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ABSTRACT 

The ability of the GBKO Stark broadening theory to predict 
the position of the mean of a plasma spectral line is exper-
imentally investigated for three isolated neutral helium 
lines at electron temperatures of about 1.5 eV and electron 
densities in the region of (0.5 to 2.0) x 10 1 6 cm"3. General 
agreement was found between experimental and theoretical 
shifts of the mean of the lines Hel 5016, Hel 4713 and Hel 
3889 from their unperturbed wavelengths. 

A semi-empirical relationship is derived which gives the 
shift of the mean in terms of the electron impact width, w, 
and shift, d, as well as in terms of the ion-broadening 
parameter, a, and the Debye-shielding parameter, r: 

AX = [ — ± 4.la(1 - 0.5r)]w . w 

This relationship estimates the shift of the mean within 5% 
of the width, w, over the ranges 0 < a < 0.4 and 0 < r < 0.8. 

The shifts in the means of the observed lines were measured 
by a new technique employing a linearly varying neutral 
density filter mounted in the exit plane of a monochromator. 
This "wedge technique" has a wide range of possible appli-
cation from steady state to pulsed conditions for observa-
tion of Doppler shifts, van der Waals shifts, Stark shifts 
or Zeemann shifts. It requires that the line is reasonably 
isolated and it is useful when the shift to width ratio is 
either large or small. A complete discussion of the technique 
is presented along with the important design criteria for 
linearity, resolution and sensitivity. 
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INTRODUCTION TO THE THESIS 

Considerable effort has been expended by physicists study-
ing the effects of Stark broadening on the profiles of 
plasma spectral lines. This has been justified through 
expanded insight in the realm of atomic interactions as 
well as through the creation of valuable diagnostic tools 
for the study of laboratory plasmas and stellar structures. 

For the latter of these two uses, a significant portion of 
the total effort has focused on extraction of the half-
intensity widths of the spectral intensity distributions. 
The reason is that the extracted width provides a single 
parameter which probes the condition of the plasma, avoid-
ing the complicated need to fit a full experimental profile 
at many points to establish the same results. 

By comparison, however, extraction of the accompanying 
Stark shifts of the distributions for the same diagnostic 
purpose has been almost ignored. This, of course, is no 
simple oversight. Two significant problems have coupled 
to discourage more vigorous pursuit of this facet of the 
general topic. They are: 

a) Most Stark shifts are difficult to measure 
accurately since the shift is comparable to 
or smaller than the Stark width for many plasma 
lines; 

b) The calculated shifts (extracted from theoretical 
profiles) are less accurate than the correspond-
ingly calculated widths. 



As a result, experimental plasma physicists have preferred 
line width measurements as a means of determining electron 
density and temperature in plasmas. Theoreticians, in 
turn, have sought more vigorously to improve the accuracy 
of the width calculations since these have been received 
with the most wide-spread interest. 

On the other hand, several features make shift measurements 
more appealing to the experimentalist than line width 
measurements. They are: 

a) Shift measurements are not as severely affected 
as width measurements by the instrument function 
of the monochromator used to examine the line; 

b) Fewer plasma processes contribute to the shift 
of a spectral line than contribute to its width. 
Among "these are: self-absorption, thermal 
(Doppler) broadening and resonance broadening. 

Yet, as appealing as these features make them, the prac-
ticality of using Stark shifts measurements as a diagnostic 
technique is still diminished by the two problems mentioned 
earlier — difficulty of shift measurement, and unreliable 
calibration data. This work is a response to both of these 
objections. 

To offset the first of the objections, a technique is 
developed and presented in this thesis which can very 
accurately measure a shift in the mean of a spectral line 
even when the shift to width ratio is much less than unity. 
In addition, the technique — called the "wedge" technique 
— is experimentally simple and practical to use. Its 
applicability extends beyond the detection of Stark shifts 
to any mechanism which will cause a shift in the mean of 
the spectral distribution. 



The second objection to the use of Stark shifts as a plasma 
diagnostic tool provides the motivation for the other part 
of the work presented in this thesis. If accurate shift 
measurements can be made under conditions of known electron 
temperature and density, the true accuracy of shift calcu-
lations can be determined. The result will be that these 
will either be trusted to a greater degree or that any 
revealed discrepancies between calculated and measured 
shifts will inspire theoreticians to hone their considera-
tions and offer more reliable figures. 

These two parts of the work are presented in two distinct 
parts of the thesis. The investigation of Stark shifts of 
neutral helium lines is presented in Part 1, while because 
of its general applicability, the wedge technique is 
presented separately in Part II. It is hoped that this 
format will more adequately accommodate the range of 
interest that readers may have. 



PART I - MEASUREMENT OF STARK SHIFTS 

CHAPTER 1-1 INTRODUCTION 

This part of the thesis is devoted to the measurement of 
the Stark shifts of three isolated neutral helium lines 
under known plasma conditions. The intent of the experiment, 
as expressed in the Introduction To The Thesis, was to test 
the accuracy with which Stark broadening theory — in this 
case the *GBKO theory — will predict the shift in the mean 
of a plasma line. Thus, the experiment consists of measur-
ing the shifts of the spectral lines produced by these 
conditions and comparing these with the shifts predicted 
by the GBKO theory. 

As a source, an atmospheric plasma jet was used. This 
provided a steady, reproducible plasma whose regular 
spatial inhomogeneity covered a convenient range of plasma 
conditions. Helium was chosen as the working gas because 
of its heavy theoretical attention, its interest to astro-
physicists (helium is a main constituent in stellar atmos-
pheres) , and its tractability in the jet. 

Several spectral lines of the helium jet were studied 
spectroscopically to obtain the spatial distributions of 
electron density and electron temperature. Then, using 
the wedge technique (described in Part II of this thesis), 
the spatial distributions of the Stark shifts of these 
same lines were measured, correlated with the coincident 
plasma conditions, and compared with calculated shifts 
over the same conditions. 

*Griem, Baranger, Kolb and Oertel (1962) 



The first chapter in this Part describes the obtaining of 
local spectral line profiles. This is the most important 
procedural aspect of the experiment since all later meas-
urements derive from these results. Consequently, this is 
a very detailed chapter and probably will prove tedious for 
a casual reader. However, in order to obtain a reasonable 
understanding of the experiment it is advisable to read the 
first part of Chapter 1-1. It will then be possible to 
skip immediately to the last chapter of Part I and still 
retain an overall understanding of the experiment. 

The interim chapters of Part I (as the steps in the experi-
mental sequence) follow logically and document the complete 
experiment. Their contents and the justifications for 
their presence are obvious from their titles. 



CHAPTER 1-2 OBTAINING LOCAL EMISSION PROFILES 

A. GENERAL APPROACH - ABEL INVERSION 

All of the spectroscopic measurements used in this experi-
ment to obtain the spatial distributions of electron density, 
electron temperature and Stark shifts, required a knowledge 
of the emission profile* for each chosen spectral line at 
various local points in the plasma. However, all actual 
observations of these spectral lines do not directly yield 
local emission profiles. Instead, one observes intensity 
profiles which are composites of the local emission profiles 
due to the unavoidable integration along the line of observa-
tion through the plasma. Obviously, this complicates the 
manner in which emission profiles are obtained. Fortunately, 
it does not prevent their acquisition. 

Under most operating conditions (except very low currents), 
the flame produced by a pi-asma jet is cylindrically .symmetric. 
Thus, all the properties of the flame — including electron, 
ion and neutral densities and temperatures — which in 
general would be specified by functions of the form 
f(r,z,9), (where r,z and 0 form a cylindrical coordinate 
system as shown in Figure 1-2.1) can be written as functions 
without the 0 dependence: f(r,z). In this experiment, since 
all measurements were taken at a fixed z position (just at 
the surface of the anode), the z dependence will not be 
shown explicitly. Instead, it will be taken as understood 
that the functional form f(r) specifies plasma conditions 
at the anode (z = 0). 

* The word "profile" is used to indicate the intensity 
distribution of a spectral line as a function of 
wavelength. 



Plasma Jet in the Slit 
Plane 2=0 

Figure 1-2.1 
EXPERIMENTAL COORDINATE SYSTEM 



With this condition of cylindrical symmetry (and fixed z), 
it is possible to relate the observed intensity profile i^Q(y,X) 
of a spectral line (power per unit area per unit wavelength 
per unit solid angle for the line with nominal wavelength 
A0 when the acceptance cone of the optical system looking 
through the jet is a distance y from the cylindrical axis 
of symmetry) to the local emission profiles for the same 
line, e. (r,X) (power per unit volume per unit wavelength A o 
per unit solid angle), through the integral: 

i, <y,A> = 2 
r 0 

(r2 - y 2)? 
y 

e, (r,X)rdr 
Ao 1-2.1 

where r Q is a radius that specifies the outer limit of the 
flame where the emission has fallen to zero. 

Obtainment of emission profiles from the observed intensity 
profiles means inverting Equation 1-2.1. This is accomplished 
by the well known Abel transform (Griem, 1964) : 

e. (r,X) = - i Ao TT 

r 0 
i' (y,X)dy 
— ^ t— 1-2.2 
(y2 - r 2 ) 2 

r 

where the prime (') indicates the derivative with respect 
to y. 

It is obvious from the limits of the integral in this last 
equation that to retrieve the emission profile at one 
radial position, r, intensity profiles must be observed from 
y=r out to y=rQ. A complete "set" of intensity profiles for 
0<y<ro must be observed to obtain the on-axis emission pro-
file e, (0,X). This complete set then suffices for recovery 

A o 
of all emission profiles 0<r<ro. 



Thus, the experimental procedure for taking a complete set 
of spectroscopic data would consist of the following steps: 

1. Position the jet so the acceptance cone of the 
optical system just grazes the outer limits of 
the flame (y=rQ); 

2. Scan the observed intensity profile by recording 
the photomultiplier output voltage at various 
wavelengths; 

3. Reposition the jet so the acceptance cone passes 
some distance in toward the axis from the outer 
edge of the flame (y<rQ); 

4. Scan the observed profile; 

5. Repeat steps 3 and 4 until y<0. 

The number of observed profiles, the number of points per 
profile, the types of profiles and their spatial dependence 
will determine the accuracy with which the emission profiles 
can be obtained. 

The complete set of data consists of a field of voltage 
readings, v. ( y , \ ) , which are linearly related to the Ao 
intensity profiles by the absolute response of the apparatus, 
k. . This response is assumed to be independent of y and X A 0 
over the region of the line: 

= kXo VXo ( Y' X ) 1-2.3 



This field of voltage readings forms a surface over the y-X 
plane as illustrated in Figure 1-2.2, which, if unfolded 
along lines of constant wavelength using Equations 1-2.2 
and 1-2.3, produces a new field of voltages, u. (r,X), 

A o 
which forms a surface above the r-X plane as indicated in 
Figure 1-2.3. The local emission profiles are obtained 
from this new field by the relation: 

e, (r,X) = k, u, (r,X) 1-2.4 A o A o A o 

by considering the curves as a function of wavelength at 
constant radius. 

It can be seen now that the experimental procedure is 
broken into two fairly distinct operations. The first 
involves the experimental procedure and apparatus used to 
record the observed intensity profile voltages; the second 
involves the software techniques for handling the resulting 
data and applying the Abel transform to obtain local emission 
profiles. 

These two operations will now be described in detail for 
interested readers. Those who are willing to accept the 
fact that local emission profiles are reliably obtained 
and who are not particularly concerned with their precise 
method of obtainment can ignore these sections and proceed 
immediately to either Chapter 1-3, or to the last Chapter 
without interruption of essential scientific continuity. 



Figure 1-2.2 - OBSERVED INTENSITY PROFILES 

Figure 1-2.3 - LOCAL EMISSION PROFILES 



B. DATA RECORDING 

The spectral lines were observed using a Spex 3/4 meter 
monochromator with a nominal (universe) dispersion of 

o 
10 A/mm in first order. The monochromator had an additional 
"scanning plate" mounted between the camera mirror and the 
exit slit which, when rotated, displaced the image of the 
spectral line in the wavelength direction. (See Figure 1-2.4) 
A lever of length L, (=1 m.) connected at one end to the 
axis of rotation allowed very accurate rotation of the plate. 
For small angles, 6 s J,/L the distance moved by the end of 
the scanning lever, I, was linearly proportional to the 
amount of sideways displacement, d, of the line image and 
therefore, linearly proportional to the wavelength setting 
of the monochromator. 

d a t h i - h Ij n 

where: t is the thickness of the scan plate and 
n is the index of refraction. 

At the end of the scanning lever was a slide which made 
contact with a Nichrome potentiometer wire (resistance 
0.75 ohms/in.) with enough current running through it to 
allow the voltage of the slide to vary from zero to 1 volt 
over its full motion. This voltage provided a means of 
monitoring the wavelength setting of the monochromator. 

One of two Pyrex windows of thickness 0.130 in. or 0.242 in. 
were selected as scanning plates depending on the wavelength 
sensitivity and range required. The thinner of the two 

o 
plates gave a wavelength sensitivity of 0.31 A per inch of 
scan lever displacement at the potentiometer wire, allowing 

o 
a total observable range of 3.7 A. .(A total range of 12 



Figure 1-2.4 
SCHEMATIC OF MONOCHROMATOR 
SHOWING SCANNING PLATE AND LEVER 



inches of lever motion kept the angles small, assuring linear 
voltage response to the wavelength scale within 1% at the 
extreme excursions of the lever.) The thicker scan plate 

o 
gave a sensitivity of 0.58 A per inch for a total range of 
7.0 A. 

The scan plates were selected to give adequate range out into 
the wings of the spectral line under examination. The thin 
plate was used to scan Hel 3889 while the thick plate was 
used for Hel 5016 and Hel 4713. When wider lines were en-
countered (such as H d and Hel 4921) it was necessary to scan 

p 
using the grating screw because of the much wider ranges 

o 
required (-30 A). In this case, a rotary potentiometer was 
mounted colinear with the grating screw and served the same 
purpose as the slide-wire potentiometer on the scanning 
lever. 
Because the additon of a scan plate extended the focal point 
of the mono.chroma.tor, it was necessary ..to .re.f.ocus the 
instrument each time the scan plate was changed. This was 
easily and very accurately accomplished using an exit slit 
and photomultiplier assembly mounted on a slide mechanism 
which allowed screw adjustment of its position. When in 
good focus with equally wide entrance and exit slits, the 
instrument had a transmission function which was (roughly) 

o 
triangular with a (full) half-width of .23 A. 

For immediate, in-progress viewing of a particular scan, the 
wavelength monitoring voltage from the slide wire (or grating 
screw) potentiometer was connected to one input of an XY 
plotter while the voltage across the load resistor of the 
photomultiplier was connected to the other input. This resulted 
in direct plots of the line profile being scanned. 



The main apparatus for recording line profiles was a digital 
magnetic tape recording system. This consisted of a custom 
designed interface controlling a MOS-FET six channel scanner, 
a Fluke 3200A sampling digital voltmeter (DVM), and a 
Kennedy 1600 seven track incremental digital magnetic tape 
recorder. The system functioned in the following manner 
(see Figure 1-2.5): 

A thumbwheel switch on the interface front panel selected 
the number of channels (one to six) to be scanned. The 
equivalent number of voltage sources to be monitored were 
connected to the inputs of the scanner. The single output 
of the scanner was connected to the input of the scanning 
DVM whose binary coded decimal (BCD) outputs were connected 
through the interface to the digital magnetic tape recorder. 

Upon -command to scan (via a front panel switch), the inter-
face opened the first transmission gate of the scanner, 
thereby connecting that voltage input to the input of the 
DVM. A signal from the interface then triggered the DVM 
to sample its analog input (with a sample aperture of 500 
usee.), convert it to digital form and store it in a buffer 
memory as eight BCD characters. The interface then serially 
recalled each character from memory, recorded it as one 
byte on the magnetic tape and then advanced the tape one 
increment. When all 8 bytes were recorded, the interface 
closed the first transmission gate, opened the second and 
repeated the entire process. Each input was thus sampled 
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Scan Control 

en 
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Figure 1-2.5 
SCHEMATIC OF RECORDING APPARATUS 



and recorded. When the selected number of channels were 
recorded, the procedure was repeated beginning with channel 
1 again. This continued until the command to stop was 
received by the interface. 

The maximum recording rate, set by the maximum, incremental 
rate of the magnetic tape (750 bytes/sec.), was approxi-
mately 94 readings (channels) per second. Hence, if only 
4 of the 6 possible channels were used, each would get 
sampled at a rate of about 23 sec"'1". (Since scans of the 
selected number of channels could be initiated individually, 
the minimum record rate was arbitrary.) With a tape density 
of 556 bytes/inch, the longest tape (1200 ft.) that would 
fit onto the recorder allowed 10 readings to be recorded. 
This capacity was never needed for this experiment. 

For recording the line profiles in this experiment, 4 
.channels were ..used. The information monitored on each was: 

Channel 1 - Jet Current (voltage across the arc 
current shunt) 

Channel 2 - Jet Position (voltage on a potentiometer 
monitoring the y-position of the jet.) 

Channel 3 - Wavelength (scanning lever slide voltage) 

Channel 4 - Spectral Line Intensity (output voltage 
of the photomultiplier tube) 

A profile was obtained by setting the position of the jet 
(y)t starting the recording apparatus and slowly moving 
the scanning lever from one extreme position to the other, 



Scans were obtained from the edge of the flame first, 
then, successively, (in increments of about .010 in.) from 
points toward (and beyond) the axis of the flame. Usually 
about 12 scans were taken of each line with approximately 
300 points per profile. In addition, a scan of the Geissler 
line was made. A file gap (triggered by a switch) on the 
recorder front panel) was inserted between each profile. 
Two or more successive file gaps marked the end of data 
on the tape. 

C. DATA HANDLING 

The 7-track magnetic tape containing the experimental 
profiles was delivered to the computing centre where its 
data was decoded, sorted and translated 'into binary 'numbers 
suitable for numerical operations. This resulting data 
was labelled and collected from each experimental run on 
a 9-track tape which remained at the center. The 7-track 
tape was returned for reuse in the experiment. 

Each experimental profile consisted of a number of inten-
sity (photomultiplier output voltages) points which were 
unequally spaced in wavelength. In order to apply the 
Abel inversion along y at constant wavelength it was 
first necessary to transform each of the profiles into 
an ensemble of intensity points which were equally spaced 
in wavelength. This was done using a linear interpolation 
procedure between the closely spaced, recorded points and 
resulted in profiles each with 300 equally spaced points. 



The intensity was then plotted as a function of y at 
several wavelengths to obtain the y position of the jet 
axis. Once obtained, a value of r (the radius where the 

o 
intensity fell to zero) was chosen and at constant wave-
length twenty intensity points equally spaced in y were 
obtained by piece-wise quadratic interpolation of 12 to 
16 points. To these points, Barr1s (1961) method of Abel 
inversion was applied to give an equivalent number of 
radial emission points at constant wavelength. 
Radial emission curves (not profiles) were unfolded succes-
sively at every second wavelength point of the equally 
spaced observed profiles. This meant 150 applications of 
the interpolation and Abel inversion program per line 
examined. 

Once all of the inversions were complete, the emission 
profiles were obtained by plotting o.ut the unfolded emission 
points along wavelength at constant radius. These points 
were held in disc storage, available for immediate compu-
tation and were also stored on another 9-track magnetic 
tape as a back-up precaution against accidental destruction 
of the disc storage. 

The Geissler line profile, as well as the jet current, 
were obtained by the appropriate print-out from the initial 
decoded data. 



D. TESTING THE SYSTEMS 

The equipment was thoroughly examined using known voltages 
to assure that the signals were being reliably recorded. 
Also, the maximum wavelength scan rate was determined to 
assure the lines were not being scanned faster than the 
system would follow. This was limited, not by the record-
ing system itself, but by the integrating capacitors used 
on the photomultiplier to reduce noise. Occasionally, if 
the scan lever was inadvertently jerked in the region of 
high gradient in intensity, a capacitive "jag" would appear 
in the unfolding program. However, these could be kept to 
a tolerable level with good technique, a smooth-running 
scan lever and minimum capacitance. 

The most important source of uncertainty in the unfolded 
emission profiles arose through the data handling and 
inversion programs. To make some estimate of this effect 
several checks were made. 

Firstly, the linear interpolation technique for "spacing 
out" the observed profiles was examined by plotting an 
unequally-spaced profile over its equally-spaced descendent. 
No difference in the profile could be observed at an accur-
acy of 1%. 

Secondly, the Abel program (Barr's technique) was used to 
unfold several "observed" distributions which had analytic 
unfolded distributions. (See Bracewell, 1956 for a con-
venient list of these.) As Barr states in this paper, 
the technique works well except where sharp breaks occur 
in the folded intensity distribution. This is done 



purposely to aid in smoothing noisy data and considerably 
improves the on-axis results over other techniques. How-
ever, since a sharp break usually comes were the observed 
intensity falls to zero, this technique tends to over-
estimate the emission at outer radii. This property of 
the technique, usually negligible in its importance, has 
an important effect on the measurements of this experiment 
which will be discussed shortly. 

To get an overall idea of the ability of the software 
system to accurately unfold emission profiles, a third 
and more complete test was made. It began with the 
"manufacture" of a set of twenty unfolded, Lorentian 
emission profiles with widths, shifts and intensities that 
varied with radius in a manner similar to the most severe 
conditions encountered in the experiment. 

These profiles were integrated numerically along the 
"line of sight" at constant wavelength as given by Equation 
1-2.1 to obtain a set of twenty folded intensity profiles. 
Half of these (every other one) were then used as a set of 
"observed" profiles to which the entire interpolation and 
Abel inversion program was applied following experimental 
procedure. The resulting unfolded emission profiles were 
then compared with the original ones. 

The results of this test showed very satisfactory repro-
duction of the original data on-axis, but a deterioration 
in reproduction with increasing radius. At larger radii, 
the emission profiles obtained by the unfolding program 
showed a definite spurious broadening. This is displayed 
in Figure 1-2.6. The source of this error is the over-
estimation of the emission in the region where the inten-
sity falls to zero as described above. Since the wings 



of the outer lines lie in the region where the intensity 
is changing rapidly to zero, they are over-estimated and, 
consequently, the emission profile is broadened. This 
effect will later be referred to as "program" broadening 
where it causes width measurements at outer radii to be 
unreliable. 

The unfolded shifts and total intensities were both found 
to compare with the original values within 5% out to a 
radius of r = 0.065 in. with accuracies of about 2% on-axis. 
At larger radius, the effect of program broadening tended 
to over-estimate the total intensity as well as introduce 
an asymmetry into the line profile. 
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CHAPTER 3 - PLASMA CONDITIONS 

The atmospheric helium plasma jet (see Figure 1-3.2) has 
become a very common plasma source for experiments at the 
University of B. C. Consequently, its construction, design 
and general performance are well documented (Morris, 1968; 
van der Kamp, 196 8; Baldis, 1971; Stansfield, 1971; Morris, 
1972) and would be unnecessarily repeated here. The precise 
conditions under which the jet is run will, however, vary 
from experiment to experiment and therefore do need docu-
mentation. 

Hence, during experimental operation, the jet was monitored 
closely to assure stable and reproducible conditions. Then 
the electron density and the electron temperature were 
determined to provide the known plasma conditions under 
which the Stark shifts of several spectral lines were also 
-determined. 

A. EXPERIMENTAL OPERATING CONDITIONS OF THE PLASMA JET 

The operating conditions presented in Figure 1-3.1 apply 
within the stated accuracies to all subsequent measurements 
reported in this thesis. 

Anode Dimensions (see Figure 1-3.2) 
Cathode Position (see Figure 1-3.2) 
Cold Gas Flow Rate 12.0+,tliters/min. 
Current 200 + 20 amps. 

Figure 1-3.1 
OPERATING CONDITIONS OF THE HELIUM PLASMA JET 



The arc current was supplied entirely by a bank of 12 
lead-acid batteries. Four batteries were connected in 
series (forming a group) and three of these groups then 
connected in parallel. The resulting bank had a nominal 
voltage of 48 volts, (depending on the state of charge) 
and the capability of producing a flat, direct current 
with a fall rate of about 2 amps/min. at a discharge 
current of 200 amps. Because of the time required to take 
one set of data, this fall rate produced the only source 
of uncertainty in the current as quoted in Figure 1-3.1. 
Following each experimental run, the batteries were re-
charged using a rectifier type d.c. welding supply. 
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B. ELECTRON DENSITY MEASUREMENTS 

Since the general spectroscopic procedure of the experi-
ment yielded local emission profiles for the observed 
specral lines, and because of the well trusted calibration 
data, line broadening was chosen as the means of determin-
ing the spatial distribution of electron density in the 
plasma jet. 

In order to use the H (4861A) line width as a direct and 
p 

independent measure of electron density, a small amount 
of hydrogen (0.1% of He flow) was mixed with the cold 
helium flow. The line was easily detected and broad 
enough that the instrument width of the monochromator was 
negligible except at the very extremities of the flame. 
The observed intensity profiles were recorded and unfolded 
to obtain the local emission profiles according to the 
procedure detailed in Chapter 1-2. The widths of the un-
folded emission profiles (see Appendix I, Figure AI-1) 
were then used to calculate the radial distribution of 
electron density, ne(r), using Figure II-l in Appendix II. 
These results are presented in Figure 1-3.3. 
Although the emission profiles were determined to a much 
greater accuracy than is apparent from the width measure-
ments, uncertainty in determining the half intensity 
value was caused by an equivalent uncertainty in estimat-
ing the background level. This background — due to the 
wing of the nearby strong line Hel 4 921 — changed signi-
ficantly over the observed region of H^. Near the center 
of the jet where HeI4921 was strongest and H widest, this 

8 
uncertainty was largest. Toward the edge of the flame, 
the uncertainty became much less important. This situation 
is expressed by the large on-axis error bars for the H 6 points on Figure 1-3.3 which (for H ) represent absolute 

p 
limits of uncertainty. 
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Future measurements using this technique can avoid the 
background difficulty by scanning the same wavelength 
region with and then without the added hydrogen. 
This will allow very accurate determination of the back-
ground level and will significantly reduce the uncertain-
ties in n near the axis, 

e 

To assure that the addition of hydrogen had no significant 
effect on the electron density of the plasma, both of the 
lines Hel 5016 and Hel 4921 were examined with and without 
the added gas. Since the widths of both of these lines 
are quite sensitive to electron density, changes in their 
widths with and without hydrogen would reveal any changes 
in electron density due to the addition of hydrogen. It 
was found that the amount of hydrogen added for scanning 
H e , the width changes of these lines indicated a reduction p 
in electron density of less than 3%. With a large in-
crease in the amount of hydrogen added, significant re-
duction in n was observed, 

e 

However, no quantitative data for this observation were 
taken. 

A very nice feature of the H line is the fact that its 
p 

width is (very nearly) independent of electron temperature 
making its width alone a direct measure of electron den-
sity (see Appendix II, Figure AII-1). Since this feature 
is also displayed by Hel 5016 (as can be seen in Appendix 
II, Figure AII-2), it too was used as a direct measure 
of n (r). The line was scanned, unfolded, the half-
widths measured at various radii(see Appendix I, Figure 
AI-2) and the resulting widths translated into the radial 
distribution of electron density using the values of 
width as calculated by Griem (Figure AII-2). These points 
are also plotted on Figure 1-3.3 along with the values 
determined from H c. 



The major contribution to the error bars for the Hel 5016 
points come from the uncertainty in the electron tempera-
ture. The size of the error bars reflects the limitation 
on the assumed temperature range (2,500 °K to 20,000°K). 
This allows a generous margin for error as will be seen 
in the section following. 

For radii greater than about .055 in., the width of Hel 
5016 estimates a much higher electron density than H . 

p 
This is to be expected since both instrument broadening 
and "program" broadening become a problem as the width 
of Hel 5016 is reduced in the cooler regions of the 
flame. (Both of these broadening mechanisms have been 
considered in the last section of Chapter 1-2.) In these 
cooler, outer regions of the flame, H is a much more 

p 
reliable measure of electron density and therefore, the 
values obtained from Hel 5016 were rejected. On axis, 
however., the determinations of n^ by both methods -agree 
as expected with Hel 5016 giving the least uncertain re-
sults . 
With these considerations in mind, the most reasonable 
distribution of electron density was chosen and is in-
dicated by the solid line in Figure 1-3.3. 

To have complete faith in these measurements of ng(r) 
(and in some of the following temperature measurements), 
it was necessary to dispel the possibility that another 
mechanism was broadening these lines to a significant 
degree. Beside the instrument and "program" broadening 
mentioned earlier, the only real possible culprits 
could have been self-absorption and van der Waals 
broadening. Resonance broadening was ruled out because 
none of the states of the lines examined is connected 
to the ground state by an allowed transition thus dis-
allowing any resonant interaction of the excited neutrals 
with ground state neutrals. Both Doppler and natural ' 



broadening can be dismissed with a hand-wave because of 
the overwhelming effect of Stark broadening under the 

o 
conditions encountered in the jet (w^ , < 0.1A: w . ,< 

J v Doppler natural 
0.001A; w s t a r k , 1A). 

The magnitude of the contribution to the line widths due 
to van der Waals broadening was estimated according to 
Griem's approximation using a neutral temperature of 

1 o _3 
5,000°K and a neutral density of 10 cm . The resulting 

- 2 ° 

(full) half-width was of the order 10 A and thus was con-
sidered negligible in comparison with the Stark contri-
bution to the line width for all of the lines examined. 
The degree of self-absorption was examined for each line 
by two methods. Firstly, using approximate plasma con-
ditions , the optical depth at the center of each line was 
calculated (using Griem's formula) and compared with the 
scale length (1 mm) of the plasma jet. For all of the 
lines examined in this work, the ratio of optical thick-
ness to plasma scale length was less than 0.1 indicating 
that observed line widths were within 3% of the true 
widths of the unabsorbed lines (see Cooper, 1966). 

Since Griem's formulation for the calculation of optical 
thickness involves an LTE assumption which was probably 
not upheld in the helium jet, it was desirable to 
establish by another, independent method that the plasma 
was truly optically thin to these lines. Thus, the 
second technique for examining the extent of self-
absorption was experimental. 



For this purpose, an additional lens was placed on the 
optical axis of the system in such a way as to collect 
light emitted by the plasma into the acceptance cone of 
the monochromator but in the opposite direction. A mirror 
then directed this light back through the same lens and 
plasma into the collecting lens and monochromator 
(see Figure 1-3.4). Each spectral line was scanned with 
and without the rear optics and the ratio of the two 
signals calculated over a number of points along the 
profile. 

Appreciable self-absorption would have been detected as 
an increase in this ratio in the region of the line center 
as compared with the same ratio for the wings of the line. 
With a measurement accuracy of 2%, no change in this ratio 
was observable for all of the lines used in the experiment. 

In both of the above --tests, the--strong line Hel 5876 showed 
measurable self-absorption. Consequently, it was not 
chosen as an experimental line. In retrospect, this was 
an oversight since the shift of this line could neverthe-
less have been measured. The results of this measurement 
would have been interesting because of the exceptionally 
strong temperature dependence that the shift of this line 
exhibits. 
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C. MEASUREMENT OF ELECTRON TEMPERATURE 

One of the attractive features of using Stark shifts 
(as opposed to widths) as a diagnostic technique derives 
from the rather strong temperature dependence displayed 
by the shifts of some spectral lines. 

The feature is, of course, the possibility of using the 
shifts as a measure of electron temperature, especially 
in the lower temperature range (T < 30,000°K) where 
other techniques become limited. 

This feature has two ramifications for the present exper-
iment. Firstly, it means that some estimate of electron 
temperature is required before any reasonable conclusions 
can be made about the accuracies of calculated shifts. 
Secondly, it means that the number of techniques available 
for measuring T^ will be fairly restricted since this is 
•most certainly in -the low range-<menfci-oned earlier. 

In fact, to be very pessimistic, the list of spectroscopic 
techniques which cannot be used is quite long: 

1. Since no continuum radiation is observable in 
the helium plasma, absolute continuum, rela-
tive continuum or line to continuum measurements 
are ruled out; 

2. Since no Hell lines are observable, measurements 
of relative intensities of Hel and Hell lines 
are impossible; 



3. With maximum upper level energy separations of 
only about 0.5 electron Volts for the observ-
able Hel lines, relative intensity measurements 
using these lines result in temperatures with 
intolerably large uncertainties; 

4. Since Stark broadening is the overwhelming 
mechanism determining the shapes of the spectral 
lines, there is no hope of extracting the 
Doppler component as a means of measuring the 
neutral atom kinetic temperature. Even if this 
were possible, one would still be left with 
the difficult task of relating this temperature 
to the kinetic temperature of the electrons. 

Before considering the techniques that are still available 
for measuring T^ in this plasma, it will be useful to 
extract one piece of information from the absence of 
observable Hell radiation. 

Assume the line Hell 46 86 could not have been observed 
had its peak intensity given a system response of 1 mil-
livolt. Assume also, that its (half) half-width was 

o 
about 0.5 A. (Both of these assumptions over-estimate 
the presence of the line.) The peak on-axis response of 
the line Hel 5876 was about 2 volts and its (half) half-

o 
width was about the same (0.5 A). Since the relative 
response of the system for the two regions of the spectrum 
(4686 to 5876) was about 2, the maximum total intensity 
ratio of the two lines (I4686//I6876^ w a S t* i e o rder 
10 According to Mewe (1967), for an electron density 

1 6 - 3 
in the region 2x10 cm , this puts the maximum electron 



temperature at about 20,000°K. Thus, one can conclude 
that the absence of observable Hell radiation indicates 
the electron temperature is below 20,000°K. 

Without the presence of continuum or Hell radiation, two 
possible spectroscopic techniques are left for determin-
ation of the radial distribution of T . They are: Stark 
width measurements at known electron density; and the 
absolute measurement of total emission coefficients of 
Hel lines. 

The Stark widths of some neutral helium lines depend much 
more strongly on electron temperature than others. For 
the lines observed in this experiment, Hel 3889 and Hel 4713 
were used for this purpose. The measured widths of these 
lines (see Appendix I, Figures AI-3 and AI-4) were trans-
lated into electron temperatures using Griem's calcula-
tions (loc.cit.) and the measured radial distribution of 
electron density (Figure 1-3.3). 

As with the widths of Hel 5016, the near-axis temperatures 
derived from Hel 4713 can be considered reliable while 
the predominantly "program" broadened emission profiles 
for larger radii gave temperatures that were too high. 
Consequently, only values close to r=0 are presented in 
Figure 1-3.5. 

The line Hel 3889, being much narrower than Hel 4713, 
o 

is slightly broadened by the instrument function (0.2 A) 
even on-axis. This introduces a systematic error which 
tends to slightly over-estimate the on-axis temperature. 
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This is taken into account with the placing of the error 
bar for the on-axis value plotted in Figure 1-3.5 as ob-
tained from this line. Since the width of Hel 3 889 becomes 
insensitive to T g beyond 12,000°K, the upper limit of this 
error bar cannot really be established. Its termination 
at 20/000°K is allowed, however, by the absence of Hell 
lines as previously argued. The off-axis temperature 
determinations are not used from this line because of the 
increased effect of instrument broadening plus the addition 
of "program" broadening. 

At this point, even though the determination of T £ is 
sketchy and certainly not spatially complete, it can be 
concluded that the maximum (on-axis) electron temperature 
falls in the region 8,000°K<T < 20 ,000°K. 

- e -
The other technique available for determination of T g was 
the absolute measurement of total emission coefficient 
for a spectral line of known atomic parameters. The 
general procedure for this measurement is to: 

1. Determine the system response, k.. (as defined 
AO 

in Equations 1-2.3 and 1-2.4), using a source 
of known intensity; 

2. Integrate the voltage emission profile to 
obtain: 

o 
1-3.1 

3. Calculate the total emission coefficient 
E ' (r) at radius r by: 

1-3.2 



4. If the emission coefficient for the line is a 
known function of electron temperature, E (T ), 

AO ® 
then the radial distribution of electron temper-
ature, Te(r), can be determined using the 
measured values E , (r). 

A0 
The dependence of the total emission coefficient on electron 
temperature as required in step 4, can in general be ob-
tained by the following equation: 

E (T) = A n (T ) 1-3.3 
X0 e nm m e 

Where: t h e P°P ul a ti° n density of atoms in the 
upper state of the transition (with principal 
quantum number m); 
A n m is the probability (per second) for elec-
tronic transitions from the upper state m to 
the lower state n resulting in radiation at 
wavelength \ 0 • 

Assuming one uses a line for which the transition probab-
ility is well established, the problem of calculating 
the emission coefficient reduces to the calculation of 
the population density of atoms in the upper state of 
the transition. In general, this is not a simple proce-
dure and requires detailed knowledge of the rates and 
cross-sections for many types of plasma interactions. 



To avoid the details of this calculation, one usually 
hopes the dominant plasma processes can be accurately 
approximated by one of the more tractable plasma models 
such as the LTE (Local Thermodynamic Equilibrium) model, 
the Corona model or the CR (Collisional-Radiative) model. 

In high density arcs where collisional processes dominate 
radiative processes, the best choice of those available 
is the LTE model. If this one applies, the principle of 
detailed balance is invoked and the distribution of pop-
ulation densities among the energy levels is determined 
by the laws of statistical mechanics without requiring 
knowledge of atomic cross-sections. Instead, the distri-
bution depends entirely on local values of temperature 
and pressure. 

Under the conditions of complete LTE and known pressure, 
the upper state population density can be calculated by 
using the well known Saha-Boltzmann equation in conjunction 
with Dalton's Law of partial pressures. However, because 
of the large energy differences that characterize the 
helium level structure, it is unlikely, for the low temp-
eratures of the jet, that such a state of complete LTE 
exists. 

In particular, it is unlikely that the ratio of the 
population density of atoms in each excited state to the 
population density of atoms in the ground state can be 
characterized by a temperature in the Boltzmann factor 
which also characterizes the chemical equilibrium through 
the Saha equation plus the total pressure through the sums 
of partial pressures. 



This expectation has been reinforced by two previous 
experiments (van der Kamp, 1968; Morris, 1968), both of 
which indicated that the helium jet could not be described 
by a complete LTE model. 

It is possible, however, that a state of partial LTE will 
exist between the populations of the higher excited states 
of the neutral helium atoms and the population of the 
ground state helium ion — the balance of which depends 
on the temperature of the electrons. This likelihood is 
due to the smaller energy differences involved which are 
roughly the same magnitude of the energy of the electrons. 
Since collisions with electrons is the dominant process 
for excitation and ionization it is the kinetic energy 
(or temperature) of the electrons which characterizes 
the state of equilibrium of the population densities de^ 
pendent on these processes. 

The Saha-Boltzmann equation (see Appendix IV) then gives 
the ratio between the product of the electron and ion 
populations and the excited state neutral population den<-
sities. Since the number of doubly ionized helium atoms 
is insignificant, the electron and ion densities must be 
identical to satisfy charge neutrality. Thus the excited 
state population density for a particular level can be 
determined in terms of the electron density and electron 
temperature. 

Mewe (1967), using data on ionization cross sections from 
Drawin (1964), investigated the accuracy to which the 



excited state population density can be predicted in this 
manner at various values if T and n for levels down to 

e e 
those with principal quantum number 3 in helium. Although 
his table terminates at an electron temperature of 2.75 eV, 
a reasonable extrapolation of his results predicts that 
estimation of the excited state population density using 
this technique should result in an error not exceeding 

15 -3 
about 25% for electron densities in the range 10 cm 

16 — 3 
to 10 cm and down to levels with a principal quantum 
number of 3. 
This estimate is in agreement with Griem's criterion for 
population densities within 10% of LTE which is satisfied 

14 -3 
at T = 1 eV and n g= 1.7x10 cm for all energy levels 
with principal quantum number 3 or greater. 
It is also safe, at these low temperatures, to assume that 
the partition function -for the ion .can be ...approximated 
by the degeneracy of the ion ground state — there being 
little chance of exciting the ion 41 eV to even its first 
excited state with 2 eV electrons. 

Calculations of the excited state population, normalized 
by the degeneracy of the state, (n (T , n )/gm) are 

IU © Q 

presented in Appendix IV. These cover a range of electron 
densities from 5x10"^ cm ^ to 3x10"^ cm ^ and electron 
temperatures up to 20,000°K and for levels with principal 
quantum numbers 3 and 4. 
In order to measure the radial distribution of upper 
state population densities in the plasma jet and thus 
obtain the radial distribution of electron temperature, 
the absolute response of the (optical and electrical) 
system was determined at the wavelengths of each of the 
neutral helium lines. This was done using a tungsten 



ribbon lamp as a source of known intensity. The temper' 
ature of the lamp, T w , was measured with an optical 

•5 

pyrometer and found to be (2.57 + . 05)xl0 °K at a lamp 
current of 16.00 + .01 amps. 

The absolute response, k ^ , was then calculated from: 

= T T T e w ( A ° ' V ' V I " 3 ' 4 
v w u o) 

where: ew(X,T) is the emissivity of tungsten (deVos, 1954) 

I_(X,T) is the black body function given by B 

I <A,T) = 2hci 1 1-3.5 
•D » 5 rhc , 

X e x P { A k T } " 1 

v w(X) is the system response (in volts) to 
the tungsten lamp at wavelengths X . 

The voltage emission profiles for each of the experimental 
lines were integrated at various radii as described in 
Appendix III and multiplied by k, as in Equation 1-2.4 

A o 
to obtain the radial dependence of the emission coeffic-

$ 

ient, (r). This was then used along with the approp-
riate transition probability (Wiese et. al. 1966) , 
upper level degeneracy, g , and physical constant values 
in Equation 1-3.3 to obtain the radial dependence of the 
upper level population density, n (r), and subsequently 
the ratio n (r)/g .. 

m m 



Since the radial distribution of electron density is 
known by previous measurements (Figure 1-3.3), the radial 
distribution of electron temperature was easily obtained 
by using the graph of n m ( T e ) / 9 m (in Appendix IV) corres-
ponding to the principal quantum number, m, of the upper 
level of the specified spectral line. 

The results of this procedure are displayed (along with 
the previous temperature findings) on Figure 1-3.5 for 
the three lines Hel 3889, Hel 4713, and Hel 5016. The 
error bars arise from the absolute intensity calibration 
due to the uncertainty in the temperature of the tungsten 
lamp. 

As was discussed in the previous section, the plasma was 
found to be optically thin for all of these spectral lines. 
Hence, there was no significant error introduced by self-
absorption. 



CHAPTER 1-4 STARK SHIFT MEASUREMENTS AND COMPARISONS 

A. SHIFT MEASUREMENTS 

The radial distribution of the shift of the spectral 
lines was determined by using the wedge technique des-
cribed in Part II of this thesis. Since the emission 
profiles already represented the profiles due to local 
(radial) conditions in the plasma, there was no neces-
sity to apply the Abel transform to the wedge technique 
as described in Chapter II-5 of Part II. Also, since 
the detailed local emission profiles were held in computer 
storage, there was no need to use a real wedge mounted 
on the monochromator. Instead, an "ideal" wedge with 
transmission T(A')=X ' was "manufactured" and applied to 
the emission profiles using the computer to calculate: 

tW 
(r) = I X'uXo(r,X')dX' 1-4.1 

fW 
Ao 

The shift ratio R^ (r) for the line at nominal wavelength 
A 0 

at various radii was calculated by: 

s, (r) 
r ( r) = —±o 1-4.2 

Ao 

rW 
Where: (r) = u, (r,X')dX» 1-4.3 

J 0 X0 



In order to determine the wavelength shift from the radial 
distribution of shift ratio, a helium Geissler tube was 
used to obtain the unshifted ratio R-! for the appropriate 

A o _ 
line. The radial distribution of shift, AA„(r) (in wave-

M 
length units), was then calculated by: 

AAM(r) = C ARXo(r) 1-4.4 

where: AR, (r) = R. (r) - R' A o A o A o 

and C = D^/b 
D^ is the dispersion of the system, 
b is the slope of the wedge (b = 1 here) 

.The results of ,.thi.s .procedure ,are .presented in Figures 
1-4.1, 1-4.2 and 1-4.3 for each of the neutral helium 
lines examined. 

The uncertainties shown on these graphs come from two 
major sources. The first of these involves the accura-
cies of the factors of Equation 1-4.4. Taking the loga' 
rithm of this equation and then taking differentials 
gives: 

d[A\„(r) ] M 
AAM(r) 

dC d[AR, (r) ] _ + 

C AR, (r) Aq 
1-4.5 

where: d[AR. (r) ] = dR. (r) + dR* An A o A i 
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Since the slope of the wedge was perfectly known, the 
uncertainty in c was given entirely by the calibration 
of the wavelength scanning system. This was determined 
to an accuracy of 4% by scanning across well known spectral 
lines (such as the sodium D lines) that were conveniently 
separated in wavelength. 

Fluctuations in the signals used to calculate R^ (r) 
A 0 

contributed negligible error. However, at large radii 
where the lines became weak, this ratio was sensitive to 
the background level due to stray light and photomultiplier 
dark current. On-axis, the ratio was negligibly sensitive 
to background as expected. The measurement of the Geissler 
ratio, R-v , contributed less than 2% uncertainty to the 

A 0 
measurements even at minimum values of AR. (r) . 

Ao 
The other major source of uncertainty was introduced by 
the skewness of the lines. Whereas the measurement errors 
described above were relatively small on-axis (about 5%) 
and increased with radius, the error introduced by skew-
ness was large on-axis (up to 5% of the (half) half-width) 
and decreased to being negligible at large radii. The 
estimation of this error is discussed in the following 
section. 

Because the detailed emission profiles were required 
for the determination of the radial distribution of the 
electron temperature and density, it was possible to 
use these to determine the local shifts of the lines. 
Thus it was not necessary to use a "real" wedge to 
obtain these shifts. Also, since the profiles were 
already unfolded, it was not necessary to apply the 
Abel unfolding of shifts as described in the next 
part of the thesis. If line widths v/ere not required, 
however, these techniques would have represented a 
considerable economy of effort. 



B. COMPARISON OF MEASURED AND CALCULATED SHIFTS 

Griera has calculated and tabulated the Stark shifts of 
the helium lines examined in this work. He also gives 
a formula to correct these shifts for the inclusion of 
ion broadening. However, his values give the interval 
between the unperturbed wavelength and the position of 
the intensity peak of the profile. Since ion broadening 
introduces skewness into the line profile, these shifts 
are not equal to the shift in the mean of the profile. 
Hence, a comparison of Qriem's tabulated shifts with 
those measured by the wedge technique (which is sensitive 
to the mean) would be incongruous. Instead, it was nec-
essary to extract the mean wavelength from the reduced 
Stark profiles derived by GBKO so that a logical compar-
ison could be made. 

With the quasi-static approximation for the ions and the 
impact approximation for electrons, the reduced Stark 
profiles for allowed transitions is given by: 

j(x) = -
n 

W r (B)d8 
G 1-4.6 

1 + (x - a T e 2 ) 2 

where: x = a wavelength variable given in 
terms of the electron impact width and 
shift, w and d, and the unperturbed wave-
length, 

0 is the electric field strength produced by 
a perturbing ion in terms of the Holtzmark 
field strength. 

o 



W r (3) is the distribution of the ion field 
G calculated at neutral emitters (see Hooper,1968) 

r G is the Debye-shielding parameter eval-
uated in Appendix II. 

a is the quasi-static ion broadening parameter 
tabulated by Griem. 

Since the reduced profile is normalized, the mean x_, can 
b 

be obtained by 

J 
X G 
j(x)dx = 0.5 1-4.7 

This was done for r = 0, .4, .8 and a = 0 , .1, .2, .3, .4. 
VJ 

An empirical fit was applied to these results (in analogous 
fashion to Griem's evaluation of i , .) to obtain: 

total 

x G - 4.la(l - 0.5rG) 1-4.8 

which reproduces the integrated quantities to an accura-
cy of 5% over the ranges 0 < a < 0.4 and 0 < r_ < 0.8. 

— — — G — 
The shift of the mean can then be determined in terms of 
the electron impact shift, d, and width, w. 

AXG = X - Xo 

e [ £ ± 4.la(l - 0.5r_)]w 1-4.9 
W G 



This relationship was used to calculate the theoretical 
shifts presented in Figure 1-4.4. The values of d/w, w, 
and a were determined from Griem's tabulations under the 
plasma conditions at several convenient radii established 
from Figures 1-3.3 and 1-3.5 at which points the shift of 
the mean was also measured by the wedge technique. The 
uncertainties shown on AX come from the ranges of d/w, 

G 
w, and a which correspond to the uncertainties in the 
electron density and temperature. 
As mentioned in the previous section, it was necessary to 
establish the uncertainty of the measured shifts, AA^, 
introduced by the asymmetry of the line profiles. Obvios-
ly, this error could be large if the wavelength pass 
band used to examine the line (ie. the width of the wedge) 
was not centered around the mean of the distribution and 
did not extend very far out into the asymmetric, Lorentz 
wings. To estimate the size of this effect, the wedge 
technique was applied to the reduced profiles simulating 
the pass band and line positions encountered in the experi-
ment. This was done by evaluating the integral: 

x M = | xj(x)dx 1-4.10 
Xl 

for various values of x^ and x^. The resulting values of 
x were then compared with the mean, x^, as calculated m vj 
from Equation 1-4.8. The difference between these 
quantities was calculated to give the uncertainty in 
terms of the line width: 

d(AAM) = (xM - xG)w 1-4.11 
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The remaining contributions to the measurement uncertain-
ties quoted in Figure 1-4.4 have been discussed in the 
previous section. 

From a comparison of the results presented in Figure 1-4.4, 
one observes that under all plasma conditions and for each 
plasma line considered, the measured shifts, AX^ , and the 
corresponding theoretical shifts,AX,agree within the un-
certainties of the measurements. While all of the measured 
shifts are slightly larger than theory predicts, the size 
of this discrepancy is not significant in this experiment. 
Confirmation of its existence would require slightly better 
accuracy in the measurements than is presented here. 

These results lead one to the conclusion that the GBKO 
theory is generally reliable in predicting the shifts of 
the means of the isolated neutral helium lines. Or, more 
specifically, Equation I—4.9 can be used to calculate the 
wavelength separation between the unperturbed line and 
the mean wavelength at least within the accuracies attained 
here. This discovery allows one to replace Equation 1-4.9 
for Griem's equation for the total shift of the maximum: 

dtotal * [ $ ± 2 ' 0 a ( 1 " 0.75r )]w 1-4.12 

It is expected that Equation 1-4.9 will prove to be more 
useful than Equation 1-4.12 in view of the fact that the 
mean of a line profile can usually be measured more ac-
curately than the position of the intensity peak — 
especially when the shift and width are comparable in 
size. 



PART II - DESIC-N CRITERIA FOR APPLICATION OF THE WEDGE 
TECHNIQUE TO THE MEASUREMENT OF LINE SHIFTS 

CHAPTER II-l INTRODUCTION 

The first Part of this thesis demonstrated how measurement 
of the shift of the mean of a Stark broadened spectral line 
could be a valuable plasma diagnostic tool. The wedge 
technique was used to perform these measurements. However, 
the application of this method is not restricted to Stark 
shifts, but applies to any situation where the shift in the 
mean of a reasonably isolated spectra line is of signifi-
cance . 

Because of this general applicability of the technique, 'it 
is presented here as a separate Part of the thesis. In 
this way, more relevant design criteria can be presented 
in detail (which would otherwise be superfluous) as an aid 
to those who desire to use the technique. 

Initially, Ahlborn and Barnard (1966) proposed a shift 
measuring technique which used a pair of identical linear 
spatial filters or "wedges" mounted in the exit plane of 
a monochromator. The proposal was later investigated ex-
perimentally by Potter (1967) . 

During the course of this work, the technique was signifi-
cantly improved so that only one wedge is required — a 
feature which eliminates the need for an extended source. 
In addition, the technique has been extended to incorpor- • 
ate the measurement of local shifts in an inhomogeneous, 
cylindrically symmetric plasma (Ahlborn and Morris, 1969). 



Thus, in the following pages, the general technique is 
described in detail along with the application to the 
cylindrical plasma as mentioned. To complete the discus-
sion, the important design criteria are presented. These 
include the response of the technique to several different 
types of line profile, the resolution, the sensitivity, and 
the linearity of the technique. 



CHAPTER II-2: THE WEDGE TECHNIQUE (DESCRIPTION) 

In a completely general fashion, the mean of an arbitrary 
spectral intensity distribution, i^(X), may be defined 
by: 

| Xii(X)d\ 

= — o II-2.1 

{ i 1 (X)dX 
* o 

If, for any reason, this distribution is altered to i^i ̂  ) f 
its new mean can be calculated in the same manner and the 
shift in the mean, AX determined by: 

AX = Xi - X2 II-2.2 

The following discussion will demonstrate that if the in-
tensity distributions involved (i^ and x^) are restricted 
to isolated spectral lines, then the limits of integration 
in Equation II-2.1 can be altered in such a way that it 
is possible, in practice, to use this definition for 
measuring line shifts. 

Consider a monomchromator which has a plane half-silvered 
mirror mounted between the camera mirror and exit slit, 
(see Figure II-2.1). The mirror is situated such that 
it allows a fraction f T of the light to reach the exit 
slit while reflecting the remaining fraction f 90° up 
to an additional exit slit mounted so as to be optically 





coincident with the first (usual) exit slit. Both of the 
exit slits are extremely wide. For the sake of convenience 
the new or upper exit slit will be referred to as the 
"normalization" slit while the lower or usual exit slit 
will be termed the "signal" slit. (The reasons for these 
choices of terminology will become clear in the ensuing 
discussion.) 

Since both exit slits are optically coincident, they have 
identical wavelength coordinate systems which will be 
designated by X1. Over the extent of these exit slits, 
this variable is related to the true wavelength, X , by 
the linear transformation: 

X = DXX' + c x II-2.3 

where: D is the dispersion of the monochromator and 
A 

C^ is the constant that defines the zero of the 
X'coordinate system. 

The variable X1, of course, is a spatial coordinate run-
ning perpendicular to each slit. 

A spectral line whose unobstructed intensity distribution 
in the lab frame could be specified by ^(X')will now have 
a distribution f iI>(X)in the normalization slit and f ^ (X') 

R X 
in the signal slit. 

If a photomultiplier tube is placed above the normalization 
slit, its output signal to the above spectral line will be: 

,vr 
$ = Kf R| ijj(X ') dX 1 II-2.4 



where: K is the response of the normalization photomult-
iplier tube. The limits of integration in Equation II-2.4, 
0 and W, are given by the edges of the normalization slit. 

Over the signal slit, suppose there is a neutral density 
filter whose transmission across the slit width is described 
by T (X'). A photomultiplier with response, k, located 
behind the slit and observing the spectral line through 
this filter would produce a signal: 

s = k f j T U ' H U ' J d A ' II-2.5 
o 

Assume, further, that the filter between the signal slit 
and signal photomultiplier has a linear spatial dependence 
.of transmission. In .particular .(see Figure II-2..2): 

T(X') = bX 

= 0 

where: b is the slope of the wedge. 

In practice, this distribution of transmission is approx-
imated by a wedge manufactured from a photographic plate 
which has been exposed and developed so as to give a trans-
mission as indicated by the dotted curve in Figure II-2.2. 
Since the wedge overlies the exit slit, the resulting 
transmission falls to zero at and beyond the edges of 
the slit. 

0 < X' < W 

W < X" < 0 
II-2.6 

It can be seen that this transmission defines the zero of the 
X' coordinate system at the slit edge where the ideal wedge 
has zero transmission. 



Also, the slope of the wedge, b, is given by the width of 
the exit slit, W, and the maximum transmission of the wedge, 
Tmax equation: 

b = max 
W 

II-2.7 

0 W 
Figure II-2.2 

WEDGE TRANSMISSION 

From Equations II-2.4 and II-2.5, the ratio of the photo-
multiplier signals is given by: 

rW 
kf 

s £ 

f 
Tbl XXX'JdX' 

o 
[VI 

KfRj tJj (X ') dX" 

II-2.8 



If the intensity distribution is non-zero over the range 
0<X'<W and vanishes for all wavelengths outside this 
range, then the true mean of the distribution in the lab-
oratory coordinates, X \ is exactly equal to the ratio of 
the limited integrals as appear in Equation II-2.8. 
Therefore: 

.00 .00 #vv 
X * ij; (X ') dX ' [ X ' (X ') dX 1 

X' = 5 = II-2.9 
.00 
ij; (X 1) dX ' ij; (X ') dX 1 0 

Thus, by substituting X'for the ratio of the integrals 
on the right hand side of Equation II-2.8, one finds that 
the ratio of the photomultiplier signals can be related to 
the mean of the intensity distribution by: 

kfmb £L - T 
* = k £ r 

Or, equivalently, the mean is measured by: 

II-2.10 

- K f R 1 s 
X' = — K I II-2.11 

kf T 

From the coordinate transformation expressed in Equation 
II-2.3, the mean of the intensity distribution in true 
wavelength units is then: 

X = D XX' + C x II-2.12 



Since C^ is the wavelength at which the wedge has zero 
transmission, its value will depend on the position of 
the wedge with respect to the exit slit and on the wave-
length setting of the monochromator. In practice, it 
is usually not convenient to measure this constant precise-
ly. However, if one measures differences of means while 
keeping C^ constant, then there is no need to determine it, 
An arbitrary shift under this circumstance will be given 
by: 

AA = DXAX' II-2.13 

Or, in terms of measured quantities: 

1 f Si Si I 
b 1 $2 J AX = n 1 f S l 5 1 1 I I ~ 2 - 1 4 

A kf T 

where it has been assumed that the shift in the mean was 
caused by the intensity distribution shifting from i|;1(X') 
to V2(A•) both of which are zero for V<\'<0. 



CHAPTER II-3 LINEARITY 

One of the principal advantages of this technique for 
measuring line shifts is its independence of fluctuations 
in the shape, or width, of the intensity distribution. 
Ideally, however, this condition holds only when the in-
tensity distribution lies completely within the wavelength 
range 0<X'<W and when the wedge transmission is strictly 
linear over the same region. As with all experimental 
techniques whose ideal conditions do not strictly hold 
in reality, these two.conditions are rarely, if ever, 
completely met. Therefore, it is valuable to consider 
the response of the system under a variety of non-ideal 
circumstances to gain an estimate of the error introduced 
by the failure of these conditions. 

A. EDGE EFFECTS 

The first of the two categories of non-linearities can be 
termecL-^edge effects" because the response of the system 
is affected by the position of the integration limits 
^with respect to the mean position and shape of the in-
tensity distribution. Since these effects involve the 
integrals only, it is convenient to ignore the constants 
(such as the wedge slope and the system responses) consid-
ering only the ratio, R, defined as: 

rW 
AXX'JdX' I r = — i II-3.1 

I iMX 'JdX ' 
o 

measured in wavelength units. 



As a simplest example, consider an intensity distribution 
which is rectangular with height A' and total width 28' 
around its mean wavelength Xj. In other words (see Figure 
II-3.1): 

o Ao-e* x'o Xo+e1 w x' 
Figure II-3.1 

A RECTANGULAR INTENSITY PROFILE 

Substituting this intensity distribution into Equation 
II~3.]Tand calculating the integrals gives: 

i|>U') = A' Xj-8' < X' < Xj+8' II-3.2 
= 0 elsewhere 

A 

R = X0 < xi < W-3' II-3.3a 

') 0 < \o < 8' II-3.3b 

-(W+Xj-8') W-8 ' < Xi < w II-3.3c 



From this result, it can be seen that when the mean of 
the distribution is too close to the edges of the slit 
as is the case in Equations II-3.3b and II-3.3c, the 
ratio shows a dependence on the width of the distribution. 

It should be noted here that for this rectangular dis-
tribution and as well as for the following distributions, 
it is always assumed that the full width of the intensity 
distribution never exceeds the width of the wedge. 
Symbolically that is: 

20' 5 W II-3.4 

In order to eliminate the explicit dependence of the 
ratio on the wedge width, W, it is convenient to define 
the nondimensional ratio: 

R 
W R w = S II-3.5 

This variable indicates the relative position of the 
mean of the distribution compared to the position of the 
wedge. A value of R^ = 0 indicates the mean of the 
distribution lies at X' = 0 while a value of R^ = 1 
indicates the mean lies at X' = W. Therefore, R w = 0.5 
indicates that the mean of the distribution lies at the 
exact midpoint of the wedge X'= W/2. 



It will also be convenient to define two more dimension-
less variables: 

- The dimensionless mean; 

x 0 = ~ where 0 < x 0 < 1 II-3.6 

- The dimensionless width; 

W x D = trr where 1 < x„ < 00 II-3.7 p P - p -

The first of these, the dimensionless mean, is just a 
change of the wavelength coordinate system to a system 
which is independent of the actual width of the wedge. 
Thus, if the dimensionless ratio, R^, has a value of 0.5, 
then the dimensionless mean also has a value of 0.5 since 
the mean of the distribution lies exactly at the midpoint 
of the wedge. 

The dimensionless width variable gives an indication of 
the width of the spectral distribution with respect to the 
width of the wedge. Actually, it should be called the 
dimensionless inverse width since it is inversely propor-
tional to the actual width of the distribution. Thus, as 
x e gets large, the spectral distribution becomes very p 
narrow in comparison with the width of the wedge. In the 
limit when x Q tends to infinity, the distribution ap-
proaches something like an impulse (or delta) function. 
Low values of x^ indicate spectra distributions which are 
comparable in width to the width of the wedge. Since, in 
this discussion, it is always assumed that the (full) 



width of the spectral distribution never exceeds the 
width of the wedge, the lower limit of k. = 1 is imposed. 

p 
The width of the distribution^', which appears here is not 
a well defined quantity; rather, it is some convenient 
scale width of the distribution which will vary with each 
distribution. Most commonly, however, this will indicate 
the (half) half-intensity width of the spectral profile.. 
Using the above definitions, the ratios specified earlier 
for the rectangular distribution become: 

\ = x 0 | < x 0 < 1 ~ II-3. 8a 
3 

= i(x0+ ~ ) 0 < x 0 < - II-3.8b 
3 x 3 

= i(l+x0- J ) | < x 0 < 1 II-3.8c 
3 8 

The results of this calculation are plotted in parametric 
form in Figure II-3.2 with given as a function of x Q 

for several values of x^ . 

This graph indicates the usefulness of the non-dimensional 
treatment of the variables. If one were designing an ex-
periment where the shift of a rectangular distribution were 
to be measured, Figure II-3.2 shows the range of mean 
position and width which will give realiable results. For 
instance, if the distribution has a (half) width which is 
one quarter of the width of the wedge (or conversely), 
one is using a wedge which has a width four times the 
(half) width of the distribution then the ratio and 
thus the experimental measurement, will give linear and 
reliable results when the mean of the profile lies in the 
middle region of the wedge as indicated by the curve 
4 in Figure II-3.2. 



Relative Position of Line Center, x 



It can also be noted from Figure II-3.2 that if the mean 
of the rectangular profile is located on the wedge such 
that lies in the region 0.25 to 0.75., the distribution 
can reduce its width without affecting the ratio. However, 
if the mean were located at x =0.2 and the width reduced, 

o changing x„ from 4 to 6, then the ratio (and thus the p 
measurement) would change spuriously with no change in the 
mean of the intensity distribution. 

Thus, a graph such as that shown in Figure II-3.2 provides 
an indication of the useful range of the wedge technique 
for any set of experimental circumstances. To be useful 
in experimental design procedure, one needs to know the 
range of shift expected and the range of width fluctuation 
expected. It will then be possible, using these calibra-
tion graphs, to choose the narrowest (and thus the steep-
est) wedge to assure the most sensitivity while not 
endangering the required linearity of the response. 

Another profile of interest is the Gaussian distribution: 

tMX') = A' exp [ - \ ] II-3.9 

If this distribution is inserted into the integrals of 
Equation II-3.1 and calculated in terms of x q and x^ 
as was done with the rectangular distribution, the result 
is: 

, exp{- Hi} - exp{- ^ } 
- x* - — m f ; — — + I I " 3 - 1 0 

u 2 

f U l u 2 
J exp{- 2 

W-X n where: ui = Q, = xo(l-x0) p p 



AJ 
u 2 = - = -XgXo 

The demonimator of this equation has been evaluated using 
integral tables for a standard normal distribution for 
three values of x^ . The results are plotted in parametric 
form in Figure II-3.3. 

It can be seen from these results that, unlike the situ-
ation with the rectangular distribution, there is no 
region of where the ratio is independent of x^ . 
Instead, as becomes larger (or the line width smaller) 
its effect on the ratio decreases. This situation will be 
discussed more fully later. 

A similar, but more pronounced, effect is observed if 
the intensity distribution reaching the wedge is Lorent-
zian: 

Y U > = rt—p II-3.11 
1 + { A ~AQ }2 

e1 

In this case the dimensionless ratio as calculated by 
Equations II-3.1 and II-3.5 is; 

, {log[l+(x -x Rx 0) 2] - log[l+(-xflx0)2]} 
= 1 6 + X q II-3.12 

3 {tan Mxg-XgXo] - tan - 1 [-x^xo ] } 

This ratio has been evaluated for several values of x 
and the results plotted in Figure II-3.4. 







It can be seen from Figures II-3.3 and II-3.4 that although 
the ratio depends on line width, the.ratio is very close 
to being a linear function of the mean position in the 
region 0-2<_xo<0.8 with a slope that depends on . x^ . 
Thus, instead of dealing with the clumsy expressions shown 
in Equations II-3.10 and II-3.12, it is possible to write 
the ratio as: 

Rjj = m(Xg) [XQ-0.5] + 0.5 II-3.13 

Then the slope, m, can be written as an approximate func»-
tion of Xg for the two important line profiles treated 
above. For Gaussian and Lorentzian profiles respectively: 

1 70 
m (x ) = 1 - II-3.14a 

3 

m_(x_) = 1 - II-3.14b 
3 

These relationships can now be easily used for design 
criteria given some prior knowledge of the type of profile, 
the changes in both width and mean, and the accuracy re-
quired. 



Another situation which is common to experimental circum-
stances and also results in the violation of the assumption 
of vanishing intensity at the edges of the wedge, occurs 
when the line profile being studied overlies continuum. 
This is similar to the cases of the Gaussian and Lorentzian 
line profiles in that the line has high "wings" that cause 
the slope of to differ from unity. This situation 
can be represented by an intensity distribution of the 
form: 

if(X') =A'^o(X') + B' II-3.15 

where the arbitrary line profile is normalized: 
rW 
1P0 (X')d ' = 1 
o 

with mean^ 
rW 
A'lMX'JdA' = Xo 
o 

r 
r 

and sits on a background of continuum radiation of height 
B*. In this case, A' represents the total intensity of 
the line. 

By substituting Equation II-3.15 into Equation II-3.1 
and calculating the dimensionless ratio, it is found that: 

Rtt = V-T—rr xo + i , TT II-3.16 w 1 + aW 2 1 + aW 



where the new variable: 

B' 
a = II-3.17 

is the ratio of the background level to the total in-
tensity of the line. 

Thus, the ratio with background present can be written as 
Equation II-3.13 with the slope criterion 

^B = H-3.18 

It is worth noting that the effect of continuum depends not 
only on the relative background level, a, but also on the 
absolute width of the wedge, W. This is, of course, in-
tuitively obvious since a wider wedge will pass a greater 
amount of continuum radiation and thus have a greater 
effect on the measurement. 

Although the presence of continuum can be very disruptive 
of shift measurements, its effects can be completely offset, 
Theoretically this is accomplished by defining and using 
the new ratio, R^, in place of the integral ratio R, where: 

fW f° 
X'lKXMdX' ~ X' ̂  (X ') dX' 

Rg = — ^ II-3.19 
I i|> (X ') dX ' - f iMX')dX' 
* 0 -YJ 



Provided ipo(X') is zero in the region ~W<A'<0, by virtue 
of Equation II-3.15 and the independence of the continuum 
level on wavelength, this ratio becomes: 

W 
X'if>0 (X')dX' 

I 4>o (X ') dX 1 
II-3.20 

which is exactly the ratio for the line profile alone with-
out the influence of continuum. 

In practice, this method of eliminating the effects of 
background means that one more set of readings must be 
taken with the grating screw of the monochromator set so 
the line is moved out of the region of the wedge. While 
the range of integration in Equation II-3.19 of this 
second measurement are shown as -W to 0, - they could just 
as easily have been -2W to W or W to 2W or any other set 
of values outside the line profile range (but not so far 
that the continuum might have changed). If the line profile 
involved is Lorentzian, it is wise to be well away from the 
line to avoid subtracting the remainder of the Lorentz 
wing. 

B. WEDGE NON-LINEARITIES 

The second of the two categories of non-linearities results 
from possible non-linearities of the wedge transmission. 
More precisely, if the wedge transmission cannot be accur-
ately described by equation 2.6, the ratio and thus the 
mean measurement will not be independent of fluctuations 
in the width of the line profile. 



Since wedges are normally manufactured using a photographic 
process, this situation could arise through two mechanisms: 
small scale film granularity or large scale non-linearity 
caused by the generally logarithmic response of photographic 
emulsions. 

In order to eliminate the first of these two problems, one 
usually uses a low grain, high contrast emulsion. This 
effectively reduces the granularity to zero, however, it 
also tends to accentuate the second of the two. (For a 
description of the manufacture of wedges and the importance 
of emulsion contrast, see Potter, 1967). 

Whereas it is difficult to anticipate accurately in a gen-
eral way what these large scale non-linearities might be, 
it is possible to make a reasonable assumption about a 
possible real transmission curve and examine the resulting 
effect of width fluctuations on the ..measurement ratio. 

In this regard, assume that instead of Equation II-2.6, the 
transmission of the wedge can be described by: 

T(X') = bX'-cX'2; 0<X'<W, c>0 II-3.21 

= 0 elsewhere 

so that the signal ratio defined in Equation II-2.8 becomes 

S k f T 
S = b[R - c 1 R' ] II-3.22 

K f R 

where: R is given by Equation II-3.1; 



with: 

R' = 

rW 
I X 1 ( X ' > dX' 
o 

I ^(X')dX' 
' o 

II-3.23 

i c 

C* = r-
II-3.24 

The variable c' (with units of X*_1) can be considered as a 
measure of the wedge non-linearity since the transmission 
is completely linear for c 1 = 0 and becomes increasingly 
non-linear for larger values of c 1 as demonstrated in 
Figure II-3.5. 

Figure II-3.5 
WEDGE NON-LINEARITIES 



As an example, suppose that c' is such that the transmission 
of a non-linear wedge is 90% of the corresponding linear 
value at its maximum. In other words: 

T(W) = 0.9T 
max 

Using this value with Equation II-3.24 in Equation II-3.21, 
it can be seen that: 

c' = 0.1 
w 

One could thus speak of this wedge as being 10% non-linear, 

If the normalized non-linear ratio, R^, is defined in 
analogy to Equation II-3.5: 

11-3.25 

and the ratio calculated for the above wedge and a rectan-
gular profile, the result is: 

c'R^ = 0.1[x02 + | II-3.26 

An extremely wide profile with x Q = 2 located in the middle 
P 

of the wedge, x Q = 0.5, which would produce a linear ratio 
of R w = 0.5 results, here, in a non-linear ratio term which 
is a maximum for variations due to width changes alone. 
For this case: 

= 0.0333 



which is 6.7% of the linear value of R^ = 0.5. Thus, as a 
rule of thumb, for a worst-case design criterion, the 
maximum ratio changes due to width fluctuations on a non-
linear wedge will be two thirds of the linearity figure 
given by C = C'W. For Gaussian or Lorentzian profiles this 
source of non-linearity will be considerably reduced. 

The other extreme in non-linear response due to a non-
linear wedge occurs when the intensity distribution is very 
narrcw (x0=<» ) with no fluctuation in width but maximum p 
fluctuation in shift (up to x Q = 1). In this case, the 
full non-linearity of the wedge is in effect as can be seen 
from substitution of these values of x q and x^ into Equation 
II.3.26. 



CHAPTER II-4 - ACCURACY AND RESOLUTION 

While the ratio of the integrals discussed in the previous 
chapter typify the linearity of the measurement, the sen-
sitivity of the measurement is dependent on the constants 
which are determined by the experimental apparatus. For 
convenience, these can be grouped into one constant of 
proportionality, G, defined by: 

Taking the differential of this equation gives the un-
certainty in measuring the line mean, d (A1)/ with respect 
to the calibration and measurement uncertainties dG, ds 
and d0: 

If a measurement of shift is imagined wherein the signals 
s and 0 do not change appreciably (this represents the 
small shift of a line which does not change its total 
intensity during the shift), then d(X' ) as expressed by 
this equation can be taken as the resolution of the technique. 

II-4.1 

so that Equation II-2.11 can be written as 

X' = G | II-4.2 

d(X') = |{dG + G f- + G f-} II-4.3 



For a shift measurement where s and S do change appreciably 
(a line which varies from bright to faint), the accuracy 
in measuring a shift of AX'must be determined from: 

d [AX'] = d(X J) + d(Xz) ^ II-4.4 

where it is assumed that X{ arises from Si and and similarly 
Xj arises from s 2 and 
The uncertainties ds and d$ must be determined by the noise 
conditions that are present in the experiment. As an 
example, suppose the major noise process is due to the 
random (Poisson) arrival of current pulses in the photo-
multiplier tubes. The line profile can be written as 

ii»(X') = VL(X') 

where v is the mean Poisson rate and L(X') is a normalized 
line profile completely contained within 0<X'< W, with 
mean Xo and (half) half-width 3'. 

The wedge signal for this line (assuming a perfect wedge) 
will be: 

fW 
s = kfTbv X'L(X')dX' = kfTbvXo 

J 0 
with uncertainty given by the Poisson standard deviation: 

_ JL 
ds = kfTb{^}2X5 



where tis the time taken for a measurement. 

Similarly, the signal from the normalization photomultiplier 
will be: 

$ = KfRv L (X')dX' = KfRv 
} o 

with uncertainty: 

v • 2 dS = KfR{^> 

Consider that there is negligible uncertainty in the 
measurement of the calibration constants involved in G 
Then the uncertainty in X1 as calculated from Equation 
1-4.3 is: 

d(X') = 2\'0 

{vt} 

If this is made nondimensional with respect to the line 
width, 3' , as follows: 

1 

{vt} 
d(X') _ _ \l • 

31 " 7HZT? 

and the nondimensional variables x and x Q introduced, 
o P 

then the limiting shift to width ratio (expressed in non 
dimensional form by the product XgdxQ) is determined by 
this equation for a Poisson process sampled for a time x 
by: 

XgXo 
x„dx0 = 2 — r 3 {vt}2 



For good linearity it is necessary to have x^ quite large 
(say 20). Then, assuming the line is centered on the 

6 "-1 
wedge (X q = 0.5), exhibits a mean Poisson rate of 10 sec" 
and is observed (integrated) for a period of 1 sec. , the 
limiting shift to width ratio is: 

xedxo = 0.02 p 

Thus, under these conditions one would expect to be able to 
just resolve a shift which was 0.02 times the (half) half~ 
width of the line profile. This result does not take into 
account the pulse height noise nor the dark current noise 
of the photomultiplier. 



CHAPTER I1-5 EXPERIMENTAL EXAMPLE USING A REAL WEDGE 

An experimental investigation of a real wedge under several 
conditions was made to examine the real accuracy and prac-
ticality of the technique. 

A wedge whose transmission varied linearly from about 5% to 
about 70% over a distance of about 3.5 mm was used against 
a slit of the same width. 

Initially, a helium Geissler line (Hel 3889) whose profile 
was determined by the instrument function of the monochroma-
tor was used (see Figure II-5.1). A shift of this line was 
simulated by scanning it across the wedge with the aid of a 
rotating scan plate (see Part I, Chapter I-2B) mounted in-
side the monochromator between the camera mirror and the 
exit slits. 

The signals from the signal photomultiplier, s, and from 
the normalization photomultiplier, $, were recorded separate-
ly by an XY plotter and used to calculate the signal ratio, 
s/$. This ratio was then plotted against the nondimensional 
mean of the line, X q. This variable defined in Equation 
II-3.6, expresses the position of the mean with respect to 
the zero of the lab coordinate system, X 1, in units of the 
width of the wedge, W. 

This same procedure was repeated with the same Geissler 
line except with the entrance slit very wide so as to 
produce an almost rectangular profile (see Figure II.5.2). 
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Figure II-5.2 - WEDGE OUTPUT FOR A WIDENED GEISSLER LINE 



Figure II-5.3 - WEDGE OUTPUT FOR A BROADENED LINE 
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Finally, without any changes in the optical or electronic 
systems, the procedure was repeated using the same line 
from a helium plasma jet. This line is broadened into 
roughly a Lorentz profile and shifted by the Stark effect 
as can be seen in Figure II-5.3 by its relationship to the 
cool Geissler line. 

The resulting signal ratios are plotted against x q in 
Figure II-5.4 to demonstrate the response of the system. 
One can see that, since the two Geissler outputs overlap 
one another, the entrance slit opened symmetrically. Had 
this not been the case, the line would have been shifted 
parallel in a manner similar to the output of the jet line. 

Besides demonstrating the linearity of the system, this 
technique of artificially shifting the line is the most 
satisfactory way of calibrating the system response. 
Determination of the slope of the line due to the narrow 
Geissler line determine the factor G defined in Equation II-4.1 
(involving b, k, K, f , f ). This calibration can be 

x\. J. 
carried out easily every time the system is used and aids 
as well in making sure the observed line lies in a favour-
able region of the wedge prior to running the experiment. 

In this example, the slope of the Geissler response 
gives a nondimensional sensitivity of 

Axo 
Go = = 1.33 

A<§) 

or a dimensional sensitivity of 

G = WG0 = 4.67 A 



since: "xo Axn = AX' W 

o 
where: W, the width of the wedge, is 3.5 A, 

In other words: 

AX' = GA(|) 
= 4.67{| 

Applying this result to the shift of the jet line one 
finds, at any x in the region of linear response, a shift + ® 
of 0.21 — 0.04 A. The amount of shift is slightly larger 
than that observed in Figure II-5.3 between the Geissler 
peak and the peak of the plasma jet line. This is to be 
expected since the jet line is slightly asymmetric, caus-
ing the-mean of" the line to lie some small-distance from 
its peak. 

S Geissler 



CHAPTER II-6 APPLICATION OF THE WEDGE TECHNIQUE TO SHIFT 
MEASUREMENTS  IN AN INHOMOGENEOUS (CYLINDRI-
CALLY SYMMETRIC) PLASMA 

As has been previously discussed (Part I), spectroscopic 
observations of inhomogeneous plasmas do not result in 
emission profiles which characterize conditions in small, 
local regions of the plasma. Instead, the observations 
result in line profiles which are composites of the local 
profiles because of the unavoidable integration along the 
line of sight through the inhomogeneities in the plasma. 
Consequently, the line shifts, widths and total intensities 
which are indicative of local plasma conditions cannot be 
observed directly. 

However, if something is known about the distribution of in-
homogeneity, it is sometimes possible to operate on the 
observed profiles to unfold the component, local ones. The 
most common situation where this is done occurs when the 
observed plasma, while inhomogeneous, is cylindrically 
symmetric. 

This exact process is described in detail in part I of this 
thesis. That discussion demonstrates that while possible 
to accomplish, the procedure is very complicated and un-
wieldy. If one is not interested in the widths of the 
local profiles, but just shifts and total intensities, then 
the procedure can be considerably simplified. 

The following chapter describes this simplification. Firstly, 
the method of unfolding shifts is discussed as a general 
problem. And secondly, these results are mixed with the 
wedge technique for measuring line shifts. The acquisition 
of the unfolded total intensities comes as a necessary part 
of the unfolding of shifts and so is not discussed as a 
separate procedure. 



A. ABEL UNFOLDING OF SHIFTS 

Consider a cylindrically shaped plasma whose properties 
are all separable functions of the cylindrical coordinates 
r and z only — independent of the angular coordinate 0. 
At constant values of z, all properties of such a plasma 
(such as temperatures and densities) can be represented 
by the functional form f (r). J z 

Written in this form, the local emission profile (power 
per unit wavelength per unit volume per unit solid angle) 
is e (r,A). The intensity profile (power per unit wave-z / 
length per unit area per unit solid angle) , i (y,A) , 

z 
observed from along a path p as a function of the side-on 
position y (see Figure II-6.1) is given by: (see Griem) 

iz(y,X) = 2 

.rc 
e (r, A-) rdr 

i II-6.1 
y tr2 - y 2 l T 

where e (r0,A) = 0 and r 0 = r0(z) 

Since the function e (r,A) refers to the emission at a 
z ' 

point on a particular spectral line, an integration of 
Equation II-6.1 over wavelength relates the observed 
total line intensity, I_(y), to the local emission coeffic-

z 
ient, Ez(r): 

i2(y) = 2 
,r0 
E (r)rdr 
— II-6.2 

y [ r 2 - y 2] 2. 



where the emission coefficient was defined as: 

Ez(r) = f ez(r,X)dA 
' o 

II-6.3 

and the observed total intensity as 

l2 (y) = J \ ( y r  1 0 
X) dX II-6.4 

The mean of the observed line can be defined (as previously 
stated) completely generally as: 

xz(y) = f Xiz(y/X)dX 
_ o 

fa" 
II-6.5 

X) dX 

which becomes by virtue of Equations II-6.1 and II-6.4 plus 
a change in the order of integration: 

r* o 
xz(y) = 

i z (y) [r2-y2]2 
Xe (r, )dX 

z 
o 

dr II-6.6 

The mean of the local emission profile which one seeks to 
measure, can be similarly defined as: 

Xe (r,X)dX z 
X z ( r ) " -7± II-6.7 

e (r, X) dX z 

which can be construed (using Equation II-6.3) to be: 



Ez(r)Xz(r) = f  Aez(r,X)dA J o 
II-6.8 

The tildas (~) in Equations II-6.7 and II-6.8 are used to 
denote the different functional form of the local mean as 
a function of r as compared with the observed mean noted by 
a bar (-) in Equations II-6.5 and II-6.6 which is a function 
of y. 

Equation II-6.8 now substitutes directly into Equation II-6.6 
to give: 

V y ) i 2 ( y ) = 2 
r 0 

r X (r)E (r)dr II-6.9 
[r2-y2]2 2 

This is an integral equation which can be solved for the 
kernel by applying the Abel transformation: 

Xz(r)Ez(r) = 
r 0 

[y2-r2] 
II-6.10 

from which, for brevity, the Abel Transform, A.T., is 
defined: 

Xz(r)Ez(r) = A.T.{Xz(y)Iz(y)} II-6.11 

Since Equation II-6.2 can also be solved by the Abel trans-
form: 

E (r) = A.T. {I (y) } 
Z 

II-6.12 



Substitution of Equation II-6.12 into Equation II-6.11 
gives the final result: 

A.T.(X (y)I (y)} 
X (r) = - - II-6.13 
2 A.T.{I (y)} 

which expresses the mean of the local emission profile in 
terms of the observed mean and the observed total intensity, 

B. RELATING THE WEDGE TECHNIQUE TO UNFOLDING SHIFTS 

Early in Chapter II-2 the real wavelength coordinate, X, 
and the lab frame coordinate,X1, were related by a linear 
transformation (Equation II-2.3) which depended on the 
conditions of the monochromator. The spectral line was 
specified by the function ^(X1) which arose from this linear 
transformation of the intensity distribution i(X). Later 
in the chapter, constraints were made on the distribution 
'MX') such that it was non-zero only in the region 0<A'<w. 
By implication, i(X) must also have limits sepcified by 
the transformation making integrations over the entire 
range 0 < \< 0 0 unnecessary. 

Applying the same conditions to the observed intensities 

that: 
i (y,X) and ^ (y,X') and noting from Equation II-2.3 z z 

dX = D^ dX' , 

the following integral relations are easily derived: 



Iz(y) = j iz(y,A)dA = dJ ^z(y,A')dA' II-6.14 
o } o 

•s. 

Xz(y)iz(y) = f iz(y,A)dA 
o 

, f W fW 
= DAj X , V ( y ' X ' ) d X ' + D XC XJ ^z(y/A,)dA'II-6.15 

If the wedge apparatus is used, with the normalization 
signal given by (as in Equations II-2.4 and II-2.5): 

rW 
Sz(y) = KfRJ (y,A')dA1 II-6.16 

and the wedge signal by: 

fW 
sz(y) = kfTbj A 1 ij;z (y, A ') dA ' II-6.17 

J o 

then the local mean can be related to the Abel transforms of 
the observed signals s (y) and S (y) by substituting Equa-

z z 
tions II-6.14 and II-6.15 into Equation II-6.13 and replac-
ing the integrals by the signal values obtained from 
Equations II-6.16 and II-6.17. The result is: 

A - T - { D A e i i S z ( y ) + °ACA K ? " S z ( y ) } 

X (r) = II-6.18 
A.T.{D A Kf R 

sz(y)} 



For any functions f and g and constant c, the following 
rules for Abel transforms can be derived: 

A.T.{f + g} = A.T.{f} + A.T.{g} 
A.T.{cf} = c A.T.{f} 

provided both f and g approach zero at and beyond some value 
of the independent variable. 

These rules, applied to Equation II-6.18 give the result: 

Kf p , A.T.{s (y)} 
X (r) = D, — — i ? + r II-6.19 
2 X kf b A.T.{S (y)} \ 

which relates the mean of the local emission profile to the 
Abel transform of the wedge signals within an unknown addi-
tive constant. 

If, as was suggested in a previous chapter, differences of 
means are measured under identical experimental circumstances, 
the constant C^ is eliminated. This can be done, for example, 
by using a Geissler line with mean given by: 

x ' . „ ??£ i!a + CjL 
9 x kf T

 b s g * 

and calculating: 

AiXz(r) = Xz(r) - X g 

Or, the constant can be eliminated by calculating either of 
the differences: 

A 2X (r) = X (r) - X (0) 
€s 4s £t 

or A 3X z(r) = Xz(r) - X z(r 0) 



where, of course, one should observe: 

A 2A z(r) = -A3Az(r) 

If the edge of the plasma is sufficiently cool and has a 
low electron density then probably: 

X g = 

so that the same results are obtained by using either a 
Geissler tube or the outer part of the flame as the zero 
of shift: 

AiA (r) = A 2X (r) 

The mean which is chosen to specify the zero shift should 
be that which is most accurately determined. 



PART III - CONCLUSIONS 

Before discussing the more general or universal aspects of 
this work, it might be appropriate at this time to collate 
the definitive accomplishments reported throughout the thesis. 
They can be summarized in four points as follows: 

1. The previously proposed "double wedge" technique of 
Ahlborn and Barnard (1966) has been refined to the 
point where only one wedge is required to perform the 
measurement (see Chapters 1-1 and 1-2) . This improve-
ment has the important effect that an extended source 
is not required to make use of the technique. In add-
ition, the wedge technique has been investigated (see 
Chapters II-3 and II-4) for its resolution, linearity 

. .and-.sensitivity under a -variety .of . .conditions which 
are routinely encountered in experiments. The effects 
of wedge non-linearity, line shape (including line 
wing effects) and underlying continuum have been inves-
tigated and a convenient set of design criteria have 
been prepared for interested users as well as a descrip-
tion on how to use these data (see Appendix V); 

2. For the first time, it has been shown that the local 
shift of the mean of a spectral line for a cylindri-
cally symmetric plasma can be unfolded from side-on 
shift measurements which do not require detailed know-
ledge of(nor any assumptions about) the line profile 
(see Equation II-6.13). This finding yields a consider-
able reduction in the effort one would otherwise expend 
obtaining the position of the local mean wavelengths. 
In addition, this result has been combined with the 
wedge technique to allow very convenient determination 
of local shifts of a cylindrical plasma. 



3. An approximate relationship has been obtained (Equa-
tion 1-4.9) that determines the position of the mean 
of a Stark broadened plasma line. This relationship 
was derived from the GBKO theory and is analogous to 
Griem's equation giving the total shift of the maximum 
intensity of a line when ion broadening cannot be neg-
lected (see Equation 1-4.12). The equation presented 
in this work determines the shift of the mean of a line 
to an accuracy of 5% of the electron impact width over 
the range 0 < a < 0.4 and 0 < r < 0.8; 

4. The shift in the mean of three neutral helium lines 
were examined under known plasma conditions and com-
pared with the shifts as predicted by the GBKO theory 
(see Figure 1-4.4). Previous experiments compared the 
shift of the maximum of the line to a lesser degree of 
accuracy. Consequently, it was not possible to gener-
ate much confidence that the shifts as predicted by 
•"the theory were reliable. In this work, it was found 
that the theory always predicted the position of the 
mean correctly within experimental accuracy (nominally 
within about 15% of the measured shift). 

The implications of these results are much wider ranging 
than this simple summary would suggest and are worth great-
er consideration. First, let us consider the measuring 
technique itself. 

The wedge technique for measuring shifts is restricted 
neither to the measurement of Stark shifts as used here, 
nor to the steady state type of plasma which was used in 
the work. The technique may be applied to either steady 
(d.c.) plasmas or pulsed plasmas just by changing the 
method of recording the photomultiplier output signals. 
For example, if a dual beam oscilloscope were used, both 
signals would be recorded for a pulsed plasma and the ratio 



of the signals would be a temporal representation of the 
position of the mean of the observed line. Under steady 
state conditions, any number of recording devices (such as 
chart recorders, DVM's or pulse counting systems) would 
suffice. The technique can even be applied to microdensi-
tometer traces of a spectrographic plate by incorporating 
the response of the plate into the shape of a "mathemati-
cal" wedge used to analyze the traces. 

As well as being useful in a variety of experimental con-
ditions, the wedge technique may prove useful in a variety 
of scientific problems in which the shift of the mean of 
a plasma line is the interesting feature. In this work, 
Stark shifts were of interest. In other experiments, the 
technique may be used to observe Doppler shifts, van der 
Waals shifts or Zeemann shifts. The scientific adaptability 
of the technique is left to the imaginations and the prob-
lems of "other physicists. 

Looking beyond the development of the measuring technique, 
the most exciting aspect of this work is the revival of 
interest in the use of Stark shifts as a diagnostic tool 
of plasma physics. The reason for this revival lies in the 
several important features that Stark shifts present which 
are actual pitfalls of the more widely recognized use of 
Stark widths as a diagnostic technique. 

Firstly, in many cases the shift of the mean of a line is 
much easier to measure than the width. For example, one can 
imagine the amount of extra effort required to obtain the 
temporal behavior of the width of a plasma line as opposed 
to following the temporal behavior of the position of the 
mean as suggested above using the wedge technique. Another 
example appears when the shift is unfolded for a cylindrical 
plasma. The amount of effort required to- unfold the shifts is 



insignificant as compared with that needed to unfold the 
detailed profiles to obtain the local widths of the lines. 

It is not possible to generalize about the comparable 
accuracy of measuring shifts as opposed to widths since the 
conditions of the particular experiment will have a signif-
icant contribution to make to this comparison. However, 
whereas it was previously assumed that widths.were always 
more accurately determined, now this is not the case. Shift 
measurements can usually be made to comparable and often 
better accuracy than can measurements of line width. So, 
although this is not a feature which favours the use of 
Stark shifts, it is an important reversal in attitude that 
proviously was a serious bias against their use. 

A second favourable feature of using Stark shifts in plasma 
diagnostics is the sensitivity to electron temperature that 
many plasma lines display. The temperature dependence of 
the width, by comparison, is usually small. This makes Stark 
shift measurements extremely useful for measuring electron 
temperature — especially when other techniques are not 
available to the experimenter. 

As a third feature, Stark shift measurements are not affected 
by some of the mechanisms that limit the usefulness of 
width measurements in plasma diagnostics. Most notably, 
shift measurements are not strongly affected by the instru-
ment function of a monochromator. This becomes very impor-
tant at low electron densities and temperatures where the 
line width is comparable with the instrument width. Alsof 
Stark shift measurements are not significantly affected by 
self-absorption, resonance broadening or Doppler broadening. 
These broadening mechanisms must always be considered when 
using width measurements to determine plasma conditions. 



The last feature that supports the use of Stark shifts has 
been one of the most compelling incentives behind the use 
of width measurements as a diagnostic technique. That incen-
tive has come from the success with which broadening theory 
has been able to predict the widths of many plasma lines 
under a variety of conditions. In this experiment, using 
increased accuracy, the GBKO theory proved capable of deter-
mining the shift of the mean. Thus, although this feature 
is not yet complete, as further data is obtained and agree-
ment with theory is further substantiated, a wealth of 
calibration data will be available for reference in the 
same way as calculated widths are presently used. 

Thus, as a general conclusion, it is felt that this work 
will provide new incentive in plasma spectroscopy to persue 
the use of Stark shifts. The definite advantages Of their 
use as a diagnostic technique make the subject too enticing 
to leave in abbeyance. 

In more specific terms, the further work can take the follow-
ing course: 

a) It is possible to devise a scheme whereby scientists 
can obtain both elect on density and electron temper-
ature. This scheme should be delineated; 

b) Specific pairs of lines must be investigated to deter-
mine their sensitivity to electron density and temper-
ature in various regions of plasma conditions. These 
results would provide a basis for deciding when the 
measurement of Stark shifts offered the most favour-
able diagnostic technique available under the circum-
stances of a particular experiment; 

c) Other plasma lines must be investigated experimentally 
to further ascertain the accuracy with which theory 



predicts the shifts of the means of plasma lines. 
Specifically, investigation of helium ion.lines as 
well as the neutral and ion lines of heavier atomic 
species should be investigated. 

Should this further work continue to bear out the facts 
uncovered here, the results will undoubtedly be met with 
much enthusiasm by all plasma physicists. 



APPENDIX I 

RADIAL DISTRIBUTION OF LINE WIDTHS 

The (full) half-widths of the lines H 0 (4861A) and the 
P 

three neutral helium lines used in the experiment 
(Hel 3889, Hel 4713 and Hel 5016) were measured from 
computer (CALCOMP) plots of the unfolded local emission 
profiles as described in Part I, Chapter 2. 

The error bars represent the absolute limits of uncer-
tainty and are due to the uncertainty of measuring 
both the background and peak intensity levels as well as 
the uncertainty in the actual width measurement. 

The values plotted are the total measured (full) half'-
widths,. No attempt has been ;made ..to eliminate broadening 
due to the instrument function or the unfolding program. 
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APPENDIX II - THEORETICAL WIDTHS AND SHIFTS 

The following line widths for the neutral helium lines 
Hel 5016, Hel 4713 and Hel 3889 are the results of apply-
ing Griem's (1964,P) formula 

"total * 1 1 + U 5 a ( 1 " ° ' 7 5 r G ) ] w 

under conditions of known temperature and density. The 
electron (half) half-widths, w, as well as the quasi-static 
ion-broadening parameter, a, are obtained from Griem's 
tabulations for the appropriate line. The Debye-shielding 
parameter, r is determined by: G 

1 1 
r G " * 

e 2 

4ire0kT 
l 
T T 

where N is the ion population density and all other symbols 
have their conventional meaning. A tabulation of r^for 
various electron densities and temperatures is also pre-
sented. 

The graph showing the (full) half-width of Hg as a'function 
of electron density is a copy of that presented by Wiese 
(1965) who extracted the widths from Griem's calculations 
of the detailed profile for various values of electron 
temperature as well as electron density. 



10' 

114 
Figure AII-1 
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Figure All-2 
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APPENDIX III - AREA CORRECTION FOR INTEGRATION OF A LORENTZ 
PROFILE TO FINITE LIMITS 

When the total intensity of an experimental line profile is 
determined by numerical integration to finite limits, signi-
ficant error may be introduced by overlooking the fraction 
of total area contained in the line wings. This is partic-
ularly true if the line profile is Lorentzian — as is often 
the case with plasma lines. However, it is possible to 
estimate and to correct for the bulk of this error if the 
type of profile, the experimental half-width of the profile 
and the experimental integration limits are known. 

For a Lorentz profile with peak intensity A, mean zero and 
(half) half-width 3, the intensity distribution is given by: 

A 

If, under experimental conditions, an integration is carried 
out symmetrically to the,finite limits, ±x , then the area 
in both wings from x q to oowill have been ignored. The area 
measured will be given by: 

o 

while the amount of area ignored will be given by: 



The ratio, r , of ignored area to measured area is, Li 
therefore: 

r L = 
I . 
wings _ 
raeas. 

tan'1 (|) 
x 0 

tan"1 
Xo 

0 

If I t o t a ^ is the correct area given by integration to 
infinite limits, then obviously: 

I. , , = I + I . total meas. wing 

= I [1 + r T] meas. L 

Hence, by calculating r , the correct area can be deter-
Ii 

mined from the measured area. 

For convenience, it is useful to define 
x- = x 

3 ( and xj = f ) 

which is the nondimensional variable given by the ratio 
of the integration (half) limit and the line (half) half-
width. Using these new variables, the correction ratio 
can be determined by: 

tan 1 x 
rL(xJ) = 

i 
Xo 

tan x' 
— i Xo AIII-1 

This ratio has been calculated for a useful range of x^ 
and the results are presented in Figure III-l. 



Under experimental conditions, when the observed line is 
approximated by a Lorentz profile and the numerical inte-
gration is roughly symmetric about the mean, the nondimen-
sional integration limit, x^, can be calculated by taking 
the ratio of the (full) integration range to the (full) 
half-width of the profile. The wing correction ratio , r_, 

Ij 
can then be obtained from Figure III-l and applied to the 
measured area using equation III-l. 
The following procedure was followed to obtain the inte-
grated experimental emission profiles used to calculate 
the upper level population densities and hence the radial 
distribution of electron temperature as described in Part I 
Chater I-3c. 

The integral, S. (r), of the unfolded profiles is defined 
" o 

by: 
A2 

= J 
A, 

S X o(r) = J uXo(r,A)dA 
1 

where: Ai and A2determine the spectral limits of observation 
around the line; 

u (r,A) is the voltage emission profile at the Ao 
radius, r, as described in Part I, Chapter 2. 

This integral was evaluated by applying a trapezoidal in-
tegration program to the 150 experimental points of each 
profile held in computer storage. 

No continuum was subtracted from these curves. However, 
a background level (independent of radius), determined by 
the average level in the far wings of the profiles from 
the edge of the flame, was determined and subtracted from 
the profiles before integration. Subtraction of this 



background had negligible effect on the near-axis integrals, 
but significantly reduced the values of the extreme outer 
integrals. This was understandable since the low background, 
when integrated over a wide range, could contribute a signal 
comparable to the integral over the same region of a spectral 
line, which was very narrow in the cool regions of the flame. 

The variable, x^, (the nondimensional integration limit) 
was determined from the measured line widths and used to 
apply the wing correction ratio, r , assuming a Lorentzian 
line profile to the measured integral as described above. 

The corrected value subsequently was used in the temperature 
calculations. 
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APPENDIX IV - EXCITED STATE POPULATION DENSITIES 

If a state of Local Thermodynamic Equilibrium exists in a 
plasma, the population densities of the excited states 
of the neutral atoms can be calculated by the Saha-Boltsmann 
equation: (see Mewe, 1967): 

n m 
% m 

h" 
2-irmkT 

i n 2 
* e 
2 g i 

exp 
E mc 
kT e 

where: n is the number density in the excited state m J 

with principal quantum number m; 
g^ is the degeneracy of the excited state; 
g^ is the degeneracy of the ion ground state; 
E is the difference between the ionization mc 
energy and the excitation energy; 
n is the electron density and all other symbols 
have their .conventional meaning. 

It has been assumed in this equation, that second ionization 
of helium is negligible at the temperatures considered and 
hence that the electron number density and the ion number 
density are equivalent. Also, the partition function for 
the helium ion has been approximated by the degeneracy of 
the ion ground state. 

The temperature which appears in the equation is inter-
preted as the electron temperature as argued in the text 
(Part I, Chapter 3 C). 

This equation was evaluated for 
range 5xl015cm 3< n £ <3xl016cm 3 

electron densities in the 
and for electron temper-

atures up to 20,000°K. The results of these calculations 
are plotted for m=3 and m=4 in Figure IV-1 and Figure IV-2 
respectively. 
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APPENDIX V - WEDGE TECHNIQUE DESIGN PROCEDURE 

To summarize the details and facilitate the use of the 
wedge technique for measuring shifts in the mean of spectral 
lines, the following is a complete set of instructions that 
explain how to apply the design criteria derived in Part II 
to a particular experimental situation. 

1. The following information about the experiment is 
necessary for both the unshifted (subscripted 1 
below) and the shifted line (subscripted 2): 

- the types of line profiles (roughly, whether 
rectangular, triangular, Gaussian or Lorent-
zian); 

i 
the approximate total line intensities, A, and i 
A 2 ; 

- the expected (half) half-widths, and 
the expected shift of the mean from one profile 
to the other, AX ; 

/ 

- the dispersion of the monochromator; d^; 
- the continuum levels underlying the lines, B^ 

and 
- the accuracy required; 
- . the approximate normalization signal levels 

expected, S^ and 

' - some estimate of the noise processes that 
will cause uncertainties in the measured 
signals: ds^, ds2, dS^ and df^' 



Assume a width, W, for the wedge which adequately 
covers the widest line plus the expected shift; 

3. Calculate the nondimensional widths of the two 
lines x_ and x D using the assumed wedge width 

PI P 2 
(Xg = W/3') and the approximate line widths; 

4. Assume the mean of the broadest line lies at the 
center of the wedge (x = 0.5) and the shift is 
to X = 0.5 + AX'/W, where AX' = AX/D^; 

5. Determine the ideal ratio change, R^ (linear), from 
= 0.5 to R ^ a s determined from X 2 and the 

appropriate nondimensional calibration graph (such 
as Figures II-3.2, II-3.3, or II-3.4) assuming a 
completely linear response (i.e. xg = 00) ; 

6. Determine the non-linear ratio change, R^ (non-
lin.), from R^ =0.5 to along the curve spec-
ified by x 0 instead of along the linear response 

P 2 
curve as in step 5 above; 

7. Calculate the error introduced by non-linear 
response: 

AR^(linear) - AR^fnon-lin.) 

ARw(linear) 

8. Compare this error with the required accuracy. 
If the accuracy is insufficient, increase the 
assumed width of the wedge, W, and repeat the 
above procedure; 

9. Using the narrowest (shifted) line, calculate 
the relative background level: 

Bj 
o = — 

a; 



10. Using Equation II-3.18 in Part II, Chapter II-3, 
calculate the background slope criterion; 

1 + cxW 

11. Substitute m B and x q into Equation II-3.13 to 
find the ratio change due to shift plus background, 
LRy (bkgd.); 

12. Calculate the error in the ratio due to the presence 
of background: 

ARw( linear) - AR^backg'd) 

ARw(linear) 

If this, plus the previous error, exceeds the re-
quired limits, then extra measurements must be 
taken to eliminate the effects of background as 
described in Part II, Chapter II-3B. 

13. Make a rough estimate of the effects of wedge 
non-linearity based on the type of film used and 
the width of the wedge as indicated in Part II, 
Chapter II-3C. (Generally speaking, narrow 
wedges with W =0.02 mm are easier to make linear 
than wide wedges with W ~0.5 mm. However, in 
the middle of the range stated here a linearity 
of 5% is easily attained making the maximum non-
linearity of the output due to width fluctuations 
about 3% r with more realistic figures around 1%. 
In any case, the true transmission of the wedge 
can be measured with a scanning microdensitometer 
to more accurately assess the linearity of the 
wedge.) 



If errors due to wedge non-linearity plus 
errors due to edge effects as estimated by step 7 
of this procedure are too large, then again, the 
width of the wedge must be increased; 

14. Given the width of the wedge, W, which will allow 
sufficient accuracy and then T^ax, the maximum 
transmission range attainable for the photographic 
plate used to make the wedge, the slope of the 
wedge, b, can be calculated. (For design purposes 
it is safe to assume that T = 0.6 is possible.) 

max r 
T , max b = —r;— W 

15. Assume that the photomultiplier responses are iden-
tical (k = K in Equation II-2.10) and that the 
monochromator is a perfect beam splitter (f =f = 0.5) 

1\ i 
Calculate the anticipated change in the signal 
.ratio given the. .expected shift and dispersion of 
the monochromator, D^, using Equation II-2.10: 

A 
(f) = bAX' = i bAX 

A 
16. On the basis of the anticipated signals S^ and 

(assuming s =0.5$) and the expected uncertainties 
ds, ds, d£, and d$ , calculate the uncertainty 
in measuring the signal ratio difference: 

rsi s2" 

17. Compare this accuracy with the expected ratio 
change as calculated in step 15 to determine if 
the noise processes will allow the measurement to 
be made within the necessary accuracy. 
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