nonpolar fluids [26, 28, 29] indeed show 

a small deviation from a straight line close to the critical point, consistent with the 

predicted behaviour. Also, in agreement with the theory of Goldstein et al. [26], the 

diameter slope A\ was found to vary linearly with appc in these nonpolar substances. 

For polar fluids, the situation is somewhat more complex [28, 30]. Even though dipolar 

couplings between the molecules do not change the universality class of the system, they 

do influence the values of the critical amplitudes. In particular, the theory of Goldstein 

et al. predicts that the coexistence curve diameter amplitude A\ is expected to be 

proportional to the quantity ctppc rather than ctppc, where the "effective " polarizability 

dp of the polar fluid includes the effects of dipole-dipole interactions and is given by 

1/2 
(1.7) 

p 3 / 9IkBTc^ 

Here, p0 is the molecular electric dipole moment of the molecule, I is its dissociation 

energy and Tc is the critical temperature. 

In order to compare the behaviour of a strongly polar fluid close to its critical point 

to that of weakly polar and nonpolar fluids, we have carried out experiments to measure 

the order parameter and coexistence curve diameter of the pure fluids CHF 3, CC1F3 and 
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Xe. CHF3 and CCIF3 have fairly similar critical temperatures, pressures and densities, 

but very different dipole moments: CHF3 is strongly polar (po — 1.65 D [31]), whereas 

CCIF3 is only weakly polar (/i0 = 0-50 D [32]). Also, CHF 3 molecules, which contain 

electronegative atoms together with hydrogen atoms, will form hydrogen bonds, which 

are absent in CCIF3. In contrast, the interactions between the nonpolar Xe atoms are 

purely via van der Waals interactions. Thus, by examining the critical behaviour of 

these three fluids, one can obtain important information about the relevance of dipolar 

interactions and hydrogen bonds close to the critical point. We find that in all three 

fluids, the relation between A\ and Bo is linear, in accordance with the data taken on 

nonpolar fluids [28], This indicates that three-body interactions indeed play a role, as 

proposed by the theory of Goldstein et al. The expected proportionality between A\ and 

ctppc is well fulfilled for CCIF3; however, Xe and CHF3 exhibit deviations, suggesting 

that three-body interactions other than the Axilrod-Teller forces play a dominant role. 

1.5 Diffusivities 

Up to now we have only considered static critical phenomena. Their universality class 

was determined by the dimensionality of the system, the number of components of the 

order parameter and the range of the interactions. When discussing dynamic critical 

phenomena, the universality class is also determined by the number of relevant hydro-

dynamic modes [33]. In fluids and fluid mixtures, there are two relevant (and coupled) 

modes: the diffusive decay of the order parameter fluctuations and that of the transverse 

momentum fluctuations. Thus we expect pure fluids and binary fluids to belong to the 

same dynamic universality class and to exhibit the same critical exponents and scaling 

functions for dynamic as well as static properties [33]. 

We have performed experiments on the binary liquid system nicotine + water and 
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measured the generalized diffusivity D, which is proportional to the decay rate of order 

parameter fluctuations in the fluid mixture. According to the fluctuation-dissipation the­

orem [34], D can be written as the ratio of a transport coefficient £ and a generalized static 

susceptibility xt- D = £/xt [33]. In the case of a binary mixture, D is the concentration 

diffusivity, £ the mass conductivity and xr = (dx/dfj,)r the osmotic compressibility [35]. 

Xt diverges strongly at the critical point; £ also diverges, but more weakly than xt, 

and therefore the diffusivity D goes to zero as the critical point is approached. This 

phenomenon, known as "critical slowing down", reduces the speed of equilibration in the 

critical region and leads to long time constants close to Tc. 

The conventional method for measuring diffusivities is by the method of light scat­

tering [36, 37, 35, 38]. The light is scattered by fluctuations of the refractive index of 

the medium, which are related to order parameter fluctuations. The range of these fluc­

tuations is the correlation length £ which diverges at the critical point as £ oc t~". The 

exponent v has a value of approximately 0.63 in pure fluids and binary mixtures. In 

the light scattering experiments, one keeps the fluid at a given fixed temperature in the 

one-phase region and probes the equilibrium density fluctuations; their characteristic 

decay time gives information about the equilibrium diffusivity D and is obtained by 

measuring the density-density autocorrelation function in the fluid. 

A second method of obtaining information about the diffusivity consists of putting 

the system into a nonequilibrium situation and observing its decay to equilibrium. 

This corresponds to quenching the fluid under investigation from the two-phase region 

into the one-phase region and watching the subsequent relaxation of the density profile 

of the fluid in the cell under the influence of gravity. From the relaxation one can again 

obtain a diffusivity, which now, however, is a nonequilibrium diffusivity. 

We performed experiments on the binary liquid mixture nicotine-water using both 

methods. This system is well suited for the study of critical phenomena, because the 
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densities of the two constituents are very closely matched and thus gravity effects, which 

otherwise limit the accuracy of light scattering data, play a minor role. In binary liquids, 

the order parameter is proportional to the difference in concentration Ax* = xr

A — xl

A

l of 

one of the constituents (say A) in the two phases I and II. 

We show that due to the density-matching of the constituents, gravitational rounding 

effects due to the divergence of the osmotic compressibility x r are negligible on the time 

scale of this experiment. From the light-scattering experiment, we measure the critical 

exponent of the viscosity and find good agreement with results of other experiments and 

with theory. The diffusivity measured by the interferometric method is found to be a 

function of the order parameter Ax* in the two-phase region before the quench. The 

diffusivity is thus concentration-dependent. In the limit Ax* —• 0, corresponding to a 

quench from the critical point into the one-phase region, the diffusivity data from the 

interferometric method are found to be consistently larger than the data from the light 

scattering experiment. This is the first time a comparison like this has been performed. 

1.6 "Gas-Gas Equilibrium" 

Finally, a set of experiments were carried out on a system that exhibits features of both 

a binary liquid and a gas-liquid system. Whereas in pure fluids only gas-liquid equilibria 

exist, three different types of two-phase equilibria have to be considered in fluid mixtures: 

liquid-gas, liquid-liquid, and the so-called "gas-gas" equilibria [39, 40]. They all consist 

of two coexisting fluid phases of different densities separated by a meniscus. At a critical 

point of the mixture the intensive properties of the two phases in equilibrium become 

identical. Whereas pure substances are characterized by a critical point for the liquid-

gas equilibrium, binary systems exhibit a critical line in three-dimensional T — p — x 

space (where x is the concentration). The various phase behaviours of binary fluids can 
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X 
Figure 1.3: Phase diagram of gas-gas equilibrium of the first kind: line AB corresponds 
to the liquid-gas coexistence curve of the less volatile conponent and ends at the critical 
point B. From there, the critical line of second order phase transition points starts (dashed 
line). 

be classified by looking at the p(T) projections of these critical curves. An example 

of a system with liquid-liquid equilibrium was encountered above, in the binary liquid 

nicotine-water, under its equilibrium vapour pressure. 

"Gas-gas" equilibria can occur in systems of binary fluids at pressures and temper­

atures above the critical temperature of the less volatile substance. The critical curve 

is interrupted and consists of two branches. The branch starting form the critical point 

of the more volatile component (/) ends at the so-called critical end point. The other 

branch begins at the critical point of the less volatile component (II) and either im­

mediately tends to higher temperatures and pressures ("gas-gas equilibrium of the first 

kind", see figure 1.3) or goes through a temperature minimum first and then runs to 

increasing pressures and temperatures ("gas-gas equilibrium of the second kind"). The 
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term "gas-gas equilibrium" is somewhat confusing for these systems, because in fact both 

substances are, at these temperatures and pressures, beyond the critical point , and so the 

distinction between "gas" and "liquid" does not exist any more. Rather, the coexistence 

is between two supercritical fluids of differing compositions. 

These phase separation effects were predicted by Van der Waals [41] and have been 

found in a wide range of systems (for a review see [42]). More and more sophisticated cal­

culations of equations of state have enabled theorists to predict with reasonable accuracy 

which type of "gas-gas" equilibrium will be found in a given system [43], and to calculate 

the phase diagram. However, no investigations have been made up to now on the critical 

behaviour of the system along the second-order phase transition line. As the universality 

class of the system is the same as for binary liquids and pure fluids, we expect to observe 

the same critical exponents as for the three-dimensional Ising model. However, whereas 

the nonequilibrium density profiles in cells with pure fluids are known to relax quite fast, 

this process is much slower in binary liquids. We thus expect to observe a crossover from 

gas-liquid equilibrium at the end point of the second order critical line (pure component 

77) to the behaviour of a binary fluid as the concentration of component J is increased. 

In the vicinity of the critical line, we expect both the compressibility and the osmotic 

compressibility to diverge. 

We have investigated the system Helium-Xenon which exhibits a "gas-gas equilibrium 

curve of the first kind". The phase diagram of this system has been studied by de Swaan-

Arons and Diepen [44] for pressures up to 2000 atm and temperatures up to 60° C. We 

performed experiments on a sample of critical density and concentration of this system, 

containing « 5% He, and measured the coexistence curve, compressibility and diffusivities 

close to the critical point. We found no appreciable difference between the behaviour of 

this binary fluid sample and a pure Xenon sample, suggesting that the phase transition 

in this binary fluid is more of the gas-liquid type, rather than the binary liquid type. The 
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only effect of the presence of He in the mixture seems to be an increase in the critical 

temperature and the pressure of the system. This is in agreement with a recent neutron 

scattering experiment on a noncritical He-Xe mixture [45] which finds that the structure 

factor of the Xe-Xe pairs is unchanged by the presence of He-atoms. 

In the two-phase region, our optical technique provided a novel way of measuring the 

surface tension: It enabled us to directly measure the width of the meniscus between the 

two coexisting phases in the cell, which is a measure of the rise height of a wetting layer 

on the cell windows. We used this method to extract the critical exponent of the surface 

tension and find it to be in good general agreement with other experiments. 

1.7 Outline of the Thesis 

The remainder of this thesis is organized as follows: Chapter 2 gives an overview of the 

theory of critical phenomena and defines the quantities which we have measured. Chapter 

3 describes the optics and the data extraction from the measurement. In Chapter 4 

the experimental setups of the various experiments are described. Chapter 5, 6 and 7 

present the results of the freon, nicotine + water and He-Xe experiments respectively, 

and Chapter 8 contains the conclusions. 



Chapter 2 

Theory 

2.1 Critical Phenomena in Pure Fluids 

2.1.1 Critical Exponents 

As was discussed in the Introduction, the phase diagram of a pure fluid contains a region 

in which the liquid and vapour phases coexist (see figure 1.2). In the P-T plane, this 

region is represented by the liquid-vapour coexistence curve, which ends in the critical 

point as shown in figure 1.1. For many fluids it is found experimentally that the variation 

of the liquid and the vapour densities pi(T) and pv(T) with temperature is identical for 

different fluids when density and temperature are rescaled by their critical values pc and 

Tc. Since the difference in density between the phases goes to zero as the critical point 

is approached, the width of the coexistence curve 

A,'= (2.1) 
2/>c 

is called the order parameter of the gas-liquid phase transition. Setting t = (T — Tc)/Tc, 

the width of the coexistence curve in many fluids is measured to behave approximately 

as [1] Ap* oc M 1 / 3 . More generally, one can write 

Ap* = B0\tf (2.2) 

The exponent /3 is found experimentally to be the same for all fluids close to the critical 

point. It is thus a universal quantity. 

15 
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Similarly, other thermodynamic quantities in fluids near their critical points are ob­

served to obey universal power laws, for example: 

• the specific heat above (+) and below (—) the critical point 

CV(T) = A±\t\-a± (2.3) 

• the compressibility above (+) and below (—) the critical point 

*£CO = r J l * r * (2.4) 

• the chemical potential along the critical isotherm 

\n(p,Tc) - pc)\ 
Pc 

• the correlation length 

* = (2.6) 

A satisfactory theory of critical phenomena is expected to explain why the exponents 

a, /3,7, 6 and v are universal, and to produce numerical values for them which agree with 

experiment. 

2.1.2 Van der Waals Equation of State 

Many attempts have been made in the past to find an analytical formula describing the 

equation of state of a pure fluid. The earliest attempt at a quantitative description is 

due to van der Waals; his equation of state is 

(P + ap2)(- - 6) = RT (2.7) 

P~ Pc (2.5) 
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where R is the gas constant and a and b are system-dependent parameters. The critical 

point is determined by the simultaneous conditions 

The solution is pc = 1/36, Tc = Sa/27bR and Pc = a/2762. Introducing the reduced 

variables t = (T - Tc)/Tc, Ap = (p - pc)/pc and p = (P - Pc)/Pc, the van der Waals 

equation can be written: 

p(2 - Ap) = 8t(Ap + 1) + 3A/>3 (2.9) 

This equation is independent of the system-dependent parameters a and b and thus has 

the same functional form for all gases, in agreement with the principle of corresponding 

states [1] which postulates that for a group of similar fluids the equation of state can be 

written in the form 

p = *(*,Ap) (2.10) 

where $ is the same function for all substances in the group. 

For t < 0, there is a segment along the isotherms with (dp/dAp)x < 0 (drawn as 

a dotted line in figure 1.2b) which corresponds to a region of mechanically unstable 

thermodynamic states. This is clearly not a physical solution. Instead, in this region 

the system demixes spontaneously into two coexisting phases, the equilibrium densities 

of which can be found from the van der Waals equation using the Maxwell equal-area 

construction. This is based on the condition that in equilibrium the chemical potential, 

pressure and temperature of the two phases have to be the same, and corresponds to 

replacing the van der Waals equation in the two-phase region by a line of constant 

pressure such that the areas A + and A - (see figure 1.2b) are the same [34]. 

Eq. (2.9) can be used to extract values for the critical exponents and amplitudes in 
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exponent van der Waals Experimental RG value 
a 0 0.08 - 0.13 0.110 
P 1/2 0.3 - 0.4 0.325-0.327 

7 ± 1 1.2 - 1.3 1.237 - 1.241 
6 3 4 - 5 4.82 

Table 2.1: Values of some critical exponents, as obtained from the van der Waals equation 
of state, experiments on pure fluids and renormalization group theoretical calculations. 

the van der Waals model: Along the critical isotherm (t — 0) one obtains 

from which one deduces, by comparison with definition (2.5), that in the van der Waals 

model, 6 = 3 and D0 = 3/2. Similarly, one can calculate the isothermal compressibility 

Along the critical isochore (Ap = 0) in the one-phase region, we thus obtain Kj = l/6t, 

from which we deduce, by comparison with eq. (2.4), that in the van der Waals equation 

7+ = 1 and = 1/6. 

The extraction of the exponent 0 is much more difficult, since in the two-phase region, 

for any given temperature and pressure, there exist three solutions for the density, from 

which only two are physical. It can be shown however [34, 2] that 0 = 1/2 and B0 = 2. 

Experimentally, one finds very different values of the critical exponents in real fluids. 

Table 2.1 gives an overview of some experimental results in comparison with values 

obtained from the van der Waals equation of state. The discrepancy between the values 

is due to the fact that the van der Waals theory is a mean field theory, which means 

that it can be derived by assuming that each particle moves in the mean field of all 

the other particles. Mean field theories do not give the correct values for the critical 

p = 3A/>3(2 - Ap)-1 = (3/2)A/>3(l + Ap/2 ± ...) (2.11) 

(2.12) 
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exponents, because they ignore fluctuations and thus do not correctly take into account 

correlations which are important near the critical point. Thus, even though the van der 

Waals equation gives a qualitatively correct picture of the behaviour in the critical region, 

correlations have to be considered explicitly to obtain quantitatively correct results. 

2.1.3 Scaling 

Mean field theories assume that the free energy at the critical point can be expanded as a 

power series in integral powers of the order parameter Ap*. The fact that the exponents 

which are found experimentally deviate strongly from the mean-field values indicates 

that this is not a good assumption. Rather, the free energy in the critical region will 

contain a singular part fs(T, p) which contains the leading critical behaviour. The scaling 

assumption postulates that /„ is a generalized homogeneous function [2], i.e., that 

A / .(M) = / , ( A ° % A > ) (2.13) 

for any value of the number A. By differentiating the free energy / , with respect to its 

variables one obtains the various thermodynamic quantities, and one can thus express 

the critical exponents in terms of the exponents a< and aM. One obtains 

0=i^L, 6 = - ^ - , 7 ± = ̂ l I Q+ = 2 - i (2.14) 
at a — dp at at 

Since in this scaling form the free energy contains only two exponents, aM and a*, it 

follows that the critical exponents are not independent, but related by so-called scaling 

relations: 

7+ = 7" = 0(6 - 1) and a+ = a~ = 2-0(6+1) (2.15) 

Choosing A = i - 1 / 0 ' , one can then write singular part of the free energy as 

f3=t*-°f8(l,p/\AP\s) (2.16) 
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More scaling relations can be obtained from the conjecture that the long range corre­

lations of density fluctuations near Tc are responsible for all singular behaviour [3]. The 

correlation length £ is a measure of the range of the density fluctuations. The singularities 

in various physical quantities at Tc can thus be understood as a result of the divergence 

of £ at Tc. Empirical data show that £ obeys a power law close to Tc with an exponent 

v (see eq. (2.6)). As £ diverges at the critical point, close to Tc it becomes much larger 

than any other length scale in the system and therefore is the only relevant length scale 

as far as the singular behaviour of the free energy is concerned. 

The density-density correlation function is a quantity that is experimentally accessi­

ble and gives information about the fluctuations in the system. The static correlation 

function G(r) between the densities in infinitesimal volume elements spaced a distance r 

apart can be written as [2] 

G(r) =< p(r)p(0) > - < p >2 (2.17) 

where < p > is the average density of the sample and is assumed to be independent 

of position. Away from the critical point, the correlation function is found to fall off 

exponentially with r for large distances. The general behaviour is therefore given by 

G(r) oc exp(—r/£). At the critical point, the correlation length £ becomes infinite; as 

the correlation function experimentally is still measured to decay to zero as r —• oo, one 

expects an inverse power law in r for the correlation function close to the critical point: 

Gc(r) oc r-<d-a+*> for r - » o o (2.18) 

where d is the dimensionality of the system and rj is another critical exponent. 

This correlation function can be measured by quasielastic light scattering. The inten­

sity I(q) scattered at wave number q is, from the Wiener-Khinchin theorem, proportional 
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to the Fourier transform of the correlation function: 

I(q) oc J d3r exp(-iq • r)G(r) (2.19) 

On the other hand, from the fluctuation-dissipation theorem [34] it follows that the 

scattering intensity in the forward direction (q = 0) is proportional to the compressibility: 

1(0) oc J d3rG(r) = 4 (2.20) 

This indicates that the phenomena observed close to the critical point, 

• the increase in the size of the density fluctuations 

• the increase in the range of the density correlation function 

• the increase in the compressibility 

are all interrelated phenomena. As a consequence one expects the exponents 77 and v to 

be related to the thermodynamic exponents a, /?,7 and 6. Indeed from the fluctuation-

dissipation theorem it follows that 

7 = (2 - r,)v (2.21) 

Furthermore, a dimensional analysis of the free energy yields the "hyperscaling relation" 

dv = 2 - a. (2.22) 

We thus have a scaling theory which determines all exponents from a knowledge of two 

of them. While the scaling relations hold for all dimensions d, the hyperscaling relation 

fails for dimensions d > 4, where the classical, mean field exponents are valid. 
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Uij = < 

2.1.4 Lattice Gas, Ising Model and Series Expansions 

In order to calculate the critical exponents, one needs a microscopic model which contains 

the important features of the physical system under consideration while at the same time 

being simple enough to be treated theoretically. For pure fluids, such a model is the so-

called lattice gas model [5], which consists of a system of "occupied" and "unoccupied" 

sites on a lattice. In order to model the repulsive cores of the fluid molecules, we assume 

that each site can be occupied by at most one molecule. If two adjacent lattice sites are 

occupied, their interaction energy is —eo. The potential between two molecules i,j is 

thus: 

oo if i = j 

—to if i,j are nearest neighbours (2.23) 

0 otherwise 

It can be shown [5] that the lattice gas is mathematically equivalent to the Ising model, 

which is the simplest model for treating magnetic phase transitions and has been widely 

analysed in the literature. Again, the space is divided up into a lattice, and each lattice 

point i is occupied by a spin s< which can point "up" (s,- = +1) or "down" (s,- = —1). 

The Ising spin is thus a scalar. The simplest Hamiltonian for the interaction between 

Ising spins on a lattice with T V sites in an external magnetic field H can be written as 

HN({si}) = -H £ ^ - J £ Si • Sj. (2.24) 
<=i <«\j> 

When the strength of the interaction J > 0, this describes a ferromagnet. < i,j > 

indicates summation between nearest neighbours. In order to extract thermodynamic 

quantities from this microscopic model, one has to calculate the partition function 

ZN = T r i i = ± 1 exp(-HN/kBT) (2.25) 
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from which the total free energy (i.e., the sum of the singular part and the background 

term) can be obtained in the thermodynamic limit: 

F = -kBT lim \nZN (2.26) 
N—*oo 

Analytic solutions exist for the one-dimensional Ising model and for the two-dimensional 

Ising model in zero field, but the three-dimensional model can only be solved approxi­

mately. 

One approximate method, called high-temperature expansion, consists in expanding 

the partition function in powers of the reduced coupling strength J/kBT [46]. In the limit 

of high temperatures, J/kBT is small, and the exponential in eq. (2.25) can be approx­

imated by a power series in J/kBT. The various thermodynamic quantities correspond 

to the derivatives of the free energy and are thus also represented by a power series in 

J/kBT. From the ratios of successive coefficients in these power series expansions the 

critical exponents can be obtained. Through tedious and time-consuming calculations, 

the values of the exponents are found to be [7, 47]: 

a = 0.105(10), /? = 0.328(8), 7 = 1.239(2), v = 0.632(2) 

2.1.5 Renormalization Group 

The idea giving the deepest insight into the physics of critical phenomena is the appli­

cation of the renormalization group (RG) transformation to systems close to the critical 

point [48, 49]. The RG is capable of explaining scaling, universality and where the critical 

power laws come from. 

The effective Hamiltonian H = H/kBT is a function of a set of parameters {if, h,...}, 

with K = J/kBT, h = H/kBT, etc. The set of all Hamiltonians H(K,h,...) forms a 

space of Hamiltonians in which every Hamiltonian H(K, ft,...) is represented by a point. 
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The dimensionality of this space is, in general, infinite. The renormalization group is a 

set of transformations on the set of parameters {K, h,...} of the system's Hamiltonian. 

In practical terms, the RG transformation consists in partially carrying out the trace 

in the partition function, thus summing over selected spins while leaving others unaf­

fected. By carrying out this partial sum, one decimates the number of spins in the 

trace, while replacing the parameters {K,h,...} in the Hamiltonian by new, effective, 

"renormalized" parameters {K',h',...}. Thus the RG procedure can be written formally 

as 

H'(K\h',...) = K(H(K,h,...)) (2.27) 

A fixed point {K*>h*,...} of the renormalization group satisfies the equation 

{K*,h\...} = K{K\h*,...} (2.28) 

This fixed point can be shown to coincide with a critical point: if we rescale the whole 

lattice by a factor b, i.e., substitute each "block" of bd lattice sites (b > 1) by a single 

new renormalized spin, then in the new lattice the correlation length £' has the length 

£' = £/b. The RG transformation thus has the effect of reducing the correlation length, 

which is equivalent to driving the system away from criticality. As £ is a function of the 

parameters {K, h,...}, the flow of the correlation length under the RG transformation 

can be written as £(K,h,...) —• £(K',h',...) = ((K,h,...)/b. At the fixed point of the 

transformation this implies that ((K*,h*,...) = £{K*, h*, ...)/&, which, since b > 1, has 

the solutions £* = oo (critical point) or £* = 0 (trivial fixed point). The divergence of 

the correlation length was recognized earlier as the crucial feature of a critical point, and 

we conclude that the fixed point of the RG transformation is a critical point. 

How is all of this related to "real" systems? Figure 2.1 illustrates the consequences of 

an RG transformation on the Hamiltonian of a real system. In the space spanned by the 

parameters of the system, the Hamiltonian corresponding to the neighbourhood of the 
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Figure 2.1: Schematic illustration of the motion of the Hamiltonian of a real physical 
system under the influence of the RG transformation, in parameter space. 
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"physical critical point" of, say, Xenon, is expressable as a function of the parameters 

t and fi as 7i°(*,/z). At the critical point (t = 0,/x = 0), we have f = oo; however, 

TQ = 7t°(0,0) is in general not a fixed point. After an RG transformation, we obtain 

a renormalized set of Hamiltonians Ti'(t', fi') into which is embedded the renormalized 

critical Hamiltonian Ti'e = Tl(Ti%). Thus, under repeated RG transformations, a line of 

critical points is generated. The Hamiltonian wandering along this line may eventually 

end up at a fixed point Ti*, at which the RG does not cause any further motion. That 

means that the initial Hamiltonian Ti? lies on the stable critical manifold of the fixed 

point Ti*. All systems lying on the critical manifold of the same fixed point will display 

identical critical behaviour because they flow to the same point under RG transforma­

tions. This explains the concept of universality classes. If the initial Hamiltonian is 

perturbed in such a way that it lies in a manifold flowing into a different fixed point, 

then this perturbation is relevant. For our example of the critical point of a fluid, this is 

true for the parameters t and fi. They are called relevant scaling fields (i.e., in order for 

the system to be at the critical point, they have to be zero), whereas other parameters 

of the system (like the shape of the molecules or short-range interactions between them) 

are irrelevant. 

Close to the critical point, the RG transformation, which in general is nonlinear, can 

be linearized. As a consequence of the semi-group property of the RG, the eigenvalues of 

the linearized transformation can be expressed as Ai = bXl, A 2 = b*2,.... Small deviations 

from the critical point can then be written as linear combinations of the eigenvectors be­

longing to these eigenvalues. If A,- > 0, then A,- > 1 for b > 1, and successive RG 

transformations carry the system away from criticality; the conjugate scaling fields are 

then called relevant. If A,- < 0, then A,- < 1, and successive RG transformations eventu­

ally make these terms imperceptibly small; the conjugate scaling fields are irrelevant. 

The fixed point is thus insensitive to irrelevant variables, but depends strongly on the 
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relevant variables. In the vicinity of the fixed point, where the RG transformation can 

be linearized, the linear scaling fields behave like 

g'i=giAi = bXigi (2.29) 

under the RG transformation. Since each RG iteration changes the length scale of the 

system by a factor of 6, the free energy per unit volume transforms as 

f[H'] = bdf[H\. (2.30) 

Expressed in the set of scaling fields t, p, gi,the flow equation for the free energy then 

takes the asymptotic form 

/(*, a«. ft, •••) = **i*> - . **au.-.) = <2"a/(i, M/^.W** .-•) (2-31) 

choosing 6Al = 1/t and setting Ax = d/(2 — a), A2 = 8fid/(2 — a) and A,- = fad/(2 — a), 

where fa is a so-called correction to scaling exponent. Bearing in mind that Ap oc t13, 

this equation is seen to be identical to eq. (2.16). The scaling form of the free energy 

thus follows in a natural way from the RG transformation. 

2.1.6 Implementation of the Renormalization Group 

In order to calculate numerical values for the exponents, the RG has to be implemented 

explicitly, starting from a microscopic model of the system under consideration. This 

can be accomplished either in real space [50] or in momentum space [48, 49]. Once 

the RG transformation has been constructed, fixed points can be found and tested for 

stability. For Ising models of dimensionality d < 4, the classical (mean field) fixed point 

is found to be unstable, and the system flows instead into the so-called Ising fixed point 

under RG transformations. The critical exponents are obtained from the eigenvalues 
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of the linearized RG transformation around that fixed point (see eq. (2.31)). For the 

three-dimensional Ising model one obtains [51, 52]: 

a = 0.116, 0 = 0.325, 7 = 1.238, v = 0.628. 

2.1.7 Monte Carlo "Experiments" 

One way to check the theoretical results and to develop a quantitative understanding of 

the local microscopic correlations in a system (which are not accessible to experiment) 

is to carry out computer simulations on a lattice, producing various microstates of the 

system and summing over them with their respective thermodynamic weights. These 

"Monte Carlo Experiments" give some insight into the thermodynamic states that a 

system goes through under thermodynamic equilibrium conditions. In particular, the 

evolution of fluctuations can be followed explicitly. Monte Carlo simulations also give 

values of the critical exponents and critical amplitudes. However, due to limited computer 

power and time, the "thermodynamic limit" N —• oo is not directly accessible but has 

to be obtained by extrapolation of data obtained for finite (and actually quite small) 

N. Since the correlation length £ —• oo as the critical point is approached, the size of 

the lattice used in the simulation limits the degree to which the critical point can be 

approached. 

This problem can be avoided by combining Monte Carlo (MC) simulations with RG 

analysis of the critical properties [53, 10]. The MC simulation on a system at its critical 

point produces a sequence of microscopic configurations, and the RG is applied directly 

to these individual configurations, yielding.a sequence of configurations for the "blocks". 

As the original Hamilitonian is critical, the renormalized Hamiltonian flows towards the 

fixed point. This model yields accurate values for the exponents [54]: 

a = 0.113, 0 - 0.324, 7 = 1.238, v = 0.629. 
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2.2 Subtleties and Applications 

In this section we look at some consequences of the theory developed above, and their 

applications to real fluid systems. 

2.2.1 Corrections to Scaling 

The terms in the free energy (see eq. (2.31)) containing the scaling fields </,- deserve some 

consideration, because they are of importance in experimental situations where data are 

taken not only in the critical region, but also further away from the critical point. If the 

exponent fa < 0, then </, is an irrelevant variable, and the free energy close to Tc can be 

expanded in powers of this leads to the so-called corrections to scaling [55]. The 

exponents fa can be calculated from the RG equations. In Ising-like systems, the most 

important correction exponent A is due to the scaling field u in the Landau-Ginzburg-

Wilson expansion [4] and is irrelevant for dimensions d < 4. It has been calculated to be 

A w 0.5 [6, 7, 8, 56]. In addition to these singular corrections to the asymptotic scaling 

form, there are also analytic corrections due to the fact that at appreciable distances 

from the critical point, the linearization of the RG transformation is no longer valid and 

terms nonlinear in the scaling fields have to be included. This leads to added terms of 

the form i,i 2 , . . . . Since A is found to be so close to 0.5 for the three-dimensional Ising 

model, these terms can be assumed to have exponents of 2A,4A etc. [11]. 

Taking these corrections to scaling into account, the order parameter then can be 

written 

A / = BQt\l + BitA + B2t2A + ...) (2.32) 

Other thermodynamic quantities can be expanded in a similar way into power series 

in r A . 

For large reduced temperatures, the correction to scaling expansion requires too many 
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correction terms and therefore too many parameters to be useful. Here, an equation of 

state incorporating the crossover to classical mean field behaviour can be introduced [57]. 
In the experiments of this thesis, corrections to scaling play a role in all the pure 

fluids considered and the exponent A can be determined with considerable accuracy. 

2.2.2 Universal Amplitude Ratios 

From the free energy in eq. (2.16) follows an equation of state [58, 59] 

Ap* = (p-pc)/pc = Ap\Ap\s-1h(x), with x = i/\Ap\1/0 (2.33) 

where h is a nonuniversal function. By rescaling the function h and the variable x by 

two (nonuniversal) constants ho and xo, this equation of state can be made universal; 

i.e., the rescaled function h(x) = h(x/x0)/h0 is the same for all systems in a given 

universality class. Thus, from the knowledge of the two system-dependent scale factors 

ho and x0 all critical amplitudes can be calculated. This leads to universal relations 

between the critical amplitudes [12], analogous to the scaling laws for the exponents. For 

example [12], B0 = Xq13, D0 = hQ and Tq = Xoh'1 nm*—O0[x'y/h(x)}. Using the scaling 

relation 7 = /3(6 — 1), it follows that 

h\ = T+DqB*-1 = Jim [xy~h(x)] (2.34) 
X—+00 

is independent of ho and xq and is thus universal. Similarly, 

i ? r = r+/ro (2.35) 

can be shown to be universal [12]. Rx and Rr have been calculated by high-temperature 

series expansion and by implementation of the renormalization group (e-expansion [4]) 
and have been found to have values Rr « 4.8 — 5.07 and Rx « 1.6 — 1.75 [12]. Similarly, 

certain ratios of the correction to scaling amplitudes are expected to be universal [60, 61]. 
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We have measured the quantities i?x and Rr in the polar fluid C H F 3 . Our experiments 

give the most accurate experimental values to date for these amplitude ratios. The results 

are discussed in Chapter 5. 

2.2.3 Long Range Forces 

If there are long-range forces present between the molecules of the fluid, for example 

dipolar forces varying as 1/r3 between molecules with permanent electric dipole moments, 

will they affect the universality class? In ferromagnets, dipolar interactions can be shown 

to be relevant and thus change the universality class of the system [62]. In fluids, however, 

the dipolar interaction does not couple to the order parameter, and therefore, when 

calculating the partition function in eq. (2.25), the trace over the orientations of the 

dipoles can be performed independently of the configurational trace [63]. As the angle 

integral over dipolar interactions is zero, the lowest contribution is proportional to 1/r6 

and is irrelevant to the Ising fixed point [64]. The dipolar coupling therefore does not 

change the universality class of the fluid, and we expect polar fluids to exhibit the same 

critical exponents and amplitude ratios as nonpolar ones. This hypothesis is tested in 

this thesis by comparing results of experiments on CHF 3, a strongly polar fluid, with 

those on CC1F3, a weakly polar fluid, and Xe, a nonpolar fluid. These experiments are 

described in Chapters 5 and 7. 

2.2.4 Asymmetric Lattice Gas and Deviation from Rectilinear Diameter 

In section 2.1.4 we found that the lattice gas model is useful because it maps onto the 

Ising model, and because it correctly describes many features of real fluid systems. The 

lattice gas has the property that the sum of the liquid and vapour densities is constant [5], 

which closely resembles the "law of rectilinear diameter" [24], found experimentally to 
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be quite well obeyed for fluids. The lattice gas model is artificial, however, in assuming 

symmetrical behaviour of occupied lattice sites (particles) and empty ones (holes). 

Some models have been invented that circumvent this shortcoming [65, 66] by treating 

the fluid particles as interpenetrable spheres rather than point particles on a lattice. In 

these models, the law of rectilinear diameter is no longer obeyed. Rather, close to the 

critical point, the diameter acquires the leading temperature dependence 

Pd = Pi±±L = i + A l _ a t i - + ... (2.36) 
lPc 

The exponent a is identical to the specific-heat exponent. An alternate way of obtain­

ing the same result [67] is by extending the scaled equation of state, valid in the close 

proximity of the critical point, by a parametric representation, thereby introducing cor­

rections to scaling. Even though the law of rectilinear diameter is violated, the scaling 

relations between the exponents can be shown to be still valid in these models [68], and 

the universality class of the system is still the same as that of the Ising model [69]. 

Recently, a microscopic theory [26] has interpreted this deviation of the diameter from 

a straight line as resulting from many-body interactions between the fluid molecules. The 

strength and direction of the deviation from rectilinear diameter thus give information 

about the importance of many-body interactions. 

We have carried out experiments to measure the critical behaviour of the coexistence 

curve diameter in CHF 3, CC1F3 and Xe. Both CHF 3 and CC1F3 exhibit a diameter 

singularity close to the critical point, in accordance with the microscopic theory. This 

singularity is absent in Xe, indicating that interactions not included in the microscopic 

theory play a role in this system. 
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2.3 Dynamic Critical Phenomena: Diffusivities 

By measuring the spectrum of light scattered from a fluid sample close to the critical 

point, one can obtain information about the order parameter fluctuations and their decay 

times. The two relevant hydrodynamic modes in a fluid correspond to two types of decay 

processes and give rise to two types of lines in the spectrum of the scattered radiation: The 

line due to the thermal fluctuations is centered at the incident frequency, and its width is 

proportional to the the diffusivity D\ mechanical fluctuations, or equivalently phonons, 

produce lines shifted from the incident frequency by an amount ±Aw, proportional to 

the sound velocity in the medium [70]. 

To obtain information about the dynamics of the system, one wants to measure 

time-dependent correlation functions. The quantity of interest is the order-parameter 

correlation function, obtained from measurement of the autocorrelation function 

< £n*(r,r)6n(r,0) > of refractive index fluctuations at times T and 0 in an infinitesimal 

volume of fluid centered at position r. Equivalently, one can investigate its Fourier 

transform < 6n*(q, r)6n(q, 0) >. By assuming a linear relation between £n(q, T) and the 

scattered electric field Es(q, T), one can relate the order parameter correlation function 

to the electric field correlation function 

g{1) =< £*(q, r )£ (q , 0) > / < E*E > . (2.37) 

In practice, the electric field itself cannot be detected, but only its intensity. Thus, 

the simplest correlation function that can be determined experimentally is the intensity 

correlation function 

0(2>=</(q,T)/(q,O)>/</>2, (2.38) 

where < / >=< E*E >. If the scattered field is Gaussian distributed (which is normally 

the case when the number of scattering centers is high, i.e., when the correlation length 
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is much smaller than the linear dimension of the scattering volume), it can be shown 

that [71] 

5(2)(q,T) = l-fT|^1)(q,T)|2, (2.39) 

where T is a factor of order unity depending on the scattering geometry. 

The order parameter correlation function, to a good approximation, decays exponen­

tially [35]: 

MqTF " </(q)> " eXp(-r(q)r>' (2-4°) 
with T(q) = D(q)q2. Here, D(q) is the wavenumber dependent diffusivity. The half-

width T(q) measured in the autocorrelation measurements is identical to the linewidth of 

the Rayleigh line, which is the central line in the spectrum of the scattered radiation [70]. 

In the hydrodynamic limit C 1, when the characteristic length of the order pa­

rameter fluctuations is much smaller than the wavelength of light, the diffusivity can be 

written as the ratio of a generalized conductivity £ and a generalized susceptibility x as 

limiZ>(q) = Ijx. (2.41) 

X diverges strongly at the critical point, with an exponent 7 « 1.24, and £ is also expected 

to exhibit a singular behaviour close to Tc. The main contribution to the anomaly in £ 

comes from couplings between the hydrodynamic modes [72, 73]. In the framework of 

the mode-coupling theories, the conductivity can be expressed in terms of the generalized 

susceptibility x and the shear viscosity fj as [33] 

£fj = RkBTXe-d- (2.42) 

Similar results have been obtained by renormalization group calculations [74]. Using this 

the singular part of the diffusivity can be written as [75]: 

D°(q) = D(q) -D= n ( r f ) , (2.43) 
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where D is the nonsingular background contribution to the diffusivity. Experimentally, 

D can be obtained by extrapolating diffusivity data taken far from critical into the 

critical region [76]. It can be written as D = ô/x(?)> where Iq is the background 

contribution to the conductivity. J? is a universal constant and is expected to have a value 

of R = 1/67T (from mode coupling calculations), or R = l/5w (from renormalization group 

calculations). The shear viscosity fj consists of a background term rj° and a singular term 

T)a: fj = rf -f 77*. Close to Tc, the dynamic renormalization group predicts 77s to diverge as 

( Z n [33, 75], whereas in mode-coupling theory the viscosity, to a first approximation, can 

be written as 77 = 77°[1 + (8/157r2)ln(QO]) with Q a system-dependent amplitude [33]. 

The two predictions agree if one considers fj to obey a power law 

fl = v°{Qt)*- (2-44) 

The viscosity exponent zv = 8/157T2 = 0.054 [77] is related to the static exponent 77 

introduced in eq. (2.18) by a scaling law [33]. 

The universal dynamic scaling function ft has the form [78] 

ft(x) = ft*(x)[l + (x/2) 2]^ / 2 (2.45) 

with the Kawasaki function [73] 

CtK{x) = (3/4x2)[l + x 2 + (x3 - 1/x) arctan x] (2.46) 

According to eq. (2.43), the linewidth of the decay curve can be written as a power 

law in the scattering vector q: 

T(q) = q*n(qO. (2.47) 

The dynamic scaling function satisfies the boundary conditions: 

Jim ft(x) = Coo*" ( 1 +* , , ) and limft(x) = C 0 (2.48) 
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where Co and Coo are constants. The dynamic scaling exponent z and the viscosity 

exponent zv should obey the scaling relation 

z = 3 + z„. (2.49) 

This can be used to obtain an estimate of the viscosity exponent from autocorrelation 

measurements, even if the viscosity itself is not being measured. 

In Chapter 6 of this thesis, experiments to measure the diffusivity in the binary liquid 

system nicotine + water are described. Two different experimental techniques were used, 

and their results are compared. From the light-scattering data, the exponent zn can be 

determined. 



Chapter 3 

General Experimental Considerations: Temperature Control and Optics 

This chapter describes the general experimental techniques used. In section 3.1 the 

temperature control system is discussed. In section 3.2 the optical methods are introduced 

and the physical quantities of interest are derived. 

3.1 Temperature Control 

In order to obtain data on the asymptotic power laws close to the critical point, mea­

surements have to be extended into the scaling region which, for pure fluids, is limited 

to reduced temperatures t < 10~4. Approaching the critical point so closely requires 

very precise temperature control: For the fluids investigated in this thesis, which have 

Tc w 300K, reduced temperatures of the order of t « 10"5 corresponds to stabilizing the 

system at 3mK from the critical point. Thus we needed a temperature control system 

that controlled the cell temperature to within at least lmK over several hours. 

This was accomplished by placing the sample cell in the center of a two-stage thermo­

stat (see Figure 3.1). The inner heating stage consisted of a copper or aluminium block 

wrapped with heating wire or heating foil. A thermistor embedded in this block sensed 

its temperature and formed one arm of a Wheatstone bridge. The remaining arms were 

formed by a decade resistance box and, in series with standard resistors, a potentiometer 

which could be turned by switching on a toy motor. The error signal of the Wheatstone 

bridge was fed into an HP nullmeter (model #419A DC) which amplified it; the output 

of the HP served as the input of a Kepco operational power supply (model OPS 7-2). 

37 
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Figure 3.1: Thermal control system for conducting optical experiments on fluids close to 
the critical point. 
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The output of the OPS drives a heater on the metal block encasing the sample cell. The 

OPS was supplemented by an "amplification box" which enabled us to vary the time 

response and the amplification of the heater circuit. 

The switching of the toy motor driving the Wheatstone bridge was controlled by a 

Commodore PET computer: A "Sweeping Program" written in BASIC contained infor­

mation on the number of sweeps, the sweep times (i.e., the "on" times of the motor) and 

the waiting times between individual sweeps. It also contained commands to light LEDs 

which could be used as time markers on the film used to record the data. The output of 

the PET was fed into an interface box, which contained a solid-state switch for turning 

the motor on and off. Details of the computer-motor interface are found in Ref. [79]. 

The innermost heating stage was surrounded by a layer of styrofoam 2.5 cm thick, fol­

lowed by an outer heating stage which consisted of a cylindrical shell of copper to which 

3/8" copper tubing was soldered. For the CHF 3, CC1F3 and He-Xe-experiments water 

from a temperature regulated bath (FORMA model # 2095) was circulated through the 

copper tubing and kept the cylinder at a chosen temperature, always between 0.5° and 

1.0° below the cell temperature. In the nicotine + water experiment the critical tem­

perature was about 61°C, where water evaporates at a fairly high rate, so the outermost 

heating stage was heated electrically. 

In the nicotine + water and the He-Xe setups, a passive heat shield, consisting of a 

cylindrical shell of 1/16" thickness copper sheet, was inserted into the insulation between 

the inner and outer shells. Windows in the metal thermal stages and the styrofoam 

allowed an expanded laser beam to be fed through the cell. 
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Figure 3.2: Refractive index n as a function of height z in a cell of critical overall density, 
(a) Two-phase region, (b) one-phase region close to Tc and (c) one-phase region far from 
Te. 

3.2 Optics 

In this section we discuss the optical setups for the experiments and derive formulas for 

the quantities that can be obtained from the experiments. 

Figure 3.2 shows the refractive index profiles in a cell of critical overall density as the 

temperature is changed. Far below the critical point (T « Tc), two phases of different 

refractive index coexist in the cell, separated by a sharp transition line called meniscus 

(see figure 3.2a). Far inside the one-phase region, the refractive index is homogeneous 

over the whole cell, as shown in figure 3.2c. Close to the critical point, in a pure fluid the 

compressibility (dp/dP)T diverges, leading to a strongly curved refractive index profile 

inside the cell (figure 3.2b). In binary liquids, the corresponding osmotic susceptibil­

ity (dxjdp)T diverges, but in a much smaller temperature region close to the critical 

point. Due to the very similar densities of the constituents, the divergence of the osmotic 

susceptibility is not observable in the nicotine + water experiment. 
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The refractive index profile contains a wealth of information about various thermody­

namic properties of the system. In order to utilize it, though, in pure fluids the refractive 

index has to be related to the fluid's density, and in binary liquids to the composition. 

An experimental method which provides the link between the refractive index and the 

density in pure fluids, is described in section 3.2.1. An estimate of the concentration 

dependence of the refractive index in nicotine + water is presented in chapter 6. 

The interference methods used in this thesis are geared to mapping out the refrac­

tive index profile as a function of temperature. Sections 3.2.2 and 3.2.3 describe these 

methods and outline the data analysis procedures. Limitations of the methods due to 

gravity effects are discussed briefly in section 3.2.4. Finally, Section 3.2.5 describes how 

diffusivities can be measured by light scattering. 

3.2.1 Prism Cell Experiments 

The prism cell experiment can be used to measure the density and the refractive index of 

the fluid simultaneously. Thus it gives information on the Lorentz-Lorenz function C(p) 

which characterizes the density dependence of the refractive index n: 

The sample cell used for these experiments [80] had an aluminium body with a prism-

shaped head. Two sapphire windows mounted on the prism faces allowed a laser beam 

to be shone through the cell's head. By measuring the deflection angle of this laser beam 

from the incident direction one can deduce the refractive index of the medium inside the 

cell. This calculation is carried out in Appendix A. 

Figure 3.3 shows a schematic of the optical setup: The expanded beam from a He-Ne 

laser passes through the prism and hits a micrometer driven mirror (Lansing Research 

Corp. model 10.253) which reflects it into an autocollimating telescope (Davison model 
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Figure 3.3: Optical setup of the prism cell experiment. 

D275). By adjusting the angle of the mirror, the deflection angle due to refraction by the 

prism and thus the refractive index can be measured. A reference beam passing outside 

the cell is used to monitor the stability of the alignment. 

In order to obtain precise measurements, a series of calibrations had to be carried 

out. Appendix A describes these calibrations and shows the effects of the various errors 

on the results. 

The measurements of the Lorentz-Lorenz function proceeded as follows: The cell, 

containing a measured mass of fluid, was cooled into the two-phase region where the 

fluid phase separates into liquid and vapour phases, in each of which the refractive index 

is temperature-dependent. The temperature of the cell was then, raised until the system 

passed from the two-phase region into the one-phase region where the refractive index 

becomes essentially independent of temperature. The refractive index was measured just 

above the coexistence curve in the one-phase region. The mass of the fluid in the cell 
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and thus its density was determined by weighing the cell on a chemical balance. By 

repeating this procedure for different overall densities, the Lorentz-Lorenz coefficient £ 

was measured and thus the relationship between density and refractive index on the 

coexistence curve obtained. Details of the calibrations are given in Appendix A. 

For the measurement of the coexistence curve and its diameter, the prism cell was 

filled with the fluid at its critical density. In the two-phase region, the refractivities of 

both liquid and vapour phases were measured as a function of temperature and converted 

to densities using the Lorentz-Lorenz relation. After changing the cell temperature, the 

system was allowed to equilibrate for at least two hours. This experiment thus yielded 

pi(T) and pv{T) along the coexistence curve, from which the order parameter and the 

diameter could be calculated. 

3.2.2 Focal Plane Interference Technique 

Figure 3.4 shows the optical setup of the focal plane experiments. The sample was 

contained in a flat cell of length L with parallel windows, which was placed in a ther­

mostatic block. A laser beam from a He-Ne laser, expanded by a pinhole filter and then 

collimated into a parallel beam, traversed the sample cell. The light was then collected 

by a focussing lens which was positioned as closely behind the cell as physically feasable 

to collect as much of the refracted radiation as possible. In the focal plane of this lens, a 

Fraunhofer interference pattern was formed which contains information on the refractive 

index profile in the cell. A slit camera with continuous film transport was used to record 

the interference pattern as a function of time on film. 

We now derive the formulae necessary for the interpretation of the data. The Fraun­

hofer diffraction pattern from a flat cell far from the critical point (see Fig. 3.2a and 3.2c) 

is just a point. As the cell temperature is changed from a temperature T, in the two-phase 

region to a temperature Tf in the one-phase region, the refractive index profile inside the 
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Figure 3.4: Optics of the focal plane interference technique. 

cell evolves from the profile given in figure 3.2a to the one in 3.2c. 

The construction of the interference pattern due to an intermediate density profile is 

shown in figure 3.5. A ray travelling in the y-direction through a medium with varying 

refractive index n(z) is being bent by an angle 0 given by 

f ' ~ T (3'2> 
dy n dz 

For a thin cell, where the total bending is small, eq. 3.2 can be integrated to give the 

total deflection angle 6{ inside the cell 

n dz 
(3.3) 

where L is the cell thickness. Upon emerging from the cell, the ray is refracted according 

to Snell's law: n sin 0,- = na,-r sin 0, where 0 is the angle at which the ray leaves the cell. 

One thus obtains 

0 = 
L dn 

«„«> dz 
(3.4) 
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Figure 3.5: Formation of the Fraunhofer diffraction pattern in the focal plane. 

for the total bending angle of a ray passing through a cell of length L at a height z where 

the refractive index profile exhibits a slope (dn/dz). 

Two rays entering the cell at heights z\ and z2 where the gradient of the refractive 

index profile at z\ and z2 is the same are bent by the same angle 6 and thus are mapped 

onto the same spot in the focal plane. They will interfere constructively if the total 

optical path difference between them is an integral multiple of the laser wavelength. The 

multitude of rays passing through the cell in the height interval [̂ mm,zmax] around the 

meniscus thus gives rise to a pattern of light and dark interference spots in the focal plane. 

This pattern, which changes with time after a change of the cell temperature, is recorded 

on film. This experimental method was used to measure the order parameter and the 

diffusivity of a binary liquid mixture. In a binary liquid of two constituents A and B, the 

order parameter Ax* is proportional to the difference in concentration of one species, say 

A, in the two coexisting phases I and II. Thus Ax* oc xf — xfj. The relation between the 
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Figure 3.6: Schematic of the nicotine + water phase diagram. Temperature is plotted as 
a function of refractive index which is proportional to the concentration of nicotine [81]. 
The order parameter is proportional to the refractive index discontinuity in the two-phase 
region. 

refractive index An and the order parameter Ax* for the binary liquid nicotine + water 

can be approximated by assuming a linear relationship between An and Ax* [81]. The 

interferometric data can then be used to measure the order parameter and the diffusivity. 

Order Parameter 

The refractive index discontinuity ni — n2, of the initial refractivity profile at a tem­

perature T = Ti in the one-phase region can be measured by quenching the system 

into the one-phase region and counting the total number of interference minima Nm(Ti). 

Figure 3.6 illustrates the various quantities in an inverted phase diagram of the type 

encountered in the nicotine + water system. The difference ni — n2 is related to the 
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number of minima Nm(Ti) by 

m - n 2 = An(TJ) = (Nm(Ti) - 1/2)X/L (3.5) 

where A is the laser wavelength and L the thickness of the cell. The temperature de­

pendence of the order parameter was obtained by repeated quenches from the two-phase 

region into the one-phase region for different initial temperature T,-. A set of experi­

ments then proceeded in the following way [82]: The sample cell was removed from the 

thermostat, mixed by shaking, and then replaced and heated to a temperature T/1^ in 

the two-phase region, where demixing into two liquid phases occurs. After an equili­

bration period of several hours, the cell was quenched into the one-phase region in one 

temperature step which was quick on the time scale of the diffusivity, but slow enough 

to avoid convection in the cell. The interference pattern due to the relaxation of the 

concentration profile was recorded on film in the focal plane. The number of interference 

minima was used to calculate An(T/1^). Subsequently, the cell was heated to a temper­

ature deeper inside the two-phase region, equilibrated, and the interference 

pattern was recorded as the cell was cooled into the one-phase region again. The number 

of interference minima gives An(7f }). The purpose of this experimental procedure is to 

obtain an equilibrium profile in the cell by increasing the composition discontinuity in 

each successive step. This question will be discussed in detail below (see section 6.3.2). 

Diffusivity 

After a temperature step taking the system from the two-phase to the one-phase region, 

an initial refractive index profile 

n(z) = 
n c - An/2 for z < 0 

(3.6) 
nc + An/2 for z > 0 
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will "relax" according to the diffusion equation 

An(z,r) = D^„(z,r) .. (3.7) 

Here, r is the time and z is the height in the cell, as measured from the meniscus, and D 

is assumed to be concentration independent. n c is the critical refractive index and, for a 

critically filled cell, equal to the refractive index in the one-phase region. The solution 

to eq. (3.7) is [83] 

„(z,T) = „c-̂ $(_iL=), (3.8) 
where 

<&(*) = 4= IXeM-P2)dp (3.9) 
V7T JO 

is the error function. Close to the meniscus, i.e., for small z, the error function can be 

approximated by $(r) « 2r/-v/7r, so that 

U M ~ n c = -UWr ( 3 ' 1 0 ) 

The maximum refraction angle 6max in the Fraunhofer pattern is due to rays refracted 

in the center of the cell where the slope of the density profile is highest. The time evolution 

of 6max after a quench from Ti in the two-phase region to Tf in the one-phase region is 

related to the diffusivity D(Tf) by 

= L[nc-n(z + 6z,r)} = { L / 2 ) A n / J ^ T y ; ( 3 n ) 

Thus, the diffusion constant D(Tf) can be determined from a measurement of the maxi­

mal refraction angle as a function of time. 

3.2.3 Image Plane Interference Technique 

The image plane technique uses a Mach-Zehnder interferometer which forms an inter­

ference pattern between an expanded laser beam passing through the sample confined 



Chapter 3. General Experimental Considerations: Temperature Control and Optics 49 

Beam 

Thermostat 

Figure 3.7: Schematic of the optical setup for image plane interference experiments. 

in a flat cell and a reference beam. Figure 3.7 shows a schematic of the experimental 

setup. A laser beam from a He-Ne laser enters a spatial filter which expands it into a 

collimated beam of about 1" diameter. It is subsequently split by a beam splitter into 

a "cell beam'' which passes through the sample, and a reference beam. A second beam 

splitter recombines the two beams, thus producing an interference pattern between them. 

A lens focusses this interference pattern onto the image plane, where it is recorded on 

film by a slit camera with continuous film transport. Each part of the cell maps directly 

onto a unique point in the image plane. Thus, by measuring the interference pattern, one 

obtains direct information about the refractive index as a function of height in the cell. 

The distance sq between the sample cell and the focussing lens determines the magnifi­

cation factor of the image of the cell: the magnification M is given by M = f/(s0 — /), 
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where / is the focal length of the lens. In order to resolve the interference pattern around 

the meniscus as well as possible, a rather large magnification was chosen. The length of 

the optical table and the power of the laser place a limit on M; in our experiments, we 

had M « 3 — 5. M is determined by measuring the height of the image of the cell in the 

image plane hi and dividing it by the original height of the cell h0: M = hi/h0. 

By mixing a plane wave (corresponding to the reference beam) with the wave which 

has interacted with and has thus been distorted by the refractive index profile in the 

cell, one obtains an interference pattern consisting of horizontal fringes. The change 

in refractive index An between two neighbouring fringes is An = X/L, where A is the 

wavelength of the laser light (in our case, 6328A), and L is the cell thickness. 

Far away from the critical point, the compressibility is small and thus the densities 

of each phase are almost height-independent. In the one-phase region, the whole cell is 

filled by the sample at (almost) uniform density (see Figure 3.2c), leading to a field of 

uniform intensity in the image plane. In the two-phase region, far from Tc, the density at 

any given temperature is uniform in both liquid and vapour phases (Figure 3.2a). Thus, 

the cell's image contains no interference fringes, but is only a field of uniform intensity. 

As the temperature is changed, the change in densities of the coexisting phases leads 

to a phase change between the cell beam and the reference beam. This appears as a 

periodic change in intensity in the image plane. Since the whole field corresponding to 

one phase is of uniform intensity, however, it is difficult to see whether the refractive index 

difference between the two phases is actually decreasing or increasing. The interpretation 

of the data can be greatly facilitated by slightly tilting the reference beam wave fronts 

with respect to the cell beam, thereby "misaligning" the beams with respect to each 

other (see Figure 3.8). Then even far from the critical point, one obtains interference 

fringes in the image plane, the spacing of these fringes depending on the tilt angle of the 

mirror. For our experiments, the tilt angle was between 0.01° and 0.02°, corresponding 
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Figure 3.8: Effect of a tilted reference beam on the interference pattern. 

to 2 - 4 fringes per cm of cell height. 

On passing through the cell, the plane wavefront of the incident beam is distorted into 

a shape which mirrors the density profile in the cell. The propagation speed v of a light 

ray through a medium of refractive index n is v = c/n, so that the rays passing through 

the bottom of the cell (where n is larger) are retarded relative to the rays passing higher 

in the cell (where n is smaller). An interference maximum between the reference and the 

cell beams occurs whenever there is a path difference of 2nN\ between them (where JV 

is an integer). 

In order to obtain the refractive index profile from the interference pattern, one has 

to deconvolve the interference pattern by subtracting the effect of the tilted reference 

beam, which distorts the image of the cell as indicated in Figure 3.8. The total path 
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around the interferometer, Ltot, can be written as Ltot = Lo + Ln(z = 0) where Lq is the 

path through air, L is the length of the cell and n(z = 0) is the refractive index at height 

z = 0, in the middle of the cell. A ray passing through the cell at height z interferes with 

the tilted reference beam with a phase <f>(z) given by 

Ln(z) + L0 + z tan a = \<j>(z)/2ir (3.12) 

Here, a is the tilt angle of the mirror, and A is the laser wavelength. Two rays passing 

at heights z and z' will therefore interfere with a phase 8(j> — <f>(z) — <j>(z'), when 

L(n(z) - n(z')) + (z- z') tan a = A S<f>/2n (3.13) 

These rays will form adjacent interference fringes in the image plane if 8<f) = 2TT, i.e., 

£An + Aztana = A (3.14) 

Thus, if a ray passing through the cell at height z\ interferes with the reference beam 

to give an interference maximum, then a ray passing at height z2 will also interfere 

to produce a maximum if the refractive index difference at the two heights z\ and z2 is 

n(z\) — n(z2) = [A — (z\ — z2) tan ct]/L. The height difference z\ — z2 = Az is related to the 

height difference Az as measured on film by Az = Az/M, where M is the magnification 

factor of the lens. The refractive index profile in the cell can thus be directly inferred 

from a measurement of the interference pattern as a function of height, provided the 

tilt angle a and the magnification factor M axe known, a can be obtained from the 

interference pattern of the cell far from T c, where any curvature of the refractive index 

profile is negligible. 

Order Parameter and Coexistence Curve Diameter 

The image plane interference technique can be used to measure the order parameter and 

the coexistence curve diameter of the fluid. As the temperature of the cell is lowered 
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below Tg, the fluid phase separates. As T is lowered further, the liquid density increases, 

whereas the vapour density decreases. The density discontinuity at the meniscus in the 

middle of the cell (i.e., the order parameter) becomes larger, which causes interference 

fringes to "disappear" into the image of the meniscus. The number of missing fringes is 

related through the Lorentz-Lorenz function to the density differences pi — pc and pc — pv 

of the liquid and vapour phases from their critical value. At each temperature, the order 

parameter is obtained from the sum of the number of fringes missing from each phase, 

while the diameter is obtained from the difference. 

Before each experimental run, the cell was cooled deep into the two-phase region. 

Then it was warmed up in small steps (« 0.1° far from Tc, and as small as 0.001° close to 

Tc) and the evolution of the interference pattern was recorded on film in the image plane. 

Between steps, the system's temperature was held constant for 1-2 hours to allow the 

cell to reach equilibrium. After the waiting period, the fringe pattern near the meniscus 

was found to be stationary, which lead us to believe that thermal equilibrium had been 

reached (at least locally). 

Compressibility 

To evaluate the isothermal compressibility kt, the slope of the density profile in the 

middle of the cell had to be measured. Due to critical slowing down, even for pure fluids 

the equilibrium slope takes hours to establish itself in the critical region. Therefore, when 

taking compressibility data, the sample was allowed to equilibrate for « 12 — 24 hours 

before a data point was taken. 

A difference in chemical potential Ap is related to the corresponding pressure differ­

ence AP and the corresponding height difference Az by the equation 

Ap = AP/p = -gMAz (3.15) 
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where p is the density in moles/cm3, Ai is the molar mass of the fluid, and g = 9.81 

m/s2. For T > T c, one can approximate p « pc. For T < Tc, in the two-phase region, 

corrections have to be taken into account. However, these corrections are small (of the 

order of < 8% for our experiments, see section 5.4), and are much smaller than the 

experimental scatter of the compressibility data in the two-phase region. 

The compressibility can thus be expressed as: 

Pc (dp Pc (Ap} (3.16) 
Pi \dpJT Pl9M \&zJt 

We approximate the slope of the density profile by the density difference corresponding 

to one interference fringe, divided by the vertical distance in the cell over which this 

difference occurs. Using the Lorentz-Lorenz relation (see eq. (3.1)), Ap can be expressed 

approximately as 
A n 6 n c A n ° (3.17) *P =  

Pc (n 2-l)(n c

2 + 2) 

where An 0 = X/L is the refractive index difference correponding to one fringe. From this 

relation, kj can be evaluated, because Az can be directly inferred from the measurements 

of the fringe spacing on film (after correcting for the magnification factor of the lens and 

the tilt of the reference beam). 

Chemical Potential Profile along the Critical Isotherm 

The reduced chemical potential 

Ap* = P(p) ~ Pc Do P~ Pc (3.18) 

is evaluated using eq. (3.15). Over the height of the image, the difference Ap = p — pc 

is very small, so that we can approximate: 

P~ Pc _ pcgM . 
•1**1 (3.19) 
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where 6z is the height in the cell as measured from the meniscus, and M. is the molar 

mass of the fluid. The critical amplitude Do is thus determined by 
-s 

Do = —— \Az\ P- Pc (3.20) 

Diffusivity 

The diffusivity D is obtained from the image plane interferometric data in a similar 

fashion as from the focal plane experiment. After a quench from the two-phase region 

into the one-phase region of the phase diagram, the initial refractive index discontinuity 

decays as described in eq. (3.8). Near the meniscus the decay can be approximated by 

eq. (3.10). Thus the time evolution of the fringe spacing close to the middle of the cell 

can be used to estimate the diffusivity: 

AnAz 
= n(z, T) - n(z + Az, r) = X/L (3.21) 2VTTDT 

Here, An is the initial refractive index discontinuity, Az is the fringe spacing in the middle 

of the cell, and T is the time. Calling N the number of interference fringes (corresponding 

to the initial discontinuity), one gets: 

Dr = (7VAz)2/47r. (3.22) 

3.2.4 Gravitational Rounding 

A possible source of error in all optical experiments is the effect of gravitational round­

ing [84, 22]. It limits the accuracy of data in the critical region and determines the 

minimum distance in temperature to which the critical point can be approached. 

To see how this effect comes about and how it influences the data, recall eq. (3.4) 

which describes the amount by which a ray traversing the cell is bent. According to this 

equation, a ray entering the cell at height z = H will emerge from the cell at the height 
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z = H — h, where h « LO. This ray will therefore probe a slab of fluid of height h; it will 

not only contain information on the refractive index at height H, but will average over 

the refractive indices between heights H — h and H. Gravitational effects are important 

when the change in refractive index over the height h becomes significant. The height 

averaging becomes larger as the density profile in the cell becomes more strongly curved. 

It is most noticeable close to the critical point, where the compressibility diverges and 

thus dn/dz —* oo at the meniscus. 

The gravitational rounding effect can be made small by choosing a very thin cell, so 

that L is small. This was the case in our interference measurements: The cell lengths in 

all experiments were < 2 mm, leading to negligible rounding effects even as close to the 

critical point as t « 5 x 10~6. Gravitational rounding thus does not play an appreciable 

role in the interference experiments described in this thesis. The situation is different in 

the case of the prism experiment, however [80]. Here, the optical path through the cell 

is of the order of « 0.5 cm, so that gravitational rounding comes into play for the fluids 

considered here at reduced temperatures of the order t < 10~4. Data taken closer to 

the critical point are strongly smeared and difficult to correct for gravitational rounding 

effects. 

3.2.5 Light Scattering Experiments 

Light scattering experiments were performed on the nicotine-water system in order to 

compare diffusivities obtained by the interference method to ones obtained in a more 

conventional way. For these experiments, the same optical cell was used as for the fringe 

method. 

Figure 3.9 shows a schematic of the optical setup. The light source was a 10 mW 

He-Ne laser whose intensity was for the most part further reduced to minimize optical 

heating. The beam was expanded and rendered uniphase by a spatial filter. Lens LI 
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He-Ne 

Laser 

Autocorrelator 

Figure 3.9: Optical setup for light scattering experiments. 

collimated the emerging beam, and L2 (with a long focal length « 400 mm) focussed the 

beam to a diameter of « 0.1 mm inside the scattering volume. Polarizers P l and P2 in 

front and behind the cell defined the polarization of the incident and scattered radiation. 

In our experiment, the polarization direction was chosen perpendicular to the plane of 

scattering. 

The photomultiplier tube was mounted on a turntable which could be rotated around 

the scattering cell. The scattered light entered the photomultiplier through an iris the 

diameter of which was variable from 0.5 mm to 6 mm. Far from Tc, where the scattered 

intensity is low for large scattering angles, the iris was opened up to 2 mm. Close to Tc, 

it was reduced to 0.5 mm. The photomultiplier tube contained a built-in adjustable lens 

which forms an image of the scattering volume on the pinhole filter inside the tube. To 

align the photomultiplier optics, and to assure that the fluid cell was properly positioned 

at the centre of the turntable, the cell was replaced by a hollow pipette (diameter w 1 
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mm) containing a strongly scattering substance (latex spheres). The spot illuminated by 

the laser beam in the pipette provided a bright target for alignment of the photomultiplier 

lens. Further checks on the correct alignment of the optics were carried out as in Ref. [85]. 

3.2.6 The Correlator 

Our correlator was a Malvern K7023 digital correlator. Its operation and the method of 

photocount autocorrelation have been discussed in detail in the literature [37, 71, 86], 

Here, only the features of relevance for the experiments in this thesis are presented. 

Prior to processing by the correlator, the photon signal was digitized: in each time 

interval Ta, the number of photons detected by the photomultipier was counted. At any 

instant, the probability (per unit time) of detecting a photon was proportional to the 

intensity. 

The photomultiplier, discriminator and amplifier assembly used was an EMI D307K, 

which produced pulses of height —1.2V and width 30ns, with a uniform rise and fall time, 

each pulse corresponding to a single photon. The method of integrating the total signal 

arriving between two sample time clock pulses had the advantage that no photocounts 

were lost due to dead time between sample times. 

The number of photons detected in the sample time Ta was processed by the autocor-

relator, which operated in the time domain and used a set of M parallel channels. The 

operation of the autocorrelator is shown schematically in Figure 3.10. The principle of 

operation of the correlator is, by taking N samples, to construct the sum 

J V 

Cm = J2n(Ti)n(Ti-m), (3.23) 
t'=l 

where T,+I — r; = Ta and m lies in the interval 1 < m < M. This is achieved in the 

following way: 

The signal accumulated during the time Ta is fed into the first channel, while the 
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Figure 3.10: Schematic diagram of the autocorrelator. 
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contents of the remaining M — 1 channels are shifted down by one position each, the last 

one being discarded. The signal in the first channel is multiplied with the contents of 

the other channels and stored, thus building up the autocorrelation function Cm. The 

frequency attained by the instrument is determined by the total sample length T = MTa, 

chosen to be 2 — 3 times the correlation time f, which is of the order of microseconds or 

less. In order to make the multiplications of the correlation function as fast as possible, 

the signal, before being stored in the shift register, is "clipped", i.e., it is compared to 

a preset threshold k; if n(0) > k, n*(0) is set to 1, otherwise njt(0) is set to zero. The 

shift register then contains a set of 0s and Is, and the multiplication operations can be 

replaced by simple "AND" gates, controlled by the bit in the appropriate shift register: 

If nfc(mT8) = 1 (with 1 < m < M), then n(0) is added to the storage position m, and if 

nk(mTa) = 0, nothing is added. It can be shown [71] that the "single-clipping" operation 

here described does not distort the time dependence of the intensity autocorrelation 

function. 

The Malvern K7023 autocorrelator has a store of M = 24, and the sample time Ta 

can be varied from 50 ns to 1 s. Three additional channels collect the total number of 

photon counts, the total number of clipped counts and the number of sample times N. 

The autocorrelator was interfaced to the UBC Amdahl 5850 mainframe via a Z-80 

microcomputer (built by the UBC electronics shop). Details of this interface are described 

in reference [87]. 



Chapter 4 

Experiments 

This chapter describes the experimental details of the apparatus and materials used in 

this thesis. The experimental setups and sample cells of the Freon experiments and the 

nicotine + water experiments are similar to those used in previous experiments [80, 82, 

87, 88, 89] and are therefore not discussed in detail here. Only information specific to 

the individual experiments is given (sections 4.1 and 4.2). The high-pressure cell for 

the He-Xe experiment was designed and built especially for this thesis and is therefore 

described in detail (see section 4.3). 

4.1 Freon Experiments 

The CHF 3 ("Freon 23") and the CC1F3 ("Freon 13") used in these experiments were 

obtained from Matheson Gas Products. The CHF 3 was rated to be 98% pure, and the 

CC1F3 was rated to be 99% pure. Prism cell experiments were performed on both CHF 3 

and CC1F3, using the technique and the equipment described in section 3.2.1. 

In order to get very accurate data close to the critical point, an image plane interfer­

ence experiment was carried out on CHF 3. The sample cell consisted of an aluminium 

body with two sapphire windows (diameter 1", thickness 1/4") spaced 1.86±0.01 mm 

apart [88]. Before filling, the cell was evacuated to minimize contamination of the sam­

ple. Subsequently the cell was filled with CHF 3 at the critical density. The deviation 

from critical filling can be estimated by observing the rise or fall of the meniscus between 

the liquid and vapour phases as the critical point is approached. Our cell was slightly 

61 
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overfilled, the deviation from critical density being less than 0.1%. The cell was placed 

into a two-stage thermostat which controlled the temperature to an accuracy of ±0.2 

mK. Its temperature was measured by an HP 2804A quartz thermometer, the probe of 

which was embedded in the innermost heating stage of the thermostat. 

The interference pattern is extremely sensitive to changes in ambient room temper­

ature, which change the optical path length of the reference arm of the interferometer, 

but not that of the temperature-controlled sample arm. In order to minimize this source 

of error, the whole interferometer was contained in a temperature-stabilized box which 

controlled temperature to better than 10 mK over a day and largely eliminated air tem­

perature fluctuations. Still, changes in humidity and barometric pressure lead to a scatter 

in the diameter data which is somewhat larger than that for the prism cell data. 

4.2 Nicotine 4- Water Experiment 

For this experiment, a flat spectrophotometer cell (Hellma QS 282) of inside thickness 2 

mm was filled with a critical mixture of nicotine and water, corresponding to about 40 

wt% nicotine [81], and fire-sealed. 

Nicotine is a clear liquid of similar appearance to water, but with a higher viscosity. 

It is very hygroscopic and reacts with air, thereby acquiring a brownish tinge. In an 

effort to have as clean a sample as possible, the nicotine, purchased from Kodak, was 

purified by distillation under a nitrogen atmosphere at a pressure of « 5 mm Hg, where 

the boiling point occurs at « 95°C. Immediately after distillation, the nicotine was sealed 

into the cell together with the appropriate amount of deionized water. From observing 

the meniscus close to the critical point, we deduce that the cell was critically filled to 

about ±0.2% of the critical composition. 

The phase diagram of nicotine + water in the T — x plane is a "closed loop" [81]. 
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Phase separation occurs only in the temperature interval from « 60° C to « 210° C. Our 

experiments were carried out at the lower critical point, where the phase diagram is 

"inverted", i.e., cooling rather than heating takes the system from the two-phase into the 

one-phase region (see figure 3.6). 

Prior to the measurement of order parameter and diffusivity, the critical refractive 

index had to be determined. Due to the high refractive index of the mixture, our prism 

cell setup could not be used for this measurement. Instead, the Hellma cell containing 

the mixture was slowly rotated around its vertical axis in one arm of a Mach-Zehnder 

interferometer, and the resulting interference pattern was used to calculate the critical 

refractive index. The experimental method and the results are discussed in Appendix B. 

In an effort to determine the critical density and the densities of the two coexisting 

phases close to the critical point, precision densitometry was carried out. The densito­

meter consisted of a bulb-shaped glass bubble of volume « 63 ml connected to a pipette. 

Nicotine-water mixtures in the composition range 30 wt% < xnic0 < 49 wt% were inves­

tigated, at temperatures ranging from 55°C to 67°C. The results of this measurement are 

also presented in Appendix B. 

Having measured the density and refractive index of the mixture, focal plane interfer­

ence experiments and light scattering experiments were carried out. The same sample cell 

was used for all these experiments. The cell temperature was measured by thermistors 

embedded in the innermost heating stage of the thermostat. 

4.3 High-pressure experiment 

The He-Xe system was studied through two experiments: in one of them we measured 

the order parameter and diameter as a function of density in Xe to as high an accuracy 

as possible, using the prism cell setup. Our objective was to obtain an estimate of the 
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critical density and of the variation of pc for samples from different sources. Two different 

samples were studied: One of them had been purchased from Matheson Gas Products 

just prior to the experiments and was rated to be 99.995% pure. The other one was 

obtained from Professor R. Gammon at the University of Maryland. It is currently being 

analysed for impurities, but the result is not available at the time of this writing. 

The other experiment used the image plane interference technique, and was carried 

out in a high-pressure cell designed for pressures up to « 400 atm. The cell design is 

described in detail in the following section. Two samples were investigated: One of them 

consisting of pure Xe, the other one of a He-Xe mixture containing « 5% He. Both gases 

for these experiments were purchased from Matheson Gas products (rated 99.995% pure 

for both Xe and He). 

Because of the high pressures involved in the He-Xe experiment, special care had to 

be taken in designing and dimensioning the equipment that was to come in contact with 

the gas under high pressure. The gas-handling system was made up of two connected 

parts: One of them was designed for low pressures only and consisted of the containers 

of the uncompressed gases and the overflow volumes. The other one was designed for 

pressures up to 500 atm and contained the gases after compression. 

4.3.1 Cell Design 

The cell was designed for pressures up to « 400 atm, allowing for a safety factor of 5 x. 

The body was made out of 316 Stainless Steel, and the cell valve was directly worked 

into the cell body, in an effort to minimize the cell's "dead volume". Several tapped 

holes (1/2" deep, 1/4-20 thread) in the outside wall of the cell allowed thermistors to be 

implanted for temperature measurements. Figure 4.1 shows a technical drawing of the 

cell and Figure 4.2 a photograph. The window construction was based on the design 

by Poulter [90] and uses the principle of "unsupported area" which employs the high 
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Figure 4.1: Technical drawing of the high-pressure cell. 
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Figure 4.2: High-pressure stainless steel cell. In the actual experiments, the fill line points 
vertically, with the valve being in the horizontal. The windows are shown with retaining 
rings and sealing O-rings in position. 
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pressure to force the window against its support (see also [91, 92, 93]). For windows we 

used sapphire single crystal cylinders (1" in diameter and 1/2" thick), flat to 2A and 

c-cut in order minimize effects due to the polarization of the laser beam. Their surfaces 

were coated with a thin film (1/4 A thickness of MgF2) to reduce stray reflections at the 

windows. 

The windows were then mounted onto SS support plugs. Two types of plug-window 

assemblies were made: One set, using a higher plug stem, made the optical path length 

in the cell 0.195 ± 0.002 cm long, whereas the other, with a shorter stem, made the cell 

length 1.167 ± 0.002 cm. 

In order to provide a good seal between the sapphire window and the steel support 

plug, the plug surface had to be perfectly flat. The plug was lapped on a polishing 

machine with diamond paste down to 1/4 pm grain size. During the polishing process, 

the plug was fastened to a 4" diameter SS lapping block in order to prevent curvature 

of the surface. The smoothness and flatness of the surface were checked optically by 

observing Newton's rings between the plug surface and a high-quality glass plate, using a 

sodium lamp. All the plugs were lapped until the surfaces were very shiny, no scratches 

were apparent, and at most 2 Newton's rings were visible over the whole 1" diameter 

surface. 

The windows were then glued to the support plugs using low-vapour-pressure epoxy 

as a sealant. Care was taken to squeeze out any air trapped in the epoxy. After setting 

of the glue, the assembly was cured under w 10 atm for about 24 hours. A retaining ring 

held the window and the plug together in good alignment during the glueing and curing 

process. No leaks were encountered at the windows when this procedure was carefully 

implemented. 

The seal between the window support and the body of the cell was made with a 

rubber O-ring. The support plug was forced into position by a SS sealing bolt. In order 
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Figure 4.3: Components of the windows for the high-pressure cell 

to ensure good slippage between the bolt and the plug, a thin disk of softer steel was 

interleaved between the two. This thin disk also contained weepholes for pressure relief. 

The various components of the windows are shown in Figure 4.3. The force exerted on 

the bolts during the tightening process deformed the O-rings, so that, even when the 

tension of the sealing bolts was released, the window plugs could not be easily removed. 

To facilitate the extraction of the the windows, the inside of the SS support plugs was 

threaded, so that an extraction bolt could be inserted to pull the windows out. 

4.3.2 Pressure Handling System 

Aside from safety, the main consideration in designing the high-pressure gas handling 

system was the cost of Xe. As 1 mole of Xe costs about $700, we tried to minimize the 
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amount of Xe needed, and built the gas handling system in such a way that all the Xe 

used for the experiments could be recovered in storage cylinders. 

To reach pressures of the He-Xe mixture up to 500 atm, two procedures could be 

used: 

1. Mix He and Xe in the correct stoichiometric ratios at a lower pressure and then use 

a compressor to compress them up to the desired pressure. 

2. Compress the two components separately without use of a compressor and then 

mix them at high pressure. 

The first procedure has the disadvantage that it is not certain that He and Xe are 

compressed equally efficiently by the compressor, i.e., that the mixture at the discharge 

end has the same stoichiometry as at the inlet. Moreover, the compressor cannot be 

operated efficiently for suction pressures below 500 psi; however, due to the high cost 

of Xe, only a small gas bottle would be available in which the pressure would quickly 

drop below the required suction pressure. Thus, an initial precompression stage would 

be necessary. As the gas out of the precompression stage is compressed into the high-

pressure part, the amount of gas in the precompression volume decreases, leading to a 

pressure drop which will make the compressor more and more inefficient, thus preventing 

a continuous operation. 

Our decision was therefore made in favour of the second procedure, which seemed 

more straightforward and easier to realize. The strategy was to freeze out a well-defined 

quantity of Xe in a cylinder submerged into liquid air (at which temperature Xe is solid), 

then add an appropriate quantity of He such that the desired concentration ratio would 

be reached. Upon warming up of the Xe, the mixture has the correct ratio and (hopefully) 

the correct pressure to make it critical. 
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Figure 4.4: High pressure gas handling system. Components shown in red, yellow and 
blue are dimensioned for pressures up to 500 atm or more, components in black and green 
are for low pressures. 

For sample pressures up to about 300 atm, the (unregulated) pressure of our He bottle 

(1800 psi) was enough to produce a sufficiently high partial He pressure. For mixtures of 

higher He concentration, the He would have to be precompressed. This compression could 

be effected by cooling the He down to liquid nitrogen temperatures, where its density is 

3 times as high as at room temperature; in this manner a threefold compression could 

be obtained. 

Our gas-handling system consisted of several separate sections, as indicated by the 

different colours in Figure 4.4. The heart of the system was the "high-pressure part" 

shown in red (from now on called Vred) containing the cell and two pressure gauges, one 
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which went up to 200 atm, the other to 1000 atm. Connected to it were the compression 

stages for the gases: the Xe freeze-out cylinder Cy e (shown in yellow) and the He com­

pression stage C//e (shown in blue). Both freeze-out cylinders were mounted in such a 

way that they could be immersed into dewars with LN 2 for cooldown. The cylinders were 

equipped with relief valves (from supplier HIP), set at 7000 psi (« 500 atm). Whereas 

the outlet of the relief valve on the He cylinder went straight into the room (He being 

cheap), the outlet of the valve on the Xe cylinder was connected to the storage volume 

Cs, so that in case of the bursting of the valve the Xe would be instantly recovered. 

All the components described so far were designed for pressures up to 500 atm. All 

tubing, valves and containers were made out of 316 SS, and the connections were made 

with high-pressure connectors. The valves were rotating-stem valves (Autoclave), and 

the tubing had 1/4" o.d. and 0.083" i.d. We picked the heavy wall tubing in order to 

keep the gas volume inside the tubing as small as possible. The physical dimensions of 

the apparatus were, among other things, determined by the large minimum bend radius 

of the heavy wall tubing (1.25" [94]). The connectors were purchased from Autoclave, 

and the tubing was prepared in our lab: the joints were coned and threaded, and the 

connections were tightened at 40 ft lbs [94] in order to make a good seal. The connections 

to Autoclave components (valves and tees) seemed to cause less trouble than the ones to 

HIP components (safety valves). 

Also connected to the high-pressure volume V r ed were the Xe supply and the Xe 

storage cylinder Cs. Moreover, there was a low-pressure "measurement circuit" (shown in 

green) which permitted precision measurements of the He-Xe concentrations: It contained 

a small cylinder (volume » 16 cm3) for freezing out Xe and a large cylinder of w 1000 

cm3. This part of the system contained the gases only at low pressures (below 5 atm), and 

therefore the ideal gas law could be used to estimate densities from pressures. A precision 

gauge (Heise, for pressures < 35 atm) was used for measuring the partial pressures of He 
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Pc Tc Pxe Phe 
(atm) [•C] [%) [moles/cm3] [moles/cm3] [moles/cm3] 
75.7 16.25 95.1 0.00876 0.00833 (~ 0.98/9C) 0.0004 (~ lOatm) 
102.8 16.9 89.5 0.00941 0.00842 (~ 0.99/JC) 0.0010 (~ 20atm) 
132.0 18.4 84.65 0.01016 0.00860 (~ l.Olpc) 0.0016 (~ 35atm) 
184.9 19.3 76.15 0.01138 0.00866 (~ 1.02pc) 0.0027 (~ 60atm) 
198.0 19.65 74.56 0.01166 0.00869 (~ \mPc) 0.0030 (~ 65atm) 
239.3 20.35 69.64 0.01226 0.00853 (~ 1.00pc) 0.0037 (~ 84atm) 
298.3 22.55 64.67 0.01372 0.00887 (~ 1.04/JC) 0.0049 (~ 114atm) 
375.7 23.75 59.47 0.01520 0.00904 (~ 1.06pc) 0.0062 (~ 144atm) 

Table 4.1: Critical parameters of He-Xe mixtures [44]. Here, Pc is the critical pressure, 
Tc the critical temperature, p*ot the total critical density and xc

xe the critical Xe-fraction 
of the mixture. Phe and pxe are the partial He and Xe densities. 

and Xe. 

4.3.3 Dimensioning of the Gas Handling System 

In order to calculate the sizes of the freeze-out volumes, we needed an estimate of the 

pressures, densities and critical temperatures involved. Table 4.1 gives an overview of 

approximate values of the critical parameters [44] and the He and Xe densities that are 

needed to reach them. The Xe densities for all mixtures up to 400 atm are only slightly 

larger than the critical density (and thus the partial pressures of Xe are < 70 atm at 

room temperature). The required partial pressures of He rise quickly with increasing He 

concentration. 

As we owned about 2 moles of Xe, we chose Cxe large enough so that our total 

amount of Xe could be frozen out and thus compressed. Since the solid density of Xe is 

p*xe = 3.52 g/cm3, this meant that Cxe « 74 cm3. The total volume of Vr e (*, including 

the 200atm pressure gauge and the cell (with window spacing = 2mm) was about 33 

cm3. The vessel used to compress He had a volume of Vj/e = 115 cm3, the tubing in that 
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part of the system being negligible compared to the freeze-out cylinder. The volumes 

were chosen in such a way as to minimize Cxe while still enabling us to reach mixture 

pressures of « 400 atm and compositions of « 50% Xe in the cell. 

4.3.4 Filling the Cell 

In order to reach the appropriate composition of the gases corresponding to the desired 

pressure, the necessary densities of He and Xe were estimated using Table 4.1. By 

referring to the literature values for isotherms of the pure gases at room temperature [95, 

96], the pressures corresponding to these densities could be determined. Before the first 

filling of the cell, the gas handling system was evacuated for about 2 weeks with a diffusion 

pump. The required amount of Xe was tben taken out of the storage cylinder by freezing 

it out into Cxc The partial pressure of Xe corresponding to the amount of Xe frozen 

out could be checked by warming up Cxe and letting the fluid fill V r e ( f . If the pressure 

was too high, the gas could be bled back into the storage vessel. As the pressure around 

Pc is a very weak function of density, it is difficult to estimate the actual Xe density 

by measuring its pressure. So, in order to be on the safe side, we retained more Xe 

than necessary. This Xe was then frozen back into Cxe, filling up about 35cm3 of its 

volume. Subsequently, V r ed and the empty portion of Cx> were filled with He at the 

desired pressure. If the He bottle pressure was not high enough (as is the case for the 

larger He concentrations), the He could be precompressed by cooling it to 77K in C// e-

When the Xe frozen out in Cxe was allowed to warm up, it mixed with the He, 

giving the desired mixture. As long as the room temperature was kept well above T c , 

the gas mixture was homogeneous. In the cell, which was kept at a temperature below 

T c , demixing into two phases (one He-rich and the other Xe-rich) occurred. 

Whereas there exists a well-tested procedure for critically filling a pure fluid cell (see 

section 4.1 and Ref. [88]), filling the He-Xe cell is more complicated. Here, at a given 
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temperature, one has to adjust two variables, e.g. density p and Xe concentration xxe 

to their appropriate values (the value of the third one, pressure, then being determined 

by the equation of state). As it is extremely unlikely that the correct values of these 

two variables would be reached at a first attempt, the following procedure was applied 

to fill the cell iteratively: The cell was filled, at a certain temperature T* < Tc, with 

fluid at a total density and Xe concentration slightly higher than the desired one. As 

the cell was overfilled, the Xe-rich phase occupied a larger fraction of the volume. Since 

the cell valve was located horizontally exactly in the middle of the cell, any bleed swept 

out fluid from the Xe-rich (heavier) phase, and reduced both the overall density and 

the overall Xe concentration. So, by iteratively bleeding the cell, the fluid mixture in 

the cell travelled along the dotted line in the phase diagram indicated in Figure 4.5. 

Eventually, one reached "the line onto which the manifold of critical points maps for the 

given temperature T*. At this intersection the cell was critically filled, the meniscus 

was exactly in the middle of the cell, and both density and concentration were adjusted 

to their critical value. In order to check that the cell was really critically filled, it was 

warmed up to a temperature T « Tc, and the position of the meniscus was observed. 

For example (see the schematic in Figure 4.5), if we start at an overall Xe concen­

tration of 91.6% and total density 0.0117 moles/cm3, this fluid mixture decomposes, at 

14.5°C, into one phase with xxe = 76% and density pl = 0.0067 moles/cm3 and another 

phase with xx[ = 93% and density pu = 0.0128 moles/cm3. The bleed then takes the 

system along the dotted line to an overall density = 0.0093 moles/cm3, overall com­

position xc

xt = 90%, and pressure Pc = 102 atm. On warming, the system thus prepared 

passes through a second order phase transition point into the one-phase region. 
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Figure 4.5: Phase diagram of the He-Xe system at 14.5°C (semiquantitative schematic): 
The dashed lines correspond to lines of constant composition. The set of critical points 
maps onto the bold line. 
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4.3.5 Thermal Control of the Cell 

The cell itself was used as the innermost stage of the thermal regulating system. Because 

the thermal conductivity of steel is so small, the cell was wrapped with a layer of copper, 

to which the heater was attached. The cylindrical copper shells were bent out of 1/2" 

thick copper sheet and then machined to the correct diameter on a lathe. Copper end 

plates were screwed to it, so that the whole cell was covered with copper sheet (at least 

1/4" thick), except for holes for the windows, valve and thermistor screws. The copper 

cylinder was wrapped with heating foil (MINCO, four sheets, each 2"x9", with 10.6 

each). 

The cell was heated using a feedback circuit as described in section 3.1. A thermistor 

embedded directly inside the copper sheet served as a "control" thermistor. As the 

thermistor measured the temperature of the copper sheet, its feedback was fast and 

temperature oscillations did not pose a problem. The thermal response of the cell as 

a whole was slow: After a change of temperature, the cell took about 1 hour to reach 

thermal equilibrium. 

The cell, consisting of such a large mass of stainless steel, was very slow to respond to 

heating. The 4 heating foils were connected in parallel. As the total current supplied by 

the OPS was « 2A, the total heating power available was « 5W. In normal operation, the 

cell was heated to about half a degree above the temperature of the outer temperature 

stage. In this case, the heating power was about 0.5 - 1 W. 

Three thermistors used for temperature monitoring were embedded in different places 

in the stainless steel body of the cell and measured using Wheatstone bridges. The 

imbalance of the Wheatstone bridges were amplified by HP nullmeters and monitored on 

an x-t chart recorder. 

The inner heating stage of the cell was surrounded by a layer of styrofoam as thermal 
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insulator, then by a thin copper cylinder as a heat shield, followed by another layer of 

styrofoam and the outer temperature control cylinder. The outer cylinder had 3/8" o.d. 

copper tubing soldered to its outside in a spiral, and water flowing through it from a 

temperature regulated water bath (FORMA) kept it at a chosen temperature (always 

between 0.5° and 1°C below the cell temperature). 

The cell was tested for temperature gradients by attaching one calibrated thermistor 

to the inside top and another one to the inside bottom of the cell, and feeding the 

leads out through a styrofoam plug replacing one of the windows. In one experiment, 

heating the cell to a temperature of about 1°C above the surroundings, we measured 

the bottom of the cell to be warmer than the top by 2-3 mK. In another experiment, 

heating the cell to higher temperatures in small steps (imitating the actual experimental 

conditions), we discovered no systematic temperature difference between top and bottom. 

The consequences of thermal gradients on the experiment are discussed in Appendix C. 



Chapter 5 

Freon Experiments: Results and Discussion 

This chapter presents the results of experiments on C H F 3 , a strongly polar fluid, and 

CCIF3, a weakly polar fluid. We measured the Lorentz-Lorenz function (section 5.1), the 

order parameter (section 5.2) and the coexistence curve diameter (section 5.3) of these 

two substances. We found them to exhibit considerable differences, suggesting that dipo­

lar interactions play a major role in determining the values of the critical amplitudes and 

the Lorentz-Lorenz function. On the other hand, the critical exponents were observed to 

be the same, in accordance with the principle of universality. Sections 5.2.2, 5.4 and 5.5 

present measurements on the order parameter, compressibility and critical isotherm of 

C H F 3 , from which universal critical amplitude ratios were obtained with very high accu­

racy. They were found to be in excellent agreement with values obtained from nonpolar 

fluids and with theoretical results. Finally, section 5.6 describes the determination of the 

critical temperature from the experiments, and section 5.7 contains a discussion of the 

results. 

All experiments on CCIF3 were carried out using the prism cell method; on C H F 3 , 

data were taken both by prism cell and image plane interference method [23, 97]. 

5.1 Lorentz-Lorenz Data 

Information on the density dependence of the refractive index was obtained from the 

prism cell experiment, in which the refractive index and density are measured simulta­

neously in the one-phase region. The Lorentz-Lorenz function C, as defined by eq. (3.1), 

78 
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Substance £o(cm3/mole) £i(cm 6/mole 2) £ 2(cm 9/mole 3) £ c(cm 3/mole) 
CHF 3 6.905 37.6 -2.8 x 103 7.03±0.02 
CCIF3 11.735 41.3 -3.7 x 103 11.85±0.02 

Table 5.1: Results of a quadratic fit to the Lorentz-Lorenz data of CHF3 and CCIF3. 

exhibits a weak density dependence along the coexistence curve, and can be expanded 

as a power series in p: 

C = C0-rClP + C2p2 + ... (5.1) 

Figures 5.1 and 5.2 show the Lorentz-Lorenz data for CHF 3 and CCIF3 respectively, 

and the lines are a quadratic fit to them. The fit parameters are given in Table 5.1, 
together with the critical value £ c = C(pc). The Lorentz-Lorenz results for CHF3 can be 

compared to the results of the experiment of Buckingham and Graham [98] who measured 

the Lorentz-Lorenz function of CHF 3 as a function of density for pressures up to 5 atm. 

They fit £ to a straight line and found £0 = 7.05 cm3/mole and C\ = 3.4 cm6/mole2. 

By extrapolation they found for the critical value £ c = C(pc) = 7.08 cm3/mole. Our 

measurements, which extend up to 50 atm, yield £ c = 7.03±0.02 cm3/mole, in reasonable 

agreement with their result. 

From the Lorentz-Lorenz data, the electronic (optical) polarizability ctp can be deter­

mined using [99] 

\imC(p) = ^ N A , (5.2) 

where NA is Avogadro's number. For CHF3, we obtained ctp to be 2.74±0.02A3, which 

agrees with the value ctp = 2.8A3 cited in the literature [98, 100]. The polarizability of 

CC1F3, as measured in our experiment, is ap = 4.65 ± 0.02A3, and thus considerably 

larger than the value for CHF3. 

For a polar fluid, the molecular polarizability ap calculated from eq. (5.2) difffers 
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0.000 0.002 0.004 0.006 0.008 

Density (moles/cc) 

0.010 

Figure 5.1: Lorentz-Lorenz function of CHF 3 as a function of density. The line is a 
quadratic fit to the data. 
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Figure 5.2: Lorentz-Lorenz function of CC1F3 as a function of density. The line is a 
quadratic fit to the data. 
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from the effective polarizability ctp due to dipole-dipole and dipole-induced-dipole in­

teractions [28, 30] according to eq. (1.7). For the case of CHF 3, with dipole mo­

ment p 0 = 1.65 x 10"18esu [31], polarizability ctp = 2.74A3 and dissociation energy 

J « 12.5eV [101], these effects enhance the polarizability ap, resulting in the so-called 

effective polarizability [28, 30] (corresponding to a low-frequency polarizability) which 

then has the value dp « 3.5A3. For CC1F3, with p 0 « 0.50 x 10"18 esu [32], ap = 4.65A3 

and / w 12.5eV [101], the effective polarizability becomes ap —• o7p w 4.67A3. 

The prism cell experiment also yields the critical density: A fit to the coexistence curve 

diameter gives the refractive index at the critical temperature, which can be converted 

into the critical density using the Lorentz-Lorenz relation. For CHF 3, we measured 

nc = 1.0806(2), from which we obtained pc = 0.5272 ± 0.0015 g/cm3, in close agreement 

with other experiments [102, 103], which find pc in the range 0.525 — 0.526 g/cm3. For 

CC1F3, we measured the refractive index to be nc = 1.1009(3), slightly higher than 

cited in the literature (nc = 1.0996, see Ref [104]). Our measurement thus gives a critical 

density of pc = 0.582±0.002 g/cm3 and agrees well with the values pc = 0.578 g/cm3 [102] 

and pc = 0.581 g/cm3 [105] reported in the literature. 

5.2 Order Parameter Measurements 

5.2.1 Order Parameter of CC1F3 

The coexistence curve data obtained in the prism cell experiment on CC1F3 were fitted 

to the expression 

Ap* = Bot0(l + Bxt* + B2t2A + B3t3A). (5.3) 

Some results are shown in Table 5.2. Data were taken in the temperature interval 10 -4 < 

t < 6.5 x 10-2, and all the fits were performed over the whole temperature interval. For 

some of the fits the critical exponent ft and the correction exponent A were held fixed 



Chapter 5. Freon Experiments: Results and Discussion 83 

/? A B 0 Bi B 2 B 3 

(0.327) (0.5) 1.645 0.654 -1.00 (0.0) 
(0.325) (0.5) 1.619 0.733 -1.14 (0.0) 
0.3298 (0.5) 1.681 0.554 -0.80 (0.0) 
(0.327) 0.43 1.632 0.555 -0.63 (0.0) 
(0.327) (0.5) 1.639 0.754 -1.74 1.65 
0.3257 (0.5) 1.621 0.838 -2.08 2.20 

Table 5.2: Results of the coexistence curve fit of CCIF3. Parameters shown in parentheses 
were kept fixed for the fit. 

at the theoretically expected values, 0.325 < /? < 0.327 and A = 0.5. When /? is treated 

as a free parameter, and two correction terms are taken into account, the value of /? is 

slightly larger than theoretically expected. However, when one more correction term is 

taken into account, the value of /? obtained by the fit agrees very well with theory. 

The correction to scaling exponent A, when fitted as a free parameter, favours a value 

of 0.43±0.01, which is somewhat smaller than the theoretically predicted value. Similar 

values have been reported for ethylene and hydrogen [89, 106]. 

A plot of the data from two independent runs (total of 204 data points) is shown in 

Figure 5.3, where logi0(A/)*/r/3) is plotted versus the reduced temperature t. The line 

corresponds to a fit which treats /? as a free parameter with a fitted value of 0.3257, A 

fixed at 0.5, and includes three correction to scaling terms. The fit is seen to describe 

the data quite well. 

5.2.2 Order Parameter of CHF 3 

The order parameter data obtained from both the fringe and the prism cell experiment 

were fitted to the expression (5.3). Table 5.3 shows several fits to this equation, with 

various combinations of the amplitudes and exponents as free parameters. Fits were 

performed for both experiments separately, and then for all the data taken together. For 
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Figure 5.3: log-log plot of coexistence curve data of CC1F3. The curve corresponds to a 
fit with three correction to scaling terms and with A = 0.5 held fixed and /3 = 0.3257 a 
free parameter. 
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A Bo B2 B3 

Image plane interference data 
0.326 - 1.75 - - -(0.325) (0.50) 1.717 0.96 -1.85 -(0.327) (0.50) 1.747 0.85 -1.59 -0.331 (0.50) 1.806 0.64 -1.08 -(0.327) 0.42 1.748 0.65 -0.77 -
(0.327) (0.50) 1.739 1.03 -3.39 5.3 
0.3287 (0.50) 1.770 0.85 -2.34 2.9 
(0.327) 0.42 1.731 0.68 -1.00 0.5 

Prism cell data 
(0.325) (0.50) 1.723 0.87 -1.41 -(0.327) (0.50) 1.748 0.80 -1.31 -
0.332 (0.50) 1.813 0.60 -0.70 -
(0.327) 0.43 1.742 0.60 -0.60 -All data 
(0.327) (0.50) 1.747 0.85 -1.55 -
0.331 (0.50) 1.810 0.62 -1.01 -
(0.327) 0.40 1.727 0.60 -0.60 -
0.326 0.37 1.703 0.60 -0.55 -
(0.327) (0.50) 1.739 1.03 -3.44 5.5 
0.3287 (0.50) 1.768 0.86 -2.45 3.3 

Table 5.3: Coexistence curve fits for C H F 3 . The first fit was done in the tempera­
ture range 10~6 < t < 10~4. All other fits were done over the temperature range 
10 -6 < t < 4 x 10~2. Parameters in parentheses were held fixed for the fit. 
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the fringe data, a fit to a pure power law was performed over an "inner" temperature 

range 10~6 < t < 10~4, where the corrections to scaling in eq. (5.3) are expected to 

contribute on the order of 1% and are therefore smaller than the statistical scatter of the 

data. (At t=10~4, the number of missing fringes is about 50, and the resolution is of the 

order of half a fringe). The value of ft = 0.326 ± 0.001 found in this temperature interval 

is in excellent agreement with the theoretical value 0.325 < ft < 0.327 (Ref. [11]) and 

with other experimental data [89, 17]. The prism cell data do not extend close enough 

to Tc to allow a similar fit to that data. 

Fits over the whole temperature interval 10~6 < t < 4 x 10 -2 consistently yield a 

higher value for ft. When two correction to scaling terms are included in the fit, we 

obtain ft = 0.331 ± 0.001 for the fringe and ft = 0.332 ± 0.003 for the prism data; both of 

these values are slightly larger than the theoretical value. Adding a third correction term 

results in ft = 0.329 ± 0.001 for the combined data, which is close to the theoretically 

predicted value. 

Figure 5.4 shows the coexistence curve data from both experiments. The fringe data 

consist of 604 points from four individual runs, and the prism data consist of 70 points 

from two runs. As in figure 5.3, the leading t13 temperature dependence has been divided 

out, and logi0(A/)*/<'J) is plotted versus t. For reduced temperatures t > 10"4, the data 

exhibit a clear deviation from a horizontal straight line, indicating that a pure power law 

is insufficient to describe the data and demonstrating the importance of the correction 

to scaling terms. The curves in the figure correspond to fits with the exponents fixed 

at ft = 0.327 and A = 0.5, and with the amplitudes as free parameters. The dashed 

curve is a fit with two, and the solid curve with three correction terms. These fits are 

seen to describe the data very well; however, the tendency of the data to favour values 

of ft larger than the theoretical value, even when more correction to scaling terms are 

included, suggest that the correction to scaling series for Ap* is not adequate over the 
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reduced temperature 

Figure 5.4: Coexistence curve data of CHF 3, from interference experiment (•) and prism 
cell experiment (o). The curves correpond to fits with /3 = 0.327 and A = 0.5. The 
dashed curve is a fit with two, the solid curve with three correction to scaling terms. 



Chapter 5. Freon Experiments: Results and Discussion 88 

large temperature range covered in this work. In order to obtain a more satisfactory 

description of the coexistence curve in the whole temperature interval, the crossover 

from the asymptotic scaling behaviour near the critical point to the regular behaviour 

away from the critical point should be taken into account [57, 107]. 

As was the case for CCIF3, the correction to scaling exponent A for C H F 3 also 

exhibits a trend to values smaller than theoretically expected. We find A = 0.42 ± 0.02 

for CHF 3. This may be another indication that the correction to scaling series is not a 

good approximation for the large temperature intervals covered in our experiments. It 

may also mean that A is indeed smaller than 0.5, as suggested by other experiments [106]. 

In addition to the statistical error in Bo due to the scatter in the data, there is an 

additional systematic uncertainty in the fringe data due to the uncertainty in the cell 

thickness. To make the data of the prism and the interference experiments coincide, Lceu 

was fixed at 1.865 mm, which is equal to the measured thickness within our experimental 

error. 

The resulting values of the critical amplitude Bo depend on the value of /? and to a 

lesser extent on how many correction to scaling terms are taken into account. The inter­

ference data, extending further into the critical region, furnish a more reliable estimate 

of the critical amplitude Bo. Averaging over the results of various fits of the CHF 3 fringe 

data, we obtain B0 = 1.743±0.003 when keeping /3 = 0.327 fixed, and B0 = 1.722±0.003 

when keeping /3 = 0.325 fixed. The error on Bo is thus very small for fixed 0. These 

values are in good agreement with previous measurements [102], which were fitted using 

0 = 0.324 and found BQ = 1.74 [108]. 
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reduced temperature 
0.016 

Figure 5.5: Coexistence curve diameter pd as a function of t for C H F 3 . Data from 
interference experiment (•) and prism cell experiment (0). The dashed line corresponds 
to a straight-line fit to data with <>8x 10"3. 

5.3 Coexistence Curve Diameter for C H F 3 and CC1F 3 

The coexistence curve diameter of CHF 3 from the prism and fringe experiment are shown 

in Figure 5.5. Each point of the fringe data in the figure is the average of from 5 to 30 

individual data points. In this way, the scatter of the original data, due to fringe counting 

uncertainties and variations in room pressure and humidity, was averaged out. (The fits, 

however, were performed on the raw, unaveraged, data.) The dashed line is a straight-line 

fit to data with reduced temperatures t > 8 x 10-3. 

Both data sets agree very well for reduced temperatures t > 10-3. For small reduced 
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temperatures, they do not quite coincide, but show the same general behaviour: Close 

to Tc both data sets bend downward from a straight-line fit to the data far from Tc. This 

behaviour is consistent with the expected <1_Q anomaly [68]; according to the model of 

Goldstein et al, the downward bend is indicative of repulsive three-body forces between 

the molecules [26, 28]. 

Figure 5.6 shows a plot of the coexistence curve diameter of CC1F3. The dashed 

line in the figure corresponds to a straight-line fit to the data for reduced temperatures 

t > 8 x 10~3. The straight line seems to describe the data very well. However, as is 

obvious from the more detailed graph of data with t < 2 x 10~2, the CC1F3 data bend 

away from the straight line close to Tc. Even though this effect is not as pronounced in 

CC1F3 as it was in CHF 3, there is still evidence for the critical diameter anomaly, and, 

as in CHF 3, the downward bend of the data from the straight line can be interpreted, in 

the framework of the Goldstein model [26], as due to repulsive three-body interactions 

between the fluid molecules. 

Table 5.4 shows fit results of the diameter data of CHF 3 and CC1F3 to expres­

sion (2.36). To get a value of the amplitude Ai, the data were fitted to a straight line in 

the outer temperature interval t> 8 x 10-3. The fits give Ax = 1.31 ±0.01 and 1.33±0.06 

for the CHF 3 fringe and prism cell experiments respectively, and A\ = 0.860 ± 0.002 for 

the CC1F3 prism experiment. The remainder of the table contains fits over the total tem­

perature range of the experiments. When both A\ and A\-a are fitted as free parameters 

to the CHF 3 data, the prism data give a much smaller error in the amplitudes than the 

fringe data. Due to the scatter in the CHF 3 data, fits with additional terms in eq. (2.36), 

corresponding to corrections to scaling, do not yield any further useful information. 
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Figure 5.6: Coexistence curve diameter pd of CC1F3. (a) whole temperature range, (b) 
temperature range t < 2 x 10"2. The dashed line corresponds to a straight-line fit to the 
data with t > 8 x 10"3. 
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Ai Ai_ Q Ao 
C H F 3 data 
outer temperature range 
(t> 8 x lO"3) 
Interference data: 1.31 ±0.01 (0.0) 1.0022 ± 0.0002 
Prism cell data : 1.31 ± 0.06 (0.0) 1.002 ± 0.01 
total temperature range 
(10~6 < t < 1.8 x lO"2) 
Interference data: 1.40 (0.0) 1.001 

(0.0) 0.94 1.001 
-1.4 ±1.0 1.8 ±1.0 1.001 ±0.001 

Prism cell data: 1.46 (0.0) 1.006 
(0.0) 0.95 1.0002 

0.32 ± 0.04 0.69 ± 0.02 1.00014 ± 0.00002 
CC1F3 data 
outer temperature range 
(t > 8 x lO"3) 

total temperature range 
10"4 < t < 6.5 x 10"2 

0.860 ± 0.002 (0.0) 1.0010 ± 0.0002 

0.869 (0.0) 1.0005 
(0.0) 0.631 0.9992 
0.482 0.261 1.00005 

Table 5.4: Fit results of the coexistence curve diameter of C H F 3 and CCIF3. Parameters 
shown in parentheses were kept fixed for the fit. 
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5.4 Compressibility of C H F 3 

The isothermal compressibility /ey, as given by eq. (2.4), is measured from our data 

by measuring the fringe spacing in the middle of the cell (i.e., close to the meniscus 

in the two-phase region), where the gradient of the density is largest and where the 

average density equals the critical density (see eq. (3.16)). Figure 5.7 shows a plot of 

the compressibilities of CHF 3 in both the one and the two phase regions. In the one 

phase region, a least squares fit of the logarithm of /cJ as a function of the logarithm of 

t (shown as a solid line in the figure) yields an exponent 7 + = 1.230(8) and a critical 

amplitude TQ — 0.058(3). The critical temperature was determined as a free parameter 

from the compressibility data and was found to agree with the value determined in the 

coexistence curve fit to within 0.2 mK. The figure shows that the straight line is sufficient 

to describe the data. Correction to scaling terms in this temperature range are expected 

to be of the order of 1% and cannot be distinguished from the statistical scatter of the 

data. 

In the two-phase region, data extraction is much more difficult, due to a lower cur­

vature of the interference pattern (i.e., a smaller compressibility), and thus the data in 

this region are somewhat more scattered. A two parameter fit for T < TC, for which the 

critical temperature was kept fixed at the value found in the one-phase region, yields 

7~ = L18(3), which is substantially lower than the theoretical value ( 7 " = 7+ = 1.24). 

In order to determine the critical amplitudes TQ consistently, data in both regions were 

fitted by power laws with 7 = 1.23 (corresponding to the exponent in the one-phase 

region) and 7 = 1.24 (the theoretical value). For'these fits, the critical temperature was 

held fixed at the value found in the coexistence curve fit. The results are summarized in 

Table 5.5. 
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Figure 5.7: Compressibility of CHF 3. The data for T < Tc (two-phase region) are 
represented by open circles (vapour phase) and open triangles (liquid phase). Data in the 
one-phase region (T > Tc) are represented by solid circles, and the curve is a power-law 
fit to them, with exponent 7 = 1.230. 
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7 + r+ 
T> Tc 1.230 ± 0.008 0.058 ±0.005 
(one-phase region) (1.23) 0.058 ± 0.003 

(1.24) 0.052 ± 0.002 

7 " r-
T <TC 1.18 ±0.03 0.019 ± 0.008 
(two-phase region) (1.23) 0.012 ± 0.002 

(1.24) 0.011 ±0.001 

Table 5.5: Compressibility fits of C H F 3 data. Parameters in parentheses were held fixed 
for the fit. 

5.5 Critical Isotherm of C H F 3 

In order to extract the critical amplitude Do of the critical isotherm for C H F 3 (see 

eq. (3.20)), we follow the approach suggested by Pestak and Chan [17]: At temperatures 

close to Tc the distance Az of each of several interference fringes from the meniscus was 

measured. Then, for each temperature, the quantity 

D t ~ RjApy ~ -pI(Apy ( 5 - 4 ) 

was calculated for the reduced density 

Ap=\p(Az)-pc\/pc (5.5) 

corresponding to this fringe. The value of 8 was determined using the scaling relation 

7 = 0(8 — 1) and the values of 7 and 0 obtained earlier in the same experiment. On the 

critical isotherm, all the values of Dt thus calculated should coincide (this will give the 

value of the critical amplitude Do). However, for data taken at temperatures away from 

T c, the functional relation Ap = Do\(p — pc)/Pc\S is not correct: below T c, the density 

profile is "steeper" than on the critical isotherm and thus the values of Dt, as calculated 
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Figure 5.8: Example of the graphical method used for extracting D0. The lines correspond 
to interference fringes with a fixed density difference Ap from the critical density. The 
lines intersect at the critical temperature, determining the critical amplitude D0. 

from formula (5.4), are smaller than the critical value D0. At any given temperature 

T < Tc, the values of Dt decrease with increasing distance Az from the meniscus. Above 

Tc, the density profile is "less steep", and therefore the Dt values are larger than D0. 

In order to assure that gravitational rounding does not play an appreciable role, only 

data with Ap > 4 x 10-2 were taken into account, for which beam-bending errors are 

less than 0.1% [22]. An antisymmetric density profile was assumed, and the Az used for 

the evaluation was the mean of the vapour and liquid values. The data of one run (with 

6 = 4.80) are shown in Figure 5.8. As can be seen, lines corresponding to various values 

of Ap indeed do intersect at the critical temperature, and this furnishes the amplitude 
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D 0 . Using 6 = 4.76 (corresponding to ft = 0.327,7 = 1.23), one obtains D0 = 3.5 ± 0.2, 

whereas for 8 = 4.80 (corresponding to ft = 0.327,7 = 1.24), one obtains D0 = 3.85±0.3. 

5.6 Critical Temperature of CC1F3 and C H F 3 

In the data evaluation of the prism cell experiments of CC1F3 and CHF 3, the critical 

temperature was determined as a free parameter of the coexistence curve fits. In the 

CC1F3 experiment, in which two coexistence curve runs were performed, Tc was found 

to be 28.104 ± 0.001°C, considerably lower than the values cited by other researchers 

(Tc w 28.400°C [102], Tc « 28.715°C [104]). The reason for this difference might be 

attributed to the presence of different impurities in the system [109]. 

In the CHF 3 prism cell experiment, in which three runs were performed, we found 

Tc = 26.008 ±0.007°C, higher than the value cited in the literature (Tc « 25.8FC [102]). 

For the evaluation of the diameter data, the critical temperature was held fixed at the 

value obtained from the coexistence curve fit for each particular run. 

In the interference experiment on CHF 3, the critical temperature in each run was 

determined in three different ways: from a least-squares fit to the coexistence curve 

data, from a power-law fit to the one-phase compressibility, and from the intersection of 

Dt—lines belonging to different densities near the critical isotherm. The three values of 

Tc thus obtained agree to within 0.2 mK, which indicates that the results for the critical 

amplitudes and exponents are quite consistent. This suggests also that the system was 

in thermal equilibrium. 

Interference data on C H F 3 were taken over a period of about 8 months in 11 consec­

utive runs. During this time, we observerd a steady drift of the critical temperature at a 

rate of approximately 4mK/month, from 26.01°C initially to 26.04°C. A run performed 

one year before this set of experiments, using the same sample, found Tc « 25.80°C. 
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Figure 5.9: Drift of the critical temperature of CHF 3 as a function of time, as measured 
in the interference experiment. 

Figure 5.9 shows a graph of the critical temperature as a function of time in the CHF3 

interference experiment. The temperature stability was regularly checked by a triple 

point cell and was found to be better than 2 mK/year. This temperature drift seems 

to have no observable effect on the critical amplitudes. Whenever several data sets were 

evaluated together, their difference in critical temperature was corrected for. 

We suspect that chemical reactions of the CHF 3 or impurities coming out of the cell 

walls or the windows may be responsible for the drift in critical temperature, and also 

for the difference between our values of Tc and literature values for CC1F3 and CHF 3. 

5.7 Discussion 

The prism cell experiment and the interference experiment are two equivalent methods of 

measuring the order parameter and the coexistence curve diameter of a fluid. The prism 
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5.7 Discussion 

The prism cell experiment and the interference experiment are two equivalent methods of 

measuring the order parameter and the coexistence curve diameter of a fluid. The prism 

cell method has the advantage of measuring directly the densities of liquid and vapour 

phase as a function of temperature. Close to the critical point, however, there is some 

uncertainty in the data due to gravitational rounding [22]: As the laser samples regions 

of strongly varying density in the cell, one observes a continuous distribution of deflection 

angles. This makes the determination of the liquid and vapour densities at the meniscus 

difficult and limits the temperature range accessible to this experiment to t > 3 x 10 -5. 

In contrast, the interference method is much less affected by gravitational rounding [22]. 

Due to the short path length of the C H F 3 sample cell, the error introduced by beam 

bending is negligible in comparison to the statistical scatter: At reduced temperatures 

as small as t = 2 x 10~6, gravitational rounding introduces an error of only about 1/5 

fringe close to the meniscus, which is smaller than the accuracy with which fringes can be 

measured close to the critical point. For the C H F 3 experiment, in which order parameter 

and coexistence curve diameter were measured both by the fringe and the prism cell 

method, the two experiments give consistent results. 

From the results of the interference experiment of C H F 3 , some amplitude ratios can 

be calculated. Table 5.6 presents a collection of the various critical amplitudes obtained 

in fits with different critical exponents, and Table 5.7 shows the corresponding values 

of the critical amplitude ratios. The experimental values are in good agreement with 

theoretical predictions [12], independent of the precise values of exponents one chooses 

for the fits. There is excellent agreement between the amplitude ratios obtained by 

different choices of the critical exponents. Our results are not accurate enough, however, 

to decide whether high-temperature series expansions or explicit implementations of the 
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p 7 6 Bo r + 

A 0 
r0- Do 

(0.327) 
(0.327) 
(0.325) 
(0.325) 

(1.23) 
(1.24) 
(1.23) 
(1.24) 

(4.76) 
(4.80) 
(4.79) 
(4.82) 

1.743 ± 0.003 
1.743 ± 0.003 
1.722 ± 0.003 
1.722 ± 0.003 

0.058 ± 0.003 
0.052 ± 0.002 
0.058 ± 0.003 
0.052 ± 0.002 

0.012 ± 0.002 
0.011 ±0.001 
0.012 ± 0.002 
0.011 ±0.001 

3.5 ±0.2 
3.85 ± 0.30 
3.75 ± 0.30 
4.1 ±0.3 

Table 5.6: Critical amplitudes of C H F 3 . Exponent values in parentheses were kept fixed 
for the fit. 

r̂ /Tp- DQT^B^ 

Our data 
(0 = 0.327,7 = 1-23) 4.8 ±0.6 1.64 ±0.12 
(0 = 0.327,7 = 1.24) 4.8 ± 0.6 1.61 ± 0.14 
(0 = 0.325,7 = 1.23) 4.8 ± 0.6 1.70 ± 0.14 
(0 = 0.325,7 = 1.24) 4.8 ± 0.6 1.69 ± 0.14 

Pestak et al. 
N 2 4.8 ±0.6 1.71 ±0.5 
Ne 4.8 ± 0.8 2.05 ± 0.8 

Theory 
high-temperature series 5.07 1.75 
e-expansion 4.80 1.6 

Table 5.7: Critical amplitude ratios 
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renormalization group (e-expansions [12]) yield the better values of the ratios. 

We also find good agreement with the results of Pestak and Chan [17] from mea­

surements on N 2 and Ne. For the product DQTQBQ"1 the uncertainty in our results is 

lower than theirs due to the fact that close to the critical point, their data are strongly 

influenced by gravitational rounding which causes a large error in the amplitude DQ. Our 

experiment, being less affected by gravitational rounding errors, determines DQ to much 

higher accuracy, resulting in a more precise value of the amplitude ratio. 

In order to check the self-consistency of our CHF 3 interference data, the critical tem­

perature was determined separately from fits to the coexistence curve and compressibility 

data and from the intersection of the lines of constant density as used for the evaluation 

of the critical isotherm. The values of TC obtained by these three different methods agree 

to within 0.2 mK. A discrepancy of the TC values can be an indication of gravitational 

rounding or insufficient equilibration time between temperature steps. We thus conclude 

that our data are to a large extent free of these errors. 

Also, capillary effects do not play an appreciable role in CHF3; they would manifest 

themselves as a smearing out of the meniscus separating the liquid and the vapour phase. 

On our films, the meniscus is always very narrow, which indicates that there is negligible 

wetting of the sapphire windows, even far from the critical point. 

The compressibility data of CHF 3 do not extend far enough away from TC to detect 

any deviation from pure power-law behaviour, but the evaluation of the coexistence curve 

clearly shows the importance of correction to scaling terms. Even though three correction 

terms are sufficient to describe the data in the temperature interval 10 -6 < t < 2 x 10"2, 

the large variations in the amplitudes B2 and B3 from fit to fit indicate that using a 

power law series for the evaluation is not satisfactory any more, and that the data should 

instead be evaluated using crossover theories [107, 57]. However, when both /3 and A are 

kept fixed at their theoretically expected value, the amplitude B0 changes very little (by 
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less than 0.5%) when more correction to scaling terms are included. Thus the leading 

critical amplitude can be reliably extracted independent of the exact behaviour of the 

coexistence curve far from critical. 

The absolute value of the critical amplitude Bo in CHF3 is considerably higher than 

the ones measured for nonpolar gases [17, 89, 110, 111], whereas Do is appreciably 

lower [17]. This is probably due to the fact that in the polar gas fluoroform the in­

termolecular interactions are of a different nature than in nonpolar fluids, and thus fluo­

roform is not expected to obey the "principle of corresponding states" as well as nonpolar 

fluids do [1]. The same trend has also been observed for H2O and D2O [107]. However, 

even though the absolute values of the critical amplitudes deviate from the ones found 

in nonpolar fluids, polar fluids still furnish the same amplitude ratios as nonpolar ones, 

in accord with the universality principle. 

The evaluation of the coexistence curve clearly shows the importance of corrections to 

scaling, for both CHF3 and CC1F3. Even though three correction terms are sufficient to 

describe the data over the whole temperature interval, the correction amplitudes B2 and 

Bz vary greatly with ft and A. Also, the value of ft depends on the temperature interval 

considered and on the number of correction terms. This suggests that the correction to 

scaling series is not sufficient over the large range of reduced temperatures studied in 

these experiments. 

For both fluids, the diameter data close to Tc exhibit a deviation from the law of 

rectilinear diameter towards smaller densities, in agreement with the model of Goldstein 

et al [28, 26] for systems with repulsive many-body interactions. The diameter slope of 

CC1F3, as obtained from a straight-line fit to the data with t > 8 x 10 -3, gives A\ = 0.86 

and has thus a value very similar to those observed in nonpolar fluids, which typically 

have A\ values between 0.5 and 1.0 [28]. In contrast, CHF 3 has a diameter slope of 

Ai = 1.32 ± 0.01, considerably larger than those for nonpolar gases. According to the 
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theory of Goldstein et a/., A\ should increase linearly with the molecular polarizability 

ctp. Whereas this prediction holds well in the case of CCIF3, the polarizability of C H F 3 

is in fact smaller than that of most nonpolar fluids [99]. Due to its larger dipole moment, 

the polarizability of C H F 3 becomes considerably enhanced by dipole-dipole and dipole-

induced-dipole interactions. (In contrast, taking the dipole-dipole and dipole-induced-

dipole interactions into account has a negligible effect on the polarizability of CCIF3.). 

Even when the enhancement of the polarizability due to dipole-dipole and dipole-induced-

dipole interactions is taken into consideration, C H F 3 still does not exhibit the same 

relationship between dppc and A\ as one would expect from Goldstein's theory. A similar 

discrepancy is observed for H 20 which also has a high value of A\ [112] accompanied by 

a small polarizability. This deviation may be due to hydrogen bonding, which is known 

to play an important role in systems containing electronegative atoms (like 0, N, F, 

CI) together with hydrogen atoms [30]. These hydrogen bonds strongly influence the 

intermolecular potentials. 

A more subtle point is the behaviour of the Lorentz-Lorenz function close to the 

critical point. Both diameter and refractive index have been predicted to have a critical 

anomaly [113, 114], both with the same exponent 1 — a, which makes it difficult experi­

mentally to distinguish between the two phenomena. We observe a weak critical anomaly 

in the diameter close to Tc for both CHF 3 and CC1F3, of the same order of magnitude as 

observed in other experiments on nonpolar substances [28]. This effect, which seems to 

be more pronounced in CHF 3 than in CCIF3, may result from the fact that C H F 3 is more 

polar than CCIF3. No definite experimental evidence exists for the anomaly of the refrac­

tive index at optical frequencies [115]. Our method of determining the Lorentz-Lorenz 

function does not allow us to perform the precise measurements close to Tc which would 

detect such an anomaly. The Lorentz-Lorenz data of neither C H F 3 nor CC1F3 show such 

an anomaly with our experimental accuracy. Even though the Lorentz-Lorenz data of 
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C H F 3 show a slight increase close to the critical point (see figure 5.5), it is doubtful 

whether this is a real effect or just a statistical scatter in the data. We therefore assume 

C to have the form of eq. (5.1) and not to exhibit any singularity in the critical region. 



Chapter 6 

Nicotine + Water Experiment: Results and Discussion 

On the binary liquid system nicotine + water, focal plane interference measurements 

and light scattering experiments were carried out. In this way, the order parameter and 

the diffusivity were measured. Section 6.1 presents the order parameter measurements. 

The data suggest that corrections to scaling are of relatively minor importance in this 

system. Section 6.2 compares the results of the diffusivity experiments using the interfer­

ence method and the light scattering method. In the interference method, a systematic 

dependence of the diffusivity on concentration was observed. The light scattering data 

were used to extract the critical exponent of the viscosity. In section 6.3 potential errors 

due to gravitational effects and nonequilibrium effects are discussed. Finally, section 6.4 

presents a discussion of the results. 

6.1 Order Parameter 

For binary liquids, the order parameter Ax* is defined as the difference in concentration 

x of one of species (say nicotine) between the two coexisting phases I and II: 

Ax* = x[ico - xnL = B^{1 + Bxt* + ...) (6.1) 

There is no definite agreement in the literature on whether x should be picked as the 

mole fraction, mass fraction or volume fraction [116]. Usually, one chooses the one that 

produces the most symmetric phase diagram. Since our experiments did not measure 

xi\ic0 and xnfco separately, but only their difference, we could not make a decision based 

105 
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on our data; but since the nicotine + water phase diagram looks very symmetric when 

expressed in terms of mass fraction [81], we decided to define our order parameter in 

wt%. This choice has no influence on the exponent ft [116], but affects the values of the 

amplitudes. 

The order parameter Ax* is related to the refractive index difference between the 

coexisting phases, which is the quantity measured in our experiments. According to the 

data of Campbell et al. [81], the refractive index n varies linearly with composition xm c o. 

in a region x^ico — 0.3 < x m c o < xc

nico + 0.3 around the critical composition, so that we 

can write 

A**=(9,A" »ith (!)c=4-72- <6-2> 
An is related to the the number of recorded interference minima Nm by An = (JV m — 
l/2)\/L (see section 3.2.2), where A = 6328Ais the laser wavelength and L = 0.2 cm the 

cell thickness. 

On the nicotine + water system, data were collected during a period of over two 

years. The order parameter data could be grouped into six data sets. Within each set the 

temperature was measured using the same thermistor, but because different thermistors 

(or different Wheatstone bridges or batteries) were used in different sets, the critical 

temperatures varied somewhat, between 61.37°C and 61.43°C. Within each data set, the 

critical temperature was determined by a power law fit to the order parameter data, 

and when fitting several data sets together, corrections were made for their differences 

in (apparent) critical temperature. 

Figure 6.1 shows a log-log plot of Ax* as a function of reduced temperature, in the 

reduced temperature interval 10"6 < t < 2 x 10-2. Ax* was fitted to the expression 6.1 

with various amplitudes and exponents as free parameters. The results are shown in 

Table 6.1. In the first two fits to a pure power law (i.e., Bi = 0 in eq. (6.1)) the 
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Figure 6.1: log-log plot of the order parameter Ax* of nicotine + water as a function of 
reduced temperature (six data sets). 

0 Bo A Bi 
(0.325) 1.644 - -(0.330). 1.691 - -0.3153 1.557 - -(0.325) 1.692 (0.5) -0.403 
0.3292 1.750 (0.5) -0.535 

Table 6.1: Results of fits of the order parameter of the nicotine + water system. Param­
eters shown in parentheses were held fixed for the fit. 
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Figure 6.2: log-log plot of Ax*/t^ with ft = 0.3153, as a function of reduced temperature. 

exponent ft was held fixed at values obtained in other experiments [82, 117] or expected 

theoretically. In the third fit ft was treated as a free parameter and was found to be 

ft = 0.3153, considerably lower than values obtained in other experiments on binary 

liquids [116]. Figure 6.2 shows a plot of Ax*ft1* as a function of reduced temperature, 

with ft = 0.3153. The lines drawn into the graph indicate slopes that the data would 

exhibit for exponent values ft = 0.325 and ft = 0.330. Clearly, when fitting the data by a 

pure power law, ft = 0.315 gives the most satisfactory result. Introducing one correction 

term B\t0+A leads to a value of ft = 0.329 in much better agreement with the results of 
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other researchers. The amplitude B\ is then found to be negative. Including one more 

correction term may make B\ positive, but the statistics of our data do not justify fitting 

so many free parameters. 

6.2 Diffusivites 

6.2.1 Fringe Data 

As discussed in section 3.2.2, the diffusivity can be obtained from a measurement of the 

maximum deflection angle 6max as the system is quenched from a temperature T,- in the 

two-phase region to a temperature Tf in the one-phase region (see also figure 3.6). If one 

plots K6^ax (where K = (Z/An)2/47r, and An is the initial refractive index discontinuity) 

as a function of time, the data points in a given run are expected to follow a straight 

line. The slope of this line determines the diffusivity D(Tj). Figure 6.3 shows examples 

for three different runs, all with tf = (Tc - Tf)/Tj « 1 . 5 x 10"4, but with different initial 

temperatures T,- and consequently with different initial refractive index discontinuities 

An and order parameters Ax*. The data are seen to be well described by straight lines 

in the time interval considered (< 15 hours after the quench), indicating that the approx­

imations made in section 3.2.2 are indeed valid. Thus, the slopes are well defined and 

D(tf) can be extracted quite accurately. However, as is seen from figure 6.3, the slopes 

of the runs with different initial temperature T,- (or equivalently, different An,) do not 

agree, indicating that D(tj) depends also on the the initial composition discontinuity Ax* 

across the meniscus in the two-phase region. Thus D is in fact concentration dependent 

(in contrast to the assumption in eq. (3.7), and this manifests itself in our experiment as a 

dependence of D on the order parameter, so that D = D(Ax*,tj). Figure 6.4 illustrates 

the dependence of D on the order parameter Ax* for the data taken at tf = 1.5 x 10-4: 

D is seen to increase with decreasing composition discontinuity Ax* across the meniscus. 
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Figure 6.3: Examples for the evaluation of the diffusivity D. Plot of K9~?ax as a function 
of time for three runs with the same value of the final quench temperature Ty, but 
different initial refractive index discontinuities An, corresponding to different initial order 
parameters Ax*: • - An = 0.020 (Ax* = 0.094), A - An = 0.025 (Ax* = 0.118), 
O - An = 0.032 (Ax* = 0.151). 

Figure 6.4: Plot of the diffusivity D(tj, Ax*) as a function of composition discontinuity 
Ax*. 
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This dependence of D on Ax* is strongest for small tf, and less pronounced further from 

the critical point. In order to compare the diffusivities measured by the interferometric 

method with the results of the light scattering experiment (which measures D in the 

one-phase region where Ax* = 0), D(Ax*,tf) has to be extrapolated to Ax* —* 0, and 

we get 

D(tf)= Um D(Ax*,tf) (6.3) 
Ax*—»0 

For lack of a better estimate, the logarithm of D as a function of Ax* was fitted by a 

straight line, and the zero intercept was taken as the value for D(tf). Figure 6.5 shows 

a log-log plot of all diffusivity data D(Ax*,tf) as a function of reduced temperature 

tf. The limiting values D(tf) are marked by full circles. A power law fit of the form 

D(tf) = Do{tf)K (see eq. (2.43)) yields n = 0.61 ± 0.05. 

6.2.2 Light Scattering Data 

The autocorrelation data accumulated in the storage of the Malvern autocorrelator were 

transferred into the UBC Amdahl 5850 and fitted to a relation of the form 

G%\r) = A[\ + Cexp(-2rY + /z2r2)] (6.4) 

where r stands for time. A =< n >< >, where < n > is the total number of undipped 

counts and < ra* > is the number of clipped counts. C is a parameter depending on the 

experimental geometry, < n >, and the sampling time, and is a constant for a given 

experimental run. The diffusivity D is given by the equation 

r = 1/f = Dq2 (6.5) 

where f is the correlation time and q is the scattering vector, q can be expressed in 

terms of the refractive index n of the medium, the wavelength A of the laser light and 
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Figure 6.5: log-log plot of diffusivity data as a function of reduced final quench temper­
ature tj. Data of D(Ax*,t/) are indicated by crosses (+), and the limiting values D(t/), 
with their corresponding error bars, by the symbol •. 
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the scattering angle 6 as 

g =^sin(0/2) (6.6) 
A 

Since the refractive index n enters the diffusivity D quadratically, a precise measurement 

of D requires a precise knowledge of n. Our experiments were carried out on a critically 

filled cell in the one-phase region, and thus we had n = n(T) = nc. The critical refractive 

index was determined in a separate experiment (see Appendix B) and found to be nc = 

1.3811 ±0.0004. 

The parameter p2 in eq. (6.4) is a measure of the variance of the distribution of 

diffusivities given by [118]: 

M 2 =<(r-<r>) 2 >=g<r> 2 where Q= < ( r ~ p ^ 2

> ) 2 > (6.7) 

Thus, Q is a measure of the polydispersivity of the sample. For our experiments, only 

data with Q < 0.02 were taken into account for the evaluation. Whereas Q is usually 

quite small far from the critical point, it increases as Tc is approached. This is due 

to the fact that in the critical region the fluctuations become so important that the 

approximation of single scattering of the incident light is not valid any more. Rather, 

multiple scattering comes into play, distorting the spectrum of scattered radiation. A 

large Q can also be an indication of insufficient equilibration time. Therefore, in our 

experiments data were only taken after waiting long enough so that Q had reached a 

constant value. 

We have taken data of D in the one-phase region at four different scattering angles 

(9 = 30°, 60°, 80° and 90°), the uncertainty in angle being about 0.5°. At angles 30° and 

80°, the diffusivities were measured out to a reduced temperature of « 10 -2, and at angles 

60° and 90° in a somewhat smaller temperature interval. Measurements further from Tc 

are difficult, because the intensity of the scattered radiation is very low. A transition into 

the two-phase region is accompanied by the appearance of a meniscus. We defined the 
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Figure 6.6: Diffusivities of nicotine + water, as obtained from light scattering experiments 
at different angles 9: o = 30°, • = 60°, A = 80° and O = 90°. Error bars are indicated 
for each data point. 

critical temperature as the temperature beyond which a meniscus was observed. This 

allowed us to determine Tc with an accuracy of 2 — 3 mK. 

Figure 6.6 shows a log-log plot of the diffusivity data as a function of reduced tem­

perature. Equation (2.43) describes the behaviour of the diffusivity D(q) = T(q)/q2 as a 

function of reduced temperature and wavevector. In the hydrodynamic limit q£ <C 1 the 

dynamic scaling function Q(q£) becomes a constant (see eq. (2.48)), so in this limit the 



Chapter 6. Nicotine + Water Experiment: Results and Discussion 115 

diffusivity 

fe^-^iF <6-s> 
is expected to be independent of the scattering vector q. Indeed, our data show that 

for large reduced temperatures, where £ is much smaller than the wavelength of the 

laser light, the data obtained at different scattering angles agree. The variation of D 

with temperature in the hydrodynamic limit can be used to obtain an estimate of the 

viscosity exponent zv: Since fj oc £2", the diffusivity in the hydrodynamic limit behaves 

as D oc £-(1+*i) oc t« with n = v(\ + z„). Fitting the diffusivity data for t > 10 -4 

and 0 = 30° by a power law in reduced temperature, we obtain D0 = 4.4 x 10~6 and 

K = 0.658 ± 0.005. Assuming v = 0.630, this implies z„ = 0.044 ± 0.008, slightly lower 

but in good general agreement with other experiments and theory. 

Diffusivity data in the critical region can be used to obtain an estimate of z, the 

exponent characterizing the wavevector dependence of the Rayleigh linewidth in the crit­

ical limit q£ >̂ 1 (see eq. (2.47)). Since we have not measured the bare correlation 

length £o and thus cannot calculate how far the critical region (q( >̂ 1) extends, we 

use the method suggested by Chu and Lin [119] to evaluate z: We calculate an "effec­

tive" exponent zef/(t) as a function of reduced temperature t by fitting our data to the 

expression 
T(q,t) = C^q'-HM (6.9) 

(see eq. (2.47 and eq. (2.48)). For large t (hydrodynamic limit q£ <C 1), ze/f should 

approach the value 2, whereas for < -> 0, ze/f tends to the critical value z. Figure 6.7 

shows a plot of the zeff data. A straight line fit of ze// as a function of t, for z e// > 2.6, 

t < 5 x 10_s, gives z = zeff(t = 0) = 3.104 ± 0.026, slightly higher than the value z = 

3.063 ±0.024 found by Burstyn and Sengers [76]. From the relation between the dynamic 

scaling exponent z and the viscosity exponent zv (see eq. (2.49)) we calculate that zv = 
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Figure 6.7: Plot of the effective exponent zejf(t) as a function of reduced temperature. 
The exponent z is obtained as the limit of ze/f(t —* 0). 
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0.104 ± 0.026, somewhat higher than the value calculated above from considering data 

in the hydrodynamic limit. 

6.3 Potential Sources of Error 

Two potential sources of error in these experiments will be discussed in some detail: The 

question of gravity effects and the problem of equilibration times. 

6.3.1 Gravitational Concentration Gradients 

Concentration gradients are known to develop in binary liquid systems due to the diver­

gence of the osmotic susceptibility close to the critical point. However, because of the 

small diffusivities in the critical region, they take a long time (>• 10 days) to develop and 

reach their equilibrium value [120, 121]. The effects of gravity close to the liquid-liquid 

critical point in nicotine + water can be calculated following Ref. [122]. The variation of 

equilibrium concentration x with height z in thermal equilibrium can be written as 

point with an exponent 7 . Since the exact values for the nicotine + water system are 

not known, we use the result of Ref. [122] as an estimate: (dx/dp)pj « 5.75 x 10_7(T — 

Te)~12. In the nicotine + water system, around the critical composition, (dp/dx)ptx « 

0.064 g/cc [81], and pc « 0.995 g/cm3. Thus we obtain dxnico/dz « l O ^ T c - r ^ / c m . 

Hence, the equilibrium composition profile in the one-phase region is not uniform, as 

assumed in section 3.2.2, but has a finite slope at the site of the meniscus of order of 

magnitude (dxnico/dz). This leads to a finite equilibrium refraction angle 0max, so that 

(6.10) 

Here, (dx/dp)pj is the osmotic susceptibility and expected to diverge close to the critical 
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for times T —• oo one expects that 

emax(r - » « > ) = L

IA

 dxf° » 5 x i o - 7 ( r c - T)- 1- 2 (6.11) 
(ax/dn)c az 

with (dx/dn)c = 4.72 (see eq. (6.2)) and L = 0.2 cm = cell length. This effect is thus just 

barely detectable close to the critical point: at Tc — T = 0.001 K, 0MAX(T —• 00) w 0.1°. 

However, for temperatures so close to T c, the diffusivities are so small that this state 

would only be observed after a very long time (̂ > 10 days [123]), much longer than any 

of our experiments. Thus we conclude that, due to the close density matching, in the 

nicotine + water system gravity effects play a negligible role. 

6.3.2 Equilibration Times 

The long equilibration times, due to the critical slowing down in the critical region, raise 

the question of the validity of experiments performed close to the critical point. We 

present here an estimate of equilibration times in the two-phase region of the nicotine -f 

water system. 

If the critically filled cell, before it is heated from the one-phase into the two-phase 

region, is thoroughly mixed (by removing it from the thermostat block and shaking it), 

we can assume that it is at a homogeneous composition xc. After heating to a reduced 

temperature U = (Ti — Tc)/Tc in the two-phase region (see Fig. 6.8), phase separation 

occurs via spinodal decomposition [124]. This means that one phase will form a network 

of interconnected domains on all length scales in the other phase. The dominant length 

scale of the domains, r, increases with time r as a power law, r oc r~*, where <f> depends 

on the reduced temperature U and on the time regime. In the time interval of interest to 

us, corresponding to the "late stages of spinodal decomposition", <j> lies between —0.6 and 

—0.8 [124, 125]. To simplify calculations, we assume that we are dealing with droplets of 

radius r(r) of the "wrong" composition X\ (and thus the "wrong" density P\) embedded 
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Figure 6.8: Phase diagram of a binary liquid of the type of nicotine + water (with an 
inverted phase diagram). We assume that the system, after a temperature step from Tf to 
Tf, has not reached thermal equilibrium, so that concentrations in the range x\ < x < x° 
are present in the cell. A subsequent temperature step to temperature T( in the two-phase 
region then takes only part of the liquid mixture in the cell into the spinodal region: fluid 
in the composition range x{ < x < x\ will demix via spinodal decomposition, whereas 
fluid in the ranges x\< x <x{ and will demix via nucleation. 
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into a fluid of the "right" density p2, which will thus sink down or float up under the 

influence of gravity. The time it takes these droplets to reach the meniscus can be used 

to determine the relaxation time f. The droplets' velocity is given by Stokes' law, 

. „ i _ a r ' t o - f t ) ( 6 . 1 2 ) 

yr/ 

where 7/ is the viscosity of the medium and will be approximated as r/ « 0.8 cP (using 

the weighted mean with r}water = 0.45 cP and T/„,c0 = 1.7 cP [126]). 

In the case of nicotine + water, the density difference p\ — p2 in the region around the 

critical composition is proportional to the composition difference [81], i.e., Ap = cAx*, 

with c w 0.06 g/cc. In order to approximate r, we use results of a light-scattering 

experiment on isobutyric acid + water [124] which give 

Here, qo is a dimensionless scattering vector which can be estimated to be roughly equal 

to 4 [124]. For an estimate of r in the nicotine + water system, we use the same value. 

We also assume that the bare correlation length £o « 3A [123]. In section 6.2.2 we found 

that D = Dot* with D0 w 4.4 x 10_6cm2/s and K « 0.66; also, from our order parameter 

measurements in section 6.1 we obtained Ax* = B0t^ with B0 = 1.6 and ft = 0.315. 

Finally, using £ = £o*,~" w ^h v w 0.63 we can write 

v.(<T) = v0t-*"a-2'l> (6.14) 

with v0 = (2gn2cBo$2*+1))/(9jiqlD&) and eeff = ft-2u-2<f>(2u + K) W -0.95-3.85c6. 

From this equation the distance d(f) travelled in time f can be calculated as 

2(f)' 

The time f taken by a droplet to travel from the top (or bottom) of the cell to the 

meniscus can then be calculated using d(f) = 1.6 cm, corresponding to half of the fill 

d(f) = j\a(T)dr = -f^t-W (6.15) 
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u f 
10"4 -0.6 « 6000 s spinodal quench 
lO"4 -0.8 « 1000 s 
lO"3 -0.8 « 150 s 
lO"2 -0.8 « 20 s 
10"4 -0.2 « 107 8 quench into 
lO"3 -0.2 « 107 8 nucleation region 
lO"2 -0.2 « 107 s 

Table 6.2: Estimated equilibration times f for quenches to reduced temperature t,- in the 
two-phase region, into the spinodal and the nucleation region of the nicotine + water 
system 

height of the liquid in the cell. Table 6.2 gives an estimate of the equilibration time f as a 

function of reduced temperature t,-. For most reduced temperatures t,-, the equilibration 

times are on the order of a few hours or less for a spinodal quench. 

A more complicated situation arises when the cell is not shaken between individual 

runs (see figures 6.8 and 6.9). After a quench from the two-phase region at temperature 

where two compositions x° and x° coexist, into the one-phase region, the composition 

profile relaxes as described by the diffusion equation. Since the diffusivity is so small, the 

system has not reached equilibrium after a time « 24 h after the quench, and exhibits 

a composition profile as shown in figure 6.9b. Thus, the top and the bottom of the cell 

contain liquid of different compositions x° and x° before the heatup into the two-phase 

region. When heating to a temperature T( in the nucleation region of the phase diagram, 

<f> is much smaller (<f> « —0.2) [125] than for quenches into the spinodal.region (<j> « —0.8), 

leading to much longer equilibration times (see Table 6.2). Thus we face the following 

situation for a cell heated into the nucleation region of the phase diagram: the liquid close 

to the meniscus, in the composition regime x[ < x < x\, demixes rapidly via spinodal 

decomposition, whereas the rest of the cell demixes much more slowly via nucleation. This 
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Figure 6.9: Composition profile as a function of height in the cell (compare to figure 6.8). 
(a): in equilibrium at T = Tf, (b): after a quench into the one-phase region, (c): after 
a heat-up into the two-phase region to a temperature T( > Tf. In the density regime 
x[ < x < x'2, phase separation occurs via spinodal decomposition 
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may lead to a "warped" composition profile in the cell, as shown in figure 6.9c, where the 

composition and thus the refractive index are no longer monotonic functions of height. 

Since only the volume very close to the meniscus is important for the order parameter 

measurements, this effect is not expected to affect the order parameter data. However, 

as the relaxation of the composition profile close to the meniscus depends crucially on 

the composition profile in other parts of the cell, it may have severe consequences for the 

diffusivity measurements. 

6.4 Discussion 

The fits of the nicotine + water order parameter indicate that over the temperature 

interval t < 2 x 10-2 there are deviations from a pure power law. They cause the 

exponent /? to differ from the theoretically expected value, but are less noticeable than 

in pure fluids, where corrections to scaling start playing a role at reduced temperatures 

t > 10~4 (see figures 5.3 and 5.4). Similar results have been obtained in many other 

binary liquids [116] which leads to the conclusion that in binary liquids the scaling region 

extends to larger reduced temperatures t « 5 x 10-3. 

The inclusion of one correction to scaling term results in a negative value of the 

amplitude B\, which at first sight is suspicious. However, the values of amplitudes de­

pend strongly on the temperature range of the data: A similar result was obtained 

in experiments on n-heptane + acetic anhydride [127] and on carbon disulfide + ni-

tromethane [128] where B\ was also found to be negative when data in a reduced tem­

perature interval t < 2 x 10~2 were fitted with one correction to scaling term. 

For a comparison of the results of the diffusivity measurements obtained by light 

scattering and by the interference method, the diffusivities from both experiments are 

shown in the same log-log plot in figure 6.10. From the interference experiment, only 
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Figure 6.10: Comparison of the diffusivities obtained from light scattering experiments 
(open symbols) and interference measurements (with Ax* —• 0, solid circles), as a func­
tion of temperature in the nicotine + water system. 

the data D(tj) (i.e., with Ax* —+ 0) are included. Both data sets show the same quali­

tative trend: the diffusivity decreases as the critical point is approached, with the same 

exponent within error. However, there are some quantitative discrepancies: The diffu­

sivities measured by the interference method are consistently larger than the diffusivities 

measured by light scattering. 

This discrepancy is not due to nonequilibrium .effects in the cell during the interference 

measurements: In the evaluation only those diffusivity data were considered for which the 

waiting time before the quench into the one-phase region was more than five equilibration 

times f (as calculated in section 6.3.2 for quenches into the spinodal region). This was 
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especially true for runs with small Ax*, i.e., runs in which the cell was shaken before 

heating it into the two-phase region. The diffusivities D(Ax*,t/) found for these runs 

lie close to the limiting values D(tf) and are thus consistently larger than the light-

scattering data. Even if for some runs with large initial concentration discontinuities Ax* 

the demixing occurred via nucleation, this has only very small influence on the limiting 

values D[tj) as Ax* —• 0. We thus conclude that the larger values of the diffusivity in the 

interference experiment are to high probability not due to nonequilibrium concentration 

profiles at the outset of a run. 

The reason of the discrepancy may lie in the fact that the interference method is 

inherently a nonequilibrium method, whereas in the light scattering experiment equilib­

rium concentration fluctuations are being probed. The diffusion process can be looked 

upon as a diffusion of little "droplets" of the size of the correlation length in a viscous 

medium (see eq. (2.43)). At a given temperature, the correlation length in a system of 

critical composition is larger than in a system whose composition is off-critical. Thus 

it is plausible that in the interference experiment, where diffusion occurs in two phases 

of off-critical composition, the size of the diffusing droplets is smaller than in the light 

scattering experiment, where the system is kept at critical composition. To our knowl­

edge, the experiment presented here is the first measurement in which microscopic and 

macroscopic diffusivities are directly compared. Further studies on different systems are 

necessary to illuminate the discrepancy in more detail. 

The light scattering diffusivity data, being less affected by statistical variations than 

the interference data, were used to calculate the viscosity exponent zn. From our mea­

surements we obtain that ze// = 3 + zn = 3.104 ± 0.026. This value is slightly higher 

than theoretically expected, in contrast to some other experiments [129] which find 

z = 2.992 ± 0.014, but they agree within error with the result obtained by Burstyn 

and Sengers [76] who found z = 3.063 ± 0.024. We thus measure a viscosity exponent 
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of zv = 0.104 ± 0.026, higher than the theoretical value which is z„ = 0.054 [77] from 

mode-coupling calculations and zv = 0.065 [130] from RG. The reason for the deviation 

may be found in our evaluation method: The quality of the result in applying the method 

of Ref. [119] hinges on having as many precise data close to Tc as possible. We may not 

have approached Tc closely enough to observe the limiting behaviour of zn. Moreover, 

a small change in the value used for the critical temperature will influence the value of 

zv drastically. A change of lmK in Tc changes the value of zv by « 0.05. If our critical 

temperature was not correct, this may account for the discrepancy. 

Another way of determining zv is a fit of the diffusivity to a power law in the hydrody­

namic limit. The exponent « is then related to the viscosity exponent by K = + zv). 

From the light scattering data at scattering angle 0 = 30° at reduced temperatures 

t > 10~4, we deduce that z^ — 0.044 ± 0.008, in close agreement with other experiments 

and with theory. According to eq. (2.43), the diffusivity has a nonsingular contribution 

which we have not yet substracted from the total measured diffusivity as plotted in Fig­

ure 6.6. For some systems, the correction due to the background terms has been found 

to be as large as 1% at q£ = 1 and several percent for smaller q( [76]. Background 

terms in D lead to higher values of the exponent K and thus z„ than expected theoret­

ically [82, 131, 132]. Since the exponents found for nicotine + water in our experiment 

are of the same order of magnitude as the theoretical values, we conclude that back­

ground terms play a relatively small role in nicotine + water in the temperature regime 

covered in our experiment, so that their neglect has a minor impact on the diffusivity 

measurements. 

Because the densities of the two constituents are so closely matched in the nicotine 

+ water system, gravitational rounding of the composition profile plays a negligible role. 

Depending on the temperature, it is either too small an effect to be observed, or it takes 

too long to develop on the scale of the experiments to be noticeable. 
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An interesting aspect is the possible observation of nonequilibrium density profiles. 

As we have shown, spinodal quenches lead to equilibrium after a relatively short time (a 

few hours or less), so that a wait of « 12 h between runs is sufficient to assure equilibrium 

in most runs. If the cell is not thoroughly mixed between runs, however, there is a chance 

of quenching part of the cell into the nucleation region, even if in a series of runs the 

distance from the critical point, T,- — Tc, is increased with each run. One piece of evidence 

for this would be observed in the process of heating the cell from the one-phase to the 

two-phase region: Areas of the cell undergoing spinodal decomposition would exhibit 

critical opalescence, whereas regions of nucleation would remain clear. Indeed, we have 

observed in some of our runs that only the region of the cell close to the meniscus becomes 

milky close to the critical point. 

The hypothesis of a "warped" concentration profile in the cell could explain the 

occurence of so-called "ghost fringes" which have have frequently been observed in our 

lab (and not just in the nicotine -f water experiment): If the refractive index profile is 

not a monotonic function of height, but exhibits "bumps", these will lead to interference 

fringes at angles 0 < 0 and appear as ghost fringes on the films. 



Chapter 7 

He-Xe Experiments: Results and Discussion 

This chapter discusses the results of the experiments on pure xenon and on a helium-

xenon mixture containing 5% He. Section 7.1 presents the results of measurements of the 

Lorentz-Lorenz function, coexistence curve and diameter. The critical density of Xe is 

determined to very high accuracy and found to be insensitive to impurities in the sample. 

The coexistence curve diameter for Xe does not deviate appreciably from a rectilinear 

diameter, in apparent contradiction of the theory of Goldstein et al [26]. 

Section 7.2 gives the results of the experiments on the He-Xe mixture. The order 

parameter and compressibility of a He-Xe mixture are measured to be very similar to 

those of pure Xe, indicating that the addition of He does not change the liquid-gas 

character of the phase transition appreciably. We present a novel way of estimating the 

effect of wetting, by measuring indirectly the rise height of the wetting phase on the 

sapphire windows of the cell. 

Finally, section 7.3 contains a discussion of the results. 

7.1 Experiments on Pure X e 

In an effort to measure the critical density of xenon with as high precision as possible, 

experiments were performed using the prism cell setup. In order to test the consistency of 

the results for different samples, we performed prism cell experiments on two Xe samples 

(Sample #1 and Sample #2, described in Section 4.3) obtained from different suppliers. 

Subsequently, data were taken using the image plane interferomentric technique, as a 

128 
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Co 
[cm3/mole] 

Ci 
[cm6/mole2] 

c2 

[cm9/mole3] 
rc(fit) 

[cm3/mole] 
<CC> 

[cm3/mole] 
Sample #1 10.413 25.28 -1569. 10.515 ±0.001 10.510 ±0.008 
Sample #2 10.382 26.19 -1377. 10.505 ± 0.003 10.504 ± 0.006 

Table 7.1: Results of a quadratic fit to the Lorentz-Lorenz data of two Xe samples. 
£ c(fit) is the critical value of C, obtained from quadratic fits. < Cc > is the average of 
C measurements in the density interval 0.88/>c < p < 1.12pc. 

test of the high-pressure setup and in order to compare coexistence curve measurements 

in the high-pressure cell with those performed in the prism cell. 

7.1.1 Lorentz-Lorenz Function 

The Lorentz-Lorenz function, as defined in eq. (3.1), provides a link between the refractive 

index and the density of a fluid. It is measured by the prism cell method. The Lorentz-

Lorenz function was fitted to a second order polynomial in the density p (see eq. (5.1)). 

Table 7.1 shows results of fits obtained in the density interval 0.3pc < p < 1.4/t»c, and 

results of the critical value Cc = C(pc). Due to the scatter of the data points, the error in 

Cc obtained from various fits, £ c(fit) is considerably smaller than < Cc >, calculated from 

averaging the Lorentz-Lorenz values over the interval 0.88/>c < p < 1.12/>c. Figure 7.1 

shows the Lorentz-Lorenz data of both samples, together with curves corresponding to 

the fit parameters given in Table 7.1. Note that the discrepancy between the £c-values 

of the two data sets is less than 0.1%. Our results for C are in good agreement with other 

experiments which find the Lorentz-Lorenz function to have the value C = 10.52 ± 0.02 

cm3/mole [133] and C = 10.53 ± 0.07cm3/mole [134] on average in the density region 

0.6pc < p < \.lpc. 

Within the accuracy of our measurements, we observe no anomaly in C close to the 

critical point, in agreement with the results of other researchers [133,134]. Using eq. (5.2) 
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Figure 7.1: Lorentz-Lorenz data of Sample #1 (o) and Sample #2 (•). The curves 
correspond to quadratic fits. 
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Ax A\-a pc [mole/cm3 

outer temperature range 
(i > 8 x lO"3) 

Sample #1 0.73 ± 0.04 
Sample #2 0.65 ± 0.04 

(0.0) 0.008495(4) 
(0.0) 0.008481(8) 

total temperature range 
(lO"5 < t < 2 x 10"2) 

Sample #1 0.73 ±0.02 (0.0) 0.008497(2) 
(0.0) 0.47 ± 0.02 0.008492(1) 

1.3 ±1.0 -0.5 ±0.3 0.008502(2) 

Sample #2 0.65 ± 0.01 (0.0) 0.008484(7) 
(0.0) 0.43 ±0.02 0.008481(6) 

1.4 ±1.0 -0.5 ±0.3 0.008488(8) 

Table 7.2: Fit results of the coexistence curve diameter of Xe. Parameters in parentheses 
were kept fixed for the fit. 

we can calculate the electronic polarizability otp from the limiting value of C(p) as p —* 0. 

We find a p = 4.12 ± O.OlA. 

7.1.2 Coexistence Curve Diameter and Critical Density 

The prism cell data can be used to evaluate the coexistence curve diameter, pd = (pi + 

pv)/2pc, of Xe. For all fits of pd the critical temperature was held fixed at the value 

obtained in the coexistence curve fits (see section 7.1.3). 

Figure 7.2 shows a plot of the diameter data of Sample #1 and Sample #2 as a 

function of reduced temperature. In all cases, the data exhibit no significant deviations 

from straight lines. We thus do not observe any singularity of the coexistence curve 

diameter. Table 7.2 gives the diameter fit results. The first part of the table shows 

the parameters obtained from a straight line fit to the data with reduced temperatures 
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Figure 7.2: Coexistence curve diameter of the four experimental runs in the prism cell 
experiment. Open symbols correspond to the data of Sample #1, filled ones to the data 
of Sample #2. 
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t > 8 x 10 -3. For each sample, the data of the two runs were fitted together. The error is a 

measure of the difference between the two runs. The second part of the table gives results 

of fits treating A\ and A\.a as free parameters. The exponent a was kept constant at 

OL = 0.11. When only a linear term is fitted (Ai-a = 0), the values found for A\ agree very 

well with the slopes of the straight-line fits in the outer temperature range t > 8 x 10~3. 

This indicates that there are indeed no systematic deviations from rectilinear diameter 

close to the critical point. Fitting both A\ and Ai-a as free parameters does not give 

useful results, as indicated by the large errors. 

The limiting value of the diameter p& as t —• 0 determines the critical density pc. 

We calculated the value of pc for our samples by averaging the pc-values obtained in the 

various diameter fits. The results are: 

Sample #1: pc = 0.008496(4)mole/cm3 = 1.1156(5)g/cm3 

Sample #2: pc = 0.008489(4)mole/cm3 = 1.1139(5)g/cm3 

For an evaluation of the uncertainty in the value of pc due to systematic errors, it turns 

out to be easier to extract the limiting value n c as t —> 0 of the refractive index diameter 

(n/ + n„)/2 which is directly accessible experimentally and to calculate pc using the 

Lorentz-Lorenz relation. The error calculation is presented in Appendix A. The results 

are: 

Sample #1: nc = 1.1377 ± 0.0001 pc = 1.1160 ± 0.0017g/cm3 

Sample #2: nc = 1.1374 ± 0.0001 pc = 1.1147 ± 0.0017g/cm3 

The small differences of the critical densities found in the two evaluations are well within 

error. 

Table 7.3 compares our values of the critical density with literature values. Our values 

are in good agreement with the literature values, but their error is considerably smaller. 
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Experimented Pc 
Habgood et al. [135] 1.099±? g/cma 

Levelt [136] 1.091±? g/cm3 

Chapman et al. [134] 
Garside et al. [137] 

Baidakov et al. [138] 
Cornfeld and Carr [139] 

1.106 ±0.004 g/cm3 

1.119 ±0.011 g/cm3 

1.1128±? g/cm3 

1.1113 ±0.0017 g/cm3 

1.1128 ±0.0003 g/cm3 

this w o r k : 

Sample #1 
Sample #2 

1.1160 ±0.0017 g/cm3  

1.1147 ±0.0017 g/cm3 

Table 7.3: Critical density of Xe 

Also, the values of Sample #1 and Sample #2 agree very well, indicating that whatever 

impurities they may have contained, these impurities have a minor impact on the critical 

density. 

7.1.3 Coexistence Curve 

Coexistence curve data were obtained both by the prism cell method (samples #1 and 

#2) and by the interferometric technique. The data were fitted to a power law in the 

reduced temperature t> with corrections to scaling as given in eq. (5.3). 

In the prism cell experiment, two runs were performed on each of the two samples. 

Each data set was fitted separately. In order to be able to compare the results of the 

different samples and the different techniques, each data set was evaluated keeping the 

exponents fixed at their theoretically expected values (ft = 0.327, A = 0.5) and fitting 

the critical temperature and two amplitudes as free parameters. The fit results are given 

in Table 7.4. The values cited for each prism cell sample is the average of the results 

of the two runs. The fit results of the amplitudes of the two samples are seen to agree 

within error. Figure 7.3 shows a plot of Ap*/tp as a function of reduced temperature t for 
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Sample Bo Br B2 T C (K) 
Prism cell data 
(f < 3 x 10"2) 

Sample #1 1.479 ±0.011 1.15 ±0.19 -2.6 ±1.0 289.752 ± 0.001 
Sample #2 1.470 ± 0.010 1.20 ±0.17 -2.8 ±1.1 289.789 ± 0.002 

Image plane interference data 
(5 x lO"5 < t < 2 x 10"2) 

Sample #3 (long cell) 1.400 2.00 -5.5 289.920 ± 0.002 
Sample #4 (short cell) 1.412 1.71 -4.1 289.882 

Focal plane interference data 
(5 x 10"5 < t < 4 x 10"2) 1.444 1.41 -2-4 289.807 

Table 7.4: Results of fits to the coexistence curve of Xe. For these fits, the exponents 
/? = 0.327 and A = 0.5 were held fixed. 

the prism cell data of Samples #1 and #2. As is obvious from the figure, individual runs 

on the same sample show excellent agreement. There is a slight systematic difference 

between Sample #1 and Sample #2. In order to avoid overcrowding of the figure, the 

curves corresponding to the individual fits were omitted. The curves correspond to fits 

of all data collected on each sample with /? = 0.327 and A = 0.5 held fixed. 

Interference experiments were carried out on Xe samples in cells of different thickness. 

By changing the window support plugs in our high-pressure cell, the cell length could 

be changed from L = 0.195(2) cm to L = 1.176(2) cm. As the high pressure cell and 

its temperature control system were so bulky, the second beam splitter in the optical 

setup could not be moved very close to the cell. Therefore light refracted from the 

neighbourhood of the meniscus, which is strongly bent close to the critical point, was 

lost from the image. This limited the reduced temperature regime accessible in this 

experiment to t > 2 x 10~5. 

In order to compare the amplitudes obtained in the different experiments, the data 
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Figure 7.3: log-log plot of coexistence curve data of Xe, as measured in the prism cell, o 
- Sample #1, • - Sample #2. The dashed curves correspond to fits to data of Sample #1 
and Sample #2 separately, with two correction to scaling terms and keeping ft = 0.327 
and A = 0.5 fixed. 
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were fitted over the same reduced temperature range. Therefore, for the interference ex­

periments only runs in the temperature interval 5 x 10"5 < t < 2 x 10~2 were taken into 

account. This leaves one set for each long cell (Sample #3) and short cell (Sample #4). 

The fit results on these data sets (again, with ft = 0.327 and A = 0.5 held fixed) are 

included in Table 7.4. The critical temperatures of the samples in the interference ex­

periments are substantially higher than the ones measured in the prism cell experiments. 

Also, the critical amplitudes exhibit a marked deviation from the results obtained on 

Sample #1 and Sample #2. 

As a comparison, Table 7.4 also contains results of a focal plane interference exper­

iment [111], reevaluated using our measurements of the Lorentz-Lorenz function. Here, 

data were taken in the reduced temperature interval 8 x 10 -5 < t < 4 x 10-2. The values 

of Tc and Bo are between the values found in the prism cell experiment and those found 

in the image plane interference experiment. 

Figure 7.4 shows a log-log plot of Ap*/t^ as a function of t for the interferometric 

data. The image plane data are seen to agree very well. There is some disagreement, 

however, with the focal plane experiment [111], both as far as the amplitudes and the 

critical temperature is concerned. 

The interferometric data contain a curious feature which is absent in the prism cell 

data: Around a reduced temperature of t < 3 x 10~4, the data exhibit a "bump" which 

is the more pronounced the thinner the cell. As careful reevaluation of the data shows, 

this is not due to a miscount in interference fringes. Since the size of the effect decreases 

with increasing sample thickness, we assume that it has to do with an interaction of the 

fluid with the cell windows. We will come back to this feature later (see section 7.3). 
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Figure 7.4: log-log plot of the coexistence curve data of Xe from the interference experi­
ments. ® - image plane interference, short cell, x - image plane interference, long cell, 
o - focal plane interference [111]. 
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7.2 He-Xe Mixtures 

After the interferometric experiments on pure Xe, the cell was filled with a He-Xe mixture 

containing w 5 mole% He. For this mixture, order parameter and compressibilities were 

measured. Since our prism cell was designed for pressures up to 60 atm, the Lorentz-

Lorenz function in the critical region of this mixture (with a critical pressure Pc fa 90 

atm) could not be measured. We used the Lorentz-Lorenz data of pure Xe to convert 

refractivity data to densities in the He-Xe mixture. 

7.2.1 Coexistence Curve 

Two coexistence curve runs were performed on the He-Xe mixture. The data were fitted 

to a power law equation with corrections to scaling, as given in eq. (5.3). The critical 

temperature was found to be T c = 291.252(2) K for the first run and Tc = 291.228(2) K 

for the second run. For the coexistence curve fits, in which both data sets were taken 

together, this difference in critical temperature was corrected for. 

Data were taken in taken in the reduced temperature interval 3 x 10~5 < t < 2 x 10-2. 

Table 7.5 shows the fit results. When the data were fitted with two correction to scaling 

terms, a fit treating the exponent ft as a free parameter gave /3 = 0.3249, in excellent 

agreement with theory. Also, keeping /? = 0.325 fixed and fitting A as a free parameter 

yielded A = 0.498, again very close to what is expected theoretically. Fitting the data 

with one more correction to scaling term has a negligible influence on Bo and B\, and 

changes the value of B2 only slightly. We thus conclude two corrections to scaling are 

sufficient for describing our data. Figure 7.5 shows a plot of Ap*/^ as a function of 

reduced temperature for two experimental runs. The curve corresponds to a fit keeping 

A = 0.5 fixed and treating /? as a free parameter, with two correction to scaling terms. 

Both data sets taken on the mixture exhibit a "bump" of the coexistence curve in the 
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reduced temperature 

Figure 7.5: log-log plot of Ap*/t^ as a function of reduced temperature t for a He-Xe 
mixture containing « 5 mole% He. The curve corresponds to a fit with two correction 
to scaling terms, holding A = 0.5 fixed and fitting /? = 0.3249 as a free parameter. 
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A B0 Br B2 B3 

total temperature interval 
2 x lO"5 < t < 2 x 10"2 

(0.327) 
(0.325) 
0.3249 
(0.325) 
(0.327) 
(0.325) 

0.498 
(0.5) 
(0.5) 

(0.5) 
(0.5) 
(0.5) 

1.370 1.96 -4.3 
1.344 2.12 -4.7 
1.343 2.13 -4.8 
1.344 2.11 -4.7 
1.370 1.93 -3.8 
1.343 2.17 -5.4 

(0.0) 
(0.0) 
(0.0) 
(0.0) 
-1.8 
2.7 

outer temperature range 
5 x 10"4 < t < 2 x 10"2 

(0.327) 
(0.325) 

(0.5) 
(0.5) 

1.373 1.93 -4.2 
1.349 2.06 -4.5 

(0.0) 
(0.0) 

Table 7.5: Results of coexistence curve fits of a He-Xe mixture containing « 5 mole% 
He. Parameters in parentheses were held fixed for the fit. 

vicinity of t < 3 x 10~4 as observed in pure Xe. This feature causes deviations of the data 

from the assumed power law close to Tc. In order to make sure that this feature does not 

bias the fit results, fits were performed on the reduced temperature interval t > 5 x 10-4, 

where the effects of the bump are not noticeable. The results of these fits are also given 

in Table 7.5. Clearly, the bump has only a small effect on the amplitudes. 

7.2.2 Compressibilities 

The compressibilities can be obtained from the fringe spacing near the meniscus, in the 

manner described in reference to eq. (3.16). For the He-Xe mixture containing » 5 mole% 

He, the critical pressure Pc was measured to be Pc = 90±1 atm and pc w 1.11 g/cm3. The 

compressibilities were measured in the one-phase and the two-phase region. Figure 7.6 

shows a log-log plot of the compressibility as a function of reduced temperature. The 

data were fitted to a power law Kj = ro

t|r|~')'. Table 7.6 presents the results of this fit. 

In the one-phase region, a power law fit to the data leaving 7 a free parameter 
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reduced temperature 

Figure 7 . 6 : Compressibilities of a He-Xe mixture containing 5 mole% He. • - data in 
the one-phase region, o - data in the two-phase region, + - data point of pure Xe in the 
one-phase region. 
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7 
One-phase region 1.07 ±0.03 1.07 ±1.0 

(1.241) 0.21 ± 0.04 
Two-phase region 0.94 ± 0.02 1.05 ±1.0 

(1.241) 0.07 ± 0.03 

Table 7.6: Compressibility fits of a He-Xe mixture. Parameters in parentheses were held 
fixed for the fit. 

yields 7 + = 1.07 ± 0.03, considerably lower than the theoretically expected value. In 

the two-phase region, a power law fit gives 7 = 0.942 ± 0.018, also substantially lower 

than the theoretical value. Fitting the compressibility data in the one-phase region with 

7 + = 1.241, we obtain TQ = 0.212 ± 0.041. This value is substantially higher than the 

one measured by Giittinger and Cannell [13], who found that for pure Xe TQ « 0.0575. 

One reason for the discrepancy might be that in our experiments the system was not 

in thermal equilibrium. Close to the critical point, the equilibration times become very 

long, due to the small diffusivities in the critical region. We found, however, that data 

taken after an equilibration period of 3-4 days do not exhibit significantly lower values 

of TQ than data taken after « 12 hours, and therefore we conclude that the discrepancy 

is not due to insufficient equilibration time. 

Another possible explanation is the presence of temperature gradients in the cell [79]. 

The consequences of a thermal gradient on the compressibility are discussed in Ap­

pendix C. We find that the discrepancy in the compressibility can indeed be ascribed to 

a nonuniform temperature in the cell, with a gradient of w 2 mK/cm. 

The deviation of our measured value of 7 from the theoretically expected value there­

fore could be attributed to a thermal gradient which depends on the temperature dif­

ference between cell and surroundings. Since the room temperature varied by several 

degrees, this also may explain the comparatively large scatter in the data. 
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Figure 7.6 contains one data point of the compressibility of pure Xe in the one-phase 

region, which is seen to agree very well with the He-Xe data. Thus, there is no substantial 

difference in the compressibility of the mixture and the compressibility of pure Xe, and 

the large value of the compressibility of the mixture close to the critical point indicates 

that the phase transition in the binary fluid has very similar features to the liquid-gas 

phase transition. 

7.2.3 Wetting 

In the Xe and the He-Xe experiments, the image of the meniscus far from Tc is not seen 

as a narrow line (as in the C H F 3 experiment), but as a broad streak the width of which 

decreases as Tc is approached. This behaviour of the meniscus can be related to wetting 

of the walls by the fluid and suggests a novel experimental method for measuring the 

rise of a wetting fluid on the wall of the container. Figure 7.7 shows a log-log plot of the 

meniscus width as a function of reduced temperature for the two He-Xe runs and the Xe 

run using the thin cell. Far from Tc the the meniscus width is seen to approximately obey 

a power law in the reduced temperature, as indicated by the dotted lines which represent 

power-law fits to the Xe and He-Xe data in the temperature regime 4 x 10 -3 < t. Around 

t w 4 x 10~3 deviations from this power law occur towards larger meniscus values. The 

data for pure Xe exhibit a similar exponent to the data for the He-Xe mixture, but with 

a slightly different amplitude. The deviation between the two data sets may be due to a 

small difference in magnification factor from the cell to the image which was not properly 

taken into account. 

The results for the meniscus width can be understood in the framework of wetting: 

Classically, a liquid in equilibrium with its vapour partially wets a confining wall. The 

rise height adjusts itself in such a way that the pressure drop across the meniscus due to 
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Figure 7.7: log-log plot of the meniscus width as a function of reduced temperature, o, •— 
He-Xe experiment (two data sets), and •— Xe experiment (one data set). The dashed 
(dotted) line corresponds to a power law fit to the He-Xe (Xe) data in the temperature 
range t > 4 x 10-3. 
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surface tension is balanced by the buoyancy force. The equilibrium rise height is [140] 

2E h = J——Vl-sm0 (7.1) 

where E is the surface tension, Ap = p\ — pv is the density difference between liquid 

and vapour and 0 is the contact angle at the wall, determined by cos 6 = (crav — crai)/cr, 

where o~av (<rai) are the surface free energy between the vapour (liquid) and the solid 

wall and tr is the surface free energy of the liquid-vapour interface. As the contact 

angle is small [141, 142], we obtain that h w yjTE/gAp [143]. The density difference 

varies with reduced temperature as Ap oc t&. The surface tension E obeys a power law 

E oc ((T 0-T)/r 0) n with n > 0, where T0 is a temperature close to Tc [144]. Thus the rise 

height h decreases as the critical point is approached following a power law h oc r(n-^)/2. 

Wetting therefore leads to a curved meniscus, with fluid near the windows creeping up to 

wet them. Incident rays hitting the cell in the region of this meniscus are bent or scattered 

and lost in forming the image of that region of the cell. Identifying the meniscus width 

measured in the experiment with the rise height h, one can thus extract the exponent 

n. From a power law fit to our meniscus data, M(t) oc r̂ , for reduced temperatures 

t > 10-3, we get C = 0.441 ± 0.020 for the He-Xe runs and C = 0.473 ± 0.018 for pure Xe. 

From this, the surface tension exponent can be calculated. We obtain n = 1.21 ± 0.04 

for He-Xe and n = 1.27 ± 0.04 for Xe. These values are in good general agreement with 

the one cited by Cahn [142] who finds n = 1.3. 

The deviation of the meniscus widths from a power law for small reduced temperatures 

may be interpreted as an indication of total wetting close to the critical point [143, 142, 

145]. This effect distorts the meniscus close to Tc from its classically expected shape, 

causing the denser phase to creep up very high ("infinitely high") along the walls. Thus a 

broader region around the meniscus, in which light rays are scattered and thus lost in the 

formation of the image, can be understood in terms of a critically expanded wetting height 
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in the proximity of the critical point. The determination of the exact meniscus width is 

made difficult by the presence of interference fringes inside the image of the meniscus. 

Very close to Tc, the meniscus looks totally sharp, indicating that the meniscus height 

vanishes as the critical point is approached. 

7.3 Discussion 

Within the accuracy of our experiment, we observe no critical anomaly in the Lorentz-

Lorenz function of Xe. The Lorentz-Lorenz data measured in two different samples of 

Xe agree to within 0.1% and agree with results obtained by other researchers. They can 

be adequately described by a second order polynomial in the density. 

In our prism cell data on pure Xe, we observe no critical deviation from a rectilinear 

diameter. This is in contradiction with the theory of Goldstein et al. [26] according to 

which we would expect an anomaly whose magnitude should be proportional to appc. 

For Xe, aapc = 0.021, larger than in any of the nonpolar gases studied in Ref. [28] which 

all display critical singularities in the diameter. Thus, we would expect the anomaly in 

Xe to be larger than observed in other fluids. However, there are indications [146] that 

in the Xe system the Axilrod-Teller interactions are not the most important three-body 

forces. Rather, exchange interactions play a dominant role. These, however, are not 

taken into account in the theory of Goldstein et al. This is a possible explanation of why 

the theory does not correctly predict the diameter anomaly of Xe. 

From the diameter data, critical densities can be calculated. The values of pc obtained 

from Sample #1 and Sample #2 agree to within 0.1%, demonstrating the reproducibility 

of the method and the insensitivity of the result to impurities. 

The coexistence curve amplitudes, as obtained from fits on Sample #1 and Sample #2 
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agree very well. The critical amplitude B0 is slightly lower in Sample #2 than in Sam­

ple #1. Also, the critical temperatures of the two samples differ by about 40 mK. Since 

the same experimental method and the same cell was used in the two measurements, this 

discrepancy must be due to differing impurities in the two samples. It is well known that 

the presence of impurities can strongly influence the critical temperature of a pure fluid 

sample [109]. As Tc in Sample #1 is so close to the literature value (Tc = 289.74 K), we 

assume that it is cleaner than Sample #2. 

In contrast to this good agreement, the amplitudes obtained from fits to the inter­

ferometric data are markedly different: Even though the values of Bo obtained from the 

image plane experiments on Xe agree well, they are substantially lower than the values 

obtained in the prism cell experiments. Also, the critical temperatures measured in the 

image plane experiment are considerably higher than in the prism celll experiments. This 

is probably due to He impurities in the high pressure sample cell: Since the setup was 

pressure-tested using He, and since the high-pressure tubing has such a small inner di­

ameter, it is quite possible that not all the He was removed from the cell before filling it 

with Xe. A He contamination has the effect of increasing the critical temperature [44], 

as indeed observed in our experiment. The focal plane interference data exhibit values 

of Bo and Tc between the image plane interferometric experiment and the prism cell 

experiment, indicating that the sample was probably also contaminated. 

A He-Xe mixture containing 5 mole% He has a lower critical amplitude Bo than pure 

Xe. Simultaneously, the critical temperature is substantially higher. The compressibility 

measurements were complicated by the presence of thermal gradients in the cell. This 

caused some scatter in the data, and led to distorted values of the critical amplitudes 

and exponents. 

In the image plane interference experiments on Xe and the He-Xe mixture, and area 

in the vicinity of the meniscus appears as smeared; the streak is the broader, the further 
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the system is from Tc. Identifying the width of this streak with the rise height of a 

wetting fluid, we measure an exponent of the surface tension which is in good general 

agreement with the value cited in the literature. This agreement indicates that it is 

indeed reasonable to assume that the finite meniscus width as seen in the image plane 

is due to wetting. The meniscus width data deviate from the power law at reduced 

temperatures f « 4 x 10-3. In the interference measurements on the order parameter of 

Xe and He-Xe, we observed a wiggle on the data in the reduced temperature regime of 

t « 4 x 10~4. Since this feature is the more pronounced for the thinner cell, we assume 

that it is also somehow related to wetting. The exact relation, however, is not clear at 

the moment. 

Comparison of the coexistence curve data and compressibilities of Xe with those of 

the He-Xe mixture shows that there is no substantial difference between the two systems. 

This fact may be explained by the conjecture that the interference experiments cannot 

"see" the He, since He has a refractive index so close to unity. Moreover, the He atoms 

are small compared to the Xe atoms and could therefore easily slip through voids between 

the Xe atoms. In this case, they would not displace any Xe atoms, and would not have 

any effect on the density and refractive index of the xenon. An investigation of a He-Xe 

mixture using neutron scattering [45] found that the presence of He had a negligible effect 

on the Xe-Xe correlation function, so that the main effect of the presence of He is a shift 

of the critical temperature and pressure. This indicates that the phase transition has 

characteristics of the gas-liquid type rather than the binary liquid type. 



Chapter 8 

Conclusions 

In this chapter, the results of the experiments performed in this thesis will be briefly 

reviewed and compared. 

In order to test the influence of dipolar interactions on the order parameter and 

the coexistence curve diameter in pure fluids, experiments were carried out on CHF3 

(a strongly dipolar fluid), CCIF3 (a weakly dipolar fluid) and Xe (a nonpolar fluid). 

Table 8.1 gives an overview of the results. Here, ctp is the effective polarizability (as 

defined by eqn. (1.7)), A\ is the linear term in the coexistence curve diameter (fitted 

for reduced temperatures t > 8 x 10~3), and B0 is the critical amplitude of the order 

parameter. Our results for Bo and A\ can be compared to the theory of Goldstein et 

al. [26, 28], which, starting from a microscopic model of three-body interactions between 

the particles in a fluid, calculates the impact of these three-body forces on the critical 

amplitudes BQ and A\. It is found that the amplitudes depend on a parameter x = q/ab, 

where q is the integrated strength of the three-body potential and a and b are the van 

der Waals parameters. In the limit of small x one obtains that A\ = 2/5 + 22x/15 + ... 

Substance Pc [g/cc cyA3] <XpPc Ai B0 

CHF 3 0.527 3.5 0.016 1.31 ±0.04 1.75 ±0.02 
CCIF3 0.582 4.67 0.016 0.86 ± 0.02 1.64 ± 0.02 

Xe 1.115 4.12 0.021 0.69 ± 0.04 1.45 ± 0.03 

Table 8.1: Comparison of critical polarizability product, order parameter amplitude and 
diameter slope for substances with different strength of dipolar interactions. 

150 
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Figure 8.1: Plot of the order parameter amplitude Bo as a function of the diameter slope 
Ai for a variety of pure fluids. The line corresponds to a straight-line fit to the data. 

and Bo = 2 + 2x/3 + .... This implies that the order parameter amplitude Bo increases 

linearly with the diameter slope Ai like 

Figure 8.1 shows a plot of Ai as a function of Bo. The data of all substances investigated 

fall on a straight line, which supports the hypothesis of three-body interactions as pos­

tulated in the theory of Goldstein et al. Even though C H F 3 , being a polar fluid, exhibits 

a value of Ai which is markedly larger than for nonpolar fluids, its value of Bo is also 

larger, so that the proportionality of Ai and BQ is still approximately satisfied for C H F 3 . 

If the dominant three-body forces are triple-dipole forces of the Axilrod-Teller type [27], 

(8.1) 
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Figure 8.2: Plot of the diameter slope A\ as a function "of the critical polarizability 
product for a number of fluids. The line corresponds to a straight line fit to the data 
(without Xe and CHF3). 

then x is found to be proportional to the dimensionless quantity dppc, called the "critical 

polarizability product" [28]. Figure 8.2 shows a plot of A\ as a function of dppc for a 

number of nonpolar fluids investigated before [28], and the three fluids of this thesis. The 

agreement with the theoretically expected curve is good for CCIF3, but the values for 

Xe and C H F 3 deviate strongly from this curve. This suggests that in the case of CHF 3 

and Xe the three-body interactions are not Axilrod-Teller dipole-induced-dipole forces. 

In the case of C H F 3 , the reason may be due to the strong molecular dipole moment of 

the molecules. For Xe, there are indications [146] that the modification of the two-body 
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potential due to three-atom exchange interactions is more important than the one due 

to Axilrod-Teller interactions. This may explain why Xe exhibits a different relationship 

of Ai to ctppc than other nonpolar fluids [28]. 

Since hydrogen bonds between the molecules play an important role in C H F 3 , it is 

not easy a priori to decide whether the difference in the critical amplitudes of C H F 3 and 

nonpolar fluids are due to the dipolar coupling between the molecules or due to hydrogen 

bonds. This question must be addressed in a separate investigation. 

A deviation from rectilinear diameter is observed in C H F 3 and CCIF3, but not in Xe. 

This is in contradiction to the theory of Goldstein et al, according to which the strength 

of the diameter singularity is expected to be proportional to the critical polarizability 

product dppc. Xe, having a large value of ctppc, should therefore exhibit an especially 

strong critical singularity. The reason for this discrepancy may again be the fact that the 

Axilrod-Teller forces, in the case of Xe, are less significant than the three-body exchange 

forces [146]. 

Precision measurements of the critical density of Xe give values that are in close 

agreement with other data, but are more accurate. Impurities are found to have a 

negligible influence on the value of the critical density. 

The universality conjecture states that the critical exponents and certain amplitude 

ratios should be the same for all systems in a given universality class. Table 8.2 gives a 

comparison of the values of the order parameter exponent /? and the correction to scaling 

exponent A found in the various systems studied in this thesis. The values of /? found 

in these vastly different fluids and liquid mixtures agree within error, in agreement with 

the principle of universality. They are also in close agreement with values found in other 

experiments and expected theoretically. For C H F 3 , CC1F3 and nicotine + water, the 

value of A is smaller than expected theoretically (A « 0.5 [11]). This same trend has 

been previously observed in other experiments [89]. For He-Xe, A is significantly larger 
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Substance 0 A 
CCIF3 0.328 ± 0.002 0.43 ± 0.02 
CHF 3 0.328 ± 0.002 0.41 ± 0.02 

nicotine + water 0.329 ± 0.003 
Xe 0.328 ± 0.003 0.44 ± 0.02 

He-Xe 0.325 ± 0.002 0.50 ± 0.02 

Table 8.2: Comparison of the order parameter exponent 0 and the correction to scaling 
exponent A for the substances studied in this thesis. 

than in the other substances investigated in this thesis and very close to theoretically 

calculated value. 

From experiments on CHF 3, the universal amplitude ratios TQ /T~ and DQTQBQ'1 

have been determined (see table 5.7). They are in excellent agreement with theoretical 

predictions and with values found for nonpolar fluids, indicating that, as expected, the 

dipolar interaction between the molecules does not influence the universality class. 

In the experiments on the binary liquid system nicotine -f water, diffusivities were 

measured both by light scattering, an equilibrium method, and by focal plane inter­

ference, a nonequilibrium method. In the nonequilibrium method, the diffusivity data 

depend on the initial concentration difference between the phases, and the values of the 

diffusivity to be compared with the light scattering data are obtained in the limit as the 

initial concentration discontinuity goes to zero. In each experimental run, lasting up to 

15 hours, the diffusivity was found to be constant in time for the duration of the exper­

iment, which indicates that boundary effects did not play a role. The data from light 

scattering and interference experiments follow the same trend, but exhibit quantitative 

differences. From the light scattering diffusivity data the critical exponent of the viscosity 

was extracted to yield zn = 0.05 ± 0.01, in good agreement with other experiments [76] 

and theory [77, 130]. 
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In the binary fluid system He-Xe, an example of "gas-gas equilibrium", the critical 

amplitude of the order parameter, Bo, and the compressibility are close to those of pure 

Xe. The fact that the isothermal compressibility of the mixture is as high as that of 

the pure substance leads to the conclusion that the He-Xe mixture behaves more like a 

fluid than a binary liquid. Thus, it seems as if the presence of He has mostly the effect 

of increasing the critical temperature and the critical pressure [109]. Even though this 

effect may be explained by our experimental method being unable to "see" the He, there 

is strong evidence [45] that in fact the He-Xe phase transition is of the liquid-gas type. 

In order to obtain a conclusive answer, binary fluid systems like Xe-Ar, in which both 

constituents have refractive indices markedly different from 1, and in which the sizes of 

the atoms are less dissimilar, should be investigated. 



Appendix A 

Error Analysis for Prism Cell Measurements 

This appendix describes how the refractive index of a fluid inside the prism cell can 

be obtained from the refraction angle, and presents an error evaluation for the critical 

density obtained from a prism cell measurement. 

A . l Calculation of refractive index from refraction angle 

We assume that the incident beam hits the first (straight) window of the prism at right 

angles. The refracted beam leaves the prism at an angle K with respect to the incident 

beam. Figure A.l shows the geometry and defines the angles. All dotted lines ( ) 

correspond to directions parallel to the incident beam. All dashed lines ( ) indicate 

normals to the window faces. na, na and the refractive indices of sapphire, air 

and xenon respectively. 8s(6t) is the wedge angle of the straight (tilted) window, and 6 

is the prism angle. Angles a; are between the beam direction and a surface normal, 

are angles between the beam and the direction of the incident beam, and K is the total 

(measured) refraction angle. For obtaining an expression of the refractive index nxe of 

the substance in the cell as a function of the deflection angle K, we use the following 

equations: 

• Snell's law 

n„ sin ai = nxe sin a2 nxe sin a 3 = na sin a 4 na sin a 5 = n„ sin a6 
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Appendix A. Error Analysis for Prism Cell Measurements 157 

Figure A.l: Refraction geometry of the prism cell experiment. For an explanation of the 
symbols, see text. 
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• Window wedges 

cti = 6S and 0:5 — 0:4 = 0t 

• Direction of beam with respect to incident direction: 

« 2 + 0 — <*4 OLQ — K + a 5 — K2 

As 0„ and 0t are small, we can Taylor-expand to obtain: 

sin 6a « 9, smOt ~ 0, cos « cos0a « 1 

One thus obtains, to first order in 0a and tV-

n = (n./ sin 0) [sin(K + 5) + • 0« (COS(K + 0) - ^ / n * - sin2( 

+ 0,(sin(/c -f-0) cot 0 — n, cos 
(A.l) 

This relates the refractive index of the medium nxe to the refraction angle K. 

A. 1.1 Error Estimates 

Careful calibrations and an estimate of errors was essential for judging the accuracy of 

the critical densities determined in the prism-cell experiments. The following quantities 

were measured with the given accuracy: 

• Systematic errors: 

1. Prism angle 0 = 20.525°, with 60 = 0.010°. 

2. Sapphire window wedges: 

Straight window: 0a = -0.00018, 60a = 0.00002 

Tilted window: 0t = -0.00041, 60t = 0.00003 

3. Volume of prism cell V = 12.066cm3, 8V = 0.003cm3. 
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4. Mass of empty prism cell: M0 = 179.3995g, 8M0 = 0.0030g. 

Items 1 and 2 limit the accuracy of refractive index measurements. They lead to 

errors 8npr, 6ns and Snt due to the error in the prism angle 6 and the tilt angles 0a 

and 6t respectively. Items 3 and 4 limit the accuracy of the density p — M/V. 

• Random errors 

1. Mass readings 

2. Micrometer reading 

3. Temperature reading 

These errors produce a random error 8CC in the value of the Lorentz-Lorenz function 

at the critical point and a statistical error 8nc in the critical refractive index. In 

our experiments we found that 

The parameter C is obtained from a Taylor expansion of the Lorentz-Lorenz relation 

around the critical point, and is given by 

The total error in the critical density can then be evaluated to be 

(A.2) 

where 

C = 
6nl 

(n2 + 2)( i .a- l)" 



Appendix B 

Critical Refractive Index and Critical Density of Nicotine + Water 

This appendix descibes the experimental methods used for measuring the critical refrac­

tive index and the density of the nicotine + water mixture, and gives the results of the 

experiments. 

B . l Critical Refractive Index Measurement 

As is clear from equations (6.5) and (6.6), the scattering vector q and therefore the 

diffusivity D depend on the exact knowledge of the refractive index of the liquid mixture. 

In order to determine the refractive index nc of the critical mixture of nicotine + water 

as accurately as possible, we used an interferometric method. The mixture of critical 

composition was contained in a Hellma cell with parallel windows which in turn was held 

in a cylindrical cell holder to whose end a gear was attached. A geared-down toy motor 

turned the cell slowly about its vertical axis at a rate of about 1/24 rph. The cell-motor 

assembly was placed inside the thermostat in one arm of a Mach-Zehnder interferometer 

(see figure 3.7). As the cell was rotated, the optical path through it changed, leading to 

a change in the interference pattern between the cell beam and the reference beam. This 

interference pattern was detected in one spot in the image plane by a light sensitive diode 

(Hamamatsu). The diode output was monitored on an x — t recorder. The number of 

interference fringes is simply related to the optical path through the cell which depends 

on the refractive index of the medium inside. Thus, a measurement of the interference 

minima and maxima as a function of time (and thus of the rotation angle of the cell) 
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could be used to extract the refractive index of the liquid. 

As the cell is rotated around its vertical axis, the angle <f> between the cell normal and 

the incident beam changes as a function of time r. The number of interference fringes 

N(T), as measured from normal incidence (<j> = 0) is 

N(T) = ^ (yfnl — sin2 <j> — cos <f> — n0 + 1̂  + (y/n2 — sin2 <f> — cos <j) — n + lj (B.l) 

where d is the thickness of the quartz windows of the cell, no = 1.45709 is their refractive 

index, D is the sample thickness in the cell, n is the refractive index of the sample, and 

Ao is the laser wavelength. As the rotation frequency of the cell is known, one can relate 

the rotation angle c6(r) at any time r to the number of interference maxima recorded on 

the chart, and thus N(T). In order to determine the time To at which </>(r0) = 0, the 

run was started at <f> w —10° and TQ was taken such that the interference pattern was 

symmetric around To, i.e., that N(r + r0) = N(T — To). 

A calibration run with an empty cell (n = 1) gave 2d = 0.246 ± 0.001 cm, and 

measurement of the total cell thickness yields (D + 2d) = 0.445 ± 0.001 cm. Thus the 

window spacing was measured to be D = 0.199 ± 0.001cm. 

For the run with a filled cell, the interference pattern was recorded from <f> w —10° 

to <j> « 50°, where the number of fringes is 940. A least squares fit to expression (B.l) 

yielded 

n c = 1.3811 ±0.0004 (B.2) 

Figure B.l shows a plot of the number of interference fringes as a function of angle <f>. 

B.2 Densities of Nicotine + Water Mixtures 

The densitometer used for the measuring the densities of nicotine + water mixtures -

consisted of a pyrex bulb with a 0.1 ml pipet of resolution 1/1000 ml attached to it. The 



Figure B.l: Plot of the number of interference fringes as a function of rotation angle <f>. 
The line corresponds to a fit giving a refractive index of nc = 1.3811. 
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volume of the bulb was calibrated by filling the bulb with deionized water at 20° C and 

weighing it on a chemical balance. We found Vo(20°C) = 63.274 ± 0.002cm3. Due to the 

thermal expansion of pyrex [147], the bulb's volume changes in the temperature range 

20° C < T < 80° C approximately as 

V(T) = Vr

o(20°C) [l + (T - 20) * 12 x 10~6], (B.3) 

with T given in °C. The pipet was also calibrated with dionized water. The empty 

densitometer weighed 22.664 ± 0.001 g. 

For a measurement of the temperature dependence of the density p in a nicotine + 

water mixture of a given composition, the densitometer was filled with the mixture and 

weighed. The bulb was subsequently immersed into a carefully temperature regulated (to 

0.1°C) stirred water bath, and the rise height of the liquid in the pipet and equivalently 

the volume occupied by the liquid, was determined. Since the density was measured over 

a large temperature interval, it was necessary to "bleed" liquid from the densitometer 

at regular intervals as the temperature was increased, in order to keep the liquid from 

overflowing, and to reweigh the densitometer. 

Figure B.2 shows a plot of the mixture densities as a function of temperature for pure 

nicotine, pure water, and a variety of mixtures around the critical composition. Note 

that for T > T c, a near-critical mixture is in the two-phase region, which means that the 

densitometer contains two phases in equilibrium. This may account for the fact that in 

the mixtures, the p vs. T curves exhibit a slight change in slope in the neighbourhood 

of the critical temperature, w 61.4°C. 

The concentration dependence of the density around the critical temperature is mea­

sured from our experiments to be 0.273 ±0.044 mg/%cm3. This information can be used 

to "density-match" the liquid mixture close to the critical point, where the nicotine con­

centration is « 40% [81]: An increase in the water density by about 0.66% will make the 
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Figure B.2: Temperature dependence of the density p of nicotine + water mixtures of a 
variety of compositions. The numbers indicate nicotine concentration in weight %. The 
uncertainty in the compositions is « 0.2%. 
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coexisting phases in the vicinity of the critical point have the same density. To accom­

plish this, 0.7 wt% heavy water D2O have to be admixed to the "normal" dionized water. 

Under these circumstances all gravity effects, which are already small in the nicotine -f 

water system (see section 6.3.1), can be made even smaller. 



Appendix C 

Thermal Gradients in the Sample Cell 

In this appendix we study the influence of a thermal gradient in the sample cell on 

compressibility measurements. A thermal gradient has the effect that the measured 

variation of density with height z has two contributions, one isothermal and the other 

due to the temperature variation [79]: 

For the extraction of compressibility data, we measure the spacing of the interference 

fringes in the vicinity of the meniscus (z = 0) where the pressure and density are at their 

critical value. There, one can write [2] 

(frL " (§)„, = " (IP)t (ff)„ " ik Or ©„' (C'2) 

Using the law of corresponding states [1], (dP/dT)Pc can be estimated to yield 

where R is the gas constant and b is one of the parameters in the van der Waals equation. 

The compressibility as measured in the experiment can then be written as 

4 " = / C T [ i + -L. JL (£.)] (CA) 
T [ 0A95gM \dz)\ v ; 

with M. denoting the molar mass of the fluid. If the temperature dependence of the 

second term is weak, then Kj * has the same temperature dependence as KJ, and we can 

write: 

4 " = o r (c.5) 
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A comparison of the compressibility amplitude in the one-phase region of pure Xe, 

Y*jj = 0.21, (corresponding to the data point marked by "+" in figure 7.6) with the 

literature value TQ = 0.0575 [13] permits a calculation of the temperature gradient in 

our experiment. We obtain: 

This corresponds to an overall temperature difference of 7.5 mK over the total height 

of the cell. This seems like a very large gradient. It must be due to some heat leak 

from the cell's environment, which for the actual running conditions was 2-4 degrees 

warmer than the cell. This result is in general agreement with the test for thermal 

gradients performed prior to the experiments (see section 4.3), in which we found the cell 

bottom to be < 3 mK warmer than the top when the cell was 0.1-1 degrees warmer 

than the environment. In order to test for possible influences of the temperature of the 

outer bath on the compressiblity, the bath temperature was varied while keeping the cell 

temperature constant. This variation had little effect on the compressiblity, well within 

statistical scatter, so that we conclude that a thermal gradient like this does not stem 

from a heat leak from the cell to the bath. Rather, it is probably due to the stainless 

steel gas fill line. 

(C.6) • 
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