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Abstract 

The scattering amplitude for pions on deuterons is 

calculated in the threshold limit using Watson's multiple 

scattering theory. Care i s taken to use wave functions 

with proper symmetry throughout and i t is shown that the 

results are identical with those obtained using unsymme-

trized wave functions in intermediate states. Terms up 

to second order in the multiple scattering series are 

calculated, gradually increasing the complexity of the 

assumptions u n t i l a l l quantitatively relevant features 

are taken into account. Sp e c i f i c a l l y , we treat single 

scattering, double elastic scattering, double charge-ex­

change scattering, and second order binding correction 

terms. New quantitative results are obtained which acr, 

count for non-zero binding energy of the deuteron and nu-

cleon excitation i n the propagators, Lorentz-invariant and 

inelastic scattering kinematic factors in the two-body 

scattering amplitudes, phase-shift f i t t e d pion-nucleon 

scattering amplitudes up to P-waves, an S-wave Gartenhaus 

deuteron wave function, and r e l a t i v i s t i c effects in high-

momentum intermediate states. In addition, a general 

method u t i l i z i n g graphs analogous to Feynman diagrams i s 

presented which easily reproduces each order contribution 



of the multiple scattering series (for constant two-body 

T matrices) and allows ene to sum the whole series in 

closed form. In particular, we find the sum of the whole 

series for TT~-deuteron scattering at threshold, including 

a l l isospin-flipping terms, a result incorrectly obtained 

in previous l i t e r a t u r e . We also find the series sum for 

TT~ scattering on an arbitrary nucleus of neutrons and 

protons,including charge-exchange scattering. (This result 

does not appear in the literature,). From the series sum 

we then calculate the higher-order contribution with a 

Hulthen and then a Gartenhaus S-wave deuteron wave function 

f i r s t neglecting charge-exchange and then including i t . 

We find the higher-order contribution to be roughly twenty 

per cent of the f i r s t and second order terms combined (at 

threshold). Our best estimate of the pion-deuteron scatter 

ing amplitude at threshold (the pi-d scattering length) 

i s F ,= -.0273 fermis. 

Because pion-deuteron scattering is a three-body 

problem and because of the simila r i t i e s with multiple 

scattering theory, we have included a short discussion of 

the Faddeev equations. We give particular emphasis to 

wave function symmetry in the Faddeev approach. 
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1, 

Introduction and Motivation 

The most important part of any calculation i s not the 

result but the reason for undertaking the task at a l l . 

The organization of the finished thesis does not reflect 

the chronological order of events usually, so the begin­

ning of this thesis w i l l be devoted to an explanation of 

how and why the body of the enclosed work began and devel­

oped. 

It was suggested by D.S. Beder that low energy scatt­

ering of pions on deuterons should be re-investigated 

because early work by various people f a i l e d to account 

for the Pauli exclusion principle i n intermediate states.^ 

The low energy range was chosen because here the effects 

of the exclusion principle would be more dramatic (for a 

detailed explanation of this statement see chapter 2). 

But why look at deuterons at a l l ? The looming pres­

ence of the TRITJMP meson f a c i l i t y has influenced the course 

of more than one graduate research proposal and having a 

straight-forward calculation ready before the machine i s 

in operation would give experimentalists a chance to make 

the real world f i t the theory. Besides i t looks good to 

See for example references (2), ( 1 0 ) , ( 1 1 ) , ( 1 9 ) . (22), 
(23), (24), and (26). 
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everyone i f a camaraderie between various groups is man­

i f e s t . In addition, maintaining an interest in strong 

interaction physics is not incompatible with investigating 

pion-deuteron scattering. Very l i t t l e progress has been 

made in recent years on the pi-nucleon interaction and 

one might hope for some clues to the two-body problem 

from the three-body one. In support of this notion, Love­

lace has said,^ 

My opinion is that two-particle systems are 
now finished. By this I do not mean that we have 
done everything we hoped to do, but rather that 
we have done everything we are going to be able 
to do. I think the future of strong interactions 
now l i e s with many-particle systems. 

More s p e c i f i c a l l y , the pi-deuteron scattering amplitude 

depends on the of f - s h e l l pi-nucleon scattering amplitudes 

which are not well understood. Many recent strong inter­

action theories inter-relate the off-shell and on-shell 

scattering amplitudes and a knowledge of off-shell behav­

ior would lead to better understanding of on-shell pro­

perties. Of course off-shell behavior cannot be deter­

mined experimentally from the pi-nucleon interaction alone; 

therefore, the pi-deuteron scattering amplitude i s the 

simplest candidate to yield off-shell information on the 

pi-nucleon interaction. F i n a l l y , the methods used in treat-

See reference (20), p.437 
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pion-deuteron scattering might shed some l i g h t on the 

less-understood two and three-particle resonances of the 

hadrons. 

With the previous statements in mind, the work was 

3 

undertaken using well-known techniques, adding-more and 

more complications in an effort to find the quantitatively 

correct pion-deuteron scattering amplitude in the thresh­

old l i m i t (zero energy pions). But when the exclusion 

principle was applied by symmetrizing (which we take to 

mean making symmetric or anti-symmetric) intermediate state 

wave functions, divergences appeared, terms which looked 
4 

out of place crept i n , and chaos ensued. People suggested 

throwing away the nasty terms or cancelling them by adding 

others with opposite sign, but no suggestion could be jus­

t i f i e d . Finally after normalizing the symmetrized propa­

gators correctly, a consistent and ju s t i f i a b l e treatment 

was discovered which eliminated the divergent terms. It 

was then fo\ind that the fi n a l results are independent of 

the choice between symmetrized and unsymmetrized intermedi­

ate state wave functions (provided i n i t i a l and f i n a l states 

See the last footnote of chapter 4 , section F. 
4 
Private communication with members of the University of 

Br i t i s h Columbia physics department, including Rubin Landau 
and Leonard Scherk. 



4 

are properly symmetrized always). Moyer and Koltun (ref­

erence (22)) point out that i t is unnecessary to use 

symmetrized wave functions in intermediate states in the 

Lippmann-Schwinger equation, T = V + VGT, because V i s 

already symmetric in a l l target particles. However, i t i s 

quite another matter to draw the same conclusion?;for the 

Watson multiple scattering series for T. We demonstrate 

in this thesis exactly how the symmetrization effects 

in the usual multiple scattering terms and the binding 

correction terms cancel in pairs to each order. 

Even though i t was found that symmetrization of inter­

mediate states is unnecessary, the time spent worrying about 

the divergent terms was not wasted. It was believed that 

the sum of the whole multiple scattering series, diver­

gences and a l l , would be f i n i t e ; therefore, a method was 

devised which allows one to easily sum a l l the orders of 

scattering. After the divergence problems were eliminated, 

the method of summing the whole series s t i l l remained valid 

and so laborious methods of the past were simplified enor­

mously. This in turn f a c i l i t a t e d the correcting of previous 

5 
ly incorrectly evaluated series sums in the lit e r a t u r e . 

See the Appendix of reference (28). 
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1.Multiple Scattering Ideas from Born to Watson 

Although Watson's multiple scattering theory did not 

appear u n t i l the early 1950's, the basic notions of mul­

tiple scattering had been formulated well before. In 

particular, the earliest interpretation of multiple scatt­

ering i s found in the Born series iterative solution of 

the Schr*6dinger equation.^ The r e l a t i v i s t i c analog of 

this is manifest in Feynman's diagrammatic approach to 

quantum electro-dynamics (QED).
 ;

 The Born, Feynman, and 

Watson approaches share the properties of starting with 

Green's function techniques to solve a d i f f e r e n t i a l equa­

tion and iterating the solution ( i n multiples of some 

relevant scattering parameter). A physical interpretation 

i s then attached to each type of term in the expansion 

and a diagram can be drawn to represent each term, thus 

reducing messy algebraic manipulations to graph problems 

and associating an integral (which can be written by in­

spection) with each graph. Historically and in practice, 

graphs are not used i n the Born or Watson methods because 

the number of terms retained is usually small and the 

expressions relatively simple compared to their r e l a t i v i s t i c 

See any quantum mechanics text on the Born approximation. 
What we here c a l l the Born series is perhaps more correctly 
termed Green's function theory. 
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counterparts i n quantum electro-dynamics. We emphasize 

the association of graphs with Born and Watson terms 

here partly for comparison with QED but also with some 

foresight regarding summation of Watson's series. 

In what follows we w i l l derive the Born series by 

formally solving the Schro'dinger equation to obtain an 

integral equation for the wave function; iteration of the 

integral equation produces a series expansion for the 

wave function. The scattering amplitude i s defined and 

using the series expansion of the wave function we obtain 

the Born series for the scattering amplitude. Graphs 

are then associated with each term in the expansion of 

the scattering amplitude. 

The Feynman approach i s similar to the Born work 

except r e l a t i v i s t i c equations (Dirac and Maxwell) for 

the wave functions replace the Schro'dinger equation and 

complications arise from the more d i f f i c u l t equations and 

from invoking particle s t a t i s t i c s (Bose-Einstein and 

Fermi-Dirac) on the wave functions. The complexity of 

the solutions i s greatly simplified by the use of Feynman 

diagrams which we introduce and use to comment upon a few 

relevant d i f f i c u l t i e s which w i l l appear in the Watson work. 

We only treat the Feynman approach heuristically owing to 

the complexity of the problem. 
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In the Watson work, we lay the preliminary groundwork 

of scattering theory and then derive the Watson multiple 

scattering series i n terms of the T matrix, closely re­

lated to the scattering amplitude. The Watson work i s an 

extension of the Born work in that the scattering potential 

is broken up into a sum of ,two-body potentials between the 

incident particle and each constituent of the scatterer 

(nucleus), but then the total scattering amplitude is 

expressed in terms of two-body scattering amplitudes 

rather than in terms of the total potential. The sim­

i l a r i t i e s to the Born and Feynman subsections should be 

obvious by the end of the Watson derivations and we w i l l 

avoid lengthy comparisons since they w i l l be undertaken 

when we try to explain away symmetrization d i f f i c u l t i e s in 

Watson's theory. 
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1a.The Born Series 

•We consider the scattering of a particle of mass m 

and momentum nk by a potential V(r) (where r i s the pos­

i t i o n vector from the potential source to the p a r t i c l e ) . 

The Born series solution begins with the Schrodinger 

equation 

re-arranged to > 

t t ) V (?) = i S ^ V(Jf)^(r; C l a - 2 ) 

Our choice of Green's function G(r,r') s a t i s f i e s ^ 

O a - 3 ) 

& ( £ ? ' ) = &(?:?) 

This implies that 

% /
5

( ? - r " ) <i-« 

1

 implies derivatives with respect to r . Let 

( V 2 + k 2 )
 1

 be the appropriate inverse operator of ( v 2 + k 2 ) , 

(see equation (1a-11)). 

6

See equations (1d-45) and (1a-11).. 



9 

2 2 - 1 
Then multiplying (1a-3) on the l e f t by (V + k ) 

(1a-5) 

Multiplying (1a - 2 ) on the l e f t similarly 

V ( ? ) = ^ r (^+^)" 'v (? )VC?) (,a-6> 

Multiplying (1a-5) "by Y ( r / ) V ( r
/

) and integrating over r ' 

and using (1a-6) we immediately obtain 

were C i s a constant of integration ( i . e . , a function of 

r but not r ) . To determine C, note that as r 

G(r, r') 0 (see equation (1a-11)).,and i n this l i m i t 

V (r) must reduce to a plane wave (the i n i t i a l state wave 

function) travelling along the k direction so that 

> -3 /x f s . r 

The complete solution of the problem is thus 

(1a-9) 

with the i n i t i a l state (given in (1a-8)). 
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Iterating (1a-9) for V produces the Born series expansion 

for the wave function in the form 

V(?Y- Vr(r)+ \ G ( ? , ? ' ) V ( ? ' ) W?9 iV 

(1a-10) 

The solution of (1a-3) with appropriate boundary conditions is 

(1a-11) 

- 9 - » / 
For r >> r we can write 

(1a-12) 

so that 

( 1 a - 1 3 ) 

and therefore one obtains 

5 
See reference ( 1 5 ) , p.303, eq..364b. 
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From (1a-H) we can read off the scattering amplitude, 

f ( 9 ) , defined as the coefficient of C_ , where 
r 

the scattering angle, 9, i s defined as follows: Write a 

f i n a l state plane wave, 4̂  , in terms of the f i n a l momentum 

(more correctly,wave vector) as 

where = k^ r / r . For elastic scattering we write 

therefore 

k
f
 = = k ( i stands for i n i t i a l ) 

9 = angle between k^ and k^ 

Now . <;write f(9=) from (1a-14) by using (1a -15) to obtain 

1 ' (1a-16) 
+ . . . j 

where the 9-dependence on the right side of (1a-16) i s 

implicit in that 

• & ~ R COS& and means complex conjugate 
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The equation (1a-16) is. interpreted as follows: The 

complete scattering amplitude f(9) i s the amplitude to 

scatter once 

plus the amplitude to scatter, propagate, and scatter again, 

J % ( ? ' ) V(r'J> G { r ' } ? ' ) V ( r V V. (r*; JV'JV' 
etc. Diagrammatically we would represent the single, 

double, etc. scattering terms, respectively, as 

Oa-17) 

where solid lines represent the incoming, prop;agating, 

and scattered p a r t i c l e , and a dotted line with a '® 

represents one interaction with the potential V. This 

summarizes the relevant features of the Born series. 
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1b.Quantum Electro-dynamics 

No attempt w i l l be made to derive quantum electo-

dynamics; rather we w i l l show the way Feynman's diagram­

matic approach i s applied to some simple scattering prob­

lems after some very intuitive discussion on the origin 

of the diagrams. The resolution of some d i f f i c u l t i e s in 

QED which are relevant to Watson's theory w i l l also be 

A 6 

covered. 

Consider the Dirac equation for an electron 

where p i s the electron four-momentum operator, m 

is the electron mass, x is the electron four-vector pos­

i t i o n coordinates, and (x) is a four component spinor 

wave function representing the f i e l d of the electron. 

The slash through p means 

where the ^ are 4x4 Dirac matrices. Feynman writes 

in analogy to (1a-9) the integral equation for the wave 

For a more detailed account of a l l that follows on QED 
see references ("1):_and (12). 
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(1b-2) 

where 4̂  ^(x) i s a solution of the f r e e - f i e l d equation 

(1b-1) before scattering, e is the charge of the electron 

( e < 0), Sp(x-y) is the propagator for Dirac particles 

(corresponding to G(r
5

,r')), and A is the electro-magnetic 

four-potential (corresponding to V ( r ) ) . Looking back at 

section 1a, we see that the equation for G(r,r'),(1a-5), 

i s h e u ristically obtained from (1a-2) by inverting the 

operator on the l e f t of V(r) i n (1a-2) (with V=0); i.e., 

G Q ^ r ' ) ^ ( vVk^"'xl ..U-b-3) 

realizing that the delta function is the unit operator, 1. , 

in the coordinate representation. In analogy, S,,(p), the 

Fourier transorm of S_,(x-y) i s obtained from (lb-1) by 

inverting the operator to the l e f t of 4^(x), so that in 

momentum space 

, j 
f ~* f - ^ (1b-4) 

Everything in (1b-2) is determined except A. The electro­

magnetic four-potential satis f i e s Maxwell's equations 
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\ \ ^ C * ) ' > W <1b-5> 

where j (x) is a four-current (the source of the potentials) 

Again in analogy to (1a-5) and (1b-4) we obtain the 

photon propagator, Dj,, from (1b-5) by inverting the oper­

ator to the l e f t of A as 

where q is the four-momentum of the photon f i e l d (note 

that q's Fourier transform is -± )
u
) . Then in analogy 

to (1a-9) and (1b-2), 

p 

where Dj,(x-y) i s the Fourier transform 63 D
p
(q. '). Put 

(1b-!£) into (1b-2) to get 

V(x) -- V. (*) + e [ J*.,«le$>!)) P
F
(r*)/T(j) <"-a) 

When we obtained our expression for the scattering ampli­

tude (1a-16), part of the left-most G ( i n (1a-9)j became 

the t / r of (1a-16) and the rest of this left-most G 

became ^ \±n (1a-16).
c
 In analogy the expression for 
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the scattering amplitude in the QED case removes the 

left-most S
w
 of (1b-8) to become (aside from kinematic 

factors) 

„here (3) = ^ ^ 

the T means hermitian adjoint, and ]f is one of the 

Dirac matrices. The iteration of (1b-8) for into (1b-9) 

gives the analog of (1a-16); namely, 

(1b-10) 

Just as the solution of (1a-16) i s determined i n principle 

once the potential source V i s known, the solution of 

(1b-10) is determined once the current source j i s known. 

Let's see how this works with an example. 

Suppose we want to treat coulomb scattering of an 

electron by a point charge Q located at the origin. 
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Then the appropriate four-current i s 

By (1b-10), to f i r s t order the scattering amplitude i s 

\ - 4 j D F ( r o f e ^ (•j)^"1 ( n " 1 1 ) 

and corresponds to the diagram 

(1b-12) 

where the two soli d lines represent the incoming and out­

going electron ( and fjr; )» wavy line represents 

the propagating photon (Dp), and the ® represents the 

source of the photon (Q b (a)). The V*s both connect 

to the point labeled y, the photon propagates from z to y, 

and the source of the photons i s at point z. The next 

higher term of (1b-10) i s represented diagrammatically by 

u) 

(1b-13) 

where internal s o l i d lines connecting two photon lines 

represent a propagating electron (Sj,), and the coordinate 

6

See reference (1), Vol.1, p.100. The f of (1b-11) as 
written w i l l contain an energy-conserving & function which 
should be removed. 
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labels at each vertex correspond to those used in (1b-10). 

The idea is to f i r s t draw and label the diagrams and then 

write the corresponding integrals from the diagrams by-

inspection rather than start with the more cumberson (1b-10). 

Now we come to one of the most important aspects of 

QED that w i l l carry over to multiple scattering theory. 

In everything done so far we have not symmetrized the terms 

as required by Bose-Einstein and Permi-Dirac s t a t i s t i c s 

(we could also symmetrize the Born work but choose to 

symmetrize only QED here to avoid duplication and because 

the problems which arise i n QED are relevant to multiple 

scattering). 

Consider electron-positron scattering. The relevant 

current is now the current of the positron as seen by the 

7 
electron (or vice versa) and is given by 

j * CO w ? , r J" V / r * ) <1*-H> 

where the superscripts on the VJ/ *s mean positron states. 

The choice of j is motivated by the fact that j should be 

See reference 1, p.135. 
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density which is something on the order of 

T i 

A second order graph looks li k e (second order in e, f i r s t 

order in e^) 

(1b-15) 

(where subscript 1 refers to electron, 2 to positron, 

unprimed p's are i n i t i a l momenta, primed p's are f i n a l 

momenta) and corresponds to a term 

Peynman states that electrons going forward in time are 

equivalent to positrons running backward in time so that 

we would more correctly draw (1b-15) with arrows indicating 

the direction of time for an electron as 

(1b-17) 

in which we replace a positron with momentum p^ going for­

ward i n time by an electron with momentum -p^ going back­

ward i n time. Let's try to symmetrize the above diagram 
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by interchanging electron lines where possible. At y 

an electron entering from the past can proceed into the 

future as shown with momentum p^ but i t can also go back 

into the past with momentum ~j>2>
 a

^
 z

 "^
ne

 electron coming 

fn from the future with momentum -p^ can scatter into the 

past with momentum -p^ as shown or i t can scatter into 

the future with momentum p
1
. We would draw the "exchange 

diagram" resulting from the above observation as 

(1b-18) 

in which lines p
1
 and -p

2
 of ( i b - 1 7 ) have been interchanged 

to obtain (1b-18). In other words, we can interchange 

electron lines as long as we conserve charge; i.e., some­

thing l i k e 

is not allowed because the electron converts to a positron 

(the direction of the arrow reverses as we follow the 

continuous world line of the electron on the l e f t ) . It 

is more conventional to twist the photon lin e of (1b-18) 
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into 

Ob-19) 

so that the exchange diagram of the second order electron-

positron scattering corresponds to annihilation into a 

photon followed by decay into another electron-positron 

pair. Fermi-Dirac s t a t i s t i c s require that (1b-19) adds 

to (1b-17) with a relative minus sign (two fermions were 

exchanged). 

Now consider fourth order electron-positron scatter-

Q 
ing. The most obvious graph i s 

and exactly as in the second order case, interchange of 

f. 

(1b-20) 

(1b-21) 

a Ibid., pp .H8 -151 . 
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where we interchanged the location of the bottom of line 

-Pg with the top of line p^ in obtaining (1b-21) from 

(1b-20). The fermion interchange requires that (1b-21) 

adds to (1b-20) with a relative minus sign. Interchange 

of the right side of line q^ with the top of line q.
1
 in 

(1b-21) yields 

which must add to (1b-21) with a relative plus sign (boson 

interchange). The integral corresponding
0

 to (1b-22) d i r s 

verges, and i n general a l l graphs with photon bubbles on 

electron lines l i k e 

w i l l diverge. 

To eliminate these divergence problems one proceeds 

very crudely as follows: The electron propagator (drawn 

as a solid line and given by (1b-4))is modified by add­

ing to i t a l l bubbles; graphically we write 

r, 
(1b-22) 

f. 

Ob-23) 
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changes t© 

(1b-24) 

The i n f i n i t e series of divergent terms can be summed and 

the result changes the propagator to 

) 

" (1b-25) — rm. + £ 

where A i s the i n f i n i t e contribution of one bubble. One 

then says that the mass m i n (1b-4) is the "bare" mass 

of the electron and that the physically measured mass i s 

m - A = m
 n
 . (1b-26) 

electron 

So the theory becomes "renormalized" by changing m to m 

in a l l electron propagators. The same type of divergences 

w i l l occur in multiple scattering theory upon symmetrizing, 

One last exchange graph must be discussed. Appro­

priate interchange of photons and electrons in (1b-20) 

w i l l lead to the graph 

( , M W ( 1 b " 2 7 ) 

whose corresponding integral also diverges. Graphs such 
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as these are called disconnected and are thrown out in 

QED. The j u s t i f i c a t i o n for throwing them away is this 

the vacuum is constantly producing such bubbles by spon­

taneous emission and reabsorption and since everything is 

measured relative to the vacuum one ignores such graphs. 

The ideas discussed for QED w i l l appear again when 

we use • Watsd
r

n •"sc^theiory. 

0 
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1c.Preliminary Scattering Notions 

In obtaining the Born series and QED results, we 

worked with the basic f i e l d equations and interaction 

potentials. In multiple scattering theory, especially 

when applied to strong interactions (nuclear physics), 

the basic interaction potentials and f i e l d equations are 

not known. Therefore the expansion for the total scatt­

ering amplitude of a projectile on a composite system of 

scatterers (nucleus) i n powers of the two-body potentials 

between the projectile and scattering constituents i s 

replaced by an expansion in powers of some more directly 

measurable quantity. Since the objective i s to treat 

scattering of a particle by a collection of other par­

t i c l e s , the most directly measurable quantities involved 

are the d i f f e r e n t i a l cross sections for the incoming par-

ticle>scattering on each of the constituents of the scatt-

erer. Any quantities closely related to the experimentally 

observed two-particle d i f f e r e n t i a l cross sections are 

l i k e l y candidates to use as a replacement for the two-body 

potentials. Historically one chooses to expand in powers 

of the so-called "T matrix". In the next several pages 

we develop the groundwork which defines the T matrix and 
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relates i t to the potential V, the scattering amplitude f , 

and the dif f e r e n t i a l cross section. 

We imagine a two-body scattering experiment to start 

with a free particle approaching a scatterer at time 

t=- ̂  , the free particle state unaffected at this time 

by tine presence of the scatterer. As the particle moves 

closer to the scatterer, the scatterer starts to modify 

the free particle wave function and continues to do so 

unt i l the particle gets sufficie n t l y far away from the 

scatterer again, with the wave function becoming a new 

free particle state (or superposition of many free particle 

states) at t=+ oo . Define the Heisenberg S matrix by 

describes the system at time t (similarly X i s the 

free particle state before the scattering event). By 

our now familiar Green's function work, 

which comes from (1a-9). Now put (1c-2) into (1c-1) getting 

<X t (S I X ^ - X̂2t)£a*)A* <1-1> 
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9 
Now sacrifice rigor for brevity. The time-dependent part 

of the product of X- ^ and
 a

 contributes a factor 

i(£rOt 
^
 v

 •
 y

 and the propagator G behaves like 

i 

2 
Here the k part brought in the i n i t i a l energy E and 

fit 
2 

the y part brought in the energy at t=+oo which i s 

E
b
 (the minus sign in front of E^ comes from the fact 

that E= p /2m o< -7 /2m). Piecing this together 

transforms the S matrix (1c-3) into 

d c - 4 ) 

where the wave functions i n the integral have their time-

dependences e x p l i c i t l y removed. Now use the identity 

Those appalled by what follows can consult reference (15), 
p.178, eq.16 and preceeding pages. 
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U e — - — r - a n l i f e - E^ N ( i e - 5 ) 

to write (1c-4) as 

< M s K > <\(*0> - (vo
 (l0

.
6) 

which is exact (even though derived heuristically here). 

The T matrix is usually defined in terms of the S matrix 

by 

<XJS|X*) = < X b l X . > - J n . J f e - ^ ) ( 1 c . 7 ) 

As (1c-7) is not a particularly useful form for our pur­

poses, we led the reader up to (1c-6) so that we can 

make the correspondence^ 

O C j T l X O = ^ J V t K > d o - e ) 

an expression we w i l l make direct use of in obtaining the 

Tjippman-Sch winger equation, the cornerstone of Watson's 

theory. . - — 

Ibid., p.178, eq.16. 
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We have now defined the new expansion parameter 

T (which we w i l l use instead of V) and have related T 

to V by (1c-8). Next we must show how T is directly 

related to the scattering amplitude f , or equivalently, 

how i t is related to the d i f f e r e n t i a l cross section, the 

quantity determined experimentally. As a f i r s t step in 

obtaining an expression for the d i f f e r e n t i a l cross section 

in terms of T, we state that (by the definition of S) 

the transition probability, P
b a
» to go from state X 

to state X- k is 

P U = \<̂ lS|7U.>r CI 0 - 9 ) 

In most scattering experiments one doesn't measure scatt­

ered states which overlap i n i t i a l states X because 

the detectors would be swamped by the incoming beam. 

Thus we can say 

d c - i o ) 

so that 

using (1c-7). The square of the & function is tricky; 
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11 
to treat i t properly we paraphrase Bjorken and D r e l l . 

Jf we consider transitions in a time interval from - t / 2 

to +t /2 the & function would be smeared out and we 
o' 

would replace i t according to 

( 1 0 - 1 2 ) 

1 
E - E . v> 

We then have, squaring the above equation and integrating 

both sides over 

an)2" J (o) 2nt6 

This allows us to write 

(1c-13) 

(auf [f ^ = c o J ^ , - * 0 ( 1 c - H ) 

The abjove is the desired result which converts the square 

of the <j function into a single energy-conserving i function. 

Combining (1c-H) with (1c -11) , the transition probability 

See reference ( 1 ) , p.101. 
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per u n i t time i s found to be 

• ± -- J( e i-«0|<x t |T(;cx>r c i ^ i 5 ) 

The T matrix conserves momentum so i t i s customary to 

f a c t o r out the momentum conserving part by de f i n i n g a 

new T through 

i h \ r \ t ^ - - J ? ( f V J v ) T u . ( 1 ° - 1 6 ) 

where p a and p^ are t o t a l momenta of p r o j e c t i l e plus t a r ­

get f o r i n i t i a l and f i n a l states, r e s p e c t i v e l y . In a 

manner analogous to our treatment of the squared energy 

& function, we smear out the squared momentum & function 

over a f i n i t e volume of space, v , to write the t r a n s i t i o n 

p r o b a b i l i t y per u n i t space-time as 

Pi 
v t 

The t r a n s i t i o n rate per unit space-time into the i n t e r v a l 
3 / 3 / d p.jd p£ is then 

<l / J (1c-18) 
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where subscript 1 refers to projectile and 2 to target 

momentum in the f i n a l state. The cross section is the 

transition rate per incident flux of particles summed 

12 
over a l l f i n a l states, or 

(1c-19) 

where v
r e l
 is the relative velocity of projectile and 

target. Now work in the center of momentum system of the 

projectile and target; i.e., 

P.+ ft" P*.-= p t= p,'+ px'= O 

V,= P i / E , ' 

Differentiating both sides of the f i r s t of the above equa< 

tions and using the second of the above equations we have 

The (2IT ) comes from flux considerations; see e.g., 
reference (15) , p.87. 
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where we also used the r e l a t i v i s t i c connection between 

a l l E's and corresponding p's 

m 

Multiplying (1c-21) by p
1
 and re-arranging gives 

The expression (1c-19) for the cross section when d i f f ­

erentiated with respect to solid angle and using (1c-22) 

becomes an expression for the d i f f e r e n t i a l cross section 

— dc-23) 

where p
1
 i s the projectile momentum i n the f i n a l state, 

E^ and E^ are the projectile and target f i n a l (total) 

energies, respectively, v
r e l

 is the relative velocity 

of the target and projectile given by 

(1c-24) 
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unprimed p's and E's refer to the i n i t i a l state, and 

(1c-23) i s the di f f e r e n t i a l cross section i n the center 

of momentum system of the projectile and scatterer. 

By definition of the scattering amplitude, f , given 

13 
hy the-statements following (1a-14) we can write 

A S L .41 do-25) 

which establishes the correspondence between j f | and 

l T bal
 5 o n l v

 "
t n e

 relative phase between f and T^
a
 is 

l e f t undetermined. Taking the non-relativistic l i m i t 

of (1c-23) and (1c-24) and let t i n g the scatterer's mass 

become i n f i n i t e (fixed scatterer) we obtain the limiting 

case 

(1c-26) 

which can be compared with results we w i l l obtain using 

section 1a since there the non-relativistic limit and 

fixed scatterer were assumed. If we take equation (1a-16) 

and write i t i n i t s non-expanded form i t becomes 

See reference (8), p.57. 
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using our new notation for free and interacting states. 

But by (1c-8) and (1c-16), 

Comparing (1c-28) with (1c-27) we get the relative phase 

between f and from 
ba 

V - - ± S . - L . * O o . 2 9 ) 

By taking the square root of (1c-23) we can define the 

relation between f and T^
a
 for elastic scattering (primed 

14 
and unprimed p's and E's equivalent then) 

(-t;*0 
So far this section has been rather long-winded but 

necessary to establish conventions; l e t us b r i e f l y review 

See reference (15) , p.223, eq.6. 
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what has been done. We wanted to expand the total scatt­

ering amplitude for a projectile on a compositer-^ystem 

of scatterers i n terms of some new quantity T closely 

related to the more directly measurable f , the scattering 

amplitude of the projectile on one constituent of the 

composite scatterer rather than expand in powers of the 

harder-to-determine two-body potentials between the pro­

je c t i l e and scattering constituents. The f i r s t step was 

to define T (equations (1c-7) and (1c-1)) .and find the 

correspondence between T and the scattering;potential V 

(equation (Vc-8)). F i n a l l y , i t was necessary to relate 

T to f (and thus to the dif f e r e n t i a l cross section also) 

to connect T to a real world experiment (equations (1c-30) 

and (1c-25)). Having accomplished a l l t h i s , we now proceed 

to develop the Lippmann-Schwinger"equation and Watson*s 

multiple scattering theory. 
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id.Watson's Multiple Scattering Series 

Consider a scattering event with a total Hamiltonian 

H describing the system. Begin by breaking up H into 

the free Hamilitonian K and the potential V according to 

H-= K+V <ia-i> 

and define eigenstates of H and K by 

fKP= ^ ( 1 d . 2 ) 

K l - E 

Note that H, K, and V are operators in the above. Now 

find an expression for ^ in terms of Substituting 

(1d-1) for K i n the second equation of (ld-2) 

Re-write the f i r s t equation of (1d-2) and (1d-3) as 

( e - H ) V = o 

Subtracting the second of the above from the f i r s t gives 
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(E- H)(V- *0 = V X dd-4) 

Multiplying (1d-4) on the l e f t hy (E-H)"
1

 and adding 

X, to both sides one gets 

To show the analogy of this treatment to section 

1a. invert (1d-5) for in terms of Sf̂  by f i r s t multi­

plying by V yielding 

vv= [ v + v ( - i ^ ) v ] X (10-6) 

and now combine the two terms on the right into one by 

writing 

Inverting for we find 

( i ) ( e - H ) ( e
J r | c ) v H ;

 ( 1 d . 7 ) 
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Now put (1d-7) back into (1d-5) and cancel operators 

with their inverses to obtain the Lippmann-Schwinger equa­

tion for the wave function 

^ = + ( i ^ ) v ^ (1d"8) 

This i s identical to (1a -9 ) of the Born work. In other 

words, judicious juggling of (1d-5) reproduces (1a - 9 ) . 

Leaving this digression, we proceed to find an oper­

ator expression for the T matrix. Equation (1c-8) states 

that 

<*JrK>, < < \ \ \ t \ V K y dee) 

and (1d-5) into (1c-8) gives 

which immediately implies 

T - V 4- V (i^)v dd-9) 

Invert the above to get V in terms of T by combining 

the two terms into one, writing 



4-0 

and invert to get 

T 

Putting the above into the rightmost V of (1d-9) leads 

us to 

This is the T matrix form of the famous LippmannrSchwinger 

equation which we w i l l use ad nauseum throughout the: rest 

15 
of our multiple scattering work. 

We now proceed with the idea of doing nuclear physics. 

Consider the scattering of a single projectile on a com­

pound system of n scatterers. The total potential V i s 

then written as the sum of a l l two-body potentials between 

the projectile and each scatterer; i.e., 

Let ^ represent the two-body T matrix for the projectile 

scattering on particle i . Then the two-body Lippmann-

Schwinger equations are 

(1d-10) 

(1d-11) 

^Ibid., p.751, eq.252b. See also p.198, eq.85 for our 
equation (1d-8) which Goldberger and Watson refer to as 
the Lippmann-Schwinger equation. 
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(1d-12) 

where 

3e
 ( 1 d

-
1 5

> 

in which E
i
 i s the total energy of the incoming projectile 

plus'target particle i i n the i n i t i a l state before the 

scattering, and i s the free energy operator with the 

property 

(1d-14) 

where p and m are the projectile momentum and mass in 

state |Xj^
 a n

d p^ and m̂  are the target momentum and mass 

in state The total T matrix for the complete scatt­

ering s a t i s f i e s the appropriate Lippmann-Schwinger equation 

also; namely, 

T ~ V + V CrT (1d-15) 

where V i s given in (1d-11) and 

G- — ~ z d d - 1 6 ) 

i n which E is the total energy of projectile plus a l l 
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target particles i n the i n i t i a l state before scattering 

and 

K-- Z K . 
c-l 

(1d-17) 

Invert (1d-12) by writing 

so that 

V . - t 

and thus 

(1d-18) 

Iteration of (1d-15) gives 

(1d-19) 

and putting (1d-18) into (1d-l9) we find 

1 
(1d-20) 

4 
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Now expand the terms in parentheses according to 

dd-21) 

and re-group terms in powers of the t's to obtain 

T= I t 
("I 

Z X t.6t : - I t , , . ! 
-I- . . . 

Re-arranging the sums in each order to separate out terms 

with the same t ^ appearing next to i t s e l f (separated by 

propagators of course) we have
1

^ 

T = 

(1d-22) 

Terms which contain factors (G-g
i
) represent binding 

corrections which are worthy of consideration i n them-

17 
selves, but one customarily writes 

(1d-23) 

16 

17 
See reference (22). 

See the work of Koltun in reference (29), for example. 
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and ignores the contribution of these binding correction 

terms. We w i l l return to this point when we discuss sym-

metrization. This leads us to Watson's formula for the 

total T matrix in terms of the two-body T matrices, 

i-i <'=» l-l
 {

 J i=j j - i fe-i * ) *• 

+ ... (1d-24) 

and establishes the f i n a l result associated with the 

t i t l e of this section. 

Now we have to state that everything leading to 

(1d-24) was done so crudely that we are compelled to make 

some verbal explanations. F i r s t , the way we write the 

propagators as in (1d-13) or (1d-16) is something li k e 

shovelling a l l the di r t under the rug. There are problems 

with the denominators when they become zero. Suffice 

17 
to say that we should make the replacement 

G - I; 
E - K * i n (1d-25) 

where P means take the principal value of the appropriate 

17 - ' - - - ' 
See reference (15), p.72, eq.52 and p.74, eq.63. 
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integral in which G appears. In summary, (id-16) i s 

sloppy and should be replaced by (1d-25), and similarly 

a replacement should be made for (1d-13). Second, the 

t's that we have written i n (1d-24) are two-body T matri­

ces and (1d-24) implies that the projectile scatters off 

particle i and a l l other n-1 scatterers s i t as spectators; 

this i s certainly an approximation (the so-called impulse 

approximation) and the more correct statement of Watson's 

result i s that a l l the t's in (1d-24) are really TJ • s, 

where X, is the appropriate T matrix for scattering 

of the projectile on particle i i n the presence of a l l 

18 

the n-1 other scatterers. Third, we have not dealt 

with the problem of symmetrization of the wave functions 

(nuclei are composed of many identical particles); though 

we w i l l not go through this section again properly sym­

metrizing everything, l e t us just state that a l l states, 

i n i t i a l , f i n a l , and intermediate, must be properly sym­

metrized. One then finds that symmetrized intermediate 

states give exactly the.' same results as unsymmetrized 

intermediate states (provided i n i t i a l and fi n a l states are 

always symmetrized in both cases) when properly handled. 

We w i l l return to this point in section 2b and related 

1 8

I b i d . , p.754, eq.265. 
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appendices. Note that our statements do not necessarily 

apply when the projectile is the 'same as one of the nuclear 

constituents. The reader should pay particular attention 

to Goldberger and Watson, reference (15), pages 131 to 

133 and the last sentence of page 750 which continues 

over to page 751. We quote i t as follows: 

We naturally assume, however, that the target wave 
functions g are appropriately symmetrized i n the 
coordinates of identical bound particles. 

One f i n a l comment i s necessary. Our derivation of Watson's 

multiple scattering series, (1d-24), is not the derivation 

of Watson but follows the simpler but less rigorous argu­

ments of Moyer and Koltun (reference C'22)). Watson finds 

coupled integral equations for the wave function ^ which 

formally solve equation (1d-8). These coupled equations 

are as follows: 

Iteration of (1d-26) combined with (1c-8) reproduces (1d-24) 

except for the replacement of the t's by 't •s (defined on 

the previous page). 

19 
Ibid., p.751, eqs.253a and 253b. 

n 
(1d-26) 
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2.Simplified Low Order Pi-Deuteron Scattering Using 

Watson*s Multiple Scattering Theory 

Our ultimate goal i s to obtain the pi-d
1

 scattering 

amplitude using Watson's multiple scattering theory and 

taking a l l quantitatively relevant effects into account. 

Naturally this i s a large order to serve, so rather than 

present the meal in i t s entirety, we choose to offer i t 

in several courses. To keep the arguments as simple as 

possible, we w i l l concentrate on TT -& scattering in 

the threshold l i m i t (the pion stikes the deuteron with 

zero momentum in the center of mass and lab systems). 

The incident projectile is chosen to be a pion (rather 

than a proton or neutron) to avoid extra symmetrization 

d i f f i c u l t i e s and because the two-body pi-nucleon inter­

action i s well known (phenomenologically at l e a s t ) . Also 

pion beams w i l l be readily available once the TRIUMF meson 

f a c i l i t y is in operation. We choose a n rather than 

a TT
0

 to avoid coulomb effects in intermediate states 

of the charge exchange process (to be covered in detail 

shortly) although this is a rather moot point since the 

advantage is lost in the elastic scattering contribution. 

A deuteron i s chosen as the target nucleus because i t is 

the simplest multi-particle aggregate, the deuteron wave 



48 

function is well-known, and we naively expect symmetri­

zation to make a big difference here (see the third para­

graph below). F i n a l l y , we consider zero energy scattering 

because in this limit we can throw away the delta function 

part of the propagators (to be explained when we take 

20 

this step) and the expressions become simpler. 

The menu of the pi-d banquet begins with calculations 

of low order scattering terms neglecting symmetrization 

of intermediate state wave functions. Then we discuss 

how symmetrization of intermediate states is handled and 

why i t has no effect on the results. We assume constant 

two-body T matrices throughout this section ( i . e . , the 

choice (2a-6)). This approximation is a'highly unrealistic 

one but is introduced nevertheless because i t greatly 

simplifies the calculations. In momentum space the constant 

two-body T matrix is just a constant multiplied by an 

overall momentum conserving delta function. We abandon 

the constant two-body T matrix assumption in chapter 4. 

See equation (1d-25). 
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Note that the symmetrization effects we expect to 

see only occur i n second and higher order scattering terms 

hut not in f i r s t order (there i s no sum over intermediate 

states in f i r s t order). Now usually when one does a 

calculation of a sum of terms one expects the f i r s t order 

to dominate, and each successive order to contribute much 

less than the previous one. However, by accident nature 

has chosen to make the 77 -neutron scattering amplitude 

almost equal in magnitude and opposite in sign to the T T -

proton scattering amplitude at threshold. The f i r s t order 

contribution in the deuteron is roughly the sum of these 

two scattering amplitudes so that the f i r s t order contri­

bution i s very small, and in fact about equal in magnitude 

to the second order contributions. For this reason the 

deuteron i s an unusually good target for studying higher 

order (second and beyond) effects. 

Two remarks on symmetrization in the deuteron are now 

in order. F i r s t , i f one neglects the small D-wave admix­

ture i n the deuteron wave function, the state is then pure 

S-wave (the orbital angular momentum between the neutron 

and proton i s zero). Now consider double charge-exchange 

(second order charge-exchange) scattering, to be referred 
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to from here on as DCE, in which a Tf" enters and strikes 

the proton converting the proton to a neutron and i t s e l f 

to a TT°; thus one has an intermediate state consisting 

of two neutrons and a i f
0

; the proceeds to strike the 

original neutron converting i t to a proton and the TT 0 

back to a TT . Since the original proton and neutron 

were in a relative S-state, an incoming zero energy pion 

shouldn't excite the nucleons so we expect the intermediate 

state nucleons (two neutrons) to s t i l l be predominantly 

in an S-state. In addition, the deuteron has total angu­

l a r momentum J=1 and since L=0 (S-state), we must conclude 

that the spin i s S=1. So i f we don't allow for any spin-

flipping mechanism in the pi-nucleon interaction, the 

intermediate state of two neutrons must also have S=1 . 

This means that the spin state of the two neutrons i s 

symmetric ( t r i p l e t ) and the space part of the wave function 

i s also symmetric (S-state) so that the tota l wave function 

for the intermediate state i s symmetric, which i s forbidd­

en by the Pauli exclusion principle. Therefore we expect 

symmetrization of the wave functions to drastically reduce 

the contribution of the DCE term in the multiple scattering 

series. 

We have made two contradictory statements so f a r . 
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In an earlier paragraph we stated that symmetrization 

of intermediate states has no effect whereas we also showed 

that we expect a large effect in the DCE term. In fact, 

there i s a term coming from symmetrization which does 

reduce the DCE contribution, but there are other terms 

from the binding corrections which cancel the effects 

of symmetrization. This w i l l a l l become clearer when we 

present the detailed calculations. 

Secondly, we wish to comment on the v a l i d i t y of 

symmetrizing intermediate states in general. Some might 

doubt the whole symmetrization requirement on the grounds 

that intermediate states don't behave i n the same way 

as external ( i n i t i a l and fi n a l ) states; for example, 

energy is not conserved in intermediate collisions (par­

t i c l e s are not on their mass s h e l l s ) . One is thus tempted 

to ask i f symmetrization i s required. If one believes in 

quantum f i e l d theory, the answer is an unequivocal a f f i r ­

mation of the symmetrization requirement. For details the 

reader is referred to Appendix 1. 
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2a.Low Order Multiple Scattering Terms for T[ -d 

Scattering Neglecting Symmetrization 

We now use Watson's theory and calculate the low 

order terms of (1d-24) with unsymmetrized intermediate 

state wave functions. Our aim is to start with the sim­

plest cases and build up the work in stages u n t i l we can 

generalize our conclusions. The crudeness of the approx­

imations we make here w i l l be checked in chapter 4 when 

we do the problem in a l l i t s complexity. Suffice to say 

that additional complications to be introduced in chapter 

4 would only obscure the relevant features and would not 

affect the general argument here. 

The deuteron wave function is taken to be 

We are neglecting the small D-state admixture. In the 

above, P and R are the momentum and position coordinates 

of the deuteron center of mass, r i s the relative position 

coordinate of the two nucleons, r^ and r
2
 are the nucleon 

position coordinates in the lab system, and we write 

is a Hulthen function given in Appendix 2. 

->> —•> 

-9 (2a-2) 
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We assume throughout this section that the mass of the 

neutron and proton are equal and also take the TT and TT ° 

masses equal so that i t i s convenient to define the 

center of mass momentum P and relative momentum k in 

terms of the nucleon lab momenta.ip^ and pg as 

It i s also convenient to write the relative position 

21 
vector part of (2a-1) in terms of i t s Fourier transform 

As a complete set of intermediate states we take the 

plane wave states 

( ^ n)Va. £ _
) 3

,
v 

where the subscript n refers to the particular intermediate 

state and a l l the r ' s , p's, and k's are defined as before 

—> 

and in analogy r ^ is the position vector of the pion in 

21 
See Appendix 2. 
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the lab and p_ i s the pion lab momentum in the intermer-

diate state n. 

We choose a particularly simple form for the two-body 

T matrix operator in coordinate space 

V &">Wn-r,) (2a-6) 

3 /-> -9 V- < w > t.r(v<0 

where t is a constant. This choice is motivated by 

noticing that 

That i s , t sandwiched between plane wave pion-nucleon 

states is a constant multiplied by an overall momentum-

conserving delta function. The constant t w i l l vary 

depending on whether we scatter off a proton e l a s t i c a l l y 

(t
Q
=tp), off a neutron e l a s t i c a l l y ("

t

0
='t

n
)»

 o r

 charge-

exchange scatter (t =t ).. 

o ce 

Let's start by calculating the single scattering 

terms. From (1d-24), these are 
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where the subscript "b" stands for the f i n a l state, "a" 

for the i n i t i a l state and 

V

 ^ (2a-7) 
—•5 - 9 

(any'2-
where p' and p* are the i n i t i a l and fin a l pion momenta 

which we w i l l set equal to zero in the end (threshold 

l i m i t ) . If we le t particle 1 be the proton and 2 the 
/>- A 

neutron the t. term w i l l give a factor t and the t
0
 term 

1 p 2 

a factor t but neither w i l l contribute any t factors 
n
 w

 ce 

because a single charge-exchange cannot leave the f i n a l 

nucleons in the deuteron state (because there w i l l be two 

neutrons). Let us just concentrate on the t
1
 term (the 

t
2
 term i s treated analogously). Combining (2a-7), (2a-6), 

(2a-4), and (2a-3) 

e 
(a 

3/1- ^ -

G3*) Qan)^1
 (2a-8) 
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—7 -O 

where P and P, are the i n i t i a l and f i n a l deuteron center 
a b 

of mass momenta. Now use (2a-2) to convert the delta 

function part of the T matrix into one involving <cm and 

relative coordinates to obtain 

The integral over R is easy with the above delta function; 

the remaining position vector integrals just give delta 

functions over the appropriate momenta; and we can also 

integrate over to remove one delta function yielding 

^ U O / V (2a-10) 

Now take the threshold limit setting P
Q
 and P, equal to 
a o 

zero and notice that the resulting integral over the V 's 

just gives a factor of one (because the wave functions 

are unit normalized). The result i s 

<WHI>-- tri3(P;k+fw-^-fL) <2.-ii, 

where the delta function insures momentum conservation. 

To obtain the scattering amplitude one throws away the 
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delta function (see (1c-16) and (1c-30)). The term 

is handled exactly the same way and not surprisingly 

in the threshold l i m i t . Since a l l future calculations 

in this section are treated along the same lines as the 

previous one, we put most of the details of succeeding 

dalculations in the appendices. 

Now consider second order scattering terms. According 

to (1d-24) these are expressed by 

In this case we must insert the plane wave states of (2a-5) 

so that 

(2a-13) 

< K \ K \ t y 

and similarly for the t^Gt^ term. The calculation of 

each of the above matrix elements is straightforward and 

we refer the reader to Appendix 4. Only two comments 

A A A . 

are necessary. For elastic scattering the t^Gt2 "
f c e r m 

w i l l contribute a term proportional to t t and so w i l l 
n p 
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A A A 

the t 2 G t
1
 term since they represent scattering off one 

nucleon and then the other. But for charge-exchange 
A A A 

scattering, only the tgGt-j term contributes because i t 

represents a rf scattering off the proton converting the 

proton to a neutron and i t s e l f to a TT° and then charge-

exchanging back again off the original neutron; however, 

the t.jGt£ term cannot contribute to charge-exchange because 

i t represents a n striking a neutron f i r s t and thus 

cannot convert the neutron to a proton and s t i l l conserve 

charge. The result is that we get a term proportional 

to 2% t from elastic scattering and one proportional to 

i'̂n p 
2 

-t . The minus sign comes from the fact that the neutron 
ce 

and proton are interchanged after the scattering by the 

charge-exchange process. (By choosing this minus sign 

we are effectively symmetrizing the i n i t i a l and f i n a l states). 

It is also a simplifying assumption to neglect the kinetic 

energy of the nucleons in the propagator G as well as 

taking the binding energy of the deuteron equal to zero 

in the propagator. Summing (2a-13) over intermediate 
2 2 

states one then finds for second order scattering 

See Appendix 4. 
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(2a-H) 

where we define the expectation value of 1/r by 

<^>^ \ V,\r) i / r <*-
1

» 

Application of (1c-30) to convert the T matrix to the 

scattering amplitude gives (up to second order terms)
 J 

-f - £ (2a-16) n n~n — ^ TT~n 

" ^ i t ~ j — > -rr"|> 

the f's being the various two-body scattering amplitudes. 

In writing (2a-16) we have neglected terms of order m /m 
TT n 

compared to unity. Equation (2a-16) is well-known.
24 

23 
See Appendix 5. 

2 4

See references ( 2 ) , ( 1 0 ) , ( 1 9 ) , ( 2 2 ) , ( 2 6 ) , especially (10), 
eq.A.3. 
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There i s one curious result l e f t to discuss which 

occurs in a l l orders of scattering past th i r d . For ex­

ample, consider el a s t i c scattering from the p to the n, 

then'back to the p, and f i n a l l y back to the n once more 

(a fourth order contribution). The appropriate T matrix 

element is (from (1d-24)) 

Ĵt̂ t.&t̂ t, ( 2 - 1 7 ) . 

and treating this just as we did the second order elastic 

terms of (2a-T6) we find 

making the same approximations as before. We claim that 

in general the n**
1

 order scattering term w i l l be propor-

tional to the expectation value of (1/r) " . But the 

expectation value of ( 1 / r )
n

 diverges for n greater than 

two i f j^(r=0) 4 0̂  ; To see this in a specific case write 

(2a -19) 

and r e c a l l that 

See section 3a 
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- * r - B r 
y (*) ex. e - e * 

P 7 — 

for our Hulthen choice of ^ . Therefore the integral 

in (2a-19) diverges for n>2 so werconclude that every 

term in the multiple scattering series past third order 

w i l l diverge. The divergence results from our bad (un-

physical) choice of twe-body T matrix (2a-6) but i t is 

s t i l l possible to reconcile the d i f f i c u l t y and, get a 

f i n i t e result for the complete pi-d scattering amplitude 

without abandoning (2a-6). For example, i f one sums a l l 

the terms of the multiple scattering series for pi-d scatt­

ering the ( l / r )
n

 terms add in a geometric series and the 

sum of a l l terms can be written in closed form. The re-

26 
suit neglecting charge-exchange i s 

V f . 4- 2 f n 4 p / r \ C 2 a r 2 0 ) 

I- ( H A 1 ) 

where we neglected terms of order m /m . 
TT n 

To summarize, in pi-d scattering a l l terms of the 

multiple scattering series past third order diverge for 

2 6 
See reference (2), reference ( 1 9 ) , and chapter 3. 
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our simple choice of constant two-body T matrices. Nev­

ertheless, one can s t i l l obtain a f i n i t e result for the 

complete pi-d scattering amplitude by summing the multiple 

scattering series to a l l orders without abandoning the 

constant T matrix approximation. The scattering ampli­

tude w i l l always be f i n i t e (even when we include charge-

exchange) although this has not been shown in general. 

We show how to always obtain f i n i t e results in chapter 3. 
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2b.Symmetrization of Intermediate States 

We wi l l now demonstrate how to incorporate symmet­

rized intermediate states into Watson's multiple scatt*-

ering theory. We w i l l also show that this procedure 

leads to no new results so that one is ju s t i f i e d in ne--

glecting symmetrization of intermediate states in gen­

eral (at least when the projectile i s not the same as 

one of the scatterers). F i r s t , however, we would like 

to show how direct insertion of symmetrized intermediate 

states into Watson's series (1d-24) leads to incorrect 

results. The point i s that binding corrections which 

are usually ignored (e.g., r e f . ( T q ) ) become fundamentally 

important when intermediate-states-are symmetrized. 

To begin, the i n i t i a l and f i n a l deuteron states must 

be completely antisymmetric in space, spin, and isospin 

variables. Since the deuteron wave function is spacially 

symmetric (S and D-waves) and the spin part is symmetric 

(spin one), the isospin part must be antisymmetric so we 

write the isospin part as 

and particle 2 a proton, etc. The three symmetric isospin 

means particle 1 i s a neutron 
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states are s i m i l a r l y written 

l f f > 

and the above four i s o s p i n states form a complete set 

which we w i l l sum over i n intermediate s t a t e s . Note that 

we w i l l not write the s p i n part of the wave functions 

because we always work with two-body T matrices that don't 

f l i p spin ( i n this section)«so i t i s unnecessary to p u l l 

the spin part through a l l the c a l c u l a t i o n s . 

The intermediate states must a l s o be t o t a l l y a n t i ­

symmetric and since the s p i n part i s symmetric ( s p i n one 

does not change) we must have the space part and i s o s p i n 

part of opposite symmetry (one symmetric, the other a n t i -

and ^ be the space symmetric and 

space antisymmetric parts of the allowed intermediate state 

wave functions. Then symmetrizing ( 2 a-5) we must have 

f o r plane wave intermediate states 
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The allowed intermediate states then are 
n

f>-ip»>] 

l x . " > U
f

> 

(2b-2) 

We must now decide how to i n s e r t a complete set of states 

with proper normalization. When states are not symmet­

r i z e d , one writes the unit operator a s 

so that multiplying both sides by ^ X - ^ gives 

as i t should since f o r unsymmetrized plane wave s t a t e s , 

But f o r symmetrized plane wave states normalized as above 

<£uir> ̂  
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so the unit operator must be written 

(2b-3) 

n 

where the sum is over a l l states of the forms given i n 

(2b-2). 

We are now prepared to calculate the DCE term with 

symmetrized wave functions. From the previous paragraph's-

we write 

.A , . , ̂A <<Cnn)|G|X;Cnn))<X>)(trit(̂ )> (2b-4) 

In the above we have only written those intermediate 

states which give a non-zero contribution. That i s , a 

T T scattering off a deuteron and charge-ex changing to a 

t T ° can only leave behind two neutrons in the intermediate 

state. First remove the isospin parts in (2b^4) as follows: 

Since operates on nucleon 2 we have 

<»Mt"| " J Z p ^ r < n n | i £ - ) t ~ = ̂
 (2b

"
5) 

I f 
and similarly 

Ace £ce (2b-6) 
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We can thus use (2b-5) and (2b-6) to reduce (2b-4) to 

<^i&u:><^itne> 
The terms in (2b-7) can now be handled in a straight­

forward manner as was done in the non-symmetrized case, 

27 
The result i s 

where A - ^ j ^ J f (2b-9) 

Because the deuteron wave function was symmetrized in 

isospin space, neutron and proton are not always particle 

2 and particle 1, repsectively, as they were in the non-

A A A 

symmetrized case. Therefore the t^Gt
2
 term is not zero 

A A A 

this time but is equal to the t^Gt
1
 term (by symmetry). 

So the complete DCE contribution to the T matrix is twice 

the right side of (2b-8). The corresponding DCE scattering 

27 
See Appendix 6. 
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amplitude i s 

(2b-10) 

We see that the A decreases the DCE contribution as 

we expected. Unfortunately, however, A is i n i f i n i t e 

and in fact i t numerically is equivalent to the bubble 

graph 

(2b-11) 

? 

TT 

w 

p n 

which we expect to be in f i n i t e by analogy with the Feynman 

QED work. The i n f i n i t y i s really no problem since i t 

results from an unphysical choice of two-body T matrix, 

(2a-6), so that a more r e a l i s t i c choice for the t's 

would make A f i n i t e . But even more perplexing is the 

fact that when we calculatecthe elastic scattering contri­

bution in second order, symmetrizing intermediate states 

the same way, we get 

Xt\A <5ri. e l . 
F - X I T d 2. C2b-12) 

This just cannot be correct for the following reason. The 

intermediate state for e l a s t i c scattering consists of a 
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neutron and a proton (not two neutrons as in DCE) so that 

the particles are not ide n t i c a l . This means that sym­

metrizing should not give different results from non-

symmetrized calculations. 

We can resolve the d i f f i c u l t i e s encountered from 

symmetrization by going back to (1d-22) instead of (1d-24). 

Then we see that the complete second order contribution i s 

When we neglected nucleon excitation in the propagators 

we assumed that 

but tliis is only true i f the intermediate states are not 

symmetrized. The important point to remember is that 

the g's are two-body propagators (one pion and one nucleon) 

and the G's are three-body propagators (pion and both nuc­

leons) so that symmetrized intermediate states are sand­

wiched between G and the t's, but unsymmetrized (pion and 

one nucleon) states must be sandwiched between the g's 
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28 
and the t's* When this is done properly we find the 

following results for DOE: 

so that the complete second order contribution to the 

scattering amplitude with intermediate state symmetriza­

tion included i s 

which is the same result we found without symmetrizing 

intermediate states (see (2a-16)). Similarly, the second 

order elastic result is the same as the unsymmetrized re­

sult when binding corrections are properly handled, and 

in general, symmetrization of intermediate states is un­

necessary since the results are always the same as un-

The author is deeply indebted to D.S. Beder for pointing 
this out and thus resolving the symmetrization d i f f i c u l t i e s . 
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symmetrized ones (providing that the incoming particle 

is different from the target p a r t i c l e s ) . However, i n i t i a l 

and f i n a l states must always he symmetrized. In section 

2a we did not e x p l i c i t l y symmetrize i n i t i a l and f i n a l 

deuteron states but the results are correct because we 

accounted for symmetrization by choosing the minus sign in 

(2a-16) next to f
2

. 

ce 

Moyer and Koltun, reference (22), mention that inter­

mediate states need not be symmetrized, but their argument 

does not analyze the situation in detail as we have done. 

Theirs is the only paper to even mention the equivalence 

of symmetrized and unsymmetrized calculations, and on this 

account deserves considerable credit. Note that Moyer and 

Koltun discuss symmetrization based on the Lippmann-Schwinger 

equation whereas we work with the multiple scattering series. 

In conclusion, we can ignore symmetrization of inter­

mediate state wave functions in a l l subsequent work of 

this paper. 



72 

3.Summation of the Multiple Scattering Series 

To A l l Orders 

It has been shown that the multiple scattering series 

diverges in each term past third order; here we want to 

sum the whole series and obtain f i n i t e results. To 

accomplish our goal, i t is necessary to write the various 

scattering amplitudes for each order of scattering. In 

general this is not possible, when non-constant two-body 

T matrices are used, for example; i.e., the integrals to 

each order cannot be evaluated (except numerically). But 

i f we keep the approximations we have made in the previous 

sections (constant t's, zero binding and no nucleon exci­

tation i n G) i t is,possible to evaluate the integrals 

and obtain closed analytic expressions for each order of 

scattering. It is also possible to write the scatter­

ing amplitude immediately for each order of scattering 

by looking at the appropriate graphs. We therefore w i l l 

state the rules for obtaining the scattering amplitude 

to each order and then sum the terms to a l l orders. No 

attempt w i l l be made to derive the rules that w i l l be 

given because they are easily established by the tech­

niques of Appendix 4 although i t is tedious to do so. 
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However, we w i l l make reference to previous calculations 

of second order terms to indicate the origin of our graph 

rules. We also postpone numerical evaluation of series 

sums u n t i l chapter 4. 

The sum of the elastic multiple scattering series 

for pions on deuterons has been evaluated long ago ( i n 

1 9 5 3 by Brueckner, reference ( 2 ) ) but the charge-exchange 

process was neglected. Not u n t i l 1972 was an attempt 

made by Kolybasov and Kudryavtsev (reference ( 1 9 ) ) to 

sum the series including charge-exchange and T T
 0

 elastic 

scattering. Unfortunately their result is incorrect, which 

they state in arnote added in proof. But their later paper 

(reference (28)) which they claim corrects their previous 

error is also wrong. In the present section we show how 

to obtain the series sum including charge-exchange by a 

new method which "folds" the charge-exchange and T T
 0

 elastic 

scattering contributions into the original series sum 

neglecting these processes. This technique greatly reduces 

the complexity of the problem and avoids the tedious labor 

of summing a great many extra graphs. In„ addition'" to our 

pi-deuteron series sum, we evaluate the series sum neglect­

ing charge-ex change and TT ° elastic scattering for pions 

on an arbitrary nucleus of N neutrons and Z protons. 
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Using our new technique we then f o l d i n the charge-

exchange contribution so that we evaluate the s e r i e s sum 

for an a r b i t r a r y nucleus including e l a s t i c TT and charge-

exchange s c a t t e r i n g . We do not include e l a s t i c TT° 

sc a t t e r i n g i n this more general case because the expressions 

then become gargantuan. Nevertheless, our technique does 

allow one to p e r s i s t , i f desired. 
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3a.Graph Rules and Order by Order Summation 

We begin by looking back at (2a-16), the f i r s t order 

contribution to the scattering amplitude i s 

f + f 
n p 

(3a-1) 

For simplicity, l e t graphs corresponding to (3a-1) be 

drawn as 

n ' 

P f 

f 

C3a-2) 

where i t i s understood that deuteron lines 'Should be 

joined to the beginning and end of the two nucleon lines 

in (3a-2) and a l l that follows. If we ignore i n i t i a l 

and f i n a l lines the relevant feature of (3a-2) i s a p i -

neutron vertex in the f i r s t graph and a pi-proton vertex 

in the second. Thus, the amplitude which, we write" by 

inspection from (3a-2) is just (3a-1), where f is written 

for the pi-neutron vertex and f for the pi-proton vertex. 

Now look at second order elastic terms. The diagrams 

are 

n 

f 

I' 

/ n ' rr 
(3a-3) 
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and from (2a-16) the corresponding scattering amplitude 

is 

where i t is understood that (3a-4) is to be averaged over 

the deuteron wave function (take the expectation value). 

That i s , instead of taking the expectation value of each 

term in the multiple scattering series and then adding 

a l l the terms, we f i r s t add the whole series and then 

take the expectation value .(both methods must give the 

same results); Neglecting external lines in (3a -3 ) , the 

f i r s t graph has a pi-neutron vertex, a pi-proton vertex, 

and an internal pion propagating; the two vertices contri­

bute the factors f and f and the propagating pion gives 

the factor 1/r. The second graph contributes the same 

so that (3a-4) results by inspection from (3a -3 ) . 

Now look at the DCE graph 

(3a-4) 

y TT (3a-5) 

with the corresponding amplitude from (2a-16) 

(3a-6) 
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Each pion-nucleon vertex in (3a-5) contributes a factor 

f because the pion changes i t s charge after each scatt-
C c 

ering, the propagating pion contributes a factor 1/r, 

and a minus sign i s necessary because the proton and 

neutron have exchanged places in the fnal state with 

respect to the i n i t i a l states. 

We can now state a l l the graph rules. In analogy 

to QED rules, we choose to abbreviate our rules with the 

letters MSG (multiple scattering graphs). The rules are 

as follows: 

MSG Rules 

1. Draw a l l possible graphs with no bubble diagrams allowed 

(no graphs like (2b-11) , for example). 

2. For each vertex associate a factor f , f , f , or f 
n' p' ce' o 

corresponding to elastic rr -neutron, rr -proton, charge-

exchange, or elastic Tl
 0

 scattering, repectively. 

3. For each internal propagating pion line associate a fac­

tor 1/r. 

4.If two nucleons^are interchanged in the f i n a l state, 

multiply by -1. (3a-7) 

Keep i n mind that the above rules apply only under the 

assumptions of "page 72; and in the threshold l i m i t . 
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As a check to see i f you can apply the MSG rules to 

a more complicated case, the amplitude associated with 

the diagram 

? 
77' 

is given by 

(3a-8) 

(3a-9) 

Using the MSG rules we draw the graphs and write 

the corresponding amplitudes for the next few orders of 

elastic scattering (neglect the charge-exchange process 

for now). We obtain for the third order processes 

n P 

n f 

T 

(3a-10) 

where n^-*p means the same graph with the pion striking the 

proton f i r s t . To fourth order we get 
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r 

n 
(3a-11) 

+ n 
r 

The pattern i s obvious so we write the sum of a l l odd 

order terms as 

(3a-12) 

and the sum of a l l even order terms as 

(3a-13) 

and summing (3a-12) and (3a-13) gives the complete p i - d 

sc a t t e r i n g amplitude neglecting charge-exchange 

( 3 a - H ) 
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where i t is understood that the right side of (3a - H ) i s 

to he averaged over the deuteron wave function (take 

the expectation value). We have thus shown that the 

series of divergent terms can be summed to a f i n i t e result, 

the result (3a-14) having been obtained previously by 

Brue.ckne r . 

Now consider the charge-exchange contribution. We 

could in principle write the graphs to each order as before 

by'.. including extra factors of f and f . However, the 

ce o 

combinations are so many and varied that i t i s d i f f i c u l t 

to see a pattern to each order so that one has trouble 

summing the series proceeding as before. Instead, suppose 

we replace every f in (3a-14) by some factor which takes 

into account a l l ways to scatter from a Tl on a p to a 

TT, " off a p with any and a l l possible f and f
Q
 scatterings 

in between. That i s , replace the vertex 

s Tl f 

by the sum of graphs 
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In other words, we have summed a l l paths which start with 

a "ft on a proton with a neutron as a spectator and f i n i s h 

with a T f off a proton and a neutron as spectator, and 

no intermediate elastic scattering (of Tl --*) allowed. 

There i s no similar replacement for the pi-neutron vertex 

because the pion would have to f i r s t e l a s t i c a l l y scatter 

over to the proton before i t couUld charge-exchange, and 

such contributions are accounted for in (3a-15). Suffice 

to say, then, that the series sum including charge-exchange 

and elastic TT ° scattering is obtained by replacing a l l 

f • s in (3a-14) hy the expression (3a-15). We then find 

that the sum of the multiple scattering series including 
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charge-exchange and elastic TT scattering is 

(3a-16) 

The dubious reader is urged to verify (3a-16) to any order 

by expanding the denominator. To the authsr's knowledge, 

(3a-16) is a new result not before obtained. We remark 

that the result (3a-16) is f i n i t e (as i s seen by multiplying 

numerator and denominator by r (1+f
Q
/r); writing the 

expectation value of the resulting quantity with an ex p l i c i t 

deuteron wave function makes the finiteness manifest). 

One curious feature of (3a-16) is the third term in 

the denominator which is not present in (3a-14). In 

practice f i s negative so that the denominator of (3a-14) 

has no zeroes. But the denominator of (3a-16) does have 

zeroes for positive (but small) r so that F , has a pole 
T d r 

when charge-exchange is included. The quantitative ram­

ificatio n s of this fact w i l l be discussed in the end of 

the next chapter. 

In writing our MSG rules we ngglected terms of order 

rn^/n^. They are easily accounted for but we choose not to 

introduce them here because they do not add anything to 

the discussion. Furthermore, since we w i l l see that the 
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choice of constant two-body T matrices is a poor one, 

there i s no point in trying to improve the results for 

the series sum since the sum cannot be so easily eval­

uated for non-constant two-body t*s. 

Although our MSG rules were only written for pions 

on deuterons, i t i s a simple matter to extend them to 

include scattering of a projectile on any size system of 

scatterers, each different from the proje c t i l e . We show 

how to sum the series for scattering on an arbitrary 

nucleus i n the next section. 
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3b.Series Sums for Arbitrary Nuclei 

It i s too cumbersome to try to sum the multiple 

scattering series for an arbitrary projectile striking an 

arbitrary nucleus. However, we would like to demonstrate 

the generality of our method more f u l l y so that the reader 

should have no d i f f i c u l t y ( i n principle) applying i t to 

other series sums. 

Let us br i e f l y review how we summed the multiple 

scattering series for pi-d scattering. F i r s t we summed 

the series of elastic scattering graphs neglecting charge-

exchange. Let us refer to this sum as the skeleton graph 

sum. Next we included charge-ex.ehange scattering by re­

placing the vertex f by the same vertex plus a l l ways to 

charge-ex change and finish with a t\ coming off a p. Last, 

2 

we replaced the vertex product f by the same product 

plus a l l ways to - charge-exchange off a proton,elastically 

scatter a IT
0

 , and f i n i s h with a charge-ex change off a 

neutron producing a proton. 

Now consider "fl" scattering on a nucleus consisting 

of N neutrons, Z protons, where N+Z=A is the total number 

of nuclear p a r t i c l e s . Let's f i r s t sum the skeleton graphs 

( TT -p and ft -n elastic scattering terms only). Assume 
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that the f i r s t scattering occurs on a neutron. There are 

N ways for this to happen so the amplitude for scattering 

on a neutron f i r s t is Nf
Q
. Then the pion can succesively 

stike N-1 other neutrons as many times as i t likes before 

striking a proton. This brings in the factor jj (H
-

0^| 

where r is some average value of r . . , the relative distance 
* 3 

between target particles i and j (see ref.(22)). 

Next there are Z protons to choose from so we get a factor 

Zf / r , and then the pion can strike Z-1 protons any number 

of times before striking a neutron again. This gives a: - -r' 

factor 

-J 
( £ V r ) [ l - H H (30-D 

and i n analogy, the next neutron scatterings bring in a 

factor 

rt 

(3b-2) ( N V r )
t
( - W - l ) k ] " 

Then the factors (3b-1) and (3b-2) come in alternatively, 

on and on. Therefore:tne total amplitude assuming a 

neutron was struck f i r s t i s 
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Similarly, the total amplitude assuming a proton was 

struck f i r s t is obtained from (3b-3) by the replacements 

N<->Z, f£-+l^, which gives 

(3b-4) 

The complete pi-nucleus scattering amplitude at threshold 

neglecting charge-exchange i s the sum of (3b-3) and (3b-4). 

If we want to include f , we can do so by the 

replacement i n (3b-3) and (3b-4) 

z. 
f

p
 f," Nice (3b-5) 

since after charge-exchanging off one proton there are 

N neutrons to choose from for the next (and f i n a l ) charge-

exchange. We could go on to include f
Q
 scattering but 

the technique should be obvious without doing so. The 

reader is warned, however, that including f makes the 

expressions for the series sums very complicated. In 

i e ' 

29 

practice there is l i t t l e need to include f scattering 

because 

See reference (18) for example. 
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and since f as - f at threshold we have f 0. 
n p o 

We f e e l that we have demonstrated our technique of 

summing the multiple s c a t t e r i n g s e r i e s i n s u f f i c i e n t 

g e n e r a l i t y . We remark that the r e s u l t s (3b-3), (3b-4), 

and (3b-5) are new and do not ex i s t i n the l i t e r a t u r e to 

the author's knowledge. I f one p e r s i s t s i n doing nuclear 

physics, equations (3b-3), (3b-4), and (3b-5) may be of 

some use. 
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4.Realistic Pion-Deuteron Calculations 

The preceeding two chapters analyzed pi-d multiple 

scattering for constant two-body T matrices so that gen­

eral features would not be obscured by the f u l l complexity 

of the problem. Now we wish to include those complica­

tions which w i l l quantitatively change the results of 

previous work; i.e., we want to find the scattering ampli­

tude in the threshold l i m i t which we believe to be the 

experimentally observed amplitude (to date no reliable 

experimental value exists but the new meson^facilities 

now in production should soon provide an answer to compare 

with our results). Our approach w i l l be to add in one 

complication at a time, calculating the scattering ampli­

tude anew at each successive step. Finally we discuss 

additional complications and compare our results to pre­

vious calculations in the l i t e r a t u r e . 
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4a.Pi-d Scattering Complications One Step at a Time 

In our previous calculations with constant two-body 

T matrices, we saw that terms beyond third order diverged 

(see (2a-18), for example). However, i f more r e a l i s t i c 

two-body T matrices are used, the integrals associated 

with each order scattering term w i l l be reduced drastic­

a l l y at high intermediate state pion energies due to the 

energy-dependence of the t's. The integrals w i l l then 

be f i n i t e and owing to the smallness of the pi-nucleon 

scattering amplitudes the magnitude:; of each term past 

second order is small compared to the f i r s t and second 

order terms. Therefore our main work w i l l not go beyond 

second order in the multiple scattering series. The results 

for constant two-body T matrices w i l l also only be retain­

ed up to second order for comparison with improved cal­

culations of this section but one should keep in mind 

that for constant two-body T matrices keeping terms only 

up to second order i s not necessarily a good approximation 

to summing the whole series. In the following, we present 

numbers at each stage, but also present a l l stages together 

at the,end in Table ,11 for comparison. 
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A^ For constant two-body T matrices, zero deuteron 

binding energy, equal mass nucleons (m^=m^=m^), equal 

mass pions (m = m ) in the propagator,,the scattering 
IT - Tf/O 

amplitude is (to second order) 

1st 2nd e l . 2nd ce. 1st 2nd e l . i 

where 

1st 

_2nd e l . 

2nd ce.
 r

 , x "\ 

(4a-1) 

The above results come from (2a-16) and Appendix 5. For 

the f's we f i r s t take the scattering lengths (pi-nucleon 

scattering'iamplitudes in the threshold limit) from refer­

ence (7), the Samaranayake and Woolcock data, 

f
n
 = - .143 fm 

f = .118 fm
 ( 4 a

"
2 ) 

P 

f = -.185 fm 
ce 



90 

For the masses we use 

mjj. » 939.0 Mev 

m̂  = (939.6 + 938.3 -2 .2 ) Mev = 1875.7 Mev 

m = 139.6 Mev (4a-3) 

and for ^ l A * ^ using a Hulthen wave function (see Appendix 

3) we find 

<1/r̂ > = .594 f n f
1

 (4a-4) 

and with an S-wave Gartenhaus wave function (see reference 

(21) and ( 4 a-14))
2 9 

<1/r^> = .446 fm"
1

 (4a-5) 

so that with the above values the numerical results for 

(4a-1) are the foilowingt 

Table I: Comparison of Hulthen and Gartenhaus Results for F . 
- IT d 

yHulthen ^Gartenhaus 

\ d 
-.0268 -.0268 

,,2nd e l . 
IT d 

-.0246 -.0185 

„2nd ce. -.0250 -.0188 

with a l l amplitudes above and from here on in fermis. 

The Hulthen and Gartenhaus wave functions are simple and 
accurate enough for our purposes. 
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With the introduction of subsequent complications we do 

not repeat the calculations with the Gartenhaus wave func­

tion except for the l a s t , most complicated case. However, 

we feel the above results give an indication of the further 

reduction to be expected in each subsequent complication. 

B} The f i r s t complication introduced i s to account for a 

pole in the propagator resulting from the unequal nucleon 

and pion masses and the non-zero binding energy of the 

deuteron. That i s , as shown i n Appendix 4,we take the 

propagator G to be 

whe re 

so that 

instead of 

Of course this complication has no effect on f i r s t order 

terms. When the appropriate integral with the new G was 



9 2 

computed, taking the pole into account, the second order 

charge exchange term changed negligibly, becoming 

p
2nd ce

 =
 _

# Q 2 4 8 f m ( 4 a
.

6 ) 

H d 

and the second order elastic term didn't change at a l l to 

three significant figures. Thus the effect of unequal 

masses and non-zero binding is insignificant. 

c 3 The next complication involves the nucleon excitation 

in the propagator (as shown in Appendix 4) so that now we 

have 

E = m. + m - B + m 
n p n -

for charge-exchange and similarly for e l a s t i c scattering. 

We then find a substantial effect with the results 

F 2 f
 6 1

' = -.0166 fm 
trd 

(4a-7) 
_2nd ce. „

1 c c
, „ 

F ^ = -.0168 fm 

Of course the f i r s t order terms are again unaffected. 

D] The next complication arises when we keep track of 

the various reference frames of each scattering event. 
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For example, i f we look at a second order term of the 

multiple scattering series 

T
1 2
 = ̂ S t g (4a-7) 

and choose to evaluate 2 ̂
n

 "
t n e

 pi~cl center of momentum 

A A 

frame, then t-j and t
2
 must also be evaluated in the pi-d 

cm frame. In our previous work we made the very crude 

approximation that the t's are constant in a l l reference 

frames, an approximation which violates Lorentz-invariance 

of the theory. Suppose now we say that each two-body t 
A 

i s constant in the pi-nucleon cm frame; i.e., t^ i s con-

stant in the cm frame of the pion and nucleon i . We want 
A 

to convert t^ from the pi-nucleon i cm frame to the pi-d 

cm frame because the la t t e r i s what must be used in (4a-7) 

and in general for every two-body t of the multiple scatt­

ering series. 

Consider the matrix element 

in which state ^
n
 contains a pion with total lab energy 

(not just kinetic energy) E and nucleon i has total lab 
n 

energy E
N
 and similarly for state X-

m
. Denote the 

n
 m 

corresponding total energies of the pion and nucleon i 
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in their om frame hy putting a (*) over each B. Then 

by reference (15), page 86, equation 112, the conversion 

of the two-body t's from the pi-nucleon cm frame;;to the 

lab frame is given by 

-(X. | t . I X > \
 c
* c* (4a-8) 

In our previous work we used 

C M 

which is a constant, but we should have used 

which is not a constant by (4a-8). (Note that the lab 

frame and the pi-d cm frame are identical in the threshold 

l i m i t ) . It is a straightforward matter to find the various 

energies in (4a-8) from the known momenta of the par t i c l e s . 

We just mention that for simplicity we choose to evaluate 

the E's non-re l a t i v i s t i c a l l y so that we write 
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and similarly for the other E's. 

Let us refer to the application of (4a-8) as the 

inclusion of Lorentz factors. Since this effectively 

makes the two-body t's non-constant i t is appropriate 

to include another complication along with the Lorentz 

factors. Looking back at (1c-30), i s say the pion total 

energy and Eg the struck nucleon total energy (in the p i -

nucleon cm frame). But should E^ and Eg be the energies 

of the pion and nucleons before or after the scattering? 

Actually (1c-30) only holds for e l a s t i c scattering in which 

the energies of the two particles don't change after the 

scattering; that is not the case in multiple scattering 

theory so we have to generalize (1c-30) for inelastic scatt­

ering. The details are covered in Appendix 8 and the 

generalized result is 

(4a-9) 

so that f i s effectively no longer constant but is multi­

plied by the square root of the term in brackets in (4a-9). 
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The application of (4a-8) and (4a-9) changes the previous 

results for the pi-d scattering amplitudes to 

F
1

® * = -.0267 fm 
trd 

?
2nd e l .

 =
 _

> 0 1 0 5 f m
 (4a-10) 

TI d 

—2nd ce. „ .
 A
. „ 

P , = -.0104 fm 
TTd 

The results (4a-10) hold for unequal pion and nucleon 

masses, non-zero binding energy, and nucleon excitation i n 

the propagator, and constant two-body scattering ampli4 

tudes but with Lorentz factors and inelastic scattering 

factors included. 

E ] Now l e t us drop the assumption of constant two-body 

scattering amplitudes and rather f i t the two-body scatter­

ing amplitudes with partial wave phase sh i f t data. As 

a f i r s t step we only include S-waves (the f i r s t term in 

the partial wave expansion of f ) . One usually parameter­

izes the two-body scattering amplitudes i n terms of the 

pion momentum in the pi-nucleon cm frame, but for inelastic 

scattering the pi momentum is different after the scatter­

ing. Therefore to satisfy time reversal invariance the 

parameterization of the f's must be invariant under the 

interchange of i n i t i a l and f i n a l pion momenta. If q
i 

and q
f
 are the i n i t i a l and f i n a l pion momenta in the p i -
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nucleon cm frame then we find that the appropriate quan-

30 
t i t y to use in the parameterization of the f's i s 

q = { V * f Ua-11) 

instead of q^. With the parameterization for the S-wave 

phase shifts given in Appendix 10 we find for the pi-d 

scattering amplitudes 

= -.00760 fm 
TTd 

^2nd e l .
 =
 _

> 0 1 1 5
 (4a-12) 

F
2nd ce.

 =
 _

> 0 1 f m 

fid 

In obtaining the result (4a-12) we work with complex 

scattering amplitudes yet the results written in (4a-12) 

are r e a l . The reason for this i s that we only keep the 

real part of the pi-d scattering amplitude because in the 

threshold limit F ^ must be r e a l . This follows from the 

optical theorem which states that the total cross section 

31 
is related to the forward scattering amplitude by 

3© 
See Appendix 9.~j ' " c 

31 
See reference (27), p.74. 
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In the threshold limit we have q—?>0 so that ImF must 

also vanish in this l i m i t to keep cr f i n i t e . Thus F i s 

32 
real in the threshold l i m i t . 

pj The next complication we introduce is the inclusion 

of P-waves i n the two-body scattering amplitudes (keeping 

the second term of the partial wave expansion). It i s 

unnecessary to go beyond the P-wave terms because the low 

energy contribution from the higher partial waves is 

negligible as one can see from the data. In addition to 

including P-waves we also allow for a spin-flipping term 

in the pi-nucleon scattering amplitude (see Appendices 

1'1 and 12 for our choice of P-wave parameterization and 

our treatment of the spin-flipping term). The s p i n - f l i p 

part of the pi-nucleon scattering amplitude complicates 

the calculations because i t changes the symmetry of the 

intermediate states depending on the total spin of the 

two nucleons after each scattering; nevertheless, care­

f u l l y accounting f o r the proper symmetrization gives the 

same results as not symmetrizing the intermediate states 

This conclusion only follows i f we neglect absorption 
effects} ->like TT d •—>NN—J»Tid. Nevertheless our retention 
of only the real part of F ^ calculated from complex *s 
is admittedly but an ansatz; the appropriate off-shell 
behavior of the f_,

T
*s which guarantees a real F , merits 

^ ^ . j T N ° rrd 
further study. 
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(as in our previous work). The results for P-waves and 

spin - f l i p in the pi-nucleon scattering amplitudes are 

found to he 

P
1

^ » .000229 fm 
nd 

p
2nd e l .

 =
 .

< 0 1 5 5 f m
 (4a-13) 

n/d 

p
2nd ce.

 =
 _

> o u o f m 

TT d 

G] It is well-known that the Hulthen wave function for 

the deuteron is not a good approximation for small r 

(relative position coordinate of the two nucleons). A 

better approximation is obtained with the Gartenhaus S-

wave deuteron wave function (see referenee(21)) of the 

form 

where c
1
 , c^, <x , are a l l constants. With the improved 

Gartenhaus wave function and a l l other previous complica­

tions combined we find 

P 1 ! * = -.00394 fm 
T f d 

p
2nd e l .

 =
 _

> 0 1 1 8 f m
 (4a-1

5
) 

p
2nd ce.

 =
 _

> 0 1 1 g f m 
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The results (4a-15) represent our best estimate of the 

f i r s t and second order terms of the multiple scattering 

series. We have collected the results of each successive 

approximation in Table I I . 

Before we consider other terms of the multiple scatt­

ering series, some remarks are in order concerning the 

single scattering contribution. Looking at the f i r s t 

column of Table II we see an erratic fluctuation of the 

single scattering terms beyond approximation 4 . The impli­

cation i s that we have l i t t l e confidence in the f i n a l 

result (approximation 7) for the single scattering contri­

bution. Let us examine the single scattering contribution 

in each approximation. In approximation 1, each single 

scattering term ( f ^ and f ^ essentially) is one order of 

magnitude larger than either double scattering term, but 

the two single scattering contributions are of opposite 

sign so that when we add them together there is a partial 

cancellation; the total single scattering contribution 

is thus an order of magnitude smaller than either single 

scattering term. The inclusion of Lorentz and inelastic 

factors in approximation 4 has l i t t l e effect i n single 

scattering because there is no integration over interme­

diate states and these extra factors are only important 
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at higher momenta where they out-off the two-body T 

matrices. When we go to approximation 5 there is a con­

siderable decrease in the magnitude of the single scatt­

ering contribution. This results because at low momenta 

(but not zero momentum) the S-wave phase sh i f t s are such 

that the cancellation between f
n
 and f is even greater 

than at zero momentum. For example, at zero momentum 

where the a's are the pi-nucleon S-wave scattering lengths. 

However, at q=68 Mev/c (pion momentum in the pi-nucleon 

cm frame) 

In the range 0^q.<68 Mev/c there i s no experimental data 

for the S-wave phase shifts and we have no idea how to 

extrapolate the phase shifts in this range. It i s pre­

cisely i n this small q range that the major contribution 

to the single scattering terms occurs. If one assumes 

a q
2

^
+ 1

 phase-shift dependence for the l ^ *
1

 -wave phase 

shift for small q then i t is impossible to f i t the S-wave 

scattering lengths and the known phase shifts at q=68 Mev/c 

we have 

f
n
 + f = ( 4 / 3 ) a

5
 + (2/3)a

1
 = -.025 fm 

P 
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21 1 
simultaneously. In other words, q * q for S-waves 

(1=0) so the scattering amplitude i s constant for small 

q; but f
n
+ f i s not constant in the range 0< q< 68 Mev/c 

(as we just showed) and therefore some other (and arbitrary) 

21+1 

parameterization different from q must be chosen for 

the S-wave phase s h i f t s . Therefore the extrapolation of 

the S-wave phase shifts for 0<q<68 Mev/c is; arbitrary 

and we have l i t t l e confidence in our single scattering 

calculation u n t i l the S-wave phase shifts are known better. 

The situation i s not so c r i t i c a l for the P-waves because 

the q
 +

 dependence f i t s the P-wave scattering lengths 

and P-wave phase shifts at q=68 Mev/c simultaneously. 

Since the S and P-wave contributions do not interfere in 

single scattering, we can say with confidence that the 

P-wave single scattering contribution i s (from approxi­

mations 5 and 6, column 1, Table II) 

^ d * (
p - w a v e

) = •000229 - (-.00760) 

= .00783 fm 

The S-wave contribution remains an open question u n t i l 

better (lower energy) pi-nucleon data is available. Note 

that the second order scattering terms are not sensitive 

to our choice of the S-wave phase shifts in the range 
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0 < q. <l 68 Mev/c because there is no delicate cancella-. . 

tion of f + f but rather the contribution looks like 
n p 

f f . Therefore we are confident of our second order 
n p 

scattering r e s u l t s . 
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Table II: F i r s t and Second Order Pi-d Scattering Amplitudes 

for Various Complications, ( a l l F's in fermis) 

'Complications 
»1at 

V w
2nd e l . 

F

ttd 
-2nd ce. 

P
U 2 

1.constant two-
body f's and t's, 
m=m "\ 
n p J 
m =ni V in G 
t\- TJO r 
B=0 J 

-.0268 -.0246 -.0250 -.0764 

2.Same as 1 but 
m An \ 
n^ p 
m /m V in. 
TT T?° 

B/0 J 

-.0268 -.0246 -.0248 -.0762 

3.Same as 2 plus 
nucleon excita­
tion in G. 

-.0268 -.0166 -.0168 -.0602 

4.Same as 3 but 
Lorentz and in­
elastic factors 
i n t's. 

-.0267 -.0103 -.0104 -.0474 

5.Same as 4 but 
f's not constant 
and only S-waves 
in f ' s . 

-.00760 -.0115 - .0115 -.0306 

6.Same as 5 but 
also P-waves and 
sp in-d? 1 ipp ing 
in f ' s . 

+.000229 - .0135 -.0140 -.0272 

7.Same as 6 but 
Gartenhaus Y ̂  

instead of Hul­
then 

-.00394 -.0118 - .0119 -.0276 
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4b.Binding Corrections 

In addition to those terms we have already con­

sidered in the multiple scattering series ( f i r s t , second 

order e l a s t i c , and second order charge-exchange) we must 

comment on those remaining; the f i r s t of these i s the 

binding berrections. 

Looking back at (1d-22), the second order binding 

correction terms are given by 

M n d

' = t
1
(G-g

1
)t

1
 + t

2
(G-g

2
)t

2
 (4b-1) 

The three-body propagator G i s straightforward and is 

given by ( A 4 - 4 ) . The two-body propagators g
1
 and g

2
 are 

a real problem to evaluate in our case, however. One 

defines the two-body propagator g
i
 (i=1,2) by ( l d - 1 3 ) 

with E^ the i n i t i a l (before scattering) energy of the 

incident pion plus nucleon i . Unfortunately the Fermi 

motion of the nucleons in the deuteron allows a whole 

range of i n i t i a l state energies for each nucleon. The 

choice for E^ i n the propagator g^ is therefore completely 

arbitrary and for lack of any information we take E^sm^+m^ 

(note that this is consistent with our choice of E in G 

when we set the binding energy equal to zero). We there­

fore write 
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<H,* - [ £ + (4«^ \ ( j W l -I 

(4b-2) 

and similarly for G-g
2
» replacing the p/2-k in the second 

term by a p/2+k. In G we have summed the kinetic ener- . 

gies of a l l three particles and in g^ we summed the pion 

and nucleon 1 kinetic energies; p is the intermediate 

state pion momentum ( i n the lab frame) and k is the inter­

mediate state relative momentum for the two nucleons (see 

(2a-3)). Note that while the individual terms t^Gt
1
 and 

t-jg-jt-j are divergent for constant two-body T matrices, 

the difference t
l
(G-g

l
)t

1
 is f i n i t e . With the choice 

(4b-2), Hulthen ^ » a ^ constant two-body T matrices 

the contribution of second order binding terms to the 

pi-d scattering amplitude i s 

^2nd bind.
 =
 _

# 0 0 8 1 8 f m ( 4 b
_

3 ) 

accurate to two per cent. Including Lorentz and inelas­

t i c factors i n the two-body T matrices gives a substan­

t i a l reduction due to the cut-off at higher energies 
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( i n the intermediate state) with the r e s u l t 

p2nd bind. m 0 0 3 5 5 f m ( 4 b _ 4 ) 

again accurate to two per cent. Comparing (4b-4) with 

the l a s t column of approximation 4, Table II we see that 

the second order binding c o r r e c t i o n i s l e s s than ten per 

cent of the f i r s t plus second order s c a t t e r i n g terms. 

For t h i s reason and because we are not sure how to choose 

g^, i t was considered unprofitable to introduce any further 

complications i n c a l c u l a t i n g the binding corrections to 

second order. We are only interested i n an order-of-

magnitude estimate. Note that the binding corrections 

become more important f o r tighter-bound n u c l e i (see r e f ­

erence (22)). 
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4c.Higher Order Corrections 

To investigate the contribution of the multiple 

scattering terms beyond second order i t is necessary to 

invoke the constant two-body T matrix approximation. If 

more complicated t's are used (Lorentz factors, phase 

s h i f t s , etc.) i t becomes impossible to sum the series 

analytically and worse than that, the evaluation of third 

and higher order integrals becomes a formidable task. 

We therefore return to the results we obtained for the 

series sum using the MSG rules of chapter 3. 

Fir s t consider Brueckner's well known result (3a-14) 

which neglects charge-exchange scattering. The sum of 

a l l terms up to and including second order is (neglect­

ing binding corrections) 

where the subscript H means we used a Hulthen deuteron 

wave function. Evaluating the series sum (3a-14) for a 

Hulthen wave function we find 

(4c-2) 
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This means that the contribution of a l l terms beyond 

second order is -1.6$ of the f i r s t plus second order 

terms. Therefore in the approximation of neglecting 

charge-exchange the contribution of third and higher order 

terms i s quite small. 

If we include charge-exchange, the sum of the f i r s t 

and second order terms is now 

For the series sum with charge-exchange but neglecting 

f
Q
 scattering, the appropriate expression to evaluate 

i s (3a-16) with f =0 and we find 

In this case the higher order correction is -11.8$ of the 

f i r s t plus second order terms. Including f i n (3a-16) 

gives us for the complete multiple scattering series 
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Now the higher order correction is -23.7$ of the f i r s t 

plus second order terms. As our best estimate of the 

higher order contribution, we evaluated (3a-16) with the 

Gartenhaus wave function instead of the Hulthen to find 

The sum of the f i r s t and second order terms in the Garten­

haus case is 

so that comparing (4c-6) with (4c-7) we find the higher 

order correction i s -19.3$ of the f i r s t plus second order 

terms. This represents our best estimate of the contri­

bution of the higher order terms of the multiple scattering 

series. We therefore conclude (and/or guess) that the high­

er order scattering terms contribute roughly -20$ of the 

f i r s t plus second order terms (not including binding 

corrections) even for non-constant t's. 
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4d.Relativistic Corrections 

A l l our results up to now have been no n - r e l a t i v i s t i c . 

We must therefore estimate the corrections arising when 

the problem is treated r e l a t i v i s t i c a l l y . There is no 

need to modify the deuteron wave function since i t is 

accurate' enough for^i our work here." The Lorentz -and inelastic 

factors in the two-body T matrices could be treated rela-

t i v i s t i c a l l y but the kinematics becomes much more compli­

cated. In addition, the Lorentz factors are ratios of 

energies and so an over-estimate of the energy i n the 

numerator (by treating i t non-relativistically) i s com­

pensated by an over-estimate in the denominator. For 

simplicity and because we do not belive i t to be the 

dominant r e l a t i v i s t i c contribution, we neglect relativ­

i s t i c modifcations i n the Lorentz and inelastic factors. 

By far the greatest effect i s in the propagator. Instead 

of using the non-relativistic energy 

we choose to replace this with the r e l a t i v i s t i c expression 

for a l l intermediate state energies in the propagator so 
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33 
that (A4-4) is replaced by 

P -
 f

V > ^ = ^ C4d-1) 

and E is unchanged. For convenience and because i t has 

l i t t l e effect, we neglect the binding energy and take ..." 

nucleon masses equal (m =m =m„) and pion masses equal 
n p N 

(m =m ) in the propagator. Of course the r e l a t i v i s t i c 
TT o n -

corrections we are making have no effect on the single 

scattering terms. 

With a Hulthen wave function, constant t's, no nucleon 

2 2 % 

excitation ( i . e . , K = (p +m )
u

) and no Lorentz or inelas­

t i c factors we find the results for our r e l a t i v i s t i c 

propagator are 

p
2nd ce.

 =
 _

> 0 5 5 9 f m 

(4d-2) 

The increase over the f i r s t row's results of Table II 

See Appendix 13 for j u s t i f i c a t i o n of this replacement. 
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2 
ia obvious since 1/p dies out more rapidly than i t s 

2 2 % 

r e l a t i v i s t i c counterpart 1/(p +m ) . When we include 

nucleon excitation ( i . e . , use the K of (4d-1)) we find 

F
2

?
d e l

* = -.0224 fm 
1 1 ( 1

 (4d-3) 

F
2nd ce. _

 - > 0 2 2 7
 f

m 

ti d 

Putting more in the denominator of the propagator makes 

the results smaller than (4d-2). When we now include 

the Lorentz and inelastic factors (but treat them non-

r e l a t i v i s t i c a l l y ) the results decrease to 

p
2nd e l .

 =
 _ ^

0 1 2 0 f 

IT d 

F
2nd ce.

 s
 _

 f m 

^ d 

(4d-4) 

Comparing (4d-2) with the f i r s t row of Table II we see 

that the r e l a t i v i s t i c results are 1.44 times larger than 

the non-relativistic counterparts. Comparing (4d-4) with 

row 4 of Table I I , the r e l a t i v i s t i c results with Lorentz 

factors are 1.16 times larger than the non-/relativistic 

counterparts. In other words, the effect of introducing 

r e l a t i v i s t i c energies in the propagator is less s i g n i f i ­

cant when Lorentz and inelastic factors are included. 

This follows because the r e l a t i v i s t i c effects are larger 

at higher momenta and the Lorentz and inelastic factors 
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decrease the high-momentum contribution. If we include 

more detail (phase 3hifts, etc.) we expect the relativ­

i s t i c effects to be even less important. To test our 

b e l i e f s , we calculate approximation 7 of Table II with our 

r e l a t i v i s t i c propagator ( s t i l l neglecting binding energy 

in the propagator, however). That i s , we run the most 

r e a l i s t i c case with our r e l a t i v i s t i c propagator and find 

—2nd e l .
 o r

. ,. 
F , = - .0129 im 

TT d 
—2nd ce.

 M 7 1
 „ 

F , = -.0131 fm 
rfd 

(4d-5) 

These results are 1.10 times larger in magnitude than 

the non-relativistic counterparts (row 7, Table I I ) . We 

therefore conclude that for the most r e a l i s t i c case cal­

culated the r e l a t i v i s t i c second order correction is 

- (-.oil*- 0li<O-t- ( - . 0 l ^ - - * t 3 O 
: — - 9.1% 

of the non-relativistic second order terms. 
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4e.Summary of Corrections and Best Estimate 

We have shown in Table I I , row 7, that the f i r s t 

and second order scattering terms of the multiple scatt­

ering series for pi-d threshold scattering are 

p
1

'^ = -.00394 fm 

p
2nd e l .

 =
 _

> 0 1 1 8 f m
 (4e-1) 

p
2nd ce.

 =
 _ > 0 1 1 9 f m 

Summing the above and taking 10$ of the sum gives the 

second order binding correction 

,
 p
2nd bind.

 =
 _

< 0 0 2 ? 6 f m ( 4 e
_

2 ) 

*nd 

Taking -20$ of the sum of a l l terms in C4e-1) gives the 

higher order correction 

p
high. ord.

 = + > 0 0 5 5 2 f m
 (4e-3) 

n o-

P i n a l l y , taking 10$ of the sum of the second order terms 

in (4e-1) estimates the r e l a t i v i s t i c correction to these 

FIT
 r e l

*
 =

 --
0 0 2

37 fm (4e-4) 
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Adding a l l three terms of (4e-1), (4e-2), (4e-3), and 

(4e-4) gives our best estimate of the pi-d scattering 

length 

_best estimate
 A O

„ -
•nd

 =

 --
02

75 fm (4e-5) 
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4f.Review of Other Pi-d Literature and Discussion 

of Results 

People have teen estimating the pi-d scattering 

amplitude since 1950 and possibly earlier (see reference 

(11) and bibliography therein). In many cases the authors 

were interested i n comparing their results with then-

known pi-d scattering data (above threshold) so their 

results are not directly comparable with those here. We 

therefore w i l l only briefly mention the approaches used 

in such papers. Other papers in which the pi-d scattering 

amplitude in the threshold limit is calculated w i l l be 

discussed in more d e t a i l . 

One of the earliest attempts to obtain the pi-d d i f f ­

erential cross section was performed by Fernback, Green, 

and Watson', (reference (11) ) . They did a very crude e s t i ­

mate by taking the product of the free particle scattering 

amplitudes with an overlap integral of the i n i t i a l and 

f i n a l wave functions to get the di f f e r e n t i a l cross section. 

Thus they neglected double scattering and a l l ramifications 

thereof. In an effort to find the contribution from 

higher order scattering terms, Brueckner (reference (2)) 

evaluated the scattering amplitude by solving the Schro-

dinger equation for the scattering of a fast particle by 

two heavy scatterers. He found the result (3a-14) although 
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his is more general because he allowed arbitrary momentum 

transfer. Of course his result is not very practical 

since i t effectively assumes constant two-body T matrices 

for pi-nucleon scattering. In addition, a serious draw­

back of Brueckner's result is the neglect of charge-exchange 

scattering. It took thirteen years before Wilkin (ref­

erence (26)) pointed out " the necessity of including 

charge-exchange. Wilkin included terms up to second order 

but assumed constant two-body T matrices and his results 

apply only to high energy scattering. Since Wilkin, others 

have evaluated the pi-d 'scattering amplitude (see references 

(24), (14), (3), (23)) at various energies using multiple 

scattering approaches taking more details into account, 

but the results are not comparable with ours since they 

were performed at higher energies. Dispersion relation 

approaches were t r i e d by FUldt (reference (10)) and Schiff 

and Tran Thanh Van (reference (25)) in an effort to treat 

the problem covariantly and also to tackle the d i f f i c u l ­

ties of unitarity . Again their results do not apply at 

threshold so we cannot compare with ours. 

After Brueckner, a paper which, t r e a t s ^ pion-nucleus 

scattering in the threshold limit is that of Moyer and 

Koltun (reference 22)). Unfortunately the lightest nucleus 

they treat is Helium so their numerical results are not 
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comparable with ours. We mention this paper because i t 

treats the binding and higher order corrections i n the 

threshold l i m i t and finds their contribution to be non-

negligible. However, their treatment of the binding correc­

tions is substantially different from ours in that they 

write the difference G-g^ of the binding correction as a 

single operator and solve a Lippmann-Schwinger type equation 

for i t using separable Yamaguchi potentials. Their method 

is therefore closely related to Faddeev equation; approaches 

(see next chapter) as far as binding corrections are con­

cerned. Except for the binding corrections, a l l work 

of Moyer and Koltun assume constant two-body T matrices. 

Note that the sum of the multiple scattering series in 

their paper (equation A9) does not allow for charge-exchange 

scattering of a pion oh a deuteron. 

The most complete calculation of the pi-d scattering 

amplitude at threshold to date is by Kolybasov and Kudryav-

tsev (reference ( 1 9 ) ) . Because they used different p i -

nucleon scattering lengths from ours their results are-: 

somewhat different but the relative effect of each compli­

cation introduced compares favorably with ourivresults. 

For example, when they introduce nucleon excitation i n 

the propagator they find a f i f t y to seventy per cent 

reduction in the magnitude of the double scattering term. 



120 

We find a sixty seven per cent reduction. When they 

include P-waves in the pi-nucleon interaction they find 

the P-wave contribution to be about .thirty per cent of 

the S-wave in double scattering. We find i t to be about 

twenty per cent. The reason for the discrepancy i s mostly 

due to the neglect of Lorentz and inelastic factors in 

their calculations. In addition, they do not use a phase-

shi f t parameterization for their pi-nucleon scattering 

amplitudes. Their results are obtained with a Hulthen 

instead of a Gartenhaus wave function and there is no 

treatment of binding corrections or r e l a t i v i s t i c effects. 

F i n a l l y , they calculate the series sum for constant two-

body T matrices but their final expression is wrong (which 

they state in a note added in proof). There is l i t t l e 

point in comparing their best estimate with ours since 

the result depends on the choice of S and P-wave scattering 

lengths and their choice d i f f e r s from ours. Nevertheless, 

Kolybasov and Kudryavtsev find for their particular choice 

of pi-nucleon scattering lengths 

P = -.047 fm 
trd 

compared to our result 

P.
d
 = -.0273 fm 
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We expect their results to be higher than ours mainly 

because Lorentz and inelastic factors were neglected in 

their calculations and because they used a Hulthen instead 

of a Gartenhaus wave function for the deuteron. 

We stated that our goal was to obtain the pi-d 

scattering amplitude at threshold accounting for a l l quanti­

tatively relevant complications. We believe this goal 

has been achieved within our present knowledge of the pi-

nucleon phase s h i f t s . We have neglected the small D-state 

part of the deuteron wave function and real absorption 

effects (TT d —>2n). Our crude estimates indicate that 

these additional complications w i l l introduce much less 

than a ten per cent correction. We are hoping therefore 

that this thesis puts the final nails in the coffin of 

34 
the pi-d scattering length. 

Attributed to D.S. Beder while groping for the truth. 
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5.The Faddeev Equations and Symmetrization 

Pion-deuteron scattering is a three-body problem. 

In 1960 the Russian mathematician Faddeev published an 

ar t i c l e showing how to solve the three-body problem once 

the two-body T matrices for a l l pairs of particles (three 

35 

pairs) are known. The Faddeev equations are closely 

related to Watson's multiple scattering series since both 

Faddeev and Watson start with the Lippmann-Schwinger equa­

tion. The beauty of Faddeev's approach is that he writes 

an integral equation for the complete three-body T matrix 

solely in terms of free two-body T matrices instead of 

Watson's bound two-body T matrices (the % 's). In addition, 

the Faddeev equations account for scattering of one nucleon 

on the other (for the case of pi-d scattering) and Watson's 

approach only treats scattering of the pion on each nucleon. 

The purpose of this chapter is to quickly review the 

Faddeev equations with particular emphasis placed on 

intermediate state wave function symmetrization. One can 

consider this brief chapter to be a warning concerning 

symmetrization and divergent bubble graphs in the s p i r i t 

of Appendix 6 and section 2b. No attempt w i l l be made to 

solve the Faddeev equations. 

See reference ( 9 ) . 
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5a.Symmetrization of the Faddeev Equations 

Rather than follow Faddeev*s original approach, we 

choose to paraphrase the approach of Hetherington and 

Schick (reference (17)) because theirs demonstrates the 

analogy to Watson's multiple scattering series. 

Let particle*,2 be the pion and particles 1 and 3 the 

nucleons. Then we can write the Lippmann-Schwinger equation, 

(1d-10), for the complete three-particle T matrix as 

T - - V , 4 - V , + ft + V g ^ T (5a-1) 

where the three-particle Green's function i s given by 

(see (1d-16)) 

) 

E - l ^ - l / , , ^ <5a-2) 

Here E i s the total three-particle energy, K is the sum 

of a l l three energy operators (pion, nucleon 1, and nucleon 

2) and "V\ i s the potential between particles j and k with 

j / i , k / i , j/k. One also defines the free three-particle 

Green's function 

& =

 E-K + i ^
 ( 5

~
5 ) 

By the easy-to-follow steps of Hetherington and Schick 
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one quickly obtains the Faddeev equations for the com­

plete three-particle T matrix 

( 5 a - 4 ) 

where 

( 5 a - 5 ) 

ik 
with t ^ and G given by 

= G ( I - ^ 

( 5 a - 6 ) 

( 5 a - 7 ) 

As Hetherington and Schick point out, iteration of (5a-5- ) 

gives the multiple scattering series 

T'J t , i <, t t . + t . C ^ t ^ t . + . . .
 ( 5

a -
8
) 

The point i s that ( 5 a - 8 ) only applies i f the intermediate 

statee/wave functions are not symmetrized. If one tr i e s 

to symmetrize them, the same divergences associated with 

bubble graphs arise that we saw in Appendix 6 . In addition, 

( 5 a - 8 ) doe3 not contain binding correction terms. The 

error i s not in the Faddeev equations as Faddeev writes 
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them hut rather in the way Hetherington and Schick write 

(5a-6). In (5a-6) they have associated the wrong expres-; 

sion with the two-body T matrix, t ^ . The correct associa­

tion i s to write 

* 0~ v O c ) ~ ' v« ( 5 a ' 9 ) 

where a - f c ,
 c
 u- i< . . (5a-10) 

is the energy of particle j , etc., and i t is understood 

that non-symmetrized two-particle states are summed over 

between g^ and whereas in (5a-6) one sums over three-

particle symmetrized states between G and v^. Prom 

Hetherington and Schick, equation (10), one has 

T'"'
 =
 J"..(l-"

f
<0"

ly

- + I-O-^tj'vA^ (
5
a-,1) 

The correct Faddeev equations are obtained by writing 

(5a-11) in terms of the correct two-body t ^ s , (5a-9), 

instead of the incorrect t ^ s , (5a-6). One then finds 

with the help of 
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that the appropriate modification to the Faddeev equations 

as written by Hetherington and Schick i s 

Of course iteration of (5a-13) with t 2=0 reproduces the 

multiple scattering series with binding corrections, (1d-22). 

We urge the reader to remember that (5a-13) is valid for 

symmetrized intermediate states and (5a-5) is not. There 

seems to be no regard to this fact in many calculations 

based on the Faddeev approach. 

In summary then, people who use equation (5a-5) with 

symmetrized intermediate states w i l l not get correct 

numerical results. Worse than that, they w i l l more than 

l i k e l y not even see their errors when they solve the 

integral equations numerically. This follows because i t 

is customary to use separable Yamaguchi potentials in the 

two-body T matrices, t ^ , which f a l l rapidly with increasing 

energy; this in turn suppresses the divergences associated 

35 

with bubble terms. Also, keeping only S-waves i n the two-

body interactions^suppresses the divergences and makes them 

f i n i t e . Therefore, i f Yamaguchi potentials, separable t
i
' s , 

and S-wave two-body interactions are the approximations 

35 
y

 See reference (17), for example. 

(5a-13) 

where (5a-H) 



127 

employed i n solv i n g the Faddeev equations numerically, 

the contributions from bubble graphs (which should not 

be present) w i l l not be overly large compared to other 

proper scattering terms and one w i l l find i n c o r r e c t r e s u l t s 

without r e a l i z i n g i t . 

The point we wish to emphasize i s the following: Use 

equation (5a-5) but do not symmetrize the intermediate 

state wave functions. I f you i n s i s t on symmetrizing i n t e r ­

mediate states, (5a-13) must be used. 
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6. Conclusions 

We have examined pi-deuteron scattering in the •* 

threshold l i m i t , including a l l quantitatively relevant 

features of the problem, we believe. Along the tortuous 

path we investigated the effects of symmetrizing inter­

mediate state wave functions in the multiple scattering 

series and found the results identical to those obtained 

with non-symmetrized intermediate states when properly 

treated. We also found that symmetrizing intermediate 

state wave functions in the Faddeev equations to solve the 

three-body problem leads to incorrect results unless one 

is very careful in interpreting the Faddeev equations. 

The moral here i s , "Don't symmetrize intermediate states 

in the Faddeev equations i f the projectile particle differs 

from the target p a r t i c l e " . We have also demonstrated a 

technique in chapter 3 (using the MSG rules) that allows 

one to sum the multiple scattering series i n closed form 

for any nucleus, taking into account a l l isospin-flipping 

mechanisms in the two-body scattering amplitudes. In par­

t i c u l a r , we applied this technique to TT~-deuteron scattering 

to find the series sum including a l l isospin-flipping terms. 

We also evaluated the series sum for TT~ scattering on an 

arbitrary nucleus of neutrons and protons including charge-

exchange scattering terms. 
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The most important question remaining now i s , "What 

are the pi-nucleon scattering amplitudes at very low v ̂  ' 

energies, especially the S-wave scattering lengths?". 

Our uncertainty in the pi-nucleon scattering lengths 

propagates an uncertainty i n the pi-deuteron single scatt­

ering contribution and therefore an uncertainty in the pi-

deuteron scattering length i t s e l f . We stress, as did 

Kolybasov and Kudryavstev (reference (19)) that the deter­

mination of the pi-nucleon scattering lengths is an imt -* 

portant experimental task. Once these are known we can 

give a theoretically determined value for the pi-deuteron 

scattering length based on ourchoice for the off-shell p i -

nucleon T matrix (a re-calculation of the single scattering 

contribution once the pi-nucleon scattering lengths are 

better known is simple and can then be added to our second 

and higher order res u l t s ) . If our theoretically determined 

pi-deuteron scattering length agrees with the experimental 

value then we can say with confidence that we understand 

the off-shell behavior of the pi-nucleon scattering ampli­

tude. This would be of fundamental importance in under­

standing the complete pi-nucleon interaction and perhaps 

strong interactions in general. 

This question is being asked on April 1, 1973. 
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It is well known (see reference (30)) that one can 

determine the scattering length for pions on l i g h t nuclei 

by observing the gamma ray emissions of pi-mesic atoms. 

One produces a pion bound in a high n quantum number shell 

of an atom and measures the frequency of the emitted gamma 

ray as the pion f a l l s to the lowest orbit (K s h e l l ) . The 

pion in the high n shell is not affected by the strong 

interaction of the nucleus because the pion in this shell 

is farther from the nucleus than the K shell o r b i t . The 

strong interaction does s h i f t the energy of the pion in 

the K s h e l l , however. I f one knows the energy level of 

the high n shell from which the pion f a l l s , the energy of 

the emitted gamma ray is the difference in energy between 

the (unshifted) high n shell and the (shifted) K shell to 

which the pion f a l l s . The energy level shift (due to the 

strong interaction of the pion in the K shell with the 

nucleus) is proportional to the pi-nucleus scattering 

length (see reference (31) ) . Measurement of the level 

shift can be used to give quite accurate values of the 

pi-proton scattering length by applying the above procedure 

to pi-mesic hydrogen. One then finds a level shift of 

about 6 ev in magnitude
4
(to be compared with the n=2 to 

n=1 transition for pi-mesic hydrogen which is 2.77 kev). 

The magnitude of the pi-proton scattering length i s about 
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four times our estimate of the pi-deuteron s c a t t e r i n g 

length so that one expects a l e v e l s h i f t f o r pi-mesic 

deuterium on the order of 1 ev (magnitude). Therefore 

the experimentalist's task i n determining the pi-deuteron 

s c a t t e r i n g length v i a t h i s method i s quite d i f f i c u l t . Note 

al s o that this method w i l l not allow one to f i n d the p i -

neutron sc a t t e r i n g length. 
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Appendix 1: Field-theoretic Two-fermion Propagator 

We wish to show here using field-theoretic arguments 

that the propagator for a two-fermion state only contains 

odd angular momentum states; this means that the Pauli 

exculsion principle applies in intermediate states (as 

well as i n i t i a l and f i n a l states). We use the notation 

of reference (1) throughout. 

The two-particle fermion propagator is 

< M T { f y O T V , ) n * O T > ) l l o > 

where the V 's are Dirac field s ( i . e . , operators) and the 

T operator is defined by 

( 
o 

•o
 X

| (A1-1) 

and the o subscript on the x's means the time component. 

37 
By Wick's theorem 

-^See e.g. reference (1), Vol.11, p.181. 
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where the line connecting two ^ ' s means 

^ ) ^ * , ) = <o\T{ V o c o V ( * o H 4 > 

- ' 5 F O ^ " * . ) ( A i - 3 ) 

which is^the single-particle fermion propagator. The 

Pauli exclusion principle (or equivalently, Fermi-Dirac 

s t a t i s t i c s ) for the ̂ ' s i s contained in 

which applied to (A1-2) gives 

(A1-5) 

For simplicity we neglect the extra bookkeeping of spin 

i n what follows. The propagator is written is terms of 

•50 
i t s Fourier transform as"^ 

(A1-6) 

•3Q 

See equation (1b-4). 
39 ̂
See reference (1), p.95, eq.6.46. 
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and (A1-6) together with (A1-3) allows us to express (A1-2) 

in the form 

d p d f L 

(A1-7) 

The part of (A1-7) in brackets at the end is the desired 

result only odd angular momentum waves propagate. 

Perhaps this is more easily appreciated i f we go back to 
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the o r i g i n a l form of the two-particle propagator 

and draw the diagrammatic correspondence to the above as 

x. 

:x4 x 2 

i n which one of the fermions s t a r t s at l o c a t i o n x„ and 
4 

propagates to l o c a t i o n x^ while the other goes from x^ to 

x 1 . Thus, x3~ x-j i s the r e l a t i v e coordinate between the 

two nucleons and therefore our i n t e r p r e t a t i o n of (A1-7) 

as a statement of the P a u l i exclusion p r i n c i p l e i s confirmed, 



136 

Appendix 2: Deuteron Wave Function Conventions 

The relative coordinate part of the deuteron wave 

function, V ^ C r ) , which we use in (2a-1) is chosen to he 

40 
the Hulthen f ornT 

(A2-1) 

where 

and N is a normalization constant which we now determine. 

The normalization condition for N is given by 

^ i [ C ^ T j V r (A2-2) 

The evaluation of the integral is elementary and we find 

N
* , tltlSX (A2-3) 

The Fourier transform of T/JJ(?) is found via simple 

^See reference (5), p.46. 
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integrations as follows: 

frtK> 

and inverting the Fourier transform gives 

(A2-4) 

(A2-5) 
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Appendix 3: Expectation Value of 1/r 

Our objective is to calculate O / r ^ f o r Hulthen 

wave function of Appendix 2 so that we want to find 

(A3-D 

If we square the term in parentheses above we w i l l have 

a sum of three separate integrals to evaluate, each of 

which diverges, although as we w i l l see the sum of a l l 

three divergent integrals i s f i n i t e . We therefore proceed 

by writing 

co 

r - oir - R f V i i ̂  

and differentiating with respect to 

<* + £ (A3-2) 

Integrating (A3-2) to get I (e( ,p) back including the constant 

of integration (which we obtain by simple manipulations) 

we have 

K ) L ^ U p 1 C A 3 - 5 ) 
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and (A3-3) back into (A3-1) solves the problem with 

(A3-4) 

where we used (A2-3). 

Using the values of o{ and f} given in Appendix 2 we 

find the numerical value of ^1/r^ to be 

-I 
(A3-5) 
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Appendix 4: Second Order TJnsymmetrized Calculations 

Our goal here i s to obtain (2a-14) starting from 

(2a - l 3 ) . F i r s t write the separate matrix elements of 

(2a-13) with the aid of (2a-2) through (2a-7). For the 

f i r s t term of (2a-13) we can write 

^ I S J ^ - ^ V J A r eC^'R e " f ^ 

(A4-1) 

where we only consider e l a s t i c scattering (for charge-

exchange replace t by t ) . Integrating over R eliminates 

-> H> 

the delta function,^integrating over r and r^ produces two 

more delta functions, and integrating over k^ eliminates 

one of these two new delta functions (just as we did i n 

section 2a for single scattering) so that 

• 3 , 
(A4-2) 

where we set p fe = P^ = 0 (threshold l i m i t ) . 

Similarly for the third term of (2a-13) we find 



H 1 

with p = P =0. The appropriate propagator term of 
"a 

(2a-13) i s 

( A 4 - 4 ) 

where £ = % + = + m^- B) + n%-

B>0 i s the binding energy of the deuteron, and i t 

is understood that the integral is evaluated in the limit 

*\—3>0. Now we make the approximation of neglecting the 

kinetic energy terms of the two nucleons in K, take m
n
=nip, 

and neglect the small binding energy of the deuteron. Then 

(A4-4) becomes: 
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and integrating over a l l the coordinates immediately pro­

duces three delta functions according to 

Referring back to (2a-13) , we multiply (A4-2) , (A4-3) , and 

(A4-5) and integrate over the intermediate states to write 

- —> -»> -5> 

Integration over the four momenta p , P , k , and P 
u m m m n 

eliminates four delta functions and one i s l e f t with 

(A4-7) 



H3 

i-;It is customary to write the integral i n coordinate 

space rather than momentum space so we proceed to write 

the integrand of (A4-7) in terms of i t s Fourier transform. 

F i r s t write the wave functions in terms of their trans­

forms according to (A2-4) to convert (A4-7) to 

V ( ? ' ) e i ( i f e + k V ? ' ( _ J V ) 

Integration over k gives a delta function and integration 

—>/ 

over r eliminates this delta function so that we get 

Now observe that 

Putting (A4-9) hack into (A4-8), integrating over p*to 

produce a delta function, and integrating over r*
/

 then 



H 4 

gives?the result 

A < T k i ^ l ! ^ ) = - u , ) \ t „ t f l !

( ^ ^ ) 

(A4-10) 

Invoking the statements directly preceeding equation (2a-H) 

we obtain for a l l the double scattering terms 

^ (A4-11) 

which i s just (2a-14). 
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Appendix 5: Conversion of the T matrix to the Scattering 

Amplitude for F i r s t and Second Order Terms 

To convert the T matrix (2a-14) to the corresponding 

scattering amplitude, use (1c-30) and (1c-16) to write 

and use of (1c-30) once more for the t's gives 

( s t ^ ^ y ^ * ^ )
 U 5

"
1 ) 

and taking
 m

 fag
 a s

 negligible compared with unity we 

reduce the above to 

The single scattering terms (2&-11) and (2a-l2) are 

converted to their corresponding scattering amplitudes 

using (1c-30) to immediately obtain 

P 1 s * ' "L I 1 (A5-3) 
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where in keeping with the approximations of section 2a 

we have set m̂  = m̂  = m̂ . Again throwing away negli­

gible terms, (A5-3) reduces to 

KV -
 f

n •
 f

p <A5-4> 

and cominging (A5-2) with (A5-4) we get the desired pi-d 

scattering amplitude to second order 
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Appendix 6t Second Order Symmetrized Calculations 

We derive here the DCE contribution to the T matrix 

with symmetrized wave functions neglecting binding correc­

tions. Start with (2b-7) and calculate each term separ­

ately. Using (2b-1) write 

and using the results of Appendix 4 we get 

Similarly, 

( A 6 - 1 ) 

fl ce 

r 

The symmetrized propagator is 
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-9 -9 

(A6-3) 

Combining (A6-1), (A6-2), and (A6-3) with (2b-7) yields 

and performing the integrals just as i n Appendix 4 we find 

*
u /

> tcl | .
A
 . . 1 . 3 

(A6-4) 
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The f i r s t integral in brackets i s just the one of (A4-7) 

so we can replace i t as in Appendix 4. The second inte­

gral is reduced by substitution of variables f i r s t to 

write 

trin ' 

and since the wave functions are normalized, 

3 

Thus, (A6-4) is reduced to 

< v
f c

| t i
t t

H " l O - l - ^ ] ( - % ) 

(2b-8) 
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Appendix 7: Pi-nucleon Scattering Lengths 

We wish to show here how the results (4a-2) are ob­

tained from the data of reference (7). One usually writes 

the pi-nucleon scattering amplitudes in terms of the iso­

spin 3/2 and isospin 1/2 scattering amplitudes, f ^ / 2 

f
n
y

2
 (e.g., reference (13) , p.49) 

f - f - - f 
n = TT" n —̂ TT n ~ 3/2 

*
p
 s ' ^ - p - d / 5 ) ( M

1 / 2
 • * ,

/ 2
i 

J~2 
f

ce =
 f

n - p ~ ^°n
 =

 3
 (f

3/2 "
 f

1/2
) 

(A7-1) 

In the notation of reference (7), ^5/2
 S a

3*
 f

1/2
 3 a

1 ' 

and according to their tables* (m^ = 1 . 4 H fm) 

a
1
 - a

5
 = (.277)(1.414 fm) = .392 fm 

a
1
 + 2a

5
 = (-.026)(1.414 fm) = -.0367 fm 

implying. 

a_ = - .143 fm 
3 

(A7-2) 
= .249 fm 

which together with (A7-1) immediately gives (4as2). 
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Appendix 8: Relation Between the T Matrix and the 

Scattering Amplitude for Inelastic Scattering 

We wish to generalize equation (1c-30) to include 

inelastic scattering. Combining (1c-23) and (1c-24) we 

get for inelastic scattering 

M e * * 

— » 

— + 1 

I 2. 

- I 

where unprimed :p»s and B's denote before scattering and 

primed denote after scattering. Using (1c-25) and the 

phase'^established i n section 1c we get the desired result 

4 - ' (an)1 T 

which i s just the result (4a-9) written in s l i g h t l y d i f f e r ­

ent notation. 
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Appendix 9: Phase Shift Momentum-Dependence for 

Inelastic Scattering 

It i s customary to expand the two-body scattering 

41 
amplitude f i n p a r t i a l waves by writing 

where q is the momentum of either particle in the twofbody 

cm frame, the ^ are the phase s h i f t s , P^ are Legendre 

polynomials, and © is the scattering angle in the cm frame. 

Unfortunately (A9-1) only applies for ela s t i c scattering 

since we don't know whether to use q^ or q^ ( i n i t i a l and 

final)')or what for inelastic scattering. Whatever we use 

for q in the inelastic case, i t must be some combination 

of q^ and q
f
 that is invariant under the interchange of 

both these momenta so that time reversal invariance i s 

s a t i s f i e d . Our goal i s to find the appropriate combina­

tion of q
i
 and q

f
 that replaces q in (A9-1) for inelastic 

scattering. 

In the notation of reference (4), section 103, the 

equation 103.13 states that 

4 1

See e.g., reference (27), p.69, eq.3.4. 
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* ~ J < C ( 0 e"' b ' r V ( r , ? ) £ ( f ) e 5 ^ < « - « 

in the Born approximation ( i . e . , to f i r s t order in the 

Born s e r i e s ) , where 0 is the wave function of the target 

(subscripts a and b refer to i n i t i a l and f i n a l ) , V is the 

interaction potential, r and k are the coordinate and 

momentum vectors of the projectile, and |" are the target 

coordinates. I f we assume V i s separable so that 

V ( ? , ? ) - - V ( ? ) Y ( f ) U 9 _ 5 ) 

equation (A9-2) becomes 

{ - L K f O T W O j ? } y
{ K

~
K )

%\
 (A9

.
4) 

Treat the term i n brackets above as a proportionality ".T 

factor independent of the k's and l e t 

K - i t - ^ 

which allows us to re-write (A9-4) as 

V ^ i . J « " V ( ? ) i \ 
~ 1 

(A9-5) 

(A9-6) 
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For simplicity and keeping in mind that we are dealing 

with strong interactions, take for V the Yukawa potential 

v ( ? ) = v 8 £ " r

 ( A 9 . 7 ) 

r 

where V
Q
 and <X are constants. Then we can integrate (A9-6) 

using (A9-7) to obtain 

where COS 6 - * | 

For small k
&
 and k^ (low energy scattering) we can neglect 

2 2 2 
the terms k

&
 and k^ compared to oL (but keep the cos© 

term to preserve the angle dependence). Then we can write 

(A9-8) by expanding the denominator as 

J k j i f * ? + ( * M k £ ^ , . . ] ( A 9 . 9 ) 

Looking back at (A9-1), the phase shifts are usually par-

H-H (A9-10) 

42 
ameterized by writing 

42 
See reference (6), p.306, eq.16-98. 
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so that (A9-10) into (A9-1) gives f o r small 

°° -2>£ o r„-r /s \ (A9-11) 

0~o 0 

Keeping only the lowest power of q (small q) i n each fac-
l 

t o r of (cos©) we can write (A9-11) as 

I 

and comparing each (cos©) term i n (A9-12) and (A9-9) we 

make thei a s s o c i a t i o n 

or i n our o r i g i n a l notation 

l ^ h U
 ( A 9

-
1 5 )  

But when ^=4^ we must have q=q^ so that the proportion­

a l i t y f a c t o r of (A9-13) i s determined and we can write 

the f i n a l r e s u l t f or i n e l a s t i c s c a t t e r i n g 

O ^ - P ^ - M ™ = J q T L ( A 9 - H ) 'effective ~ M * j * f 

Notice that ( A 9 - H ) i s inva r i a n t under the interchange 

of q^ and q^ as i t must be. 
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Appendix 10: Pi-nucleon S-wave Phase Shift Parameters 

I f T denotes the total isospin quantum number of a 

pi-nucleon state (T=3/2 or 1/2) i t i s customary to expand 

the two-body pi-nucleon scattering amplitude for each 

43 
value of T by writing 

r t'°
 K f

 ( A 1 0 - 1 ) 

where / \ f
L
 = - L f I ^ ' ^ H ] (A10-2) 

and means j = /±:^. (We are neglecting spin-flipping 

mechanisms for now). The lj • s are called absorption 

coefficients and the & •s are the phase s h i f t s . It is 

also customary to re-label the $*a and r| 's to include 

the total angular momentum quantum number j as well as 

the orbital angular momentum quantum number X and the 

total isospin quantum number T. One uses the spectro­

scopic notation S,P,D,F, etc. for JL =0,1,2,3, etc., 

respectively, and writes 

I 
t 

43 
See reference (18) for example. 
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Keeping S-waves means that we only keep the Z =0 term 

of (A10-1). The phase s h i f t s and absorption coefficients 

we use are polynomial f i t s to the TJCEL tables (reference 

(16)), and in particular we choose the data of Kirsopp. 

It was found necessary to consider momenta up to 1000 Mev/c 

to make our integrals convergent„to one per cent accuracy. 

To be more s p e c i f i c , squaring the momentum-space deuteron 

wave function (A2-4) and integrating over k, i t i s necessary 

to integrate out to k=1000 Mev/c to get within one per cent 

of the integral evaluated out to i n f i n i t e k. We l i s t the 

parameterization employed as follows: 

0^ q-̂  100 Mev/c: ( a l l S's in degrees) = 

S
n
 = (-5.95x10"

6

q
2

 + 5.3x10~
4

q + 7.25x10"
2

)q 

S
5 1
 = (-1.66x10"

6

q
2

 + (1.4lx10~
4

q -4.15x10~
2

)q 

1 1 1 = ^ 3 1 = 

100^ q< 200 Mev/c: 

S
n
 = 2.5xlO~

2

q + 4.1 

S
5 1
 = -7.7x10~

2

q + 3.3 

I n = n 3 1 = L O O 

200< <i< 300 Mev/c: 

S
n
 = 1. 1x10~2qr-iv 6.9 

S
3 l
 = -9.3x10"

2

q + 6.5 , »|
 1 1
 = rj ^ = 1.00 
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3 0 0 £ q<4-00 Mev/c: 

S
n
 = 1.16x10"1q -24.6 

S
3 1
 = -7.1x10"2q -.1 

^
 1 1

 = -9.0x10~4q + 1.27 

Vj
 5 1
 = -7.0x10~4'q + 1 .21 

4 0 0 i q ^ 500 Mev/c: 

S
1 1
 = 2.93x10"1q -95.0 

S
3 1
 = -3.3x10"2q -15.3 

*\
 T 1
 = -5.2xlO"5q + 2.99 

/}
 5 1
 = -4.0x10"3q + 2.53 

500 £ q ̂ 600 Mev/c: 

S
n
 = 5.59x10"1q -229 

S
3 1
 = -3.22x10"1q + 129 

Y\
 n
 = 3.2x10"5q -1 .21 

r\
 5 1
 = 1 .3x10"\ -.12 

600 £ q < 700 Mev/c: 

S
n
 = 2.57xiO~1q -48 

S
5 1
 = -6.0x10"5q -60.4 

*l
 n
 = 3.0x10"4q +.53 

H 5 1 = 2.4x10"3q -.78 

700£q<800 Mev/c: 

S
1 t
 = 1.58x10"1q + 22.7 
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S
3 1
 = 9.4x10 "q -131 

^
 n
 = 1.00x10"

4

q + .75? 

5 1
 = -4.0x10"

3

q
 +
^ 3 n 

800^q< 1000 Mev/c: 

S
n
 = -3.35x10~

1

q + 417 

S
5 1
 = -2.48x10"

1

q + 143 

^
n
 = -7.0x10"

4

q + 1 .23 

^
 5 1

 = -3.5x10"
5

q + 3.3 
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Appendix 11: Pi-nucleon P-wave Phase Shift Parameters 

In analogy with Appendix 10, we l i s t here the P-wave 

=1i) absorption coefficients and phase s h i f t s . The 

change i n notation appropriate here is 

5 

S. = P. 
3 

, + ^ i i * - ta 

and we again f i t the TJCEL tables (Kirsopp data) with 

polynomials i n q. The parameterization is as follows: 

P
n
 ( i n degrees) = (-1.83x10~

6

)q
5

 , 0 £ q ^ 1 0 0 Mev/c 

1.00, 1 0 0 £ q < 200 Mev/c 

1.74x10"
6

q
3

 -6.85x10"
2

q , 2 0 0 £ q< 400 Mev/c 

4.35q. -89 , 4 0 0 £ q< 600 

172 , 6 0 0 £ q < 1000 

I n
 = 1 , 0 0

 » 0£ t q < 300 Mev/c 

-7.0x10"
5

q + 3.1 , 3 0 0 £ q < 4 0 0 Mev/c 

1.0x10"
5

q-.1 , 400 ±q_-^ 600 Mev/c 

-4.2x10"
5

q + 3.0 , 6 0 0 £ q < ^ 700 Mev/c 

2.74x10"\ -1.84 , 700 ̂  q < 1000 Mev/c 
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13 0.0 , 0 £ q ^ 200 Mev/c 

-3.0 , 200^ q< 300 Mev/c 

-5.0 , 300£ q< 600 Mev/c 

-10.0 , 600^ q< 1000 Mev/c 

1 1 3 = 1.00 , 0 £ q^ 500 Mev/c 

-1.69x10"
5

q + 1 .85 , 5005 q<£ 1000 Mev/c 

31 -7.90x10~
7

q
5

 , 0^q^100 Mev/c 

-1.14x10"
4

q
2

 + 3.3x10"
3

q , 100^ q* 500 Mev/c 

-26.8 , 500£ q< 700 Mev/c 

- T H 8 q + 77 , 7 0 0 £ q < 1000 Mev/c 

1 31 1 33 1 .00 0 £ q < 400 Mev/c 

, -3 
-1.02x10 ''q + 1.41 , 400 <q<^ 1000 Mev/c 

For P^^ the appropriate momentum dependence i s well-known 

from Chew-Low theory (see reference (27), page 233, eq.8.22) 

and i s given by 

where «j~s is the total center of mass energy. We again 

have the problem of inelastic scattering so i t i s most 

convenient to parameterize Js" in terms of q. The choice 
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>fs = 1.5x10"\
2

 + .32(1 + 1078 

gives a reasonable f i t to the data out to q=500 Mev/c 

and for higher momenta the P ^ phase s h i f t is f a i r l y 

44 
constant out to 1000 Mev/c so we take 

p^
5
 = 172 degrees, 5 0 0 £ q-^ 1000 Mev/c 

44 

given 
The inelastic scattering is handled by taking q = q

 f f 

ven in (A9-H) in the <fa parameterization. 
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Appendix 12: Treatment of Spin-Flipping Mechanism 

We show here how to treat the added complication when 

spi n - f l i p terms are included in the pi-nucleon scattering 

amplitudes. Unfortunately we w i l l go through considerable 

effort to find the s p i n - f l i p contribution (up to P-waves 

only). 

The most general pi-nucleon scattering amplitude 

45 
must have the form 

oO 

where the prime on P^ denotes derivative with respect 

to cos©, q
fe
 and q

&
 are unit vectors in the direction of 

the i n i t i a l and f i n a l pion ( i n the pi-nucleon cm frame), 

*~
=

 ^^1'^2'^3^ i s tiie 1 > a u l i s P i n matrices written as.-.a 

three-component vector, the A's are given by (A10-2), 

and |a^ and |b^ are the i n i t i a l and f i n a l nucleon spin 

states. Compare (A12-1) with (A10-1) which neglects the 

sp i n - f l i p terms. I f we only keep the terms up to P-waves 

in (A12-1) we have 

45 
See reference (18), p.28, just below eq.2-24. 



164 

XT 

where 

4 < t ( A + B ^ - ( | u x ^ ) K > ( A 1 2 . 2 , 

The spin state | b^ must be the same as | â >
:

 ;be-

cause i n the threshold limit no energy i s available to " 

f l i p spins. Therefore there can be no spi n - f l i p contri­

bution i n the single scattering terms since i n i t i a l and 

f i n a l spin states are the same. Now write a typical 

second order term 

where in writing the proportionality we do so because 

we are only concerned with spin and angular variables, 

not momenta and energies (this w i l l become clearer l a t e r ) . 

Then substituting (A12-3) i n the above (with the appro­

priate conversion from f to t) gives 
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< t i t , Ct J O < x < M A , 4 8 , * f , ) U > 

where A
1
 , A

2
> B

1
 , are "the same as (AT2-3) hut with the 

appropriate kinematic factors to convert the scattering 

amplitudes to the corresponding two-body T matrices, 

and
 a r e

 ̂
D

-
e

 pion directions in the cm of pion and 

nucleon 1 and 2, respectively, in state ]n^. 

Now we evaluate the necessary kinematic factors of 

(A12-4) n o n r e l a t i v i s t i c a l l y . Let us f i r s t l i s t a l l lab 

frame momenta and velocities (as determined by (2a-3)) 

as follows: 

~*> 

lab momentum of pion i n state lb> - Ptr = fvv \L -O 

lab momentum of pion i n state l a ^ ~ Y
v
 ~ M -O 

' ' "A, Tl Tl^ 

lab momentum of pion in state Ln>- PIT - m^V 



166 

(continued from previous page) 

lab momentum of nucleon 1 in state (ri^>-|? - — (fn
n
 + ̂  ̂  

lab momentum of nucleon 2 in state |n) - ̂
x
 = ~ (EHo--'k^^ 

2-

(A12-5) 

where we used |> = -p i n (2a-3). Then the velocity of 
n 

the cm of pion and nucleon 1 in state )n> i s 

1
 -

 ±
 - (A12-6) 

and the velocity of the cm;of pion and nucleon 2 in state 

fcO i s 

• rv> + rv,., " _ i (A12-7) 

so that by definition and using (A12-5) through (A12-7), 

the q * s in (A12-4) are 
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With (A12-8) we can perform the required cross products 

of (A12-4), hut note that we want cross-products of unit 

vectors so that a l l vectors in (A12-8) must be divided 

by their magnitudes before taking cross products, com­

plicating the work. Thus, using (A12-8), 

- " ( ^ ( t v - i o fo 
—~> 

To proceed, define - " f^- k
n
 f f>

n 

(A12-9) 

so that 

If we pick an arbitrary direction of p and integrate 
*n 

over i t this i s equivalent to picking an arbitrary direc-

tion of p xk and integrating over i t . So we write 

Integration over £ gives zero for the i and j terms and 

integration over o{ gives zero for the k term. The mag­

nitudes q.j , q
2
, q

&
, q^ depend on 9 but not on <* or (3 and 

the same is true for a l l other kinematic factors in (A12-4) 

Therefore integrating the second and third terms of (A12-4) 

(A.jB
2
 and B

1
A

2
) over angular variables gives zero just as 
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above, using (A12-9). The f i r s t term of (A12-4) i s the 

one we have already evaluated when we did the non-spin 

f l i p case. It remains to evaluate the last term of (A12-4) 

to get the s p i n - f l i p contribution. 

Consider the expression 

-t- (A12-10) 

and consider also the integral 

(A12-11.) 

where the subscripts 1 and 2 mean^the operator only operates 

on the f i r s t or second part of the two-nucleon spin states, 

and the notation 

M i ) 

means both nucleons have their spins up (along the axis 

f =0), 

( ? ) ( » 

means nucleon one i s spin down and nucleon 2 spin up, etc. 
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In (A12-11) we have chosen 

u > u > = ! ( ' o ) f t ) > 

since the spins of the nucleons are parallel (spin 1) in 

the deuteron. The only possible intermediate spin state 

\n.y i s | ( ^ m ^ s i n c e each spin operator in (A12-11) only 

operates once on each nucleon. Then putting (A12-10) i 

into (A12-11) we have 

The contrihution of the sp i n - f l i p part of (A12-4) i s thus 

whereas the non-spin-flip contribution is 4nA
1
A

2
 (the 

4T1 comes from integrating over o< and Q ) . Numerical 

integration of these two contributions over G, p , and 

k shows the s p i n - f l i p part to be negligible. 
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Appendix 13: Re l a t i v i s t i c Propagator 

We would like to justify the r e l a t i v i s t i c replace­

ment (4d-1) in the propagator for the non-relativistic 

(A4-4). For convenience we w i l l consider a two-particle 

propagator of spin-zero particles. I f p^ and p
2
 are the 

four-momenta of each particle then we want, to show that 

the non-relativistic propagator 

is more correctly replaced by 

where E^ is the i n i t i a l total energy of both particles and 

for convenience we take the mass of the particles equal. 

Prom f i e l d theory the propagator for a single scalar 

spin-zero particle i s 

pi-mN-ife f x - i w -
 ( 1 T a

v r ' ( A 1 3 - 1 ) 

Por two spin-zero particles the propagator is just the 

product of the single particle propagators 

( A 1 3 - 2 ) 
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A t ^ h i g h e n e r g i e s t h e d e l t a - f u n c t i o n p a r t o f t h e p r o p a g a t o r 

d o m i n a t e s s o we w r i t e 

& ( f / j f i ) ^ H f r ^ ) 5 ( f \ - " 0 (A15-5) 

D e f i n e t h e t o t a l e n e r g y b y 

„ h e r e E , O f - r + ^ ) ^ E l < | P , l v

+ ^ ) 4 

a n d s i m i l a r l y f o r t h e i n i t i a l s t a t e 

I n t e r m s o f S ' we h a v e 

( A 1 3 - 4 ) 

s o t h a t ( A 1 3 - 4 ) a l l o w s u s t o r e - w r i t e t h e t w o - p a r t i c l e 

p r o p a g a t o r ( A 1 3 - 3 ) i n t e r m s o f S 7 

U s ' - l E ^ - a ^ E ^ i f , - ^ ( A 1 3 _ 5 , 



172 

Now use the Cauchy integral formula (write a dispersion 

relation) 

( A 1 3 - 6 ) 

s ' - s 

where the contour C i s appropriately chosen within the 

limits of Cauchy's theorem. Performing the integral over 

the delta functions i n ( A 1 3 - 5 ) we obtain 

(A13-7) 

We can neglect the P-j'P2 term in the denominator since 

i t s average over angles gives zero. We are then l e f t with 

o< I - ! i 
•> ' ( W ^ ) 

and the right-most factor i s just for normalization so 

that we obtain our desired result 

The careful reader w i l l note that the result ( A 1 3 - 8 ) only 

holds for high energies since ( A 1 3 - 6 ) can only be used i n 

conjunction with ( A 1 3 - 5 ) for large values of S
±
; that i s 
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the integrand of (A13-6) is peaked for Senear S
i
 so i f 

is small the major contribution to (A13-6) may not 

come-from, large s', i n which case (A13-5) may not be appro­

priate. We therefore take (A13-8) as a very heuristic, 

hand-waving result but believe i t to be close to r e a l i t y , 

nevertheless. One could test our belief by using the 

f u l l propagator (A13-2) in (A13-6) but we leave that task 

to the reader. 

One can proceed analogously for three particles 

instead of two and treat two of them as spin % Dirac 

particles with similar results. The general conclusion i s 

that non-relativistic energies in propagators get replaced 

by their r e l a t i v i s t i c analogs. 


