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ABSTRACT -

The: photoluminescence spectrum of phosphorus-doped s111con at -

17 3 19

dopant concentratlons ranging from 1.2 x 10 to 4.0 x 10 is -

studied as a function of excitation intensity; "The spectra are interpreted
in térms of two typesfof~réc§mhindf{on:éyéﬁts;'OUe*attrTbuted to the recom-
bination of oppbsite1y“éhaf§ed“céfﬁiers inside-an electron-hole droplet and
the other outside due to the reéombinationfdf free holes with electrons in

the impurity band.

The latter type of event. gives rise to a new photo]uhinescence
peak observed for the first time:. The line shape of this peak compares
very well with a.first principle calculation.of the impurity bandhdenéity

of states within. the Hubbard model.

Existing theories for the ground state energy of an electron-hole
droplet in n-type heavily doped silicon are reviewed and new numerical
results are presented. However, within the present model droplets are not

theoretically understood at this time in heavily-doped silicon.
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CHAPTER 1

INTRODUCTION

1.1 General. Introduction

A silicqn crystal is an indirect band gap semiconductor. The
ground state of the crystal corresponds to all'states in the valence bands
being full and all in the conduction'band being empty. If an electron is
excited across the energy gap, a hole is 1eft in the valence band and an
electron-hole pair is created. In this investigation only photo-excitation
is used to create these pairs. The oppositely charged carriers attract each

other and at low temperatures can bind to form an exciton.]

Due to the indirect band gap of silicon the radiative annihilation
of an exciton requires the creation or annihilation of a crystal momentum-
conserving phonon'.2 At low temperatures the creation of a'phonon is strongly
favoured as a momentum conserving process. Because the probability of simul-
taneous annihilation of an exciton and the creation of a phonon is low,
excitons have a long lifetime, typically 60 u éec, and therefore a large

range of exciton densities is- experimentally attainable.

Keld_ysh3 in 1968 predicted that excitons under increasing concentra-
tion will behave just as a gas behaves under increasing pressure; at some
critical concéntratfon there will be a condensation into a "liquid." A vast
amount of experimental work4 {photoluminescence, photoconductivity, light-
scattering, etc.) has verified the existence of thié condensed phase. which has
become known as the “electron-hole-droplet" (EHD). For intrinsic siiicon,
as well as germanium, the ground state properiies of the EHD have been
extensively studied and good agreement between experiments’ 6 and theory7"10

has been found.



Controversy has:arisen concerning the existence of the condensate-
in heavily-doped silicon. In recent photoluminescence studies Halliwell

H were able to infer from photcluminescence studies that high

and Parsons
densities_of non-equilibrium carriers condense into dropiets even at impurity
concentrations where screenfng effects prohibit exciton formation. Further-
more, they hypothesize that the EHD exists in samples with donor concentra-
_tions above the critical concentration, h;rit = 3 X 10]8 phosphorus cm'3,

for the semiconductor-metal transitionlz’ ]3.

Martin and Sauer]4, on the other hand, argue that there is no

EHD in samples with phosphorus concentrations close to and above Nepit:

1.2 Purpose_and Outline of this Thesis

The initial main purpose of this thesis was to.fiﬁd out whether the
condensate exists in metallic silicon. This could best be done by repeating
the photoluminescence experimehts of Halliwell and Parsons!l in heavily-doped
silicon with extensive improvement in instruﬁentation. With better signal-
to-noise ratio a detailed comparison could be made between the experimental

5,15 for the EHD. Two orders of magnitude improveF

and theorética] ]ine.éhapes
ment in detectivity allowed the study of the photoluminescence spectrum of
Si(P) as a function of excitation intensity and the spectra are found to con-
tain two components, the first of these is interpreted in terms of the recom-
bination of an electron-hole pair inside the drop; the §econd in terms of the
recombinaticn outside the drop, in the gas phase. At low excitation intensity
the droplets are few and far apart and most recombination events cccur in

| the gas phase. As the excitation intensity is increased the EHD line grows.
Aﬁ important aspect of this thesis is to show that by studying the spectra

at various excitation intensities the recombination emission of electron-hole.



pairs in the two coexisting phases can be disentangled.

If will be shown that the EHD 1ine shape is very well described in
terms of the recombination emission in a degenerate electron-hole plasma
with fixed carrier density. The gas phase Tine shape arises from the recom-
bination of a free hole with electrons in the "Impurity Band"]6 (IB), and
it will be argued that this line shape'describes very closely the impurity

band density of states.'

Despite the wide variety of experimental techniques used in the
past (electrical conductivity, Hall mobility, magneto-resistance, magnetic

)12

susceptibility, NMR and ESR properties the impurity band was not well

understood for donor concentrations near.n The photoluminescence

crit’
~detection of the impurity band density of states in samples containing im-

purity concentrations above and below n is of capital importance to test

crit
our understanding of the semiconductor-metal transition.

In Chapter 2 a description of the experimental apparatus is pre-
sented. The experimental results and the analysis of the data are presented
in Chapter 3 and in Appendix A the experimental results in heatetreated

samples are described.

In Chapter 4 the description of the Hubbard mode]]7

of the impurity
band applicable for donor densities below Nepit will be presented. The
results of less successful approaches appearing in the literature are also
shown. The theoretical background to these approaches is given in Appendix

B.

18, 19

In Chapter 5 the theoretical model of Bergersen et al for the

EHD in heavily doped material is reviewed and corrected numerical results



4.

are presented. It will be shown that within this mode],‘contrary to previous

18, 19

results the EHD is not thedretica]]y predicted. A general discussion

and ¢qnc]usion will be presented in Chapter 6.

Appendices C and D are concerned with the numerical work done by

the author for the different aspects of this thesis.

‘The main results of this investigation have already been pu-

blished, 19-2]



CHAPTER 2
EXPERIMENTAL DETAILS

2.1 Sample Preparation

Single crystals of vacuum float zoné phosphorus-doped silicon
purchased from General Diode Corp. and Ventron Electronic Corp. were used.
The impurity concentration was determined by room tempé?ature resistivity
measurements using a four-pbiht probe on the face of the ingot before and
after cutting the slice. The crystal face was polished and etched for 30
seconds in a mixture of HNO3 and HF (5:1) before measurements were made.
The resistivity was determined by averaging at Teast ten measurements made
at various positions on the crystal face. The standard deviations of the
mean were found to be less than two percent. If the difference in the mean

resistivity before and after cutting the slice was more than two percent the

sample was rejected.

The concentration of phosphorus imburities was determined from the

22 The accuracy of the donor

measured resistivities using the Irvin chart.
concentration is estimated to be within £8 percent for all samples used in
this investigation and mostly reflects the author's confidence 1imit in the

Irvin chart.z2

The slices of silicon crystal were cut typically to 3 x 5 x 20 mm3

~and etched as described above ‘to remove surface damage. No change in the
photoluminescence signal was found if the sample was polished; therefore,

sample polishing was discontinued at an early stage of this investigation.

The heat treatment studies were done on samples cut from the same

slices mentioned above. The samples were then heated to 1150° € in a



helium atmosphere for 30 minutes-andvimmediatéiy quenched to room température
" in acetone. The samples were then etched as previously described.
Hal]iwe]123 has pointed out that the effects of the heat treatment will dis-
~ appear if the samples are left at room temperature for several days. There-
fore, when measurments were not performed immediately after heat treatment,

the samples were stored in liquid nitrogen.

All photo]umineécence experiments were done with the sample
immersed in liquid helium. The optical cryostat held three litres of liquid
helium and provided an average running time of about 15 hours. The tempera-
ture could be varied by changing the vapor pressure of the helium liquid.

To check whether the sample was in thermal equilibrium with the bath the

" photoluminescence spectrum of intrinsic si]icqn was obtained under the same
experimental conditions used in the measurement of the doped crystals. The
. line shape of the recombination emission* duelto free excitonszs, which is
highly temperatufe dependent, did not change for all opfica] excitation

leye]s reported here.

2.2 Photoluminescence Spectrometer

A Spectra Physics Model 120 continuous He-Ne laser with 5mW power
output at 6328 K wave]engfh was used for low excitation intensities; a Spectra
Physics Model 165 continuous argon-ion laser with a maximum power output of
20 at 5145 R wavelength was used as a source for high excitation intensities.

The irradiated area was a spot of 1 to 3 mm in diameter.

*The photoluminescence line shape of free excitons was not
observed to agree with previously reported work?4s 25 and triggered the inter-
est of Thewalt and Parsons in our laboratory, who subsequently did very
interesting work26 in this area. ~
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- A modification of the optical tail piece of the inner helium can of
the cfyostat was necessary.e The tail piece was originally made Qf good qua- -
lity pyrex tubing. and this arrengement worked well when the photolumines- |
cenee signals were large as in.the case of those reported in this investiga-

]8-phosphorUS en™3,

tion for samples containing less than 10 For more
heavily-doped samples, however, the photo]uminescence signal is very weak
and background radiation originating in the pyrex tubing dominates the
observed spectfum. Therefore, the lower part of the pyrex tubing was re-
plaeed with a fluorescence cell made of spectrosil, a synthetic silica,
manufactured by Thermal Syndicate Ltd. Although the manufacturer does not
mention any low temperatuke properties, the low temperature fusion technique
used in the production of this cell withstands the thermal shock when cooled

to liquid helium temperatures.

The recombination radiation was collected from the excited surface
in order to minimize the effects of free carrier absorption in the heavily-
doped samples. The photoluminescence spectra did not need correction for
absorption‘in the sample because the absorption coefficient is known to be

27 The optimization of the

slowly varing in the energy region of interest.
collection of recombination radiation is not a trivial problem because of
si]icon;s high refractfve index n ~ 4. The radietion leaving fhe sample is
concentrated in a small solid angle. An optimum arrangement was found in
matching the f/number of the collection optics to that of the spectrometer

with an off-axis elliptical mirror with approximately three fold magnifica-

tion.

The recombination radiation was analyzed with a homemade 56 cm f/3.5

monochromator of Czerny-Turner design fitted with a Bausch & Lomb Inc.
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grating blazed at 1.6 u wfthv600 grovés/mm.';Thé gratihg was used in the
" second order. The optical configuration is shown'in-Fig; 2.1. To e]iminatel
“infrared emission from the laser a‘Cornihg filter CS 4-96 was placed at the
output of the argon—ion_]aser; a Corning fi]per CS 1-57 was used for the
- He-Ne laser. A Corning fi]ter»CS 7-57 waS_p]aced at the exit slits of the
spectrometer to prevent any laser Tight from reaching the detector. For
signal detection a-R.C.A; (67-07-B) germanium photodiode detector-preampli-
fief system operated at liquid nitrogen temperature with detectivity

3
13 cm-Hz°/RMS Watt and noise-equivalent-

-14

D*(1.268u, 91 Hz, 1 Hz) = 4.234 x 10

“power  NEP (1.268y, 91 Hz, 1 Hz) = 1.056 x 1077 RMS Watt/Hz? was used.

“This value should be compared to 4 x 10713

‘cooled PbS detector used by Halliwell.22

1
RMS Watt/Hz* for the dry ice

Further sighal amplification was obtained with-a low noise pre-
amplifier (PAR-113, Princeton Applied Research Corp.). The excitation light
was chopped at_approximately 90 Hz and the detector signal was phase-
sensitive detected (PAR-121 Lock-in, Princeton Appried Research Corp.) and
.’finally integrated over times of typically three seconds. The resulting
analog signal was electronically converted to a digital one and stored in the

memory of a mini-computer (Nova 2, Data General Cbrp.).

~ The signal-to-noise of the weaker spectra obtained in this
investigation were further improved by signal averaging. To achieve auto-

28 with the mono-

‘matic signal averaging the mini-computer was interfaced
‘chromator. The data were finally punched on paper tape at the end of the

~experiment for future analysis.

It should be pointed out that the improved detectivity used in this



. |Pre-- Lock-In
- mp]ifie:a_ amplifier
A
-— e, e - laser
chopper
3

1 Sample in liquid He

2  Ge detector and preampiifier
system in liquid N2

3  Filters

4  Grating

Figure 2.1: Experimental optical configurationf
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inveStigation and the automafic avéraging facility of the present set-up
allowed spectral line shape anélysis on signals over 200 times weaker than

those reported by HalTiwe]] and Parsons.]]

2.3 Signal Averaging

A block diagram of the digital equipment and peripherial devices used
for signal averaging and data ahalysis (described in Chapter 3 and Appendix
C) is shown in Fig. 2.2. The interface was designed and built by M.L.W.

28

Thewalt and a full description of it is found in his thesis. In this

section a general overview only will be given.

An important part of this interface is the'device called the
"spectrometer controller®.28 In simple terms, this device translates a binary
coded number from the computer into a train of pulses. Each pulse increments
the monochromators stepping motor and the rotational direction is determined
by the sign of the binary number (two's comp]ement used for negative numbers).
In addition to the spectrometer controllerit is convenient to use a pro-
grammable interval timer (PIT) wh{ch allows one.to set an integration time for
each wavelength positions. The interaction of the mini-computer with the
above mentioned devices occurs only in giving the devices the parameters of
the task to be performed and in receiving confirmation that the task has been

completed. The computer is consequently free for many other tasks.

In the signal averagfng mode the computer is programmed to reset
the integrator by means of a digital output device immediately after the PIT
is started. The integrator will continue in operation until it is reset.
While the integration of the detected signal is being performed the computer

is used to display on the scope data stored in its memory. The vertical
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Figure 2.2: Block diagram of the digital equipment and peripherial
devices used for signal averaging and data analysis.
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analog'voltages displayed on.the scope are obtained by electronically
converting the digital information in a memory location and the hofizqnta]
voltages are obtained with a digital to anaTog conversion of a number pro-
portional to the memory location. The scope display allows the experimen-
talist to observe the spectrum as it is measured. At the end of each memory
sweep ‘the computer is programmed to test the status of the PIT. If the in-
tegration time has expired, the computer terminates the integration of the
signal by transferring control to the ana1o§-to-digital converter (ADC)
while conversion of the analog signal is performed the computer starts the
spectrometer contré]]er with a new set of parameters. .During the time that -
the spectrometer controller is performing its task the computer will test
whether or nof the analog-to-digital conversion has been completed and then
compute a new average and standard deviation for the signal for the last

spectrometer position.

The cycle descrfbed above continues until the last point of the
spectrum has been measured and if signal average is to be used thé spectro-
meter is returned to the first wavedrive positibn. The experimentalist
may decide after inspecting the spectrum displayed on the scope that the
signal-to-noise ratio ié adequate and interrupt the signal averaging. The
data stored in memory can then be plotted on an x-y recorder. The analog
voltages required are obtained using digital to analog converters (BAC) as
in the case of the scope display. The horizontal axis may be calibrated in
units of wavelength or energy. For future use the binary coded spectrum
stored in memory is transferred to paper tape using the high speed paper

tape punch (HSPTP).
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CHAPTER - 3
EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Imtroduction

As pointed out in Chapter 1 radiative recombination of an electron=
hole pair in intrimsic silicon is accompanied with the simultaneous emission
of a momentum conserving phonon. In doped material the interaction of the
pai} with an impurity relaxes the momentum conservation and an extrinsic

27 11, 25

compongnt‘is observed in both the absorption™’ and photoluminescence.

This component is commonly referred to as the “no-phonon (NP)" process.]]’ 25
The NP process does not change the energy of the transition, unlike the
phonon assisted recombination which results in photolumiﬁescence peaké
shifted down by the energy expended in the creatioﬁ of the phonon.-
Table 3.1 %ists the energies of the phonons assisting the recombi-
nation as measured in photoluminescence studies'by other investigators.zs’ 29-,
The identification of the phonon is done by comparison to the energies mea-
sured by inelastic neutron scattering.30 Since the strongest recombination
emission in phospnorus-doped silicon is assisted by creating a transverse

11, 14, 25, 29

optical (T0) phonon all the line sHape analysis has been per-

formed-on the TO phonon assisted portions of the spectrum*.

3.2 The Photoluminescence of Si {P)

Figure 3.%a. shows the spectrum of a sample containing 1.2 x ]0}7

*In reality, the TO phonon assisted recombination overlaps with the
Yongitudinal optical (LO) phonon assisted portion of the spectrum but cannot
be resolved. We wiil justify later on in this Chapter the neglect of the
LO phonon replica in the analysis of the spectra.



©CTABLE 3.1

'PHONON ENERGIES

TRANSVERSE ACOUSTICAL (TA)
LGNGITUDINAL ACOUSTICAL V(LA)
TRANSVERSE OPTICAL (T0)
LONGITUDINAL OPTICAL (LO)

" 'TABLE 3.2

- 'EFFECTIVE MASSES

my

My

ﬁ* - (n m2)1/3

e 1t
M h
Mh
2/3
3/2 ° 3/2
=1
My = AMgp~ F Mo )

N ]4.

]3;7 meV
undetected
- 58.0 meV

56.1 meV

.9163-mo
-1905 m
-3216 m
.154 m,
.523 my

5773 m,
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excitation

The strong broad peak is attributed to the electron-
hole drop (EHD), the weaker to the bound exciton (BE).

spectrum
The

solid curve is the theoretical fit to the EHD line shape.
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2

phosphorus cm'3. The excitation intensity is approximately 120 Wem ©. The

spectrum shows two overlapping peaks: a broad one at Tow energies attri-

14

buted]]’ to the EHD and a sharper one associated with an exciton bound to

a neutral phosphorus impurity]]’ 14, 25, 29.

Since the relative intensity
of these peaks depends on the excitation level the two overlapping peaks can
be separated. The bound exciton (BE) peak strdng]y dominates the spectrum
at véry Tow excitation level (.1 Wcm'z) and is used, properly scaled, to
subtract the BE peak from the spectra obtained at excitation intensities in
the range of 10 to 200 Ncm'z. In this manner the EHD line shape shown in

Figure 3.1b. is obtained.
15 1% ith the EHD
5, 15

To reinforce the identification of this peak
it will be shown that, as in the case of intrinsic material , the 1ine
shape bf the EHD peak is weil understood in terms of the recombination radia-
tion of an e]éctron-ho]e pair in a degenerate electron-hole plasma of fixed
density. The solid line in Figure 3.1b. show§ an EHD theoretical line shapé

obtained by a convolution integral of densities of state>’ 15.

) = | | (3.1)

+hVTO)dEqu

o { o F,oF |
So S" N(EQINCE,YFE) FE, )8 (hv-E . +E/+ET-E -E, W

where Ee and Eh are respectively the electron and hole energies in the con-
duction and valence bands; N(Ee) and N(Eh) are the respective densities of

state; f(Ee) and f(Eh) are the Fermi-Dirac distribution functions taken at

the helium bath temperature; Eg.and EE the Fermi energies for the electrons

and holes; E is the energy'required to add one more electron-hole pair

pair
to the EHD and is determined, at very low-temperatures, by the high energy

31

threshold of the luminescence peak™' . A theoretical fit has been performed
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by assuminé the EHD fo be charge neutrél, that is, the to;a] electron density
(nc) iscequal to the density of positively charged.ddnor ions (nd) plus the
density of photocreated holes (nhﬁ. It will be assumed that the carriers
effectively screen any bound impurity states,.thus, Ny is determined by the
impurity concentration. The bands are assumed to be parabolic and the
effective masses which describe tham were assumed to be independent of doping.
The pand parameters used in this calculation are listed in Table 3.2. The

T0 phonon energy is given in Table 3.1 and as discussed in the previous
Chabter the sample temperafure is that of the helium bath. The fit is per-
formed by varying two parameters: Epair which fixes the energy position and
nh-whieh changes the line shape and width for a given impurity density»(nd).
The parameters giving the best fit* are 1isted in Table 3.3 as a function of
impurity concentration and the uncertainties éuoted reflect the amount by
which they have to be varied so that a clearly bad fit is obtained.

The spectrum shown in Figure 3.2 was obtained from a sample contain-

17 3

ing 5.7 x 10" phosphorus cm ~. The excitation intemsity s approximately

160 Ncm'z. The iine shape of the EHD peak centered at 1.0835 eV is indepen-

2 to 200 La?cm'2 used in this

dent of excitation intensity in the range 1 Wem™
experiment. The solid curve in Figure 3.2 shows the theoretical fit. The BE
peak (1.09 eV) is not observed. The peak appearing at low energy (1.061 eV)

is attributed to the recombination of an electron in the impurity states with

a free hole. Study of this peak at low excitation ievel is obscured by the

*The theoretical EMD line shape calculated by assuming that the re-
combination is assisted by the creaztion of 70, as well as, L0 phonons (10 to
1 ratio and 1.8 maV¥ apartoz) is tha same as the one calculated assuming no LO
phonon assistance except far in the wings. The systematic error introduced
in the fitting paraweters by neglerting the LU phonsn replica are judged to be
well below the uncertainties quoted in Tabie 3.3.
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TABLE 3.3

*BEST FIT PARAMETERS*

nd(xlo]8 cm'3) Epair(ev) nh(x10]8 cm'3)
a2 O 1.471(5) 3.0(1)
.57 A 1.1469(5) 1.9(1)
1.8 1.1394(5) 1.3(1)
2.45 1.1374(5) 1.3(1)
3.0 o ©1.1352(5) 1.3(1)
3.9 © 1132 (1) | 1.2(1)

5.0 C 1131 (1) 1.15(10)

11.0 1.130 (1) 1.6(2)

*The parameters obtained for n, = .12 x 10]8 cm"3 are in

agreement with theoretical calculations gf Bergersen et all9. As will
be shown in Chapter 5, there is to date no reliable theoretical calcula-
‘tion of this parameters for higher impurity concentrations.



19.

| l l |

Si (P)
Ny =5.7x1017cm"3»

INTENSITY (linear scale)

iy
(&
<
i _
Q. e
wn ©
LLI " N
=Z °
= 2
| 3 e’° e: ‘
eoc® o°°o°(,@e
1 ! L
105 .07 1.0S

'PHOTON ENERGY .(eV)

Figure 3.2: The photoluminescence spectrum of silicon containing_

: 5.7 x 1017 pfiosphorus cm=3 at T = 4.2 K and 160 Wem=¢
excitation ievel is given by solid circles. The solid
curve shows the theoretical fit to the EHD line shape.
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appearance of a broad peak at 1.045 eV which dominates the spectrum. The
spectrum répresented by solid circles in Figure 3.3 is obtained from the

same sample using an excitation intensity of approximately 20 WCm'z.

The
spectrum represented by flags was obtained from a sample containing both
phosphorus and boron with toncentrations.ih the order of 1017 and ]016
atoms cm'3 respectively. The excitation intensity was approximately 8

, WCm°2. Because of the general agreemenf-of these two spectra and the ex-
pectation of observing a broader peak at lower energy for the recombination
of an eiéctron in the impurity band with a hole bound to an acceptorFion33,
it is réasonab]e to attribute the broad peak at 1.045 eV to donor-

33

acceptor™™ recombination.

Samples with 3.1 x ]0]7 and 3.7 x ]0]7 phosphorus cm-3, interme-
diate to the impurity concentrations of samples discussed above, have also
 been studied. The photoluminescence study of these samples asva function
‘of excitation level is -observed to be in close agreement with that of

14 17 phosphorus en™3,

Martin and Sauer' ™ for a sample containing 1.8 x 10
A single recombination band is observed at high excitation intensity.

With decreasing excjtation level this band changes line shape and exhibits
evidence of structure at low excitation intensity. 'Martin and Sauelr‘]4
argued that these changes in line shape were indicative of a profound
change in the electronic states. An alternative explanation is that the
BE peak is very broad and overlaps the EHD peak to form a single broad
band. The changes in this band with excitation level can be attributed to
the change in the relative intensitiés of the EHD and BE emissions with

excitation level.

. As pointed out in Chapter 1, a greét emphasis in this work has been
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The photolum1nescence spect’um of s111c0n centaining 5 7y]017
phosphiorus cm~3 at 4.2K and 20 dcm-2 excitation level repre-

- sented by solid circles is compared to that of a conpensated

sample containing, both, pHOSprorus (]O 7 em- J) and boron
(1016 am-3) at 4.2K and 8 Wem=Z excitation level represented
by flags (two standard deviations from 15 scans). The peak

.at 1.045 eV is attributed to donor-acceptor recombination.
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3

~given to the data and analysis of samples containing 1.8 x 10]8.cm' to

18 Cm'3

3.9 x10 because the donor concentration range covered by these

samples goes from slightly below to slightly above Nepit for the metal-
semiconductor. transition.

Figure 3.4 shows the spectra of a sample containing 1;8 X 1018

phosphorus em™3.

Figure 3.4a. shows the spectrum at high excitation level
(200 wcm'z) and the dbserved peak is attributed to the recombination within
the EHD;‘ This hypothesis is supported by the good theoretical fit of the
}EHD line shape shoﬁéd by the solid curve. Figure 3.4b. shows the spectra
vét intermediate (gb wcm'z) and low (.1 Ncm’?) excitation level. The
spectra show é]ea}ly two peaks -and the peak at high energy is again attri-
buted to the EHD. The other peak is observed for the first time and is
~attributed td the recombination of an e]eétron in the impurity band (IB)
with a free hole. The IB peak is observed at approximately 25 meV below
the position predicted34 for an isO]ated'impurity given by:

hv=E - - E (3.2)

Egap = Bimp ~ M0 >
where the band gap energy is 1.1698 eV at 4.2K and the ionization energy of

phosphorus in silicon is 45.3 meV35. This shift to lower energies at

18 cm'3 may be explained by the conduction and valence band deve-

36, 37

nd=].8x10

loping tails into the forbidden gap or by a lowering of the ground

state energy of the bound electrons because of the overlap of the donor

electron wave functions38.

The spectra-ih Figure 3.4b. have been scaled so that the low eneréy
tails of the IB peaks are superimposed. The line shape of the EHD peak ob-
tained by subtracting these two spectra is the same as the one obtained at
high excitation intensities shown in Figure 3.4a. The line shapé of the IB

peak is obtained by subtracting the experimental EHD line shape (Figure
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Experimental photoluminescence line shapes for an electron
in the impurity band and a _free_hole of phosphorus-doped

'silicon containing 1.8x1018 ¢m=3. TImpurity band Tine shapes

at excitation levels of 5 Wem-2 (Jong flags) and .1 Wem=2
(short flags) are shown. The flags represent two standard
deviations due to signal averaging and to the subtraction

" process referred to in the text.
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3.4a.) from the lqw excitation level (.1 Mcm'z) spectrum. As shown in Figure
3.5 the same IB line shape arises from an intermediate excitation (5 wcm°2)
spectrum. The recombination emission of electrons in the impurity band and
. free holes in the valence band is proportional to the convolution of the
densities of state of the two bands. Since only those states of the valence
band within approximately kT of the band maximum are unoccupied and at 4.2 K
this energy is negligible compared to the width of the observed IB peak the
experimental IB line shape gives directly the density of states in the impu-
rity band. In Chapter 4 the calculated impurity band dénsity of states with-

in several models are compared with this experimental line shape.

Figure 3.6 shows the spectra of a sample containing 2.45x10]8

phosphorus cm’3;4 The solid dots in Figure_3.6a. show the spectrum at high
excitation intensity (200 ﬁcm_z). The so1fd curve is a theoretical fit to
the EHD line shape. The flags in Figure 3.6b. show the épectrum at interme-
diate intensity (20 WCm'z) while the so]id‘cTrc1es indicate the spectrum at
Jow intensity (.1 wcm'z). A second peak is clearly visible at Jow excitation
level which, as in the previously discussed sample, is attributed to IB re-
combination. There is no discernible difference between the EHD line shape
observed by subtractihg the twe spectra shown in Figure 3.6b. from the EHD
spectrum shown in Figure 3.6a. Figure 3.7 shows the IB experimental line
shape obtained by subtracting the EHD line shape given by the spectrum shown
in Figure 3.6a. from the low excitation Tevel spectrum (.} WCm'Z) shown in
Figure 3.6b. ‘

The spectra for a sample containing 3.Ox10]8 phosphorus cm"3 are
shown later in this Chapter. The spectral analysis of these data foilows very
closely the one déscribed above and is not included here. The results are

listed together with those of other samp]eé in Table 3.3.

Figure 3.8a. shows two spectra of a sample containing 3,9x1018
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Solid c1rc1es show the spmctruw at high excitation 1eve1
(200 Wem=2). The peak is attributed to the EMD. The solid
curve shows the theoretical fit to the EHD line shape.

The flags {two standard deviations from 6 scans) show the
spectrum at intermediate level (20 Wem-2) and the solid dets
(40 scans) the spectrum at tow level (.1 Hem~ 2). The peak
at high energies is attributad to the EHD, the other to the

IB. The spectra have been scaled for comparison.
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IB experimental photoluminescence ]ine shape of phosphorus-
doped silicon containing 2.45 x 1018 ¢m™2." The excitation
intensity is approximately .1 Wem™ 2. The flags represent
two standard deviations due to signal averaging and to tne
subtracting process referred to in the text.
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Photoluminescence spectra of silicon 3.9x1018 phosphorus

cm-3 at T = 4.2 K are shown at two excitation levels.

At high excitation level 200 Wem=2, 1 scan) both the im-
purity band (IB) and the EHD peaks are observed and at
Tow level (.2 Wcm~¢, 60 scans) the IB peak strongly do-
minates. :

The solid circles give the EHD line shape obtained by
subtracting the two spectra in figure (a). The solid
curve shows the theoretical fit to the EHD line shape.
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phosphorus cm'3. The high excitation level spectrum (200 WCm'z) shows both
the EHD and the IB peaks. In the low level spectrum (.2 WCm’Z) the IB peak
strongly dominates the spectrum. The line shape of the EHD peak obtained by
subtracting these two speétra is shown in Figure 3.8b. In similar fashion
the EHD line shape has been obtained as a function of excitation levels in

the range of 10 to 200 Wem™2

and this line shape is not observed to change.
The solid curve in Figure 3.8b. shows the theoretical fit to the EHD peék.

The two superimposed IB peaks shown in Figure 3.9 were obtained by subtracting
the EHD line shape (Figure 3.8b.) from intermediate (20 wcm'z) and high exci-
tation level (200 WCm'z) spectra. The line shape is not observed to change
in this range of excitation intensities and is Qery nearly that observed in
the Tow level excitation spectrum.

The spectra of a sample containing 5 x 10]8 cm_3 will be shown Tlater
in this chapter. The spectral analysis is not given here since it may be
inferred from those of the previous]y discuséed samples containing

3.9 x 10]8 cm—3 and those of the 1.1 x 1019 cm'3 to be discussed below.
The numerical values resulting from the analysis are listed in Table 3.3.

Figure 3.10 shows the spectra of a sample containing 1.1 x 1019 cm'3.

The excitation 1ntensi£ies are: a) high (150 WCm'Z), b) intermediate

(20 ow‘z) and c¢) Tow (2 WCm;z). The EHMD peak very strongly dominates the
high excitation level spectrum. The IB peak very strongly dominates the low
level one. The photoluminescence intensity for samples with impurity con-

centrations above n decreases strongly with increasing concentration and

crit
in addition the relative intensity of the EHD and IB peaks becomes more
strongly dependent on excitation level. As shown in Figure 3.10c., only the

IB peak is observed at low excitation level. The solid curve in Figure 3.10a.
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IB experimental photoluminescence_line shapes of phosphorus-
doped silicon containing 3.9 x 1018 cm=3.  Impurity band 1ine
shapes at excitation levels of 20 Wem~2 (short flags) and

200 Wem=2 (Jong flags) are shown. The flags represent two
standard deviations due to signal averaging and to the sub-
tracting process referred to in the text.
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phosphorus cm=3 at T = 4,2 K are shown at three excitation
levels. ) '

a)

b)

c)

‘At high excitation level (150 Wem=2, 5 scans) the EHD

peak dominates the spectrum. The solid curve shows the
theoretical fit to the EHD line shape.

At intermediate level (20 Wem=2, 15 scans) both the IB

and EHD peaks are observed.

At Tow level (2 Wem2, 35 scans) the IB peak dominates

the spectrum. o
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shows the theoretical fit to the EHD peak. The EHD line shape is independent

of excitation level in the range 80 to 200 Ncm“2: The sbectrum at interme-

diate excitation intensity (Figure 3.10b.} can be reproduced by adding the
high excitation level spectrum (Figure 3.10a.) to the low level one {Figure
3.10c.), propeérly scaled.

For phosphorus-doped silicon a second characteristic concentratiqn],2

ncbzz X 1019 cm'3, is evidenced in the measurement of the Knight shift of

the NMR absorpiton peak for 23

12

Si as a function of impurity concentration.
Alexander and Holcomb = argue that the Fermi level is above the conduction
band edge for impurity concentrations greater than L

Figure 3.11 shows two spéctra of a sample containing 4.0 x 1019 cm"3.

High (150 wcm-z) and low (5 Ncm—z) excitation intensities have been used.
The line shape of the observed peak depends on the excitation intensity with-

2 o 200 Wan™®

in the rarige 5 Wem™ . The line shape of the peak shows a de-
crease in the slope of the low and high energy side with increasing excita-
tion level. These changes in line shape wfth excitation level couid be
interpréted in terms of unresolved broad EHD and 1B peaks; however, one
cannot make firm conclusions because of the absence of structure in the

photoluminescence spectrum for 4.0 x ]0]9 cmf3.

A summary of the photoluminescence studies in heavily phosphorus-
doped silicon as a function of donor concentration at high excitation levels
is shown in Figure 3.12. At this excitation level, the IB peak is only
clearly observable at impurity concentrations close to the metal-semiconduc-
for transition. Since HaTTiwei? and Parsons]] used higﬁer excitations than
those reported-here it is not surprising that they were unable to detect the

IB peak. The monotonic shift of the high énergy threshold of the EHD peak to
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Photoluminescence sbectra of silicon containing 4x1012
phosphorus cmw3 at T = 4.2 K are shown at two excitation
levels. The solid points show a high excitation level

- (150 Hem=2, 10 scans) spectrum. The flags correspond to

Tow level (5 Hcm=2, 110 scans).
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Concentration dependence
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of phosphorus-doped si-
licon at 4.2 K using
high excitation intensi-

ties.
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Tower éhé}gies with increasing doping concentration follows closely the
descfjption of Halliwell and Parsonsll as can be seen in Figure 3.13. A
compa}ison of the width at half intensity of the EHD peak measured in this
investigation with those reported by Halliwell and Parsons]} is shown in

Figure 3.14.

Figure 3.15 shows a plot of the ratio of the relative integrated
intensity of the sum of the TA and NP replicas to the relative intensffy of
the TO phonon repiica as a function'of impurity concentration. The sum of
the TA and NP replicas is used because they cannot be reso]véd over the
whole range of impurity concentration studied here (see Figure 3.12). The
fact that the NP plus TA replica grows with increasing nys with respect to-
the TO phonon' replica, may be understood be;ause the average inter-donor
distance becomes of the order of the average inter-carrier distance in the
~droplet and conssquently the probability of a recombination of an electron-
hole in the vicinity of an impurity increasés; It is presently not under-
stood why this intensity ratio should level off far‘nd>]O]8 cm"3 to a value
approximately equal to the NP plus TA to T0 ratio for the.BE recombination
radiation.

The photo]um%nescence measurements of the IB density of states in
heavily phosphorus-doped silicon are summarized in Figure 3.16. The iB

line shapes of the samples containing 1.8 x ?0]8 cm'3, 2.45 x ]078 em” and

3. x 1018 cm'3 are not significantly differeat from each other. These
samples will be referred to as the lower group. The IB peak, within this
group, shows a slight shift to higner energy and an increase in band width
with increasing concentration. The IB line shapes of the samples containing

-

3.9 x 108 cm'3, 5. x K)mcm"'3 and 1.1 x 1619 ca ~ are also not sfgniffcant!y



. 36.

J l I ]
g | | -
¢ b e
o f 4 ]
>
L 1l - |
s ¢
: ¢
8 L K i
';w' | ethis work 4
LB S ¢ b -
oHalliwell & Parsons’” 1§ ;
lll' L ll"“" 1 1.1 1141 1 L3 1 st 1 L1
lo'® : 1o l K;a . u;e

IMPURITY CONCENTRATION (cm™)

Figure 3.13: Concentration dependence of the threshold energy E .
Open ci;c]es show data points of Halliwell and patr
Parsons!l. - o



HALF - WIDTH (meV)

37.

] ] | , |
othis work
201~ | " -
oHalliwell & Parsons
o
(51— m
10— _ {, ' -
% *
] L S _
L i ] Lo tegl I L ol 1 g a1l 1 L
510'6 — w0’ 10'8 j0!2 \

IMPURITY CONCENTRATION (cm™)

Figure 3.14: Width at half maximum of the TQ-assisted peak as a function
- of phosphorus concentration at 4.2 K, Open circles show
data points of Halliwell and Parsons!l gt 2 k. .



38.

-ITK’INP | | |
o T | |
40} | | % % . -
. | %) % | : i : -
sof :
20 -
- ERRL L1 v 11l L1y eyl 1t

IMPURITY CONCENTRATION (cm™)

Figure 3.15: Concentrafion dependence of the ratio of the relative inte-
grated intensity of the sum of the TA and NP renlicas to

the TO phonon replica.



39.

L
-4
-
-
p—
——
-

¢
o8 T

siPp

Fx1

t 'lll. |
: " ' ll'
Voo Tyl
b Wt
ullllln L Vo ll_ |.' 'H
" ! ' . "y
'.u | I‘ :,'"
245 ,nl-ml'”l“' : m "'”l

I l."'-"".!"-l.“'m““

: !
30 gttt

' l'v .H.“”“I '

LUMINESCENCE_ INTENSITY (linear scale)

|l' ‘! l ]
.|II| T
39 l,m‘l ! I'l ll”, ) ' ‘.l"'l
— AL
l;!‘ Ut |
" SRR
L | 4
I !
l l" .‘
1. _
lu'lh“” ' byt

11 ! ! L1 !
.ol 1.03 1.O5 1.O7

PHOTON ENERGY (eV)

Figure 3.16: Concentration dependence of the experimental IB photolumines-
cence line shape of phosphorus-doped silicon at 4.2 K.



40.

different from each other. These samples are referred to as the uppér
group. HWithin this group, there is only a s]ight.change in the high energy
side of the line shape. The change in line shape between the two groups of
samples. is remarkable. The IB peak-of the upper group sampleg is shifted
8 meY to higher energy with respect to the peak of the lower group samples.
The long tail of the line shape at high energies characteristic of the
lower group samples is no longer observed in the line shape of the upper

- group; fn fact, an edge is observed. It is clear that a change in the
ﬁature of the electronic states has occurred by increasing the impurity

18

concentration from 3 x 10 cm'3 to 3.9 x 10]8 (:m—3 and is attributed to

" the semiconductor-metal transition.

In Chapter 4 the Hubbard mode]l7 for the.impurity band is presented.
The IB 1ine Shapes for samples with phosphorus concentration below Nerit
are successfully described within this model and a plausible explanation

for the changes observed at the semiconductor-metal transition is discussed.
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CHAPTER 4

IMPURITY BAND

4.1 Introduction

As mentioned in Chapter 3 the photoluminescence spectrum of
“heavily phosphorus-doped silicon at low excitation intensities is dominated
b& a peak associated with the recombination of an electron in the impurity-
band and a free hole. It has also been said that since the experiments
are performed at near zero temperature the IB line shape gives directly
the density of occupied states in the impurity band. In the present in-
. Vestigation the comparison of the experimental IB 1ine»shape with fheore—

tical models of the impurity band is restricted to Tow impurity concentra-

crit = 3 X 108 phosphorus o™,

tions, ng. N

| To calculate the density of states in the impurity band two
different approaches are taken in the 1itérature. The first approach is
to ]oéate the impurities in a superlattice and then perform a standard
band calculation. Such a treatment for phosphorus-doped silicon is pre-
sented in the next Section. The second approach is to calculate the energy
of a donor electron in all possible impurity configurations. The calculated
energies fall in a range of energies referred to as the impurity band and
the probability of finding the impurity configuration giving an energy

E reflects the density of states of energy E.

Lukes et a]38 have calculated the density of states of the im-

purity band in the Tow impurity concentration limit where they reduced
all possible impurity configurations by considering only impurity pairs

and the distance, R, between the impurities was taken tc follow the
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Chandrasekhar39 disfribution. They use a simple hydrogen moleéu]af

jon (HZ) model of interaction between the impurities in a pair and the
details of this calculation are given in Appendix B. The resulting
fmpurity band density of states for ng = 1.8 x 10]8 cm"3 is compared

to the_experimenta] IB line shape in Figure 4.1. The width of the cal-
culated density of states within this model is too broad and is a con-
sequence of ignoring altogether electron-electron 1nteracfions. A |
hydrogen molecule model of interaction, suggested by Macek40, is used to
extend the previous calculation and is solved using the Heit]er-London4]
method. The details of this calculation are also given in Appendix B.
Figure 4.1 also compares with experiment the'caltu1ated IB photolumines-

cence line shape for the donor concentration ng = 1.8 x 10] cm'3.

The
width obtained in the Heitler-London model is too narrow which is a con-

sequence of the isolated pair approximation.*

The theory of the fmpurity band when the effect of randomness
in the impurity distribution is neglected is reviewed in Section 4.2.
From the mathematical point of view the treatment is thé same as that of
Eswaran and Bergersen which appears in an article published in collabora-

tion with the author‘and others]g.

In this thesis a much greater emphasis
is given to the justification of the assumptions and approximations of the

mathematical treatment.

*The radius of a sphere of equal volume to a Wigner-Seitz cell
obtained by arranging the impurities in a regular close-packed lattice
is close to the mean distance of the Chandrasekhar39 distribution.
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4.2 The Impurities in a Superlattice

Let us begin by neglecting all electron-electron interactions.
If the impurities are placed in a regular lattice the Hamiltonian is:
+

H=% t.. a. a. +T.% n. _ {(4.1)
i3 .6 ij 1,5 Js0 0y io

where a (a ) creates (destroys) an electron with spin ¢ in a Wannier

. . + .
state at site i, n,, = 3 the corresponding number operator, t. i is -the

10 ,G i,0

overlap integral of the lattice Hamiltonian between Wannier functions in the
nth energy band from s1tes distant R . (= iR - ﬁ&l) apart42 and is also
known as thg hopping integral and Tb = i €y ék being the energies in the
nth band. '

For dimpurity concentrations below the metal-semiconductor tran--
sition it is reasonable to describe the impurity band in.the tight Eidﬁfﬁg
approximation. The Hamiltonian describing the impurity electron is given
by

e
H Zmov +V°(”+f U(r—R) (4.2)

where Vo(f?) is the,périodic potential arising from the host atoms and

u(r - ﬁ}) is the perturbing potential due to the impurity ion (bare

potential) at site i:

2 : (4.3)

U(r - R)= -
i R
ejr - Ri) _
where € is the dielectric constant of the host. The Hamiltonian in equa-

tion 4.2 may be expressed in terms of the isclated doncr Hamiltonian

T R — _ -
Hp = = 75— V3 + ¥y {r) + U(F - Rg) (4.4}

0



s¢ that

H=H, +% UF-R) . | 4.5
et I (r - R _ (4.5)

So finally™2

tj; =< ¢ (F-R)] . Ur - R ¢ (r - R)>. (4.6)

where the wavefunction ¢(?l?§) has been taken to be the ground state atomic
orbital at site i and is the eigenfunction of the isolated donor Hamiltonian
H; {equation 4.4). We restrict ourselves to the case where i and j are
neighbouring. impurities and the tij contains one 2-centre integral and five
"3-centre integrals. vawe know the functions ¢(TLR5) the problem is solved
and we obtain a typical tight binding band centered at Eo with width42
| b= 2z |t ' . (4.7)
where the coordination number z will be assumed hereafter it be § applica-

ble to a simple cubic lattice.

As for all one-electron approximations one funs into the tradi-
tional problem of describing an insulator when one has only one s-electron
per unit cell. One obtains, due to spin degeneracy, a half filled band for
any inter—donor distanceaz.- It has been known for a Tong time that in a
many-electron system this difficulty is remedied by the electron-electron’

43. A mocdel that takes into account electron correlations to

interactions
soma degres has been presented by Hubbard]7. He adds te the Hamiltonian
given by equation 4.1 & term ) .

H=%UZ% n n, . 4.8
. 2 -30- 1’0_ ]’_0 . ( )

The significance of this term is that the Coulomb repulsion, U, between

electrons is taken into account only if the electrons ave on the same site.
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If U is larger than the unperturbed (tight binding) band width one has
an insulator since now it is necessary to ionize at least one donor and
to put the e]ectrén back on a distant occupied site for current to flow.
The work necessafy for this is the ionization energy less the electron

affinity44, thus approximately U,

In the large U limit, the Hubbard model implies that one electron
is localized to each impurity site and double occupancy is forbidden. This
c]eariy describes an insulator but when attempting to calculate the band,

a question arises on the meaning of the hopping integral. To resolve this
problem let us logk upon the IB photoluminescence in terms of a transition
from an initial state given by a hole in the tcp of the valence band to &
final state of a ﬁo]e in the impurity band, thus we are interested in the
hole density of states in the impurity band. In the large U limit, one
has an electron in each impurity site except one and in this picture the
hopping integral has again a natural meaning: a hole in site i hops tc
site j; equivalent to the electron in site j hopping to site i. The
hopping integral beccmes equal to the leading term of the one electron
tight binding one simnce now the bare potenfia]s at nearest neighbour
sites m # i, J are screened by the electrons which are localized in those

sites and to a good approximation can be neglected. Hence
.. B L * - R, (r - R. {(r -~ %.) >. 4.9
tig = <o O - R0 - Ryde (r - &) (4.9)
o s . . . . 18
which is the same as that obtained in the mathematical treatment'™ referrad
above. In the treatment of Berggrends tij is cifferent - the unperturbed
- bandwidth defined by him in terms of his integral T is inconsistent with
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fraditional tight binding42’ 46 and in error. The integral L of aerggren45
corresponds and is equal to Equation 4.9. Thus, from the discussion above,
it is clear that the density of states in the impurity band in the large U
limit is going to resemble a tight binding band - scaled to % and full -

which for narrow bands is parabolic to first approximation]7.

The wave function ¢(r) for the ground state of an isolated impu-
rity is obtained in the effective-mass approximation. Following Kohn47
¢{F) is written as a wave packet consisting of Bloch functions ¥ Ek‘?), at

the six conduction band minima (E&, L =1, ...6) of the si]ﬁcon host:

6

¢ (r) = E:] oy Fo(r)y Ez(ﬂ ; : ~ (4.10)

where the coefficients a, for the ground state are (6)'1/2 for all 247.
The Fz(?) are hydrogen - like envelope functions which are approximately

given~by48

— L . 2.1
F(F) = (1) expl - {02 + y2)/al + 20%4%  (4.11)
with the z-axis oriented along the longitudinal éxis of the £th valley.
The constants a and b are the transverse and Tongitudinal Bohr-like radii
of the orbit and we choose their values, not in a variational procedure

of the effective-mass equations47 but by requiring that the eigenvalue

be Eo’ the observed icnization energy of an isolated don0r48:
1 1
= - TN = V72 '
a (thEO) E b = a(mt/mz, (4.12)
with the transverse and ]6ngitudina] masses given in Table 3.2. This
choice of & and b gives the correct asymptotic behavior c¢f the envelope
functions which is of importance in the socluticn of the two centre integral

tij‘ This integral has been solved by Milier and Abrahamsqg‘and the
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analytic solution, considering only intra-valley terms, is:’

‘R. . -(R /a) (4.13
iJ] = L e £ (].+-R£/a) . (4.13)

 where
2 )%

4 2 ¥4 2
- . - / . = '._ .
Rf. a (x].. +,yU),a + Zi /b X j X:—X ] ( B )

Upon squaring, keeping only intra-valley terms and finally spherically
averaging over the orientations ﬁ}j, one obtains:
2

12 = () (Ayt A+ A, : | (4.15)

itij' 6ea

where

Ny

n/2 .
__r' S 1 dx {1+ axz) exp {—2(R/a)(]+ax2) } (4.16)

vith o = (a/b)2 -1 and R = |R, the inter-donor distance. (The corres-

ijl

45

ponding expressions of Berggren’> contain algebraic errors.)

Figure 4.2 compares the experimental I8 line shapes for

18 —3 18 -3 18 -3

ng = = 1.8 x 10 » 2.45 x 10" " cm ~ and 3.9 x 10'° cm ~ with theoretical

ones calculated by Bergersen et a}l!d following the treatment of Hubbard!’
for finite U. The calculated density of states is not significantly different
from a parabolic form:

" 1

f if iE-£0|< &/2

!

n(E) = (a/2)7" {1 [E - E)/{a/2)] 12

0 otherwise. (4.17)

The theoretical Tine shapes have been enerygy shifted and scaled for compa-
rison. As can be seen there is gcod agreement between the calculated and gh-
served density of states and the theory predicts successTully the observed
breadening of the band with imourity concentration. The observed tails of
the IB photoiumxnesrrﬂre are due to the ravdomncss of the impurity distribu-

tio ﬂ45 49- 5]
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To explain the lack of a high energy tail of the IB line shape of
the sample containing 3.9 x 1018 phosphorus cm'3 it is necessary to look

17 has shown that

at Hubbard'é mode]l7 in a less restrictive way. Hubbard
if A/U<1.15 one obtains two distinct sub-bands separated by an energy gap.
The lower sub-band closely resembles the band, calculated above, for the
large U limit. fhus in this model the semiconductor - metal transition
occhfs at é donor concentration at which the two Hubbard sub-bands begfh

17, 45, 51 . Ce . e
. In reality, the transition is more complicated-than

to overlap
that. The experimental results show that the occupied lower band has
tails and it is reasonab]e to assume that the upper sub-band has developed
" tails as well. The tails are méde up of localized states jin the Anderson
' sense49'5]. In reality, the tails of the lower and upper sub-bands will
overlap at a lower concentratibn than in the case of a regular super~
lattice* and the semiconductor-metal transition is now believed to occur
not when the bands start to overlap, but when~the Fermi level lies in a

51, 52. In this picture - the Mott-Hubbard-

region of delocalized states
Anderéon mode152 - it is ciear that in the metallic region the density of
occupied states will not show a high eneray tail but rather.a Fermi edge.
Furthermore, the shift to higher energy of the IB peak when ny goes from

slightly below Nepit to slightily above is an indication that every free

.4
electron helps loosen the rema}ncer‘z.

It was described in'Chapter 3 that the relative intensity of the

1B and EHD peaks is excitation intensity dependent. This experimental

117
*Ua1ng Hubbard's criterion A/Y = 1.158' 1o de*;no ihe sen 1co,dutt“”
metal transition with A as calculated here_and U as given by Berggren®® one
obtains a critical density of 6 x 1018 cn™>
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result is an indication that droplets coexist with the lower density
phase. In thermodynamic equilibrium the chemical potentials of a pair in

each phase are equal. E is the chemical potential of a pair in the

pair
drop. The minimum energy to create a pair outside the drop assuming the

Hubbard mode1 is; intuitively, an energy close to the mobility edgeS] in
the upper sub-band. Thus the high energy edge of the EHD shows -approxi-
.mately where the mobility edge is with réépect to the lower sub-band so
that for impurity concentrations below the semiconductor-metal transition
one expects the IB peak to be at a lower energy than the EHD peak and as
the_impurity concentration increases one expects the two peaks to overlap -
this is indeed observed. The conclusion to the above argument is an

important one - is equal to the optical gap.

Epair

To end this Chapter an outline of the calculation of Eswaran et

21

al™ " of.the density of states in the infinite U 1imit of the Hubbard model

when the impurities are randomly distributed is given. The density of

states for a single hole is again of interest. The formalism follows

53

Cyrot-Lackmann and Gaspard™™ who have calculated the density of states for

the uncorrelated case (U = 0). The Green's function averaged over all
Aconfigurations is expanded in terms of average moments: the moment “P of

the density of states being the sum of the hopping contribution of all

54, 55 which return the hole to its home site. The hopping

paths when averaged can be decoupled into irreducible paths or diagram553

walks of k steps

and the sum of all irreducible diagrams of n steps defines the cumulant of
nth order53. The importance of the cumulant approach is that it allows to
Jjudge the approximations to be made in dffferent impurity density regimes

by neglecting certain diagrams and that those which are kept contribute to
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the moments of the density of states to all orders. In the high density
regime the important contributions to the cumulant come from self-avoiding

diagramsZ]’ 53, 54; in the low density regime from those which the hole

hops to and from between two impurity;siteSZ].

Figure 4.3 compares the ca]cu]atedZ] density of states fn the
impurity band in the high and low density regimes with the IB experimental
line shape for two different impurity concentrations. The widths at half -
maximum of the thepretical bands are in very good agreement with experiment.
However, those calculations do not explain the sign of the slight skewness
of the experimental line shape. The reason for this discrepancy is not

understood.



53.

1.00 1.02 1.04 1.06 1.08
L B B B SN B R

Si (P)

nd=L8xKﬁ§cm“3 . —4F‘

INTENSITY (i'inear scaie)

LUMINESCENCE"

100 . 102 104 106 108
PHQTQN ENERGY (eV)

Figure 4.3: The experimental photoluminescence hne shapg for the impu-

rity band in Si(P) at donor concentrations 1.8 x 1018 cm™3 are reprecen1ed

by flags. The solid and chained curves represent the theoretical 1m0ur11y

band density of states obta1ned using the ]ow and high density cumulants
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CHAPTER * 5

THE EHD IN HEAVILY DOPED SILICON

5.1 Introduction

This Chapter is concerned with the theory of the ground state of

the EHD in heavily doped silicon and begins by showing that the previously

18, 19

published theoretical treatment by Bergersen et al is in error. The

previous prediction of the existence of the EHD is established to be a
consequence of subtle computer programming errors. It should be stressed
that for donor concentrations above the semiconductor-metal transition

the system under consideration by Mahler and Birman 56-58

18, 19

is exactly the

‘same as the one considered by Bergersen et al
56-58

Dropliet stability
predicted by Mahler and Birman is believed to be a consequence of

unphysical assumptions.

18, 19 is presented

In Section 5.3, the theory of Bergersen et al
with a modification based on the experimental result thét the EHD coexists
with a lower density electron-hole plasma, This modified model is equally
. unsuccessful in pre&icting droplet stability. Speculative arguments for

droplet formation in metallic silicon assuming that not all donoys are

ionized are presented in Section 5.4.

5.2 The Original Model

The silicon crystal is considered to be at absolute zero tempera-

ture and has a volume Q. Llet us assume that there existsa droplet of
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volume Vd and in addition, thaf all photo-createdvcarriers aredﬁithin the
droplet; thus N(= n ny d) with, N, the total qumbe} of pairs kept cons-
tant. by optical pumping. The total energy per unit volume e(nc, nh) is
the sum of the kinetic, exchange, correlation and impurity energies per

unit volume associated with the indicated densities.

E(H » N ) = ek (n ) nh) + EXC(nC, nh)

'+ corr(nc’ nh) ¥ 1mp(n ? nh) v (5.1)

Bergersen et alls have worked out these contributions in the Raﬁdom Phase
Approximation {RPA). 'Their treatment of the first three terms follows

‘ that of Combescot and Noziéres7énd is genera]ized'to the case when the

| e]ectron density differs from the hole density. The last term is added
to take into account the 1ntefaction of the impurity ions with charge
carriers]87 In their second paper 19 they extend the treatment to 1nc]ude
central cell corrections - the simplified analytic form of the dielectric

59 is used in place of

function of the host suggested by Rara and Morita
the static dielectric constant, which screens the Coulomb interaction

between charges.

The details of each of the different energy contributions are

18, 19 and are not repeated here.

treated extensively by Bergersen et al
The resulting analytic expressions for each energy contribution are listed
in Appendix D for computational purposes. Here, the discussion of this

model is restricted to the energetics of EHD fOrmation.

18, 19

Following Bergersen et al , the total energy in the crystal

is:

£
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where we have assumed, as in Chapter 3, that the drop is neutral
(nc =ng ¥ nh) and, as we shall assume throughout this chapter, n, fixed.

‘Using N = Vd n, Equation 5.2 is:

h
E Q e(n 0) + N{ [e(n LI nh - e(nd’ )]}

(5.3)

crystal )

‘The free parameter, s is determined by the requirement that Ecrystal

minimum which leads to the condition:

= _ 1 .
E(nd+nh,nh = ﬁ- [b(nd+nh,nh) - e(nd, 0)] = minimum. (5.4)

It is instructive to derive Equation 5.4 from a different
starting point, namely, by the requirement of mechanical equilibrium:
the pressure inside and cutside the droplet is equal. Hence

(52— v, elngnoon)) = (42 e(ng,0)) = e(ny,0)
3y Vo elngtmom) = G Youe #nge0) = el
o (5.5)

and thanging variables (N=Vd nh) Equation 5.5 leads to:
~2 e(n #n ,n )| 4 = 1 [e(n #n n*) - e(n,0)] (5.6)
an . d h’'h n* ny d "h>'h d’ ) ’
h

By using the identity]8

8 = .1_ 1 -
on, e(n gty ny) n [e(ngrgony) - elng,0)]

h 'a‘ﬁ"‘ {”h [e(ndinh,nh) - e(ndso):l} s (5°7)

it follows that n¥ is also determined by Equation 5.4. (If ny. when



57.

n, 0 1is not a solution to Equation 5.4 then droplet formation is

energetically favorable.)

In addition, it can be easily shown that the chemical potential

of an electron-hole pair in a plasma, at zero temperature, ‘is:

3

u(1=0, n_, n) = We(nc, n) oo (5.8)
hence at quasi-equilibrium
- - *\ _ * ‘
Epair = p(T—O, N nh) = E(nc, nh) s (5.9)

which, as pointed out in Chapter 3, 1is expekimenta1]y measurable.

Mahler and Birman56'58

have chosen to formulate the energetics
of droplet formation in {erms of average energies per carrier. This
choice complicates the problem unnecessarily. To solve for the quasi-
equilibrium pair density (edua] to nh) tﬁéy ca]cu]ate.the pressure inside
the dropiet in terms of partial pressures: one due to the photo-created
_pairs, the other due to donor electrons. Since from the onset they
assumed all donors within the drop to be ionized, that is, photo-created
and donor electrons are indistinguishable, hence their partial pressure
procedure leads to the violation of thelPau11 Exclusion Principle. The

8 19 leading to the condition of quasi-

treatment of Bergersen et a]l
equilibrium (Equation 5.4) does not have the difficulties described above.

Furthermore, it is rigorous and therefore will be followed.

Before starting with the actual calculation one should determine

in which density regime the RPA is valid. Past experience with this high



58.
density approximation shows-that, in the present context, it is reasonable

to assume that it works well for such densities where the inter-carrier
.dfstance is less than the Bohr radius of an isolated impurity, namely
for "c>3 X 10]9 cm'3. It js then necessary to justify the use of RPA
-for carrier concentrations which are an order of magnitude less. For the
EHD in intrinsic material, where such carrier densities are also encoun-
téred, Bhattacharyya et a160 argue that one can expect corrections to

the correlation energy that go beyond RPA to be about 20 percent. On the

19

other hand, following Bergersen et al °, consider the two terms e(nc, nh)

and»e(nd, 0) when calculating E(nc, nh): for impurity densities of the
order of magnitude of the quasi equilibrium hole density (n: ~ 1-3 x ]0]8
a3 obtained in Chapter 3), e(nc, nh) and e(nd, 0) are of the same order
and their absolute errors could well be about the same and therefore
cancel to a considerable degree. The same is true - more so - for the
chemical potential. For‘1oWer impurity densities the calculation of
e(nd, 0) is totél]y unreliable and was replaced, from physical arguments,
by |

e(nd, 0) = ng E0 ' N (5.10)

with Eo the ionization energy of an isolated donor. For these impurity
concentrations the cancelling of errors described for higher densities
may not take place and theoretical fesu]ts for ng < 3 x 1018 cm"3 s$hould

be viewed with caution.

The arcguments given here for the correlation energy carry over
"to the impurity energy contribution so that it is believed that the RPA

should work reasonably well for metallic silicon.
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Figure 5.1 shows the result of calculating f"(nc, n.) as a

3

)

, 6.2 x 1018

function of N, for the donor .concentrations 3.1 x 1018 cm-
cm"3 ahd 1.24 x 3019 cm'3. for all three impurity concentrations it is

quite’é]ear that the condition of quasi‘eqﬁilibrium is found when n, * 0,
therefore, dropiet formation is not predicted for metallic silicon within

the model of Bergersen et a]la’ ]9.

56-58 are not a con-

To show that the results of Mahler and Birman
gequence of ignoring the impurity energy contribution in Equation 5.1,
Figure 5.2 shows the corresponding results. Again it is quite clear that
'?ch, nh) has a minimum when nh'a 0. By comparing Figures 5.1_and 5.2
one observes that the effect of including the impurity energy contribution

~is to lower the energy by an amount which is almost independent of LI

The experimental results in this thesis point to the most
serious problem in this calculation: the rigid band approximation. For
high hole densities this assumption is juétifiab]e by the excellent fit of
the EHD Tine shape but in the gas phase the experiment shows that the
parabolic band assumption is nonsense. Therefore, the calculation of
e(nd, 0) is suspected. In fact, for example for ng = 6.2 x 1018 cm'3, if

one increases e(nd, 0) by 2 percent one obtains a minimum in E vs. Ny with

3

n; épproximately equal to 1. x 108 ™ - but E turns out to be

pair
larger than u(n, = 0) so that droplet formation is energetically un-

favorable.

Figure 5.3 shows the results of calculating f'(nc, nh) as a

function of ny, for the impurity concentrations of 2 x 1017 cm'3 and
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The calculated average energy per pair as a function of
hole density for the indicated phosphorus impurity con-
centrations. The points on the ordinate-axis are the
calculated values of the chemical potential of a pair in
the limit of zero pair density.
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The calculated average energy per pair as a function of

hele density for the indicated phosphorus inmpurity con-

centrations. The ionization enerqy of an isolated phos-
phorus donor js used as the energy per electron outside

the droplet. The point on the ordinate-axis is the cai-
culated value of the chemical potential of a pair in the
1imit zero peir density for ng = 2 x 1077 em=3: the cai-
culated value for np = 5 x 107/ cm3 is off scale.
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5 x 10]7 cm-3 using Equation 5.10 to calculate e(nd, 0).. In these cases’
E ("c’ "h) has a clear minimum. Epair is within three percent of the
experimental value and is not excessively dependent on variations to
e(ndj~0). On the other hand, variations to e(nd, 0) produce very large

changes in the quasi-equilibrium hole density. The condition,

for droplet to be energetically favorable is only
]7

u(ﬂh 20) > Epair

met for ng < 3 x10 Special significance should not be given
to this result since u(nh $ 0) could be very wrong for this Tow impurity

densities.

5.3 The Modified Model

As pointed out in previous Chapters there is reason to believe
that at 4.2K the cHD and the gas phase coexist. Furunetmore, since Ny Lhe
number of photo-created pairs, is kept constant by optical pumping, it
will be assumed that the two phases are in quasi- thermodynamic equili-

brium. Hence

Tgas = Thq ’ ' | (5.]])
Pgas = P,I_iq s (5.]2)
and ugas = u]iq‘ . (5.13)

In the presént sijtuation it is more convenient to show the chemical poten-
tial vs L isotherms than the usual pV diagrams for Tiquid-gas phases. A

61 is shown in

typical u vs np which describes two phases in equilibrium
Figure 5.4.a. The region with dﬁ/dn < 0 cannot sustain a stable phase.

The Maxwell construction produces the two phases. When we decrease the
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Figure 5.4:

Chemical potential of a pair as a function of hole density
in the following cases:

a) Droplets are in thermodynamic equilibirum with a gas
phase.

b) The gas phase contains no holes in contact with droplets
-which are energetically favored. There is mechanical
equilibrium.
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temperature to zero two things may happen: the hole density in the gas
phase may remain larger than zero by may become zero. In the former cése
the p vs n isotherm will be as in Figure 5.4.a. If the stable gas phase
has no holes in contact with the.]iquid fhe ordinary Maxwell construction
does not work but is easily generalized* and as shown -in Figure 5.4.b.

ugas -z uh’q

. (5.14)
“and there is no thermodynamic equilibrium but formation of droplets is
energetically favorabie. This quasi-equilibrium situation is the model

18, 19 56-58

of Bergersen et al and Mahler and Birman discussed in the pre-

vious Section.

- In both cases, if droplets exist, the u vs " at T = 0 diagram
shows a local maximum and a local minimum, hence it is unnecessary to de-
termine a priori what the density of holes should be in the gas phase.
The drawback of this model is that one encounters again the problem that
fhe density of states is far from being parabolic even in metallic silicon
at low hole densities so that we have no hope of calculating realistically
B VS Ny for all Ny A brute force calculation, assuming the rigid band

“approximation to be valid for all n, in metallic silicon,was performed
hoping that a local minimum would show up at a high hole density where tﬁé‘
calculation could be believable - the minimum was not found. For conplete-
ness the results of this calculation for impurity concentrations of

3 n-3 19

3.1 x 1018 cm 7, 6.2 x 10'8 o and 1.24 x 10'° ™3 are shown in Figure

5.5.

*
I thank Dr. G. Kirczencw for pointing this out.
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Figure 5.5:

The calculated chemical potential of a pair as a function of
hole density for the indicated phosphorus impurity concentra-
tions. The points on the ordinate-axis are the calculated
values in the limit of zero pair density. The experimental
points (see Chapter 3) are shown for comparison.
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5.4 Droplets?

In Section 5.2 droplet formation was dismissed even though the

equi]ibfium condition given by Equations 5.4 and 5.9 were met by changing

18

e(6.2 x 10", 0) by two percent because u(nh +0) <E In Section 5.3

air’
droplet formation is again dismissed because ﬁ VS na dges not show a
“kink" which would have had to appear at low hole densities. The question
arises: shou]d‘cne conclude that there are no droplets based on the calcu-
lation of the chemical potential of a pair for iow hole densities for
which the rigid band approximation is shown experimentally to be nonsense?

Clearly, the theoretical calculations are inconclusive one way or the

other, The need of more theoretical work is evident.

A promising roi:te for further theoretical development is to con-

62, 63 have extensively studied

sider localized states. Quirt and Marko
the ratio of delocalized to 10ca1ized e]eétrons in Si(P) for the same im-
purity concentrations used here. They have used spin éusceptibi]ity
studies to determine that at impurity concentrations fwb times above Nepit
10 to 20 percent of the electrons are 1oc§1i2ed, in fact even for

19 cm'3 they claim two percent localized electrons. If this is

ng~2x10
in fact the situation when no photo-creatéd carriers are present then it
is reasonable to assume, to first approximation, that the density of loca-
lized electrons is egual fo the density of neutral donors. Furthermore,
let us assume that the denéity of ionized donors, nyio and the density of

neutral donors, ng,» are functions of the hole density ny The simplest

.l.
approach is to calculate the total energy per unit volume in the plasma by
summing two terms: to caiculate the first termwe ignore all the neutral

donors, thus this term is calculated exactly as in previous sections
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except that the impurity density is assumed to be ngis the second term
calculates energy contribution of the neutral donors assuming that average
energy of the electrons is En below the conduction band minimum. The total

| energy per unit volume is now

e(nc, nh) = e(ndi(nh) *ngs nh) + En Mn (nh) , (5.15)
with |

Ng = Ng; (nh) + "dn(nh) , | (5.16)

for all ny and the chemical potential at zero temperature is now:

o ') - _.a___. . ’
u(n,, "h) (anh e("d1("h) +n 'nh))ndi(nh) +
2_ - ( . - Epl X §5-ng;
[ (andie(n(h nh) + oy hh))nh n] X on Ndi nh)ln;]
' (5.17)

which will depend on how the density of ionized impurities changes with
the photo-created pair density. The prob]em could be solved by using the
mechanical equilibrium condition to obtain an equation that would then be
solved self-consistently with Equations 5.16 and 5.17 for nh(gas) and
nh(liq) with only one parameter, either ndi(O) or E . This calculation is
beyond the scope of this thesis and I will restrict myself to speculating

on the chemical potential as given in Equation 5.17.

Let us imagine that ndi(nh) varies linearly over a very large
range of n, so that the second térm in Equation 5.17 is neglected. We
calculate the first term for the two extremes of ndi(nh)’ namely for ny
and ndi(O). The solid curve in Figure 5.6 shows the chemical potential as
a function of ny for ndi(nh) = ny: the dashed curve for pdi(nh) = nd1(0)<nd.

We can envisage now that if ndi(nh) is vaving slowly that the first term in
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.Figure 9.6:

The chemical potential of a pair as a function of hole density.
The solid curve is for the dens1ty of ionized donors (nd1)
equal to ng; the dashed curve is for ngy; = (Q)<n
the chained curve represents a free hand 1ntg}po1at?on
for nd1(0)<nd1(n )<nd when Ny (n ) varies slowly.



70.

Equation 5.17 will result in values which fall on a Tine which results in
interpolating the two curves referred to above and is represented by a chained
curve in Figure 5.6. If ndi("h) varies in this manner then droplets are

formed and the stable gas phase contains no holes.

Let us examine now the second term in the chemical potential

(Equation 5.17). Test calculations of

3
('5?]—(; e(nd + nh’ nh)) (5.]8)

i n

h

show this term to be always larger {less negative) than any reasonabie
value of En>obtained from the IB photoluminescence. Therefore one may
assume that the second term in the chemical potential is always positive.
and if ndi(nh) varies mainly over a narrcw range of Ny then u vs Ny will

show a positive spike in that range of nh.
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CHAPTER 6

SUMMARY AND CONCLUSIONS -

The work reporied in this thesis has involved the measurement of
the photo]umingscence in heavily-doped Si(P) at liquid helium tsmggrqggggs,

The spectra were studied as a function of exc1tat1on'intensity and found to

ng > Nep ~2 x 1019 phosghorus‘cm'3, the density when the Fermi level ijs

jn the conduction band.’2 The second component of the Spectra is ébseryed
for the first time. This component dominates the spectra. at Jow excitation A
intensities and js attributed to the recombination of an electron in the

impurity band and a free hole. The Tine shape of the IB peak is found to
be well described by the density of states of the impurity band within the
Hubbard mode]]Z for ng<n The éffects of-the semiconductor-meta]

transition on the experimental IB Jine shape are wel] understood in terms

6f the so-caHed52 Mott-ﬁubbard—Anderson transition model.

The change in the relative intensity of the EHD and IB peaks is

indicative of the coexistence of two phases. This hypothesis is further_

Strenghtened because it predicts the - observed relative positions of the EHD

and IB peaks with donor Concentration.
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The theory of the EHD ground‘state;in the modé] of Bergersen et
31]8’ 19 and Mahler and Birman56'58 was reviewed and found in error. New
numerical results based on this mode]'were pfesehted which show that the
droplet is energetically unfévorable in metal]ic si]iCdn. On the basis of
tha experimental results obtained in this'Work it is found that the use of
the rigid band approximation for low photo-created carrier densities is at
fault. It is shown in this work, by hand-waving arguments, that droplets
may be energetically favorable if for low photo-created densities not all

donors are ionized in metallic silicon as the work of Quirt and Marko®2> 63

strongly suggests.

The spech]ative discussion in Chapter 5 suggests that the co-
existence curve for the EH) and IB phases 1ﬁ heavily doped silicon may be
very complicated. In fact, depending how we visualize the density of jonized
donors as a function of photo-created carrfers to change with temperature,
several critical temperatures are possible: there coﬁld 5e a range of
temperature, in between them, where drop]éts are energetically unfavorable
and possibly a temperature region.close to zero temperature where droplets
are formed but are not- in thermodynamic equi]ibrium_with the gas. Clearly
the photoluminescence study of these samples as a function of temperature
could yield surprising resuits. The work of Parsons and Thewa1t64, res-
tricted only to By = 2 X IC}B phosphorus cm'a, shows a c¢ritical temperature

of approximately 51K which is thrae times higher tham the critical tempe-

55 Of additional interest is that the results

rature for intrinsic silicon
of Parsons and ?h&wa1t54 seem to indicate that batween 13 and 20K the
chemical potential as well as the equilibrium hole dessity in the drop show

a minimum66.
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The near-infrared absorption (or reflection) experiments on these
sampiés at low temperatures are also of great interest to determine
whether the coexistence hypothesis is valid since the optical gap measures

the chemical petential of a pair in the gas phase. The absorption expe-

27

riments at appréximate]y 35K reported by Balkanski et al®’ indicate an

optical gap larger than Epair measured in this work. Nevertheless, these
results are inconclusive since as pointed out above, at least for a sample

18

containing 2 x 10 phosphorus cm'3, the chemical potential of a pair

seems to increase above 20K with temperature.
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APPENDIX A

HEAT TREATMENT EFFECTS IN Si(P)

A.1 Experimental Results

Figure A.1 shows the effects on the photoluminescence spectra
of the heat treatment described in Chapter 2. The photoluminescence
ﬁeasurements were done at 4.2 K and the excitation intensity is low, aboutA
10 watts/cmz. In Figure A.1 the dashed line gives the spectrum before
treatment; the solid line, after treatment. No effects of the heat treat-
ment are observed for impurity concentrat1ons below = 3 0 x 1018

The luminescence peak observed in the range 1.045 eV - 1.055 eV for the

-3 19

1.8 x 10]8 cm ¥ - 1.1 x10 m' spectra in Figure A.1 is the IB peak

and the peak observed at about 1.07 eV is associated with the electron-

hole droplet. Both peaks have been fully studied in the main body of this

thesis. As depicted by the 3.0 x 1018 m’ sbectra, it is more difficult

to form the droplet after heat treatment, i.e. higher excitation levels

are required to obtain the drop]et peaks éfter heat-treatment.  As shown

by the 3.9 x 101 cn™3 and 5.0 x ]0]8 en”3 spectra a peak is observed at

18 .

= 1.088 eV in the 5.0 x 10 spectra At other concentrations this

peak was weak and difficult to separate from the background Tuminescence.

No effect of the heat treatment was observed in a sample containing

4.3 x 10]9 cm'3.

If a heat-treated éamp]e is left at room temperature for a few

days, the photoluminescence peaks at 1.028 and 1.088 eV are reduced in

T0

intensity relative to the IB '~ peak. After about one week at this tempe-
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The effects of heat treatment on the photoluminescence spectra

of Si(P) conta§n1ng impurity concentrations in the range
1.8 x 1018 cm™ to 1.1 x 1019 cn=3. The dashed lines give

the spectra before treatment; the SO]Td lines, after treat-
ment. The spectra have been arbitrarily scaled to make com--

parison of line shapes eas1e7
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rature the photoluminescence spectrum completely reverts to its form
before treatment, but the 1.028 eV peak (and probably the 1.088 eV peak)

does not disappear upon further room temperature annealing.

23

Halliwel1” has studied the electron paramagnetic resonance

(EPR) of similar samples under the same heat treatment. Ha]]iwe]123 uses

a standard x-band homodyne EPR spectrometer67. The spectrometer was fitted

with a double-sample modulation-switched cavity designed by Quirt63 (

62)

see
also Quirt and Marko which allows direct comparison of untreated and

heat-treated samples.

As in the photoluminescence case, the effects of the heat-
treatment on the EPR spectrum are observed only for phosphorus concentra-
tions greater than a certain value. No changes at all were observed for

18 -3 ’

np < 2.0 x10'° cm>. As shown in Figure A.2, taken from Reference (23),

for samb]e temperature 1.1 K marked changes were observed with the treat-
ﬁent for higher concentrations np < 2.0 X 10'8 3. At 4.3 x 10" n®
a very small effect was observed as a 10% broadening of the phosphorus

line. In accord wifh‘the photoluminescence results the EPR spectra show

significant annealing effects. Afﬁer.severa1 days at room temperature

. the spectra completely revert to their form before treatment.

62, 63 mentioned above was used by

The EPR comparison technique
‘Ha]]iwe1123 to determine the number ﬁ of electrons responsible for the
EPR. Although this method is claimed to be accurate to about 3 percent
if the line shapes are known and thefe is no change in spin suscepti-

bi]ity62’ 63, the uncertainties in the correct line shape for these studies
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Figure A.2: The effects of heat treatment on the EPR of S{(P) containing

: impurity concentrations: 2.0 X 1018 cm~3 and 6.2 x 1018 cm=3,
Magnetic field modulation was used and the output signal is
proportional to the derivative dy’’/dh where x’* 1is the
imaginary part of the susceptibility. The dashed lines give
the spectra before treatment; the solid lines, after treat-
ment. The spectra have been arbitrarily scaled to make com-
parison of line shapes easier. The spectra are taken from

Reference(23).
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To this

made it impossible to determine n to better than 15 percent23.
aCcuracy there was no change in the total number of electrons responsible

for the observed EPR spectra before and after heat reatment.

A If the sample was ground to a»poner before heat treatment, no
heat-induced effects ‘could be observed in the EPR spectra23.' Photo--
luminescence spectra could not be obtained on the powdered samples because
the surface recombination dkastiéa]]y reduced the quantum yield beyond
the limits of ougfdetectiVity. In the optical expefiments the sample di-
mensions were tyéica]]y 2 x5x10 mm3. The grain size of the powdered

samples was about 5 microns diameter. .

A.2 Discussion of Results

The changes produced by the heat treatment are nearily confined
to the same concentration range in the case of both the EPR and the photo-
Tuminescence range in the case of both the'EPR and the photoluminescence
properties of Si(P). In addition the annealing behaviour observed for the
two sets of meésurements is similar. It is reasonable to assume, there-
fore, that fhese changes are related to a common crystal defect. The con-

18 3'

centration threshold 2-3 x 10 for the induced effects is very

nearly equal to the critical concentration n__.: = 3.0 x 10]8

crit phosphorus

cm_3 for the semiconductor-metal transition12. This fact combined with
the constant electron-spin dens1ty result in the compar1son measurement
suggest that the induced defect becomes paramagnetic with the capture of

a delocalized donor electron and that the induced luminescence is due to
‘recombination of this captured electron with a hole, which we assume to be

free. In this argument -the defect trap could satisfy the following
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conditions when the P concentration is less than kkrit: (1) its electron-
capture cross-section must be less than that of an ionfzed P impurity, and
(2) the probability of transfer of electrons from the P states to the trap
states must be negligible at 1iquid helium temperatures. We have not
been able to show that it is possible to have a trap with these properties.
Therefore, our present discussion of the results in speculative. We do

not have an alternate explanation.

- The energy separation of the 1.028 and 1.088 eV peaks in the

5.0 x 10]8 cm'3 spectrum in Figure A.1 suggests that the peaks are asso-
ciated with the emission of a TO-phonon (0.058 eV) and a no-phonon process
‘respectively. Comparihg the energy pdsitions'of the former peak with the
1.06 eV of the.__J_IBTO peak in the above spectrum, we conc]hde that. the
electron states of the induced trap form a distribution.centered at about
0.032 eV below the centér of the donof impurity band. At 4.2 K, there-
fore; an electron in a defect state would have little probability for re-

excitation to the impurity band.

Consistent with the interpretation of the photoluminescence data,
the EPR results on the heat-treated samples could be interpreted in terms of
two unresolved Tine shapes: one due to electrons loosely bound to phos-
phorus sites; the other due to electrons trapped by the induced defects.

The EPR spectrum is located at magnetic field corresponding to g = 2.0

and can be separated into two components. One of these components has the
same width and g-value as the.singﬁe line due to donor glectrons obseryed
in samples that have not been heat treated (dashed lines in Figure A.2).
After subtraction of this component there remains a broad asymmetric line

-with a higher g-value. Although lack of knowledge as to the shape of this
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line makes proper resolution of the two lines impossible, one can say
that-the g-value is relatively insensitive to impurity concentration,
whereas the linewidth increases rapidly with concentration. The fact
that the EPR spectra are unchanged when the samples were crushed before
heat-treatment shows that the results afe not associated with a surface
effect. Presumably, the heat-induced defects in the powdered samples
are able to duick]y diffuse to the surface where they are removed

during the .etching procedure.
o :

f}n order to observe the large changes shown in Figure A.2 for
_the -6 x;ﬁO]B cm-3 EPR spectra the concentration of the heat-induced de-
fects must be comparable to that of the phosphorus impurities S ]0]8
defects cm~3. This concentration is at least 10 times .greater than the
typical concentrations of residual impurities, e.qg. oxygen, carbon, metals
in vacuum f]oat-zoned samples of the type used here68. Consequently,
we do ndt think that the heat-induced defect is due to a chemical impurity.
The fact that we do not observe heat-induced. effects for ng < 2-3 X 1018
cm'3 and that we do not measure a change in the total spin density suggests
that the heat-induced defect is not associated with the phosphorus dopant.
Thé origin of the heat-induced trap, therefore, seems to be due to intrinsic
lattice point defects: i.e. vacancies or interstitial Si atoms. On the
other hand indirect evidence coming from diffusion studies and high voltage
transmission electron microscopy69 as well as theoretical ca]cu]ations70
seem to indicate that dominant high temperature defects are self-intersti-

tials and not vacancies, in contrast to metals, thus only this defect will

be considered.
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A self-interstitial in silicon is highly mobile at room tempera- -
turesg’ 70 and, therefore, could not explain the heat-treatment effects
observed here which persist, in the case of the luminescence studies,
after prolonged room temperature annealing. However, interstitials are
known to form aggregate569 which are stable at room temperature. It is
possib]e'that these aggregates‘possess a distribution of electron trdps and
could explain our data. The effect of the heat treatment could be under-
étood if large aggregates break up into small clusters of interstitials

on high temperature treatment and thereby increase the density of trap

centers.

The concentration of self-interstitials depends crucially on the

69 and therefore is difficult to estimate theore-

71

growth rate of the crystal

tically. Using the diffusion study results of Seeger and Chik’', F811s et

18

a].72 has deduced ~10"~ self-interstitials cm~3at the melting point 1420°C

in silicon. This is in agreement with the concentration deduced here.

The fact that heat treatment produceé very little effect on the
photoluminescence and EPR spectra for very high phosphorus impurity concen-
trations ng > 1 x ]0]9'cm'3 can be qualitatively understood. At sufficiently
| high donor concentrations all states, including those‘of‘the traps, will be

screened by the free carriers.
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* APPENDIX B

IMPURITY BAND DENSITY OF STATES
IMPURITY PAIR MODELS

As mentioned in Chapter 4 Lukes et a138

have used a simple HZ ion.
model of interaction between impurities in a doped semiconductor to calcu-
late the density of states in the impurity band. The donors are taken to
be randomly distributed and the distance, R, between nearest neighbours
forming the HE-?ike ion is assumed to follow the Chandrasekhar distribu-
tion39. Using the Green's funétion formalism they show that the density

of states may be written as follows:

n(E) = -Nflsg Lo RZ'nd_'exp [_4% R3 “373 ]

‘ [? 0 B, SR () ) I , (B.1)
E-E,+ie E-E_+ie -

where the antibonding band given by the second term will be ignored. The
wave function for the ground state is the same as for an isolated impurity
as calcuiated in the effective-mass approximation and is the same as used

47

in Chapter 4, Equation 4.10. Here, we will follow Kohn™’ by taking the en-

velope function to be sphericai symmetric with the effective-mass equa-
tion47.' Since the wave function is normalized Equation 8.1 reduces to a
trivial one-dimeasional integral and one obtains
1 -] iy 2 e 3 d[+
n[E, (R)] =-n"" 4n(rR) ng exp {-4m(R) ny/3} / |4l | (B.2)
. R
hence to chtain the density of states we need only to celculate the ground

state energy and 11 inter-vailey terms are ignored one cbtains the analytic
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\
expressicen for the energy which is identical to the well known sglution4'

of the bonding state energy of the hydrogen molecule ion, HZ, with the
appropriate Bohr radius. The calculated density of states was compared
with the experimental 1B line shape with the result é]ready described in

Chapter 4.

. o . .

A natural extension of the h2 ion mndel of interaction between
impurities is the Hz‘mo1ecu]e model so that electron-electron interactions
are taken into account. Equation B.1 also expresses the density of states

in this model. The Heitler-London method4]

is used to set up the molecular
wave functions in terms of the "atemic orbitals", that is, the isolated
impurity wave functions used in the HZ fon medel. Since the Heitler-
London wave functicns are not normalized tﬁe integral over r in Equaticn

B.1 is
'w+ (M dr=1+5S (R.)2 - ' (B.3)

~where S is the atomic orbital overiap integral which will depend on the

inter-impurity distance. In this case one writes

“Voanr'y? PRI C o |geft
WL, g 0 An(R ) ng exp [4m(R )7 ny/3) [14S(R)7] /| ®
ey (R)] = - = .
g dx 4mx® ny exp [-4n0 n /3] [145(x)7]
s
(B.4)

and again the problem reducszs to calculating the ground state energy and if
inter-valley terms are again ignored one obtains the analytic expression

for the emergy which in this case is {dentical to that given by the

Heitler-London model for the H, molaecule with the appropriate Bohr radius;
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the anélytic solution of the two center integrals listed by Slater?!

was used.

| In the Heitler-London model, fhe photoluminescence Tine shape
does not correspond to the calculated density of states because it is un-
reasonable to assume that both electrons associated with the jmpurity
pair will recombine simultaneously. - To calculate the photoluminescence
Jine shape it has been assumed that the reﬁombination of a donor electron
with a free hole is a Franck-Condon process that leaves an H; ion-1ike
behind in its ground state and gives

e ') - £ (R)] an [E?_L(R' )] (8.5)

where E+(R') is the ground state energy of the H; jon. When evaluating
the line shape care should be exercised'since the argument of the L.H.S.
of {B.5) is not a single value function of R . The ca]éuﬁated Tine sﬁépe "
was compared to the experimental one with the result already described in

Chapter 4.
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APPENDIX ¢

DATA ANALYSIS PROGRAMME

This section describes a computer programme which has been
extensively used to analyze the photoluminescence spectra obtained for this
work. The programme is written in the BASIC language which is fully dés—
cribed in "An Introduction to BASIC"/3 An extension to the manufacturers
.compi]er; programmed by TRIUMF at U.B.C. is used. This compiler allows to
call Machine Language Subroutines .(MLS) with the instruction CALL. The MLS

called by this programme are explained and listed in M.L.W. Thewalt's thesis.28

For the purpose of this programme a spectrum is a set of four
dimensional prints: one dimension for the energy of the measured photon; a
second for the intensity; a third for the standard deviation due to signal
averaging; and a fourth which was reserved for digitally smoothed data which
is no ]onger used. fhis implies that if a spectrum of "n" points is to be
stored in memory, givén the starting location in the memory Buffer, the pro-
gramme will use "4n" consecutive memory locations the first being the starting
location given. Care must be then taken so that the data will not overlap

with other information stored in the memory Buffer.

" The Buffer consists of 2000 memory locations. The programme listed
below requires that the memory locations 1850 to 2000 be reserved for the EHD
-theoretical line shape calculations. Locations 1600 to 1800 are reserved

for the IB theoretical line shape calculations.

As pointed out in Chapter 3, the difference between two experimen-
tal spectra are taken to disentangle the IB and EHD contributions and to do

so the following convention is followed: the second spectra read into memory
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is subtracted from the first; scaling and base line changes are only done
on the second; the resulting difference will be stored in the first "4n"
locations of the Buffer, where "n" is the number of points of the second

spectrum.

Most spectra analyzed in this work consisted of less than 125
points, for such spectra it is convenient to choose memory location 500 as
starting location for the first experimentaT spectrum read into the Buffer

and location 1000 for the second spectrum.

The following programme has been written in modular form. The
subroutines will be Tisted first and two main programmes for slightly

different purposes which use these subroutines are listed at the end.

A.1 The Subroutines

o188 REM e o sk ook e e ok e ook s ok ok kol s ol s o ok e s o o A o

2161 REM _ LOAD _
¢i@2 REM ) X s o 350 o8 e o ofk o 3 o e e e e o ot o R ok o afe i el ofe o e o 2 o ok o s TR

¢183 PRINT "LOAD TAPE,INPUT STARTING POINT,4 OF. #°5 ARD®
¢i84 PRINT . °1*' FOR STAFDARD DEU!AT?ONS” '
2165 INPUT. A1:A2,08

REM This subroutine will Toad the contents of a paper tape into buffer
starting at location Al. The spectrum is represented by AZ points.
The "1" for standard deviations, is a control number and shouid be
set to one if the paper tape also contains the standard deviations

of the data points.

9186 CALL 16:A1.A2 .
e187 IF C8<>) GOTO 9110
2168 CALL 164A193%A2,42

REM The MLS #16 transfers data on paper tape to memory Buffer.

¢ip9 GOTO 9116 . . : . :

§110 PRINT “IRPUT STeDEV.TO SIG.RATIO-"0° |IF UNKNOWN~
G1ry IWPUT C9 . - o - ST T

112 LET C9=C9=%i%38



9113
. 9114

2115

9116
9118
9128

9122
9124
9126

9ize
9130
¢132
¢134
9136
9138

9186

9168
C 9198
9191
9192

9193,

9194
9195

9196

- 87.

REM The multiplicative factor 1900 is required for scaling our data for
output due to the requirement of the D/A converters used in this
system as it will appear many times throughout the programme.

FOR I= @ TO A2-1

CALL TeAl+3%A2+1,C9
NEXT § L

REM The MLS #7 stores in memory location given by the first expression
the number given by the second.

FOR I= 8 TO a2~}
CALL B Al+l.FL1]
KEXT 1 ’ o ’

REM The MLS #8 recalls the contents of memory location given through
the first expression and identifies it with the variable listed
next.

REM . SCALES DATA
LET Mi=-26308
LET M2=208008

REM  The maximum and minimum possible values are *2000C and are a
 characteristic of the A/D converters used in this system. This
values will appear several times in the programme.

FOR 1= . TO A2-1 . ..
iF Mi>Fil) GOTO 9134
LET MI=FL§1) .
IF M2<F (13 GOTO 9138
LET t2=F{1] S
NEXT | S
FOR I= @ TO A2-1 - .
LET FI{l3I=(FIT3I-M2)%19@8 /(M -M2)
CALL Tsai+lsFLY] ' ”
IF CEé<>i GOTO 9185
CALL 8,81 +3282%1,0
LET C=Cxi206 /(1 -pm2)
CALL Ts&1+3=A2+15C
HEXT 1 ' C
RETURMN

REM For the spectrometer described in Chapter 2 it was necessary to
recalibrate periodically the wavedrive. The following subroutine
calculates the energy axis of a given spectrum. It requires that
the calibration parameters used when the spectrum was taken be

~given.



94006
9401
9482
9483
94084

9485

9484

9407

94e:8
. 9469
94510
9411
2412
€413
2414
$415
9456
Q457
€418
9419
9426

©427
9428
2429

Q430
o451
$432
o843
9561
$562
o818
PR
¢512
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REM  #ooR&gghehigsgxedgamkbdagfgf ik htky
REM CALCULATE ENERGY AXIS
REM suossdsghddgdrhdpdohrdfbafsddfhikiiay
PRINT "REW CAL.TYPE 139 OTHER.SR=1 FOR DlSP»THEN @ TO CONTI“
INPUT Z5 .
§F ZS<>1 GOTO 9410
PRINT *]NPUT CALIB.PARo“
PREINT -
INPUT ZG:Z!:ZZ»ZS:ZA
DEF FNW(A)@L@#LI*Y+22*X$X¢Z¢$K*K$X¢L4$X$X¢X$X
PRINT ”STowDoSTEP SIZE" '
PRINT -
I NPUT ueswz
FOR = @ TO AZ~-)

LET W2= FNJ(WO)

LET W2=2.47971/W2

LET W2=(W2-] .685)s218060

CHALL ToAl<A2+l,W2

LET We=WE:W1
NEXT ¢
CALL 95-1,C

REM The MLS #9 reads selected bits of the Switch Register (SR) b
performing a logical AND with the MASK given by the first para-
meter and the result is identified with the variable listed next.
This subroutine is heavily used to interact with the computer and
in the present case if SR=1 it will display on the scope the .last
spectrum read into the Buffer. The display will continue until
the SR is set to cero. ‘

IF C<>1 'GOTO 9432
CALL 25,A41+A2,A1,A2
CALL 26

REM The MLS #25 points to the location in the Buffer where the energy
values are stored, by the first parameter. The second parameter
points to the location in Buffer where the intensities correspon-
ding to the previous energy values are located and the third para-
meter gives the number of points to be displayed on the scope.

The MLS #26 actually performs the display on the scope.

CaLll. 9s=1.C

- IF C=1 GOY0 9428

RETURN .

REM ' $$$$¢$w $$$$$$¢mﬁ$*$$$$m$$$$¢¢ % 1 St ot
REM : DIFFERENCE FOR TWO EXPERIMENTAL
-REM e R RE o3 3 P S T PP R 2 P -2 ]

PRINT “SCCPE POS'THUNaﬁﬁPUT A ﬁ“
ENPUT C
CALL 92-1.sC



7513
©514
9815
9516
@617
G518
9519
9828
vS2t
o522
9823
9524
2525
95626
9527
96z8
95629
9539

933z
08324

9536
9538
- 9548
9842
9544
2546
#8548
P558
9552
9554
$356
9857
¢854
vH59

89.

REM The contents of the Sr are read and depending on the number
(octal) read the programme will do the following:

SR=1
SR=2
SR=4
SR=10
SR=20

SR=100
SR=140

SR=200

Returns to main.

Wi1l shift the energy axis of the second spectrum.

Wi1l scale the intensity of the second spectrum.

Will change the base line and slope.

Displays the difference of the two spectra on the

scope. o

Displays the second spectrum on the scope.

Displays both the first and second spectra simultaneously
on the scope.

Punches the data of the difference for future use.

If none of the octal numbers listed above is set on the switches
the programme will loop for another try.

iF C=3 BOTQ 9544
IF C<>»2 QOTO 9516

GosuB

95382

IF C<>4 80TO 9518

GosSuB.

9548

iF C<>8 GOTO 9526

GOSUB . 9554
IF C<>i6 GOTO 9522
GOSUB. 93586 .
IF C<»32 GOTOG 9524
GOSUB, 9586
IF C<>564 GOTO 9526
GOSUB 9594 . _
IF C<>%6 GOTO 9528
GOSUB.. 9592 . .
fF C=128 GOTO 9597
GOTO 9512, }
PRINT “ENERGY SHIFT"™
INPUT C _ T
LET Et=C%23.5 -
FOR 1= @ TO C4A~1
CALL 8.C3+Ca+].EB
CALL 75C3+C4+1,EB+EH
WEXT 1T~~~ 7
GOSUB 9489
RETURN o o .
PRINT “INTENSITY FacCTOR®
iNPUT C L )
FOR I= 6 TO Ca-=1
CoLLl 8,5C3¢1.56
CALL T7sC3+1,E9=C
Call 8,C3:3%Ca+],E8
CALL T503+04%3+f ,E840
NEXT |~ ’



9560
9562
9564
e566
9568
2510
852
9574
G576
© 9578
9580
9582
2584
- 9586
9588
L8
G592
VER3

G5¥4
595
93948
9597
598
9599

- 9458

$452
9464

S&29
96@}
S6E2
B3
Q&G4
QEBH
9686
6ET
9628
9614
¢6t1e
Ca14
2616
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GOSUB 96069

RETURRN

PRINT “BASELINE & SLOPE"™
INPUT CsC5

FOR

1= 6 TO C4-1

CALL 84C3+1.EB.
CALL 7:83*!:EQ+C+I¢C5
NEXT [
GOoSUB 9688
RETUR®
CALL 25,C3+C4, 8.,C4

“CALL 26

RETURE .

CALL 25&@3 ‘}CZJC! oCZ
CALL 26 ‘
RETURYN .

CALL 2530“402305392
CALL 26 )

CALL 25:03*04a63»04
CALL 26

RETURN

CALL 17, BsC4

CALL §7.,032C4.C4

GOTO 9458

REM The MLS #17 will punch as many numbers as given by the second
parameter starting in Buffer Jocation given by the first para-
meter. _

REM THIS 1S PART OF SUB 9580

CALL 17-,3%C4.,04

GOTO 95tz

REM Since in general the energy axis of the two exper1menta1 spectra

REM
REM
RENW
LET
FOR

do not coincide exactly, the first spectrum is linearly interpo-
lated to obtain the luminescence intensities that correspond to
the energies of the second. For this purpose the following sub-
routine is calied. :

R e L L L LT DR T e s 2 e
I NTERPOLATE FIRST SUBTRACT SECOND
gt dioRfoR xRy RE RGN RS TR G Rk X
it= & )
I= 8 TO C&-i

CALL To33C4+1, O
NEXT | ) oo

FGR

Jz= @ TO CA-~1

CALL eac’¢c¢+dsai
LET 12=i§ .
FOR t=iZ TO C2-1

CAlLlL &aﬁ?*?d*i»é?
IF J2<d1 GOTO 9622



9618
2626
9622
624
9626
9628
9630
9632
9634
9636
2638
640
9642
9644

9646

G645
Q649
9650

E2Ga
L gzetl

gzgz

gz2e4
. 8265
8266
8207
8208
gz269
g21e
gz 11
€212
6213
8214
6215
8216
g217
8213
g219
G226
‘g2at

. LET . ti=l]
NEXT I i

91.

CALL 3&C|¢C2*11:J3
CALL 8,C1+C2+1+11,J2
CALL 8-Cl+l¢l1,Jd4
"CALL 8:-Ci+11,Jd5
LET Jé*dﬁ*(d!°d3)*(d4 JS)/(JZ d3)
CALL 8,03+JdsJ7 '
CALL zsdadé,d7
CALL 85C3+3%CA¢JsXD..
CALL 8:C1+3%C2+11.,X1
CALL 7:3%C4+J,AB¢X1
MEXT J i ’

FOR

iz & TO Ca-1

CALL 8503+4C4+1 K0
CALL ?%QQ?!;X®'

CNEXT |

RETURH

REM VREREEH RS ARG ERGRERRfR kiR kR Rkl Rk

REM HEWTORN-COTES I NTEGRATION -

REM TEERGFSERBBESEEFRFELERRHRFER ARG G REGRGREARR

REM A Newton-Cotes formula of fourth degree with error calculation

LET

LET

LET
LET
LET
LET

is used. On input

X7 = X% minimum,
X8 = X maximum,
N = number of points

It also requires that the integrand be evaluated in the subroutine

8250 and its value returned as FI and error as E4. On output the
value of the integral is given in the variable S and the error in
E1.

S= B

El= ©

Da= (%8°K7)/N

Di=Das4

R9=KT

p9= &

cosup. 8253

LET

FLS1=F1

LET E2=E2

FOR t=f TO N
LET FL1l=F(S]
FOR J=2 TO 5 ..

LET %9=X9+D1
GOSUB 8252
LET E2=E2<E3
LET FiJdi=Fl

NEXT &
LET U?ﬂ?(ij+ﬁ*?{23¢°$Ft3l¢@’°€43¢F533



8222
8223
8224
8225
- 8226

8227

8228

6229

8220
€231
8232
. 8258
8252
8254
8256
£258

8269

6466
8401

84E2

8468
8489
8419
8411

8452

8413
8414
B215
416

8417

92.

LET U93(FL11+4%F{31+F[S)) %2
LET D2=(U%-V9) /15
LET S=S+V9-D2
LET D3= ABS (D2)
LET E1=E1+D3+23E2
iFF D3<D9 GOTO 8229
LET D9=D3
NEXT 1~
LET S252D1/3
LET Ei=El1#Di/3

RETURN

REM RERE AR R R Rk R R R X E Rk xRk kR
REM FURCTION

REM . $$$$$$$¢$$$$v*ﬂ$$$$m$$?$*$v$$$$ﬁum¢$$$$$$
LET Fi= FNF(X?)

LET E4= @

"RETURN

REM -k e e 0ol e e e o oot o e e o o o o ook o o o o e ek e e e o
RE® INITIALIZE - EHMD THEOR. DATA

REM . w&&&**w*$&$*$$$$¢$*¢$**$#$m$$$*$$$¢$$¢

REM When calculating Equation 3.2 in Chapter 3 this should be the
first subroutine to be called. There are four parameters this
subroutine will ask to be given. :

- E(1) = EHD energy gap - phonon energy.
- E(2) = Density of electrons.
- E(3) = Density of holes.
- E(4) = Temperature.
Note that E(2) = E(1) + impurity density.
"REM
plM ELS]

PRINT “SELECT PARAMETERS YOU WANT CHANGED ON SR™
PRIWT “TYPE 1 WHEN YOU ARE READY"
ENPUT C..

REM On first call of this subroutfhe the SR should read 17 (octal).
On subsequent calis the programme will do the following depending
on. the number (octal) read in the SR:

-SR= 0 Will ask for a new selection of parameters.
- SR =15 Will change the EHD energy gap.

- SR=14 Will change the electron density.

- SR=13 Will change the hole density.

- SR =

12 Will change the temperature.

CALL 9:515.C

IF C= B.G6070 8416

CALL 951:C .

IF C<»t GOTO 8429

PRIWMNT *TRIAL CHD G4P - PHONON ERERGY™



8418
8419
8420
8421
8422
8423
- B4a24
8425
€426
8427
8428
g429

B439.

6431

6432 .

8435
8434

8435
8436
8437
8438
8439
8449
a4l

8442

8443
8444
8445
8446

8447
64448
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PRINT ~ . . .

ENPUT Ef§3

CALL 95,250

iF C<>2 GOTO 8425 .
PRI WT "TR@AL ELECTRON DENSITY™
PRINT -
INPUT E(2]

CALL 90,45C

IF C<>4 GCTO 8430 o
PRINT “TRIAL HOLE DEHSITY*™
PRINT .
PUT EL21

CALL 9,8.0

IF C<=28 G070 8435 .

PRINT "TEE&L TEMPERATURE®™
PRINT : h
TNPUT ECA43

REM Calculation and print of the Fermi energies and chemical poten-
tials for the electrons and holes. S

LEY Ui= 8

LET L2= 8 .

LET UE~€oi4/£@?!4$(5(2}/é)7(2/3)

LET U3=(3. 14159*EE43$8o6!746/IG?5)92/!2
PRINT “ELFERWME EN.iS= “oU1 '

LET UI=Ut>=u3/ui R,
PRINT “EL.CHEMPOT, l~=faUl

LET U2=.6324710¢14%EL3]12(2/3)

PRINT “HOLE FERMI EN. lS=",U2

LET U2su2-u3/u2 - o

PRINT “HOLE CHEM.POT», [5=%,U2

PRINT *[aPUT ¢ OF POINTS TO (NﬁEGRATﬁ»@TO DiSPLAY®

REM Each calculated point is 1 meV apart. As a general rule the
~number of points to be integrated is chosen to exceed by about
20% the integer value of the sum of the two Fermi energies. If
the number of points to be displayed exceeds the number to be in-
tegrated the programne will produce a base line. The maximum
number of points to be integrated and/or displayed in 49.

INPUT K@sK1
RETURN .



8106
81061
g1e2

8163
8104,
8185

8i36
8167
8198
8169
8110
8111
grie
€113

8iia
G115

8tié6 -

8117
8118
6119

- 82917
6298
8299
82388
€361

8302
8363

8384
8365
- @306
8387

8368 -

6389
esie
2311
a2
8313
8314
8315
8316
8317
§6 50
8651
8652

REM ERRERERKBERELEFRP XX R RGP R
REM . . CALCULATE LUM. EHD
REM = #SefiRisddisgsansgiggsipdsirskik
Ditd L4991
LET X7= @&
FOR K={ TO X9

LET X8=K/1886

LET WN=K

94,

DEF FNE{X)2109(=17)2( EXP ((X8=X~U1)/8.61T46%10.¢5/E(41)+1)
DEF FNHCX) 218 9(=1T)2¢ EXP ((X-U2)/8.61T46%1825/EC41)¢1)
DEF FKF(X)=187(~34)% SQR (X)* SAR (X8-X)/ FNE(X)/ FNH(X)

GosuUB. &28¢
LET L{KJ=S
WEXT K

REM FNF is the 1nte?rand
The factors 10-
overflow in this small machine.

LET LL 8= 8 _
FCOR K=K@& TO Ki

LET LtK3I= @
WEXT K
GosUB 8328
RETURN o
REM  sxsdosdiidffedseieRodiskekigregirri
REM SCALES & STORES THEORETICAL LUM.
RE® et i T L S b LR L L
PRINT "I8PUT BASELENE®

ENPUT Lo

LET LG= @

FOR J= 8 TO K@ .

" LET L{JIsL6+LTJ]
IF L{JI<L® GOTO 8387
LET Le=LL{J].

NEXT J

FOR Jd= @ TO K@ .
LET LEJ3=L{J1=1i900/L0
NEXT J . , N )
REWM XsY THEORET!CAL DATA FROM 1962 TO TOP BUFFER
FOR ud= B TO K1i
LET Ji=gtitl- low$5Adxl@85)W2§Q®0
CALL T:19086¢JoJ1 -
CALL 73395@¢JJL[J]

NEXT J

RETURN

REM LETAEXS USRI G FF TSR R REFREEEN B Rt ion kRl
RENM DISPLAY FITTING

REW | 2SasbdiSrettitesdebehxsgysiaikederagins

/ and 107 -34 are inciuded to avoid floating point



8653
8654
8655
8656
8&57
8658

8659
8660
8661
8662
8663

' - 95,

REM This subroutine expects to find the expérfementa] EHD Tine shape
starting in Buffer location Al consisting of A2 points with the
energy values of each point starting at buffer location Al + A2.

PRINT “SET PARAMETERS !N SR.TYPE | WHEN READY™

PRINT “WANT OUT?SET SR=@ FOR ANOTHER TRY»1 RETURNS TO MAIN"
PRINT

ENPUT C..

CALL 9,5165C

IF C= 6 GOTO 8679

REM To perform a trial and error fit of the EHD line shape the pro-
~gramme allows two distinct levels of operator interactions which

are chosen by the fifth bit of the SR, that is, by switch #11.
If switch #11 is down a new EHD Tine shape will be calculated.
If switch #11 is up only changes that do not alter the line
shape are performed. The programme will test the status of
switches #12 to #14 and will do the following depending on the
octal number given by this 23 bits.

SR(12, 13, 14) = ¢ i1l go to display mode.

SR(12, 13, 14) = 2 Hill scale the intensity of the theoretical
line shape, a new difference of the experimental and theore-
tical line shape is performed and finally the programme is
diverted to display mode.

SR(12, 13, 14) = 4 Wiil shift the theoretical peak, new
difference is performed and control given to display mode.
SR(12, 13, 14) = 6 Will shift the theoretical peak as well as
scale it. New difference is performed and control given to

display mode. ,

SR(12, 13, 14) = 10 Will change the base line of the theoreti-
cal peak, new difference is performed and control given to
display mode.

CALL 9:,145C
iF C<> @ GOTO 87!?
CALL 2539?*920#\10&2
caLil. 26 .
CALL 9,-1sC

REM On display mode the contents of the SR are read and depending on
the number (octal) read the programme will do the following:

- SR= 0 Will restart the subroutine for another fit.
- SR= 1 Will return to main.
- SR =32 Will dispiay the experimental spectrum as well as the

difference between this spectrum and the theoretical
line shape.

On any other SR reading the programme will display the experimen-
tal and theoretical spectra.



8664
8665
8666
8667
8669
8678
8671
8672
8673
8674
8675
B6T6
8677
8678
8679
8680
8o82
8663

8643
8641
8642
86435
5645
B&47

86893
8686
8687
E688
8689
8699
869t
86%2
6693
6694
8695
85696
8eoT

8100
8761
8762
8763
8764
8785
6756
8707
E1e8

IF C= 8 GOTO 8655

- IF C=1 GOTO 8683

IF C=32 GOTO 8645
GOTO 8648

IF C<»6 GCTO @673
GOSUB 8485

GOSUB 87483

GOTO 8661

‘CALL 92250 .

IF C<>2 GOTO 8677
GOSUS 8788

GOTO 8661 .
GOSUB B6&8S
GOTO 8661

GOSUB 8422
GOSUB 8186
GOTO 8661
RETURN

REM This subrout1ne continues

CALL 25,199951950 K141

Call 26 :

GOTC B&6E A T

CALL 25515881888, K1+1

CALL 26 .. B

COTO 8651

REM The following four subroutlnes are ‘called from the previous
subroutines.

RENM ) Fﬂ#&?*&*ﬁ#;*$$$$$%$$$¢$$$$$$»$???&&*m

REM - SHIFT ENERGY

REM 533 T R 2 R T e e e T T

PRINT “ERERGY SHIFT IN MEV®

I NPUT C

LET Eii)ﬂgfljéC/lﬁﬁﬂ
LET Ei=C%x21
FOR i= @ TO 49
CALL B8,i983+1,E8
CALL 7&?9@9¢§a EG¢ES

NEXT §

GOSliE 8&&D

RETURN ,

RE®M WP IR RS R Ry g Rk heh S Rg SRRk
RE® : " JLNTENSITY CHANGE

REM . FERD B RN R kR ik R R R ki ek
PRINT “INTENZ!TY FACTOR™

[NPUT C

FOR E= 8 TC 49
CALL E,1950+1.E9
Call r:i“ﬁﬂ#faﬁﬁ¢?
NEXT |



87¢9.

8710
8711t
8112
8713
8714
8715
8716
88028
8881
8862
es33
8634
8625
E806
8807
£&es8
8889
£810
661t
g812
881
8814
. 8315
8816
8817
8aLs
€819
8820
Sgee
56061
5582

5603

SEC4A
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GOSUB = 8800
RETURN | } ,
REM BASEL! NE - CHANGE

REM . R 21 R 22 R R LSttt S P Rl L L e
IF C<>8 GOTO 8669 :

GOSUB 8380

GOsSuB 88292

GOTO 8661 :

REM ¢$*$¢$¢$#$**?mﬁ*&*#****##*w¢*¢$$$m¢w**aaam
REM I NTERPOLATE EXPERIMENTAL SUBTRACT TH.
REM | sk $#¢*#*$$t$*$$¢$m**?$$$$¢$$h$$$$$#$$$$
LET §1= 6 .

FOR J= 8 TO K& .
CALL 851%88+dJdsJ1
LET [2=11} ’
FOR 1=12 TO A2- 3 .
caLL 80&3*2*A( §°|ad2
IF J2>J! GOTO 8Ei2
LET ?ini
MEXT 1|
Call BoAi+2=%42- 1'§!ad3
Call 53&1?&?A2°£SE19J2
CALL BorAlea2-2-11sJ4
CALL BoA1+A2=-1-11,J5%
LET d6=d54(dl'J3)*(J4‘d5)/(JZ J3)
CALL 8:195@+J,J7
CALL 79185@+JOJ6°d7#L6¢l9G@/L9

CMEXT J

RETURN

REM e o o ke oty e e ool ok e ok ok ok o e o e e e ofe e e ok wfr g kA
REWM A NEW PLOTS

REM . BERGRELEHRREAREREERFRRREEBRRSEREE
FNPUT C .

CALL 9o-15C

REM The input is just a pause to get the x-y plotter ready. The SR
is read and depending on the number (octal) read the programme
will do the following:

- SR = ¢ Reads SR again.
- SR =1 Will return to main. ' _
- SR =2 Will plot the first experimental spectrum read into

buffer.

- SR =4 ¥ill plot the second experimental spectrum.

- SR =10 Will plot the difference of the two experimental spectra.

- SR =20 Will plot fixed energy axis from .29 to 1.18 eV
(21000 x .095 = 1995<2000 which is maximum of our D/A
converter).

- SR =40 Will plot IB theoretical line shape.

- SR=100 Will plot EHD theoretical line shape.

= SR=200 i1l plot the difference between the experimental and

theoretical EHD line shape.



sS85

5286
STEB
SSI 0
5652
5514
5216
5658

8528

Sge2

SaES
SE26

se27 -

5850
532
5623
5334
G356
5238
5545
G2
SHA4
SP46
SG48
SBSH
55%2
SB54
56856
5258
SH60
SG52

5S4

- S@&d

5570
5571
SB72
SHET3
5374

SBT6
SGT8

SCED
SHER
SHES

SEES
SRS

EH

S692

IF C= "' GOTO 5864
IF C=1 GOTO 5899
IF C<>2 GOTO 5S016
LET CS=Ct

LET €5=C2

GOTO 5676

IF C<>4 GOTO 5924
LET €¢3=C3 .

LET C&6=C4

GOTO 3879

IF C=»8 GOTO Sﬁ32

LET C5= 8

LET Cé=Ca

GOTO 59876

iF C<>146 GOTO 535@

CALL Lis @

CALL §2 2!@@@*(-0995)o°5@

CaLl ‘ﬁs!

FOR i= & TO 19 :
LET 1{‘-’:."-'«’2@@@#:(-.@?5-}-!/[@@)
CALL (20X8,-58
CALL 12:X8,-25"

CALL !2:K@a°a9

NEXT |

FOR I= 8 TO !9 -
LET AB=2100803%(.095-1/188).
"CALL 12,X8,195% e
Calll. 12,X8,1925
CALL i23X901956

REXT 1!

CALL 12,XB,-50 "

CALL {ts B8

GOTO 5884

CALL 1l O

CALL De=-1.C

IF C<> 8 COTO 3@7‘

FOR i= B TO C6~1 —
CALL B.C3¢C6¢1:X3
CALL 8-TS+1.Ya
CALL 8:CS50e3%Ce+1,Y1
calLl. ‘23%@:Y@+Yi-

CALL 11,1

CALL 220Y80YB°YI
CaLL 15, Q h
CALL 9,o-1,

b =t QQTO 56173
{F C=2 GOTO 5843
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5894
.5896
S599
S166
51@2
5184
5166
5t88
Sti6
5112
S114
5116
5188
5120
si22
Siz4
B1Z6

) ¥kt

$1238
51318

R

a1
5§36
5?*8
G140
S$142
Sl 44

S)46°

5148
5158
S152
5154
5156
5158

5166

5162
5t64

NEXT |
GOTO = 50804

'RETURN

IF C<=>32 GOTO 5!35
CALL 11, O
CALL 95-=1.C
IF C<> & GOTO 51@4
FOR I= B TO 49
-Call 8a1669+€7*1@®¢§aﬂ@
CALL B8,1658+CT=168+1,Y0
CALL 12,X8,Y8 I
CCALL Y1.0
caLl 11, 8
caLl 9,-15C L
{iF C=i GOTO 5168
IF C=2 GOTO 5683
NEXT 1 ' ‘
GOTO 5864 .
IF C<>64 GOTO Si66
LET Ri{491=1
caLl 11, 8

. CaALL 95~ 2C .

IF C<> 5 GOTO S134

FOR I= @ TO K8

CALL B8.,1900<1 48

CALL 851858+RI491%160+1,Y0

CALL 12,X0,Y8
CALL 1§11
" CALL 115 O
CAaLL 9s-1sC ..
IF C=t BGOTO S{4@
IF C=2 GOTO 5003
NEXT 1§
GOTO 5884
IF C<>»128 GOTO S84
LET R[4%21= @
GOTO 5132

99.



' 100.

REM The following subroutines deal with the calculation of the IB
line shape. In these subroutines we are forced to use an array
for variable names because at this stage of the programme we have
exceeded the storage allocated by the compiler to variables names
which has a disastrous effect on the legibility of these subroutines.

S2@68 REM B PR T 2 L ey

S281 REM ' IMPURITY ERHCLALIZE
$2¢2 REM LB P LT PR L SR E R TR R 1

5284 LET RL 83=3.14159
52@6 LET R{11=11.33

5288 LET R{21=.8906

5289 LET R(31=.57722

5216 PRINT. "INPUT IMPURITY CONC.*

S211 LET R{A3¥=1

5212 INPUT R{41]

5214 LET RE51=(3/4/RL B1/RT41) 0(1/3)+1E+8
521S LET R{S5I=RISI/RI1]

5216 LET R{61=2.266

5218 RETURW '

$258 REM DETHERRRPREERDERARFERARRFE TR R G R
5282  REH o o CIMPURETY BARD

5254 REN ' HYDROGEN MOLECULE 10N

5286 REM BNEREEEEBERFFREER XL ERE R AR LE RS

5258 QGOsUB 3280

REM The f01]0w1ng dictionary is he]pfu]

R(8) = V;(R)
R(9) = V3(R) .
R(10)= & | 38

where V, (R), VZ(R) and A are defined by Lukes et al.
$268 FOR l= 8 TG 49 T

8262 LET S=R{sIi/R[11]. L

5264 LET Rf81=1/5- EXP (=22S)=(]21/S)

5266 - LET R{91=(1+4S)% EXP (=S)

5268 CLET RU18)=(1+S+823/3)% EXP (~-S8)

5278 . LET R{113=2-2%R{21=x (REB)¢R£9}}/(I*REIB])

5271 LET RE1Y 3=2<.04853+R011 32

5272 LET R{123=~)/5/5+2% EXP {-ZﬁS) (ﬁ#ﬁ/S/S/?#i/a)
- 8273 LET @fii=R{113

S2T4 LET RIi31==3%S% EXP (=5)

Sa7T6 LET RU14TIs-82S/3%(S5+1)% EXP (=85)

€278 . LET RUOISI==(R{12J+R{12II/7(1+RTIBY)

S219 LET R[kS?ﬂR[lSB#(R[8?+R(93)/(?#R[I@])?2&&(!4]
S286 LET RIISI=RI{1SI=R{2] .

5284 LET REtt 1= (9[71m3u9€5+ﬁizll)42398@

5286 LET RII&F=S2S/RIS] 32 EXP { (S/R£S3)93)

5287 LET LIi3I=0aR{1863/ 0153

£R88 LET n;hi REL I+2 266

S298  CALL 7,1658+1,R011]
5292 NEXT { |



5294
5295
5298
5308
5392
5304
5306
537
5388

5389
S318
5312
5314
5316
5318
$326
5322
$324
S326
5326
5336
5332
5334
8336
5338
5340
5342
5344
5346
5348
5353
‘8352
5354

101.

GOSUB 5428
GOSUB S478

RETURN A
REM FRHFERE AR AR E G R RE R REF R R R TR YKL
REM . IMPURITY BAND

REM : HEITLER-LONDON MODEL

REM e e 3 o o 30 o0 o o o 3 o o o e o e o o e o 20 o o ko o o o

GOsSUB 52886
GOSUB S868

REM The following d1ct1onary is helpful
S

R(23) =

R(24) = S’

R(25) = J

R(26) = K

R(27) = J°

R(28)+R(29) = K’

R(30) = 35/3R

R(31) = 3S’/3R

R(32) = 3J/8R

R(33) = 3K/8R

R(34) = 3J°/3R
R(35)+R(36) = B3K’/3R '
R(44) = |3E,/3R|R? a1

where S, S°, J, K, J’ K*> are def1ned by S]ater

DEF FNT(X)=1+4% INT (X/2)-2%X
FOR l- 2 TO 49 :
LET S=RL63I/R(13
LET R{I71= @
LET RCi8ls @
LET RL19)= 0
LET R{281= 8
IF S>2 GOTO 5354
LET R{171I=R(3)+ LOG (2%S)
LET R[181=R(31¢ LOG (4%S)
LET RL191=1/5
LET R{281=1/S
FOR J=1 TO 32
LET R(211=1
FOR K=1 TO J .
LET R{211=R(2134K
NEXT K .
LET R[221=R[211%J |
LET ROITI=R{ITI+ FNT(J)%(2¢5) tJ/RI22]. .
LET RC1BI=RII1E1+ FT(J)#(45S) tJ/RI22Y &
LET RUI9ISREIFI~ FNT(J~1)¢(265) ¢da1) /REZ1I02
LET R{28I=R{283= FNT(J51)#(4%5) 1(J~1) /R[21 I¢4
NEXT J L :
LET R(23)% EXP (- 5)#(1+5+545/3)




5356
5358
5360

5362

5364
5365
5366

5367

5368
5370
5372
5374
5376
5378
5380
5382
5383
5384
5385
5386
5388
5389
5390
5392
5393
5394
5396
5397
5399
. 54806
" 548
Bag2
5484
54066
5468

5429,

S410
5412
5414
5420
5422
5424
5426
5428
5430
5432
5434
5436
5438
5440
5442
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LET R(241= EXP (S)%*(i1=5¢S%S/3).
LET R{2S51]= -l/S@ EXP (~2$S)#(I4I/S)
LET R(261== EXP (=-S)%(1+S)
LET R(271=1/5- EXP (-2%S) (1 /S+11/84.154545%5/6)
LET RI281a3-1/5% EXP (=2%S)#(=25/8+23%S/4+3%5%5¢5t3/3)
LET S8=R(23)%R[23)%(RT31¢ LOG (S))+R{241%R{241%R(18]
LET R(291=6/5/5%(SP=2%R{231»R(243I%R(171])
LET S@zvR{433+2¢R[26]$R[23]-R(23J$R(23]+2*R[25]0R(27]+R(28]
LET R{481=(S8+R[291)/C(1+R(23)I%R{231)=2R(2]
LET R{381=-R[231+ EXP (~-S)#(}+2:%5/3)
LET RI{311)sR{241¢ EXP (S)Y*®(2%S5/3~1)
LET R[321=1/5/5=2% EXP (-2*5)*(141/S+I/S/S/2)
LET RL331==R(26)= EXP (=S)
LET R{341=-1/5/S¢ EXP (-2*5)*(2/5*247/6$S+S¢S/a¢!/S/S)
LET R(351=-23R(28)~ EXP (-2%S)u(23/4¢6%5+8%5) /S .
LET SQSRt23]$R£23J/S+2*R[24J$RE31]*Rt18]¢R£24]$R[24]$R[2$3
LET S9=S@+2%R{23I+R{38I%(RI[3]+ LOG (8))
LET R{361=-R[291/S5+6/5/S%S0D . ‘
LET SB°-2$(R(24J$RC3®]$R[!?]#R[ZSE#R[S?]*R[h?])
LET RI[371=6/5/5%(S0-2xR[23I%xR(241RL$9)) -
‘LET a@E-R[433¢2&R[23]$R(26]°R[233*R[23]¢2*R[25]¢R[27]+RE283
LET S8=3(S9+R(291)*R{231xRI3T1/{1+R(231*R(23)) 2 o
LET R[381=-2#S8
LET SO=2#(R{231#RI331+R(26 I*RL303)-24R(233I4R(30)
LET S§=5@¢2*R{32I+R(341+RI3I5I+R{36T+RI3T]
LET RL{391=S8/(1+R{231%R(231)
LET RI{413J=(R{381+R(391)%R([2]
LET Rf413= AaBS (RC{411))
LET R{421=S%S/R(S5] ¢3¢ EXP (~(S/Rt5))v3)
LET LCI3=6%RC421/RL411/RE441%(1+RI23I%RI232)
GOSUB 5656 .
"CALL T7s1769+1,R(48)
LET. R[é]nRt6]+2e266
NEXT |
GOSUB 5426
GOSUB 5456
RETURN
NEXT
RETURN :
REN :ma::sw:snmmazwxemm-«nsnmwustmmma:wmm-mmmxm
RE® : SCALE THEOR. IMPURITY BAND
REM Dkl kR R R R R R Rk xRk R Rk
PRINT “BASELINE (B
| NPUT L6
LET o= 06
FOR J= @ TO 49
LET LL{JI=L{J3I+L6
IF L{J)<L8 GOTO 35448
LET LosLiJdl]
HEXT J
RETURN



5458
S482
. 5454
5456
5458
5460
5462
$5464
5470
5472

S474

5476
$470
54868
85482
$484a
5452
5562
5654
$659

5669
5662

5889
862
5884
5846
5868
5819
5852
S814
5516
5418

5828 .

8822

REM -
RE®
REM

103.

ABGEEBORIVERUAEERGXFEREG AR R G REHREH
STORE HEITLER LOXNDONM
REREEPEREHEAEFIRFALEEERRERLTIBEFRED

POR J= @ TO 49
CLET Ji=L0J3121960/L0
CALL 751758 +dsut

NEXT J

RETURHN _ .

REM EFEXALHAPEUTERARGT SV EREGGBRGRERGRgE
REM STORE MOLECULAR {ON

REM ‘ L RSN RERER XGRS ERY S GG SRRk R g gl

FOR J= 68 TO 49
LET Ji=L{JIx={9088 /L8
CALlL 79§6ﬂ$@?d?\13

TNEXT J

RETURN

REM e e 240 o o8 06 13 20 2 1o et o o e ot o o o K ot o o e ofe SR X v e s
HEN STORE HEITLER~LONDON AXIS . s
REM sfe e e e ds s e ol oy e sk e ko R ek ok s s e Ak st e el ook
LET R{4B1I=R(481-a(11]

REM The array

Q is where the energies of the molecular ion model were

stored (instruction #5273). We are subtracting it now because we

want to equate (see Appendix B)

r (e (ri)-g,(R*)) = n(EM(RY))

LET.Rca@ls{ﬁtvxft3@ss§ﬁt4ﬁ])$2§ﬂ@@

RETURN

REM 0ot o e s ok ok 2 o e e R i e o s K etk e o sl R R K
RERM CALCULATE NORMALIZING i MTEGRAL

REM oot ke e o e ek SRR R AR R SR R G R R R B Bk dok
DEF - FNH(X) =6sXa3X/R{5T 3% ENP (={X/RES51e3)

DEF FrF QU=
LET XK7& 6
LET KE=26
LET =108 |
gosun 8228

"PRINT 5

LET R{443=53
RETURHN

FRNHOKD (3¢ (1 +XeKeX/3) 12¢ EXP <§2$X)>»



5560
5562
S584
5506

5588

SS510
5512
3514
3516

ssig
5526
522
G&24
3326
5528
5836
5531

5532
5534
5544

- 5546

S548

5550

€552
5554
5356
. 5558

5568
85562
5563
5564
3566
568
G549
5582
53584
5586
LEE8
5560

' 104.

REM RERRERCERERAERR R FAIREIERTEERY
REM DISPLAY FIT IMPURITY BAND .
REM _ seade oo ok e o ool s ok o ot e e oot e o ae slr e R R R e 0l

PRINT *INPUT @ FNR MOLEC.IONs1 HEITLER LONDON"

1 MPUT C7

PRINT : ‘ D

PRINT “SET PARAM. IN SR.® ANOTHER TRY THEN | FOR OUT™
PRINT = - -

CALL 95=15C

REM The SR is read and depending on the number (octal) read the.pro-
gramme will do the following:

- SR= 0 Will read the SR again.

-SR= 1 Wil return to main.

- SR= 2 Will display the experimental and theoretical IB line
- shapes.

- SR= 4 Will shift the IB line shape and display the result.

- SR= 10 Will scale the IB line shape and display the result.

- SR = 20 Will change the baseline of the IB Tine shape.

iF c= 8§ 60TO 5516
iF C=t GOTO 5618
IF C<>2 QUTO 5544

CALL 255168 b+c7ms@@ais¢@+cvwswmése

CALL 9&

CALL 39640 dsCﬁ

cCaALL 26 )

CALL 9so1sC

IF C<> 8 GOTQO 5524

GOTO 5516 .

IF C<»4 GOTO 3558

cosUB 558

GOTO 5524

IF C<>»8 GOTO 5556

GOSUB 56889

GOTO 5524 .

IF C<>16 GOTO 6$524

PRINT ”BASELEN?“

FWPUT Lo h

FOR = B TGO 49
CALL Bolé688¢CT21B3B4+1 50
CALL f02659¢0?*39@¢l9F@*L6

BEXT ¢

GOTO 5524 .

RE®M e i e o 0ol e o ol o o o o o O o R o e
RE® ENSSHIFT [GIPURTY BAND

REWM ol g ok ook ik ol e e ok sk el ko o e ko Nl Bt

PRINT “ENL SHEFT

THPUT. S

LET El=zCazi



5592

5594
5596
5598

- 5599

5600
- 5842
5664
5686
5688
S6i1D
5612
5614
8616
5658

FOR I= 8 TO 49 .
CALL 8:51600+CT*180+1,E0
CALL T7,1680+C7%100+1,EQ+E]

NEXT 1§
RETURHN :

- REM Rk kR koo
REM IHTENSITY FACTOR IMP.BAND
RE®M g a2 LT T Py R
PRINT "INTEN.FACTOR™ '

INPUT C B -

FCR I= @ TO 49
CALL 8B,16508+0Tx168+1,E9
CALL T,i65a+CTxi0B0¢] ,ET%C
NEXT ’ )

. RETURN
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A.2  Examples of Main Programmes

A.2.1 Main #1

Let us suppose that we have two experimental spectra. In the first
one both the EHD and IB peaks are present while in the second spectrum the IB
peak dominates. We can then use the line shape of the IB peak of the second
spectrum to subtract the IB peak from the first. The resulting spectrum will
show the EHD line shape. We will proceed thén as follows:

2 CALL1
4  DIMf(255), L(49), R(49), Q(49), E(5)
6 GOSuB 9100
REM Will load first spectrum
8 GOSUB 9400
REM Will generate its energy axis. The LOAD subroutine defines Al, the
‘starting memory location in buffer for the loaded data, as well as
A2, the number of data points. We assign the values to another
variable name before they are lost by loading the second spectrum.
10 LET C1=Al
12 LET (C2=A2
REM The variable names chosen will permit the use of other subroutines
without problems. Now we can proceed to load a second spectrum.
14 GOSUB 9100
16 GOSUB 9400
"REM Generates its energy axis.
18 LET C3=A1
20 LET C4=A2
REM The variable names chosen will again permit the use of other sub-
routines without problems. We now turn control to the subroutine
that will take the difference.
22 GOSUB. 9500
REM At this point of the main programme we will have the experimental
EHD 1ine shape stored in the buffer starting in location cero and
having C4 points. If we eventually will Tike to fit to this expe-
rimental line shape a theoretically calculated one we will turn
control to the subroutines that will do the calculation of the
theoretical EHD line shape.
24 GOSUB 8400
26 GOSUB 8100
REM The fitting routine which will be called next expects to find the
experimental EHD line shape stored in buffer starting at location Al
and having A2 points so we have to redefine Al and A2 so that the
fitting is done to the approprlate data.
28 LET Al=¢
30 LET A2=C4
32 QOSuB 8650
REM If the fit was successful we would like a plot
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34 €Osus 5000
36 S10P

A.2.2 Main #2

A variation of the previous example may occur if in the second
‘spectrum the EHD peak dominates. We would follow the previous main programme
to instruction 22 inclusive. At that stage of the programme we would have
the experimental IB line shape stofed in the buffer; At this point we will
turn control to the subroutine that will calculate the theoretical IB line
shape

26 GOSUB 5250 ' :
‘ REM If the Heitler-London model is to be calculated use the next instruc-
tion, if not skip it.
28 GOSUB 5300
REM We will now do the fit.
30 GOSUB 5500
REM And finally we would like a plot.
32 GOSUB 5000
34 STOP
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APPENDIX D

THE EHD COMPUTER PROGRAMMES

D.1T Correlation and Impurity Energies

The correlation energy per unit volume is related to the pair

correlation function S(g, w) through]9

3 1 2 o=
_1\d dw  4me” S(Q.w) +
ecorr(nc"nﬂ - ZSIZH)BS Zﬂi{

- 2
e e(3)q
4ne2 '
#1041 - == s(q.0) |} R (D.1)
e(@aq | E |
where following Nara and Moritasg
‘. (1-A)q? + e 1(0) ¥° , (D.2)

1
= A
e(q) q2 + a2 q2 + B2 q2 + Y2

"

with A = 1.175, a = 0.7572 a.u., B = 0.3123 a.u., Y = 2.044 a.u. and €(0)=11.4.

To claculate D.1 Bergersen et a1]8 found it convenient to distort the

w - contour along the imaginary axis w = iz.

Similarly the energy per unit volume associated with the impurity

interaction is approximately given bylg
' 2 amele™]
_ 2nle nds d3q

3 -y 2 7.2 2 =1, = :
)> Je(@)g” [a°-4mee (3) S (8,0)]

(@) s (3,0)

- D.3

€imp (27 (D.3)
In the RPA the total pair correlation function S{q, iz) may be

written as a sum of contributions from the conduction valley electrons,

s¢ and 1ight and heavy holes, Sh.
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D.la. Valence Band Contribution

For further computations it is useful to define the following:

Yo = MM "h T Men/Mhy

m= (m£m€)1/3

=3 gl e 2l g G+ o)

k; =(3'fr2nc/\))]/3 a3 k? = "{3n2nh/(1+Yg/2)}]/3-ao
C::Tf!fgzi . gh . ﬁiﬁigii

L TR 2y,

' 2
where v is the number of conduction band valleys and a, = ﬁz/mee“ the

“atomic Bohr madices so that the electron and hole densities are per cm3.

The hole polarization function is wm“cten]8

- 2

2 F
- e(kp)
1 S > hop N
- 5 ' e
(21r)3 p<yﬁ k?h 12E2 +ﬁ2(2poq +q )/2m£h
A 2
£h 4me
+. +c.c. )— -
: 2p— , — 2 2 : hhy2
1252 +h7(p + q)2/2mhh - 7% /2mpy : e(k; )
1 g ¢% Mp .
- 3 . _h 2,— | —2 22
(@m)= Jpqhh {328 + 8P + @)/2my, - A% 2my
+ — . M +c.c tre?
N 2= T\, Sy A2
1ZEp + R (p + Aq) /thh - ﬁzpz/zmhh e(k'™)

F (D.4)
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where A L2 2
Mpp = A =1l S0 -a) (.5)
pP° + q" + 2pqu
2 2
p-*+q + 2pqu
with u = cos (6.4) (D.7)

Bergersen et a]]g expressed Equation D.4 in momentum and energy hole Fermi

units and have performed the angular integration, they found:

2
o Ame shig,izEl) = o Q" (q.2) - (.8)
hh\2 F
e(kF ) :
2m
where ol = hg (D.9)
enkF
and vy -
. 1
' (a2) = %S pdp}:[e(yﬁ - p) x
0
2
» 'zzyﬁ + (2pq + q2) 22 + (2pq + qZ)?
o il v avarre v A .
S ANy TR A 2" + (2pq - q°)
+ Re h (- 12p2q2 + 3(izy +q2) ) X
2 2 h
16p -th-+ p
izy, + q2 + 2nq
x £n {

iz, + q2 - 2pq

(Continued;:.)
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2 .
1.2 2 2)2) X

+ (12p%9° - 3(iz - Y, PT Pt

]
Re 5 X

X fn ( 5
16p -iz +p

12 2 2

p-+tp +q - 2pq

iz - Y;

2 . 2
X|( - 12p%% + 3(iz +q%) ) 4n (1219 * 209
. iz +q - 2pq

2

2
’ vp° a9 ) x

- (- 12p7q

+3(_1'zyh + p2

X Zn(

. 2 2, 2
fzy, ¥+ p7 - yp t 9+ 2pq 1+ 1
)i Foelp - yp)x

; z . 7.2
izy, + p° - vp” + a° - 2pq ||

: 2 2,2 1
X %-Zn (z2 + (2pg + qz)z) - %%-(yh - 1) + ! 5 Re 5 X
z- + (2pq - q) 16p -iz +p
22 2,2 iz + g%+ 2
X [(- 12p%9° + 3(iz + q) ) &n (R -
: iz +q” - 2pq
2 . 2 2, 2
-(-2p o + 3(izy, + p° - v p” +97) ) x
. 2 2, 2
izy, + p° - v+t a + 2pg
X dn (- 2 . 7.2 ?]
izy, T - v Pt Q7 - 2pg (D.10)
(The typographical errors appearing in the corresponding formulas to

Equations D.4 and D.10 in the paper of Bergersen et a1'8

are here corrected).
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Equatinn‘D.]O is calculated numerically with programme one is
listed below and is independent of the hole density since q and z are in
hole Fermi units and to avoid unnecessary repetitions of this highly time
consuming integration, one should define a priori a grid of q and z values
(in hole Fermi units) for which the integrands of Equations D.1 and D.3
will be calculated. Care must be exercised when choosing the grid: if
the largest values of'q and z are too small then for low hole densities the
integrations given by Equation D.1 and D.2 will be in ernor; for high
hole densities the values of q and z may become too coarse. It was found

that to ensure accuracy in the low hole density region of 1016 cm'3 it

was necessary to extend the grid used by Bergersén et a1}8’ 19

by at
least an order of magnitude. The evaluatipn of Equation D.10 is prohi-
bitive in computer time fdr such a large grid but may be considerably
simplified by performing the angular. integration considering only the do-

minant terms of Equation D.4 nhen q and/or z are 1arge._ The result in this

case is
- - A i N B S DI
Q(q.2) =g { ————— +— — ! (D.11)
| 27+ (q7/v,)" 2"+ q

which is evaluated in programme two listed below.

D.1b. Conduction Band Contribution

18

Bergersen et al "-indicate that to calculate the electronic

polarization function it is useful to define



113.

9 =7 q SR AN
(D.12)
and 52 = 62 + ﬁi

where ﬁh is oriented along the longitudinal axis of a conduction band
valley and a; is the projection of q on the plane perpendicular to that
axis. Clearly, for each of the six valleys in silicon we have a set of

definitions as in Equation D.12, namely

.qf 4" (yz/3 cos? g + Yo “1/3  sen? 9)
ag 5 = 2 (y /3 sin%e sin ¢ Y, “1/3 (cos?s + sens cos ¢))
a§ 6= (v 2/3sen 6 cos’e + Yo 13 (cos?e + sen’e sen’9))

(D.13)

where the principal axis is along the longitudinal one of the first valléj‘

and ¢ is the azimuthal angle.

The polarization function due to the conduction valley i can now

be written as:

Cox ..cC 2 (. 3. )
S$U(g,,izEgZ) = - S‘ dp { g
i°°°F (2x)3 s izEf + he(2q; + q;)/2m

1
+
~izE¢ + h(2p q; + a3)/2m

(D.14)
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Expressing momentum and energy in electron Fermi units, the above intagral

can be easily shown to yield:

hrnl
e € @ 12D = ey 1y ) (0.15)
e(kF) !
» . .2m
with @, = == ~(D.16)
£ﬂkF
and ¢¢ (44, 2) =
2
e -1G -2y )
- e - =4y ~ = LY -
}?qi 4'h qf | 2“4+ (61 + 221.)2
~ ~2 2
2q. - q; 23, + g,
_____ . 1 i i -1 i i
- ia}{tan ( ) + tan (————E-——J} (D.17)

where 2z and ﬁi are now dimensionless quantities measuring energy and mo-
mentum. Bergersen et 51]8? 19 approximate SC by its spherical average
replacing ﬁi by § for all i. This approximation is adequate when caleula-
ting the correlation energy but for ths impurity energy contribution z is
always zero and the logarithmic singularity in SC(Z,O} produces excessive:

. C . . , . ¢
noise which is bothersome when calculating u, therefore the exact S Was

used here.

As pointed out in the previous subsection the slectronic polari-

2ation function (Equation D.15) has to be evaluated for a predetermined grid
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of q and z (in hole Fermi units). Much of the complexity of programme

three arises from this required change of variables.

D.2 Kinetic and Exchange Energies

This energy contribution in Rydbergs per unit volume can be

easily expressed in terms of previously defined quantatives:

-1 2 n n .
‘ 3 m_ e C\2 "¢ hy2 'h
ein (N> M) =5 AT | (k)T == (k)T ] (D.18)
m hh

3 a1 T h
Cexc (nc’ nh) ST op My € kF Ne @ (YC) * kg N, v (Yh)x

173

x (1 + YS/Z) o

] - ~(D.19)

where @(Yc) and w(yc) are given explicitly by Combescot and Noziéres7.

D.3 Computer Programmes

The following computer programmes are revised and corrected

18, 19

versions of those used by Bergersen et al The programmes are

written in Fortran IV and the IBM 370 computer model 168 is used.

As.mentioned abdve, programme one calculates the hole polariza-
tion.funétion per Equation b.]o fér small q and z; programme two calcu-
lates thé large q ahd/or z assymtotic expansion of the hole polarization
function per Ecuation D.11; pregramme three uses the results of thé pre-
vious two and after calculating the electronic polarization function

evaluates all the energy contributions.
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Programme One
MICHIGAN TERMINAL SYSTFM FORTRAN G(41336) R MAI M 01-04~
c
c COMPUTATION OF THE HOLE PGLARIZATICN FUNCTION FOR
c SMALL VALUFS OF Q AND 2
c N
Cc BY BLRGERSEN,JENA AND BERLINSKY
c
0301 DYMENSTON ZA(99)vQA(99)9HST(10)vNST(lO) XST(10)
0002 DIMENSICN SHST(99)
0003 COMMCN C4Z,GH
0004 EXTERNAL SH
0005 REAL ML,MT,MHH ,MLH
c
c TABULATICN OF DATA
c
C COURSE MESH
0006 CATA FST/ 192945927
coc? DATA NST/11,17,21,41/
c SILICGN DATA
0008 ~ DATA MLeMT HHMLHDE/ 2914 019y 2484 o164 1124/
0009 NU=6
0010 PI=3.14156
coll GH=MLH/MHH
0012 T=SQRT{GH]}
013 12=T/2.
0014 i3=T+(1.-T}/2.
0015 FAX=NST(4)
c
(o MESH FOR Z AND Q VARIABLES
c
. 0016 N=1
0017 22=-HST (1)
Go18 Ce=22
0019 DC 10 I=1,4
0020 KN=NST(I)
0321 H=HST({I}
0022 CO 11 J=N,NN
0023 12=27+H
0024 QG=QC+H
0025 ZA(J)=12
Q26 11 CatJ1=QQ
0027 10 N=NN+1
o
C INTECRATE FUNCTION SH CVER P
c .
0028 SHST{11}=0.
6029 DG 12 I= 1,MAX
00 30 2=ZA(1)
0031 WRITE(6,1011)2
032 WITZ(7,104)2
0033 DO 15 J=2,MAX
0024 C=QA L)
0035 Qs0=02Q
C THE INTECGRAT IONS OVSR P ARE DOCNE USING THE
C GAUSS—-LEGENDRE INTFGRATION FCRNMULA BY CALL ING THE
c U.B.C. COMPUTER CENTRL'S FUNCTION FGAUL6(A,B8,F).
0036 HS=FGAULG{0.T2¢SHI4FGAULEIT 2,7 ,5H )+

0027
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VEGAULE(T 1 T34 SHI+FGAULO(T3 e s SH)
HS=HS*QS5(C
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MICHIGAN TERMINAL SYSTEM FORTRAN Gl41336) MAIN 01-04~-
0038 SHST(J)=HS
co39 15 CCNTINUE
- 0340 WRITE(7,103){SHST(J},J=1,MAX)
0G4l 12 CCNTINUE
0042 101 FORMAT(1CX,*2=",F10.4)
0043 102 FORMAT(6E13.6)
0as4 104 FCRMAT(10X,'2=7,F10.4)
G045 sToP
0046 END
<OPTIONS IN SFFECTX ID,5BCOIC, SCURCEZNOLIST,NOCECK +LOAC, NOVAP
=OPTIONS IN EFFECT®  NAME = MAIN ¢+ LINECNT = 60
FSTATISTICS = SCURCE STATEMENRTS = 4&y PROGRAM SIZE = 2410

© BSTATISTICS® NO DIAGNOSTICS GENERATED

. MO ERRCRS IN MAIN
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01-04~

MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) SH .

0001 FUNCTION SHIPP)

0002 REAL *8 P,0,2,GHyR1,R2,R3,R4,PQ12,PQP,PQM,DREAL,
*DSQRT,OLCG

0003 RZAL *8 PCPSQ,PQNSCyZSCyPSQ,QSC,yS1,TPQ

0004 CCMMON CCy22,6 .

0u05 . COMPLEX*16 COLOG,CIZ,C14+C2,C3,C4+C5,C6,5C7,C8,
*C9,€10,C€11,C12,C13,C14,DCMPLX

0006 PI=3.141593

0007 GH=G

0008 P=PpP

Cuc9 Q=QQ

0010 1=22

0011 CI1Z=0CMPLX(0.D0,2)

0012 QSQ=Q*Q

00132 PSQ=pxp

0014 2SC=7*2

0015 TPQ=2.00%P*Q

0016 PQP=QSQ+TPQ

0017 PQM=QSQ-TPQ

0018 PQPSQ=PQPXxPQP

0019 POQVMSC=FCM2PCM .

0020 Rl =(2*GH)*¥2+PQPSQ

0021 R2 =(2*GH)*%2+pQMSQ

c022 R3 =71SQ+PQPSC

0023 R4 =1SC+PQMSQ

0024 PQ12=1,2C1%FSC*QSQ

0025 Cl =-CIZ=»GH+PSQ

0026 C2 =-C1Z1+PSQ

0027 C3 =P012~3.00%(CY2 *GR+OSC)*%2

0028 6 =PQ12-3.D0=(CIZ -{1.00/GH-1.D0)}*%PSQ+Q5Q)*%*2

0029 L5 =PL12-3.C0%(CIZ +QSQ)**2 ' .

0030 C6 =PQL2-3,00%{CIZ *GH+{L.DO~GH)=PSQ+Q5Q)*«2

0031 C7 =CIZ =Ch+PQP .

0032 C8 =ClZ *GH+PQM

0033 - €9 =CI1Z -{1.00/GH=1.DC)*PSQ+PQP

0034 Cl0 =CIZ -{(1.C0/GF=-1.CO)%PSQ+PQM

C0 35 Cl1 =ClZ +pPQP ‘

0036 Cl2 =C12 +PCM .

0037 - C13 =C12 *Gr+(1.D0~CH)*¥PSQ+PQP

0038 Cl4 =CIZ *GH+(1.DO0-GH)*PSC+PQM

0039 IF (P.GE.OSQRTIGH)) GO TO 1

0040 S1= (GH=*DLOG(R1 /R2 }+DLCGIR3 /R4 ))/2.00
?  .-DREAL(GH*(C3 *CDLZGICT /C8 )
? -C4 *CCLCG(CS /C10 ))}/C1l )/ (16.DO%PSQ)
? -CREAL{(CS5 *CDLOG(C11 /Cl2 )
? -C6é6 *COLOGI(CL3/ <Cl4 ))/C2 .)/{16€.00%PSQ)

0041 GO 70 2

0042 1 S1= (DLOG(R3 /R4 )-1.500%Q*(GH-1.D00}/P)/72.00
? -=DRFAL({CS5 *CCLCG(ClY /Cl12 )
? ~-C6& =COLOG(C13 /Cl4 })/C2 )/7(16.D0=PSQ)

0043 2 SH=2.D0%S})7p /Qex3

0J 4% RETURN

C045 END - ’

*OPTIONS IN EFFECT® 10,EBCDIC,SOURCENALIST,NODECK ,LOAD,NOFAP

*OPTIONS IN EFFECT® NAME = SH » LINECNT = 60

®STATISTICS® SOURCE STATEMENTS = 45, PRCGRAM SI2F =

®*STATISTICS*
NO ERRORS IN SH

NO CIAGNOSTICS GENERATEQ

3366

ot
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D.3b. Programme Two
MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN 01-04~

C
C CALCULATFS THE ASSYMPTCTIC VALUE OF THE HOLE
C PILARIZATION FUNCTTION FOR LARGE VALUES. QF
C Q AND/OR Z
c
c B8Y - JUAN ROSTWOROWSKI
c

0001 DIMENS JON 2199),T(99)
C SILICON HOLE MASS RATLO

0202 . G=.4800/.16000

€003 G2=6%G

QU 04 63=1.D0/G¥*(3.00/2.00) .

0005 DATA MAXMAXC/ 79,79/

0008 READ(5,1C0)Y(Z{1),1=1,MAX)

c007 pC 20 I=1,MAX

00C8 22=21{1)*2(1)

0302 IF (ZU1)-44.) 10,10,12

colo0 10 NN=61

oa1l DO 11 J=1,40

0012 11 T(J)=0.

0013 GOTO 13

0014 9 NN=1

0015 13 DO 30 J=NN,MAXQ

0016 QQ=2(¢(JY¥=*2{J) A

0017 30 T(J)=1.33333333300*QQ*(63+1.DO)*(G/(ZZ*QQ*CQ*GZ)

141.00/7(2Z2+C0%QC))

0018 T{1)=0.

6019 WRITEL(7,2C0) 2(1)

0020 20 WRITE(T74+200) (T(J) +J=1+M¥AXQ)

S 00Z1 160 FORMAT{BF10.0)

0022 200 TFCRMATILIOX.tZI=',FT7.2)

0023 3C0o FORMAT(6E13.6)

€024 sSTOP

0025 END

#=CPTIONS IN EFFECT* I0,EBCDIC, SCURCE,NOLIST,NOCECK +LOAD, NONAP

=CPTICNS

*STATISTICS*
xSTATISTICS*
NQ ERRORS IN MAIR

[N .EFFECT® NAME = MAIN v LINECNT = 60

SNURCE STATEMENTS = 25, PROGRAM SIZE = 1762

NO OTAGNOSTICS GENERATED
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D.3c. Programme Three o - o N

MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN 01-05-77 10:
C
c EHD PRLCGRAM FOR DOPELR SEMTCONCUCTORS GE ANC ST
c CN4PUTATION OF CGRRELATIAN ENARGY IN HOLE BAND UNITS
C VERSION 2 ~ BY JUAN ROSTWOROKSKI
c
0001 IMPLICTT REAL®B{A-FEyGyhyK-M,N-2)
0u02 REAL*B FG(QQ).CZ(QQ)yFI”DVH(99),FYNP(99)'F(99).FNH(99)'FZNH(99)
0003 CIMENSION ZA{79),QA(G9),FFSH{9G,991,F22{99])
0004 . EXTE?NAL FEQLFELL,FE,FF2,FE2,F=4
c005 COMMOM GeZsGSyPT 4KFNE, KFND 4y KENE,MHH, MBAR, NU
0006 COMMCM /TWO/DEQ{S9) DR AT AR ARG oJ
0007 CCOMMAON /FCUR/FSHI(99)
0008 COMMON/FTIVE/HSTI20),NST(20) 1 NSVP
0009 : RFAD(S5,112)TITLE
0010 READ(S 9113} %L, ¥T yMHH  MLH,NE, ZVAL, SHO,NU
0u1ll READ (5,100) NAX,NAXQ,NSMP
0012 READ (5,101 {HST LI} yJ=1,NSHP)
0013 READ (5, 100) {NST{J)»J=14NSMP)
- C NST{J) 1S THS NUMBER OF 0O AND Z POINTS SPACED BY HSTUJ)
c IN HCLE UMITS AND ARE NEGFESSARY FIOR CALCULATING THE
C SIMPSON INTRGRATION IMN VARTABLES Q AND Z.
0014 READ (5,108) 1L0R, ITHP,INARA
C 1COR=0 CALCULATHES CORRELATION ENSRGY WITH AVERAGE S
C 11MP=0 CALCULATES IMPURITY SNEZRGY WITH AVERAGE S
C ICNR=1 CALCULATES CQRR?LATION ENERGY WITH EXACT S
c TiMp=1 CALCULATES TMPURTT ENERGY WITH ZXACT S
C IN&R A=0 CALCULATES AI?HOUT CENTRAL CELL CCRRECTION
c INAR A=) CALCUL\TSS WITH CENTRAL CFRLL uLRRECT]ON R
0015 . 1 (ICOR.EQ.1) MP=1 ) : ’
0016 NA=NST(NSHF)
WS READ NEXT THE VALUES OF THE HCLE POLARIZATION FUNCTION
c FOR EACKF PAIR {Q,2).
0017 D7 31 1=1,NA
0018 READ (7,104) FZZI(I1)
0019 2EAD (7,103) {(FSH{J),J=1,N8)
€020 070 32 J=1.NA
0021 32 FFSH(1,J)}=FSH(J]
0022 31 CCNTINUE
0023 FFSH{L1,1}=SHO
0024 0N 11 J=1,NAX
0025 a{J)1=F22¢J)
€026 11 Qa{JI=ZA(J)
C
C TABULATICN OF DATA
c
o027 _ P1=3.141592654C0
co28 A0=.5251770-8
00 29. MBAR= (ML #MTEMT )} #%{1.C0/3.D0)
0030’ MAMY=(2.DC/MT+1.C0/ML)/3.00+{1.C0/VHH+#1.00/MLH}/2.D0
0031 : READ (5,1C02) CN
0032 S0 READ (5,102,5NC=991CH
0023 Cr=CD+CH
00234 WRITS(6,42C0)
00 3% IFLICORLEC.OY GOTO S -
00 36 WOITE(6,111)
0027 5 CONT INUE
c038 [F{TT4P,EQ.0) GOTO 6

0039 WRITE (64316])



MICHIGAN TERMINAL SYSTFM FORTRAN G(41336) MAIN 01-05~77
00 40 6 CANTINUE
0041 IF (INARA.FQ.0) COTO 9
0042 WRITE(6,123)
0042 9  CONTINUE
0044 WOITT(6,114)TITLS, ML 4MT, MHH, NLHch.NU.SHO
0045 WRITE(6, 1151CHeCELCD
0046 WRITE (6,107) MAX,NAXQ,NSMP
0047 WRITE (6,140)
0048 WITTE (64135) (HST(J),J=1,NSMP)
0049 WRITE (6,141)
coso WRITE (&,13&) {NST(J)yJ=1,KSMP)
0051 WRITE (6,130)
00 52 GH=MLH/VMFH
0053 6G=( 1.D0+GH#{3.00/2.0C)]
0054 KENH={3.00¥PI*PI*CH/GG)**(1.00/3.00)*A0
0055 KENE=(3,004PT+PI¥YCE/NUI**(1.£0/3.00)%A0
0055 AE =2.DO%MRAR%NU/DE/PI/KFNE
0057 KEND=(3.D0%PI=PT4CO/NU)**(1.C0/3.00)%A0
0058 AE0=2.C0%MBARENU/DE/P 1 /KFND
0059 AM=2.DO0*NHH/PT /DE/KENH
0060 €C0=2.D0/A0%43*DE#DEXK FNH ¥55MAMY/MHH /(2. CO®P 1) %%3
0061 1€ (ICOR.S0.1) ECO=£C0/2.00/P1
0062 £10=2.00%0S*%2#MAM L 4KENH*CD/ P
00€3. IF (11MP.EQ.1) £10=€10/2.00/P1
0064 GF=MT/ML
0065 WRITE(6,105)KFNH,KFND,KFNE,AF, AEQ, AH, FCO,€ 10
0066 €KO=3.00/5.0C*MAN] 8DT##2
0067 EX0=~1.5D0/P [*DE#MAN]L
C . .
c CALCULATE DIALECTRIC FUNCTION FOR HCLE GRIC
c
c0&8 DEC(1)= CF
0069 IF (INARA.SQ.1) GOTO 7
0070 DO 8 J=2,NAX
co71 8 DFO(J)=DE
- 0072 GOTO 10
0073 7 DO 10 J=2,NAX
00 74 QNARA=QA (J) *KFNH
0075 £=0(J)=ENARA {ONARA)
0076 10 COMTINUE
c
c CORRELATICN ENERGY
c .
0077 F (1)=-2.CO%AF ®(KFENE/KFNH)®22 — FFSH{1,1)%AH
G078 FO{1)=-2.D0%AE 0% (KEND/KFNH) ¥x2
0079 FNH(1)=F (1)
co80 F(1)=F(1)-FO(1)
cosl IF (ICOR.EQL1) GOTO 1
c
C "COORELATION SMERGY WITH AVERAGE S BEGINS
c
0082 WRITF(6,109)F{1)
0083 DC 12 1=1,NAX
0084 I=2A(1)
c
c Q IMTSGRAND FOR FIXEC Z
c

085

121,

A=NAXQ

10
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MICHIGAN TERMINAL SYSTEM FORTRAN G(413356) MAIN 01-05-77 10:
0086 IF {(1.SC.1.ANC.TIMPL.EQ.O) N=NAX
coear DG 15 J=2,N
0088 FSH{JY=FFSH{1,J)
0089 C=QA(J)
00 G0 CQ=Qe%x2
C
C INTEGRATE ELECTRCNIC S
C
c THT ANGULAR .TNTEGRATIONS ARE DOMS USING THE GAUSS~LEGLNDRE
n INTEGRATIGN FIRMULA BY CALLING THZ U.B.C. COMPUTER CENTRE!S
c FUNCTION FGAUXX({B,B,F), WHERL XX CAN 8F AN EVEN NUMBER .LE.16
c ANN DENSTES THE NJNMALR NF PCINTS USED. A ANG B ARE THE
C LIMITS OF INTSGRATION AND F IS AN EXTEPNALLY DECLARED
. c FUNCTION WHICH LVALUATES TS INTSGRAMOD.
oSl S =FGAUOB(0.41.,FE}FATRNE/CED( )
0092 SSO=FGAUGB{0.s1e,FEQIXAEO®CF/DEQLY)
0093 SS=SH+AHAESH (J)%*DE/BEQN
00 94 IF{T .EQ. 1) FIMPMH{J)=SS
0095 IF(T .FQ. 1) FIMP{J)=SSO
0056 F{J)==SS+DLOG{1.00+¢55/Q0)*QQ
0097 FO{J)=-SSO+DLOGI1.L0+5S0/00)%QQ
alY:] FNH{J)=F (J)
0099 F{J) =F(II-FO(J)
0100 - 15 CCNTINUE
c
c INTEGRAL OVER Q VARIABLE
(o .
0101 FZ{1)= SMPSNIF,NAXQ)
01 G2 FINHi{1)= SMPSN (FNH,NAXQ)
- GLe3 " F(1)=0.D0
0L04 FO({1)=0.00
0105 FNH(1)=0.00
Cc1C6 12 CONTINUE
0107 WRITE (64142)
cL08 HRITS(6,135){FZ(J},J=1,NAX)
" 0109 WRITE (£&£,143)
0110 WRITE(6,135) (FZNHIJ)Y,J=1,NAX)
c INTEGRAL OVER 7 VARIABLF
C
o111 ECOR =FCO*SMPSN(FZ ,NAX)
0112 FCORNF=ECO*SMPSN (FZNH, NAX)
c .
c CORRELATION EMERGY WITH AVERAGE § ENDS
C
0113 GOTa 2
0114 CONT INUE
c
c CORRFLATION EMERGY WITH EXACT S BEGINS
o
oL1s FNH{ L) =FNH(1)%2,C0%P]
0116 F{1)=F(1)%2.00%2 1
o117 DD 42 I=1,NAX
0118 2=28(1)
0119 D7 45 J=2,NAXQ
0120 FSHIJ)=FFSH{I,J)
0121 C=CALY)
o122 C0=Q%Q



123.

MICHIGAN TEQMINAL SYSTEM FORTRAN G(4132¢) : MAIN 01-05-77
0123 FNH{ J) =FCAU03(0.,1.,FF2)
0124 45 F{J) =FCAUJBILO.,1.,FE4)
0125 FZ (1)=SNMPSNIF ,NAXQ)
0126 FZHR{T)=SMPSK{FRH,N&XQ)
0127 F{1)=0.00
0128 42  FAH(1)=0.00 !
0129 WRITE (6,142)
01 30 WRITES (6,135 (FZ{JI),4=1,NAXC)
0131 WRITE (6,143) '
0132 WRITE(6,125) (FINHIJ),J=1,NAXQ}
C
C INTEGRAL QVER [
C
. 0133 ECOR=ECO¥SMPSNIFZ NAX)
0134 ECORNH=ECO*SMP SN (F ZNH, NAX)
C
C CORRELATION ENERGY WITH EXACT S ENCS
C
0135 2 CONT INUE
0136 FIMPMH{1)=1.D0/DF
01 37 IF (1IMP.EQ.1) FIMPNH({ 1)=FIMPNH{1}*%2.D0O*PI
0138 FIMP{1)=C.D0
0139 2=0.00
C
C “IMPURTITY ENERGY
C
01 40 0O 20 J=2,NAX
014l FSH{J)=FFSH(1,J4)
0142 C=CA(I)
G143 Cr=Q¥*2
Ol44 “1r (1IMP.E0.1} GOTO 3
c NEXT 3 CARDS IF ELECTRONIC POLARIZATION KAS BEEN AVERAGED
0145 | FIMPMH{J)=FIMPNH(J)/CEC(II/LCQ+FIMPNHII) )
0146 FIMP{JY=FIMP(JI/DEQ(J) /{OQ+FINP{J))
0147 FIMP{J)=FIMPNH(J)I=-FIMP(J)
0148 G0T0 20
0149 3 CONT INUE .
' c NSXT T40O CARDS 1F ELECTRCNIC PCLARIZATION IS EXACT
0150 FIMP. (J)=FGAULD(0.,1.,FE23)/CECLY)
0151 FIMPNH(J)=FGAULO(O.y e FEL)I/CEC(I)
0152 20 CONTINUE
C
C INTEGRATION CVER Q
¢ )
0153 FIMP=-C I0%SMPSHIFIMP ,MAXQ)
0154 FIMPNH=~E[0OvSMPSN{FIMPNH,NAXQ)
c !
o EXCHANEGE ENFRGY
c
0155 . PH=PHT{CF}
0156 ECX=CXO% (CE*KFMNE*PHACHSKENFHPS T{GH) )
157 EEXO=RXOXCN*KFND*PH
0158 FEXNE=REX
a1 59 EEX=ELX-EEXO
C
c KINEYIC TNERGY
o

0160

EKIN =CKOX{KFNES#2HCR/FBAR 4+ KFNH%#2%CH/MHH)



MICHTIGAN TERMINAL SYSTFM FORTRAN Gl41336) MAIN
0161 FKINO=FKC* KFND®#2%CD/MBAR
0L€2 SKINNH=FKIN
- 0163 EKIN=FKIN-EKINQ
01 64 EXKX=UKIN+FEX
01 &5 ETAT=FKIN+FEXEECCR
0166 FTCN =2TCT+cIUP
0167 FRXNFE=SZKINNH+TEXNH
0168 ETOTNH=EXXNKE+=ZCORNH
0169 ETCNNH=ETCTNHEEIMPNH
0L70 EXTINNT=EKTNNH-ZKIN
0171 EEXNI=FFXNH-FEX
G172 ECORNI=ECCRNF~-ECOR
-0173 EIMPNI=CTHPNH-CTMP
C174 ETCTNI=ETCTINH-ETOT
0115 ETCNNT=ETCNNH-FETCN
0176 EKXNI=SKXAH-EKX
C177 WRITE (6,300)
€178 . WRITE(6,1232)
0179 WRITE(6,106) KINL,EFX,ECOR, EIMP
01 80 WRITFE(6,110)ETAT,ETCN L EKX
0181 WRYITE(6,131)
0182 WRITE (&6, 206)EK INNH, EEXNH,FCORNF,EIMPNH
0182 WRITE(6,1Y0)ETCTNH ETCNNH, EKXNH
0184 WRITE(6,137)
0185 WRITE(6,1086 ) KINNTEEXNT,SCORNI,FIMPNT
CL 6 WRTIT=(6,120)ETCTN 4ETCANNT, EXXNI
0187 EKINNF=EK INNH/CH
0188 EKINNI=EKINNI/CH -
N189 SXIN  =OKIN /CH
0190 FEXNFE=FEEXANH/CH
Cicl EFXNI=REXNI/CH
0192 EEX =FEEX /CH
0193 CCORNH=EZCCRNK/CH
0154 ECORNI=FCCRNT/CH
C195 ECOR  =FCCR /CH
0196 ETVPNH=ETMPNH/CH
o197 FIMPNI=ZIMPNI/CH
0198 CIMP  =EIMP /CH
0199 ETOTRKH=ETCTNH/CH
0200 ETOTNI=STCTNI/CH
0201 =TCT =ETCT /CH
0202 ETCNNH=CETCNNH/CH
0203 ETONNI=®TCNNI1/CH
020C4 ETCN  =ETCN /CH
0265 EKXNE=EKXNH/CH
0206 EKXMI="KXNT/CH
0207 EKX  =EKX /CH
0208 WRITE {(6,118)
cz2C9 WRITF(6,122)
¢210 HRITT (&6, 106)KINGEREX ECOR, FIMP
0211 WRITE(6,21015TCT 45TCN KX -
0212 WRITF(6,121)
0213 WRITE{Ly 1CHTERIMNH L EEXNH,FCORNK, FT VPN
0214 WRITS(6,120)ETATNH,ETCNNH, EKXNH
0215 PRITS(64117)
0216 WRITE(6, YOLIEXINNT ZFEXNTZRCIFNT L EIMPNT
0217 THRITZ (6, 110ETOTNIGETCRN Ty FRXNT

0218

G070 S50

124.

01-05-77

10



125.

MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MATN 61-05-77 10:
c219 100 FCRMAT {97110)
0220 101 FCRMAT (5C1%.2)
0221 102 FCRIMAT (C10.2)
0222 103 FOIMAT{ERELIDLG)
0223 104 FORMAT(10X,'2=',F7.2)
0224 105 FORMAT (1X(VKENH=Y ,013.6,2Xe "KFND=4,013.642X,'KFNE=*,013.64/41X,
' 1187=9,D12.6,2X,A5C=%,D12,6,2Xy"'4A4=*,D13.64/4s21X,'ECO=",D123.6+2X,
2'E10=",C12.h/) ’
0225 106 FARMAT{/1X H¢S(KINETIC)=*,D15.5+3X,*E{EXCHANEGE)=",015. 9.3X,
I'C(C“CRﬁLA"UV)-'.DIS §'3Xv'r(7MpUPXTV’ t4wC15.9/)
0226 1C7 FORMAT (I X,'NAX=',13,10X, ' NAXG=1,13,10X,*NSUP=2,13/)
0227 108 FORMAT (212)
. 0228 109 FCRMATIIX.*F(l), FNDP',D12.5/)
6229 110 FGQMAT(IX"?(TOTAL)='.CIS.Q,BX. SETCN(IMP)=Y,
1015.@03X1'C(k1"cx) t,015.6/)
€230 111 FOIMAT (/410X,'YCU HAVE USED FEXACT ELFCTRONIC pOLARYZATTON T0 CAL
1CULATE THS CORRELATICON ENERGY'/)
0231 112 FCRMAT({A4)
cz232 113 FORMAT(T7010.0,12)
0233 114 FORMATU{/AYS,3X,'ML=?,010.3,3X, *MT=",010.3,3X,*¥4H=1,D010.3,3X,
1°4LH=* ,D1G.3,3X,'DF=1,010.3,3X+'NU=1,11,3X,*SHO=",010.3/)
0234 115 FORMAT (10X, ¥CH=?4D11e3,1CX,'C5=",011.3,10X,'CLC=%,011.3/)
0235 116 FORMAT (/.10X,'YCU HAVS USED FXACT ELRCTRONIC POLARIZATION TO CAL
ICLLATE THE IMPURITY ENERGY'/)
0236 117 FORMATU/5X *FOLLOWING ARE THE CCONTRIBUTION TO TOTAL ENERGY, S(KD,O
LY/NHY, /)
0237 118 FCRMAT (/1X,?
XXXy /) .
CZI33 121 FORMATI/SX,*FOLLCWING ARE THE (COMTRIBUTION TO TOTAL EMERCY. EIND+N
THSNHY/NHY, 7} ‘
G239 122 FORMAT(/5X4*FOLLOWING AQF THE CONTRIBUTION 7O DIFFERENCE ENERGIES
Lo {E{MDENH MH)-C(ND,0) ) /NH /)
06240 123 FORMAT(/10X, 'CONTRIBUTINNS TNCLUDING CENTRAL CELL CCORRECTICNS'/)
0241 130 FORMAT (/'IF HNAXENAXQ ARF NNT C(NF OF THZ NST"S AND IF THE NST"S
TARE NOT OND THSN THIS CUTPLT 1S GARBAGR'/)
0242 131 FORIMAT(/5X* FOLLCWING ARF THE CONTRIRUTIOM TO TOTAL EMERGY, E(NOD#N
. IHNH) 57)
0243 122 FORMAT(/S5X,*FOLLCWING ARE THE CONTRIBUTICN 7O DIFFERENCE ENERGIES
1, {S{ND+NHKH)-Z{ND,0)) /)
02 44 135 FORMAT(10{1X.012.5))
0245 136 FCRMAT (10(1X,112}))
0246 137 FORMAT({/S5X,'FOLLCWING ARE THE CONTRIBUTICMN TO TOTAL ENERGY, E(ND,O
1) /) )
0247 140 FCRMAT (1X,'LIST GQF HSTUS'/)
0248 141 FORMAT(/1X,*LTIST OF NST"S'/)
€249 162 FORMAT(/YX,'LIST OF FZnS$¢/)
0250 143 FORMAT(/1X,*LIST OF FINH"S?/)
0251 300 FORMAT(*1')
0252 99 STQOP
0253 END
$OPTIONS IN FRFECT™  IDLEACDIC, SCURCE,NCLIST,NOCECK,LOAC,NOVAP
#OQPTIONS IN EFFECTH  NAMFE = MAIN ¢+ LINECHT = 60

®STATISTICS*
RSTATISTICS®
NC ERRORS IN MAIN

SCURCF STATFUENTS = 253, PRCGRAM SIZE = £5220
N3 CIAGNOSTICS GENERATED



126.

MICHIGAN TERMINAL SYSTEM FORTRAN G{41326) FC 01-05-77 10:
0001 FUNCTION FE (X)
C
C THESE FUNCTIONS #RF RECUIRED FOR AVERAGE S
C .
0002 TMOLICTET RFAL wB{A-F G yH KM, 0=TW,Y,2)
0003 COMMON P, T,GFoPT KFNE,KFND 4y KFNH,“HH,YBAR,NU
00 04 COMMCN /TwWO/DEC(99) 1 DELAR WAF, 220 o J
0005 - KFNC=KFNE
0Q06 ¢CT0 1 .
0007 ENTRY FEO (X)
0008 KFNC=KFNC
. 0009 1 CONTINUS .
0010 G3=0E%*x(1,00/3.00)
GOl Q =DSCRT{(G3=X)**2 + (1.DC-X*X)/G3)¥P
012 Q=R/KFNC*KFNH
c012 €C=0*Q :
Col4 2=T* {KFNH/KFNC ) 2%2¥MBAR/MHH
0015 12=21%7
0016 Q2P=2.00*C+QC
Co17 G2¥=2.NnC*C—-CGQ
018 Q2M2=C2Mk(2M
cOl9 TF{Z2.LT.1.0~-5)GCTO 10
0020 Y=0DATAN(C2M/ ZY+DATAN(Q2P/Z)
0021 GCTO 21
0222 10 Y=PI
0023 IF (Q2M2.6T.1.0-10) GOTO 21
0024 FZ =1.NCF{KFNC/KFNH) %2
0025 FEO=1.DO0%(KFNC/KFNH) %%2
0026 RETIIRN
0027 21 L=(1,.00-(C0~22/CC) /4. D0Y*DLOGI{22+Q2M2)/{22+C2P%Q2P))
0028 hY =1.00-.5C0%{W+21%Y)}/Q
€029 S =S * (KENC/KFRH) %22
030 < =S
0031 FE0=§
0032 RETURN
0022 END

ANPTIONS IN FFFECT®  IG,FRCOIC,SQURCE,NCLIST,NOCECK,LOAD,NONAP
HOOTINNS IN EFFECT® NAME = FE s LINECKT = 60

®STATISTICS®
#STATISTICS*

NO ERRORS IN FE

STHRCE STATEMENTS = 32, PROGRAM SIIE = 1178

8D CIAGNOSTICS GFNSRATED



MICHIGAN TERMINAL SYSTEM - FORTRAN G(41326) ) FEL

0001l

0002
co03

00C4

0005
0006
0007
£008

0009 |

0010
0011
cO12
0013

0014

0015

0016
0017
0o1R
cot9
0020
0021

0022

00232
0024
0025

0027

«OPTIONS IN EFFECT®
*OPTINONS

OO0

[z X2 X3!

OO0

HQTATISTTICS®
«STATISTICS®

NQO EREBQRS I

Fo1

M7 CIAGNNSTICS GENERATED

FUNCTION FELIX)

THSSE FUNCTIONS ARE EQUIREN. FCP EXACT

CALLED TO CALCULATE TOTAL EIMP

COMMON /THREE/X0,JJsJJ1
EXTFRNAL FEOS,FES

JJr=¢

JJ=1

X=X
F51=4.°FGAU14(0.11.5708'FES)
RETURN

ENTRY FEZ2(X)

CALLED TO CALCULATE TOTAL ECOR

Jii=1

Ji=1

XC=X
FEZ=4.*FGAUO&(C.01.5708:FFCS)
RETURN

ENTRY FE3(X]

CALLED TO CALCULATE EIMP DI FFERENCE
JJi=0

JJa=2

X0=X . ’
F53=4.*FGAU14(0.,1.5708.FES)

RETURN

ENTRY FE4(X)

CALLED TO CALCULATE £COR CIFFERENCE

JJi=1

JJ=2

XC=X
FE4=4.*FGAU06(O-s1-5708'FEOS)
RETURN

END

SOURCF STATEMENTS =

127.

01-05-77

ID'FECDIC'SQURCS'NGLXST.NDDECK'LOAD,NOMAP
IN EFFSCT%  KAME = FEL s LINFCNT = 60
27, PROGRAM S12%

= 904

10



128.

MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) - FCS - 01-05-17 10:

0001

0002
cG03
[ole o128
0005
00cCe
0007
0008
€009

0010 -

0011
go12
co1l3
0014
0015
0016
Covy
0018
Co19

0020 -

00 21
0022
6022
0024
0025
0026
0027
0028
€029
€030
0031
€032
0033
0034
0025
€026
0037
0038
0039
00 40
0041
0042
0043
Co44%
0045
€346
0047
G048
€o49
0350
0051
0052
0053
0054

aNaNalel

10

21

22

15

30

-CONTINUE

FUNCTION FES(U)

THESE FUNCTIONS CALCULATFE THE INTEZGRANDS
FOR EXACT S CALCULATIONS

TMPLICTY R7AL 42{A-F,G HyK-M3-T,W4Y,2)
COMVNM Py T, G5, 81, KFNF, KFMT W KFENFyMHH, MB8AR,, NU
COMMEON /TWO/DECIER) s0E ,AE JAFZAED oJ
CCMCN JTHERTE/X e JdyJJL
COMMON /FTUR/ESHI99)
CIMENSION QT(2),5(3),5% S(’)vSFOS(Z)
cC 7C 1
ENTRY FFEOS(U)
Cu=y
y=DCCS{CU)
G3=GS*%(1.D00/3.00)
V2=V 4%2
X2=X*x%2
$X=1.D0-X2
Sv=1.00-v2

 G22=02%%2

pPP=px*k
QT(1)=0DSCRT(G32%X2+SX/C3)*P
QTU2)=DSCRAT(GI2%SIX %S+ (X2+485X*Y2)/G3}*P
QT(31)= DSCQT(C}“»SX*V2+(A7+CK*SV)/Gﬂ)*P
DC 3C J1=1,JJ
6C 15 1=1,3
KFNC=KFND
JF{J).FO.1) KFNC=KFNE
C=Q711})
u =Q/KENC3KFNH
=Q*%2
Z T*(KﬁkH/KFAC)**Z*MEAR/MHF
II=2%*%2
C2P=2.00%Q+QQ

. Q2M=2.D0%C-CQ

Q2M2=Q2N %=

TF{Z.LT.1.D=-5)G3T0 10

Y=DATAN(C2%/Z) +DATAN(Q2P/2)

GEZT0 21

Y=P1

IF (Q2M2.GT.1.D9-10) GOTO 21

S(1)=1.00

GATO 22
W={1.D00-(C0-22/00)/4.0C)%*0LNGII2Z+02M2)/(22+Q2P*Q2P))
S{I)=1.D0-.308% (Wt 1%Y) /Q ’
S{T)=C{I)%(XKFNC/KFNH)®*%2

A=AEC

JYF OGJYLECLY) £=AE

S{1¥=S{I)*A *CR/DEC(J)I/NU

SFFS=2.D0%{S{1)+S{2)+5(3)) i

IF (J1.5C.1) SFES= QFCS¢AF'FSH(J)*0E/D'C(J)
SES(JY1)=SFES/IP2+SFES)

IF (JJ1.EQ.)) SSESHJL)=-SFSS+¢OLCG{L1.LO+SFES/PP)*PP
CONT INUE -
IF (9J-1) 2423

F=8=5ES5{1)




129.

MICHIGAN TERMYINAL SYSTEM FORTRAN G(41336) FES 01-05-77 102

0055 ’ IF (JJ1.ECQ.1) FECS=FES

0056 RETURN

0057 3 FES=SES({13-SES(2)

0058 - 1F (JJ1.EQ.1) FECS=FES

0059 : RETURN

00¢0 END

#0PTICNS IN FEFFSCT® 1D, EBCDIC,SOURCE,ZNOLIST,NOCECK +LOAD,NOFAP
#0OPTYICNS IN SFFECT*  NAME = FES e LINECKRT = 60
*STATISTICS® SQURCE STATEMENTS = 6C, PROGRAM SI2S = 2076

¥STATISTICS*® MD CTAGNCSYICS GENERATED
NQ ERRORS IN FES



130.

MICHIGAN TEGMINAL SYSTSX FORTRAN G(41336) PSSt 01-05-77 10¢

0J01

REAL FUNCTION PSI®*8{GH)

EQUIVALTNT 70O CN EQUATION 26
IF DIVICED BY {(1:GH#*#{3/2)1%%(1/3)

OO0

0002 INPLICIT REALAg(A-J,L-1)
cood G12=DS03T(GH)
Co04 G22=CG12%%2
0085 G2=GH¥*2
0006 SUM=C.DN0
0307 NN 1 K=1,99,2
- 0008 EX=K/2.D0
0009 NUMRT=2 .00*{ 1.D0~-GH**E X}
010 S=NUMAT /K¥¥2 '
0011 1 SUM=SU¥+S
0012 PST=1.00/{1.D00+632)%(=3,D00/16.00%(1.ND0-GH)} *&2*DLCG{{1.D0+G12)/
1(1.00-612114#(G2¢3.D0%52243,00%G12+1.C0)/4.00+3.00/16.00%(1.D0~-G2}
2%SUM}
col3 RETURN
0014 END
#CPTICNS TN EFFFCT* 10, 5BCDIC,SOURCE,NOLIST,N2CECK, LOAD, NOMAP
£ODTIINS IN SFFILT®  NAME = PST s LINECAT = 60

®*STATISTICS* SOURCE STATEMENTS = 14, PROGRAM SIZE = 796
#STATISTICS®* NJ CIAGAOSTICS GENERATECL .
NO ERRDRS IM PS!? -



131.

MICHTGAM TERMINAL SYSTEM FORTRAN G(41336) . PHI 01-05-77

0001

[aXzEnl

RFAL FUNCTION PHIX*S(GE)

EQUIVALENT T0O CN EQUATION 24

€002 THMPLICTIT RSAL®8 (A-1) .

c003 Gé&=6GE*%{1.00/6.D0})

€004 IF {GT.LT.1.D00) GO TC 1

€005 IF (G5.%C.1.00) GOTO 2

0006 PHI=CARSIN{DSCRT(1.00-1.D0/GF) }/DSQRT(GS~1.D0)*G6
00cC7 RETURN

0008 PHI=DARSIN(DSQRT(1.D00-GE} )} /DSQRT(1.D0-GE)*G6H

€009 RETURN

colo PHI=1.00

0011 RETURN

G012 END .

*CPTIONS IM EFFECT®  IN,EBCOIC, SOURCR,NCLIST,NOCECK,LDAD,NONMAP
=0PTICNS IN FFFELT® NAME = py] y LINECNT = 60
ESTATISTICS SBURCE STATEMENTS = 124 PROGRAM STZE = 680

*STATISYICS™
NO ERRORS IN PHIY

N CIAGACSTICS GENERATECL

103!



132.

MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) SMP SN 01-05-77

0001

REAL FUNCTTON SMPSN%G(F,MAX)

00C2 T¥PLICTT REALE (A-HyK4L,C-2)

0003 DIMENSICN F(SS)

0004 COMMON/FTVE/HSTL20)yNST{20),NS¥P

0005 SU4=0.D0

c006 Nv=1

000C7 TMAX=0

0008 DD 24 J=1,NSHP

0009 24 IF (NST(J).SC.MAX) IMAX=J

co10 0O 26 J=1,1MAX

001l NN=NST(J)

0012 MV=NN-2

0013 $M=0.00

0014 DO 28 JJ=NM,MM,2

eo15 28 SM=SMEF{JJ)+4,00%F (JJ+ 1) +F (JJ+2)

0016 SM=SM*HST(J1/2.00

0017 SUM=SUM+SM

0018 26 NVY=NN )
0019 SMPSN=SUM

0020 RETURN

0021 END ‘ '

=GPTIONS TN EFEECT+  I0,EBCOIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
«0PTICNS IN EEESCT®  NAMS = SMPSN  , LINECNT = 60

*STATISTICSx
#STATISTICS*
NGO ERROPS IN SMPSN

SOURCE STATTMENTS = 21, PRCGRAM SIZE = 122

ND CIAGNOSTICS GENZRATED

10



133.

MICHIGAN TERMINAL SYSTFM FORTRAN G(41338) ENARA 01-05-77
0001 . REAL FUNCTION ENARAXB(Q)
c0o02 IMPLICIT RFEALXG(A-H,C=2)
: C
(o CIFLECTRIC FUNTICMN OF NARA
c .
6002 CATA AAN, ALN,ABN,AGN,D%/1.175D0,.757200,.312300,.2C440+1,11.4D0/
0204 ENARAZAON®CEE2 / LALN®E=2 4Qo% 2} ¢+ {1 CO-AANIHCRR2/(ABN®H24+Q¥*2)
1 +1.CC/NERAGNS R/ {AGN* D 4 Q4%2)
0005 ' ENARA=1.CO/FNARA
00056 RETURN
0007 END .
20PTIONNS IN EFFECT=  I0,FRCDIC,SCURCE,NCLIST,NOCECK,LOADNOMAP
$OPTIONS TN EFFECT*®  ANAMF = ENARS v LINFCNT = 60 ,
#STATISTICS* SCURCS STATEMENTS = 7, PROGRAM SIS = 454

®*STATISTICS* NJ CIAGKNOSTICS GENSRATED
NO ERRORS IN ENARA

NGO STATEMENTS. FLAGGEDR IN THE ABOVE COMPILATIONS.

N EME NUMBFR OF FRRORS/WARNINGS SEVERITY

MATN
FEL
EFS
FE
oSI
PHI

€Yo e
A v 23

FHARA
EXECUTICON TFRMINATED

[~N+-NeoNoNoNoNoia)
OO0 OOOO



1.

11.

12.

13.
14.
15.
- 16.
17.
18.
19.

- 20.
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