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Abstract 

A reformulation of the Coulomb problem, using a local Coulomb algorithm 
based on auxiliary fields, has been extended to slab and quasi-2D geome
tries. It has been implemented using Metropolis Monte Carlo and Gaussian 
charge interpolation functions. We have established the accuracy of the al
gorithm by generating effective pair potentials. Using this implementation, 

r the Gouy-Chapman problem was numerically resolved for constant potential 
slab boundaries. In the low coupling limit, we find excellent aggreement with 
analytic solutions. In the high coupling regime, we find agreement with the 
analytic theory in the limit of large wall separation. Using the contact value 
theorem, we calculate the pressure experienced by like-charged equipotential 
walls. The parameter space we consider pertains to many interesting bio
materials ranging from monovalent biomembranes to spermidine D N A . The 
numerical results show attractions mediated by counter-ions between the 
like-charged equipotential slab boundaries. We also extend the implementa
tion to allow for inhomogeneous dielectric backgrounds. The effect of a thin 
adsorbed layer of solvent is considered for an electrolyte system bounded 
by isolated electrodes. We show that a reduction in the dielectric value of 
this adsorbed layer results in a depletion of ions near the electrodes, even 
though the electrodes carry zero total charge. The applications considered 
show the versatility and accuracy of our implementation. 
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Chapter 1 

Importance of electrostatics 
and computational hurdles 

Electrostatics plays a dominant role in many soft matter systems. For 
example, the stability of colloidal emulsions relies on Coulombic repulsion 
between colloidal particles[l, 2]. Many classes of materials such as polyelec-
trolytes (charged polymer solutions) can only be understood through the 
inclusion of electrostatic interactions[3]. Often, the balance of these inter
actions is subtle, leading to startling behaviour. In biomaterials, this has 
led to many open questions concerning interactions between cellular mem
branes, transport of ions across cell walls, or the bundling of D N A within the 
cell's nucleus. These systems show astonishing phenomena ranging from at
tractions between like charged surfaces to the stable coiling of 10 1 0 electron 
charge within a diameter of 10/im[l, 2, 4. 5]. 

In biophysics, the systems studied are often complicated as well as macro-
scopically large with scales of /urn to mm. Analytic theories are generally 
limited, making computer simulation the method of choice. Biophysics sim
ulations often include tens of thousands of charged particles using molec
ular dynamics (MD) or Monte Carlo (MC). Unlike short-range potentials, 
which model chemical bonds or Van Der Waals forces, Coulombic interac
tions cannot be truncated [6]. Thus a significant bulk of simulation time 
is spent calculating these interactions. This has made the aim of reducing 
the computational complexity of calculating the electrostatic energy of great 
importance. 

A naive sum over N charged particles would suggest the cost of calculating 
the Coulomb energy to be 0(N2). When periodic boundary conditions are 
applied this becomes even worse, as each charge must also interact with an 
infinite number of image charges. Some algorithms achieve scaling of O(N) 
but impose many restrictions on the systems they can reproduce. -These 
methods can typically be classified as one of the following techniques: 
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Chapter 1. Importance of electrostatics and computational hurdles 

summation techniques The Coulomb interaction is broken up into long-
range terms and terms which may be truncated; an example is the 
Ewald sum. Often considered the standard in biophysics simulations, 
the Ewald sum makes use of the identity 1/r = erf(0r)/r + [1 — 
eri(0r)]/r. Terms composed of J~erf(^T") rapidly decay in real space 
while those made up of erf (/3r)/V quickly converge in Fourier-space[6]. 
The Ewald sum is often preferred due to its ease of implementation 

3 

and moderate efficiency, 0(N2). It is limited by its inability to handle 
large numbers of charges (> 103) or to deal with inhomogeneous di
electric functions e(r). It will be more thoroughly discussed in chapter 
2. 

gr id /mesh techniques The electrostatic potential <p(r) is solved for by 
first discretizing the simulation space and then solving the general
ized Poisson equation V-e(r)Vc/>(r) = —p(r) on the grid, with p(r) the 
charge density and e(r) the dielectric function. Examples of these are 
particle-mesh Ewald and multigrid methods. For particle-mesh Ewald, 
the point charges are replaced by discrete charge distributions using 
interpolation functions. The charge density is Fourier-transformed 
and the electrostatic potential is solved for in Fourier-space. As with 
the Ewald sum, since the electrostatic interactions are resolved using 
Fourier decomposition the algorithm is unable to deal with inhomo
geneous dielectric functions e(r). The particle-mesh Ewald method 
may achieve scaling of 0(N log N) through the use of Fast-Fourier 
Transforms (FFTs)[6, 7, 8]. Multigrid approaches represents a gen
eral class of schemes used to solve elliptic partial differential equations 
on a grid. These methods are highly efficient and may achieve O(N) 
scaling, with a volume dependent cofactor.. They rely on the observa
tion that when solving elliptic partial differential equations on a grid, 
using relaxation methods, the residual error in the solution is most 
readily reduced when the grid spacing is similar to the -wavelength of 
the error. Thus by adaptively coarsening or refining the grid spacing, 
the error is efficiently reduced[9, 10]. By solving for the electrostatic 
potential in real space Multigrid offers greater flexibility than other 
mesh or summation techniques. 

constrained auxiliary-field techniques An effective Coulombic interac
tion is mediated between charged particles by the introduction of a 
constrained electric field. This algorithm is the subject of this thesis; 
we will discuss the theoretical foundation of this method in chapter 3. 
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Chapter 1.. Importance of electrostatics and computational hurdles 

1.1 Periodic boundary conditions for bulk and 
slab systems 

Rather than simulating a macroscopic number of charged particles (~ 
10 2 3), periodic boundary conditions (PBCs) are applied in biophysics simu
lations. By using PBCs , each charged particle is surrounded by an infinite 
number of chafges[2]. In this manner, the system's characteristics may be 
deduced from only hundreds to hundreds of thousands of charges. The ap
plication of periodic boundary conditions may be understood as an infinite 
replication of the simulation cell as shown in figure 1.1. 

o o 
o 

o o . 
o 

o o 

o o R " \ 
o ^ 

o o 

o o 
v. o 

O 

Figure 1.1: Periodic Boundary Condition for a Rectangular Simulation Cell. 
R, a direct lattice vector of the simulated lattice. 

When the characteristics of interest occur in the bulk of a material, 
P B C s are applied to all three dimensions. For behaviour near an interface, 
P B C s are only applied to two of the three dimensions. Examples of in-
terfacial systems include electrolyte solutions between charged glass plates, 
lipid-bilayers, macro-ion membrane and membrane-membrane interactions 
in cellular biology, as well as interacting Wigner crystals in condensed mat
ter physics [1, 2, 4. 5, 11, 12]. Many simple quasi-2D models exist, a few of 
which are shown in figure 1.2. 
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Chapter 1. Importance of electrostatics and computational hurdles 

. • - * -
-~ 

Figure 1.2: Several simple model systems with 2D symmetry. A crude 
model of neutral lipid bilayers. point charges confined to a plane with a 
negative surface charge (top left). Membrane-membrane interactions in
volving counter ions, modeled by monovalent negative point charges con
fined between positively charged plates (top right). Macro-ion membrane 
interactions, modeled by a diffuse layer of monovalent point charges and a 
charged plane (bottom left). Polyelectrolytes between glass plates, modeled 
by charged strings constrained between charged planes (bottom right). 

For quasi-2D systems, the third dimension is either infinite or finite. 
When the third dimension is finite the simulation is said to have slab ge
ometry. Many algorithms have been tailored specifically for either bulk or 
quasi-2D geometries. Examples of 3D periodic methods include the Ewald 
sum and particle-mesh Ewald. For quasi-2D simulations, many summa
tion techniques have been developed including the Lekner-Sperb, Haut mart-
Klein, and the two-dimension Ewald sum [13, 14, 15, 16, 17]. To simulate 
dielectric or metallic interfaces, boundary matrix or image charge methods 
must be be used in addition to the quasi-2D schemes. Boundary matrix 
methods discretize Maxwell's equations at an interface and solve for the in
duced electrostatic charge[18]. The alternative to boundary matrix methods 
is to ensure Maxwell's equations are satisfied at the interface(s) by introduc
ing image charges[19]. For a single interface this is often sufficient as only 
a finite number of image charges are required. However, for two or more 
the number of required image charges, even for a single charged particle. 
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Chapter 1. Importance of electrostatics and computational hurdles 

becomes infinite as is shown in figure 1.3. For s implic i ty many simulations 
util ize the method of images but truncate the images at a finite order, lead
ing to reduced accuracy and inferior scaling. 

Figure 1.3: M e t h o d of images for two planar symmetric dielectric interface 

1.2 A n important model: The electric double 
layer 

A n important interfacial model is that of the electric double layer ( E D L ) . 
It consists of a charged wal l coupled to a diffuse region of mixed valency 
cation and anion species, as is shown in figure 1.4. Often included is a plane 
of nearest approach to the interface, which is used to model a th in layer 
of monovalent adsorbed anions. A common variant is interacting electric 
double layers, also shown in figure 1.4. 

+ i e . mm o + l e 
mm i ° 

» o 

o 

° ms 
6 8 +2e +2e 

Figure 1.4: Schematic of the electric double layer (left) and interacting 
electric double layers (right). 

The E D L model has been the subject of much interest as it may be used 
on such varied systems as interfacial colloid emulsions and l ip id bilayers. 
A n important problem, known as the Gouy-Chapman problem[20], is the 
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determination of the ion density profiles. Analytic expressions are known 
in asymptotic limits, but a general theory remains unresolved. Computer 
simulation is a reliable means of predicting behaviour in the intermediate 
regimes as well as testing the validity of expansions and approximations. 

1.3 Limitations of existing methods 

Realistic simulations remain limited by many factors. Most of the algo
rithms which provide suitable scaling cannot be applied directly to systems 
with slab geometry, or require additional computational complexity to re
solve interfacial boundaries. Methods reliant on Fourier transforms assume 
homogeneous dielectric functions. For many systems the effect of inhomoge
neous dielectrics is a reality and cannot be neglected as it leads to substantial 
modifications. For example, in the E D L , theory does not offer quantitative 
agreement with experiment, even in the known asymptotic limits, without 
the addition of a Stern layer[18]. The Stern layer is a thin layer of low di
electric coefficient that is believed to be caused by a strong polarization of 
the solvent near the dielectric interface. 

Contemporary simulations often incorporate hundreds of thousands of 
charged particles. To achieve simulations of this size, parallel computing-
is necessary. Thus another scaling issue arises. Even though many meth
ods achieve impressive scaling with particle number, their efficiency peaks 
quickly as more processors are used. This is often due to the use of F F T s , 
which provide poor parallel performance due to the need to share the charge 
density across all processors at each time-step. This is indicative of a more 
severe limitation, non-locality. Most algorithms require a global solution of 
the potential after each update to the charge density. Thus global communi
cation between all processors is required following each update. An efficient 
parallel method would minimize this communication and ensure that only 
neighbouring nodes share information. Thus it is desirable to be able to 
compute the potential using only local updates. 

For Monte Carlo the issue of non-locality is even more problematic. For 
molecular dynamics global optimization remains reasonable, as the forces on 
all particles may be calculated simultaneously and the time stepped forward 
to achieve a new configuration in a single optimization. In contrast, in 
Monte Carlo a new arrangement requires N calculations of the electrostatic 
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Chapter 1. Importance of electrostatics and computational hurdles 

energy. This suggests that even the best electrostatic algorithms cost 0(N2) 
for Monte Carlo. 

1 . 4 H i s t o r y o f t h e a u x i l i a r y - f i e l d t e c h n i q u e 

The auxiliary-field technique was proposed in 2002 by A . C . Maggs and 
collaborators[21]. It is a reformulation of the Coulomb.problem in terms of 
a constrained vector field, requiring local updates only. When implemented 
for Monte Carlo, it has a complexity O(N). It has been implemented for 
bulk and quasi-2D geometry lattice gases[21, 22, 23, 24]. As the formulation 
is entirely in real space, it is capable of treating inhomogeneous dielectrics. 
The behaviour of a lattice gas of mobile dielectrics has been studied in 
[24]. Extensions of the algorithm to simulate particles moving in a contin
uum have been implemented for bulk geometries[23, 25, 26]. In addition, 
a molecular dynamics method utilizing constrained auxiliary fields has also 
been developed[27] that also has a scaling O(N). 

1 . 5 O u t l i n e o f t h e s i s 

For this thesis, we have developed an implementation of the auxiliary-field 
technique for application to the E D L . In chapters 2, 3, and 4 a review is 
given of the Ewald sum, the foundation of the auxiliary-field method, and 
the asymptotic limits of the Gouy-Chapman problem. A description of the 
implementation is given in chapter 5 and numerical accuracy is established 
in chapter 6. Our applications of the algorithm to the Gouy-Chapman 
problem and interacting E D L s with inhomogeneous dielectrics is presented 
in chapters 7 and 8. Throughout this thesis the electrostatic units used 
follow the SI convention. For conciseness, we present numerical results in 
Heaviside units with ks = eo = e = 1. 

8 



Chapter 2 

The Ewald summation 
method 

In this chapter, we review the Ewald sum for systems with 2D and 3D 
periodicity as discussed in [6, 7. 8, 12, 13, 14, 16, 28, 29]. 

2.1 T h e E w a l d s u m for 3 D p e r i o d i c b o u n d a r y 

c o n d i t i o n s 

Consider N charged point particles with charge {qj, q2,qN} at positions 
{rj, r - 2 , r / v } within a homogeneous dielectric medium of volume V and 
dielectric coefficient e. The electrostatic energy is 

47T6 ^ r; - r; v ' 
i<j 11 

Infinite replication of the simulation cell onto a three dimensional lattice 
defined by Bravais lattice vectors R, results in a sum which quickly converges 
with N. The energy of this replicated system is 

u = 1

L y y ' T [ — ( 2 . 2 ) 

with the prime indicating that for R = 0 the term with i = j is omitted. 
Unfortunately this sum is not absolutely convergent. In fact, for ^2,qi ^ 0 
it does not converge at all. Fortunately for charge neutral .systems the 
electrostatic energy density does not diverge as long as a minimal length 
scale is imposed. However, the series is still not absolutely convergent, rather 
it converges conditionally. The value it converges to depends greatly upon 
the order in" which the terms are summed. This occurs because eq. (2.2) 
may be used to describe many different systems. In general, the application 
of 3D PBCs is intended to mimic a block of material, containing mobile 
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Chapter 2. The Ewald summation method 

charges embedded in a dielectric medium of dielectric constant es, such as 
shown in figure 2.1. 

Figure 2.1: Common boundary conditions used in conjunction with periodic 
boundary conditions for bulk systems. Vacuum (top, es = 1), tinfoil (middle, 
es = oo), and general dielectric (bottom). 

The electrostatic potential in the block is subject to boundary conditions 
at the interface. Therefore the energy contains a contribution from the 
interaction between the block's dipole moment and the induced charge at 
the boundary. Thus an absolutely convergent series, such as the Ewald sum, 
must include a term dependent on the simulation cell's dipole moment M , 
the summation geometry (hence the asymptotic shape of the block), and 
the permittivity of the surrounding medium, es/eo. The Ewald sum for 3D 
periodic systems is given by 

UEwald = TI direct + Urecip, + U BC (2-3) 

Uarect - ^ ^ W 4 v r e | | R | | (2-4) 
i.j R J 

* J l | k | | ^ 0 ' • V «, 

UBC = J(M,P,es) • (2.6) 

with 3 a real positive number, P the boundary geometry, and = — 
[12]. It may be understood as a factorization of the Coulomb problem into 
point charges screened by Gaussians, and interacting Gaussian distributions 
as shown in figure 2.2. 

10 



Chapter 2. The Ewald summation method 

Figure 2.2: The Ewald sum may be interpreted as the addition and sub
traction of Gaussian screening functions. The energy is resolved by the 
separation of terms as shown. 

The first term, 1)'direct, is the energy of the iV point charges, screened by 
Gaussians of width er == The second term, Urecip., contains a sum over 
all reciprocal lattice vectors k. The reciprocal lattice vectors are defined 
through the condition k-R = 27rn for arbitrary integer n, as in [30]. It may 
be seen as the energy of N interacting Gaussians of charge qi centered at the 
positions r^. Particle-mesh Ewald methods make use of this understanding 
by solving Poisson equation. eV2</>(r) = — p(r), on a grid for the N Gaus
sians, thus resolving Urecip.. The last term, J ( M , P , es) is the contribution 
to the energy due to the induced boundary charge. Common choices for es 

are shown in figure 2.1. For most simulations, spherical or plane-wise sum
mation (shown in figure 2.1) is used. For these cases J ( M , P , es) is given 
by 

,7(M. P = spherical, es) 

J(M.P = slab,es) 

M 2 

2Ve(es + l) 

2V( 

(2.7) 

(2.8) 

" 

.... 

.... 

. . . 

" " 

.... 

" 

Figure 2.3: Spherical (left) and plane-wise (right) summation geometries. 
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Chapter 2. The Ewald summation method 

2.2 T h e E w a l d sum for quasi-2D geometries 

If we apply P B C s to only the x and y directions, the Coulomb energy for 
our N charged point particles is 

U 
1 

4TT£ 

N 

E E ' 
i<j Rj_ 

r, + Rj 
(2.9) 

with Rĵ  a 2D direct lattice vector. For a rectangular lattice, has the 
form (nxLx.nyLy,{)) with Lx and Ly the linear dimensions of the unit cell. 
Upon use of similar identities to those used in the original Ewald derivation 
this may be expressed as 

El 
±11 

U E w a l , w = - ^ ^ m j 

1 y <Mj cos(k • Tij) 

M l|k||#0 

+ e k Z i i erfc 

erfc I Bzij + 

4e 

k 

20 

-0: + 20 
1 N 

7A E QiQj 

h3 

Zij eric(0Zij) + 
0 ^ 

-P2zl 

0 
N 

1=1 
Qi 

(2.10) 

with A the area of the 2D unit cell and Z y = z. Zj[12]. This equation is 
usually used only to establish the accuracy of other quasi-2D algorithms, as 
it is generally too expensive to calculate. 

For slab geometry systems, where the charges are confined to a finite 
region of width L , 3D periodic Ewald methods may be adapted to accurately 
approximate eq. (2.10). If a tetragonal-unit cell of volume NL3 and plane-
wise summation is used, the energy of eq. (2.3) approaches that in eq. (2.10) 
for large N . The unit cell for this approximation is shown in figure 2.4. 
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N x L 

L 

• i 

L 

Figure 2.4: Unit cell for the 3D-periodic Ewald method applied to the slab 
geometry 

Many simulations rely on this observation, as high quality 3D periodic 
Ewald methods have been developed. The leading order corrections have 
been established in [28, 29]. When the potential is resolved in this manner, 
it vanishes at infinite distance along the z direction. As was discussed in 
chapter 1, simulations wishing to incorporate dielectric or metallic interfaces 
must use boundary matrix or image charge methods in conjunction with this 
approximation. 

13 



Chapter 3 

Electrostatics and 
constrained statistical 
mechanics 

In this chapter, we review a formulation of the partition function for a 
set of charges at positions r, with an electric field constrained to obey 
Gauss's law alone. We. show that this partition function is equivalent in 
many situations to the electrostatic partition function for the same system. 
This material has been developed by A . C . Maggs and collaborators in a 
series of papers [21, 23, 24, 25, 27, 31]. 

3.1 Homogeneous media 

Consider a configuration of charges {gj,r-j} in a homogeneous dielectric 
medium. The electrostatic potential, d>(r), obeys Poisson's equation: 

V2r/>(r) = -p(r)/e 

and has energy 

U = / d J r ^(V</>) 2 

(3.1) 

(3.2) 

with p(r) = J2aifi(r ~ ri)- These electrostatics relations may be derived by 
minimizing an energy functional of a vector field E(r). Consider the energy 
functional . 

^[E(r),0(r)] = y d 3 r 

We find the minima of T through 

e E 2 

— - 0 { e V - E - p ( r ) (3.3) 

bT d 3 r eE • <5E - e0V-(5E d 3 r e V - E - p(r) 

=' / d 3re E + Vqb 5E d 3 r eV-E - p(r) 
(3.4) 
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Chapter 3. Electrostatics and constrained statistical mechanics 

The minima,(Ep, ( j ) p ) , of F\ E, (fi ] results in the equations of motion 

, Ep(r) =-V^,(r) (3.5) 
•V-Ep(r) = p(r)/e , • / (3.6) 

• (3.7) 

Upon substitution into T\ E, (fi ] we find the correct electrostatic energy 

T[ Ep, (fip] = J d ^ - ^ f ^ ( 3 . 8 ) 

This derivation serves as the motivation for a new formulation of electro
statics. Rather than minimize !?-"[ E, (fi } to solve Poisson's equation it is 
advantageous to use it as the actual energy density. 

Consider the canonical ensemble {g^r^} along with a field E(r). Instead 
of using the electrostatic energy density, we use T\ E. ]. The partition 
function is. 

Z N = T V l X p / d V V : D E e x p ( - / d 3 r ^ ) ^ V - e E W - ) <3'9) 

with A t the thermal wavelength of the charges. In addition to using T\ E, cfi ]. 
we have imposed the constraint that E(r) satisfy Gauss's law. With this 
contraint, E(r) may be decomposed into the minimum, E p , plus the curl of 
an arbitrary vector field Q(r). Clearly, this satisfies Gauss's law as 

V-E(r) = V-^Ep(r) + VxQ(r) 

= p(r)/e + V-VxQ(r) 
. = p(v)/e 
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Chapter 3. Electrostatics and constrained statistical mechanics 

(3.11) 

We may rewrite J d 3 r E 2 as 

j d 3 r E 2 = J d 3 r(E p + V x Q ) 2 

= J d 3r(-Vr> p + V x Q ) 2 

= y " d 3 r ^ ( V ( / ) p ) 2 - 2 V 0 p - V x Q + (VxQ) 

= j d 3 r (V0 p ) 2 + j d 3 r ( V x Q ) 2 

+ 2 jd3vebpV-VxQ - 2 j 4>pVxQ • dS 

= j dh{V<Pp)'2 + Jd3r{VxQ)2 

We have used that the term § </>pVxQ • dS vanishes for periodic or constant 
potential boundary conditions. Substituting this into Zyv we arrive at the 
defining relation [21] • 

ZN = /TLW / D V V P E 5( EV-E(R) - ) ' 
I" f 3 6(E 2 + (VxQ) 2 ) ] x e x pri — — 

= ' f d 3 r " e * J - [ d 3 r ^ \ <3"12) 

x | P ( V x Q ) ( y ( V - V x Q ) e x p | - y d 3 r ^ ^ | 

= Zcoulombl { r i } ] x const. 

Thus aside from a constant, the partition function for the constrained field 
E(r). with energy functional T. is equal to a partition function constructed 
using Coulomb interactions. As the statistical weights of each configuration 
are independent of this constant, the two partition functions are equivalent, 
leading to the same expectation values for operators of {r̂ }. The advantage 
of this formulation is that the energy density is locally defined in terms of 
D(r). The field D(r) in turn is only subject to the local constraint of Gauss's 
law. The evaluation of this partition function may be efficiently performed 
via Monte Carlo integration. We have developed an implementation, which 
is described in chapter 5. 
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3.2 Inhomogeneous media 

The equivalence in eq. (3.12) is not limited to homogeneous dielectric 
materials[24]. For systems with a dielectric function e(r, {r-j}) we may ex
press F[ E , ( j f> ] and Gauss's law in terms of the displacement field D(r) = 
e(r. {r;})E(r). The constrained partition function for the inhomogeneous 
ensemble is 

Z n = iV!AF / d 3 r / V p D 6 { V ' D ( r ) _ p { r ) 

x exp<( — / d 3 r V2 
(3.13) 

2kBTe(r,{rl}) 

The general solution to V -D(r) = p(r), is 

D(r) = -e (r^(r ) )V^(r) + V x Q ( r ) (3.14) 

V-e(r,p(r))V0 p(r) = -p(r) (3.15) 

(3.16) 

With this decomposition, J d 3 r D 2 / 2 e can be rewritten as 

, 3 „ ° 2 _ / - ^ ( z i V ^ + V x Q ) 2 

2e 

' ^ ^ v ? ^ ^ , ( V x Q ) 5 

2e 

= /d 3 r^M!+ / d 3 r ( V x Q ) 2 (3.17) 
2 / 2e 

+ / d V p V - V x Q j ^ V x Q • dS 

= | d : , r j ( V i ^ + | ( | 3 r ( V x Q ) ! 

Again we have utilized that the cross term dissappears for constant or pe
riodic boundary conditions. The partition function may be separated as 
before leading to 

N\XfN J 

x / D(VxQ)<) (V-VxQ) e J W B T 

ZCoulombl {ri} ] x ZFIUCI.I } 

(3.18) 
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Chapter 3. Electrostatics and constrained statistical mechanics 

For an e(r, {r;}) independent of the particle coordinates {r,}, ZpiuctX ] 

becomes constant and the equivalence is established. Throughout this thesis 
work we only consider e(r) independent of the charge-density. In general, for 
e(r, {rj}) dependent on the particle coordinates, it appears that this formu
lation leads to additional contributions to the free energy. By considering a 
pair of mobile dielectric inclusions in a vacuum, reference [24] was able to 
show that Z p i u c U leads to an interaction between the inclusions of 

2>kBTv\8e\V20~e2 
(47reo) 5 

T/-/ \ o a y - i . u j u c i i ^ u c 2 , . 
V ( r ) = 7 7 — ^ (3-19) 

with v\ and V2 the volume of the inhomogeneities 5e\ and 5e-\. For a weakly 
dipolar material of volume vi and dipole moment pi , ê /eo takes on the form 

3fcjBT(47reo)2t'i 

substituting this form into the dielectric interaction we arrive at the Keesom 
potential 

which is the interaction potential for thermally agitated dipoles. Thus the 
additional terms in the free energy may be naturally interpreted as the 
interactions between fluctuating Langevin dipoles. Even though these in
teractions do not appear in the electrostatic solution, they are a desired 
addition to finite temperature systems. 

3.3 Inhomogeneous media with metallic regions 

This formulation may even be extended to handle inhomogeneous media 
with metallic inclusions[31]. Consider an ensemble of charges in an inhomo
geneous dielectric background, with embedded conductors defined by sur-
faces Si held at external potentials $ 2 . An example is shown in figure 
3.1. 
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Chapter 3. Electrostatics and constrained statistical mechanics 

Figure 3.1: Inhomogeneous system with metallic regions. 

Before we may formulate the partition function in terms of a constrained 
field D(r) , we must determine what the appropriate free energy in electro
statics should be for Dirichlet boundary conditions, 4>(r) = $\ext\r). r G S,. 
So consider first the electrostatic energy, t/[E], of a system without metallic 
regions. A change of variables in terms of the potential requires that we 
determine the conjugate variable to <fr(r). Consider the variation in energy 

U[cj) + 8(p] = j d 3 r 
3 e[V(4> + <5</>)]5 

= U[(p}+ j d:5reV<P • VS4> + 0( Scj)2 ) 

= U\(p] + j d:irV-(-eV(50)(/> + 0{ Sep2 ) 

= U[(p} + j d : 5r Sp 0 + O( 5<j>2 ) 

(3.22) 

This shows that the conjugate variable to the potential is the charge density. 
Performing a Legendre transform to achieve the correct electrostatic free 
energy for our ensemble, including metallic interfaces, we see that 

f , 3 D 2 LEGENDRE f , 3 D 2 Jf jAexi) , c /o o • J ^ 
J d r _ 27 ' / d r 97 ~*r*'% 1 ' ^ 

where cr,(r) is the surface charge density of the ith equipotential surface. 
It is important to note that D is subject to Gauss's law throughout the 
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(3.26) 

medium and at the conducting boundaries. So that 

V-D(r) = p(r) r e V (3.24) 
D(r) • n?(r) = -a(r) r € Sj (3.25) 

for fij(r)' an outward facing unit normal to the surfaces, Sj. Following our 
experience in homogeneous media, we suspect that we can correctly derive 
the electrostatic equations of motion using the energy functional 

F[ D , o, <b, 3] = J d 3 r ( ^ - <f>{V D - p^j 

-z2<fs
 d S< (^*! 6 X t ) - S(fii • D + a*)) 

We confirm this through extremization, using 

5T = j d 3 r ( ^jiP _ ^(y.<JD)^ +J^f ^ D • dS, 

-W d S i ^ - S ) ^ 

- f d 3 r(V-D - p)5<p^ y i dSi{hi • D + a^SE 
J i JSi 

= f d 3r(D/e + V0) • r5D + ^ / (H - )̂<JD • dS* 

- w d S i ^ - s ) ^ 

- y d 3 r(V-D - p)8<p + j> dSi(nj • D + a ^ S 

Thus the extrema of T is defined by 

(3.27) 

-e ( r )V^r ) = D(r) r e V (3.28) 

V-D(r) = p(r) reV (3.29) 

M r ) - D ( r ) = ^(r) r e dSi (3.30) 

S(r) = </>(r) r € dS* (3.31) 

2(r) = d>(-')(r) r e c\Sl (3.32) 

from which we arrive at the electrostatic equations of motion. The Legendre 
transform has achieved the desired effect of introducing Dirichlet boundary 
conditions. 
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Chapter 3. Electrostatics and constrained statistical mechanics 

Now consider the partition function with Dirichlet boundary conditions 

r(Dir.) _ 1 f fTjd3^ 

xVB 5( V--D-p)]j(vol 5( ni-D + Oi^ ( 3 . 3 3 ) 

> ^ - / < ^ ? £ ^ ) 

Let (fP be the electrostatic solution. We define erf (r) through the relation 

<7f(r) = -ni(r)-e(r)V<^(r), r e dS, ; ( 3 . 3 4 ) 

Substituting D = —eVcjP + V x Q and cr, = o\ + Oi into Zjy we get 

x ^ P ( V x Q ) <$( V-V.xQ) J J ^ P ^ S( hi • V x Q + a, )^ ( 3" 3 5) 

2 /• ^ ^ ( e z t ) 

V ./ 2kBTe ^Js< kBT 

= ZCDoullmb\ 1 X ZF°iuct\ i r i ) \ 

As before, for a dielectric background independent of the particle coordinates 
(Dir ) 

we find that ZN is equivalent to the partition functions for an ensemble of 
particles interacting via Coulomb forces. However, the equivalent potential 
produced is now subject to Dirichlet boundary conditions along Sj. In the 
general case of mobile dielectrics, the term Z^^J has yet to be proven 
to result in interacting thermally agitated dipoles. However, the form of 

(Dir ) 

Zpiuct suggests equivalence. For the purpose of this work, proving the 
latter is unimportant as we are only concerned with systems with dielectric 
functions e(r) independent of the ion coordinates {ri}. 

This formulation is quite interesting as it presents an alternative to the use 
of either matrix boundary or image charges methods for dealing with metal
lic boundaries in the Coulomb problem. In addition, no approximations 
have been made to arrive at the statistical equivalence of these ensembles. 
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Chapter 4 

Analytic theory of the 
Gouy-Chapman problem 

This chapter presents a review of field theory methods applied to the 
monovalent homogeneous EDL as developed by R. Netz and collaborators 
in [1. 2, 4. 5]. The asymptotic counter-ion density expressions reviewed are 
used to test our algorithm when applied to the slab geometry in chapter 7. 

4 .1 Electric double layer Hamiltonian 

Consider N charges of charge —e confined to a region defined by the re
stricting function f2(r), interacting only via Coulomb interactions. In addi
tion to the charges we allow a surface charge, <r(r), to occupy the border of 
Q(r) . To ensure the system is charge neutral we have the condition 

-Ne + e J c\sr a(r) = 0 • (4.1) 

For example, for interacting EDLs, 0,(r) takes on the form 

= ° ^ i L ' (4.2, 
I 0, otherwise 

and 
a(r) = os5(z) + as5{Lz - z) (4.3) 

For simplicity we consider the system in a vacuum. The internal energy 
includes contributions from charge-charge, charge-wall, and wall-wall inter-
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Chapter 4. Analytic theory of the Gouy-Chapman problem 

actions. Thus the Hamiltonian is 

* - 2 

N o N 
e 

2mi 

• • + £ m r n ~ Id3™^ E - A — r IT (4-4) 

^ 47re0 r 4 - Tj\\ J *r< 4TT€0 \\n - r 

+ \jd3rdV;Vf(r,)„ - /d*rp(r)Mr) 
2 7 4vreo 11^-^11 J 

We have introduced an external field h{r), coupled to the density operator 
p(r) = ~2~2f S(r — ri), to allow calculations of density distributions via 

{ P { V ) ) = ^HrY ft=0

 (4-5) 

Following reference [4] we do not couple h(r) to the charged surfaces. The 
reason for neglecting this term remains unknown. This system exhibits two 
classical length scales. The first, the Bjerrum length £ B . is defined as the 
length at which kBT is equal to the interaction between two unit charges. 
It is 

l B = S ^ T < 4 ' 6 ) 

The second, the Gouy-Chapman length p, is the distance at which a counter-
ion has an electrostatic interaction with the boundary equal in strength to 
kBT. It is 

p = kBl — 

1 
6 G s (4.7) 

2iroslB 

with us the average charge density along the boundary of $7(r). The coupling 
parameter, S, is the ratio of these lengths for the counter-ions. It is 

s = 7 ( 4- 8 ) 
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We now rewrite Ti as 

H 
kRT 

N 

- E 2m,iksT 

- e 2 y J d3rdVp(rMr-r>(r') + 

+ e£B j d 3rd 3r'a(r)t;(r - r')p(r') 

- y y d3rd3rV(r)w(r - r')a(r') 

d 3r/5(r)/i(r) 

e2£BNv{0) 

(4.9) 

/ d 3 r d 3 r ' 
2 

+ y d 3r/i(r)p(r) + 

with v(r) = l /?\ When 7i is rescaled in terms of p and £ B it has a depen
dence on E only, as we will show in the following sections. The term with 
v(0) is included to remove self-interaction. 

4.2 The weak coupling regime 

Weak coupling between the charged interface and the particles occurs 
when the Gouy-Chapman length is much greater than the Bjerrum length. 
In this case EE <C 1. We will apply this approximation following a reformu
lation of the partition function for our system. 

ep(r) — cr(r)j v(r — r') ĵ ep(r') — er(r') 

e2£BNv(0) 

The partition function for our system in the canonical ensemble is 

Z N 
1 

m 
J J d 3 p ? ; d 3 r l f i ( r l ) ) exp 

We will show that this is equal to 

Z N 
d 3 r ? : ft(r;)\ [VA 

A? 
exp -W'[{ r i} ;A(r)] 

(4.10) 

(4.11) 
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with 

and 

-W'[{r,-},A(r)] = / d ' r d V A t r K V - O A l r ' ) 

+ ~e j d 3rA(r)o-(r) - i J d3rA(r)/5(r) (4.12) 

f j 3 . w , Ne2£Bv(0) 
+ J d 3r/i(r)p(r) + 

Z , = y P A e x p | - ^ 2 y d ^ d V A W u - ^ r - r O A C r O J (4.13) 

As before \ t is the thermal wavelength achieved through integration of the 
kinetic degrees of freedom. The transformation to a functional of the scalar 
field A(r) is known as the Hubbard-Stratonovich transform. After showing 
equivalence of the partition function in eq. (4.10) and eq. (4.11), we will 
transform to the grand-canonical ensemble. We will show that the free 
energy in this ensemble scales as E E - 1 . Thus a meanTfield approximation is 
appropriate for small H. We perform the saddle-point analysis and obtain 
a Poisson-Boltzmann equation for A(r), finding that A(r) is related to the 
electrostatic potential by a purely imaginary cofactor. We will utilize this 
relation by considering A(r) purely imaginary. Finally, we use the coupling 
to the external field to determine (p) for this approximation. 

Let 

ZP = YUJ P A e x p ( - W ' [ { r « } , A(r)]) (4.14) 

We rewrite Zp in terms of Fourier components using 

A(r) = i ^ A k e i k r A k = j d 3 r A ( r ) e - i k r (4.15) 

S(r) = i J2 e l k r *k,o = / d 3 r e " ' k r (4.16) 
V u 

and the relations 

A(r) = -A*( r ) A k = -A*_k (4.17) 

p(r) = p*(r) Pu = P-k (4.18) 

a(r) = a*(r) ak = a*_k (4.19) 

v(r) = v*(r) vk = v*_k (4.20) 
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From which we find 

d 3 r d V A ( r ) t ) - 1 ( r - r ' ) A ( r ' ) 

= - | d W A ' ^ - ^ r - r')A(r') 

= " E A k A k ' T 7 2 / d 3 r d V e - * V k ' r ' « - 1 ( r - r ' ) 
k,k' •' 

= - £ A £ A k , - ^ Id3Re"i(k-k')-R [dtAe-W+V-Wv-'iA) 
k,k' •' J • 

A = r - r ' 

k •/ 

= - ^ E i A k i V 

(4.21) 

and 

| d » r A ( p ) ( ^ - p ( r ) ) 

= ~ i 7 2 E A k ( v - ^ ) 

(4.22) 

So that we may rewrite W using 

H ' [ { r J ; A ( r ) ] - / d\h(r)p(r 

1 

Ne2£Bv(0) 

91/2 £ 2 V 2 / r l f c { ^ l 2 - 2 A B . A ; , k ( 2 i - p k 

k 
1 

91/2 £ 
2 y 2 e 2 ^ 

k 
Ak - 'iez£BVk[ — - Pk 

e 
e2£BVk [ — - pu 

(4.23) 
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where we have used the identities in eq. (4.17) to (4.20). The last term is 

vke-iB\o-k „ 1 2 

V2 Pk 

B 1 d 3rdV ep(r) — cr(r) v(r — r') ep(r') — cr(r') 

which follows in a similar fashion to eq. (4.21). So that 

^=i/n(^)(n<»w)<v wf{r-" 
x exp \2V2 4 ^ e2eB\ A k - ie2eBvk{ — - p k 

(4.24) 

(4.25) 

Performing the change of variables 

2 / 

A k - > A k + iq £Bvk p k 

e 
We find that 

Z P = /(II d 3 P i A ? e x P kBT 

Thus we arrive at eq. (4.11) 

(4.26) 

(4.27) 

^ / ( n « ) / § M - * ' ^ H 

27 



Chapter 4. Analytic theory of the Gouy-Chapman problem 

Transforming to the grand-canonical ensemble results in the partition func
tion 

Zx = Y e»NZN = £ \$ZN 

N-Q N=0 

= T J V A e X P { ~ 2 £ ^ j d 3 r d 3 r ' A ( r ) u _ 1 ( r " r')A(r') + %~ Jd3rA c^j 
0 0 l f A d 3 / ] N\ 

x E 7 Y ? { A O J ~n(r)exp(h,(r) - zA(r) + -e2eBv(0)^ 

=
 ~klPAeXP{"27^2 / d ' r d V A W u - ^ r - r O A C r ' ) 

+ ^ J d 3 r A a + A y d 3 r f i ( r )e / l ( r ) - i A ( r ) | 

^ / »Aexp 
•£•1/ 

| - H [ A ] } 

(4.28) 

with Ao = eM the fugacity. and A = Aoee iBV(°)'2/\f.. We may simplify H 

using -y _ 1(r) = -|̂ r<5(r) to get 

H = j d 3 rd 3 r 'A(r)f- 1 (r - r')A(r') - j d 3 r ̂ A a + XQe'1'1^ , 

= " 2 / ^ 2 / d 3 r d V A ( r ) ^ ( J ( r - r')A(r') - j d 3 r ^ A a + A P ^ " ^ 

= " 8 ^ ? / d3'A(r)V»A(r) - /d3r(jA a + A Q e ^ ) 

d 3 r (VA) 2 - / d 3 r f - A a + XQe'1-' UfBe2 

It is now advantageous to rescale H in terms of p, £B, and EL. Let 

(4.29) 

r = r/p ' (4.30) 
a(r) = pa(v)/as (4.31) 

A = • (4.32) 

fa/A = W\ (4-33) 
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Then 

d 3 r(VA(r)) 2 

d 3 r : 

d 3r(VA(f)) 

d3fA(f)a(f) 

d 3 f A ^ ( f ) e h ( f ) - l A ( ^ 

a(r)A(r) 1 

d 3rAfle' l ( r>- i A ( r ) 

2nE 
1 

2 ^ E 

so that 

H[A(r)] . / i ( f ) - iA(f) 

(4.34) 

(4.35) 

(4.36) 

(VA(f)) 2 - zA(f)a(f) - XQ{r)e 
(4.37) 

=: ^W[A(f)] 

This suggests that in the limit E <C 1, 2^ is dominated by the saddle-point. 
The saddle-point is defined through-

5H 
SA(T) 

= 0 

H[A + 6A,h = 0] 

= « [A] + i / d ' r 

= .K[AJ + ± / d ' f 

- V A • V<5A - w i A + ?Afie-iA<5A + Q{5A2 

(4.38) 

(4.39) 

1 
V 2 A -io + tXQe -iA 8A + 0(5A2) 

From which we get the saddle-point equation 

V 2 A s p + 2io = 2iAfie~ i A*p (4.40) 

This approximation has a very real'interpretation. The particle density for 
Z\ is 

(P(r)> = 
5 ln 2 A 

8h{r) h=0 

i-Afi(r.) | p A e - A e x p ( - ^ l ) ( 4 . 4 1 ; 

\n(r)(e-iA) 

\n(r)e-iA"> 
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In terms of the rescaled ion the saddle-point equation 

now reads 

V 2 A s p + 2ib - 2ip 

. Let (j)sp = iAsp/2 

=4>V 2^ s p = -p + a 

(4.42) 

From which we recognize a rescaled Poisson's equation for the electrostatic 
potential. Thus the use of the saddle-point approximation is equivalent to 
a mean-field theory where the ion-density decays with the potential. This 
equation may be derived very simply from a few assumption and is known 
as the Poisson-Boltzmann equation [32, 33, 34]. From electrostatics the 
potential </>(r) is related to the charge density through: 

In thermal equilibrium, the ion density adjusts according to the local value 
of the electrostatic potential. Using a Boltzmann weight for each ion, we 
find that the ion density is given by 

Thus the electrostatic potential is resolved through the Poisson-Boltzmann 
equation 

Eq. (4.45) results in eq. (4.42) for a homogeneous dielectric background 
when rescaled. The reason for following the field theoretic derivation to 
achieve this result, is to illuminate the fact that the Poisson-Boltzmann 
equation is in fact approximate; It is only applicable in the regime where 
S << 1. Deviations from the Poisson-Boltzmann equation are a result, of 
irregular ion densities, interactions between ions other than electrostatic 
interactions, and charge-charge correlations. 

4.2.1 One charged plate 
For one charged plate, located at z = 0, we have 

V-e(r)V0(r) = ep(r) (4.43) 

(4.44) 

(4.45) 

(.4.46) 
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and cr(r) = 6(z). A n ansatz for iAsp is 

z A s p = 21n^l + A 1 / 2 / ) (4.47) 

which is trivially seen to be a solution of eq. (4.42). The rescaled density is 

p(~z)=(l + \1/2z) (4.48) 

We determine A through the normalization condition 

J dzp(z) = 1 - (4.49) 

from which we determine A = 1. Thus in the weak-coupling limit, the one-
wall density is 

4.2.2 Two charged plates 
For two charged plates, separated by a distance d in the z direction, we have 

^ _ f l , 0 < z < d ^ 

)0, otherwise 

and 

a(f) = 6(z) + 6{d-z) (4.52) 

An ansatz for iAsp in eq. (4.42) is 

iAsp{z) = 21ncos(A 1/ 2[i - d/2]) (4.53) 

so that the density is given by 

^ % o S ^ U ] ) (4-54) 

We find the value of A through the normalization condition 

Azp'z) = 2 (4.55) 
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which may be simplified to the transcendental equation 

A]/2tan(V/2J/2^ = 1 (4.56) 

Thus in the weak-coupling limit, the two-wall density is 

W - ^ U - « % > ] ) • (4-57) 

with A determined via eq. (4.56). 

4.3 The strong coupling regime 

The ions are strongly bound to the charged perimeter when the Bjerrum 
length is-much larger than the Gouy-Chapman length. In this case, we 
apply perturbation theory in S _ 1 to determine the ion-density. We begin 
by rescaling the E D L Hamiltonian 

H - f- Pi c ^ W r r') I ^NvjO) 
kBT ^2m%kBT 2 ^ 1 j + 2 

i i.j 
N •,. N 

+ eiB J2 J d3ra(v)v(r - rf) + £ h(rz) 
i i 

J d3rd3rV(r>(r - r')a(r') 2 
(4.58) 

2niikBT 2 
4 i,3 

N 
+ ^J2 j d3fff(f)t»(f - ri) + J > ( f i ) 

. i • i 
- j d:iM3r'd{r)v(r - f )a(r') 
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The grand-canonical partition function is then 

o o 

- ^ ) 7 n ( - ^ » ) 
x e x p j - ^ - ^ y d 3fd 3f /

<r(f) 'u(f - f ' )cr(f ' ) | 

f ~ N 1 N f N ] 

= E ( ^ ) 7 n 
JV=0 N 7 J i v 7 

x exp j - ^ y d 3fd 3f 'o'(f)u(f - f / ) a ( f ' ) | 

x e x p | - - ^ \ ( f i - r i ) + — J2 J d 3f5-(f)v(f - fi) + ^ / i ( r i ) j 
(4.59) 

The ion-density to leading order in A / E is 

5\nZx\ 
(P(r)) = 

ft=0 <5fc(r) 

^ Jd3h ^ ( r i ^ r - r O e x p ^ ^ d 3 f ' a ( r > ( r ' - f 

A ' / 1 
3.Q(f) e x p ^ y d 3 f f f ( r>(r ' - f)^ 

(4.60) 

so that rescaled ion-density in the strong-coupling limit is 

p{r) ^XQ(r)exp(^ J d3r'o{r')v(?-r)^ (4.61) 

Thus the strong coupling partition function is the partition function for a 
single ion subject to c(r). 
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4.3.1 Single charged plane 

For a single charged plane located at z = 0 we have 

fi(f) = ( 1 , ° ~ Z (4.62) 
' [0, 0 < z ' 

and 

a(f) = 5{z) (4.63) 

The ion-density as given by eq. (4.61) takes the form 

~p{~z) « n(z)e~2 (4.64) 

We have used that A = 1 from the normalization condition 

j dzp(z) = 1 (4.65) 

so that 
(p(z)) » 2 7 ^ ^ exp(-z/p) • (4.66) 

4.3.2 Two charged planes 

We use the same Q(r) and <r(r) as in section 4.2.2. The integral 1 

2TT 

So that 

^ J dH'd{i')v{? - f) = 0 (4.67) 

~p{~z) w 2fi(5)/d (4.68) 

Thus . 
(p{z)) « 4TrfBa2Q(z)p/d (4.69) 

Reference [4] shows that this approximation is valid only for small dfEL. 
For sufficiently large ci we expect the charged walls to decouple. Thus we 
expect to see two exponential profiles as described by the single wall theory. 
Unfortunately no analytic theory describes the cross-over in this behaviour. 
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4.4 The contact value theorem 

The reason so much attention has been given to calculating the ion-density 
profile is due to the contact value theorem. This theorem relates the pres
sure, P. between two charged plates to the ion density at the interface. It 
is a general sum rule that be derived from statistical mechanical arguments. 
In terms of the rescaled ion-density it may be expressed as 

For weak coupling it has been shown that A > 1, and so the interaction 
between the plates is always repulsive. From eq. (4.68), we see that strong-
coupling limit exhibits an attractive regime for d > 2. The charged plates 
are like charged, thus a simple analysis excluding counter-ions would suggest 
that the charged walls should repulse each other. Amazingly, the interaction 
between the walls mediated by the counter-ions can lead to attraction and 
even stable configurations. In principle this binding is similar to covalent 
bonds between like charged ions; however, the details differ significantly. 

4.5 Extensions 

The analytic theories remains limited. The models assume homogeneous 
media as well as constant charge boundary conditions. In many cases these 
are not the most appropriate assumptions. For example, the hydrophilic 
surface of phospholipid bilayers may in many situation be treated as an 
equipotential [35]. As we have already discussed, the inclusion of dielectric 
inhomogeneities is also desired. 

In chapter 7, we confirm the results in equations (4.54) and (4.64). We 
then utilize the contact value theorem to predict the attractive regime for 
two equipotential planar walls. In chapter 8, we go beyond homogeneous 
dielectric media and consider the effects of an adsorbed solvent layer. 

(4.70) 
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Part II 

A local Coulombic Monte 
Carlo algorithm 
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Chapter 5 

Numerical implementation of 
the local Coulomb algorithm 

c 

In this chapter, we introduce the numerical implementation developed 
for this work. Our simulation method is suitable for charges moving in 
a continuum of inhomogeneous dielectric media for bulk, slab or quasi-2D 
geometries. This is achieved through Monte Carlo integration of expectation 
values of operators A, using the constrained partition function 

z " = I ( n fi<r')d3r')i'D
 ' I ™ - * ) 

In chapter 3, we established the equivalence of this partition function with 
one constructed using Coulomb interactions. For constant charge boundary 
conditions we use the Hamiltonian 

W[{rl},D(r),{crl}] = | d 3 r ^ ! _ , (5.2) 

while for constant potential (Dirichlet) boundary conditions we use the 
Hamiltonian 

W[{rJ ,D(r) ,{aap"-) = / d h ^ ) ~ j • ^ 

When no charged surfaces are present, as in bulk simulations, the integration 
over J Dai is neglected. The integration is formulated in terms of four Monte 
Carlo updates 

• a particle move 

• a circular update of D(r) 

• a fluctuation in the local charge density of a surface 
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• an exchange of surface charge between metallic boundaries 

The particle, charge fluctuation, and exchange moves are all coupled to D(r) 
through the conditions n,; • D — —oi and V D = p. We begin by reviewing 
the Metropolis Monte Carlo method before getting into the details of the 
discretization scheme. 

5.1 Metropolis Monte Carlo method 

Consider a system with coordinates described by a Hamiltonian 
Tt{qi). The thermodynamic expectation value of an operator A(qi) is given 
by n 

{ A ) = hj (Ud9*)A(*)e~^ (5-4) 
i 

where Z is the appropriate partition function. Rosenbluth utilized that the 
expectation value calculated via a Markov chain asymptotically approaches 
(.4) [36]. A Markov chain is a string of configurations related by random 
updates, subject to the condition of detailed balance[37]: 

P(n)wn.m = P(m) (5.5) 

Here, P{n) is the probability of the system being in a configuration denoted 
by the index n and wn_m is the transition rate of the Markov chain from the 
state n to m. For the specified problem, the probability is given by 

with E(qlM) the energy of the configuration n. Metropolis et al. showed 
that detailed balance is achieved if the probability of accepting a random 
transition from the state {qi.n} to a new configuration {gj>m} is given by 

P<«*->(n-m) =
 6 X PV " U

 (5.7) 

with AE the change of energy E(q^m) — E(qi_n). Thus the Metropolis Monte 
Carlo method may be summarizes as follows: 

1. start with an initial random configuration {g^o} 

2. perform an update to the configuration qjQ —» qj Q + 5 
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3. if AE is less than 0, accept the update. Otherwise accept only if 
e-AE/kBi y r _ f o r r g (Q_ 2) a uniform random variable. 

4. after attempting to update all degrees of freedom, </j, calculate the 
value of A. Use this instantaneous value to update a running average 
A. 

5. repeat until A has sufficiently converged. 

The convergence rate of A may be optimized by ensuring that the acceptance 
rates are around 50%. In addition, the system exhibits a relaxation from its 
initial random distribution to a thermal configuration. It should be noted 
that the calculation of A should not proceed until after this relaxation. 

5.2 Discretization for bulk geometry 

The simulation volume, V, is discretized, with charge density (pn) and 
dielectric function (en) defined on the vertices of a cubic mesh. In addition, 
a displacement field ( D n ) is defined on the links connecting the vertices. 
The grid voxels have a volume a 3 , so that vertices and links are located at 

n = a(i,j, k), vertices (5-8) 

n'x = a(i + 1/2, j, k), x-oriented field links (5-9) 

n'y = a(i,j + 1/2, k), y-oriented field links (5.10) 

n'z = a(i,j,k + 1/2), z-oriented field links (5-11) 

with i.j, k G Z. All displacement field variables ( D n ) take on the orientation 
of the link they sit on. For instance, a field defined on an x-oriented link 
would point in the positive x-directions. The particles' positions {r^} are not 
limited to vertices, rather they are allowed to continuously vary throughout 
V. subject to the restricting function O(r). The charge density on the 
vertices is determined via interpolation. This setup is illustrated in figure 
5.1. 

39 



Chapter 5. Numerical implementation of the local Coulomb algorithm 

-t • - < < < < 
i ) n ' i ) n ' ( 
i ) n ' i ) n ' 

4 » 1 

Figure 5.1: 2D sketch of the simulation mesh. Charge density and dielectric 
function sit on the vertices. The field variables are defined on the links. The 
shaded portions indicate the regions over which particles are interpolated. 

We have implemented V as an orthorhombic cell with linear dimensions 
aLx, aLy. and aLz. The imposition of PBCs on the x-direction is made by 
connecting the links at x=a(Lx — 1 + 1/2) to the vertices at x=0. Simi
lar conditions are applied to the y and z directions for full 3D periodicity. 
Gauss's law takes on the discrete form 

Pn (5-12) i { D r i * - o r • * + D " + ! 9 - o r 1 ' + o r 1 8 - Dr1*} = 
where we have used a seven-point divergence operator on D . A simple 
construction of the Hamiltonian in eq. (5.2) is 

n = Y. E ^ ( e V X D f ) 2 (5.13) 
n' e=x.y.z 

with 

e-*(e, n') = - + (5.14) 
2 \ C n ' + | e e n ' - f e / 

For homogeneous media we have made use of an improved Hamiltonian 
proposed by A . C . Maggs[26]: 

n' e—x,y.z ^ ' 

This form leads to artifacts in the interaction potential which decay as l/h5 

as discused in section 5.7.1. The scheme in eq. (5.13) has similar artifacts 
decaying as \/hA. Unfortunately, eq. (5.15) does not generalize in a simple 
way to inhomogeneous media. 
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The vertices and links are implemented in a similar fashion to linked-
lists. Each vertex contains an e - 1 , a p, six pointers to connecting links, and 
six pointers to the neighbouring vertices. Each link contains a field D, an 
orientation, two pointers to the connecting vertices and two pointers to the 
nearest similarly oriented links. This is indicated in the diagram figure 5.2. 

Vertex 
- i 

p,e 
*Link[6] 
* Ver tex [6] 

Link 
D 
orientation 
*Link[2] 
* Ver tex [2] 

Figure 5.2: Diagram of the Link and Vertex classes. 

5.2.1 Integrating transverse degrees of freedom 
As has been shown in chapter 3, the transverse modes of D(r) must be 

integrated to achieve statistical equivalence to the Coulomb problem. Con
sider a mesh, { D N , p n}, which satisfies Gauss's law. It is.advantageous to 
partition the field.links into plaquettes as shown in figure 5.3. 
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If we apply a circular update to the field links of a particular plaquette 
as shown in figure 5.4, we see that the field is modified without introducing 
any violations of Gauss's law. The flux into each vertex remains unchanged. 

4 D3 3 4 D3-5 3 

D4 D 2 — • D4-5 D2 + 5 

1 D, 2 1 D,+5 2 

Figure 5.4: Circular update to the displacement field which leaves the flux 
into each vertex unchanged. 

Thus we may integrate over the transverse modes of D n ' by introducing 

the following Monte Carlo update: 

1. pick a random plaquette. 

2. pick a random modification 5 € {—5mlax\Smax^) to apply to the pla
quette 

3. accept the modification according to the Metropolis criterion 

The value of Smax^ is an optimization parameter which in general will depend 
on the temperature. The implementation of the plaquettes that we have 
developed is such that each one contains four pointers to link objects. For 
energy described by eq. (5.13) this leads to four modified terms while for 
eq. (5.15) twelve terms are involved. Thus this update is O( l ) . 

5.2.2 Integrating charge degrees of freedom 
Consider first a modification to our mesh as shown in figure 5.5. The charge 
enclosed by a cube centered on vertex 1, of volume a 3 , is increased by as8. 
Thus §j D • dS] must correspondingly increase by a25. This is satisfied if 
D D + a6. -

42 



Chapter 5. Numerical implementation of the local Coulomb algorithm 

Pi D P 2 p.+8 D + a 5 p2-6 

Figure 5.5: Simple density fluctuation satisfying Gauss's law 

Figure 5.6 illustrates a more complex charge update where density mod
ifications are made to n vertices. Let {5pi}, i 6 1,2, ...,n, be the change in 
the charge density of n connected vertices. If we increment the field con
necting nodes 1 and 2 by an amount abp\ then Gauss's law is satisfied at 
vertex 1. We may now proceed through the n vertices incrementing the field 
between i and i + 1 by ±a 2\I}=i °~Pji where the sign depends on the relative 
orientation of the link and a directed line between i and i + 1: As we pro
ceed along this path, Gauss's law is subsequently satisfied at each vertex. If 
we further require that the $Pi = 0, then by the time we reach the n t h 

vertex. Gauss's law is satisfied at all of the vertices. This may be seen by 
noting that had we extended the path by a single vertex, the increment to 
the link between n and n + 1 would be a 5pi = 0. ' 

8p 
a (Sp, + 5p-,-t-...+ 8 p 1 5 ) 

16 

a8p l : 

Sp, 8p, 5p, 

a (Sp, + Sp,) 

Figure 5.6: A possible charge density update. 
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This algorithm for making modifications to the charge density allows us 
to formulate a way of moving charges in the continuum. We begin by inter
polating the charges to grid points n via Gaussian interpolation functions 

The sum over n is cut off at a value of ||r — [n]|| > Rc where [n] is the 
vertex closest to r, and Rc is a cut off radius measured in units of o. The 
linear dimension of the interpolation base is then p = 2Rc/o~ + 1 nodes. 
Thus each charge touches p3 vertices. For now lets assume that following 
our initial interpolation of all of the charges, we have made a global update 
such that the field satisfies Gauss's law. We may move a charge q from a 
position at r to r + Sr by interpolating —q at the position r and +q at the 
position r + 5r. This move introduces 0(p3) charge density updates {5pi}. 
Since the total charge interpolated is zero, we have £^ 5pi — 0. Thus we 
may use the above algorithm to re-impose Gauss's law. We only require a 
connected path between the 5pi. Figure 5.7 shows three such paths for the 
same region, these paths are known as Hamiltonian paths. A Hamiltonian 
path touches a set of nodes and has minimal length. The generalization to 
any orthorhombic region should be-obvious. 

Figure 5.7: Three different orientations of equivalent Hamiltonian paths. 

The C + _ l~ code for generating a Hamiltonian path which traverses pri
marily along xy-oriented planes is shown in program 5.1. The Hamiltonian 
path is stored in an array Move[ ]. It touches a total of nPts vertices and has 
dimension dimJ by dim_j in the xy-plane. For our algorithm, we choose the 
Hamiltonian path which touches primarily links oriented along the direction 
of the particle step. For example, for a particle move in the x-direction an 
xy-oriented Hamiltonian path is chosen. 

Thus we integrate the charge degrees of freedom with the following Monte 
Carlo move: 

(5.16) 
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1. pick a random charge, i 6 [0,N — 1]. 

2. pick a random orientation, e= x,y, or z, for the move and displacement 
" t V "max i °?nax J 

3. interpolate a charge — ̂  at and (p at r̂  + 5e 

4. perform a Hamiltonian path update for the charge density modifica
tion. To ensure we do not bias the field D n , we choose the orientation 
of the Hamiltonian to coincide with the orientation of the particle 
move. 

5. accept the update according to the Metropolis criterion 

As with transverse updates the value S^ax^ may be tuned to optimize con
vergence. As the area affected includes 0(p3) vertices, this move has a 
complexity of 0(p3). In the coded implementation, we set an initial max
imum boundary on the size of 5maxm this w a y w e c a n pre-calculate all 
required Hamiltonian paths. 

All that remains is a means to satisfy Gauss's Law initially. We start 
with a zero initialized field. A Hamiltonian path update spanning the entire 
volume V results in a field configuration satisfying Gauss's law. There is 
one provision involved, the system's total charge must be zero. 

5.2.3 Surrounding medium 

The algorithm give rise to some peculiar boundary conditions[25]. The 
dvnamics of the displacement field is such that it obeys 

for Q a rotational vector field (related very closely to the plaquettes) and 
J a current, such as described in the Hamiltonian path algorithm. When 
integrated, this may be used to define a dipole moment d. 

1 /* d 
D(i) = - - y dtd 3 rJ = - - (5.18) 

d is related to the simulation cell's dipole moment M by d = M + gR, 
for R a Bravais lattice vector. There arises from d a contribution to the 
electrostatic energy of 

r f>2 d 2 
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Program 5.1 C++ code for generating an xy-oriented Hamiltonian path 
i = j = k. = iO = JO = 0; 
for(idx=0; idx < nPts; idx++){ 

i f ( i<dim_i-l && i>0 ){ 
i f ( i 0 < i){ 

iO = i ; i++; 
Move[idx] = INC_X; 

}/* i f 1.1 * / 
i f ( i 0 > i){ 

iO = i ; i — ; 
Move [idx] = DEC_X; 

}/* i f 1.2 */ 
}/* i f 1 * / 
else{ 

if(i0==i && 
i == dim_i - 1) { 

i0=i; i — ; 
Move[idx] = DEC_X; 
continue; 

>/* i f 2.1 * / 
if(i0==i && 

i == 0){ 
i0=i; i++; 
Move [idx] = INC_X; 
continue; 

}/* i f 2.2 */ 
iO = i ; 
i f ( j<dim_j-l && 

j>0 M 

i f ( j 0 < j){ 
j o = j ; j++; 
Move [idx] = INC_Y; 

}/* i f 2.3.1 * / 

if(JO > j){ 
JO = j:; j — ; 
Move [idx] = DEC_Y; 

}/* i f 2.3 .2 *./ 
}/* i f 2.3 */ 
else{ 

if(j0==j && 
j == dim_j-l){ 

j0=j; j — ; , 
Move [idx] = DEC_Y; 
continue; 

}/* i f 2.4.1 * / 
if(j0==j && 

j == ' O H . 
j0=j; 
Move[idx] = INC_Y; 
continue; 

}/* i f 2.4 .2 * / 
if(j0!=j){ 

•j0=j; k++; 
Move [idx] = INC_Z; 

}/* i f 2.4.3 */ 
}/* else 2.4 */ 

37* else 2 * / 
}/* for idx */ 
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In reference [25] this extra term has been shown to result in a contribution 
to the free energy of 

f M i 1 / 1 / 3 ^ p 
Af=\w V (5.20) 

10, otherwise 

If we refer back to eq. (2.7), we see that for V 1 / 3 -c ts the algorithm is 
equivalent to a Ewald sum with spherical summation geometry surrounded 
by a dielectric medium of e.s = 0. For V 1/-* » is, the boundary conditions 
correspond to a conducting surrounding medium, es = oo. 

5.3 Discretization for slab geometries 

The discretization of slab geometry systems follows very closely to that of 
bulk geometry. We take the x-direction as finite and place charged surfaces 
on the vertices at the x = 0 and x = aLx planes. We use the restricting 
function 

n ( r ) = /1' • ap/2 < x < aLx - ap/2 ' 
10, otherwise 

to ensure that the charges do not interpolate past the surfaces. The energy 
for constant-potential boundaries takes on the additional term 

a ̂ M ^ o - S g ^ o O (5-22) 

By adding an additional layer of links to the x = aLx plane we may 
break the periodicity, in the x-direction. We require that these links do not 
contribute to the energy and do not- allow plaquette updates that would 
affect this condition. This is achieved by refusing any plaquettes which are 
xy or zx oriented at the x = aLx plane. Plaquette and particle updates then 
follow as before. 

5.3.1 Initialization 

The slab geometry also requires that hi • D = — cr,, so that Hamiltonian 
paths no longer provide a means for initializing the grid. An alternative 
is to first migrate all charge violations away from the charged surfaces so 
that n, • D = —ai. We then follow with a Hamiltonian path which moves 
the accumulated violations along each vertex. This is shown in figure 5.8. 
As before, so long as the total charge on all vertices is zero, the mesh will 
satisfy Gauss's law following this update. 
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Figure 5.8: Initialization of the slab geometry. 

5.3.2 Surface charge fluctuations 
To perform the integration over cr(r) we must introduce a Monte Carlo up
date which allows for a perturbation to the local surface charge density. This 
move must adhere to the constraint, • D = — <TJ, which when discretized 
becomes 

ID"+f* = - p n l x = 0 (5.23) 

l ^ x ' ^ = Pn\x=aLx (5.24) 

Consider the fluctuations shown in figure 5.9. These moves introduce the 
desired perturbation while maintaining Gauss's law and the boundary con
straints. Thus we may perform the integration over a(r) with J odSi held 
fixed with the following update: 

1. pick a random surface i , i 6 0, aLx. 

2. pick a random vertex j belonging to the surface, j G [0, LyLz] 

3. pick a random direction, e= y, or z, for the charge migration and 
. displacement 5. e (-S^^^sl^1^) 

4. perform the update according to figure 5.9 accepting according to the 
Metropolis criterion 
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- 5 
a5 

- 5 

a5 a8 I 

5 8 
a5 -a5 

Figure 5.9: Left, surface charge fluctuation on x = 0 plane. Right, fluctua
tion for x = aLx plane. 

The addition of local surface charge fluctuations does not allow for the 
equilibration of separate equipotentials. To achieve this, we introduce one 
more Monte Carlo update as suggested by Levrel [31]. This move allows 
charge density to flow from one equipotential to another. For the slab ge
ometry we choose the flow to be implemented in terms of x-directed lines 
from the surface at x = 0 to the surface at x = aLx. This is indicated in 
figure 5.10. The complexity of this move is 0(LX). 

5.4 Quasi-2D geometry 

We achieve the general methods of quasi-2D geometry in the same manner 
as Particle-Mesh Ewald. We utilize an elongated tetragonal simulation cell 
and impose PBCs. We use the restricting function 

with n typically 3,4, or 5, and aLx = NL in figure 2.4. We also utilize an 
equivalence between our method and the Par tide-Mesh Ewald. Since both 
solve for the energy of interacting Gaussian clouds, the two methods should 
give identical results for low temperature up to a dipole term. Thus we may 
use the same corrections used for the Particle-Mesh Ewald when applied to 
quasi-2D geometries. Therefore, we correct for the summation order using 
the dipole term in eq. (2.8). 

5.3.3 Surface charge exchange 

0 < x < aLx/n 
otherwise 

(5.25) 
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Figure 5.10: Update exchanging of surface charge density. 

It is worth noting that this method exhibits one limitation. Since the 
sum of the charges on all vertices must be zero in order to satisfy Gauss's 
law, any terms involving charge in the Hamiltonian must be implemented 
explicitly on the mesh. In particular one cannot simulate a charged wall and 
counter-ions without including the charged wall on the mesh. 

5.5 Algor i thm for a Monte Carlo sweep 

Program 5.2 shows C + + code for performing a Monte Carlo sweep. A n 
attempt to move each charge once is made in a random order. The proba
bility members m_dfProb of the Monte Carlo moves denoted m_mcinfo_Field, 
m_mcinfo_Particle, m_mcinfo_Surface_Fluct, m_mcinfo_Background_Field, and 
m_mcinfo_Surface_Exchange determine the relative ratio of plaquette, parti
cle, surface fluctuation, background field, and surface exchange updates per 
sweep. In this manner we can tune these proportions to achieve greater effi
ciency. The calls to member functions vTryJParticle, vTry JBackground_Field, 
vTry_Surface_Fluct, vTry_Field, vTry_SurfaceJExchange perform the Monte 
Carlo updates already described. 

50 



Chapter 5. Numerical implementation of the local Coulomb algorithm 

Program 5.2 C++ code for a MC sweep 
/* used to determine when to choose each type of MC move */ 
st a t i c REALTYPE 

df F i e l d = m_mcinfo_Field.m_dfProb, 
dfParticleMove = d f F i e l d + m_mcinfo_Particle.m_dfProb, 
dfBackgroundFieldMove = 

dfParticleMove + m_mcinfo_Background_Field.m_dfProb, 
dfSfluct = 

dfBackgroundFieldMove + m_mcinfo_Surface_Fluct.m_dfProb, 
•dfSSexchange = 

dfSfluct + m_mcinfo_Surface_Exchange.m_dfProb; 
REALTYPE 

r; /* used to determine when to choose which MC move */ 
int 

*grn_PtlList, nLeft = m_nParticles, nRP; 

grn_PtlList = new int[m_nParticles]; 
f o r ( i n t i = 0; i<m_nParticles; i++) grn_PtlList [i]=i; 
while(nLeft){ 

r = RANDOM; 
i f ( r <= dfField) 

vTry_Field(); 
else i f ( r > df F i e l d && r<=dfParticleMove){ 

/* t h i s code ensures each p a r t i c l e i s chosen once only */ 
nRP = int( RANDOM * ((REALTYPE)nLeft) ); 
vTry_Particle(grn_PtlList[nRP]); 
grn_PtlList[nRP]=grn_PtlList[—nLeft] ; 

}/* i f Par t i c l e move */ 
else i f ( r > dfParticleMove && r <=dfBackgroundFieldMove) 

vTry_Background_Field(); 
else i f ( r > dfBackgroundFieldMove && r<= dfSfluct) 

vTry_Surface_Fluct(); 
else i f ( r > dfSfluct && r<= dfSSexchange) 

vTry_Surface_Exchange(); 
}/* while */ 
vRecord_Sweep(); 
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5.6 Complexity 

The complexity of each individual update has been established and is 
given in table 5.1. When performing a Monte Carlo sweep we update O(N) 
charges. 0(V) plaquettes and 0(LyLz) surface vertices. Thus the total cost 
of the algorithm is 0(p3N) + 0{V) + 0{LyLz) + 0(LxLyLz) = 0(p3N) + 
0(V). For constant density simulations we have that TV oc V. Thus the 
total cost is 0{p3N) + 0{N). 

Table 5.1: Computational cost of each Monte Carlo update. 

5.7 Sources of error 

This discretization is subject to many sources of inaccuracy. The sources 
and means through which we have reduced them are listed below. 

5.7.1 Green's function discretization 
The electrostatic problem is often formulated in terms of a Green's func

tion. 

For homogeneous media G(r, r') = 4 7 r £ | | r _ r / | | so that the Fourier transform is 
G(k) = e~^k~2. The discretization of the energy density given in eq. (5.13) 
gives 

Plaquette 
Charge 
Surface Fluctuation 
Surface Exchange 

O(i) 
0(P

3) 
0(1) 
Q(LX) 

(5.26) 

(5.27) 
e=x.y.z 

while that for eq. (5.15) leads to 

e=x.y.z 

(5.28) 
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When Taylor expanded, it may be seen that these inverse Green's functions 
exhibit errors which scale with k4/k4 and k4 respectively[26]. Thus we 
expect an error which decays as l / / i 3 for eq. (5.13) and 1/h5 for eq. (5.15). 

5.7.2 Al i a s ing 

The interpolation of a continuous charge distribution onto a finite mesh 
leads to an important artifact in meshed simulations known as aliasing. 
There arises a periodic one-body potential, with periodicity of the mesh 
spacing. This leads to the charges being artificially trapped between vertices 
and introduces an unnatural dependence of the density on mesh spacing. 
Aliasing may be reduced through the use of large interpolation functions. 
Thus for Gaussians we expect this error to decrease as we increase the range 
of the Gaussian cr. Increasing a comes at a cost as the larger interpolating 
functions imply a cut in efficiency. 

5.7.3 C u t off and charge neutral i ty violations 

A sum over eq. (5.16) for Gaussian interpolation does not add to one when 
a cut off is used. Thus one.expects the numerical sum of the charge density 
on the vertices to be non-zero. This suggests that violations of Gauss's 
law occur on the order of the total charge interpolated. Since violations of 
Gauss's law are not acceptable, we must rescale the Gaussians such that the 
interpolated charge is exact to within floating-point accuracy. This actually 
increases another source of error. Since the Gaussians do not vanish entirely 
at the cut off, the self-energy exhibits discrete jumps with periodicity of the 
grid. The size of these jumps is proportional to the value of the Gaussian 
at the cut off. By rescaling our distribution we have increased these errors. 
One means of decreasing these error is to use Gaussian which decay quickly. 
Thus one expects these discrete jumps to decrease with decreasing a and 
increasing cut off radius. 

5.7.4 Short-range corrections 

By replacing point-charges by charge-distributions we have introduced yet 
one more source of inaccuracy. This substitution significantly modifies the 
short-range interactions. Fortunately we have made use of Gaussian inter
polation functions, so the energy of our simulation exhibits the same form as 
that in eq. (2.5) for the Ewald reciprocal sum. Thus for homogeneous me
dia, we may reduce these corrections by including the short-range correction 
form, eq. (2.4) for the Ewald sum. 
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Analysis of accuracy 

We have rigorously tested the accuracy of the algorithm for bulk geome
try in terms of the Gaussian parameters a and p. This has been achieved 
through analysis of the electrostatic Green's function in real space. There 
are two main means through which the Green's function may be resolved. 
They are 

• Using that the pair correlation function g(r — r ' ) « exp{—G(r — 
r')/kBT} for dilute gases. We may determine the Green's function 
through logarithmic inversion of g(r — r ' ) . 

• measuring the minimized energy as a function of particle separation 
for a two particle system.. The minimization of the energy is performed 
through transverse updates only. This amounts to quenching the field 
temperature to OK. 

For all numerical results we express our data in reduced Heaviside units, 
where kB = f-o — e = 1. As an example, the Coulomb interaction is these 
units for two electrons is (47rr) _ 1 . For the finite temperature method, we 
have employed a cubic unit cell of volume (20a)3.. The boundary term in eq. 
(5.20) vanishes for lB <C 20a. By choosing a temperature of kBT = ^—- this 
is satisfied. Thus this method produces an energy equivalent to the Ewald 
reciprocal sum with tinfoil boundary conditions (e.s = oo). Figure 6.1 shows 
this for a two-particle system. Superposed on the data are the corresponding 
Ewald sums. These have been determined via numerical evaluation of eq. 
(2.5). The evaluated Ewald sums are well converged. Clearly, the statistics 
from the finite temperature method are too coarse for use in calibrating 
the discretization error. Each curve is the result of 30,000,000 M C sweeps 
taking almost 30 C P U hrs. As improving the statistics was not a reasonable 
option, we chose to perform the calibration using OK simulations. 
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r [a] 

Figure 6.1: Interaction potential for kgT — The symbols are {cr, p 3} 
= {0.50a, 53} (•), {0.80a, 73} (o), {1.00a, 73} (A), and {1.00a, 73} (V). 
i.e. Different sized bases and ranges. The solid lines indicate corresponding 
Ewald sums. The offsets applied to each curve have been included for clarity. 

6.1 OK calibration of bulk geometries 

The OK field method may be described in the following pseudo-code 

0) set charge 1 = q:(0,0,0) and charge 2 = -q:(0,0,0) 
1) i n i t i a l i z e the mesh with 1 and 2 
2) pick a random plaquette 
3) increment the plaquette by a random amount 

between -d and d 
4) accept the increment i n 3) i f i t lowers the systems 

energy 
5) repeat 3->4 for each plaquette keeping track of the 

acceptance rate and the accumulated change i n energy 
6i) i f the acceptance rate i s > 60% mult iply d by 1.5 
6 i i ) i f the acceptance rate i s < 40% divide d by 1.5 
7i) i f the energy = 0.0 then we're done for th i s 

configuration 
7 i i ) i f the | accumulated energy / system energy | < 1E-8 and 

the acceptance rate i s between 40% and 60% then we are 
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done for this configuration 
7 i i i ) otherwise repeat 2->7ii for at least 10,000 sweeps 
8) restore d to i t s o r i g i n a l value prior to the energy 

minimization 
9) output the minimized energy for the given separation 
10) step charge 1 and charge 2 away from each other along 

a particular direction 
11) repeat 2->10 u n t i l charge 1 and charge 2 are a distance of 

1/2 the linear dimension of the simulation c e l l away 
from each other 

t 

The scaling value of 1.5 for was determined through experimentation. 
We have conducted numerous OK simulations for cubic cells of size Lx = 20. 
As discussed, the boundary conditions for these simulations agree with the 
reciprocal part of the Ewald sum with es = 0. This is because in principle 
IB is infinite for T = OK. These simulations made use of the improved 
energy discretization in eq. (5.15). The particles were set to have a charge 
of e and — e and stepped away from each other along the lattice diagonal 
(1.1.1)/\/3. 

Figure 6.2 shows the difference between our generated energy and that 
of the Ewald methods for varying (a) and constant (b) interpolation base. 
The data is shown as a continuous line due to the fine resolution achieved. 
For (<r,p3) equal to (0.65a. 5 3) and (0.75a. 73) we see that the energy clearly 
exhibits a periodicity of \/3a. This is a result of aliasing due to the use 
of small a. The induced periodicity from aliasing is significantly reduced 
for a > 0.90a. For a > 0.90a. the error becomes dominated by short-
range corrections. A third source of inaccuracy also becomes apparent for 
these choices of a. The discontinuities in the energy have periodicity \/3a 
and hence are periodic with the mesh. These jumps are a result of the 
residual non-vanishing charge density interpolated at the cut off radius of 
the Gaussians. By decreasing a/p, the cut off error is reduced. This is 
observed in the reversal of accuracy for (0.95a, 7 3) and (1.00a, 7 3). The 
balance between error induced from the use of cut offs and aliasing is clearly 
non-trivial. 

To determine the appropriate balance between these errors we have per
formed a full study of the parameter space for a and pA. The results are 
shown in figure 6.3. Each point represents the difference between the max
imum and minimum error for the energy. For example, the (0.65a, 5 3) 
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Figure 6.2: Absolute error of the discretized energy for several parameter 
combinations, (a), the curves shown are Xcp3) = (0.65a;53), (0.75a, 73), 
(0.90a, 73), and (1.00a, 93) ordered from worst to best respectively, (b), the 
curves shown are (o,p3) = (0.80a, 73), (1.00a, 73), (0.95a, 73), and (0.90a, 73) 
ordered from least to most accurate. 

57 



Chapter 6. Analysis of accuracy 

curve in figure 6.2 a) has a maximum error of 8.0 x 10 4 a~ 1 and a min
imum error of —1.6 x 1 0 _ 3 a _ 1 . Thus it is represented by a point with 
max|(5c7| = 2.4 x 1 0 _ 3 a _ 1 . Table 6.1 gives the optimal value of a for inter
polation bases of 5 3

; 7 3 . 9 3 and l l 3 . For most practical simulations the use 
of (0.90a, 7 3) is suggested, as larger base sizes prove expensive. 

a [a] 0(SU) [a"1] 
5 3 0.75 IO" 3 

7 3 • 0.90 10~ 4 

9 3 1.15 IO" 5 

l l 3 1.35 IO" 5 

Table 6.1: Optimal parameters for bases of-5 , 7 , 9 , and 11 
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Figure 6.3: Maximum error in the pair potential for bases of 5 3 to l l " 
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For comparison, we have also performed simulations using the discretized 
Hamiltonian in eq. (5.13). We have utilized the optimal parameter set 
(0.90a, 73) so as minimize all other sources of error. This is shown in figure 
6.4. Clearly, the use of eq. (5.13) introduces a large correction at short 
ranges. This amounts to an increase in max|c>£/| by an order of magnitude. 
This is an undesired result but unavoidable for inhomogeneous media. 

0 2 4 6 8 10 
r ' [a] 

Figure 6.4: Pair potential accuracy for o = 0,90a and p3 = 7 3 using eq. 
(5.15) (dashed) and eq. (5.13) (solid). 

6.2 OK calibration of quasi-2D geometry 

As described in section 5.4 we have employed a tetragonal unit cell to 
simulate quasi-2D systems. The unit cell is elongated in the x-direction 
and has dimension aLx = anL, aLy = a,L and aLz = ah. We use L = 
15 and aspect ratios of n = 1,3,5 We have performed OK simulations for 
this configuration, as in the previous section. The boundary term, which 
is equivalent to a Ewald dipole term with es = 0, has been analytically 
subtracted and the plane-wise summation term in eq. (2.8) has been added. 
Thus our method achieves approximate equality to the 2D-periodic Ewald 
eq. (2.10). For comparison, we have evaluated eq. (2.10) numerically. 
Figure 6.5 shows a comparison of our quasi-2D pair potential to that of 
eq. (2.10). We displace the particles along the aperiodic direction in a), 
as well a periodic direction in b). Clearly for n = 1, the pair potential 
exhibits unacceptable inaccuracies in the aperiodic direction. For ratio n = 
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3, we find that the pair potential is reasonably accurate in both the periodic 
and aperiodic directions. We would expect that as with 3D-periodic Ewald 
methods the accuracy should increase with the aspect ratio, n. However, for 
n larger than 3 the accuracy begins to decrease. This could be caused by a 
number of contributing factors: 

• The empty space is not being effectively updated. The use of a global 
field update should resolve this problem but its implementation in
creases the scaling of the algorithm and reduces the efficacy of the 
method. 

• Additional corrections to the 3D-periodic Ewald method need to be 
included. These corrections are described in [28, 29] but have not been 
implemented. 

The accuracy achieved is acceptable for most simulations but the quasi-2D 
method exhibits a significant efficiency problem. Buffering the system with 
empty media comes at a heavy price. For example in figure 6.5 b), the 
n = 1 simulation took 0.6 hours, the n = 3 simulation took 6.7 hours, and 
for n = 5 the simulation took 13.3 hours. This is due to the significant 
overhead of minimizing the field in empty space. A global update of the 
field may resolve this efficiency problem, however, we have not implemented 
one at this time. 
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Figure 6.5: Pair potential accuracy for quasi-2D geometry, o = 0.90a and 
p3 = 73. Charges separated along the aperiodic direction, a), n=l(dotted), 
3(solid),5(dashed). In a) the n = 3 and 5 fall on top of each other. Charges 
separated along the periodic, b), n=l(dotted), 3(solid), 5(dashed). 
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Chapter 7 

A n Applicat ion: The 
Gouy-Chapman problem 

We now apply the algorithm to the Gouy-Chapman problem as a means 
of demonstrating the algorithm's accuracy and versatility. We compare our 
results to the analytic solutions derived in chapter 4. Consider, as in chapter 
4, a system with N point charges per volume V, confined between charged 
planar walls. The charges have charge — q and the walls have an average 
charge density as. Electroneutrality then gives 

qN + as Y i dS, = 0 • (7.1) 
i=l , 2 

For a tetragonal unit cell with charged walls at x — 0 and x = d, this takes 
the form 

-qN + 2 C T L V = 0 (7.2) 

with aL the linear dimension of one of the square faces. By applying PBCs 
to the y and z directions, we achieve efficient convergence to the thermody
namic properties of a thin film. The coupling parameter, Gouy-Chapman 
and Bjerrum lengths for this system are 

d = d/n (7.3) 
„2 

4 " ^ ( 7 4 ) 

In 1 _ a2L2 

OSZB ~ * 

PB ^ NntB

2 

H a2L2 

We have simulated this setup using the method described in chapter 5. 
The improved energy discretization in eq. (5.15) is used along with the 
Ewald short-range correction term (2.4). Since we cannot allow the charge 
to interpolate on to the walls, we extend the simulation cell by ap/2 at 
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x = 0 and x = d. We then implement equipotential boundary conditions at 
x — —cip/2 and x = ap/2 + d. as indicated in figures 7.1 and 7.2. We thus 
have that aLx = d + ap. This is approximately equivalent to extending the 
model system by ap, but still restricting the particles to the region 0 < x < d. 
As —ap/2 < x < 0 and d < x < d + ap/2) remain empty, V 20(r) = 0 in 
these regions. Thus the potential at x = 0 and x = d is modified by at most 
a linear term. For all of the simulations in this chapter we use Gaussian 
interpolation functions with o = 0.90a and base 7 3. 

d 1
 1 d 

Figure 7.1: Implementation of conducting charged walls. 

Figure 7.2: Implementation of equipotential walls. 
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7.1 Weak coupling (S < 1) 
Table 7.1 shows the simulations and corresponding Gouy-Chapman pa

rameters used in the charge density plot in figure 7.3. We have utilized 
constant-potential boundary conditions with zero potential at the charged 
walls. Since the charged walls are both at zero potential we expect a mini
mal effect from surface exchanges. The plates thus carry an average charge 
equivalent to the constant charge boundary conditions. Thus, we expect 
agreement with eq. (4.54). The rescaled fugacity, A, was resolved numer
ically for each system using eq. (4.56) in Maple. For clarity the data has 
been truncated prematurely for d = 7.6, 10.6 and 12.6. The corresponding 
weak-coupling expressions, PPB-, are superposed on each curve. The density 
plots are a result of 100,000 Monte Carlo sweeps. For the first 100 sweeps 
the plaquette, surface charge, charge exchange and particle step maximums 
are modified in a similar fashion to steps 6i and 6ii in the OK method. In this 
manner we achieve efficient convergence. In addition we begin accumulating 
the density after this optimization period. Figure 7.3, clearly shows that we 
have achieved excellent agreement in this limit. 

N L kBT [qh-'a-1] d[a] A time (hrs) 
184 38 1.59 x 10" 1 4.6 0.23638 19.3 
184 38 1.59 x 10" 1 7.6 0.10862 29.1 
184 . 38 1.59 x 10" 1 10.6 0.06256 36.3 
184 38 1.59 x 10" 1 13.6 0.04069 73.1 

Table 7.1: Parameters used for H = 0.1 simulations. 
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Figure 7.3: Simulated ion density in the weak coupling limit (EE = 0.1) 
for d=4.6(D), 7.6(o), 10.6(A), and 13.6(V). The corresponding analytic 
solutions, PPB- obtained from eq. (4.54) are shown as lines. The inset shows 
the difference between the simulated results and the analytic solutions. 

7.2 Strong coupling (S 3> 1) 
Unfortunately, the,two-wall strong coupling solution in eq. (4.68) results 

in a homogeneous density and is only valid for small d. For this regime 
we do not expect agreement since we have implemented the charge surfaces 
not at x = 0 or x = d but at x = —ap/2 and x = d + ap/2. In the small 
d regime we therefore expect artifacts from this approximations. Thus we 
have focused on the large d limit. In this limit, the two walls decouple 
and so the expected charge density is the simple exponential given in eq. 
(4.64). This is shown as the solid line in figure 7.4. We have simulated 
numerous systems varying d; the counter-ion density is shown in figure 7.4. 
The parameters used are given in table 7.2. We use the same method as 
for the weak coupling simulations, but perform 400,000 Monte Carlo sweeps 
to achieve better resolution near the charged interface. The exception is 
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d= 28.75, for which we only performed 200,000 Monte Carlo updates due to 
the required simulation time. In addition, we have utilized an optimization 
described in the next section to limit the duration of the simulations . Rather 
than perform a complete sweep of all plaquettes we only update 10% per 
sweep. 

N L d P [ « ] kBT [ g 2 e " 1 a - 1 ] time (hrs) 
199 50 115.00 0.20 3.9790 x IO" 3 33.3 
199 100 57.50 0.40 1.9890 x IO" 3 56.3 
106 146 28.75 0.80 9.9470 x 10~ 4 90.0 

Table 7.2: Parameters used for E — 100.0 simulations. 

1.8 

0 i . . . 1 
0 0.5 1 1.5 2 

x [Hi 

Figure 7.4: Simulated ion density in the strong coupling limit (E = 100.0) 
for £2=115 (V) , 57.5 (o), and 28.75 (•) . The solid line is the solution in eq. 
(4.64)'for a single charged wall. The simulation parameters used are given 
in table 7.2. The agreement with eq. (4.64) becomes increasingly better as 
the coupling between the walls is decreased. 
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Figure 7.4 clearly shows that as d is increased, the agreement with the 
exponential correspondingly becomes better. In-the extreme case of d=115, 
we show excellent agreement with eq. (4.64). Thus we have verified that for 
S > 1, we achieve agreement with the expected Gouy-Chapman solution. 

7.3 Optimization 

The long durations in table 7.1 occur because we chose to update every 
plaquette per Monte Carlo sweep. The simulation times in table 7.2 are only 
comparable to those in table 7.1 because rather than updating each plaque
tte we have only updated 10%. For example, in the strong coupling \i = 0.8a 
simulation, the volume contains an extraordinary 1,939,756 plaquettes. In 
comparison, the largest weak coupling simulation contains only 326,344 pla
quettes. By updating only approximately 200,000 plaquettes per sweep for 
the strong coupling simulation, we have reduced the duration to be compa
rable to the weak coupling. As with other mesh reliant methods, the volume 
dependent scaling cofactor can be quite significant. To reduce this cofac-
tor we have conducted simulations with different percentages of the total 
plaquettes updated per sweep. The results are shown in figure 7.5 with an 
identical setup to that of the largest weak coupling simulation. Figure 7.5, 
shows no difference between the 10% and 90% simulations! This is not an 
unexpected result because the surface fluctuations, exchanges, and particles 
moves are all coupled to the field variables. Thus a significant proportion of 
the integration over field degrees of freedom comes from these updates. For 
example in the weak coupling d — 13.6 simulation, for each Monte Carlo 
sweep we perform 184 particles updates, 2 • 382 surface fluctuations, and 382 

surface exchanges. This results in 184 • 7 3 + 3 • 2 • 382 + (68 + 7)382 = 260, 076 
field updates or 80% of all field variables. For the \.i = 0.8a strong cou
pling simulation, the same calculation yields 41%. Thus a reduction in the 
proportion of plaquettes updated is clearly acceptable. 
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Figure 7.5: Weak coupling density for d=13.6. The proportion of total pla-
quettes updated per sweep have been varied. Shown are 0.1%(x), 10%(D), 
30%(o), 50%(A), 70%(V), and 90%(0). The solid line shows the corre
sponding analytic solution, pps, obtained from eq. (4.54). The inset shows 
the difference between the simulated results and the analytic solution. 

7.4 Finite-size artifacts 

To ensure that our simulations have indeed converged to the thermody
namic limit, a series of strong coupling simulations were performed. These 
simulations all have p = 0.8a, d = 28.75 and 3 = 100. However, the num
ber of charges and area of the charged walls has been decreased. Thus any 
difference can be attributed to finite-size artifacts or statistics. The exact 
parameters are given in table 7.3. The method is the same as in the'previous 
strong coupling section. Figure 7.6, shows the percent difference between 
the N = 106 charge density and that of N = 21, 43, 58, 74, and 92. 

The percent difference clearly levels off to about 2% for N=92. The ex
pected order of the statistical error is around 1% to 2%. To understand this, 

68 



Chapter 7. An Application: The Gouy-Chapman problem 

consider the density plot in figure 7.4. For x > 1.5/z the density is approxi
mately 0.15 2TT£B°'2- For the curves in figure 7.6 we binned approximately 
16,000 configurations. Using a bin size of 0.05//, we expect a total count 
of 0.15 • 0.05 • 16000 • N = 1207V used to generate each point for x > 1.5/x. 
The expected statistical percent error is thus roug hly ,/2/1207V « 1.3% for 
N=92. Since the total percent error is on this order, any finite-size effects 
are thus negligible. 

TV" L kBT { qh-'a-1 } time (hrs) 
21 65 9.9470 x 10" 4 8.9 
43 93 9.9470 x IO" 4 19.3 
58 108 9.9470 x IO" 4 25.9 
74 . 122 9.9470 x 10~ 4 35.1 
92 136 9.9470 x IO" 4 40.8 
106 146 9.9470 x IO" 4 90.0 

Table 7.3: Parameters used in testing finite-size artifacts. For JV > 92, 
finite-size artifacts become negligible. , 

O 0.5 1 1.5 2 

• * [ H ] 

Figure 7.6: Percent difference between the N = 106 density and 7V= 21 
(x) , 43(D), 58(o), 74(A), and 92(V). 
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7.5 Pressure between equipotential walls 

Having established the accuracy of our implementation, it is interesting 
to see whether equipotential boundary conditions yield an attractive regime 
between grounded walls. We have conducted such a study using the pa
rameters in Table 7.4. It should be noted that the particle to Monte Carlo 
sweep ratio has been kept approximately constant to keep the resolution 
unchanged. Recall the contact value theorem 

P = /5(d) - 1 (7.7) 
2ir£Ba2

s 

Using the symmetry of the setup we have that /5(d) = p(0). To evaluate the 
pressure we generate rescaled density plots as in the previous sections and 
linearly extrapolate the first two points to x = 0, from which we subtract 
one. 

Figure 7.7 shows the resulting pressure for the simulation parameters in 
table 7.4. We have focused on 6 < S < 70 and 2 < d < 16 as this has been 
shown to be an area of particular interest for homogeneous charged walls[2]. 
This data has been gridded and paletted to generate the phase diagram in 
figure 7.8. All regions in figures 7.7 and 7.8 with P < 0 correspond to an 
attraction between the like-charged walls. Not surprisingly for large sepa
ration and small coupling the pressure between the interfaces approaches 
zero. Amazingly the system is stable or even attractive for small d in the 
case of large E. This exemplifies the importance of the counter-ions in this 
phenomena. 
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77 p [a] N L kBT [ g V ' a " 1 ] d Sweeps (103) 
6 1.0 138 51 1.32629 x 1 0 " 0 2 2 210 
6 1.0 138 51 1.32629 x I O " 0 2 3 210 
6 1.0 138 51 1.32629 x I O " 0 2 4 210 
6 1.0 138 51 1.32629 x I O " 0 2 6 210 
6 1.0 138 51 1.32629 x I O " 0 2 8 210 
6 1.0 138 51 1.32629 x I O " 0 2 11 210 
6 1.0 138 51 1.32629 x I O - 0 2 16 210 
10 1.0 156 70 7.95775 x I O " 0 3 2 190 
10 1.0 156 70 7.95775 x I O " 0 3 3 190 
10 1.0 156 70 7.95775 x I O " 0 3 4 190 
10 1.0 156 70 7.95775 x I O " 0 3 6 190 
10 1.0 156 70 7.95775 x 10~ 0 3 8 190 
10 1.0 156 70 7.95775 x 10~ 0 3 11 190 
10 1.0 156 70 7.95775 x I O " 0 3 16 190 
16 1.0 106 73 4.97359 x I O " 0 3 2 270 
16 1.0 106 73 4.97359 x I O - 0 3 3 270 
16 1.0 106 73 4.97359 x I O " 0 3 4 270 
16 1.0 106 73 4.97359 x I O - 0 3 6 270 
16 1.0 106 73 4.97359 x I O " 0 3 8 270 
16 1.0 106 73 4.97359 x I O " 0 3 11 270 
16 1.0 106 73 4.97359 x I O " 0 3 16 270 
26 1.0 97 89 3.06067 x 10~ 0 3 2 300 
26 1.0 97 89 3.06067 x 10~ 0 3 3 300 
26 1.0 97 89 . 3.06067 x I O - 0 3 4 300 
26 1.0 97 89 3.06067 x I O " 0 3 6 300 
26 1.0 97 89 3.06067 x I O " 0 3 8 300 
26 1.0 97 89 3.06067 x I O " 0 3 11 300 
26 1.0 97 89 3.06067 x I O " 0 3 16 300 
43 0.5 133 67 3.70128 x I O " 0 3 4 220 
43 0.5 133 67 3.70128 x I O " 0 3 8 220 
43 0.5 133 67 3.70128 x I O " 0 3 12 220 
43 0.5 133 67 3.70128 x I O " 0 3 16 220 
70 0.5 144 89 2.27364 x 1 0 - ° 3 4 200 
70 0.5 144 89 2.27364 x I O - 0 3 8 200 
70 0.5 144 89 2.27364 x I O " 0 3 12 200 
70 0.5 144 89 2.27364 x I O " 0 3 16 200 

Table 7.4: Parameters for pressure phase diagram simulations. 
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Reference [1] gives numerous examples of p and S for charged biomate
rials. For charged membranes with divalent counter-ions one finds p = 1.1 
Angstroms and 5 = 24.8. Figure 7.8 suggest an attractive regime for a pair 
of these membranes separated by a distance of approximately 3 Angstroms to 
5 Angstroms. In comparison charged membranes with monovalent counter-
ions have 5 = 3.1 and so we do not expect an attraction at all. Membranes 

.with trivalent counter-ions have E! = 83.7 and p = 0.8 Angstroms. Thus we 
expect attractions to be more predominant for biomembranes with trivalent 
counter-ions. Spermidine D N A has similar properties to a biomembrane 
with trivalent .counter-ions. It has S = 75.6 and p = 0.8 Angstroms. In
terestingly, it also has a radius of curvature that is 16Ap. This suggests 
that a local planar approximation is not too bad for spermidine D N A . Thus 
our simulations would suggest that the attraction mediated by counter-ions 
provides a mechanism for the bundling of this form of D N A . 

This study is an important unique result. As far as we are aware, it is 
the only study conducted on the Gouy-Chapman problem where constant-
potential boundary conditions have been fully implemented. It clearly shows 
that attractions betweens like charged equipotentials are possible. For charged 
biomembranes with trivalent counter-ions as well as spermidine D N A it sug
gests a significant attractive regime. In particular,, it presents a possible 
mechanism for the binding of like-charged biomembranes and the bundling 
of spermidine D N A . The model we have considered neglects many details; 
however, the results of this study highlight the strength and versatility of 
our implementation. 
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Figure 7.7: Pressure between the like-charged equipotential walls as a func
tion of d for for H = 6 ( V ) , 10 (x) , 16 (•) , 26 (o), 43 (A) , and 70 (0). The 
parameters used are given in table 7.4. For the parameters shown no ana
lytic theory is applicable. This is a unique numerical study of the two-wall 
system with equipotential boundary conditions. 
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Figure 7.8: Attractive and repulsive regime between like charged equipo
tential planar walls for 6 < s < 70 and 2 < d < 16. 
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Chapter 8 

The electric double layer: 
Inclusion of an 
inhomogeneous dielectric 
background 

We now turn our attention to the effect of inhomogeneities in the dielec
tric background for interacting electric double layers. We study a model 
system of equal number of monovalent cation and anion species in solution. 
The ions are confined between two planar constant-charge conducting walls 
with zero total charge, separated by a distance d. Rather than being point 
particles, the ions are modeled as purely repulsive spheres of diameter D. 
The solvent is a neutral polarizable medium; it is modelled using a dielec
tric background. The solvent may be considered homogeneous for the most 
part with dielectric value €2, except near the conducting surface. Along the 
conducting boundaries, a layer of adsorbed solvent forms what is known as 
a Stern layer. The ions may not penetrate the Stern layer, which is usually 
less polarizable than the bulk solvent. We model the system's Stern layers 
using slabs of dielectric value ej as shown in figure 8.1. The thickness of the 
Stern layers are equal to the diameter of the neutral solvent molecules, which 
we have taken to be D for simplicity. This means the ions have a distance 
of closest approach to the walls of 3/2 D. This model may be understood 
as an electrolyte between zero charged conducting plates. It is an extension 
of the model studied by Henderson et al. in reference [18] where one planar 
wall was considered. 

8.1 Implementat ion 

Figure 8.1 illustrates our method of simulating the two-wall model. In 
particular, the figure shows a 2D sketch of a possible setup for mesh spacing 
a = 1/2 D. As shown, the nodes are offset by a half lattice spacing from the 

75 



Chapter 8. The electric double layer: Inclusion of an inhomogeneous dielectric background 

E l 
! 0 ® £ 2 © © © j 
i © ; 

! 0 © ! 

© 

© © © ; 

h - ^ d ~ 1 

V 

( — ) 
J 

Figure 8.1: Illustration of the simulation setup. The bulk has a dielectric 
value of i%. The light grey regions have a dielectric value of e\. The dark 
grey indicates zero constant-charge conducting walls. The anions (©) and 
cations (©') are bound between the dotted lines. As indicated, we extend 
the simulation volume by half a mesh spacing on either side. 

reference frame so that the first plane of nodes sits at $ = —a/2 and the last 
at x = d + a/2. This offset is simply a matter of computational convenience. 
In general, we consider the regions —a/2 < x < 0 and d < x < d+ a/2 to 
be conducting but zero charged. The regions 0 < x < D and d — D < x < d 
are used to model the system's Stern layers and thus have a corresponding 
dielectric value of t\. We simulate this by implementing constant-charge 
conducting surfaces at x = —a/2 and x = d + a/2, as described for the 
slab geometry in chapter 5. In addition, the nodes with a/2 < x < D and 
d — D < x < d — a/2 take on the dielectric value t%. All other nodes have 
a dielectric value of eg. The simulation volume is thus (d + a) x aLy x aLz. 
We use a restricting function 

f l , V2D<x<d-ZI2D 
I 0. otherwise 

76 



Chapter 8. The electric double layer: Inclusion of an inhomogeneous dielectric background 

to ensure the ions remain between the Stern layers. For the cations and 
anions we use Gaussian interpolating functions with a = 0.9a and p 3 = 73. 
The spherical repulsive interactions are implemented using the zero-shifted 
cut off Leonard-Jones pair potential: 

Vu(r, 
M(?)'M?)6}+<> 0 < r < 2 i D ( g 2 ) 

[0, otherwise 

where we have used c — (4TVD) . This potential applies a smooth repulsion 
starting at r = 2&D and becoming dominant at 7- = D. For the simulations 
performed, we use €2 = 80eo and a temperature given by 

kBT = - i - A fn ^ = 4.288 x l O " 4 - ^ - ' (8.3) 
2.32 47r80e0£> e0D v ; 

as in [18]. For an ion diameter of D = 3 Angstroms this corresponds to a 
temperature of 300 K . We use a simulation cell with d = 25D and aLy = 
aLz = 9D, containing 64 anions and 64 cations. This corresponds to an 
electrolyte solution of Molarity 1.94M. The Molarity of the solution is the 
number of Moles of cation or anion species per liter. For an aqueous solution, 
we take e\ = 6eo as in [18]. For comparison we also consider systems with ej 
= 40eo; 80eo and 120eo- Determining an appropriate mesh spacing is a non-
trivial problem as it affects both accuracy and efficiency. We will address 
this issue in the following section. 

8.2 Effect of mesh spacing 

Since our model exhibits spatial dielectric inhomogeneities, we cannot 
use the short range Ewald correction in eq. (2.4) or the improved energy 
discretization in eq. (5.15). Thus we expect the interactions mediated by 
the field to be incorrect at short ranges. By fortuitous choice of the mesh 
spacing a with respect to the ion diameter D , we may ensure that this 
incorrect potential is never sampled. This is possible only if any corrections 
vanish at a distance less than the ion diameter. By choosing an appropriate 
mesh spacing a, we ensure that the regime where any short range corrections 
need to be applied is dominated by the repulsive interaction in eq. (8.2). 
Thus the choice of D/a is extremely important, determining the extent that 
the incorrect short range potential affects the simulation. 
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To determine an appropriate value of D/a, we have performed two par
ticle simulations with the field temperature quenched, as in chapter 6. The 
simulations use a cubic volume of (5.D) 3, bulk geometry and a homoge
neous dielectric background of eo- As before the Gaussian charge clouds are 
stepped away from each other along the diagonal (1, 1, l) /- \ /3. Recall that 
the expected pair potential is given by eq. (2.5). In addition, we expect 
a spherical dipole term given by eq. (2.7), with es = 0. Figure 8.2 shows 
simulated pair potentials for a = 1/2 D , 1/3 D, 1/4 D, and 1/5 D . 

0 

^ -0.1 
I 

Q 

3 -0.2 

-0.3 1 1 1 1 1 1 

0 0.5 1 1.5 2 2.5 
r [D] 

Figure 8.2: Bulk pair potential generated for a simulation volume of (5D)3 

using the OK method described in chapter 6. The number of nodes inter
polated over has been kept constant at 7 3 . The Gaussian range varies with 
the mesh spacing, having a value of 0.90a. The curves shown are a = 1/2 D 
(dashed-dots), 1/3 D (dots), 1/4 D (bold-dashes) and 1/5 D (light-dashes). 
The grey region indicates where the spherical repulsive potential in eq. (8.2) 
is significant. The energy is discretized via eq. (5.13). 

We have kept the interpolation base fixed at p3 = 7 nodes and used 
or = 0.45 D, 0.3 D, 0.225 D, and 0.18 D corresponding to 0.90a. The discrete 
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energy is calculated using eq. (5.13). The grey area indicates the region 
where r is less than or equal to D; this is the portion of the electrostatic 
pair potential that will be ignored when the repulsive interaction in eq.(8.2) 
is turned on. For a = D/4 the pair potential has converged beyond r = D to 
that of a = D /5 . This suggests that by using a discretization with a = D/4, 
we may attain sufficient accuracy at scales greater than D. 

To confirm this choice of Dfa we have performed multiple simulations of a 
1.94M electrolyte, bound by conducting plates as described in the previous 
section. For simplicity, these simulations use 6] = £2 = 80eo- Our expecta
tion for the density of this system is a flat interior density with accretion 
near the conducting boundaries. The accretion comes from a decreased 
energy cost for having strong displacement fields near the charged bound
ary. Figure 8.4 shows the cation/anion density as a function of the distance 
from one of the conducting walls. These simulations represent a preliminary 
study. Clearly, the statistics are far too coarse. Close to the charged wall, 
the density appears to have converged; however, in the interior the density 
shows strong fluctuations. These fluctuations are most likely due to a de
creased ion diffusivity as the mesh spacing is decreased. For a = 1/2 D, 
1/3 D and 1/4 D we have performed 500,000 M C sweeps. For a = 1/5 D we 
have performed 1,200,000 M C sweeps taking 107.5 C P U hrs. Thus achieving 
excellent convergence for a — 1/5 D remains a significant technical hurdle. 
However, these simulations do suggest that a mesh spacing of a = 1/4 D 
may be acceptable. 
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Figure 8v3: The cation/anion density for systems with homogeneous dielec
tric background, e\ = €2 = 80 eo, and planar conducting walls. Simulations 
with different mesh spacing are shown: a = 1/2 D (•), 1/3 D (o), 1/4 D (A) 
and 1/5 D (0). The plate separation is 25 D . The volume of the simulation 
cell is 25.2573 x 979 x 9D, containing 64 cations and 64 anions. 

8.3 The Stern layer 

Using a mesh spacing of a = 1/4 73, we have performed a study of the 
affect of the dielectric value of the Stern layer on the 1.94M electrolyte 
system. We use the parameters and implementation described in section 
8.1 and perform 1,200,000 MC sweeps. The cation/anion densities for these 
simulations are shown in figure 8.4. These results parallel the results of 
the single wall system studied in [18]. The ion density is strongly modified 
near the boundary by the dielectric value of the Stern layer. For a weakly 
polarized Stern layer (ej — 6eo) there is a strong depletion of the ion density 
close to the walls. In contrast, the e\ = 80eo and ej = 120eo simulations show 
a strong ion accumulation. The density is nearly flat for e] = 40er> These 
densities may be understood qualitatively in terms of image charges. The 
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induced image charge at a dielectric interface for an ion has the same sign as 
the ion if the dielectric value decreases and the opposite sign if it increases. 
If we focus on a single wall, we see that each ion induces a charge at the 
ej-62 interface and at the ei-wall interface. For ej < €2, there is a repulsive 
interaction with the Stern layer interface and an attractive interaction with 
the wall. Thus one expects a depletion near the wall depending on the ratio 
ei/e2- For ei > 62, each ion exhibits two attractive interactions with the 
Stern layer and conducting wall interfaces. Thus it is not surprising that 
we see an accumulation of ions near the conducting wall. Alternatively, 
our algorithm gives a very nice qualitative explanation of. these results. We 
may think of each ion as a source of displacement field. The energy density 
D(r)/2e(r) suggests that the field energy associated with an ion is reduced 
in a region of high dielectric and increased in a low dielectric region. Thus 
we expect an accumulation of ions near the conducting walls. This affect is 
counteracted by the Stern layer if ei < £2-

Though these simulations show reasonable agreement with the work in 
[18], it still remains a significant technical challenge to reduce the statistical 
errors. The message, however, is clear; the Stern layer for water results in a 
.depletion of the ion densities near conducting walls. We leave the challenge 
of optimizing convergence to future work. 
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Figure 8.4: The charge density for systems with Stern layers of thickness 
D = 4a and dielectric coefficient e\ — 6eo (a). 40eo (b). 80eo (c), and 120eo 
(d). The temperature used is kBT = 4.288 x l C T 4 e 2 e 0

 1D~1 and e2 = 80e0-
The plate separation is 25D. The volume of the simulation cell is 25.2573 x 
9D x 973. containing 64 cations and 64 anions. 82 



Chapter 9 

Conclusion 

A reformulation of the Coulomb problem using auxiliary fields has been 
extended for the first time to slab and quasi-2D geometries. It has been im
plemented using Metropolis Monte Carlo and Gaussian interpolation func
tions. We have established the accuracy of the algorithm by generating 
effective pair potentials in chapter 6. For an interpolation base of 7 3 nodes 
the optimal Gaussian range is 0.90a and has an absolute error in the pair 
potential less than 2.4 x 10~ 4 a _ 1 . 

Using this implementation, the Gouy-Chapman problem was numerically 
resolved for constant-potential slab boundaries. In the low coupling limit 
we have found that the counter-ion density for constant-potential bound
ary conditions shows excellent agreement with the analytic Gouy-Chapman 
solution. In the high coupling regime we found agreement with the ana
lytic theory in the limit of large wall separation. Using the contact value 
theorem, we have conducted a thorough study of the phase behaviour of 
the pressure experienced by the equipotential walls in terms of the coupling 
constant £ and the rescaled wall separation d. The parameter space we 
have considered includes 6 < 5 < 70 and 2 < d < 16, pertaining to many 
interesting biomaterials ranging from monovalent biomembranes to spermi
dine DNA. The numerical results show that like-charged constant-potential 
slab boundaries may attract each other for E! > 20. This is a first result for 
constant-potential slab boundaries in the Gouy-Chapman problem. 

Finally, we have extended the implementation further to allow inhomoge
neous dielectric backgrounds. In chapter 8, we have simulated a reasonably 
realistic electrolyte system bounded by isolated conducting electrodes. The 
intent of the simulations was to investigate the role of the Stern layer, a 
thin layer of adsorbed solvent molecules, as well as to show the versatility 
of the algorithm. We have shown that a reduced dielectric value in the 
Stern layer, from the bulk dielectric value, leads to a depletion of ions near 
the electrodes. This study is a preliminary study so we do not expect full 
quantitative agreement with experiments. 
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