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Abstract 

This paper describes a data acquisition system developed 

f o r an intermediate energy nuclear scattering experiment. Equipment 

standards of CAMAC and NIM were used together with a 12K minicomputer 

and an industry compatible magnetic tape d r i v e r . 

The higher l e v e l languages of BASIC and FORTRAN were 

equipped with subroutines that allow input/output communication with 

the CAMAC data ac q u i s i t i o n system. The BASIC-CAMAC system proved to 

be most useful to the experimenter only taking second place to the 

FORTRAN-CAMAC system when data handling speed was of paramount 

importance. 
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1, Introduction 

This paper describes the data acquisition system (DAS) 

developed for a 50 MeV Tl*d scattering experiment uti l izing a NOVA 1200 

computer* Section 2 describes the equipment used, and anticipates the 

problems involved in designing a DAS compatible with the hardware. Section 

3 describes the necessary system interfaces, and the software developed for 

the experiment. The data acquisition program was in i t ia l ly developed using 

the BASIC interpreter. This commonly known interactive language allowed the 

experimenters involved to edit and expand the DAS easily. When a final 

configuration was reached for production running, a change to FORTRAN as 

the system language was initiated to speed up the data logging process. 

Generally applicable features of the DAS are described in the main portion 

of the text; detailed aspects specific to this experiment are discussed 

in the appendices. 
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2» Requirements of a Data Acquisition System and the CAMAC Concept 

2.1 Scope of Current Experiment 

The purpose of the present experiment is to measure do/dn 

for elastic scattering of £0 MeV positive pions from deuterium over an 

angular range of 10 deg. to 170 deg. testing the predications of impulse 

approximation calculations. This low energy range has not previously been 

theoretically considered, and good data is scarce. A beam of known intensity 

strikes a liquid deuterium target and scattered particles are detected in a 

stopping plastic scinti l lator. Fig . 1 illustrates the beam line configuration, 

and F ig . 2 the electronic equipment used. The experiment embodies most 

of the nuclear detection techniques used today. The data acquisition 

system is generally applicable to these techniques. 

2.2 General Requirements of a Nuclear Data Acquisition System (DAS) 

2.2.1 Requirements of theacurrent system are typical of most nuclear 

scattering experiments: 

i) beam characteristics such as flux and energy must be monitored. 

The beam current is integrated or each incident particle is counted to obtain 

the estimate of flux. A counter (scaler) is required to record the measurement. 

A sample of the incident beam particles stopped in a scintillator are analysed 

with an analogue to digital converter (ADG). The beam energy distribution 

corresponds to the pulse height distribution obtained from the ADC. 

i i ) Scattered particles of experimental interest must be identified 

by a fast logic coincidence network that defines an event. This task is 

handled by fast nuclear electronics (NIM equipment). The basic speed of the 

electronics is several nano seconds. Figure 1 presents a logic diagram for 

this experiment. The event of interest is defined as 

EVENT = G^C^if^ 



Figure 1 Beam Line Configuration 

The pion beam is produced by the primary proton beam of 

the Berkeley 18U" cyclotron. It is taken off at a backward angle of 

59 deg. and focussed achromatically onto a liquid deuterium target. 

Knowledge of an incident particle's position on the target and which 

hodoscope element i t passed through is sufficient for momentum determination. 
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FIGURE 1 BEAM LINE CONFIGURATION 



F igure 2 Data A c q u i s i t i o n Hardware 

Enough instrumentat ion f o r the system ex i s t s to f i l l 

s eve ra l NIM b i n s j on ly the one powering the i n t e r rup t un i t i s diagrammed. 

The BHD i s shown i n a CAMAC c r a t e . Th is i s not necessary as the un i t 

can func t i on wi th jus t a +6v power supp ly . No back plane connections 

are needed unless more than seven CAMAC crates are used . 
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The NOVA/NIM unit presents an interrupt to the computer when such an event 

has occurred. 

i i i ) the scattered particles must be tagged with their trajectories, 

their energy and momentum. Particle trajectories are tagged by spark 

locations in several chambers in the beam path, as well as an array of finger 

scintillator counters (hodoscope). The energy is obtained from analogue 

to digital conversions of stopped particle scintillator pulse heights. 

Momentum is obtained through computation based on the trajectory or pulse height 

information. 

iv) Data associated with each event must be stored for later 

retrieval and analysis. 

v) Some display capability is required for diagnostic and 

monitoring purposes. A teletype is standard equipment. A CRT display is 

convenient and in this experiment is driven from two digital-to-analogue 

converters that are capable of driving an X-Y plotter. 

Use of small computers to aid data handling has resulted in a 

variety of interfaces designed to allow on-line control of experimental 

equipment, and i t is for this purpose the CAMAC specification has been developed. 

This hardware standard allows experimenters to build a generally applicable DAS, 

requiring most specialized changes for specific experiments to be made in the 

controlling software and not the hardware. Thus, consideration of a 

particular system illustrates a solution to a much wider problem. 

2.2,2 CAMAC 

The CAMAC interface, called a BRANCH HIGHWAY DRIVER (BHD), 

allows the computer to perform a l l the tasks outlined in 2.2*1. Two-way 

communication with experimental equipment is achieved through . i t . Fast NIM 

equipment signals an event. The fast NIM event pulse is separately interfaced 
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to the NOVA as an interrupt (Sec. 3.2.1), Sixteen CAMAC scalers in the 

spark chamber system are read, for each event, along with a pattern recogniaer 

for the hodoscope and an ADC for the stopping counter on the exit arm. Fig . 2 

presents a schematic sketch of this equipment. This is a l l the necessary 

information for trajectory, energy and momentum analysis, and is stored 

immediately on magnetic tape. Since multiply-dimensioned arrays are possible 

with the high level language used in the DAS multiple data binning can be done 

with incoming data that is not possible with a conventional hardwired multi

channel analyser. Display of these is accomplished with two CAMAC DAC's used 

to drive X and Y traces on a storage oscilloscope; data from core is simply 

read out to the units sequentially, so a continuous plot appears on the scope. 

Any two parameters from the data array can be used as coordinates. On-line 

calculations are undertaken for low event rates while the system waits 

between events. For example, spark chamber raw data is converted to an 

absolute geometric position and individual scattering angles are calculated. 

Sophisticated analysis depends only on available time and core. 

2,2,3 Hardware Structure of CAMAC 

Detailed specifications for CAMAC are found in references 1 aril 
3 

2. A general description of CAMAC is available and a journal is devoted to 
U 

its applications. A brief presentation of the CAMAC structural hardware 

is included here for completeness• 

Hardware necessary for a CAMAC system is indicated in F ig . 2j 

up to seven CAMAC crates can be daisy chained to one BHD. Each crate has 2k 

stations for modules and the 2£th, or control station, for a crate controller 

type A (CCA) which interfaces modules in the crate to the BHD. Communication 

between computer and BHD is effected with the standard i /O cable for the 

machine used. 
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To address a module, and cause i t to perform some function, 

one must specify to the BHD, the module's crate number C, station number N, 

sub address A within the module, and some allowed function code F denoting the 

operation that is required of that section of the module. 
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3. System Description 

3«1 The system was built from the idea of incorporating an easy to use, 

flexible programming language with the CAMAC specification. In particular, 

high level languages that are familiar to most scientists were used. Greater 

uti l i t y of the system follows from this standardization since both electronics 

and programming are specified. The system speed is limited by the CAMAC 

cycle time and more importantly the program language speed • E L - J Operating 

system details also limit the DAS speed. For example, computer cycle 

time affects the speed with which the CAMAC system can handle incoming data 

and hence limits count rates. The two distinct periods during an experiment, 

debugging and f u l l scale data acquisition, have different program requirements. 

Initially, ease of program editing is the most important considerationj later, 

speed of event handling replaces i t . Such a change has been met by using 

two different programming languages, BASIC and FORTRAN. 

3.2 System Hardware Interfacing 

Two system interfaces are required; one, to translate a fast 
NIM coincidence signal to a computer interrupt signifying an event, the 
other the standard CAMAC interface. In principle, the standard CAMAC inter
face having an interrupt feature is capable of undertaking the event 

5" 
interrupt task. 

3.2.1 NOVA/NIM Interrupt Unit 

This unit, daisy-chained onto the NOVA I/O cable before the 

BHD is recognized by the computer as a separate peripheral. The "event 

definition" pulse (indicating a ̂ ....Ccj coincidence has occurred) is input 

to i t , and causes this device to request servicing (see Appendix A); the 

service routine initiates transfer of experimental data from CAMAC to the 

NOVA. During the transfer, this unit outputs a NIM pulse, which can be used 

to inhibit functioning of any NIM unit in response to a new event. 
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This unit was designed as economically as possiblej however, 

use of the Look-At-Me (LAM) CAMAC feature provides an alternate way of 

signalling an event. Either the external LAM point on a crate controller 

or LAM point on a coincidence register can be used. This approach is equally 
6 

acceptable, and has been used in more complicated systems. 

3.2.2 Branch Highway Driver 

The Master Branch Highway Driver is designed to interface a 

NOVA computer to a CAMAC system. It can drive up to 7 crates alone. 

However, i t can drive three Slave BHD's which in turn drive seven crates, 

thus bringing twenty-eight CAMAC crates under the control of the Master BHD. 

This is a non-standard CAMAC feature and necessitates a Branch Highway code 

in each command as well as the standard CNA. 

3.2.2.1 Loading the BHD 

In order to initiate a command to the CAMAC system the 

three sixteen-bit buffers labelled A,B,C of the BHD must be loaded from 

core as indicated in Fig . k* A command requires specification of a 

three-bit crate number C (1 to 7)j a five-bit station number N (usually 

numbered 1 to 2k) corresponding to the addressed module's position in the 

crate and a four-bit sub-address A to specify a device within a module 

(e.g. scaler 1 within a quad scaler). A five-bit function code F is also 

necessary to make the addressed unit perform some task, such as read or 

clear. A four-bit branch code must be specified i f the Master/Slave 

configuration is used; however, for this purpose, just a master BHD is used 

so the branch code is always 1110. Fig . k also illustrates the position 

of the twenty-four data bits which can be transferred either way. 

3.2.2.2 A CAMAC Cycle 

With the buffers loaded in the above manner a start pulse 

from the computer wi l l initiate a CAMAC cycle. F ig . 3 presents a 



Fig . 3 Lines Used During A CAMAC Cycle 

i) C,N,A,F lines are activated by BHD and the BTA timing reference 

pulse is generated, 

i i ) the crate controller activates a single N Line and the A and 

F lines. 

i i i ) the addressed module puts its data on the read (R) lines and 

generates a Q response to indicate its successful completion of 

the operation. 

iv) the strobe pulse SI puts the data into the controller which then 

generates the BTB timing reference pulse to indicate proper 

operation. 

v) the BHD terminates BTA and the crate controller generates strobe 

S2 to clear the R lines, 

vi) the BTB pulse is removed, causing the BHD to clear the C,N,A,F 

lines and the cycle is complete. 

Receipt of the Q and BTB pulses is checked under program control 

in each CAMAC cycle since lack of either indicates a program error or a 

hardware failure. 
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Figure k CAMAC Command Bit Configuration 

This illustrates the standard designation of the U8 bits 

involved in a CAMAC cycle and their positions when loaded into the 

command registers. When a CAMAC sequence is built in core, three 

16-bit words can be used for each entry, with the same configuration 

as drawn. (See 3*3.2.2). 
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description of the operation. Data is sent to or from CAMAC and some CAMAC 

function is performed. An error flag is returned indicating the success 

or failure of the CAMAC cycle. 

3.3 Programming 

3.3.1 BASIC 

BASIC was chosen as the programming language to use during 

the system installation and commissioning phase of the experiment. BASIC 

is interactive. Programs can be halted, edited and restarted from a 

teletype at anjr time during execution without otherwise affecting them. 

Since BASIC is an interpretive system storing the teletype code program line-

by-line i t is slow. Assembler language subroutines doing the CAMAC operations 

were added to the BASIC system. This was done using the CALL feature of 

DATAGEN BASIC.-: The CALL command is interpreted as a jump-to-subroutine r 

(JSR) command followed sequentially fay the adresses in core of each of the 

subroutine parameters classified as output (input) to (from) BASIC. She 

assembler routines are headed by a table in core specifying subroutine 

number, core entry point, and parameter l i s t . 

3.3.1.1 CAMAC Subroutines 

CALL 1, (C), (N), (A), (F), D, E executes a CAMAC read 

operation. The user enters decimal numbers for C N A and F to read or read 

and clear a module. Data is returned as variable D. A zero is returned in 

E for a successful CAMAC operation or a CAMAC error code is returned in E i f 

the operation is unsuccessful. CALL 2 (C), (N), (I), (F), (D), E is used 

analagously to write data into a module. Either operation takes about 

1G msec although only 30 usee of that is the actual CAMAC cycle. 

Single CAMAC read or write instructions are used to check the 

• DATAGEN of CANADA, LTD. Hull, Quebec. Copywrite 1970. 
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operation of modules. However, even during commissioning the execution 

times of single CAMAC instructions have proven to be excessive. Sequences 

of CAMAC instructions can be defined by CALL U711> J, I, C, N, A, F, D where 

J is one of 5> allowable sequences and I is one of 10 allowed sequence 

elements. CNAFD bear the usual CAMAC significance. CALL 3> Z(J, 1), E 

allows the execution of the CAMAC sequence J with the resulting data returned 

to row J of array Z. A zero returned for E indicates a successful sequence 

execution while other E values denote CAMAC response errors during the sequence 

execution. The execution speed is much shorter (about 1 msec per CAMAC 

instruction) than single CAMAC instructions since an assembled program is 

used when the sequence is being executed. The time difference between this 

and the CAMAC cycle time is due to data conversion to the BASIC floating 

point format. 

3.3.1.2 CALL k 

BASIC responds to only teletype interrupts. CALL h is used 

to allow program access when evert interrupts occur. CALL it has no 

parameters. It takes program comtrol from BASIC and puts the system into 

a loop awaiting the arrival of an event interrupt from the NOVA/NIM unit. 

When an event interrupt occurs program control is returned to BASIC and 

CAMAC sequence reads are then executed to gather data associated with that 

event. 

One additional feature is associated with CALL U. Data 

acquisition may be stopped at a known point in the program. The CALL k 

loop checks front panel switches expecting to find only Switch Ik up. If 

the user puts i t down, a crate inhibit command is sent to CAMAC suspending 

CAMAC operation until the switch is again returned to an up position. 

3.3.1.3 CALL 9 

A magnetic tape handler was incorporated into a separate 



- 10 -

subroutine, Call 9. It is used primarily to write raw data from the Z array 

mentioned onto tape for later analysis, but is capable of any tape handling 

operation. Free format for recorded data was used so analysis of the 

tapes produced at a large computing center usually requires some specialized 

software to get data from the tapes. Writing onto tape considerably 

increases time to analyze an event. From start up to completion a tape 

write operation requires about 50 msec. Consequently data from 12 events 

are stored in the computer before the data is logged as a single record on 

magnetic tape. This reduces the net writing time to about 5 msec per 

event. Appendix G contains a l i s t of magnetic tape options available 

in Call 9. 

3«3«1«U Physics Subroutines 

In order to speed up event analysis, assembler subroutines 

(CALL 21 and CALL 22) were developed to interpret the hodoscope reading 

and the spark chamber data for each event. The hodoscope reading is a 

12 bit word, one bit for each of the scintillator fingers. CALL 22 is 

a bit-examining routine to see i f just one element, or possibly two 

adjacent elements fired. Any other result is interpreted as an error. 

Either multiple passage of particles through the hodoscope, or a failure of 

the equipment is possible. CALL 21 checks proper operation of a l l 8 

spark planes. Each plane has associated with i t two scalers; after a 

successful f iring, a fiducial count should be held in the second scaler. 

An intermediate count wi l l reside in the first scaler, corresponding to 

the particles trajectory position in the spark plane. If this condition 

is not met, an error message results. F ig . 5 illustrates the spark 

chamber configuration and readout. 

The execution speed achieved by assembler coding these two 

program segments is considerable. CALL 21 requires 130g instructions and 



Figure 5* Spark Chamber Readout 

The pulse trains are from a 20 MHz clock. The fiducial 

pulse separation for each spark chamber is characteristic of the wand. 

The spark chamber system is typically 8$ per cent efficient in prolonged 

operation. 
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is executed in about 100 usees. CALL 22 requires 53Q executes in about 
o 

50 usees. Ten lines of BASIC are required for the BASIC equivalent of 

CALL 22 for an execution time of 100 msec. About 25 BASIC lines are 

required for a CALL 21 BASIC equivalent for an execution time of 250 msec. 

The net speed increase is over three orders of magnitude. 

The most rapid data acquisition program used with the 

BASIC/CAMAC system to date accepts data from CAMAC with sequence reads, 

performs CALL 21 and CALL 22 operations and records the data on magnetic 

tape, requiring about 200 msec per event. This is about the speed limit 

on this form of BASIC/CAMAC data acquisition. 

Appendix C contains the BASIC/CAMAC subroutine operating 

instructions, and Appendix D, a simple BASIC data acquisition program. 

3.3.2 FORTRAN 

3.3.2.1 Several advantages are gained by a system change to 

FORTRAN as the DAS language. Primarily, the increase in speed of event 

handling justifies the change. FORTRAN-CAMAC sequence reads offer a 

time saving of up to an order of magnitude over BASIC-CAMAC sequence reads. 

Since single precision (16 bit) integer format can be specified for a l l 

variables in the main FORTRAN program, no time is used for conversion 

between fixed and floating formats. This has the added advantage that 

magnetic tapes written on with free-formatted binary integers are easy to 

read, so translation software necessary for data analysis is minimal. 

Assembler language subroutines are simple to incorporate, 

since the DATAGEN FORTRAN compiler accepts machine language instructions as 

part of a FORTRAN program. Although FORTRAN is not interactive, this 

feature is hardly missed after a system has reached its final configuration. 

The major drawback associated with FORTRAN is the sophisticated 

hardware necessary for quick compilation and execution. To prepare a 
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program for execution requires the loading of the compiler itself, assembler 

to produce a relocatable binary tape from the compiled output, and the 

library routines to supply the assembled program with the necessary 

mathematical subroutines (trigonometric, logarithmic, etc.) This represents 

about itOK words worth of paper tape, which even with a high speed reader, is 

rather tedious to load. 

A disc is the best fast storage and retrieval system to use 

for FORTRAN programming with a NOVA, but is expensive. Attempts to use the 

tape unit as a f i le storage system by means of DATAGEN's "MAGNETIC TAPE SIMPLE 

MONITOR" (SIMON) system have been disappointing since the tape unit simply 

has neither the speed nor the rel iabil i ty of a disc. Two changes to SIMON 

to make i t more compatible with magnetic tape may allow a complete 

conversion to a FORTRAN system. The first change is a rairainization of 

the necessary writing done by the system, particularly at start-up. The 

fewer opportunities the system has to destroy itself by overwriting, the 

fewer system crashes there wi l l be. The second change involves increasing 

to U192 from 256 the number of words written per block when the system is 

storing a f i l e . This reduces by a factor of 16 the number of times directory 

access is made, thus ensuring less wear on the tape, and less chance of 

overwriting the directory accidently. 

3.3 .2 .2 FORTRAN Subroutines 

Subroutines written for CAMAC and tape unit handling are quite 

similar to their BASIC counterparts. Thus, CALL CYCLE (C,N,A,F,D(l),$n) does 

a single CAMAC operation, returning the low order sixteen bits in D(2) and 

the high order eight bits to D(1) . A hardware error causes return to 

line n in the main program. 

Similarly, a sequence operation is effected with CALL EXEC 

(X(l,l),N,$n). X is a 3 x N integer array. CNA is encoded into X(l , l ) as 
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the I command in the Sequence. F and the eight high order data bits are 

in X(2 , I ) , and the sixteen low order bits are returned in X(3»I)> just as 

in Fig . U's representation of the BHD buffers. Provision for just one long 

sequence of as many CAMAC operations as necessary is made; N is the number 

of commands in the sequence. 

The routine to build a sequence performs the same function 

as BASIC'S CALL U711. The hodoscope and magnetic tape routines are 

unchanged, but spark chambers are handled just with a FORTRAN subroutine. 

A brief data acquisition system program in FORTRAN which wi l l do the same 

analysis as the BASIC program in Appendix D takes no more than £0 msec per 

event, most of the time being required for the tape unit to write the data 

record. The immediately obvious improvement to this is one which was 

incorporated to the BASIC program as well; that is , multiple event logging. 

Data for 20 events is accumulated in a large array, then written onto tape 

so that the time required to record each event averages out to less than 

2 .5 msec. 

An example of a FORTRAN sequence build is found in Appendix E . 
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ll* Conclusion 

The approach adopted towards DAS development has been 

reasonably successful. A BASIC-CAMAC system certainly offers experimenters 

a simple way in which to reach a f inal configuration without much re-

programming necessary. The system fails to be satisfactory, however, when 

events rates rase much above five per sec. A change to FORTRAN is the 

logical next step to preserve the f lexibi l i ty and ease of use offered by a 

high level language and increase the system speed to a point where the spark 

chambers wi l l limit the event rate to about twenty per sec. Since the 

FORTRAN data logging program described in section 3.3*2 occupies only $ msec 

(200 per second), the FORTRAN DAS is not computer limited. Additional 

calculation can be done during the nuclear electronics dead time. 

It has been demonstrated that a CAMAC system with a high 

level controlling language does offer wide applicability once the i n i t i a l 

system has been established. 
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Figure 6 Circuit Logic for the N O V A / N I M Interrupt Unit 

The event input, labelled EVENT, is a negative NIM pulse 

converted to a positive-going TTL pulse. The CPU BUSY output is a 

TTL level which is converted to a NIM level before being used outside 

the unit. The unit has device code U-OQ • 
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APPENDIX A 

Design of the NOVA/NIM Interrupt Unit 

Figure 6 illustrates the logic associated with the interrupt unit. 

It is a simple device, designed to request a CPU interrupt when a NIM event 

pulse is input to i t . 

When the data acquisition program enters the CALL k subroutine 

a Start (STRT) pulse sets the BUST fl ip-flop (ff) and clears the DONE f f . 

An event NIM pulse in then clears BUSY and sets DONE. The leading edge 

of the next Request Enable (RQENB) pulse from the CPU sets the Interrupt 

Request (INT REQ) f f . The response of the interrupt service routine 

within the assembler subroutines (recall BASIC ignores a l l but teletype 

interrupts) to this request is simply to clear the DONE ff , and transfer program 

control back to BASIC. The next RQENB senses that DONE has been cleared, 

and so clears INT REQ. The BUSY f f is s t i l l clear and is not reset until 

the next CALL U is executed; the unit is then ready to accept the next 

event pulse. 

For the length of time that BUSY is clear, that i s , from receipt 

of event pulse to next execution of CALL U, a NIM signal is output from 

this unit to indicate that the computer is busy analysing an event. The 

signal is used to veto possible incoming events. 

A more detailed analysis of interface operation in general wi l l 

be found in reference 7 » 
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APPENDIX B 

Operation of the CALL Statement 

The CALL statement implemented to BASIC has the general format 

CALL r,a,b,c,...,h where r i s the number of the assembler subroutine to 

be executed, and a,b,c,....(maximum of 8) are either input parameters passed 

from the BASIC program to the assembler routine, or output parameters, 

passed from the assembler routine to BASIC. The BASIC interpreter occupies 

the f i r s t UK of core, and at address 10g resides the s t a r t i n g address of 

the assembler subroutines. They are preceded by a three word table f o r 

each, specifying subroutine number, subroutine entry point, and a variable con

t r o l word which c l a s s i f i e s parameters as either input (coded IO2) or output 

(coded l l g ) . (Hence the eight variable r e s t r i c t i o n - 2 b i t s f o r each i n 

a 16 b i t word.) 

Input parameters are i n BASIC'S f l o a t i n g point format, and must be 

encoded as binary integers before being used i n the assembler routines. 

Output parameters are binary integers, which must be encoded as BASIC f l o a t i n g 

point numbers when passed back to BASIC. These processes are accomplished 

with the FIX and FLOAT routines within the BASIC Interpreter and probably 

require of the order of 100 usee each. (Use of FORTRAN'S integer format 

f o r data handling w i l l negate the need f o r such wasteful b i t shuffling.) 

Preceding these tables i s the address of the interrupt servicing 

routine which handles CAMAC, magnetic tape, interface and NOVA/NIM unit 

i n t e r r u p t s . This device service routine c a p a b i l i t y e x i s t s i n addition 

to BASIC'S own teletype servicing routine. An attempt to incorporate both 

together would require reasonably major ed i t i n g to the BASIC interpreter, 

which i s uneconomical when system requirements are i n a state of f l u x . 
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When the statement CALL r , a , b , c , . » # is executed, the following 

sequence "appears" to the assembler package: 

JUMP TO SUBROUTINE (JSR) r 
ADDRESS of a 
ADDRESS of b 
ADDRESS of c 

* • • 

ADDRESS OF LAST PARAMETER 
RETURN TO BASIC HERE . 

When the JSR instruction is executed, its location in core is 

stored in an accumulator, so the method of access to the parameters and 

to the return address is obvious. 
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APPENDIX C 

CALL 9 The Magnetic Tape Subroutine 

Interfaces for NOVA-compatible magnetic tape units such as the 

AMPEX Type TMZ transport are three buffer devices. The A buffer can 

hold one of seven possible tape command codes F: 0 (Read), 1 (Rewind), 

3 (Space Forward), k (Space Reverse), $ (Write), 6 (Write End of Fi le) , 

7 (Erase). Buffer B contains ant address A which is the start of a block 

in core, and buffer C contains a word count, N. 

For a Read or Write command, the user must specify both an N 

and an A as well as F . If the command is Write, the unit wi l l write on 

tape N 16 bit words from core, beginning at location A. If the command 

is Read, the unit wi l l read a record off tape, and deposit N words from 

i t onto core beginning at location A. 

For Space Forward or Reverse commands, the tape wi l l advance 

over or rewind over N records, positioning i tself at the start of a new 

record when complete. 

Subroutine Call 9, N,F,A,E,X is capable of a l l six possible tape 

functions. F is simply the function code, as described. X is a flag 

(either 0 or 1) to indicate whether the tape unit is going to read or 

write BASIC variables (32 bits) or an area of core (16 bit words). In 

the former case, A is interpreted as the beginning address of a BASIC array 

such as Z (0,0), and N is doubled to take into account the double word 

length of the parameters. In the latter case, A is interpreted as an 

absolute address in core. Thus, for example, the statement CALL 9, 

5"0, 1, Z(0,0), E, 1 would write 5*0 BASIC variables (100 16 bit words) 

onto tape, beginning with Z(0,0) and ending with Z(li,£)» 
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E is a hardware error flag returned to BASIC from the subroutine. 

Any non-zero return indicates a fault in a particular record (parity or bad 

tape) or in the system itse l f . 

Any time data acquisition is halted, the user can inspect the 

data for any particular event by reversing over sufficient records and 

reading the desired record back into core. A simple way to organize data on 

tape is to write one record for each event, tagging i t with the run number, 

and separating runs with end of f i le (EOF) marks. 
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CALL 21 The Spark Chamber Subroutine 

After a sequence data read of the sixteen scalers associated 

with the eight spark planes, the counts from each scaler reside in 

absolute locations in core. The statement CALL 21,W3,F,1,L,U,WU wi l l 

test that the count contained in the first scaler (event pulse on Fig.5) 

on the first spark plane (XI) is non-zero, and less than the fiducial 

count F for that wand. The count from the second scaler (second fiducial 

on Fig . 5) must l ie within five of F to be accepted as the fiducial count. 

If i t is less, two event pulses presumed to have occurred. If greater, 

the scaler is assumed to have overrun. Each of these possibilities has 

a code number; the outcome of each test is returned in variable W3. 

A further restriction on the event pulse can be made. 

The user can test that i t lay within lower and upper bounds L and U. 

Variable Wii is returned as 1 i f this test is passed, and 0 i f failed. 

Any number of spark planes can be tested in this way with CALL 21; the 

essential operation of the spark chamber test in Appendix D's program 

should be clear. 
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CALL 22 The Hodoscope Subroutine 

Immediately after an event, the hodoscope pattern recognizer 

has bits set corresponding to the elements of the hodoscope which fired. 

The statement CALL 22,H,I,E causes the data word stored as BASIC variable H 

to be examined for set bits . A valid event is characterized by a single 

bit or two adjacent bits being set. I is a variable returned from the 

routine indicating which bit or bits were high. (For example, 1=20 

indicates the tenth hodoscope element firedj 1=21 indicates both tenth 

and eleventh fired). E, the hodoscope quality flag is returned as 0 or 1 

for these cases, respectively. 

Possible errors are hardware malfunctions, in which case 

1=0, or multiple passage of particles through the channel, resulting in 

several bits being set. In that case I is returned as 1. Both errors 

cause an E return of 2. A practical example of the use of this 

subroutine is found in Appendix D. 



APPENDIX D 

A Brief Data Acquisition Program in BASIC 

As a specific example of a data acquisition program in BASIC, the 

following one is included, with a brief description of its operation: 

1000 CALL h 
1020 LET Z(0,10) = Z(0,10)+l 
10U0 CALL 3,1,Z(1,1),E1 
10la CALL 3,2,Z(2,1),E2 
10U2 CALL 3,3,Z(3,l),EO 
10U3 CALL 3,U,Z(U,1),E3 
1060 CALL 9,50,1,Z(0,9),W1,1 
1100 CALL 22,Z(2,10),H1,WU 
1101 LET H(H1) = H(H1)+1 
1102 IF WU< 2 GOTO 1120 
1103 LET E(8) = E(8)+l 
110U GOTO 1000 
1120 LET ¥ 1 = 0 
1121 FOR I = 0 TO 7 
1123 CALL 21,W3,F(l),I+l,L(l),U(l),Wli 
12.2k IF WJi > 0 GOTO 1128 
1125 LET S(I,¥3) = S(I,W3)+1 
1127 LET ¥ 1 = 1 
1128 NEXT I 
1129 LET F8 = F8+¥l 
1130 IF ¥1 * 1 GOTO 1000 
1LU0 LET S2 - Z(2,8)/25+25 
Ilia IF S2 >0 GOTO l l i i3 
11U2 LET S2 = 0 
131*3 IF S2 < 100 GOTO 11U5 
llhk LET S2 - 100 
11U5 LET Q(0,S2) =• Q(0,S2)+1 
1150 GOTO 1000 

Line 1000 is the CALL k execute, which sets the system in a 
condition to accept an event. 

Control is returned to BASIC when the event interrupt occurs, and 

the next four lines (lOlil to 10U3) are four CAMAC sequence reads of ten 

commands each. These read in a l l necessary data associated with a single 

event, and store i t in 5 x 10 array Z. Line 1060 is the write on tape 

instruction, writing out the useful segment of the Z array. 
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Lines 1100 to 1103 do the hodoscope check with CALL 22 j errors 

are binned in E(8) and analysis is aborted; or, i f the hodoscope functioned 

properly, proceeds to the Spark Chamber test, CALL 21. Lines 1121 to 1128 

check that a l l eight positional sparks were non-zero, f e l l within their 

respective fiducial limits, F( l ) , and within any assigned lower or upper 

limits L(I) and U(I)* Any error causes a halt to further analysis and a 

return to line 1000. Otherwise, the ADC reading from the stopping counter 

on the scattering arm is binned (lines lliiO to llk$)• Line 1150 is the 

normal return to line 1000, to await the next event. 
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APPENDIX E 

An example of a ten element CAMAC sequence build using 

DGC FORTRAN is included to demonstrate the use of some of the FORTRAN 

subroutines. 

INTEGER D( 2) 
INTEGER X(3,10) 
DO 20 1-1,10 
ACCEPT C,N,A,F,D,(1),D(2) 

20 CALL SEQNC (X(1,I),C,N,A,F,D(1)) 

Each time the program encountered the ACCEPT statement, i t 

would pause while the user entered C,N,A,F and data necessary for any write 

commands. Data can be up to 2k bits with the low order 16 bits in D(2) and 

the high order 8 bits in D(l ) . 

The core image of this sequence is the array X(3>10), each 

column of which has the configuration of Fig . U. 

1st element 2nd element . . . 10th element 

(X(1,1))=CNA . (X(1,10))=CNA 
(X(2,1))=F plus Dg . (X(2,10))=F plus 
(X(3,l))=D l 6 . (X(3,10))-D l 6 

The following segment would await the arrival of an event 

pulse ( i .e . an interrupt from device kO) and then execute the entire 

sequence. 

UO CALL WAIT (DEV) 
IF (DEV.EQ.lio) GOTO 50 

U5 TYPE "ERROR" 
PAUSE 

50 CALL EXEC (X(1,1),10,$U5) 
GOTO kO 

After the sequence execution, data from the Ith entry would reside 

in X(2,I) and X(3»l) (high and low order respectively). BTB or Q response 

error would cause transfer to line U5» 

http://DEV.EQ.lio

