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A b s t r a c t 

We suggest a mechanism that may resolve a conflict between the precession 
of a neutron star and the widely accepted idea that protons in the bulk 
of the neutron star form a type-II superconductor. We will show that if 
there is a persistent, non-dissipating current running along the magnetic 
flux tubes the force between magnetic flux tubes may be attractive, resulting 
in a type-I, rather than a type-II, superconductor. If this is the case, the 
conflict between the observed precession and the canonical estimation of the 
Landau-Ginzburg parameter k > l / \ / 2 (which suggests type-II behaviour) 
will automatically be resolved. We calculate the interaction between two 
vortices, each carrying a current j , and demonstrate that when j > 
where q is the charge of the Cooper pair and A is the Meissner penetration 
depth, a superconductor is always type-I, even when the cannonical Landau-
Ginzburg parameter n indicates type-II behaviour. If this condition is met, 
the magnetic field is completely expelled from the superconducting regions 
of the neutron star. This leads to the formation of the an intermediate 
state, where alternating domains of superconducting matter and normal 
matter coexist. We also discuss how these currents might lead to more 
exotic vortex structures in neutron stars. 
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1. Introduction 

The motivation for this thesis comes from the observation that neutron 
stars precess [13] and from a calculation by Link [22] which shows that 
the magnitude and frequency of the precession contradicts the standard 
model of a neutron star. It is the purpose of this introduction to clarify this 
motivation. 

Neutron stars have been a topic of great interest since it was identified 
that pulsars were actually rotating neutron stars that emit electromagnetic 
radiation in pulses. A neutron star is a very extreme object. They are 
incredibly dense, and generate huge magnetic fields, and yet are incredibly 
cold. Measuring the time between the electromagnetic pulses gives us an idea 
of how quickly the star rotates, but it was quickly recognized that they do 
not spin how we expect. Instead, the timing of these pulses indicates that 
the star will suddenly speed up, an event known as a glitch, then slowly 
return to it's original rate. It is these conditions which make neutrons stars 
so interesting to study. 

It is believed that the answers to these questions can be found in labora­
tories here on earth. Explorations of condensed matter at cold temperatures 
have lead to a number of phenomena, the most interesting being Bose/Fermi 
condensation, the tendency of cold particles to all occupy the same energy 
state. Charged particles form condensates called superconductors and neu­
tral particles form superfluids. 

A superconductor placed in a magnetic field will act as a perfect dia-
magnet, repelling the field up to a critical value where defects form in the 
superconductor parallel to the field, allowing the magnetic flux to penetrate. 
A similar phenomenon occurs when a superfluid is subjected to angular mo­
mentum. Initially, because the superfluid has no viscosity, the superfluid will 
not rotate, but at a critical angular velocity a defect forms parallel to the 
angular velocity which carries a quanta of circulation, and the fluid rotates. 

Both of these defects are called vortices. In a superfluid the vortices 
repel each other and form an array. Superconducting vortices can either 
attract each other, forming large vortices, or repel each other and form an 
array. These are called type I and type II superconductors respectively. A 
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detailed review of vortices is given in chapters 2 and 3. 
The cold, dense nature of a neutron star suggests that a neutron star 

is made of superfluid neutrons and superconducting protons, both of which 
form vortices. The proton vortices are higher density than the neutron 
vortices and entangle around them meaning that wherever one set of vortices 
moves, the other must as well. Chapter 4 provides a detailed discussion of 
how condensates and vortices arise in neutron stars. 

The contradiction, which is the motivation for this thesis, comes from 
the fact that if the star is to precess the neutron vortices must move but 
the proton vortices won't allow them to. Link asserts that either the super­
conductor inside a neutron star is of type I and the proton vortices bunch 
allowing the neutron vortices to move or that • the superfluid neutrons and 
superconducting protons do no coexist. Link's argument is detailed in the 
beginning of part II. 

Part II of this paper investigates Link's conclusions by asking how can a 
superconductor be type II but act like type I and how would the vortex 
structure inside a neutron star change? The mechanism we will use in 
this investigation is the recent discovery that vortices can carry electrical 
current along their axes. Consider two type II superconducting vortices 
running parallel to each other. These would normally repel. If they carry a 
current, similar to two wires running parallel, then there is an attractive force 
between them. If the current is strong enough the vortices could attract, 
exhibiting type I behavior. 

This attraction could facilitate a number of new vortex structures. If the 
vortices were to form a loop, called a vorton, in an external magnetic field 
it would be possible for the vortex to be stable. If a number of loops exist 
they will tend to stack on top of one another forming a vortex sheet which 
carries current quite similar to a solenoid. A brief introduction to vertex 
sheets will be presented in chapter 6 though a detailed analysis will be left 
for later papers. 

1.1 S p o n t a n e o u s S y m m e t r y B r e a k i n g 

Spontaneous symmetry breaking is the mechanism which is responsible for 
the vortices reviewed in this paper. It is poor terminology in that it implies 
that if a Lagrangian has a symmetry, when spontaneous symmetry breaking 
occurs, this symmetry of the Lagrangian is somehow destroyed. The truth 
is that a Lagrangian having a symmetry doesn't imply that the system 
when viewed from its ground state has that symmetry. Consider the parity 
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symmetry, ip(x) -tp(x), in the 1-D potential 

( i . i ) 

This has minima at ip = ±m. If we look at the potential energy from the 
point of view of one of these minima by shifting the field, ip(x) —> — m, 
then 

a(xf 
U = mza(xY - ma(x)6 + (1.2) 

The parity symmetry seems to have disappeared, but really the symmetry 
is just hidden, or as Coleman [5] likes to put it, a secret. The symmetry 
breaking is spontaneous in the sense that the symmetic state is an unstable 
one, and that the system will quickly decay into a non-symmetric ground 
state. 

The parity symmetry is a discrete symmetry. Breaking a continuous 
symmetry is much more interesting. Goldstone's theorem states that when­
ever a continuous symmetry is broken a massless, non-dissipative, mode ap­
pears. This is usually illustrated using the linear sigma model [30] and the 
breaking of the SO(N) symmetry. Because we are working with a complex 
field, which can be written as tp — pel<p, it would be helpful to demonstrate 
breaking of a U(l) symmetry. The following discussion is similar to that 
found in [16]. 

Consider the energy 

E= dsx I W | 2 - f h / > | 2 + ?h/<|4 (1.3) 

This energy is has a symmetry under one dimensional unitary transforma­
tions: ip(x) —-» elAip(x). It is this symmetry that will be broken. By writing 
ip in terms of it's magnitude and phase we break it into two fields, 

E m ;(Vp)^ + - ^ ( V ^ - — p' + (1.4) 

The energy is minimized when p = m. We can now look at the fluctuations 
of these fields around the ground state p = m + p' and ip — (po + ip'. 

E = fd*x [ i (Vp ' ) 2 + ^-P2 + lm2(W)2 + (mp' + P-)(V^'f + (mp" + p'4)" 

(1.5) 



5 

If the variations are sufficiently small then the last two terms become zero 
and we get the energy of the fluctuations 

E 
= Id3x 

(1.6) 

We now have a Hamiltonian for our field fluctuations. Writing down the 
equations of motion for each field, 

(V2 + m2)p' = 0 and V V = 0, (1.7) 

we see that the p' field has a mass as expected, but the ip' field is mass-
less. These massless modes are called Goldstone Bosons and because of the 
symmetry of the Lagrangian they can move freely in the <f> direction. It is 
this symmetry breaking and the creation of these massless modes moving 
unhindered that lead to superfluid and superconducting vortices. The exis­
tence of these modes in the ground state of the system is a characteristic of 
non-disipative flow. Usually, such as in the case of a rotating viscous fluid, 
the ground state of the system is when all flow has stopped. The rotational 
flow will disipate to become a stationary system. This doesn't happen when 
the lowest energy state has flow in it, so the flow is called non-dissipative. 
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2. Superconducting Vortices 
In 1950 Landau and Ginzburg proposed a theory which phenomenologically 
describes much of the behavior seen in superconductors. Not only does it 
encapsulate the work done by F. London and H. London in explaining the 
Meissner effect, but was used to postulate some very remarkable phenom­
ena. The focus of this chapter is Abrikosov's prediction of the vortex [1], 
a line defect in the superconductor which carries quantized magnetic flux. 
It is important to note that Ginzburg and Landau derived this theory phe-
nomalogically, before the BCS theory of superconductivity was introduced, 
and that many years later Gorkov showed that it comes from BCS theory 
naturally. 

We will start with the Landau-Ginzburg free energy and a derivation of 
the equations of motion [16]. In section 2.2 the equations of motion will then 
be used to show that the theory contains the Meissner effect [2]. Section 2.3 
will discuss cylindrically symmetric solutions which lead to vortices and the 
quantization of magnetic flux [16] [21]. Also, the equations of motion will be 
solved to investigate the structure of the condensate in a vortex [15]. Using 
this, the energy of a single vortex [16] will be discussed in section 2.4 and 
the interaction energy between two vortices will be found [37] in section 2.5. 
This will give us insight into the stability of vortices in type I and type II 
superconductors. Finally, in section 2.6, the critical magnetic fields for type 
I [6] and type II [16] superconductors will be found. 

2.1 T h e G i n z b u r g - L a n d a u E n e r g y 

The Ginzburg-Landau energy is based on the work of Gorter and Casimir 
who introduced the idea of an order parameter \tp\2 proportional to the den­
sity of superconducting electrons to describe the state of a superconductor. 
They postulated a free energy for a superconductor near critical temperature 
T 

£ = - M M 2 + £ M 4 , (2.i) 
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where /J, ~ p^o — j r j is the chemical potential, which changes sign at TC, 

and a is related to the scattering length I, a = Landau noticed this 
idea could be expanded by considering a complex order field i\) (x) which 
could be used to describe fluctuations in the order parameter by adding a 
gradient to Gorter and Casimir's guess of the free energy. He and Ginzburg 
could then write the free energy of a superconductor near the critical tem­
perature TC. To investigate at a superconductors in magnetic fields, similar 
to F. London and H. London, they added the field energy and a gauge 
invariant derivative to arrive at 

( v - ^ A ( x ) ) * ( x ) | 2 

- M W ( x ) | 2 + | W ( x ) | 4 + i ( V x A W ) 2 } . (2.2) 

We are interested in cylindrical solutions so we choose to work in 2-D, so 
the equation above is the energy per unit length. 

This energy can be minimized to yield the Landau-Ginzburg equations. 
Minimizing with respect to the vector potential A gives us 

- ^ [ V 2 A - V ( V - A ) ] = - ^ j , (2.3) 
4.7T J mc 

where j is the Noether current [30] 

J - 2 i H v - i A ) * - ( v - ^ A H M 

= i ( ^ t v ^ _ w t ) - ^ A | * | 2 . (2.5) 

This identification of the currect is critical and will later lead to the result 
that flux is quantized inside a vortex. Using curl identities and the alternate 
form of the Noether current we can rewrite the equation of motion as 

i v x v x A - £ ( s i ^ f - - i A I*IS) • ( 2 - 6 ) 

Minimization of the free energy with respect to the order field ip is more 
straight forward and yields 

E - H 2m 
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This will be used to determine the structure of the flux tube. 
Note that the Ginzburg-Landau equations 2.6 2.7 are invariant under 

the gauge transformation 

A(x) -» A(x) + V</>(x) , (2.8) 

^ ( x ) ^ e ^ x V W . (2-9) 
This transformation can be used to remove the phase of the order parameter. 

Now that we have established the field equations we can begin to ap­
ply them. The first will be a demonstration of the Meissner effect and a 
derivation of the London penetration depth. 

2.2 T h e M e i s s n e r Effect 

The Meissner effect follows from equation 2.6 quite nicely. Consider it in 
cartesian coordinates for now, where a superconducting state exists for x > 0 
and a normal state for x < 0. We will use the polar decomposition of tp as 
an Ansatz; 

${x) = ^p{x)eiv^, (2.10) V a 

where p(x) = [0,1) gives the fraction of the field which has condensed, 0 
being a normal state and 1 being totally superconducting. The states in 
between are called mixed states. Substituting this Ansatz into equation 2.6 
yields 

V x V x A{x) = (x) £p(x) - ^rA{x)^p{x). (2.11) 

Let's assume we are looking in a region of the superconductor without many 
disturbances. This is the same as setting p(x) = 1 and we get 

V x V x A(x) = ^Vip(x) - ^4^A(x). (2.12) 
mca mcza 

Taking the curl of both sides gives us the London equation, 

V x V x B(x) = -A 2 B(a;) , (2.13) 

where the quantity A is called the penetration depth and is defined as 
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and no = ^ is the density of superconducting electrons. Its name comes 
from the interpretation of the solution of the London equation, B(x) = e A , 
which says that the magnetic field will decay after a characteristic length A 
past the surface of the superconductor. It is also instructive to note that 
q = 2e and m = 2me. This is consistent with the picture that Cooper 
pairs are responsible for the condensate. Having made sure that the theory 
contains the fundamental results of the London equations we can now see 
what new phenomena the theory predicts. 

2.3 V o r t e x L i n e s 

The vortex line solution comes from solving the equations of motion in cylin­
drical coordinates and was first discovered by Abrikosov [1]. A vortex is a 
cylindrically symmetric line defect which exists in an otherwise undisturbed 
superconductor. It is similar to the fluid vortices that are formed when water 
goes down a drain. In a superconductor the electrons rotate around a core 
where the density of superconducting electrons drops to zero. We will first 
investigate how this structure leads to the quantization of magnetic flux. 

2.3.1 Flux Quantization 

An indication that somthing interesting is happening comes form our defi­
nition of the current j given by 2.4. If we solve equation 2.4 for the vector 
potential we get 

In cylindrical coordinates, equation 2.7 incidates that as r —>• 0, p —> 0. If 
the superconductor is not in an electric potential then current can only be 
produced by disturbances in the superconductor. Far away from r — 0, the 
superconductor is in an undisturbed state so j = 0 and 

. A = T S i ^ ( * , v * - * v * t ) - ( 2 - 1 6 ) 

Substituting the Ansatz for ip gives 

A = — Vyj(x) (2.17) 
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Because the phase of the wave function is single valued integrating on a 
closed contour around the vortex leads to a quantization condition 

JA-d\ = ^ ^ V < / ? ( x ) -efl= ^ 2 ™ > ( 2- 1 8) 

where n is an integer. We can use Stokes theorem to see that the contour 
integral of A is also the flux through the surface, 

j> A-d\ = j V x A • dS = j BdS = <5>. (2.19) 

Equating the two expressions indicates that the flux is quantized with quan­
tum number n and that 

$ = n$0 with $ 0 = . (2.20) 

The integer n is called the winding number and is an indication of the 
strength of the vortex. It can be shown energetically that a single vortex of 
winding n = N will decay into N vorticies each with a winding number of 
n = 1 [26]. Also notice that the flux away from the vortex is independent pf 
the radius of the loop we integrate around. These will be considerations in 
choosing the Ansatz in the next section. 

Right now it is unclear where the flux actually is. As it has been derived 
it looks like it penetrates the entire plane. To find where this might be 
localized we have to solve the other equation of motion governing the density 
of the superconductor. 

2.3.2 The Structure of the Vortex 

The problem with solving the field equations 2.6 2.7 in cylindrical coordi­
nates is that they are coupled, non-linear differential equations. We are 
looking for defects so we will no longer assume that ip(x) is constant. To 
make it easier to decouple and linearize these equations it is convenient to 
define 

^ = ^ ( 0 ^ * , (2.21) 

Hq a(r) ~ , A — ——^1 (p (2.22) 
c r 

where p (r), a (r) —)• 1 as r —>• oo and p (r), a (r) -> 0 as r —> 0 and r and 0 
the cylindrical coordinates. The phase of tp(x) is chosen to mimic a vortex 
with winding number n = 1. 
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We can further define 

p(r) = l + a(r), (2.23) 

a(r) = 1 + ra(r) , (2.24) 

such that a (r), a (r) —> 0 as r —» oo. Let's start by subsituting 2.21 and 
2.22 into equation 2.6. 

V x V x ( ^ ^ = ( I - *1) o{r)2 4> (2-25) 
\ r ) mc a \r r ) 

Writing the cross products in cylindrical coordinates and using 2.23 and 2.24 
we get 

d2a I da 1 a hixuq2 .„ .9 

^ T + - f l 2-^i = ——»(l + a 2 . 2.26 
ar z r or rz r* mca 

We can linearize this equation by taking r -» oo. We keep only the terms 
linear in a and a and the lone ^ goes to zero. This leaves us with a modified 
Bessel equation of the first order, 

d2a Ida ( 1 
^ + r ^ - ^ + ^ Q = 0 ' ( 2 - 2 7 ) 

where A is the London peretration depth we derived earlier. We want a 
solution that goes to zero as r —> oo so we choose the solution to be a 
modified Bessel function of the second kind, a = \K\ (J). Going back 
through all the substitutions find that the vector potential is 

he 
A = — 

qr 

where c^ is just a constant from solving the differential equation. This de­
scribes the Meissner effect in cylindrical coordinates. As we move from the 
core of the vortex into the superconducting material the magnetic field de­
cays. We will do a gauge transform on this later to put in a more recognisable 
form. 

We will now look at the structure of | ^ | 2 as a function of the radius. We 
want solutions such that the superfluid density starts at zero in the core and 
goes to ^ at infinity. We start by substituting 2.21 and 2.24 into 2.7, 
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Substituting in 2.23 and 2.24 and linearizing yields 
4m/i ld_ da 

r dr dr -a. (2.30) 

This is a modified bessel equation of the zeroth order, KQ i^^r^j. Going 
back through all the substitutions we find the asymtotic solution to the 
order field to be 

1 K ^ 1 - c„Kn —r (2.31) 

where ca is a constant from solving the DE. The quantity £ is called the 
coherence length and is defined as 

/ h2 

2m/i (2.32) 

It gives a length scale for the change in density from the non-superconduct 
core at r = 0 to the undisturbed superconductor r = 0((). The length scale 
is a measure of the size of the vortex. Later we will make the approximation 
that superconductivity is completly destroyed inside the radius £. This aids 
in the evaluation of integrals. 

It is useful to simplify these solutions using a guage trasformation which 
removes the phase of the order field, 

A(x) A ( x ) -

ipe-1 

id_ 
r def) 

he 
— <P <t>, 

The solutions to the field equations simplify to, 

V 2 

T 
1 - caK0 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

This form will be useful later when we calculate the interaction between two 
vortices. 

We can start to understand what is happening in a vortex. It is a distur­
bance which has a non-superconducting core of radius £ that carries quanta 
of magnetic flux. Because the superconductor displays the Meissner effect 
this flux can only be carried along the core of the vortex, where supercon­
ductivity is destroyed. Essentially the vortex is a tube of magnetic flux 
allowing a magnetic field to penetrate the superconductor. 
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2.4 T h e E n e r g y o f a V o r t e x 

Having solved the field equations for ip(x) and A(x) it is now possible to get 
a rough estimate of the energy of a vortex. If we take the field equation 2.7 
and substitute it into equation 1 we get an expression for the free energy, 

We know that zeroth order Bessel functions have the property that 

dKn(ar) , . , 
^—'- = -aKi'ar) 2.38 
dr 

and, in cylindrical coordinates, are a Green's function for 

(V 2 - a2)K0{ar) = -2nS2{r). (2.39) 

Using these on 2.28, when r ^ 0, we get 

v x A = ; l s * < x > - - \ i T i K M - - " 2 * » < x > • < 2 4 0> 

It can be shown that at large r the leading order of p4 is ̂  [16]. Using all 
of this the energy becomes 

E= / rdrd(j){ 
Jo Jo + 3*""' >• < 2 ' 4 1 ) 

^ o ( i ) ) ' 

The first term is easily integrated, but is unbounded at its limits. Instead of 
r = oo we use a cutoff r = A which is the size of the container holding the 
superconductor. We remove the singularity at r = 0 by neglecting the core of 
the vortex r < £. The second term is evaluated by using f0°° tKq (r) dr = ^. 
The energy per unit length of the vortex becomes 

The fact that a cutoff is required indicates that a vortex can only exist 
in a container of finite size. Now that we have calculated the energy for a 
single vortex it will be interesting to look at two vorticies and the interaction 
energy between them. 
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2.5 I n t e r a c t i o n E n e r g y B e t w e e n T w o V o r t i c e s 

The philosophy behind calculating the interaction between vortices is to 
find the energy of the entire system and then subtract off the energy of the 
individual vorticies as originally outlined by Kramer [17]. The technique 
we will use was introduced by Speight [37] and used by Buckley et al. [15] 
and MacKenzie et al [32] to calculate vortex interactions in models with 
two order parameters1. The same philosophy is used but the actual cal­
culation becomes much less cumbersome. We will reduce the theory to a 
non-interacting, linear one and then model the vorticies as point sources. 
The interaction energy is then calculated from this linear theory. 

To aid in the calculation it is useful to remove the phase in ip as was 
done earlier 2.35 2.36 and write <f> as y^"(l — cr). To linearize the theory we 
expand in a and A and keep only quadratic terms to get 

Efree= fd

2J^~(Va)2 + ̂ ((WxA)2 + ̂ )+2^a2). (2.43) J .{a 2m 8n \ \l J a J 

The source terms are 

-Es, = j d2x{T(7 + y A} , (2.44) 

where r and j are the sources for the fields a and A . Minimizing -Efree+ t̂otai 
we get the equations of motion, 

„ 9 2 \ m a , 
*-e)° = »7' (2'45) 

1_ 
A2 

A = 47Tj . (2.46) 

We want to solve for the sources j and r such that they have the same 
asymptotic solutions we obtained earlier in 2.28 and 2.31. Using 2.39 and 
the derivative of 2.39 we can solve for the sources, 

T = -^ 2 7 r < 5 2 ( x ) , (2.47) ma 
. hcd52(yL) 7 

: A simple example of this technique is outlined in Appendix A. 
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The interaction energy is found by substituting j = j i + J 2 , A = A i + A2, 
r = T\ + T2 and o~ = o~\ -{- o~2 into the total energy E = Efree + ES0UTCe and 
subtracting of the energies of the vortices, leaving only cross terms. The 
subscripts 1 and 2 refer to two seperate vorticies and positions x i and X 2 
respectively. The cross terms left over are interpreted as the interaction 
energy, 

înteraction = Jd2X { T I C T 2 + j l • A 2 } . (2.49) 

Using 2.22, 2.23, 2.47 and 2.48 the interaction energy can be written as 

înteraction = / d2X \ - — -2TT52(X - Xi)K0 

J [ma 
He <9<52(x — xi) he 

2irh2n ^ (y/2d 

(2.50) 

where d = |x i — X 2 | . Integration of the second term is subtle and the steps 
are clearly outlined in equations 3.28. 

There are two terms working to oppose each other. The first term is 
a repulsive force similar to the force between two wires with currents in 
opposite directions. The current in this case is caused by the electrons 
rotating around the vortex. Two vortices placed side by side will have 
currents running in the opposite direction and be repelled. We can see from 
equation 2.48 that the current is in the tp direction around the vortex. The 
second term is an attractive force caused by the superconductor prefering 
to be in a state with no defects and attemping to restore order by making 
only one vortex. When the first term is larger interaction is positive and the 
vorticies repel. When the second term is larger the vortices attract. What 
governs this is the relative size of A and Because KQ(X) is monotonically 
decreasing for all real x the vortices will repel when 

d V2d 
j< — ' < 2 - 6 1 ) 

Rearranging yields the famous Ginzburg-Landau parameter, 
1 , A , 

K > —=: where K = — . (2.52) 
V2 £ 
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This dimensionless quantity is used to determine whether a supercon­
ductor is type I or type II. A type II superconductor is one which allows 
partial penetration of a magnetic field. A type I superconductor is one which 
fully displays the Meissner effect. If K > ^= then vortices repel from each 
other and they will form a triangular lattice [38] [39], each vortex carrying a 
quanta of flux <&o- This accounts for the partial penetration of the magnetic 
field exhibited by type II superconductors. If K < then all the vortices 
attract each other and collapse. The superconductor now has no mecha­
nism to carry flux and exhibits the Meissner effect, behaving like a type I 
superconductor. 

2.6 C r i t i c a l M a g n e t i c F i e l d s 

Type I and type II supercondunductors have another distinguishing feature, 
the magnetic fields at which the Meissner effect is destroyed. A type I 
superconductor will display the Meissner effect until a critical external field 
BCJ destroys the superconducting state. 

A type II superconductor will display the Meissner effect until a critical 
field BCI1 when vortices start to form and allow part of the field to penetrate 
it. Increasing the magnetic field strength further will create more and more 
vorticies until there are so many that superconductivity is destroyed. 

Let us first consider a type I superconductor. The density ip is uniform 
and there is no magnetic field inside so equation 1 becomes 

ĉondensate = V (||^|4 - fi\lp\2) , (2.53) 

where V is the volume of the superconductor. This has minima at IV'I2 = 
Applying an external magnetic field changes the energy by — |^-. If we set 
-̂ condensate = 0 the condenstate has been destroyed and we get a critical 
magnetic field 

Be, = yj^f. (2.54) 

Now consider a type II superconductor. There are both energy gradients 
and magnetic fields inside the superconductor. We use the energy of a vortex 
we calculated earlier and this time the magnetic field inside the vortex B-mi 

couples with the external field Bext through the interaction term 

E m = -^alOS{j) + 8{q^) - J D X — S T " • ( 2 - 5 5 ) 
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If the external magnetic field is in the z direction then the last term is just a 
statement of flux quantization and can be simplified, rdr2'nBmt = 27Ty. 
The energy E = 0 is when a vortex will first form inside the superconductor 
so, 

iOmfi i / A \ y 
mca \ 4 7r V w / 

Comaparing the two critical fields we see that BClI is much smaller than 
BCI. This is expected because a type II superconductor only has to let one 
quantum of flux through at BClI, where BCl has the energy to destroy the 
entire state. 

(2) 
There will be a critical magnetic field BC]I in a type II superconductor 

when so many vortices have penetrated the bulk that superconductivity 
is destroyed. Abrikosov noticed that just before this happens the order 
parameter is very small. This means that only the non-linear terms of the 
equation of motion 2.7 need to be considered and we are left with 

- £ ( v - i A ) 2 ^ - ( 2 - 5 7 ) 

If v is interpreted as the energy level then this is just the Schrodinger equa­
tion for a particle in a magnetic field. The minimum energy of a particle in 
a magnetic field is just EQ = Then, by analogy, the particle only exists 

" > ^ - ^ < ^ - <™> 
(2) 

A magnetic field above BCI1 will destroy superconductivity in a type II 
superconductor. 
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3. Superfluid Vortices and 
Sheets 
Ginzburg-Landau theory can be used to describe the energy of superfluid 
vortices if the limit of the charge q —> 0 is taken. This effectively shuts off 
the magnetic field leaving only the terms from the order parameter. The 
free energy becomes 

E = / ^ { ^ | V V | 2 - / , | V | 2 + f M 4 } - (3-1) 

Vortex structures in fluids arise when the vessel containing the fluid is 
rotated. With a normal fluid, one with viscosity, friction transfers the energy 
from the rotating container to the fluid causing it to rotate. The particles 
then transfer this energy throughout the fluid until the whole volume is 
rotating as a whole and is indistinguishable from solid body rotation. 

For a superfluid1, where the viscocity is zero, this is unlikely. The energy 
required to keep the atoms rigid is extremly high, so there must be another 
solution. The equation which describes the minimum energy in the rotating 
frame for a given ft [20] [19] is 

Erot = E - fl • M , (3.2) 

where E and M are the energy and angular momentum of the system in the 
fixed coordinate system and fl is the angular velocity of the container. As fl 
increases it becomes more and more favorable for the fluid to carry angular 
momentum. Eventually the superfluid must move somehow. This chapter 
will describe the structure of the superfluid and this movement. There are a 
number of good reviews on superfluid vortices but the bulk of the knowledge 
in this chapter was culled from Kleinert [16], Landau [21] and Feynman [8]. 

lrThe consequnces of rotating a superconductor are discussed in Appendix B 
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3.1 The Structure of a Superfluid Vortex 

Here we will look at how the density of the superfluid changes when a single 
vortex is formed. Minimizing equation 3.1 yields the equation of motion 
which will determine the structure of the vortex. This can aslo be obtained 
directly from the cylindrical solution to equation 2.7 with q —> 0, 

£^72il> = a\1>\2$ - ^ . (3-3) 

We use a polar decomposition ansatz for the wave function of the condensate, 

ip(x) = ^p(x)el»^>, (3.4) 

where N is the winding number of the vortex, ^ is identified as the number 
density, no, of the undisturbed superfluid, and p is a function which can take 
values from 0 to 1 to describe changed in the superfluid number density. 
Substituting this in yields 

1 d dp N2p 2mv 3 

We want to look at asymptotic behavior of this equation to find out what 
happens to the superfluid as r —> 0, near the core of the vortex, and how 
the superfluidity gets restored away from the vortex at r —)• oo. As r —> 0 
equation 3.5 is dominated by the left hand side of the equation and we take 
the right hand side to be zero. This is similar to a Bessel differential equation 
in the same limit. Because we want p = [0,1] we choose the non-singular 
Bessel function of the first kind as a solution, 

/ h2 

P = cpJN I ^ - r ) where £ = W — , (3.6) 

where cp is a constant. This shows that deep in the core of the vortex the 
superfluid density ps = m\(p\2 drops to zero. Landau described 4He with a 
two fluid model where the total density of particles is the sum of the super 
fluid and normal phases p t ot = Ps + Pn- This implies that in the core of the 
vortex there exists only normal liquid AHe. 

To get the other limit it is helpful to make the substitution p = 1+cr. We 
assume that far away from the vortex p —> 1 which implies that as r —> oo, 
cr —> 0. Making this substitution and then linearizing yields 

1 d da N2a _ Amp, 
r dr dr r2 h2 ' 
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which is a modified Bessel differential equation. The solution which makes 
physical sense and has the correct asymptotics is the modified bessel function 
of the second kind. Substituting back gives the solution 

p = 1 - cpKN l^J^j > (3-8) 

which gives the behavior of the superfluid at long range. Notice that as the 
winding number increases the order of the Bessel function increases and that 
Bessel functions go to zero more slowly with increasing order. So as winding 
number increases the radius of the vortex increases meaning the defect is 
stronger. 

3.2 Q u a n t i z a t i o n o f C i r c u l a t i o n 

Now that we have the distribution of the superfluid density we can ask what 
the superfluid is doing. Just as Abrikosov did for superconducting vortices, 
Feynman brought forward the idea of quantized superfluid vortices [7]2. 

It has been shown that the ansatz 3.4 gives a reasonable structure for a 
vortex. In the previous chapter we found that for a superconducting vortex 
the magnetic flux carried in the core was quantized. This was found using a 
line integral about the vortex. There is a quantity in fluid dynamics called 
the circulation which has a similar form; 

= j>v-d\. (3.9) 

Using the wave function we can find the velocity of the superfluid using 
the correspondence rule v = 2- — —i—V. Let us consider a point in the 
super fluid away from the vortex where the superfluid density isn't changing. 
Then acting the velocity operator on the wave function gives 

v V = -i—Vyfape™^ = -(Vp)V>, (3.10) m m 
or more clearly 

v = — V<p. (3.11) 
m 

2 As a historical note, Landau was a large proponent of domains in superconductors and 
vortex sheets in superfluids [18]. He hated the idea of vortices in superconductors so much 
that he prevented Abrikosov (who was Landau's student at the time) from publishing 
his superconducting vortex solution. It was only after he saw that Feynman's superfluid 
vortex solution was correct that he let Abrikosov publish his solution for superconductors 
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The velocity distribution can also be found by using the definition of the 
current 2.4 and substituting in the wave function, 

ih 
J = „ Uv^ - tfj^Vip) (3.12) 

2m \ I 

= - n 0 V w (3.13) 
m 

This is the macroscopic current denisity of condensate particles which can 
be equated to j = nov. Then the velocity of the fluid is exactly what we 
obtained above. Finding the fluid velocity using the current helps unify the 
pictures of superfluid vortices and superconducting vortices. Al l one has to 
do is take the limit q -» 0 in a gauge theory to get superfluid behaviour. 

A velocity field described by the gradient of a function is called a poten­
tial flow. The first thing to note from this is that the vorticity u) = V x v 
of a potential flow is 

V x v = V x (Vy?) = 0. (3.14) 

When the vorticity is zero the fluid is called irrotational because, in a simply 
connected region, all closed paths can be shrunk to a point and the fluid 
velocity is zero everywhere. In a multiply connected region, such as when 
a vortex is present, the circulation about any closed curve that can't be 
shrunk to a single point does not need to vanish. If <p (x) is set to be the 
the azimuthal angle, <p, which increases by 2-K as of going around the hole, 
the fact that the wave function is single valued will lead to the circulation 
being quantized, 

<£v-dl= — J>V(p(x)-dl = 2irN—, (3.15) 
/ m J m 

where a quanta of qirculation is given as 

T 0 = . 3.16 
m 

Equation 3.15 also gives us a proof that no vortex line can end in the 
middle of the superfluid. First assume that a vortex line could end in the 
middle of the superfluid. If we calculate the circulation around it we find 
that 

Y = j>vd\ = NTQ, (3.17) 
But the equation for V can be rewritten using Stokes theorem and because 
the vortex ends in the middle of the superfluid there is a way to draw the 
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surface S such that the vortex does not pass though it. Consequently there 
is no flux through the surface which means that the integral is zero, 

r = j>v-dl = JvxvdS = 0, (3.18) 

which leads to a contradiction with 3.17. Thus a vortex filament must either 
go to infinity or stop at the boundary of the superfluid. 

3.3 E n e r g y o f a S ing le V o r t e x 

The energy of a superfluid vortex can be found by considering the change 
in kinetic energy of the superfluid upon the appearance of a vortex. It is 
simply 

AE = J\psv2dV. (3.19) 

In order to evaluate this integral we need the distribution of the super-
fluid velocity. Luckily, the circulation gives us a way of finding this. Consider 
the simplest case of a vortex in a superfluid in which the filament is at the 
origin lined up with the axis of the container's rotation. In this case the 
streamlines of the velocity field are circles centred on the vortex in a plane 
perpendicular to its axis. The circulation in this case is just 2-Krvs so that 

2ivr = ATo ==> vs = . (3.20) 
r 

Note how this potential rotation velocity distribution differs from that of a 
solid body. Here the velocity decreases as we move away from the centre 
where it would increase with solid body rotation. 

We can now substitute this velocity into equation 3.19. To do the integral 
it is helpful to approximate the vortex as having no superfluid at all inside 
the vortex coherence length £. If the superfluid is in a container or radius 
R then 

AE = 2-KLps I -rdr = LirpsN2T2

0 In - . (3.21) 
J xi r

 \ S / 

From this it is clear to see that the energy is minimized when the winding 
number is N = 1. The energy also scales as N2 which means that if two 
vortices are present it is more favorable for there to be two vortices with 
N = 1 than one large vorex with N = 2. This means that it is more stable 
for a large vortex to break into smaller ones and implies that the inter-
vortex force is repulsive, which is different from the order parameter term in 
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gauge vortices 2.50. The interaction between two vortices will be explored 
in detail in a later section. We also see that a vortex which is not contained 
has infinite energy and thus can't exist. 

3.4 I n t e r a c t i o n B e t w e e n T w o V o r t i c e s 

The absence of a gauge field changes the way the order field interacts with 
itself. In the gauged field theory the order field worked to attract the super­
conducting vortices while the gauge field is what pushed them apart. Energy 
considerations for superfluid vortices show that the energy is least when the 
winding number N is the smallest. This means a large vortex with N > 1 
tends to decay into a number of small vortices with N = I. 

The first check will be to take the q —> 0 limit of the Ginzburg-Landau 
parameter derived earlier. If K > then we will be in type II behavior and 
the vortices should repel. Taking the limit we see that 

Comparing with 2.52 we see that the q —>• 0 limit of the Ginzburg-Landau 
parameter shows that the ungauged votices should repel. 

A better check is to actually calculate the interaction energy in a cal­
culation similar to what was done for superconducting vortices. As in the 
previous chapter we will use the method of Speight [37]. Linearizing the 
theory to be quadratic in a yields 

Linearizing removes the structure of the vortex so we add a source term to 
model it; 

lim — = oo. <7->o q (3.22) 

(3.23) 

(3.24) 

The equation of motion for EfTee + Esource is 

(3.25) 

Using the Green's function to solve for r gives us 

_ h2(i0 <M2(x) 
(3.26) 

m a 
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Now that we've found a delta fuction source which mimics the asymp-
totics of the real solutions we can calculate the interaction between two 
vortices. The interaction energy is found by substituting r = T\ + TI and 
a = o\ + 02 into the total energy E = EfTee + Source and subtracting of the 
energies of the vortices, leaving only cross terms. The subscripts 1 and 2 
refer to two seperate vortices and positions ai and &2 respectivly. The cross 
terms left over are interpreted as the interaction energy, 

E\nt = j d2XTXa2. (3.27) 

Substituting gives us 

£int = / d2x— ^2TT Y— V-Kx 

ma or 

- I m a or 

J ma 

2nh2 IJL 1 d 
m ar\ dr\ 

2nh2 fi C 1 d 
m a y/2 r\ dr\ dr\ 

2<KW2 u. j 2 
~nT~a^f2e 

(3.35) 

where d = | r i — T2| and represents the distance between the vortices. In 
the absence of a gauge field the intereaction energy is positive and the order 
field is now responsible for a repulsive force. Superfluid vortices repelling 
each other is consistent with the previous energy considerations involving 
the winding number and the q -» 0 limit of the Ginzburg-Landau parameter. 
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3.5 C r i t i c a l fi a n d t he A r e a l D e n s i t y o f V o r t i c e s 

The quantization of circulation has led to a quantization of the energy of a 
vortex. Because the angular velocity, Cl, is resposible for putting energy into 
the system, which is quantized, it stands to reason that there is a critical 
fic at which a votex line will first appear in the superfluid. This specifically 
occurs when Q is such that the creation of a vortex lowers the energy in the 
rotating frame, specifically when 

AETOt = AE - MQC = 0. (3.36) 

The angular momentum M can be calculated classically from 

M = j psv2

srdV = psF0 J dV = LnR2pT0 . (3.37) 

Substituting 3.37 and 3.21 into 3.36 and solving for Qc yields 

L7rpsN2F2 In (jj = LirR2pT0Qc = • fic = ^ In (^j . (3.38) 

Vortex lines exist for Q > flc. When Q, » i l c a large number of vortex lines 
form. As shown earlier it is favorable for the vortices to repel each other and 
form a lattice in the container similar to that of superconducting vortices. 

It is apparent that a greater Q, will create more and more vortices. It is 
necessary to minimize equation 3.2 for a certain number of vortices. Even 
with quantized circulation and potential flow this still occurs when the mo­
tion mimics solid body rotation. The vorticity of a solid body of radius R 
is V x v = 2ft which means the circulation by Stokes theorem is 

Tsoiid = JvxvdS = 2ttjdS = 2nR2Sl. (3.39) 

The circulation of a lattice of vortices can also be calculated by multiplying 
the number of vortices enclosed by the circulation, Nv, by their circula­
tion To- Equating the two gives the Onsager-Feyman formula for the areal 
density of vortices [7], 

, 2fl 
2ITR2UJ = NVT0 n v = — , (3.40) 

1 o 

where n v = is the vortex density for which the system mimics the 
angular momentum of a rotating solid body. 
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3.6 Energy of an Array of Vortices 

We are now in a position to calculate the total energy of a superfluid in a 
rotating bucket which has a large number of vortices present. This calcula­
tion was first presented by Hall [9] [10] [11] as proof that Feynman's vortex 
line solution was more favorable for 4He than Landau's vortex sheets. 

Consider a cylindrical container of radius R rotating about its axis with 
angular velocity Assuming that Oo is fast enough to create a number 
of vortex lines A^v we want to minimize the free energy with respect to Nv. 
The vortices are arranged such that the relation 

holds, where fl indicates the circulation required for the superfluid to sim­
ulate solid body rotation, not the angular velocity of the container. 

If the fluid only creates vortices inside the radius r, the energy of the 
system E and the angular momentum M carried by it are 

S -^+^d)^».(?), (,42> 
M = e£r'n + + ei^Ei ( # _ r 2 ) 2 1 ( 3 4 3 ) 

where b is a distance the order of the vortex spacing which, from equation 
3.40, is A oc I/O 2 . The first term in these equations is assosiated with 
the solid body rotation inside of the radius r which the vortex structure 
mimics. This takes into account the macroscopic movement of the system. 
The second term takes into account the effect of the individual vortices. The 
energy from the vortices is the number of vortices multiplied by the energy 
of a single vortex 3.21 and the angular momentum of many vortices can 
be found using equation 3.37. The third term comes from the superfluid 
outside the radius r where there are no vortices present. 

Substituting 3.41, 3.42 and 3.43 into E' = E-Mfl0 gives the free energy 

E , = ps7v (NVT0\2

 PsNvr2

0 

4 I 2TT I 4TT 

PsN2T2

0 2vR?fl ps7T (NvT0\2n0 

4TT n y NVFQ 2 V 2TT J n ' 

ps-KT0flo (NVT0\ psTTNvT0fl0 fn2 NVT0\ R - —— . (3.44) 
2TTO J 2 V 2TTO 
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Minimizing this with respect to fl gives the equilibrium value for the 
angular velocity required for the superfluid to mimic solid body rotation, 

dF> _PsN(N-i)rt(i-n0\=0 

dfl 8TT0 V 0 

So in equilibrium we have fl = QQ. This means that the vortex array rotates 
at the same rate as its container. 

The next step is to set fl = Oo in 3.44 and minimize it with respect to 
the number of vortices -/Vv, 

dNv 4TT 1 U 7 2 T 0 V ̂ vTo 
(3.46) 

or 
A r „ = ? ^ _ l n ( ^ _ , + 2 i V v l n i / r ^ . ( 3 4 7 ) 

If we neglect all but the first term of this equation we reproduce equation 
3.40. This gives the number of vortices that would fill the whole container 
and is the zeroth order prediction, = Mlzrlla jf w e t a k e in[s equation 
and substitute it back the first order corrections to iV v are found to be 

* W = - l n ( ! ) - i . (3.48) 

The number of vortices in the container is is corrected by the logarithm of 
the distance between vortices. This means that as the vortices get packed 
tighter together, corresponding to and increase in flo, the correction gets 
smaller. 

The energy of the array of vortices is found by subsituting the first order 
approximation for the number of vortex lines, Ny°\ into the free energy 
3.44. In equations 3.42 and 3.43 the first order approximation is equivalent 
to setting r = R where many terms become zero. After this we quickly get 
the energy of an array of vortices, 

E' = -IpsVJtfQ2 + \psT0R2fl0 (in - 1) . (3.49) 
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3.7 Vortex Sheets 
Around the same time that Feynman did his work on quantized vortex lines 
Landau and Lifshitz had another idea [18], based on the work of Onsager 
and London, for carrying circulation in AHe. Instead of being confined to 
single vortices Landau and Lifshitz thought that the circulation might be 
quantized radially in sheets from the centre of the rotating vessel. Though 
it turned out to be wrong for 4 He this idea turned out to be right for 3 He 
and this construction will be used later in chapter 5. 

We will once again start with the fact that a superfluid exhibits potential 
flow. The velocity field for the potential flow is, as in Feynman's case, 

kh 
vk = where k = 0 , ± 1 , ± 2 , . . . (3.50) 

mr 
One can imagine a number of concentric cylidrical regions of radii r i , r2,...,r n, 
labeled from the centre out, where in the region between r^ and r^-i the 
circulation is ^ . As a consequence of this there are discontinuities in the 
velocity of the fluid at rk known as vortex sheets. As described earlier a 
fluid can only have circulation if it is not simply connected. This means 
that for r <r\ the fluid cannot carry circulation and v\ is zero. 

We will follow Landau and Lifshitz in calculating the energy. In their 
model they did not restrict the flow between sheets to have quantized cir­
culation but instead assume the flow to have a circulation 6j. Then the 
superfluid velocity becomes vi = f̂. The discontinuities in the velocity 
carry a surface tension with them of the order a ~ where d is the 
atomic spacing, as predicted by Mott [28]. The energy of this system is then 
the sums of the energy of all the sheets and all the regions of irrotational 
flow in between them, 

F = nps V 6 2 l n ^ - + 2 7 r a V r m , (3.51) 
i T i + 1 i 

where the suffix i = 1,2,3,.. labels successive layers from the inside out­
wards. The first term is the kinetic energy of the superfluid and the second 
term is the energy associated with the surface tension. The fluid in this 
system also carries angular momentum 

M = psnJ2bi(r2 - r2

+1). (3.52) 
i 

Only the superfluid part of p = ps + pn has been written here. The normal 
component of the superfluid acts just like a viscous fluid and has the energy 
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and momentum of a rotating rigid object and is not effected by the presence 
of layers, so it will be neglected. The free energy of the system given by 
equation 3.2 is 

bfln -VlWirj-rl,) + 2na ^ r i + i (3.53) 

We can now minimize this with respect to bi to find the circulation 

(3.54) 
2 In-ri+i 

Substituting this back into the free energy gives 

F' = 2naR ^ Xi+i - A-
x- — x. i+l 

l n ^ -
(3.55) 

where we have made the dimensionless quantities X{ = TijR and A = ^ Q R 3 

8a • 
We are now free to consider the limiting cases of A. Since R, ps and a 

are fixed the case when A <§C 1 is associated with slow rotation. It is found 
that 1 > i i > i 2 > - which implies that successive terms of equation 
3.53 are much smaller than the preceeding term and that the parameter 
C = Xi+\/xi < 1. A single term of the equation 3.53 can be written as 

F' = 2naxi 
C; + l + \Xj 

InCi+i 
(3.56) 

Minimizing with respect to Q+x gives the condition 

Ax? 
(3.57) 

i+l 

For non-zero rotation there exist sheets which are concentrated at the centre 
of the container. The maximum radius for a sheet is given when ( — x\. 

The opposite case is fast rotation where A » 1. Here the layers are 
evenly distributed in the fluid. If the space between layers is h, in the limit 
of h -> 0, the fluid should mimic that of a solid body with energy 

F' = -27raiEAj> 4 - x4

i+1). (3.58) 
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Subtracting this from equation 3.53, series expanding in A = h/R, and 
multiplying the energy by the number of sheets 1/A we get the energy for 
all the sheets, 

r ~ A \ "I 
, 2 ^sheets = 2naR 

x 4A . ., 
A + T (3.59) 

Minimizing this with respect to A and restoring the dimensionless parame­
ters gives the spacing between the sheets, 

h = 
3a 

(3.60) 

It is this equation which has been verified for 3He and is the triumph of this 
model [42]. 
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4. Neutron Stars 

The average neutron star has a mass of 1.4 M© contained in a radius of only 
10 km giving it the immense density of 101 5 g/cm 3 [12]. The study of neutron 
stars has its beginning in the proposal of a nucleus star by Landau in 1932. 
Later, and more concretely, Baade and Zwicky suggested that neutron stars 
are formed in supernovae in which the iron core of a massive star exceeds 
the Chandrasekhar limit and collapses. The subsequent identification of 
radio pulsars as neutron stars is what sparked real interest in understanding 
these objects further. Since then, nearly 1200 objects have been identified 
as pulsars. 

The name pulsar comes from the periodic pulses of radiation these stars 
emit. Their magnetic and rotational axes are misaligned causing them to 
emit dipole radiation which appears to pulse on and off as the star rotates 
similar to a light house beacon. The energy lost to this radiation is 

E = If* = (4.1) 
DC 

which causes the star to gradually rotate slower and slower [12]. The typical 
moment of inertia is I ~ 104 5 g cm 2, the magnetic field is of the order 
B ~ 10 1 2 G and the period of rotation P = ranges from 1.5 ms to 8.5 s. 

Neutron stars have been observed to have rapid increases in their period 
of rotation of the order AP/P ~ 10 - 6 . These rapid changes are called 
glitches and a more detailed discussion of them can be found further in this 
chapter. Glitches are the motivation behind the standard model in which 
a neutron star has a solid crust and a liquid interior. This model has been 
simplified and presented in figure 4.1. 

To investigate the internal structure further we are required to look at the 
nature of nuclear matter at high densities and low temperatures. Neutron 
stars have the distinction of being extremely cold in statistical mechcanical 
terms which points to the possibility that the nuclear matter in the core is 
a condensate. The challenge in studying neutron stars is trying to come up 
with a picture which describes all these phenomena. Much of this chapter 
will focus on developing the standard picture of the interior of a neutron 



32 

Figure 4.1: Layered structure of a neutron star. 

4.1 S t r u c t u r e o f a N e u t r o n S t a r 

In reviewing the structure of a neutron star it is necessary to look at the 
states of nuclear matter and how they behave at high densities. Being 
fermions, and subject to the Pauli exclusion principle, neutrons and protons 
can only condense by forming pairs known as Cooper pairs. The wave func­
tion of a Cooper pair is described as ipSltS2(R, r), where s i ,S2 are the spin 
projections of each particle and R and r are the centre of mass coordinate 
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and orbital coordinates respectively. 
Cooper pairs orbit on the order of r ~ 100 fm, which seems small, but is 

large compared to the average distance of neutrons in the star. This means 
that a Cooper pair is not actually a pair of particles in the traditional sense, 
but are a pair in momentum space. This pairing of fermions now makes 
a boson which is no longer subject to the Pauli exclusion principle. It is 
now possible for a number of Cooper pairs to occupy the same energy state. 
This ordering is called a condensate. For a Cooper pair this means that the 
amplitude of its wave function is coherent over macroscopic distances and a 
large number of neutron pairs are described by identical wave functions. 

While there is no direct evidence that the core of a neutron star contains 
superfluid neutrons and superconducting protons, a good argument can be 
made for it based on experiments conducted on Earth and predictions from 
the BCS theory of superconductors. The argument uses the fact that neu­
tron stars are very cold, having a temperature T ~ 108.rY <C Tf e r m; ~ 10 1 2K, 
and that the transition temperature for nuclear matter to condense here on 
earth is Tc ~ 10 - 3 T f e r m i [33]. 

For fermions to form Cooper pairs, and in turn make a condensate, it 
is necessary for there to exist an attractive force between them, nop matter 
how small [2]. Much work has been done studying the nucleon-nucleon 
interactions which form Cooper pairs. 

Figure 4.2 1 shows the phase shifts of free neutron scattering complied by 
Tamagaki. A positive phase shift implies an attractive interaction between 
nucleons. Figure 4.2 1 shows that the most dominate states are 1S'o neutrons 
at lower densities and lSo protons and 3P2 neutrons at higher densities [33] 
[35]. 

It is this dependence on density which gives the layered structure of the 
neutron star. As the density increases towards the centre of the star the 
state most likely to pair to form a condensate changes. Near the crust the 
interaction between neutrons in the 1S'o state is the strongest and forms the 
condensate while towards the core the 1SQ for protons and the 3P2 state for 
neutrons have stronger interactions and condense. 

Though the strength of the interaction is not important in the formation 
of a Cooper pair, it does give an indicator of the critical temperature of the 
nuclear matter. Data for the transition temperatures for each phase is shown 
in figure 4.2 1. This clearly shows transition temperatures T c > 0.5 MeV « 
5 1 0 K which are all greater than the temperature of a neutron star. It is 
quite likely then that the nuclear matter in a star is a condensate. 

'Figures 4.2 and 4.1 from [33] were obtained directly from J.A. Sauls. 
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Figure 4.2: Phase shift and critical temperature for different states of nuclear 
matter. 

4.1.1 S ta tes o f N u c l e a r M a t t e r 

In earlier chapters we described vortices using a single complex scalar order 
parameter, but because of spin projections, Cooper pairs can have quite 
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complicated order parameters. We will review the states which are found in 
a neutron star, figure 4.11, and see in what cases these can be reduced to 
single order parameters. This reduction will allow us to use the theory from 
earlier chapters to describe what is happening inside a neutron star. 

The 1So state is described by an order parameter with total spin |5| = 
\si + 521 = 0, a spin singlet, and orbital angular momentum L = 0. The 
spins are paired such that the state is magnetically neutral and the angular 
momentum has a spherical symmetry. Because of this the amplitude of the 
1SQ state can be reduced to a single complex scalar field, ip(R.) = ip^. 
The behaviour of the superfluid neutrons in the crust and superconducting 
protons in the core can be described using the theory that was developed 
for 4 He and explained in previous chapters. 

The dominant state at high densities is the state. The wave function 
is a spin triplet state with total angular momentum J = 2 and can be written 
as 

IV>> = E MJ = *,Jz)- (4-2) 
J z = 0 , ± l , ± 2 

When the state is not rotating Jz = 0 represents the ground state. This 
means that far away from vortices we can describe the state of the superfluid 
with a single order parameter ipQ. Close to the core of the vortex it is 
necessary to use all spin states to describe the superfluid. Qualitatively 
this does not change the velocity distribution or the behaviour of the order 
parameter moving away from the vortex but it does magnetize the core of 
the vortex. 

4.2 V o r t i c e s i n N e u t r o n S t a r s 

Having described the nature of matter in a neutron star we can now apply 
the results from earlier chapters specifically to neutron stars. 

Following the argument in chapter three, the rotation of the neutron star 
will cause a triangular array of vortices in the neutron superfluid. These form 
parallel to the axes of rotation and have a areal number density given by 
formula 3.40, 

nv = — = — - 10 1 0 m~2. (4.3) 
1 o h 

From this the average vortex line spacing is, 

lv = nv* ~ 10~5 m. (4.4) 
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If there is a magnetic field that penetrates the proton superconductor it 
does so by forming flux tubes with a density given by 

n / = | - = ^ ~ 1 0 1 6 m - 2 , (4.5) 
1 $o he 

which means the spacing between the proton vortices is, 

fy = ra~*~ l ( T 8 m . (4.6) 

Notice that there is a much higher density of proton vortices than neutron 
vortices. It is now easy to see how the neutron vortices could become en­
tangled in the proton vortices, meaning they could only move as a single 
object. 

The type of superconductor the protons are expected to make is given by 
the Landau parameter. The flux tubes are made of normal protons and the 
radius of the flux tubes is given by the proton coherence length £ p ~ 30 fm 
and the London penetration depth for a proton superconductor is Xp ~ 80 fm 
[22]. Using these values we can calculate the Landau parameter for nuclear 
matter in a neutron star, 

K = ^ ~ 2 . (4.7) 

Comparing with 2.52 we see that this cursory glance indicates that the 
protons form a type II superconductor and the flux tubes do indeed form 
a lattice. It is expected that the flux tubes have a complicated twisted 
structure and that the superfluid neutron vortices have many proton vortices 
tangled around them. 

4 . 3 Gl i tches 

Observations of the rotation of neutron stars show them slowly and con­
stantly decelerating due to the energy lost from the dipole radiation. In 
1969 the Vela pulsar was seen to suddenly speed up rotation with a change 
in angular velocity Afl/Q ~ 2 x 10~6. Following this there was a discontin­
uous increase in the deceleration until the rate of deceleration returns to its 
pre-glitch value. In the Vela pulsar this relaxation time is of the order r ~ 1 
years. Similar phenomena has been seen with the Crab pulsar, though the 
glitches are much smaller Afl/Cl ~ 10~8 and the relaxation times are much 
shorter on the order r ~ 4 days [29]. 
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What causes glitches is not well understood. Two models will be intro­
duced in this section, one which describes the small glitches found in the 
Crab nebula and one which could describe the larger ones in the Vela nebula. 

The small glitches in the Crab nebula could be caused by a phenomena 
known as starquakes [31]. Because the neutron star is rotating quickly cen­
tripetal forces could tend to make the star oblate when it forms. As the 
star slows down it wants to become more spherical, but the crystalline crust 
formed on the oblate surface will not allow this to happen continuously. In­
stead the star will keep its shape until the strain becomes too great and the 
crystalline crust fractures, making the star more spherical. This moves the 
mass closer to the axis of rotation and, because of conservation of angular 
momentum, the star spins faster. Detailed analysis of this model has been 
done and it can only support the relaxation times seen in the Crab nebula, 
not in the Vela, so another mechanism has to be introduced. 

The second mechanism is one based on the metastable flows observed 
in liquid helium [29]. Because of the Feynman-Onsager relation a container 
that is decelerating must lose neutron vortices at a rate 

Nv = 4nR2^tl. (4.8) 

For a neutron star this is of the order JVV ~ 10 1 0 per day. If there are 
impurities on the wall of the container, instead of being annihilated on the 
wall, the vortices will become pinned to the vessel. The presence of these 
vortices means that the superfluid cannot slow down with the container and 
that a metastable flow is established. When a vortex de-pins the superfluid 
will suddenly slow down and its angular momentum will be transferred to 
the crust. Because the angular momentum must be conserved for a free body 
a sudden decrease in the angular velocity of the core will be accompanied 
by an increase in the angular velocity of the crust. 

There is a problem with this mechanism though [33]. To change the 
rotation of such a large, dense object requires energies of the order AETOi = 
2^p ~ 10 4 3 erg. Observations show that the change in angular acceleration 
resulting from the glitch implies that the change in the moment of inertia of 
the stars crust is AI/I = Afl/Cl ~ IO - 2 , which means that about 10 1 3 neu­
tron vortices would have to simultaneously de-pin. There is no mechanism 
to explain this mass unpinning. 



Part II 

Consequences of Currents 
Vortices 
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5. Current in Vortices 

5.1 M o t i v a t i o n 

The second half of this thesis is motivated by the recent discovery that 
neutron stars precess [13] and that calculations by Link [22] show that the 
magnitude (~ 3°) and frequency (~ f per year) of this precession conflicts 
with the current picture of vortices in a neutron star. 

In the previous chapter it was established that neutron stars form both 
neutron and proton vortices. In the standard picture both condensates are 
subjected to angular momentum and magnetic flux and form lattices, but the 
proton vortices are much more numerous than the neutron vortices and are 
tangled around them. When the proton condensate rotates it does not form 
a vortex lattice but corotates with the crust at the expense of a London 
current. The existence of precession means that the neutron vortices no 
longer form along the rotational axis of the star, but along the axis which is 
the sum of the precession and angular momentum vectors. When the star 
precesses the vortices now move with respect to the rotation of the star and, 
in turn, with respect to the proton vortices which are entangling them. If 
the precession is large enough one of two things must happen; either the flux 
tubes move with the neutron vortices or the neutron vortex and the proton 
vortex move through each other. 

If the neutron and proton vortices are required to move together then 
there are severe restrictions on the precession. Because the core of the 
star is superconducting the proton vortices, which carry magnetic flux, are 
resistant to being moved and thus the neutron vortices are restricted to move 
slowly. This means that the neutron vortices are pinned to the rotation of 
the protons and to the crust. Link has clearly found that if this pinning is 
present the neutron star can only precess at high frequencies LJ ~ 10 rad/s. 
For the star to precess more slowly at large amplitudes it is necessary for 
the neutron vortices to pass through the flux tubes. 

If the precession has large amplitudes, such as those observed, it is possi­
ble for the star to have the energy to pass large numbers of neutron vortices 
through proton vortices. This is a highly dissipative process. When a neu-
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tron vortex passes through a flux tube excitations known as kevlons propa­
gate along the vortex. The energy lost due to the creation of a single kevlon 
is very small, but when the vast number of vortices are taken into account it 
grows quickly. Link calculates the dissipation rate to be E ~ 10 4 1 ergs/s. In 
comparison the rotational energy of a neutron star is only ETOt ~ 10 4 4 erg. 
This gives a dampening time of the precession to be smaller than 1 hour. 
When the precession is small the vortices can no longer pass through each 
other and the precession is limited again to ui ~ 10 rad/s. 

This leads to the conclusion that either the protons and neutrons do 
not coexist as a condensate or that the proton condensate does not form a 
lattice but but some other structure. It is very unlikely that protons and 
neutrons don't co-exist in the star as condensates so this paper will focus 
on the structure of the vortices. If the proton vortices are to not form a 
lattice they must have a mechanism to make the interaction between them 
attractive. As shown in chapter 4 the nature of the nuclear matter in the 
star explicitly points to type II superconductivity which implies the vortices 
should repel. It is necessary then to look for a new term in the interaction 
force to make vortices attract. 

5.1.1 Previous Work 

Sedrakian [34] has shown that the existence of a type I superconductor in a 
neutron star indeed resolves the conflict in Link's paper. He assumes that the 
equilibrium structure for a type I superconductor is a set of superconducting 
and normal domains. By use of a hydrodynamic restriction based on the 
moment of inertia of the crust and the moment of inertia of the superfluid he 
showed that the alternating domain structure seen in type I superconductors 
will always allow undamped precession. We can look at this another way 
as well. Link's argument relied on the proton vortices tangling around the 
neutron vortices. In a domain structure there is more room for the neutron 
vortices to move unhindered by the proton vortices, and large amplitude, 
high frequency precession would be allowed. 

Microscopic mechanisms for type I superconductivity have been studied 
before. Buckley et al [15] have shown that the asymmetry in the scatter­
ing length of the neutron and proton cooper pairs can add a factor to the 
coherence length of the proton vortices that makes the actual value for the 
coherence length much larger. This increased coherence length changes the 
Landau-Ginzburg parameter meaning that the regimes for type I and type 
II superconductivity can be quite different. Using typical values found in 
a neutron star this new Landau-Ginzburg parameter indicates that there 
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should be type I superconductivity in the star. 
In what follows we will suggest a new mechanism which leads to a su­

perconductor which behaves like a type I even when the parameters of the 
system suggest that it is type II. 

5.2 C u r r e n t a n d V o r t i c e s 

Suppose there are two wires, placed parallel to each other, carrying cur­
rent. We know from electromagnetism that if the current runs in the same 
direction, the wires will be attract to one another. Now consider that su­
perconducting vortices, instead of wires, are carrying the current. There 
are three forces working against each other: the attractive electromagnetic 
force from the current, the repulsive electromagnetic force from the gauge 
field, and the attractive force from the order field. If the current were strong 
enough, the attractive force it generates would make it so the vortices always 
attract and the superconductor would act like it was type I. 

Currents in vortices could also provide a source for a toroidal magnetic 
field in the neutron star resulting in magnetic helicity. It has been argued 
that a toroidal component in the magnetic field of a neutron star is necessary 
for stablility of the poloidal magnetic field [23] and that it could describe 
the temperature distribution of the crust [40]. In our model, if current 
traveled along the core of the vortex, exited one end, traveled along the 
crust of the neutron star and entered at the other end of the vortex, a large 
current loop would be created. A number of vortices would create a number 
of current loops, and a toroidal magnetic field would appear. This toroidal 
field, combined with the poloidal field present in a neutron star, would create 
a non-zero magnetic helicity. 

Though the idea of currents in vortices was introduced by Witten [43] in 
the context of cosmic strings, we are interested in the recent developments 
in QCD [36] [25] [27] and condensed matter [3] [41]. For our applications in 
neutron stars we are specifically interested in the current derived by Metlitski 
et al [27], 

= <«> 
where fi is the chemical potential and <& is the magnetic flux. 

Concerning ourselves with the derivation and existence of these currents 
is beyond the scope of this work but some notes on the nature of the current 
are are required. In their paper Metlitski et al. derive 5.1 as an axial current 
using a chiral Lagrangian. In the case of an axial current, P = P L + HR, 
where P L and P R are the chemical potentials corresponding to two reservoirs 
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of particles with different chirality. For our purposes an axial current will 
not work as it is not capable of being a source. To have a current source we 
want to look at a vector current where H = HL — HR- Usually, and in the 
case of Metlitski et al., HL = HR, which leads to an vector current of zero. 
To get a non-zero current it is necessary to break P-parity so that HL i1 HR-
This is not an unreasonable requirement in a neutron star as P-parity is 
broken in TT and kaon condensation, which are some of the proposed states 
of nuclear matter at high densities. 

Looking at equation 5.1 we also see that for there to be current there 
must be magnetic flux present. In our case this is particularly the quanta 
of flux which is carried in a superfluid vortex with winding number n = 1, 

$o = • (5.2) 

The fact that the flux is confined to the core of the vortex also means that 
the current is confined to the core of the vortex. 

It is worth noting that Alexseev et al. [3] showed that a similar current 
can arise from condensed matter arguments. The basic requirement is to 
have two commuting, conserved charges, QL and QR which are associated 
with two external reservoirs with chemical potentials where HL HR- They 
derive a universal current formula and when it is applied to a massless 
Dirac field, a current very similar to 5.1 is derived where zero modes in 
the system to carry the current when the system is placed in a background 
electromagnetic field. 

We will now derive the interaction between two superconducting vor­
tices1 where a normal electromagnetic current is present in their cores. A 
substitution of 5.1 into this interaction will determine at what chemical po­
tentials superconducting vortices will always act like type I, rather than 
being subject to parameters which determine type I and type II regimes. 

5.2.1 Interaction between superconducting vortices 
carrying current 

To calculate the interactions we will use the same technique used in chapters 
2 and 3 in which we reduce the theory to a non-interacting, linear one and 
model the vortices as point sources. The interaction energy is then easily 
calculated from this linear theory. We start with the Landau-Ginzburg free 

1 A nearly indentical calculation can be carried out for the interaction between super-
fluid vortices carrying current. The results are outlined in Appendix C 
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energy with a current source j = j62(r)z added, 

iqA (x) 
V'(x) HV-WI2 

+ ^ ( X ) | 4 + ^ ( V X A ( X ) ) 2 + J - A } . (5.3) 

This energy can be minimized to yield the the equations of motion. Mini­
mizing with respect to the vector potential A gives us 

- ! - ( V 2 A - V (V • A ) ) = - ^ J N o e t h e r - j • (5.4) 

The right hand side is written in terms of a Noether current [30] 

JNoether - \ . (VVV - ^ ) - ^ A | ^ | 2 . (5.5) 

Minimizing with respect to the order field gives 

2^(V"1A) $ = aW\2 ̂  ~ M - (5-6) 
We are looking for defects so we will no longer assume that ip(x) is 

constant. To decouple our set of differential equations it is convenient to 
define 

i> = ^p(r)e*t (5.7) 

hqa(r) ~ „, . „ , s A = - ^ - ^ 0 + / ( r ) z , (5.8) 

where p(r), a (r) —>• 1 as r -» oo and p (r), a (r) —>• 0 as r -> 0 and r and (p 
the cylindrical coordinates. The phase of ip(x) is chosen to mimic a vortex 
with winding number n = 1. We can further define 

p(r) = l + a(r), (5.9)' 

a (r) = 1 + ra (r) , (5.10) 

such that a (r), a (r) -> 0 as r -> oo. Substituting 5.7 and 5.8 into equation 
5.4 and linearizing yields the two equations, 

d2a 1 da ( 1 1 \ , . 
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V 2 - £ ) / ( r ) = 47r^ 2 ( r ) , (5.12) 

where A is the London penetration depth we derived earlier. The first equa­
tion is the modified Bessel equation of the first order. We want a solution 
that goes to zero as r —• oo so we choose the solution to be a modified Bessel 
function of the second kind, a = \K\ (J). The second equation is just a 
statement of the Green's function, 

(V 2 - a2)K0{ar) = -2ird2{r). (5.13) 

Going back through all the substitutions and then using a gauge transfor­
mation we find that the vector potential is 

A similar procedure follows for the solution to the order parameter. Sub­
stituting 5.7 and 5.10 into 5.6 and linearizing yields 

1 d ( da\ Amu 

This is a modified Bessel equation of the zeroth order. The solution is 

a(x) = K0 (^r) , (5.16) 

where £ = is the coherence length. 
Now that we have solutions to the equations of motion we can calculate 

the interaction energy. The idea is to reduce the theory to a non-interacting, 
linear one and model the vortices as point sources. The interaction energy 
is then easily calculated from this linear theory. To make it make this easier 
it is useful to remove the phase in <f> by writing it as y ^ ( l — c). To linearize 
the theory we expand in p and A and keep only quadratic terms to get 

E - « = / ^ { ! + s ( < v * A ' 2 + £ ) + 4 ' } • <5'17) 

The source terms are 

-S'source = j d2x{ra + J • A} , (5.18) 
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where r and J are the sources for the fields a and A . Minimizing this we 
get the equations of motion, 

(5.19) 

V - ^ 1 A = 47TJ7-. (5.20) 

We want to solve for the sources and r such that a and A have the same 
asymptotic solutions we obtained earlier in 5.14 and 5.16. Using 5:13 and 
the derivative of 5.13 we can solve for the sources, 

T = -2TT52(X) 
m a 

J = 
he d52(x) 
2q dx 

cp + j52(x) z . 

(5.21) 

(5.22) 

The interaction energy is found by substituting J — J\ + J7"2, A = 
A i + A2, T = r i + T 2 and a = o\ +a2 into the total energy E = Efree + Esource 

and subtracting of the energies of the vortices, leaving only cross terms. The 
subscripts 1 and 2 refer to two separate vortices and positions x i and X 2 
respectively. Using the equations of motion we get left over cross terms left 
which are interpreted as the interaction energy; 

£ i n t = j d 2 x { T l a 2 + J i • A 2 } . (5.23) 

Though it doesn't look it, the interaction energy is symmetric in the ex­
change of the subscripts 1 and 2. The apparent asymmetry arises when the 
equations of motion for either subscript 1 or 2 are substituted in. Using 5.8, 
5.9, 5.21 and 5.22 the interaction energy can be written, 

int / d2x L ^ 2 7 T 6

2 ( X - X L ) K O f ^ ( X - X 2 ) 
m a \ £ 

X 2 

A 
h2c2 a £ 2 ( x - x i ) 
2q2X dx 

- 2 j 1 j 2 * 2 ( x - x 1 ) i f o ( ^ ^ ) } ' 

V A 2 j l J 2 he 
2 \~q~X h2c2 

,(5.24) 

file:///~q~X
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where d = |xi — X 2 | . Comparing this with 2.50 we see that the first two terms 
are identical to the interaction between gauge vortices without current. The 
only new piece is the third term which comes directly from the current. If 
ji and J2 run in the same direction there is and attractive force and if they 
run in opposite directions there is a repulsive force. This is the expected 
result if we considered parallel wires carrying current. 

The interaction energy 5.24 determines whether the vortices attract or 
repel and whether we see type I or type II behavior in the superconductor. 
If we set j i = J2 = j then there are two cases to explore; one when j < ^ 
and one when j > In the first case, when j < the first term of 
5.24 is positive and we obtain the canonical behavior for a superconduc­
tor where the Landau-Ginzburg parameter (see 2.52) decides whether the 
system exhibits type I or type II behavior. 

For a solution to the problem raised by Link, the interesting case occurs 
when 

- ( 5 ' 2 5 ) 

and the first term in 5.24 becomes negative. This means that there is no 
longer a tug of war between the gauge field and the order field to determine 
the type of superconductivity; the vortices always attract. Then there could 
be systems with a Landau-Ginzburg parameter which indicates the vortices 
should repel and the superconductor is type II but there is sufficient current 
for the vortices to attract and act like a type I superconductor. 

5.3 D i s c u s s i o n 

With currents in vortices we have found a mechanism which reconciles the 
condractiction between the precession of neutron stars and the belief that 
there is type II superconductivity inside a neutron star. In calculating the 
Landau-Ginzburg parameter for a neutron star it is clear (see chapter 4) 
that the proton superconductor should be type II. Link showed that recent 
precession observations mean that the superconductor cannot be type II. A 
sufficient current running along the core of the vortex allows the vortices to 
attract even if the Landau-Ginzburg parameter indicates they should repel, 
resolving this problem. 

It is logical to ask how big does a current have to be such that it is 
considered sufficient. The currents in vortices haven't been measured yet 
so it is actually more constructive to rephrase this in terms of parameters 
we are familiar with. Consider a superfluid vortex which carries a a single 
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quanta of flux. The current 5.1, in units h = c = 1, becomes 

7T 
(5.26) 

Substituting this into 5.25 gives the inequality, 

7T 
(5.27) 

where \x is the chemical potential of the condensate, q is the charge and A is 
the Meissner penetration depth. We can see that the inequality is more likely 
to be satisfied by dense materials with higher chemical potentials such as 
those found in neutron stars. This bodes well for the current as a mechanism 
for creating type I superconductors in neutron stars. 
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In this thesis we have investigated the effect of currents in vortices and found 
a mechanism which resolves the contradiction raised by Link [22] that the 
observed precession of a neutron star [13] is not allowed if the supercon­
ductor in a neutron star is type II. The mechanism is to allow a current to 
travel along the superconducting vortices. If this current is large enough 
the vortices will always attract, regardless of whether the Landau-Ginzburg 
parameter indicates type I or type II supercondtivity. It is believed that 
this effect becomes more likely as the density of the condensate increases. 

This has great consequences inside a neutron star. Where before super­
conducting vortices would form a lattice which would get tangled with the 
superfluid vortices, they could now bunch together and leave space for the 
superfluid vortices to move unhindered. 

Sedrakian [34] showed that the presence of a type I superconductor would 
allow a neutron star to precess at frequencies and magnitudes that are not, al­
lowed when the neutron vortices are entangled in proton vortices. But this 
freedom, could also allow the superfluid vortices to do more novel things. 
Mastrano et al [24] have presented calculations in which vortices near the 
crust are grabbed and bundled together by the Kelvin-Helmoltz waves cre­
ated by the instability which arises when there is a shear stress between two 
fluids. This bundling of vortices could twist them so they no longer line up 
in an array, but, instead form vortex loops, or vortons. 

Vortons made from superfluid vortices are not, typically stable [26] but 
in this chapter we will show how the presence of a current in the core of 
a vortex and an external magnetic field could make vortons stable. We go 
further and show that if there are stable vortices then they will attract to 
each other to form a column of vortons. Because the vortons attract, very 
close to each other this structure would look cease to look like a bunch of 
individual vortices but like a single cylindrical vortex sheet which carries a 
surface current similar to a solenoid. 

A vorton formed from a superconducting vortex would carry magnetic 
flux inside it and could add a toroidal component to magnetic field of a 
neutron star which is apparently required by observations [40]. A vorton 
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carrying current would be most stable if its dipole moment was parallel to 
the magnetic field of the neutron star. The direction of the flux in the vorton 
would contribute to a toroidal flux inside the neutron star. 

This chapter only goes so far as to propose the idea of vortex sheets and 
show that such an idea is plausible. The treatment of vortex sheets with 
currents and the comparison against the canonical vortex array solution will 
be left for a later paper. 

6.1 V o r t e x L o o p s w i t h c u r r e n t s i n t he core 

Normally vortons are very unstable becasue of the high energy per unit 
length of a vortex means the loop wants to collapse. The addition of a 
current would allow for a vorton to be stable if it is placed in an external 
magnetic field, Bext z, and we account for the dipole interaction. In this 
case the free energy of the system is 

-^vorton = -EVorton - • M - m • B e x t, (6.1) 

where M is the systems angular momentum, fi is the systems angular ve­
locity, and m is the magnetic moment of the current loop. 

For ease we will discuss superfluid vortices which carry current which 
forms a loop in the zy-plane. In forming a loop there are two components 
to the energy, that coming from the superfluid Esj and that coming from the 
current Current • The energy of the current has two components as well, one 
from the magnetic field and one mechanical energy carried by the particles 
that make up the current, Current = -Emech + # E M - The mechanical portion 
can be found by recognizing that for a loop the current in a non-relativistic 
regime is j = where N is the number of particles, q is their charge and 
v is their velocity. Then 

Emech=l-Nmqv2 = 2n2?±0. (6.2) 

The magnetic energy is just 

•2 

£ E M = 2 7 r r ^ - . (6.3) 

Add all these energies together and we get the energy of the vorton. 

Norton = 2 T T 2 ^ ^ + 2nr^ + 2n2rpsT2 In £ (6.4) 
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We will assume that the vorton is charge neutral so there is no contri­
bution to the angular momentum from an electromagnetic field. The only 
contribution is from the particles of the the current traveling around the 
loop. Using the relation M = ^^-m [14] and recognizing that the magnetic 
moment of a loop is m = jnr2 z. The energy from the angular momentum 
is, 

- n . M = - 4 * > ^ . (6.5) 

The interaction energy between the external magnetic field and the mag­
netic dipole of the loop is calculated to be, 

m • B e x t = -jirr2Bext (6.6) 

To get the point across we can combine all these terms and write the 
free energy in the simple form, 

Norton = <*r- pr2, (6.7) 

where a and (3 are just ugly constants. Extremizing the free energy we see 
that the system has a maximum when, 

r o = W T ^ ) ' ( 6- 8 ) 

If the vorton is initially smaller than ro its radius will still go to zero but 
if its radius is larger than ro the loop will continue to grow until it hits the 
container that the superfluid rests in. In dimensionless form the loop will 
grow if 

where R is the size of the vorton. A sufRciantly large external magnetic field 
I? e x t will satisfy this inequality and make the vorton stable. This possibility 
of stability is a key requirement for the existence of vortex sheets and would 
also allow toroidal flux to be present inside the star. 

6.2 I n t e r a c t i o n s b e t w e e n v o r t o n s 

We now want to investigate what would happen if a number of stable vortices 
existed in the superfluid and try to determine if these configurations have 
lower energy than canonical vortex solutions. 
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If a vorton can be stable in the superfluid it is reasonable to ask how the 
vortices might interact with each other. To gain insight on these interactions 
this section will look a the force between two stable loops carrying current. 
Remember that in the regime where vortices attract it is because the force 
due to the current is dominant. To calculate the force we will first calculate 
the mutual inductance for the loops, 

M 1 2 = 
x i - x 2 + R 

$ 2 
(6.10) 

where the subscripts 1 and 2 refer to each loop and <3>2 is the flux through 
loop 2 caused by the current ji from loop 1. Taking derivatives of M i 2 gives 
the force [14] between the loops, 

F = i u 2 V M 1 2 ( R ) (6.11) 

The magnetic field of a loop is difficult to calculate and it is easier to use the 
vector potential. Since the current in the wire only runs in the </> direction 
the vector potential only has a (f> component, 

Mr>0) = 
Po 4jia 
4 7 r yja2 + r2 + 2ar sin(0) 

(2 - k2)K{k) - 2E(k) 
k2 (6.12) 

where K and E are elliptic functions, a is the size of the loop, r is point you 
want to evaluate the field, 9 is the angle between z and r, and 

k2 = Aar sin 9 
i2 + r2 + 2ar sin# (6.13) 

A number calculations1 can be can be carried out to show that two 
current loops will always attract to one another and will tend to stack, 
forming a solenoid. 

It is not hard to extend these calculations if the loops are now vortices 
with current in them strong enough to attract each other. It is suspected 
that the force of repulsion from the order field and the attractive force of 
the current will balance such that the distance between them is of the order 
of the penetration depth f. A large number free vortons will tend to form 
columns that loops like vortex solenoids. Figure D.3 also shows that two 

'For the details of these calculations see appendix D. 
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loops will exhibit simple harmonic motion if perturbed. This means that 
the vortex solenoid could carry waves along its length as well. 

Pursuing these sheets further is definitely worthwhile and if the reader 
has stuck around this long then they might look forward to the conclusion 
in the near future. 
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A. A complicated way to 
calculate the force between 
two wires carrying current 

There are a number of ways to calculate the force between two wires carrying 
current. They invariably use the Lorentz Force Law which requires you to 
find the magnetic field. Some ways are easy, such as using Ampere's Law, 
some are harder, such as using the Biot-Savart Law, and then there are some 
you would never do. It is one of the latter which is presented here. I used 
it as a quaint demonstration that the technique for finding the interaction 
force between two vortices actually made sense and, because it is quaint and 
mildly useful, I believe it should be reproduced for everyone to see, similar 
to how one would paint a water-colour of a cabin on a lake-front and give it 
to their friends. 

Consider the energy of a single wire, carrying curent, running along the 
z-axis. The energy per unit length of this system is given by, 

where j — (0,0,j6(r)). The equation of motion for the vector field is, 

Which is just Ampere's Law in differential form. Instead of transforming it 
to the integral form we will mimic the vortex method and solve the differ­
ential equation directly. Because of the cylidrical symetry of our problem 
it is convenient to solve this in cylindrical coordinates. Using the anstaz 
A = (0,0,Az(r)) we write it as, 

V x V x A = -MoJ (A.2) 

V 2 A z ( r ) = j6(r). (A.3) 

To find a solution for this equation we will consider the object V x 
V x lnr z = i J j r r jp ln r . On first glance this is just zero but things get 
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interesting when we take the surface integral of this. 

J (V x V x lnr z)-.d& = j> (V x lnr z) • dl = - <j> -rdcp = -2ir (AA) 

This apparent paradox means means we've discovered a delta function in 
our midst and that 

V x V x lnr z = -2ix5(r) (A.5) 

Comapring this with our differential equation gives the solution, 

Az = ̂ -\nr (A.6) 
Z7T 

The interaction energy is given by 

E i n t - f dx2 [E(n + r 2) - E(n) - E(r2)} (A.7) 

2 
— (V x A i ) ( V x A 2 ) +jiA2 +j2Ax 

Mo 
(A-8) 

d z 2 j i A 2 (A.9) 

= jdx2h8(x - Xl)^ln(x - x2) (A.IO) 

= [ t f k H x i - X 2 ) (A.11) J 2TT 

The force is defined as, 

F -~dT - ~2^5" ( A - 1 2 ) 

where d — \x\ — x2\- The is the expression for the force between the two 
wires, which is what we expect to get. If the two currents travel in the same 
direction the force is negative and the two wires attract to one another and 
if the two currents travel in opposite directions the force is positive and the 
two wires find eachother repulsive. 
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B. Rotating Superconductors 

Much of this thesis has been spent exploring the consequences of rotating 
a superfluid. Because it is also a condensate one might expect that a ro­
tating superconductor would form an array of vortices carrying quantized 
circulation, but it does not. This question is critical for the observations of 
a neutron star and for many of the theories on glitches because it is the fact 
that a superconductor couples to the crust, and consequantly it's flux tubes, 
that allows us to determine the rotation of a neutron star. Becuase the su­
perconductor is responsible for the magnetic field if it did form vortices it 
would be subject to all the metastable flows of a superfluid and glitch events 
how we imagined them would stil made the crust travel faster but not the 
magnetic field and we would never observe them. 

The difference is that in descibing a superconductor we require gauge 
invariance which means that the velocity operator must be guage invariant. 
It carries a covariant derivative and when it acts on the wave function we 
get a velocity, 

v = -i—V</> — A (B.l) 
m mc 

This result can also be obtained directly from the Noether Current 2.4 by 
substituting in the wave function and recognising that j = n0v as in equation 
3.12. The presence of the gauge field removes the restriction on the velocity 
field. The fluid can now carry vorticity, 

V x v = — — V x A (B.2) 
mc 

and can rotate like a solid body. The vorticity of a solid body is 2fl. Equat­
ing this with the vorticy derived for a superconductor yields, 

BLondon = ~ — ^ (B.3) 

The superconductor corotates with the container at the expense of small 
magnetic field called the London Field. 
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C . Interaction between 
superfluid vortices carrying 
current 

The calculation for interactions between superfluid vortices is quite similar 
to the calculation for superconducting vortices. The calculation could be 
reproduced, but as seen in chapter 5 adding a current does not change any 
of the original interaction terms calculated in 3.28, it just adds a new one. 
The interaction for superfluid vortices carrying current is then, 

and we get a situation very similar to the vortex interactions for a gauged 
field without current 3.28. The difference is that the sign of the interaction 
is reversed. If the coefficients in for each of the the terms above are the same 
order of magnitude then we get a Landau-Ginzburg parameter which says 
that two vortices repel when 

K < —= where K = ^ . (C.2) 

Comparing this with 2.52 we see that the condition is reversed. 
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D. Interaction between two 
current loops 

To calculate the force between two current loops we will first calculate the 
mutual inductance for the loops, 

- £ • 
where the subscripts 1 and 2 refer to each loop and $2 is the flux through 
loop 2 caused by the current j\ from loop 1. Taking derivatives of M12 gives 
the force between the loops, 

F = j i j 2 V M 1 2 ( R ) . (D.2) 

The magnetic field of a loop is difficult to calculate and it is easier to use the 
vector potential. Since the current in the wire only runs in the <p direction 
the vector potential only has a cp component, 

(2 - k2)K{k) - 2E{k) 
k2 4TT ̂ a2 + r2 + 2arsm(6) [ k2 J ' ^ D ' 3 ^ 

where K and E are elliptic functions, a is the size of the loop, r is point you 
want to evaluate the field, 6 is the angle between z and r, and 

, 9 4arsin# % k = —0 5 — — • (D.4) 
a2 + r2 + 2arsm9 ' 

Consider the case where two loops of radius a and b where a £s b which 
are located a distance d apart on a common axis perpendicular to their 
planes. Placing loop 2 so its center rests on the origin, the flux though it 
caused by 1 can be written in terms of a path integral using Stokes theorem, 

$2 = / B x • d& = [ V x A x • da, = [ A i • dl (D.5) 
Js Js Jas 

= / Arfdcp = 2nbA(b). (D.6) 
Jo 
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The vector potential from loop 1 evaluated on the plane in which loop 2 
rests is given by substituting r — Vd2 + x2, where x is the distance from the 
origin on the x-y plane. Also sin(0) = ^ so 
induction is then 

k2 = ( f f l2 +

43)2 + d2- The magnetic 

M12 = HoVab (2 - k2)K{k) - 2E{k) 

where, 

k2 = 4a6 

(D.7) 

(D.8) 
(a + b)2 + d2 ' 

Taking the derivative of this with respect to d and plotting it with a — b = 1 
gives figure D . l . We can clearly see that the force is always attractive 
(negative) and there is no force when the loops lie on top of each other. 

0.2 0.4 

y -30-^ 

-40 4 

-60 J 

Figure D . l : The force between two current loops on a common axis perpen­
dicular to their planes as a function of the distance d between them. 

The second case is when d ~ 0 and a ^ b. We can use the same mutual 
inductance derived for the first case but here we are interested in the force 
on the radii of the loops. Setting a = 1 and taking the derivative of equation 
D.7 with respect to b we get the force on loop 2 if the radius of loop 1 is 
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fixed at a = 1. The force is shown in figure D.2 and it can see that b is 
always drawn to a = 1 and that loop loops want to rest on each other. 

60 T 

0 

-20 H 

-4(H 

-60 J 

Figure D.2: The force between two loops on a common axis perpendicular 
to their planes as a function of the radius of one b changing with respect to 
the other a = 1. 

The third case is when two loops of radius a rest in the same plane but 
their centres are displaced a distance c apart. We want to evaluate the line 
integral 

y A i • dl = j Ai(r(t)) • r'{t)dt. (D.9) 
For two loops separated such that c is in the x direction, r = (a cos t + c) x + 
as'mt y for t = 0, 2 7 T . The magnitude of r is r = Va2 + c 2 + 2accost and 
r' = — a sin t x + a cos t y. 

To take the dot product of the vector field it is easier to change from 
spherical to cartesian coordinates and write cf> in terms of t; 

4> = - s'm((j)) x + cos(0) y (D.10) 
—asini _ acosi + c . 
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The integral then becomes 

r A i m ) , a 2 \ a c c ° s t 

Jo v a2 + c 2 + 2ac cos t 

Because r rests in the xy-plane sin 0 = 1 and 

k(t)2 = 

dt. 

4a-\/ a2 + c 2 + 2ac cos t 
2a2 + b2 + 2ab cos t + 2a V a 2 + c 2 + 2accosi 

(D.12) 

(D.13) 

Taking the derivative of this integral with respect to c gives a integral over 
the force per unit length of wire. Figure D.3 shows the numerical solution 
of the integral. The loops will attract until the loops are almost no longer 
overlapping and they repel. 

-15 

Figure D.3: The force between two loops displaced a distance b apart along 
a direction in their plane. 

These calculations give a complete picture of the force between current 
loops carrying current. 


