
A CAMAC-BASED NUCLEAR DATA

ACQUISITION SYSTEM

by

DAVID ANDREW LE PATOUREL

B . S c , University of British Columbia, 1971

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department .

of

Physics

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September, 1972

In p resen t i ng t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the requirements f o r

an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree tha t

the L i b r a r y sha l l make i t f r e e l y a v a i l a b l e f o r reference and s tudy.

I f u r t h e r agree t h a t permiss ion f o r ex tens ive copying o f t h i s t h e s i s

f o r s c h o l a r l y purposes may be granted by the Head o f my Department or

by h i s r e p r e s e n t a t i v e s . I t i s understood tha t copying o r p u b l i c a t i o n

o f t h i s t h e s i s f o r f i n a n c i a l ga in s h a l l not be al lowed w i thou t my

w r i t t e n pe rmiss ion .

Department of Physics

The U n i v e r s i t y o f B r i t i s h Columbia
Vancouver 8, Canada

Date 25> September, 1972*

i l

Abstract

This paper describes a data acquisition system developed

f o r an intermediate energy nuclear scattering experiment. Equipment

standards of CAMAC and NIM were used together with a 12K minicomputer

and an industry compatible magnetic tape d r i v e r .

The higher l e v e l languages of BASIC and FORTRAN were

equipped with subroutines that allow input/output communication with

the CAMAC data ac q u i s i t i o n system. The BASIC-CAMAC system proved to

be most useful to the experimenter only taking second place to the

FORTRAN-CAMAC system when data handling speed was of paramount

importance.

i i i

Contents

Page

1. INTRODUCTION 1

2. REQUIREMENTS OF A DATA ACQUISITION SYSTEM
AND THE CAMAC CONCEPT 2

2.1 Scope of Current Experiment 2
2.2 General Requirements of a Nuclear Data

Acquisition System • 2

2.2.1 2
2.2.2 CAMAC 3
2.2.3 Hardware Structure of CAMAC h

3 . SYSTEM DESCRIPTION 6

3.1 6
3.2 System Hardware Interfacing 6

3 .2.1 NOVA/NIM Interrupt Unit 6
3.2.2 Branch Highway Driver 7

3 .2 .2 .1 Loading the BHD 7

3 .2 .2 .2 A CAMAC Cycle 7

3*3 Programming 8

3.3.1 BASIC 8

3 .3.1 .1 CAMAC Subroutines 8

3.3.1 .2 CALL h 9
3.3.1.3 CALL 9 9

3.3.1.U Physics Subroutines 10

3.3.2 FORTRAN 11

3.3 .2 .1 11
3.3 .2 .2 FORTRAN Subroutines 12

k. CONCLUSION Ik

REFERENCES 15"

APPENDIX A Design of the NOVA/NIM Interrupt Unit 16

APPENDIX B Operation of the CALL Statement 17
APPENDIX C CALL 9 The Magnetic Tape Subroutine 19
APPENDIX D A Brief Data Acquisition Program i n BASIC 23
APPENDIX E FORTRAN Examples 25

iv

List of Figures

To follow page...

Fig . 1 Beam Line Configuration 2

Fig . 2 Data Acquisition Hardware 2

Fig . 3 Lines Used During A CAMAC Cycle 7

Fig . U CAMAC Command Bit Configuration 7

Fig . 5 Spark Chamber Readout 10

Fig . 6 Circuit Logic for The NOVA/NIM Interrupt Unit 15

V

Acknowledgment

For much of the preliminary work on both software and

hardware for the existing system, I wish to thank the Controls Group

at TRIUMF, University of British Columbia. I am also indebted to

Dr. Quentin Ingram, U . B . C , for his continued interest in further

software developmentj to Professor Garth Jones for the opportunity

to build and run the system on his experiment at the Lawrence Berkeley

Laboratory, and in particular to my advisor, Dr. Richard Johnson, for

continued help and encouragement during the course of my studies.

1, Introduction

This paper describes the data acquisition system (DAS)

developed for a 50 MeV Tl*d scattering experiment uti l izing a NOVA 1200

computer* Section 2 describes the equipment used, and anticipates the

problems involved in designing a DAS compatible with the hardware. Section

3 describes the necessary system interfaces, and the software developed for

the experiment. The data acquisition program was in i t ia l ly developed using

the BASIC interpreter. This commonly known interactive language allowed the

experimenters involved to edit and expand the DAS easily. When a final

configuration was reached for production running, a change to FORTRAN as

the system language was initiated to speed up the data logging process.

Generally applicable features of the DAS are described in the main portion

of the text; detailed aspects specific to this experiment are discussed

in the appendices.

- 2 -

2» Requirements of a Data Acquisition System and the CAMAC Concept

2.1 Scope of Current Experiment

The purpose of the present experiment is to measure do/dn

for elastic scattering of £0 MeV positive pions from deuterium over an

angular range of 10 deg. to 170 deg. testing the predications of impulse

approximation calculations. This low energy range has not previously been

theoretically considered, and good data is scarce. A beam of known intensity

strikes a liquid deuterium target and scattered particles are detected in a

stopping plastic scinti l lator. Fig . 1 illustrates the beam line configuration,

and F ig . 2 the electronic equipment used. The experiment embodies most

of the nuclear detection techniques used today. The data acquisition

system is generally applicable to these techniques.

2.2 General Requirements of a Nuclear Data Acquisition System (DAS)

2.2.1 Requirements of theacurrent system are typical of most nuclear

scattering experiments:

i) beam characteristics such as flux and energy must be monitored.

The beam current is integrated or each incident particle is counted to obtain

the estimate of flux. A counter (scaler) is required to record the measurement.

A sample of the incident beam particles stopped in a scintillator are analysed

with an analogue to digital converter (ADG). The beam energy distribution

corresponds to the pulse height distribution obtained from the ADC.

i i) Scattered particles of experimental interest must be identified

by a fast logic coincidence network that defines an event. This task is

handled by fast nuclear electronics (NIM equipment). The basic speed of the

electronics is several nano seconds. Figure 1 presents a logic diagram for

this experiment. The event of interest is defined as

EVENT = G^C^if^

Figure 1 Beam Line Configuration

The pion beam is produced by the primary proton beam of

the Berkeley 18U" cyclotron. It is taken off at a backward angle of

59 deg. and focussed achromatically onto a liquid deuterium target.

Knowledge of an incident particle's position on the target and which

hodoscope element i t passed through is sufficient for momentum determination.

TT+ p r o d u c t i o n target ,/•

12 e l e m e n t
hodoscope

p r o t o n b e a m

M: bending magnet

Q: quadrupole

C: plastic s c i n t i l l a t o r

S : spark chamber

stopping counter

FIGURE 1 BEAM LINE CONFIGURATION

F igure 2 Data A c q u i s i t i o n Hardware

Enough instrumentat ion f o r the system ex i s t s to f i l l

s eve ra l NIM b i n s j on ly the one powering the i n t e r rup t un i t i s diagrammed.

The BHD i s shown i n a CAMAC c r a t e . Th is i s not necessary as the un i t

can func t i on wi th jus t a +6v power supp ly . No back plane connections

are needed unless more than seven CAMAC crates are used .

C A M A C
m o d u l e s

crate controller
& t e r m i n a t o r

t e l e t y p e

D G C N O V A 1 2 0 0

b r a n c h
highway

d r i v e r

A m p e x T M Z t a p e t r a n s p o r t

NOVA/NIM
interrupt unit

F I G U R E 2 DATA ACQUISITION H A R D W A R E

- 3 -

The NOVA/NIM unit presents an interrupt to the computer when such an event

has occurred.

i i i) the scattered particles must be tagged with their trajectories,

their energy and momentum. Particle trajectories are tagged by spark

locations in several chambers in the beam path, as well as an array of finger

scintillator counters (hodoscope). The energy is obtained from analogue

to digital conversions of stopped particle scintillator pulse heights.

Momentum is obtained through computation based on the trajectory or pulse height

information.

iv) Data associated with each event must be stored for later

retrieval and analysis.

v) Some display capability is required for diagnostic and

monitoring purposes. A teletype is standard equipment. A CRT display is

convenient and in this experiment is driven from two digital-to-analogue

converters that are capable of driving an X-Y plotter.

Use of small computers to aid data handling has resulted in a

variety of interfaces designed to allow on-line control of experimental

equipment, and i t is for this purpose the CAMAC specification has been developed.

This hardware standard allows experimenters to build a generally applicable DAS,

requiring most specialized changes for specific experiments to be made in the

controlling software and not the hardware. Thus, consideration of a

particular system illustrates a solution to a much wider problem.

2.2,2 CAMAC

The CAMAC interface, called a BRANCH HIGHWAY DRIVER (BHD),

allows the computer to perform a l l the tasks outlined in 2.2*1. Two-way

communication with experimental equipment is achieved through . i t . Fast NIM

equipment signals an event. The fast NIM event pulse is separately interfaced

- k -

to the NOVA as an interrupt (Sec. 3.2.1), Sixteen CAMAC scalers in the

spark chamber system are read, for each event, along with a pattern recogniaer

for the hodoscope and an ADC for the stopping counter on the exit arm. Fig . 2

presents a schematic sketch of this equipment. This is a l l the necessary

information for trajectory, energy and momentum analysis, and is stored

immediately on magnetic tape. Since multiply-dimensioned arrays are possible

with the high level language used in the DAS multiple data binning can be done

with incoming data that is not possible with a conventional hardwired multi

channel analyser. Display of these is accomplished with two CAMAC DAC's used

to drive X and Y traces on a storage oscilloscope; data from core is simply

read out to the units sequentially, so a continuous plot appears on the scope.

Any two parameters from the data array can be used as coordinates. On-line

calculations are undertaken for low event rates while the system waits

between events. For example, spark chamber raw data is converted to an

absolute geometric position and individual scattering angles are calculated.

Sophisticated analysis depends only on available time and core.

2,2,3 Hardware Structure of CAMAC

Detailed specifications for CAMAC are found in references 1 aril
3

2. A general description of CAMAC is available and a journal is devoted to
U

its applications. A brief presentation of the CAMAC structural hardware

is included here for completeness•

Hardware necessary for a CAMAC system is indicated in F ig . 2j

up to seven CAMAC crates can be daisy chained to one BHD. Each crate has 2k

stations for modules and the 2£th, or control station, for a crate controller

type A (CCA) which interfaces modules in the crate to the BHD. Communication

between computer and BHD is effected with the standard i /O cable for the

machine used.

- 5" -

To address a module, and cause i t to perform some function,

one must specify to the BHD, the module's crate number C, station number N,

sub address A within the module, and some allowed function code F denoting the

operation that is required of that section of the module.

- 6 -

3. System Description

3«1 The system was built from the idea of incorporating an easy to use,

flexible programming language with the CAMAC specification. In particular,

high level languages that are familiar to most scientists were used. Greater

uti l i t y of the system follows from this standardization since both electronics

and programming are specified. The system speed is limited by the CAMAC

cycle time and more importantly the program language speed • E L - J Operating

system details also limit the DAS speed. For example, computer cycle

time affects the speed with which the CAMAC system can handle incoming data

and hence limits count rates. The two distinct periods during an experiment,

debugging and f u l l scale data acquisition, have different program requirements.

Initially, ease of program editing is the most important considerationj later,

speed of event handling replaces i t . Such a change has been met by using

two different programming languages, BASIC and FORTRAN.

3.2 System Hardware Interfacing

Two system interfaces are required; one, to translate a fast
NIM coincidence signal to a computer interrupt signifying an event, the
other the standard CAMAC interface. In principle, the standard CAMAC inter
face having an interrupt feature is capable of undertaking the event

5"
interrupt task.

3.2.1 NOVA/NIM Interrupt Unit

This unit, daisy-chained onto the NOVA I/O cable before the

BHD is recognized by the computer as a separate peripheral. The "event

definition" pulse (indicating a ̂Ccj coincidence has occurred) is input

to i t , and causes this device to request servicing (see Appendix A); the

service routine initiates transfer of experimental data from CAMAC to the

NOVA. During the transfer, this unit outputs a NIM pulse, which can be used

to inhibit functioning of any NIM unit in response to a new event.

- 7 -

This unit was designed as economically as possiblej however,

use of the Look-At-Me (LAM) CAMAC feature provides an alternate way of

signalling an event. Either the external LAM point on a crate controller

or LAM point on a coincidence register can be used. This approach is equally
6

acceptable, and has been used in more complicated systems.

3.2.2 Branch Highway Driver

The Master Branch Highway Driver is designed to interface a

NOVA computer to a CAMAC system. It can drive up to 7 crates alone.

However, i t can drive three Slave BHD's which in turn drive seven crates,

thus bringing twenty-eight CAMAC crates under the control of the Master BHD.

This is a non-standard CAMAC feature and necessitates a Branch Highway code

in each command as well as the standard CNA.

3.2.2.1 Loading the BHD

In order to initiate a command to the CAMAC system the

three sixteen-bit buffers labelled A,B,C of the BHD must be loaded from

core as indicated in Fig . k* A command requires specification of a

three-bit crate number C (1 to 7)j a five-bit station number N (usually

numbered 1 to 2k) corresponding to the addressed module's position in the

crate and a four-bit sub-address A to specify a device within a module

(e.g. scaler 1 within a quad scaler). A five-bit function code F is also

necessary to make the addressed unit perform some task, such as read or

clear. A four-bit branch code must be specified i f the Master/Slave

configuration is used; however, for this purpose, just a master BHD is used

so the branch code is always 1110. Fig . k also illustrates the position

of the twenty-four data bits which can be transferred either way.

3.2.2.2 A CAMAC Cycle

With the buffers loaded in the above manner a start pulse

from the computer wi l l initiate a CAMAC cycle. F ig . 3 presents a

Fig . 3 Lines Used During A CAMAC Cycle

i) C,N,A,F lines are activated by BHD and the BTA timing reference

pulse is generated,

i i) the crate controller activates a single N Line and the A and

F lines.

i i i) the addressed module puts its data on the read (R) lines and

generates a Q response to indicate its successful completion of

the operation.

iv) the strobe pulse SI puts the data into the controller which then

generates the BTB timing reference pulse to indicate proper

operation.

v) the BHD terminates BTA and the crate controller generates strobe

S2 to clear the R lines,

vi) the BTB pulse is removed, causing the BHD to clear the C,N,A,F

lines and the cycle is complete.

Receipt of the Q and BTB pulses is checked under program control

in each CAMAC cycle since lack of either indicates a program error or a

hardware failure.

B C N A

CD

o

CO
ZT

<
CD

B r a n c h Highway S i g n a l s
7 B C R l i n e s (one p e r c r a t e)

7 B T B l i n e s

5 B N l i n e s (b i n a r y)
4 B A l i n e s (b i n a r y)
5 B F l i n e s (b i n a r y)

B T A

B H D C o m m a n d R e g i s t e r s

Dataway S i g n a l s

24 B R W l i n e s
(c o m m o n r e a d / w r i t e)

(l o w 16 data bits r e t u r n e d
to NOVA b u f f e r C ; h i g h 8 t o B)

B Q (t o N O V A on receipt of allQs

o
—5
ft
to O o
— i o
to"

-<

d e d i c a t e d
A l i n e s
F l i n e s

1 d e d i c a t e d N l i n e r
4
5

S1
S 2

24 R (r e a d only) l i n e s
24 W (w r i t e only) l i n e s

Q f r o m module then to B H D

0)
CL
CL
—I

(0
(fi

ro
Q-

o >
>
o

3 o
CL

to"

F I G U R E 3 L I N E S U S E D DURING A C A M A C C Y C L E

Figure k CAMAC Command Bit Configuration

This illustrates the standard designation of the U8 bits

involved in a CAMAC cycle and their positions when loaded into the

command registers. When a CAMAC sequence is built in core, three

16-bit words can be used for each entry, with the same configuration

as drawn. (See 3*3.2.2).

B U F F E R A

1 ! !

B 8 ^ 4 B 2 B 1
I I I

c c c
^ 4 ^ 2 ^ 1

• i i i

1 i i i

1 1 1

^ 8 ^ 4 ^ 2 ^ 1
i i i

B U F F E R B

| I I I

0 0 0 Ej6 F8

I i I I

B U F F E R C

i 1 1 r

D 1 6 D 1 5 D K D 1 3 D *
I I I I

5

11

F F 7 r1

D 1 0 D 9 D 8
J L

i 1 r

^ 3 ^ 2 D 2 1 D 2 0 D 1 9
i i_ i i

1 1 1 1

D ? D 6 D 5 D 4 D 3

i I I l

D 1 8 D 1 ?

D 2 D 1

F I G U R E 4 C A M A C C O M M A N D BIT CONFIGURATION

description of the operation. Data is sent to or from CAMAC and some CAMAC

function is performed. An error flag is returned indicating the success

or failure of the CAMAC cycle.

3.3 Programming

3.3.1 BASIC

BASIC was chosen as the programming language to use during

the system installation and commissioning phase of the experiment. BASIC

is interactive. Programs can be halted, edited and restarted from a

teletype at anjr time during execution without otherwise affecting them.

Since BASIC is an interpretive system storing the teletype code program line-

by-line i t is slow. Assembler language subroutines doing the CAMAC operations

were added to the BASIC system. This was done using the CALL feature of

DATAGEN BASIC.-: The CALL command is interpreted as a jump-to-subroutine r

(JSR) command followed sequentially fay the adresses in core of each of the

subroutine parameters classified as output (input) to (from) BASIC. She

assembler routines are headed by a table in core specifying subroutine

number, core entry point, and parameter l i s t .

3.3.1.1 CAMAC Subroutines

CALL 1, (C), (N), (A), (F), D, E executes a CAMAC read

operation. The user enters decimal numbers for C N A and F to read or read

and clear a module. Data is returned as variable D. A zero is returned in

E for a successful CAMAC operation or a CAMAC error code is returned in E i f

the operation is unsuccessful. CALL 2 (C), (N), (I), (F), (D), E is used

analagously to write data into a module. Either operation takes about

1G msec although only 30 usee of that is the actual CAMAC cycle.

Single CAMAC read or write instructions are used to check the

• DATAGEN of CANADA, LTD. Hull, Quebec. Copywrite 1970.

- 9 -

operation of modules. However, even during commissioning the execution

times of single CAMAC instructions have proven to be excessive. Sequences

of CAMAC instructions can be defined by CALL U711> J, I, C, N, A, F, D where

J is one of 5> allowable sequences and I is one of 10 allowed sequence

elements. CNAFD bear the usual CAMAC significance. CALL 3> Z(J, 1), E

allows the execution of the CAMAC sequence J with the resulting data returned

to row J of array Z. A zero returned for E indicates a successful sequence

execution while other E values denote CAMAC response errors during the sequence

execution. The execution speed is much shorter (about 1 msec per CAMAC

instruction) than single CAMAC instructions since an assembled program is

used when the sequence is being executed. The time difference between this

and the CAMAC cycle time is due to data conversion to the BASIC floating

point format.

3.3.1.2 CALL k

BASIC responds to only teletype interrupts. CALL h is used

to allow program access when evert interrupts occur. CALL it has no

parameters. It takes program comtrol from BASIC and puts the system into

a loop awaiting the arrival of an event interrupt from the NOVA/NIM unit.

When an event interrupt occurs program control is returned to BASIC and

CAMAC sequence reads are then executed to gather data associated with that

event.

One additional feature is associated with CALL U. Data

acquisition may be stopped at a known point in the program. The CALL k

loop checks front panel switches expecting to find only Switch Ik up. If

the user puts i t down, a crate inhibit command is sent to CAMAC suspending

CAMAC operation until the switch is again returned to an up position.

3.3.1.3 CALL 9

A magnetic tape handler was incorporated into a separate

- 10 -

subroutine, Call 9. It is used primarily to write raw data from the Z array

mentioned onto tape for later analysis, but is capable of any tape handling

operation. Free format for recorded data was used so analysis of the

tapes produced at a large computing center usually requires some specialized

software to get data from the tapes. Writing onto tape considerably

increases time to analyze an event. From start up to completion a tape

write operation requires about 50 msec. Consequently data from 12 events

are stored in the computer before the data is logged as a single record on

magnetic tape. This reduces the net writing time to about 5 msec per

event. Appendix G contains a l i s t of magnetic tape options available

in Call 9.

3«3«1«U Physics Subroutines

In order to speed up event analysis, assembler subroutines

(CALL 21 and CALL 22) were developed to interpret the hodoscope reading

and the spark chamber data for each event. The hodoscope reading is a

12 bit word, one bit for each of the scintillator fingers. CALL 22 is

a bit-examining routine to see i f just one element, or possibly two

adjacent elements fired. Any other result is interpreted as an error.

Either multiple passage of particles through the hodoscope, or a failure of

the equipment is possible. CALL 21 checks proper operation of a l l 8

spark planes. Each plane has associated with i t two scalers; after a

successful f iring, a fiducial count should be held in the second scaler.

An intermediate count wi l l reside in the first scaler, corresponding to

the particles trajectory position in the spark plane. If this condition

is not met, an error message results. F ig . 5 illustrates the spark

chamber configuration and readout.

The execution speed achieved by assembler coding these two

program segments is considerable. CALL 21 requires 130g instructions and

Figure 5* Spark Chamber Readout

The pulse trains are from a 20 MHz clock. The fiducial

pulse separation for each spark chamber is characteristic of the wand.

The spark chamber system is typically 8$ per cent efficient in prolonged

operation.

XI Y1 X2 Y2
X4 Y4

f i r s t f i d u c i a l

spark plane pulses

event p u l s e s e c o n d f i d u c i a l

•start both s c a l e r s

s t o p f i r s t s c a l e r

stop second s c a l e r *

FIGURE 5 S P A R K C H A M B E R READOUT

- 11 -

is executed in about 100 usees. CALL 22 requires 53Q executes in about
o

50 usees. Ten lines of BASIC are required for the BASIC equivalent of

CALL 22 for an execution time of 100 msec. About 25 BASIC lines are

required for a CALL 21 BASIC equivalent for an execution time of 250 msec.

The net speed increase is over three orders of magnitude.

The most rapid data acquisition program used with the

BASIC/CAMAC system to date accepts data from CAMAC with sequence reads,

performs CALL 21 and CALL 22 operations and records the data on magnetic

tape, requiring about 200 msec per event. This is about the speed limit

on this form of BASIC/CAMAC data acquisition.

Appendix C contains the BASIC/CAMAC subroutine operating

instructions, and Appendix D, a simple BASIC data acquisition program.

3.3.2 FORTRAN

3.3.2.1 Several advantages are gained by a system change to

FORTRAN as the DAS language. Primarily, the increase in speed of event

handling justifies the change. FORTRAN-CAMAC sequence reads offer a

time saving of up to an order of magnitude over BASIC-CAMAC sequence reads.

Since single precision (16 bit) integer format can be specified for a l l

variables in the main FORTRAN program, no time is used for conversion

between fixed and floating formats. This has the added advantage that

magnetic tapes written on with free-formatted binary integers are easy to

read, so translation software necessary for data analysis is minimal.

Assembler language subroutines are simple to incorporate,

since the DATAGEN FORTRAN compiler accepts machine language instructions as

part of a FORTRAN program. Although FORTRAN is not interactive, this

feature is hardly missed after a system has reached its final configuration.

The major drawback associated with FORTRAN is the sophisticated

hardware necessary for quick compilation and execution. To prepare a

- 12 -

program for execution requires the loading of the compiler itself, assembler

to produce a relocatable binary tape from the compiled output, and the

library routines to supply the assembled program with the necessary

mathematical subroutines (trigonometric, logarithmic, etc.) This represents

about itOK words worth of paper tape, which even with a high speed reader, is

rather tedious to load.

A disc is the best fast storage and retrieval system to use

for FORTRAN programming with a NOVA, but is expensive. Attempts to use the

tape unit as a f i le storage system by means of DATAGEN's "MAGNETIC TAPE SIMPLE

MONITOR" (SIMON) system have been disappointing since the tape unit simply

has neither the speed nor the rel iabil i ty of a disc. Two changes to SIMON

to make i t more compatible with magnetic tape may allow a complete

conversion to a FORTRAN system. The first change is a rairainization of

the necessary writing done by the system, particularly at start-up. The

fewer opportunities the system has to destroy itself by overwriting, the

fewer system crashes there wi l l be. The second change involves increasing

to U192 from 256 the number of words written per block when the system is

storing a f i l e . This reduces by a factor of 16 the number of times directory

access is made, thus ensuring less wear on the tape, and less chance of

overwriting the directory accidently.

3.3 .2 .2 FORTRAN Subroutines

Subroutines written for CAMAC and tape unit handling are quite

similar to their BASIC counterparts. Thus, CALL CYCLE (C,N,A,F,D(l),$n) does

a single CAMAC operation, returning the low order sixteen bits in D(2) and

the high order eight bits to D(1) . A hardware error causes return to

line n in the main program.

Similarly, a sequence operation is effected with CALL EXEC

(X(l,l),N,$n). X is a 3 x N integer array. CNA is encoded into X(l , l) as

- 13 -
the I command in the Sequence. F and the eight high order data bits are

in X(2 , I) , and the sixteen low order bits are returned in X(3»I)> just as

in Fig . U's representation of the BHD buffers. Provision for just one long

sequence of as many CAMAC operations as necessary is made; N is the number

of commands in the sequence.

The routine to build a sequence performs the same function

as BASIC'S CALL U711. The hodoscope and magnetic tape routines are

unchanged, but spark chambers are handled just with a FORTRAN subroutine.

A brief data acquisition system program in FORTRAN which wi l l do the same

analysis as the BASIC program in Appendix D takes no more than £0 msec per

event, most of the time being required for the tape unit to write the data

record. The immediately obvious improvement to this is one which was

incorporated to the BASIC program as well; that is , multiple event logging.

Data for 20 events is accumulated in a large array, then written onto tape

so that the time required to record each event averages out to less than

2 .5 msec.

An example of a FORTRAN sequence build is found in Appendix E .

- l u

ll* Conclusion

The approach adopted towards DAS development has been

reasonably successful. A BASIC-CAMAC system certainly offers experimenters

a simple way in which to reach a f inal configuration without much re-

programming necessary. The system fails to be satisfactory, however, when

events rates rase much above five per sec. A change to FORTRAN is the

logical next step to preserve the f lexibi l i ty and ease of use offered by a

high level language and increase the system speed to a point where the spark

chambers wi l l limit the event rate to about twenty per sec. Since the

FORTRAN data logging program described in section 3.3*2 occupies only $ msec

(200 per second), the FORTRAN DAS is not computer limited. Additional

calculation can be done during the nuclear electronics dead time.

It has been demonstrated that a CAMAC system with a high

level controlling language does offer wide applicability once the i n i t i a l

system has been established.

715 -

References

1) "CAMAC": A Modular Instrumentation System, Description and Specification",
EURATOM Report EUR UlOOe, Luxembourg, 1969.

2) "CAMAC: Organisation of Multi-Crate Systems. Specification of the
Branch Highway and CAMAC Crate Controller Type A - l " . EURATOM Report
EUR U600e, Luxembourg, 1972.

3) IEEE Transactions on Nuclear Science NS-18. 2, (1971).

k) CAMAC Bulletin, a journal of the ESONE Committee.

5) "TRIUMF/CAMAC Branch Highway Driver", W.K.Lacey and D.P.Gurd, TRIUMF
Report No. TRI-1-71-2, May 1971 (unpublished).

6) Dollard, Marquardt, Gurd, Johnson, "Proceedings of the 6th Annual
Accelerator Conference", July, 1972. (to be published).

7) How to Use the Nova Computers, Data General Corporation, Southboro,
Massachusetts, April 1971.

Figure 6 Circuit Logic for the N O V A / N I M Interrupt Unit

The event input, labelled EVENT, is a negative NIM pulse

converted to a positive-going TTL pulse. The CPU BUSY output is a

TTL level which is converted to a NIM level before being used outside

the unit. The unit has device code U-OQ •

S T R T
O C P U B U S Y

RQENB

D E \ M 0
S E L

C L R

F I G U R E 6 CIRCUIT LOGIC F O R THE N O V A / N I M I N T E R R U P T UNIT

- 16 -

APPENDIX A

Design of the NOVA/NIM Interrupt Unit

Figure 6 illustrates the logic associated with the interrupt unit.

It is a simple device, designed to request a CPU interrupt when a NIM event

pulse is input to i t .

When the data acquisition program enters the CALL k subroutine

a Start (STRT) pulse sets the BUST fl ip-flop (ff) and clears the DONE f f .

An event NIM pulse in then clears BUSY and sets DONE. The leading edge

of the next Request Enable (RQENB) pulse from the CPU sets the Interrupt

Request (INT REQ) f f . The response of the interrupt service routine

within the assembler subroutines (recall BASIC ignores a l l but teletype

interrupts) to this request is simply to clear the DONE ff , and transfer program

control back to BASIC. The next RQENB senses that DONE has been cleared,

and so clears INT REQ. The BUSY f f is s t i l l clear and is not reset until

the next CALL U is executed; the unit is then ready to accept the next

event pulse.

For the length of time that BUSY is clear, that i s , from receipt

of event pulse to next execution of CALL U, a NIM signal is output from

this unit to indicate that the computer is busy analysing an event. The

signal is used to veto possible incoming events.

A more detailed analysis of interface operation in general wi l l

be found in reference 7 »

- . 1 7 -

APPENDIX B

Operation of the CALL Statement

The CALL statement implemented to BASIC has the general format

CALL r,a,b,c,...,h where r i s the number of the assembler subroutine to

be executed, and a,b,c,....(maximum of 8) are either input parameters passed

from the BASIC program to the assembler routine, or output parameters,

passed from the assembler routine to BASIC. The BASIC interpreter occupies

the f i r s t UK of core, and at address 10g resides the s t a r t i n g address of

the assembler subroutines. They are preceded by a three word table f o r

each, specifying subroutine number, subroutine entry point, and a variable con

t r o l word which c l a s s i f i e s parameters as either input (coded IO2) or output

(coded l l g) . (Hence the eight variable r e s t r i c t i o n - 2 b i t s f o r each i n

a 16 b i t word.)

Input parameters are i n BASIC'S f l o a t i n g point format, and must be

encoded as binary integers before being used i n the assembler routines.

Output parameters are binary integers, which must be encoded as BASIC f l o a t i n g

point numbers when passed back to BASIC. These processes are accomplished

with the FIX and FLOAT routines within the BASIC Interpreter and probably

require of the order of 100 usee each. (Use of FORTRAN'S integer format

f o r data handling w i l l negate the need f o r such wasteful b i t shuffling.)

Preceding these tables i s the address of the interrupt servicing

routine which handles CAMAC, magnetic tape, interface and NOVA/NIM unit

i n t e r r u p t s . This device service routine c a p a b i l i t y e x i s t s i n addition

to BASIC'S own teletype servicing routine. An attempt to incorporate both

together would require reasonably major ed i t i n g to the BASIC interpreter,

which i s uneconomical when system requirements are i n a state of f l u x .

- 18 -

When the statement CALL r , a , b , c , . » # is executed, the following

sequence "appears" to the assembler package:

JUMP TO SUBROUTINE (JSR) r
ADDRESS of a
ADDRESS of b
ADDRESS of c

* • •

ADDRESS OF LAST PARAMETER
RETURN TO BASIC HERE .

When the JSR instruction is executed, its location in core is

stored in an accumulator, so the method of access to the parameters and

to the return address is obvious.

- 1 9 -

APPENDIX C

CALL 9 The Magnetic Tape Subroutine

Interfaces for NOVA-compatible magnetic tape units such as the

AMPEX Type TMZ transport are three buffer devices. The A buffer can

hold one of seven possible tape command codes F: 0 (Read), 1 (Rewind),

3 (Space Forward), k (Space Reverse), $ (Write), 6 (Write End of Fi le) ,

7 (Erase). Buffer B contains ant address A which is the start of a block

in core, and buffer C contains a word count, N.

For a Read or Write command, the user must specify both an N

and an A as well as F . If the command is Write, the unit wi l l write on

tape N 16 bit words from core, beginning at location A. If the command

is Read, the unit wi l l read a record off tape, and deposit N words from

i t onto core beginning at location A.

For Space Forward or Reverse commands, the tape wi l l advance

over or rewind over N records, positioning i tself at the start of a new

record when complete.

Subroutine Call 9, N,F,A,E,X is capable of a l l six possible tape

functions. F is simply the function code, as described. X is a flag

(either 0 or 1) to indicate whether the tape unit is going to read or

write BASIC variables (32 bits) or an area of core (16 bit words). In

the former case, A is interpreted as the beginning address of a BASIC array

such as Z (0,0), and N is doubled to take into account the double word

length of the parameters. In the latter case, A is interpreted as an

absolute address in core. Thus, for example, the statement CALL 9,

5"0, 1, Z(0,0), E, 1 would write 5*0 BASIC variables (100 16 bit words)

onto tape, beginning with Z(0,0) and ending with Z(li,£)»

- 20 -

E is a hardware error flag returned to BASIC from the subroutine.

Any non-zero return indicates a fault in a particular record (parity or bad

tape) or in the system itse l f .

Any time data acquisition is halted, the user can inspect the

data for any particular event by reversing over sufficient records and

reading the desired record back into core. A simple way to organize data on

tape is to write one record for each event, tagging i t with the run number,

and separating runs with end of f i le (EOF) marks.

- 21 -

CALL 21 The Spark Chamber Subroutine

After a sequence data read of the sixteen scalers associated

with the eight spark planes, the counts from each scaler reside in

absolute locations in core. The statement CALL 21,W3,F,1,L,U,WU wi l l

test that the count contained in the first scaler (event pulse on Fig.5)

on the first spark plane (XI) is non-zero, and less than the fiducial

count F for that wand. The count from the second scaler (second fiducial

on Fig . 5) must l ie within five of F to be accepted as the fiducial count.

If i t is less, two event pulses presumed to have occurred. If greater,

the scaler is assumed to have overrun. Each of these possibilities has

a code number; the outcome of each test is returned in variable W3.

A further restriction on the event pulse can be made.

The user can test that i t lay within lower and upper bounds L and U.

Variable Wii is returned as 1 i f this test is passed, and 0 i f failed.

Any number of spark planes can be tested in this way with CALL 21; the

essential operation of the spark chamber test in Appendix D's program

should be clear.

- 22 -

CALL 22 The Hodoscope Subroutine

Immediately after an event, the hodoscope pattern recognizer

has bits set corresponding to the elements of the hodoscope which fired.

The statement CALL 22,H,I,E causes the data word stored as BASIC variable H

to be examined for set bits . A valid event is characterized by a single

bit or two adjacent bits being set. I is a variable returned from the

routine indicating which bit or bits were high. (For example, 1=20

indicates the tenth hodoscope element firedj 1=21 indicates both tenth

and eleventh fired). E, the hodoscope quality flag is returned as 0 or 1

for these cases, respectively.

Possible errors are hardware malfunctions, in which case

1=0, or multiple passage of particles through the channel, resulting in

several bits being set. In that case I is returned as 1. Both errors

cause an E return of 2. A practical example of the use of this

subroutine is found in Appendix D.

APPENDIX D

A Brief Data Acquisition Program in BASIC

As a specific example of a data acquisition program in BASIC, the

following one is included, with a brief description of its operation:

1000 CALL h
1020 LET Z(0,10) = Z(0,10)+l
10U0 CALL 3,1,Z(1,1),E1
10la CALL 3,2,Z(2,1),E2
10U2 CALL 3,3,Z(3,l),EO
10U3 CALL 3,U,Z(U,1),E3
1060 CALL 9,50,1,Z(0,9),W1,1
1100 CALL 22,Z(2,10),H1,WU
1101 LET H(H1) = H(H1)+1
1102 IF WU< 2 GOTO 1120
1103 LET E(8) = E(8)+l
110U GOTO 1000
1120 LET ¥ 1 = 0
1121 FOR I = 0 TO 7
1123 CALL 21,W3,F(l),I+l,L(l),U(l),Wli
12.2k IF WJi > 0 GOTO 1128
1125 LET S(I,¥3) = S(I,W3)+1
1127 LET ¥ 1 = 1
1128 NEXT I
1129 LET F8 = F8+¥l
1130 IF ¥1 * 1 GOTO 1000
1LU0 LET S2 - Z(2,8)/25+25
Ilia IF S2 >0 GOTO l l i i3
11U2 LET S2 = 0
131*3 IF S2 < 100 GOTO 11U5
llhk LET S2 - 100
11U5 LET Q(0,S2) =• Q(0,S2)+1
1150 GOTO 1000

Line 1000 is the CALL k execute, which sets the system in a
condition to accept an event.

Control is returned to BASIC when the event interrupt occurs, and

the next four lines (lOlil to 10U3) are four CAMAC sequence reads of ten

commands each. These read in a l l necessary data associated with a single

event, and store i t in 5 x 10 array Z. Line 1060 is the write on tape

instruction, writing out the useful segment of the Z array.

- afc-

Lines 1100 to 1103 do the hodoscope check with CALL 22 j errors

are binned in E(8) and analysis is aborted; or, i f the hodoscope functioned

properly, proceeds to the Spark Chamber test, CALL 21. Lines 1121 to 1128

check that a l l eight positional sparks were non-zero, f e l l within their

respective fiducial limits, F(l) , and within any assigned lower or upper

limits L(I) and U(I)* Any error causes a halt to further analysis and a

return to line 1000. Otherwise, the ADC reading from the stopping counter

on the scattering arm is binned (lines lliiO to llk$)• Line 1150 is the

normal return to line 1000, to await the next event.

- 25 -

APPENDIX E

An example of a ten element CAMAC sequence build using

DGC FORTRAN is included to demonstrate the use of some of the FORTRAN

subroutines.

INTEGER D(2)
INTEGER X(3,10)
DO 20 1-1,10
ACCEPT C,N,A,F,D,(1),D(2)

20 CALL SEQNC (X(1,I),C,N,A,F,D(1))

Each time the program encountered the ACCEPT statement, i t

would pause while the user entered C,N,A,F and data necessary for any write

commands. Data can be up to 2k bits with the low order 16 bits in D(2) and

the high order 8 bits in D(l) .

The core image of this sequence is the array X(3>10), each

column of which has the configuration of Fig . U.

1st element 2nd element . . . 10th element

(X(1,1))=CNA . (X(1,10))=CNA
(X(2,1))=F plus Dg . (X(2,10))=F plus
(X(3,l))=D l 6 . (X(3,10))-D l 6

The following segment would await the arrival of an event

pulse (i .e . an interrupt from device kO) and then execute the entire

sequence.

UO CALL WAIT (DEV)
IF (DEV.EQ.lio) GOTO 50

U5 TYPE "ERROR"
PAUSE

50 CALL EXEC (X(1,1),10,$U5)
GOTO kO

After the sequence execution, data from the Ith entry would reside

in X(2,I) and X(3»l) (high and low order respectively). BTB or Q response

error would cause transfer to line U5»

http://DEV.EQ.lio

