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ABSTRACT

This thesis investigates the implications for muon decay of
a gauge theory that incorporates modifications to the standard
electro-weak theory, the Weinberg-Salam model. The Higgs
sector of the original model is broadened to include an iso-
vector or triplet Higgs field. Such an addition natural}y
provides for massive Majorana—-type neutrinos and permits the
decay modes p + e¥Y and p + 3e which would not otherwise be
allowed. The particles most responsible for these decay modes
are new, charged, physical, scalar Higgs particles not present
in the Weinberg—-Salam model. The decay rates found, although
considerably more favorable to muon decay than the simple
addition of neutrino mass to the standard theory, are found to
be much below the present limits of experimental detectability.
The lengthy calculations required, including the derivation and
utilization of the relevant Feynman diagrams, are displayed in

some detail.
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I. INTRODUCTION AND SUMMARY

I.1 INTRODUCTION: FIFTY YEARS OF WEAK INTERACTIONS

The recent explosive growth in our experimental and
theoretical knowledge of weak interaction physics could hardly
be imagined fifty years ago when it began with the discovery of

the neutron and its relatively slow B-decay into a proton, an

electron and a conjectured spin—i relatively massless, neutral

>
particle, the neutrino. Fermi (1934) was the first to attempt
a mathematical description of the process, with a rather
phenomenological interaction Lagrangian that accomplished
little more than the simple description of the then-known
experimental facts.

More than two decades had to pass before the discovery of
parity non-conservation (Lee and Yang, 1956) provided the clue
for a significant modification of the original Fermi theory.

It was observed that, in the high energy limit at least, only
electrons and neutrinos of left-handed helicity (and their
right-handed anti-particles) participated in weak interactions,
right-handed electrons not at all. This was expressed
mathematically in the so-called "V-A" ("vector minus axial-
vector") theory (Feynman and Gell-Mann, 1958; Marshak and
Sudarshan, 1958), which was shortly thereafter extended to the
hadrons, or strongly interacting particles. Experimental

support for the theory, at the few GeV level and lesser



energies, started to mount. With essentially the same coupling
constants, neutron, pion and muon decays could be described ——
a quantitative success knowh as "universality" -- but dramatic
confirmation for the mathematical description was given by pion
decay, in which the rate of decay into muons rather than the
seemingly more likely, but helicity-suppressed, electrons was
quite precisely described by the V-A theory, as were some of
the properties of the much later discovered r-particle
(Perkins, 1982, Sec. 6.8, 6.14).

On the other hand, well-known weaknesses of the theory,
such as its nonrenormalizability, or mathematical inability to
describe higher order processes, and its violation of basic
conservation of probability (or "unitarity") at high energies
(g few hundred GeV) strongly resisted attempts to perfect the
theory, even efforts that attempted to incorporate the heavy,
charged bosons that were postulated to mediate weak
interactions. These efforts went unrewarded, for the most
part, until the invention of the non—-abelian gauge theory now
known as the Weinberg(1967)-Salam(1968) model, which is the
point of departure for Chap. II.

The story of the weak interactidn to the time of the
Weinberg-Salam theory and its relation to the strong
interaction is a long and fascinating one, with many successes
and failures on the theoretical side and enormous challenges on
the experimental. It has been well told in many places, most

recently in Taylor (1976), Itzykson and Zuber (1980), Veltman



(1980), Lee (1981), Cheng and Li (1984), and many earlier
accounts. (The brief and superficial account given here hardly
begins to do it justice.)

The Weinberg—-Salam theory became the standard model of the
weak interactions with proof of its renormalizability by
t’Hooft (1971). Experimental support began to accumulate
shortly thereafter. Neutral currents, so-called, or
interactions mediated by a massive, neutral bbson, were
discovered in electron-neutrino and nucleon-neutrino
scattering, as were helicity asymmetries in electron—deuteron
scattering,>in which the helicity—dependeht weak interaction
became experimentally noticeable. Even contributions of the
weak interaction to electron-electron scattering, until
reqently wholely within the purview of quantum electrodynamics,
became detectable. Accounts of these experiments in the mid to
late 1970’s and early 1980°’s and their quantitative agreement
with the Weinberg-Salam theory can be found in, for example,
Perkins (1982, Sec. 8;8). Now, recently, the long-sought
particles required by the theory to mediate the weak
interaction have been detected, with masses in rather dramatic
agreement with the theory (as to be discussed in Chap. II).

So why, dne might wonder, would anyone want to modify or
extend the basic Weinberg~Salam theory, the.remarkable success
that it is?

There are both experimental and theoretical reasons, a few

of which we now discuss.



4

Reports of measurements that indicate a non—éero mass for
the neutrino (Lubimov, 1980) have serious implications for weak
interaction theories because the Weinberg-Salam model in
particular assumed at the outset that all neutrinos were
massless. There is no unique and straightforward way to amend
the model to accommodate species of neutrinos with various
masses, the subject to which Chap. III is devoted.

Further, recent reports (e.g., Rohlf, 1985) of anomalous

o]

)

events at the colliders in which the heavy gauge bosons (Wt,Z
were.first detected seem to indicate that the Weinberg-Salam
model cannot be the whole story, that new particles might
perhaps exist that come as a surprise to everyone.

Finally, the time is rapidly approaching in which the new
generation of particle acceleratofs, with center of mass
energies in the TeV‘range, will likely test all particle
theories severely, and conceivably show that much new physics
exists in this energy realm (Salam, 1982; Weinberg, 1984;
Eichten et al., 1984). It is not unreasonable for theory to
attempt to predict just what new physics this might entail.

On the theoretical side, possibly the existence of three
(so far) generations or families of particles poses the
greatest challenge, especiaily for the description of
neutrinos. Possibly the mysterious neutrinos would be not
quite so mysterious if they did possess a variety of masses,
like their charged leptonic cousins, and one would like to be

able to describe such a hierarchy in the most economical way



without disturbing too much the basic Weinberg-Salam model
which has come to be considered as basically correct and
therefore rather fixed.

A related concern is with what is called the Higgs sector
of the theory, a category of spinless particles whose existence
seems to be required to make gauge theories work in general and
the Weinberg-Salam model in particular. The new generation of
particle accelerators and colliders should create such
particles if they really exist (still an open question,
‘perhaps: Veltman, 1980), and if more than the one such particle
required by the Weinberg—-Salam model exists severe constraints
would be placed on modifications to the model, and on the grand
unified theories that would have to incorporate them in a more
general setting.

Finally, and what is most relevant for this thesis, new
detection techniques increase by a few orders of magnitude the
possibility of observing rare (if at all possible) particle
decay modes, in particular the decay of a muon into an electron
and a photon (the non-observation of which is responsible for
the idea of separate conservation of electron lepton number,
muon lepton number, etc.) or into an electron and electron-
positron pair. It is most interesting that such decays are not
independent of the question of neutrino mass, that the former
seems to imply the latter (but mass%ve neutrinos do not
inevitably lead to muon decay in the ways mentioned).

Muon decays and massive neutrinos, along with the least



disruptive changes to the Weinberg-Salam model that make them

possible, are the primary topics of this thesis.

I.2 OVERVIEW AND SUMMARY

There are many ways in which the basic Weinberg-Salam
theory can be modified or extended to encompass new physical
effects without much changing the model’s predictions in the
realms that have now been experimentally confirmed. Almost
everyone’s first preoccupation would be to provide for massive
neutrinos and there are a number of ways in which this can be
accomplished, almost always by broadening the Higgs sector of
the original model (see Sec. II.3 for examples and references).

A generalization long known to accomplish the generation of
neutrino mass is to augment the standard doublet or iso-spinor
Higgs field with a triplet or iso-vector Higgs field, such a
field being a natural representation of the gauge group
(SU(2)xU(1)) that seems most suitable for the unification of
the electromagnetic and weak interactions.

There is one reason in particular why the vector Higgs
field is such a natural supplement to an iso-spinor field. The
original complex doublef consists of a charged pair of scalar
fields, and an uncharged pair. Although all but one neutral

particle of this group is unphysical in the sense that gauges



éxist in which these particles are absent, it is convenient for
now, and especially later when a gauge is chosen to facilitate
calculations rather than to dispose of unphysical particles, to
consider all four. A triplet Higgs field introduces six new
scalar particles, but the point is that they are not
independent of the original four —— they blend with them, so to
speak. The blend results in an unphysical charged pair, an
unphysical neutral scalar particle, a physical neutral scalar
partiéle -— all just as in the original Weinberg-Salam model --
plus another two neutral scalar particles, a new, physical,
singly-charged pair of scalar particles and a new, physical,
doubly—charged pair. Thus the experimental prospects become
enriched: rather than a single, neutral particle to search for,
one has three, and in addition, two pairs of charged scalar
particles although, unfortunately, all of unknown mass except
that one scalar particle is massles;. In general, the modified
theory is no improvement in this respect.

An independent concern is with the generation of neutrino
mass. It will be shown in Chap. III that the triplet Higgs
field automatically generates neutrino mass (assuming, of
course, that the appropriate coupling constants do not vanish},
of the Majorana type, thus sparing us the unpleasant task
(because of its obviously arbitrary nature) of having to add ad
hoc terms to the Lagrangian specifically designed to give mass
to the neutrino fields. No further arbitrary térms need be

considered.

\



The SU(2)xU(1) gauge theory that results seems first to
have been considered in detail by Pal and Wolfenstein (1982)
who applied it to the problem of massive neutrino decay. This
thesis will employ the model to explore its consequences for
muon decay, to see if decay modes such as a radiative decay, or
a decay into a triplet of electrons (using the term "electron"”
generically), may possibly come within the range of
detectability in comparison with the usual muon decay into an
electron and a neutrino pair.

One should note that very general analyses of virtually all
simple additions to the Higgs sector have been published in
recent years (see the references cited early in Sec. II.3),
with results for muon decay, for ekample, that vary over many
orders of magnitude in their predictions. Such generality,
however, does not consider the many interesting results that
exist within each detailed model, and overlooks the possibility
that within a specific model interesting physical predictions
may be made, as is possibly the case with the model to be
examined in detail here, although our results in no way
contradict more general ones. General and specific analyses of
gauge theoretic models can certainly co—-exist.

The natural starting point for the next chapter is a brief
elucidation of the Weinberg-Salam model. This will make clear
the notation and sign conventions to be used and display, for
later reference, those segments of the theory that will be

modified. The triplet or iso-vector Higgs field will be



introduced next, and it will be shown how it augments énd
changes the original Weinberg—-Salam theory’s predictions, such
as, for example, the masses of the gauge bosons and the number
of new, scalar Higgs particles. These gix new scalar
particles, along with the original four, must be grouped into
physical and unphysical particles. The SU(2)xU(l) gauge
invariance of the new Higgs field will then be demonstrated in
detail.

Before actual calculations can proceed, however, a specific
gauge must be chosen. The popular "renormalizable gauge" (or
R{ gauge, as it is frequently designated) will be explainéd,
and used to show how it cleverly handles the problem of the
unphysical Higgs particles and certain of their interaction
terms that must be eliminated. Briefly, the gauge gives a
gauge—dependeﬁt mass to such particles, but otherwise enables
one to treat them as if they were real. All trace of these
unphysical particles vanishes from the final results, as
required, but they are indispensable during the intermediate
stages to maintain the theory’s gauge invariance.

Finally, Chap. II will conclude with a consideration of the
C, P, and T-invariance properties of the theory. There will be
no new results here, as is to be expected.

Chapter III will discuss the problem of neutrino mass in
general and the two types of neutrinos that cah exist. As no
new terms beyoﬁd the iso-vector Higgs fielh and its interaction

with the lepton sector are to be added to the Weinberg-Salam
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Lagrangian, it will be shown how a specific neutrino type --
massive Majorana neutrinos —— emerges from the theory.

The major tools used in detailed calculations with quantum
field theories for the past thirty years have been the so-
called "Feynman rules" of the particular theory under
investigation. Such techniques display the interaction terms
of a theory in their most basic and elementary way, enabling
one to then select in a relatively simple and straightforward
fashion only those terms needed for a specific interaction
process, a selection immeasurably aided by the "Feynman
diagrams" that accompany and give pictoral representation to
the interaction terms. Chapter IV will list the rules and
diagrams that follow from the gauge theory described in Chap.
II, III, but only those that will be needed in this thgsis, a
fraction of all that could be listed.

The real calculations of this thesis will begin in Chap. V,
which considers the model’s implications for the radiative
decay of the muon. The calculations are rather lengthy but the
final result is not. We will find that, with the exception of
the new, physical charged Higgs bosons, the Majorana neutrinos
used here do not change the basic result of Cheng and Li
(1980b,.1984) concerning this decay (where they employed Dirac
neutrinos), namely that it is some 40 (!) or so orders of
magnitude less likely than the usual decay mode. But our
overall result is quite different. The vector Higgs model

contains an interesting peculiarity: the terms involving the



11

physical, charged Higgs particle are actually and remarkably

independent of the neutrino masses, enabling us to show that

the radiative decay discussed here may actually be some 25 or
more orders of magnitude greater than the pessimistic result

obtained by Cheng and Li, but still, it seems, some 10 or so

orders of magnitude below current detectability.

The other deéay mode permitted by our gauge model is the
three-electron decay, to which Chap. VI is devoted. This decay
mode.is possible in three different ways, all, it seems, of the
same order of magnitude, and, like the p » ey decay, appear to
be about 10 orders of magnitude below cufrent detectability.
It turns out, though, that in each case the p + 3e decay is
more likely than the radiative decay. Numerical estimates of
the various decay rates are made and discussed in Chap. VII.

The mathematical notation used throughout this thesis is
for the most part conventional, but differs from the usual in
at least one notable respect. A manifestly covariant, matrix
representation-free, geometric formalism for the Dirac algebra
and the SU(2) or Pauli algebra is employed freely, although it
seems not to be widely.known. It is briefly described in App.
B, and at more length and in greater detail in Hamilton
(1984a,b) and references contained therein. With this
formalism one need not concern oneself with any matrix
representaion of the Dirac algebra, which is especially
convenient with the C, P, and T transformations which are

expressed here in a manifestly covariant way, in marked
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contrast to the usual represent;tion—dependent transformations
(as explained in Sec. II.6 and App. C). For this reason the C,
P, and T transformations are considered in some detail.

The matrix—-free Dirac algebra is especially useful in Chap.
V and Apb. E in which the few terms with the correct form for
the spinor amplitude describing a radiative transition could be
extracted with some ease from among the multitude of terms
available. Further, the usual "trace" method of evaluating
spinor amplitudes is replaced by one in\which the scalar
component of the algebra is used, which provides, for the first
time, a matrix and representation-free method of evaluating
spinor amplitudes, a method that is quick, simple and powerful.
The basic results are explained in App. B and are used
extehsively in App. E and F in evaluating the lengthy spinor
amplitudes.

In.its 3-vector, or SU(2), or Pauli algebraic form, the
notation enables one to succinctly express various SU(2) gauge
invariant Lagrangian terms for both the spinor and vector Higgs
fields, especially the gauge fixing terms of Sec. II.6.

The reader is therefore encouraged to consider App. A and B
before embarking on a reading of the main text, which follows
next, in\which the 3 and 4-vector algebraic notation is used

freely and without further explanation.
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IXI. THE SU(2)xU(l) GAUGE THEORY WITH

ISO-SPINOR AND ISO-VECTOR HIGGS FIELDS

II.1 QED AND SIGN CONVENTIONS FOR CHARGES AND FIELDS

Quantum electrodynamics (QED) is the quintessential gauge
theory, and, having been developed for over thirty years in its
modern form, is the quantum field theory after which one hopes
to model others. The basic idea of QED as an abelian U(l), or
phase invariant, gauge theory is quite simple, as gauge
theories go, particularly when confined to the electrodynamic

. . .1 .
interaction of spin-3 fermions.

1

The free particle Dirac Lagrangian for spin—;, charged

particles (with the notation of App. A),

L= ¢(ia - m)v , (2.1.1)
is coupled minimally (it is said) to the electromagnetic field
if the momentum operator p & ia changes in the presence of an
electromagnetic field as

| p - p + eA (2.1.2a)
or
3 » 3 — ieA , \ (2.1.2b)
where the convention employed here, unfortunately not the usual
one (Bjorken and Drell, 1964, Chap. 1; Itzykson and Zuber,
1980, Chap. 2), is e > 0, so e is the charge on the positron or
proton. In (2.1.2) A is the electromagnetic véctor potential,

related to the electromagnetic bivector field F (App. B) by
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F=2aAaA, (2.1.3a)
or, in component form,

F

1]

aA -a3A . (2.1.3b)
By [TRRY) v H

With a kinetic term for the electromagnetic field the

Lagrangian of QED becomes

C=wia-m+ eA)o - ;F ", (2.1.4)
MV

which is invariant under the change of gauge

Y(x) + expliex(x)] w(x) (2.1.5a)
v - ¥ expl{-iex(x)] (2.1.5b)
A(x) + A(x) +ax(x) , ' (2.1.5¢)

where «(x) is some continuous and differentiable function of
space—~time. In practice a "gauge fixing" term (Nash, 1978)
must be added to the QED Lagrangian because no Green function
exists for the electromagnetic field equations as they follow
from (2.1.4). This will be considered later in Sec. II.6 in a
more general context.

The interaction Lagrangian that follows from (2.1.4) is

C. = epAp = - j AY = - w_, (2.1.6)
I m I

where the electromagnetic current is

' = -e we , (2.1.7)

and KI is the interaction Hamiltonian (density). 'The signs are
such that j-A ~ JOAO is a positive energy density for like
bcharges.

The usual expansion of a spinor field in terms of Fock-

space creation and annihilation operators is (Bjorken and

Drell, 1965, Chap. 13)
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72

Y(x) = (2w)_3 J dap Jm7e€ [e-ip-x ar(p) ur(p) (2.1.8)

R RN ORI
r r

b 3 b 4
where € P,» & and b are the creation operators for

electrons and positrons, respectively, and u, v are basis

spinors. Thus the field ¥ annihilates negatively charged

electrons, creates positively charged positrons, while v
creates electrons and annihilates positrons. The electric
charge that results from (2.1.7) and (2.1.8) is

Q= fd°x j° = —e fd°p (a¥a - b'Db ) (2.1.9)

- rr rr

(where normal ordering of the Fock-space operators has been
employed). These results fix our electromagnetic sign
conventions, enable us to identify any charged currents and
also provide a check on the signs that follow when charged
scalar and vector fields are considered.

The remaining sign conventions in the field lLagrangian
(such as the negative sign in front of the electromagnetic
field term) are fixed by requiring the energy density of free
fields to be positive. Thus the Lagrangian for a real, massive

scalar field is

L =2 adead - = m” ¢ ; (2.1.10)

2 2
for a complex, massive scalar field is

2

* X
£ =28 36— m ¢ ¢ (2.1.11)

X
(which could be written as two real fields ¢, (1L-82)(¢ + o )
| X
and ¢, = (-i/J2)(é — & ) of the same mass); for a real, massive

vector field‘is
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Vs 2 o® oAt (2.1.12)

T

L =~-—-F F
1y

and for a complex, massive vector field is

X ”
c=-5F F*" + 0" A
Rrv . B

AY . (2.1.13)

In each case the canonical energy-momentum tensor is (Jauch and

Rohrlich, 1976, Chap. 1)
™Y = a¢ a’¢. - 'V ¢ (2.1.14)
a(a ¢.)
poi .
(where the i generically represents field components), which

satisfies the conservation law

a ™’ =0, (2.1.15)
W

and in each case the (free) field energy

P° = 5 da®x 1°° (2.1.16)

is positive. The Lagrangians (2.1.10) to (2.1.13) will also
enable us to identify the masses of any massive scalar or

vector fields.

I1.2 THE WEINBERG-SALAM MODEL

The standard model of the electromagnetic and weak
interactions was formulated in 1967-1968 by Weinberg.(1967) and
Salam.(1968) as an SU(2) x U(l) gauge thebry in analogy to QED
and the non—abelian gauge théory of Yang and Mills (1954). The
model is reviewed in detail in Abers and‘Lee (1973), Itzykson

and Zuber (1980), Langacker (1981), Cheng and Li (1984) and
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numerous other places.

The particle content of the model, which is almost always
formulated first in a gauge theory, is as follows: All
particles are initially assumed to be massless, so that it
makes sense to consider the left-handed electron and left-
handed (electron) neutrino (assumed not to have a right-handed

counterpart) as an SU(2) iso-spinor or doublet

g= o = () =% (Y
e

L= D= (O (2.2.1)

where Z+ = %[1 + (-1i) xs] are the chirality projection
operators, which happen to be the same as spin projection

operators in the case of massless fields. In (2.2.1) v and e

stand for their respective spinor fields. The remaining right-

handed electron (eR = Z+e) is an SU(2) singlet. There is an
‘ . e 2 . il

SU(2) gauge field A = A" ¥ and a U(l) gauge field a = a vy ,

M 1!

analogous to, but not the same as, the electromagnetic field.

The Lagrangian, in analogy with QED in (2.1.4), is

-+ .= 1, = )
L(P,A,a) = i ¢Z+(a - 7 igA - 3 1g'YLa)@
+ i ;Z_(a - % ig'YRa)e
_ % - L % r *v (2.2.2)
Hv BV
where g, g' are as yet unknown coupling constants, YR L are
. ?
numbers referred to as the "weak hypercharge", and where
3 =al - a2k + g A x & (2.2.3a)
BV H v v H 1} v
f = 3a - aa (2.2.3b)
[I}Y, TRV v d
- ==
= v e . (2.2.3c)
\_——"
The first factor z in-(2.2.2) is because vectors are X = A.o.

2 i1

but (% ci) are the SU(2) generators; the second is for later
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convenience. The fields (Ai’ a) are taken to be real. This

Lagrangian is now augmented by terms for the Higgs field

os [%),
¢0

an SU(2) spinor or doublet the components of which are complex

(2.2.4a)

scalar fields, cha;ged in the sense described by their

subscripts. One defines
f ——— e o —
X b 3 *
ot = ¢+ ] = ¢ ¢, (2.2.4b)
0 o

so the Lagrangian terms for this field are

£(8) = [(a - L igh - L ig' ¥ a) @]° | (2.2.5)
x [(a -7 igh - ; ig'Y a) @] - V(&) ,

where the §e1f—interaction term is frequently taken to be
V(8) = —p %@ + » (8'®)° ; (2.2.6)
however its specific form is not of importance at the present
time. It will be considered in Sec. II.4 in connection with
the iso-vector Higgs field.
Finally, the Lagrangian is augmented by a Yukawa coupling,
an interaction among the scalar and spinor fields:
L(Yuk) = -B_ (9L &e + eX 8'0). (2.2.7)
Additional rfamilies of fermions are readily considered --
one merely adds terms for the muon [Qp = Z_(v“/u)] or tau [QT =
z_(VT/T)] exactly as was done for the electron family.
The complete Lagrangian is U(1l) invariant if
QL -+ exp[iYLa(x)] QL , eR -+ exp[iYRa(x)] eR
& exp[iY¢a(x)] d (2.2.8)

a+a+ (2/g") au(X) ’
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and from the Yukawa coupling one finds

Y. + Y + = 0. .2.9
Yo+ Y Y =0 (2 )

The weak hypercharge Y is fixed by defining

YI, (2.2.10)

1
3 2

Q =T, +

where Q, T I are SU(2) operators (or matrices) with Q being

3
the charge, T, the third (or diagonal) component of the SU(2)
generators and I is a unit matrix. One has
Y = 2 (Q)av , (2.2.11)

where (---)av denotes average, so f for a multiplet is twice
the mean electric charge:

Y =-1, Y = +1, Y_ = -2 . (2.2.12)
It was for this reason that we began initially with ¢+, rather
than ¢ . The SU(2) invariance of the Lagrangian is considered
in detail in Sec. II.5.

The main trick of modern gauge theory —— the Higgs

mechanism -- is to suppose that the neutral component of the
Higgs field has a non—-zero vacuum expectation value (v/J2),

denoted by <+se)>:

u

i (2.2.13)

(I: + v/JZ')

<®> 0 )
v/{2 .

This destroys the SU(2) and U(l) gauge invariance but
leaves a further U(l) gauge invariance which can be interpreted
as the electromagnetic gauge invariance. Further, and most

important, many of the previously massless particles acquire a

mass. The neutrino remains massless but the electron acquires
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a mass
m =B v/J2 (2.2.14)
e e
from (2.2.7), and the real, physical Higgs field Re(¢0)

acquires a mass from V(&), which we need not consider at this

time. With the definitions

Wt = (1/92) (A, ¥ 1 A) (2.2.15a)
Z = A, cosew - a sinew . (2.2.15b)
-A = A, sinew + a cose. , (2.2.15¢)

Fig. 1: The Weinberg angle ¢

W
g = g% + g'? (2.2.16a)
- . I _ .
e = g s1new g cosew G cosew 51new , (2.2.16b)
physical vector fields -- the gauge bosons -- are introduced,

which, from (2.2.5) and (2.2.13) can be shown to have the

masses
2 _ 1 2 2
Mw =T Vv € (2.2.17a)
2 _ 1 2 2
My = ;v @ (2.2.17b)
MZ =0 . (2.2.17¢)
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The massless field A is the usual electromagnetic vector field.
From (2.2.2) and (2.2.7) the leptonic part of the

Lagrangian can be shown to be

C(lepton) = iEz+au + e(ia - m)e + e eAe (2.2.18)
+ (g/42)(vE W e + e W_v) + ZGvE Zv
+ Gsin- e es Ze - iG(cosze - sin2e ) ex Ze
W - 2 W W +

- - - - X

+ + + .
Be(v2+¢+e e ¢ v e2+¢oe e2_¢oe)
The connection with the older Fermi four-point interaction

Lagrangian (or V-A theory),

£.= (6 /I2)[v(1l - iy, )¥ el [e(1l - iy )¥"v] , (2.2.19)
I F s’ %, 5
is in the fourth term of (2.2.18), which, with v or e energies
being much smaller then Mw, is effectively
G /I2 = gZ/8M°1, (2.2.20)
F W
because the W propagator is essentially (n”v/M;) at low

energies. With

G = 10 °/M° (2.2.21)
F P

from experiment (the p lifetime, essentially), where Mp is the

proton mass, the W mass can be estimated as

. .
MEo= g2 & . (40 Mp) : (2.2.22)
. 2 T
8GF51n ew 51new »

Its recently measured value was (Arnison et al., 1983a,c;
Banner et al., 1983)

Mw = 83 +*+ 3 GeV , (2.2.23a)

with (Arnison et al., 1983b; Bagnaia et al., 1983)

MZ = 93 + 2 GeV , (2.2.23b)

and
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sinzew = .23 , ’ (2.2.23¢)

with the important theoretical relation

M; / M; - g2/ + gl = coszew (2.2.24)
being rather well verified (Marciano and Sirlin, 1984; Schewe,
1984; Eichten et al., 1984; Reutens et al., 1985). The only
unknown now remaining in the original Weinberg-Salam model is
the mass of the (physical) Higgs particle: there is no present
hint as to its value, if, indeed, such a particle actually
exists.

The interactions among the gauge bosons, their self—
interactions and the interactions between the gauge bosons and
the Higgs particles are obtained by expanding the Lagrangian in
terms of these fields. Unfortunately, the resulting Lagrangian
is extremely lengthy and extremely complicated, a testament to
the intrinsically complicated structure of non-abelian gauge
theories (the Weinberg-Salam model being essentially the
simplest, realistic model). Among those terms that result from
an expansion of the Higgs part of the Lagrangian are

sive(a o W - 2 o W) - fivez¥(1/12)5 (o - o%) (2.2.25)
which identifies ¢t’ (1/J'2)(<bo - ¢:),as unphysical, by which is
meant that such fields can be transformed away by a suitable
gauge transformation. In practice, however, such terms are
eliminated by the gauge fixing terms to be considered later, in

Sec. II1.6. Thus the four—component Higgs field contains only

X
one real, scalar field (1/J'2)(¢o + ¢o), of undetermined mass as
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mentioned above. Another term in the expansion is'

~ieaA® (0 2 6. - 0.0 6) , (2.2.26)

-Tp + + p -
which identifies
J = ie (¢_a¢ - ¢ 3¢ ) (2.2.27)
as the (unphysical) current due to the charged Higgs fields, as
(2.1.6) shows. Further discussion of the Higgs fields will be
postpéned until after the next section because the new Higgs
fields to be introduced there mix in a natural way with those
of this section, a mix that generates physical and unphysical
charged and neufral particles.
The interactions among the gauge bosons alone (tﬁat is,

without the Higgs fields) follow from the seemingly compact

kinetic term in the original Weinberg-Salam Lagrangian (2.2.2):

c(W,A,z) = -3 F " -1 ¢ ", (2.2.28)
Hv Hyv
with F and f being given in (2.2.3). The extreme nonlinearity

and innate complexity of these terms becomes evident when they

are expanded in terms of the W+, A and Z fields, defined in

(2.2.15). We ignore fourth order terms, or those of order gzz
these are the lengthy and complicated terms and will not be

needed in subsequent calculations. Thus the product of the two
(K xA ) terms in (2.2.3a) is to be neglected. The kinetic
B v -

terms that follow from (2.2.28) are, as is to be expected,

C(W,A,Z:kinetic) = -z(a W —a W )(a"w/-a"w") (2.2.29)
B v v p + +

- z(a z -3 z )(a"z"-a"z") - L(a A -3 A )(a"aV-a"a).
B v v H : B v v H
The remaining terms of (2.2.28) describe interactions among the

gauge bosons —-- interactions, because they depend on the gauge
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coupling constant g. The final result of reducing (2.2.28) is,
except for the terms of order'g2 and the kinetic terms of
(2.2.29),

C(W,A,Z:int) = gie[(A”wf-A"wf)(a”w:—avw:) (2.2.30)

_ (A“Wi—A"wr)(a“W;—a W) o+ (auAv—avA“)(wfw:—wfwt)]

v

€ + <

- Yigcose [(z'WY-z2"W")(a W
2 W - - u

+
—aw) A
v B
- +
~- (zMwV-z"wH(a W —a W ) + (2 Z -a z )(W'w -w"w"))
+ + H v v M H v vV K -+ - +
From the first term of this interaction Lagrangian the charged

current can be identified using the definition (2.1.6):

+ + - -
Jj = -ie[(a W -a W)W - Wi(aW-aW)] . (2.2.31)
H LY v - + pv v op
This expression correctly gives the total electric charge
* b 3 .
Q=-e fd’k (a_a_ - aa) (2.2.32)

when expanded in terms of Fock-space creation and annihilation
X
operators, where a,_ creates a W+. This is an independent check

on the correctness of the W-A interaction term in (2.2.30).

I1.3 THE ISO-VECTOR (TRIPLET) HIGGS FIELD

The Weinberg—Salam gauge theory can be modified or
generalized in a number of ways, most notably through an
enrichment of the Higgs sector of the theory (Lee and Shrock,
1977; Cheng and Li, 1980a, 1984; Langacker, 1981; Marshak,
Riazuddin and Mohapatra, 1981). Since the original Weinberg-

Salam model is generally regarded as being basically correct,
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and therefore fixed, any changes one would make to the theory
are determined by further assumptions regarding the masses or
interactions of the leptons. It is not difficult, for example,
to add simple terms to the Weinberg—-Salam Lagrangian to give
the neutrinos a mass or to mix the various lepton families.
Further, one could add SU(2) singlet Higgs fields, additional
SU(2) iso—-spinor or doublet Higgs fields, or Higgs fields that
constitute other SU(2) representations, such as the iso-vector
or triplet representation to be considered presently. Neutrino
mass terms will be considered in detail in the next chapter.

There are two basic reasbns for considering the Higgs
triplet as the most "natural" generalization of the Weinberg-
Salam model. First, an unwanted proliferation of Higgs
particles is kept to a minimum because the iso—-spinor and
vector fields combine in a number of cases (neutral and singly
charged particles) to form linear combinations of these fields.
Second, a mass term —-- a Majorana mass term -- is readily
constructed from a Yukawa-type interaction between the already
existing leptons and the Higgs vector field without adding
explicit mass terms for the neutrino. This item, too, is
discussed in detail in the next chapter.

Under a general SU(2) transformation a vector field ﬁ
transforms as

g+ viv? (2.3.1)

which is shown in the next section, from which it follows that

the "gauge derivative”
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transforms under the SU(2) transformation (2.3.1) as

afl - ;ig(AH-HR) - fig' Y _all (2.3.2)

1

pd » u pil U~ (2.3.3)

The second term of (2.3.2) could be written (~igX/\ﬁ) or

(gXxﬁ), in the notation of App. B, so is just an SU(2) 3-
vector. Thus the kinetic or field part to be added to the

original Weinberg—-Salam Lagrangian is
c(d) = spo H+ooPhH = o B .0, , (2.3.4)
1} B o1 1
where S[+++] refers to the scalar part of the SU(2) or Pauli

algebra, as discussed in App. B. 1In a basis (oi), where

=82 o. , (2.3.5)
1 1

the derivative part of (2.3.4) is

S[(a M)*(a"D)] = a B 2%H. , (2.3.6)
7} poi i

the correct form for each of the three complex scalar fields

Hi. If the Pauli matrices are used to represent the basis

vectors one obtains

) H, H -iH, H,  [2H
H = , (2.3.7)
H +iH, -H, J2H, -H,

i

where the charge assignments have been made on the basis of
hindsight and the J2 factors are added as a required

normalization because (2.3.6) becomes

X p X n X u
a“Hoa H, + a“H+a H+ + a“H++a H++ . (2.3.8)

The weak hypercharge assignment (2.2.11) gives

YH'= +2 . (2.3.9)

Now, in analogy with the original Higgs doublet one assumes

that
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1]

<H_>

o VH/JZ . (2.3.10)

so that (2.3.4) makes a contribution to the W and Z masses when
it is expanded in terms of the W, A and Z fields. Using <ﬁ> in

place of # in (2.3.4) results in

262z z¥ |, (2.3.11)
H H

so the W and Z masses become, with the result (2.2.17) from the

JL,2 2eee L L
£(<i>) = jvie W+ v

doublet Higgs fields

M 2 g (2.3.12a)
H®
M G’

<
o
+
<

(2.3.12b)

NNMN=®DN

2
H
Experimental verification of (2.2.24), however, implies that

vH K v , (2.3.13)
(Arnison et al., 1983a,c; Bagnaia et al., 1983; Marciano and
Sirlin, 1984; Reutens et al., 1985) an inequality that will

later be of some importance.

In principle and in general a complicated interaction
between the ¢ and ﬁ fields should, in addition to V(&) of
(2.2.6), and a V(ﬁ) term, be added to the general Lagrangian
and, when "minimized", should determine the masses of the
physical Higgs particles and establish which are the physical,
and which the unphysical, particles. This is the subject of
the next section. In the sequel we will use (2.3.13) and will
need a charged Higgs particle of unknown mass.

From (2.3.4) there follows a term
(1/92)iv_g(W"a H -W"a H ) - (1/42)iv.6z" (H_-H') ,  (2.3.14)

H -+ 4+ p - H p 9 0

which, with (2.2.25), identifies

S

+ ¢tcose + H+sine , (2.3.15a)
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with
tane = V2 v/ ' (2.3.15b)
as an unphysical, charged Higgs field, unphysical in the sense
of the remarks following (2.2.25). The orthogonal combination
Bt = —¢tsine + Hipose . (2.3.16)
turns out to be a physical field of considerable importance to

this thesis. From (2.2.25) and (2.3.14) one sees that the

combination
X X

(1/I2)[v(¢0—¢0) + ZVH(HO—HO)] (2.3.}7)
is also unphysical. This illustrates the remark made earlier,
that the vector Higgs field has a natural relationship with the
spinor Higgs field.

Besides the gauge fixing terms to be considered later, in

Sec. II.5, there remains the Yukawa-type coupling between the
leptons and the vector Higgs fields. The only SU(2) and U(1)

gauge invariant interaction is, as shown in Sec. II.5,

C(Yuk-H) = -3 B, .[0.% (io,H)®, + & .5 (ie, H)*0°] , (2.3.18)
ij iy i1 - 2 J Jj + 2 i

where i,j = 1,2,¢2¢ = e,p, s+, wc is the charge conjugate of
the spinor field ¥ (App. C), and where (iozﬁ) is needed rather

than ﬁ alone because in the usual matrix representation for the

(01)1

o, = (1 0 ) (2.3.19a)
and
X
o, U o, =1, (2.3.19b)
where U is an SU(2) transformation. The factor i is to make

(icz) real, as are the Bij coupling coefficients because of CPT
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invariance. When expanded using (2.3.7) and (2.3.10) the

interaction term becomes
C(Yuk—ﬁ) = -5, .B..v
- ij ij H

-c - .
3 5By vy E (J2H,v ~H ) + /% (-H v -J2H_4.)

- . % -
+ v (F2HvS-H %) + .z (-H +S-r2m %)) ,
J+ S | J+ -1 -—1i

(v v+ .5 05 (2.3.20)
l-J J+1

where RI,RZ,--- = e,u,**+, which justifies the charge

assignments of the components of the vector Higgs field ﬁ.
This important set of interaction terms will be considered in
detail in the next two sections and in Chap. III. The first

term is the important Majorana mass term.

I1.4 THE PHYSICAL AND UNPHYSICAL HIGGS FIELDS

It has already become apparent, as in (2.2.25) and
(2.3.14), that not all of the ten Higgs fields so far
introduced, nor arbitrary linear combinations of them, can be
physical, or the source of real particles one might encounter
in an actual experiment. Just as in the original Weinberg-
Salam model there must be three unphysical fields that could,

in principle, be gauge-transformed away so as to provide for

the extra longitudinal states needed to make the W+, Z0 fields

massive.

Not all of the physical and unphysical fields can be

identified a§ readily as those obtained from (2.2.25) and
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(2.3.14). 1In particular, the neutral, physical Higgs fields
can only be established in the following manner.

To the general lLagrangian must be added an interaction term

V(Q,ﬁ) that describes the self-interactions among the fields
and the other interactions among them, and one that is |
SU(2)xU(1l) gauge invariant. A general such potential term we
will take to be

(e, ) = Ware - n(a*®)® + urs(HH) - s (sHED?

- sps(itHA*H) + astes(d*H] + bs{ilvdest] . (2.4.1)
where the global symmetry & -+ -9, ﬁ + -f has been imposed, as
is conventional, to simplify the types of terms needed, where
S[eee] = %Tr[---] is the scalar part of the Pauli algebra
described in App. B, and where the coefficients are generally
unknown. Other terms, such as S[ﬁ’ﬁﬁﬁ*] or S[ﬁﬁ’@@*] could
have been added but make no changes in principle to the final
result. This potential and its implications seem to have been
first considered by Gelmini and Roncadelli (1981) and
subsequently considered in further detail by Georgi, Glashow
and Nussinov (1981) who, in particular, modify the potential
above so as to have V(<¢>,<ﬁ>) = 0, but which is not necessary
here because our intention is only to identify the physical
states.

The iso—-spinor Higgs field ¢ is written as
$ = & x + (,+v/I2)x_ (2.4.2)

+7+

in terms of the Pauli spinors x, (App. B), with <o > = 0, and
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the iso-vector Higgs field is written as in (2.3.5) as

H = (Hy/02 + jv)(o,~i0,) + (H,_ /V2)(0,+ic,) + H,o (2.4.3)

3
with <HO> = 0. Now rather than "minimize" the potential V(@,ﬁ)
it is sufficient for the purposes required here to adjust'fhe

coefficients of (2.4.1) so as to eliminate linear terms in the
fields. On expanding (2.4;1) to second order in the fields one

obtains

pzv ~ ao o+ %avv; =0 : v (2.4.4)

- X
as the coefficient of (¢0+¢0)/J2, and

2V
“E'H

_ 3 , .3 12 - )
XHVH "ZvaH + zav vH 0 (2.4.5)
' b 3 b 3
as the coefficient of (H°+H0)/I2. The coefficients of ¢ 4, and
3
H H, are, respectively, proportional to (2.4.4) and (2.4.5) and
thus also vanish.

The coefficient of H-__H++ gives the mass of the doubly-

charged Higgs field:

2 = 2 _ 2 1_ 2 ]_._ 2
-M (Htt) = by XHVH + ;av. + Sbv
1 2 2
= Zbv. + 2wy (2.4.6)

What remain are terms for the singly charged Higgs fields

%
(¢+,H ) and the real parts of ¢, and H , namely (¢o+¢0)/J2 and

1+

X
(H0+H°)/J2. After (2.4.4) and (2.4.5) have been employed, the

coefficient of ¢ o is ‘bv of HH |is 1—bvz, and of (H ¢
+ - 2 + - [ Y + -

2
H’
+H_¢+) is —(1/2J2)bva. Thus these fields are linear

combinations of fields

¢i E»S+ cose - B+ sine (2.4.17)

1]}

H

S sine + B cose ,
+ + +

where
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1 1
cose = v/(v2+2v;) ‘2 | sine = JZVH/(v2+2v;) 2 (2.4.8)
with mass terms
] ‘
-M (S+) =0 (2.4.9)
2 _ 1_ 4 2 2 4q 2 2
~M (Bt) = (4bv +bv vH+va)/(v +2vH)
1 2
“va N
provided vH << v, which gives in such a case
M(Htt) s J2 M(Bi) , | (2.4.10)

as noted by Georgi, Glashow and Nussinov (1981), but which is

probably not justified because the coefficients 1in V(@,ﬁ) are

quite unknown, even if vH << v. Thus S+ is unphysical and B+

is physical: these are precisely the fields identified earlier,
in (2.3.15).
For the physical, neutral, scalar Higgs fields that arise

b 3 X
from ¢ =(¢_ +¢,)/J2 and H =(H +H_)/J2, V(Q,ﬁ) gives the terms

2

2 1 2 1 ’
-(u +sav )é, - (u;+5av2)Hf + ava¢1H1 , (2.4.11)

=

where (2.4.4) and (2.4.5) have been used, which is set equal to

M 6% - Mo  (2.4.12)
where
¢ = ¢ cosx + » sin« ' (2.4.13)
H = -¢ sinx + w COS«x ,

1

where ¢ and w are the physical fields, and one finds

tan2« = (ava)/[xvz—(x +2xh)v;] : (2.4.14)

H
= (a/3) (vy/v)

provided vH << v, and

1 2 2 2 . 2 . ‘
EMi = NV Cc08 « + (xH+2xh)vH51n « + ava sin« cosx , (2.4.15a)
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1,2 2, 2 2 2 .
EMm = wv sin « + (xH+2xh)chos x = ava sin« cosex , (2.4.15b)
so that, again if vH K v,
M >> M (2.4.16)
P ®
and
o« = z(a/nN) (v /v) << 1 (2.4.17)

(provided a ~ ») and so ¢ = ¢1,lw = H . Note that ¢, was the

only physical field in the original Weinberg—-Salam model.

X b 4
—i(¢o-¢o)/J2 and H, —i(HO—Ho)/JZ,

i

If we now define ¢2

then (2.3.17) gives

¢ = ¢, cose’ + H, sine’ ' (2.4.18)

as the third unphysical field, where

1 1

cose' = v/(v2+4vZ) 72 , s8sine' = 2vH/(v2+4v;) 72 s (2.4.19)
while the orthogonal combination

o = -¢, sine’ + H, cose’ (2.4.20)

is physical but massless, since from V(Q,ﬁ) the coefficient of
Q'z is 0. This massless Goldstone boson cannot be avoidéd
(Gelmini and Roncadelli, 1981; Georgi, Glashow and Nussinov,
1981): it is referred to as a majoron, and is of considerable
current interest (Gelmini, Nussinov and Roncadelli, 1982; Dugan
et al., 1985; Glashow and Manohar, 1985).

The physical and unphysical Higgs bosons, and their
relation to the original Higgs fields, are listed in Table I.

The presence of a massless Higgs particle is a signal that
a symmetry of the theory has been broken by the presence of the

non-zero vacuum expectation value of the iso—-vector Higgs

field, a consequence known as Goldstone’s theorem (Bernstein,
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1974; Cheng and Li, 1984, Sec. 5.3). The global symmetry
violated here is related to lepton—-number conservation.
As can be seen in (2.2.2) and (2.2.7), written out in
detail in (2.2.18), the original Weinberg—-Salam model
separately conserves electron lepton number, muon lepton

number, etc., because of the independent global symmetries

ie:

(e,v ) » e (e,v ) (2.4.21)
e e
iez
(p,v ) » e (v ),
[ |3
where e,, ©,, etc., are constants. From Noether’s theorenm,

then (Jauch and Rohrlich, 1976, Chap. 1),

a 3 a*x _ac sw =0 , (2.4.22)
v ¢(_[ a(a ) )

where ¥ represents the various fields in the Lagrangian, we
have the conserved electron lepton number |
L, = [dx (ev’e + v T ¥°v ) , (2.4.23)
with similar expressions for the other lepton families.
The iso-vector Higgs field changes all this. From (2.3.20)
it can be seen that, before spontaneous symmetry breaking

(i.e., before H) -+ <H > = vH/JZ), there is the one global

symmetry
(all leptons) = e1e (all leptons) (2.4.24)
(with i -+ e_lei, ﬂc -+ e_leﬁc, etc.) provided one also imposes
-2ie
(H++, H+, Ho) -+ e (H++, H+, Ho) , (2.4.25)

which means that the iso-vector Higgs field must also be given

a lepton number (which is reasonable because we now have the

possibility of processes such as e + e o H ). 1If N(e)
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stands for the number of particles of type e, then what is
conserved is
- + - S+ c
N(e ) — N(e ) + N(pu ) - N(pu ) + oee + N(Z_ve) - N(Z+ve) + e
X
- 2N(H++ + H+ + Ho) + 2N(H  + H + HO) . (2.4.26)

From the first term of (2.3.20), however, if vH = 0, even this

one global symmetry is violated, because, for example,

processes like X ve Z+vc are ostensibly permitted. Thus the
- 12

peculiar violation of this global lepton-number conservation is

by the Majorana neutrino mass term.

TABLE I: THE PHYSICAL AND UNPHYSICAL HIGGS FIELDS

Original Physical Unphysical
Fields Fields I Fields
¢1’¢2’¢i Htt
Hl’HZ’Ht’Htt Bt E ¢isine+Htcose St = ¢tcose—Htsine
(tane = JZVH/V)

* ' ,
¢, =(d,+0,)/d2 ¢ = ¢ cosx—H sin«

%
H =(H +H )/J2 © = ¢ sinotH cosw

[tan2« = (a/x)(vH/v)]
X
$,=-i(d,-¢,)/I2 ' =-¢,sine’ +H_ cose’ ¢’ =¢,cose’ +H sine’
. * _

H2=—1(H0—H0)/I2 (tane’ = ZVH/V)

[mass(w" )=0]
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I1.5 GAUGE INVARIANCE OF THE THEORY

The invariance properties of non-abelian gauge theories
have been understood since the first such models were
formulated by Yang and Mills (1954) and have been extensively
reviewed since (in, for example, Abers and Lee, 1973; Itzykson
and Zuber, 1980, Chap. 12). The special case of an SU(2) gauge
theory can, however, be appreciably simplified by using the
Pauli algebra described in App. B because elementary 3-vector
algebra can be used, rather than the group theoretical
techniques required for the general case.

The U(l) invariance of the original Weinberg-Salam
Lagrangian (2.2.2) is quite readily demonstrated when the U(1)
transformation (2.2.8) is applied, while for the vector Higgs

field one needs

B - exp[iY a(x)] i (2.5.1)
and

¢ + exp[-iY«(x)] o° (2.5.2a)
if

¥ + exp[iVYu(x)] @ , ~ (2.5.2b)

and the Yukawa interaction (2.3.18) is also seen to be U(1l)
invariant.

In the case of the SU(2) transformation one has
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¢ - UD_ , eR - eR , ® » U (2.5.3)

A+ URU®* - (2i/g) avu U}

which results in, as the references cited above show,

(3 - ;igh)® » U(a - igh)e (2.5.4)
? = 3 K -3 K + gK xK + U ? U-1 s
(937 H Vv v H 1} v pv
so the Weinberg-Salam Lagrangian is seen to be SU(2) gauge
invariant as well. These last relations are more readily

demonstrated when
axb = -ia/AB = -1i(ab-bBa) (2.5.5)

is used, as described in App. B.

The SU(2) gauge derivative in the vector or triplet case is
not (Pal and Wolfenstein, 1982, Eq. (44))

bt = (a - Lighi

but

ol = aft - Lig(RH-HA) = aff + gixid , (2.5.6)

as stated in (2.3.2), because a 3-vector transforms as

F-uvdu’®, (2.5.7)

not as
ﬁ -+ U ﬁ .

To show this one uses (2.5.3) and (2.5.6) to obtain

1

DH » a(UHU ') - ig[URU ‘-(2i/g)auu ‘A uvlu (2.5.8)

= UaHU ‘+auU ‘uvHu '-uHu 'auu ‘-iguAu ‘A uviu '-2suu ‘A uitu™?

= u(al-igANAB)U ' = v ol U

1
as required, where

a(u 'y = -ut av U (2.5.9)

has been employed. Thus S[(D ﬁ)’(D”ﬁ)] is SU(2) invariant
1}
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since
S[AR] = R-R = B.B (2.5.10a)
if
B=uidu'. (2.5.10b)
The Yukawg term (2.3.18) is also SU(Z) gauge invariant

because if

e §

o+ U, @+ U (2.5.11a)
then
o = o 5 v = Mot (2.5.11b)
50 f ac(U_l)*
and so
o, e » 3°(v )%, ullu " Ug (2.5.12)

= 9%, 'ulle = 3%, He ,
as is also required, where (2.3.19) has been used.

Thus the U(l) and SU(2) gauge invariance of the additional
Higgs_vector terms has been demonstrated. This gauge
invariance, however, exists only initially. It is broken not
only by the Higgs mechanism (the vacuum is not invariant) but
also by the specific gauge fixing terms which are about to be

considered.
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II.6 GAUGE FIXING TERMS: THE GENERAL R; GAUGE

Although the gauge invariance of the model to be employed
here has been demonstrated, it is not possible to do any
meaningful calculations using it. There are at least two
reasons for this. No Green function or propagator can be
constructed for any massless vector field (such as the photon
field) because the differential operator on the field that
follows from the Lagrangian has no inverse ——- a definite gauge
must be selected (Abers and Lee, 1973; Nash, 1978; see also
Sec. 1IV.3). Secondly, there are interaction terms such as
(2.2.25) or (2.3.14) and (2.3.17) that are quite absurd because
a vector particle could never decay into a scalar particle.
Such scalar Higgs fields are unphysical because they can be
eliminated by a judiciods choice of gauge.

It is a great convenience that both problems can be
eliminated together (t’Hooft, 1971), in the so-called
renormalizable gauge, designated Ri' where £ is the gauge
parameter about to be defined. This is accomplished by adding
terms to the original Lagrangian —-- gauge fixing terms -- that
exactly cancel the unwanted two—particie terms. Although the
unphysical fields are not eliminated entirely (unless one uses
what is referred to as the unitary gauge, in which { -+ &) they
can be conveniently manipulated as though they were real scalar
particles, the masses of which are dependent on the gauge

parameter £¢. Of course, at the completion of any calculation



40

concerning real, physical processes all trace of these
fictitious particles must have disappeared: the gauge parameter
¢ must cancel everywhere.

The two gauge fixing terms to be added to the complete

Lagrangian are

1 >

L(gauge fix 1) = —(2£)~ (auA (2.6.1)
~ igEVI<t-a<at>+<I>R-H<H*» ) ?
and
C(gauge fix 2) = -(2¢) ' (apa“ (2.6.2)

- 187V ES[<@>e-8<a">] - ig'%YH£S[<ﬁ>ﬁ*—ﬁ<ﬁ*>])2,
which have been written in terms of the Pauli algebra of App.
B. Here V[e++«] means the 3-vector part of whatever exists
inside the square brackets, and S[++«+] refers to the scalar
ﬁart. The gauge fixing terms have not been written this way
before but they clearly exhibit a striking similarity not only
between the SU(2) gauge fixing term of (2.6.1) and the U(1)
gauge fixing term of (2.6.2), but also show a similarity in

structure between terms for the original spinor Higgs field &
and the newly added Higgs field ﬁ.

With the field & written in terms of 2-component Pauli

spinors (x+) (App. B)

® = ¢+x+ + by x_ (2.6.3a)
X.

ot = ¢_x+* + o x_* (2.6.3b)

(P> = (v/J2) X_ s : (2.6.3c)

and the vector Higgs written explicitly as in (2.3.7),

H = Ho = (1/72)(H,+H o, + (-i/72)(H,~H _ )o, + H o, (2.6.4a)



H> = Lv. (o.-ic.) , (2.6.4b)

and using the important spinor-vector connection (App. B)

x,x,* = 3(1 % o) (2.6.5a)
x_x* = 3(o, = ig,) (2.6.5b)
<, x_* = 30, + is,) (2.6.5¢c)

results in, after a lengthy manipulation,

c(gfl) = 4(2{)_1{3“3“ - ige [(M_/T2g) (o, (S_-S,) (2.6.6)
' X S
- do,(S_+8)) + os((v/2I2)(¢O—¢0)+(VH/I2)(H0—HO))]}2
C(gf2) = -(20) 7 {3 8" + ig' £[(v/202) (8,-07) (2.6.7)
X
+ (v /02) (B, -H) 1),
where éYH = Y¢ = 1 has been used. The expansion of (2.6.6) and
(2.6.7) is
- Sl K v B _wH _ em2
L(gfl) = —-(2¢) auAiavAi 1Mw(w+aps_ w_aps+) £Mws+s_

. ’ X X
- 1gAg[(v/2I2)ap(¢o—¢o) + (vp/¥2)a (Ho=Hg)]

+ LgPel(v/ad2) (o -0p) + (vH/IZ)(HO—H:)]Z (2.6.8)

C(gf2) = -(2¢) "a aa a¥
K v

. g B 2 X b 4
+ ig'a [(v/ IZ)a“(¢°—¢O) + (VH/IZ)a“(HO—Ho)]
+ Lgr® 202) (6 -6 ) + 72) (H -H)]° 2.6.9

€' T [(v/202) (0,-0 ) + (v /i2) (H,~H) 1" , (2.6.9)
with the following consequences. The first terms of each of
these expressions fix the gauge for the gauge bosons; the
second term of (2.6.8) and the combination of the fourth term
of (2.6.8) with the second term of (2.6.9) exactly cancel the
unwanted interaction terms (2.2.25) and (2.3.14); the third

term of (2.6.8) gives the mass of the unphysical field S+ as

M = ¢ Mo, ‘ (2.6.10)
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and the last terms of (2.6.8) and (2.6.9) give the mass term

for the unphysical, neutral Higgs particle as Mi = £M;. One

should note that the unphysical masses depend.on the
(arbitrary) gauge parameter ¢§.

With the gauge fixing terms of this section and the
Lagrangian of Sec. 1I1.2, I1.3, we now have the complete gauge
theory with both iso-spinor and vector Higgs fields. Before
the many interaction terms can be turned into practical
"Feynman rules" and applied to the physical process under
investigation here —-- muon decay —-- the neutrino terms must be

reformulated and properly interpreted to make sense as those

for a realistic particle. First, however, the important
discrete symmetries of the theory —-— the C, P and T
transformations —— will be briefly considered.

II.7 C, P AND T INVARIANCE PROPERTIES OF THE THEORY

The overthrow of parity conservation by Lee and Yang (1956)
has demonstrated the importance of the discrete symmetry
operations of charge conjugation(C), parity (P) and time
reversal (or reversal of motion) (T). Not all theories,
especially those constructed to describe weak interaction
physics, need be invariant under these transformations. 1In

this section we will see that, like what has come to be known
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about weak interactions since Lee and Yahg, the interactions
described in this chapter are neither C nor P invariant, but
are CP, T and CPT invariant.

The C, P and T transformations for quantum spinor fields
that are to be used here are described in detail in App. C. In
that they do not depend on any specific representation of the
Dirac matrices they are somewhat novel. The conventional
transformations are described in, for example, Bjorken and

Drell (1965, Chap. 15). The transformations we use are

wp(t.?) = P ¢(t,r) P_1 (2.7.1)

=y, w(t,-F) ,
WC(x) = ¢ w(x) ¢ (2.7.2)

= V), |

t -+ -+ -1

Y (t,r) =T (t,r) T (2.7.3)
= “0 ‘I’(_t:;) ’

cpt _ -1

¢ (x) = ® ¥(x) @ (2.7.4)
E \p*(‘X) ’

where P, C, T and ®=TPC are unitary operators in the Fock-space
of creation and annihilation operators, and where T and ® are
anti-linear operators. It will be essential in appiying these
transformations to uée the importént definitions and identities
described in App. B, which will be identified when needed. We
take (%) to denote the cohplex conjugate of scalars and the
hermitian conjugate of Fock-space operators.

All 4-vector fields will be assumed to transform as does

the electromagnetic vector potential A, as described in App. C:
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AP, ) = v, A(t,-F) ¥, (2.7.5a)
or, in component form
A"P(t,?) = (A%(t,-D), -At(t,-D)) , (2.7.5b)
A%(x) = -a%(x) (2.7.6)

or -A(x), if A is a real field,
Atee, )
cpt

i

¥, A(-t,T) ¥, - (2.7.7)

A A% (=x) (2.7.8)

(x)
or -A(-x), if A is real. It is important to note that the
Higgs field ﬁ is not of this type: it consists of a set of
three (complex) scalar fields.

Scalar fields will be taken to transform as

oP(t,7) = o(t,-T) (2.7.9)
oS(x) = ¢ (x) (2.7.10)
oT(t, ) = a(-t,D) (2.7.11)
oPhx) = o' (-x) . (2.7.12)
A charged scalar field, such as ¢, satisfies ¢f = ¢f = ¢+.

Of the kinetic terms in the Lagrangian only those for the
spinor fields, such as the first two terms of (2.2.18), are not

trivial, so we consider these exclusively. A term such as
c(w) = iEz+a¢ , (2.7.13)
which can represent either neutrino or electron (or muon, etc.)

fields, has the following transformation properties. Under P

we have -
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_ _1 —
P i¢x _a¢ P iwpz+a¢p (2.7.14)
=, = -+
= 1e(-r)¥, I 3y, ¥(-r)
= 1W(-T)E ¥ ¥ V8 w(-F)
-

and as the transformation ; + -r is permitted in the action

integral, this becomes

C(w) » ivZ av . (2.7.15)
Thus the chirality projection operétors prevent such a term
from being P-invariant; if absent, as they are for an electron,

for example, the term would be P-invariant.

Under C we have

-1

C ibZ aw C 19°x, 20" (2.7.16)

- .-q-‘*z v '«IJ* = -ia ¥ Vs

=i R 3, = -ia ¥ ¥ 2 ¥ ¥

. v N - v
= igy T a ¥ - ia (vy £ ¥)
+ v v +

= iEZ_a¢ + surface term ,
where the important and crucial identity (B.38) has been used,
and where the surface term disappears in the action integral.

Again, we see that such a term is not invariant if the

projection operators Z+ are present. This term is, however,

CP-invariant:

1

- - —X X
(CP) iws aw (CP) W (-T)¥,E ¥ ¥, 3 ¥ (-T) ©(2.7.17)
+ + v

. T, o v -+
= -ia w(-r)v¥ ¥ ¥ I ¥ ¥ w(-r)
= iE(—?)z ¥ ¥ ¥.2a ¢(—;) + surface term
+ 0 o7y
- 1¢Z+a¢
- -+
when the change r -+ —-r is made.

The CPT and T transformations are similar: we illustrate

- with the former, remembering that both are anti-linear
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transformations. We have

- - -1 ,
_ieve |5 aewe (2.7.18)

\

- -1
® i¢2+a¢ ®
' ,—* v b ¢ - - v
= =ig (-x)Z ¥ 3 ¥ (-x) = ia w(-x)¥. ¥ Z ¥ ¥(-x)
- v v -
= —iE(—x)z+w”a Y(-x) + surface term
v
-+ 1¢Z+a¢ s
when the permitted transformation x + -x is made in the action
integral.

Next to be considered are spinor-boson and boson-boson
interactions. The former consists of two types: for the
(vector) gauge bosons (W+,A,Zo) we have interaction terms like

_ - %
£(¢1,¢2,A) ~ ¢12+A¢2 + ¢22+A v, (2.7.19)
apart from real constants, and for the (scalar) Higgs bosons

terms like

C(v, ,4,,0) ~ ¥ (2.7.20)

1
Note that only Z+ is to be found in the first, while both of Zi
exist in the second. Considering the first term only we have
P C(9,,0,,8) P ~ oz PP (2.7.21)
= (9,95, (Y AV Y 0, 1 (-1) = (9,2 A0,)(-F)
s (4,5 Ae) (D) ,

so is not invariant. For the C transformation we have

_1 —
C C(w,,9,,4) ¢ ~ ¥z ASe] (2.7.22)

-X **__—- X
¢12+(—A Yo, = ¥, A T ¥ b,

~ X
T AW o,
where (B.38) has again been used. Thus these terms are not C-

invariant either. They are, however, CP-invariant:



47

1

(CP) C(¥,,¥,,A) (CP) = ~ [&fxoz+(—onxo)xo¢:](—?) (2.7.23)

—-X X X - X
= —(U,Z A G,)(-T) = (6,9, A = ¥ ¥ )(-F)

+

- % -
(9,2 4 w)(F)
These terms are also T-invariant:

-1 - -1 -
T C(¥, ,¥,,A) T = ~ T¢ T T% AT

-1
Lry, T (2.7.24)

[0, ¥, Z_(¥,A¥,)¥ 0,1 (-t) = (¥ = Av,) (-t)

+

(¥, 2 A0,) () ,
and CPT-invariant:
-1 v e -1 -1 2.7.25
® L(¥, ,¥,,A) © ~ e @ ®>:+A® ey, ® (2.7.25)
o X X - X
[0, (~A )W, 1(-x) = (9,4 ,A % ¥ ¥, )(-%)
S
+ (U= A0 ) (%),
where the essential anti-linearity of T and ®=TPC should be
noted.

For the scalar Higgs bosons we have, again considering only

the first term,
, N _ .
P L(,,%,,8) P ~ (b ¥, 3,9,)(-T) (2.7.26)
+ (9, o) (1) ,
‘"again not invariant,
-1 —% X X
C C(¢1,¢2,¢) C ~ ¢12+¢ ¥, (2.7.27)
- X - x
= —¢2V52+¢ ¥ ¥, = ¢22+¢ Y,
so is not C-invariant either, but

1 —X * X -+
~ (W ¥, Z & ¥ ¥,) (-r) (2.7.28)

(PC) C£(¥,,¥,,4) (PC)
= —(Ezwsz_¢*x5¢1)(—?)
s (T M) (D)

so is CP-invariant. We also have
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T C(w,u,,0) T &~ 51(-t)xoTz+¢T"1v0¢2(—t) (2.7.29)
= (¥, ¥, T_¥, 00,) (-t)
4 (0, ew,) (L),
and
® (¥, ,¥,,) 8 ~ $f(—x)®z+¢®°1¢:(—x) (2.7.30)
= (B2 ot (%) = (09,5 0 ¥, ) (~x)
> (Ezz_¢*¢1)(x) ,
so both aré invariant as expected.

Of the boson;boson interactions only two types are of
interest. The A-W-Higgs scalar(H) (physical or unphysical)
interaction is

C(AWH) = -eM (A-W H_+ AW H) , (2.7.31)
and is easily shown to be C, P and T-invariant. The other type

is the electromagnetic interaction between the photon A and the
W or Higgs currents. The former current is given in (2.2.31):
JHwy = —iel(a"Wl-a"WhHw - w:(a“wf—a"wf)] . (2.7.32)
Examination of the first term only shows the transformation
propertiés »

P j'(w) p !

ie(¥,W_(~F)¥,1+a" [, W (-F)¥,] + ++¢ (2.7.33)
= (3% -iNH -
(due to r + -r in =]

-1
¢ j*mw) ¢

[l
[
o®
=

< |
[+5]

W + e (2.7.34)

and
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T M) T = cielvgW_(~t)¥, ] oM ¥ W, (~t)¥g] + eee (2.7.35)

(%, =3H (=t

(due to t + —~t in a“), all of which demonstrate C, P and T
invariance. The electric current due to the Higgs bosons,
given in (2.2.27),

M) = ie(o_a%e - o 2% ) , (2.7.36)
is rather easily shown to have similar transformation
properties, again confirming C, P and T invariance.

Thus in general we may conclude that the theory is C and P

invariant except where the .chirality projection operators Z+

occur, in which case only CP invariance can be demonstrated.
There are, however, no exceptions to T and CPT invariance, the
latter being required quite generally of any local, Lorentz-

invariant field theory (Bjorken and Drell, 1965, Sec. 15.14).
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ITI. DIRAC AND MAJORANA NEUTRINOS

ITT.1 NEUTRINO MASS

Since its conception a half century ago the neutrino has
been assumed to be massless, or at least to have a very small
mass, of the order, at most, of a few eV. During the past
decade, and even earlier, a number of énalyses have been |
published concerning the consequences of a non-zero neutrino
mass (Case, 1967; Bilenky and Pontecorvo, 1978; Cheng and Li,
1980a; Langacker, 1981; Frampton and Vogel, 1982; Li and
Wilczek, 1982). At least one modern experiment (Lubimov, 1980;
Stockdale, 1984, Ref. 1) has claimed a mass of the order of 30
eV, while others (Simpson, 1982; Kirsten ef al., 1983; Avignone
‘et al., 1983) still claim to have observed no measurable mass
in the few eV range, or question the measured mass (Simpson,
1984).

A number of interesting physical consequences follow from
the conjectured existence .of massive neutrinos: neutrino
oscillations (Bilenky and Pontecorvo, 1978; Cheng and Li,
1980a; Barger, Langacker and Leveille, 1980; Frampton and
Vogel, 1982), or the spontaneous change of neutrino type, such
as to electron type from muon type, and so on; neutrino decay
(Cheng and Li, 1980b; Pal and Wolfenstein, 1982), in which the
heavier neutrinos would decay into the lighter varieties, such

as, for example, the radiative decay of a muon neutrino into an
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electron neutrino; a total neutrino mass of cosmological
significance (Frampton and Vogel, 1982), as the total mass of
the neutrinos in the universe would, in all likelihood, have an
impact on the "missing mass problem" and the overall topology
of the universe; new ways in which the various leptons interact
with neutrinos of other families, one of the concerns of this
thesis. Such physical consequences are, at best, at the very
edge of detectability, and only through various assumptions and
models can the possibilities be explored and experimental
limits approached. 1Indeed, it was the very undetectability of
certain of these process (especially the radiative decay p-+e¥)
that gave rise to the concept of not only conservation of
lepton number, but separately of electron lepton number, muon
lepton number, etc. It must be remembered, however, that at
the present time thefe is no conclusive evidence that any of
these conservation laws is not really valid.

It so happens that there are at least two theoretical
descriptions of massive neutrinos to be considered, which
result, in a number of cases, in quite different predictions
being made. First, the Dirac neutrino, a sort of light,
neutral electron with two spin states for each particle and
anti-particle, and the best understood of the two because its
mathematical description so resembles that of the electron.
Second, a single, two-state neutral particle referred to as a
Majorana neutrino, one that is, indifferently, its own anti-

particle or that has no anti-particle counterpart, like the
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photon. These particles, their descriptions and interactions,
their role in the gauge theory of the previous chapter, are, in

turn, the subject of the rest of this chapter.

I11.2 DIRAC NEUTRINOS

To assure the existence of a Dirac-type neutrino mass one
must arrange that the Lagrangian contain the terms necessary to
resemble those of a general Dirac-type particle:

L= ¢(ia-m)y (3.2.1)

i0Z a0 + i0E_ab -me(X +X )¢
The leptonic part of the Weinberg—-Salam Lagrangian (2.2.2)
contains, as far as the neutrino is concerned, only the first
term of (3.2.1), or i;Z+av. Therefore an SU(2) singlet vREZ+v
must be added to the original particle content, with the
following aesthetically displeasing aspect. Its weak
hypercharge, according to the rule (2.2.11), must be zero, so
that this particle, at least in the pre—-Higgs mechanism stage,
participates in no interactions whatever with the gauge bosons,
and only weakly with the gauge bosons and other fermions —-
much more weakly than its left-handed partner —- after symmetry
breaking.

An SU(2)xU(1l) gauge invariant Yukawé—type interaction term
that can be added to the original Lagrangian, in analogy with

(2.2.7), is, summing over lepton families,
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-5, B, (BT 8y + v E &'e) , (3.2.2)

L

where

X X
¥ =io, & = ( ¢0) , (3.2.3)

which is needed rather than & to have the hypercharge in
(3.2.2) sum to zero, which expresses the U(l) gauge invariance

as in (2.2.9). After symmetry breaking where

¥ s o + v/I2 | (3.2.4a)
_¢—
<@'> = (v/Jz) , (3.2.4b)
0

one obtains a term of the form

- v + v .2.
Zg By (v/I2) (voZ v + v T v)) | (3.2.5)
so that the type 2 neutrino has a mass
m(vl) = ka v/¥2 , (3.2.6)
that, like the coupling constants B 2 is totally arbitrary.
v

There is no connection whatever between the mass of a lepton %

and its associated neutrino vl, another aesthetic shortcoming

of this construction.
Implicit in the model so far has been the assumption that
the neutrino states (vl‘2 = v, )} in the Lagrangian  —-
s ’... ’p’...

the so-called weak eigenstates —- are also mass eigenstates;

that is, each of the fields VQ has been supposed to have a

definite mass as opposed to being linear superpositions of
fields of various but definite masses. The most general Yukawa
term that generates a (Dirac) mass for neutrinos is a

generalization of (3.2.2):



54

-2.. B

o Y.+ v re . 2.7
ij Pij (9.5, 8 v ij_Q v, ) (3.2.7)

which, after symmetry breaking, contains the mass term

-S. . B.. (v/82) (v.Z.v. *+ v.Z v.) (3.2.8)
ij ij 17+ Jg-i
o= _Zij Bij (v/J2) (vivj) )
where Bij E Bji (so that both chirality states are to have the

same mass), which can be diagonalized by an orthogonal
transformaton to

S, m, v.v, (3.2.9)
where the mi are the eigenvalues of the mass matrix (Bijv/IZ),
assumed positive (Cheng and Li, 1980a). If any mi were to be
negative a transformation mi -+ -mi, vy -+ vsvi would‘be
performed, because vav - ;av while ;v -+ —;v. The orthogonal
transformation is

v, =210 v (3.2.10)
where

° v/J2) UBR = SuB m“ s (3.2.11)

with Greek subscripts denoting mass eigenstates, so that the

szUuk (Bk

charged lepton-neutrino terms in the Lagrangian that follow

from (2.2.18) and (3.2.7) are, respectively,
zun[(g/JZ)U“R(C“z+w+n+iz+w_vu) (3.2.12)
| + BU (v 5,0 0425 ¢ v )]
(with BRV/JZ = MR) and
Zujaaﬂjuuj(iz+¢_va +v T e, (3.2.13)
with

ZJBRJUaJv/JZ =mU , (3.2.14)

o« o
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from (3.2.11). Thus if the off-diagonal elements of the
orthogonal matrix do not vanish there is a mixing among the
various neutrino types; a given neutrino of fixed mass
interacts with several leptons (and vice versa), and the
probability of processes such as neutfino decay arises. No
longer would there be any separate conservation of electron

lepton number, muon lepton number, etc.

ITI.3 MAJORANA NEUTRINOS

One can understand from the preceding section that the
generalization of the original Weinberg-Salam Lagrangian to
incorporate massive neutrinos of the Dirac type is not
altogether satisfactory because of the number and type of new
terms that must be added and the lack of restriction on any of
the new parameters. It so happens that neutrino mass can be
generated without the addition of any of these objectionable
terms provided an iso-vector Higgs field, with its Yukawa
interaction (2.3.18), is introduced (Cheng and Li, 1980a, 1984;
Marshak, Riazuddin and Mohapatra, 1981; Schechter and Valle,
1980). The particle that results -— referred to as a Majorana
neutrino —— is a single two—-state particle without anti-
particle (or, if preferred, is its own anti-particle).

After symmetry breaking there results the first term of

(2.3.20) (in this section one is to sum over repeated
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subscripts):

-C - c
- + 3.3.1
Bi_ij(viz—vj ‘sz+vi) s ( )
where, by construction, Bij = Bji’ and the B’s are real, by CPT
invariance. The mass matrix, v_B.. = 1—l'*fl.., can, as in the
: Hij 27ij

previous section, be diagonalized by an orthogonal

transformation:

T
UMU =M 3.3.2
diag ( a)
or
U = , .3.
. ik Mke Ve T %M (3.3.2b)
where the mi are all positive and ﬂi = #*]1, where the

eigenvalues of M are mini. In the case of two families, for

example, it follows from (3.3.2a) that, since UT = U_l,

T
Tr(UMU ) = Tr(M) = M, + M, (3.3.3)
= Tr(Mdiag) = mm, +q,m,
and
T
Det(UMU ) = Det(M) = M, M, - M M, (3.3.4)
= Det(Mdiag) = (n,m )(m,m,) ,

which is readily solved for the masses m,, m, in terms of the

original B coefficients:

72 (3.3.5)

2 1,2

+ 48,,8,,1 |

m12
’

1 2 1
SITr(M) £ [Tr® (M) - 4 Det(M)]

v 1B, *B,,) * [(B,,B,,)
It is neither convenient nor necessary to consider more general
exanmples.

One defines the Majorana field x (Pal and Wolfenstein,
1982) by

x. = (1/82) U, (S v. + 1.5 v) (3.3.6a)
i ij - J iT+7j
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x. = (1/32) U, (v.5_ + a v.x) , (3.3.6b)
i ij Jj o+ i § - v
but where the reference just cited does not have the

(necessary) (1/J2) factor. We have

mox x = - U .m (v.T 5 + Sz v
a‘aa 2 "ai aj ata "YiT+Yj; ~ Yi®Y;
1 - C —-C
=z M. (v.Z v, +v.Z v,) (3.3.7)
ij o gT+d i7"

which is (3.3.1), the mass term, where, froh (3.3.2b) follows

= U 3.3.
ab - Vialib™i™i ( 8)
and
- c - - X - c
viZ+vj = vy 4_v‘j = —vj¥52+vsvi = vj Lo (3.3.9)
where (3.38) has been applied. We also have
ix ax_ = r iU U (».Z v, + a_n_ v.Z av’)
a a ai aj i+ j aai- J
=1 i(v. 5 av, + viT av)) (3.3.10)
iT+ i iT—-"1i
but the last term becomes, again using (B.38),
-c c - v -
v.Z 3v, = -3 v . ¥_¥ Z ¥_v. = v ¥ av, + surface termn, (3.3.11)
i - i v 15 - 513 i+ i
so that
ix ax = iv.Z av, (3.3.12)
a a iT+ i

in the action integral. Thus the pure neutrino part of the

Lagrangian becomes

L(x) = ix ax - m x X s (3.3.13)
a a a a a

as required. What remains now is to replace the v-fields in
the interaction terms with the x-fields.

It is important to note that, to within a phase, the

Majorana field x is self-conjugate:

X, = X, T M, X, (3.3.14)
i i i 71

a fact that follows easily from its definition (3.3.6a). The

usual expansion of a free spinor field (2.1.8)
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-3 -1 . 1 . *
¢ = (2m) 72 jdap dm/€ (e PrXy w4 elp xb v ) (3.3.15)
rr rr
yields, when (3.3.14) is applied,
b = a , (3.3‘.16)

to within a phase, so that the field ¢ describes but one two-
state particle, as claimed. In order to obtain the correct

free—-field energy—-momentum
X
p" = ra°p p" ar(p)ar(p) (3.3.17)

from the canonical prescriptions (2.1.14) and (2.1.16) a factor

of (1/§2) must be added to (3.3.15):

(3.3.18)
-a — 1 L] 1 a *
x, = (1/d32)(2w) 72 Idsp dm. /€ (e P Xa w o+ n,elp ¥a v ).
i i rr i rr

This factor of (1/J2) means that the x-field propagator (Sec.
IV.3) is one-half of the usual for spin—% particles. It is

very important to note that the x-field both creates and
annihilates its appropriate Majorana particle.

From the definitions (3.3.6a) and (3.3.6b) follow

Tv. =Jd2U..% x. (3.3.19a)
- J ijg—- "1

v.S =J2U.. x.= (3.3.19b)
J t ij i+

C

Z+vj = J2 Uijniz+ x5 (3.3.19c¢)

255 = 02U, n. x.= (3.3.19d)
Ji - iji Tit-

which can now be used to eliminate all reference to the v-—
fields in the original interaction Lagrangian. The charged

lepton-neutrino-W interaction from (2.2.18) becomes

= x + AT W , - 3.3.20
LORW) = gU, ) (x,Z W & + AT W x,) ( )
while the charged lepton—-neutrino-charged Higgs interaction

becomes

= - x ) 3.3.21
L(axs,) 2 u B Oz 0 8 + LE_¢_x.) ( )



and, from (2.3.20),

C(AxH) = 272 UaiBiRﬂa'(Xaz-H+£ * AT H x ) . (3.3
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These last two terms can be combined into interactions with

unphysical and physical Higgs fields, S and B of (2.3.15),

(2.3.16), respectively, into the final form

L(AxS)

and

C(aAxB)

(3.3.

-_ - - +_ -—
(g/M)U. [x (M Z -m.2)S & + &M Z -m.5)S x ]

x +
(g/Mw)UiQ[xi(MntaneZ+ micoteZ_)B+l

+ E(M taneX +m,.,coteX )B x.], (3.3.
L - i + -1

where the Bi' B

ij’ H

v, v. factors have been written in terms

the charged lepton and neutrino masses (Mi and mi,

respectively, from (2.2.14) and (3.3.2b)) and the coupling

constant g from (2.3.12a).

basis of all future work.

These interaction terms will be

.22)

the

23)

24)

of

the
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Iv. THE FEYNMAN RULES OF THE THEORY

IV.1 LEPTON-BOSON INTERACTIONS: SUMMARY

In this section all of the terms in the Lagrangian
describing the interactions between the leptons and the gauge
bosons and between the leptons and the Higgs bosons will be
listed and summarized. Such terms will be needed to construct
the "Feynman rules" for the vertices of the theory, or at least
those consisting of two leptons and one gauge boson or Higgs
boson relevant for the central problem of this thesis (Chap. V,
VI), which is the calculation of the rate of decay of a mﬁon
into an electron plus a photon, or an electron plus an
electron-positron pair.

There are at least two good reasons why such a construction
must be done from the beginning. Each gauge-theoretic model
'has its own particular interaction terms and those for the
specific model used here, namely the model with a vector Higgs
field and massive Majorana neutrinos, have not been listed
before. Second, in constructing all of the rules to be used)
here a consistent sign convention can be used throughout, the
same for all interactions, so that any ambiguity of phase with
vertices published elsewhere can be avoided.

The interactions among the leptons and the gauge bosons

(W+, A, Z) are given in (2.2.18) which is modified to include a
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sum over the lepton families, and the neutrino fields given in
Chap. II are modified to become Majorana neutrinos, as given in

(3.3.19). These changes result in the interaction terms
. = . + 0 . .
LR, x;W,A,2) = 38U (%, Z W A + AT W x. ) (4.1.1)
- . 2 - 1 2 ., 2 by
+ Zk[eﬂAﬂ + Gsin erZ_ZR 2G(cos ew sin ew)QZ+ZR]
+ GU, U, x.5 2
20359300507 5025 %;

The orthogonality of the matrix U can be exploited to rewrite
the last term as
5,6x.E, Zx, (4.1.2)
but this term will not be needed in what follows.
The most important term of (4.1.1) for the needs of this
thesis, except for the electromagnetic interaction, is the
first, which shows the coupling of the various charged leptons

(e, p, +++) to the varieties of Majorana mneutrinos xi

(i=1,2,+++), a coupling govefned by the unknown components

(Uij) of the orthogonal transformation that diagonalizes the

Yukawa coupling matrix of (2;3.18). One is tempted to presume

that the valueé of Uij are greatest when i=j and decrease as

the difference between i and j increases but, unfortunately,
there is no concrete evidence for such an assumption.

The interactions among the leptons and the Higgs fields are
all that remain to be considered. The basic interaction terms
for the iso—-spinor Higgs field were given in (2.2.18), or, when

generalized to include a sum over lepton families,

, = - v + 9 4.1.3
L(v,,9) ZpBo (v T, ® 2 + A% ¢ v, ( )

- - X
AT 68+ AX & R)
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along with (2.3.20) for the vector Higgs field. As mentioned
earlier in Chap. II the fields ¢+ and H+ are replaced by a
physical Higgs field B+ and an unphysical field S+ defined in
(2.3.15) and (2.3.16), and the neutrino v-fields are to be
replaced by the Majorana x—-fields of the previous chaptér. The

result was displayed earlier, in (3.3.23) and (3.3.24):

(8, x,8) = -2, (g/MIU,  [x (MZ -m 5 )S 2 (4.1.4)
+ M T -m. TS x. ],
L(2,x,B) = Zik(g/Mw)UiR[xi(Mltan92++micotez_)B+R (4.1.5)

+R(M£tan92_+micotez+)B_xi]
The doubly charged Higgs field makes a contribution given in

(2.3.20):

-c - c
= H + . .1.
LCLH, D = 2,028, (R = H 8, REH 20 (4 ; 6)
Both (4.1.3) and (2.3.20) contain interaction terms between the
leptons and neutral Higgs particles, which, like their singly

charged counterparts, must first be recast into physical and

unphysiéal fields, as was done in Sec. II.4. From (4.1.3) and
using ¢, = ¢1+i¢2 we have
- - * . —
"2 By (RZ &0 + A% 0, 8) = -3 B (& +¥ b,) (4.1.7)
~ —EQBQn¢u

from Table I, which is by far the leading contribution.

The lepton-singly charged, physical Higgs boson interaction
of (4.1.5) contains something very interesting, something not
considered before in its possible contribution to muon decay:

the factor micote. From (2.3.15b) and (3.3.2) one sees that

(mi)(cote) ~ (VHBiJ)(V/VH) (4.1.8)
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so the factor is actually independent of vH and therefore of

the neutrino masses as well. Indeed, if the Yukawa coupling

constants BiJ and BJl are of the same order of magnitude, this

faétor is of the order of magnitude of a charged lepton mass,
and makes, therefore, a contribution potentially much greater
than any that depend on neutrino masses.  This interaction term
will, in what follows, make a most interesting contribution to
muon decay, both the radiative decay of Chap. V and the triple

electron decay of Chap. VI.

IV.2 BOSON-BOSON INTERACTIONS: SUMMARY

The last topic for consideration before we can construct
the Feynman rules needed in the sequel is a list of the
relevant interaction terms among the gauge bosons, and among
the Higgs and gauge bosons. The list to be given here will
only be to the order of perturbation theory needed in
subsequent calculations which, generally, is trilinear in the
fields.

The interactions among the gauge bosons are an integral
part of the original Weinberg-Salam model, and were given and
explained in Sec. 1I.2. These terms are independent of the
Higgs fields. Thus, to an order trilinear in the fields, we

have the interaction term of (2.2.30)%
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+ +
C(W,A,2) = (i/2)el[(A"WY-A"W")(a W -2 W) (4.2.1)
- - Hv vp
- (APWY-AYWY(a W —a W ) + (2 A -3 A ) (WPWY-wYWH))
+ + [TRR V) v K [TV v M - 4+ - +
+ +
- (i/2)gcose_ [ (z"W -Z2"W")(a W -2 W )
W - - H Vv v p
~ zPwU-z"w(a W —a W) + (3 Z -3 z )(WwW -w"w"))
+ + H v v M (TR v K - + - +
The electromagnetic interaction of the Higgs bosons was
described by (2.2.26) for the spinor Higgs field, with similar
terms following from the vector Higgs Lagrangian (2.3.4):
C(A,o,H) = -ieA% (¢ 2 ¢ -0 .3 ¢ ) (4.2.2)
- p o+ + p -
- jeA¥H o H-HoH) - ieA’(H a3 H -H aH )
- pn + + p - -—— B ++ ++ p ——

In terms of the physical field (B) and unphysical field (S) of
(2.3.16) and (2.3.15), respectively, the first two terms of

(4.2.2) become, not surprisingly,

L(A,B)

-ieA”(B a B - B aB) (4.2.3a)

1]

C(A,S) -ieA“(S_a“S+ - 8,25 . (4.2.3b)

Finally, from the spinor Higgs Lagrangian (2.2.5) and the

vector Higgs Lagrangian (2.3.4) arise interactions among the

charged Higgs, the W and the electromagnetic field:
- v K
£(W,A,¢1,Hi) = (1/72)gg a“{w_(vHH++(v/J2)¢+) (4.2.4)
+ W (v H +(v/T2)e )],
which, with the definition of the unphysical field S of
(2.3.15), becomes
C(W,A,8) = -M_eA (wW's + wh's ) (4.2.5)
s Ly W -+ +2-7 0

where (2.3.12a) was used, and (2.2.15c¢c) was used to obtain Ap
from the U(l) gauge field a . Similar interactions with the

T}

neutral gauge boson Z have been ignored, not being negded in

the sequel.
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It is important to note that there is no interaction

similar to (4.2.5) for the physical Higgs boson B+: this

interaction is a result of the gauge fixing term (2.6.8) and is
crucial for the gauge invariance of the theory, as the Feynman
diagrams of Sec. V.2 will display.

There are many more interaction terms within the gauge
theory of Chap.II than have been listed in this and the
previous section, interactions with the neutral physical Higgs
fields and, for example, interactions among neutrinos. But we
have listed all those that will be needed in what follows and
they are now to be used to construct the Feynman rules of the

theory.

IV.3 PROPAGATORS

The Feynmaﬁ rules of the theory, considered in this and the
subsequent section, comprise a consistent set of "diagrams"
representing elementary interaction processes that are pieced
together in such a way as to generate with some ease, tovthe
order of perturbation theory required, the exact interaction
terms needed for a specific process involving given initial and
final particle states. The diagrams consist of two basic
types: propagators, so called, which are essentially Green

functions for the virtual motion of a particle from one space-
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time event to another, and vertices, which represent specific
interaction terms when three or more particles are involved at,
either entering or leaving, some evént.

This section will list the various propagators required.
There is absolutely nothing new in this -- a standard technique
since the incéption of modern quantum electrodynamics more than
thirty years ago -— but by calculating them all according to a
definite'scheme we can be assured that the relative signs among
them will be correct. Since a common phase factor for them is
irrelevant we need not be concerned here, nor in the next
section, about whether the signs obtained are the same as those
listed elsewhere. For the propagators they will be, for the
vertices they will not.

Propagators are considered in detail in, for example,
Bjorken and Drell (1964, 1965), Itzykson and Zuber (1980) and
Cheng and Li (1984). It is extremely quick and convenient to
use the procedure developed in the last work cited: a
propagator is i times thé Fourier transform of the inverse of
the differential operator obtained from the kinetic part of the

free field Lagrangian. If, for example,

L(free) = % ¢i(x) Aij(x) ¢j(x) s (4.3.1)

where the factor % appears only for real scalar and real vector

fields, one then defines

s.. &8 (x-y) (4.3.2)
ik

A, (%) A (x-y)
iJ Jk
and

AN (x) = (2m) ¢ fdtk e IR Ty (4.3.3)
1J 1)
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and then the propagator is said to be.

in

(k) =i A, (k) , (4.3.4)
1

-
1)
where k is to be interpreted as the particle’s 4-momentum.

For a scalar field ¢ we have

C(free) = za ¢3¢ - m"¢° (4.3.5)
T}
1 2 2
= —5¢(a + m )¢ + surface term
and
S(a? + m?)(2m Yfdtk e METONY) 4Ty o s (x-y) . (4.3.8)
from which we obtain
~(-k% + m°) A Y(k) =1, (4.3.7)

because of the representation of the delta function

4 a —-ikx

s (x) = (2mw) fa'k e , (4.3.8)

so the propagator for a real or complex scalar field (the

factor % in (4.3.5) is irrelevant) is

a(k) = i/(k® - m°) , (4.3.9)
as is listed invevery textbook on quantum field theory.
For the spinor field we have
C(free) = @(ia - m)¥ | (4.3.10)
so that

—ik'(x"}') A_l(k) = 84(x_y) (4.3.11)

—-ik - (x-y)

(ia-m) (2w) " fd*k e
= (2w) ‘fd*k e (k-m) A ' (k) ,

. 1 . .
so the propagator for spin-> fermions (electrons, muons, Dirac

neutrinos, etc., but mot Majorana neutrinos -- see below) is
alk) = i/(k - m) , (4.3.12)
the standard result.

. . 1
For a massive, complex (or real, for which a factor of >
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must be added) vector field, with the important and necessary

gauge fixing term of (2.6.8) or (2.6.9), we have

X X - %
C(free) = —2F F"Y + o2 A - ¢7'aMaTa% , - (4.3.13a)
Hv M H v
where
F = 3A - 2 A (4.3.13b)
Ky H v v B

as usual, and we obtain
* -
L = A“[nuv(82+m2) + (¢ l—l)a”a"]A + surface term , (4.3.14)
v

which results in

(" (2% +m%) + (¢ '-1)a%¥a"](2m) fa'k o 1K (x7Y) A;:(k) (4.3.15)

H 4
§ § -
. (x-y)

(2w) S fatk o TROOXTV) L wv 2 2y (8_1—1)k”kV]A:;

(k)

The solution for iA_1 is the propagator a:

o (k) = -in (k*-m")""
1Y) pv
+i(e -k k (K2-m®) T[(¢ T-D)KP+(k*-n°)] '. (4.3.186)
B v
Note the limits: in the "unitary gauge" (E_l = 0) we have
a (k) = -iq (k°-0°) ' + i(k k /m°)(k%-n°) ',  (4.3.17)
[137) Rv B v
and in the massless case (photon propagator) we have
a (k) = —im (k) ' + i(1-9)k k (k%) 2, (4.3.18)
(137 Hv B v
where one can not now have £_1 = 0. The Feynman (or t’Hooft-
Feynman) gauge has § = 1, It is very useful to note that
(4.3.16) can be written
o (k) = -in (K*-m°) ' + i(k k /m°)(k°-m°) ' * (4.3.19)
By BV H v

1

- i(k k /m°) (k> -¢m°)
[TRRT)
The prescriptions used above contain no hint of the origin

of propagators and their use. They actually arise from an

integration over internal (or virtual) lines in Feynman
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diagrams, an integral that contains a vacuum expectation value
of a time-ordered - series of field operators. For example, in
the scalar field case one has (Bjorken and Drell, 1965)

Fa*k e MEF o Tre(x)9(0)] 10> (4.3.20)

a(k)

i/ (k2 - m° + ie) ,
where |0> is the vacuum state, T the time ordering operator,
and €>0 a prescription describing how the integral is to be

carried out to avoid poles in the complex t or x0~p1ane, which

arises from

o(t) = { 1, >0 (4.3.21)
0, t<0
= (2wi) ! fde %Y (o - i)Y,

and which gives meaning to the propagator as it is integrated

around its poles in the complex ko—plane.

Although the procedure (4.3.20) gives the propagator for
properly normalized fields (which destroy the particle and
create the anti-particle) the Majorana field is unique among
spinor fields —- it both creates and destroys its particle. As
a result an extra factor of 1/J2 must be added to the field’s
momentum expansion as explained in (3.3.18), so that (4.3.20)
implies that, in such a case, the Majorana fermion propagator
is

ak) = 3 i/ (k-m) , (4.3.22)

the last of the propagators that will be needed.
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Iv.4 VERTICES

While the particle propagators depend only on the particle
type (scalar, spinor, etc.) and are the same for all theories
the rules for the vertices depend totally on the specific
interactions proscribed by the theory. Indeed, in a practical
sense, the collection of vertices is the theory. There being,
it seems, no standard method of establishing the vertices the
approach to be employed here will construct the transition
amplitude directly from the interaction Lagrangian, from which
the vertices will be extracted.

For an initial state |i> and final state |f)> the complete

scattering amplitude in terms of the interaction Lagrangian CI

is (Itzykson and Zuber, 1980, Chap. 4)

<FIS|i> = ifd'x <Flec 11> = A (2w)* s‘(zpf - Sp.) (4.4.1)

iaf
where
s =1 - ifdix A (4.4.2)
(in the first approximation) is the "scattering operator"”, A
the invariant amplitude, HI = - CI is the interaction

Hamiltonian density, where |f> = |i> has been assumed, and
where the energy-momentum conserving 8§-function has been
separated out.

For example, the one vertex of spinor QED (Fig. 2) follows

from (2.1.6):

£ (eey) = e GAY . (4.4.3)
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Fig. 2: The QED vertex

The unrenormalized fields are (traditionally one replaces the
normalization constants when the transition rate or cross-

section is calculated)

—-ipex

v = fd°p e a (p) u (p) (4.4.4)
r r

(for electrons only) and

() -ikex ikex %
s [e c(“)(k) + e c(a)

for the electromagnetic field, and for the initial and final

AL = I’k € (k)] (4.4.5)

states
. X
|i> = ar(P) |0> (4.4.6)
X X
If> = a ,(P") ¢ (K) 10> ,
r (o:)
with the commutation relations
P
{a_(p), a_,(p')} = 6, 8 (p-p") (4.4.7)
r r rr

k), cF , (k)] =& , SE-#) ,

((X' ) o

[C(a)

one finds
AC2m) 8* (P +K-P) = ie(2w)* &* (P’ +K-P) (4.4.8)
()

T}

x u_, (P")¥"u_(P) € * (k)

r r .
The QED vertex V is A with the external spinors and vectors
deleted:

V(QED) = iey . (4.4.9)
7!
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This is the negative of that usually listed (in, for example,
Bjorken and Drell, 1964, App. B), but we have decreed earlier
(Sec. II.1l) that e>0, the opposite of the usual convention.
The result (4.4.9) follows for any combination of directions,
but this is not a general feature of gauge theories: the
directions do matter on occasion.

Our task is now straightforward: we must proceed
systematically through the lepton-boson and boson-boson
interactions listed in the first two sections of this chapter
to extract the vertices as was done above for quantum

electrodynamics.

Fig. 3: The charged lepton-Z vertex

The charged lepton(R)-Z boson interaction is contained in

(4.1.1):

. 2 - 1 2 ., 2 - .
cI(RRZ) ZQ[G51n eW LT ZA 5G(cos oy sin ew)£Z+Z£] (4.4.10)

5,(Gsin®e RZ& - 3G 2ZZ )

1t

The Z boson can be written exactly as was the photon in (4.4.5)

and exactly as above one finds the vertex to be (Fig. 3)
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Fig. 4: Charged lepton—-neutrino-W vertices

V(RRZ) = i6¥ (sine - %) (4.4.11)
for all directions.
The charged lepton(Q)-Majorana neutrino(x)-W boson

i

interaction is described by the first term of (4.1.1):

= x + 8 ) .4.
L) = 5 gU (T W A+ AT W _x.) (4.4.12)

2
Unforunately, this is somewhat complicated by the phase
ambiguity in (3.3.18), as n, = +1. For cases (a)-(d) in Fig. 4

one finds

V(AxW) = igl, ¥ & , (4.4.13)
i p -

with the same, times o for cases (e)-(h) in Fig. 4. 1In p

decay diagrams (a) and (d) of Fig. 4 are needed, which have no
+ .

n, factor, while for p decay diagrams (e) and (h) are needed,

with two such factors, but which results in (ni)25+1. Thus the
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factor causes no particular difficulty.

The last interaction described in (4.1.1) or (4.1.2) is the
x—Z interaction, but as it will not be needed in what follows
it will not be considered further.

The lepton-Higgs boson interactions were given in (4.1.3)
to (4.1.6). The interactions with the neutral Higgs particle
are not of major importance here and so will not be pursued
beyond (4.1.7). However, the interactions with the charged

Higgs bosons —-— the unphysical S+, the physical B+ and the

doubly charged H++ —-— are crucial for the theory. Here the
sequence of events makes a difference: the vertices for an

initial electron and final neutrino are not the same as those

for as initial neutrino and final electron.

Fig. 5: Charged lepton—neutrino-charged Higgs vertices

For the unphysical Higgs particle we use (4.1.4):
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CI(QxS) = _(g/Mw)ZiRUik[xi(MQZ+—miZ—)S+R (4.4.14)
+ % - ,
LM T -m ¥ )8 x,. ],
where, again, Mll and mi are the charged lepton and neutrino

masses, respectively. The first term of (4.4.14) gives

diagrams (a) and (b) of Fig. 5, and one has
V(R +x8) = —1(g/MW)UiQ(MRZ+_miZ—) (4.4.15)
(with the factor n. if Fig. 5(b) is being used), and similarly,

the second term of (4.4.14) gives diagrams (é) and (d) of Fig.

5, with
V(x+2 S) = —l(g/MW)UiQ(MRZ——miE+) (4.4.186)
(with . again, for Fig. 5(d)), where the momentum expansion
—'ko i * *
o = [k (e K a4 (1) + X a, (k) , (4.4.17)

X
with ¢+=¢_, is used for all charged scalar fields.
For the physical Higgs boson we use (4.1.5):
= < + &,
CI(ka) (g/Mw)ZiRUiR[xi(MntaneZ+ micoteZ_)B+Q (4.4.18)
+ (M taneS +m, cotes )B x. ]
L - 1 S |

Figure 5 can be used for B+ as readily as for S+. The first

term of (4.4.18) gives diagrams (a) and (b) of Fig. 5 and the

vertex
TaxB) = i + 4.
V(2 <xB) 1(g/Mw)UiR(MRtaneZ+ micoteZ_) (4.4.19)
(with a factor n, for diagram (b)) and the second term of
(4.4.18) gives diagrams (c) and (d) and the vertex
V(x+2 B) = 1(g/MW)Ui£(M£taneZ_ + micoteZ+) (4.4.20)
(with a factor n, for diagram (d)).

We will also need the lepton—-doubly charged Higgs vertices,

the interaction being given by (4.1.6):
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Fig. 6: The charged lepton—-doubly charged Higgs vertex
The vertex is (Fig. 6)
V(RiRJHti) = 1I281j2t s (4.4.22)

where Z+ is used if an H_  is destroyed (or H++ created) and z

is used if an H__ is created (or H++ destroyed) as (4.4.21)

indicates.

This completes the list of relevant lepton vertices -- that
is, those that will be needed in the calculation of muon decay
-— and we must now list the rather more complicated triple-—
boson vertices.

The coupling between the W+ gauge bosons and the
electromagnetic field A is given in the first term of (4.2.1):

+ +
C_(WWA) = ~ie[(AMWY-A"W)(a W -2 W) (4.4.23)
I 2 - - BV v oM
- (AMWY-AYWY (o W —a W ) + (2 A -a A ) (w'wU-w"wh)
+ + R v v M H Vv v B -+ - +
The case of a W_, for example, radiating a photon would be
described by

Moo opd®k XX Ko Mo (4.4.248)

>
H

w' o= pd®p e TP a (p) EY(p) (4.4.24b)
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X ip’ e b 3
wh o= Wt o= fdsp’ elp X a_(p') E“(p') . (4.4.24c¢)

where ¢ and E are polarization vectors, and states

Ji>

a¥(P) 0> (4.4.25a)

[£>

a¥(p) F(x) |05, (4.4.25b)

(ignoring polarization indices) and all this, when put into

(4.4.1) results in
(2m* 8* (P +K-P)A = -Lie(2m s (k+P' -P)e*(0)EP (P)EV(P") (4.4.26)

BV Vv _§B H_ v v

§8§ -8 68 P’ -P’ + (8§ 8§ -8
><[(°(B uB)(pﬂw vﬂp‘l) (ux «
H v v H
+ (8§.8 -8§_68
( BY BY

Ty
P -P
81)( H“BV V“Bu)

J(Km -Kq )]
H xv vV o

When the polarization vectors are dropped, the WWA vertex is

obtained:

V(WWA) = _ie[(P;+P«)ﬂBV + (KB—Pb)naV + (_PY_Kﬂ)ﬂ«B] , (4.4.27)
where, as in Fig. 7, the momenta are positive in the directions
indicated. This result is in agreement with Cheng and Li
(1984, App. B). The WWZ vertex, described by the second term
of (4.2.1), is virtually identical (Fig. 7):

V(WWZ) = igcosew[(Pa+Pa)n + (KB—PB)nGY + (—PY—KY)“GB](4.4‘28)

BY
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Fig. 8: The charged Higgs—-photon vertex

The charged Higgs—-electromagnetic coupling is given by
(4.2.3) as
C_(AB) = -ieA™(B a B -B a3 B ) (4.4.29)
I -p o+ o+ -
for the physical Higgs field, and
c_(AS) = -ieA”(s a s -5 a8 ) (4.4.30)
I - u + + -
for the unphysical Higgs field. With the field B being given

as in (4.4.17) and the electromagnetic field as in (4.4.5) we

have

b
a (P) 0> (4.4.31a)

1"

[i>

"

X X
a_(P’) c

| £> ()

(K) 10> , (4.4.31b)
and one obtains

(2m)* 8* (P +K-P)A = ie(2w)” 8 (P' +K-P) e? , (K) (P;+P“), (4.4.32)

so the vertex, for the directions of Fig. 8, is
V(AB) = ie (P" + P ) , (4.4.33)
M B
and the same applies to the S field:

V(AS) = ie (P" + P ) . (4.4.34)
K K



Fig. 9: The W-A-S vertex

Finally, for the W-A-S vertex (Fig. 9) described by (4.2.5)

C_(WAS) = —-eM. A (w's + whs ) , (4.4.35)
I TR + -

W
we have, simply,
V(WAS) = —-ieM q ) (4.4.36)
W pv
regardless of momentum direction.
The vertices calculated here that are relevant for muon
decay are collected and displayed in App. G.

Now, finally, the task of exploring the implications of our

gauge theory for muon decay can begin.



80

Iv.5 CHANGES TO WEINBERG-SALAM MODEL AND THE HADRONIC SECTOR

It is important to know to what extent the modifications to
the original Weinberg-Salam theory introduced above change the
theory’s predictions. With the Feynman rules of the previous
two sections we are in a position to answer this question, in

so far as we are able to estimate the many unknown parameters

in the changes brought about by the iso-vector Higgs field.

As an example we will consider the reaction 2e -+ 2u which
can. happen in a number of ways (Fig. 10). Diagram (a) is
possible in the Weinberg-Salam theory, while (b) and (c¢) are
only made possible by the changes to the theory made earlier.

In Fig. 10, ¢

o and H+ stand for neutral and singly charged
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Higgs pérticles, whether physical or unphysical.
The basic amplitude from QED for Fig. 10(a) with the

intermediate ¥ is, ignoring phases,
A(2e+¥+2p) ~ (e2/9°) (v ¥ u )(u ¥"v ) . (4.5.1)
e v € [} 7}
From (4.4.11), the Z’s contribution is

A(2e4Z+42p) ~ [Gz/(qz—Mz)] [; ¥ (sinze - %Z Ju ] (4.5.2)
Z e v - e

W
x [auxv(sinzew - 32_)v“] .
which is comparable to (4.5.1) only at very high energies, such

as q2 ~ MZ, or higher.

The neutral Higgs contribution is, from (4.1.7),

A(2erd +2p) ~ [BeBp/(qz—Mi)] vEu, u v (4.5.3)

and as

BB =g mM /M ~10 °g° , (4.5.4)
e pn e p W

this is seen to be quite negligible at all energies.

The first new term arises from Fig. 10(b), which for the W

is, from (4.4.12),

q9 2 2 -
~ U
A(2e+Wx+2u) Zijfd kg U U, &g UJ,IUJ,2 vez+x“( 1 )z+yvvLl
p.~k-m,
1
( oM \( s ) a =¥ ( 1 )z+x u_ (4.5.5)
AL L ok -m ) T C

which is totally negligible because, not only are there two W

propagators, at least two of (U, _ U, _U,
il 12 jl

to be small, being off-diagonal. For the Higgs particles one

sz) would be expected

has g = g(MQ/MW)’ where M!1 is a lepton mass, but in general the
amplitudes would be expected to be comparable to that for the W
particle because unphysical Higgs particles are needed to keep

the overall result gauge invariant. After all, Fig. 10(b) is a
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fourth order process, while (a) and (c) are of second order.

For Fig. 10(c) we have, from {(4.4.21),

2 2 .2 - = :
A(Ze»HttaZp) ~ [(812) /(k —MH)] ve2+v“ vez_v“ (4.5.6)
and, in a speculative and probably generous approximation to be

made and discussed later, we imagine the Yukawa coupling

constants to be comparable, so Bij ~ Bi = g(MR/MW)’ in which
case this is of order (meM /M;) ~ 10—8 times the amplitude for
H

the Z particle, assuming MH ~ MW,Z'

Thus in this example, and others, the new effects
introduced-along with the vector Higgs fields are comparable to
the effects induced by the original Higgs particles, which is
to say, very small indeed.

The hadronic sector cannot be totally ignored here as it
might bear on weak interaction processes that are related to

those of this thesis, particularly the p + 3e decay of Chap.

VI. Its primary connection to the Weinberg-Salam model is
through the SU(2) spinor or doublet Qq = (3)L = Z_(z), and

singlets uR = Z+u, dR’ where the u and d quarks have electric
charges qu=§e and qd=—%e, analogous to the electron family’s
Z_(:)E(:)L, eR. Their weak hypercharges, according to the rule

(2.2.11), are Y(Qq)=§, Y(u )=§ and Y(dR) =-2,  The quarks’

R
interaction with the Higgs sector is through the Yukawa
coupling

C(Yuk-q) = -B (¢ £ &d + dT &*'Q ) (4.5.7)
d q + - q

- B (I & u + ux & *® ) ,
u o+ - q
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P
with & and & = ic,® as in Sec. II.2, III.2. Because of the
quarks’ fractional hypercharge there can be no Yukawa coupling

with the vector Higgs field ﬁ. Thus the only quark-Higgs
coupling follows from (4.5.7), which, expanded in terms of the

basic fields, is

C(Yuk-q) = —Bd(v/JZ)&d - su(v/JZ)Gu (4.5.8)
- - - - X
- B,(uE ¢ d + dT ¢ u + dT ¢,d + dE_¢,d)
—_ * - — —_
- Bu(u2+¢ou + u2_¢0u - d2+¢_u - u2_¢+d)

Thus the quark masses are

m, =B, v/JI2, m =8 v/J2, (4.5.9)
d d u u

so that
B, g~ ¢ (mﬁ,d / T2M) (4.5.10)
and the rest of (4.5.8) is used for the quark couplings to the
physical and unphysical Higgs fields, and, through them, to the
lepton sector.
Thus the quarks are coupled to all of the Higgs fields
vexcept the doubly charged field H++. These interactions will

be utilized later (Chap. VI) when the question of processes

similar to p + 3e is considered.
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V. THE DECAY p +» e ¥

V.1 RADIATIVE DECAYS IN GENERAL

A gomplete list of the Feynman diagrams allowed by the
gauge theory investigated here with one muon in the initial
state and an electron and a photon in the final state would be
rather lengthy. The diagrams would be of diverse magnitudes

(because, for example, M >> me), and, indeed, many would
H

diverge, a characteristic of perturbation methods in quantum
field theory. All divergent diagrams must, however, cancel
because of the gauge theory’s guaranteed renormalizability
(Ityzkson and Zuber, 1980, Chap. 8; Cheng and Li, 1984, Chap.
6). In the particular case of a radiative transition it is
fortunately possible to extract those finite terms, all of the
same order of magnitude, rather directly, without bothering at
all with the multitude of terms that become ultimately
irrelevant (Nieves, 1982; Cheng and Li, 1984, Sec. 13.3).

The electromagnetic transition amplitude for p + ey (Fig.

11) must have the form

" )

where € is the polarization vector of the photon of 4-momentum

A (a) u (p") J u (p) (5.1.1)
e v M

q (q2=0 for real photons) and polarization « (=1,2), and where
the operator or multivector J (App. B) is unknown. As the

v
electromagnetic interaction for an electric current j is j-A

the current has the form
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oY

p’

g =aj =20, (6.1.3)
or, in momentum space
q+j = 0 , : (56.1.4)

requires that J have the form
v

J = + a' + b + b 5.1.5
L, -9 (a+ a’y,) aA¥ (b + b'¥) ( )
since a real photon satisfies q2 = 0 and
v 1
€+q = € q =0 = 3(eq + q€) , (5.1.6)

v

where the vector products described in App. B have been
employed. The result (5.1.6) makes the first term of (5.1.5)

unnecessary. Thus the transition amplitude has the form

" )

In what follows the electron’s mass will be ignored because

A (@) u (") afA¥ (a +by) u (p) . (5.1.7)

M >>m .
T} e

The basis spinors satisfy

i

p u (p) M u (p) (5.1.8a)
M LRV

14

H

P ue(p') m_ ue(p') ) (5.1.8b)
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and as
¥ (aA¥ ) = (aA¥ ) ¥ (5.1.9)

we need only look for the general form, with or without a ¥

€’ u (p") aA¥ u (p) = u qMAeu = u qeu . (5.1.10)
e vV M e T e u

This has a number of equivalent forms, using q = p-p' and

(56.1.8)
U Qq€u = u peu - m u €u (5.1.11)
e K e H e e p
= —u €qu = u €ep'u - M u €u R
e m T He u
and as
peE = —-€p + 2p-€ (56.1.12)
we have
U QEu = (2p+€) uu + oo (5.1.13)
e " e p

LN u + )
(2p' <€) ueuu )

where the dropped terms, such as the aeeu terms of (5.1.11),
T}

have either the wrong structure for a radiative transition or
are negligible (if a factor me appears).

To summarize, all terms in the transition amplitudes to
follow except those that contain one of the equivalent forms
u qe(a+by_)u ~ u pe(a+by_)u (5.1.14)

e SR e SR
~ u_ep’ (a+b¥, )u ~ (2p-€)u_(a+by,d)u ~ (2p' -€)u_(a+by, )u
e W e M e n

are to be ignored as having the wrong structure for an
electromagnetic transition. This short list will be a
considerable aid in simplifying the complex diagrams to follow.
It is especially gratifying to discover that no divergent term

has one of the wanted forms.
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V.2 THE DIAGRAMS AND AMPLITUDES FOR THE DECAY p + e ¥

It is appropriate now to consider and list the five Feynman
diagrams that are responsible for the radiative decays of muons
as permitted by the SU(2)xU(1l) gauge theory outlined to this
point. The propagators and vertices of the previous chapter
provide for an unaﬁbiguous translation from these diagrams to
their mathematical representation.

The W propagator is rather complex and it will help to

first redefine it, given in (4.3.19), by factoring out the i:

-ia (k)

. 2 2 2, 2 2
" ‘1{ﬂ“v/(k “Mw) - k”kv/[Mw(k _MW)]

2, 2 2
+ kpkv/[MW(k "CMW)]}

i

—i[al(k) + Az(k) + Aa(k)] (56.2.1)
Hv
The amplitude for Fig. 12 (or Diag. W) is, from the Feynman

rules of Chap. IV,

A(W) = 5, u_(p')(U, igy T )(_1sz i \(U igy 5 )u (p)
I(2w) il ( (p—k)—mi) 12 7 v =" w
x (=i)a"P(k-q) (-1)a"Y(k) (-iee’r ) , (5.2.2)
Aop
where
FXOP = (—q_k)p“XG + £k_(_k+q)]xﬂop + [(‘k+Q)‘(_Q)]oﬂxp (5.2.3)

arises from the W-W-A vertex, Eq. (4.4.27), where i=1=
electron, i=2= muon have been used, and where the other
vertices and propagators are as given in Sec. IV.3 and 1V.4.

The momentum and other symbols employed in A(W) are given in
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the appropriate place in Fig. 12. The integration is over the

W_ loop: as the 4-momentum k is undetermined by energy—-momentum

conservation (which guarantees only p = p’+q) all values of the

W momentum make a contribution (Bjorken and Drell, 1964, App.

B).

The amplitude for Fig. 13 (Diag. S) is

A(S) = 5, u L") (m £ -m .= )/ __lrzi
J(zw) (Mw 117"e ' +)((p—k)—mi)

x(:;guiz(mpz+—miz_v u“(p)( i)

(k—q)%—tM;)(k2~€M;/

x ie [k + (k-a)] ™, (5.2.4)

where the vertices (4.4.15), (4.4.16) and (4.4.34) have been
used, as has the mass M; = £M; of (2.6.10) for the scalar field

propagator, given in (4.3.9).

The amplitude for Fig. 14 (Diag. WS) is
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S, 27 ~@

N
/ k-(qlass_

N\

H— > ! S>— ‘ > : e

A(WS) = Z.' 'k u (p") __gU (m I -m. X ? s i
I(Z«) © (M e- i ((p—k)—m. )
W i
x (U, igy = )u (p)( i )(—i>a”°<k)
v H (k-q)° ~¢M
%)
. b
x (_leMWﬂox) € (5.2.5)

where the one new vertex, Eq. (4.4.35), has been employed.

The amplitude for Fig. 15 (Diag. SW) is, similarly,

A(SW) = 3. J

(2v)

ue(p )(U 1gvuz )( i ) (5.2.6)
(pk)m

(:;gu Mz -m 3 ))u (p)(_______>< 1) 7" (k-q)
M k -¢M

W

x (—ieMw ﬂox) GX
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J
q
(A)
S -~~~
Tk D)
/
/ c-q X WV-
- N ! L) -
o A e

Tf/
T
x
N/
<

Finally, the decay mediated by the physical Higgs boson (B)

is, from Fig. 16 (Diag. B),

A(B) Zij d4k4 ﬁe(p')(igUil(meZ_tane+miZ+cotev ( 1, i )
(

_k —_
21r) Mw (p )mi

X

2 2 2 2
My (k-q)"-M_ MZ
x ie [k+(k-a)] e, (5.2.7)

(_i_gUiz(MuZ+tane+miZ_cote)) u (p) ( i )(k i )

where the vertices of (4.4.19), (4.4.20) and (4.4.33) have been

used.
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V.3 EVALUATION OF THE AMPLITUDES FOR p + e ¥

The five integrals of the previous section, in their
present form, pose a rather formidable mathematical problem.
It is fortunately possible to considerably feduce their
complexity by the appropriate use of approximations, such as
mi,me << M” <K MW’MB’ and by keeping only the lowest possible

order of the neutrino masses.

The neutrino propagator (p—mi)“1 is approximated by

=1

1/(p-m) (p+m)/(p>-m°) = [(p+m)/p°] (1 - m°/p°) (5.3.

2 2 2 q 3 q
=p/p +m/p + mp/p +m/p + -
and only the first non-vanishing term will be kept.

From A(W) (Eq. (5.2.2)) we have a factor (using p-k -+ p)

¥ Z (p/p> + m./p° + mop/p® + mi/p* + +e)y T . (5.3.
11 i2 i i i v -

Z U
The first term vanishes because U is an orthogonal matrix:
Zi UiIUiZ = 8§, = 0 ; (5.3.
the second vanishes because
ImYy T =m ¥y X =0. (5.3.
- 1 v - 1 v + -

The next term -— the first non-vanishing one —-- reduces the

factor (5.3.2) tb, approximately,
q
. 5.3.
ZlUll io™ Z ¥ Y, / P (

Similarly, the factor
2 2 q
— + + + ecee M - 5.3.
ZiUilUiz(meZ_ miZ+)[(p mi)/p m.p/pP 1¢( u2+ miZ_)(
in A(S) from (5.2.4) becomes (setting me = 0: there would be

m m, term anyway)
e i
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2. U

2 2
iUi1Vi0mi 5, (P7M D /p0

the factor

inil

in A(WS) from (5.2.5) becomes
2 2
the factor

2 4q
2,94 122+¥ [(p+m, )/p tmop/p 4 ~--](M“Z+—miz_)

in A(SW) from (5.2.6) becomes

2.U m z, x (-1/p% + M“p/p4) ;

i il 12
and, finally, the factor

1

x(M £ tane + m, 3 cote)
p + 1 -

in A(B) from (5.2.7) becomes

2 2 2 2
in11U12m12+ (M“/p + p cot e/ p )

The amplitudes are now

A(W) = ~i® g Z U, 1U ol Jd ku Z ¥ gp—kz ¥ u
<2w> T M-t Y
“P(k-a)a" (k) €T

rop
A(s) = +i® g° zl 11U12m§ Id4k£ez+(P"k_Zu)u
(2 M7 (p=k)
x 2k €
(k2_gM2)[(k_q)2_£M;]
2 4 . —
A(WS) = +i° (g ) 21 11 2m1 Id kue2+wvu“
x Avo(k) €

(p=k)" [(k-a)"~¢M ]

U 2(m S -m.% )[(p+m,)/p° + mop/p° + +ee]T ¥

2 2 a
+ + +
Z,UilUiz(meZ_tane miZ+cote)[(p mi)/p mip/p

(6.3.7)

(6.3.8)

(56.3.9)

(56.3.

(6.3.

+ e

(6.3.

(5.3.

(5.3.

(5.3.

(56.3.

10)

11)

12)

13)

14)

15)

16)


http://j_.UU.rn2

a3

M (p-k)
A(SW) = ~-i° g Z a* ku 2 ¥ n u
T itz ((p iRt "
x o’ (k- € (5.3.17)
(k*-eM)  °
A(B) =

+i6 g2e —Zl 11 i2 mljd ku p ( + (p—k)cotze)u
9 2 2

(2m) Mz (p- K7 (p-k) g

x 2 k-€ . (5.3.18)

2 2 2 2
(K*-M2) [ (k=) " -7 ]

Further reduction of the integrands, and the actual
integrations, are much too lengthy to display here, and so have

been relegated to App. E. With the notations

S, fe U U . mn)(ix® M |(u T qcu) , (5.3.19)
Yz(zm® ! 12m1)(;r o) (emsn,

£(¢) = (1n £)/(£-1) (5.3.20a)
g(¢) = (¢ 1n €)/(¢-1)% - 1/(¢-1) , (5.3.20b)

following Cheng and Li (1984, Sec. 13.3), the final results for

the amplitudes are

A(W) = A[1/4 - £(&)/12 + g(&)/2] (5.3.21a)
A(S) = A(-5/12%) ~ (5.3.21b)
A(WS) = ; A[5/68 - £(&) + g(£)/3] (5.3.21c)
A(SW) = = A[5/6¢ +4f(£)/3 - Tg(£)/3] (5.3.21d)
A(B) = ; A (Mo/M2)(1 + ; cot®e) (5.3.21e)
with the sum
ACusey) = > Al7 + (Mo/MO) (1 + ¢ cot o)) , (5.3.22)

which is independent of the gauge parameter §{ as it must be.
This result, with the omission of the last term which is not
present in the case of purely Dirac neutrinos, is almost

identical to Cheng and Li’s result (1984, Sec. 13.3) (ours
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contains the spinor amplitude that Cheng and Li seem to have
inadvertantly dropped). Thus, with the exception of the terms
that depend on the physical, charged Higgs boson B, the decay u
+ ey is indifferent to the neutrino type —- factors of (g/J'Z)2

in the coupling of the Dirac neutrinos to the charged leptons
and the bosons become a factor % in the Majorana neutrino

propagator. But with the charged Higgs particles and the
potential for cote to be large (or more accurately, for\micote
to be independent of neutrino mass) the radiative decay rate of
the muon has the potential of becoming significantly enhanced

in the case of the vector Higgs field. This is discussed in

Chap. VII.

V.4 _THE DECAY RATE FOR p = e Y

Standard techniques can now be emplpyed to calculate the
transition rate for the decay p + e¥ from the invariant
amplitude A(p-ey) of the previous section (Bjorken and Drell,
1964, App. B; Ityzkson and Zuber, 1980, App. A3).

The transition rate is

T(usey) = IIA(u+e¥)I2 a®qa  Te a%p’ (2m)*s*(p-q-p') (5.4.1)
(2m)°2q, p) (2m)°

which has the meaning of the probability of decay per unit time

per particle, or ' = 1/+, where + is the particle’s (the
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muon’s) mean lifetime for this decay mode. With (5.4.2)
2 2 2M 1 2 2, 2 1 2
= e e + -
C —ge (3.0, U m)|m _uzlz + (M/MOH(1 + Zeotve)]
2(2w) M
W
we have, from (5.3.22)
2 2 -~ . 2
[A(psey) | = C |u (P')Z qeu (p)| . (5.4.3)
e + [T

One must now average over the initial muon spin and sum over

the final electron and photon spins (designated by zspins

One thereby obtains
= 1 2 - 2 -
= C .4.4
2 5 Zspinslue2+q€u“| (5 a)

and with (Bjorken and Drell, 1964, Chap. 7)

. |A(usey)|? =
spins

[T} v _ _ kv
Zu G(“) G(“) = -q (5.4.4b)

we have

2
5.4.5
zspinsluez+q€uu| ( )

= - 4s(Z q¥ >(1+p/M )¥ qF %(1+p'/m )]
. Tt [TUERE VIR e
=2 (p+q) (p'+q) / (m M) ,
€ p
which is evaluated in App. E and where (App. B) 4S[eee]=Tr[e«-]

(in the notation of the matrix representation of the Dirac

algebra). We now have

m
F(p-ey) = c® e d°q &°p’ (p+q) (p' +q) & (p-q-p’) . (5.4.8)

2 r
meMp(Z") 2q, p;

Since
q2 = (P—P')2 =0 =M - 2p.p’' + m- = M - 2p-p’ (5.4.7)
98 e M
we_have
p-q = ps(p-p') = > Mi (56.4.8a)
' 1,2
P’ +q = p' «(p-p') = Mp ’ (5.4.8b)

so that
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F'(p-sey) = Jd q d° p 8" (p-q-p') . (5.4.9)
4(211) 2q0

As the integral has the value = (App. E) we have
2

F'(u+ey) = ¢ M° / 16« . (5.4.10)
T

To compare with the usual rate for muon decay (Cheng and

Li, 1984, Sec. 13.3)
r(usevy) = G; M° /192« , (5.4.11)
[T}

where (from (2.2.20))

G, / J2 = gz / (ama) , (5.4.12)
we have
T(usey) 12 « C2 (5.4.13)
T(psevy) Gc M
F p

= (3«/8w)(ZiU11Uizmi/M;)2[% + (MW/MB)2(1 + zcot®e)]?

where « = e2/4v #= 1/137 is the fine structure constant.
One can gather from (5.4.13) that the p + ey decay mode
appears to be suppressed (and is, in the case of Dirac

neutrinos, where l/MB = 0) by the (probably) extremely small

factor (mi/Mw)4 ~ 10_40, for mi ~ 10eV (assuming the U, ,» U,

values are not negligible —— they are quite unknown). But if

MB ~ Mw this is not the case, since (cote)4 is quite large.

This point, and its implications, will be discussed in detail

in Chap. VII.
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VI. THE DECAY p 4+ 3e

VI.1 THE DIAGRAMS FOR THE DECAY p -+ 3e

It so happened that the diagrams of the previous chapter
for the radiative decay of the muon were each of the same order
of magnitude in the first non-vanishing approximation, a fact
required by the gauge invariance of the theory. A possible
exception was the decay sequence p + Bx + ¥Ye (not dependent on
the arbitrary gauge parameter) because of the values of the
theory’s parameters. In this chapter the decay mode pu -+ 3e
will be considered. This decay mode, not being a radiative
transition, will result in a much greater variety of possible
decay sequences, with a correspondingly greater variety in
their relative contributions to the invariant amplitude. The
primary task, therefore, is to isolate those diagrams that
yvield the first non-vanishing approximation to the decay mode p
+ 3e.

When diagrams similar to those used in the previous chapter
are considered one observes that as the photon is "off-shell"
(or virtual, or has a 4-momentum q that satisfies q®>0) its
role can also be played by the neutral Z particle, or even by
neutral Higgs particles. Thus in Fig. 17, for example, one has
twelve separate diagrams: either a W or an unphysical, internal
S (one of each possible case, or four choices), and for each

such choice a ¥ or Z or ¢, (representing neutral Higgs
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fields) could give rise to the e -e pair.

The neutral Higgs coupling to the electron is proportional

to me (as in Eq. (2.2.7) and (2.2.14)), and they are in all

cases much, much smaller than ¥-e couplings, because, from
(2.2.14) and (2.2.17a),
B ~m /v ~¢g{(m /M) ~e (m /M) (6.1.1)
e e e W e W
that is, of order (me/Mw) ~ 10._5 times smaller, even without

taking into account the (probably) heavy mass of the neutral
Higgs particle.

Further, at the energies involved here (~Mu), the photon
propagator (~1/q2 ~ l/Mi) is very much greater in magnitude
than that of the Z-particle (propagator ~ l/M;). Thus one
should also ignore the possible replacement of a virtual photon
with a virtual Z.

Thé detailed calculation of the four Feynman diagrams of
Fig. 17 will be done in the next section (and App. F), but we

quote here their combined order of magnitude:

A(W,S) ~ g°e® (ZiUilUizmi)/(M;qz) X (6.1.2)
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Fig. 18: Contribution of B to the decay p + 3e

I+

L > o > e

Fig. 19: A 2x Feynman diagram for the decay p -+ 3e

The physical Higgs particle B (Fig. 18) will be shown to

make the contribution

2 2
A(B) g e (ZlUllU 2

which is (possibly) of the same order of magnitude of (6.1.2)

222
)

m cot? e) MZ /(M B , (6.1.3)

because of the cotze factor.
There remain two further diagrams to consider. First, in
Fig 19, is a diagram that involves two internal Majorana

neutrinos. Its amplitude is, roughly,

4 2 2 2 4 2 ‘
~ ) 6.1.4
A(2B,2x) g (ZiUilUizmicot e) /(MWMB) ( )
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H-.-
p-p’

Fig. 20: Contribution of H+ to the decay p + 3e

R oy
‘1

y
.n:f’
D

i+

which, compared to A(B) is (as q2 ~ Mz)
T}

A(2B,2x)/A(B) ~ (S,U, U, m?cotze)/M; < 1 (6.1.5)

1i2

because a generous value for micote is of the order of a lepton

mass.
Finally, there is the diagram of Fig. 20 which involves the
doubly charged Higgs particle, a contribution that follows from
the interaction term (4.1.6) which is neutrino independent.
This isn’t even a loop diagram and is therefore readily written

down. 1Its amplitude is, roughly, assuming MH>>M ,
13

A(H ) ~B B /M (6.1.6)
-- 11 12 H
so that
2 2
M
A(H) N B11812 MW B . (6.1.7)
A(B) M; gzez(micote)2

From (4.1.8) follows

m,cote ~ (v_B..) (v/v_ ) = vB, . (6.1.8)
i H ij H 1)
and as gzv2 ~ M;, we have
A(H)/A(B) ~ M;/(ezM;) , (6.1.9)

which could have any value because the Higgs boson masses are

unknown.
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Thus we see that any one of three diagrams -- Figs.
17,18,20 ~- could make the largest contribution to the decay p
+ 3e. Because the masses mi, MB, MH and the parameter cote are

unknown there is no way of deciding which makes the greatest
contribution: there is even the possibility that they are all
of the same order of magnitude. Unfortunately, there are
divergences involved in the integrals associated with these
diagrams which have to be carefully handled, a task to which we

now turn our attention.

VI.2 EVALUATION OF THE AMPLITUDES FOR p -+ 3e

We begin the detailed evaluation of the amplitudes for the
decay p -+ 3e by considering the role played by the physical
Higgs boson B. The reason for this is that divergent integrals
soon appear that have to be carefully manipulated, integrals
that appear as well in the amplitudes in which the unphysical
Higgs boson S plays an important role in keeping the overall
result gauge invariant.

In this section there is truly an overwhelming advantage to
be gained by selecting the Feynman-t’Hooft gauge (£ = 1), so
such a choice will not be resisted, in contrast with the
previous section where it was possible to keep § arbitrary. In

this section it is not possible to identify the relevant,
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finite contributions directly, and propagator terms like

kukv/(kz—Mz) considerably exacerbate the divergence
difficulties. The choice § = 1 eliminates such terms.

Most of the propagators and vertices for the decay sequence
of Fig. 18 were used earlier, in (5.2.7), for a contribution to
the decay p + eyY. Here, however, only the terms with cote will
be retained, reflecting the fact that cote >> 1, and that such
terms make by far the largest contribution. In this case the

amplitude for Fig. 18 is

A(B) = 5, J(d k u (p )(_gU lmiCOteZQ( 1, i )igUizmicotGZ_u“(P)

2w) MW (p-—k)—mi Mw
< i )( i )ie<2k—q> ~in>")u _(p,) (iev )v_(p")
z Z Z 2 b z e uoe
(k-q) -M_Ak -M q
B B
- (p, ¢+ p,) (6.2.1)
where the gauge parameter § = 1 has been used in the photon

propagator (4.3.18) and where the last term indicates that an

antisymmetrization over the two final identical electrons must

be performed. This expression can be rewritten
A(B) = -i®g° S U. U, micot’e [dik leZi(PTHIU (6.2.2)
e i il i2 i ) z
2(2v) w q (p—k)
u (2k- v
- g( "V - (p, #=» p,)
(k" -M )[(k a)” ]

Call the factor in front of the integral sign C. When an
integration is performed (App. F) after dimensional
regularization (d4k -+ dnk, n<4) has been imposed on the

integral, one obtains
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-~ '7\
B/—/ \\
\ -
u‘. L N ) ?
7 7,

oY
2X

k P D
P .
Fig. 21: Feynman diagram needed to renormalize Fig. 18

A(B) = C(-u = ¥ u )(u y'v ) Id«dnK K% (1-o) (6.2.3)
e + XN pu e e 2 2 2.3
(K" -(1-)M_ ]
B
i 2 = =
- ACw Mu(uez+u“)(uepve) - (p, #» p,)
6q M
B
The integral, for n = 4, is not finite. This decay sequence,

or diagram, has to be renormalized, or augmented by the diagram
of Fig. 21 in which the virtual photon emerges from the
emerging electron line. A virtual photon emerging from the
entering muon line is of order (me/M“) relative to Fig. 21
(App. F), and is therefore to be ignored.

The amplitude for Fig. 21 is

A(renorm)

. . L .
2. J(d k u (P Yiey (plm )lgUilmicoteZ+( /2 i >

2m)* -m Mw (p—k)—mi
s . . xl—l - ° [4
t .
x l:YgUizmico ex_ u“(p)(kzisz in )ue(Pz)lev“ve(p )
W B
= (p, ¢+ p,) (6.2.4)

with only the highest order terms kept, as in (6.2.1), which
becomes, with C defined as in (6.2.2), and after dimensional

regularization has been imposed,

A(renorm) = C(u z,¥u )(u v o) Idad K (1-«) - (p,+=p,)
a® (k*-(1- «)M 1 (6.2.5)
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which, too, is divergent for n = 4, We now employ special
formulae from dimensional regularization (Nash, 1978, Appendix)

to evalulate (6.2.3) as

A(B) = -C u sz ¥ u u vxv (l-x)de 1 "n/z 2 (3-1-n/2)
2 e + X p e e —1-N/2
q r(3) B°
. 2 - -
C;“z Mu ueZ_Ful_1 uepve (p1 - pz) (6.2.6)
6q M
B
where B = —(l—u)M;, ' is the gamma function and (6.2.5) as
A(renorm) = _C u s ¥ u u yxv (l1~«)do in n/z F(2 n/2) (6.2.7)
e+ X p e e ]
q T(2) B

- (p, #» p,)
which exactly cancels the first term of (6.2.6). Thus the

amplitude for p » 3e via B is

A(B) = ~iCn- M u Zu upv - (p1 s pz) . (6.2.8)
quMé' p e + p e e

B

The amplitude for Fig. 22, with internal W’s, is, similar

to its p+ey diagram described in (5.2.2),

A(W) =3, f<z") u_(p,)U, igy z_( lse i )U igy = u (p)

(p- k)—m
(e Crer, ) s 5,00
(k-q) —Mw k —Mw
- (p, «» p,) (6.2.9)
in the ¢ = 1 gauge, where
T = ~(q+k) = + (2k—-q) = - (k-2q9) = . (6.2.10)
rop P RO A Op P 2O
This is easily reduced, using (5.3.5), to
- . yAv (6.2.11)
A(W) = Id k u Z ¥ (2 ) V u Xop e2 S e T (p, «»p,)
q" (p=k)® Y (k@) oMU T (KT -M)
where

¢’ = i’;gfe 5 U Ul / (2m° . (6.2.12)
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p Xy P-k P
Fig. 22: Contribution of W,S to the decay p = 3e

This integrai is evaluated in App. F. The result is, using

only the leading k2 terms in the numerator,

A(W) = —in°C’ 3u T Y u uy'v - (p. e p.) . (6.2.13)
M o2 e + X p e e 1 2
Wq
The amplitude for Fig. 22 with the second W replaced by an

S i 3 =
is (setting me 0) (6.2.14)

A(WS) Zf u (—igU. (—m.)z>( 1sp 4 )U. igy £ u
1 +|—2— -
e el 1B i
W i
. . ROy T,
x( 1 %;1n )( 1eMwn >‘)(—1112 )uelex“ve - (pl«»pz)
(k—q)*-MAk Mw q
which is evaluated (App. F) to be
_ . 2, =N
A(WS) = —%v g ue2+8xu“ uex ve - (p1 PR p2) . (6.2.15)
q Mw

The amplitude for Fig 22 with the first W replaced by an S

is

A(SW) = 3, J u JUs iy z_( 1sp i Y-igU, (M Z+-miz'v‘1
(zw) g

(p-X)-m A\ m_ *Z u
i W
. MO . . . OXoe, —
x —inq \( i )(—1eM n )(-13 u iey v - (p, e+ p_)
W 1 2
((k—q)z—M;/kz—M; ox < )¢ =° (6.2.16)

which is similarly evaluated (App. F) to be
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i 2. = - X
A(SW) 1; ;2 ueZ_‘_xxuu uex ve (p1 - p2) . (6.2.17)
W

The amplitude for Fig. 22 with both W’s replaced by S’s is

(6.2.18)
A(S) = 5, u [-igU, (-m )= )_ sz i \igl (M £ -m. £ ) u
j(zﬂ) e( il i 4((p—k)—mi M i2° p+ 1 [T}
x i Vi \ie(2k-q) [-in %\u ie¥ v - (p. ¢+ p.)
((k—q)z—M;Ak2~M;) x( q2 ) e x € 1 2

This integral diverges and must be handled exactly as was done
for the similar Higgs B particle, which is to say, it must be
considered in addition to a diagram similar to Fig 21. The

only difference is in the factors multiplying the integral, so

the result is

2 _ _
A(S =li ’ - VAN
(s) (;;2;4M“ u Eu upv - (p, ¢ p,) (6.2.19)
W

which is of order (Mi/M;) less than (6.2.13), (6.2.15) and
(6.2.17) and so is ignored.

Thus the final result for the p + 3e decay mediated by the
W with its co-requisite gauge particles, the S’s, designated
collectively as A(W), is

A(W) =(zin’C’)5u T ¥ u u ¥'V_ - (p, e+ p,) . (6.2.20)
q M p e e

Finally, the amplitude for Fig. 20 is (from (4.1.6) and

c.7))

v (p)v_(p") =
u e [u_(p, )V (pz) ue(pz)ve(p )]

(P—p')z—M; - (652.21)

A(H) = (i¥2B )(id2B )
11 12

and as (p—p')2 ~ M" <KL M2 (presumably), we have

A(H) (p)v (p") [u (p)v _(p,)- u o P2V (P ).

(6.2.22)
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As mentioned, we have no way of knowing which of the three
amplitudes (6.2.8), (6.2.20) or (6.2.22) makes the greatest
contribution to the decay p + 3e, because each contains unknown
masses. We now consider the p -+ 3e decay rates as implied by

these amplitudes.

VI.3 THE DECAY RATE FOR p -+ 3e

With the final form for the p + 3e decay amplitudes at hand
standard techniques, such as those applied in the previous
chapter, will now be used to obtain the transition rate. As we
are mainly concerned with establishing the approximate p
lifetime for this decay we will only evaluate them for each of
the three decay modes separately, and not consider the
interference effects. The reason for this is that each
amplitude has a different unknown param;ter in it (such as a
mass or Yukawa coupling constant or the parameter o).

The spinor amplitudes to be evaluated are, first, from A(W)

in (6.2.20),

2

sZ = 3

- = PN , 2
W lu (p)E ¥ u (P) u (p)¥" v (P") / q, (6.3.1)

spins

- - x , 2,2
- ue(p2)2+xxup(p) u (P )¥ v (P') / ap

where the overbar in the summation sign once again refers to an

average over the initial muon spin (a factor %, essentially)
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and where, using p = p, +p,+p’,

= p'+ p =p-p R (6.3.2)
1’2 1’2 2’1 .

from A(B) in (6.2.8),

= v - - y 2
S, =2 lu (P )z, u (P) u _(p)pv (") / q (6.3.3)

spins
- - 2 2
- ue(pz)2+u“(p) u (ppv (P") 7/ q I

and finally, from A(H) in (6.2.22),

S8 = Zapinsu(P)Ve(P') [u (p)V (p)-u_(p)v (p)11%.  (6.3.4)

The results of these rather lengthy calculations are (App. F),

using M = M, me = m in this section,
[T\

é (1/2Mm°) [(m°p-p +p-p,p, *D' +P+P' P, *P,)/(P-p, )" (6.3.5)

S
W

2 4
+ (m"pep_+p°p,P, P +p*p"' P, °p,)/(P-P,)

2 2 2 2 2
+ (m pep,*m pep,~m p+p'+2p+p'p, +p,)/(p-p,) (P-pP,) ] ,

SZ = (1/4Mm3){p~pl(2p~p'p-p2—M2p'-pz—Mzmz)/(p-pl)4 (6.3.6)
+ p-pz(2p°p'p~pl-M2p'~p1—M2m2)/(p—p2)4
- [4p'plp-p2p-p'—M2(p-p2p'-p1+p-plp'~p2+p1-p2p-p')
+M2m2(p-p'-p°pl-p~p2)}/2(p—p1)2(p*p2)2}
and,
sy = 2(l+p+p’ /mM)(p, *p,/m" -1) (6.3.7)
In the rest frame of the muon where p = Mxo, we have
p-pi = MEi (i=1,2) (6.3.8)
p.p’ = p+(p~pP,-P,) = M° - M(E +E,) ,

and P, °P, follows from
p'® = (p-p,-p,)° = m° = M +2m° -2M(E, +E,)+2p, +p, . (6.3.9)
If we now define

E,
i

1]

SMx, (i=1,2) (6.3.10)
1

and set m = 0 wherever it occurs in the numerator only, the
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spinor amplitudes squared are

2 (2—x1~x2)(x1+x2—1) + x2(1—x2)

Sw = 1 (6.3.11)
8Mm° (1-x, +m° /M°)*
N (2=x, —x,)(x +x,-1) + x (l-x )
(1-x,+m” /M*)®
2(2—x1—x2)(x1+x2—1) ’
(1—x1+m2/M2)(1—x2+m2/M2)
S xlxz(z"xl—XZi +2x;(x1—1) (6.3.12)
16m (1-x, +m" /M)
N x1x2(2~x1—x2) + xz(xz—l)
(1—x2+m2/M2)2
N (2—x1—x2)(2x1x2—x1—x2+1) + xl(xl—l) + xz(xz—l)
(1-x,+m° /M°) (1l-x,+m" /M)
and
s? = (M®/2m°)(2-x, - 1 3.13
u (M /2m ) (2-x,-x, ) (x +x,-1) . (6.3.13)

The transition rate, as in the previous chapter, is

M(us3e) = ZS1A(us3e)1® (2m)* 8" (p-p,-p,-P") (6.3.14)
d?p, _ d%p,

(2m)® E. (2m)°

a
xm_d p'

E’ (21\’)3 E

2

with the required statistical factor (%) because of the two
identical electrons in the final state. A first integration

+
over p’ (that is, over the e states) results in (App. F)

r = msj IAlz d’p, d°p, 8[(p—pl—pz)z—mz]%[1+€(p—pl-p2)]
(2w) E E, (6.3.15)

and because IAI2 depends only on E, and E, we obtain (App. F)

r= (o' M/4(2m)°] FlAl® dx, dx, (6.3.16)

1

which is exact.
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Fig. 24: Maximum and minimum electron energies

Now, the x-values vary from 0 to 1, approximately, as
indicated in Fig. 23, but it is important to be more precise so
as to avoid (6.3.11) and (6.3.12) diverging in the m + 0 limit.
One electron could be at rest (Fig. 24a) so the minimum x-value
from (6.3.10) is

x ., =2E . /M = Z2m/M , (6.3.17)
min min

and the maximum x-value is (Fig. 24b)

X =1 - 3m°/M° ' (6.3.18)
max

which follows from elementary energy—-momentum conservation
principles. From (p')2 = (p—pl—pz)2 follows
2

, M? (x,+x,) = M° + m° + 2p_-p, (6.3.19)

which gives the exact X, -X, integration region, and
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(x1+x2) = 2 - 2m/M , (6.3.20)
max
which follows from Fig. 24a with the positron at rest, and

(x,+x,) . =1+ 3n° /M, (6.3.21)

because the minimum value of P, *P is m2, when the electrons

2

are at rest relative to each other. We must now integrate

(6.3.11) over the appropriate X,~X, region.

The first two terms of (6.3.11) will give the same

integral, namely

J.l—ezd J.1—€2 dx (2—x1~x2)(x1+x2—1)+x2(1-x2)

€1 *1 l+ez2-x1 2 Z 2.2
(1—x1+m /M) (6.3.22)
where € = 2Zm/M and €, = 3m2/M2. The integral is, with x = S
1_
f€1€2dx (-2x°/3 + x°) (6.3.23)

(1—x+m2/M2)2
where the € terms from the X, integration can be ignored at

this stage. This integral is

__Zl(i-(l—xmz/mz)2 - 3(1l+m° /M®) (1l-x+m° /M%) + (l+m - /M°)° (6.3.24)
3 (1-x+m- /M°)

+ 3(1+m2/M2)1n(1—x+m2/M2ﬁ

l-€2

+(—(1—x+m2/M2) + (1+m> /M2)% + 2(1+m2/M2)1n(1—x+m2/M2))'
' (1-x+m° /M) : -

in which the dominant terms are the (1—x+m2/M2) faqtors in the
denominator evaluated at the upper limit. The value of this

integral is, approximately,
~2{1/(4n”*/M°)] + [1/(4n°/M7)] = M°/12n" . (6.3.25)

The second integral from (6.3.11) is, approximately,

J.1—-€2dxl fl dxz 2(2—x1—x2)(x1+x2—1)

6.3.26
€1 1-x1 ( )

(1—x1+m2/M2)(1—x2+m2/M2)

and its highest order term is a logarithmic term like those in
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(6.3.24), which, compared to (6.3.25), is negligible.

Thus the final value for the W-mediated decay rate is

ry(uede) = m. M |5w-C’ 1 YoM ) (6.3.27)
2% (2q)° M; 8Mm° /N 12m°
2 4 4 2 2 3
= 5 g e (3.u ) ( M )
3(212)(2“_)7 i il 12 .sz;
_ 2 2 4.3 2,2
= 5 G_. e M (iniluiZmi)

3(2)(2m)” ©  o?

where, again, GF/JZ = gz/(BM;). In comparison with the p-evy

transition rate (5.4.11) we have

Tw(p43e) i 52 e4 (Zl . 12
T{usevy) 24(211')4 2M2

2 2

) (6.3.28)

For the B-mediated decay sequence we have for the first

term of (6.3.12)
x1x2(2—x1—x2) +x1(x1—1) Il—ez x* dx (6.3.29)

J'dxldx2
6(1-x+m° /M )2

it

2 2.2
1-x_+m /M
(1-%, +m /M") €

M> / 24m° ,

-3

obtained in a fashion similar to the integral (6.3.22). The
second term will give the same result, while the third term is
negligible by comparison, as it was in the previous case, and
for the same reason.

The final form for this decay rate is then
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ry(ps3e) = n° M IszM 2( M \(2M2 \ (6.3.30)
2% (2m)° GME 16m°/\24m°/

a .7 2 2 .2

= g e M (3.0, .U, _m,cot” e)
33212(2w)7m2M;M; i il 12 i

a 7 2 2 2 .2

= e M G (2.U, U, _m cot e)
3327(2ﬂ)7m2M; F 1 i1 12 i

and in comparison to the p-+evy rate

TB(p43e) et M (3.U,.U, mz,cotze)2 (6.3.31)
M(peevs) = 3224(2w)4m2M; i il i2' 1
and the W-mediated rate
Fg(k3e)  (Meote)® (6.3.32)
ry(ue3e) — (35)My

which may indicate that the rates are comparable.
For the doubly charged Higgs particle we have the integral,

from (6.3.13),
J'dxldx2 (2—x1—x2)(x1+x2—1) = 1/12 (6.3.33)

and the decay rate becomes

5

ry(uede) = (Bi1B12)° M (6.3.34)

24 (2w)° M;

which, in comparison to the p+evv rate, is

Fatu*3e) g ima)? . (6.3.35)
r(psevy) G; M;

Having no neutrino mass or e—-parameter in it, there seems to be

no point in comparing FH with Fw or FB at this time.
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+ +
VI.4 THE CROSS-SECTIONS FOR p + X + e + X

An experiment searching for the decay p -+ 3e could
conceivably be complicated by other processes and reactions in
which muons disappear with the production of electrons,
processes that, like the p + 3e decay, violate electron and

muon number conservation. We note here two possibilities in

+
which an incoming p beam is subject to the possibility,

through physical, but virtual, charged Higgs particles, that a

+ +
i is converted to an e . It is important to establish whether
such reaction rates would be large enough to interfere with a p

+ 3e experiment.

Fig. 25: Feynman diagram for p + e =+ e + e

In Fig. 25 the doubly charged Higgs field could play this

role. The amplitude for the Feynman diagram of Fig. 25 is

a(n' e sty = B UER) Sys v(p ) Vo (PIEVin )

2 H
k™ - 6.4.1
M ( )

]

. - -
(2B,,B,,/M) v(p)Z v(p,) v“(P)Z_V(p_) ,

since M; >> k2 ~ M2. This amplitude follows from the
7
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interaction term (4.1.6):

—c _ c
= + .4.
C(Ri,lj,Htt) JZBij (Qiz—H++£j QJZ+H__Ri) (6.4.2)
and wc, from (C.7), where the first term applies to the lower

vertex in Fig. 25, and the second to the upper vertex. This is

summed and averaged over spins to become

- 2

2 4
Yepins Al = [(By,B,,) /4My] (1+4E_ /m ) (1+E_/m ) . (6.4j3)

There would be no need for the muon beam to have a high kinetic

1

energy so that E+ = E = >M . The cross-section (o) is
- 13

evaluated using standard techniques (Bjorken and Drell, 1964,
App. B) to be, assuming |3 | ~ 1,
K

o = [(B,,8,;)"/16w] (M /ML) (K°/c%) , (6.4.4)
where the last factor was put in for unit reasons. If as
before, one generously assumes

~ ~ M 3 . .
lBijl IBiI g (MQ/ w) (6.4.5)

where MR is a lepton mass (~JmeM ), one finds
W
o ~ (g°/16m) (m°M' /M3y (M /M) (K /c") (6.4.6)
e p W W H

-s56 Py 2

10 (MW/MH) .Cm ’

with a mean "scattering length" in matter of

2 =1/ne ~ 10°% 1t yr , (6.4.7)

for an electron density n ~ 1020 cm—a, MH ~ MW’ which shows

just how negligible such a reaction is.
With similar assumptions the quark induced process shown in

Fig. 26 would have the very rough amplitude (after a rather

crude loop integration)

+ + 2 >
A(p ,q+e ,q) ~ (gme/Mw)(gMu/Mw)(qu/Mw) (l/MH) (6.4.8)

from (4.5.8) and (4.5.10) where Mq is a quark mass, which, when
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compared to (6.4.1), is

2

+ + - 4+ -
AW ,qee ,q) / A(p ,e »e ,e ) ~ g (MZ/M;) <1, (6.4.9)

so that such a process would be even more negligible.

Fig. 26: Feynman diagram for u+ + d+e +d

We may conclude, then, that although the decay p -+ 3e is,
at most, very rare, other muon lepton number non-conserving
processes, such as the direct conversion of a p into an e, are
probably very much rarer by comparison, and do not mimic
processes by which one would attempt to measure the decay rate

p-v3e.
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VII. DISCUSSION AND CONCLUSIONS

It is appropriate, now, to consider the quantitative
predictions that follow from the decay rates calculated in the
previous two chapters. Unfortunately most of the parameters
that went into the model’s construction are unknown. But some,
however, cancel, and others can perhaps be estimated on the
basis of previous experimental work or on the basis of others’
work on limitations from astrophysical considerations.

From (2.3.12) one has

2 2 2 _ 2 2 2 2
Mw/(Mzcos ew) = (v +2vH)/(v +4vH) (7.1)

0
1]

Q

1 - ZV:I/V2 =1 - tanze s
and from (2.3.13) (and references mentioned there) one can

consider as experimentally established that p = 1 and vH<<v.

Current experiments are consistent with p = 1, and an estimate
of p = .985+.015 (Marshak, Riazuddin and Mohapatra, 1981) leads
to

cotze > 10° . (7.2)

An independent estimate based on astrophysical evolution
(Gelmini, Nussinov and Roncadelli, 1982; Dugan et al., 1985;
Glashow and Manohar, 1985) gives vH ~ 100 keV (which is very

rough) so that with

1/2
v = (l/JZGF) = 250 GeV (7.3)

(Cheng and Li, 1984, p. 353), we have

cote = v/I2v, ~10°% , (7.4)
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which, although a crude estimate, is a more stringent bound

than (7.2). Of course, vH = 0 is not ruled out.
As pointed out earlier, in (4.1.8), the product micote is
actually independent of VH’ and therefore of the neutrino

masses, however small:

IvB. .| , (7.5)

11

m, cote ~ |v
i

i Biil (V/vH)

because from (3.3.2b) we have

m, = |23

1) .
i Jk ijUikB ! (7.8)

skr! 7 1Byive

if, in the first approximation Uij'“.sij’ as seems likely (see
thé references before (7.3)). An assumption we will make now,
although there really is no evidence for it, is that the Yukawa
coupling constants for the iso—-spinor Higgs field and those for
the iso-vector Higgs field are of the same order of magnitude.

In such a case

IvBiil ~vB ~ M , (7.7)
1
where M is a lepton mass, say M ~ (M m ) /2. These rough
Q2 2 u e
estimates will now be applied to the decay rates calculated
earlier. It is surprising that (7.4) and (7.7) turn out to be
of the same order of magnitude.
The basic radiative decay rate for the muon is given in
(5.4.10). Ignoring, for now, the physical, charged Higgs boson

B, the rate as a fraction of the usual decay rate is, from

(56.4.13),

2
W

2

F(psWaey) = 3 « (3.U, ) (7.8)

= 1
T(p-+evv) 32w 1

2
U M
iz i/

in agreement with Cheng and Li (1984, p. 427), and with a
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neutrino mass in the 10 eV range one has

F(poWarey) ~ 6x10—

IF'(p-+evv)

44

2.2
[ZiUi Uiz(mi/IOeV) 17, (7.9)

1

an extremely small fraction that would be expected to be even
further reduced by the components of the orthogonal matrix
(IUijl <1, for all i,j), the off-diagonal elements of which
might be reasonably expected to be quite small. In the case of

two families, for example, the matrix U could be written

cose -sine (7.10)

U = R
sine cose

so the factor in (7.9) becomes

2

iUilUizmzi = cose sine (mi—mf) , (7.11)
in agreement with other work (e.g., Marshak, Riazuddin and
Mohapatra, 198l). Recent estimates do seem to indicate that e
is small (Gelmini, Nussinov and Roncadelli, 1982; Dugan et al.,
1985). Thus this decay, first calculated by Cheng and Li
(1980b), is hopelessly beyond any expectation of experimental
verification, a conclusion indifferent to the species of
neutrino employed, whether of the Dirac type employed by Cheng
and Li or the Majorana type considered here.

Let us now consider this decay using the result of the

‘Higgs particle B. Its contribution is the highest order term

from (5.4.13), the one with cote:

T(usBsey) _ o« [3.U,

Uiz(mi/MB)zcotze]2 . (7.12)
T(psevv) 96w

1

From (7.4) we immediately see that this ratio is of the order

of 10°* times the pessimistic result of Cheng and Li, provided
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that MB ~ MW' From (7.7) one obtains

I'(p+Bsey) ~ 10

I'(p+evyv)

—21 2

\ .
(Mo/Mp) - (2, U.,U0..) (7.13)

which is conceivably some 22 orders of magnitude greater than
(7.9), and not all that much different from (7.12) which was an
estimgte based on totally different assumptions. In any case
both are still about 10 to 12 orders of magnitude below current

detectability, which is (Cooper, 1978; Kinnison et al., 1982)

10

F(p+ey)/T(psevv) < 10 ~° , (7.14)
with
9

T(p+e¥y) /T (psevv) < 8x10 (7.15)
(Azuelos, 1983). Current hopes are that the ratio in (7.14)
can be reduced to about 10“12 in the relatively near future
(Weinberg, 1984; Bowen, 1985).
For the p + 3e decay we have the three illustrative rates

calculated in Chap. VI. For the decay via the W we have, from

(6.3.28),
2 2 2.2
r(p+W+3e) _ 5 (ZiUilUizmi) (7.186)

T{p+evv) 22(21r)2m2M2

29

~ 3x10 2° [S.U,. U, (m, /10eV)?]% ,
111 i2° i

1
where m and M are the electron and muon masses, respectively.
This rate should be compared with the p + ey (via W) rate of
(7.8):

F(usWs3e)  5°(2%)e W ~ 10°° . (7.17)
T(p-Waey) T 3(2w) sz2

Thus the W-mediated decay rate for the decay p + 3e looks very

much more promising than the radiative decay, but is still very



121

much (~102°) beyond the limit of experimental detectability

which is {(Korenchenko ef al., 1976; Bolton et al., 1984)

IF(p=+3e)/T(psevy) < 10 *° , (7.18)

which rate, too, is expected to improve by two more orders of
magnitude in the near future (Bertl et al., 1984; Eichler,
1984). \

For the p + 3e decay mediated by the Higgs boson B we have,

from (6.3.31),

F(u+B+3e) _ o M (ziuiluizmzicotze)2 (7.19)
F(usevv)  3°(2%)(2m? mZM;
- ~18 a 2
10 (MW/MB) (iniIUiZ)
using the approximation (7.7), or
-19 4 2.2
10 (Mw/MB) [EiUilUiz(mi/loeV) ] (7.20)

using the approximation (7.4). Thus this decay mode seems to be
about 10 or so orders of magnitude below current detectability.
As a comparison with the B-mediated decay mode we have
T(p+B+3e)/T(psBrey) = (2«/3w) (M/m)° = 60 , (7.21)
not nearly as dramatic a comparison as (7.17).
As mentioned earlier,'these rates would be expected to be

even further reduced by the factors such as Ulz. Nor can one

expect them to be much raised by relatively small values for
MB: being electrically charged, such bosons should be readily
detectable at current accelerator energies, and a lower limit
of 15 GeV or so (Adeva et al., 1982) has already been
established.

For the p+3e decay mediated by the doubly charged Higgs
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boson H we have, from (6.3.35),

[(u+Hs+3e) _(B11B12)° (7.22)
T'(psevv) - G2 M4
F H

With the approximation (7.7) we have

T(usH+3e) ~ 10'°%e* (M /M )% (M /M )° (7.23)

L° W p H
T'(p=evy)
- 10"‘1 6
1
with the generous assumptions M ~ (m M ) /2, B8 ~ B ~ B ~
9 e p 11 12

e(MR/MW)’ and MH ~ Mw. For the off-diagonal B,, we might

presume that 812 ~ 10—2811 or smaller (Glashow and Manohar,

1985), in which case (7.23) falls to 10_20, the same rough

level of the other p+3e transition rates.

Thus, overall it seems that the p + ey, p + 3e decay modes
are 10 or more orders of magnitude below current detectability,
although this 1s a considerable improvement over the 30 or so
orders of magnitude that follows without the iso-vector Higgs
fields.

It now remains to be seen whether the model described in
this thesis has anything to contribute to other processes that

are within the reach of current experimental capacity.
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APPENDIX A

NOTATION AND CONVENTIONS

Four—Vectors and Metric

Basis 4-vectors for a reference frame are generally denoted
(¢ ) (p=10,1,2,3), where ¥, is a unit timeliké 4-vector (the
51

4-velocity of an observer attached to the reference frame) and

where Vi (i = 1,2,3) are unit spacelike 4-vectors:
1, p=v=0
¥ ¥ =1 = -1, p=v=1,2,3 (A.1)
[THER V) Hv .
0’ H#v

A general 4-vector such as the 4-momentum p of a particle of

mass'm can then be written
P=PY¥ =pY (A.2)
[T}

(where the usual summation convention is employed) with

¥ ¥ = 8" (A.3)
7! K

and
p2 = pe*p = p“pu = (p9)2 - (p')2 - (p2)2 - (p%)2 =m2. (A.4)

[T}

The differential operator a with compbnents a = a/ax is
: O
defined by
a = x”a = ¥ a" . (A.5)
T M
The reader should note that the (¥ ) are not matrices. No
H

matrix representation of the Dirac algebra is used here because

the (¥ ) are given certain algebraic properties (App. B) that
[T

makes unnessary any use of matrices.
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Units
Units are employed here such that
k¥ =c=1, (A.6)
and, as is also common in field theory, the proton charge e>0
isAmeasured in rationalized units such that the fine structure

constant 1is

e2/(4wkc) = e2/(4w) = 1/137 . (A7)

x

Con,jugates

The notation (%) is employed for the complex conjugates of
complex numbers and the hermitian conjugates of Fock-space
creation and annihilation operators. The notation (*) is
reserved for a special definition of algebraic importance (App.

B).
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APPENDIX B

THE GEOMETRIC ALGEBRA: CONVENTIONS AND APPLICATIONS

Matrix representations of the Dirac and Pauli algebras can
be avoided totally if certain algebraic properties are
postulated for 4-vectors in Minkowskian space-time and 3-
vectors in ordinary Euclidean space, the~iso—space of the SU(2)
gauge transformations. This algebra -- a Clifford algebra —-

is based on the definition, given two vectors A and B ,

A B = Z(AB + BA) + Z(AB - BA) (B.1)
= AB + AAB
= B.A - BAA ,

which gives the three basic products (AB, A-B, A/\B) of the
algebra, AB and AAB being defined as well to be associative.
The "Dirac algebra" is that Clifford algebra based on 4-
dimensional space-time, while that using ordinary 3-vectors is
called the "Pauli algebra". Accounts of these algebras and
their association with spinors can be found in Hamilton
(1984a,b) and references contained therein. This summéry will
do no more than list the essentials of the subject.

The Dirac and Pauli Algebras

The Dirac algebra, assuming that real numbers only are
being used, is a 16—-dimensional vector space with a general
"multivector" M having the form

M = « (scalar) + V (4-vector) + B (bivector) (B.2)

+ ¥, U (trivector or pseudovector) + ¥, B (pseudoscalar) ,
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where «, B are {(real) scalars, V, U are 4-vectors,

B = %B“vv AY is a bivector and where
M v

¥, = Yo A, A ¥, Av, = ¥ ¥, ¥, ¥, (B.
which satisfies
¥y, = -1, (B.
where the basis 4-vectors are denoted (x“; p=0,1,2,3) as
explained in App. A.

The Pauli algebra, again assuming real coefficients and a
basis (oi) for 3—diﬁensional space, is an 8-dimensional vecto
space with a general multivector m having the form

m = « (scalar) + 3 (3—vector5 + 13 (bivector or (B.
pseudovector) + iB (pseudoscalar) ,
where
i = °1A °2A O3 ~ 0,0,0; (B.
satisfies
io, =0, 1, iz = -1 , (B.
which is why the symbol i is used here.

The Pauli algebra is a sub—-algebra of the Dirac algebra,
which is established by the identification

o, = YiA ¥y = Vixo . (B.
In this thesis, however, each algebra is used separately and
independently (the Dirac algebra for space-time, the Pauli
algebra for the SU(2) 3-vectors), so that (B.8) is really of
further interest here.

Pauli Spinors

The Pauli algebra admits but one set of projection

3)

4)

r

5)

6)

7)

8)

no
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operators (as any other would not commute with it) %(1 + 03),
o, being the conventional unit 3-vector to use here. A
suitable spinor basis would then be X, s where
1
(1 = o) X, = x, - (B.9)
One defines an operation (*) by m* = m, but with all vector
products reversed, so that ¢ . * = o., (mm,)* = m,* m *, whence
i i
i* = -i and one defines the dual spinors x+’ by
x t x = 8§ . (B.10)
r s rs
With the definition
oy X, = (B.11)
to fix an otherwise undetermined phase, one has
o X_ T X, o, xi = % ix; (B.12)
and
1 1 .
X+ x+f = 2—(1 + 03) , X+ )(_* = 2—(0-1 + 10.2) (B.13)
1 1 .
x_ x_ ' = 3(1 -oe,), x_ >(+' = ;(o, - io,)

The basic theorem for spinor amplitude calculations is, given
Pauli spindrs ¢, ¥ and a multivector m,

¢* m ¢ = 2 S[m ¢ %] , (B.14)
where S{+++] means the complex scalar part (the first and last
terms of (B.5)) of whatever multivector is enclosed in the

square brackets. From (B.14) follows
W ot = Z(et W) + (' o, W) o, , (B.15)
i i
which displays the important structural connection between

spinors and vectors.

The Gauge Fixing Terms of Section II.6

The gauge fixing terms of Sec. II.6, Eq. (2.6.1), (2.6.2),
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were written in terms of the Pauli algebra. Here they will be
evaluated in more detail.

Given the Higgs spinor field

® = ¢+ X, + b, x_ (B.16a)
with
<®> = (v/JI2) x_ (B.16b)
%
* = ¢ x vt + ¢ x * (B.16¢c)
(H*> = (v/J2) x *, (B.16d)

where (%) denotés the complex and hermitian conjugates of the
X
fields (such as ¢ = ¢+), we have

S[<®> &* - @ <3*>] (B.17)

X
+ + _ + _ +
(v/d2) S[e_ x_x * + & x_x_ ¢, X, x_ ¢ x_x_*]

1 X

(v/2) (6 - 0))

where the scalar parts were obtained from (B.13). If V[.-..]
stands for the (real plus pseudo-) vector part of (B.5) we also

have
VI<®> &' - & <8*>) = z(v/2) (B.18)
% . .
X[(¢o - ¢o) o, + ¢_ (01—102) + ¢+ (cl+102)] ’
again employing (B.13). Both of these results were needed in
(2.6.8) and (2.6.9).

The Higgs vector field i is, from (2.6.4a),

H=Ho = (1/12)B(o,-ic,) + (1/I2)H_ (o, +ic,) + H o,  (B.19)
with

> =3 ov. (o, - io,) (B.20)
B = (1/02)H (o, +ia,) + (1/I2)H__(s,-ic,) + H_o, (B.21)



<ﬁ*? =z vy (o,%ic,) . ‘ (B.22)
If we use the identities
(o, * ic,)2 = 0 (B.23a)
(o, *+ io,)(o, ¥ i0,) = 2 (1 * o ) , (B.23b)
we obtain
si<ibitr - #ilo) = -T2 (- H) : (B.24)
and
vi<i>Er - Bl = vy (B.25)

X . .
x [JZ(HO - Ho)o3 + H_(clfloz) - H+(01+162)]
These, too, were needed in the evaluation of (2.6.8) and

(2.6.9).

Dirac Spinors

A basis of the 4-dimensional space of Dirac spinors (u+(p),

v+(p)) is defined by (Hamilton, 1984b)

(1 + p/m) 3[1 * (-i)¥,Sp/m] u_ = u, (B.26a)
2(1 = p/m) 3[1  (~i)¥,Sp/m] v_ = v_, (B.26b)
-where p is the 4-momentum of a particle of mass m and S
(82 = -1, Sep = 0) is a unit spacelike 4-vector that points in

the spin direction in the rest frame of the particle.
If M of (B.2) is a general multivector of the Dirac algebra

(M=8S+V+B+T+P) one defines

M M, with all products reversed (B.27)

s +V-B-T+P
A spinor equation ¢ = My for arbitrary spinors ¢, ¥, a
(complex) scalar «, and assuming M has real coefficients -- the

basis vectors (¥ ) are defined to be real —-- has as an
H .
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"adjoint"

- P Sap
¢ = oMb ¢+ ¢ = x YM , (B.28)

with the basis spinors satisfying

uu = § = -v v (B.29a)
r s rs r s

uv =20 = vu . (B.29b)

One further defines

M

M, with all vectors reversed {(B.30)
=S -V+B-T+ P,
and the complex conjugate of ¢ = My is taken to be

* ¥ - X%
x MUy (B.31)

m

¢

(again assuming M to have real coefficients). (In (B.31) M ié

used rather than M because in the latter case contradictions

would ensue. An alternative would be to use M, but with
X
xpi—xu: I simply prefer (B.31).)

Evaluation of Spinor Amplitudes

The basic theorem for the evaluation of spinor amplitudes
is
®M e =45[M o], (B.32)
where ¢, ¢ are any two Dirac spinors, M is any multivector of
the Dirac algebra and where S{+++] refers to the scalar part,
in the sense of (B.2), of the general multivector inside the
square brackets. 1In more conventional matrix terminology
48[ +++] is equivalent to Trace[-.--].

As an example of these methods consider the amplitude

squared that must be evaluated in the p + ey transition, the

expression from (5.4.5):
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2 Il_le(p’)2+q€up(p)l2 (B.33)
=2
>

2

spins

(1 % qeu u (% q€) u ]
uu u
spins e +q [T +q e

) E 2 q€u G €93 u
splns[ e +q TRl s e]

. 4S[Z q€u u €q3 u u ]
spins + [TRET ) - e e

From (B.26a) we have
b (uu) = 3(1 + p/m) , (B.34)
and (B.33) becomes

M v 1 1 y
(Zspinse(“)e(a)) 4S[Z+q¥“;(l+p/Mp)vvq2_5(1+p /m )1, (B.35)

a calculation that will be completed in App. E. Further

relations needed are

¥ Z_ (B.36a)
T noF

¥ py¥’ = vv(p-x" + pAY") (B.36b)

v

Zt Y

= xvp" + ¥ (P A ¥ ) + vv/\(p/\v")

-2 P,
where, if M is a multivector,
¥ M=y M+ y AM (B.37a)
il M K ‘
and, if A, Bi are 4-vectors,

A°(B1A le\ I AN Bn) = Zi(—l)(i+l)

(A<B. )(B, A---AB) (B.37b)
i n
where Bi is missing from the last factor.

The foregoing is far from the list of valuable relations
that would be needed in the general case but is adequate for
the needs of this thesis. The brief example above illustrates
how readily the matrix-free Dirac algebra can be exploited to

evaluate the ubiquitous "traces" of relativistic quantum

mechanics.
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A Theorem for Spinor Amplitudes

An identity that is most useful in establishing the C and T
invariance properties of Lagrangians is as follows. Let &, ¢

be quantum fermion fields and M any element of the Dirac

algebra, not assumed here to have real coefficients. Then
- —X ~ X
Mo = - & ¥ M ¥, W (B.38)
—x x )
{ o M, if M=S§,T,P
-¢ My , if M = V,B

where the negative sign arises from the anticommutivity of the
fermion fields (the signs are reversed for non-quantum fields).
The proof of (B.38) is tedious but straightforward: one need
only write, for example,

Y = x ur + Br vr (r = %) , (B.39)

where the o« Br are anticommuting Fock—-space operators and ur,
vr basis spinors, and then establish (B.38) for each of the

five different types of multivector elements.
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APPENDIX C

MANIFESTLY COVARIANT C, P AND T TRANSFORMATIONS

It is conventional (if not universal) to employ specific
matrix representations of the Dirac algebra to construct the
important C, P and T operators of quantum field theory. But
this is not necessary: the Dirac algebra described in the
previous appendix can be used to construct appropriate
transformations that are not only free of any matrix
representation of the algebra, but that are manifestly
covariant as well. This appendix will display such operators
and, as an exampleﬁ apply them to quantum electrodynamics.
Section II.7 contains their application to more general gauge
theories.

The parity or P transformation to be used here is quite
conventional (Bjorken and Drell, 1965, Sec. 15.11). The

appropriate transformation for a spinor field ¢ is

1

WP (t,%) = P w(t,t) P (Cc.1)

"’(ta _;) ’

]

Yo

where P is a unitary Fock—-space operator made up of the
creation and annihilation operators of the spinor field . The

electromagnetic vector field A satisfies

1

AP(t,%) = P A(t,R) P (C.2)

-
VO A(t’_r) YO ’

and the electromagnetic interaction is seen to be P-invariant
in the usual way (Table II).

The charge conjugation or C transformation used throughout
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this thesis is simpler than the conventional one {(Bjorken and

Drell, 1965, Sec. 15.12). 1t is

C w(x) ¢! (C.3)

i

v (%)

w*(x) )

where C is a linear, unitary Fock-space operator and where ¢*
is defined in (B.31). The electromagnetic vector field A
satisfies
A=caclt=-a, (c.4)
and the Dirac equation is thereby made C-invariant:
C(ia - m - eA)C Tcec T = 0 (C.5)

(ia - m - eAC)tl’c

X
(ia - m + eA)¢

[(ia - m - eA)w]*

fia - m - eA))¢ ,

where care must be taken in that (B.31) reverses the sign of
vectors under the (%) operation. Table II lists the invariance
properties of the QED Lagrangian under the C transformation.

When applied to a spinor field
-3 X 1 . *
ip N elp x X

w(x) ~ [d°p (e a u

rr r r) (c.6)

: X
with basis spinors ur, vr satisfying (B.26), we have (ur) =vr,
from (B.26) and (B.31) (with an arbitrary phase set equal to
one), and so

ipex X ~ip X

¢C(x) = ¢*(x) ~ jdap (e arvr + e brur) (c.7)

which was needed in Chap. VI.

The CPT transformation to be adopted is (e = cpt, ® = TPC)
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cpt WO (x) = ® wix) ® (c.8)

<
~
>
~—
m

(%) = o (-x) ,

which requires the time reversal (or reversal of motion) or T

transformation to be

1

tie, 2 T ¢(t,r) T (C.9)

v (t,r)

q)(_ti;) ’

(i)

¥,

in marked contrast to the usual T and CPT transformations
(Bjorken and Drell, 1965, Sec. 15.13). As usual the operators
T and ® are antilinear. That this property is crucial will be
seen when the full invariance of the spinor-vector
electromagnetic interaction is demonstrated (Table II). The
electromagnetic vector potential A transforms as

A%(x) = ® A(x) ® ° (C.10)

-A(-x)

Table II contains a detailed list of the transformation
properties of the various components of the fermion-photon
Lagrangian, except for the kinetic terms for the photon field

which are rather trivial. One should note that the important
X
identity (B.38) has been used wherever ¢ appears, and note the

importance of the antilinearity of T and ® in the (ian) part
of the fermion Lagrangian. Only real coefficients have been
ignored.

Some other useful manipulations that are freely employed

are x + —-x, t » —t, r + -r in the action integral fd4x cix),

which are permitted by the action integral’s invariance, and

the properties of the 4-vector ¥, and of ¥, discussed in App.
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B. Also permitted is £ » £ + a (+e¢)"
v

The C, P and T properties of the electromagnetic
interaction are considered in detail because of the assumption
made in Sec. II.7 that the vector gauge fields transform

exactly as does the electromagnetic vector potential.
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TABLE TI: C, P AND T INVARIANCE OF ELECTROMAGNETISM

INVARIANCE LAGRANGIAN TERM
R " 4 .
J =9y ¢ ivayw
P PjVP_l Pipayp !
- v -» . v -
= Wy ¥ ¥ ¥(-r) = 1v¥ ¥ ¥, 3 w(-r)
. Ji - -+ >
= (§°,-i)(-D) (r + -1)
+ igay
-1 f - -1
C cj’c CiwayC
—% y X —x X
= ¢ ¥y = i x"avw
= v .= v
= -y, ¥ Y v = -ia WY, ¥ ¥,V
. = igy s W + a3 (++9)
v v
+ ivay
T TJVT_l TipowT -
~ -t ot
= Y ¥ ¥, w(-t) = -ig av
. .1 .=
= (3°,-i)(-t) = —iwy ¥ ¥, 8 w(-t)
v
-+ i$a¢ (as t =+ —-t)
-1 - -1
TPC=@ 0j’® @ivave
—% X -
= ¢ ¥'¥ (-x) = -ivae®

- —X X
—Wy ¥ ¥, w(-x) —iv ¥ 3 ¢ (-x)
v

- 37 (=x) i(a v ¥ ¥ ) (-x)

11

~i(ey s W) (-x) + a3 (--0)

+ ivay (as x » —-x)
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TABLE II (cont’d.)

INVARIANCE LAGRANGIAN TERM
oy A
P powp ! POAWP .
- - - ->
= Wy Y w(-r) = WY Y AY ¥ w(-T)
(T » -T) (F » -T)
-+ Ew -+ EAW
c cowe ! coawpct
-X X -X% X
= ¢ ¢ = ¢ (-A)v
= -y, ¥ W = Gy AY W
= Y = YA
T ToeT L ToapT
= Wy ¥, w(-t) = WY ¥ AY, ¥, W(-t)
(t » -t) (t » —-t)
- by + GAY
TPC=@ SVYE OVAY®
-% % —X b 4
= W (-x) = ¢ (=AY (-x)

- (WY ¥ W) (-x) (W¥ A ®) (-x)

(x » —-x) (x » —-x)

- Y + GAY
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APPENDIX D

ON INVARTANT SPACE-TIME INTEGRALS

Most of the integrals that resulted from the Feynman
diagrams of Chap. V, VI had the form
fap £(p°) or Jd'p PP, £(p°) , (D.1)
which are not at all trivial to evaluate. Thirty years of
experience with quantum electrodynamics has, however, resulted
in standard methods of computing such integrals when they
converge, and methods of handling them, such as dimensional
regularization, when they do not. This appendix will 1list the
results that are needed in this thesis.
First, it is not difficult to see that all such integrals
must have the form of the first of (D.1l) because
Jd¥p £(p°) P, = 0 (D.2)
and
Ja'p £(p°) pp = 3 n  fdp p° £(p°) (D.3)
H v 1Y)
(Bjorken and Drell, 1964, Chap.8; Akhiezer and Berestetskii,
1965, Sec. 47.1).

Next, one notes that all such integrals that are relevant

have poles. One involving a fermion propagator would be
jdfp ") = Jd'p _£(p%) (pm-ig) (D.4)
(p—m+ie€) p- - {(m-ieg)

where the i€ prescription is very briefly explained in Sec.
IV.3, which shows how the poles at P, = +(m-1i¢) are to be
avoided (Fig. 27). As the poles can be avoided by a rotation

in the complex po—plane (Fig. 27) the integral can be



™ ~
t ~
- - R
D=-(M-1¢g) ! N
1 \
] !
‘. ———————— -|---.}-..—.-.—'
1
\ ' S=m - it
\ ! = -t
\ B
K\. )
S— 4
Fig. 27: The complex po—plane
transformed into one with a Euclidean metric. From Cauchy’s

theorem, since no poles are enclosed within the contour c¢ (Fig.

27,
S £(py) dpy = 0 = (ST + [N f(p,) dp, , (D.5)

where the assumption that the integrands vanish sufficiently

rapidly as |P0| + o has been made. With a change of variable,
then,
p, = ip] (D.6)
we have \
IZ_f(py) dpy = i fT  f(ipy) dpp - (D.7)
Since
p° = po - |pI® = -(p,% + IBI®) = -d° , (D.8)
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one can use the parametrization

P, = 4 sin« sine cos¢ (D.9)
P, = q sin« sine sin¢

P, = 4 sinx cose

P, = q COSx ,

(0<$<2w, 0<0,x{w) where (D.8) is satisfied, and
d*p’ = dp,dp,dp dp) = q° sin“« sine dq d« de d¢ , (D.10)

so on performing the angular integrations we have

¢, 2 3 2 2

d*p’ = 2n>q° dq = »° @& d(d°) . (D.11)
Thus we have, finally,

Jfap £(p%) p’ £(-q°) (D.12)

il

[N
h,

o,

. 2 2 2
= in J© q dq® f(-q°)
z f(-z) dz
We are now in a position to evaluate the three (finite)

types of integrals appearing in Chap. V, VI and the next two

appendices:
r dp 1 = i . (D.13)
J (p~ +A) 2 A
- dip 1 = i (D.14)
| (p>+a)* 6 A°
- dp 2p2 =i " (D.15)
J (p~ +A) 3 A

which agree with the more general results of Nash (1978).
The method of Feynman parameters (Bjorken and Drell, 1964,
Chap. 8) is used to reduce integrals with several propagators

into the form (D.12):

_ 1 1 §[2x —1]
1. = (n-1)! fodal---fodun n n
a a,-a [a1a1+'o-+anan]

(D.16)
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The special cases that are needed here are

—t
1]

JidaSLdB _8(atB-1) (D.17)
2
a a (a1a+azB)

3 de 1
(8, «ta, (1-«) ]

—
"

2fpdof,dBlodY _ 8(actBry=1) - (D.18)
a,a a_ (a, «ta, B+a ¥)

[+ 4

dB 1
[alo<+a28+a3(l—cx—B)]3

1 _ 2 ( 1 ) (D.19)
8.1 8283 88.1 &1 8283

>4

1 1-
= ZIodcxIO

and

it

65, dof, “dB a

[a, «ta, B+a, (1-«—B) 1*

‘

This parametrization technique, along with (D.12), is all that
is required to explicitly evaluate the integrals in this thesis

that result from the Feynman diagrams of Chap.V, VI.
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APPENDIX E

DETAILS OF THE CALCULATION p -+ e ¥

This appendix contains the details of the calculations of
Sec. V.3, V.4 that were omitted there because of their length
and essentially technical nature.

The Integrals (5.3.14-18)

1 2

Apart from a common factor of [is(Zw)_QgZe =S . U._ U, _m.] the
273 i1 i2 1
integrals to be evaluated are
1(W)= ~fd'k u £ ¥ (p-k) ¥ u a"P(k-q)a"%(k) €T (E.1)
e + pn q v Aop
(p-k)
I(S) = Id:k ﬁez+(p’k"Mu)uu 2k «€ (E.2)
2 2 2 2 2
Mw (p-k) (k iMw)[(k q) £Mw]
1(wWs) = fa'k v Z+¥y _u A% s (E.3)
(p-l° M [(k-a)" -eM]
I(sSW) = -fd*k Ee2+x ( -1+ MH(P'k))u A"°§k—q) ‘s (E.4)
5 v 4 2
(p=k)*  (p-k)* M (kT -eM)
I(B) = Jd'k u = M, + (p—k)cotze) u 2k + € (E.5)
-2 e + 2 2 H z z 2 2
MW (p-k) (p-k) (k —MB)[(k-Q) -MB]
where, from (5.2.1),
a(k) = a, (k) + o,(k) + a,(k) (E.B)

o (k) = "/ (M)

Mk = kY%

\ 2

/ M (k°-ME) ]

oy (k) = k"k” 7/ [ME (K" -eML) ]

and, from (5.2.3),

= (-q-k + (2k- + (-k+2 . E.7
FXOP (-q )anO ( q)x“ap ( q)o'nxp ( )

Because q2=0, q+€=0, one can show that
n
(k-q) "k°eT =0 = (k- k%, (E.8)
rop rop

which means that the only non-vanishing factors in (E.1l) are
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PP k-a)a (k) L, ol f(k-a)a, > oK) ot (k-0)a) (k) . (E.9)
For simplicity we define (i=2,3)

' (k)
1

a. k"'k” 7 M2(x%-b.M2)] (E10a)
i W i W
with
a_ = -1, a_. = +1, b. = +1, b. = ¢, (E.10b)

so only three integrals will have to be worked out to evaluate

(E.1). .The first part of (E.l1) is, from (D.19),
[-€ (q+k) + 2k-€nq + € (2q9-k) ]
o 2] op P o

-rd*k Gez+x°(p—k)x°u e T )
(p=k)* (K -M2) [(k-a)°-M ]

(E.11)

2
M
W
~Jd*k 6fxdudB ] [---] -

{a(p=K)® + BL(k-a)*-M2] + (1-oB) (K™ -M7)}

i

-Jd*k 6fadadB_ [ +e-]
[(k-v)Z+B1*®

where (D.19) has been used, with

V = «xp + Bq (E.12a)
B = =V + «p” - (l-e)My = —(l-c)My . (E.12b)
We define the new integration variable K = k-V and obtaiﬁ
~Jd*K 6fxdxdB :e2+vp(p—K—V)¥°u“ (E.13) -

x [—€ (q+K+V) +n 2(K+V)-€+e (2q-K-V) 1 / (K°+B)*
o P op P c

The numerator in (E.13) has factors K K -+ :n K° (from (D.3)),

H v o [137)

K (which vanish, from (D.2)), and a constant. Each of the K>
M

factors gives the spinor amplitude ae2+€u , which, from
[T}

(6.1.14), has the wrong structure and so the K° terms are thus

ignored. Integral (E.13) then becomes

—Id studadBu z 1 gp—V21 u [—e€ (q+V) +2V en +€p(2q—v) ] (E.14)
(K> +8)* ¢

= —1n JxdxdB u Z Y gp 21 u [-€ (q+V) +2V s€m  +€ (2q-V) ]
3 op P c

MW (l—u)
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from (D.14) and (E.12b). The first term is (scalar)-ae2+€u
K

(wrong structure, so ignore), the second becomes

——

(—iwz) (—4p-€M ) U u [Nedaf %dB « (l-o=B) (E.15)
) T e + p 70 0 2 :
M (l-) ‘

2 2 -

= - i . M
3 1w 546 b ueZ+up s
W
and the third becomes
, 2 = ’ 1 1o
-ir IM u T €ep'u [ odxf dB [2(1l-x)—-B] (E.16)
3] p e + TR o (1 )2 :
bl » 4

W
3, 2 — 4
= - 7iw ue2+€p'u“ Mp/Mw
The second part of (E.l) uses the second factor in (E.9):

-rd*k u £.% (p=K) ¥ u 2" a, k'k° (E.17)

2

M-t Y MMl M (b Me)

x [—€ (q+k) + 2ke€n op + € (2q—k) ]

= -6a IudadBId kue2+[ ~ke €(q+k)+2k €k+€(2q ‘k-k>) ] (p- k)k u
My {a(p=k)*+B[ (k=) *~M 1+ (1-o=B) (k" -b_M:)}°
= _g Iadadde K u Z [-(K+V) € (q+K+V) + 2(K+V) € (K+V)
M
W

+ €(ZQ‘(K+V)-(K+V) )] (p-K-V) (K+V)u
(kZ+B)*

with the substitutions (E.12) and k -+ K+V. In the numerator
all K‘ terms giye the wrong spinor amplitude Gez+€uu, so are
dropped; the K3 and K terms vanish on integration; the constant
term gives an overall l/M; factor which is ignored because the
K2 factor is the dominant factor (~1/M4). Thus (E.17) becomes

_§ IududBId K u Z [14 terms of order K°]u (E.18)
(K +B) .

=

2

W

= :ga,( iwzz)M u_%,q€u  fodaf, “dB(-w ta/2-oB-58/4+1/2)
g : [b,(1~a) + B(1-b.)]

2

i
MW

where (D.15) was used. This integral alone has the values
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1/48 , b, =1 (E.19a)
71 _lgi) L £ » by = & . (E.19b)
24 (£-1) 6 ¢-

The third, and final, part of (E.l) used the third factor

in (E.9):
vo

2 2
(k" -M2)

(E.20)

-rd*k uez ¥ (p-— 2 ¥ou a (k q) (k qQ)°

Hip-x)* v ¥ Mw[(k a)°-b.M
1

SN:

x [-e (q+k) + 2k-+€q + € (2q-k) ]
P op P o

= =6a. [«d«dBf d K _ u %, [~(K+V=q) « (q+K+V) (K+V-q) (p-K-V)e€
(k°+3)* ¢

=

2
W
+ 2€+(K+V) (K+V-q) (p-K-V) (K+V-q)
+ e-(K+V—q)(K+V-q)(p—K—V)(2q—K—V)]upl

where, again, only the K2 factors in the numerator make the

most important contribution. We obtain
. 2 - 1 l " 2
:gai( iw )M ue2+q€u Joodof, “dB(-o ta/2-«B+B/4) (E.21)
M g g [(1-a)+B(b -1)]

and the integral alone has the value

-5/48 , b, =1 ' (E.22a)
-1 1n¢ _ 1 1 (1 _ lg; , by =t . (E.22b)
12 ¢-1 24 ¢-1

When (E.16), (E.19) and (E.22) are added we obtain the final

result for

I(W) =[-iw-M \u £ qeu [1/4 - £(£)/12 + g(£)/2] (E.23)
M4 nf e + [T
W

where

(In¢) / (¢-1) (E.24)

th

f(¢)

i

g(¢) = (£1n£)/(£-1)% - 1/(¢-1) ,
as quoted in (5.3.21a).

The integral I(S) of (E.2) is, compared with I(W)
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immediately preceding, much simpler. We have, from (D.18),
1(S) = 2fdedBfd*k “ez+(P”:“Mu)“u 2k -€
: 2 ) 3 Z..3
{x(p-k) +B[(k-q) —€Mw]+(1—a—8)(k ~£Mw)}
= 4fdedBfd’K u = (p-K-V-M )u (K+V) «¢ (E.25)
e + [0 (K2+B)3

where the substitution k + K+V is again made, where V is the
same as in (E.12a) and B the same as in (E.12b), except M; -+
£M;. The K2 term in the numerator gives the wrong spinor

amplitude ae2+€u , and so is ignored. Thus (E.25) becomes,
M

using (D.13),
“dB ol o (E.26)

_ . 2 - 1 1-
I(S) = 4iw )M“ ue2+uu pe€ J,d«[,
(1-o)

-2¢M
¢ w
and the integral alone has the value (-5/12). This gave the
result (5.3.21b) as quoted.

Integral (E.3) is

usyu € vo

I(Ws) = Jd*k e“+'v u o n NN kK k° (E.27)
(p-k)2[(k-q)2-¢M2] | KZ-M> M2 (k2-b _M2)
%) W W i W

and we see at once that the first term (using nvc) leads to the
wrong spinor structure aez+€u and is to be ignored. The
H

remainder is

I(Ws) = 5, %1 2/dudBfd’k u Zku kee (E.28)
M. (oc(p=K)*+B[ (k=a)° ~€M> 1+ (1~o-B) (K ~b_M>)}°
= 5. i 2fdedBfd*K u = (K+V)u (K+V) -¢€
1 2 e + 2 3
M (KZ+B)
W
where, here, B = —M;[bi(l—u)+8(£~bi)]. The K> term gives the

wrong structure and we have, keeping only the rest,

x

dp x(atB) (E.29)
b, (1-a)+B(E-b_)

I(WS) = 5. Jif[-in )2pc€c u T u M fdaf’
i =2 2 e + p po o
M\ 2u

and the integral alone has the values
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;( 1 (2¢-3) _1ng ) , b. =1 (E.30)
U 2 2

6\¢-1 (¢-1)

5_ l s b 3 =&,

12 ¢

which, with (E.24), gives the result quoted in (5.3.21c).

Integral (E.4) is

I(SW) = -fd*k Eez+x ( -1, MM(P“k)>u s (E.31)
. v 2 q 2 2
(p—k) (e-k)*/ (K -eM)
) (———3:;——? PDILH 2(k_Q)V§k—Q): )
- _M -— —_
(k-q) W Mw[(k q) biMW]
so, expanded, is four integrals. The product of the first of

each of the two sums gives the wrong spinor structure, and as

pu =M u , all that remains of the nvo term is
H B

Mgtk u z, ek up( 1 )( 1 ) (E.32)
H 3 2 2 N
(p-k) k™ -eM (k-q) My
= 6M  fodadpfdik u i€ (EHV)
H (K2+B)4 H
with the usual V and B = —M;[£(1—a)+B(1—£)]. The term linear

in K vanishes and we have, deleting terms with (aeepu ) (wrong
N

structure),

[ 4

dB B (E.33)
£ (1-o)+B(1-¢)

. 2 - 1 1—
6Mu 1w4 (—ue2+€p'u“) Ioudafo
6Mw

with the integral having the value

1(_1  _1int ) : ~ (E.34)
2 {¢-1 7 (¢-1)°

Back in (E.31) the first term in the first sum, and the second
term in the second sum give the wrong structure, and what

remains is
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a M - T (k—-q)k

Z T Jd'k R k¢ (E.35)
Mw (p=k) " (k*—eM )Y [(k-a)®-b Mo
i W
= 62 Mg IadudBId Kus (K+V- q)(K+V)u (K+V) €
e
Mw _ (x®+B)*

where B here is —M;[{(l—a)+B(bi—§)], which becomes, as only K-

terms are needed,

M2 -3M €(l—a)+8(b.‘§)
W 1

62 l'n') f otdo:f (-1+3 ) (E.386)

and the integral alone is

11n¢ , b, =1 (E.37)
2

¢£-1
1/(2¢) , b, = ¢
The sum of (E.34) and (E.37) gives the value of I(SW) quoted
earlier in (5.3.214d).

The final integral, (E.5), is
- 2
u 2 (M +(p~k)cot elu 2k-¢

I(B) = 2fdwdBfd’k _u (E.38)
M2 {u(P k) +B[ (k- Q) —M 1+(1- —B)(k M )}
= 2fdwdBfd*K u u %, (M *(p-K-V)cot °]u 2(K+V) «¢
MW(K +B)°

where B = —(l—a)M;, which is virtually the same as (E.25). 1Its
final value is

I(B) = 1w2 M (1 + 1—cotze) lu s g€u (E.39)

T ° fetow
W B

as quoted in (5.3.21e).

The Spinor Amplitude (5.4.5)

The evaluation of the spinor amplitude

2
E.40
Zspinslue2+q€uul ( )

is neither new nor particularly difficult, but will be

evaluated using the novel techniques described in App. B. We
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use (5.4.4b) and (B.35) to obtain

v

- 2 T} 1 1
= 4 =(1+ =(1+p’

2epins |Ye T+ a€Y,, | 2 & o) (o 38 IZ 0¥ (1+p/M ¥ ax 5 (1+p" /m )]

= —n“VS[Z+q¥ p¥ qp'] / M m = ZS[é(l—ivs)qpqp'] / M m

H v B e e
= S[(qpqp’'] / Mm =2 q+p q°p’ / Mnm (E.41)
BH e y e
since q2 =0, and ¥ =0, £ ¥ = %, and
+7~ +7+ +
qrqp’ = qp(a+p’ + qAp') = qlpa-p’ + p-(gAp") + PA(aADP )]
= (q+p + qAp)asp’ + q+<[p+(a/Ap')] + q-(pANaAp') (E.42)

of which only the scalar part is needed, obtained from (B.37b).

The Integral (5.4.9)

The phase space integral

d’q d°p’ & (p-q-p') (E.43)
2q, P,
will be evaluated using a technique described in Kaempffer
(1965, App. 6). First it is rewritten as
4 2, 1 3, .4 ’
fd'q 8(q") ;[1+e(q)] d'p’ § (p-qa-p') (E.44)
Po
where ‘
+1, >0 E.45
€(q) = { 1 o ( )
BER) q0<0 ]
which becomes, because the q-integration can be performed,
3 y 2 1 y
d p' §[(p-p") ] ;[1+e(p-pP")] . (E.46)
Py
Now, since
(p-p')% = p° +p’'% -2p.p’ = M + m° - 2M 4 (E.47)
u e B
which vanishes at pé = E', so that as
4 2 1 r — r 2 14 ’
§[(p-pP")" 1 z[1l+e(p-p")] —-(d - > 8§(p,-E") (E.48)
dp:) '=E'
. 8(p',-E")
2M

M



155

and
- -+ )
a’p’ = 4w|p’ |°dIp' | = 4n|p’ |pg dp!
(E.49)
we have
’ r
dp’ -E' 1
anp|pr |Po9P0 8RBT _ o My (mrZom?) P (E.50)
J r 2M H ¢
Po " 2 2
= (2w/M ) [(M" - m )/(2M )] = w
v K e B
since M >>me. This was the value claimed earlier, in (5.4.9).
n
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APPENDIX F

DETAILS OF THE CALCULATION p - 3e

This appendix contains the details of the calculations

needed in Chap. VI for the p » 3e Feynman diagrams, transition

amplitude and decay rate.

The Integral (6.2.2)

We now evaluate the integral

ue2+(p—k)ulJl ue(Zk—q)v

I(B) = Jd k - A 2 g (F.
(p-k) [(k-q) —MB](k -MB)
_ ZIdudBIdnk ﬁe2+(p—k)u ﬁe(Zk—q)ve
{(p=1) " +B[ (k=) " -M_ 1+ (1-o=B) (k" -M )}
- 2fdedpfa®k "eZi (PTEVIU o opiay- Qv

(K2+B)3

where by dimensional regularization one imposes n<4 to allow

the shift in the integration variable, and where V = «p+Bq,

B”—(l—u)M;. The K- or diverging part as n-+4 is, from (D.3),

—(Gez+y u )(Eex”ve) fdadBfd"K __K°
v W (K2+B)3
as given in (6.2.3). The finite part is, from (D.13),

)4I d«f “dB u Z (p—«p—-Bgq)u Geapve

( 2MB (1-«) "M

because, as q = p2+p',

u_(p,)av_(p")=u_(p,) (p,+p")v_(p')=u_(p,)(m_-m_)v_(p')=0.

Integral (F.3) becomes

Alin?/(-2M) 1M (a5 u ) (a_pv ) fidefy “dBa(l-o-B)/(1-a)
1w B " ue +u'_1 uep e o Qxlg [+ o o

and the integral alone has the value 1/12, all of which

the result quoted in (6.2.3).

(F.

(F.

(F.

(F.

lead

1)

2)

3)

4)

5)

to
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The Integral (6.2.4)

With the neutrino propagator expanded as in (5.3.1) the

integral (6.2.4) becomes
4. u ¥ pE (p-k)u -

A(renorm) = _C Jd k _e > "+ T uex ve (F.6)
2 2 2 2 2
Pa . (p-k)" (k -MB)
= ¢ Jd«Jd"k u ¥, P, (p-k)u Eex*ve
2 2 - 2 2 2 2
Muq [x(p-k) +(1l-) (k —MB)]
= _C Id«jdnK uexxp2+(p—K—up)%p Gevxve
M2q2 [K2_(1_°‘)M2]2
T
= ¢ M2 (u ¥ u )(u v o) fdocfd K (1-a)
2 2
M " q (K +B)
1}
as claimed in (6.2.5), since pu =M u . If, in Fig. 21, the

TR TR

virtual photon were to emerge from the incoming muon line the

diagram would have the amplitude (using the symbols of Fig. 21)

A’ (renorm) = 3, J a* k u (p ) _gU 12 cotezq( 1/2 i ) (F.7)
(2mw)* MW (p,-k) -m,

x(ﬁjuizmicotez)(p y )(1e¥ )u (p)(_*___x

x u_(p,)ie¥ v_(p")
e _pe
-k + -
u Z (p,~K)(p,+M H¥ u X

- Cfd4k Z 2 .2 2 2 u¥ v
q (p,~k) (k -M)(p,

2 e e

-M°)
[T}
The denominator will require k - K+up1, but as the linear K

term in the numerator vanishes, and p,u =mu, the whole
e e e

integral will be of order me/M << 1 relative to (F.6) and is
K

therefore to be ignored as was claimed in the remarks Jjust

preceding Eq. (6.2.4).

The Integral (6.2.9)

The following integral is needed to establish the

contribution of the W particle (and, because of gauge
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invariance, the S Higgs particle) to the p + 3e transition

amplitude:
- r
I(w) = fd'k uez+~4"(p—k)x°up 4 xop (F.8)
(p-k) . [(k-q) " -M_ ] (k -M )
W W
where T is given in (E.7). We have
rop
I(W) = 6fadxdBfd k u 5 [~(q+k) (p-k)¥_+¥ (p-k)¥°(2k-q)
e + >N o b
N va(p—k)(jq—:)]u“ _ (F.9)
q
{a(p=k)*+B[ (k=) *-M] 1 +(1-o=B) (K -M2) )
= GfudadBJ u s (K°y -2¢ K¥°K +y K°)u
——————— +
(K +B) e X o PR n
where only the highest order terms —-- the K2 terms —- have been
kept in the numerator, and where B = —(1“u)M;- This becomes,

from (D.15),
I(W) = [6in®/(-3M2)] 3u =y u  [oadaft “dBI1/(1-«)] . (F.10)
W e + X p 0 o
The integral has the value 1/2 which gives
I(W) = (—iwz/M;) 3Gez+xxu“ , (F.11)
as recorded in (6.2.13).

The Integral (6.2.14)

Integral (6.2.14) becomes, when the neutrino propagator is

reduced,
- Y
A(WS) = C'Id4k ] uez+“x“p :e”zve _ (F.12)
a® (p-k)* [ (k-q) —Mw](k —Mw)
= ¢ ZfdudBI UuSyYu uyw
*"‘**~——— +
q(K+B) e XA K e e

c'( inz 2)2 dodB Gez+xxu“ Eeg*ve
—2q M (1*«)
W

- b
(—inzc'/sz;) ueZ*_\{)\u'JL uew v

as given in (6.2.15).
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The Integral (6.2.186)

Similarly, integral (6.2.16) reduces to

= A
—¢' fa*k Gez+v ( = Mp(p—k)>u Ue¥ Ve .(F.13)
(p-k)* 7 (p-k)* ) P @t [(k-a) T MU T (KT oM

The second of these terms is a factor MZ/M; times the first,
53

and so is negligible, while the first is identical to (F.12).

The Spinor Amplitude (6.3.1)

The lengthy spinor amplitude squared

(F.14)
= - - v 2 . 2
Zspinsl[ue(pl)2+wvu“(p) u_ (p)¥ v (p")1/(p-p, )" —(p,esp,) |
required in the p +» 3e transition rate can be evaluated in two
parts. The first requires the evaluation
- - - v ,
Zspinsue(p1)2+wvuu(p) u_(p,)v v _(p")

x v_(p")¥"u_(p,) u (P)¥ = u_(p,)
e e H H e

It

()48, ¥ S (1+p/M)¥ = 2 (1+p, /m)] (F.15)

x 4s[¥"z(-1+p’ /m)¥"; (1+p,/m)]

(1/2mM) S[Z+YVP¥“p1] S[—xvy“+yvp'y”p2/m2]

3 LV M H VvV Hv, 2
(1/4m™ M) (pvp1“+p“p1v-npvp~pl)[p' p,*P’ p,—m (m +p’ +p )]

3 ’ 2
(1/2m" M) (p-p'P, P, * P*p,p’ *P, + m PP, )

where m = m , M = M ,
e H

By interchanging P, and p, we have two terms of the expansion.

The cross—term from (F.14) is twice the real part of

_ v ,
—Zspinsue(pl)z+vvuu(p) u (p 0¥ v (p")
x v (p")¥"u (p,) u (P)¥ = u_(p,) (F.16)
e e K H — €
divided by (p—pl)z(p—pz)z. This can be evaluated by a

rearrangement:
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“Zspinsle (P E ¥ U (P) uu(p)x“Z_ue(pz)

xu_(p, )¥'v_(p") v_(p')¥"u_(p,) (F.17)

(—§)4S[Z+VV§(1+p/M)x“z_§(1+p2/m)v"§(—1+p'/m)v”§(1+pl/m)]

1l

(-1/8M)S[Z ¥ py¥ (1+p,/m)y” (~1+p’ /m)¥"(1+p /m)]
v u

(1/4m3M)(m2p-p1 + m2p~p2 - mpep’ + 2pp'p, *p,)

after a lengthy but straightforward maﬁipulation. Twice this
expression, divided by (p—pl)z(p—pz)z, plus (F.15) (inqluding
P, and p, interchanged) give the spinor amplitude squared

(6.3.5).

The Spinor Amplitude (6.3.3)

The spinor amplitude squared

S u u ' - z2 - - z
Zspinslue(p1)2+uu(p1 u_(p,)pv_(p")/(p-p,) (p,«»p,)|" (F.18)

is evaluated similarly. The first term "squared" is (again,

m =m, M =M)
e H

_ - _ 2
Zspinslue(pl)2+uu(p) u_(p,)pv_(p')| (F.19)

s

Spins[ue(p1)2+u“(p) uu(p)Z_ue(pl)

x u_(p,)pv_(p") v_(p")pu_(p,)]

|
N+

4S[% ;(1+p/M)E_;(1+p,/m)] 4S[p;(-1+p’ /m)p;(1+p,/m)]
= 38[3(1-i¥.)pp, /mM] S[-p°+pp’ pPp,/m" ]

[(p-pl)/(4m3M)] (2p+p'pP°p, - n°M* - sz'-pz)

#

The second term "squared" merely requires the interchange of P,
and P, . The cross—-term is the negative of twice the real part

of
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S pins Ue(PL)E.u (P) u (P )PV _(p")]LV (p")pu_(p)u (P)Z u (p,)]

(3)48[%, 5 (1+p/M)E_5 (1+p,/m)pz (~1+p’ /m)p; (1+p, /m)] (F.20)

3}

r 2 r
(4p-p,p*p,P*'P" - M (pep,p’ *P,+P*P, P’ *P,*+P, *P,P*P')
2. .2 3
~mM (pp'-pep,-P°p,)] / (16m M) ,
after a lengthy, but straightforward, reduction.

The Spinor Amplitude (6.3.4)

The spinor amplitude squared

S pins VLBV (B) [u (p)v (p) - u (p)v (p ]I (F.21)

we evaluate in parts. The first factor is readily found to be

1

z2

- ' 2 1 ' 1
spins |V (P)Ve (P Z45(5(-1+p' /m); (~1+p/M)] (F.22)

>(l+p-p’' /mM) ,
while the second factor

S 1u (p)v (R — u_(p,)v ()", (F.23)
where r,s = *, seems unlike other amplitudes normally
encountered in quantum field theories because the cross—-term is
not readily reducible to a "trace" over projection operators,
and must therefore be obtained more indirectly.

Consider a spinor basis

s (LY F[12(-)¥ ¥, ¥, 10, = &, (F.24)
2 (=¥ F (=) ¥ ¥ ¥, Ix = x_
with
Y b, = o, X, (F.25)
and a+El to define a phase. Then we may take IBZI = 0 and
u (p,) = ¢ v.(p) = x (F.286)
u (p,) = Le v.(p) = Lx ,
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where L is the Lorentz boost operator (Hamilton, 1984b)

L= (1+pv/m) / [2(1 + ¢ /m)] 2,  (F.27)
and
L= (1 + vop,/m) /(21 + e /m)] T, (F.28)
with € = p-y,.
From (F.24) and (F.25) follows
¥yx, = t(i/u;)¢; , (F.29)

and we also have (to within an irrelevant phase)

¥x, = o, Y,x, = Fb_ . (F.30)

1
The amplitude squared (F.23) now becomes, with P, =P, L=L(p),

S U (v (p)-u_(p,)v_(p,)1° (F.31)

- "1 - 2
- L
zrsl¢rL Xs ¢s xr'

2 ~1 - - 2
[2m” (1+e/m)] = 3 1 ¥,px_ - & P¥,x |

-1 2

[2m” (1+€/m) ]

- i - i
+
zrsN’rp yixs ¢sp vixr|

[2(1+e/m)] ' [8(p )%+8(p°)%+2(p° )% |11~ |*1/m" .

Thus to achieve a covariant result we must make the selection

« = -1 in (F.25). The amplitude used in Sec. VI.3 is thus

e pins 18P IV(R) ~ u(p)v(p) I (F.32)

a(|p1?/m®) / (1+e/m) = 4(e/m - 1)

4(p1-p2/m2 - 1),

on reverting back to the original covariant notation.
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The Phase Space Integral (6.3.14)

The transition rate of (6.3;14),

T = ;r1a1"(2m 8" (p-p,-p,~p") m_ d%p' _m_
E' (2w) E. (2w) E_. (2w)

is first integrated over the positron states (p') because the
amplitude squared |A|2 depends only on E, and E,. We use the

same technique as in App. E and obtain

Ja)? E_E_E_Eis (p-p,-p,-p" ) 8(p’ 2 -n’ ) [1+e(p')] d° p

r=
(Zﬂ) E, E, (F.34)
d3p  d°
= m - F1A1® s[(p-p,-p,)*-n"] F[1+e(p-p,-p,)] _ °3 " P2
(2w) E, E,

which is (6.3.15). We now integrate over all angles. One

replaces d3p, with 4w|§1|2d|31| 4w|31|EldEl and defines

;1~;2 = cose,, = C , ' (F.35)
so that
f(c) = (p-p,-p,)°-m" = M°+n°-2ME -2ME,+2E E_-2|p ||p,|lc (F.36)
and defines
£(c,) = 0. (F.37)
Since
1£" (c,) | =2 |p, | IB, | (F.38)
we have
Fo=awn’ J1A1° 13,1 dE, 7% 2413, dE, de (F.39)
(2m)° £ (cy) |
= [(n°/(2m°] FIAI® 4B, QE,
= [(m°M7/4(2m°] [IA(x %) |0 dx, dx, ,
where Ei = %Mxi‘from (6.3.10) has been used. Thus we have

derived the exact result (6.3.16).
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APPENDIX G

LIST OF VERTICES FOR FEYNMAN DIAGRAMS

The vertices computed in Sec. V.4 that were subsequently
used to construct the Feynman diagrams for muon decay in Chap.
V, VI are listed here for the convenience of the reader.
Questions of sign or momentum direction are to be resolved by
referring to the original derivation.

The notation used here is

2(or Ri) = lepton (i=l=electron, i=2=muon, etc., of mass Mi);
x(or xi) = Majorana neutrino (of mass mi);
A = photon;
Z = massive, neutral electro-weak gauge boson;
W+ = massive, charged electro-weak gauge boson;
S+ = unphysical, charged Higgs boson;
B+ = physical, charged Higgs boson;
H++ = physical, doubly-charged Higgs boson.
A
R-2-A ) iey ~ [Eq.(4.4.9)]

2-9-Z W) igy (sin’ey - 35 ) [Eq.(4.4.11)]

if2B, .= [Eq.(4.4.22)]
1)



. UJ)
L-x—W "
Xz'_' ’QJ
' S
2-x-8 :
/@i//\\x‘;
P S

2-x-B
2; &
'B
Xi//\’&f
Az
K %‘ccx)
W-W-A,Z )
(e
WA W
A
S-S-A %W’
B-B-A a,’;~,?:
S,B° 5B
A
W-A-S %(v)
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igl, ¥y (Eq.(4.4.13)]
13 p» —

_i(g/MW)Uji(MiZ+—mjz—) (Eq.(4.4.15)]

—i(g/MW)Uij(MjZ_—miZ+) [Eq.(4.4.186)]

i(g/M YU, (M, taneX +m coteX )
W' ogji 1 + J -

[Eq.(4.4.19)]

i(g/M_ YU, (M taneX +m.coteX )
W°oig g - 1 +

[Eq.(4.4.20)]

igcosew[(P;+Pq)n + (KB-Pb)ﬂ

By oY

+ (—PY—Ki)ﬂuB] [Eq.(4.4.28)]

ie(P'+P ) [Eq.(4.4.33,34)]
B K

-ieMwn [Eq.(4.4.36)]

Hv



[«

PUBLICATIONS

. Dwayne Hamilton: "The Classical Electrodynamics of

Interacting Particles," Am. J. Phys., 39, 1172-1177
(1971).

. Dwayne Hamilton: "The Conformal Invariance of the

coupled Spinor-Vector Fields," Can. J. Phys., 51,
316-321 (1973).

. Dwayne Hamilton: "The Uniformly Accelerated Reference

Frame," Am. J. Phys., 46, 83-89 (1978).

. Dwayne Hamilton: "The Rotation and Precession of

Relativistic Reference Frames," Can. J. Phys., 59,
213-224 (1981). "

. Dwayne Hamilton: "Pauli Spinors and Hestenes'

Geometric Algebra," Am. J. Phys., 52, 56-60 (1984).

. Dwayne Hamilton: "The Dirac Equation and Hestenes'

Geometric Algebra," J. Math. Phys., 25, 1823-1832
(1984).




