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Abstract

The scattering amplitude for pions on deuterons is
calculated in the threshold limit using Watson's multiple
scattering theory. Care is faken to use wave functions “.---
with proper symmetry throughout and it is shown that the
results are identical with those obtained using unsymme-
trized wave functions in intermediate states. Terms up
to second order in the multiple scattering series are
calculated, gradually increasing the complexity of the
assumptions until all quantitatively relevant features
are taken into account. Specifically, we treat single
scattering, double elastic scattering, double charge-ex-
change scattering, and second order binding correction
terms. New quantitative results are obtained which ac-
count for non-zero binding energy of the deuteron and nu-
cleon excitation in the propagators, Lorentz-invariant and
inelastic scattering kinematic factors in the two-body
scattering amplitudes, phase-shift fitted pion-nucleon
scattering amplitudes up to P—waves, an S-wave Gartenhaus
deuteron wave function, and relativistic effects in high-
momentum intermediate states. 1In addition, a general
methoed utilizing graphs analogous to Feynman diagrams is

presented which easily reproduces each order contribution
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of the multiple scattering series (for consﬁant two-body
T matrices) and allows ene to sum the whole series in
closed form. In particular, we find the sum of the whole
geries for T -deuteron scattering at threshold, including
all isospin-flipping terms, a result incorrectly obtained
in previous literature. We also find the series sum for
W~ scattering on an arbitrary nucleus of neutrons and
protons,including charge-exchange scattering. (This result
does not appear in the literature). From the series sum
we then calculate the higher-order contribution with a
Hulthen and then a Gartenheaus S-wave deuteron wave function,
first neglecting charge-exchange and then including it.
We find the higher-order contribution to be roughly twenty
per cent of the first and second order terms combined (at
threshold). Our best estimate of the pion-deuteron scatter-
ing amplitude at threshold (the pi-d scattering length)
is E"d= -.0273 fermis.

Because pion-deuteron scattering is a three-body
problem and because of the similarities with multiple
scattering theory, we have included a short discussion of
the Faddeev equations. We give particular emphasis to

wave function symmetry in the PFaddeev approach.
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Introduction and Motivation

The most important part of any calculation is not the
result but the reason for undertaking the task at all.

The organization of the finished thesis does not reflect
the chronological order of events usually, so the begin-
ning of this thesis will be devoted té an explanation of
how and why the body of the enclosed work began and devel-
oped.

It was suggested by D.S. Beder that low energy sca%t-
ering of pions on deuterons should be re-investigated
because early work by various people failéd to acceount
for the Pauli exclusion principle:in intermediate states.1
The low energy range was chosen because here the effects
of the exclusion principle would be more dramatic (for a
detailed explanation of this statement see chapter 2).

But why look at deuterons at all? The looming pres-
ence of the TRIUMF meson facility has influenced the course
of more than one graduate research propesal and having a
straight-forward calculation ready before the machine is
in operation would give experimentalists a chance to make

the real world fit the theory. Besides it looks good to

1See for example references (2), (10), (11), (19), (22),
(23), (24), and (26).
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everyone if a camaraderie between various groups is man-

ifest. 1In addition, maintaining an interest in strong
interaction physics is not incompatible with investigating
pion-deuteron scattering. Very little progress has been
made in recent years on the pi-nucleon interaction and

one might hope for some clues to the two-body problem
from the three-body one. In support of this notion, Love-

lace has said,2 ,

, My opinion is that two-partiele systems are

now finished. By this I do not mean that we have

done everything we hoped to do, but rather that

we have done everything we are going to be able

to doe. I think the future of strong interactions

now lies with many-particle systems.
More specifically, the pi-deuteron scattering amplitude
depends on the off-shell pi-nucleon scattering amplitudes
which are not well understood. Many recent strong inter-
action theories inter-relate the off-shell and on-shell
scattering amplitudes and a knowledge of off-shell behav-
ior would lead to better understanding of on-shell pro-
perties. Of course off-shell behavior cannot be deter-
mined experimentally from the pi-nucleon interaction alone;
therefore, the pi-deuteron scattering amplitude is the

simplest candidate to yield off-shell information on the

pi-nucleon interaction. Finally, the methods used in treat-

2See reference (20), P.437
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pion-deuteron scattering might shed some light on the
less-understood two and three-particle resonances of the
hadrons.

With the previous statements in mind, the work was

3

undertaken using well-known techniques, adding-more and
more complications in an effort to find the quantitatively
correct pion-deuteron scattering amplitude in the thresh-
old 1limit (zZero energy pions). But when the exclusion
principle was applied by symmetrizing (which we take to
mean making symmetric or anti-symmetric) intermediate state
wave functions, divergences appeared, terms which looked
out of place crept in, and chaos ensued. People4 suggested
throwing away the nasty terms of cancelling them by adding
others with opposite sign, but no suggestion could be jus-
tified. Finally after normal izing the symmetrized propa-
gators correctly, a consistent and justifiable treatment
was discovered which eliminated the divergent terms. It
was then found that the final results are independent of
the choice between symmetrized and unsymmetrized intermedi-

ate state wave functions (provided initial and final states

3

4Private communi cation with members of the University‘of
British Columbia physics department, including Rubin Landau
and Leonard Scherk.

See the last footnote of chapter 4, section F.



are properly symmetrized always). Moyer and Koltun (ref-
erence (22)) point out that it is unnecessary to use
symmetrized Wave functions in intermediate states in the
Lippmann-3Schwinger equation, T = V + VGT, because V is
already symmetric in all target particles. However, it is
quite another matter to draw the same conclusion:for the
Watson nmultiple scattering series for T. We demonsfrate
in this thesié exactly how the symmetrization effects

in the usual muwltiple scattering terms and the binding
correction terms cancel in pairs to each order.

Even though it was found that symmetrization of inter-
mediate states is unnecessary, the time spent worrying about
the divergent terms was not wasted. It was believed that
the sum of the whole multiple scattering series, diver-
gences and all, would be finite; therefore, a method was
devised which allows one to easily sum all the orders of
scattering. After the divergence problems were eliminated,
the method of summing the whole series still remained valid
ahd so laborious methods of the past were simplified enor-
mously. This in turn facilitated the correcting of previous-

ly incorrectly evaluated series sums in the literature.5

5See the Appendix of reference (28).



1.Multiple Scattering Ideas from Born to Watson

Although Watson's multiple scattering theory did not
appear until the early 1950's, the basic notions of mul-
tiple scattering had been formulated well before. 1In
particular, the earliest interpretation of multiple scatt-
ering is found in the Born series iterative solution of

4 The relativistic analog of

the Schrédinger equation.
this is manifest in Feynmgn's diagrammatic approach to
quantum electro-dynamics (QED).ﬁ The Born, Feynman, and
Watson approaches share the properties of starting with
Green's function techniques to solve a differential equa-
tion and iterating the solution (in multiples of some
relevant scattering parameter). A physical interpretation
is then attached to each type of term in the expansion

and a diagram can be drawn to represent each term, thus
reducing messy algebraic manipulations to graph problems
and associating an integral (which can be written by in-
spection) with each graph. Historically and in practice,
graphs are not used in the Born or Watson methods because

the number of terms retained is usually small and the

expressions relatively simple compared to their relativistic

4See any quantum mechanics text on the Born approximation.

What we here call the Born series is perhaps more correctly
termed Green's function theory.



counterparts in quantum electro-dynamics. We emphasize
the association of graphs with Born and Watson terms
here partly for comparison with QED but also with some
foresight regarding summation of Watson's series.

In what follows we will derive the Born series by
formally solving the Schrbédinger equation to obtain an
integral equation for the wave function; iteration of the
integral equation produces a series expansion for the
wave function. The scattering émplitude is defined and
using the series expansion of the wave function we obtain
the Born series for the scattering amplitude. Graphs
are then associated with each term in the expansion of
the scattering amplitude.

The Feynman approach is similar to the Born work
except relativistic equations (Dirac and Maxwell) for
the wave functions replace the Schrodinger equation and
complications arise from the more-difficult equations and
from invoking particle statistics (Bose-Einstein and
Fermi-Dirac) on the wave functions. The complexity of
the soluticns is greatly simplified by the use of Feynman
disgrams which we introduce and use to comment upon a few
relevant difficulties which will appear in the Watson work.
We only treat the Feynman approach heuristically owing to

the complexity of the problem.



In the Watson work, we lay the preliminary groundwork
of scattering theory and then derive the Watson multiple
scattering series in terms of the T matrix, closely re-
lated to the scattering amplitude. The Watson work is an
extension of the Born work in that the scattering potential
is broken up inte a sum of two-body potentials between the
incident particle and each constituent of the scatterer
(nucleus), but then the total scattering amplitude is
expressed'in termg of two-body scattering amplitudes
rather than iﬁ terms of the total potential. The sim-
ilarities to the Born and Feynman subsections should be
obvious by the end of the Watson derivations and we will
avoid lengthy comparisons since they will be undertaken
when we try to explain away symmetrization difficulties in

Watson's theory.
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la.The Born Series
We consider the scattering of a particle of mass m
and momentum hk by a potential V(Z) (where T is the pos-
ition vector from the potential source to the particle).

The Born series solution begins with the Schrddinger

eguation
X 202
FE v vEIYE) - vE v (@ (1-1)
Im A m
re-arranged to

(Vz-% KI)V(E) = 2 = V(F) QJ(F) S (1a-2)

Our choice of'Green?s function G(?ﬂ?’) satisfiess

WRCEE) = 28 17
(1a=3)

—9-;,) G(-a/-e

This implies that

V74 )66 )

i

(,’—’_‘:” (1a-4)

/ _,
where V. implies derivatives with respect to 5. Let

2 -1 -
(V +-k2) be the appropriate inverse operator of (V2+k2)
(see equation (l1a-11)).

6See equations (1d-45) and (1a-11),



Then multiplying (1a-3) on the left By (V2 N k2)——1
e Y 2 ~1 3 —- |
G(Sr ) = %(V +E1) J ’qj—-r’) | (18-5)

Multiplying (1a-2) on the left similarly

V&)= _Qm \ Tf‘lz> V() %)(f) | (1a-6)

‘-)/
Multiplying (1a-5) by V(r )\)(r ) and integrating over r’

cﬁwa?“)vﬁwr9 @+&>v 2 )P E)

and using (1a-6) we immediately obtain

PEY= C+ JGEEI VD P70 d (ra-n
were C 1is a gonstant of integration (i.e., é function of

?-but not ?/). To determine C, note that as ;?—900,
G(T, T') — 0 (see equation (1a-11)),and in this limit
L\)(;) must reduce to a plane wave (the initial state wave

-
function) travelling along the k dlrectlon S0 that

-3/1 ‘ k .
c= ¥ = (am . (ta-8)
Thé complete solution of the problem is thus

Y= ¥ @) CEFWEIVE & (g,

with ({} the initial state (given in (1a-8)).:
2 N
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Iterating (1a-9) for W’produces the Born series expansion

for the wave function in the form

V@)= L@+ (6@EF)HVE) 9 (@) &
r Je@ZIVEICE EOVED Y (7)) L £

+ -..

(1a-10)

The soluxion’of;(1a-3) with appropriate boundary conditions is

GF 7)) = :j——%\i e—ik[;;:,, (1a-11)
7|
For £>> T’ we can write
1#2-¥]— r- —[_"'_r_f'_, (1a-12)
so that
, |
¢EF) — “qf_ﬁ'!‘; ;kr “kv’rrl) (1a-13)

and therefore one obtains

ke =4
YE)— ¢.@)- 2 e &S W) V@)

ynk * o
Pk | REE) g e, 2
V(") \U;G”) Axr’alxr” + ... ] (1a-14)

5See reference (15), p.303, eq.%64b.
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From (1a-14) we can read off the scattering amplitude,

32 ikr
f(9), defined as the coefficient of (21) e , Where
r

the scattering angle, 0, is defined as follows: Write a
-’
final state plane wave, qi , in terms of the final momentum &4

(more correctly,wave vector) as

3/1 -7 -i '?',
@ﬂ »qi(" = e‘ f (1a-15)

-> .
where kf = kf §7r . For elastic scattering we write

therefore

f i
>

k., =k, = k (i stands for initial)
© = angle between.i

d k
3 T e
Now .nwrite £(6) from (1la-14) by using (1a-15) to obtain

f@®= - an @nfU PE) VED E) £

ynH*
(BT EIVEEEF V@) Y S
4 .- 1 (1a-16)

where the ©-dependence on the right side of (la-16) is

implicit in that

*k?7=tﬁf%'e[

{{# & = 'le co5®  and % means complex conjugate.
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The equation (1a-16) is interpreted as follows: The
complete scattering amplitude f(©) is the amplitude to

scatter once
Y ENVE) Py &
{_( V) Ar7)dir
plus the amplitude to scatter, propagate, and scatter again,
*
[Y@YVE 6, FIVED Y () dde

etec. Diagrammatically we would represent the single,

double, etc. scattering terms, respectively, as

(1a=-17)

where solid lines represent the incoming, propagating,
and scattered particle, and a dotted line with a '@
represents one interaction with the potential V. This

sunmarizes the relevant features of the Born series.
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1b.Quantum Electro~-dynamics

No attempt will be made to derive quantum electo-
dynamics; rather we will show thé way Feynman's diagram-
matic approach is applied to some simple scattering prob-
lems after some very intuitive discussion on the origin
of the diagrams. The resolution of some difficulties in
QED which are relevant to Watson's theory will also be
covered.6

Consider the Dirac equation for an electron
(f'm)\{)(x): 0 (1b-1)

where p is the electron four-momentum operator, m
is the électronmass, X is the electron four-vector pos-
ition coordinates, and ?)(x) is a four component spiner
wave function representing the field of the electron.

The slash through p means
-
4{ - r/4‘1;, = fL); - P :

where the X“ are 4x4 Dirac matrices. Feynman writes

—

y

in analegy to (la-9) the integral equation for the wave

6For a more detailed account of all that follows on QED

see references (1)_and (12).
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Yx) = LA CO S ‘Jqﬁ SF(X—D ~Q) V(ﬁ) (10-2)

where \V i(1() is a solution of the free-field equation
(1b-1) before scattering, e is the charge of the electron
(ec 0), SF(x-y) is the propagator for Dirac particles
(corresponding to G(f’,?:’()), and A is the electro-magnetic
four-potential (corresponding to V(?)). Looking back at
section 1a, we see that the equation for G(;,i?’),(1a-5),
is heuristically obtained from (1a-2) by ’inverting the

operator on the left of "V(?) in (1a-2) (with V=0); i.e.,
> -, 2 4 2\~!
G (rJ v ) ~ (V + k) x 1 L (10-3)

realizing that the delta function is the unit operator,i ’
in the coordinate representation. 1In analogy, SF(p), the
Fourier transorm of SF(x—y) is obtained from (1b-1) by
inverting the operator to the left of "V(x), so that in

momentum space

!
SF (£ ~ £-m (1b-4)

Everything in (1b-2) is determined except A. The electro-

magnetic four-potential satisfies Maxwell's equations
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dod A= gy (0 (1o-5)

where jp(x) is a four-current (the source of the potentials).
Again in analogy to (1a-5) and (1b-4) we obtain the
photon propagator, DF’ from (1b-5) by inverting the oper-

aﬁbr to the left of A as

[
2N —
b &) T (1b-6)
where q is the four-momentum of the photon field (note

that q's Fourier transform is —i.a‘). Then in analogy

to (1a-9) and (1b-2),

Ao = S DD futd v

where DF(x-y) is the Fourier transform 6f DF(q23. Put

(1b-7) into (1b-2) to get
Y x) = ‘ﬂ xX)+e j J‘:jcl?z SF(’(*j) DF(‘J‘*)[?)Q) (10-8)

When we obtained our expression for the scattering ampli-

tude (1a-16), part of the left-most G (in (1a-9), became
ifer

the & //?‘ of (1a~16) and the rest of this left-most G

<+
became Yk vin (1a-16),. In analegy the expression for
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the gcattering amplitude in the QED case removes the

left-most SF of (1b-8) to become (aside from kinematic

factofs)

f~ S“g‘*"* “;’(:D URCELY (SR L) NI

. f
where %i_(ﬂ) = 9;(?) );

the 1' means hermitian adjoint, and F;is one of the
Dirac matrices. The iteration of (1b-8) for ‘V into (1b-9)

gives the analog of (1a-16); namely,

o IR0 %207 @ ¥
%O 0 ) 7 S G- 0D (-2 o)

+...]JZ (15-10)

Just as the solution of (1a-16) is determined in principle
once the potential source V is known, the solution of
(1b-10) is determined once the current source j is known,
Let's see how this works with an example.

Suppose we want to treat coulomb scattering of an

electron by a point charge Q located at the origin.

g



17

Then the appropriate four-current is

. 3 _ ) . .
o O~ QIR |y =],z 320

By (1b-10), to first order the scattering amplitude is®

o) 3 - 4
{ ~ Qj qi(;)) DF(')—;,)J (%) \V‘ (xj)d?jclz (10-11)

and corresponds to the diagram

b -
Z (10-12)

where the two solid lines represent the incoming and out-
going electron ( *ﬂ and ?ﬁf), the wavy line represents
the propagating photon (DF)’ and the ® represents the
source of the photon (Q § (2)). The ¥ 's both comnect
to the point labeled y, the photon propagates from z to y,
and the seurce of the photons is at point z. The next

higher term of (1b-10) is represented diagrammatically by
W
J (1b-13)

z
where internal solid lines connecting two photon lines

represent a propagating electron (SF)’ and the coordinate

6
See reference (1), Vol.I, p.100. The f of (1b-11) as

written will contain an energy-conserving § function which
should be removed,
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‘labels at each vertex correspond te those used in (1b-10).
The idea is to first draw and label the diagrams and then
write the corresponding integrals from the diagrams by
inspection rather than start with the more cumbersonv(1b—10).
Now we come to one of the most important aspects of

QED that will carry over to multiple scattering theory.
In everything done so far we have hot symmetrized the terms
as required by Bose-Einstein and Fermi-Dirac sfatistics
(we could also symmetrize the Born work but choose to
symmetrize only QED here to avoid duplication and because
the problems which arise in QED are relevant to multiple
scattering).

| Consider electron-positron scattering. The relevant
current is now the current of the pesitron as seen by the

electron (er vice versa) and is given by.7
' __, YT P
Ju X)=-e ﬁ K,u t})‘ (x) (1b-14)

where the supersecripts on the q/'s mean positron states.

The choice of j is motivated by the fact that j0 should be

See reference 1, p.135.
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density which is something on the order of
pt
"" L

A second order graph looks like (second order in e, first

order in e2)

n’ f;

(1b-15)
b 2z
?\ P

(where subscript 1 refers to electron, 2 to pesitron,
unprimed p's are initiel momente, primed p's are final

momenta) and corresponds to a term
&SP OL )Pl Y ¥l
¢ 0 TR )_F(%),M i @) (16-16)

FPeynman states that electrons geing forward in time are
equivalent to positrens running backward in time so that
we would more correctly draw (1b-15) with arrows indicating

the direction of time for an electron as

Py -p/

| Fa (10-17)
Y 2 |

Py “fa

in which we replace a positron with momentum Py going for--
ward in time by an electron with momentum -Py going back-

ward in time., Let's try to symmetrize the above diagram
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by interchanging electron lines where possible. At y

an electron entering from the past can proceed inte the
future as shown with momentum p; but it can also go back
into the past with momentum —p2;'at z the electron coming
in from the future with momentum —pg can scatter into the
past with momentum -p, as shown or it can scatter into
the future with momentum p:. We would draw the "exchange
diagram” resulting from the above observation as

P/

-P: (1p-18)

o P

in which lines p: and -Ps of (1b~-17) have been interchanged
to ebtain (1b-18). In other words, we can interchange
electron lines as long as we conserve charge; i.e., some-

thing like

is not allowed because the electron converts to a pesitron
(the direction of the arrow reverses as we follow the
continuous world line of the electron on the left). It

is more conventional to twist the photon line of (1b-18)



21
into f( -r1’

(1p-19)

so0 that the exchange diagram of the second order electron-
positron scattering corresponds to annihilation inte a
photon followed by decay into another electron-positron
pair. Fermi-Dirac statistics require that (1b-19) adds
to (1b-17) with a relative minus sign (two fermions were
exchanged).

Now consider fourth order electron—éositron scat£er-
ing.8 The most obvious graph is
“fa

(10-20)

and exactly as in the second order case, interchange of

lines -p; and Pq gives the graph
/7
~hixh -7
f 7] _ f’:.”
'
& (1b-21)

f fa

BIbid., pr.148-151,
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where we interchanged the location of the bottom of line
-pg with the top of line p, in obtaining (1b-21) from
(1v-20). The fermion interchanée requires that (1b-21)
adds to (1b-20) with a relative minus sign. Interchange
of the right side of line.q2 with the top of iine Q in

(10-21) yields

(10-22)

which must add to (1b-21) with a relative plus sign (boson
interchange). The integral corresponding’ to (1b-22) di=-=
verges, and in general all graphs with photon bubbles on

electron lines like

TN (1b-23)

will diverge.

To eliminate these divergence problems one proceeds
very crudely as follows: The electron propagator (drawn
as a soliad liné and given by (1b-4))is modified by add-

ing to it all bubbles; graphically we write
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+ ‘J‘/"\'\\
. “~ TN e (10-24)

changes to

The infinite series of divergent terms can be summed and

| the result changes the propagator to

J
T (1b-25)
F—rm+a

where A is the infinite contribution of one bubble. One
then says that the mass m in (1b-4) is the "bare" meass

of the electron and that the physically measured mass is

m-A = Belectron (10-26)

So the theory becomes "renormalized”" by changing m te m,
in all electron propagators. The same type-of divergences
will occur in multiple scattering theory upon symmetrizing.
One last exchange graph must be discussed., Appro-
priate interchange of photons and electrons in (1b-20) |

will lead to the graph

€| 'flﬂ (10-21)

whose corresponding integral also diverges. Graphs such
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as these are called disconnected and are thrown out in
QED. The justification for throwing them away is this----
the vacuum is constantly producing such bubbles by spon-
taneous emission and reabsorption and since everything is
measured relative to the vacuum one ignores such graphs.
The ideas discussed for QED will appear again when

we use-~Watson*sctlieory.
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1c.Preliminary Scattering Notions

In obtaining the Born series and QED results, we
worked with the basic field equations and interaction
potentials. 1In multiple scattering theory, especially
when applied to strong interactions (nuclear physics),
the basic interaction poetentials and field equations are
not known. Therefore the expansion for the total scatt-
ering amplitude of a projectile on a composite system of
scatterers (nucleus) in powers of the two-body potentials
between the projectile and scattering constituents is
replaced by an expansion in powers of some more directly
measurable quantity. Since the objective is to treat
scattering of a particle by a collection of other par-
ticles, the most diréctly measurable quantities involved
are the differential cross sections for the incoming par-
ticlesscattering on each of the constituents of the scatt-
erer. Any quantities closely related to the éxperimentally
observed two-particle differential cross sections are
likely candidates to use as a replacement for the two-body
potentials. Historically one chooses to expand in powers
of the so-called "T matrix". 1In the next several pages

we develop the groundwork which defines the T matrix and
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relates it to the potential V, the scattering amplitude f,
and the differential cross section.

We imagine a two-body scattering experiment to start
with a free particle approaching a scatterer at time
t=- ¢ , the free particle state unaffected at this time
by the presence of the scatterer. As the particle moves
closer to the scatterer, the scatterer starts to modify
the free particle wave function and continues to do so
until the particle gets sufficiently far away from the
scatterer again, with the wave function becoming a new
free particle state (or superpesition of many free particle

states) at t=+ 0. Define the Heisenberg S matrix by

tooc

IS Iy = lim AL ED PR e

where 2:'b is the free particle final state describing
the asymptotic system after the scattering, and q) a
describes the system at time t (similarly )L a is the
free particle state before the scattering event). By

our now familiar Green's function work,

Y&t) = &Ko)+ gdgx’ G(‘,’()‘Zl) VQE’) KG;t) (1er2)

which comes from (1a-9). Now put (1c-2) into (lc-1) getting



27
X‘Q> = <K’p,\ X¢\>
+ lim 8 KR 6@V R(;)

. t=» 00

(1e-3)

Now sacrliice rigor for brev1ty.9 The time-dependent part

of the product of X- b and ‘P a contributes a factor

LE-ED) Tt
e

and the propagator G behaves like

2.‘ > o< ""—‘L_‘
v+ &k —E:'L"- E&

Here the k2 part brought in the initial energy Ea and
the € 2 part brought in the energy at t=+o00 which is
Eb (the minus sign in front of Eb comes from the fact

that E= p2/2m0( -V2/2m). Piecing this together

transforms the S matrix (l1c¢-3) into
A IS = <X (X
~ lim &LQEL-EA.}t S Kt(f)\/(;’() ‘{%‘(—Z)Asﬁ

t>® E,-En
where the wave functions in the integral have their time-

(1c-4)

dependences explicitly removed. Now use the identity

9Those appalled by what follows can consult reference (15),
p.178, eq.16 and preceeding pages.
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%::2 €b~€¢—Lq

= 2ni 4(€, - £.) (16-5)

to write (1c-4) as

& 181> = <X, (X-\>‘- JﬂtJ( ) (1c-6)
X VIRD

which is exact (even though derived heuristically here).

The T matrix is usually defined in terms of the S matrix

by

(I8 = <X X - anid(g-6)
<X\ TLXa)

As (1c-7) is not a particularly useful form for our pur-

(1e-7)

poses, we led the reader up to (1c-6) so that we can

make the correspondence1o

KT = LK IVIED (to-8)

an expression we will make direct use of in obtaining the
Lippman-Schwinger equation, the cornerstone of Watson's

theory. =~ .. - - .

01p34., p.178, eq.16.
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We have now defined the new expansion parameter
T (which we will use instead of V) and have related T
to V by (1c-8). Next we must show how T is directly
related to the scattering amplitude f, or equivalently,
how it is related to the differential cross section, the
quantity determined experimentally. As a first step in
obtaining an expression for the differential cross section
in terms of T, we state that (by the definition of 8)
the transition probability, P, to go from state X a

to state )C o is

P\w - \ <K5 S \X¢>\1 (1¢-9)

In most scattering experiments one doesn't measure scatt-
ered states )Lb which overlap initial states ‘X'a because
the detectors would be swamped by the incoming beam.

Thus we can say

<xh\7(’¢> = 0 (1c-10)
so that

b= @ [F G- [T e

using (1c¢c~7). The square of the § function is tricky;
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to treat it properly we paraphrase Bjorken and Drell.11
If we consider transitions in a time interval from —t0/2
to +t0/2 the § function would be smeared out and we
would replace it according te

©  (€,-E )t
Ans@g'£«)= X_OD 6((b ) dt (1c-12)
t, -
(€ -E )¢
— jl (€, . |
Ly 2 snbE-)

—I )

€, - E,

We then have, squaring the above equation and integrating

both sides over Eb

@n)” 4 (0) — ant, (1c-13)

This allows us to write

@ LE-E)V = @r)'§ of-&)
—> t., an I(Eb’ Ea..)

The above is the desired result which converts the square

(1e-14)

of the é function into a single energy-conserving Sfunction.

Combining (1ec-14) with (l1c¢-11), the transition probability

1See reference (1), p.101.
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per unit time is found to be

P . 2
l;: = 2n S(EL‘EA—)\<XL tT(X*«>I (1¢-15)

(2]

The T matrix conserves momentum so it is customary to
factor out the momentum conserving part by defining a

new T through

<7Cblr ‘X,4> = 5 (?b- fl) T (1c-16)

where E; and ;; are total momenta of projectile plus tar-
get for initial and final states, respectively. 1In a
manner analogous to our treatment of the sguared energy

5 function, we smear out the squared momentum S.function
over a finite volume of space, vo, to write the transition

probability per unit space-time as

(:U\)ﬁl § 3(?1—?,&) J(Eb—- ~)‘T\>o.| 2 (le-17)

The transition rate per unit space-time into the interval

d3 p2 is then

dR= P o ;
:ot, £y (, [,1 (1c-18)

= @ny i’ (fi- f)§ - «)lTbJA <=\f’1
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where subscript 1 refers to projectile and 2 to target
momentum in the final gtate. The cross section is the
transition rate per incident flux of particles summed

over all final states, or12

= (anf S ™ 6 -F) S(E,-E)
[Tha ba|

V

re|

(1c-19)

A(x rz

whe re Vel is the relative velocity of projectile and

target. Now work in the center of momentum system of the

projectile and target; i.e.,
L7 /
EveE, =E =g = E‘+E,_
2, 2/ _
Pl+ "’- PL F|+P1" O

\(_e\ = | V’| _ (’17"\ (1c-20)
Vi = P‘/Et
V,= P/E,

Differentiating both sides of the first of the above equas

tions and using the second of the abeve equations we have

12The (2w )6 comes from flux considerations; see e.g.,
reference (15), p.87.
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/ o
= ' 1. / (1e-21)
JEB “(%? ¥ J;/ Aﬁ
\ Ez
where we also used the relativistic connection between
all E's and corresponding p's

2

E = f +m
Multiplying (1c-21) by p, and re-arranging gives
-1
2\ .7 _ / [ L 1 X /
Yl Af‘ - et E("' E;_ AEL (1c-22)

The .expression (1c-19) for the cross section when diff-
erentiated with respect to solid angle and using (1c-22)

becomes an expression for the differential cross section

I

a0

= (an)' T |

L4
Veel (E(* cl)

/
where P4 is the projectile momentum in the final state,

(1c-23)

/
E; and E2/ are the projectile and target final (total)

energies, respectively, Vel is the relative velocity

of the tafget and projectile given by

\") = A A
rel Pl (E\ t Ez) (1e-24)
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unprimed p's and E's refer to the initial state, and
(1c-23) is the differential cross section in the center
of momentum system of the projectile and scatterer.

By definition of the scattering amplitude; f, given

by the-statements following (l1a=-14) we can write13
de - 4
d st ' (1c-25)

which establishes the correspondence between lf!z and

b

left undetermined. Taking the non-relativistic limit

‘T a‘Z 3 only the relative phase between f and Tba is

of (1c-23) and (1c-24) and letting the scatterer's mass

become infinite (fixed scatterer) we obtain the limiting

cagse
de - 2 *
A_S—{— >0 \(QJ\) Tba,m' (1c-26)

- oo
I'V"\2~

which can be compared with results we will obtain using
section 1a since there the non-relativistic limit and

fixed scatterer were assumed. If we take equation (1a-16)

and write it in its non-expanded form it becomes

1':”See reference. (8), p.57.
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3
£ == @ S}(: Vit (1e-27)

uUn

using our new notation for free and interacting states.

But by (1c¢c-8) and (1c¢-16),
N T
Tla.: XLb WL. d (1c-28)

Comparing (1c-28) with (1c-27) we get the relative phase

between f and Tba from

T = - 4o 1+ § (1¢-29)

ba Am (an)3

By taking the square reot of (1c¢c-23) we can define the

relation between f and Tba for elastic scattering (primed

1
and unprimed p's and E's equivalent then) 4

“": - (9.\1) T‘o‘k (1c-30)
(5+)

So far this section has been rather long-winded but

necessary to establish conventions; let us briefly review

1
4See_reference (15), p.223, eq.6.
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wﬁat has been done. We wanted to expand the total scatt-
ering amplitude for a projectile on a compositer~system

of scatterers in terms of some new quantity T closely
related to the more directly measﬁrable f, the scattering
amplitude of the projectile on one constituént of the
composite scatterer rather than expand in powers of the
harder-to-determine two-body potentials between the pro-
jectile and scattering constituents. The first step was
to define T (equations (1c—7),and-(1c—1))vand find the
correspondence between T and the scattering:potential V
(equation (1c¢-8)). PFinally, it was necessary to relate

T to £ (and thus to the differential cross section aiso)
to connect T to a real world experiment (equations (1¢-30)
and (1c~25)). Having accomplished all this, we now proceed
to develop the Lippmann-Schwinger-equation and Watson's

multiple scattering theory.
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1d.Watson's Multiple Scattering Series

Consider a scattering event with a total Hamiltonian
H describing the system. Begin by breaking up H into

the free Hamilitonian K and the potential V according to

H= K+V (1d-1)
and define eigenstates of H and XK by

H'(P‘-‘- E\‘) (13-2)
KX = EX |

Note that H, K, and V are operators in the above. Now
find an expression for (P in terms of )i. Substituting

(18-1) for K in the second equation of (14-2)

| (H-V)x,: € X (13-3)

Re-write the first equation of (1d-2) and (1d-3) as

E-#H)¥Y =0
E-H)XL =~V X

Subtracting the second of the above from the first gives
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E-HW-x)= v (1a-4)

Multiplying (1d-4) on the left by (E-H) ' and adding
X to both sides'bne gets

VY= [H— (‘E:%T—{\) V] re (13-5)

To show the analogy of this treatment to section
la, invert (1d-5) for ): in terms of q) by first multi-

rlying by V yielding

VP VeV ces

and now combine the two terms on the right into one by

writing

vw):[wv(-é—_‘-ﬁﬂ\/)c.
C=le- v () vx
= Q) (Z)vx

Inverting for )(.we find

x= (F)(e-H) (EJ—‘@ vY (1a-7)
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Now put (1d-7) back into (1d-5) and cancel operators
with their inverses to obtain the Lippmann-Schwinger equa-

tion for the wave function

W= X+ Ei—(Z)VL‘) (1a-8)

This is identical to (1a-9) of the Born work. In other

words, judicious juggling of (1d4-5) reproduces (1a-9).
Leaving this digression, we proceed to find an oper-

ator expression for the T matrix. Equation (1c-8) states

<X,\o|T’l7L&>_- <7£;,(VM{> (1ec-8).

and (14-5) into (1c-8) gives

<xb | T = <XB|V[I +(E}E>V]‘X~a>

which immediately implies
T=V+ V (;{.‘.])V (13-9)

Invert the above to get V in terms of T by combining

the two terms into one, writing

T-= (E’K> (E—"‘_VOV
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and invert to get

\/ = (E‘P*> !g}ij> T

Putting the above into the rightmost V of (1d-9) leads

us to
T= V+ V(E’_le T (1d-10)

This is the T matrix form of the famous LippmannzSchwinger
equation which we will use ad nauseum throughout the. rest
of our multiple scattering work.15
We now preceed with the idea of doing nuclear physics.
Consider the scattering of a single projectile on a com-
pound system of n scatterers. The total potential V is

then written as the sum of all two-body potentials between

the projectile and each scatterer; i.e.,

n
V= S v (1a-11)

(>
Let ti represent the two-body T matrix for the projectile
scattering on particle i. Then the two-body Lippmann-

Schwinger equations are

Y51pid., p.751, €q.252b. See also p.198, eq.85 for our
equation (1d-8) which Goldberger and Watson refer to as
the Lippmann-Schwinger equation.
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LTV + v 3eta (1d-12)
where \
.= - 1d-1
j‘ E._K' ( d 3)
) L

in which Ei is the total energy of the incoming projectile
plusitarget particle i in the initial state before the
scattering, and Ki is the free energy operator with the

property
KAXD = Um*fgﬁl\ )M?C> (1a-14)

where p and m are the projectile momentum and mass in

state ’);> and P; and m, are the target momentum and mass
in state ,)g>. The total T matrix for the complete scatt-
ering satisfies the appropriate Lippmann-Schwinger equation

also; namely,
T=V+VGT (1d-15)

where V is given in (14-11) and

\
= —_— (14-16)
G =

in which E is the total energy of projectile plus all
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target particles in the initial state\before scattering

and

- { (1d-17)

Invert (1d-12) by writing

t.=V£U+%tJ

{

so that

V.= (l+3;ti>

and thus

n
{
\/ = Z: ’tt‘( l.(..ji—ti\ (13-18)

(=
Iteration of (1d-15) gives

.T: V+VGEV+ VGVGV +...

(14-19)

and putting (14-18) into (1d-19) we find

= Z.t (|+j .(1d—20)

+[Ealmale i (g -

—
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Now expand the terms in parentheses according to

]
L, = |- ‘)it{ + 3itc 9 t’(. _ ... (1d-21)

and re-group terms in powers of the t's to obtain

T= Z-’Cf ZZt@t Z,tc)t

(=1 (=1

+ ...

Re-arranging the sums in each order to separate out terms

with the same ti appearing next to itself (separated by

propagators of course) we have16

T= 21t+ ZZtc;t+gt(e-j)
=) iz
c#J
+ ... (1a-22)
Terms which contain factors (G—gi) represent binding

corrections which are worthy of consideration in them-

selves, but one customarily writes17

G = ¥ > = Ln (14-23)

16See reference (22).
17

See the work of Koltun in reference (29), for example.
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and ignores the contribution of these binding correction
terms. We will return to this point when we discuss sym-
metrization. This leads us to Watson's formula for the
total T matrix in terms of the two-body T matrices,
I = 4t i > 6t + ZZE t‘.thGtk
(= = e} J ==t k=1
vFj c#y, jtk
+. (1d-24)

LN

and establishes the final result associated with the
title of this section.

Now we have to state that everything leading to
(1d-24) was done so crudely that we are compelled to make
some verbal explanations. First; the way we write the
propagators as in (1d-13) or (1d-16) is something like
shovelling all the dirt under the rug. There are problems

with the denominators when they become zero. Suffice

to say that we should make the replacement17
G - l;m __.L—T
,l_jo E~K+n\ (1d-25)

P {.-E%;E } - (rrS.(EE-F(>

where P means take the principal value of the appropriate

_7See regeregcg (15), p.72, eq.52 and p.74, eq.63.

"
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integral in which G appears. In summary, (1d-16) is
sloppy and should be replaced by (1d-25), and similarly

a replacement should be made for (1§—13). Second, the
t's that we have written in (1d-24) are two-body T matri-
ces and (1d-24) implies that the projectile scatters off
particle i and all other n-1 scatterers sit as spectators;
this is certainly an approximation (the so-called impulse
approximatioﬂ) and the more correct statement of Watson's
result is that all the t's in (1d-24) are really T 's,
where T i is the appropriate T matrix for scattering

of the projectile on particle i in the presence of all
the n-1 other scatterers.18 Third, we have not dealt
with the problem of symmetrization of the wave functions
(nuclei are composed of many identical particles): though
we will not go through this section again properly sym-
metrizing everything, let us just state that all states,
injitial, final, and intermediate, must be properly sym-
metrized. One then finds that symnetrized intermediate
states give exactly the:rsame results as unsymmetrized
intermediate states (provided initial and final states are
always symmetrized in both cases) when properly hendled.

We will return to this point in section 2b and related

81yid., p.754, eq.265.
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appendices. Note‘that our statements do not necessarily
apply when the projectile is the 'same as one of the nuclear
constituents. The reader should pay particular attention
to Goldberger and Watson, reference (15), pages 131 to
133 and the last sentence of page 750 which continues
over to page 751. We quote it as follows:
We naturally assume, however, that the target wave
functions g are appropriately symmetrized in the
coordinates of identical bound particles.
One final comment is necessary. Our derivation of Watson's
multiple scattering series, (14-24), is not the derivation
of Watson but follows the simpler but less rigorous argu-
ments of Moyer and Koltun (reference (22)). Watson finds
coupled integral equaticns for the wave function Y)which
formally solve equation (1d-8). These coupled equations

19

are as follows:

Y=xX+ 36 (P (1d-26)

(=1
- 6T 8.
g.= X +¢’f5§| R4

Iteration of (1d-26) combined with (1c¢c-8) reproduces (1d-24)
except for the replacement of the t's by T 's (defined on

the previous page).

19122&-, p.751, egs.253%a and 253b.
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2.5implified Low Order Pi-Deuteron Scattering Using

Watson's Multiple Scattering Theory

OQur ultimate goal is to obtain the pi-d scattering
amplitude using Watson's multiple scattering theory and
taking all quantitatively relevant effects into account.
Naturally this is a large order to serve, so rather than
present the meal in its entirety, we choose to offer it
in several courses. To keep the arguments as simple as
possible, we will concentrate on T -d@ scattering in
the threshold limit (the pion stikes the deuteron with =
zero momentum in the center of mass and lab systems).

The incident projectile is chosen te be a pion (rather
than a proton or neutron) to avoid extra symmetrization
difficulties and because the two-body pi-nucleon inter-
action is well known (phenomenologically at least). Also
pion beams will be readily available once the TRIUMF meson
facility is in operation. We choose a T rather than

a Tfe

to avoid coulomb effects in intermediate states
of the charge exchange process (to be covered in detail
shortly) although this is a rather moot point since the
advantage is lost in the elastic scattering contribution.

A deuteron is chosen as the target nucleus because it is

the simplest multi-particle aggregate, the deuteron wave
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function is well-~-known, and we naively expect symmetri-
zation to make a big difference here (see the third para-
graph below). Finally, we consider zero energy scattering
because in this limit we can throw away the delta function
part of the propagators (to be explained when we take -
this step) and the expressions become simpier.ZO

The menu of the pi-d banquet begins with calculations
of low order scattering terms neglecting symmetrization
of intermediate state wave functions. Then we discuss
how symmetrization of intermediate states is handled and
why it has no effect on the results. We assume constant
two-body T matrices throughout this section (i.e., the
choice (2a-6)). This approximation is a’highly unrealistic
one but is introduced nevertheless because it greatly |
simplifies the calculatiohs. In momentum space the constant
two-body T matrix is just a constant multiplied by an

overall momentum conserving delta function. We abandon

the constant two-body T matrix assumption in chapter 4.

20See equation (1d4-25).



49

Note that the symmetrization effects we expect to
see only occur in second and higher order scattering terms
but not in first order (there is no sum over intermediate
states in first order). Now usually when one does a
calculation of a sum of terms one expects the first order
to dominate, and each successive order to contribute much
less than the previous one. However, by accident nature
has chosen to make the Tf-—neutron scatfering amplitude
almost equal in magnitude and opposite in sign to the 7 -
proton scattering amplitude at threshold. The first order
contribution in the deuteron is roughly the sum of these
two scattering amplitudes so that the first order contri-
bution is very small, and in fact about equal in magnitude
to the second order contributions. For this reason the
deutgron is an unusually good target for studying higher
order (second and beyond) effects.

Two remarks on symmetrization in the deuteron are now
in order. First, if one neglects the small D-wave admix-
ture in the deuteron wave function, the state is then pure
S-wave (the orbital angular momentum between the neutron
and proton is zero). Now consider double charge-exchange

(second order charge-exchange) scattering, to be referred
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to from here on as DCE, in which a M~ enters and strikes
the proton converting the proton to a neutron and itself

to a ITO; thus one has an intermediate state consisting

of two neutrons and a'wo; the “p proceeds to strike the
original neutron converting it to a proton and the Ilo

back to a T . Since the original proton and neutron

were in a relative S-state, an incoming zero energy pion
shouldn't excite the nucleons so we expect the intermediate
state nucleons (two neutrons) to still be predominantly

in an S-state. In addition, the deuteron has total angu-
lar momentum J=1 and since i:O (S-state), we must conclude
that the spin is S=1. So.if we don't allow for any spin-
flipping mechanism in the pi-nucleon interaction, the
intermediate state of two neutrons must also have S=1.

This means that the spin state of the two neutrons is
symmetric (triplet) and the space part of the wave function
is also symmetric (S-state) so that the total wave function
for the intermediate state is symmetric, which is forbidd-
en by the Pauli exclusion principle. Therefore we expect
symme trization of the wave functions to drastically reduce
the contribution of the DCE term in the multiple scattering
series. |

We have made two contradictory statements so far.
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In an earlier paragraph we stated that symmetrization
of intermediate states has no effect whereas we also showed
that we expect a large effect in the DCE term. 1In fact,
there is a term coming from symmetrization which does
reduce the DCE contribution, but there are other terms
from the binding corrections which cancel the effects
of symme trization. This will all become clearer when we
present the detailed calculations.

Secondly, we wish to comment on the validity of
symme trizing intermediate states in general. Some might
doubt the whole symmetrization requirement on the grounds
that intermediate states don't behave in the same way
as external (initial and final) states; for example,
energy is not conserved in intermediate collisions (par-
ticles are not on their mass shells). One is thus tempted
to ask if symmétrization is required. I1f one believes in
quantum field theory, the answer is an unequivocal affir«
mation of the symmetrization requirement. For details the

reader is referred to Appendix 1.
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2a.Low Order Multiple Scattering Terms for T1 -d

Scattering Neglecting Symmetrization

We now use Watson's theory and calculate the low
order terms of (1d-24) with unsymmetrized intermediate
state wave functions. Our aim is to start with the sim-
plest cases and build up the work in stages until we can
generalize our conclusions. The crudeness of the approx-
imations we make here will be checked in chapter 4 when
we do the problem in all its complexity. Suff;ce to say
that additional complications to be introduced in chapter
4 would only obscure the relevant features and would not
affect the general argument here.

The deuteron wave function is taken to be

- PR

YER)= @) e

(2a-1)
(2“ )3/1.

where L':,("r?)is a Hulthen function given in Appendix 2.
We are neglecting the small D-state admixture. In the

-> ~p
above, P and R are the momentum and position coordinates
_9
r

of the deuteron center of mass, is the relative position

3

coordinate of the two nucleons, T, and ;; are the nucleon

position coordinates in the lab system, and we write

-~ -5

= rz—[;‘

.
.
R= £(@+%)

(2a-2)
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We assume throughout this section that the mass of the
neutron and proton are equal and also take the T and “o
masses equal s8o that it is convenient to define the

-y

—?
center of mass momentum P and relative momentum k in

terms of the nucleon lab momeu:rl:a,:f))1 and 3'2 as

= - -

P-:: r' + P’- )
=2 - (2a-3
& = -LG’—:." rl) \

It is also convenient to write the relative pesition

vector part of (2a-1) in terms of its Fourier trza.nsform21

5 % -iﬂ-* >
B@= ey | TR

As a complete set of intermediate states we take the

plane wave states

- g -
X = e_'t r”rn"’;‘ =t Pn'R -i&n‘?

n —_ e e -
V. - = (2a-5)
(J“) * (2“)3/,- (Qn)3/').
- e ' rﬂn'?ﬂ -1 f”‘n‘?' < -‘;zn'?,_
—— < e
(an)¥> (¥ GRye

where the subscript n refers to the particular intermediate
state and all the r's, p's, and k's are defined as before

-2
and in analogy T is the position vector of the pion in

21 See Appendix 2.
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the lab and ;; is the pion lab momentum in the interme-
n
diate state n.
We choose a particularly simple form for the two-body

T matrix operator in coordinate space

| (22-6)

t= an't, §(3-7)
= et I*@-%)

where to is a constant. This choice is motivated by

noticing that

. R -2 L, VY = o - -
et fﬂq‘ (_P,'f; A 1t F:l"rﬂ _Lﬁr‘
— S €_

(11'!)3/1. (9.“)3/" J (:m):yq_ an) 3/1

- —

= 8 Gt H-Fam )
That is, t sandwiched between plane wave pion-nucleon
states is a constant multiplied by an overall momentum~
conserving delta function. The constant to will vary
depending on whether we scatter off a proton elastically
(t0=tp), off a neutron elastically (toztn), or charge-
exchange scatter (to=toe)‘

Let's start by calculating the single scattefing

terms. From (1d-24), these are

CRIENRY « YR YD
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where the subscript "b" stands for the final state, "a"

for the initial state and

Y = e“’ﬁu-ﬁr Yz

—_ g
@y /> " (22-7)
_ - ¢ f;b’?\'\ > o
" an h@R

where E; and 5;

a b
which we will set equal to zero in the end (threshold

are the initial and final pion momenta

limit)., If we let particle 1 be the proton and 2 the
neutron the %1 term will give a factor tp and the %2 term
a factor tn but neither will contribute any tce factors
because a single charge-exchange cannot leave the final
nucleons in the deuteron state (because there will be two
neutrons). Let us just concentrate on the Q;
%2 term is treated analogously). Combining (2a-7), (2a-6),

term (the

(2a-4), and (2a-3)
-2 3 2> -

tPe, . (PR ke T
<%‘t\‘1)k>: S e_—\o_ C__b eLeQb('
@ G Gmyve

L') %O (27\) ‘t 5 (\" r) F““— n e_tP R

(Qn) Ezggiz (2a-8)
e-(zmts; . 3 3 s
R AURFE WY Wy i

@Y
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- -
where P and Pb are the initial and final deuteron center

of mass momenta. Now use (2a-2) to convert the delta
function part of the T matrix into one invblving ‘cn and

relative coordinates to obtain
3 o 3 ,—> 2 > |
S ("’n-— )= § (‘;‘ + L- R) (2a-9)

The integral over R is easy with the above delta function;
the remaining position vector integrals just give delta
functions over the appropriate momenta; and we can also

integrate over kb to remove one delta function yielding

QI = ¥ R R) e EE)
L}i (g} 43’&4_ (2a-10)

-2 -
Now take the threshold limit setting Pa and Pb

zero and notice that the resulting integral over the V”s

equal to

just gives a factor of one (because the wave functions

are unit normal ized). The result is
A 3 - e d -5 - |
<“f,|’c‘\\ﬁ> = t?S (Pr,+ P fra- B0) (2a-11)

where the delta function insures momentum conservation.

To obtain the scattering amplitude one throws away the



57

delta function (see (1c-16) and (1¢-30)). The t2 term

is handled exactly the same way and not surprisingly

LAY = t 8 (b - FcBy o2

in the threshold limit. Since all future calculations
in this section are treated along the same lines as the
previous one, we put most of the details of succeeding
galculations in the appendices.

Now consider second order scattering terms. According
to (1d-24) these are expressed by

A A~ A A A AN

CRIRET, [+ (R 1E, 82,19

In this case we must insert the plane wave states of (2a-%)

so that

CRIRERIED = ¢RIR 1K, 30 1K
CHERTD

(2a-13)

and similarly for the %2631 term. The calculation of
each of the above matrix elements is straightforward and
we refer the reader to Appendix 4. Only two comments
are necessary. For elastic scattering the % &% term

1772
will contribute a term proportional to tntp and so will
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A
the %é&t1 term since they represent scattering off one

nucleon and then the other. But for charge-exchange
scattering, only the %2&%1 term contributes because it
represents arfm scattering off the proton converting the
proton to a neutron and itself to a w° and then charge-
exchanging back again off the original neutron; however,
the %16%2 term cannot contribute to charge-exchange because
it represents a M~ striking a neutron first and thus
cannoé convert the neutrocn to a proton and still conserve
charge. The result is that we get a term proportional

to Z%ntp from elastic scattering and one proportional to
-tie'. The minus sign comes from the fact that the neutron
and proton are interchanged after the scattering by the
charge-exchange process. (By choosing . this minus sign

we are effectively simmefrizing the initial and final states).
It is also a simplifying assumption to neglect the kinetic
energy of the nucleons in the propagator G as well as
taking the binding energy of the deuteron equal to zero

in the propagator. Summing (2a-13%) over intermediate

states one then finds for second order scattering22

22See Appendix 4.
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<Y IEEE R + ¥ 18.8R, (9

(2a-14)
26 t5 ] <A [~@nm, |
S (?n + P “K P ‘3

where we define the expectation value of 1/r by

= S Yo () = Yo & (2a-13)

Application of (1¢-30) to convert the T matrix to the

scattering amplitude gives (up to second order terms)25

gn-k ?Y . (24.\‘;9 -~ ﬁ:} <“;>

{ = 4 (2a-16)
n T — T n
f =t
“\’ p
gf e = E
T\' T\'P n ‘)"9“0.\

the f's being the various two-body scattering amplitudes.

In writing (2a-16) we have neglected‘terms of order m“/mn

compared to unity. Equation (2a-16) is well—known.24

2"‘3See Appendix 5.

24See references (2),(10),(19),(22),(26), espécially (10),
eq.A.35. .
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There is one curious result left to discuss which
occurs in all orders of scattering past third. For ex-
ample, consider elastic scattering frem the p to the n,
then -back to the p, and finally back to the n once more
(a fourth order contribution). The appropriate T matrix

element is (from (14-24))
CUIE,EE G868 | WD (2a-17)

and treating this just as we did the second order elastic

terms of (2a-16) we find
<‘{{l’e,_é€|é%lé%‘\‘ﬁ> < t:t;(ﬁ; (2a-18)

making the same approximations as before. We claim that

in general the nth order scattering term will be propor-
tional to the expectation value of (1/r)n-1.25 But the
expectation value of (1/r)n diverges for n greater than

two if ﬂﬁ(r:O):# Ot.:To see this in a specific case write
__L_ - ¥ 5 __\_ 2 3
(+n) = ‘){) @ )Y (2a-19)

and recall that

25

See section 3a,
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V() o< e - P’

r

for our Hulthen choice of ‘V + Therefore the integral
in (2a-19) diverges for n>2 so wesc¢onclude:that every
term in the multiple scattering series past third order
will diverge. The divergence results from our bad (un-
physical) choice of twe-body T matrix (2a-6) but it is
still possible to reconcile the difficulty and gét a
finite result for the complete pi-d sqattering amplitude
without abandoning (2a-6). Por example, if one sums all
the terms of the multiple scattering series for pi-d scatt-
ering the (1/r)® terms add in a geometric series and the
sum of all terms can be written in closed form. The re-

sult neglecting charge-exchange 1826

E;d‘: ¥n+ff t+ 2$n4P/?' (2a=~20)
(o (‘n{:?/ rl)

where we neglected terms of order m“/mh.
To summarize, in pi-d scattering all terms of the

multiple scattering series past third order diverge for

26See reference (2), reference (19), and chapter 3.
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our simple choice of constant two-body T matrices. Nev-
ertheless, one can still obtain a finite result for the
conplete pi-d scattering amplitude by summiné the multiple
scattering series to all orders without abandoning the
constant T matrix approximation. The scattering ampli-
tude will always be finite (even when we include charge-
exchange) although this has not been shown in general.

We show how to always obtain finite results in chapter 3.
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2b.Symmetrization of Intermediate States

We will now demonstrate how to incorporate symmet-
rized intermediate states into Watson's multiple scatt-
ering theory. We will also show thdt this procedure
leads to no new results so that one is justified in ne--
glecting symmetrization of intermediate states in gen-
eral (at least when the projectile is not the same as
one of the scatterers). PFirst, however, we would like
to show how direct insertion of symmetrized intermediate
states into Watson's series (1d-24) leads to incorrect
results. The point is that binding corrections which
are usually ignored (e.g., ref.(}g))'become fundamentally
important when intermediate states.are symmetrized.

To begin, the initial and final deuteron states must
be completely antisymmetric in space, spin, and isospin
variables. Since the deuteron wave function is spacially
symmetric (S and D-waves) and the spin part is symmetric
(spin one), the isospin part must be antisymmetric so we

write the isospin part as

‘("; X\w? ~ lf"‘>1

where the notation |np) means particle 1 is a neutron

and particle 2 a proton, etc. The three symmetric isospin
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states are similarly written

[nn™>
lep>

& lrprpn

and the above four isospin states form a complete set
which we will sum over in intermediate states. Note that
we will not write the spin part of the wave functions
because we always work with two-body T matrides that don't
flip spin (in this section)sso it is unnecessary to pull
the spin part through all the calculations.

The intermediate states must also be totally anti-
symmetric and since the spin part is symmetric (spin one
does not change) we must have the space parf and isospin
part of opposite symmetry (one symmetric, the other anti-
symmetric). Let X_ 5 ana XA be the space symmetric and
space antisymmetric parts of the allowed intermediate state
wave functions. Then symmetrizing (2a-5) we must have
for plane wave intermediate states

S s )

A .—( - * ‘-'> -, - _) _9 _..)
Tr r —-{ .r . oo .

X = e P T 1l)e r'n [ e:'(Fln‘;. e‘:‘ﬂn'r;. e’“f)l,{r;

am¥r Ao —— £
(an)™ EOY= @Y= T e Goore

(2b-1)

> 2 2 -2
C-‘Y"n‘ @ -t Pn Rn { - k,\' g + N &n?—}
¢ e
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The allowed intermedizte states then are

Y & |Inp=1p>)
D(.A> [an> (20-2)
\ XA ey

X4 & Lingy + \pa>)

We must now decide how to insert a complete set of states
with proper normalization. When states are not symmet-

rized, one writes the unit operator as
. X EZ
L=2 [ X )<
so that multiplying both sides by<?£m\ gives
<:7(h\\1; :§;<<7(h\\)cn:><<)cn{ = <:)(n1
as it should since for unsymmetrized plane wave states,
<7('m \ Xn> = smn

But for symmetrized plane wave states normalized as above

Sym S’M
<xm \Xn >"" 2 Sh\n
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so the unit operator must be written
r - S S
=% SmH<a (203
n

where the sum is over all states of the forms given in
(2b-2).

We are now prepared to calculate the DCE term with
symme trized wave functions. From the previous paragraphs.

we write

A

A A . A A
<RI%G :CH)«>= 'E|'<\{i<'%§-n>‘t‘“ an(m\)>
e 161U o) )Xo (EE DS (s

In the above we have only written those intermediate

states which give a non-zero contribution. That is, a

- scattering off a deuteron and charge-exchanging to a

1° can only leave behind two neutrons in the intermediate
state. First remove the isospin parts in (2b=4) as follows:

Since t2 operates on nucleon 2 we have

MR =R E S a

p——

2
and similarly

e I R G a1y S A

\FN
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We can thus use (2b-5) and (2b-6) to reduce (2b-4) to
teep A A .o
SRIREE 0= -y e >
Ay 2 A A A
<X el Xm><Xm 1£5° ] ‘{{? (2b-7)

The terms in (2b-7) can now be handled in a straight-

forward manner as was done in the non-symmetrized case.

The result 1327

SRIECEI = - ermle
RJ\:> - A] Sg(ﬁ\b*?b'-?na‘ 30.3 (2b-8)

H

where

_L_j._l_‘f
- rz f (2b-9)
Because the deuteron wave function was symmetrized in
isospin space, néutron and proton are not always particle
2 and particle 1, repsectively, as they were in the non-
symmetrized case. Therefore the %16%2 term is not zero
this time but is equal to the %26€1 term (by symmetry).
So the complete DCE contribution to the T matrix is twice

the right side of (2b-8). The corresponding DCE scattering

27See Appendix 6.



amplitude is

DCE N
E{d = 7 3]: ce[<JF>—Al (2v-10)

We see that the A decreases the DCE contribution as
we expected. Unfortunately, however, A is inifinite

dnd in fact it numerically is equivalent to the bubble

graph
~ 1 n
-
' ) IT’ \\}
\
e (2b-11)
/7
- /,’
i
7 F n

which we expect to be infinite by analogy with the Feynman
QED work. The infinity is really no problem since it
results from an unphysical choice of two-body T matrix,
(2a-6), 80 that a more realistic choice for the t's

would make A finite. But even more perplexing is the
fact that when we calculatei.the elastic scattering contri-
bution in second order, symmetrizing intermediate states

the same way, we get

2nd ord. el.

A RSN R P (RS T IS

This just cannot be correct for the following reason. The

intermediate state for elastic scattering consists of a
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neutron and a proton (not two neutrons'as in DCE) so that
the particles are not identical. This means that sym-
metrizing should not give different results from non-
symmetrized calculations.

We can resolve the difficulties encountered from
symme trization by going back to (14-22) instead of (14-24).

Then we see that the complete second order contribution is
[t6t,+t.6t, 4 tGt, + t,6t, )
~ltigt, + t, 9.ta |

(2b-13)

When we neglected nucleon execitation in the propagators

we assumed that
G-:ﬂ‘: jl

but this is only true if the intermediate states are not
symmetrized. The important point to remember is that

the g's are two-body propagators (one pion and one nucleon)
and the G's are three-body propagators (pion and both nu+
leons) so that symmetrized intermediate states are sand-
wiched between G and the t's, but unsymmetrized (Qion and

one nucleon) states must be sandwiched between the g's
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and the t's;28 When this is done properly we find the

following results for DCE:

©® . ce
E6H 1 teet o< 4 ooy

2 v
ce Ce ce ce
tGt T+t 607 =< L [A-—}.

) Ce Ce
th‘tl + t'L j')_t,_ =< A

so that the complete second order contribution to the

scattering amplitude with intermediate state symmetriza-

tion included is

DCE

Fe = fo | £ + 4 (a- ) - 4]
= - e (1

which is the same result we found without symmetrizing
intermediate states (see (2a-16)). Similarly, the second
order elastic result is the same as the unsymmetrized re-
sult when bindihg corrections are properly handled, and
in general, symmetrization of intermediate states is“un—

necessary since the results are always the same as un-

28The aathor is deeply indebted to D.S. Beder for pointing

this out and thus resolving the symmetrization difficulties.
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symme trized ones (providing that the incoming particle

is different from the target particles). However, initial
and final s tates must always be symmetrized. 1In section
2a we did not explicitly symmetrize initial and final
deuteron states but the results are correct because we
accounted for symmetrization by choosing the minus sign in
(2a-16) next to £-,.

Moyer and Koltun, reference (22), mention that inter-.
mediate states need not be symmetrized, but their argument
does not analyze the situation in detzil as we have done.
Theirs is the only paper to even mention the equivalence

of symmetrized and unsymmetrized calculations, and on this

account deserves considerable credit. Note that Moyer and

Koltun discuss symmetrization based on the Lippmann-Schwinger

equation whereas we work with the multiple scattering series.

In conclusion, we can ignore symmetrization of inter-
mediate state wave functions in all subsequent work of

this paper.
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%.Summation of the Multiple Scattering Series

To All Orders

It has been shown that the multiple scattering series
diverges in each term past third order; here we want to
sum the whole series and obtain finite results. To
accomplish our goal, it is necessary to write the various
scattering amplitudes for each order of scattering. 1In
general this is not possible, when non-constant two-body
T matrices are used, for example; i.e., the integrals to
each order cannot be evaluated (except numerically). But
if we keep the approximations we have made in the previous
sections (constant t's, zero binding‘and no nucleon exci-
tation in G) it is. possible to evaluate the integrals
and obtain closed analytic expressions for each order of
scattering. It is also possible to write the scatter-
ing amplitude immediately for each order of scattering
by looking at the appropriate graphs. We therefore will
state the rules for obtaining the scattering amplitude
to each order and then sum the terms to all orders. No
attenpt will be made to derive the rules that will bé
givén-because-they are easily established by the tech-

niques of Appendix 4 although it is tedious to do so.
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However, we will make reference to previous calculations
of second order terms to indicate the origin of our graph
rules. We also postpone numerical evaluation of series
sums until chépter 4.

The sum of the elastic multiple scattering series
for pions on deuterons has been evaluated long ago (in
1953 by Brueckner, reference (2)) but the charge-exchange
process was neglected. Not until 1972 was an attempt
made by Kolybasov and Kudryavisev (reference (19)) to
sum the series including charge-exchange and T ° elastic
scattering. Unfortunately their result is incorrect, which
they state in arnote added in proof. But their later paper
(reference (28)) which they claim corrects their previous
error is also wrong. In the present section we show how
to obtain the series sum including charge-exchange by a
new method which "folds" the charge—exchange and TTO elastic
scattering contributions into the original series sum
neglecting these processes. This technique greatly reduces
the complexity of the problem and avoids the tedious labor
of summing a great many extra graphs. In.addition to our
pi-deuteron series sum, we evaluate the series sum neglect-
ing charge-exchange and T(o elastic scattering for pions

on an arbitrary nucleus of N neutrons and Z protons.
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Using our new technique we then fold in the chérge—
exchange contribution so that we evaluate the series sum
for an arbitrary nucleus including elastic W~ and charge-
exchange scattering. We dov nof include elastic. °
scattering in this more general case because the expressions
then become gargantuan. Nevertheless, our technique does

allow one to persist, if desired.
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3a.Graph Rules and Order by Order Summation

We begin by looking back at (2a-16), the first order

contribution to the scattering amplitude is

fn + fp (3a-1)

For simplicity, let graphs corresponding to (3a-1) be

drawn as
h P f’ 1'1
A S -
“” \\ 'ﬂ \\
b + \} (3a-2)
Ve /
// -~ ’/
1 n p n s

P h

where it is understood that deuteron lines Should be
joined to the beginning and end of the two nucleon 1ines
in (3a-2) and all that follows. If we ignore initial

and final lines the relevant feature of (%a-2) is a pi-
neutron vertex in the first graph and a pifproton'vertgx
in the second. Thus, the amplitude which we write by
inspection from (3a-2) is just (3a-1), where £, is written
for the pi-neutron vertex and fp for the pi-proton vertex.

Now look at second order elastic terms. The diagrams

are
n T by
/- \ 1 ‘<
_ Lo ol
f}/J 4 /T/\: (33"3)
nj;./‘ .~
n e g f n
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and from (2a-16) the corresponding scattering amplitude

is

N ) (3a-4)

where it is understood that (3a-4) is to be averéged over
the deuteron wave function (take the expectation value).
That is, instead of taking the expectation value of each
term in the multiple scattering series and then adding
all the terms, we first add the whole series and then
take the expectation value (both methods must give the
same results); Neglecting external lines in (3a-3), the
first graph has a pi-neutron vertex, a pi-proton vertex,
and an internal pion propagating; the two vertices contri-
bute the factors fn and fp and the propagating pion gives
the factor 1/r. The second graph contributes the same

so that (3a-4) results by inspection from (3a-3).

Now look at the DCE graph

ny
/ -

o // n (33'5)

n -

//'

r n

with the corresponding amplitude from (2a-16)

-— ’
-~
n”

-£2 /r (32-6)
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Each pion—nucleon vertex in (3a-5) contributes a factor
fce because the pion changes its charge after each scatt-
ering, the propagating pion contributes a factor 1/r,
and a ﬁinus sign is necessary because the proton and
neutron have exchanged places in the fnal state with
respect to the initial states.

We can now state all the graph rules. 1In analogy/
to QED rules, we choose to abbreviate our rules with the

letters MSG (multiple scattering graphs). The rules are

as follows:

MSG Rules
1.Draw all possible graphs with no bubble diagrams allowed
(no graphs like (2b-11), for example).

2.For each vertex associate a factor fn’ fp, fc y OT fo

e
corresponding to elastic T -neutron, I -proton, charge-
exchange, or elastic n?° scattering, repectively.

%2.For each internal propagating pion line associate a fac+
tor 1/r.

4,1f two nucleons~rare interchanged in the final state,

multiply by -1. (3a-7)

Keep in mind that the above rules apply only under the

assumptions of -page” 72 and in the threshold limit.
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As a check to see if you can apply the MSG rules to

a more complicated case, the amplitude associated with

the diagram

N~

is given by

l-’
~ fee £ £ (3a-9)

Using the MSG rules we draw the graphs and write
the corresponding amplitudes for the next few orders of
elastic scattering (neglect the charge-exchange process

for now). We obtain for the third order processes

S 1
1'— \\\n—
- > = k()
L~ + he - n no'p
1 ? ___f___r__:___,

where ne—»p means the same graph with the pion striking the

proton first. To fourth order we get



78

1"
“’// (33_11)
Q" P L2
n/i + n(-—ar 14" —‘?
1P -3
A ¢

The pattern is obvious so we write the sum of all odd

order terms as

(‘,ﬂ—ﬂ,){ [+ &é‘{ + (‘%)1_}] (3a-12)

and the sum of all even order terms as

Unf [“’ &!'4 "’(X-——f) ] (3a-13)

and summing (3a-12) and (3%a-13) gives the complete pi-d

scattering amplitude neglecting charge-exchange

Fnd fee20) = (_‘(n-l-'%,f li‘rﬁ?l[“ %‘;&+ (&é@)ﬁt}

= ¥“+ j;f ¥ lﬁ\:{l (3a-14)

l_— gv\{'t

rl
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where it is understood that the right side of (3a-14) is
to be averaged over the deuteron wave function (take
the expectation value). We have thus shown that the
series of divergent terms can be summed to a finite result,
the result (3a-14) having been obtained previously by
Brueckner. |

Now consider the charge-exchange contribution. We
could in principle write the graphs to each order as before
by . including extra factors of fce and fo. However, the
combinations are so many and varied that it is difficult
to see a pattern to each order so that one has trouble
summing the series proceeding as before. Instead, suppose
we replace every fp in (3%a-14) by some factor which takes
into account all ways to scatter from a Tl on a p to a
T~ off a p with any and all possible f e 2nd f_ scatterings

in between. That is, replace the vertex

by the sum of graphs
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ny f \ N f r n-
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= —F -~ 1(ce “ce '['o _ “:Ce “‘.,
ey R
r r2 ¢ 3

- WC? - % (H— £§)" (3a-15)

In other words, we have summed all paths which start with
a W on a proton with a neutron as a spectator and finish
with a 1M off a proton and a neutron as spectator, and
no intermediate elastic scattering (of T %) allowed.

There is no similar replacement for the pi-neutron vertex
because the pion would have to first elastically scatter
over to the proton before it coulld charge-exchange, and
such contributions are accounted for in (3a-15). Suffice
to say, then, that the series sum including charge-exchange
and elastic 11 ° séattéring is obtained by replacing all
fp’s in (3a-14) by the expression (3a-15). We then find

that the sum of the multiple scattering series including



81

charge-exchange and elastic TIO scattering is

£,e farfpt 2 de (00 B)(1 2y

wo

(%a-16
|- fatp fce fn (1+ fﬁj' )
r* Y il
The dubious reader is urged to verify (3a-16) to any order
by expanding the denominatcr. To the auther's knowledge,
(3a-16) is a new result not before obtained. We remark
that the result (3a-16) is finite (as is seen by multiplying
numerator and denominator by r3(1+f0/r); "writing the
expectation value of the resulting quantity with an explicit
deuteron wave function makes the finiteness manifest).
One curious feature of (3a-16) is the third term in
the denominator which is not present in (3a-14). 1In
practice fn is negative so that the denocminator of (3%a-14)-
has no zeroes. But the denominator of (3a-16) does have

zeroes for positive (but small) r so that E; has a pole

d
when charge-exchange is included. The quantitative ram-
ifications of this fact will be discussed in the end of
the next chapter.

In writing our MSG rules we neglected terms of order
m“/mn. They are easily accounted for but we choose not to

introduce them here because they do not 2dd anything to

the discussion. Purthermore, since we will see that the
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choice of constant two-body T matrices is a poor one,
there is ne point in trying to improve the resulfs for
the series sum since the sum cannot be so easily eval-
uated for non-constant two-body t's.

Although our MSG rules were only written for pions
on deuterons, it is a simple matter to extend them to
include scattering of a projectile on any size system of
scatterers, each different from the projectile. We show
how to sum the series for scattering on an arbitrary

nucleus in the next section.
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b.Series Sums for Arbitrary Nuclei

It is too cumbersome to try to sum the multiple
scattering series for an arbitrary projectile striking an
arbitrary nucleus. However, we would like to demonstrate
the generality of our method more fully so that the reader
should have no difficulty (in principle) applying it to
other series sums,

Let us briefly review how we summed the multiple
scattering series for pi-d scattering. First we summed
the series of elastic scattering graphs neglecting charge-
exchange. Let us refer to this sum as the skeleton graph
sum. Next we included charge-exechange scattering by re-
placing the vertex fp by the same vertex plus all ways to
charge-exchange and finish with a n coming off a p. Last,
we replaced‘the vertex product fci by the same product
plus all ways to -charge-exchange off a proton,elasﬁically
scatter a n° » and finish with a charge-exchange off a
neutron producing a proton.

Now consider W scattering on a nucléus consisting
of N neutrons, Z protons, where N+Z=A is the total number
of nuclear particles. Let's first sum the skeleton graphs

('ﬂ_-p and T -n elastic scattering terms only). Assume -
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that the first scattering occurs on a neutron. There are

N ways for this to happen so the amplitude for scattering

on a neutron first is an. Then the pion can succesively
étike N-1 other neutrons as many times as it likes before
striking a proton. This brings in the factor (I—(N—l)ﬁél".
where r is some average value of rij’ the relative distance

between target particles i and j (see ref.(22)).

Next there are Z protons to choose from so we get a factor
pr/r, and then the pion can strike Z%-1 protons any number

of times before striking a neutron again. This gives a -

@t ml- @ éf‘}-, (36-1)

and in analogy, the next neutron scatterings bring in a

factor

factor
(N'F'! /"){ (= W-1) %‘Y‘ (3b-2)

Then the factors (3b-1) and (3b-2) come in alternatively,
on and on. Thereforeithe total amplitude assuming a

neutron was struck first is

N4 [1- (N-\)fa_l-'{u SHIE (Z—l)%]-’}

B {qu,rL[t-— (N~l){-$]—‘} {Z.Ffe[“ (**'?é?]—‘- } (30-3)
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Similarly, the total amplitude assuming a proton was
gtruck first is obtained from (3b-3%) by the replacements

Ne—>17Z, fﬁh*fp, which gives

z¢ [-e-0dr]" {1+ Ui (”-')531—'}

- {6 - 0] {2604

The complete‘pi-nucleus scattering amplitude at threshold

(3b-4)

neglecting charge-exchange is the sum of (3b-3) and (3b-4).
If we want to include fce’ we can do so by the

replacement in (3b-3) and (3b-4)
2

$ — § - N{ce (30-5)
i f -

since after charge-exchanging off one proton there are

N neutrons to choose from for the next (and final) charge-
exchange. We could go on to include fO scatteriné but

the technique should be obvious without doing so. The
reader is warned, however, that including fo makes the
expressions for the series sums very complicated. In
practice there is little need to include fo gcattering -

29
(= (%)

because

29See reference (18) for example.
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and since fnf: -fp at threshold we have fO::O.

We feel that we have demonstrated our technique of
sumning the multiple scattering series in sufficient
generality. We remark that the results (3b-3), (3b-4),
and (3b-5) are new and do not exist in the literature to
the author's knowledge. If one persists in doing nuclear
physics, equations (%b-3), (3b-4), and (3b-5) may be of

some use.
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4 .Realistic Pion—Deuteron'Calculations

The preceeding two chapters analyzed pi-d multiple
scattering for constant two-body T matrices so that gen-
eral features would not be.obscured by the full complexity
of the problem. Now we wish to include those complica-
tions which will quanfitatively change the results of
previous work; i.e., we wa@t to find the scattering ampli-
tude in the threshold limit which we believe to be the
experimentally observed asmplitude (to date no reliable
experimental value exists but the new meson:facilities
now in production should soon provide an answer to compare
with our results). Our approach will be to add in one
complication at a time, calculating the scattering ampli-
tude anew at each successive step. PFinally we discuss
additional compliéations and compare our results to pre-

vious calculations in the literature..
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4a.Pi-d Scattering Complications One Step at a Time

In our previous calculations with constant two-body
T matrices, we saw that terms beyond third order diverged
(see (2a-18), for example). Howefer, if more realistic
two-body T matrices are used, the integrals associated
with each order scattering term will be reduced drastic-
ally at high intermediate state pion energies due to the
energy-dependence of the t's. The integrals will then
be finite and owing to the smallness of the pi-nucleon
scattering amplitudes the magnitude:: of each term past
second order is small compared to the first and second
order terms. Therefore our main work will not go beyond
second order in the multiple scattering series. The results
for constant two-body T matrices will also only be retain-
ed up to second order for comparison with improved cal-
culations of this section but one should keep in mind
that for constant two-body T matrices keeping terms only
up to second order is not necessarily a good approximation
to summing the whole series. 1In the following, we present
- numbers at each stage, but also present all stages together

at the end in Table.II for comparison.
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A] For constant two-body T matrices, zero deuteron
binding energy, equal mass nucleons (mn=mpEmN), equal
-mass pions (m%_= mio) in the propagator,  the scattering

amplitude is (to second order)

F 1st 2nd el. 2nd ce.

byt By + By

where

1s

= () Gt i) (et )

2nd el. L -\ 2
F"“ ) 2‘“‘?[("‘; "o @“ﬂ+ ;“"—N> Mﬂ}G‘:)

(4a-1)

The above results come from (2a-16) and Appendix 5. For
the f's we first take the scattering lengths (pi-nucleon.
scatteringiiamplitudes in the threshold limit) from refer-

ence (7), the Samaranayake and Woolcock data,

fn = -,14% fm

f = .118 fm (4a-2)
p

hig = -.185 fm

ce
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For the masses we use

my = 939,0 Mev
n, = (93%39.6 + 938.3% =2.2) Mev = 1875.7 Mev
mo o= 139.6 Mev (4a-3)

and for (1/f> using a Hulthen wave function (see Appendix

3) we find
{1/r) = .594 tu (4a-4)

and with an S-wave Gartenhaus wave function (see reference
(21) ‘and (4a-14))29

{1/r> = .446 fu” (4a-5)

go that with the above vélues the numerical results for

(4a-1) are the followings

Table I: Comparison of Hulthen and Gartenhaus Results for Ek

d
ﬂjﬂulthen 'Véartenhaus
1st .
pend el. -.0246 -.0185
wd
pend ce. -.0250 -.0188
nd

with all amplitudes above and from here on in fermis.

5
9The Hulthen and Gartenhaus wave functions are simple and
accurate enough for our purposes.
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With the introduction of subsequent complications we do

not repeat the calculations with the Gartenhaus wave func-
tion except for the last, most complicated case. However,
we feel the above results give an indication of the further
reduction to be expected in each subsequent complication.
3] The first complication introduced is to account for a
pole in the propagator resulting from the unequal nucleon
and pion masses and the non-zero binding energy of the
deuteron. That is, as shown in Appendix 4,we take the

propagator G to be

G =
E-K
where E=(m + m, = B + qr_)
f'L
K = 2mn + mﬂ + T, (for ce)
2 'ﬂ"o

so that

instead of

2 -
G= -\ .

aAm
n .

0f course this complication has no effect on first order

terms. When the appropriate integral with the new G was
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computed taking the pole into acceount, the second order

charge exchange term changed negligibly, becoming

F2nd ce

o d = -.0248 fm (4a-6)

and the second order elastic term didn't change at all to
three significant figures. Thus the effect of unequal
masses and non-zero binding is insignificant.

C] The next complication involves the nucleon excitation

in the propagator (as shown in Appendix 4) so that now we

have

E=m +m - B +n

n Y n-
P‘L k’L ™
= m -
K= 2mptm , 4+ 2 R P,
- Y
N m” m“,

for charge-exchange and similarly for elastic scattering.

We then find a substantial effect with the results

F‘fgd el.  _ _.0166 fm
(4a-7)
2nd ce,
o = -.0168 fm

Of course the first order terms are again unaffected.
D] The next complication arises when we keep track of

the various reference frames of each scattering event.
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For example, if we look at a second order term of the

multiple scattering series
A .
Ty, = t46t, (42-7)

and choose to evaluate %12 in the pi-d center of momentum
frame, then %1 and %2 must also be evaluated in the pi-d
cm frame. In our previous work we made the very crude
approximation that the t's are constant in all reference
frames, an approximation which violates Lorentz-invariance
of the theory. Suppose now we say that each two-body t

is constant in the pi-nucleon cm frame; i.e.,'%i is con- .-
stant in the cm frame of the pion and nucleon i. We want
to convert %i from the pi-nucleon i cm frame to the pi-d
cm frame because the latter is what must be used in (4a-7)
and in general for every two-body t of the multiple scatt-

ering series.

Consider the matrix element

e 16,

in which state ;{;n contains a pion with total lab energy

(not just kinetic energy) E” and nucleon i has total lab
n

energy By  and similarly for state A

n n* Denote the

corresponding total energies of the pion and nucleon i
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in their cm frame by putting a (%) over each B. Then
by reference (15), page 86, equation 112, the conversion
of the two-body t's from the pi-nucleon cm frame:to the

lab frame is given by

<xn lti l Xm>‘¢k \\ E"h ENn E“m ENm

SCHCTP I NN e g

n m m

In our previous work we used

CXal | X P e

which is a constant, but we should have used

G AV SIS

which is not a constant by (4a-8). (Note that the lab
frame and the pi-d cm frame are identical in the threshold
limit). It is a straightforward matter to find the various
energies in (4a-8) from the known momenta of the particles.
We just mention that for simplicity we choose to evaluate

the E's non-relativistically so that we write

2

E =

= Mt T
dm
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and similarly for the other E's,

Let us refer to the application of (4a-8) as the
inélusion of Lorentz factors. Since this effectively
makes the two-body t's non-constant it is appropriate
to include another complication along with the Lorentz
factors. Looking back at (1¢~30), E, is say the pion total
eﬁergy and E, the struck nucleon total energy (in the pi-
nucleon cm frame). But should E; and E, be the energies
of the pion and nucleons before or after the scattering?
Actually (1c¢-30) only holds for elastic scattering in which
the energies of the two particles don't change after the
scattering; that is not the case in multiple scattering
theory so we have to gneralize (1¢c-30) for inelastic scatt-
ering. The details are covered in Appendix 8 and the

generalized result is

.
Lo 1 N\]-1% (4a-9)
( Eﬂ:z Evn ( ﬂ:m+— Eb’\)] <(X%‘tt)%;?;N "
¢« C

so that f is effectively no longer constant but is multi-

plied by the square root of the term in brackets in (4a-9).



96

The application of (4a-8) and (4a-9) changes the previous

results for the pi-d scattering amplitudes to

1s%

F1S% - -.0267 fm

ped el _ _ 0103 fn (4a-10)
nd

2nd ce.

R - -.0104 fm

The results (4a-10) hold for unequal pion and nucleon
masses, non-zero binding energy, and nucleon excitation in
the propagator, and constant two-body scattering ampli%
tudes but with Lorentz factors and inelastic scattering
factors included.

E] Now let us drop the assumption of constant two-body
scattering amplitudes and rather fit the two-body scatter-
ing amplitudes with partial wave phase shift data. As

a first step we only include S-waves (the first term in
the partial wave expansion of f). One usually parameter-
izes the two-body scattering amplitudes in terms of the
pion momentum in the pi-nucleon cm frame, but for inelastic
scattering the pi momentum is different after the scatter-
ing. Therefore to satisfy time reversal invariance the
parameterization of the f's must be invariant under the
interchange of initial and final pion momenta., If a;

and e are the initial and final pion momenta in the pi-
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nucleon cm frame then we find that the appropriate quan-

tity to use in the parameterization of the f's is30

q = 9,9 (4a-11)

instead of Q- With the parameterization for the S-wave
phase shifts given in Appendix 10 we find for the pi-d

scattering amplitudes

1st

F 3% = -.00760 fm

et ot - L0115 (4a-12)
2nd ce. _ _

Po3 - -.0115 fm

In obtaining the result (4a-12) we work with complex
scattering amplitudes yet the results written in (4a-12)
are real. The reason for this is that we only keep the
real part of the pi-d scattering amplitude because in the
threshold limit F_, must be real. This follows from the

w
optical theorem which states that the total cross section

is related to the forward scattering amplitude by31

s= 1T, F(o=0)

¥

See A-ppendixgo P R ) i ¢

30

31See reference (27), p.74.
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In the threshold limit we have q—>0 so that ImF must
also vanish in this limit to keep ¢ finite. Thus F is
real in the threshold 1imit.32
F] The next complication we introduce is the inclusion
of P-waves in the two-body scattering amplitudes (keeping
the second term of the partial wave expansioh); ?It is
unnecessary to go beyond the P-wave terms because the low
energy contribution from the higher partial waves is
negligible as one can see from the data. In addition to
including P-waves we also allow for a spin-flipping term
in the pi-nucleon scattering amplitude (see Appendices

1T and 12 for our choice of P-wave parameterization and
our treatment of the spin-flipping term). The spin-flip
part of the pi-nucleon scattering amplitude complicates
the calculations because it changes the symmetry of the
intermediate states depending on the total spin of the
two nucleons after each scattering; nevertheless, care-

fully accounting for the proper symmetrization gives the

same results as not symmetrizing the intermedizte states

32This conclusion only follcws if we neglect absorption
effécts:-=like wd—>NN—>wd. Nevertheless our retention
of only the real part of Fnd calculated from complex f“N's
is admittedly but an ansatz; the appropriate off-shell
behavior of the f_ . 's which guarantees a real F merits

nN md
further study.
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(as in our previcus work). The results for P-waves and

spin-flip in the pi-nucleon scattering amplitudes are

found to be
1st
B 5% = .000229 fm
pend el. _ _ 5135 p (4a-1%)
.d
pend ce. _ _ 5140 fm
nd

G] It is well-known that the Hulthen wave function for
the deuteron is not a good approximation for small r
(relative position coordinate of the two nucleons). A
better approximation is obtained with the Gartenhaus S-

wave deuteron wave function (see reference(21)) of the

form
_e -< —dr - fr
‘Vp(r) o (1-¢ )¢ ir)(e.—-—————-‘: (4a-14)

where Cq 02, X , @’ are all constants. With the improved
Gartenhaus wave function and all other previous complica-

tions combined we find

1st _ _
E“d = =.00394 fm

2nd el.
F“d = -,0118 fm (4a-15)
ped e _ _ 0119 fu

=
[o])
L{}
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The results (4a-15) represent our best estimate of the
first and second order terms of the multiple scattering
series. We have collected the results of each successive
approximation in Table II.

Before we consider other terms of the multiple scatt-
ering series, some remarks are in order concerning the
single scattering contribution. Looking at the first
column of Table II we see an erratic fluctuation of the
single scattering terms beyond approximation 4. The impli-
cation is that we have little confidence in the final
result (approximation 7) for the single scattering contri-
bution. Let us examine the single scattering contribution
in each approximation. In approximation 1, each single
scattering term (fn and fp essentially) is one order of
magnitude larger than either double scattering term, but
the two single scattering contributiohs are of opposite
sign so that when we add them together thete is a partial
cancellation; the total single scattering contribution
is thus an order of magnitude smaller than either single
scattering term. The inclusion of Lorentz and inelastic
factors in approximation 4 has little effect in single
scattering because there is no integration over interme=

diate states and these extra factors are only important
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at higher momenta where they cut-off the two-body T

matrices. When we go to approximation 5 there is a con-
siderable decrease in the magnitude of the single scatt-
ering contribution. This results because at low momenta
(but not zero momentum) the S-wave phese shifts are such
that the cancellation between fn and fp is even greater

than at zero momentum. For example, at zero momentum

we have

£, + fp = (4/3)a3 + (2/3)a; = -.025 fm

where the a's are the pi-nucleon S-wave scattering lengths.
However, at 9=68 Mev/c (pion momentum in the pi-nucleon

cm frame)

£+ I, % ;;—[(4/3)331 + (2/3)811] = -.00356 fm
In the range 0<q< 68 Mev/c there is no experimental data
for the S-wave phase shifts and we have no idea how to
extrapolate the phase shifts in this range. It is pre-
cisely in this smzall g range that the ma jor contribution
to the single scattering terms occurs. If one assumes
a q21+1 phase-shift dependence for the lth -wave phase

shift for small g then it is impossible to fit the S-wave

scattering lengths and the known phase shifts at q=68 Mev/c
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simulteneously. In other words, q21+1 = q for S-waves

(1=0) so the scattering amplitude is constant for small
q; but £ + fp is not constant in the range 0< q< 68 Mev/c
(as we just showed) and therefore some other (and arbitrary)

21+1 must be chosen for

parameterization d@ifferent from q
the S-wave phase shifts. Therefore the extrapolation of
the S-wave phase shifts for 0< q <68 Mev/c is: arbif-rary
and we have little confidence in our single scattering
calculation until the S-wave phase shifts are known better.
The situation is not so critical for the P-waves because
the q2l+1 dependence fits the P-wave scattering iengths
and.P—wave phase shifts at g=68 Mev/c simultaneously.

Since the S and P-wave contributions do not interfere in
single scattering, we can say with confidence that the
P-wave single scattering contribution is (from approxi-
mations 5 and 6, column 1, Table II)

1st

F"d (P-wave) .000229 - (-.00760)

The S-wave contribution rehains an open question until
better (lower energy) pi-nucleon data is available. Note
that the second order scattering terms are not sensitive

to our choice of the S-wave phase shifts in the range
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0 € q < 68 Mev/c because there is no delicate cancella=:.
tion of fn+ fp but rather the contribution looks like
fnfp‘ Therefore we are confident of our second order

scattering results.
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Table II: Pirst and Second Order Pi-d Scattering Amplitudes

for Various Complications. (all F's in fermis)

“Complications

1st
Ekd

2nd el,
F;d

2nd ce.
th

142
ERd

1.constant two-
body f's and t's,

m =m in G

- no
B=0

’00268

-.0246

2.5ame as 1 but

e 0268

-.0246

-.0248

.0762

3.5ame as 2 plus
nucleon excita-
tion in G.

-.0168

. 0602

4 .5ame as 3 but
Lorentz and in-
elastic factors
in t's.

-.0267

"001 03‘

-.0104

.0474

5.Same as 4 but
f's not constant
and only S-waves
in f's.

hairy 00760

-00115

-00115

.0306

6.Same as 5 but
also P-waves and
spin-flipping

in f's.

+.000229

-.0140

.0272

7.Same as 6 but

Gartenhaus Y D

instead of Hul-
then

-.00394

-00118

—00119

-.0276
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4b.Binding Corrections

In addition to those terms we have already con-
sidered in the multiple scattering series (first, second.
order elastic, and second order charge-exchange) we must
comment on those remaining; the first of these is the
binding cerrections.

Looking back at (1d4-22), the second order binding

correction terms are given by

2nd bind.

T

= t1(G—g1)§1 + 1,(6-8,)%, (4b-1)

The three-body propagator G is straightforward and is
given by (A4-4). The two-body propagators 84 and g, are

a real problem to evaluate in our case, however. One
defines the two-body prepagator g; (i=1,2) by (1d-13)

with Ei the initial (before scattering) energy of the
incident pion plus nucleon i. Unfortunately the Fermi
motion of the nucleons in the deuteron allows a whole
range of initial state energies for each nucleon. The
choice for Ei in the propagator 83 is therefore completely
arbitrary and for lack of any information we take Ei=m,“+mN
(note that this is consistent with our choice of E in G
when we set the binding energy equal to zero). We there-

fore write
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R NG SO C 53
M My
+ {_SE\; * (:é—k) Xﬂ (4b=2)
2qu

and similarly for G—gz, replacing the EYZ-E'in the second
term by a 372+£. In G we have summed the kinetic ener- .
gies of all three particles and in g, we summed the pion
and nucleon 1 kinetic energies; 3 is the intermediate
state pion momentum (in the lab frame) and X is the inter-
mediate state relative momentum for the two nucleons (see

(2a-3)). Note that while the individual terms t Gt, and

1
t1g1t1 are divergent for constant two-body T matrices,
the difference t,(G-g;)t, is finite. With the choice
(4b-2), Hulthen ‘ﬁ , and constant two-body T matrices
the contribution of second order binding terms to the
pi-d scattering amplitude is

F2nd bind.

na = -.00818 fm (4b-3)

accurate to two per cent. Including Lorentz and inelas-
tic factors in the two-body T matfices gives a substan-

tial reduction due to the cut-off at higher energies
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(in the intermediate state) with the result

F2nd bind.

v d = -,00353% fm (4b-4)

again accurate to two per cent. Comparing (4b-4) with

the last column of approximation 4, Table II we see that
the second order binding correction is less than ten per
cent of the first plus second order scattering terms.

For this reason and because we are not sure how to choose
8 it was considered unprofitable to introduce any further
complications in calculating the binding corrections to
second order. We are only interested in an order-of-
magnitude estimate. Note that the binding corrections
become more important for tighter-bound nuclei (see ref-

erence (22)).
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4c.Higher Order Corrections

To investigate the contribution of the multiple
scattering terms beyond second order it is necessary to
invoke the constant two-body T matrix approximation. If
more complicated t's are used (Lorentz factors, phase
shifts, etc.) it becomes impossible to sum the series
analytically and worse than that, the evaluation of third
and higher order integrals becomes a formidable task.

We therefore return to the results we obtained for the
series sum using the MSG rules of chapter 3.

Pirst consider Brueckner's well known result (3a-14)
which neglects charge-exchange scattering. The sum of
all terms up to ahd including second order is (neglect-

ing binding corrections)

"t“‘\’"'?'f' 2",\{' <J€~>H: ~.,oUus fm (46-1)

where the subscript H means we used a Hulthen deuteron
wave function. Evaluating the series sum (3%a-14) for a

Hulthen wave function we find

-¥“+ 1(-? + 1-":'"?&( (4c-2)
\ 1 ~.0943 fm
= H
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This means that the contribution of all terms beyond
second order is -1.6% of the first plus second order
terms. Therefore in the approximation of~neglecting
charge-exchange the contribution of third and higher order
terms is quite small.

If we include charge-exchange, the sum of the first

and second order terms is now
.
‘(n* ‘(’P + (l¥n‘pr~ £C5><JF>H 2 — 68 _(m (4c-3)

For the series sum with charge-exchange but neglecting

fo scattering, the appropriate expression to evaluate

is (3%a-16) with fo=0 and we find

far £+ Ahbe fee (1+ 2}

r r
(— ’FA—‘EY— + Q-e(n T TS gm
T

H ' (4c-4)

In this case the higher order correction is -11.8% of the
first plus second order terms. Including fo'in‘(3a616)
gives us for the complete multiple scattering series

edpr T d () 1 2

r

I ; - = =016 4m
T ke ()

r
(4c-5)
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Now the higher order correction is -23.7% of the first
plus second order terms. As our best estimate of the
higher order contribution, we evaluated (3a-16) with the

Gartenhaus wave function instead of the Hulthen to find

Lo+ 4:?4- 1_4_:_&’ - ‘gg(\iéf'.f*_)—6+ %‘(A)

- T . = ‘;0747 fm
(- fﬂf& + Te™m Q}-gg ' (4c-6)
v r; \g .

The sum of the first and second order terms in the Garten-

haus case is
far b + (1&&,- fee ><_¥'>c," ~. 0554 tm  (4e-)

so that comparing (4c-6) with (4c¢c-7) we find the higher
order correction is -19.3% of the first plus second ordef
terms. This represents our best estimate of the contri-
bution of the higher order terms of the multiple scattering
series. We therefore conclude (and/or guess) that the high-
er order scattering terms contribute roughly -20% of the
first plus second order terms (not including binding

corrections) even for non-constant t's.
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4d.Relativistic Corrections

All our results up to now have been non-relativistic.
We must therefore estimate the corrections arising when
the problem is treated relativistically. There is no
need to modify the deuteron wave function since it is
accurate. enough for.-oeur work here.” .-The Lorentz .and inelastic
factors in the two-body T matrices could be treated rela-
tivistically but the kinematics becomes much more compli-
cated, In addition, the Lorentz factors are ratios of
energies and so an over-estimate of the energy in the
numerator (by treating it non-relativistically) is ‘com-
pensated by an over-estimate in-the denominator. For
simplicity and because we do not belive it to be the
dominant relativistic contribution, we neglect relativ-
istic modifcations in the Lorentz and inelastic factors.
By far the greatest effect is in the propagator. Instead

of using the non-relativistic energy

E=my P
am
we choose to replace this with the relativistic expression

E= Séﬁ+w§:

for all intermediate state energies in the propagator so
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that (A4-4) is replaced by33

> -~ < g
P= P k= k. (4a-1)

and E is unchanged. For convenience and because it has
little effect, we neglect the binding energy and take .
nucleon masses equal (mn=mp=mN) and pion masses equal
(mhozn%_) in the propagator. Of course the relativistic
corrections we are making have no effect on the single
scattering terms.

With a Hulthen wave function, constant t's, no nucleon
excitation (i.e., K = (p2+m2)%) and no Lorentz or inelas-
tic factors we find the results for our relativistic

propagator are

2nd el. .
End = =-,0%%4 fm
(44-2)
2nd ce.
Fnd = -.0%59 fm

The increase over the first row's results of Table II

33

See Appendix 13 for justification of this replacement.
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is obvious since 1/p2 dies out more rapidly than its

\
relativistic counterpart 1/(p2+m2)é. When we include™

nucleon excitation (i.e., use the K of (4d-1)) we find

2nd el.

P = -.0224 fm

md (4d-3)
2nd ce,

' = -.0227 fm

Putting more in the denominator of the propagator makes
the results smaller . than (4d-2). When we now include
the Lorentz and inelastic factors (but treat them non-

relativistically) the results decrease to

ped el _ 0100 fn
nd
(4d-4)
p2id C€. _ _ 0121 fm
nd

Comparing (4d-2) with the first row of Table II we see
that the relativistic results are 1.44 times larger than
the non-relativistic counterparts. Comparing (4d-4) with
row 4 of Table II, the relativistic results with Lorentz
factors are 1.16 times larger than the non-relativistic
counterparts. 1In other words, the effect of introducing
relativistic energies in the propagator is less signifi-
cant when Lorentz and inelastic factors are included.
This follows because the relativistic effects are larger

at higher momenta and the Lorentz and inelastic factors
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decrease the high-momentum_contribution. If we include
more detail (phase shifts, etc.) we expect the relativ-
istic effects to be even less important. To test our
beliefs, we calculate approximation 7 of Table II with our
relativistie propagator (still neglecting binding energy
in the propagator, however). That is, we run the most

realistic case with our relativistic propagator and find

2nd el. ' .
Ewd = =-,0129 fm
(44-5)
2nd ce. \
Fnd = -,01%1 fm

These results are 1.10 times larger in magnitude than
the non-relativistic counterparts (row 7, Table II). We
therefore conclude that for the most realistic case cal-

culated the relativistic second order correction is

= (-0t = 0114) + (~. 0129--2131)
(-o2-.0119)

= 977

of the non-relativistic second order terms.
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4e.Summary of Corrections and Best Estimate

We have shown in Table II, row 7, that the first
and second order scattering terms of the multiple scatt-

ering series for pi-d threshold scattering are

st _

‘Eﬁd = -,00%94 fm
2nd el.
2nd ce.
End = -,0119 fm

Summing the above and taking 10% of the sum gives the

second order binding correction

oo oind. . 00276 fm (4e-2)

Taking -20% of the sum of all terms in (4e-1) gives the

higher order correction

Fhlgh. ord.

nd = +.00552 fm (4e-3)

Pinally, taking 10% of the sum of the second order terms

in (4e-1) estimates the relativistic correction to these

2nd rel.

F"d

= -.00237 fm (4e-4)
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Adding all three terms of (4e-1), (4e-2), (4e-3), and
(4e-4) gives our best estimate of the pi-d scattering

length

F:gst estimate _ -.0273 fm (4e-5)
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4f .Review of Other Pi-d Literature and Discussion

of Results

People have been estimating the pi-d scattering
amplitude since 1950 and possibly earlier (see reference
(11) and bibliography therein). In many cases the authors
were interested in comparing their results with then-
known pi-d scattering data (above threshold) so their
results are not directly comparable with those here. We
therefore will only briefly mention the approaches used
in such papers. Other papers in which the pi-d scattering
amplitude in the threshold limit is calculated will be
discussed in more detail.

One of the earliest attempts to obtain the pi-d diff-
erential cross section was performed by Fernback, Green,
and Watson’ (reference (11)). They did a very crude esti-
mate by taking the product of the free particle scattering
amplitudes with an overlap integral of the initial and
final wave functions to get the differential cross section.
Thus they neglected double scattering and all ramifications
thereof. 1In an effort to find the contribution from
higher order scattering terms, Brueckner (reference (2))
evaluated the scattering amplitude by solving the Schro-
dinger equation for the scattering of a fast particle by

two heavy scatterers., He found the result (3a-14) although
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his is more general because he allowedarbitrary momen tum
transfer. vOf course his result is not very practical
since it effectively assumes constant two-body T matrices
for pi-nucleon scattering. In addition, a serious draw-
back of Brueckner's result is the neglect of charge-exchange
scattering. It took thirteen years before Wilkin (ref-
erence (26)) pointed out- the necessity of including
charge-exchange. Wilkin included terms up to second order
but assumed constant two-body T matrices and his results
apply only to high energy scattering. Since Wiikin, others
have evaluated the pi-d_écattering amplitude (see references
(24), (14), (3), (23)) at various energies using multiple
séattering approaches taking more details into account,
but the results are not comparable with ours since they
were performed at higher energies. Dispersion relation
approaches were tried by Fdldt (reference (10)) and Schiff
and Tran Thanh Van (reference (25)) in an effort to treat
the problem covariantly and also to tackle the difficul-
ties of unitarity. Again their results do not apply at
threshold so we cannot compare with ours.

After Brueckner, a- paper which.  treats:. pien-nucleus
scattering in the threshold limit is that of Moyer and
Koltun (reference 22)). Unfortunately the lightest nucleus

they treat is Helium so their numerical results are not
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comparable with ours. We mention this paper because it
treats the binding and higher order corrections in the
threshold limit and finds their contribution to be non-
negligible. However, their treatment of the binding correc-
tions is substantially different frém ours in that they
write the difference G—gi of the binding correction as a
single operator and solve a Lippmann-Schwinger type equation
for it using separable Yamaguchi potentials. Their method
is therefore closely related to Faddeev equationﬁapproaches
(see next chapter) as far as binding corrections are con-
cerned. Except for the binding corrections, all work

of Moyer and Koltun assume constant two-body T matrices.
Note that the sum of the multiple scattering series in
their paper (equation A9) does not allow for charge-exchange
scattering of a pion on a deuteron.

The most complete calculation of the pi-d scattering
amplitude at threshold to date is by Kolybasov and Kudryav-
tse? (reference (19)). Because they used different pi-
nucleon scattering lengths from ours their results are. - -
somewhat different but the relative effect of each compli-
cation introduced compares favorably with eurﬂresults.

For example, When they introduce nucleon excitation in
the propagator they find a fifty to seventy per cent

reduction in the magnitude of the double scattering term.
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We find a sixty seven per cent reduction. When they
include P-waves in the pi-nucleon interaction they find
the P-wave contribution te be about thirty per cent of
the S-wave in double scattering. We find it to be about
twenty per cent. The reason for the discrepancy is mostly
due to the neglect of Lorentz and inelastic factors in
their calculations. 1In addition, they do not use a phase-
shift parameterization fer their pi-nucleon scattering
amplitudes. Their results are obtained with a Hulthen
instead of a Gartenhaus wave function and there is no
treatment of binding corrections or relativistic effects.
FPinally, they calculate the series sum for constant two-
body T matrices but their final expression is wrong (which
they state in a note added in proof). There is little
point in comparing their best-estimate with ours since

the result depends on the choice of S and P-wave scattering
lengths and their choice differs from ours. Nevertheless,
Kolybasov and Kudryavtsev find for their particular choice

of pi-nucleon scattering lengths

E;d = -.047 fm

compared to our result
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We expect their results to be higher than ours mainly
because Lorentz and inelastic factors were neglected in
their calculations and because they used a Hulthen instead
of a Gartenhaus wave function for the deuteron.

We stated that our goallWas to obtain the pi-d
scattering amplitﬁde at threshold accounting for all quanti-
tatively relevant complications., We believe this goal
has been achieved within our present knowledge of the pi-
nucleon phase shifts. We have neglected the small D-state
part of the deuteron wave function and rezl absprption
effects (W d —»2n). Our crude estimates indicate that
these additional complications will introduce much less
than a ten per cent correction. We are hoping therefore
that this thesis puts the final nails in the coffin of

the pi-d scattering length.34

34Attributed to D.S. Beder while groping for the truth.
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5.The Faddeev Equations and Symmetrizatien

Pion-deuteron scattering is a three-body problem.
In 1960 the Russian mathematician Faddeev published an
article showing how to solve the three-body problem once
the two-body T matrices for all pairs of particles (three

35 The Faddeev equations are closely

pairs) are known.
related to Watson's multiple scattering series since both
.Faddeev and Watson start with the Lippmann-Schwinger equa-
tion. The beauty of Faddeev's approach is that he writes
an integral equation for the complete three-body T matrix
soiely in terms of free two-body T matrices instead of
Watson's Bound two-body T mairices (the 7 's). In addition,
the Feddeev equations account for scattering of one nucleon
on the other (for the case of pi-d scattering) and Watson's
approach only treats scattering of the pion on eadéh nucleon.
The purpose of this chapter is to quickly review the
Faddeev equations with particular emphasis placed on
intermediate state wave function symmetrization. One can
consider this brief chapter to be a warning concerning
symme trization and divergent bubble grephs in the spirit
of Appendix 6 and section 2b. No attempt will be made to

solve the Faddeev equatiéns.

3SSee reference (9).
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5a.Symmetrization of the Faddeev Equations

Rather than follow Faddeev's original approach, we
choose to paraphrase the approach of Hetherington and
Schick (reference (17)) because theirs demonstrates the
analegy to Watson's multiple scattering series.

Let particle’2 be the pion and particles 1 and 3 the
nucleons.‘ Then we can write the Lippmann-Schwinger equatien,

(14-10), for the complete three-particle T matrix as

where the three-particle Green's function is given by
(see (1d-16))

J
6’1 = E- K,_ V‘J—*—'.? (5a-2)

Here E is the total three-particle energy, K is the sum

of all three energy coperators (pion, nucleon 1, and nucleon
2) and V, is the potential between particles j and k with
j#£i, k#i, jék. One also defines the free three-particle

Green's function

oA

G = E-K-&-iv( (5a-3)

By the easy-to-follow steps of Hetherington and Schick
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one quickly obtains the Faddeev equations for the com-

plete three-particle T matrix

T= S, T4 (5a-4)
95#1

T(). = ‘t;S[, + Z- ‘t(.é T . (5a-5)

with ti and le given by

(5a-6)
(5a-7)

As Hetherington and Schick point out, iteration of (5a-5)

gives the multiple scattering series

Y - t. S(., + tl.G(Jt,+ ‘C.G(kt (,k)‘t‘.+... (5a-8)

) ) ¢ k J
The point is that (5a-8) only applies if the intermediate
statecwave functions are not symmetrized. If one tries
to symmetrize them, the same divergences associatéd with
bubble graphs arise that we saw in Appendix 6. In addition,
(5a-8) does not contain binding cerrection terms. The

error is not in the Faddeev equations as Faddeev writes
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them but rather in the way Hetherington and Schick write
(5a-6). In (5a-6) they have associated the wrong expres=
sion with the two-body T matrix, ti. .The correct associa-

tion is to write

-1
(-vi9:) v (52-9)

where L= . _ _ 17! (5a-=10)
9. [EJ. B K] Kﬁhﬂ ‘
) FREi

Ej is the energy of particle j, etec., and it ig understood
that non-symme tirized two-particle states are summed ever
between g5 and vy whereas in (5a-6) one sums over three-
particle symmetrized states between G and Ve From

Hetherington and Schick, equation (10), one has
J (: v(,)v + L(‘"VG) VGT (5a-11)

The correct Faddeev equations are obtained by writing
(5a-11) in terms of the correct two-body ti's, (5a-9),
instead of the incorrect t;'s, (5a-6). One then finds

with the help of

VC: ‘tl.<|+ﬁ(’t()—‘ . (5a-12)
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that the apprepriate modification to the FPaddeev equations

as written by Hetherington and Schick is

38 4 Lt G(k (5a-13)
V0 k=

EERAGERS )"g]q.(uj‘.tj (5a-14)

H

~
where -t
t

0f course iteration of (5a-13) with t2=0 reproduces the
multiple scattering series with binding corrections, (1d-22).
We urge the reader to remember that (5a-13) is valid for
symme trized intermediate states and (5a-5) is not. There
seems to be no regard to this fact in many calculations
based on the Faddeev approach.

In summary then, people who use equation (5a-5) with
symmetrized intermediate states will not get correct
numerical results. Worse than that, they will more than
likely not even see their errors when they solve the
integral equations numerically. This follows because it
is customary to usé separable Yamaguchi potentials in the
two-body T matrices, ti, which fall rapidly with increasing
energy; this in turn suppresses the divergences associated

with bubble terms.35

Also, keeping only S-waves in the two-
body interactionsisuppresses the divergences and makes them
finite. Therefore, if Yamaguchi potentials, separable ti's,

and S-wave two-body interactions are the approximations

35

See reference (17), for example.
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employed in solving the Faddeev equations numerically,
the contributions from bubble graphs (which should no%t
be present)will not be overly large compared to other
proper scattering terms and one will find incorrect results
without realizing it.

The‘point we wish to emphasize is the following: Use
equation (5a-5) but do not symmetrize the intermediate
state wave functions. If you insist on symmetrizing inter-

mediate states, (5a-13%) must be used.
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6.Conclusions

We have examined pi-deuteron scattering in the " " =
threshold limit, including all quantitatively relevant
features of the problem, we believe. Along the tortuous
path we'investigated the effects of symmetrizing inter-
mediate state wave functions in the multiple scattering
series and found the results identical to those obtained
with non-symmetrized intermediate states when properly
treated. We also found that symmetrizing intermediate
state wave functions in the Faddeev equations to solve the
three-body problem leads to incorrect results unless one
is very careful in interpreting the Faddeev equations.,

The moral here is, "Don't symmetrize intermediate states

in the Faddeev equations if the projectile particle differs
from the target particle". We have also demonstrated a
technique in chapter 3 (using the MSG rules) that allows

one to sum the multiple scattering series in clesed form
for any nucleus, taking into account all isospin-flipping
mechanisms in the two-body scattering amplitudes. In par-
ticular, we applied this technique te 71 -deutereon scattering
to find the series sum including all isospin-flipping terms.
We also evaluated the series sum for W scattering on an
arbitrary nucleus of neutrons and protons including charge-

exchange scattering terms.
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The most important question remaining now is, "What
are the pi-nucleqn scattering amplitudes at very low %~
energies, especially the S-wave scattering 1engths?".36
Our uncertainty in the pi-nucleon scattering lengths
propagates an uncertainty in the pi-deuteron single scatt-
ering contribution and therefore an uncertainty in the pi-
deuteron scattering length itself. We stress, as did
Kolybasov and Kudryavstev (reference (19)) that the deter-
mination of the pi-nucleon scattering lengths is an im= ~
portant éxperimental task. Once these are knowh we can
give a theoretically determined value for the pi-deuteron
scattering length based on ourchoice for the off-shell pi-
nucleon T matrix (a re-calculation of the single scattering
contribution once the pi-nucleon scattering lengths are
better known is simple and can then be added to our second
and higher order results). If our theoretically determined
pi-deuteron scattering length agrees with the experimental
value then we can say with confidence that we understand
the off-shell behavior of the pi-nucleon scattering ampli-
tude.‘ This would be of fundamental impertance in under-
stand ing the complete pi-hucleon interaction and perhaps

strong interactions in general.

36This question is being asked on April 1, 1973.
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It is well known (see reference (30)) that one can
determine the scattering length for pions on light nuclei
by observing the gamma ray emissions of pi-mesic atoms.
One produces a pion bouné in a high n quantum number shell
of an atom and measures the ﬁrequenqy of the emitted gamma
ray as fhe pion falls to the lowest orbit (K shell). The
pion in the high n shell is not affected by the strong
interaction of the nucleus because the pion in this shell
is farther from the nucleus than the K shell orbit. The
strong interaction does shift the energy of the pion in
the K shell, however. 1If one knows the energy level of
the high n shell from which the pion falls, the energy of
the emitted gamma ray is the difference in energy between
the (unshifted) high n shell and the (shifted) K shell to
which the pion falls. The energy level shift (due to the
strong interaction of the pion in the K shell with the
nucleus) is proportional to the pi-nucleus scattering
length (see reference (31)). Measurement of the level
shift can be used to give quite accurate values of the
pi-proton scattering length by applying the above procedure
to pi-mesic hydrogen. One then finds a level shift of
about 6 ev in magnitude.(to be compared with the n=2 to
n=1 transition for pi-mesic hydrogen which is 2.77 kev).

The magnitude of the pi-proton scattering length is about
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four times our estimate of the pi-deuteron scattering
length so that one expects a level shift for pi-mesic
deuterium on the order of 1 ev (magnitude). Therefore

the experimentalist's task in determining the pi-deuteron
scattering length via this method is quite difficult. Note
also that this method will not allow one to find the pi-

neutron scattering length.
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Appendix 1: Field-theoretic Two-fermion Propagator

We wish to show here using field-theoretic arguments
that the propagator for a two-fermion state only contains
odd angular momentum states; fhis means that the Pauli
exculsion principle applies in intermediate states (as
well as initial and final states). We use the notation
of reference (1) throughout.

' The two-particle fermion propagator is

{olT {lP(xq) EPQ@) Y(x) Vx(tﬁ o>

where the Y 's are Dirac fields (i.e., operators) and the

T opefator is defined by

T[®ey Byl = | YEIYE, %2, 2%,
—L‘)(XOW(X;)’ x:.DO(' ,

(A1-1)

and the o subscript on the x's means the time component.

By Wick's theorem37

o lTLY () P () P () P} [0

% (xq?.@(x3)‘l)(x1)q)(x,) + lﬁ("w)ﬂ@__’w("zﬁ;ﬁ) (A1-2)

37See e.g. reference (1), Vol.II, p.181.
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where the line connecting two %"s means

Y () Yy = <o I T{ Y&) Py} Ly
—

= S (x,-
F (% %) (41-3)
. . 38
which is-the single-particle fermion propagator. The
Pauli exclusion principle (or equivalently, Fermi-Dirac

statistics) for the ¥'s is contained in
Y(e) Py =~ PP (a1-6)
which applied to (A1-2) g;ves
<017 { Plxy) Y3) P(x)Pox ) oD
= YO P )Py Pixy
¥ () ©6) iy ¥ (x3) e

For simplicity we neglect the extra bookkeeping of spin

in what follows. The propagator is written is terms of
39

-L‘)x "
ey g

L mi+le

its Pourier transform as

Sew= | 42 [

@n)t

38
39

See equation (1b-4),
See reference (1), p.95, eq.6.46.
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and (A1-6) together with (A1-3) allows us to express (A1-2)

in the form

(o lT{\l)(x.,) Vi) P(x,) IP(,(\)H(Q

= 8 (=% Se (- %) - Se (¢ 6)Se (%)

- A-—t(f . _L~P(xq—~x,> —L[’(X -K)
[S (a) L-—T—T fm)}&( 2ny! : W)

(’7“'- m-+L €

. -q Y -t %
- (A_l;tjf S ﬂ A L NN

f —m 4+ e / —m> (€

U
S“.fif “‘(“" — \F+m) (F7+m)

(311)8 f-m +C€ ? - €
- L) (K t %2 - X=X ) I (228 Yo%)

[ s o]

(A1-T7)

The part of (A1-T7) in brackets at the end is the desired
result----only odd angular momentum waves propagate.

Perhaps this is more easily appreciated if we go back to
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the original form of the two-particle propagator

ol T{WEy) ¥ (%) VieayPixy oD

and draw the diagrammatic correspondence to the above as

|

X4 2

3

e

in which one of the fermions starts at location X, and
propagates to location x3 while the other goes.ffom'x2 to
Xq. Thus, x3—x1 is the relative coordinate between the
two nucleons and therefore our interpretation of (A1-7)

as a statement of the Pauli exclusion principle is confirmed.
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Appendix 2: Deuteron Wave Function Conventions

' The relative coordinate part of the deuteron wave

function, WJD(;), which we use in (2a-1) is chosen to be

the Hulthen form4o

- - {
hE) = N (e ) (h2-1)

—————————
r.

mn

where X __lg: W _ (‘(,3( 1("\).'

e ————————r"

-
H

7« , B=2.2 mev

and N is a normalization constant which we now determine.

The normalization condition for N is given by

2 - or "P" 3
|= N S[C.__:_Q_*K r (A2-2)

r

The evaluation of the integral is elementary and we find

N o= Zp(xte) (a2-3)
AT (o= )T

-
The Fourier transform of q)D(r) is found via simple

4OSee reference (5), p.46.



integrations as follows:
(ﬁ 3/ L € (.
()

= "hl' N J__ _ —__|__
@EOYr | Lk B+l

=)

EAGYR

(A2-4)

and inverting the Fourier transform gives

Y ()= n 73,_§ ‘k'?qig;)f& (A2-5)
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Appendix 3: Expectation Value of 1/r

Our objective is to calculate <1/§7for the Hulthen

wave function of Appendix 2 so that we want to find
1 L 2 (P, —xr -Bryt '
{FY = umn @ -Cp)'lr'clr (A3-1)
[+

If we square the term in parentheses above we will have

a sum of three separate integrals to evalﬁate, each of
which diverges, although as we wiil see the sum of all
three divergent integrals is finite. We therefore proceed

by writing
0

NI g (ew(r‘ —pr>1_\F dr

and differentiating with respect to

‘% = SM [- R R g P

N
)
\,-
4-
P

of L+ (A3-2)

Integrating (A3-2) to get I(x,P) back including the constant

of integration (which we obtain by simple manipulations)
we have

T8 = .I%{@iifl

L{,(P (A3-3)
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and (A3-3) back into (A3-1) solves the problem with

&= Q—iﬁ—("—‘iﬁ i’m[@‘*ﬁyl (A3-4)
=-g)* ok g

where we used (A2-3).
Using the values of o« and ¢ given in Appendix 2 we

find the numerical value of <1/r7 to be

~3 = 59y §,° (A3-5)
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Appendix 4: Second Order Unsymmetrized Calculations

Our goal here is to obtain (2a-14) starting from
(2a-13). PFirst write the separate matrix elements of
(2a-13%) with the aid of (2a-2) through (2a-7). For the

first term of (2a-13) we can write
- - -

I b - o} [ W7 AR
IR, @ £-R) ¢ R - (R Ty

AgﬁbAaﬂ‘JgrA3R

(A4-1)
where we only consider elastic scattering (for charge-

.-5
exchange replace tp by tce)' Integrating over R eliminates

- =
the delta function,cintegrating over r and i; produces two

more delta functions, and integrating over E; eliminates
one of these two new delta functions (just as we did in

section 2a for single scattering) so that

<1V\t\¥> tfs("n*?—nn?>‘|)(__+k\ (A4-2)

-2
where we set Py

Similarly for the third term of (2a-13%) we find

A 3, 5
<xm (t'LH)Q> = t, S (ftrm‘f P‘k A..)(')( ?%\J‘,,‘) “(A4-3)

¢—>
b = Pb =0 (threshold 1limit).
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with ? = P_ = 0. The appropriate propagator term of
w

a a
(2a-13%) is -
- - — - -
YK ¢ f, lP R (‘Q r
<X/n‘G_\XM>__[(Qn>31 J€ rnh. ﬂe n e n
-2 - > 5 - >
i -(B-R iRpr 3 38
{e—mzqh fru o gt R et drdedr
(A4-4)
where €= My + My~ = (Mh+mr-8>+"\“-
2 2 1
K= -t ey 4 6 + ke + P
1@\“*-"\‘,) 9/4 am__

B>0 1is the binding energy of the deuteron, and it
is understood that the integral is evaluated in the limit
N—>0. Now we make the approximation of neglecting the |
kinetic energy terms of the two nucleons in K, take mnzmp,
and neglect the small binding energy of the deuteron. Then
W(A4-4) becomes: }

.

|6 Ly = (@)Y J Bt PR R

2 P B PR ik
’"r_.".—\ ST "R PRI (e Ryl (3 3 3
2\ e e e Ardrc‘R
[ b, n



142

and integrating over all the coordinates immediately pro-

duces three delta functions according to

& Xy = = jf(ﬂm Proc)

S “(3.-%.) 33(’1&“-&“) (A4-5)

Referring back to (2a-13), we multiply (A4-2), (A4-3), and

(A4-5) and integrate over the intermediate states to write
RIEGE) 0 - tt | S B -8
V(B k)] 2“‘“} Fo - B} S (B B
Clhoe o) 8 (BB Y CBas B
ABQ“nagk,\? P, Aaf“ma%,\ 8o (A4-6)

-

> -
Integration over the four momenta pk ’ Pm"ﬁ;’ and Pn

m
eliminates four delta functions and one is left with

CRIRERILD = et SFr - o)
IAGIVSHCRIA - S TVY

(A4-7)
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Tt i2It is customary to write the integral in coordinate
space rather than momentum space so we proceed to write
the integrand of (A4-7) in terms of its Fourier transform.

Pirst write the wave functions in terms of their trans-

forms accordiné to (A2-4) to convert (A4-7) to
nAA 3/ - - -
<PIEet, 10D = tntYS (Fr,+ P fra- o)
- 1’ - -C ‘A 0y "°
@) [ 8 0l Pl e TR T
L (£ k)2 (-,zmq

-— f‘l—

V(F)e

Integration over K gives a delta function and integration

over T’ eliminates this delta function so that we get
/ A A A -3 - -2 -
<K"°\(’tl\ H> = t,\t’, : (f”;*’ b - fncﬁ)

S Asi, v ‘\): (?—)‘PD (?)(" ;‘Q_'\;"_’_l> e(‘: g (44-8)

Now observe that

. ’
-2 _ -t 3
Mr - My ( e —-\‘:-; d r/ (A4-9)

-3
P
—-——P—-i’ —

an
Putting (A4-9) back into (A4-8), integrating over E’to

produce a delta function, and integrating ovex';?/then
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giveszthe result

KRGS = - any it }fﬁ'ﬁ, 7B
j ‘fﬂ(ﬁ)"'\—'\fj(?)dsr | (A4-10)

Invoking the stateménts directly preceeding equation (2a-14)

we obtain for all the double scattering terms

R BEE IR = ~anfm, (74875 )

ke t2) ) W' L v o i

which is just (2a-14).
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Appendix 5: Conversion of the T matrix to the Scattering

Amplitude for Firgt and-Second Order Terms

To convert the T matrix (2a-14) to the corresponding

scattering amplitude, use (1¢c-30) and (1c-16) to write

gons . (a0) i any my (2t - t3) LS

_L
""n + Mo)

and use of (10-30) once more for the t's gives

HECUEA T
<w‘17 rm ) (R ) -0

and taking m“/mﬁ as negligible compared with unity we

reduce the above to

2nd @ f@ce><1__> (A5-2)

The single scattering terms (2&8-11) and (2a-12) are
converted to their corresponding scattering amplitudes

using (1c¢-30) to immediately obtain

plst th )[ X (,'%_\',\*_ ;!“.N]  (A5-3)
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where in keeping with the approximations of section 2a
we have set mp =m = mN Again throwing away negli-

gible terms, (A5-3) reduces to

1st
Fra =T *f, (A5-4)

and cominging (A5-2) with (A5-4) we get the desired pi-d

scattering amplitude to second order

1+2 - '3 A
Fa = {n"' ‘F‘, + (lf’n‘F?— ‘&e)<"‘;> (28-16)
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Appendix . 6: Second Order Symmetrized Calculations

We derive here the DCE contribution to the T matrix
with symmetrized wave functions neglecting binding correc-
tions. Start with (2b-7) and calculate each term separ-

ately. Using (2b-1) write

<vb l %‘(6 \'X’a > = é-;_[(lﬂ)j}lg e[r%. \:w el‘ PB.R Qi&b“.‘z

-5 35 2

DR S Gefr) e T o TS

[e -thp e;’x;.:’-l Agkgagrvc(gr 13
and using the results of Appendix 4 we get
SAENEORE SRR
X‘W:(gi ’:ﬁ'») - ‘}’: (E:’i “znﬂ (A6-1)

Similarly,

GRELIRS = Lt S F s Fur )
(9 (BT -9l By ae

The symzﬁetrized propagator is
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GG Y = S (- Ton) $(6-1.)
[S B(Zn— Em) - 53(En+im 3] <— ‘Z_MI,_>

£ (A6-3)

Combining (A6-1), (A6-2), and (A6-3) with (2b-7) yields
'\ce" ce‘ ____t"— 3] 5 D 5 -
R e T4y - xe SS (fo* fifo- )
[LP: (?%‘f i"> - (P: (E,{ ‘ﬁhﬂ Sa(ﬁln"?nm) Sj(ﬁn‘ Em)
(22 Y[ ) - e ] s B )
[\l)o (‘P‘f "Tim» - %(ﬁ?— J;m)] 33(’7" 43"%33?,,
’5 ,
8k 40,

and performing the integrals just as in Appendix 4 we find

ACEA A

<KIRGt(, >-~t¢.e YR
U‘PD( __’!}fk\)‘% Y.‘.‘,-'_w?:,,)( ) gﬂ‘nﬂz

[ L) ) Vi, l et
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The first integral in brackets is just the one of (A4-7)
So we can replace it as in Appendix 4. The second inte-
gral is reduced by substitution of variables first to

write

and since the wave functions are normalized,

3
A= ’L‘SJT;_J? (2b-9)

a*

Thus, (A6-4) is reducéd to
ChIEGCERD>= ] <4">1'““§(‘§f>
5 2D =2 -
NG EAIRS RN (2v-
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Appendix 7: Pi-nucleon Scattering Lengths

We wish to show here how the results (4a-2) are ob-
tained from the data of reference (7). One usually writes
the pi-nucleon scattering amplitudes in terms of the iso-
spin 3/2 and isospin 1/2 scat£ering amplitudes, f3/2 and

f1/2 (e.g., reference (13), p.49)

hif f

n = fw'vn —-yn - "3/2

Tp = Tppmrp = (/30028 15 + £5)5)
] . 2 -

Tee = fnTp*amRn -3 (f3/2 f1/2)

(AT-1)

In the notation of reference (7), f3/2 = aq, f1/2 z a,,

and according to their tablesh(m;1 = 1.414 fm)

a, a8y = (.277)(1.414 fm) = .392 fm

a, + 2a3 = (-.026)(1.414 fm) = -.0367 fm

implying .

ol
n

-0143 fm

(AT7-2)
= .249 fm

o
-
i

which together with (A7-1) immediately gives (4az2).
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Appendix 8: Relation Between the T Matrix and the

Scattering Amplitude for Inelastic Scattering

We wish to generalize equation (1c¢-30) to include
inelastic scattering. Combining (1c-23) and (1c¢c-24) we

get for inelastic scattering

AO‘_QHT’-"" . C
e AL )

where unprimed p's and E's denote before scattering and
primed denote after scattering. Using (1c¢c-25) and the

phase~established in section 1c we get the desired result

e € sy

which is just the result (4a-9) written in slightly differ-

ent notation.
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Appendix 9: Phase Shift Momentum-Dependence for

Inelastic Scattering

It is customary to expand the two-body scattering

s 1
amplitude f in partial waves by wrltlng4

00 ;{2 ) S
f o 3. € TSIMU P (o5 B) (A9-1)
{=0 3 £

where q is the momentum of either particle in the two+body
cm fiame, the & are the phase shifts, Pl are Legendre
polynomials, ard © is the scattering angle in the cm frame.
Unfortunately (A9-1) only applies for elastic scattering
since we don't know whether to use q; or qp (initial and
final )or what for inelastic scattering. Whatever we use
for q in the inelastic case, it must be some combination
of ay and 9p that is invariant under the interchange of
both these momenta so that time reversal invariance is
satisfied. Our goal is to find the appropriate combina-
tion of q, and q, that replaces q in (A9-1) for inelastic
scattering.

In the notation of reference (4), section 103, the

equation 10%.13 states that

41See e.g., reference (27), p.69, eq.3.4.
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k2 K7
{ =< 5 Q‘;(é’) e e’ V(7€) g3)e hj{&i (A9-2)

in the Born approximation (i.e., to first order in the
Born series), where @ is the wave function of the target
(subscripts a and b refer to initial and final), V is the
interaction potential, -1-? and -1: are the} coordinate and
momentum vectors of the projectile, and ? are the target

coordinates, If we assume V is separable so that
V(?) £)=V(* )Y(i) (A9-3)

equation (A9-2) becomes

+* ( "-82\, F
NN YA §e. (kakc) o

(A9-4)

Treat the term in brackets above as a proportionality "~ . 7

factor independent of the k's and let

- = -

K = ka- k, (A9-5)
Rz

—R_: = Cos 6

which allows us to re-write (A9-4) as

(" (Krcosd >
b =< S g ¢ rV(r)fr (A9-6)

°
=
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For simplicity and keeping in mind that we are dealing
with strong interactions, take for V the Yukawa potential

> —y
V(E)= V e_r (A9-7)

where Vo and X are constants. Then we can integrate (A9-6)

using (A9-7) to obtain

2
{ oc v < ¥ k, + ki - Qk«t{bCose (A958)

- ->

where coso = k‘k. kb
&mkb

For small ka and kﬁ (low energy scattering) we can neglect
the terms ki and ki compared to d.2 (but keep the cos®
term to preserve the angle dependence). Then we can write
(A9-8) by expanding the denominator as
2
{ < [‘ e Thokyenso "(l,k“k\’c"se)h-'] (49-9)

L «*

Looking back at (A9-1), the phase shifts are usually par-

améterized by writing42

5(«7,

2441 (A9-10)

42See reference (6), p.%06, eq.16-98,
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so that (A9-10) into (A9-1) gives for small

f < oi 26(@59)
L=0 3 -

< 3 X_’”Q(@Sé) (A9-11)
¢=o

Keeping only the lowest power of q (small q) in each fac-

L _
tor of (cose) we can write (A9-11) as

§ < 2% Ai’w(cos 5%

(A9-12)

£
and comparing each (cos®) term in (A9-12) and (A9-9) we

make theicassociation
by
3" o< ko ke

or in our original notation

L
b= %;%; (A9-13)

But when q;=qp we must have q=qi so that the proportion-
ality factor of (A9-13) is determined and we can write

the final result for inelastic scattering

Yetrective = V3i9f - (A9-14)

Notice that (A9-14) is invariant under the interchange

of q4 and Qe as it must be.
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Appendix 10: Pi-nucleon S-wave Phase Shift Parameters

If T denotes the total isospin quantum number of a
pi-nucleon state (T=3/2 or 1/2) it is customary to expand
the two-body pi-nucleon scattering amplitude for each

value of T by writin@;43

{_ﬁ - %: Z;[@H) A;I + A A;f&%(cosA)

(A10-1)

AT
at J(SA 1
-1

T
where A(:t = ‘i(';' [ yllti\e (A10-2)

and I,: means jzlx %. (We are neglecting spin-flipping
mechanisms for now). The Vl 's are called absorption
coefficients and the 4 's are the phase .shifts. It is
also customary to re-label the é's and | 's to include
the total angular momentum quantum number j as 'well as
the orbital angular momentum quantum number l and the
total isospin quantum number T. One uses the spectro-
scopic notation S,P,D,F, etc. for £ =0,1,2,3, etc.,
respectively, and writes

_ . -
3 3 3 3
= = S = =

43

See reference (18) for example.
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Keeping S-waves means that we only keep the R =0 term

of (A10-1). The phase shifts and absorption coefficients

we use are polynomial fits to the UCRL tables (reference
(16)), and in particular we choose the data of Kirsopp.

It was found necessary to consider momenta up to 1000 Mev/c
to make our integrals convergent.to one per cent accuracy.
To be more specific, squaring the momentum-space deuteron
wave function (A2-4) and integrating over k, it is necessary
to integrate out to k=1000 Mev/c to get within one per cent
of the integral evaluated out to infinite k. We list the

parameterization employed as follows:

0< q< 100 Mev/c: (all S*s in degrees) =~ .
Sy, = (-5.95x107%% 4 5.3x107%q + 7.25x1072)q
S5y = (-1.66x107%% + (1.41x10°%q -4.15x10"%)q

Y‘11 '-'"31 = 1.00

100£ q< 200 Mev/c:

2q + 4.1

S5 = -7.7%x107%q + 3.3

Nyq =Nz = 1.00

811 = 205x10

200<€ g< 300 Mev/c:

1.1x10-2q¢+ 6.9

541
S

-2
31 -9.3x10 "q + 6.5 ) W11 = q 31 = 1.00



300< q <400 Mev/c:
1

S, = 1.16x10 'q -24.6

Syp = ~7.1x107%q -.1

Ny = -9-0x107% & 1.27
- -7.0x107%q + 1.21

N31 =

400<q<500 Mev/c:

2.93x10" 'q -95.0

519 =

S51 = -3.3x107°q -15.3
M9 = -5.2x10_-3q + 2.99
N5y = -4.0x107°q + 2.53

500 £ q <600 Mev/c:

841 = 5.59x10-1q -229

S5 = -3.22x1o’1q + 129
Nqp = 3.2x10 g -1.21
Ny = 1.3x10-3q -.12

600 £q< 700 Mev/c:
1

Sqq = 2.57x10° 'q -48

S57 = -6.0x107°q -60.4
N4, = 3.0x107%q +.53
N5y = 2.4x107 7 -.78

700 < q <800 Mev/c:

Sy, = 1.58x1071q & 22.7

158
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-
S = 9.4)(10 ’-q ‘131

31
n 11 = 1.00x1o'4q + .T57
'1 31 = ’4.0X1O-3q +/,3:7

800 £q <1000 Mev/c:

-3.35x10-1q + 417

S4q =
S5 = -2.48x107'q + 143
Nqq = -7.0x107%q + 1.23

Yk 31 = "3.5}(10-3(1 + 303
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Appendix 11: Pi-nucleon P-wave Phase Shift Parameters

In analogy with Appendix 10, we list here the P-wave
(£ =19 absorption coefficients and phase shifts. The

change in notation appropriate here is

o= R W'z,
S?_ = f, .z ("
é|(+ = Py ']‘“ =
5'3"5 53 73\4-’:"(33

and we again fit the UCRL tables (Kirsopp data) with

polynomials in Q. The parameterization is as follows:

Piyq (in degrees) = (-1.83;{10“6)q3 , 04£q<100 Mev/c

1.00, 100<q< 200 Mev/c
1.74x10°%¢> -6.85x1072q ,  200% q< 400 Mev/c
4.35q -89 400< g< 600
172, 600 < q < 1000
']1'1 = 1.00 , 0£q< 300 Mev/c
~7.0x107°q + 3.1 , 300 <q< 400 Mev/c

1.0x10°2g -.1 , 400 £q< 600 Mev/c
-4.2x107%q + 3.0 , 600<q< 700 Mev/c

2.74x107%q -1.84 , 700< q <1000 Mev/c
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Py = 0.0, 0£q<200 Mev/c
-3.0 , 200£q< 300 Mev/c
-5.0 , 300<q<600 Mev/c

-10.0 , 600<q<1000 Mev/c

'113 = 1.00 , 0< q< 500 Mev/c

3

-1.69x10 g + 1.85 , 500< q< 1000 Mev/c

5y = ~7.90x10"7q° , 0% q <100 Mev/c
-1.14x10"%q% 4+ 3.3x107%q , 100<q<500 Mev/c

-s148q + 77 , 700£ q € 1000 Mev/c

'(31 = 7(33 = 1.00 , 0£q< 400 Mev/c

3

-1.02x10 7q + 1.41 , 400< q< 1000 Mev/c

For P33 the appropriate momentum dependence is well-known
from Chew-Low theory (see reference (27), page 233, e€q.8.22)

and is given by -

cot Bz 14 X107 (r—‘ia?)[l_ \__g:_j_g_i]
}3 291

where \rg is the total center of mass energy. We again

have the problem of inelastic scattering so it is most

convenient to parameterize JE' in terms of q. The choice
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(5 = 1.5x1072¢° + .32q + 1078

gives a reasonable fit to the data out to =500 Mev/c

and for higher momenta the P33 phase shift is fairly

constant out to 1000 Mev/c so we taket?

P33 = 172 degrees, 500<£ q< 1000 Mev/c

44The inelastic scattering is handled by taking q = q off.
given in (A9-14) in the S parameterization.
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. Appendix 12: Treatment of Spin-Flipping Mechanism

We show here how to treat the added complication when
spin-flip terms are included in the pi-nucleon scattering
amplitudes. Unfortunately we will go through considerable
effort to find the spin-flip contribution (up to P-waves
only).

The most general pi-nucleon scattering amplitude

must have the form45

k" 23: LA 4 2AT 10, (eos 0

ar /

+ca’(gb><‘;¢)3, (A - B P>,
where the prime on %ﬂ denotes derivative with respect

to coso, ab and aa are unit vectors in the direction of
the initial and final pion (in the pi-nucléon cm frame),

6 = (5", X 3) is the Pauli spin matrices written as.a

three-component vector, the A's are given by (A10-2),

and |a) and |b) are the initial and final nucleon spin
states. Compare (A12-1) with (A10-1) which neglects the
spin-flip terms. If we only keep the terms up to P-waves

in (A12-1) we have

45See reference (18), p.28, just below eq.2-24.
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X

{ i bl A+ B?"(?L’({&) |a> (A12-2)

where  f = -}1;[ A:I»r (2 A(’:’+ Af)“se] (a12-3)
_ L T aT
8= 5 LA - A,

The spin state |b) must be the same as |a>$%be-
cause in the threshold limit no energy is available to -
flip spins., Therefore there can be no spin-flip contri-
bution in the single scatfering terms since initial and
final spin states are the same. Now write a typical

second order term

L

N A

6ty la> = CLIE, Iy <rlGIm><mIE, o>
=< <\°\%’|'ﬂ><"~,%1la>

where in writing the proportionality we do so because

we are only concerned with spin and angular variables,

not momenta and energies (this will become clearer later).
Then subsfituting (K12-3) in the above (with the appro-

priate conversion from f to t) gives
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CUE Ct0) X <LlA 48,77, <1, ) n>

<nlhat B, @ (fax i) [a)

= <A IR 2> + blA (0GB G )|
+<L1B e (% ) Iy <nta, | 2>

+ L8 7Gx d ) Idn 18, 7 - (fixda)ad

(A12=4)

where Ay A2, B,» B, are ‘the same as (A12-3) but with the

2
appropriate kinematic factors to convert the scattering
amplitudes to the corresponding two-body T matrices, 61
and 32 are the pion directions in the cm of pion and
nucleon 1 and 2, respectively, in state \n).

Now we evaluate the necessary kinematic factors of
(A12-4) nonrelativistically. ILet us first list all lab

frame momenta and velocities (as determined by (2a-3))

as follows:

-a
lab momentum of pion in state |(bD = ﬂ“’= o

? -,
M, "
lab momentum of pion in state |a) = T?“a,: M“VM:O

n
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(continued from previous page)
- g -
lab momentum of nucleon 1 in state (n)’-‘-? = ——(

z
- ~ -
lab momentum of nucleon 2 in state |n7=f,_= = (flz‘:g—kn)

(A12-5)
- -
where we used Bn = -p_ in (2a-3). Then the velocity of
n

the cm of pion and nucleon 1 in state |n) is

- 'é’ - -3 -

- Al + n
VCM1 = ot P = r—-%‘ - fﬁn (A12-6)
Mpt My M+ My

and the velocity of the cm.of pion and nucleon 2 in state

Y is

- - - - -
v = ?nn+ P - ?‘Tf\ 4+ ’Qn
CM1 - T

WHiJW“

v ————r

(A12-7)
Mat ™y

so that by definition and using (A12-5) through (A12-7),
the q's in (A12-4) are

- -) - -
9, = m, (vnb- chi) = —(mﬂ \ ?:\“_ 5

oy N2 n\ (A12-8)
-

L=y V;cm)-‘-'“(

— -) -
7= " ("

)

~
)
/\
3
+
3
E._/
N
\}‘e
75%
3
N
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With (A12-8) we can perform the required cross products
of (A12-4), but note that we want cross- products of unit
vectors so that all vectors in (A12-8) must be divided
by their magnitudes before taking cross products, com-

plicating the work. Thus, using (A12-8),

Wxd = - (”‘ﬁ%)w Y«a) (h%’
ilx{&: - (M“‘—m \( ’J“n) ‘ii"i« (A12-9)

-
To proceed, define CoSO = ?nn'k'l/l’n kn
n

so that

l ﬁ\n" _{:nl = fnnkns‘:ne

If we pick an arbitrary direction of p“ and integrate
: n
over it this is equivalent to picking an arbitrary direc-

-5 .
tion of 13: xkn and integrating over it. So we write
n

> 7 . : AL e A
P"M*k" = Pnnknﬁu\eismmcﬁp ( +SinatSing j + oS tq-k
A A
Integration over pgives zero for the i and j terms and
. A

integration over X gives zero for the k term. The mag-
nitudes a4, 45, 9> U depend on © but not on &« or f and
the same is true for all other kinematic factors in (A12-4).
Therefore integrating the second and third terms of (A12-4)

(1\1]32 and B1A2) over angular variables gives zero just as
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above, using (A12-9). The first term of (A12-4) is the

one we have already evaluated when we did the non-spin
flip case. It remains to evaluate the last term of (A12-4)
to get the spin-flip contribution.

Consider the expression

B B) = fokysin8 [0 1) sinacos

+. 0 —E a - ‘O
(f o)“"“'"‘5 +(o -~y )ees« (A12-10)
and consider also the integral

Q= S < (é)(i)io’ ((’T\nxzn)}l\n>
<l (F:“x_ﬁ")}l \( §’)("’)> das)dg (A12-11)

where the subscripts 1 and 2 meansthe operator only operates

on the first or second part of the two-nucleon spin states,

(02

means both nucleons have their spins up (along the axis

o ()(4)

means nucleon one is spin down and nucleon 2 spin up, etc.

and the notation
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In (A12-11) we have chosen

ay= 1> = (0D

since the spinsof the nucleons are parallel (spin 1) in

the deuteron. The only possible intermediate spin state

ln) is l(‘o)(‘o)> since each spin operator in (A12-11) only
operates once on each nucleon. Then putting (A12-10) -

into (A12-11) we have
§ = (f,,hk“ sl‘ne)l I(cos «-<)1 A@OS’QJF

_ oy a\*
- ,.-g—(?“n anme) (A12"12)

The contribution of the spin-flip part of (A12-4) is thus
Yn (f k scne)L B B, (—n_ -
3 My ™ VP2 \m 4 m
nt My
7& Zb .71 ‘31

whereas the non-spin-flip contribution is 41TA1A2 (the

47 comes from integrating over « andp ). Kumeriecal

integration of these two contributions over €, f)'n sy and

- _ n
kn shows the spin-flip part to be negligible.



170

Appendix 1%: Relativistic Propagator

We would like to justify the relativistic replace-
ment (4d-1) in the propagator for the non-relativistic
(A4-4). Por convenience we will consider a two-particle
propagator of spin-zero particles. If Py and p, are the
four-momenta of each particle then we want to show that

the non-relativistic propagator

%mmrd. [E" g‘)‘ m+lhj>]q

is more correctly replaced by
2 4 - '7- 1537
e (I UNIEE oM

where Ei is the initial total energy of both particles -and
for convenience we take the mass of the particles equal.
From field theory the propagator for a single scalar

spin-zero particle is

\ - ___L_. - (‘“S(Pl__m\.>

pE- M+ E pi=m> (A13-1)

For two spin-zero particles the propagator is just the

product of the single particle propagators

G@\)Fl) - [("""' ) (ns(p‘ lk—l’)— (nS(Fl )1

(A13-2)
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At:high energies the delta-function part of the propagator
dominates so we write

G(FI) fz) X - nlg(f.l"mt) 5 (V:““"l)

(A13-3)
Define the total energy by

TR (hee) 2 Ere- el

where

= 9 ,_3[. 2 —ll
S N 0 A (N ey

and similarly for the initial state

In terms of S' we have

’ 2 > o
Y|l‘m1: S - lEl—lE'EL“QP'-PL
Pam m™ 2

’_ L > -~
S QE‘— lE\El_’lﬂ‘fl
- (A13-4)

so that (A13-4) allows us to re-write the two-particle
propagator (A13-3) in terms of S’

, 2 2 - -
G(S/ fl) = -t <S/" 28, -2E, Et-zf!.o’l)
. ( )
$(8'- 26728 ,- 27, 7. (413-5)
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Now use the Cauchy integral formula (write a dispersion

‘relation)

G (S(.) P) = o §° (S, f2) ds (A13-6)

ATl

where the contour C is appropriately chosen within the
limits of Cauchy's theorem. Performing the integral over

the delta functions in (A13-5) we obtain

ey p)< S QE-2E) 15Ty
28 +2€ €, tAF 6 -,

We can neglect the 5::;2 term in the denominator since

its average over angles gives zero. We are then left with

~ SN I — :
¢ <S‘) fr) = EHre)=Se  (B*E, &)  EEng

and the right-most factor is just for ncrmalization so

that we obtain our desired result

- \ _
G(Sc)?a_>°< Gre\. ST (enc) (A13-8)

The careful reader will note that the result (A13-8) only
holds for high energies since (A13-6) can only be used in

conjunction with (A13-5) for large values of S;3 that is
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the integrand of (A13-6) is peaked for S near S, so if

S; is small the major contribution to (A13%3-6) may not
come°fr6m;large S: in which case (A13-5) may not be appro-
priate. We therefore take (A13-8) as a very heuristic,
hand-waving result but believe it to be close to reality,
nevertheless. One could test our belief by using the

full propagator (A13-2) in (A13-6) but we leave that task
to the reader. »

One can proceed analogously for three particles
instead of two and treat two of them as spin % Dirac
particles with similar results. The general conclusion is
that non-relativistic energies in propagators get replaced

by their relativistic analogs.



