
Creating Ultrahigh Intensities Using 
Passive Enhancement Cavity 

by 

Thomas John Hammond 

B.Sc, The University of Winnipeg, 2003 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

Master of Science 

in 

The Faculty of Graduate Studies 

(Physics) 

The University Of British Columbia 

April, 2007 

© Thomas John Hammond, 2007 



Abstract 

A table-top source for coherent extreme ultraviolet (EUV) radiation is ben

eficial for spectroscopic techniques requiring photon energies of more than a 

few electron volts. Other systems which can produce the required photon 

flux and photon energies are large and have limited beam time such as the 

Canadian Light Source or a free-electron laser. Conversely, conventional optics 

(lasers and crystals) cannot produce such high photon energies. An alternative 

method uses high harmonic generation, a technique that requires high intensi

ties (> 1013W/cm2). The high-order harmonics that are created retain temporal 

and spatial coherence, yet are now in the ultraviolet and soft X-ray region of the 

electromagnetic spectrum. The goal of this thesis was to design an optical source 

and amplifier system that created intensities which surpassed the threshold re

quired for high harmonic generation. The approach used kept the bandwidth 

narrow and allowed for high EUV photon flux, useful for spectroscopy. Towards 

this end, a titanium-doped sapphire laser oscillator was designed and built to 

output > 1W average power, with a peak power > 100/cVK but limited in band

width to 2nm. The methods for obtaining such a high peak power - yet in a 

stable, bandwidth limited case - are presented. The laser output was then in

jected into an enhancement cavity with a high Q factor, increasing the average 

power by a factor of 50. The peak intensity has reached 4 x 1012 W/cm2, or to 

within a factor of 2 of the threshold required to create EUV radiation. Lastly, 

methods for coupling out the EUV fromthe enhancement cavity are presented. 
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Chapter 1 

Introduction 

With the development of dye lasers and the Titanium Sapphire (TiiAbOa) 

laser, coherent light in the optical region and near infrared (700 - llOOnm) is 

now easily accessible. Using second or third harmonic generation (SHG and 

THG respectively), these sources can be extended to the ultraviolet (lOOnm < 

UV < 400nm). Unfortunately, realising a coherent source at even shorter wave

lengths becomes increasingly difficult since the crystals typically used for har

monic generation begin to absorb in the UV. As an alternative, using the nonlin

ear response of a dilute noble gas allows for the creation of high-order harmon

ics extending beyond the ultraviolet region. High-order harmonic generation 

(HHG) has become a leading method of creating coherent light in the extreme 

ultraviolet (EUV) and the X-ray regions [1] from an optical source. 

The coherent EUV radiation produced by HHG is through a nonlinear pro

cess which requires the electromagnetic field of an external light source to be 

comparable with the Coulomb potential within an atom. This translates to 

an intensity of a fundamental optical beam greater than W13W/cm2. To this 

end, we will be concerned with the peak power of the laser in order to gener

ate the EUV. A higher peak power can be more easily attained using shorter 

pulses, which translates to more efficient EUV production. However, a shorter 

pulse requires a broader bandwidth from the fundamental (laser oscillator), 

which translates into a broader bandwidth for the EUV. The majority of cur

rent research on HHG is to produce the highest possible harmonic, typically 

using ultrashort (femtosecond) pulses (1/s = 10_ 1 5s). Much of the research 
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Chapter 1. Introduction 

has involved the development of better regenerative and multipass amplifiers 

and (quasi) phase-matching for more efficient high harmonic production [1, 2]. 

These refinements have led to harmonics on the order of several hundred, reach

ing energies of greater than 250eV (or < 5nm). Although some of the first lasers 

used in HHG had picosecond (lps = 10_ 1 2s) pulse duration [3], current work 

has focused almost exclusively on shorter pulses since the peak power is higher 

and the pulse duration of the resulting EUV pulses has entered the attosecond 

(las = 10~18s) regime [4]. Since these systems use regenerative or multipass 

amplifiers, they have low repetition rates (from a few Hertz to kHz), which 

means that although they can produce much higher pulse energies they conse

quently have a low photon flux. The limitation on the repetition rate is due to 

the gain dynamics in the amplifier system which has lead to interest in ampli

fication schemes without traditional gain media, such as passive enhancement 

cavities. 

An enhancement cavity uses a low loss (high finesse) design to trap light. As 

the cavity is pumped with a fundamental radiation field, the light travels within 

the cavity and constructive interference from multiple passes acts as a passive 

amplification scheme. This mechanism requires that the light is still coherent. 

The intracavity power increases by a few orders of magnitude, and when the 

input light is from a pulsed oscillator, the repetition rate of the enhancement 

cavity can be the same as that of the laser oscillator (tens to hundreds of mega

hertz). This high repetition rate is the advantage of the passive enhancement 

cavity over multipass/regenerative amplifiers because of the high flux of EUV 

that can be created. Recent work using an enhancement cavity has enabled the 

creation of high harmonics at 100MHz repetition rates [5, 6]. This work has 

led to harmonic generation reaching sub-lOOYtm wavelength light. However, in 

order to reach the intensity threshold for harmonic generation, these pulses are 
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Chapter 1. Introduction 

required to be sub-50/s, implying a bandwidth of at least 20nm. 

The goal of this project is to create high flux (greater than 1010 photons/sec) 

EUV light with narrow bandwidth (E/AE > 5000 where E is the photon en

ergy and AE is the energy width). One reason for these design considerations is 

for a potential application which is to replace the radiation from a synchrotron 

with a tabletop laser source for Angle Resolved PhotoEmission Spectroscopy 

(ARPES). Since a constraint of our work is that the high harmonic is to be 

of narrow bandwidth, there is a minimum limit to the optical (fundamental or 

driving) pulse duration. Therefore, by balancing these competing characteristics 

of high flux, high photon energy, and high spectral purity, our EUV table-top 

source can be modified for each potential application. For example, ARPES 

requires high spectral purity and can tolerate low photon flux, whereas X-ray 

imaging needs a high photon flux, but is not limited by the energy resolution. 

This thesis describes the setup of a high repetition rate laser capable of generat

ing relatively narrow bandwidth, picosecond pulses, yet reaching the threshold 

intensity required for HHG. 
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Chapter 2 

Background and Theory 

As will be demonstrated, the output intensity of a standard table-top oscillator 

is insufficient to reach the threshold for HHG. In order to balance the competing 

factors that are outlined in Chapter 1 and meet the requirements for generating 

high-order harmonics, the necessary theory for laser design is presented. The 

laser output will need to be amplified in order to have an intensity of 1013W/cm2. 

The method of amplification used in this project is an enhancement cavity, a 

cavity which is similar in many respects to a laser oscillator, but without a gain 

medium. The overall design of the source developed for this thesis is shown in 

Figure 2.1. It consists of a modelocked laser oscillator, an enhancement cavity, 

and a feedback control system to lock the cavity to the oscillator. The output 

of the laser is a pulse train and is injected to the enhancement cavity, which 

enhances the pulse energy due to the high finesse (or quality) of the cavity. In 

order to obtain the phase coherent amplification, control electronics which lock 

the oscillator to the enhancement cavity are a necessary component of the setup. 

In this chapter, several technical issues related to the design and implemen

tation of the source shown in Figure 2.1 will be discussed. In section 2.1, design 

considerations to obtain high peak powers from the laser oscillator while lim

iting the spectral bandwidth are discussed. In section 2.2 the theory behind a 

pulsed enhancement cavity is covered, including underlying motivation as well 

as technically relevant issues such as modematching to the enhancement cavity 

and EUV output coupling schemes. In section 2.3 the technique employed to 

generate an optical error signal for the feedback control electronics is reviewed. 
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Chapter 2. Background and Theory 

\ • 1 

Figure 2.1: The schematic for the source. The Ti:Sapphire laser output (red 
short dash) feeds into the enhancement cavity (EC) which amplifies the source. 
A signal is generated from the EC, fed into feedback stabilizing electronics 
(FSE) which send an electronic signal (black long dash) controlling a mirror 
in the Ti:Sapph laser. Further details and schematics are given in the relevant 
sections. 

5 



Chapter 2. Background and Theory 

As the end goal is generation of EUV radiation via HHG, the final section 2.4 

contains a review of semi-classical theory of HHG. 

2.1 The Laser Oscillator 

An ideal continuous wave (CW) laser accesses only one resonant frequency mode 

of the cavity, and thus has a constant intensity and a very narrow linewidth. 

The peak power of a CW laser is the average power, which typically ranges 

from a few milliwatts to several watts. In order to have a higher peak power 

table-top laser oscillator, we use a modelocked laser oscillator. This laser allows 

for the creation of a pulse train, where the peak power of a pulse is many orders 

of magnitude higher than the average power. 

2.1.1 Gain Medium: the Titanium Sapphire Crystal 

The laser source used for the research in this thesis is based on a titanium 

sapphire (Ti:Sapph) crystal because of several factors which are key to obtaining 

the high intensities required for the generation of high harmonics. In order to 

produce its characteristic broad bandwidth from 700 — lOOOnm, the Ti:Sapph 

crystal is pumped at 532nm which is a convenient pump wavelength. The 

crystal also has a high tolerance for heat and can be pumped at high powers, 

and has negligible thermal birefringence. Moreover, it has a broad fluorescence 

spectrum which allows for a wide lasing bandwidth. The broad bandwidth can 

either be useful for a CW laser which can be tuned over a large bandwidth, 

or all frequencies can be added in phase so as to create ultrashort femtosecond 

pulses. The pulse train, which is the output of the modelocked laser, is stable 

both in frequency and time meaning that the spectrum and duration of each 

pulse is identical to the one before. 
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Chapter 2. Background and Theory 

2.1.2 Lasing and Modelocking 

For the CW case, only one of the frequencies is amplified within the cavity 

allowing for a beam of constant intensity. The field inside a CW laser is given 

as 

E(z,t) = E0ei(k™*-W">t) + cc. (2.1) 

where EQ is the field strength and cc. is the complex conjugate. The wavevector 

k and natural frequency w are denoted by m since it is the mth longitudinal 

mode that is resonant within the cavity. That is, m is the number of times a 

given wavelength A can oscillate within a cavity of length L traveling at speed 

c, or A = 2L/m for a linear cavity. This implies 

mit 
km = — 

wm = — (2.2) 

where m = 1,2,3...1 

In the modelocked case, a broad spectrum composed of many u>m is resonant 

within the cavity and amplified. Each one of these frequencies (or longitudinal 

modes) has a very narrow linewidth [7] which make up a small component of 

the laser output. The field in the modelocked case then becomes the sum of all 

the individual components. However, in order to account for the phase of the 

pulse that is generated, there is a carrier envelope phase <j>ce. The output of a 

modelocked laser is then 

N+n 

E(z,t) = EoY, A m e i ^ z - ^ t + ^ + cc ' (2.3) 
m=n 

where the gain medium dictates n, N, and Am. This is because the gain has 

a finite bandwidth which begins at some frequency un = and ends at 

'This argument is valid for a cavity with no dispersive optical elements. For a discussion 
of cavities with dispersion, see Ref. [8]. 
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Chapter 2. Background and Theory 

VN+n = (N + n)j£, and each spectral component has a relative gain amplitude 

denoted by Am. 

a 

fret 

if 

fo n 

V ( a . U . ) Wm~mfrep+fo 

F i g u r e 2.2: The frequency spectrum of a modelocked laser (taken from Ref. 
[9]). The longitudinal modes vm of an empty cavity (black dashed vertical lines) 
are shifted by an offset frequency fo due to the dispersive elements in the cavity. 
The spectrum of the laser (green dotted curve) is actually the envelope of the 
frequency comb (red solid vertical lines). 

As the output spectrum of a modelocked oscillator is a series of individual 

modes, it is generally referred to as a frequency comb as can be seen in Figure 

2.2. The pulse that is formed within the cavity has a repetition rate that is 

given as 

(2.4) frep — n T 
C 

•2L 

which is the fundamental mode of the frequency of the laser in the C W case 

U>i _ c 

2TT ~ 2L 

By including a time dependence in the phase in the carrier envelope 4>ce{t), 

there is a constant shift in the spectrum which is now given as 

vm = mfrep + fQ (2.5) 

The optical frequency of a mode, vm, is then some multiple of the repetition 
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Chapter 2. Background and Theory 

rate of the oscillator adjusted by an offset frequency, /n [8] (discussed in detail 

in section 2.1.4). 

The number of modes involved in generating the pulse depends on the band

width of the pulse, as well as the cavity length. Using u = c/A such that 

frequency bandwidth is related to the wavelength by Au = ^-AA, the number 

of modes A M which make up a pulse of bandwidth A A is 

AM « | ^ A A (2.6) 

for a linear cavity. The consequence of the coherent addition of modes is that as 

the number of modes increases, the pulse duration decreases (for a given cavity 

length). This can be seen from finding the full width at half maximum (FWHM) 

of the pulse in frequency (see Figure 2.2) and time gives the relation 

AuAt = const (2.7) 

where the constant is dependent on the assumed shape of the pulse (for square 

pulses const « 0.886, for gaussian pulses const = %ln(2) « 0.441, and for 

hyperbolic secant squared pulses const = [^sech'^)}2 « 0.351). There-

fore by combining equations (2.6) and (2.7), for ultrashort (femtosecond) pulse 

generation there are an enormous number of modes. 

To calculate the peak intensity, we need to investigate both the temporal 

and spatial domains of a series of square pulses with a gaussian spatial profile. 

The peak power relative to the average power is given as 

Ppoafc « ^ (2.8) 

where Pavg is the average output power, T is the pulse duration and frep is the 

repetition rate. It becomes apparent that the shorter the pulse and the lower 

the repetition rate (the longer the cavity, in effect), the higher the peak power. 
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Chapter 2. Background and Theory 

If we then translate this to intensity, it is found to be [10] 

W = (2-9) 

where the factor of 2 is introduced because the spatial profile is assumed gaus-

sian. 

To determine how much the output power of a standard Ti:Sapph must be 

amplified in order to reach the threshold of HHG (typically on the order of 

lOl3W/cm2), an example is given. A 100MHz oscillator with 1 picosecond 

(lps = 10_ 1 2s) pulse duration and an average output power of IW focused to a 

spot size of 20pm has a peak intensity of ~ 6 x 109W/cm2. Thus, it is necessary 

that the intensity is increased by 4 orders of magnitude, requiring modifications 

to the laser oscillator and the use of an amplification scheme. 

2.1.3 Limiting the Bandwidth 

Since the EUV generated pulses share the characteristics of the fundamental, 

the narrower the bandwidth of the Ti:Sapph laser output, the narrower the 

bandwidth of the EUV 2 . Thus, it is required to limit the bandwidth of the 

Ti:Sapph laser output. As stated in Chapter 1, the goal of the spectral resolution 

of the EUV is on the order of E/AE > 5000, therefore the fundamental must 

have an approximate bandwidth less than a tenth of a nanometer. From the 

frequency-time relation of equation (2.7), the pulse duration would then be 

nearly 10ps. Although such spectral resolution is the ultimate goal, this narrow 

bandwidth substantially decreases the peak power (and peak intensity). In order 

to reach the threshold intensity for these experiments, the initial target pulse 

duration is on the order of a picosecond. 

A method that is useful in limiting the bandwidth of the oscillator is inserting 
2It is observed in Ref. [11] that the relative bandwidth of the 9 t h - 15 t h harmonics is 

broader than the fundamental by a factor of 2. 

10 



Chapter 2. Background and Theory 

Focusing mirrors 

Figure 2.3: Schematic of a bandwidth limited cavity. The prism is used to 
spatially separate the spectrum, forcing only a fraction of the available band
width to be stable within the cavity. E M is the end mirror, OC the output 
coupler and Ti:S is the Ti:Sapphire crystal. 

a single prism into the cavity. As the broad spectrum enters the prism, the beam 

becomes spatially separated depending on the wavelength. The light propagates 

the length of the oscillator and the broad bandwidth will become limited as the 

mirror will only reflect a portion of the spectrum, the part, that is resonant inside 

the cavity (see Figure 2.3). A potential problem with this method would be that 

there could be a spatial chirp, that is that the central wavelength is spatially 

(ie tangentially) varying across the profile of the beam. This, however, has not 

been observed. Although the reasons have not been investigated, one possible 

explanation is that since the output coupler is flat, the radius of curvature of 

the beam (as discussed in section 2.1.5) is infinite, meaning that there is a focal 

point on the face of the output coupler. Therefore, even though the prism causes 

the beam to be spatially dispersed, the beam is refocused and recombined at 

the output coupler, canceling the spatial chirp. 

By exploiting the spatial dispersion caused by the prism, we are able to 

limit the supported bandwidth within the cavity. Referring to Figure 2.4 and 

following from the notation in Ref. [12], it is found that 

a = 02(A) + 03(A) (2.10) 

Since the losses due to the prism are to be minimized, the incident beam is at 

11 



Chapter 2. Background and Theory-

Figure 2.4: The dispersion from a prism. 0\ is the incident angle, and is set 
to be the Brewster angle for the central wavelength (here Ao = 800nra) in order 
to minimize loss. The prism is cut (the peak angle a) such that the output at 
AQ is also at Brewster angle. 

Brewster's angle for the central wavelength Ao. For a well designed (ie symmet

rical for the central wavelength) prism, the final resulting angle (64) is also at 

Brewster's angle. The benefit of the Brewster's angle is that when a prism is in

serted into a cavity, it is not an optic that causes much loss. As demonstrated in 

Figure 2.4, the dispersion results in spatial separation of the frequencies. Using 

Snell's law to find the resulting angle 02(A), 

(sin6>B(Ao)~ 
0 2 (A) = sin" 

n(X) 
(2.11) 

This then results in O3 = a-sin 1 j , which means that for the output 

beam, the final angle is 

0 4 (A) = s in" 1 n(A) sin [ a - sin 1 
sin 0 B ( A Q ) 

n(\) 
(2.12) 

where all the functions of A have been made explicit, demonstrating the wave

length limiting effects. The dispersion of the prism is calculated by the index 

of refraction given in Figure 2.5 (a), using the Sellmeier constants found from 

Ref. [13]. 

Assuming that this beam reflects off an end mirror at some distance d, the 
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Chapter 2. Background and Theory 

0.798 0.799 0.8 0.801 0.802 
Wavelength (urn) 

a) 

0.790 0.795 0.8 0.805 0.810 
Wavelength (urn) 

Figure 2.5: T h e d ispers ion of the p r i s m l imi t ing the b a n d w i d t h , a) T h e relative 
index o f refract ion n ( A ) - n ( 0 . 8 ) for S F 1 0 (blue dash) (where n(0.8) = 1.71124) 
a n d the divergence of the b e a m for a cav i ty length of d = 6 m . T h e spread o f 
the b e a m size is due to the dispers ion of the p r i s m . T h e ca lcu la ted waist o f the 
b e a m is w = 0 . 6 m m , so the s u p p o r t e d b a n d w i d t h is pred ic t ed to be AA ss 2 n m . 
b) F o r a low-dispers ion mater ia l such as CaF2 , the b a n d w i d t h is pred ic t ed to 
be m u c h greater. 

size of the waist of the b e a m wi l l be given as 

Aw0 = |dtan(<9 4 (A) - 6B(\0))\ ( 2 - !3) 

where the l i m i t a t i o n of this a p p r o x i m a t i o n comes f r o m the fact tha t a n infinitely 

smal l in i t ia l waist has been assumed at the front interface of the p r i s m . T h e 

ca lcu lat ion for cav i ty s tabi l i ty is done in section 2.1.5, a ca lcu la t ion w h i c h gives 

the size of a gaussian b e a m throughout the cavi ty given a certa in m i r r o r config

ura t ion . T h e p r i s m has a flat interface, a n d so has m i n i m a l effect on the cav i ty 

s tabi l i ty a n d waist at the o u t p u t coupler a n d end m i r r o r . T h e b a n d w i d t h of the 

laser comes f rom the wavelengths that are not spat ia l ly d i spersed far f r o m Ao 

(where 'far' is defined here as be ing greater t h a n the b e a m waist at the o u t p u t 

coupler or e n d m i r r o r ) . T h i s m e t h o d gives a g o o d first order ca l cu la t ion for the 

b a n d w i d t h of the osci l lator. 

In equat ion (2.13), the factors which affect the b a n d w i d t h are the cav i ty 

length (and b e a m waist) , the central wavelength, a n d the index o f refract ion o f 

the p r i s m . Since the cav i ty length a n d b e a m waist are d e t e r m i n e d by the stable 

13 



Chapter 2. Background and Theory 

cavity parameters (described in section 2.1.5), this is not a parameter that is 

easily modified by a prism (due to its flat interfaces). The main bandwidth-

limiting parameter that is available is the type of glass that is inserted into the 

cavity as demonstrated in Figure 2.5. 

If the spectral resolution is still insufficient, the bandwidth can be further 

narrowed by using additional prisms. By orienting the two prisms the same 

direction, the amount of spatial dispersion with be increased (see Figure 2.7(b)). 

Although other methods could be used for limiting the bandwidth, a prism 

is beneficial for several reasons. First, by slightly adjusting the input angle 

it is possible to select the central wavelength of the oscillator over most of 

the supported bandwidth of the crystal (about 200nm). This is useful since 

the reflectivity of the mirrors in the enhancement cavity is dependent on the 

wavelength. Thus, tuning the central wavelength so that the enhancement cavity 

has the highest possible finesse (proportional to the reflectivity of the mirrors) 

allows for a higher enhancement factor (to be discussed later). Also, prisms 

are often used to compensate for dispersion (to be discussed in section 2.1.4). 

Since prisms are often already used in cavities for dispersion compensation, no 

additional optical elements are required if they are also used to control the 

bandwidth. 

2.1.4 Dispersion Compensation 

In order for a pulse to be stable and self-consistent within a cavity, each fre

quency component of the pulse must have the same repetition rate (or period) 

within the cavity. This is implied by equation (2.5) since there is an equal spac

ing between each frequency component. To understand how this can occur, we 

need to investigate the relation between the wavevector k and the frequency 

w. The velocity of a single frequency component ui in an optic with index of 

14 



Chapter 2. Background and Theory 

refraction n is given by the phase velocity 

ui c .„ _ 
v p = - = — 2.14 

k n(bj) 

which can be rearranged to show that k(u>) = w^jy. It is possible to expand the 

wavevector about a central frequency wn, relating each term to some physical 

quantity. 

The zeroth term in the series is simply the wavevector at the central frequency, 

while the first term is related to the group velocity 

(2.16) 

The second term relates the dependence of the group velocity on the frequency, 

and so the second term is called the group velocity dispersion (GVD) and is 

typically represented in units of fs2/mm. 

An element with a dispersion of zero implies that all the frequency compo

nents of the pulse have the same group velocity, and thus the pulse will keep 

its shape as it propagates through the element. In a dispersionless cavity, the 

group velocity is independent of the frequency so the round trip time for each 

frequency component is also independent of frequency. Since a pulse makes 

many round trips within a cavity, the dispersion within the ThSapph oscillator 

must be carefully tuned to allow for the creation of a stable pulse train. 

If the dispersion of an optical element is non-zero, then some frequency 

components will lead while others lag; this leads to a chirp. A chirped pulse 

has some temporal dependence on the constituent frequencies implying that 

the pulse duration will not relate to the bandwidth of the pulse as dictated 

in equation (2.7). Using the relation that the time required for a frequency 
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component to propagate through an optical element of thickness L is given by 

r = L/vg, then the change in the pulse duration is found to be [10] 

\d2k\ AT « LAui 

AXL 
du2 

d2n 
(2.17) 

c |<9A2| 

where the bandwidth of the pulse is Aw or AA and the index of refraction is 

n. Because of the increase in pulse duration, the peak power of a chirped pulse 

will be lower than that of a transform-limited pulse. Thus, for this experiment 

a chirped pulse is not desired. 

There is an additional effect known as self-phase modulation (SPM) that 

must also be compensated. This is a nonlinear effect due to the high peak 

intensity of the pulse. The high peak intensity of the pulse can change the 

index of refraction of an optical material, which effectively adds more normal 

dispersion. 

Often group delay dispersion (GDD) is used instead of GVD as a convenient 

measure when the propagation distance through an optical element is known, 

and can be found by using the relation 4>(u>) = Lk(uS) where L is the distance 

of propagation within the optic. In discussing the amount of dispersion within 

the cavity, it is the net GDD which will be discussed in this thesis as some 

optics have negligible propagation distance, but have a resulting GDD (such as 

chirped mirrors). The third order term (third order dispersion, or TOD) has 

become important in the case of ultrashort pulse generation, but in the current 

discussion of a few nanometers of bandwidth, it is of little concern [14]. 

The causes for the dispersion in the cavity come from the optical elements 

and the ThSapphire crystal itself. In the visible and near infrared part of the 

spectrum, most material causes normal dispersion (a positive value when dis

cussing the index of refraction in terms of wavelength), while anomalous disper-
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time 

Figure 2.6: An upchirped pulse 

sion carries the opposite sign. The main source of positive dispersion within the 

laser cavity is the crystal. In order to introduce anomalous dispersion into the 

cavity, two common methods have been developed. Special mirrors which have 

a series of carefully designed dielectric coatings allow for different penetration 

depths depending on the wavelength, and thus can compensate for the disper

sion by adjusting the optical path length of different wavelengths in the cavity. 

Although there can be an arbitrary amount of these chirped mirrors in a cavity, 

the amount that they compensate is fixed. To finely adjust any residual disper

sion, a prism (pair) is inserted into the laser cavity. By mounting the prism on 

a translation stage, it is possible to adjust the amount of glass through which 

the beam passes. This allows the user to finely tune the amount of dispersion 

within the cavity, a necessary requirement in order to have a stable, passively 

modelocked oscillator. 

Material n(800nm) v 9 / c GDD (fs*) 
Sapphire (nQ) 1.76 0.561 133 

CaF 2 1.43 0.695 27.9/mm 
SF10 1.71 0.571 159/mm 

M i - -70 

Table 2.1: Table of materials used in the oscillator and their group velocity 
and delay dispersion values; c is the speed of light; M i represents one of the 4 
mirrors that are dispersion compensated. Numbers are for single pass through 
the optic element. 
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The repetition rate of the pulse is determined by the group velocity of the 

pulse, vg, while each frequency component travels at the phase velocity vp. 

The offset frequency, fo, is a consequence of the difference in phase and group 

velocities [8] 

/ „ = ^ ( 1 - 1 ) (2.18) 
2TT \vg vpJ 

where uic is the carrier angular frequency. The offset frequency causes a constant 

shift in the entire spectrum of the output of a modelocked laser. 

To conclude the section on dispersion, several practical matters arising are 

considered. The index of refraction is usually given in terms of the wavelength 

A by the Sellmeier equation. This is an empirical equation which has the form 

2 m , , £iA2 , B2X2 , B3X2 

n { x ) = 1 + ^ ^ + ^c-2

 + ^-c; (2-19) 

where the constants Bi and Cj are experimentally determined and tabulated 

[13]. The corresponding group velocity and GVD become 

1 _ 1 
Vn C 

n{X)-Xdn^ 
dX 

(2.20) 

The GDD from light propagating through a pair of prisms which are oriented 

as Figure 2.7(a) can also be obtained in closed form. Although the material 

will have normal dispersion, the geometry dictates that the setup can provide 

anomalous dispersion, thus providing a means to tune the net cavity dispersion 

through zero. The GDD for the prism pair is given by Ref. [14] 

GDD(X) = - 4 ^ (*)' + i p r t . m ^ g ,2.22) 

and is very useful in cases supporting a broad bandwidth. 
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a) b) 

Figure 2.7: Prism pairs used for a) dispersion compensation for maximum 
bandwidth (see equation (2.22)) and b) extra spatial dispersion to minimize 
bandwidth. 

2.1.5 Laser C a v i t y E x t e n s i o n v i a U n i t y Trans fo rm 

The narrow spectrum limits the number of modes contributing to the laser field, 

which means that the peak output power from the oscillator must be regained 

by some other means. As presented in equation (2.8) and the surrounding 

discussion, the longer the cavity, the higher the peak power [15]. However, the 

effect of a longer cavity on the laser operation must be well understood since 

modelocking and output power can be compromised. 

Ray Optics and the Ray Transfer M a t r i x 

If we define a ray of light by its position r from the optic axis z and its slope as 

r* = g § (see Figure 2.8), then the resulting ray through an optical element can 

be determined with a matrix [16]. This matrix is a mathematical description 

for the direction of propagation for ray optics, and it represents the effect the 

optic has on r and r'. Each optical element has its own matrix representation. 

The matrix is obtained by the following method. A ray of initial position T"j 

and direction of propagation relative to the z axis sin(0j) encounters an optic, 
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• 
z 

Figure 2.8: A ray propagating in direction k through space. The slope of the 
beam relative to the z axis is typically small such that tan6 « sm.8 « 8. 

resulting in the position and direction 

rf = Ari + Bsm(6i) 

sm{6f) = Cn + Dsia(0i) (2.23) 

These two equations can then be generalised to a matrix, as represented by 

1 rj \ \ A Ii 
(2.24) 

ysm(ef) J \C D j ^sin(fli) 

The matrix acting on the ray is the ray transfer matrix. 

The Paraxia l Approx imat ion and Gaussian Beams 

The electric field must be a solution to the vector wave equation 

{V2 + k2)E(x,y,z) = 0 (2.25) 

where V 2 is the Laplacian. On the condition that we have a well collimated 

laser beam (as is usually the case for stable lasers) that is propagating in the z 

direction, the field can be separated as 

E(r) = E0{f)elkz (2.26) 
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It is implied that the dependence of Eo(f) on z is much less than on x, y over 

the distance of a few wavelengths. Quantitatively, this becomes 

\d2E0(f)\ 
dz2 

<Zk2\E0(f)\ (2.27) 

The wave equation can then be reduced to the paraxial wave equation, which 

is found to be [10] 

/ d2 d2 d \ -
{w + oV2+2ik8-z)E^ = ° (2.28) 

which has a solution 

E0(r) = ^ e ' ^ ! l ! i £ l e

i f c ( l 2 +! / 2 ) / 2 «( 2 ) e -^ (^) e - (^+y 2 ) /^ 2 (^ ) (2.29) 
w0 

where A is some amplitude constant in the direction of polarization and WQ is 

the minimum beam waist. This solution has a gaussian envelope, and so the 

resulting field from a laser with this profile is referred to as a gaussian beam. 

The parameters are defined in Table (2.2). 

= ITW'Q/X Rayleigh Range 

w(z) = W0TJ1 + z2/zl beam waist 

R(z) = z(l + z2/z2) radius of curvature 

e — \/nwo divergence angle 

4>{z) = - tan - 1 (zjzo) Guoy phase 

Table 2.2: Gaussian beam parameters taken from [10] 

The exponent in equation (2.29) can be combined to a single term q(z), 

which is defined as 
iX (2.30) 

q{z) ~ R(z) nw2(z) 

The q(z) parameter uniquely determines the properties of a gaussian beam. 

This parameter can be modified as it passes through optical elements, which 
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are mathematically described by some coefficients A, B, C, and D3. A new qj 

is related to the initial by 

Aqi + B 
If = (2.31) 

Cqi + D 

For any given cavity, the stability criterion is that the spot size at a given 

location within the cavity is not diverging, and so the beam waist and radius 

of curvature must be identical after many round trips. This means that after 

traveling one cavity length (2Lo for a linear cavity) we get q(2Lo) = q{0). 

Combining this with equation (2.31), it is found that 

1 _ D - A TJXA - D)2 + ABC 

2B 2B 
(2.32) 

This q then dictates the stability conditions based on the geometry of a cavity 

given by the ABCD coefficients. 

2.1.6 The ABCD Matrix 

The results from ray optics can be used in gaussian optics since equation (2.31) 

can be rewritten as 

V 7 V 1 / 

(2.33) 
A B 

C D 

The matrix acting on the q parameter is also the ray transfer matrix, however 

is generally referred to as the ABCD matrix when discussing gaussian beams 

[16]. It is convenient to use the ABCD matrix since the matrix elements can 

easy be calculated (either from ray optics or gaussian optics), and can easily 

be extended to represent many optical elements, and their combinations. The 

consequence of a gaussian beam propagating through multiple optical elements 

becomes the product of these ABCD matrices, cascaded in reverse order of 
3Thcse coefficients are unique to each optical clement, and arc given in references [10, 17). 

They arc also the matrix coefficients in the ray transfer matrix as discussed in section 2.1.5. 
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propagation. That is, the ABCD matrix of an entire cavity with N optical 

elements is given by 

A B^ 

C D 
= M N M N _ i - - - M 2 M i (2.34) 

where each is an ABCD matrix determined by the optical element it repre

sents4. A property of the ABCD matrix is that its determinant is unity. This 

allows equation (2.32) to be rewritten as 

1 = D _ A ± y/iA + D ) ^ 

q 2B 2B K ' 

This is similar to equation (2.30), the real part is associated with the first term, 

while the imaginary is with the second term. Since it is required to have some 

finite waist WQ, then the argument under the square root must be negative, or 

(̂ 4 + D)2 — 4) < 0. This then leads to the stability condition of a cavity, which 

is 

\\A + D\<1 (2.36) 

where A and D depend on the cavity geometry. 

2.1.7 Cavity Extension 
As is mentioned in section 2.1.2, the intensity of the output intensity of a stan

dard ps, 100MHz ThSapph oscillator is 4 orders of magnitude below the thresh

old required for HHG. Although the ideal amplification of an enhancement cavity 

could create the necessary intensity, practical considerations limit the enhance

ment factor to several hundred [18-20]. Thus, in order to maximize the photon 

energy stored within the enhancement cavity, our Ti:Sapph laser is a modifica-
4 The A B C D matrix is also used to guide the laser output. Collimating the beam is useful 

in this project since the output of the laser is injected into an enhancement cavity. This is 
discussed further in section 3.2 
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tion from the standard design. The relation of average to peak power is given 

in equation (2.8), which implies that by extending the laser cavity it is possible 

to have a higher peak power. 

The original design of our Ti:Sapphire oscillator was an octave spanning laser 

for high precision metrology [21], and so the modematching and modelocking 

parameters arc already well understood and optimized for efficient, stable out

put. Thus, when this cavity is designed to be extended from a repetition rate 

of 82MHz down to 25MHz, it is desired to minimize the changes to the cavity. 

Specifically, the radius of curvature and waist of the beam inside the crystal and 

at the output coupler for the shorter case are identical to those in the longer 

case. 

Figure 2.9: The extended (25MHz) cavity schematics. The two unity trans
form (UT) mirrors have a long focal length such that the q parameter is the 
same at the end mirror (EM) and output coupler (OC) as in Figure 2.3. Instead 
of the OC being at position M, it is replaced by a series of mirrors with radius 
of curvatures R\ and R2, and propagates a total distance di +d2 + 03- d\ is the 
distance from M to the first UT mirror, d2 the separation of the UT mirrors, 
and d3 is the distance from the UT mirror to the OC. 

Focusing mirrors 

UT mirrors 

E M 

2-1 
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The short cavity geometry gives the waist at the output coupler woc. For 

the short cavity in Figure 2.3, the q parameter at the output coupler is purely 

imaginary as a flat output coupler dictates that the radius of curvature is infinite. 

The beam waist at the output coupler for the short cavity woc is the same as 

for the long cavity case by construction, and so q0c{long) = qoc(short). This 

allows the use of equation (2.32), and noting that the beam profile is flat at the 

output coupler, then A = D. Putting this together, the beam is defined as 

JA_ = y/{A + l)(A-l) ( 2 3 ? ) 

where the coefficients A and B are found to be 

, 1 2dj 2(rf 1+rf 2(l- 2^)) 

B = di + 
4 l ( I.a ) + 4,(1.a.2*±^Jfc») (2.3S) 

where the di's and Ri's are defined in Figure 2.9. This is now a problem with 5 

parameters, but this can be simplified with a few practical considerations (see 

Appendix C.l). The parameters are now chosen dependent on the wavelength 

of the oscillator and the waist at the output coupler for the shorter cavity. 

2.2 Enhancement Cavity 

The use of an enhancement cavity (EC) as the amplifier in this project is chosen 

because of the high photon flux which can be attained from a high repetition 

rate. The EC uses high reflectivity mirrors to store light for an extended period 

of time. As an applied field from a laser in injected into the cavity, the power can 

build up by several orders of magnitude which is due to the coherent addition 

of the field from many round trips. This system does not use a gain medium, 

eliminating concerns about noise and spectral broadening. However, the EC 

has many of the same issues as the oscillator with regards to cavity stability, 
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modematching, and dispersion. Due to the high reflectivity of the mirrors inside 

the EC, many of these factors are more pronounced and are more sensitive 

as compared to laser cavities. For example, the transmission of the output 

coupler for the laser oscillator is 10% while for the input coupler of the EC, the 

transmission can be as low as 0.1%. This translates to a factor of 100 times 

increase in photon lifetime in the EC than in the laser oscillator. Therefore, 

the pulse has many roundtrips within the EC, and so is very sensitive to the 

dispersion of optical elements. Thus any errors in alignment or dispersion will 

become greatly amplified and so proper setup of an EC is not trivial. 

2.2.1 Intensity Enhancement 

Enhancement cavities have existed almost as long as lasers themselves [22]. The 

use of an EC to amplify a CW laser to reach the threshold for second or third 

harmonic generation (SHG or THG) is beneficial because the harmonic is then 

also a clean, narrow linewidth signal. For nonlinear phenomena such as SHG, 

enhancement cavities have been used for CW lasers where the output from 

an oscillator is not intense enough in order to observe these nonlinear effects. 

The original case of a single-mode ring cavity will be the starting point for the 

discussion of enhancement cavities as it is a simpler case. The single mode case 

can then be extended to model a pulse resonating in the EC. 

Single Mode Ring Cavity 

For CW operation, the input field EQ is incident on the input coupler with a 

reflectance r-jC — \fR~ic and transmission coefficient Tic — 1 — RiC. For a cavity 

with no output coupler, there will be some given loss L = 1 — I2, where / ~ rN 

with N is the number of mirrors in the cavity. This assumes that all loss is at 

the mirrors and they are all equal. In this project, there is a Brewster plate 

which will also cause some loss. In any case, the loss I will account for any 
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Figure 2.10: The electric field inside a ring cavity. The input electric field EQ 
is incident on the input coupler with reflection coefficient i?j c = r2

c. After one 
round trip, it has a phase 4> = kd where k is the wavevector and d is the cavity 
length. Provided there is an applied field, the constructive interference causes 
a large enhancement without a gain medium in the cavity. 

scattering/absorption that may occur. The field after traveling through the 

cavity of length d has a phase </> = kd. The field then at the input coupler due 

to a series of round trips becomes 

Ecav = E0^T~ (1 + ItiJ* + (lrice^)2 + (lrice^)3 + • • •) (2.39) 

which is a geometric series and converges to 

Ecav = j^f^ (2.40) 1 - lricelt' 

Since it is the intensity that is crucial for this experiment, the intracavity in

tensity becomes 
hTic ( 2 4 1 ) 

( l - Z r s c ) 2 + 4 Z r i c s i n 2 ( f ) 

A useful measurement of the cavity is the finesse, which is given by 

F-pZZ- (2.42) 

The finesse determines the F W H M of the linewidth of the modes inside a cavity 

by 

A , = f̂ sin-flW^/T (2.43) 
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Figure 2.11: Contour plot of the relative intracavity intensity Icav/Io as a 
function of both the input coupler reflectance TiC = \fR~Z and phase <j> for a 
ring cavity. The intracavity intensity is maximized when RiC equals the losses 
of the cavity L = 1 — I2 and $ = 2im where n is an integer. When RiC = 
1 — L, the cavity is said to be impedance matched, and is shown by the line at 
ric « 0.95 (Tic — 10%). An undercoupled cavity where Tic > I quickly loses the 
enhancement efficiency. Notice that the lower r; c allows for a greater range in 
<p for the same Ica.v/Io-

The finesse is also a useful tool since the losses inside the cavity determine the 

photon lifetime r p . This is related to the finesse by 

P 2KI>FSR ^ 

The finesse of the cavity is then a very useful tool when predicting the enhance

ment characteristics of the cavity. It will be used many times in discussing the 

features of the EC. 

From Figure 2.12, the enhancement factor is dependent on the roundtrip 

phase of the field inside the cavity, (p. Since the intensity peaks every 2rrt7r 

where m is some integer, the length of the cavity must be d = mX. This means 

2s 
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Figure 2.12: A cross-sectional slice of Figure 2.11 at ric = 0.95, which gives a 
peak relative intensity IcavjIo = 10. The full width half maximum (FWHM) of 
each mode is the ratio of the frequency to the finesse, T, of the cavity. 

that for maximum amplification, the EC length must be an integer multiple of 

the wavelength of the fundamental beam. This is the motivation for a locking 

mechanism that can control the cavity lengths (discussed in section 2.3). As

suming that the EC length is locked, for a given amount of loss in the cavity (via 

frequency conversion, scattering at the mirrors, etc) the optimal enhancement 

occurs when the reflection coefficient of the input coupler can match this loss 

(this situation is referred to as impedance matched). In this case the typical 

enhancement possible is 

for 1 — R <§; 1. Therefore, a high finesse cavity T ~10 3 can have an enhancement 

of > 300. So in order to attain high intensities, we are motivated to construct 

an E C with high finesse. 

M u l t i m o d e Transfer Funct ion 

The difference in the output spectrum of C W and modelocked laser operation is 

the number of modes which must be considered. In the C W case, only a single 

frequency u is resonant within the EC, which means that the total length of the 

I cav l-R 
(2.45) 
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Figure 2.13: The modes of a reference cavity (the EC) (red curve) and the 
modes of the frequency comb (black dash) for the spectrum. Although the 
centre mode of the comb is set to a mode of the EC, due to cavity mismatch 
this is not true for all modes. In order for all modes to be aligned, both frep 

and fo must be controlled. Although a higher finesse gives a higher intracavity 
intensity as seen in equation (2.45), this limits the tolerance of the mismatch of 
the E C to the laser modes, thus limiting enhancement. 

enhancement cavity d must satisfy — = 2ra7r, or 

UJ cm 

2~n~~d 
(2.46) 

where rn is an integer. This lack of constraint on d allows for an enhancement 

cavity to be any size, so long as it is an integer multiple of the wavelength of 

light it is amplifying. 

The C W case can be extended to the modelocked case, however now the 

number of modes that the E C must support can be enormous (104 - 10 5 ) . In the 

modelocked case, each frequency component of the input field must be matched 

to a respective mode of the EC in order to attain the ideal enhancement. Recall 

that the modes of a modelocked oscillator are from equation (2.5) 

Vm = mfrep + f0 

The difference of the C W and modelocked cases can be seen comparing 

Figures 2.12 and 2.13. In the ideal multimode case all of the modes are aligned 
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and we have the maximum attainable intracavity power. The comb spacing of 

the incoming field is set by frcp for the entire spectrum. In order for the spacing 

of the modes in the EC to match / r e p , the length of the EC must be matched 

to that of the modelocked laser. 

As mentioned, the constant frcp in the spectrum implies that the net dis

persion of the laser oscillator is zero. However, the dispersion (as well as higher 

order terms) in the EC is not necessarily zero since optical elements that can 

finely tune dispersion (such as prisms, etc) cannot be used since they cause too 

much loss. The presence of dispersion in the EC will cause an unequal spacing 

of the modes, limiting the bandwidth supported by the EC, and will cause the 

pulse duration to increase equivalent to the effect seen in equation (2.17). An 

estimate of the net effect that GDD has on the pulse duration can be seen by 

combining equations (2.17) and (2.7). The relative amount that an initially 

transform-limited pulse spreads per pass (pp) in the cavity is 

which demonstrates the sensitivity of the relative pulse duration to the pulse 

bandwidth, AA. Therefore, within the photon lifetime of a picosecond pulse in 

an EC of finesse ~ 600, as long as the net GDD is less than 20/s2 the relative 

pulse duration changes by less than 1%. 

Additionally, as shown in equation (2.18) there is an offset frequency which 

comes from the differences in phase and group velocities within the laser cavity. 

The EC will also have a difference in vp and vg due to optical elements (e.g. 

a Brewster plate), and so it too has its own offset frequency foC • Therefore, 

even when the repetition rates of the oscillator and EC are equal, the comb 

lines of the incident field will not align with the modes of the EC because of the 

difference in fo and / 0

E C -
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Figure 2.14: Theoretical plot of the enhancement factor as a function of the 
cavity length mismatch inside the EC. The parameters for the E C are a finesse of 
100, a central wavelength A = 800nm and a bandwidth of AA = 30nm. Because 
of the bandwidth of the pulse, there is a Lorentzian lineshape (blue dash) which 
modifies the modes (solid red). For a single linewidth C W laser the intensity is 
equal for all modes (see Figure 2.12). The higher finesse and broader bandwidth 
narrow the width of the Lorentzian envelope, making the locking to the central 
mode more crucial to reach high intensities. Also note that for larger \p\, the 
width of the mode increases. See reference [23] for comparison. 

Now that the consequences of dealing with tens of thousands of modes when 

using an enhancement cavity have been addressed, we can quantify the effects 

they have on the enhancement factor. Taking into account the misalignment of 

the incident field comb lines and the EC modes, the relative intracavity power 

is given by [23] 

A(p) oc 
i 

(2.48) 

where T is the finesse of the cavity, AA is the laser bandwidth, and 

f - fEC 

J rep J r, p OC 
fri 

6 
+ 27 (2.49) 

represents the measure of alignment of the comb and mode spacing. is the 

32 



Chapter 2. Background and Theory 

repetition rate of the enhancement cavity, and 6 = 27r(/o — /rfC)//rep-

Since the maximum attainable intracavity power is dependent on the finesse 

in equation (2.45), then for p ̂  0 the effective finesse of the cavity is reduced. 

Therefore, combining equations (2.41) and (2.48), the relative intracavity power 

N in a multimode enhancement cavity is given by 

(2.50) 

where the effective finesse is given as 

(2.51) 

Two important consequences arise from these equations. First, as the finesse 

of the EC is now dependent on the mode p, this implies that the linewidth of 

the enhanced modes will also be affected by the cavity length mismatch. As 

|p| increases, the finesse of the cavity decreases, which effectively increases the 

amount of loss in the cavity according to equation (2.42). The linewidth is 

important when considering the locking mechanism used as described in section 

2.3. Second, the differences in the offset frequencies of the comb modes and 

the EC cause a shift within this envelope. Therefore to obtain the maximum 

enhancement possible, 6 oc /o - /r f c must be also controlled. 

As 5 causes a shift of the modes within the envelope function of equation 

(2.48), the intracavity power is decreased. By drifting an amount 7r, then the 

EC has effectively shifted by one cavity mode and the modes have returned to 

their original position. Therefore, we need only consider the effects of 6 drifting 

by an amount 7r/2 because any further, and we can simply redefine the case 

for p = 0. Using this argument, we can quantify when the importance of the 

envelope function limits the intracavity power. 
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For a given central wavelength A, the value of AXF dictates the shape of the 

envelope in Figure 2.14. The FWHM of this function is 

and the bandwidth of the field and the finesse of the cavity are parameters which 

can be controlled. So then in order to have at least one-half of the maximum 

attainable intracavity power, the constraint becomes 

AA.F < 2\/3A (2.53) 

Therefore, as long as equation (2.53) is satisfied, then as 6 drifts an amount 

±7r/2 the intracavity power will be at least one-half the maximum attainable.5 

If, however, this is not satisfied, then the offset frequency must be controllable. 

Since the EC has no tunable elements to adjust foC, the offset frequency of 

the laser fo must be tunable. This can be achieved in the laser cavity by adjust

ing the insertion of the prism in the beam path [24]. Although the dispersion 

of the cavity will remain zero, the addition of material in the beam path will 

change the phase and group velocities, thereby adjusting fo- Since this changes 

both the phase and group velocities, it adjusts not only the offset frequency of 

the laser, but also its repetition rate. Therefore the length of the laser will need 

to be simultaneously adjusted in order to remain at the fringe p = 0. 

Another parameter that is adjustable is the power of the pump incident on 

the ThSapph laser. The nonlinear index of refraction is given as n/vx = n + n2I 

where n is the (linear) index of refraction, n2 is the second order refractive 

index, and I is the intensity of the applied field. Now in a high intensity case, 

the index of refraction in the Ti:Sapph crystal depends on the (peak pulse) 

5 The requirement that at least half of the power is achieved is arbitrary, and in fact a 
system in which the power drifts by this much will be difficult to use in an experiment. To 
avoid the effect of the drift of the offset frequency on the maximum intracavity power, a 
satisfactory requirement is AXJ7 < A. 
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intensity which can be tuned by the pump power. Therefore the pump power 

changes vp which will affect fo. 

In order to measure the offset frequency, the minimum pulse bandwidth 

needs to be ~ 30nm. In this thesis, the bandwidth is too narrow to measure the 

offset frequency and so the drift in fo cannot be directly measured. Therefore, 

this experiment is in an interesting regime in which the offset frequency has an 

effect on the power within the EC, but cannot be directly measured in order to 

have explicit control. 

2.2.2 Modematching 

Modematching is the process of having the q parameter of the input beam match 

the spatial eigenmode of the cavity. The importance was discussed briefly in 

section 2.1.5 in relation to extending the cavity. In the case of an EC, mode-

matching becomes very important when trying to attain the highest possible 

intracavity power. As the enhancement comes from the addition of many pulses, 

not only does the temporal phase need to be coherent, but also the spatial phase 

(see equation 2.29). This then requires the profile of the field at a given point 

to be identical for every pass in the cavity. 

In one plane, modematching using two lenses is simple and will be described 

here (the more complicated case of two planes with an astigmatic beam will be 

discussed in Appendix C.2.2). The problem is that the input beam must match 

the eigenmode of the EC, which is dependent on the cavity geometry. It can be 

solved by working in two directions simultaneously: one is the real output beam 

coming from the laser oscillator, while the second is a virtual beam which would 

be coming from the EC if it were also a laser with an output. A lens of focal 

length fa is placed between the two cavities a distance da from the laser so that 

the waist of the real beam matches that of the virtual beam at point db- The 

second lens with focal length is chosen so as to match the radius of curvature 
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Ti:S 
E C 

Figure 2.15: Schematic of matching the output of the laser oscillator (solid 
curve) to the eigenmode of the E C (dashed). The first lens at position da is 
used to match the waist of the beam to that of the eigenmode extending from 
the EC to point db- The focal length of the second lens is used to match 
the radius of curvature of the beam to guide it into the EC. The beam is now 
modematched, giving low loss in the first round trip, effectively enhancing the 
amount of available input power. 

of the two beams. The incident beam is now matched to the eigenmode of the 

EC. Since the divergence of the beam after the first lens depends on both fa and 

da, there are many solutions for point db- Thus, there are also many different 

lenses with focal length /(, which can be used. This means that a solution to 

the modematching problem is not unique. 

The output beam, which may be astigmatic, is matched to the (also astig

matic) mode inside the EC using a series of lenses. Although it is possible to use 

a series of cylindrical lenses - lenses which would only affect one plane - each lens 

has typically close to 10% loss (less if treated with some anti-reflection coating) 

and so the number of lenses is minimized in order to have the highest power in

side the EC. As with spherical mirrors, a lens tilted in the tangential plane by an 

angle 6 changes the focal point in the tangential plane by ftan = fo cos 9 (where 

fo is the focal length of the lens) and the sagittal plane by fsag = fo/ cos 6 

which is key when attempting to minimize the number of lenses. Noticing then 

that the two planes are coupled through fo, which is limited by the commercial 

availability of lenses, the solution becomes non-trivial. 

36 



Chapter 2. Background and Theory 

2.2.3 Diffraction inside a Resonator 

The current method of retrieving the EUV light is with a thin sapphire plate 

placed within the EC [5, 6], and is at Brewster's angle for the fundamental beam. 

Since the polarization of the fundamental beam is linear, the Brewster plate has 

negligible reflection at the interface. The index of refraction is different for the 

EUV light however, and so the plate is no longer at Brewster angle and a small 

amount of light will be reflected. By using a Brewster plate, the high finesse 

within the EC can be maintained while retrieving the high harmonic. However, 

this method is inefficient and reflects only ~ 20% of the EUV light. Also, the 

transmission through the Brewster plate will inevitably cause some loss, and in 

a high finesse EC, it is the main source of loss. It is then desired to develop a 

method of retrieving the EUV without the use of a Brewster plate. 

To create a low-loss output coupler, an aperture in one of the focusing mirrors 

has been suggested [6]. The divergence angle is proportional to the wavelength 

(see Table 2.2), and so the high harmonic will have a much smaller spot size 

than the fundamental at the second focusing mirror (see Figure 2.16). Using 

diffraction theory from reference [25], the goal is to find an optimum aperture 

size balancing the loss for the fundamental beam while transmitting as much of 

the high harmonic as possible. 

As discussed in section 2.1.5, the field profile inside a cavity is assumed to 

be gaussian since it is a solution to the paraxial wave equation. However, once 

a mirror has a finite aperture the profile is no longer gaussian, and so a more 

general theory is required to calculate the beam profile. One method is to use 

diffraction theory. This method is much more general in calculating the beam 

profile inside a cavity since in the ABCD method, a gaussian profile is assumed. 

Using diffraction theory, the field sees the finite size of the mirrors with the 

resulting profile being nearly gaussian, which agrees with the ABCD method. 
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fundamental 

F i g u r e 2.16: The beam divergence for the high harmonic (purple dash) com
pared to the fundamental (red solid). Due to the shorter wavelength the high 
harmonic diverges less. By the time the beams have reached the mirror with an 
aperture (grey rectangles), the difference in the beam waists can be useful for 
extracting out the E U V while reflecting the fundamental. 

However, when an aperture is present in a mirror, the resulting field profile can 

also be calculated. 

The Fresnel number is a unitless length scale and is given as 

,2 a ' 
N=~d 

(2.54) 

where a is the radius of the mirror, d is the separation of the mirrors, and A the 

wavelength (refer to Figure 2.18). This number relates the cavity dimensions 

to the wavelength. For a higher N, the field in numerical simulations becomes 

more sensitive to the cavity dimensions, consequently leading to an extended 

computation time. The large k for optical wavelengths requires more data points 

to be taken in the integration (to be discussed below), while a large N can 

give pseudo-stable solutions, requiring many iterations to converge to the final 

solution. Qualitatively, this can be described as finding the loss in a cavity using 

ray optics where the mirrors are large compared to the separation distance. A 

ray trace can have many bounces within the cavity before being lost even in an 

unstable resonator (see Figure 2.17). 
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Figure 2.17: Ray trace through a cavity with a large Fresnel number. Many 
bounces occur within the cavity before finding the stable solution. This causes 
slow convergence, requires many iterations, and has an extended computing 
time. Methods of minimizing the Fresnel number are found in order to improve 
the efficiency of these routines. 

The many iterations are a result of the method determining the solution. To 

find a steady state solution from diffraction theory, a wavefront is introduced 

to the cavity having some assumed field profile. An initially flat profile is often 

used to avoid a bias in the final solution. Referring to Figure 2.18, this wavefront 

is reflected from mirror 1 to mirror 2. However, due to diffraction effects, it no 

longer has a flat profile, but now has a field that is determined by the reflection 

of the first mirror. The common cases for this theory have been either planar or 

confocal [25, 26] cavity designs, and here it is generalized to the case of arbitrary 

radius of curvature mirrors. The final, steady state profile is the stable field 

(eigenmode) inside the resonator and the attenuation of each successive round 

trip for this eigenmode is the loss of the cavity. 

The field calculated at each mirror Ej(rj,<j>j) for the jth mirror, can be 

written as 

i f f2" e-ikR / d \ 
E3+i(r3+i,<j>j+1) =2xJo Jo

 E3(r3-<Aj) [i + R) Tid<t>Jdri (2-55) 

where A is the wavelength of light in the resonator, and the other variables are 

defined in Figure 2.18. Although the cavity can have an arbitrary number of 

mirrors, many cavity geometries can be reformulated to be linear (see Appendix 
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Figure 2.18: The geometry of a linear resonator. The angles 4>i and <j>2 in 
equation (2.55) are the azimuthal angles of the mirrors 1 and 2, respectively, 
which are separated by a distance d. The distance d\ is the distance from point 
with coordinates ( A i , r\, <pi)to point with coordinates (d - A 2 , r?, <fo)- Ri and 
R2 are the respective radii of curvature of the mirrors (represented by the blue 
curves). Taken from [25] 

C.3). From Figure 2.18, it is found that 

R= \Jd2+r2 + r%- 2rxr2 cos(0i - <p2) 

dl = d - A i - A 2 (2.56) 

A^d-^R2- r\ 

A2 = d- ^Rl-r\ 

Now in computing the fields, the variables <pi and <p2 are eliminated in order 

to simplify the calculation. This can be done using the relation 

e i n [ ( T / 2 - 0 2 ] j n fk

r}H\ = J _ f2* jkXp-coBifr-.h)-™*^ (2.57) 
V d ) 2ir JQ 

where the function Jn is nth order of the Bessel function of the first kind. In 

order for the d<f>j integral to be reduced, it needs to be massaged into the form 

on the right hand side of equation (2.57) which requires a few approximations. 

First, there is the ratio between the radius of the mirror and the separation of 
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the mirrors. If d/a is large enough to approximate that R « d then the product 

R(n,r2,4>i,(j)2) (* + R(n,r2,<t>].,<t>2)) ~ d {2.58) 

As shown in Appendix B, this term can be considered a constant with good 

confidence as long as d > a. To second order, the distance R can be simplified 

by looking at the definitions for Ai and A2. To this end, it is found that 

Ai^d-R+^+O^f) (2.59) 

When substituted into the equation for R, it is found that 

d2 + r\ + r\ = R\ + R\ + 2RxR2d(d - 2{RX + R2)) + 

where all terms containing only constants can be taken out since it is only the 

intensity which is of interest (recall this is calculating the phase of the field, and 

the modulus squared will lose this information). 

The resulting field is then found to be 

v< ^ i n + l k f r , \ J (^R2\ ^ W H ^ ^ ) ) . JnE2(r2) = —-— / Ei(n)nJn [k—je V 1 '> drx 

(2.61) 

where the jn is to account for the losses in the cavity per round trip for the 

nth transverse mode. The value of yn will reach steady state when the intensity 

profile also reaches steady state. The loss of the fundamental is the goal of this 

calculation since we are trying to find an aperture which efficiently passes EUV 

while still maintaining a high reflectivity for the fundamental beam. 
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Figure 2.19: The algorithm for calculating a non-gaussian field within a cavity. 
This algorithm mathematically computes what is physically transpiring in the 
EC. An initial beam profile enters the cavity, and propagates through the cavity. 
The field is calculated according to equation (2.61), until a steady-state has been 
reached. Now the attenuation factor 7„ can be found to give the loss due to an 
aperture. 

2.3 Locking the Laser Oscillator to the 
Enhancement Cavity 

As shown in section 2.2.1, the field must constructively interfere on each round 

trip to create the intracavity intensity enhancement. In order to do so, either 

the laser oscillator or the E C must have an active element to compensate for 

environmental perturbations and cavity length drift. The first requirement is 

the generation of an error signal sensitive to the relative fluctuations between 

the laser oscillator and the EC. Such a scheme was developed by Hansch and 

Couillaud in 1980 [27]. The essence of this approach is that it measures the 

relative drift of the cavities via changes in the polarization state of the field 

measured from the input coupler of the EC. These polarization fluctuations are 

converted to an electronic error signal used to correct the laser oscillator cavity 

length. 
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Figure 2.20: The field is incident on the input coupler of the E C with a polar
ization that is tilted by an angle 0. Due to the Brewster plate (BP) inside the 
cavity, the perpendicular polarization is attenuated meaning that the intracav
ity polarization is horizontal. As the intracavity field is transmitted out through 
the input coupler, it will pick up a phase dependent on the cavity length. This 
field can be compared with the reflected field, which will have a vertical compo
nent. The quarter wave plate (QWP) and the polarizing beam splitter (PBS) 
are then used to generate the locking signal. The two beams, separated based on 
their polarizations, are then incident on a balanced photodetector, which takes 
the difference in the two intensities. Note that the reflected and transmitted 
beams are collinear, and are separated here for illustrative purposes. 

The input beam is a linear combination of horizontal and vertical polariza

tions (see Figure 2.20). In the plane wave approximation, these can be written 

as 

= £ ( 0 cos 6 

E(i) = E(i)sin0 (2.62) 

where E^ is the incident field and the angle 9 is controlled by a half wave plate 

(HWP) before the EC. The element inside the cavity which attenuates a certain 

polarization is the Brewster plate, which is set up so that the least loss is in the 

horizontal plane. The field that comes off the input coupler is a combination 

of reflected incident light, and transmitted light which has made many passes 

through the EC. Similar to the derivation in equation (2.40), for the C W case 
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this field is 

where the loss now depends on the polarization, lp. TiC is the transmission of 

the input coupler, with Ric = rfc = 1 — Ti c , and <j> is the phase of the field in 

the cavity. If the loss in the vertical polarization Lv 3> Ti c and lh = rjC, then 

the fields are simplified to 

E(j) = sin Oy/R~ (2.64) 

Most of the loss comes from the Brewster plate. Due to the geometry of the 

resonator, the reflected beam and the transmitted beam through the input cou

pler are completely overlapped and modematched if the cavity has been mode-

matched. 

The two polarizations are then passed through a quarter wave plate (QWP) 

and a polarizing beam splitter (PBS) [16, p 198-200]. The fields are now sepa

rated into two arms, given by 

Ea,b - 77 
1 0 

0 i 

\ (Ew\ 
(2.65) 

and so the intensities become 

Ia,b = \ce0\E^±iE^\2 (2.66) 

The photodetector receives the two signals and electronically subtracts them 

and so it is only the difference that is of concern. As shown in section 2.2.1, 

in the modelocked case the amplitude of the modes of the EC now have an 

envelope function. Using equation (2.50), the difference of the two signals in a 
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Sweep time (a.u.) 

Figure 2.21: Simulated error signal for a multimode E C . As in the case of the 
maximum attainable intracavity power, there is an envelope which is dependent 
on the bandwidth of the pulse, and the finesse of the EC. The spacing of the 
error signal is determined by frep of the E C and the speed at which the cavity is 
swept. The absolute position of the error signal is also dependent on the offset 
frequency, and so the difference in the offset frequencies of the E C and the input 
field can be measured. 

multimode E C becomes 

The H W P used before the EC adjusts the input polarization 0 to tune the signal 

to noise in the error signal. The effective finesse Teff{<t>) IS n o w dependent on 

the matching of the repetition rates and offset frequencies of the laser and E C , 

as described in section 2.2.1. This then affects the slope of the function as it 

passes through zero. The lower the finesse means the broader the linewidth of 

the mode and the lower the slope. Therefore the EC can be made easier to lock 

to the laser by adjusting the alignment of the comb and EC modes. 

In order to have the highest intracavity power, the laser is locked when p = 0, 

that is when the repetition rates and the offset frequencies are matched. This 

is found from sweeping the laser cavity length to find the largest peak-to-peak 

difference in the error signal. Then the cavity length is manually adjusted to 

zoom in on the zero-crossing of the largest difference, and then locking the laser 

to the EC at this point. 

(2.67) 
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Figure 2.22: The measured error signal. Notice that the signal grows when the 
cavity lengths are matched. The error signal has the largest amplitude when /o 
and frep are matched between the laser and the EC (when p = 0 in Figure 2.14. 
The TEMoo mode (large peaks) has a non-degenerate frequency with higher 
order modes (small peaks). The competing modes can be avoided by improving 
modematching. The spacing is not even as the PZT changes direction (as shown 
for time > 30ms). 

The error signal has an interesting property such that the maximum phase 

that is allowed (ie the maximum amount that the two cavities can drift relative 

to each other and still be compensated by the electronics) is 

27T 

T 
(2.68) 

Since the phase 4> — kAd where k is the wavenumber and Ad is the cavity length 

mismatch, then 

Adm^. = 4 (2.69) 

This equation dictates that the maximum usable finesse is limited by the sta

bility of the EC. This stability is determined by the external environmental 

perturbations which can be avoided by using a floating optical table, lead foam, 

and an isolated cavity design. 
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0 

F i g u r e 2 .23: The simulated error signal produced for a single linewidth laser. 
The solid line is exactly matched, while the dashed lines represent the maxi
mum available drift in the cavity with the electronics still able to compensate 
(represented by the vertical bars). The consequences of this are that the E C 
length must be stabilized to within a nanometer for a cavity with a finesse of a 
thousand. 

2.4 High-Order Harmonic Generation 

High-order harmonic generation is a nonlinear process which uses a strong driv

ing field to give odd-harmonics of the fundamental beam. A pedagogical model 

for high harmonic generation (HHG) has been developed [28]. This quasi-static 

model (or three step model) assumes that a valence electron, with the help of 

the strong driving field, can spontaneously free itself of the Coulomb potential 

of an atom through tunneling. This atom (now ion) in an intense field does not 

immediately become separated from its electron, which now follows the applied 

field lines. Thus, even without effects such as dispersion or defocusing caused 

by the plasma, the conversion efficiency is necessarily low because of the small 

tunneling probability. 

The second step in this model assumes a classical description of the electron 

following the electric field of the applied laser, ignoring both the electric field 

of the ion and the magnetic field of the laser. For linearly polarized light, the 

motion of the electron in the field is written as 

x(t) = - cos(u;t)xo + v0xt + XQX 
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a) b) 

F i g u r e 2.24: Motion of a free electron in a) linearly polarized laser field and 
b) circularly polarized field. Note that for linearly polarized light the motion is 
in the xz plane and that for circularly polarized light is in the xy plane. Taken 
from Ref. [29] 

v{t) = VQ sin(wt) + vox (2.70) 

where at time t = 0 the position and velocity of the electron are set to 0, the same 

as the position and velocity of the ion. In terms of the field, XQ = qEo/meuj2 

and VQ = XQUI where EQ is the field, q the electron charge, me is the mass of 

the electron, and w the angular frequency of the applied field. The polarization 

dependence can be seen in Figure 2.24 as the electron in circularly polarized 

light never returns to the ion, so in order to have HHG the laser field must be 

linearly polarized. 

Now, following the applied field lines the electron returns to the ion with a 

maximum additional kinetic energy 

E = 3.2UP + E° (2.71) 

with Up being the 'ponderamotive potential' - the kinetic energy gained from 

the field - and Eg is the ionization potential of the atom. The factor of 3.2 

in the ponderamotive energy comes from the maximum velocity of the electron 

attainable in the electric field. The energy E is the maximum photon energy 

that can be derived from this system. 
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Once the atom is ionized, the remaining valence electrons experience a 

new Coulomb potential. Therefore, there remains a probability, although even 

smaller, that a second electron can tunnel from an ion. The kinetic energy is 

again equation (2.71), but in this instance the value for E® has increased. As 

shown in [30], the highest attainable energy is different for singly charged ions 

than for neutral atoms. 
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Results and Discussion 

The theoretical considerations discussed in the previous chapter place many 

constraints upon the design of the EUV source. In this chapter, experimental 

results from key components of the source are discussed. This is divided into 

three sections, the first discussing the high pulse-energy ThSapphire laser seed 

oscillator, the second describing the mode-matching optics and algorithm used 

to maximize the coupling to the enhancement cavity (EC), and in the final 

section the alignment and locking of the EC is discussed. In addition, current 

results of the EC intracavity power and peak intensity are presented. 

3.1 The TirSapphire Oscillator Setup 

To attain the highest possible peak intracavity intensity, the oscillator is de

signed to generate pulses which are an order of magnitude higher in pulse en

ergy than a standard, modelocked 100MHz ThSapph laser [9]. One cannot 

simply increase the pump laser power to obtain a corresponding increase in the 

Ti:Sapph laser output power. Rather, several effects must be taken into account 

to generate high energy pulses with high spectral purity from the laser. 

3.1.1 Thermal Lensing 

In order to achieve the high output power, a V-10 Verdi™ pump laser pumps 

the ThSapphire laser crystal with 10W of CW radiation at a wavelength of 

532nm, and focused onto the crystal with a 10cm focal length lens. At this 

high pump intensity (approaching 106W/cm?) thermal lensing in the ThSapph 
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Figure 3.1: The schematic of the 25MHz ThSapphire laser. Because of the 
normal G V D caused by the crystal, anomalous dispersion mirrors are used (blue 
mirrors C M i 5 FMj) in the cavity. The unity transform mirrors each have a radius 
of curvature of 2m, and are separated by 2m, with the first being 95cm from the 
prism. The prism is located 45cm from the focusing mirror F M i . The output 
coupler is a 10% transmitting mirror from Layertec with part number 101905. 
The end mirror (EM) is taken from a M I R A ™ laser, and is attached to a 
piezo-electric transducer for active control of the cavity length. To modematch 
the pump beam, a 10cm focal length lens is placed 5cm before F M i . 

crystal can change the stability conditions of the cavity and can decrease the 

output power. Therefore, the crystal mount must be water cooled. It is found 

that the most stable operating condition is when the crystal is cooled slightly 

below room temperature. 

3.1.2 T h e E x t e n d e d C a v i t y 

The theory of cavity extension in section 2.1.5 is used to find the optimal posi

tion of the unity transform mirrors. The cavity is extended to 6m and is done 

with the two mirrors with radius of curvature R = 2m (Layertec part number 

103823), separated by a distance of 2m. The spot sizes of the beam at the 

prism and at the output coupler are nearly identical, implying the unity trans-
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form solution. The fluorescence, which contains the outline of the ThSapph 

crystal mount, can also be seen at the prism. The fluorescence is flipped both 

horizontally and vertically at the output coupler. 

3.1.3 Dispersion Compensation 

In order to achieve pulsed operation, the intracavity dispersion must be carefully 

tuned. To compensate for the normal dispersion and self-phase modulation that 

the pulse experiences as it resonates within the oscillator, four chirped mirrors 

are used within the cavity. The focusing mirrors surrounding the ThSapphire 

crystal are broadband with anomalous dispersion and have radius of curvature 

of 10cm as in Figure 3.1. These were purchased from Layertec with part num

ber 101568. In addition to these, two more negatively chirped flat mirrors are 

inserted into the cavity (part number 101515) to give a total mirror dispersion 

in the cavity of approximately —560/s2 per round trip. The 1/2" end mirror 

and the 1" cavity mirror, both taken from a Coherent MIRA™ laser, were 

selected for their high reflectivity at 800nm and their ability to support picosec

ond pulses. The ThSapphire crystal is 2.3mm long, which gives a calculated 

dispersion of +266/s2 per round trip, leaving approximately —300/s2 of disper

sion to be compensated by the prism. To compensate the remaining anomalous 

dispersion, we use the normal material dispersion of a prism, which is inserted 

into the beam path via a translation stage. As described in section 2.1.3, this 

prism also serves a second purpose of limiting the bandwidth of the pulses gen

erated by the ThSapph laser oscillator. Although a CaF2 prism could be used, 

the low material dispersion makes it an unsuitable candidate. The spectrum of 

the output is found to be too broad for our purposes as predicted by Figure 2.5 

(b). A low GVD means that we must insert more of the wedge into the beam 

path, which causes more loss and a low output power (less than 1W). Also, it 

is found that a regime known as Q-switch modelocking [31] occurs often, and 
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Figure 3.2: a) the Ti:Sapphire laser output spectrum with a F W H M of 2.1nm; 
b) the autocorrelation trace of the pulse. The F W H M is approximately 480/s 
for a gaussian pulse, implying that this pulse train is near transform limited. 
Note that the pulse is not symmetrical, due to an artifact of the autocorrelator 
and is independent of the pulse. 

pulse generation tends to stop on the timescale of an hour. Therefore, an SF10 

prism is chosen to limit the bandwidth and finely tune the intracavity disper

sion. This prism allows for a bandwidth of 2nm when modelocked as shown in 

Figure 3.2. The position of the prism in the cavity is chosen to minimize its 

effect on the beam profile. With the SF10 prism in the cavity, the oscillator 

remains modelocked for an arbitrary length of time, and the average output 

power has been found to be as high as 1.5W. 

3.1.4 Active Control of the Laser Cavity 

In order to lock the laser comb spacing frep to the free spectral range of the 

EC, a piezo-electric transducer (PZT) is placed behind the end mirror in the 

ThSapph laser. Given an applied electric potential, a PZT changes its shape, 

adjusting the position of the mirror which changes the cavity length. In an ideal 

case, this is a perfectly translational motion. However, if the PZT does not act 

as the ideal case then the PZT will induce some (unwanted) tilt to the mirror, 

which leads to errors in the beam pointing. These pointing issues can have two 

consequences which are detrimental to locking to the EC. Misalignment in the 
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Figure 3.3: a) T h e stable pulse t r a i n created by a 25MHz T h S a p p h m o d e -
locked osci l lator. T h e pulse t r a i n can show that the laser is not doub le p u l s i n g 
(wi th in the b a n d w i d t h of the detector) . T h i s occurs w h e n two pulses are gener
ated per pass at the o u t p u t , a n d c a n be more p r o m i n e n t at a n o u t p u t power of 
~ IW. b) R a d i o frequency ( R F ) s p e c t r u m showing the stable repet i t ion rate. 
M o d u l a t i o n s in the s p e c t r u m are signs of unstable mode locked opera t ion . 

laser affects the p o i n t i n g of the o u t p u t b e a m , wh ich wi l l then not be p r o p e r l y 

coup led into the E C . A l s o , w i t h the use of a single p r i s m , hor i zonta l p o i n t i n g 

errors wi l l lead to a change in the central wavelength. T h i s effect is ampl i f ied if 

the p r i s m is p laced d irect ly in front of the end m i r r o r . B o t h of the effects need 

to be avoided in order to have the T i : S a p p h laser t ight ly locked to the E C . 

Sensitivity of the Locking Signal to Noise 

A s m e n t i o n e d in sect ion 2.3, the a m p l i t u d e of the noise that the lock ing mech

a n i s m can compensate is dependent on the finesse of the cavity. T h i s requires 

that the noise w h i c h is w r i t t e n onto the error s ignal due to e n v i r o n m e n t a l per

turbat ions must be very smal l for a high finesse cavity. It is s h o w n in F i g u r e 

3.4 tha t the v ibra t ions of the table a n d breadboards are wr i t t en o n to the error 

s ignal . T h e s e v ibra t ions must be m i n i m i z e d in order to keep the laser locked to 

the E C . It is found that w i t h the current setup for a 1 2 m long laser a n d E C , a 

finesse o f 300 is the highest possible E C finesse in order for the lock ing o f the 

laser to the E C to be stable. 

A geophone is p laced o n the T k S a p p h b r e a d b o a r d to measure the v ibra t ions 
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Figure 3.4: Vibration of the optic table written onto the output of the 
Ti:Sapph laser. A geophone measures the background vibrations of the Ti:Sapph 
laser breadboard (BB - red solid curve) and when the PZT is driven at 1.1kHz 
(blue dotted line). The noise is also written on to the error signal (green dashed 
line). See text for details. 

when the Ti:Sapph laser is operating with some mid-frequency features arising 

in the 400 — 600Hz range (arrows in Figure 3.4)). When the PZT is driven at 

1.1kHz, there is a corresponding 1.1kHz peak in the vibration as measured by 

the geophone. Additional features are amplified at the mid-frequency range, im

plying a resonant mode in the table or breadboard. When the E C and Ti:Sapph 

laser cavities are locked, the error signal also has the characteristic frequencies 

measured by the geophone. The addition of other features in the error signal is 

likely due to independent vibrations in the EC breadboard. 
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Figure 3.5: The output profile of the TkSapphire oscillator. The green circle 
approximates the waist in the sagittal and tangential planes. This beam is 
measured to have sagittal and tangential beam waists of wsag = 1.61mm and 
yJtan = 1.31mm taken a distance of 115cm from the output coupler. This 
predicts the waist at the output coupler to be wosag = 183/jm and u>otan = 
227/zm. 

3.2 Beam Profile Measurement and 
Modematching 

An astigmatic output profile from the laser must be matched to the E C , which 

also supports a different astigmatic eigenmode. This procedure is not a trivial 

task. Using frame grabbing software and a C C D camera, the beam waist can be 

accurately measured in both planes. Taking these images and fitting them to a 

nonlinear solver routine, a gaussian profile can be fit for the two planes, allowing 

for an accurate measurement of the beam waist in each plane. By measuring 

the waist at various distances from the laser, the radius of curvature from the 

output coupler can be found as well (ideally it is infinite in both the sagittal 

and tangential planes since the output coupler is flat). This then gives the qout 

parameter at the output of the laser. 

Errors are introduced because of the small C C D chip size, and that the 

C C D camera is designed for low (uW/cm2) intensity. Since we are shining 

a beam with output intensity > 1000W/cm2 onto the C C D chip, it must be 

greatly attenuated before entering the camera. A piece of uncoated glass reflects 
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approximately 5% of the beam to reduce the intensity by a factor of 20. The light 

from the oscillator is horizontally polarized, and so a rotatable polarizing beam 

splitter can be used to attenuate much of the signal. Also, neutral density filters 

from Thorlabs are placed before the camera. Since the filters are absorptive, 

they create a mild thermal lensing effect when placed before other attenuating 

optics. 

With the qout parameter of the output beam now measured, we must match 

this with the qsc parameter of the EC. The qsc however, is calculated based 

on the ABCD matrix method. In order to do this, several measurements within 

the EC must be taken. These are the distances from the input coupler to 

the focusing mirrors, their respective angles of incidence, and the total cavity 

length. Based on these measurements, the optimum (most stable) focusing 

mirror separation can be found. A stable cavity configuration will now predict 

a qsc for the tangential and sagittal planes. Matching these parameters to qout 

is done with a pair of lenses. The calculated qEC is put into an algorithm that 

was developed for this thesis which is given in Appendix C.2.2. This algorithm 

takes the radius of curvature and waist of the output beam from the oscillator, 

and matches it to the eigenmode of the EC using a list of lenses available to the 

user. 

If silver mirrors and lenses without AR coating are used to guide the beam, 

the input power can decrease by over 20%. To avoid this additional loss, 1" 

mirrors from Newfocus with high reflectivity are used (part number 5102) and 

the lenses have an anti-reflection (AR) coating (Newport coating AR.16). The 

lenses used are dependent on the minimum waist within the EC. As an example, 

for a minimum waist within the EC of 8pm, a pair of lenses with focal lengths 

— lOOmm and 300mm were placed 223mm and 451mm respectively from the 

ThSapph laser OC. The total propagation distance from the laser to the EC is 
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0 100 200 300 400 
Sagittal plane (pixels) 

Figure 3.6: The fit of a gaussian (red dash) to the beam profile (blue solid). 
The fit parameters give a waist of 193 pixels or 1.2lmm. This accuracy in the 
measurement of the beam profile allows for improved modematching methods. 

1.7m. 

3 . 3 The Enhancement Cavity 

3.3.1 Setup of the Enhancement C a v i t y 

In order to couple all of the modes from the laser into the EC, the total length 

must be 12m to match the repetition rate of the laser. It is a ring-cavity so that 

the field travels in one direction within the EC. Because of the absorption of 

E U V light in air, the E C is designed within a vacuum chamber which is to be 

evacuated to ~ 50mTorr. The breadboard, which measures 6" long by 6' wide, 

is clamped directly to the vacuum chamber, which did not damp vibrations from 

the environment. Due to these vibrations, the finesse is spoiled by using a 1% 

input coupler to allow for locking the laser to the EC. 

3.3.2 A l i g n m e n t of the Enhancement C a v i t y 

The EC is difficult to align for two key reasons. First, it is 12m long with sev

eral fold mirrors. Second, the stability region for the separation of the focusing 

mirrors is only several hundreds of microns. To optimize the intracavity power, 

a systematic method of alignment is required. Since the input beam is pulsed, 
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6' 

Figure 3.7: A schematic diagram of the EC. In order for the cavity to match 
the length of the Ti:Sapph laser, 10 mirrors in total are used. Each mirror is 
highly reflective (Rmir = 99.994%) in order to have a high finesse cavity, except 
for the input coupler (IC) and output coupler (OC). The transmission of the IC 
is 0.96% and the OC is 0.09%. The OC is designed to account for dispersion 
within the cavity, and has ~ —60/s2 GDD. The two focussing mirrors have 
a radius of curvature of 10cm, and minimum waist of the beam is 7pm. The 
breadboard measurements are in imperial units, and all other measurements are 
in centimeters. The Brewster plate is not placed near the focal point. 

there will only be interference effects that are observable when the cavity lengths 

are matched to within ~ cr where c is the speed of light, r is the pulse dura

tion. If the resonator and oscillator lengths are mismatched enough so that the 

interference effects are no longer visible, the alignment process becomes much 

simpler. Since there are no interference effects, cavity length drift does not affect 

the power or spot size. Using a CCD camera as well as a powermeter to detect 

the leakage behind a weak output coupler as in Figure 3.7, the cavity can be 

properly aligned. This process can even be used to optimize the modematching 

lenses. 

The average output power through one pass of the E C is PoTicToc where Po 

is the input average power, and T i c and Toc are the input and output coupler 

transmission coefficients. By averaging over all the possible modes of the E C , it 
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is found that when the cavity lengths are mismatched, the maximum attainable 

output power is 
j: 

Pmax ~ PoTicToc— (3-1) 

for high finesse (F) cavities. 

The repetition rate of the extended laser oscillator is 25MHz, implying 

that the cavity length is approximately 6m as a linear cavity. The EC is a 

ring cavity so it must be 12m in length. Because these cavities are so long, 

it becomes increasingly difficult to match the lengths without some method of 

accurate measurement. Initially, the simplest method found is to physically 

measure the mirror separation within the EC to find a rough estimate of the 

cavity length. In order to match the cavity length of the oscillator to that of the 

EC, the laser output coupler is mounted on a translation stage. With a remote 

actuator capable of 50nm steps (NewFocus Picornotor 8351), the laser cavity 

length can be finely adjusted, with a range of a centimeter. Once the two cavity 

lengths are matched to within the pulse length A L « C T (where r is the pulse 

duration), interference effects from the field are observed. 

To detect the interference of the fields, two methods can be employed. One 

uses a fast spectrum analyser (USB2000 Miniature Fiber Optic Spectrometer 

from Ocean Optics) placed behind the OC of the EC. The spectrum changes 

from that seen in Figure 3.2 (a) to having a modulated envelope. A fast spec

trum analyser is required to show the change in the spectrum as the EC length 

is changed. Another is using a CCD camera. The interference causes bright and 

dark fringes once the two lengths are matched. 

3.3.3 Measurement of the Enhancement Cavity Finesse 

In order to predict the enhancement within the cavity, the finesse needs to be 

measured. Recall that the intracavity photon lifetime TP is related to the finesse 
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by 
_ T 

p 2-rrvFsR 

The finesse can be measured using the techniques developed in references [32, 

33]. This technique uses the resonance of the EC as a gate. The end mirror PZT 

is driven with a sinusoidal signal, sweeping the cavity length of the ThSapph 

laser. On resonance, the EC matches the modes of the input laser field at time 

to and has a high power. Now as the laser cavity length is changed slightly, 

the comb elements of the laser field are no longer resonant within the EC, 

effectively reflecting any further light. Thus, the light that is leaking out of the 

EC off resonance must have been from when the two cavities were matched. 

The intensity of the light then follows the decay curve 

I(t) ~ I0e-l'T<- (3.2) 

and so finding the slope of in[/(t)] will give the photon lifetime. When the cavity 

is swept slowly - a relative term involving both the finesse and the cavity length -

there are pronounced features to the decay due to temporary interference effects 

of the field. In order to avoid these features, the velocity of the sweeping mirror 

must satisfy 

* » z ^ (3-3) 

for the intensity to follow the exponential decay (see Figures 3.8 and 3.9 for 

comparison). In this expression, LQ is the total cavity length and A is the 

central wavelength. 

3.3.4 Current Enhancement Cavity Buildup Results 

Using a 1% input coupler and a 0.1% output coupler, the finesse is measured to 

be 290. This predicts a maximum enhancement factor of ~ 100. The amount 

of light that was coupled into the EC was 720mW. Once the ThSapph laser 

61 



Chapter 3. Results and Discussion 

T i m e s T i m s > 

a) b) 

Figure 3.8: a) Output signal through the EC from the cavity ring-down tech
nique. Using an input coupler of 1%, an output coupler of 0.1% and a Brewster 
window, the finesse is expected to be ~ 300. The PZT is driven at a frequency 
of 70kHz. b) Logarithm of the cavity ringdown, and the fit. The slope is related 
to the photon lifetime. Signal taken with NewFocus 1801 Photoreceiver. This 
example gives a finesse of 290. 

Figure 3.9: a) The ringdown measurement of a high finesse (T = 4000) 
150MHz cavity and b) the exponential decay. Using a low-loss input cou
pler (RiC = 99.9%) and highly reflective mirrors (Rmir = 99.994%) the photon 
lifetime is on the order of tens of microseconds. Notice that the sinusoidal 
modulation is reduced even though the PZT is driven at only 15kHz. 
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was locked to the EC, the intracavity power was 34.1W, or 47.4 x the initial 

input power. This gave a calculated peak power at the focal point to be ~ 4 x 

1012W/cm2, or to within a factor of 2 of the required intensity for HHG. Routes 

toward exceeding this threshold intensity are discussed in the next chapter. 
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Conclusions and Future 
Work 

In this thesis several significant steps toward the development of a small-scale, 

high-photon flux source of EUV radiation suitable for high precision spec

troscopy are demonstrated. In order to obtain the high peak intensity required 

for generation of EUV photons via high harmonic generation, a passive en

hancement cavity (EC) seeded by a custom-built modelocked ThSapphire laser 

is employed. The laser is designed to generate a train of near-transform lim

ited 480/s (2.1nm), 60nJ pulses. To achieve this performance level, the laser 

cavity is stretched to 6m in length via a unity mode transform mirror set and 

a single SF10 prism is used as both an intra-cavity spectral filter and as an 

adjustable dispersion compensation element. Maximizing coupling of the laser-

generated seed into the EC is accomplished by using an algorithm (written in 

Mafchematica) which matches the astigmatic mode of the laser output with the 

(different) astigmatic eigenmode of the EC via a pair of lenses. After properly 

mode-matching the laser to the EC and locking the two cavities together, an 

enhancement factor of 50 is obtained giving 4 x 1012 Wjam2. This, unfortunately 

is not enough for ionization. 

Several factors which limit the enhancement have also been investigated, and 

in future work will be addressed. In order to lock the ThSapph laser oscillator 

to the EC, the active element is a mirror with a PZT to adjust the cavity 

length of the ThSapph laser. The pointing issues which arise from the PZT 
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misalign the laser. The PZT can be either moved to the EC, or another device 

to effectively change the cavity length such as an EOM may be employed. The 

locking mechanism is also very sensitive to vibrations, and so both the ThSapph 

laser and EC must be isolated from environmental perturbations. Improvements 

on the vibration isolation of the cavities will allow us to increase the finesse to 

> 1000, thereby increasing the intracavity intensity to more than 101 3jy/cm2. 
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Appendix A 

The Ti:Sapphire Laser 

Figure A . l : The Ti:Sapphire laser oscillator designed and built for this thesis. 
It is pumped by a Verdi V-10 at 532nm. See Figure 3.1 and the surrounding 
discussion for details. 

The Ti:Sapphire laser used in this experiment is a home-built oscillator. 

The output of the laser is typically > 1W, but when the system has been run in 

modelocked operation for an extended period of time (several weeks) the power 

can decrease by up to 20%. However, the beam profile, central wavelength, and 

bandwidth of the output all remain constant. In order to regain the lost power, 
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the ThSapphire crystal can be translated perpendicular to the pump beam and 

the focusing mirrors readjusted. 

Figure A.2: The mount used in this experiment for the Ti:Sapphire crystal. 
F M are the two chirped focusing mirrors. 

The mount used for the Ti:Sapphire crystal is also an original design. It 

is made of copper to conduct heat away from the crystal. The tubes used for 

cooling the crystal mount are lower than the beam in the cavity, which allows 

for the crystal to be located in the middle of the cavity. 
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Approximation of d/a 

The dependence of R in equation (2.58) on rx, r^, 4>\ and 4>2 at large distances 

can be simplified in the denominator as R w d. However, for large mirrors 

with short focal lengths this approximation is no longer valid. Figure B . l shows 

when the separation is less than the mirror size, then this approximation is 

not justified. The numerical calculation of R is computationally slow, and so 

avoiding this calculation can speed up the algorithm used to calculate the field 

in a resonator. 

a/2 a 3a/2 2a 
d(m) 

Figure B . l : Here small d is investigated for 2a = 1/2" mirror. The numerical 
calculation of R (circles) and the approximation d = R (solid line). From this 
it is assumed that as long as d > a then this approximation is valid. 
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Appendix C 

Codes 

All codes are written in Mathematica. The shebang statement declaring the 

used packages and removing variables from memory are not displayed. The 

programmes are transcribed for this thesis, however Mathematica uses many of 

its own shortcut keys and symbols which do no transcribe well into Latex. 

C . l Unity Transform Mirror Calculation 

The q parameter of the short (82MHz) cavity has already been calculated at 

this point. We are attempting to match the q of the short cavity to that of 

a longer one, and need to solve equation (2.37) which contains 5 parameters. 

Since we know that we want a cavity length of 6m (instead of 1.8m), the total 

distance D = d\ + d2 + d3 will be 4.2m. We can further constrain these distances 

by requiring Ri = R2, and so di = d3 by symmetry. Now our equation is only 

a function of 2 parameters, the radius of curvature of the mirrors and their 

separation. 

The matrices are given as follows, with d2 is the intra mirror distance. 

Mdl={{l,dl},-(0,1}}; 
Md2={{l,d2},-[0,1}}; 
Md3={{l,d3},{0,l}>; 
MRl={{l,0},{-2/rl,l}}; 
MR2={{l,0},{-2/r2,l}}; 

The resulting final ABCD matrix of the extension and the coefficients are 

Mf=Mdl.MR1.Md2.MR2.Md3; 
AA=Mf[[1,1]]; 
BB=Mf [[1,2]]; 
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CC=Mf [[2,1]]; 
DD=Mf[[2,2]]; 

If we assume that R1=R2 (for this laser we are using 2m radius of curvature 

mirrors), then dl=d3 by symmetry. So then this is only a function of d2 since 

the total extension distance d i s t t o t a l is known. 

R1=R2=2; 
disttotal=4.2; 
dl=d3; 
d3=(Tdist-d2)/2; 

So the beam waist squared is given as 

w02=(-\[Imaginary.]*lambda*BB)/(pi*Sqrt[(AA+1)*(AA-1)]) 
/.{Tdist->disttotal,lambda->800*10"-9}; 

with the minus sign coming from the q definition. The q in complex, so depend

ing on the definition of the gaussian beam, the imaginary part is either positive 

or negative. Also the two roots of q are positive and negative. If we just square 

w02, then we don't need to worry about this minus sign anyways. 

Unfortunately we do need to assume some previous beam waist (since we 

are matching the original q). We will use half a millimeter for this example. 

w0short=500*10"-6; 
dist2=Solve[wOshort"4==w02"2,d2]; 

We normally get some complex solutions and a real solution for our d2. We just 

want the real solution. 

d2tab=d2/.dist2//Sort 
d2=Select[d2tab,#\[Element]Realsft][[1]] 
Out[491]= 2.10172 

Now double check that it matches the original beam waist. 

Sqrt[w02]//Chop 
Out [492]= 0.0005 

And the other two distances are 
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dl/.Tdist->disttotal 
d3/.Tdist->disttotal 

Out [493] = 
1.04914 

Out[494]= 
1.04914 

So now we have found, for a given pair of mirrors of radius of curvature 

Ri = R2 = 2m, the distance that they are separated and their positions within 

the cavity. It is dependent on the original cavity design which dictates the 

original beam waist at the output coupler. 

C.2 Beam Characterization and Guiding to the 
E C 

C.2.1 Beam Profile Measurement 

The built-in nonlinear fitting routine in Mathematica can be used for fitting a 

function to a gaussian. Importing the image is done here. If many images are 

needed, then name them something in increasing integers. Here 10 images are 

used as an example. The ToString function is used to import the Xth image to 

f igname. It is important that the camera is not moved between images, but the 

attenuators before the camera may. The imported images are all added together 

to get an average to improve the measurement of the beam waist. 

img = 0;imax=10 
For[i =1, i <= imax, 

s tr l = ToString[i]; 
f igname = StringJoin["c: Wprof iledirectoryW 
profile", s t r l , " . j p g " ] ; 

importedimage = Import[figname, "jpg"]; 
img += importedimage[[1, 1]]; 
i++]; 

The next part is used to find the beam centre since positioning of the beam 

on the camera face is not always the same. The image is then sliced in the 
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horizontal and vertical planes at this maximum value, 

brightest = Max[img]; 
maxval = Mean[Position[img, brightest]] / / Round; 

maxsectionhor = 
Table[{i, img[[maxval[[1]] , i , 1]]}, {i, 1, 
Length [img [[1]]]}] ; 

maxsectionvert = Table[{i, img[[i, maxval[[2]], 
1]]}, {i, 1, Length [img]}]; 

The nonlinear solving routine finds the gaussian fit. This routine needs some 

initial guesses. 

fittingtan = NonlinearFit[maxsectionhor, 
AA*Exp[-2*(x - x0)"2/wx"2] + BB, {x}, 
{{xO, Length[img[[l]]]/2}, {AA, 255*imax}, 
{wx, 150}, {BB, 0}}] 

From this, the waists in the horizontal and vertical planes are found in pixels. 

For this experiment, we had a Sony SuperHAD CCD camera with 640x480 

resolution, and a 4 x3mm chip. A larger chip would allow for measures farther 

from the output coupler since at 3mm the chip size is comparable to the beam 

spot size within a few meters from the output coupler. 

C.2.2 Modematching 

The following code is the modematching algorithm. Taking the beam q param

eters for tangential and sagittal planes from the laser in the measurements done 

above, these are then used to match to the calculated eigenmode of the EC. 

The functions are separated into real and imaginary parts, as well as tan

gential and sagittal. The imaginary part relates to the waist, and the real to the 

radius of curvature, and are both required to match to the mode of the EC. The 

waist is matched first, and then the radius of curvature, and by separating the 

real from the imaginary this becomes more apparent. Although a 4 x 4 matrix 

can be used for astigmatic beams, the planes are separated since it simplifies 

the solving routine used by Mathematics. 
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The qinv functions represent the inverse q parameters, which are 

I - 1 i X 

q R irw2 

for both the tangential and sagittal planes. This is also represented by 

1 = A + B/qjdo) . . 
9(dl) C + D/q(do) { • ' 

where A, B, C, and D are the matrix values. From here, all the (complex) 

functions are then split into real and imaginary parts for reasons explained 

above. The names of the functions in this programme represent where the 

beam is in relation to the lenses and EC. For example, imqinvdlf ld2tan is the 

imaginary part of tangential plane of q~l after it has propagated a distance dl 

and passed through lens f 1. 

The following is the list of lenses available. This is the main reason that 

this programme can take an appreciable amount of time to run, because of the 

200 possible combinations. If only a few lenses are available or if only a few 

solutions are needed to be found, this can substantially decrease the time for 

this programme to run. Due to the complications of the astigmatism, not every 

lens pair will find a solution, and not every solution will be practical. Better 

solutions include those with smaller angles of the lenses, as well as practical lens 

positions. 

lensltab={-200,-150,-125,-100,-75,75,100,125,150,175,200,250, 
300,500}; 
lens2tab={-200,-150,-125,-100,-75,75,100,125,150,175,200,250, 
300,500}; 

The total distance between the laser OC and the cavity IC 

dtot=2000; 

The initial guesses for the position of lens 1, with more guesses being more ac

curate, but slower. I recommend at least 5 steps, ending about 2/3 of dtot since 
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there needs to be sufficient space for the second lens, thresh is the threshold 

for the ones that seem to have no solution, and most of the solutions have a 

value < 100. f ac is the amount of overstepping of the valid solution boundaries 

to do for the next iteration. \ [Theta] lmax is the biggest angle (in degrees) that 

will be allowed for the first lens with it returning a solution. 

dlinit=200; 
dlfinal=1750; 
numstep=7; 
thresh=150; 
fac=2/3; 
\ [Theta] lmax=45; 

dlstep = (dlfinal - dlinit)/numstep / / N 
distltab = Table[i, {i, dl init , dlfinal, dlstep}] / / N 

f i t = lensl*Cos[\[Theta] 1] ; f ls = lensl/Cos[\[Theta] 1] ; 
totalsols = 0; 

The rest calculates the solutions for the lenses given. It is all entered in one cell 

in Mathematics. 

ForLflval = 1, flval <= Length[lensltab], 
For[f2val = 1, f2val <= Length[lens2tab], 

lensl = lensltab[[f lval]] ; 
lens2 = lens2tab[[f2val]]; 
errtab = {}; 
gooddistl = {}; 
newdistltab = {}; 
errroot = 0; 
zerocross = 0; 

The first attempt just scans to see if there are solutions. If there are, and if 

they are within the threshold, then we try again using the boundaries given by 

the first try to get more data points to fit the error curve. When the error = 

ans-lens2 crosses through zero, we have a solution. The third attempt uses 

the zero of the error as the solution. 

For[attempt = 1, attempt < 4, 
If[attempt == 1, numdl = Length[distltab]]; 
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If[attempt == 2, numdl = Length[newdistltab]]; 
If[attempt == 3, numdl = 1]; 
numreals = 0; 

For[dlval = 1, dlval <= numdl, 
If[attempt == 1, distl = distltab[[dlval]]]; 
If[attempt == 2, distl = newdistltab[[dlval]]]; 
If[attempt == 3, distl = errroot]; 

Finding the solutions. This uses a built - in routine, which matches the real 

output beam waist from the laser at d2 with the virtual beam waist from the 

EC eigenmode. 

soli = Solve[{imqinvdlfld2tan[distl, lensl*Cos[angl], 
d2] == imqinvcavtan[distl + d2], 

imqinvdlfld2sag[distl, 1ens1/Cos[angl], d2] 
== imqinvcavsag[distl + d2]}, {d2, angl}]; 

We join the solutions to form a two - dimensional array of the dl's and 01's. 

grosssols = Join[Transpose[{d2 / . soi l , angl / . soli}]]; 

Then we select the ones that have real solutions, and have positive dl's and 

01 < dlmax degrees. 

realsols = Select[grosssols, # \[Element] Reals && 
#[[1]] > 0 && #[[2]] > 0 && #[[2]] 
< \ [Theta] lmax/180*\[Pi] ft] ; 

dist2 = realsols[[1, 1]]; 
\ [Theta] 1 = realsols [[1, 2]]; 

Now if we have some real solutions, then we go into this part 

If[Length[realsols] > 0, 
numreals++;(*counts the number of times ue attempt 
this routine*) 
f i t = lensl*Cos[\[Theta]1] / / Chop;(*tangential 
and sagittal focal lengths for the first lens*) 
fls = lensl/Cos[\[Theta]1] / / Chop; 

The next solution is for the radius of curvature at d2, and which lens is needed 

to match them. The tan and sag planes are independent right now. 
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f t s = 
Solve[{reqinvdlfId2f2d3tan[distl, f i t , dist2, f2tan, 0] 
== reqinvcavtan[distl + dist2 + 0], 

reqinvdlfld2f2d3sag[distl, f l s , dist2, f2sag, 0] == 
reqinvcavsag[distl + dist2 + 0]}, {f2tan, f2sag}]; 

f2t = f2tan /. f t s [ [ l ] ] ; 
f2s = f2sag /. f t s [ [ l ] ] ; 

The answer that we check against is whether or not the second lens matches the 

one that is input. 

ans = Sqrt [f 2t*f 2s] ; 
errtab = Join[errtab, {{distl, ans - lens2}}]; 
gooddistl = Join[gooddistl, {distl}]; 
] ; 

If[numreals > 0 && Length [realsols] < 1, dlval = numdl] ; 
dlval++]; 

Now we find the bounds of the real solutions. 

If[numreals == 0, attempt = 999, { 
lower = gooddistl[[1]]; 
upper = gooddistl[[Length[gooddistl]]]; 

If[Abs[Plus OA errtab][[2]]/numreals > thresh && numreals > 1 
&& attempt == 1, attempt = 999, { 

If[numreals == 1, 
newdistltab = Table[i, { i , lower - fac*dlstep, upper + 
fac*dlstep, dlstep/Cnumstep + 0.1)}], 
newdistltab = Table[i, { i , lower - fac*dlstep, upper + 
fac*dlstep, (upper - lower + dlstep)/(numstep + 0.1)}]]; 

If [Length [errtab] > Length [Select [errtab, #[[2]] 
> 0 &]] && 
Length [errtab] > Length. [Select [errtab, #[[2]] < 0 &]] 
&& attempt > 1, zerocross++, If[attempt > 1, 
attempt = 999]]; 

This part of the programme sees if a solution has been found on that particular 

iteration, and if it has then it finds the solution (where the error crosses through 

zero). 
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If[attempt > 1 && zerocross > 0, { 
errfunc = Interpolation[errtab // Sort]; 
errsol = FindRoot[ errfunc[dlans] == 0, {dlans, 
(errfunc[[l, 1, 1]] + errfunc[[l, 1, 2]])/2}]; 

errroot = dlans /. errsol}, 
errroot = 0]; 

}]; 
}]; 
attempt++]; 

There is a 'probability' of a solution found which relates to the fact that the 

error has crossed through zero, or is approaching zero on the boundaries of 

viable solutions. If it has crossed through zero, then the probability is 100%. If 

the error is small and yet does not cross zero (with a possibility being that it 

is a solution and yet due to the number of steps chosen no solution is found), 

then this number will indicate an approximate likelihood that a solution can be 

found. 

minerr = Transpose[Abs[errtab]][[2]] // Min; 
solprob = If[100 - minerr > 0, ((100 - minerr)/100)"2*100 
// Round, 0]; 

If[errroot > 0, { 
Print[""] ; 
totalsols++\); 
Print["Solution number ", totalsols]; 
P r i n t [ " f l ", lensl, " f2 ", lens2, " dl ", d i s t l , 
" d2 ", dist2, " d3 ", dtot - d i s t l - dist2, 
" \ [Theta] 1 ", \ [Theta] l*180/\[Pi] , " \ [Theta] 2 ", 
ArcCos [Sqrt [f 2t/f 2s] ] *180/\ [Pi] ] ; 

}]; 

If[attempt > 998, { 
Print [" " ] ; 
Print["There i s no solution for f l = ", l e n s l , " 
and f2 = ", lens2]; 

}]; 

Print ["Probability of solution ", solprob, "V."] ; 
Print [" " ] ; 
f2val++]; 
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f lval++] 

The difficulty in modematching is relating this second lens back to a real 

lens. The error is the difference between the real lens (a discrete parameter) 

and this solution lens which is a continuous variable. The angle of the second 

lens may be complex since the angle is found from 

which gives a complex solution for ./_,„„ > / 2 S „ 9 • When this occurs, it implies 

that the second lens is tilted in the sagittal plane. For small angles, the angle 

that is found, 62, is still approximately valid. 

C.3 Diffraction Within a Resonator 

The programme used to solve the problem of diffraction inside a resonator makes 

a few simplifications in order to decrease the computation time. As mentioned, a 

large Fresnel number N » 1 is to be avoided. However, this EC is a ring cavity 

with two focusing mirrors located closely together which yields an N ~ 150. 

The large Fresnel number implies that between the two mirrors, the diffraction 

effects of the beam are minimal. 

The starting point is the solutions provided by the ABCD method. For the 

ring cavity, a total distance dt = di + d2 + d3 + d^ + df is given. The ABCD 

matrix can be used to find the optimal separation of the focusing mirrors df. 

For a total cavity length dt = 12m, and a pair of focusing mirrors with / = 5cm, 

the most stable separation is df = 100.424mm. This then gives the q parameter 

for the cavity. In a ring cavity, there are two instances when the beam has a 

flat profile as shown in Figure C.l a). We can then calculate the beam waist at 

position A'. 

This q parameter result can then be compared with a linear cavity. The linear 

(C.2) 
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infinite radii 

a) 

Mirror with aperture 

Plane of symmetry 

A 
I 

d/2 B 

b) 

Figure C . l : a)The original ring cavity with identical focusing mirrors and b) 
the similar linear cavity. The beam parameters are the same for the two cavities 
at positions A ' and A. 

cavity in Figure C . l b) has the same total cavity length as the ring cavity, and 

at position A has the same beam waist. Then there is a mirror at B in the linear 

case which will have the same effect on the beam as the two focusing mirrors in 

the ring cavity case. It can be shown that the beam spot size on mirror B is the 

same as on the focusing mirrors. This linear case can have much smaller Fresnel 

numbers, and so can be computed much quicker. This is the cavity which will 

be modeled in order to find an appropriate size aperture in the focusing mirrors. 

The integral in equation (2.61) has a phase term which is given as 

V l'2 V Rci 2d Rc2 2d) y ' 

The following code is the integral which needs to be performed until a steady 

state solution is reached. 

F o r [ i = 1 , i <= imax, 
P r i n t [ " i t e r a t i o n " , i ] 

( • cu rved m i r r o r * ) 
P r i n t [ " C a l c u l a t i n g R2"] ; 

The fields computed at the mirrors are done discretely, and then interpolated 
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using a built-in routine. T h e variables r l and r 2 are the radial positions along 

the mirrors A and B with radii a and b respectively. 

R2N = T a b l e [ { r 2 , \ [ I m a g i n a r y I ] * k / d * N I n t e g r a t e [ 
B e s s e l J [ l , k / d * r 2 * r l ] *R1 [ r l ] * r l * 
E x p [ - \ [ I m a g i n a r y . ] * \ [ P h i ] 1 ] , { r l , 0 , a}]}, 
{ r2 , h , b + d r , d r } ] ; 

R2 = I n t e r p o l a t i o n [ R 2 N ] ; 
R2N = {}; 
R2Namp = T a b l e [ { r 2 , (Abs[R2[r2] ] )"2} , { r2 , h , b + d r , d r } ] ; 
R2amp = Interpo la t ion[R2Namp]; 
R2Namp = {}; 
ampl i tude2 = NIntegrate[x*R2amp[x] , {x, h , b} ] ; 

( * f l a t m i r r o r * ) 
P r i n t [ " C a l c u l a t i n g R l " ] ; 
R1N = T a b l e [ { r l , \ [ I m a g i n a r y l ] * k / d * N I n t e g r a t e [ 

B e s s e l J L l , k / d * r l * r 2 ] * R 2 [ r 2 ] * r 2 * 
Exp [-\ [ Imaginary . ] * \ [ P h i ] 2 ] , {r2 , h , b}]} , 

{ r l , 0, a + d r , d r } ] ; 
R l = I n t e r p o l a t i o n [ R 1 N ] ; 
R1N = {}; 
RINamp = T a b l e [ { r l , ( A b s [ R l [ r l ] ] ) " 2 } , { r l , 0, a + d r , d r } ] ; 
Rlamp = In terpo la t ion [RINamp] ; 
RINamp = {}; 
a m p l i t u d e l = NIntegrate [x*Rlamp[x] , {x, 0, a} ] ; 

T h e lists of amplitudes calculate the power at the mirrors. T h e relative decrease 

between iterations is the loss in the cavity due to finite mirror size and the 

aperture. This is the value that is to be determined to find the largest aperture 

possible while maintaining a low cavity loss. 

tabamp2 = Join[ tabamp2, {ampl i tude2}] ; 
tabampl = J o i n [ t a b a m p l , { a m p l i t u d e l } ] ; 
I f [ i > 2, { 

num = Length [tabamp2] - 2; 
amptabl = T a b l e [tabampl [ [ i + 1] ] / tabampl [ [ i ] ] , 

{ i , 1, Length[tabampl] - 2} ] ; } ] ; 

i++;] 
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Radius 

a) 

c) 

i) 

Figure C.2: The diffraction of the beam inside of a confocal resonator with 
Fresnel number of 5.0. An initially flat profile is given in (a) in red; (b) after 1 
iteration; (c) after 5; (d) after 200; (e) after 2000 and (f) after 20 000 iterations. 
This demonstrates that for the confocal case with large enough Fresnel number, 
this is a very slow routine to converge to the steady state solution. After 50 
iterations, the loss becomes negligible, preventing the convergence. 

85 



Appendix C. Codes 

Figure C .3 : The beam profile inside the ring resonator calculated at points 
A (inner curves) and B (outer curves) in Figure C . l . The dotted and dashed 
lines are the profiles for a stable cavity assuming a gaussian profile (with the 
waist found at the horizontal line), while the solid lines are those calculated 
using the Fox-Li method. Notice that in b) the blue curve is wider, avoiding the 
losses of the aperture. In c) it is a TEMio mode which has no intensity in the 
middle, and so the aperture has negligible effect on the profile (and loss). The 
attenuation j „ per roundtrip in the cavity are as follows: no aperture TEMoo -
0.999997; 100/rm aperture T E M 0 0 - 0.998363, no aperture T E M 1 0 - 0.999999, 
100/zm aperture TEMio - 0.999997 (not shown). 

s i ; 


