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Abstract 

We prove that the generalization of the Skyrrae quartic lagrangian from flavor SU(2) to 

flavor SU(3) is not unique. Under the general assumptions of chiral symmetry, Lorentz 

invariance and restriction to two time—derivatives, there are two independent SU(3) 

forms. We apply within the framework of the Yabu and Ando approach, the new 

"alternate" lagrangian to a calculation of octet and decuplet baryon mass differences 

and find good agreement with experiment. We consider the alternate lagrangian to 

construct an eta-nucleon bound state model for the N(1535) resonance. Also, we have 

considered the problem of describing the S and P wave 7r-nucleon scattering within 

the framework of the Skyrme model. We go beyond the adiabatic approximation by 

considering the introduction of time—derivative interactions between pions and collec

tive coordinates. A truncation scheme of unphysically open channels is introduced in 

K-matrix formalism and a unitary S-matrix is reconstructed. We compare our results 

with the A-isobar model and with phase shift analyses. Our calculation reproduces 

well the essential features of the P waves. For S waves, very attractive background 

contributions lead to poor agreement with the phase shift data. 
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Chapter 1 

The SU(2) Skyrme Model 

1.1 Foreword 

When I began, in 1988, research in the field of the Skyrme model, my supervisor Dr. 

B.K. Jennings had words to this effect: "The Skyrme model is a mature field, but there 

should still be interesting things to do in this area!". Indeed, the ideas of the Skyrme 

model had been put forth by T.H.R. Skyrme in the late 1950's and early 1960's, and 

although they were literally forgotten by the particle and nuclear physics community 

for a good 20 years, there has been an important resurgence of activity following the 

works of the Syracuse [BNRS83] and Princeton [W83a] [W83b] [ANW83] groups in 

1983. Since then, the Skyrme model has been a very hot topic of research, with well 

over 100 papers a year appearing in this field. As for the second part of Dr. Jennings' 

proposition, I let the reader who will persevere through this thesis make his (or her) 

own opinion about my work. 

When Skyrme [S61] [S62] set out to construct the model that has come to be 

known by his name, he was mainly following theoretical guiding lines [S88]. The most 

important of which was that he strongly believed physical models should have classi

cal mechanical analogues. In that sense, he quite disliked theories with fundamental 

fermionic degrees of freedom since half-integer spin fermions are quantum mechanical in 

nature. He felt that only the bosons, with integer spins, should be used as fundamental 

particles and therefore considered a theory where only spin 0 pi-meson fields entered. 

1 
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Certainly, this was going against the grain of accepted theories of particle physics of 

the 1950's where the nucleons where introduced as fundamental fermion fields in the 

Dirac lagrangian, coupled covariantly to pions. We remind the reader that at the time 

of Skyrme's work, strangeness had just been discovered, and the corresponding particle 

zoo that would lead to Gell-Mann and Ne'eman's flavor SU(3) classification of particles 

was just emerging1 [GN64]. But there was an important difficulty in the creation of 

a purely bosonic theory: although it is a simple matter to construct integer spin rep

resentations out of half-integer ones, viz. the familiar addition of angular momenta, 

for example 1/2 © 1/2 = 1 © 0, it is quite unobvious how to proceed in the other case 

where integer representations are used to build half-integer ones. Skyrme, however, 

succeeded in such a scheme and in one of his papers [S58] on this subject, he was able 

to write: " The boson field has been fundamental, and the fermion field is brought in 

to describe some of the nonlinear effects ". 

The above quotation reveals one of the basic theoretical ideas employed by Skyrme 

to create fermions out of bosons: nonlinearity. For some nonlinear differential equa

tions, nonlinearity compensates dispersion in just such a way as to allow localized, 

extended and stable solutions to exist. They are called solitons2; they can move and 

scatter off each other without losing their identity. Since the discovery of solitons by 

J. Scott-Russell in 1834, -it has become textbook folklore [L81] to recount how he 

gave chase on horseback, for a couple of miles, to a soliton-like wave making its ways 

through the waters of winding English countryside channels- the concept has become 

of great importance to nonlinear science. The early, but exhaustive review of Scott 

et al. [SCM73] contains a discussion of several areas, from hydrodynamics to particle 
1A discussion of flavor SU(3) symmetry can be found in chapter 2 of this thesis; certainly, the fact 

that the Skyrme model has anything interesting to say about the strange sector of baryons highlights 
Skyrme's unusual physical foresight. 

2 A precise definition of a soliton can be found in the textbook by Rajaraman [R82]. 
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physics, where solitons have found useful applications. 

The particular area that will interest us in this thesis pertains to the particle-

nuclear physics interface. The Skyrme model purports to describe in a unified way 

the strong interactions of baryons and mesons [S61] [S62]. The mesons are taken as 

the fundamental punctual fields and the baryons are postulated to be the solitons of 

the theory. Indeed, the previous paragraph hinted at the particle-like character of the 

soliton, perhaps making such an identification plausible. In the next section, we will 

explicitly present, using the simplest version of the Skyrme model, how these ideas 

can be formulated in more precise mathematical and physical terms. A discussion of 

the spin-statistics of the "skyrmion"3 will be given in subsection 2.2.3. At the risk of 

repeating ourselves, we emphasize that the crux of the Skyrme approach is that there 

need not be any fundamental fermions in the model. 

It is believed by most physicists that Quantum Chromodynamics (QCD) is the 

fundamental theory of strong interactions. QCD is an SU(iVc = 3)c color gauge field 

theory of Yang-Mills type; here Nc is the number of colors. The particle fields are 

quarks and gluons. Each quark flavor is labelled by the quantum numbers of one of the 

three states in the fundamental triplet representation of the exact SU(3)C symmetry. 

The gluons are the force carriers of the theory, and are analogous to the familiar 

photon of electromagnetism. Unfortunately, however, QCD is intractable4 in the long 

wavelength limit. Due to a diverging coupling constant, it is impossible to carry out 

perturbative calculations. In such a case, one must revert to model building, with 

the aim that the model reflect those characteristics of QCD believed to be important 

in the description of strong interaction observables. For example, in modelling static 
3The name skyrmion was coined to the solitons of the Skyrme model by Pak and Tze in an early 

paper on chiral solitons [PT79]. This has become customary terminology. 
4 B y discretizing QCD on a space-time lattice, approximate results can be obtained for the mass 

spectrum of hadrons as well as magnetic moments and charge radii of baryons. Their accuracy, however, 
is presently limited by available computer power. This is the method of Lattice Gauge Theory. 
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properties of baryons, a familiar approach consists in confining three massive quarks to 

a spherical bag5 of radius R. Of course, this reflects the belief that QCD is a confining 

theory. The procedure gives rise to a few phenomenological parameters, in this example 

the bag radius R, that are chosen to reproduce experiment. 

What resurrected the Skyrme model was the suggestion by Witten [W79], based on 

ideas put forth by't Hooft [tH74a] [tH74b], that in the limit of large N c QCD approx

imates to an effective theory of non-interacting mesons with baryons identified as the 

solitons of the theory. But this is just the type of model that Skyrme constructed! The 

other feature taken from QCD, that the Skyrme model embodies, is chiral symmetry. 

Chiral symmetry can be presented by considering the quark (q) sector of the QCD 

lagrangian (we can omit in this case the gluons, as well as the color degrees of freedom) 
N, 

L = H ^ ( ? ' 7 M ^ - mfiqi, (1.1) 
i=i 

where q = 9*7°, 7M are the Dirac matrices, 5M = d/dx^ and m,- is the mass of the 

i t h quark in the sum over flavors. Throughout this thesis, the Minkowskian metric 

g = diag(l, —1, —1, —1) is used and we will implicitly assume summation over repeated 

Lorentz indices fx — 0,1,2,3. Restricting the number of flavors Nf to 2, the case of 

up and down quarks, we see that in the limit m,- —• 0, the lagrangian 1.1 is invariant 

under the separate infinitesimal 2 x 2 flavor rotations 

q q + l—— q^ (1.2) 

f • e' 

Q -»q + i—^-isq, (1.3) 

where e, e*, are infinitesimal parameters, 75 = i7o7i7273> and r are the familiar Pauli 

matrices. Transformation 1.2 is called a vector (V) transformation and eq. 1.3 an axial 
5For a review of quark bag models, including the refinement of introducing mesons coupled to the 

quarks, we refer to the paper of A.W. Thomas [T83]. 
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vector (A) transformation. The terminology R = 1/2(V + A), for right transformations, 

and L = l/2(V - A), for left transformations, will also be used. This SU(2)j_, x SU(2)/* 

symmetry is called chiral symmetry. According to Pagels [P75], "chiral SU(2)/_, x 

SU(2)/j is the most accurate hadron symmetry after isotopic invariance". So it is 

certainly a feature models of Q C D should incorporate within their framework. But 

chiral symmetry is not obviously reflected in the particle spectrum: if it were, there 

should correspond to each hadron an opposite parity partner because the axial vector 

SU(2) has opposite parity to vector SU(2). The symmetry is then said to be hidden. It 

is spontaneously broken down to isospin SU(2) by the action of the group generators 

on the vacuum state: the axial charges do not annihilate the vacuum. For each of the 

broken generators of the group there arises a massless particle called a Goldstone boson 

[CL84]. In the case we are discussing, SU(2)L X SU(2).R —* SU(2), three Pauli matrices 

axe lost implying the creation of three Goldstone bosons. In Nature, the Goldstone 

bosons of Q C D are the pions. Indeed, this gives to the pions a rather fundamental role. 

A completely similar discussion holds for the case of a larger flavor space. 

Armed with the knowledge that the Skyrme model is a possible physical realization 

of Q C D in the long wavelength regime of strong interactions, we will henceforth put 

aside the discussion of the important issue of finding the precise link between the model 

and the theory. We will instead, in this thesis, investigate some of the phenomenological 

predictions the Skyrme model makes and compare them to the plentiful experimental 

data that exist for low-energy strong interaction physics. But before this, we introduce 

the Skyrme model. 
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1.2 A Basic Introduction to the Skyrme Model 

The chiral group SU(2)/_, x SU(2)H possesses the same Lie algebra as the group S0(4) 

of 4-dimensional rotations. To construct a chirally invariant mesonic lagrangian, we 

can therefore consider the scalar products of 4-vectors of the form 

0(t,2), *(t,*)). (1.4) 

a is a scalar isoscalar sigma meson introduced as the chiral partner of the pseudoscalar 

isovector TT. Kinetics are introduced by taking derivatives of the fields. Restricting 

the model to low-energies, that is, to smallest number of derivatives, the unique 2-

derivative chiral and Lorentz invariant lagrangian is 

£ ( 2 ) = ̂ Jd3x {d^ad'a + • d^}. (1.5) 

The a field is a rather fictitious particle. It therefore is appropriate to consider a 

constraint which forces the fields to lie on a 3-dimensional sphere of radius /„•: 

<7 2 + 7r . 7 ? = f2

n. (1.6) 

This eliminates a in favor of the the 7? triplet. The pion decay constant defines the 

energy scale of the model; experiment gives fv = 93.2 MeV. 

It is useful to reformulate the simple lagrangian eq. 1.5 and constraint eq. 1.6 in 

terms of the unitary matrix 

U = ^-(<j(t,x) + ir- n(t,x)) 

= e i 7 ^ s \ (1.7) 

Here, f are the Pauli matrices. The three angles <f> are related to the chiral fields by 

a = /»cos|«?|, (1.8) 
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7? = / , - t r 8 i n | « ? | , (1.9) 
101 

where |<£| = \J$• The constraint eq. 1.6 then is just the unitarity condition for U 

UU] = U*U = 1 (1.10) 

and the lagrangian eq. 1.5 takes the simple form 

£ ( 2 ) = fljd3x trld^Ud'U*}, (1.11) 

where tr denotes the trace of the matrix. We finally recast in the form that will 

subsequently be used in this thesis by introducing 

= iJ2^a(t,x)ra (1.12) 
0 = 1 

for some real space—time dependent functions ^MO(r,x). The second form in eq. 1.12 

is understood by noticing that for a finite element U of the group, U « 1 + if • e 

(e infinitesimal), implying that to first order in e, must be proportional to f. The 

cyclic property of the trace and Wd^U = —d^UW allow us to write 

L<2) = jd3x <r{VM}- (1-13) 

In the limit of small fields, U « 1 + if • <̂>, reduces to the Klein-Gordon lagrangian 

and we identify the physical pion field with /„•<£. The simple lagrangian with 

constraint eq. 1.6 is the well-known nonlinear cr-model [GL60]. 

It is important to consider the properties of U under chiral symmetry transforma

tions. A simple way to determine these is to require that the a and 7? fields in eq. 1.7 

transform in just such a way as to leave the meson-quark coupling 

~ q(a + if • 7r*75)<7 (1-14) 
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invariant (see also eq. 1.1). If i l € SU(2)K and L € SU(2)j, are arbitrary unitary 

constant matrices, then global invariance under SU(2)jr, x SU(2).R imposes that 

U -» LUPJ. (1.15) 

We further have, for a general SU(2) matrix A: purely axial rotations 

U AUA (1.16) 

and purely vector, or isospin, rotations 

U -> AUAl (1.17) 

Under global chiral transformations, 

-+ RU^LilSd^Ultf) 

= RlpR) (1.18) 

and L/W [s indeed a chiral invariant due to pairwise cancellation of RK* and the cyclic 

property of the trace. The vacuum of the theory corresponds to 17 = a constant. 

Isospin rotations eq. 1.17 leave it invariant but axial rotations eq. 1.16 do not. This 

is symptomatic, as advertised in section 1.1, of spontaneous symmetry breaking. The 

pions are massless Goldstone bosons. But m f f = 138 MeV, a mass that is small ( « 

0) compared to other hadrons, but nevertheless finite. It is therefore customary to 

introduce a pion mass term which explicitly breaks chiral symmetry down to isospin 

symmetry. The choice, to agree with the familiar 1/2 m^7r • 7? term in the small field 

limit, is taken to be 

L(mass) = ^J^JL J fa tr{TJ + £/t _ 2}. (1.19) 

We now turn to a discussion of the solitons of the mesonic theory. The field U in eq. 

1.7 defines a mapping from usual space-time to the surface of a 4-dimensional sphere 
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S3 in internal symmetry space. These mappings are topologically non-trivial in the 

sense that they are characterized by the number of times S3 is covered. Now if U is to 

represent a soliton, it must be a finite energy configuration. This is achieved with U —• 

constant, c7± 0 0, as |a?| —» ± 0 0 (we consider only static fields; moving solutions can be 

obtained by performing a Lorentz boost). A continuous deformation of U that would 

interpolate between different vacua as \x\ —* ± 0 0 cannot occur because it would cost 

an infinite amount of energy. Hence, the soliton U is classified into different topological 

sectors according to the difference U+OQ — U-^. 

In 1 + 1 dimensions, these observations are quantified by defining a topological 

current 

U = -t^P* (1.20) 

which is trivially conserved: d^j^ = 0. So the charge 

/

+ 0 0 1 
dx j0 = -(<p+oo ~ </>-<*>) = n C 1 - 2 1 ) 

- 0 0 K 

equals an integer n called the winding number or topological index. Here K is a nor

malisation factor and eM„ is a 2-dimensional Levi-Civita tensor. 

In 3 + 1 dimensions, our usual space-time, Skyrme wrote down the form the topo

logical current should take: 

B» = 2 ^ 2 ^ " ^ tr{U/a). (1.22) 

This is conserved by virtue of the cyclic property of the trace 

c^B" = - H W ^ ) = 0. (1.23) 

We wish to emphasize that these topological currents are fundamentally different from 
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the perhaps more familiar Noether currents6 which are associated with continuous 

symmetries of the lagrangian. The topological charge is 

B = J d?xB°. (1.24) 

The bold step that Skyrme took was to identify the topological charge eq. 1.24 

with the physical baryon number. By trial and error, he arrived at a topologically 

non-trivial field configuration with one unit of baryon number: 

U0 = ei7-fF^r\ (1.25) 

where r is a unit radial vector and F(r) is a function to be determined variationally. 

F(r) is often referred to as the chiral angle. Most importantly, F(r) satisfies the 

boundary conditions 

F(0) = TT, 

F(oo) = 0. (1.26) 

The form eq. 1.25 for U has come to be known as the hedgehog due to the fact that 

the field <j> = fF(r) points in a radial direction at all spatial points. The picture is that 

of a spiny sphere, just like a rolled-up hedgehog. 

We are now beginning to have an outline of the Skyrme model, with the lagrangian 

X ( 2 ) + L(mass) ^ t h e h e d g e h o g 

baryon-like solution eq. 1.25. There remain, however, 
6For the lagrangian L = / d 3 a ; £ ( ^ , ( t , x ) , ^ ^ , ( t , x ) ) ) the Noether current is 

J " = 2^T77rT\6<l>i< fr( Witt*) 

a result derived with the use of the Euler-Lagrange equation of motion 

6<j>i is an infinitesimal transformation which leaves L invariant (see the textbook of Cheng and Li [CL84] 
for more details). 
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two questions that we now consider. The first pertains to the fact that with Jr

/(2)-|-Z,(mo") 

alone, there exists no variational solution F(r) satisfying the boundary conditions eq. 

1.26. This can be understood by considering the scaling properties (x —* Ax ) of the 

(static) hamiltonian 

#(2 ) _|_ Jj(maas) __ _(jr( 2 ) _|_ 

-» AiY ( 2 ) + X3H(mass). (1.27) 

The minimum energy of the system, namely zero, will occur for A = 0 since and 

jj(mass) a r e pOSitive. Hence the soliton collapses to zero size. 

The way to circumvent this difficulty was proposed by Skyrme. If a 4-derivative 

term is introduced in the lagrangian, the hamiltonian 

HW + HW^\HW + i f fW (1.28) 
A 

will clearly have a minimum for 

(1.29) 

The 4-derivative term stabilizes the soliton to a finite spatial extension; the form chosen 

by Skyrme is 

L ( 4 a ) = 32^ J***H[*Ma), (1-30) 

where e is a free parameter and the commutator = £p£v ~ K^n- This is the 

unique 4-derivative SU(2)i, x SU(2)/j chiral invariant lagrangian with only two time-

derivatives7. 
7This result is proven in section 2.4, eq. 2.62. For SU(3)L x SU(3)fi, this "Skyrme term" is not 

unique, a point we will expound in chapter 2. 
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We have arrived at the basic version of the Skyrme model. To recapitulate: 

L = L ( 2 ) + L ( 4 o ) + L^maa3\ (1.31) 

£ ( 2 ) = _ll J d3x t r i ^ ^ ^ = tfQJJ ? 

^ = 3 2 ^ / ^ * WMW**"] » t / e 517(2) , 
r2 2 

L ( m a S S ) = / j r ^ r y ^ + f/t _ 2 ) , 

and the field U is taken to be of the hedgehog form (eq. 1.25) 

U = cosF(r) + i f • rsinF(r), (1.32) 

F(0) = T T ; F(OO) = 0. 

The energy of the system corresponds to the mass of the soliton Md. Evaluating the 

trace in eq. 1.32 yields 

Mcl = H = -L = (1.33) 
r50 , 9 r flr-nn « s i n 2 F . s in 2 F r ^ w 9 sin2 F. _., 

47F1 ^ { 2[F + 2~r^~] + ^ + ~ ] + m ' f * [ 1 ~ C ° S F ] h 

The profile F(r) is determined by solving the Euler-Lagrange equation of motion (see 

footnote 6 in this chapter) subject to the appropriate boundary conditions. The result

ing second order nonlinear differential equation of motion satisfied by F(r) is 

(jx 2 + 2sin 2F) F"+ \xF' (1.34) 

1 2 1 
+ sin(2F)JF'2 - - sm(2F) - — sin3 F cos F - - m 2 x2 sin F = 0, 

where we have introduced the dimensionless radial variable x = e2/wr and dimensionless 

mass rhn = m^/(e2fn). F' and F" denote the first and second derivatives of F with 

respect to the argument. This equation is solved numerically. We have shown in 

figure 1.1 the chiral angle and its first two derivatives for the choice of parameters 
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Figure 1.1: Ch i ra l angle and its first two derivatives obtained by solving eq. 1.35 
numerical ly for the choice of parameters / , = 93 M e V , e = 4, m , = 138 M e V . The 
abscissa is the dimensionless radius x = e2fnr. 
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fv = 93 MeV, e = 4 and m f f = 138 MeV (we will use this set of parameters quite 

frequently, especially in our 7T-N scattering work presented in chapter 3). 

The second question to which we now turn deals with the quantum numbers of the 

soliton. As is clear from our discussion, we have only considered classical variables. 

Indeed, the hedgehog is a purely classical object8. So we cannot expect it to be an 

eigenstate of isospin and spin as physical particles are. The way to resolve this problem 

starts by noticing that the hedgehog remains invariant under the peculiar combination 

of infinitesimal isospin transformation / = [T/2, ] (for A = exp(^f • e) in eq. 1.17) and 

angular momentum transformation s = —if X V: 

(/+ s)U0 = 0. (1.35) 

We say that the hedgehog is a singlet under the "extended spherical" symmetry oper

ator 

K = 1 + s. (1.36) 

K is also referred to as the "grand spin". Eq. 1.35 implies that spatial rotations are 

equivalent to isospin transformations. Another way to understand this is 

AU0A* = eiMAUFW 

= j^-mr) (1.37) 

where 

= \tr(TaAnAi) (1.38) 

are elements of the familiar rotation matrices; in this case in the adjoint representation. 

For the SU(2) D-matrices, we use the convention of Holzwarth [H90]. From eq. 1.35, 

we conclude that for the hedgehog, I • I = s- s. 
8 In this sense, the Skyrme model differs markedly from the traditional particle physics picture of 

particles as quantum mechanical bound states of fundamental fields. 
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The previous discussion suggests that to adorn the soliton with good spin and isospin 

quantum numbers, we should quantize the variable A. This first requires that A be 

promoted to the role of a time-dependent variable A(t): it parametrizes the collective 

rotations of the hedgehog. Substituting the new ansatz 

U = A(t)U0A(ty (1.39) 

in the Skyrme lagrangian 1.32, we have: 

L = -Md + 0* tr(AAi), (1.40) 

where Md is given in eq. 1.34 and Qv is a model-dependent moment of inertia 

e. = / A ^ ( / j + ^ + =^:)).. (i.4i) 

As for the vector current -identified to the isospin J 0 - and the spin sa -identified from 

the appropriate components of the energy momentum tensor-, they take the simple 

forms 

sa = - » 0 , tr(TaAU), (1.42) 

Ia = - i 0 , tr(jaAtf). (1.43) 

A suitable parametrization of the independent components of A is then introduced. In 

the approach to quantization due to Adkins tt al. [ANW83], 

A(t) = ao(t) + if- a(t); al + a • a = 1 (1.44) 

and the canonical quantization prescription is applied by identifying the conjugate 

momentum 
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with 

The hamiltonian, spin current eq. 1.42 and isospin current eq. 1.43 are now quantum 

mechanical operators acting on baryon wavefunctions which are polynomials in a 0, a. 

In this thesis, we take the slightly different approach of reference [HS86b] in choosing 

as three independent collective coordinates the familiar Euler angles a, /3, 7. In the 

problem at hand, the Euler angles define finite rotations between a frame fixed to 

the soliton and a frame fixed in space. This latter frame will be referred to as the 

"laboratory frame". The body-fixed frame, which is rotating in space-isospace (viz. 

eq. 1.35), will be referred to as the "intrinsic frame". A similar case of transformations 

between frames is familiar to nuclear physicists who consider the properties of deformed 

nuclei. The collective coordinates A = A(ct, (3,7) are now explicit functions of the Euler 

angles. If we define the collective velocity as 

Qa = -i tr(raA*A), (1.47) 

then the hamiltonian for the time-dependent model takes the following form: 

= J ^ + ^ X X (1-48) 
z 0=1 

This becomes, upon using eq. 1.42 or eq. 1.43, 

= Md + ^-I-I, (1.49) 

which is just the familiar hamiltonian for a spherical top. Its quantization is a standard 
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exercise in quantum mechanics, leading to the rotational spectrum 

= Md + ~I(I + \). (1.50) 

The properly normalized quantum mechanical wavefunction for the baryons is 

vfiMM^M^M) = (-y+M'\l^r D M \ , - M>,/?,7) , (1.51) 

where Ms, Mj are respectively the z-components of the spin and isospin quantum 

numbers of the baryon state. We again follow the convention of the Siegen group for 

the labelling of this state [HEHW84]. 

We emphasize that the rotational band eq. 1.50 contains only states which satisfy 

\I\ = \s\. An important point, which is however left arbitrary in the SU(2) model 

[FR68], is the spin, or isospin of the ground state. One can actually choose 3 = 1 = 0, 

in which case the baryons are bosons and ^B(—A) = iifB(A), or choose s = I = 1/2, 

in which case the baryons are fermions and \T/B(—A) = — $B(A). It is, of course, the 

second choice9 that is adopted, with the physical nucleon (I, s) = (1/2,1/2) identified 

with the ground state and the A isobar (J, s) = (3/2,3/2) identified with the first 

excited state of the rotational band. Higher rotational levels, such as the (I, s) = 

(5/2,5/2), are considered as exotics10. 

We have tried to present the Skyrme model in a brief but clear way. Our presentation 

contains those points that are important to a comprehension of the next two chapters 

of this thesis. Each of these chapters begins with further introductory comments, now 

specific to the work they present. For other details of the Skyrme model which are 

not discussed in this thesis, we refer the reader to the many good review articles that 
9 I f one enlarges the flavor symmetry group from SU(2) to SU(3), then the soliton must be quantized 

as a fermion [W83b]. We will outline how this comes about in subsection 2.2.3 of the thesis. 
1 0 We will have more to say about the exotic | state in chapter 3. 
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exist in the field. Our favorite one is the beginner's level, but oh so useful!, review 

of Adkins [A87]. In particular, one can find there a test of the Skyrme model in its 

predictions of the properties of SU(2) baryons, the nucleon and the A isobar. Without 

entering details, the verdict is that the Skyrme model reproduces charge radii, magnetic 

moments, etc. to an overall accuracy of 30%. This is quite reasonable in view of 

the fact that only f% and e are adjusted to the data, in this case to reproduce the 

nucleon and A masses. An intermediate level presentation is that of Holzwarth and 

Schwesinger [HS86b] and an advanced level one can be found in Zahed and Brown 

[ZB86] or Schwesinger et al. [SWHH89]. These papers give a broad overview of the 

physics questions that have been addressed within the framework of the Skyrme model, 

including the many refinements to the model that have been considered. 

1.3 What Is New in this Thesis... 

This brief section may serve as a Statement of Originality for our work. In chapter 2 

of this thesis, the reader will find our contributions to the SU(3) sector of the Skyrme 

model. We have observed that within the context of the Skyrme model, the lagrangian 

based on a gradient expansion of the chiral field that has been used by workers in the 

field is not unique. There exists a second possibility, introducing no new assumptions 

beyond those that were already used: chiral symmetry, Lorentz invariance and two 

time-derivatives. After proving our claim, we apply the "alternate" lagrangian to a 

calculation of the SU(3) octet and decuplet baryon mass spectra. We will find that some 

improvement is achieved when the alternate form is used instead of the usual Skyrme 

stabilization term. We also apply the alternate lagrangian to the following question: the 

role of the isoscalar eta meson in the Callan-Klebanov approach to the Skyrme model. 

The Callan-Klebanov model creates the hyperon spectrum of baryons by binding kaons 
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to SU(2) skyrmions. The motivation for this model rests on the assumption that SU(3) 

flavor symmetry is badly broken, i.e. m# » mv. The same criterion applies for 

the mass of the eta, but this point seems to have received very little attention in the 

literature. Using the Skyrme lagrangian, the dynamics of the eta field are trivially 

described by the Klein-Gordon lagrangian. But for the alternate lagrangian, this is no 

longer the case. The eta couples in a non-trivial way to the hedgehog and there exists 

an S wave bound state for a range of values of a new constant x parametrizing the 

strength of the coupling. We suggest that in some qualitative ways, this bound state 

can be identified with a know nucleon resonance, N(1535), which until now has been 

difficult to describe in the context of the Skyrme model. 

In chapter 3 we turn to our work on low-energy S and P wave 7T-N scattering in the 

framework of the SU(2) Skyrme model. We address the well-known difficulties that 

the model has had in describing these partial waves. Here, we quote Skyrme [S62], 

who had remarkably predicted the problems11 that would later plague the Siegen and 

Stanford 7T-N scattering calculations: 

[The] P wave meson-particle interaction [is] repulsive on the 

average. There is no indication of the strong attraction observed 

in the pion-nucleon resonant state [A resonance], but this would 

hardly be expected in a static classical treatment where the 

rotational splitting of the particle states has been ignored. 

In our calculation, we consider such "rotational splittings" by including in the S-

matrix the plane wave Born approximation contributions coming from time-derivative 

interactions between the skyrmion and the meson fluctuations. We find it necessary to 

implement further approximations in order to carry out the complete calculation. In 
nand partly suggested how to resolve them. 
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particular, we close unphysically open channels in the background amplitudes (those 

obtained from scattering a meson off a static hedgehog) and construct the scattering 

S-matrix from the K-matrix in a piecewise way. For the P waves, this method obtains 

good results: we now have the delta resonance appearing in the P 3 3 channel and at the 

right energy value; we find strong attraction in the Pn channel and therefore account 

for the Roper resonance. Finally, we reproduce the splitting of the P13 and P 3i channels. 

This calculation represents the first semi-quantitative calculation of P wave T T - N phase 

shifts in the context of the Skyrme model, for energies up to approximately 300 MeV 

above threshold. Our results justify a posteriori some of the approximations we have 

implemented. In the case of the S waves, the situation is not as nice. Here, it seems 

that using the plane wave Born approximation to calculate contributions from time-

derivative interactions is too drastic an approximation. Although we can reproduce 

the isospin splitting between the Sn and S3i adequately by considering only time-

derivative interactions, we find that inclusion of the background contributions ruins 

the agreement. 

The appropriate acknowledgement to previous work in the field will be found in 

chapters 2 and 3. In particular, acknowledgement of the colleagues with whom I have 

worked is done by providing the references to our joint papers. 



Chapter 2 

Investigation of Topics Concerning the SU(3) Skyrme Model 

2.1 Introduction 

A description of low- and medium- energy hadronic physics must go beyond the familiar 

nucleon, delta and pion to include particles endowed with an additional degree of 

freedom called strangeness1 [G53][NN53]. Strangeness is observed to be conserved by 

the strong interactions and it is therefore a good quantum number to use in labelling 

particle states. Given the definition of the strangeness of a particle as 

S = 2(Q-I3)-B, (2.1) 

where Q is the charge, 73 the third component of isospin and B the baryon number, it 

is useful to introduce the concept of hypercharge as 

Y = B + S. (2.2) 

The hypercharge Y and isospin I are incorporated together in the symmetry group of 

3-dimensional unitary unimodular transformations SU(3); this is the flavor symmetry 

group of strong interactions [G62] [N61]. It leads to the often pictured octet and decuplet 

representations of elementary particles. The particles forming the lowest-lying baryon 

octet and decuplet can be seen in figure 2.1. The lowest-lying meson octet consists of 

the pions, the kaons and antikaons and the eta particles. 

In the Skyrme model, the extension to the SU(3) flavor symmetry sector proceeds 

through the enlargement of the chiral group SUL,(Nf) x SUR.(Nf) by letting the number 
1We consider the other flavors: bottom, charm, top, as belonging to the realm of high energy physics. 

21 
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of flavors Nf go from 2 to 3. This larger group is spontaneously broken to the flavor 

group SU(3) by the choice of vacuum U = 1. The symmetry breaking generates 8 

massless Goldstone bosons, namely the three pions, two kaons and two antikaons and 

an eta, each corresponding to a broken generator of the group. The nonlinear Skyrme 

lagrangian is now described in terms of 8 fundamental fields, the dynamics of which 

give rise to the soliton solutions on which is based the description of the baryon sector. 

The enlarged chiral symmetry group imposes modifications on the Skyrme model. 

The simple hedgehog solution described in chapter 1 must be changed in order to 

now reside in SU(3) space [W83b]. As for the Skyrme lagrangian, there are two new 

ingredients that must be taken into account. The first is that to ensure invariance 

of the lagrangian under the correct parity transformation VU(x) = U\—x) which 

explicitly takes into account the pseudoscalar nature of the meson octet field U, a 

five derivative term, the Wess-Zumino term, must be introduced [W83a][WZ71]. This 

term has profound physical consequences in the theory, providing a criterion indicating 

whether the soliton must be quantized as a fermion or as a boson. It also leads to a 

constraint from which a spin 1/2 baryon octet and a spin 3/2 baryon decuplet arise, in 

agreement with experiment, as the lowest-lying baryon representations. 

The second ingredient is that the extension of the 4 derivative Skyrme stabiliza

tion term is not unique [PSW91][PEGJ90]. This is the observation we describe in 

this chapter and is new to the field. Imposing the general assumption of invariance 

under chiral and Lorentz transformations and the requirement that there be at most 

two time derivatives in the lagrangian, we demonstrate that there are two, and only 

two, acceptable fourth order forms. The proof follows the presentation of the paper 

by Pari, Eisenberg, Gal and Jennings [PEGJ90]. There is, of course, the usual Skyrme 

term, but now supplemented by a new term to which we refer to as the "alternate" 
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lagrangian. This generalized lagrangian finds support from Chiral Perturbation The

ory [GL84][GL85], a framework constructed out of a gradient expansion of chirally 

invariant terms, with symmetry breaking terms treated as perturbations. Indeed, both 

the Skyrme and alternate lagrangians can be extracted through a recombination of 

the parameters appearing in the lagrangian of Gasser and Leutwyler [GL85]. This im

portant result, that there are two acceptable fourth order stabilization forms, seems, 

however, to have been overlooked in the context of soliton models. 

At this stage, it is perhaps useful to do a brief digression to explain how the SU(3) 

Skyrme model evolved from providing quite disappointing results for the baryon mass 

spectrum to providing quite good results. All the problems and their resolution are 

rooted in the treatment of the flavor symmetry breaking terms (breaking chiral sym

metry represents no problems in this context, it gives rise to classical contributions 

to octet and decuplet average masses). The initial calculations of baryon properties in 

SU(3) took the reasonable approach of assuming that flavor symmetry was a good sym

metry, whose breaking could be treated to first order perturbatively [G83][P85][C85]. 

After all, one obtains the famous Gell-Mann-Okubo mass relation (which is satisfied 

to better than 1% ) 

2(MN + M H ) = 3M A + M s , (2.3) 

by evaluating in first order perturbation theory the effect of a flavor symmetry breaking 

term proportional to the eighth component (hypercharge) of an octet. Following this 

approach to treating flavor symmetry breaking in the Skyrme model, it was unfortu

nately found that the overall mass splitting amongst both the octet members (47 MeV 

as compared to the experimental M E — M A — 380 MeV) and the decuplet members 

(36 MeV as compared to the experimental Mn — M A = 440 MeV) was much smaller 
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than required [P85]. And these disappointing results2 coming from a "best fit" to the 

data imposed an extremely small pion decay constant / w = 23 MeV (experimental 

value equals 93 MeV). Not surprisingly, the Gell-Mann-Okubo relation is, however, 

well satisfied by the poor calculated values. 

It was immediately realized that the resolution of the above mentioned difficulties 

proceeded through a better treatment of the flavor symmetry breaking. Obviously, the 

symmetry breaking is too small; since such terms do not come with free parameters 

(meson masses and decay constants that parametrize them are fixed at their experi

mental values) that can be dialed to fit the spectrum, new calculational techniques had 

to be considered. Chronologically, the method due to Callan et al. [CK85][CHK88]: 

the Bound State Approach to Strangeness in the Skyrme Model, came first. The main 

assumption in this framework is to take TXIK » (equivalently, ms » mu = md 

in quark language), which corresponds to the case of badly broken flavor symmetry. 

Solitons are constructed out of the nonlinear pion dynamics in the SU(2) (nonstrange) 

sector with small kaon vibrations introduced about the SU(2) background soliton. The 

hyperons are interpreted as kaon-soliton bound states. Of crucial importance here is 

the role that the Wess-Zumino term plays: attractive for antikaons and repulsive for 

kaons, leading to the correct hyperon spectroscopy. 

The second method is due to Yabu and Ando [YA88], Here, the flavor symmetry 

breaking terms are treated exactly. This is achieved by introducing eight Euler angles to 

parametrize the SU(3) collective coordinates and subsequently diagonalizing the hyper-

charge dependent part of the collective SU(3) hamiltonian. Equivalently, more recent 

treatments expand the baryonic wavefunction in terms of SU(3) symmetric wavefunc-

tions, and the eigenvalue problem reduces to a matrix diagonalization [KLL89]. The 
2For a complete set of references dealing with the SU(3) symmetric Skyrme model, see the paper of 

Masak [M89]. 
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eigenvalues obtained for each baryon state are added to the isospin invariant baryon 

mass relation to represent the effects of the flavor symmetry breaking. The results 

of the exact diagonalization have been well reproduced by calculating to second order 

in the flavor perturbation, with third order effects found to be negligible [PSW89]. 

Importantly, cancellation of large second order contributions preserve the form of the 

Gell-Mann-Okubo relation. 

In this chapter, we will discuss the results of two calculations centered around 

phenomenological applications of the alternate Skyrme lagrangian. So as to make no 

enemies3, one will be within the framework of the Yabu and Ando approach and the 

other, the Callan-Klebanov approach. In collaboration with Schwesinger and Walliser 

[PSW91], we have investigated the consequences the alternate lagrangian has on the 

baryon mass splittings spectrum when it replaces the Skyrme term. The usual flavor 

symmetry breaking terms are treated exactly following Yabu and Ando; we find it 

crucial, however, to introduce additional terms, which lift the degeneracy /*• = //< = fv 

usually assumed in such calculations, in order to get good results. Since the numerical 

work is due to the Siegen part of the collaboration, we present results after a brief 

outline of the ingredients that enter in the calculation. We will see that baryon octet 

and decuplet mass splittings are well reproduced, showing improvement over the usual 

Skyrme model. 

In our second calculation, we study, along lines similar to those developed by Callan 

and Klebanov for the treatment of the strange degrees of freedom, the question of 

including the eta meson4 alongside the kaons. To this end, we introduce the alternate 

lagrangian which provides a coupling between the skyrmion and the eta field. In the 

usual Skyrme lagrangian, no such coupling exists, perhaps explaining why the role of the 
30r alternatively, please no one. 
4 B y eta meson, we mean the isoscalar member of the meson octet. This does not correspond to the 

physical meson. 
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eta received so little attention in previous calculations. Indeed, it is while considering 

this question that we were led to introduce the alternate lagrangian. We find an S wave 

eta-skyrmion bound state and quantize its rotational excitations. The lowest rotational 

band member is qualitatively identified as the N(1535) nucleon resonance. This work 

contains three new contributions: the observation that the new-found generality in 

the model should be applied to the Callan-Klebanov version of the Skyrme model; a 

first thorough study of the role of the eta meson in the context of this model; and the 

demonstration that there exists a bound state that in some qualitative ways can be 

identified with a known nucleon resonance. This work was presented in the paper "The 

Role of the Eta Meson in the Callan-Klebanov Approach to the Skyrme Model" by 

Pari [P91]. 

2.2 The SU(3) Skyrme Model 

The obvious generalization that must be carried out in the extension of the Skyrme 

model from flavor SU(2) to flavor SU(3) is that of the hedgehog ansatz. Whereas before 

it was constructed in terms of pions, it must now reside in the SU(3) sector. Following 

Witten [W83b] and Balachandran et al. [BLRS85], the requirement that the SU(3) 

soliton UQSU^ satisfies the extended spherical symmetry is imposed: 

-i (fx V) L7,Ssu(3)](x) + [ G, Uisu{3)](x) ] = 0, (2.4) 

where G are three SU(3) generators spanning any SU(2) subgroup of SU(3) and satis

fying the Lie algebra 

[GuGj] = iJ2^kGk. (2.5) 
t=i 

When Uo C SU(2) and G = r/2, the Pauli matrices, eq. 2.4 states, as we have seen in 
—• 

eq. 1.35, that the hedgehog is a singlet under K transformations. Constraint eq. 2.4, 
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along with the fact that we want a baryon number one solution, leads to the result that 

t/oSU(3)] is simply the embedding of the SU(2) hedgehog in SU(3): 

r/PU(3)j = ei E^A .-f.-FM (2.6) 

' l f U ( 2 ) 1 (a?) o\ 

, 0 l ) 

r;PU(2)] = ei Y*BlTiriF{r)m 

Here, A , - , i = 1,2,3, are the first three of eight Gell-Mann matrices [GN64] denoting 

the fundamental representation of SU(3). They satisfy the commutation and anticom-

mutation relations 

8 
[A Q ,A/3] = 2i^2 / a / ^ A-y (2.7) 

7 = 1 

8 4 
{ A ^ A ^ } = 2 Y^dafaX^ + - 6af3 (2.8) 

7=1 * 

with 1 < a,^,7 < 8. They are traceless 3x3 hermitian matrices normalized according 

to | t r ( A Q A ^ ) = 6ap. The constants fap1, da^ are respectively totally antisymmetric 

and symmetric structure constants for SU(3). 

In the symmetric case, constant flavor transformations A £ SU(3) 

U0 -> AU0Ai; AA* = A]A = 1, 

generate eight zero modes. It is the quantization of these zero modes5 that produces the 

"rotational" spectrum of baryon states. We put rotational in quotations since we mean 

SU(3) rotations. Accordingly, the eigenspectrum will be labelled by the isospin and the 

hypercharge quantum numbers in a given representation of the flavor group. Further 

comments concerning the quantum numbers, in particular the interrelation between 
5For a definition of zero modes, see section 3.3. 
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spin and isospin of the baryons, which are no longer equal in SU(3) in contradistinction 

to the SU(2) case, must await the explicit introduction of the lagrangian (viz. the 

Wess-Zumino term). As in the SU(2) case, the constant matrix A is promoted to the 

role of collective coordinate by making it time-dependent. There are now 8 collective 

velocities Q,a. A particularly useful form to represent these is 

dA 
aa = -itr(XaA^—); a = l,...,8, (2.9) 

which expresses the fact that A^dA/dt is spanned by the generators of the SU(3) Lie 

algebra. So the SU(3) Skyrme model ansatz is 

I7[su(3)](x, t) = A(t) Uj,sum(x) A\t). (2.10) 

This form, with 8 collective coordinates, assumes that the deformation due to the 

kaonic components of the classical solution is not exceedingly large. This assumption 

is common to both the SU(3) symmetric approach and the Yabu and Ando approach, 

although the treatment of the explicit symmetry breaking terms is different. In the 

opposite case, where the assumption is made that on typical strong interaction scales 

the kaon mass is much larger than that of the pions, the rotator approach ceases to 

be valid. Modifications to eq. 2.10 were suggested by Callan and Klebanov: only the 

isospin symmetry is treated with collective coordinates, whereas strangeness degrees of 

freedom are carried by kaons vibrating about the SU(2) skyrmion: 

U = y/u0UK\/Uo, (2.11) 

UK = e££ l=« A "*" ( * ' ) , 

with Ka(x, t) a space-time dependent profile determined by minimization of the energy. 

Alternatively, the form symmetric in kaon fluctuations [BDR89] 

U = y/u^U0 S[V~K (2.12) 
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leads to the same physical results. For our work in the Callan-Klebanov approach, we 

choose the symmetric expression eq. 2.12 to carry out calculations. 

The standard SU(3) Skyrme model lagrangian is taken to be: 

L = L^ + L^ + L^^ + L ^ + L ^ , (2.13) 

L(«««) = h^L j d3x tr(U + f/t _ 2) , 

S { W Z ) = ^ l Q
d E " X P a t r ^ £ J x W ' 

L(SB) = fl{<_ML)JD,X l r ( 1 _ V3A 8)(c7 + l7t_2). 

The 2-derivative term and the 4-derivative term just repeat the usual SU(2) 

expressions. Comments concerning the symmetry breaking I , ( m o s s ) - r .£ , ( 5 B ) are presented 

in a subsection below. Upon substitution of the rotating hedgehog ansatz eq. 2.10, we 

find, after evaluating the trace, the lagrangian 

with 

A * A = ^ E A A , (2.15) 
Z a=l 

and 

DaP = ^tr(\aA\pA*). (2.16) 

Here, the soliton mass M c / , the pionic and kaonic moments of inertia QV and QK, and 

the strength of SU(3) symmetry breaking T are model dependent integrals involving 

the chiral angle F(r). Explicit expressions for these integrals will be given in section 
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2.4. In this expression, terms proportional to fi| vanish. This is related to the fact 

that Q,g is a redundant variable: under right hypercharge global transformations 9§, 

A—* A exp(iX^$^), exp(iXs9B) commutes with the static hedgehog. We also note that 

the lagrangian with rotating hedgehog solution is invariant under left SU(3) transfor

mations (£): A —* CA, and under right isospin SU(2) transformations (TV) A —• AH. 

This nicely fits in with our expectations that the theory should have flavor and spin 

symmetries SU(3) x SU(2). Finally, the linear contribution proportional to Q,8 is due 

to the Wess-Zumino term. We return to this point later. 

2.2.1 Symmetry Breaking Terms 

The symmetry breaking terms considered here, L^mass^+L^SB\ perform both the explicit 

breaking of chiral symmetry down to SU(3) flavor symmetry through contributions 

proportional to tr(U + W — 2) and the breaking of flavor symmetry down to isospin 

multiplets6 through terms proportional to tr(X8(U + ffl — 2)). In this latter case, it is 

interesting to see how this comes about by considering 

U = ejt£LiA«*« (2.17) 

residing in the meson sector of the theory. Expanding Z,(m a s s) + Z,(5B) to second order 

in meson octet fields <j>a{x), we find 

L ( m a s s ) + LiSB) = 1 2 ^ fi + 1^ ^ fi + 1 2^2 ( 2 > 1 8 )  

Z .=1 Z o=4 L 

The pions, kaons, and eta now have different masses, fixed by the experimental values 

of m„ and m#. The eta mass is obtained through the Gell-Mann-Okubo relation for 

meson masses 

3m2, = 4m2

K - m 2 , (2.19) 
6We do not break isospin symmetry. This could be done through tr(\3(U + — 2)), but it is 

physically a small effect. 
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a relation satisfied to within 3% accuracy (also, compare this to eq. 2.3 for the baryon 

octet masses). 

It is, however, the baryon sector that interests us. From eq. 2.14, we observe that 

there, the flavor symmetry breaking is a quantal effect, surviving only because of the 

presence of time-dependent coordinates: 

Dls = \ tr(A8AA8A+). (2.20) 

D8 denotes the octet (or adjoint) representation of the SU(3) rotation matrices. The 

strength T of the symmetry breaking, an important quantity in view of our introductory 

discussion, is a model dependent quantity carrying no free parameter. 

2.2.2 T h e W e s s - Z u m i n o T e r m 

The importance of the Wess-Zumino term in the context of soliton models was discussed 

in two ground breaking papers by Witten [W83a][W83b]. Although this term carries 

little bearing on the original material we present in this chapter, its profound physical 

consequences on the realm of solitons cannot be overlooked. 

The simplest way to see that such a term must enter in the gradient expansion, 

is to realize that L = + (symmetry breaking terms can be put aside in this 

discussion) possesses unphysical invariance laws. L is invariant under the naive parity 

transformation x —> —x, and also under U —• W. This last symmetry transforms 

the meson field <j>a —> — 4>a, a = 1,...,8, (viz. eq. 2.17) and imposes mesons to 

appear in either even or odd numbers in any strong interaction relation. For example, 

K+K~ —* 7r + 7r°7r~ would not be permitted. The correct parity transformation, which 

takes into account the pseudoscalar nature of the meson octet field is VU(x) —> U\—x). 

The simplest Lorentz and chiral invariant term that will preserve V, but not the two 
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previously discussed symmetries, appears in the equation of motion for U as: 

~> e""A> e/J^p (2.21) 

where e/JI/Ap is the 4-dimensional Levi-Civita tensor. Finding an action7 which yields 

this term is not an easy matter. The obvious candidate e^"^ trijt^i.xi.p) vanishes 

due to a combination of the cyclic property of the trace and antisymmetry of the Levi-

Civita symbol. There does, however, exist an action. It is the 5-dimensional expression 

due to Wess and Zumino [WZ71]: 

S ( W Z ) = ^ / / S * i r ( W C ) . (2-22) 

Here, Q is a 5^dimensional volume having usual space-time dQ as a boundary. The 

measure d"Ef"/Xpa means e>1'/Xpa dbx. The normalization iiVc/(2407r2) factor is a nontriv-

ial issue: Witten extracted it by comparing the prediction of the gauged (electromag-

netism) Wess-Zumino term to QCD for the decay 7r° —• 7 7 . The two frameworks agree 

if the arbitrary constant in the Wess-Zumino term is set equal to the number of colors8 

Nc. 

We will describe how to simplify the unwieldy looking expression eq. 2.22 for a 

given choice of ansatz, say U — AUoA*, or U = MUoM, etc. For the latter ansatz, 

the unpublished result we obtain will allow us to conclude in section 2.5 that the 

Wess-Zumino term contributes no 77-soliton or eta-kaon interaction to second order in 

the meson fields. So following the method of Kaymakgalan [BLRS85], the trick is to 

rewrite the 5-dimensional volume element in terms of a differential form with totally 

antisymmetric properties: 

eiiu\P<T £>x _ ^ ^ ^ j x ^ ^ jx^^ (2.23) 

7The action is / dtL, L is the lagrangian. 
8Color is an additional degree of freedom, coming in Nc = 3 varieties, bestowed on quarks by theorists. 

The ensuing SU(3) color gauge theory is believed to be the theory of strong interactions. 
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expand derivatives, viz. expressions like dQ(AUoA^), and finally regroup terms to explic

itly make the result appear as a total derivative. Using Stokes theorem for differential 

forms9, we can reduce the expression for the Wess-Zumino term to an integral over 

usual 4-dimensional space-time. For the ansatz U = AUQA\ the result is [BLRS85]: 

S^WZ\U) = S(WZ\UQ) 

1 ./VQ f id i f *3 ^ / \ 2 
———- / dxtr\ua — au — -(ua) 

48TT2 JdQ 1 2V ' 

+U0(u - afUla - a3U0(u - a)Ul - \(aU0(u - a)u£)2}. (2.24) 

Here, we have used the shorthand notation u = UodUo, a = A^dA, and deleted explicit 

reference to contracted indices. Hence, u3a = e^^u^u^uxap, and similarly for the other 

terms. The further simplification of this expression due to the vanishing of terms with 

powers of a greater than one (observe that only one time-derivative can appear due 

to the Levi-Civita symbol) leads to the contribution of the Wess-Zumino term in the 

Skyrme lagrangian eq. 2.14: 

L i w z ) = 271 ( 2 - 2 5 ) 

For the other ansatz U = MUQM used in section 2.5, the general result we find is the 

action: 

S<-WZ\U) = S^WZ\U0) 

+ ' c„ / d4x tr\m3u — m3u + u3fh — u3m 
48TT2 JdQ 1 

+—fhufhu — ^-mumu — t 7 0 m 3 £ / o m + UlmzUom + mUofhu2Uo 

+mUou2fhUo + fhumUomUo + m2UoumUo — mUofh2uUo 

— ̂ mU0mUomUofhUo + ^mU0mUomUomuW}, (2.26) 

9Stokes theorem is JQ du = f9qW, where w is a differential form. 
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where 

u = UldUo; u = UodUi; m = M^dM; m = MdM1. 

We finally note that S^WZ\U0) = 0 for the hedgehog ansatz because there are only three 

independent Pauli matrices contracted antisymmetrically with four Lorentz indices. 

This null result explains why no mention of the Wess-Zumino term was made in our 

discussion of the SU(2) Skyrme model. 

2.2.3 Some Points Concerning the Quantization of the SU(3) Skyrme Model 

We now give a brief description of the quantization of the SU(3) collective degrees 

of freedom along lines suggested by Balachandran et al. [BLRS85]. It is useful 

to locally parametrize the matrix A = A(£(t)) with eight time-dependent variables 

£Q, a = 1,...,8. This just defines a general coordinate transformation from the Q,Q set 

we introduced in eq. 2.9 to the new set 

L = -iN^tr'AiAXp) = Na0n0, (2.27) 

where Nap are the elements of a general coordinate transformation matrix, the form of 

which we need not explicitly specify. Defining 

Ra = —rrNpc = -vpNpa (2.28) 
dip 

through the conjugate momentum np, we obtain from the lagrangian eq. 2.14 

Ra = -20,fi,-tf,.a - 2QKSla8aa + ^Mc8a8, (2.29) 

where l < i < 3 ; 4 < a < 7 . We observe that 

R& = -LNC = V3 (2.30) 
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is constant. In terms of the Ra's, we can write the hamiltonian 

H = -Kaia — L 
3 1 7 1 

= k * * *  + 5 86^-
3 1 1 8 1 3 

^ 8 0 , 80*' * ^8QK \ seK 

= , § 2 0 - - + £ 2 k c m - s k <2'31> 

In the last line, we have explicitly introduced the SU(2) and SU(3) quadratic Casimir 

operators10 C(SU(2)), C(SU(3)). When operating on SU(2) symmetric wavefunctions, 

C(SU(2))# = J(J + 1)*, where J labels the SU(2) representation; whereas for SU(3) 

symmetric wavefunctions, C(SU(3))* = |(p 2 + q2 + 3p+ 3q+pq)&, where (p, q) labels 

the SU(3) representation: e.g. (1,1) = octet, (3,0) = decuplet, etc. 

Classically, the R^s satisfy the relation 

{Ra,Rp]pB = —Zifap^R-,, (2.32) 

where {,}PB is the Poisson bracket denned by 

r n p i _sr,dRadRp dRa dRp 

{Ra,Rp}PB-U-Q^QZ;~ a^aeT)- (2-33) 

Following the standard canonical quantization prescription, the Poisson bracket is re

placed by the commutator 

[Ra, Rp] = -2ifap^Ry, (2.34) 

and C(SU(2)), C(SU(3)), are treated as operators operating on collective wavefunc

tions. 
10A Casimir operator is an operator that commutes with all the group generators. 
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In the case of unbroken SU(3) flavor symmetry, the baryon wavefunctions are matrix 

elements of SU(3) rotation operators. These are the SU(3) D-matrices 

~ D$±YUSt_SmtYR){A), (2.35) 

to be compared to the analogous SU(2) D-matrices discussed in chapter 1. This re

sult should not surprise since C(SU(3)) is the natural extension of C(SU(2)). The 

quantum numbers (p,q) label the SU(3) representation. The right indices 5, — Sz, are 

identified, based on our comment (following eq. 2.14) that the lagrangian has SU(2) 

invariance under right transformations, with the spin quantum numbers. To find out 

which value they can take, we consider the defining relation for the realization of right 

transformations 71 = exp(—i J2a=i Xa@a) in collective coordinate space 

= e"*' H ° e * * ( A ) , (2.36) 

where RA are just the operators in eq. 2.34. Let us consider a 6§ = 2TT rotation 11 = 

exp(i2ir\3/2) around the z-axis in the SU(2) spin subspace of right transformations. 

There, Tt = exp(i2it\z/2) = exp(i7ry/3\8) since Ag is proportional to the unit matrix. 

From eq. 2.36 and eq. 2.30 

$(Ae' 2 , r A 3 / 2) = e-iirV3~R*y(A) 

= e-'3**(A) = -*(>!). (2.37) 

This proves, owing to our use of the physical result Nc = 3, that for an odd number 

of color the soliton is quantized as a fermion. Furthermore, if we now specifically refer 

to the D-matrix as a baryon wavefunction and note that R$ has eigenvalue -\/3YR, we 

arrive at 

YR = 1. (2.38) 
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This then forces the low-lying representations to be respectively a spin-1/2 octet and 

a spin-3/2 decuplet, just as is observed in nature. This brief discussion highlights 

the crucial importance the Wess-Zumino terms plays through the appearance of the 

constraint 2.30 in determining the spectrum of baryons. 

We conclude this subsection by pointing out that the set of left-indices (I,IZ,Y) 

correspond to flavor quantum numbers, in accord with the fact that the lagrangian 

is invariant under left SU(3) transformations A —* CA. We have been able to avoid 

explicitly introducing left operators La defined by 

L " = - I r ^ t° = -iNaptriAA^Xp), (2.39) 
dtp 

(compare this to eq. 2.27 and eq. 2.28) because 

E # = X X (2-40) 
a=l ot=l 

and the Wess-Zumino term does not constrain L8. Hence these operators serve in spec

ifying the SU(3) flavor quantum numbers without explicitly coming in at the hamilto

nian level. 

2.3 The Alternate SU(3) Lagrangian 

In this section, we demonstrate that in SU(3) there exists a second term of fourth 

order in the field derivative that may enter in stabilizing the skyrmion, over and above 

the unique structure in SU(2) proposed by Skyrme [S61]. This naturally raises the 

question as to whether these two terms are exhaustive, or if other forms may also be 

admissible. We show here that one may in general entertain four acceptable structures 

of fourth order in the field derivative, which reduce to three when the constraint that no 

term give rise to expressions containing four time derivatives of the field is imposed11. 
1 1 This constraint eliminates an independent chiral term present in both SU(2) and SU(3) which can 

be put in the form of the so-called quartic symmetric term discussed in ref. [DGH84]. 
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Further, in SU(3) these reduce to two, without recourse to particular parametrizations 

of the chiral field, such as the usual embedding of the hedgehog ansatz in SU(3), while 

in SU(2) only one form survives, whence the uniqueness noted originally by Skyrme 

[S61]. 

The Skyrme lagrangian density12 has the general structure13 

C = £ ( 2 ) + £ ( 4 ) , (2.41) 

where 

£ ( 2 ) = _lltr(£^ (2.42) 

is the usual nonlinear cr-model term, involving the field derivative bilinearly. Here, 

^ = WdpU (2.43) 

and U is the meson field matrix, with U*U = UU* = 1. As is well known, the term 

£( 2 ) alone cannot lead to stable soliton solutions, and so a term (or etc.) 

containing the fourth (or sixth, etc.) power of the field derivative is required. We here 

construct the stabilization terms out of four powers of (as usual, rejecting higher 

derivatives of the field in the lagrangian density). Since the lagrangian density must 

be a Lorentz scalar, we require structures of the form £tl(.li£uiv, t^l^l*1 or i^t^l". 

We further must take traces of these strings of is to construct quantities invariant 

under the chiral symmetry group SU(3)L x SU(3)fl (recall that under global chiral 

transformations, U -» AUB* where A e SU(3)L and B e SU(3)H , and l» -> Bi^B* ). 

The quantities are spanned by the traceless generators of the SU(3) Lie algebra, 

^ = i E U , (2.44) 

1 2Here, we choose to describe things in terms of lagrangian densities C related to the lagrangian by 
L = fd3xC. 

13Throughout this section we omit explicit reference to the symmetry breaking terms and the Wess-
Zumino term, viz. eq. 2.14. They do not affect the points considered here. 
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where A a are the usual eight generators of SU(3) presented in eqs 2.7 and 2.8 and 

I na = lna(x,t) are general real space-time dependent functions. The £M are themselves 

traceless, and so the traces in the lagrangian can only involve two or four factors of l^. 

Thus we may have 

tr{l»mX), tr(W)tr(W), (2.45) 

t r ( y / f ) , tr{_tlltv)tr{in v\ (2.46) 

tr^ljn*), tr{lJLv)tr{lvl»\ (2.47) 

We omit the terms in eq. 2.47 since they are redundant with two of the previous four 

terms by reason of the cyclic property of the trace. Note also that 

e ^ ' t r ^ W , ) , e ^ ' M W M W , (2.48) 

vanish identically [W83a], also by virtue of the cyclic property of the trace. The 

appearance in eqs. 2.45 and 2.46 of traces of four 3 x 3 traceless matrices will make it 

useful below to exploit the well-known [GL85] relationship for four such matrices 

tr(ABCD) + tr(ABDC) + tr(ACBD) + tr(ACDB) 

+ tr(ADBC) + tr(ADCB) 

= tr(AB)tr{CD) + tr(AC)tr(BD) + tr(AD)tr(BC). (2.49) 

We can now write the general form of the fourth-order stabilizing term as 

C4 = a tr{ltJLvnv) + b tr( W ) 

+c zr (^4)*K^O + d tr(£fieti)tr(£J'/), (2.50) 

with a, b, c, d arbitrary parameters. We immediately impose the requirement that 

there be no terms involving the time-derivative of the field to the fourth power, (doll)4 
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or £Q, in order that the usual quantization procedure may be applied14 [ANW83]. The 

implications of this requirement are obvious when use is made of eq. 2.49 with A = 

B = C = D = this immediately leads to 

Equation 2.51 holds equally well for £ 0 in SU(2). Using eq. 2.51 in eq. 2.50, we find 

the constraint 

valid for both SU(2) and SU(3). (Incidentally, eq. 2.52 also insures that under the 

hedgehog ansatz there is no terms of fourth order in the radial derivative of the profile 

function F(r), preventing terms which would destabilize the soliton.) 

Having reduced the available independent fourth-order forms from four to three by 

reason of eq. 2.52, it is convenient to rewrite the stabilizing lagrangian density as 

(2.51) 

a + b + 2(c + d) = 0, (2.52) 

/•(«) = _ J L r ( 4 ° ) + _ IrW + u£( 4 c ) (2.53) 

where 

£<4°) = *r([^,4]2) (2.54) 

is the original choice of Skyrme [S61], corresponding to x = 1, y = 0; 

C{Ab) = tr(£^u)tr{^t) - tr(l^)tv{ivtv) (2.55) 
1 4Without such a requirement, the canonical momenta would be related nonlinearly to the time-

derivative of the collective coordinates, rather than linearly, rendering the quantization of the theory 
difficult. 
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is the new form to which we refer to as the "alternate" lagrangian, where x — y = 0; 

and 

£<4c> = Ztr^Wt) + Atr(Wnyt) 

-2tr(£lit)tr(eii£l/) - tr{£^)tr{£ut)- (2.56) 

Each of these three Lagrangian densities fulfills the condition of eq. 2.52 separately, 

with a = — 6 = 1, c = d = 0; a = 6 = 0, c = — d = 1; a = 2, 6 = 4, c = -2, d = -1 

respectively. Using eq. 2.44 in eq. 2.56, we find 

C(Ac) = 0. (2.57) 

This result follows from eq. 2.49, or it may be derived by using the following relation 

satisfied amongst SU(3) structure constants: 

8 1 
Y2{2dabedcde + daceddbe — facefbde) = ^achd ~ ^ab^cd) + ^adhc, (2.58) 
e=l 6 

where 1 < a, 6, c, d < 8. 

Thus our main conclusion is that the most general SU(3) form subject to the con

straint of two time derivatives is 

involving only the two parameters x and e. The generalization which we point out for 

the SU(3) Skyrme model lagrangian was not noticed in this context prior to our work. 

Certainly it has bearing on all previous SU(3) calculations which were done with the 

usual Skyrme term alone. After this work was completed, it came to our attention 
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that Gasser and Leutwyler [GL85] have also observed, in the related context of Chiral 

Perturbation Theory, that SU(3) allows for only three independent combinations of 

fourth-order terms in what we have called before the imposition of the requirement 

that there be no £Q term. 

2.4 A Calculation of the Octet and Decuplet Baryon Mass Spectra Using 

the Alternate Lagrangian Within the Yabu and Ando Approach 

Let us begin by considering a few points of interest that arise when we consider 

as given in eq. 2.59 under the restriction that U be the usual embedding of the SU(2) 

hedgehog in SU(3) described in eq. 2.10. For the static part 

f= Tjusuis^isup)) = A { t ) u^m^rj^)]^ A t ( < ) ; (2.60) 

the pairwise cancellations of A, A* in imply that we may restrict 
3 

*m = * ' £ ' " » • * • • > ( 2 - 6 1 ) 
t'=l 

with m now taking values over 1,2,3 only. Equation 2.59 becomes: 

1 
^static ~ imilnjlmklnl(x {tr(\iXjXk\l) -tr(\i\j\lXk)} 

i D e i,j,k,l,m,n=l 
+(1 - x) [ ir(A,Aj)<r(A,A/) - rr(At-Afc)rr-(AjA/)]) 

1 3 

= ~j 2 ^ J {Jmi^ni^mjlnj imiinjimiinj)- (2.62) 
i,j,m,n=l 

The purely static part of the lagrangian density hence reduces to the SU(2) form and is 

independent of x, being parametrized by e alone. Thus for the static part of the SU(3) 

lagrangian density, the usual Skyrme form (x = 1) or the simpler construct (x = 0) 

apply equally well, and the resulting equation for the profile function with the hedgehog 

ansatz is unmodified from the usual form. The form eq. 2.59 therefore does not 
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introduce any problems with respect to the classical stability of the soliton [ANW83]. 

Since for the SU(2) case, eq. 2.61 holds even for the time component (m = 0), it is 

clear that there one may in general consider only L^4a\ justifying Skyrme's choice as 

indeed unique within our assumptions, or one may take as a simpler algebraic 

form [KY88]. The equivalence does not depend on the hedgehog form in SU(2). 

When dynamic terms are considered, that is, when one has £\ terms, the usual 

hedgehog ansatz for SU(3), eq. 2.10, leads to the classical SU(3) lagrangian eq. 2.14. 

The classical mass arising from the static parts is 

. f°° , i i fl,-r,n ~sin 2 F. s in 2 F sin 2 F. . , n n n S M* = 4 7 T jo drr* { ^-[F + 2 — ] + ^ [2F'2 + — ] } , (2.63) 

again unchanged from the result in ref. [YA88] and containing no dependence on x. 

As for the moments of inertia, we have 

e„ = ^ Hdrr2 sin2 F{4/ 2 + V ' 2 + ^ ] } , (2.64) 

and 

eK = U°° drr\l - cosF){4/2 + ̂ zM[F» + ^ ^ ] } . (2.65) 

Note that the nonstrange moment of inertia 0 X is again dependent only on and e 

and not on x, i.e, it is unchanged from its previous form [YA88], while QK now depends 

on x as well, and is not fixed in value even after fn and e are determined. We expect 

that QK > 0 remains as a constraint15 here in order that the masses of baryons in the 

SU(3) irreducible representations of higher dimension - of possibly dubious legitimacy 

within the skyrmion framework - do not fall below the baryon octet (viz. eq. 2.31). 

This freedom to modify QK even after fv and e, and hence 0 f f, are fixed may imply 

sizable effects in SU(3) beyond those found in SU(2) calculations. 
1 5 In a general fit to the baryon mass spectrum using the lagrangian 2.59, this constraint restricts the 

range of values x can take [KPE91]. In this section, however, we consider only x = 0 and x = 1; both 
values satisfy QK > 0. 
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In this section, we want to investigate some of these phenomenological consequences 

by presenting results for the mass-splitting spectrum of octet baryons when the alter

nate lagrangian replaces the usual Skyrme lagrangian L^Aa\ This corresponds to 

setting x = 0 in eq. 2.59. We compare these results to those obtained when x = 1; this 

is just the usual Skyrme model. 

As emphasized at the beginning of this chapter, in the Introduction, attempts to 

calculate the baryon mass-splittings have been unsatisfactory due to the insufficient 

strength of the symmetry breaking terms. When calculating within the framework of 

Yabu and Ando, it is rather the product of the kaonic inertia QK times the symmetry 

breaking T that parametrizes the magnitude of the baryon mass-splittings. Indeed, the 

Yabu and Ando scheme reduces to the problem of finding the eigenvalues £ 5 S for each 

baryon by diagonalizing the equation 

(C(SU(3)) + 20*r(l - Dl8))V«MtYUSt_SzA) = ef^.y)^^-^,!)*^/,^)^,-^,!)^2-^) 

where ^^IJZIY) ( S , - S Z , I ) i s the baryon wavefunction for a given representation R of SU(3). 

This shows how the product 0/<T enters crucially. To get good results, it must be 

increased beyond the value obtained for the usual Skyrme model. 

By choosing the alternate lagrangian L ^ 4 B \ we immediately gain, for reasonable 

values of the parameters /„. and e, a doubling of the kaonic inertia. A feel for this 

can be obtained by simply observing that now 4 — 3a; = 4 instead of 1 for L ^ A \ It is 

however found that this is not yet sufficient to produce good results (unless QK takes 

unreasonable values [KPE91]). We must further increase V. An additional physically 

plausible term, which is also present in chiral perturbation theory [GL85], is of kinetic 

origin and lifts the degeneracy = fx = fn- It takes the form 

L(SB) = _ Ik^Jl jd3x i r(! _ V 3 A 8 ) ( [ / ^ + 
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+ F K M K
 fZm« [d3x tr(l- V3\S)(U + U+ -2). (2.67) 

6 J 

We note that this term reduces to Z,(5B) of eq. 2.14 when /„. = fx- In the meson sector, 

Z,(SB) leads to a Gell-Mann-Okubo-like constraint amongst meson decay constants: 

3/ 2 = ApK - f l (2.68) 

With experimental values fn = 93 MeV and fK = 114 MeV, we calculate /„ = 120 MeV. 

We have searched, but not found, an experimental measurement of this quantity. In 

the baryon sector, we get the following result for the hedgehog ansatz eq. 2.10: 

L(mass) + L(SB) = . I f ^ . j p S ^ 

• < | ( / J - / J ) / A ( F » + ^ M ) c o ^ 
2 

_ I r 2 ^ 2 ^ rj3„ <vn , 2sin 2 F( r ) , 
2 

+ \{fWK - flml) J d3x(l - cosF(r))}(l - D*,), (2-69) 

where time-derivative contributions from L^SB^ have been neglected, they are found to 

be small. The main increase is due to modification in the mass term, the second term 

in eq. 2.67. Indeed, 

£ _ fkmK ~ f l m l _ , r , ( 7 ?n>, 

r ~ / > ^ - / > 2 - L 5 5 ' ( 2 J 0 ) 

a substantial increase. 

The combined increases in the symmetry breaker © K T due to the alternate la

grangian and the dynamical symmetry breaking terms are sufficient to produce octet 

and decuplet baryon mass-splittings in agreement with experiment; without further 

ado, we present results. The masses of octet and decuplet baryons are shown in fig

ure 2.1. For the parameters / n - , m„-, m/e, the experimental values were adopted. The 

strength e = 4.1 of the stabilization term is adjusted to the nucleon-delta split, and 

fx = 120 MeV is pushed slightly above its experimental value of 114 MeV. With these 
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Figure 2.1: The mass spl i t t ing spectra in M e V of octet and decuplet baryons. The 
calculated nucleon mass is shifted in order to agree wi th the experimental nucleon 
mass. A l l other states are shifted by the same amount. Fu l l l ine (theory) are results 
for L^; dashed line (theory) are results for L^4a\ 
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numbers the baryon spectrum relative to the nucleon's mass is nicely reproduced. The 

absolute value for the nucleon mass is notoriously high, M^ = 2330 MeV, requiring 

that the whole spectrum be shifted downwards in energy. For comparison, the results 

for the usual Skyrme model (with the smaller are also depicted in figure 2.1 

(dashed lines, = 2586 MeV , the symmetry breaking strength T is kept fixed). The 

increase of the kaonic moment of inertia has two direct consequences: (i) the mass of 

the E baryon is lowered and (ii) the splitting of the decuplet baryons is increased ap

preciably. If we stick to a collective hamiltonian of form eq. 2.31, a large together 

with a strong symmetry breaking T is the only possibility to get a reasonable fit to the 

baryon spectrum. 

2.5 The Role of the Eta Meson in the Callan-Klebanov Approach to the 

Skyrme Model 

Following the initial phenomenological failure of the SU(3) Skyrme model based on 

unbroken SU(3) flavor symmetry16, the bound state approach to strangeness of Callan 

and Klebanov [CK85],[CHK88], has emerged as a viable approach for the extension of 

the Skyrme model beyond the two flavor sector17. In this model, the large SU(3) flavor 

symmetry breaking suggested by the pion-kaon mass difference is taken into account 

by constructing hyperons as bound states of SU(2) hedgehog solitons and kaons. More 

precisely, the strangeness degrees of freedom are incorporated as vibrational modes 

about the zero modes18 corresponding to isospin rotations of the classical soliton. For 

the quantum numbers of the baryon states, it is found that the spin arises as a coupling 

between the kaon angular momentum and the spin of the skyrmion, and, remarkably, 
1 6See, for example, the paper of Masak [M89] and references therein. 
1 7 F o r an alternative point of view, see section 2.4. 
1 8 Comments about zero modes are presented in section 3.3 of this thesis. 
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that the bound kaon carries no isospin, therefore imposing that the isospin of the system 

be solely associated with the collective rotations of the hedgehog. The strangeness 

quantum number of the state, on the other hand, is carried by the kaons alone, with a 

contribution of S = —1 for each bound kaon. This scheme obtains good agreement with 

the experimental values of the hyperon mass splittings [CHK88],[BDR89], and static 

observables such as the hyperon magnetic moments [NR89],[KM90]. 

An interesting question which has been considered only rather briefly [KM90] in the 

context of the bound state model of Callan and Klebanov is the role of the pseudoscalar 

eta meson (m„ = 548.8 MeV). Its comparable mass to that of the kaons (rriK+R = 
2 

495.7 MeV) suggests that it also be treated as a heavy degree of freedom relative to the 

pions (mff = 138 MeV), and correspondingly as a vibrational perturbation about the 

SU(2) soliton background, in a way completely analogous to that followed for kaons. To 

implement this, we extend the previous kaon-skyrmion ansatze to include an additional 

eta field. A natural choice [BDR89],[S84], which introduces the kaons (</>4,<j>7) and 

eta (<̂ >8 = n) symmetrically about the skyrmion UQ is 

U = S/UKV, UO ^/U^ (2.71) 

where 

JU^ = exp* ^ \ Uo = exp*' £?=, W W . (2.72) 

Here, F , = 2/w = 186 MeV is the pion decay constant, A,- are the Gell-Mann matrices 

for SU(3), fi are the three components of a radial unit vector and F(r) is the chiral 

angle. Collective coordinates allowing the hedgehog to acquire definite spin and isospin 

are introduced via the time-dependent unitary matrix A 6 SU(2). With this ansatz, 

we can consider different lagrangians to investigate the issue of the existence of eta-

skyrmion bound states. 
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We begin by considering UQ as a static background, first set A = 1 (intrinsic frame), 

and substitute the meson field matrix U of eq. 2.71 in the Skyrme model lagrangian 

eq. 2.14 

L = L{2] + L(4a) + L{ma3a) + L(SB). (2.73) 

As before, is the nonlinear tr-model lagrangian with two field derivatives, is 

the four derivative term introduced by Skyrme to stabilize the classical soliton UQ and 

^(mass) j g a m a s s term which explicitly breaks the SU(3)r/x SU(3)H down to diagonal 

SU(3). When we expand to second order in the meson fluctuations, we find the follow

ing results which possibly explain why the role of the eta field has hitherto not received 

much attention in the Callan-Klebanov model: (i) there is no eta-kaon coupling term, 

(ii) More importantly, the Skyrme stabilization term contributes no eta-hedgehog in

teraction whereas the nonlinear cr-model term only contributes the Klein-Gordon term 

of a free massless meson field19, (iii) Consideration of the mass term Z,(ma") leads to 

the following eta meson lagrangian 

= 1 Jd3x{ drfFri + 7 V2}, (2-74) 

with 7 defined by 

7 = \{ml(2 - cos F(r)) - 4mK). (2.75) 

Asymptotically, Ln represents the lagrangian of a free massive eta meson due to the 

fact that 

F(r) -> 0 7 -> - m 2 , (2.76) 

1 9 For a similar result obtained with a different ansatz, see the paper by M . Karliner and M.P. Mattis 
[KM86]. 
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which follows after using the Gell-Mann-Okubo relation eq. 2.19 for meson masses. 

We find however that Lv does not support bound state solutions, (iv) Also, the Wess-

Zumino action Swz (see eq. 2.14) must be included in the SU(3) Skyrme model 

[W83a],[W83b]; to second order in the fields, we have checked using the result given in 

eq. 2.26 that there are no rj — rj or rj — K interactions. 

It is clear that to provide a non-trivial potential for the eta meson we must go 

beyond the basic Skyrme model20. To this end, we consider the replacement of the 

Skyrme stabilization term by the general form presented in eq. 2.59. Here, 

we note that differs from the Skyrme stabilization term by providing a non-

trivial potential between the eta and the skyrmion. does not, however, provide an 

eta-kaon coupling, allowing us to study the issue of eta-skyrmion bound states without 

making further reference to the strangeness degrees of freedom. 

Replacing by in the lagrangian of eq. 2.73, substituting the meson field 

U (with A = 1) of eq. 2.71 and expanding to second order in the meson fields, we find 

L(U) = L(U0) + Lv + ... (2.77) 

where . . . stands for second order terms involving kaon fields and higher order terms in 

the meson fluctuations. The lagrangian for the eta field now takes the form 

Lv = ^Jd3x{ari2- diV A'i djn + "/rj2}, (2.78) 

where 

, 4{l-x) ,dF(r)2 2sin 2F(r), , n a = l+ \ J + j - ^ ) , 2.79 
elFi dr r2 

2 0 The other four derivative chirally invariant term, the so-called quartic symmetric term discussed 
in [DGH84] is unacceptable in the present context. Not only does it lead to an eta-hedgehog potential 
plagued with "fall to the center" problem, but the position of the singularity depends on the strength 
parametrizing this term. In this context, we found the equation of motion for the eta profile to be 
intractable. G. Pari and G. Gat, unpublished. 
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a x • 4 ( 1 ~ a : ) tdF(r)2

fs. _ , , s in 2 F(r ) / f 

7 is defined in eq. 2.75, and r) denotes the time derivative of the field. Using the 

canonical momentum 

T T " = ^ = a r), (2.81) 
or) 

we obtain, after the usual Legendre transformation, the hamiltonian 

Hr, = \ Jd3x{ ar)2+ din fa d.r, - 7 r,2}. (2.82) 

It is useful to introduce at this stage a partial wave decomposition of the eta field 

»7(r ; 0-5l( f l)»?i(r , 0 - (2-§3) 

This allows us to write the hamiltonian for rji as 

1 f°° 
Hm = - / drr2 a { m 2 ( 2 . 8 4 ) 

z Jo 

where in the last equation, we have used the Euler-Lagrange equation for rji obtained 

from the usual variation of the lagrangian: 

4(1 -x) ,dF(r)2 sin 2F(r), , n n „ s 

/3 = f;l3„f,. (2.87) 

These equations are the same, except for the terms coming from £(""•"), as the equa

tions obtained when the eta field is introduced as a phase about the SU(2) hedgehog. 
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The time-translational invariance of the lagrangian allows us to extract the time 

dependence of rji as 

r/,(r,t) = e - ' ^ r ) . (2.88) 

With this form substituted in eq. 2.85, we have a classical eigenvalue equation which 

can be investigated numerically, given values of the parameters x, e and Fv, for bound 

states u2 < m2. For our explorative purposes, we fix Fn, m , and mx at their respective 

experimental values of 186 MeV, 138 MeV and 495.7 MeV (with these values, we have 

mv = 566.8 MeV). The parameter e = 4.25 is chosen to reproduce the nucleon-A split. 

We treat a: as a free parameter (we will return to this point in the conclusion). 

We find an / = 0 eta-hedgehog bound state. We have shown in figure 2.2 how 

the binding energy of this state depends on the parameter x. The binding energy 

monotonically decreases with increasing value of x, reaching zero when the strength 

of the alternate lagrangian in is 14% of the usual Skyrme term. For 0.1 > 

1 — x > 0, the attractive potential leads to phase shifts that rapidly decrease to zero 

as 1 — x —• 0, showing no elastic rj-N resonance in the process. These phase shifts are 

plotted in figure 2.3 as a function of eta meson momentum for different values of x. 

We find no other S wave bound state. In the other partial waves, / > 0, the centrifugal 

term is repulsive enough to impede the formation of eta-hedgehog bound states. 

The S wave bound state we have described does not have well defined spin or 

isospin quantum numbers. These can be generated in the standard way by quantizing 

collective coordinates associated with rotations of the hedgehog. Since the eta is an 

isoscalar field, the introduction of collective coordinates transforming the soliton from 

the intrinsic to the laboratory frame leaves it unaffected. Letting the SU(2) matrix 

A = A{t) in eq. 2.72 be time-dependent, we obtain (omitting the kaons as before) an 
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Figure 2.3: S wave eta-hedgehog phase shifts as a function of eta meson energy (MeV) 
for different values of x. 
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additional contribution to the lagrangian 

8Ltime = 2 0W KiKi + / d*x s i n 2 F(r) ( Hjk-kj vdifj 
e r r J r 

+(6,, - fifj) KiKj dkrtdkV ), (2.89) 

where if,- = - ^ r ( A . A U ) , i = 1,2,3, are the collective velocities and Qn is the skyrmion 

moment of inertia eq. 1.41. We have expanded the interaction to second order in the 

collective velocities, rather than to first order only as is done in the strangeness case 

[CK85], because here the linear term vanishes identically for a purely radial S wave eta. 

From eq. 2.89, applied to S wave, the conjugate momentum to Ki is 

6Ltime 

6Ki 

(2.90) 

which implies the following form for the hamiltonian: 

SHiime = - 7 ^ - , (2.91) 

where J is the angular momentum of the skyrmion and we use the shorthand e for 

the integral in eq. 2.90. The effect of the S wave bound state on the mass relation 

is therefore just an effective shift of the skyrmion moment of inertia. The eta fields 

appearing in e are to be interpreted as field operators. To this end, we introduce the 

Fourier decomposition 

m = E ( vWe^al + rj(r)^-^tan ), (2.92) 
n 

with n running over all bound states and rj(r)f the given bound state profile obtained 

from solving eq. 2.85. The creation and annihilation operators an, a* satisfy the usual 
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commutation rules for boson operators and we understand the integral e as normal 

ordered. 

We evaluate the rotational mass spectrum arising from 6HUme in first order pertur

bation theory by using a product state for the eta-skyrmion system. Substituting eq. 

2.92 and expanding the denominator in eq. 2.91, we find the mass relation 

M = Mcl + 1(1 + 1) + w + 0 - ^) 1(1 + 1). (2.93) 

Numerically e = 6.1 x 10 - 5 MeV for x = 0 and decreases linearly with increasing x, for 

the bound state profile rji normalized with respect to the nonlinear metric [CHK88] a 

J roo 
I drr2a(un + um)r,^ = 6mn. (2.94) 
o 

Using this normalization equation along with the decomposition eq. 2.92 in Hm of eq. 

2.84, provides the result that u> in the mass formula is just the classical frequency. A 

parameter K has been introduced in the mass relation to represent both the omitted 

higher order terms in the e/0 w expansion and the fact that this series suffers from 

operator ordering ambiguities [CHK88]. 

The mass spectrum we have discussed is now compared to experiment [RPP88]: we 

first make the obvious observation that since the eta meson is a pseudoscalar particle, 

the bound state we have is a negative parity baryon state. The lowest mass rotational 

band member has the quantum numbers Jp = 1 ; I = | (recall that for the skyrmion, 

I = S). A possible candidate for this is the N(1535) negative parity Sn nucleon 

resonance which lies slightly above rj'N threshold, and decays with a 45%-55% branching 

ratio to 77+N suggesting a large 77 content of the state. A previous description of 

N(1535) in the context of the Skyrme model required the introduction an isoscalar 

scalar a meson [SW89]; here, we obtain very naturally a state with the correct quantum 

numbers. From figure 2.2, we observe that for values of 1 — x of the order of 0.2, the 
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77-N bound state mass is close to 77-N threshold. A small value of the free parameter 

K could then be used to push the mass of the state above threshold, bringing it in 

agreement with that of N(1535). Such a scheme, to describe resonances within the 

context of the Callan-Klebanov model has previously been advocated in the strange 

sector for A(1520) [BDR89]. A possible candidate for the J p = §~;I = | rotational 

band member is the A(1700) 7T-N D-wave resonance. Here, since we predict for the 

resonances M A . — M N » ~ M& — M N , we do not account well for the observed splitting. 

We have described, for the eta-baryon sector of the Callan-Klebanov model, the re

sults obtained with the general lagrangian and made a comparison with experiment. 

Choosing small values for the parameter 1 — x is in agreement with the experimental 

information available (see ref. [BDR89]), albeit large uncertainties are associated with 

such data. On a general theoretical basis, should be used rather than the Skyrme 

term alone, suggesting that it becomes of interest to investigate how the strangeness 

sector of the Callan-Klebanov model, and the ensuing physical discussion of hyperons 

[DNR89], is modified by the new-found freedom. 



Chapter 3 

S and P Wave Pion-Nucleon Scattering in the SU(2) Skyrme Model 

3.1 Introduction 

Nonlinear models for mesonic fields which contain baryons as topological solitons al

low for a natural description of meson-baryon scattering [HEHW84][WE84] [EHH86] 

[MK85][KM86]. Small fluctuations in the underlying meson fields are introduced to de

scribe the shape vibrations of the soliton. Due to the diffuse surface of the soliton which 

extends exponentially decreasing to infinity, the normal modes asymptotically have an 

oscillatory behaviour which allows an identification to scattering waves [EH82]. This 

situation is in contradistinction with the usual case of finding a set of discrete levels 

describing the normal modes of an object with a sharp surface. 

The meson field lagrangian, with soliton-meson ansatz, is expanded in the intrinsic 

frame of the skyrmion to second order in the small meson fields. A multipole expansion 

of the meson field insures that the Euler-Lagrange equations of motion obtained from 

the usual variation of the lagrangian are a set of linear ordinary coupled differential 

equations [WE84][MK85]. These are then solved with respect to boundary conditions 

such that the solutions describe scattering waves. In the intrinsic frame, the scattering 

solutions are identified with phonon excitations of the soliton [HEHW84]. To recover 

the familiar description of the scattering event in terms of mesons scattering off a 

target baryon we must consider a recoupling scheme for the various angular momenta 

involved in the problem [HEHW84][MP85]. This implements a transformation from 

57 



Chapter 3. S and P Wave Pion-Nucleon Scattering in the SU(2) Skyrme Model 58 

the intrinsic frame to the laboratory frame where it is finally possible to compare the 

theoretical phase shifts and inelasticities with those extracted from experiment for the 

different channels defined by total isospin and total angular momentum (we restrict 

our observations to pion-nucleon scattering). 

Extensive compilations of results obtained for these "standard" background, or adi-

abatic, calculations can be found in the literature. They represent principally the work 

of the Siegen group [HEHW84] [WE84] [EHH86] and the Stanford group [MK85] [KM86] . 

The wealth of information predicted by the Skyrme model is impressive, given that with 

only two free parameters, e and fn, it is possible not only to describe the spectrum 

of baryon resonances, as is done in naive quark models [IK79a][IK79b], but also the 

whole meson-baryon scattering amplitudes as a function of meson energy. If we re

strict the discussion to SU(2), that is pions, nucleons and deltas, then good agreement 

with experiment is found in all channels except the lowest angular momentum partial 

waves. The pion-nucleon F waves are particularly well reproduced [HEHW84][MK85]. 

However, it is observed that the S and P waves1 are in obvious disagreement with exper

iment [HEHW84][MK85]. This situation in many ways was originally a serious blow to 

the model since theoretical expectations had it that the Skyrme model should be par

ticularly effective in the low-energy regime; that perhaps it represented a low-energy 

non-perturbative realization of quantum chromodynamics [W83a] [W83b]. These early 

calculations, however, suffered from the severe "adiabatic" approximation which, in 

few words, corresponds to neglecting all interactions between the meson field and the 

time-dependent collective motions of the skyrmion. 

Recently, it has been convincingly demonstrated how one should proceed to bring 
1 W e follow the usual spectroscopy nomenclature to describe partial waves: a relative 7T-N angular 

momentum / = 0, 1, 2, 3, etc, corresponds to S, P, D, F, etc, waves. Where we will have to be more 
specific, we will introduce the total isospin T and total angular momentum J to describe the channel: 
S(2T)(2J), P(2T)(2J) , etc. 
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the model in closer agreement with the experimental data for the low-energy P waves 

[K089][V89][V91]. Of the ideas contained in these works, there are two observations we 

think are worth insisting upon. The first is that it is incorrect to neglect the coupling 

between the fluctuation field and the rotations of the soliton. Formally, this corresponds 

to retaining meson-baryon interactions involving time-derivatives of the collective co

ordinates. The other point we emphasize is that the zero mode solutions which appear 

in the background scattering calculations, reflecting the breaking of isospin symmetry 

in the lagrangian by the soliton solution, do not require any special kind of treatment. 

This point was not appreciated immediately and led to various suggestions2 on how to 

treat the zero energy solutions in the background [SOY86][KVW88]. 

As observed by Verschelde [V89], the sum of the contributions from zero modes 

and linear time-derivative interaction reproduces the A-isobar model [EW88] for the 

P waves in irN elastic scattering. In its non-relativistic version, the physics of the 

A-isobar model is contained in the direct and crossed nucleon and A exchange Born 

graphs. Such a clear link between the Skyrme model and familiar phenomenology 

is an important result in view of the Skyrme model's above mentioned difficulties in 

reproducing even the basic qualitative features of 7 r - N scattering. 

For the S waves, the background calculations left degenerate the two isospin chan

nels, in obvious disagreement with experiment [HEHW84][MK85]. It has, however, been 

shown by Uehara and Kondo [UK86] that the time-derivative interaction quadratic in 

the fluctuations restores the low-energy theorem for the scattering lengths. This shows 

that the soliton model in principle contains all the important ingredients necessary for 
2Actually, the issue of identifying the Born terms in the Skyrme model is still rather controversial. 

This is attributed to the constrained nature of the degrees of freedom that are to be quantized for the 
soliton-pion interacting system. Also problematic in this context has been the issue of the order in 
Nc of the time-dependent terms responsible for the description of the delta resonance. These issues 
are interestingly addressed by Vershelde [V87][V88][VV89]. For a different point of view to the one we 
advocate in this thesis, we refer in particular to the articles of Uehara [U88][U89][U90] and ref. [HSU91] 
and to commentaries by Liang et al. [LLLS90] concerning ref. [K089]. 
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a satisfactory description of meson-baryon scattering. 

In this chapter we describe how to realize such ideas in a full calculation of 7T-N phase 

shifts. The approach we follow finds its origins in ref. [H90], details of which we will 

review in section 3.4. We construct a scheme that allows us to go beyond the adiabatic 

approximation for meson-baryon scattering and address the problems plaguing the 

calculated background pion-nucleon S and P waves. The results obtained represent 

a marked improvement over background calculations and bring the Skyrme model in 

semi-quantitative agreement, especially for the P waves, with the phase shift analyses 

based on experiment. Our comparison is limited to pion energies up to 300 MeV above 

threshold. We also consider the results obtained for the potentials generated by the 

nonlinear cr-model, for a given soliton profile. In this case, however, we find unrealistic 

predictions and therefore will only present a limited discussion of this model. This 

latter approach has not appeared in the literature, most probably because it fails in 

reproducing observed features of the phase shifts. 

The process will require that we judiciously implement approximations avoiding the 

overwhelming complexity of the complete calculation. This will first lead us to com

ment about the usual adiabatic calculations where we will find it necessary to truncate 

the scattering S-matrix in such a way that we can remove unphysical scattering of 

pions from spin 5/2, isospin 5/2, exotic baryon states3 and close those channels which 

are the cause of large inelasticities setting in at unphysically low momenta in the pi-N 

channels. We will pay particular attention to preserving the unitarity of the S-matrix; 

for this reason we will carry out the truncation in the K-matrix. We then add to this 

background scattering the contributions arising from terms representing the coupling 

of time-derivatives of baryon collective coordinates to the meson fields. These inter

actions will be evaluated in first order Born approximation. To take into account the 
3Recall that such states arise naturally in the Skyrme model rotational mass spectrum. 
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arbitrariness of the choice of representation for the fluctuations a specific interpolat

ing field incorporating the metric associated with the fluctuations is substituted for 

by plane waves. We present the elastic phase shifts constructed from our background 

results and time-derivative interaction results for S and P waves. When discussing 

results, we will tend to first present the case of P wave 7T-N channels. This is the area 

in which we have invested most effort and for which we have found best agreement be

tween the Skyrme model and phase shift analyses. The treatment of the 7T-N S waves 

then follows in a straightforward way. 

The work presented in this chapter covers the material contained in the two papers 

"Low-Energy Pion-Nucleon P Wave Scattering in the Skyrme Model" by Holzwarth, 

Pari and Jennings [HPJ90] and "Low-Energy S Wave Pion-Nucleon Scattering in the 

Skyrme Model: a PWBA Analysis" by Holzwarth, Walliser and Pari [HWP90]. Our 

results represent the first successful calculation of low-energy P wave 7r-N phase shifts 

within the framework of the Skyrme model. We emphasize that this is due to our use 

of a better set of approximations over previous calculations [HEHW84][WE84J[EHH86] 

[MK85]. We are not introducing any new parameters; indeed, our "favorite set": / x = 

93 MeV, e = 4, = 138 MeV, has only the dimensionless constant e taken as a free 

parameter and adjusted to the physical value of the nucleon-A mass split. Although 

our results for the S waves are not unsatisfactory, we will see that they lack in several 

features. As demonstrated very recently by Walliser [W91], the main problem resides 

in our use of the plane wave Born approximation. This approximation is known to 

be "risky" to use in nuclear physics. It should perhaps not be too surprising that 

Walliser's distorted wave Born approximation calculation, which takes into account 

the deformation of the pion profile due to solitonic effects, achieves better results. 
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3.2 Background Scattering 

3.2.1 Introduction 

We consider two particular soliton models: the nonlinear cr-model [GL60] 

La = £ J(tr(d^Ud^) + mltr(U+ -2))d3x, (3.1) 

and the Skyrme model [S58][S61] 

L s = L ( T + ^ ? I TR\-U*D»U> U%U]2d*x, (3.2) 

with U G SU(2). Both models have serious drawbacks: the nonlinear cr-model does 

not stabilize the soliton against spherical collapse. But we can still use it for a given 

soliton profile to investigate its implications for the scattering of mesons off the chosen 

soliton background. As for the Skyrme model, it suffers at higher energies from an 

unphysical monotonic rise of phase shifts in all normal modes4 [EHH86]. Fortunately, 

this does not seriously affect the scattering amplitudes in the low-energy domain we 

consider ( < 300 MeV above threshold, or equivalently, a momentum in units of the 

pion mass k < 3 m f f). 

Starting with the B = l static hedgehog 

UQ = e l f f F ( r ) , (3.3) 

we introduce meson fields which will later be identified with scattering states by con

sidering small fluctuations of the field UQ (small in the sense that they are damped by 

I//*). This procedure might seem to contain a great deal of arbitrariness since one 

could easily think of a large number of ways to implement such a scheme: 

= U0 e , T ' £ = SJUQ el7-fc yju~0 etc., (3.4) 

4Except, as can be seen in figure 3.1, in the EO mode. 
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with Greek symbols labelling the small fluctuation field. Asymptotically, as the chiral 

profile F(r) —> 0, U resides in the meson sector of the theory and the model describes 

a theory of interacting mesons. For finite r, the mesons interact with the soliton and 

the potential is determined by the explicit form of chiral lagrangian we use. Of these 

meson-baryon ansatze, two have been particularly popular. The first form 

is referred as the "direct expansion" form and was preferred by the initial workers doing 

meson-baryon scattering within the framework of the Skyrme model [WE84][EHH86] 

[MK85]. We will therefore extensively rely on the background scattering results ob

tained within this framework. In particular, we use for the Skyrme model the equations 

derived with this form of fluctuation by Mattis and Karliner [MK85]. For completeness 

we have included these differential equations in an appendix alongside those we have 

obtained for the nonlinear cr-model (see Appendix A). The other form we use in this 

thesis is the one proposed by Schnitzer [S84]: 

Here the fluctuations £ are introduced symmetrically about the hedgehog through a 

chiral rotation. This form has the nice property of leading in a transparent way to 

all low-energy soft pion theorems; by expanding L(Us) to second order in f, Schnitzer 

recovered the usual Weinberg lagrangian [W66]. Us is also useful because it leads to less 

tedious calculations than the direct expansion form. We will use it when we consider 

the time-dependent interactions to be added in Born approximation to the background 

results in section 3.4. 

Since we are free to choose any of the forms in eq. 3.4 the procedure described to 

introduce meson fields in the theory appears to contain a great deal of arbitrariness. 

(3.5) 

(3.6) 
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This is not the case, however, in the harmonic approximation5 used to calculate back

ground scattering: the resulting linear equations of motion for the mesons lead to the 

same phase shifts. Restricting ourselves to Us and UD, we see that the equivalence of 

the two forms leads, to first order, to the relations [SOY86] 

a = <£L, (3.7) 

& = t a 3 ^ , F $ T , (3-8) 

where we have used the decomposition of the field in longitudinal and transverse com

ponents 

$=(j)Lr + $T. (3.9) 

Because * ^ j r ^ —> 1 as r —> oo, the phase shifts extracted from the asymptotic part of 

the field are the same. Of course, we expect different results if we expand the model 

to 3rd order, but we do not touch this issue here. 

The ansatze of eq. 3.4 refer to the intrinsic frame because they do not contain 

collective coordinates which rotate the hedgehog to states of good spin and isospin. It 

is in this frame that the background scattering phase shifts are most easily obtained. 

We therefore proceed, in the next paragraphs, to provide general details of such a 

calculation and show how to arrive at the physical laboratory frame 7T-N phase shifts. 

Using the direct expansion ansatz UD, the results of the expansion to second order 

in the fluctuation for the lagrangian is 

1 r • sin2 F 2 

L = _ M c + _ J d \ { gLfi + -jj-grfa) - VD{cj>), (3.10) 

interchangeably, we will use either "harmonic approximation" or "expansion to second order in the 
fluctuating field". 
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where we have found it convenient to adopt a form used by Walliser [W91]. If we use 

instead the Schnitzer ansatz Us, then we find the lagrangian [SOY86] 

L = -Mcl + i J d3r( gUl + cos2 F9T(T) ~ Vs(0- (3.H) 

In these expressions, Mcl (eq. 1.34) is the static soliton mass contributing only to the 

baryon sector. The time derivatives <j>i, <j>T, £ L , (t, of the longitudinal and transverse 

components come multiplied by the metrics 

2 s in 2 F 

ST = 1 + j^(F" + (3.13) 

These functions play an important role in the normalization of the fluctuations. The 

potentials V£>(<£), VS(£) , are lengthy quadratic functions of the fields and their spatial 

derivatives for which we need not present explicit expressions. 

It is important to note that in the expressions eqs 3.10, 3.11, there is no linear 

term in the fluctuation. This reflects the fact that the hedgehog is a local minimum 

with respect to vibrations <j> (or £ ), i.e. the coefficient of the linear term is simply 

the defining differential equation for the soliton profile F(r). But the vanishing of this 

contribution [OSY85][HS86a][U86] also seems to indicate a serious missing ingredient in 

the model: the lack of minimal Yukawa couplings (see eq. 1.14, for example), as in the 

familiar relativistic meson-baryon lagrangians, leading to baryon exchange diagrams. It 

turns out, however, that for the rotating hedgehog, a coupling involving the meson field 

linearly and the time-derivative of the zeroth component of the axial current survives 

[HHS87][S87a][V88][AZ88]. This is due to the fact that the rotating hedgehog is not a 

solution to the differential equation defining the static profile F(r). The implications 

of this will become clear in section 3.4. 



Chapter 3. S and P Wave Pion-Nucleon Scattering in the SU(2) Skyrme Model 66 

A Euler-Lagrange variation of the lagrangian eq. 3.10 leads to the linear equations 
—• 

of motion for the fluctuation (j>. The equations separate into angular and radial parts 

if the field is expanded in standard vector spherical harmonics [WE84][MK85]: 

1= £ <PKi{r,t) YKlMh.(r), (3.14) 

KIMK 

YKIMA?) = E (lmlu\KMK) i„ Ylm(r), (3.15) 
mv 

where in these expressions, YKIMK^) a r e vector spherical harmonics constructed by 

adding vectorially the spherical isovector e„, v — 0, ± 1 , to spherical harmonics F/m(r) 

with the usual recoupling Clebsch-Gordan coefficient. A further decoupling into posi

tive and negative parity channels [WE84] [MK85] occurs because of the definite parity 

of the spherical harmonics 

VYlm(f) = (-) ' Ylm(r). (3.16) 

Applied to c?, we then have the magnetic modes with parity6 (—)^±1 

<I>M ~> 4>KK(r,t) YKKMK(r) (3.17) 

and the electric modes with parity ( — ) K 

The labelling <J>E, <1>M follows the well-known nomenclature associated with the mul-

tipole decomposition of the electromagnetic E and B fields [J75]. We will repeatedly 

use this terminology, examples of which are the EO (electric monopole) K = 0, / = 1; 

M l (magnetic dipole) K — 1, / = 1; E l (electric dipole) K = 1, / = 0; etc. Of these 

modes, the EO has acquired the name of "breathing mode". This is due to the fact that 

6We also include here the intrinsic pseudoscalar nature of <j>. 
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it corresponds to a change fF(r) —» f(F(r) + 8F(r,t)) which is simply a small radial 

vibration about the equilibrium profile F(r). Finally, we specify the time dependence 

of <pKi{r,t) as 

<PKi(r,t) - ^(r)e-* w f , (3.19) 

which leads us to search for the normal modes of the field. The complete equations for 

both the Skyrme and the nonlinear cr-model are presented in Appendix A. There is 

also presented a quick discussion on the technicalities involved in extracting the phase 

shifts from the differential equations. 

The grand spin K arises from the unusual coupling of the field's isospin to its 

angular momentum: 

K = i + T (3.20) 

\K\ = I+ 1,1,1-I. (3.21) 

That such a decomposition is useful is due to the fact that in the intrinsic frame, the 

hedgehog is a singlet under /^-transformations. 

kU0 = \[r, Uo] - i(rx V)U0 = 0. (3.22) 

The physical interpretation that is given to K is that of "phonon spin" [HEHW84] 

carried by the fluctuation (see also section 1.2 for other comments concerning the 

grand spin). A precise identification requires a consideration of the Noether currents 

involved in the problem [W91]. 
—* 

In the intrinsic frame, we therefore have the physical picture of a phonon of spin K 

interacting with a baryon of spin J*. The total angular momentum J for the scattering 

event is then 

J = K + s. (3.23) 
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This leads us to write, in the intrinsic frame a state of total angular momentum and 

total isospin as [HEHW84] 

The first ket on the right hand side of expression eq. 3.24 represents the phonon wave-

function whereas the second one is to be identified with the baryon's wavefunction in 

collective coordinate space. For the baryon wavefunction, we have explicitly made use 

of the result |s| = which explains why only the spin quantum number appears as a 

label alongside the magnetic quantum numbers. 

In the laboratory frame, the fluctuations carry angular momentum |/| and isospin 

|z| = 1. The baryon carries spin \s\ = \I\. It is clear how to write states corresponding 

to channels of total isospin and angular momentum [HEHW84]: 

\(ls)JMj;(ls)TMT)lab = 

{IrrnsMslJMj^lrriisMjlTMT) |/m,; lm,-) /o6 ® |sM s ; sM/), a 6 , (3.25) 

where we have introduced T to denote the total channel isospin. The physical situation 

in the laboratory frame corresponds to the familiar one of a pion scattering off a target 

baryon, with |/m/; lm,) ( a i representing the pion and \sMs; sMj)lah the baryon. It is 

there that we compare the model's predictions with experiment and we therefore now 

consider the geometric transformation relating the two frames. 

The overlap is 

\(Ks)JMj-,sM,)int = 

(KMKsM3\JMj) \KMK)int®\sMs;sMj)int. (3.24) 
MKM, 

miMsmiMi 

lab{(ls)JMj; (IS^MTKKSV'M'J; T'M'T)int = 

0~TT' fijJ' ^MJM'J &MTM'T Sui tins' CjTlsK, (3.26) 
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with recoupling coefficients 

CjTisK = (-)l+s+J((2K + l)(2s + l ) ) 1 ' 2 I 
T 1 s 

I J K 
(3.27) 

The appearance of the 6-j symbol < 
T 1 

reflects the fact that there are precisely 
I J K 

6 intertwined angular momenta in the problem. We may point out that a particularly 

useful identity in such simplifications is [E74] 
\ / » • , \ / , , , \ 

I 7 i / o 

M l M 2 ^ 3 

= (-) 

32 h 
-Ui m2 fi3 ) -P2 m3 ) 

3\ 32 33 (3.28) 3i 32 33 

y mi m2 m3 j y \x l2 l3 

where we have introduced the familiar 3-j symbols related by a normalisation factor to 

the Clebsch-Gordan coefficients [E74]. To simplify the string of rotational D-matrices 

arising from the baryon wavefunctions and the transformation from intrinsic to labo

ratory fluctuation we have used the following integral over collective coordinates: 

8TT 2 / 

(3.29) 
s I s ' 

Ms u -M's J \ -MT V Mj. J 

Here, we have used the baryon wavefunction eq. 1.51. We point out these details 

because they are very typical of the technical points that arise in Skyrme model calcu

lations. 

The result for the S-matrix is obtained by using the closure relation J2%nt I I — 1 

twice and projecting onto laboratory frame state [HEHW84] 

S2^;2/ = y~]CJTUK CjTl's'K- (3.30) 



Chapter 3. S and P Wave Pion-Nucleon Scattering in the SU(2) Skyrme Model 70 

We could have alternatively arrived at this important result by introducing time-

independent collective coordinates about the hedgehog and carried out the calculation 

along group theoretical lines [MK85]. We emphasize that this static approximation is 

at the heart of the background scattering. If we use an analogy to rotational mod

els of nuclear physics, the approximation corresponds to neglecting vibration-rotation 

coupling. 

We have indicated the various angular momenta that label the laboratory and in

trinsic S-matrices. The labeling of the laboratory frame S-matrix explicitly indicates 

conservation of total isospin and angular momentum. The incoming pion angular mo

mentum / is not, however, necessarily equal to the outgoing pion momentum /' (similarly 

s is not necessarily equal to s'), reflecting, for example, the possibility of having / = 3 

pions contributing to the inelastic process 7T-N —> 7T-A in the 2J = 3 channel. Parity 

precludes even Vs from mixing with odd Vs, and total angular momentum conservation 

restricts A/ < 2. We see that to calculate background scattering in the laboratory 

frame, it is sufficient to know only the few intrinsic frame channels which contribute 

through non-zero 6-j symbols in eq. 3.30 to the physical 7T-N channels. 

3.2.2 Intrinsic Frame Background Scattering 

We will now proceed to describe these intrinsic frame channels which contribute to the 

7T-N S and P waves required in our calculation. For our descriptive purposes, we fix 

the parameters of the model / x , to their respective physical values of 93 MeV and 

138 MeV and choose e = 4, a value which gives a reasonable Skyrme model nucleon-

delta mass split as well as a reasonable value of the 7rNN coupling constant / ^ N N 

(section 3.3). A further set of parameters: f„ = 110 MeV, e = 4 is used to investigate 

the sensitivity of the P wave Skyrme model results whereas we present for the S waves 

the results obtained with /„• = 110 MeV, e = 5. 
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It is perhaps useful at this stage to regroup all the parameter sets used in this 

chapter for calculations of S and P wave scattering and briefly outline the reason for 

our choices. We note that in the case of the nonlinear cr-model, only the set /„• = 93 

MeV, e = 4, = 138 MeV, is used for both S and P wave 7T-N scattering. For the 

Skyrme model, the various sets of parameters now follow, with f„ in MeV and m f f 

unchanged from its experimental value of 138 MeV. 

Parameters sets used for 7T-N P wave scattering within the framework of the Skyrme 

model. 

/„. = 93 e = 4 Gives best results for P waves; also good values for / X N N 

and N-A mass split. 

/ f f = 110 e = 4 Pn channel is nicely reproduced; 

Used to check dependence of results on /„ . 

/ f f = 54 e = 4.84 Reproduces physical N and A masses; 

a curiosity, it fails to reproduce P waves. 

Parameters sets used for 7r-N S wave scattering within the framework of the Skyrme 

model. 

/„• = 93 e = 4 Consistent model should use same parameters 

for S and P waves. 

fx = 110 e = 5 Our best results for the S waves. 

First, we consider the background results for the 7T-N P waves. The laboratory 

S-matrix eq. 3.30 contains the 7T-N P waves in the channels with isospin-spin labels 

2T = 1,3; 2J = 1,3; pion orbital angular momentum / = 1,3; target spin=isospin 
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s = 1/2,3/2,5/2. Of course, s = 1/2 corresponds to the nucleon, s = 3/2 to the A, 

but there is no sharp resonance in nature with s = I = 5/2 [MP85]. Unitarity of the 

S-matrix, however, requires the inclusion of this state. Other artifacts of the model, 

i.e. rotational band members with s = 7/2,9/2... are excluded by the triangular rules 

satisfied by the various angular momenta. We will return to the case of the exotic 

5 = 5/2 state later in this section when we consider the truncation of the background 

amplitudes to a single channel. 

For 2r = 2J = l , S 1 1 couples only P waves in the TT-N; (S = 1/2) and?r-A (s = 3/2) 

channels, and the X-sum in eq. 3.30 involves only the K — 0 electric monopole (EO) 

and the K = 1 (Ml) mode. In figure 3.1 we present the EO phase shifts7 8®x which 

enter the r.h.s. of eq. 3.30 through S^ = exp(2iS°1) (see also appendix A) for both 

models eqs 3.1 and 3.2. It may be seen that the nonlinear cr-model produces a very 

pronounced low-lying resonance near k — 0.75 while the Skyrme model shows the 

well-known structure which hardly reaches 90° near k = 3.5 mv. 

The other contribution the PN channel receives is from the M l mode. For this case, 

presented in figure 3.2, the phase shifts leave threshold with a negative scattering vol

ume. For the Skyrme model, they start bending upwards at k = 2.5 m,, indicating the 

onset of the unphysical monotonic rise of the phase shifts8 due to a peculiar momen

tum dependence introduced into the scattering potential by the Skyrme stabilization 

term [EHH86]. This effect leads us to restrict our considerations9, as is obvious from 

the graphs, to low momenta k < 3 m .̂ For the nonlinear cr-model, the phase shifts 

asymptotically tend to zero at momenta beyond those considered here. The M l mode 

7Our notation for the intrinsic frame phase shift 6jf, follows from eq. 3.30. 
8This problem can be cured with the replacement of the Skyrme stabilization term by stabilization 

via vector mesons [SWHH89]. 
9Another reason, which will come later, is that having truncated the K-matrix eq. 3.31 to a single 

channel, we would not expect reasonable results above the 7 T -A threshold kth = 2.93 m, because 
inelasticities start setting in. 
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Figure 3.1: Phase shifts for the EO breathing mode for Skyrme model w i th e = 4 and 
/ „ equal 93 M e V (full line) and 110 M e V (dashed l ine), and for the nonlinear <7-model 
calculated wi th a Skyrme profile F(r) for f„=9Z M e V and e = 4 (dotted l ine); = 138 
Mev . The abscissa is the absolute value of the pion three-momentum in units of mT. 
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Figure 3.2: Phase shifts for the M l magnetic dipole mode. Parameters, l ine types and 
axes as in 3.1. 
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contains the bound rotational zero mode at k2 = — m 2 (this will be discussed at length 

in the section 3.3). This explains why the attractive potential felt by the fluctuation in 

this channel seemingly leads to a repulsive phase shift. In accordance with Levinson's 

theorem [GW64], the phase shifts are plotted starting at 180°. 

The 2T = 1,2 J = 3 and 2T = 3,2 J = 1 channels pick up only K = 2 contributions 

in addition to the M l mode, and the 7T-N P waves couple also to the F waves in the 

6 = 3/2 and 5 = 5/2 channels, for S 1 3 and S 3 1, respectively. Only in S 3 3 the 7r-N P 

waves couple to P and F waves in both, 5 = 3/2 and 5 = 5/2 channels, making S 3 3 

a 5 x 5 matrix, which picks up contributions from values K = 0,1,2,3 on the r.h.s. 

of eq. 3.30. Figure 3.3 shows the K—2 phase shifts 6^ for both models. Using a 

little foresight (see discussion preceding eq. 3.31), we present only the / = /' = 1 phase 

shifts: from these come the important contributions that survive when we truncate the 

laboratory S-matrix to the single 7T-N —> 7T-N channel. For the Skyrme model, they 

remain close to zero; their influence on the low-energy behaviour of S 2 T 2 J is small. The 

nonlinear cr-model results, however, show rapidly increasing attraction for k > 2 m x . 

The K = 3 contributions are unimportant in the low-energy region considered here; 

we accordingly consider the S-matrix for this channel as equal to one. 

We now consider the background results necessary for the 7T-N S waves. For 2T = 

2J = 1, S 1 1 couples 7T-N (5 = 1/2) S waves / = 0 and TT - A (s = 3/2) D waves 

(/ = 2) together. The /iT-sum in eq. 3.30 is restricted to the single K = 1 electric 

dipole E l . Again, we present in figure 3.4 only the / = V = 0 element due to our 

truncation procedure. Interestingly, 8QQ shows attractive behaviour for the Skyrme 

model and repulsive behavior for the nonlinear cr-model. This points towards a great 

dependence of the results on the precise form of the potential, even near threshold 

where we would perhaps not expect such sensitivity to the quartic Skyrme term (see 

the P wave backgrounds). For the 2T = 3, 2J = 1 channel, eq. 3.30 leads to the 
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Figure 3.3: Phase shifts for the / = /' = 1 part of the electric quadrupole (K = 2) 
mode. Parameters and line types as in figure 3.1. 
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Figure 3.4: Phase shifts for the / = /' = 0 part of the electric dipole (K — 1) mode 
for the Skyrme model with e = 4, / , = 93 MeV (full line) and e = 5, /» = 110 MeV 
(dashed line); and for the nonlinear cr-model calculated with a Skyrme profile F(r) for 
/„.=93 MeV and e = 4 (dotted line); mv = 138 MeV. The abscissa is the absolute value 
of the pion three-momentum in units of m f f . 
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surprising result S 1 1 = S 3 1 [HEHW84][MP85]; hence, we need not consider any further 

background contributions for the S waves. The identity is due to the fact that there are 

more independent scattering amplitudes in the laboratory frame than in the intrinsic 

frame: there results a "conspiracy" amongst the 6-j symbols, leading to the mentioned 

constraint. This is an unfortunate result, in violation of experiment and the Weinberg-

Tomozawa rule for the description of low-energy S wave 7T-N scattering [W66][T66]. 

However, it is not catastrophic. The resolution10 of this problem within the context 

of the Skyrme model has been known for some time and requires the introduction of 

time-derivative interactions [UK86] (see section 3.4). 

3.2.3 Laboratory Frame Background Scattering and Truncation Procedure 

With the intrinsic frame background results we obtain the corresponding physical scat

tering amplitudes by using eq. 3.30. We show in figures 3.5 and 3.6 (full line curves) 

the calculated phase shifts and inelasticities extracted from S ^ ^ i 1/2 corresponding to 

7T -N P wave scattering in the Skyrme model. A quick comparison between the calcu

lated phase shifts of figure 3.5 and the results of phase shift analyses (the data can be 

found in figure 3.10, for example) shows that the Skyrme model results achieve dismal 

agreement with the data. The Pn and P 3 3 channels respectively show no sign of the 

Roper and Delta resonances; instead, there is repulsion at those values of momenta for 

which we would expect important attraction. The P i 3 and P 3 i channels are degener

ate, but in reasonable agreement with experiment. As mentioned before, these initial 

background results were quite disappointing to workers in the field. 

There is an important physical ingredient, however, which is not taken into account 

in the static background calculation. It is the opening of the 7T -N , TT-A, 7 r - | * at their 

1 0In the context of the adiabatic approximation, the soft pion result for the S wave scattering lengths 
ai = —2a3 is actually trivially satisfied by ai = a 3 = 0; there is no theoretical inconsistency. 
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8 0 

Figure 3.5: Untruncated (full line) and truncated (dashed line) background phase shifts 
8 for the four P wave channels as a funct ion of absolute three-momentum k (units of 
m„). Parameters are fK = 93 M e V , e = 4 and m„ = 138 M e V . The four P wave 
truncated background phase shifts are indicated by dashed lines. 
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Figure 3.6: Background inelasticities 77 for the four P wave channels as a funct ion of 
absolute three-momentum k (units of m T ) . Parameters as in figure 3.5. 
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correct thresholds. Rather, in this approximation, N, A, |*, are degenerate in mass 

and all channels open too soon at the 7T-N threshold. The consequence is that these 

unphysically open channels lead to large inelasticities where we expect elastic 7T-N 

scattering. This is shown in figure 3.6. In the soliton models, which does not include 

pion production because such terms would require an expansion of the lagrangian to 

third order in the fluctuations, the onset of inelasticities should come at the 7T-A 

threshold energy uth = M& - MN + = 3.1 mT (or kth = 2.93 m*, (no recoil)). 

We would therefore like to cut off the coupling to the unphysically open s = 3/2, 5/2 

channels and keep only the / = I' = 1, 5 = 1/2 channel. In order to retain unitarity 

of the S-matrix this can be done by solving coupled-channels equations directly in 

the laboratory frame without the unwanted channels [EHH86]. This procedure is, 

however, not straightforward. Instead, we suggest performing the truncation in the 

real symmetric K-matrix defined by 

• i _ c 2 T 2J 

«" J - l • (3.3D 

Truncating in the K-matrix can be done without affecting the reality and symmetry of 

the matrix; hence the reconstructed S-matrix obtained by inverting eq. 3.31 remains 

unitary. Such a truncation procedure certainly is a rather rough approximation to an 

exact calculation of the background K-matrix. However, it represents an acceptable 

method to implement the required closure of the unphysically open channels. 

The truncated elastic 7 r - N —> 7r -N P wave phase shifts are presented in figure 3.5. In 

this figure, we emphasize the effects of the truncation procedure by plotting truncated 

and untruncated phase shift side by side. A comparison with phase shift analysis data 

(these can be found in figure 3.10, for example) shows that an important improvement 

is obtained through our simple truncation procedure. The Roper and A resonances 

now appear in the Pn and P 3 3 channels respectively. Their order is however inverted 
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from what is observed experimentally, there not being enough attraction in the P 3 3 

channel. To bring the A pole in the K-matrix at its correct physical position, we will 

need to consider time-dependent interactions between the meson fluctuations and the 

collective coordinates (section 3.4). As for the Roper resonance, it occurs too soon, 

showing that there is too much attraction in Pn channel. This is due to the fact that 

the soliton is too soft against compressions. The P i 3 ~ P 3 i channels are not affected 

by the truncation procedure. We also note that had we only removed the exotic 7 r - | * 

channel and truncated the S-matrix to a 2 x 2 matrix, then the resulting situation, 

which we do not show, would have been intermediate between the untruncated case 

and the single channel case. 

We apply a similar truncation procedure to the S waves S31 and Sn- The untrun

cated laboratory Sn = S 3i phase shifts are equal to the intrinsic £QO due to cancelations 

amongst the 6-j symbols entering eq. 3.30. We therefore refer to figure 3.4 for these 

results. The implementation of the truncation procedure leads to the surprising result 

that the phase shifts remain the same after truncation. Only the inelasticities are af

fected, with the channel becoming of course elastic. This result for the S wave phase 

shifts requires an explanation. Let us parametrize the real and symmetric 2 x 2 K 1 1 -

matrix as 

ikK = ^ = i 
1 + S 

(3.32) 
\b c j 

for a,b,c some real numbers and drop superscripts. The phase shift 6 extracted from 

the (1,1) element of the S-matrix expressed in terms of a, b, c is 

t ^ M ) = 2 l - . . - V - 1 ' v ^ + 2 » , . - ( 3 ' 3 3 ) 

Now if we truncate the K-matrix to a single element 

ikK = ia, (3.34) 
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we find the truncated phase shift 

tan(26~t) = 2 — ^ — . (3.35) 
1 — or 

The phase shifts 8 and 8t look very different. But for the S wave calculation, it turns 

out that "a" dominates, and "6" and "c" are quite small comparatively. Now since the 

contributions — 1 < b, c < 1 are at least squared, 8 ~ 8t. A similar derivation explains 

why the truncated and untruncated P13 (= P 3 1 ) channel remains the same. 

3.3 Zero Modes 

Formally, the topics discussed in this section should be comprised in the preceding 

section dealing with background scattering. The zero mode contributions to the S-

matrix are part of the background. But their importance has been magnified by the 

recent observation of Kawarabayashi and Ohta [K089] that the Born terms for baryon 

exchange coincide with the pole contributions of the zero energy solutions to the back

ground scattering amplitudes. This has been followed by the demonstration due to 

Verschelde [V89][V91] that the rotational zero mode contributions supplemented with 

the linear time-derivative interaction lead to the successful A-isobar model of P wave 

7T - N scattering. A similar result has been obtained by Holzwarth [H90] using a simpler 

framework. In section 3.4 we will add to the background calculation the contributions 

coming from the time-derivative interactions. The question as to whether this com

bination will actually reflect the observed features of the experimental P wave phase 

shifts therefore depends on the extent to which the zero modes dominate the low-energy 

background scattering amplitude for positive values of k2 in a particular model and on 

the structure of the resulting form factors. In this section, we study these points which 
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have relevance to the P waves11. 

For the massless case, as considered by Verschelde [V89][V91], the dominant be

haviour is evident because the coincidence of the rotational zero modes with the pion 

threshold leads to phase shifts depending linearly on pion momentum k, as compared to 

the cubic fc3-law for other P wave contributions. Since for the massive case we consider 

here this is no longer true one may wonder how well the scheme actually works. But 

before addressing these details, we present some simple concepts concerning the zero 

modes. 

Zero modes [R82] are discrete states with energy u = 0. They arise in a theory when 

the classical ground state solution about which one is constructing the eigenspectrum 

breaks the original symmetry of the lagrangian. Take the lagrangian to possess an 

invariance, such as translational or rotational. Then it costs no energy to generate a 

new solution <p' = <p + 6<p where Sep represents the infinitesimal change of the ground 

state solution <p under the considered global transformation. If group parameters a,-

describing the transformation are introduced as time dependent collective coordinates 

a,(t), the variation of ip along the collective motion defines the zero mode 

<p - <p = -r—dai 
OOCi 

= *\0)6ai. (3.36) 

Here, 6(p/6ai is a general variation to be interpreted, for example, as a partial derivative 

in the case of translations e 

<p(x-e) = <p(x) + | | • e, 

*<»» = | | , (3.37) 

uSimilar observations for the S waves, although using a different methodology, are due to the Siegen 
part of the collaboration in the paper of Holzwarth, Walliser and Pari [HWP90], and are therefore not 
reported in this thesis. 
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or as a commutator in the case of isospin symmetry generated by a rotation in isospace 

around an arbitrary axis a 

i 
ifi(x)' = (p(x) + \-T • a, <p(x)], 

tf(°> = [\fMZ)l (3-38) 

In usual 3+1 dimensions, we have translational modes corresponding to the 3 spatial 

directions and for the internal isospin symmetry SU(2) ~ S0(3), we have zero modes 

corresponding to the 3 independent rotations. 

We now consider the specific case of the Skyrme and nonlinear cr- models and 

restrict ourselves in further discussion to the case of the isorotational zero mode which 

affects the 7T-N P waves. Taking <p to be the hedgehog ansatz UQ of eq. 3.3, the zero 

modes corresponding to global isorotations around three orthogonal axes a,- are 

$(°)(f) = [U0, ^ai-f] = i(ai x f) • f sinF(r). (3.39) 

The spatial form of the zero modes shows that it has angular momentum I — I. Under 

parity, 

V<Hf\x) = V\0)\-x) = (3-40) 

This therefore indicates that the zero modes we are considering appear in the M l 

channel as a zero energy solution to the differential equation. A quick inspection of eq. 

A.3 reveals the zero energy solution12 

X ( 0 ) = F(r). (3-41) 

An important point to which we now turn concerns the normalization of the zero 

modes. The normalization condition can be found by considering the kinetic part of 
1 2 By rewriting the M l mode differential equation in such a way as to have it in Schrodinger-like form, 

the radial radial dependence of the zero mode becomes = sini r(r) as in eq. 3.39. 
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the lagrangian (whether it be 3.1 or 3.2) with soliton ansatz U = 9Q + if • 9. Written 

in terms of the three independent real variables13, we have 

1 = £ j^m rmn(6,V6) 9nd3x, (3.42) 
mn 

—* —* —* 

where Tmn(9,V9) is a general function of the chiral angle and its spatial derivatives 

multiplying the time derivative of the baryonic variables. Now 
62T 

69m(x)69n(y) 

allows us to write the identity 

2Tmn{y)8\x-y) (3.43) 

1 mn J J 69m(x)89n(y) 

= 1 r rd^ix) dUyl 
J S0m{x)86n{y) daj 

= ^£e,-d2 = | £ d ? . (3.44) 

In these expressions, the second line introduces explicitly the zero modes. The last line 

follows from the fact that the collective coordinates are chosen in such a way that the 

quadratic form is diagonal. 0,-, i = 1,2, 3, are inertia parameters and we have explicitly 

indicated the fact that all turn out to be equal in the SU(2) models we consider. We 

can then read off from the last two lines the normalization condition for the zero modes 

j 0 ) = dB/dcti 

| / / *!2 \2) Mmn{x,y) d3xd3y = Sij. (3.45) 

This shows that the zero modes ^ j°^/\/0 are normalized with respect to the metric 

82T 
Mmn{x,y) = . . . (3.46) 

69m{x)89n(y) 

1 3Unitarity imposes 6Q = v l - I • 9. 
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We then have for the nonlinear a-model lagrangian eq. 3.1 

M°mn(m = fl S\x-y) 8mn M,(r) 

M„(r) = 1 (3.47) 

and for the Skyrme model lagrangian eq. 3.2 

Ms

mn(x,y) = fl 83(x-y) 8mn M 5 (r) 

Ms(r) = 1 + ^ ( F ' 2 + ^ ) . (3.48) 

For convenience, we can include the metric in the definition of the normalized zero 

modes $,-0^ 

$5°) = ^ t ( « i x £ ) s i n Fy/M(r) (3.49) 

in order to have the usual form 

J$\0)*-$f)d3x = 8ij. (3.50) 

We note that had described scattering states rather than zero energy bound states, 

we would have replaced 8mn by 83(k — k') in the normalisation condition eq. 3.45. 

We now go on to extract the zero mode contributions to the background scattering 

amplitude. By a redefinition of the wavefunction for the M l mode through the ab

sorption of the metrical factor \ / M in the wavefunction, we can rewrite the differential 

equation in the form of a non-relativistic Schrodinger equation for P wave potential 

scattering 

(-d2

r - -dr + ~2 + Vi(r) - k*)*(r) = 0, (3.51) 
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with k2 = Up — m 2 . The corresponding 1st order Born approximation to the partial 

scattering amplitude with appropriate boundary conditions is defined by [GW64] 

/.<*') = - / 0 - . ( * r ) ) ' V , ( r ) r ' * - £ UMS&®*££*&, (3.52) 

where the n-sum picks up all normalized bound states $„ of eq. 3.51 and implies an 

integral over the scattering states. The radial part of the zero modes eq. 3.49 satisfies 

eq. 3.51 at a momentum k2 = — m2. The contribution fi°\k2) of the zero modes 

eq. 3.49 to the scattering amplitude eq. 3.52 therefore is 

' 2̂ 
(0) ((k2 +ml) fj^kr) sin F^)r2dry 

h { ' (P + m 2 ) / s i n 2 F M(r)r2dr 

3 k2 / 2 N N ( ^ 2 ) 

2 7 T 0 ml ul 
(3.53) 

with ul = k2 + m2 and the 7rNN-form factor defined as 

W * : 2 ) = j / » j w j J smF^jMijMkry'dr. (3.54) 

We note that in deriving eq. 3.54, we used eq. 3.51 to replace the potential by derivative 

terms and simplified the result with the recurrence relation satisfied by spherical Bessel 

functions of order /: 

r2j",(kr) + 2rj'l{kr) + (r2 - 1(1 + l))ji(kr) = 0. (3.55) 

Through M(r) the form factor eq. 3.54 depends explicitly on the form of the la

grangian. For M(r) = 1 it coincides with the 7rNN form factor derived from the static 

pion cloud as suggested by Cohen [C86] and further discussed in reference [KMW87]. 

Its value at the pole k2 = — m 2 , the 7rNN coupling constant / = / X N N ( — m 2 ) (with 

experimental value of / 2 /47r = 0.08), picks up only the asymptotic amplitude of F(r), 

and the deviation of M(r) from 1 is irrelevant. However, as can be seen from figure 

3.7 the actual form of / T T N N ( ^ 2 ) for the same profile function F(r) differs apprecia-
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Figure 3.7: The pion-nucleon form factor fnm{k2) as defined in eq. 3.54 for the Skyrme 
model and nonlinear cr-model. Parameters line types and axes as in figure 3.1. 

Figure 3.8: Ratios eq. 3.56 eq. between the zero mode contribution defined in eq. 3.53 
and the real part of the total M l amplitude (figure 3.2). Parameters, line types and 
axes as in figure 3.1. 
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bly for the lagrangians eqs 3.1, 3.2, which as previously noted have different metrics. 

From the origin of M(r) in eq. 3.49 it is evident that purely static considerations as 

in [C86] [KMW87] cannot account for this specific feature of the dynamical form factor 

eq. 3.54. One may argue that deviations of M(r) from 1 do not indicate particularly 

attractive features of any model. Still, for consistency, they have to be included in eq. 

3.54 and have a significant effect. The form factor we have derived here agrees with 

the one obtained by Saito [S87b]. 

This is an appropriate point to justify our choice of parameters used to calculate 

the background amplitudes contributing to P waves and in the presentation of the 

form factor. We choose for our comparison a chiral angle profile F(r) created from the 

Skyrme lagrangian eq. 3.2 for a value of e = 4. It is evident from table 3.1 that with 

a profile derived from the Skyrme model (with / w fixed at its experimental value of 93 

MeV) it is not possible to simultaneously reproduce both, the 7rNN coupling constant 

/ = 1.0 and the moment of inertia 0 = 0.70 m"1 with good accuracy. But e = 4 seems 

e = 3.0 3.5 4.0 4.5 Exp. 
0NLcr 0.673 0.479 0.351 0.266 0.708 

QSK 1.772 1.183 0.829 0.606 
f 1.25 0.995 0.772 0.617 1.0 

Table 3.1: Moments of inertia 0 in units of m"1 for nonlinear cr-model (NLcr) and 
Skyrme (SK) model and the pion-nucleon coupling constant / = fxiw(k2 = — m2); 
calculated for a Skyrme profile F(r) for = 93 and different values of the parameter 
e in eq.(2). 

a reasonable compromise for our present explorative purpose and it could probably 

be improved by changing the stabilization mechanism. In order to have a well-defined 

comparison we use the same profile function also as the background for the nonlinear cr-

model eq. 3.1 although the resulting moment of inertia 0 C T is too small by a factor of 2. 
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Both form factors intersect at k2 = — m 2 with the value of / * - N N = 0.772 which reflects 

the asymptotic normalization of the e = 4 soliton profile. However, while M(T(r) = 1 

leads to the "hard" negative slope with rising k2, the Skyrme metric Ms(r) creates a 

the threshold with an almost horizontal tangent. The second set of parameters which 

we have used to present Skyrme model results is /„. = 110 MeV, e = 4, m f f = 138 MeV. 

This choice was dictated by the study of the P n channel in section 3.5. It allows for a 

slightly better description of the Roper resonance as well as P n scattering volume. 

Now we can consider the extent to which the zero energy mode eq. 3.49 dominates 

in the scattering amplitude eq. 3.52 for positive values of k2. Since the zero mode 

contribution fi°\k2) is real, we choose to compare it to the real part of the scattering 

amplitude f\(k2). Due to the close connection between real and imaginary parts of f\ 

dictated by unitarity this implies that we can expect a dominant contribution of 

at most for small values of the phase shifts 6lx(k) (modulo 7r). Figure 3.8 shows the 

ratios 

for both lagrangians eqs 3.1, 3.2. The M l mode phase shifts <5}j that enter in eq. 3.56 

were shown in figure 3.2. One striking feature of figure 3.8 is that we obtain basically 

parallel straight lines for the ratio14 eq. 3.56. This means that in both models the 

fc-dependence of the phase shifts is well represented by the fc-dependence of the con

tributions /j 0 ^ deriving from the zero modes, although the ratios eq. 3.56 have fallen 

to about 50% near k ~ 2.5 mv. However, most important for the comparison with the 
1 4This feature actually extends up to ^-values where the M l phase shifts for the Skyrme model cross 

the 6 = 180° line. 

very soft form factor which stays nearly constant from k2 = —m2 to k2 = 0 and leaves 

R(k2) = 

= isin^cos^/Z^Cfc3) (3.56) 
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A-isobar model, at threshold the M l scattering volume is still about 80% of the zero 

mode contribution for both models (note that for the attractive M l potential the first 

term on the r.h.s. of eq. 3.52 is positive, i.e. reducing the negative value of eq. 3.53). 

Due to this dominance the difference in the low-energy M l phase shifts in figure 3.2 

just reflects the difference in the moments of inertia given in table 3.1. 

3.4 Time—dependent Interactions 

The introduction of time-dependent interactions [UK86][HHS87][S87a][VV89][JM89], 

those interactions which couple time-derivatives of the soliton's collective coordinates 

to the meson fluctuations, proceeds in a straightforward way from the background 

interactions. We let the hedgehog be time-dependent through the introduction of 

collective coordinates a(t) (the Euler angles) parametrizing isorotations 

U0 = e

i 7 D , ( Z ) t F(r) = ^ F ( r ) ? ( 3 > 5 7 ) 

where D(a) are the familiar rotation matrices discussed in chapter 1. Here we introduce 

meson fluctuations according to the Schnitzer form eq. 3.6 and expand the soliton 

lagrangian to whichever order is appropriate. In contradistinction with our discussion 

of background scattering where everything was done in the intrinsic frame, only later 

to be transformed to the physical laboratory frame through a geometric recoupling, we 

directly consider time-derivative interactions in the laboratory frame. This is evident 

from our expansion about eq. 3.57, the rotating hedgehog. 

We substitute Us, with Uo given by eq. 3.57, in the Skyrme lagrangian and find 

L i n t = ~\j d3x tr{ (U*RU0 + L)UlH + ^ [ H , [ H , H ] } ) } , (3.58) 

where = UQO^UO, = U^d^U^ and — d^U^U^. Here we have neglected hard 
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pion terms [S84] of order ~ (dU^)2(dU0)2, ~ (9U^)4 and only retained terms with time-
—* —• 

derivatives on the meson fluctuations: gradient terms R, L do not have a significant 

effect near threshold since they are linear in momentum. The interaction lagrangian 

can be recast in a familiar form if R = RQ] L = L0 are expanded to second order: 

L=^?-{(-±(x't) + 0{e), (3.59) 

R=ij-j- ( f + jfjx't)+°<<t3)- (3-6°) 

The result is 

r _ r(i) . r(2) 

= 2 X / ^ ' + 47? / ( ^ X * ^ 3 X ' ( 3 ' 6 1 ) 

where A °, V° are the time components of the axial-vector and vector Noether currents 

associated with the rotating hedgehog: 

A° = -^tr{f.(f2H + ±[3, [H, H]] - (if -» G))}, (3.62) 

V° = -\tr{f- {flH + ±[H, [H, H\\ + (H - G))}, (3.63) 

where G M = Uod^Uo- The form eq. 3.61 can be identified with the standard soft-pion 

interaction terms of Weinberg [W66] if the soliton currents are replaced by the standard 

relativistic bilinear forms 

A 0 = V 5 7

0 7 5 f 7 > , (3.64) 

V° = ^ 7 ° f ^ , (3.65) 

where ijj represent nucleon spinors and 7 0 , 75 Dirac matrices [BD64]. 
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Eq. 3.61 highlights the physical character of the interactions; the simplified form 

of the time-derivative coupling is obtained by evaluating the trace of the integrand 

appearing in the expressions for the axial-vector and vector currents: 

= ( f '() s i n F c o s F ( l + ^ - ( F 2 + ^ ) ) d 3 x , (3.66) 

4 2 = \ j (4 x 7) • (f x '() s i n 2 F (1 + -^(F>2 + ^ ) ) d*x. (3.67) 

Perhaps the occurrence of eq. 3.66 will surprise since we explicitly mentioned following 

eq. 3.11 that no term linear in the fluctuation field remained in the lagrangian. But 

there is no paradox since we were then dealing with static background. In the time-

dependent case, the rotating hedgehog eq. 3.57 is not a solution to the variational 

equations, and we therefore do not expect anymore a vanishing term linear in £ [HHS87]. 

We emphasize that the interaction lagrangians eqs 3.66, 3.67, contain only classical 

variables. The question of promoting to quantum operators the collective coordinates a 
—# 

and the meson fields £ is a thorny issue. This is due to the fact that we are dealing with 

a constrained system. That is, the canonical momentum associated with the collective 

coordinates and the canonical momentum associated with the meson fluctuations are 

not independent of each other [HHS87][V87]. This is clear since the introduction of 

meson fluctuations and collective coordinates simultaneously really represents a dupli

cation of rotational degrees of freedom. 

The correct method to treat such constrained meson-soliton systems has been 

known for some time [T75] and employs the method of Dirac brackets in the quan

tization scheme [D64]. For the Skyrme model, Verschelde [V89][V91] has applied this 

intricate formalism with success to the case of both 7T-N P and S waves [VV90]. The 

important result he obtained, as mentioned before, was the equivalence of the phe-

nomenological A-isobar model of 7T-N P waves with the sum of zero modes and linear 
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time-derivative interaction contributions. 

Recently, Holzwarth [H90] has demonstrated how it is possible to arrive at the 

Skyrme model A-isobar model link without having to consider the constrained nature 

of the meson-soliton system. This alternative method, supplemented by a few ideas 

concerning the choice of interpolating plane-wave meson field, is the one we will adhere 

to in this work. We therefore outline this scheme by beginning our considerations with 

L i n \ of eq. 3.66. This is the crucial term for the P waves: it is responsible for shifting 

the A pole to its correct physical position. 

Following Holzwarth, we quantize the collective coordinates according to the usual 

prescription described in chapter 1: 

j? -> J/20, (3.68) 

where Q is the angular velocity of the collective coordinates defined through 

7 = (ft x 7 ) , (3.69) 

0 is the hedgehog's moment of inertia and I are the generators of SU(2) isospin. 

Expression eq. 3.69 is then symmetrized with respect to the non-commuting f2, 7 so 

as to be hermitian: 

L\ll -» £ / + DtMrdL sinF cos F(l + -j-(F>2 + ^ ) ) J 3 * . (3.70) 

For the meson field we must take into account the nature of the representation we 

choose (see eq. 3.4). Although the explicit form of the interaction lagrangian eq. 3.70 

may look quite different for different choices of interpolating fields, the final results will 

be the same if is evaluated for the scattering waves (i.e. exact solutions to the 

background equations of appendix A) obtained in the chosen representation. In our 

present context, however, we will approximate matrix elements of Z>jn) by the plane-

wave Born approximation, to be added to the background K-matrix. The quality of 
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such an approach then will depend on the choice of the representation, i.e. on which 

interpolating field is substituted by plane waves. However, it turns out that the actual 

form of eq. 3.70 suggests how to reduce this ambiguity. This expression evidently 

involves only the transverse components15 of £. These appear in the kinetic energy 

eq. 3.11 with a metrical factor cos 2F Ms(r). For a plane wave Born approximation 

it therefore seems appropriate to substitute plane waves for transverse normal modes 

cos Fy/Ms £ in order to account for the specifics of the Schnitzer representation. 

We therefore let 

cosFjMsZ = J ^ a / a ^ W ) ^ ' " ' * * + 2f(*)e-,'w"+,"fc-*}, (3-71) 

where cft(k), a(k) are second quantized creation and annihilation operators satisfying 

the usual bosonic commutation relations and operating on 1-meson states (isospin 

index a', momentum index k') according to the rule 

aa(k) \a', k' >= ( 2 7 r ) 3 / 2

v

/ 2 ^ 8aa< 63(k' - k) |0 > . (3.72) 

Here, |0 > is the meson vacuum state and a similar relation holds for the creation 

operator <ft(k). 

With the formalism as outlined above, we can consider the vertex for the emission 

and absorption of a pion with momentum k and isospin orientation e by taking matrix 

elements of the form < s' | L\n't \ k,e;s >, where s', s denote final and initial baryon 

states. For the baryonic part, we need the following results derived with the use of the 

Wigner-Eckart theorem: 

< N'\DlAN >= - i < N'\TaaAN >, (3.73) 

< A\Dl3\N >= - — < A|TJ +)SJ + ) | iV >, (3.74) 
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which state that the first index a of D* transforms as an isospin r a whereas the second 

index transforms as a spin aj. Tj +) and 5J+^ are respectively the a and j components 

of isospin and spin 3/2 —• 1/2 transition operators defined in the usual way via their 

Clebsch-Gordan coefficients [EW88]: 

< 3/2aA|T a

( + )|l/2ajv >=< 3/2aA |lal/2a^ >, (3.75) 

< 3/2jA|SJ + )|l/2jjv >=< 3/2jA\ljl/2jN > . (3.76) 

Lowering operators T^~\ S^ are defined in a similar way. 

With these results, we immediately observe that L$t cannot connect nucleon states. 

Taking matrix elements of eq. 3.70, eq. 3.73 leads to 

tabcittbTc + TcSlb) = 0 (3.77) 

since for nucleon states, T = f. L^) can, however, contribute to elastic 7T-N scattering 

through an intermediate A state. As shown by Holzwarth [H90], 

eabc(£lbT^ + Tj+)f2fc) = | Tj +). (3.78) 

This allows us to write the general form for the vertex as 

< s' | L\l] \k,e;s >= -i^-fTsa,(k2) < s ' \ ( e - ? W ) (k • # ± > ) | s >, (3.79) 

with selection rule s' = s ± 1. The 7rNA form factor entering this expression differs 

from the 7rNN form factor eq. 3.54 extracted from the zero modes only by a geometrical 

factor which arises from the different baryonic matrix elements [H90] 

W * 2 ) = ^ / * N N ( * 2 ) . (3.80) 

The fact that the -̂dependence is the same relies on our replacement eq. 3.71 which 

leaves the metric y/M$ in the same way as it appears in eq. 3.54. So the form factor 

reflects the model lagrangian but not the representation chosen for the fluctuations. 



Chapter 3. S and P Wave Pion-Nucleon Scattering in the SU(2) Skyrme Model 95 

Second order perturbation theory with the vertex eq. 3.79 leads to the elastic 7T-N 

K-matrix. For pionic P waves we can express the TS matrix elements conveniently in 

terms of projectors P212J for total isospin I and spin J and obtain the familiar result 

[EW88] 

( T(-)T(+)5(-)5(+))d.r e c t = P 3 3 ) (3.8 1) 

(T(-) r(+)5(-)5(+) ) c r o W = (p 3 3 + 4 ( p 1 3 + P 3 1 ) + 16Pn)/9. (3.82) 

The elastic 7T-N K-matrix is 

K{x)(l-2\ C(h2M ? 3 3 1P33 + 4(P 1 3 + P 3 1 ) + 16Pn . . . 

Here A M is the mass difference between A and N which in the soliton model is deter

mined by the moment of inertia 0 

A M = 3/(20) (3.84) 

and 

The 7T-N K-matrix clearly shows how the moment of inertia 0 determines the position 

of the A resonance through the A-pole in the P 3 3 channel. This points towards the 

crucial importance of the linear time-derivative interaction in reproducing the general 

features of the P 3 3 channel. 

We now turn to the second order time-derivative coupling L^t. As we shall shortly 

see, this term is crucial for the low-energy behaviour of the S waves but has little influ

ence on the P waves. We are interested here in that part which couples the fluctuations 

and the collective velocity in a form that provides after quantization a coupling 

42 =• *• r/2S (3.86) 
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between pion and target isospins t and r/2. This causes the splitting between phase 

shifts in channels with total isospin 21 = 1 and 21 = 3 according to 

t- r = - 2 ( P n + P 1 3) + (P 3i + P 3 3 ) . (3.87) 

L,-2j will therefore be the only source of splitting between the P 1 3 and P 3 1 channels, 

which remained degenerate in the background calculation presented in figure 3.5. 
(2) 

To evaluate matrix elements of L)n[, eq. 3.67, between N and A states, we first note 

that 

7 x 7 = 7- ̂ 7 - 6 (3.88) 

requires us to use the identity in spherical components (m, n, k, k' = 0, ±1) 

/ 1 1 2 • DH,Y2k,(r). (3.89) 
m —n k 

This identity couples 7T-N S and P waves to 7T-A D and F waves, respectively. We 

consider here only the NN matrix elements to which only the first term in eq. 3.89 

contributes 

< N'\L$\N >^ / f . ( f x £ ) s in 2 F Usd3x. (3.90) 

In plane-wave approximation, we obtain the t • f coupling from eq. 3.90 by using the 

adjoint representation for the pion isospin [EW88] 

KQab = tabc (3.91) 

and substituting plane waves for Schnitzer fluctuations. The contribution of L\n't to the 

K-matrix is 

K ? i = /0'i(*r)) a sin 2F M 5 r2dr ( - 2 ( P „ + P 1 3 ) + (P31 + P 3 3 ) ) • (3.92) 
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The integrand in the form factor for this second order contact interaction turns out to 

be the square of the expression eq. 3.54 which appears in the K-matrix eq. 3.83 due 

to the linear interaction term. 

In the piecewise approach we have been following, it seems like a reasonable ap

proach to add all contributions in K-matrix formalism. We therefore take the back

ground K-matrix eq. 3.31, along with eq. 3.83 due to the linear interaction term and 

eq. 3.92 due to the quadratic interaction term to obtain 

( K 2

= V J ) N N = ( K £ " ) g £ + P 3 / W ( K g } + K g ) . (3.93) 

We have truncated these K-matrices to / = 1 states in 7T-N channels; the results for 

the corresponding reconstructed S-matrix in the form of elastic phase shifts (since we 

have only a single channel) are presented in section 3.5. 

We conclude our discussion of time-derivative interactions by a presentation of some 

points of importance related to the 7T-N S waves. We decompose the low momentum 

7T-N S wave amplitude in terms of [EW88] 

fs = a1P1 + a3P3 = bo + h (t- f), (3.94) 

where aj, a3 (units of m"1) correspond to the total isospin 1/2, 3/2 scattering lengths, 

bo, b\ (units of m~l) are isospin averaged and isospin dependent S wave parameters, 

and Pi, P3 are isospin 1/2, 3/2 projectors. Phase shift analysis based on experiment 

give the result 

bo = hax + 2a3) = -0.010, (3.95) 
o 

&i = ^(a3 - ax) = -0.091. (3.96) 

The Weinberg lagrangian [W66], based on a nonlinear realization of chiral symmetry, 

reproduces these results accurately, predicting bo = 0 and b\ = —0.089. It therefore 
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becomes interesting to see whether the Skyrme model, also based on chiral symmetry 

can achieve good S wave results within the scheme we are proposing. 

The large relative size of 61 as compared to &o shows that the low energy S wave 

scattering is essentially dominated by the coupling of the pion's isospin to the nucleon's 

isospin. But we have seen how we can precisely take such an effect into account through 

the introduction of the coupling of the soliton's vector current to the pions, eq. 3.67. 

This quadratic interaction produces after quantization just the t • f interaction we need. 

Implemented in K-matrix formalism, we have for the S waves: 

Comparing this to the P wave expression eq. 3.92, we note the expected replacement 

of ji(kr) by the / = 0 jo(kr) spherical Bessel function. 

For 7T-N S waves, the linear interaction eq. 3.66 does not contribute: for the S 

wave fluctuation £ —• j0(kr)e, where e is an arbitrary isospin direction, Lint is odd 

under parity transformations. To describe S waves, it would therefore seem sufficient 

to add to the K-matrix resulting from the quadratic interactions the background re

sult contributions to S waves. Unfortunately, as will be seen in section 3.6, the very 

attractive Skyrme background (or repulsive for the nonlinear <r-model; see figure 3.4) 

has the effect of displacing the phase shift curves away from the results of the phase 

shift analyses. In the hope of improving agreement, we were led to further consider the 

effect of the gradient .terms. These terms originate in the Skyrme stabilization term, 

and involve a gradient operating on the fluctuations. The interaction has the form 

J(Jo(kr))2 sin 2F Ms r2dr (-2PX + P3)). (3.97) 

rgrad 

where Uod^Uo and we use the shorthand 

(3.99) 
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Evaluating the trace in eq. 3.98 leads to the general result 

LTnf = ^ 5 2(4 • 0 ( Sd<S 7 • + * V ^ • 

-(7 • dii )( sdis 7 • '( + s2c2 da • cf) 

- ( 7 • da )(s4y- (7 • a,e + 5 V f • )}. (3.100) 

where we use the abbreviated forms s = sinF, c = cosF. Fortunately, this result 
—• 

coalesces to a reasonable form when we restrict £ to S waves: 

f - £ ( r ) , ftf-^-r.-; (3.101) 

and more importantly, exhibits the t • r form. We obtain 

The resulting K-matrix is 

*2v = - 4 ^ 5 J(j0(kr)y±(r2±Sm*F)dr {-2PX + P 3), (3.103) 

where we have performed an integration by parts. 

Hence, in a similar way as for eq. 3.93 for the P waves, we write the / = 0 7T-N 

K-matrix by adding the contributions eqs 3.31, 3.97, 3.103: 

(K 2J 0)N N = (K 2 J 0 )^ + P2I( Kg + Kg ). (3.104) 

The results for the reconstructed S-matrix in the form of elastic phase shifts are pre

sented in section 3.6. 

3.5 Results for Pion-Nucleon P Wave Scattering 

We have seen in table 3.1 that with the experimental value fn — 93 (MeV) the Skyrme 

stabilization does not allow for a simultaneous fit of both the 7rNN-coupling constant 
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/ = 1.0 and the N-A split A = ( M A — M^)/mv — 2.12. Both numbers, of course, 

are crucial for a satisfactory description of the position and width of the A-resonance. 

But it would require a value of fr as low as about 40 (with e w 5.2) to reproduce 

them in the Skyrme model. We therefore also present results for the Adkins-Nappi 

[AN84] set (/*• = 54, e = 4.84) chosen to reproduce M N and M A - This set leads to 

/ = 0.877 which seems an acceptable compromise. Unfortunately, the lower value of 

efv lowers the breathing (E0) mode even further and thereby increases its influence 

on the low-energy phase shifts. We also find increased attraction for the (Ml) mode 

which counteracts the larger value of / such that the ratio eq. 3.56 for k —* 0 goes 

down to 0.74 (as compared to 0.82 for the set /„. = 93, e = 4). In order to decrease the 

influence of the breathing mode we also consider the value / T = 110 MeV (again with 

e = 4). 

The calculated coupling constants / , the nucleon-Delta separation energies A, and 

the scattering volumes16 for the E0, M l , E2 modes are given in table 3.2. The com

parison of ai with the zero mode contribution from eq. 3.53 

40) = " 7 / . 2 N N ( 0 ) (3.105) 

shows that for all cases the zero mode dominates the M l phase shift at threshold. 

However, it is also evident that the K = 1 mode does not necessarily dominate over 

the K = 0 breathing mode. This is quite clear for the nonlinear cr-model which, 

as expected, is thereby ruled out as a reasonable model for P waves; but also for 

the Skyrme model with = 54, a 0 is almost comparable to ax which makes this an 

unsuitable parameter set despite the improved value of / . The K=2 mode counteracts 
1 6 We denote intrinsic frame scattering volumes by ax, where K is the multipole index in the intrinsic 

frame, and a^r 2J in the laboratory frame. There should be no confusion, given the context, with the 
scattering lengths ai, a 3 for the S waves. For a definition of the scattering lengths and volumes, see 
appendix A. 
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U (93) e / ( 1 . 0 ) A ( 2 . 1 2 ) a ( 0 ) a i / (0) 
a1/a\ a 0 a 2 

93 4 .772 1.809 -.343 -.281 .82 .105 -.021 
110 4 .663 2.024 -.283 -.240 .85 .066 -.013 
54 4.84 .877 2.120 -.519 -.382 .74 .282 -.053 
93 NLcr .772 4.274 -.765 -.601 .79 .620 -.015 

Table 3.2: P ion -Nuc leon coupl ing constant / , N u c l e o n - A split A , and P wave scatter
ing volumes ax-, (K = 0, 1, 2) in the intr insic frame, for different parameter sets fv 

( M e V ) and e. For K = 1 the zero mode contr ibut ion is l isted as together wi th the 
rat io ai/df*. The units for A and ax are and m ~ 3 . Exper imenta l values are given 
in brackets. The last row shows the results for the nonlinear er-model w i th Skyrme 
profile F(r) calculated for fT = 93 and e = 4. 

K=0 but it is too weak to restore the zero mode values for the background ( B G ) 

scattering volumes aBG after transformation to the laboratory frame. 

In the different T J - c h a n n e l s these are obtained f rom eq. 3.30 as 

« f i G = oo/3 + 2 a i / 3 , 

a f 3

G = aB^ = a i / 6 + 5a2/6, 

a f 3

G = a 0 / 6 + 5a1/12 + 5 a 2 / 1 2 . (3.106) 

(These relations are not affected by the t runcat ion of the K - m a t r i x i n eq. 3.93 to 7 r - N 

P waves only.) The indiv idual contributions f rom K = 0, 1, 2, to T«7-channels are 

l isted in table 3.3, together w i th the contr ibutions f rom the t ime-der ivat ive interactions 

a*1) and a^2\ They al l add up to the theoretical values for the scattering volumes given 

in the last columns of table 3.3. We also show the numbers obtained by replacing the 

whole background scattering by the M l zero modes [H90] 

* ™ = ~ f P ( § P i i + J(Pis + P31) + ^ P 3 3 ) m ; 3 (3.107) 
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P 1 X: (Exp.: a l x = -.081) 

fr e a 0 /3 2ax/3 " i i a ( 2 )  
a i i a n 

zm: -.450 .306 -.144 
93 4 zm: -.229 .147 -.082 

.035 -.187 .147 .007 +.003 
110 4 zm: -.189 .126 -.063 

.022 -.160 .126 .004 -.008 
54 4.84 zm: -.346 .235 -.111 

.094 -.255 .235 .031 +.105 

P 1 3 and P 3 1 : (Exp.: a 1 3 = -.030, a 3 i = -.045) 

u e ai /6 5a2/6 a(l) - a ( l ) 

"13 — "31 
"13 ) a31 a13i a31 

zm: -.113 .077 -.036 
93 4 zm: -.057 .037 -.020 

-.047 -.017 .037 .007,-.004 -.020,-.031 
110 4 zm: -.047 .032 -.016 

-.040 -.011 .032 .004,-.002 -.015,-.021 
54 4.84 zm: -.087 .059 -.028 

-.064 -.044 .059 .031,-.015 -.018,-.064 

*33- (Exp.: 033 = .214) 
u e a 0 /6 5^/12 5a2/12 a(l) 

"33 a(2) 

"33 033 
zm: -.279 .497 .218 

93 4 zm: -.143 .297 .154 
.018 -.117 -.009 .297 -.004 .185 

110 4 zm: -.118 .218 .100 
.011 -.100 -.005 .218 -.002 .122 

54 4.84 zm: -.216 .383 .167 
.047 -.159 -.022 .383 -.015 .234 

Table 3.3: Scattering volumes in the different TJ-channels (in m~3). The columns 
show the contributions from background (a*-), linear (a^) and second order (a^) 
time-derivative coupling, "zm" denotes the zero mode contributions. The first "zm" 
row in each channel is calculated with the experimental values for / (=1.0) and A 
(=2.12), i.e. it corresponds to the static A-isobar model. 
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which, together with the contributions from the linear time-derivative coupling (from 

eq. 3.83) 

aSV = 4aS1

3

) = 44V = £ £ w ( 0 ) ^ m"3, (3.108) 

0 3 3 = i27 / ^ ( 0 ) A 2 i^t m ; 3 - (3-109) 

constitute the A-isobar model for the parameter set considered (note that for the 

Skyrme model we have / = f*mi(-™l) W A - N N ( O ) ) -

Comparison with the experimental values shows that replacing the background by 

the (zm) contributions eq. 3.107 only, and using the experimental values for /(= 1.0) 

and A(= 2.12), accounts almost perfectly for the observed scattering volumes for P 3 3 

and P X 3 , P3j, with only P n being too low. This is of course as expected because it just 

repeats the static A-isobar model. 

Especially sensitive is the Pn channel: first, we notice that with the calculated 

values of / and A, taking only the (zm) contributions improves the result for au for 

all parameter sets considered. This good agreement is a bit unfortunate because all 

additional terms act in the same direction (bringing attraction for both the EO and M l 

modes). For f„ = 93 this increases the value of a n to almost zero such that the tiny 

second order time-derivative coupling can push it just above zero. For f„ = 110 the 

attraction in the breathing mode is sufficiently quenched to allow the overall result for 

au to be negative, although its absolute value is still too small. For the fv = 54 set 

the large a0 together with the smaller ratio (0.74) of a\/c^ leads to a sizable positive 

result for a\\. 

For P13, P31 already the (zm) contributions with calculated / values are too small. 

Further reduction through attractive terms in the M l mode is however compensated 

by the K=2 contributions, but it is still not sufficient to reestablish agreement with 
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the experimental values. The isospin splitting due to L\n\ for f„ — 93 is almost of the 

correct magnitude, but for fT = 110 it is too small by a factor of two. 

Also for P 3 3 the calculated values of / being too small directly causes the values 

of a 3 3 to be too low. This is especially apparent for = 110. Here, however, the 

quenching of the negative ax values helps to improve the final results. The positive 

contributions of the breathing mode are half compensated by K = 2 so that for the 

P 3 3 scattering volumes the K = 0, 2, modes are of minor importance. 

In summary, it is evident that the stabilization mechanism must lead to good results 

for / and A in order to guarantee the sensitive cancelations between the large (zm) 

and contributions. The quenching of the Ml mode then can be compensated by 

the K = 0 and K = 2 contributions, except for the P u channel. Fortunately, for Pn 

the A-isobar model result for ai (=-0.144) is too low by almost a factor of two which 

leaves some room for the positive breathing mode contribution. But it still seems quite 

difficult to obtain a completely satisfactory result in this channel. 

With the scattering volumes fixed, the behaviour of the phase shifts for positive 

values of k is largely determined by the following three features: The calculated moment 

of inertia 0 fixes the k value where the P^ phase shift crosses the 90° line; the product 

efT then determines the relative position of the Roper and A resonances; finally the 

unphysical rise of the M l and E2 phase shifts in the Skyrme model begins to affect the 

results above k ~ 2. 

The Pn and P^ phase shifts are shown in figure 3.9 for fT = 93 and /^=110, to

gether with the Karlsruhe data [HKKP79]. It should be noted that for both parameter 

sets the moments of inertia are larger than 0.708 m"1, the value of 0 which reproduces 

the experimental N - A mass difference (see table 3.1). The fact that the data for P^ lie 

between both theoretical curves is due to recoil. Without recoil the data points would 
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cross the 90° line at fc = 1.87 mr. This shows that without including recoil it makes no 

sense to fine-tune the parameter set to the data. More significant is the slope of the P 3 3 

phase shifts near 90°. Both theoretical curves are too steep which reflects the values of 

the calculated 7rNN coupling constants / being too small. But still the overall width 

of the A resonance is reasonably reproduced, better than one might have guessed from 

the actual values of / given in table 3.2. As expected from the P 3 3 scattering volumes 

in table 3.3 the / , = 93 set is superior at low energies. In contrast, for higher fc-values, 

the fv = 93 results are more affected by the lower position of the breathing mode, the 

rise of the Skyrme background phase shifts, and the missing inelasticities above the Air 

threshold due to our truncation of the K-matrix. 

The Pn phase shifts show that with fv chosen at its physical value of fv = 93 

the skyrmion is too soft with regard to the EO compression. But although the choice 

fv — 110 seems to put the calculated P n phase shifts into an overall agreement with 

the data points the problem is not really cured. This becomes evident from figure 3.10 

and figures 3.11, 3.12. Figure 3.10 shows that f„ = 93 is really doing well, not only for 

P 3 3 but also for P13 and P 3 1 , and for the shape of Pn, with only the onset of the rise 

in <5pu being too low. While for fv — 110 everything else getting worse (note that the 

isospin splitting between P i 3 and P 3 i is oc / ~ 2 ) , the quality for Spu is not really much 

better, although it does cross the 0° line near k = 0.4 m, (figure 3.12) (as compared to 

fc = 1.5 for the Karlsruhe data), reflecting the bound zero mode at low fc-values. 

As a curiosity we include in figure 3.13 also the Pn and P 3 3 phase shifts for the set 

(/, = 54, e = 4.84) where the E0 resonance (at fc=2.13m,r) appears just above the A 

resonance (at fc = 1.87 m*) which forces the P 3 3 phase shift to jump from 90° to 270° 

within a few MeV. This clearly rules out this choice as an acceptable set of parameters. 
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Figure 3.9: E last ic 7 r - N phase shifts in the P n and P 3 3 channels calculated from the 
Skyrme model wi th e=4 and / „ = 93 M e V (full lines) and fT = 110 M e V (dashed 
lines). The corresponding Kar lsruhe data [HKKP79 ] are indicated by • and A wi th 
the center of mass momentum as abscissa in units of m T . 

3 0 

20 

3 10 

0 

-10 
0.0 0.5 1.0 1.5 2.0 2.5 

k 
Figure 3.10: Elast ic 7T -N phase shifts in the P n , P 3 3 , P 3 1 and P 1 3 channels calculated 
from the Skyrme model wi th e = 4 and f„ = 93 M e V together wi th the corresponding 
Karlsruhe data. 
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Figure 3.11: Elastic 7r-N phase shifts in the P n , P 3 3 , P 3 j and P 1 3 channels calculated 
from the Skyrme model with e = 4 and /„ = 110 MeV together with the corresponding 
Karlsruhe data. 

Figure 3.12: Enlarged portion of figure 3.11 which shows the small negative values of 
6pu for small values of pion momentum k. 
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3.6 Results for Pion-Nucleon S wave Scattering 

We have seen in the previous section that the T T - N P wave scattering was best described 

by the set of parameters fn = 93 M e V , e = 4. G iven the a im of reproducing al l part ia l 

waves wi th the same set of parameters, we begin by showing the S waves obtained 

in this case. The S n and S31 phase shifts are plotted in figure 3.14 and compared to 

the Kar ls ruhe data [HKKP79 ] . The graphs reveal poor results for these parameters. 

In part icular, the scattering length a 3 ~ 0. Some improvement can be obtained if we 

allow the parameters to vary. Best results were found for = 110 M e V , e = 5, which 

unfortunately produce a very small moment of inert ia 0 = 0.335 m " 1 , as compared 

to the experimental value 0 = 0.708 m " 1 . The scattering lengths (units of m " 1 ) are 

however improved: 

ax = 0.147 a\xpt = 0.173 

a 3 = -0 .041 ae

3

xpt = -0 .101 

The most important feature that determines whether the calculated phase shifts wi l l 

agree or not w i th the data is the background result that is added to the second order 

t ime-der ivat ive interaction. Figure 3.15 shows that the second order t ime-derivat ive 

interact ion (wi th gradient terms) reproduces perfectly the spl i t t ing of the S waves. 

On l y a weakly repulsive background is needed to " t i l t " the phase shifts to their correct 

posi t ion. Hence the importance of the interplay between the metr ical factor in the t ime-

derivative interactions and the background. For the Skyrme model the background is 

rather strongly attractive (see figure 3.4), leading to the poor results discussed above. 

A s a curiosity, we show in figure 3.16 the results obtained for the nonlinear cr-model, 

which has a strongly repulsive background. As expected, the behaviour of the phase 

shifts is opposite that of the Skyrme model's. 
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Figure 3.13: Pn and P 3 3 phase shifts for the Skyrme model calculated with the param
eter set of [AN84] /„ = 54 MeV and e = 4.84. The horizontal lines are drawn at 90° 
and 270°. 
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Figure 3.14: Elastic T T - N phase shifts in the Sn and S33 channels calculated with the 
parameter sets / T = 93 MeV and e = 4 (full line) and = 110 MeV and e = 5 (dashed 
line) for the Skyrme model. The corresponding Karlsruhe data [HKKP79] are indicated 
by o and A with the center of mass momentum as abscissa in units of m T . 
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-I 1 1 1 L 

Figure 3.15: Phase shifts derived from the splitting interaction eq. 3.97 (full line). The 
dashed line further contains the gradient interactions eq. 3.103. In both cases, /„• = 93 
MeV and e = 4, and we compare to the Karlsruhe data. Axes as in 3.14. 

Figure 3.16: Phase shifts calculated for the nonlinear cr-model using a Skyrme model 
profile generated with the parameters /„ = 93 MeV and e = 4. Data and axes as in 
3.14. 
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The problems we encountered have also plagued calculations by other workers in 

the field who have attempted to describe 7T-N S waves by going beyond the adiabatic 

approximation [JM89][JM90]. Recently, however, Walliser [W91] has obtained encour

aging results for the S waves. In many ways, his approach is similar to ours, except for 

the removal of the plane wave Born approximation. His reformulation of the calculation 

solely in terms of direct fluctuations allowed him to use the distorted background waves 

in the evaluation of the time-derivative matrix elements rather than plane waves. This 

demonstrates that the PWBA is too drastic an approximation for the case of the S 

waves. 

3.7 Conclusion 

Verschelde's observation [V89][V91] that the zero mode contributions to the background 

scattering and the linear time-derivative interaction in soliton models add up to the 

A-isobar model for P wave pion-nucleon scattering has raised the question how the 

additional K = 0, 1, 2, contributions present in the background scattering would 

interfere with this result, especially for massive pions where the zero mode terms follow 

the same fc3-law for k —* 0 as all the other contributions. At the same time it is 

of interest to investigate the question how background, linear and quadratic time-

derivative interactions combine to create the scattering phase shifts in the different TJ 

channels for A:-values up to and beyond the resonance region. 

We have investigated these points in two models: the Skyrme model and the non

linear cr-model. The extreme attraction produced by this latter model in the breathing 

mode allowed us to rule it out as a suitable framework to describe the P waves. We 

therefore restricted ourselves to the Skyrme model. The input for this model is three 

numbers: the pion decay constant = 93 MeV, the pion mass mr = 138 MeV and 
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one parameter e which is not fixed in the meson sector, but may be used to adjust the 

nucleon-A mass difference. A value of e = 4 reproduces the experimentally observed 

NA split reasonably well. With this input the Skyrme stabilization mechanism shows 

two major deficiencies: The pion-nucleon coupling constant / is too small by a factor 

of 0.77 (which is not too bad, anyway) and the soliton is too soft against compression 

which brings too much attraction into the Pn channel. Both of these problems are 

characteristic of the Skyrme stabilization term and cannot really be cured by changing 

/ f or e. Accepting these deficiencies we find it remarkable that with the physical value 

of /„• the essential features of the P wave phase shifts are reproduced by what is now 

a one-parameter model. The results are quite sensitive to the choice of fn and clearly 

rule out a value adjusted to the nucleon mass, as previously noted in [MK85]. This is 

another indication that the quantum corrections to the classical soliton mass are not 

really understood and that the nucleon mass should not be used to fix parameters of 

the effective meson lagrangian. 

Unfortunately the Skyrme stabilization term also leads to unphysically rising phase 

shifts just beyond the resonance region. This limits our discussion to values below 

fc ~ 2.5 m f f. To go beyond this region would also have required a much more involved 

treatment of the background scattering than the one used here: we have truncated the 

adiabatic K-matrix to the elastic 7rN channels only, in order to exclude the coupling to 

the closed irA channels. Time-derivative interactions have been added in plane wave 

Born approximation to the K-matrix. Also this procedure probably could be improved 

by employing the true distorted (background) scattering waves instead. 

It would certainly be desirable to have all the ingredients we have been considering, 

contained in one concise system of equations of motion, instead of the piecewise way 

we have put them together here. We have also used a very naive way of quantizing 

collective and fluctuational degrees of freedom, which ignores all the constraints arising 
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from redundancies in their definitions, and the complications which the time-derivative 

interactions may imply for a canonical formalism. However, the simple terms we have 

considered contain the essential physical features of the model and the results show 

that the idea of baryons being solitons in an effective meson theory again proves to 

be a very powerful tool: it produces a complete description of all essentials observed 

in low-energy elastic P wave pion-nucleon scattering. The Skyrme model achieves 

with one single parameter a quality of agreement which suggests that improvements in 

the stabilization mechanism and in the theoretical techniques will be able to provide 

quantitative agreement with the data. 

Having established the formalism for the P waves, we applied this to the case of the 

x-N S waves. We found that the quadratic time—derivative interaction led to a perfect 

description of the isospin splitting between the Sn and S31. The addition of background 

contributions, whether calculated from the Skyrme model or the nonlinear cr-model, 

destroyed the agreement. In this case, it appears that plane wave approximation is 

too drastic and that one should really use distorted waves [W91] to finally obtain 

quantitative results for the S waves. 
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Appendix A 

Background Scattering 

In this appendix we present the ordinary differential equations that arise from the sub

stitution in the Skyrme model and nonlinear a-model (eqs 3.1 and 3.2) of the multipole 

expansion (eqs. 3.17, 3.18) for the fluctuational field. We will present the differential 

equations in a systematic way by enumerating the coefficients of the derivatives ap

pearing in them. We use the concise notation: s = sin F(r), c = cosF(r), and a 

prime denotes the derivative of the function with respect to x, where x is the usual 

dimensionless Skyrme model radius defined by 

x = e2/». (A.1) 

The dimensionless pion mass is 

™* = % r ( A - 2 ) 

The parameter a is a label which is equal to one for the Skyrme model and zero for the 

nonlinear cr-model. We emphasize that the equations for the nonlinear <r-model are 

studied with a soliton profile obtained from the Skyrme model. As for the equations 

for the Skyrme model, they are taken (with minor modifications) from the papers of 

Walliser and Eckart [WE84] and Mattis and Karliner [MK85]. Further details can be 

found in these references. 

The only magnetic mode we need to consider in this work is the the M l mode. 

The differential equation for the M l fluctuation x (equivalent to <f>u in eq. 3.17) is 

119 
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uncoupled and reads: 

X w = - { * 2 X ' + * 3 X } / * i , (A.3) 

where 

$1 = —s2 — a 4s4/x2 

$2 = -2F'/F$X - 2scF' - 2s21x - a ^cF^/x2 

$3 = (2F'2/F2 - F"/F)*x - F'/F$2 - (s2 + a 4s2{F'2 + s2/x2))u2 

We extract the scattering phase shifts from this equation by considering the asymp

totic x —f oo behaviour of the solution x- Far from the origin, eq. A.3 has as solution 

linear combinations of spherical Bessel (ji(kx)) and Neumann (nj(fcx)) functions1 of 

order /: 

X ~» A,(k)j,(kx) + Bi(k)ni(kx) 

~» -^(A /(fc)sin(fcx-^)-S /(fc)cos(fcx-^)), (A.4) 
kx Z Z 

where A;(A:), Bi(k) are momentum dependent (in units of e2/w) constants which are 

simply extracted from the numerical integration of the differential equation. In the 

second line of eq. A.4, we have introduced the asymptotic forms for ji(kx) and n/(fcx). 

We need not worry about the normalization of the profile x since it is the ratio B\jA\ 

that interests us: if we introduce 

straightforward trigonometry leads to 

1 lir 
X ~* kx s*n(kx ~ ~2 + S l > > (A'6) 

1 Eq . A.3 is for / = 1. We are providing a general discussion to account for other possibilities. 
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up to a non-important multiplicative constant. This last form is the form for a scattered 

wave (Schrodinger equation). Hence, Si as denned in eq. A.5 is identified to the phase 

shift. In the usual way, this parametrizes the S-matrix: 

S = e2,'\ (A.7) 

Of course, we must start the numerical integration of the differential equation by 

providing its small-x solution. For the Skyrme model, this is, up to a normalization 

constant and to leading order in x 

For the nonlinear a-model, we prefer to rewrite eq. A.3 in terms of Xo == {F1/ smF)xa'-

X S X 

with small-x solution 

Xa^x, (A.10) 

where we consider only leading terms in x. 

For the electric modes, the situation is slightly more complicated because we are 

now dealing with a system of coupled equations. Here, the grand spin value K is 

explicitly indicated because we need both the EO, E2 modes (P waves) and the E l 

mode (S waves). Following [MK85], we make the following orthogonal transformation 

on the multipole expansion fields <(>KK-I, <t>KK+i of eq. 3.18: 

* K = V ^ + t { - + K K - 1 + ^ 7 F " t e + l ) ' ( A ' n ) 

^ = 7^=i(^ + 'W'KK-i)' (A-12) 
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This facilitates the numerical work by avoiding the simultaneous appearance of both 

xp" and C," in the same equation. The coupled equations then read: 

V>£ = - { r 2 ^ + r 3 ^ + r 4 c^ + r 5 Cif}/ri 

CK = - { 0 2 C ^ + e 3a + e 4 ^ - r 0 5 ^ } / 0 i (A.13) 

where 

^ = -2F 2 x 2 (x 2 + a 8s2) 

T 2 = -4F 2 x 2 (x + a 8F'sc) 

T 3 = 2F2{(2c2-2s2 + K(K + l))(x2 + aAs2) 

+a (16s2c2 - 16x2F"sc - 8x2F'\c2 - s2)) 

+m 2x 2c - x2(x2 + a 8s2)u;2} 

T 4 = -a 8yjK(K + 1) FF'x2s2 

T 5 = sjK{K + l)s2 {16Fsc - 16x2FF" + 4x 2 F(l - 4F'2)c/s + a (16Fsc + 8x2F'2)} 

0! = -2F 2 x 2 (x 2 + a 4s2) 

0 2 = - 4 F 2 x 3 + x2F'{ (4x 2F - 4F 2x 2c/s + a (~32F2sc + \6Fs2) } 

0 3 = K(K + 1)F2 {2x2 + a 8(xr2F'2 + s2)} 

+2x2{-2F2 - 2x2F'2 + 2Fx2F'2c/s 

+F(2sc + 8s3c/x2 - 8scF'2 - 8s2F" + m 2x 2s) 

+a (-8F2F'2 + As2FF" + !6scFF'2 - 8s2F'2)} 

-2u2F2x2(x2 + a A{s2 + x2F'2)) 

0 4 = a 8sJK{K + 1) xr2F3F' 

0 5 = 8F3y/K(K + 1) {x2c/(2s) + 2sc - 2x 2F" - 2F'2x2c/s 

a (2sc + x2F" + 2F'2x2c/s) } 
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For these equations, the two small-x solutions take the form to leading order in x: 

K+l 4>a ~> X 

C ^ 0 xK+1( F ^ 1) 

and 

!)• 

Here, the constants Qa and Qb are 

1 + a (2F(0)'2K + 10F(0)'2) 
2\ ' K + l -1 + a (2F(0)'2K - 4F(0) /2) 

K + l 
K 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

For this system, the extraction of phase shifts is analogous, albeit more complicated, 

to the 1-dimensional case presented above. We need to integrate the equations of 

motion twice with different linear combinations of the small-x solutions in order to 

generate two sets of asymptotic coefficients Aa, Ba, Ca, Da, and Aj, Bb, Cb, D^. 

*I>K ~> Aa(k)jK..x(kx) + Ba(k)nK.x(kx), 
(A.20) 

CA- ~> Ca(k)jK+1(kx) + Da(k)nK+1(kx), (A.21) 

and similarly for a —• b. These momentum-dependent coefficients define the scattering 

S-matrix according to [MK85]: 

- l 

S = 
' Ba + iAa Da + iCa  

K Bb + Ab Db + iCb 

Ba-iAa Da-iCa 

Bh -Ah Db - iCb 
(A.22) 
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Each element of this 2 x 2 S-matrix is parametrized according to 

S0- = ^c2"'>, (A.23) 

where £,j is'the phase shift and rjij denotes the inelasticity necessary to take into account 

the transfer of flux from one channel to the other. 

We conclude this appendix by providing a few useful relations [EW88] that we will 

frequently use in this thesis: (i) the relation between the S-matrix and the scattering 

amplitude f(k) is 

/(*) = 2^(S - 1); (A.24) 

(ii) the relation between the S-matrix and the K-matrix is 

(iii) the scattering length (/ = 0, S wave) and scattering volume (/ = 1, P wave) a is 

defined by 

a = lim — 7 . (A.26) 

In all these expressions, k denotes the magnitude of the momentum. 


