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ABSTRACT 

A mathematical model i s developed which extends the theory of r i p 

currents developed by Bowen (1969b) for a straight beach to curved beaches 

where r a d i i of curvature are large relative to the width of the surf zone. 

Nine forcing terms are found to cause r i p current systems. The terms are 

functions of the longshore variation i n wave height and angle of incidence 

of the incoming waves at the breakers. The model i s applied to the case 

of a circular beach with conical nearshore bottom topography. A large 

r i p current component-- i s found to exist which i s inversely proportional 

to the radius of curvature of the beach. Another significant r i p current 

component i s found to be proportional to the variation i n the angle of 

incidence of the waves at the breakers. This component would cause r i p 

currents on a straight beach where some irregular offshore topography 

caused some variation i n the incident angle of the incoming waves. 

Another component r i p current was found which was essentially the same 

as the one predicted by Bowen (1969b). 
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CHAPTER 1 

INTRODUCTION 

On many long sandy ocean beaches signs are posted to warn swimmers 

of the danger of being swept out by near shore currents to water depths 

over their heads. These currents flowing away from the beach are commonly 

known as r i p currents. They are associated with variations of the momentum 

flux of the incoming surface waves and are found at specific locations 

along a beach at any one time (see Shepard, Emery and Lafond, 19̂ 1 for 

an introduction to the subject of r i p currents). In this thesis the term 

" r i p current system" i s used to represent the complete flow pattern of 

near shore currents, including both seaward flowing currents and longshore 

currents. 

This thesis discusses theoretically the effects of bottom topography 

on r i p current systems along a beach and presents a theoretical solution 

for a circular bay with a conical bottom. The purpose for studying this 

subject was to gain some physical insight and understanding of the various 

effects of bottom topography on r i p current systems. 

In 19^1 Shepard, Emery and Lafond wrote a mainly descriptive paper 

on r i p currents, their flow patterns and geological effects on the beach. 

Various papers have been presented since then attempting physical explanations 

for the causes of r i p currents. But i t was Bowen's paper (1969b) which for 

the f i r s t time presented a satisfactory mathematical model of the r i p 

current process on a straight beach. His model was based on the theory of 

the radiation stress (Longuet-Higgins and Stewart, 1964) of waves proceeding 

into shallow water. In this thesis we shall expand upon Bowen's model to 

include bottom topographical effects and beach curvature. 
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This thesis is in two parts. Part I deals with developing the 

theoretical model for a general topography and Part II uses this model to 

solve for rip currents in the particular case of a circular bay with a 

conical bottom topography. 

We chose to test our model on a circular bay because i t seemed the 

next level of complication above a straight beach as modeled by Bowen 

(1969b). It also provides insight into the effects of beach curvature on 

rip currents. 

In section (2c) we derive formulae for the location of the shoreline 

and the breaker line (the line describing the locus of points at which the 

waves break), while this is not a very sophisticated development, neverthe

less I could not find similar calculations in any of the literature which 

I have read. 
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CHAPTER 2 

THE MODEL 

2a The Coastline 

In Figure 1 i s shown a sketch of a sample beach and a definition of 

the co-ordinate systems. It i s assumed that the beach i s smooth. By this 

i t i s meant that the radius of curvature of the shoreline i s much larger 

and that the bottom slope i s small. 

The breaker line i s the locus of points at which the incoming waves 

f i r s t break on the beach. The shoreline i s the locus of points of the 

time averaged (over several wave periods) location of the land-sea 

boundary. 

The origin of the co-ordinate system i s determined by the average 

location of the centers of curvature of theobeach within a given region. 

2b Wave Height and Refraction 

When uniform deep water waves proceed toward a non-linear shore, 

we expect the waves to be refracted by the bottom topography and thereby 

to have variable wave heights as functions of their longshore location. 

The subject of refraction i s discussed i n the US Hydrographic Office 

Publication Number 23k. Analytical and graphical means are available for 

estimating, with reasonable accuracy, the refraction patterns of waves on 

beaches of any shape. However, i n this thesis i t i s sufficient to make an 

educated guess at the refraction pattern of a given beach based on the 

discussions i n US Hydrographic Office Publication Number 23k. 

than (at least by a factor of five) the width of the surf zone (r
t
-ri) 

The radial distances ^ and w i l l in general be functions of Q 



Figure 1 

Plan View of Beach 
l 

wave crest 

Figure 2 

Angle of Refraction 



L We are interested i n determining the wave height at the breaker line 

as a function of position on the breaker l i n e . We l e t : 

/Jt?-- D( 1+J»#.(*)) (2.1) 

where L) i s the average height along the breaker line, i s the 

amplitude of the varying component of Hi * and i s the 9 

dependent function of unit amplitude describing the variable part of /^^> . 

In Part II we w i l l consider a circular bay with deep water waves 

advancing i n the positive y co-ordinate direction and we take to represent 

a reasonable refraction pattern the relation: /// — < COS Z@ 

and so: J _ ^ , _ \ 

HC= D( COsle) (2.2) 

The functions we choose to represent H,[&) and et*) 
as 

discussed i n the preceding and following paragraphs serve merely as examples 

of possible incoming waves. If one wished to estimate the rip currents on 

an actual beach one would f i r s t have to measure or otherwise determine 

the //I (&) and function applicable to that particular beach and 

wave approach. 

We are also interested^in the angle of incidence of the wave with 

the breaker line . To deal with this analytically we define a co-ordinate 

system as shown in Figure 2. The X axis i s i n the direction,of the phase 

velocity of the refracted wave at the breaker l i n e . The angle of incidence 

$ i s the angle between the X axis and the radius vector . The 

Y axis i s p a r a l l e l to the wave crests. We l e t : 

where i s the amplitude and G (&) i s the variable function 6 f 

order unity expressing the 0 dependence of fi . I n our circular 



beach problem we w i l l l e t : 

On a large smooth beach we expect the Incoming waves to have had 

sufficient time to adjust to the bottom topography such that 4>* w i n 

be at most 15° • Thus we make the approximation: 
Si* (p = 4> 

cos <p - / 
2c Surf Zone Geometry 

In this section we discuss the effects of wave height H on the 

shoreline. To understand the following discussion, i t i s necessary to 

understand the theory of set-down and set-up as described by Longuet-

Higgins and -Stewart (1964). 

Figure 3 shows a cross section normal to a beach. In general the 

r co-ordinate w i l l not be normal to the beach everywhere, but for the purposes 

of this discussion we assume this to be the case and this saves us introducing 

a new co-ordinate system which would, in general, have components normal 

and parallel to the beach. The bottom slope ml i s assumed constant 

and the set-up theory indicates that the surface slope i s also 

constant for a given bottom slope and wave train (see equation ( A ? ) ) . 

In the following discussion we shall derive relationships between the 

surf zone measurements , Yos , fel , IO (see Figure 3) 

and the height at the breaker line of the incoming waves 

From Figure 3 we see that: c 

ML fos — ^Isl - fl 

the run-up distance to5 i s thus: 

(2.6) 

r _ , f ^ y>L \ w (2.7) I OS — ' 



Figure 3 

Profile Normal to Beach 
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Now from (A4) we obtain: 11 li^" 

fi = - TO*) -
where q i s the wave number of the incoming waves. 

We denote by and HI respectively the wave height at JTS 

just outside and just inside the surf zone where: 

Ml+'IA , flf'Kti (2.9) 
M*/M~ - \/Y 

where "\ and Y are constants of order unity. Thus from (2.8) 
and i n shallow water we obtain for the set-down at the breaker line: 

= 1 2r I MX 

Again from Figure 3 we have where , then 

from (2.9) we obtain: 

= X nL (2,U) 

or, for the total width of the surf zone, including run-up, we have: 

Also we have for the undisturbed depth at the breaker l i n e : 

k - m n. (2-12) 

Thus using (2.12), (2.11) i n (2.10), we may write the set-down t£0 as: 

nk = jl 2^Yj$L)ni (2.13) 

or, for short, ./ / n s 

where — j . -«a * j/v 

/V- = i_*L (2.15) 

and N « / 
Thus (2.7) becomes: 

^S = A^(mt"^ n i (2,16) 
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From Figure 3 we get for the distance from breaker line to the 

undisturbed shoreline. 

Ho - r4- = -a/) rsl 

or Hg_ - / / _ _ /^y./!/ 
1 m / ~ —rZf (2.17) 

Thus from (2.15) and (2.17) we obtains 

(2.18) 

which yields: ^ = ^ ^ + 

j\J must be positive and using the binomial expansion we obtain: 

Thus /I/ i s a constant. From Figure 3 we see that: 

y ^ (r-rl) - ?l = /"r(n-rty+y»?(r<-n)'-?i ( 2.i 9) 

Using (2.17) and (2.14) on (2.19) we obtain: 

( >"l 1 ' ^ (2.20) 

From (2.11) and (2.20) we obtain: 

f *(*fjg) #4* + m/™)* /?M*+^(r-n) (2.21) 
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Thus, according to our present model, the set-up i s determined by the 

breaker height and the slope of the bottom (note that KMl, ; 

see Appendix A, equation (A7)). Also, from (2.1?) and (2.11) we obtain: 

lassuraing Af rr _/l <^<^ j 

iFrom (2.16): 

(2.23) 

vThus, we see that the distance of run-up on the beach ^os and the 

position of the breakers JTq^ are dependent on the bottom slope and 

the breaker height. 

In order to gain some familiarity with the magnitude and accuracy of 

these equations, we compare calculated results based on these equations 

with experimental results taken from Bowen, Inraan and Simmons (1968). 

These results are shown i n the following table. 

measured calculated 

EXP 
Hi+ 

cm 

ht 

cm 

K 

cm cm cm 

m̂  

cm cm cm cm cm 
X 

71/3 4.40 4.1f 0.27 75 0.17 1.48 .022 52 19 71 0.30 1.5c 1.06 
51/k 6.60 5.0 0.32 85 0.19 2.07 .026 61 19 80 0.50 I.56 1.32 
35/7 7.75 5-9 0.39 110 0.18 .032 72 28 100 n.^4 20 1,31 
35/15 13.0 9.7 0.37 165 0,43 4.65 .030 120 44 164 0..96 3.6 1.34 

where m̂  = 0.082 



Note that we are able to predict quite accurately. Our predic

tion of ty/na^ i s within 30$ of the measured value and h i s 

almost 100$ too large. 

Bowen, Inman and Simmons (1968) explain this discrepancy by noting 

that near the break point the wave form i s not sinusoidal and therefore, 

our set-down theory i s not reliable at this point, since we assume a 

sinusoidal wave form. 
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CHAPTER 3 

THE EQUATIONS OF MOTION 

In the following discussion the cartesian tensor notation w i l l be used. 

The equations w i l l be kept general - sb\ that they w i l l apply to a general 

coastline without restriction to a circular bay configuration. However, 

we shall assume that the radius of curvature of the coastline i s always 

large; that i s , at least five times greater than the width of the surf 

zone. 

In deriving the relevant equations of motion we use the equations of 

conservation of mass and horizontal momentum as given by Phi l l i p s (1966), 

and we assume the time averaged motion to take place only i n the horizontal 

plane. Thesefequations are respectively: 

and jLg+^(%/^+^)=7: 
° # (3.2) 

where ~fc= -y0jdj£ and fa -=//?(?+J>) % 

We assume that the short-term time-averaged variables are steady, so we 

obtain: i . 

J (3<t 1 - ~ ~7* (3.4) 

By expanding (3.4), using (3.3) and dividing by ^/Mg+A) we obtain: 

(3.5) 
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Writing (3.5) i n cartesian co-ordinates with and 2& = ^ 

where V and are the net velocities i n the x and y directions 

respectively, we obtain: 

7< °LH + ISofji =z - + 7*. ( 3 . 6 ) 

and 

where 
J * J T ^.8) 

and 
( 3 . 9 ) 

Equations ( 3 . 6 ) and (3*7) were derived for an inviscid f l u i d . For a viscid 

f l u i d we add the extra f r i c t i o n terms /j** f?y . The f r i c t i o n force 

should befecomposed of a bottom f r i c t i o n term and an eddy viscosity term. 

In this paper, to simplify our equations we use only the bottom f r i c t i o n 

term and assume that the eddy viscosity i s negligible. That this i s not the 

case for the entire region over which we are seeking a solution w i l l be 

seen later; nevertheless, we shall s t i l l obtain useful qualitative results 

using this assumption. 

The bottom f r i c t i o n force acting on a total column of water of unit 

area and height d with mean velocity CA ^ we w i l l assume to be a linear 

function of the mean velocity. Thus the bottom f r i c t i o n force on a column 

per unit mass of the column i s expressed as: 

p - cK p <zts-
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where c i s a proportionality constant with units of length over time. 

In polar co-ordinates we obtain: 

D _ _ Cl/? / ? , = - g f» (3.10) 
~cj~ ' ^ 

Thus the complete equations of motion i n cartesian co-ordinates are: 

and iXJj^T^ LrJlT- - * s £ + J Z + R * 

J# " 7f 7 (3.12) 

In cartesian tensor notation these are: 

and i n vector notation 

(3.13) 

(3.14) 

We may eliminate by taking the curl of (3.14) which gives: 

curl (U = cur/ R + « W 2 

Transforming (3.15) into polar co-ordinates gives: 

JT* Q / J V . +J9 = Jfo - ^ + A - (3.16) 
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where the i n e r t i a l terms are: 

T
r
 = tJ^JjS + ^Jj^r-C^ (3.1?) 

Jr ir j9 r 

T* = + (3*18) 

e/r r r 
and subscripts r* and # indicate components i n the direction of A* 

and 0 . Equations (3.17) and (3.18) are nonlinear. In his theoretical 

paper on r i p currents, Bowen (1969b) neglects these nonlinear terms in 

order to obtain a simple analytic solution. 

Arthur (1962) shows that the contribution of these nonlinear terms i s 

to narrow the currents proceeding to deeper water and to widen the currents 

proceeding into shallow water. Bowen (1969b) solved this nonlinear 

equation for a linear beach using a computer and the significant difference 

between his computer solution and his simplified linear analytic solution 

was this narrowing effect. Therefore, we expect to obtain reasonably good 

qualitative results by neglecting the nonlinear terms and equation (3.16) 

becomes: 

_ curl
 z
 R ~ curl* 2" (3.19) 

or 
ry& Sr r rje ~T~ (3.20) 

We c a l l c u r l f c the forcing function. In Part I I , we shall apply 

equation (3*19) to the case of a circular bay and obtain an analytical 

solution, however i t i s important to note that (3*19) i s quite general and 

does not only apply to a circular beach. 
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From (3«3) we get: 

or using the definition Z/^ = .Af^ w e obtain: 

T>iv(J2(*) =o (3 .22) 

which i s the integrated continuity equation. We introduce a transport 

stream function if (Arthur, 1962) i n polar co-ordinates which Identically 

satisfies ( 3 . 2 2 ) . We l e t : 

^ = ~T T7e (3-23) 

^ = l h 7 F ( 3 . 2 . ) 

where J A as previously defined. 
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CHAPTER 4 

THE FRICTION TERMS 

It i s convenient to speak of two zones: the surf zone ^ A* ^ £ ^ 

O 4. &c\ and the area outside the surf zone. We shall see i n the 

following discussions that there are specific differences between these 

two zones. 

4a The Surf Zone 

Let us examine the individual terms of Ctitl x R = ol£i-JEr *- 4-r • 
We wish to examine the relative sizes of these terms so we introduce the 

following ordering scheme. Let the primes denote.non-dimensional variables 

of order unity. 

trr= VLwr' r = nt' 
, i 

(4.1) 

where Vj, i s the maximum expected velocity. It mayvbe of 

the order of 2 to 4 knots for a linear beach (Shepard and Inman 1950)• 

We introduce two differentials for d representing i t s changes i n the r 

direction which over the width of the surf zone w i l l be of order /)£ 

and i t s change i n the & direction which w i l l be mostly due to changes 

in ^ i n the & direction and are of order 

(see (2.21) and (2 . 1 ) ) . YjI i s the average width of the surf zone 



18 

and i s the average s t i l l water depth at the breaker line* 

From (3.10) we obtain: 

Jt d jr Jx jr (4.2) 

Using (4.1) we obtain: 

Using (3.10) again, we obtain: 

C».3) 

slit = - . f ^ f +±<j?d£ 
and using (4.1) we obtain: 

(0.5) 

The terms i n brackets i n (4.3) and (4.5) are of order unity. Thus to 

compare dE
>

^/l
r

\f&
 t o

 dft&^/t* we take the ratio: 

s/Et./J£z = - /-
c t

4 = a ru 

We assume we have a large bay and so ts&fio / . 
Thus we can neglect the term relative to the q/P&fif' 

(4.6) 

term. 
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(4.8) 

Again using (3.10) we obtain: 

sr - C (4.?) 

and using (4.1) we get: 

Ss. - - s ^ iy*') 

Comparing /tj£ with we obtain: 

' V o ' r r*MI Tint r„ <M> 

for a large bay. Hence we can neglect the term relative to 

O^^P . Therefore i n a large bay and inside the surf zone 
oft 

region we have: 

CUr/z. /T -=r (4.10) 

Using (3.10) and the transport stream function defined by (3.23) and (3.24) 

we obtain for (4.10): 

c*rl * $ = - 2 ^ ) ( l f . u ) 

where we define: — /?? inside the surf zone. (4.12) 

7r 
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Later we shall use (4.11) i n the l e f t hand side of the main equation (3.19) 

for solving for the current inside the surf zone only. 

4b Outside the Surf Zone 

In this region we cannot in general neglect the same terms of curlft 

as we did i n the surf zone because we are no longer dealing with a narrow 

zone at a large radius r from the origin. We-shall use the f u l l expression 

for curl $ i n terms of the transport stream function *V . We 

obtain: 

Jj£ id- + J* -L*Jt 7 

(^.13) 

where 

JRr-

rjs> (4.14) 

tc/1 
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Equation (4.13) can be simplified. V/e assume that outside the surf 

zone the depth d of the mean current i s equal to + Ilk . Thus we 

say that the mean current does not extend below the depth k\j which i s 

the depth of the undisturbed water at the breaker l i n e . Shepard and Inman 

(1950) found that r i p currents seaward of the breakers do not extend to the 
bottom. Although their results do not entirely support our assumption they 

do point towards that direction. This assumption should be regarded as a 

crude simplifying one. Thus we get 

We shall also neglect the term containing 
1 rJV JA 

this we shall compare the -^7 and </t 

the ordering relationships (4.1): 

To justify 

terms using 

-khi [iLuiJj'+j'jg-:] 

TT/x. LM J&' je'J 

(4.15) 

also 
-2- <& JJ = -JrVr4/=->VUL 1< (£.<&' (lt-16) 
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The primed terms we assume are of order unity. The ratio - / and 

so the term containing will be insignificant relative to 

<J ^/d& term. We therefore neglect the d& term. Thus 

equation (4.13) becomes: 

To conclude our discussion of the friction terms, we now have two 

forms for the expression cutis. R of equation (3.19). These are 
as follows: 

inside the surf zone and 

curl * R = - £ (£!t+.± <J*+J- £!t) <"-
2 0

> 

outside the surf zone. We shall now discuss the radiation stress terms so 

that we may put equation (3*19) into a workable form and solve for j 



23 
CHAPTER 5 

THE FORCING TERMS 

In this chapter we shall discuss the C Utf z terms i n 

equation (3.19) and as defined i n equations (3*8) and (3»9). We c a l l these 

terms forcing terms because they represent the driving forces, due to the 

excess momentum flux of the waves, which cause the r i p currents. 

5a Outside Surf Zone 

From equation (3«̂ ) we get: 

For a linear beach on which there i s no variation i n the longshore mass 

flux ( ic. J$y-0 ) we have from (3.3) <JJJiL =. O . But Mx 
must be zero at the shore and hence /vx = C? , thus cs(-y? -

and (5»1) becomes: 

' ' ( 5 * 2 ) 

since ^ & * ° r a P^ a n e wave traveling i n the positive x 

direction. From (5»2) we obtain the relation: 

f - / ^ L
 < 5

-
3 >  

* tint, a.$f> 

where /V i s the wave height and ^ is the wave number of the 

advancing wave (Longuet-Higgins and Stewart (1964)). Bowen (1969b) used 
this derivation for to show that the gradient of the radiation 

stress i s balanced by the induced pressure f i e l d and that there are notnet 
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forces outside the?surf zone that might produce circulation patterns. 

However, (5*3) i s based on the assumption that J^ff- ~0 which 

i s not i n general true for a r i p current system. The discussion i n 

Appendix A shows that the i n e r t i a l terms may be neglected i n equation (5.1) 

for a r i p current system, thereby making (5*2) and (5*3) reasonably accurate 

where r i p currents are present. Using the y-component of the radiation stress 

(Longuet-Higgins and Stewart (1964)) where 

and equation (5.3) we get: 

which confirms Bowen's finding as stated above providing (5*3) can be used 

for the r i p current system. For the moment, using the X,iT co-ordinate 

system shown in Figure 2, equations (5.3) and (5*5) become: 

dI>2L = e> (5-?> 

respectively. Note that Sy^ ~ Sxy — O $ (Longuet-Higgins and 

Stewarti (1
9
64)). Substituting these relations into equations ( 3 « H ) and 

(3.12) where x and y are replaced by X and I respectively, we obtain: 

Ux d2<*. + Ky ^ ~ /?x
 C5,8) 
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A '
 (5

-
9> 

or i n tensor notation using as a generalized co-ordinate: 

% ^ ^ ^ (5.10) 

Taking the curl of (5*10) we obtain: 

cor/z /? = curlz I (5.1D 

where _ Z ~ was defined i n polar co-ordinates by (3.1?) and (3.18). 

(The under a symbol indicates a vector quantity). However, since 

we neglect the nonlinear terms we obtain: 

curU R = O (5.12) 

outside the surf zone where the gradient of the radiation stress balances 

the pressure gradient. 

5b Inside Surf Zone 

Bowen (1969) assumed that inside the surf zone the height of the 

broken wave i s directly proportional to the mean water depth d. 

// = / J ^ .13) 

Also i n the surf zone the water i s shallow and hence from (5«4): 
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Using these relationships Bowen (1969b) showed that the longshore component 

of the radiation stress i s not i n equilibrium with the pressure component 

there are current generating forces inside the surf zone. 

5c Radiation Stress Tensor 

As the waves approach the bay from deep water, they are refracted and 

line (Figure 2 ) . I f our beach i s large, as we have assumed, then the waves 

should be almost plane. We shall assume this to be the case at the breaker 

line and inside the surf zone. 

Refering to Figure 2 where the X axis i s the axis of advance of these 

plane waves, we have the radiation stress for the X and Y axis given by 

Longuet-Higgins and Stewart (1964) as: 

longshore. Thus we have Ctirl * f$ ^- O inside the surf zone and 

inclined at an angle to the normal of the beach at the breaker 

sit
K
 = zjr , s-. yy — a. •** 

5 ; x y y* 

where E i s the energy density of the waves 

(5,15) 

or using (5-13) for H inside the surf zone we obtain: 

(5.16) 

(5.17) 

, a constant. 
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Transforming -S^y^ from the X, Y co-ordinates to the f^G 

-ordinates by a rotation of co-ordinates through the angle § co. 

obtain: 
3 ~«2 sv*/* *A> sin 2& 

5 ' * (5.18) 

or 

(5.19) 

inside the surf zone. T U / S i s the tensor shown inside the square 

brackets in (5.18). Here the indices o< and each take on the 

values 1 and 2. We assume that J and $ are known variables for a 

given beach with a particular wave system. They can be measured, calculated 

or assumed, (see Breakers and Surf, HO Pub. 234). 

5d Forcing Terms (Inside Surf Zone) 

Since we shall be using polar co-ordinates we use the identity: 

curl z I 
~* rjt role r 

(5.20) 

where from (3.8) and (3«9) we have: 

(5.21) 

i n cartesian tensor notation. Prager (1961, p. 37) gives the polar 

co-ordinate components of the vector . Using this relation 

on (5*21) we obtain: 
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(5.22) 

and 

(5.23) 

Now we must determine - ^ o £ ^ i n polar co-ordinates i n -terms of 

independent variables which can be somehow measured directly from the surf 

zone or calculated. These variables are <t> and Ml* 

Thus we are now prepared to calculate cut/ a: 0" i n terms of 

known variables. From (5«23) we obtain: 

Thus substituting (5.24) into (5.22) and (5.23) wo obtain: 

J t * j t rje rile r t
 ( 5

-
2 5 )  

%*-M$xJd- 4 ^ - 2 k L $ * 
Jr F7& rj* r 

(5.26) 
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Notice that we have not neglected the *J<IJQ/& terms here as we did 

in discussing the friction terms because they provide significant forcing 

terms to the overall forcing function Ctftl 2 T . From 

(5.25) and (5.26) we obtain: ^ 

-U ih^dd- AJS% - (5.27) 

and 

(5.28) 

and 

2 * = -2kin. &-3Lk$* M 

(5.29) 



Notice that equation (5*30) is a general equation regardless of the shape 

of the bay or its bottom contours. The terms have been numbered from 1 to 

9 and grouped into three categories, I, II and III. Category I includes 

a l l the terms which would be non-zero i f the waves advanced normal to the 

beach, that is <P = & . Category II includes a l l the terms which 

would be non-zero for a wave system in which 4̂  will not be 

zero everywhere and the mean water depth d is not a function of & 

Thatjis.j these terms represent forcing functions due only to the non^zero angle. 



31 

of incidence $ of the wave system. Category III i s the 

l e f t over terms which are non-zero when Categories I and II terms are both 

non-zero. 

We can calculate the mean water depth d i n terms of the breaker wave 

height as discussed i n section 2c. We obtain from equation 

(2.21) the following: 

(5.31) 

where $ i s a constant; and are the mean 

slopes of the water surface and beach bottom respectively. Thus we obtain 

from (5.31): 

~~fP K n (5.32) 

and 

ot& </& y & '5.33) 

Also, inside the surf zone: 

(5.3*0 
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and i f we assume a circular bay, we have: 

= O (5.35) 

Using (5.35),'(5.34) and (5.18) i n (5.30) we obtain: 

/ , ® © 1 

© ® 

7T I ® © © (5*36) 

where ~ J^. , a constant. 

5e Discussion of Forcing Terms for a Circular Bay 

Equations (4.19) and (4.20) are both linear i n V Thus we may 

take each term of CLfr/z T* and solve for i t s corresponding 

value of and add the solutions to obtain the to t a l solution 

for ^ . We can regard each term i n (5»30) or (5.36) as 

a forcing function for i t s own r i p current system. I t i s of interest to 
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examine each of these terms and interpret physically what causes them to 

exist. 

We f i r s t describe the relative magnitudes of the terms. We do this by 

ordering each of the terms and comparing them. The exact calculations for 

(5.36) are given i n Appendix B. The only difference between (5»36) and 
(5.30) i s that we assumed /ty ̂  }71(G) for (5.36)which gives us a 

circular bay. For a non-circular shoreline (a straight beach i s considered 

circular with JT~* «0 ) the effect of may be large; 

however, i n this thesis we consider only the next level of complication 

above a straight beach and that i s a circular beach. Thus we order the 

terms for a circular bay. For a circular bay we«assume the independent 

variables (ft and ftb to change significantly over the angle 

5?- = "fir/fX and we use this i n our ordering scheme i n Appendix B. 
The results of this ordering process are given below. 

The terms are arranged i n descending order of magnitude. Beside each 

pair of terms i s the multiplication factor relating the two terms. For 

L 
example: * j _ if means /-/w " f = -ty X tern* k> 

CL+ e (5.37) 



34 

We sha l l discuss each term i n descending order of magnitude. Term d, the 

largest term, exists i f dp ^ O and the bottom i s nonlinear i n the 

r direction. We expect that on most sandy beaches the bottom w i l l be 

almost linear and hence term d w i l l be small on such a beach. We shall 

neglect this term i n our circular beach problem by assuming the bottom to be 

linear. 

Term g then w i l l be the largest term for a beach with a linear 

bottom. We see that term - g vanishes for a straight coastline 

For a curved coastline, term g exists only i f $ & and there 

exists a bottom slope. Thus we may conclude that term g r i p currents on 

a curved beach are produced by the angle of incidence ^ of the 

waves onto the beach. And these currents w i l l be the ones most easily 

observed since they w i l l be the largest. 

Term c depends not only on the existence of (f) but that $ 

i s a variable function of @ . Thus on a straight coastline where i t 

i s possible to have $ non-zero but constant i n the longshore direc

tion term c would be zero and thereby not produce a r i p current. In our 

problem 4= 4(e) and term c i s significant. Along a straight coastline 

there w i l l s t i l l l i k e l y be some variation i n the bottom topography such 

as the La Jol l a Canyon off the coast of Southern California. This w i l l 

make (j? vary i n the longshore direction, thereby creating the forcing 

term c. Term c w i l l be of order of magnitude of term a or greater i f 

d * i s of the order of 3 degrees or more where £o i s 

the scaling value of and A $ i s the expected change i n 

over the longshore scaling distance 0~o 
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Thus we see that term c is very sensitive to changes in <jp 

Term e depends on the existence of /fy (&) being a nonlinear 

function of O (ie. JXi/jS^ ̂  & ). This will 

usually be the case where the bottom topography is irregular. 

Term a is the forcing term Bowen (1969b) found to produce rip 
currents along a straight beach. It depends on the longshore variation of 

. We have discussed this under surf zone geome

try and i f the r direction is normal to the beach (as i t is for a straight 

or circular beach) then the bottom topography effects will not make 

yyl a function of ^ . A t this point we just let 

be a function of & and say i t is due to edge 

wave, effects. This should be the subject of a future study; however, we 

shall assume i t to be true for now. Quantitatively we let: 

(5.38) 

where £ is of order fa/fa =? 0*01 . 

We see that for a curved beach term g will likely dominate the scene 

but as the beach becomes more of a straight one, terms c, e and a play a 

more dominant role. If the beach were perfectly straight without irregular 

bottom topography, then term a would be the only term available to produce 

rip currents. This is the case described by Bowen (1969b). 

The remaining terms f, b, i and h are of less significance; however, 

i t will be interesting to note in our circular bay solution the character 

of the flows these terms produce. 
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CHAPTER 6 

SUMMARY OF PART I 

We are now prepared to use our mathematical model on a given 

topographical beach. F i r s t , however, i t w i l l be useful to summarize 

our mathematical model. 

, In deriving i t , we made the following assumptions: 

a. A l l averaged motion i s in-the horizontal plane. 

b. Wave reflection i s neglected because of the small bottom slope. 

c. Eddy viscosity i s neglected. 

d. Bottom f r i c t i o n i s linear. 

e. At the breaker line the waves are assumed plane. 

f. We assume a large bay such that 

g. The energy density E of the waves i s equal to 

inside and outside the surf zone. 

h. The breaker height H i s directly proportional to the mean 

water depth d inside the surf zone. 

i . The rip currents do not extend below J - hi outside the 

surf zone. 

j . The non-linear i n e r t i a l terms are neglected. 

Apart from these assumptions our model using equations (3.19). (4.19). 

(4.20), (5.12) and (5.30) i s for a general beach with arbitrary bottom 

topography. For a circular beach we assumed only that 

was not a function of @ . Thus for a circular beach our model consists 

of equations: (3.19)» (4.19), (4.20), (5.12) and (5.36). For a circular 

beach we expect term g to produce the most significant r i p currents. As 

the beach straightens out we see that terms a and c w i l l become dominant. 
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Term a is likely generated by edge wave interaction effects (Bowen 1969b). 

The approximated form of CUtlz R (equations (4.19) and (4.20)), 

does not contain any derivatives with respect to £ . This implies that 

the & dependence of will exactly correspond with the & dependence 

of each of the forcing terms. 



PART II 

CIRCULAR BAY SOLUTION 



CHAPTER 7 

THE PROBLEM 
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(7.1) 

7a The Equations 
We shall solve for using the mathematical model derived i n 

Part I for a circular hay. The equations to be solved are as follows: 
Inside the surf zone we have from equations (3.19). (̂ .19) and (5«36) 

where ^ -

The forcing terms i n (7.1) are arranged i n descending order of magnitude 
(see ( 5 . 3 7 ) ) . Outside the surf zone we have from ( 4 . 2 0 ) and (5.12): 

(a) In polar co-ordinates: 

(b) i n cartesian co-ordinates: 

We must solve these equations according to the boundary conditions discussed 

in the following section. 
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7b The Boundary Conditions 

As discussed i n Section l c , the width of the surf zone fsh w i l l 

change s i g i f i c a n t l y due to wave height changes at the breaker l i n e . For 

example, i f the wave height varies by 50$ over an interval, the surf zone 

width w i l l vary by the same percentage. Thus i f we were attempting to 

obtain accurate quantitative results we would have to make the boundaries 

of the shore and breaker line as accurate as possible. This would involve 

tedious matching problems at the boundary involving Fourier series. The 

result would give us stream lines which wiggle with the shoreline, but 

would not change the overall r i p current patterns which we are attempting 

to determine. Therefore we w i l l take the space average values of the 

radial components of the shoreline and breaker l i n e , denoted by 

and respectively, to represent the boundaries of the surf zone. 

We assume that the deep water waves have a phase velocity parallel to 

the y axis of Figure 4. Since water does not flow across the shoreline 

Ys
 =

 ts , y 
 ̂ t

 the shoreline must be a stream line and we 

a r b i t r a r i l y l e t have the value of zero at the shoreline. 

We divide the bay into three regions, A, B and C as shown i n Figure 4. 

In regions A and B we use polar co-ordinates and i t i s convenient to use 

cartesian co-ordinates i n region C. 

I t i s not necessary to assume deep water waves with phase velocity 

parallel to the y axis; however^ since we must assume some sort of wave 

approach, this one seems the most convenient as i t w i l l lead to symmetric 

r i p current distributions. Later we solve for a case where the wave 

approach i s not par a l l e l to the y-axis. 
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Figure 4 

Circular Bay 
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At the shoreline must be zero. Therefore at 

IT- K t 0 . At the shoreline (Je w i l l be zero due to the 

bottom f r i c t i o n - (see (3.10) )•. V Therefore at 

. At the breaker l i n e Of must be continuous 

because of mass conservation, hence i s continuous at 

)T— f£ O £ . Also *P i t s e l f must be continuous at 

f s tk since we cannot have which would imply 

01 oo 

Also we know IT* , i n physical r e a l i t y , must be continuous, 

otherwise we would have an i n f i n i t e shear which i s not physically possible. 

However, this continuity i s based on there being eddy viscosity present 

which we have not included i n our model. Thus we w i l l not i n s i s t that 

Ol or <W/Jr be continuous at the breaker l i n e or any other 

boundary; however, i t turns out that i t w i l l be continuous on the breaker 

line using only bottom f r i c t i o n i n our model. 

The boundary conditions are summarized as follows: 

ty-o at r=n}oie£?r (7^) 

b.. Jt^o at r = £ > o^e^Tr- ( 7 # 5 ) 

at , oielw (7.6) 

at r--n , oleitr (7-7) 

where subscripts A and B denote values i n Regions A and B 

respectively. 



h = Va at r'rt , o£ei?r
 (v

.
8) 

I f we can allow to be continuous everywhere, then we should 

do so; however, the physical cause of this being so was not b u i l t 

into our model (the cause being eddy viscosity). 
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CHAPTER 8 

THE SOLUTION 

8a General 

There are none forcing terms in equation (?.l). Since (?.l) is linear 

in then we may solve for a for each term of the 

forcing function and add a l l the resulting 9̂  terms and obtain 

the total 7^ due to the total forcing functions of (7.1). 

In Section 2b we discussed the effects of the topography on wave 

height //i and angle of incidence 4^ at the breaker 

line. We approximate these effects by assuming the following distributions 

for //4* and & 

cos & 
(8.2) 

The solutions for outside the surf zone are given in the following: 

Region C: 

Here we use cartesian co-ordinates as shown in Figure 4. We have: 

cut/ x. R = <)fiy _ — O 

where ^ = - f> = -CJf ) ^ ^ 

and the transport stream function / is defined as 



i»5 

Thus we obtain: CUtl2 R ~ " — d ^ — — <—^ =0 

<U </*"- di Jf* 

This i s Laplace's Equation and i t s solution i s : 

% = ( f i e * * / ? * + Bi*t»/0x)(k>e + ) 

and we assume V i s f i n i t e at $ ~ ~ thus Ki~ & 

and we obtain: 

=• (AC"S* + ^ ' " ^ * ) « (8.3) 

Region B: 

From (4.20) and (5.12) we obtain: 

HI + J- at + -i £i = o '8-« 

Jt^
 r

 J>~ •"• d^ 
Solving by separation of variables we l e t : 

y - R(r) <8>lo) (8.5) 
ii / if 

and (8.4) becomes: ~f- I. B -h -L ® =z O 

R h If (B> 

R ~R If ^ 
where ^U. i s a constant. 
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(8.6) 

(8.7) 

Thus 

f/^zCo^ ^^S/^X^^^^) (8.8) 

Since ^ must be f i n i t e at IT* = 0 , we must have i(*f = ® 

thus we obtain: 

= (/9X coS/u& + Bx s>»sue) rA (8.9) 

where A 3 i s absorbed i n A and 3. 

We must match this solution with the various term solutions we obtain 

inside the surf zone. We assume a linear bottom so term d = 0. We now 

solve for for each term of equation (7.1) i n descending 

order of magnitude, (see Section 5© for physical interpretation of each term). 

8b Term g 

From equation (7.1) we obtain: 

or 

and 

which i s Euler's equation and the solution i s : 

# = for* +forM 

(8.10) 
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where we l e t \T on the right hand side (RHS) be . 

Since we assume the bay i s large the error resulting from this approximation 

should be small. Now but we are assuming the 

shore to be circular as was discussed i n Section 7b, therefore we have 

an approximation: 

r3 ^ rs ( 8 . U ) . 

and a — "'{.'S I (8.12) 

where 5* —— 

Trans forming the variable from A to JD we obtain: 

Ht - A ±1 = 2 km3

 s " sin24> (8.13) 

where B* = q km2 is 
and <S (6>) i s the (9 dependence factor of (fy as 

shown i n (8.2). We l e t Sin 2 & 2 (p = 2 <fc e(6) 

The complfijnentary solution i s determined from the homogeneous 

equation: 

illt — -A. IJt = O (8.14) 

Js* s 7s 
and i s found to be 

tffoj= (C-hCx s ) Wl (8.15) 

and the particular solution i s : 

f= (C, s
3

 + Ms. s') efe) 
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Thus Y/i ~ '~7j~ ~ J (8.16) 

We now apply the boundary conditions: 

(a) y= O at or 5 = & 
Thus Ci ~ O 

and I f o r r ' e(*) [
C

* *
%

 + B£ s"] (8.17) 

(b) M= O at 5 = ^ 

Thus (8.17) gives 

which is identically true at 5̂  -~ & 

(c) = O at 3 

which is identically true using (8.17) 

or e(£>)[c
x
 si* * Bp si*] 

(see (8.9)) 

Now i f ^ were not sinusoidal we would use a Fourier 

series expansion. To demonstrate this we let: . 

n 
w h e r e

 F
n
(9) = /)h C*S/?& -r-%, 

Since (8.13) is linear in *f we say: 

(P. = where (8.18) 
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We also l e t : = jE. ^8n inhere 

Y a , - ( ft'n cosne + B'„ sir, »») r" 5 G. fr)r" 

At the boundary S — we have: — ^Hn which 

gives us: • j Q y v) 

Ti*
v  v  

and d $9jf — 7^fl which gives us: 

Therefore from these two expressions for Gn (&) we obtain values 

for CZyi , a n d our boundary problem i s 

solved. When we discuss term f we use this method of solution for 

n = 1 and 3« 

However, i n this problem we l e t COS & a n ( j hence: 

where si =r n - Fi • 
(8.19) 

(e) Ujb(rl) = ife (rl) 
or C O S 

or > 3 , = - 5 C i 5^ - &j 0 6 (8.20) 

Using (8.20) and (8.19) we obtain: 

(8.21) 
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and 

or 
/2 ri 

(8.22) 

(8.23) 

Therefore we obtain: ^ 

r cos B 

(8.24) 

(8.25) 

Note that by not including eddy viscosity and s t i l l saying i s 

continuous at , we are forcing a value on £z and r*i 

for which the model was not spe c i f i c a l l y designed. I f we did not have 

the boundary condition . then 
Cr i 

we could chop off before i t reached i t s maximum value. I f 

eddy viscosity were included, then the equation (7.1) would be of higher 

order and would enable us to state with certainty the continuity of 

However, since we do get a highly satisfactory solution without eddy 

viscosity, then perhaps i t i s negligible relative to the bottom f r i c t i o n . 

This seems reasonable although i t should receive more attention i n a 

future study. 

(f) % = % at y 
Thus we obtain from (8.3) and (8 .25): 
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since ^tj = o) i s an odd function. 

Using Fourier series expansion theory we obtain: 

(8.27) 

where s jjjr 
Thus * (8.28) 

J7 

From (8.28) we obtain: 

Vjtc * ft (8.29) 

From (8.25) 

(8,30) 

Thus we cannot match (8.29) and (8.30) at j / = ^ because (8.29) w i l l 

not in; general be identically zero. Therefore we have a discontinuity i n 

fJlr at — tP . I n real l i f e this i s impossible; however, 

since we have not included eddy viscosity i n our model we obtain this 

discontinuity. 

In summary then, we have for term g of equation (7 .1): 

/ z rl 

(8.31) 



52 

At/the boundary between regions B and C we used a Fourier series 

method to match the solutions. This makes region C periodic i n x with 

period *2 J* . T o eliminate this periodicity, we could have used 

a Fourier integral method by letting: 

which identically satisfies Laplace*s equation and we have: 

which satisfies the boundary condition at ^ = O for any function 

. This same method can be used at the boundary 

between regions A and B where we would l e t : 

% = f FM * (X f j n 

*»d F(») = -jL- J VCrt, 9) <s 
where we l e t ty(fi

t
 #) =0 for & > and <£> < ° 

We have no need to use this method i n this paper for the boundary at 

because we l e t <P(£>) and HL (9) 

be simple trigonometric functions. 

We find the location of ^ 9 maximum as follows: 

Ujr * 1 a n si) 
therefore the maximum occurs at: 

/2n si, 
or J / ? » K 

For a large bay ^/ti / and so S/na* = Si 

For & = O we plot ^ VS f* as shown in Figure 5« 

From (8.32) and (8 .3D we get: ^ 

tu= w ) * - ^ r (8-33) 
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Figure 6 

Streamlines, Term g 
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The e n t i r e f i e l d of I f i s sketched according to equations (8.31) i n 

Figure 6. We see that there i s only one r i p current, a t Q = • 

The streamlines represent the average paths f l u i d p a r t i c l e s would follow 

providing the streamline pattern does not change s i g n i f i c a n t l y over the time 

i t would take f o r the p a r t i c l e s to complete a round t r i p along the streamlines. 

The r i p current flows out past the mouth of the bay (where y = o) and then 

curves around and enters the surf zone with a strong v e l o c i t y as indicated 

by the high density of the streamlines. TKe (+) and (-) symbols i n Figure 6 

show where the transport stream function i f i s p o s i t i v e or negative respec

t i v e l y . The e f f e c t of the non-linear terms, which we neglected (Chapter 3 ) , 

w i l l be to strengthen the r i p current a t because the current 

there i s flowing i n t o deeper water, and to decrease the current flowing i n t o 

the s u r f zone a t & — O and because the flow there i s i n t o 

shallow water (Arthur 1962). 

A sample magnitude of i s computed as follows: 

UrU*,t)~ d N & i %tj '* jm SvT ( n } 

where J ~ M St> 

m Q = 32 ftftec Si = /t>° f * li 

- J
 K rtJ c-

Bowen (1969b) estimates c = 0.2 cm./sec. = 0.0067 f t . / s e c . which gives: 

Let 

Then 

/sec 
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From Figure 6 we see that the maximum velocity occurs in the surf 

zone at 0 — O
t
 "77" . To calculate this velocity we do the following: 

tSff occurs at S = Si } @ — ^ 

Then 

ana tgr*^*) = ̂  -d- -

tnen ^ f f ^ = ^ ^ 

The effects of the nonlinear terms wil l be to lessen OQ maximum 

and increase Ur(f^^j -2" ^ 

8c Term c 
The equation for inside the surf zone for term c is from (7*1): 

dUt -h ilL = % km dz sin *4 i£ ( 8 . 3 ^ ) 

Using the same procedure as for term g we obtain: 

Js* * js « JB 
where g = & /C M <Yo, 

s = rs -r 



The solution i s obtained i n the same manner as for term g and i s 
1/ 
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(8.36) 

or using £ 3 — COS @ w e S6'*'2 

Subjecting (8.37) to the boundary conditions (BCs) with ^ y^c 

given by (8.3) and (8.9) we obtain: 

*"%[%-'^gL)-s!]s;*2* (8.3a, 

% •= SJL. l £ ^ S'm X& (8.39) 

s „ a t = s l O -

1>~. * % (rl) - # «>.*) 

Again there i s a velocity discontinuity at ^ — & as was the case 

for term g . This indicates that eddy viscosity i s significant at this 

location i n the model. 

A sketch of the r i p current system for term c i s shown i n Figure 

The dotted lines are estimated flow lines which are expected to exist i f 

we include eddy viscosity i n our model. We obtain r i p currents where 

i s maximum or minimum for a sinusoidal distribution. 

(8.40) 

(8.41) 
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Figure 7 

Streamlines, Term c 
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8d Term e 

From (7.1) we obtain: 

sr d Jr crx 

which we alter as we did for terms g and c and obtain: 

£t-±l± = Bes3JjL 
w h e r e SU = k»Uk 

5 =* n - r 

Solving we obtain: 2 

or with — COS & we obtain: 

Subjecting (8.46) to the BCs we obtain: 

f* = Be r cos 9 
'5- n 

and 
Ay 

where - n 3r 

0 

(8.43) 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

(8.48) 

Jx 
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rtx.O) 

Figure 8 

Profile of 
ê
(x,0) 

Figure 9 

Streamlines, Term e 
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From 7^9 and ^ff we obtain the graph of ty(
a s  

shown i n Figure 8. 

From (8.47) we obtain: 

A sketch of the r i p current system for term e i s shown i n Figure 9. 

Again we have a discontinuity at (j O because of the absence 

of eddy viscosity i n our model. 

8e Term a 

From (7.1) we obtain: * t . 

£± + 3kcL coslb <J * <8-5o> 

or with S ~ — t we obtain: 

where = 2A 

a n d //,(p)zr~C6S 

Here we l e t 

where 6 i s of order fab • Tnis i s similar to the 

function Bowen(l969b) used, although i t cannot be derived from the theory 

discussed i n our section of surf zone geometry. One may circumvent this 

d i f f i c u l t y by saying Q / a r i s e s from an edge wave effect. 

This i s speculative, but i t gives us a f i n i t e value for term a. 

The solution to (8.51) i s : 
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Figure 10 

Streamlines, Term a 
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(8.55) 

A sketch of ^ i s shown in Figure 10. Just as Bowen (1969b) 

found, we see that the r i p current occurs where the waves are the lowest. 

(at e = o, w) . 

I t i s important to realize that we assumed term a to have a d9 

dependence the same as . I f term a i s influenced by phenom

enon other than just refraction, then i t may very l i k e l y have a & 

dependence different than that of fJi+ . I f term a varies 

significantly over a longshore distance of the order of the surf zone 

width, then we must reconsider our assumptions i n obtaining equation (4.10). 

In particular, we would not be able to neglect the term 

i n carl*. R 

8f Term f 

From .("7-1) we obtain: 

Alt + 2 J B J 1 - - M ^ ^ n i i f i i f 

Altering this as done for previous terms we obtain: 

where Bf = ^ M 

(8.56) 

(8.57) 

We obtain the solution: 

(8.58) 



63 

Letting rr Cos 0 , we get: 

e(2^)l= C€>s& - cosZe ( 8 < 5 9 ) 

Since (8.56) i s linear in we may treat each of the terms of 

as separate forcing functions and add their solutions to obtain ^ 

We obtain: (jVf 2 ^.S^fcOS & ~ c c s l ^ ) ( 8 < 6 o ) 

(8.61) 

and - S /«. ' (8,62) 

where jS* ,/i=/,2,\•••• 

and from (8.61) and (8.60) we obtain the sketch of C'**^) shown 

in Figure 11. A sketch of C05 & — COS 3&is shown i n Figure 12. 
We use these sketches to sketch tflfi. as shown i n Figure 13. 

8g Term b 

From (7.1) we obtain: £J> ^ J ^ f ^ 2$ Jl£ ^ 

d 7? crx 

We alter (8.63) to the form: 3, ^z//(£) (8.64) 

where /-J(* = DC^P M(&)) and we have 

discussed i n Section 2b the form of //, (#) = — C OS 2 & 
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Figure 12 
Graph of COS 0 - Cos39 

Figure 13 

Streamlines, Terms f & i 



Hence we obtain the solution: ? . . 
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(8.65) 

-fc, +CiS* +BI s^ftsinZe (8.66) 

Using the boundary conditions we obtain: 
67) 

<P
B
 = -I l?l s£r

Xs/»Z9- (8.68) 

and ~ ° (8.69) 

is sketched in Figure 14. 

Notice that the rip current occurs where the wave height is greatest. 

This is contrary to the result Bowen (1969b) got. However, we obtain 

Bowen's result for our term a which is similar to his forcing term. 

Term b is a result of the variation of wave height and the curvature of the 

beach. It goes to zero value as the beach becomes straight fe * *°) . 

8h Term i 

From (7.1) we obtain: 

+ Z>2<M = Sk/fScoUbjM Jg£ (8. 7 0) 

We alter this to the form: , » . . ,» * \ 

where D
£
 - 3£# J99' <$>„ fo D_ 

Thus we obtain: . . . 



Figure 14 
Streamlines, Term b 

Figure 15 
Profile of <fi (x, o) 

{ 
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or with C = C>OS & and M (fls ~ Cos^& we get: 

% = -(c, f ^ j
J

f tos'X*"*-'0*3*) (8'72) 

In a similar manner to the f terms we allow each of the trigonome

t r i c terms to represent a forcing function and solve for each. We then add 

the solutions and obtain: _ u v 
% ^ & ( s l S ~ j ^ S )(cosO-<*>s30)

 (8
.
73) 

= S / ^ J v V / ^ ^ " (8.75) and 

where = JLZ^ _ 

n r
s
 U 

From (8.73) and (8.74) we obtain the sketch of tyfa/d) as shown i n 

Figure 15. The sketch of ^ for term i i s similar to the sketch 

for term f i n Figure 13. 

8i Term h 

From (7.1) we obtain: , 

which upon rearrangement yields: arrangement yxexas: \* // / \ 

^ _ * l<£ - B k s e(#) eLAfl 

where Bi = Z M * P*/* * 

(8.76) 

(8.77) 

We obtain the solution: 

= (c
l
+cls\M.s

u

)e(4^
)  ( 8

-
7 8 )  
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Lor substituting for e(tJ) and //,(&) : 

Similarly to term i we obtain: 

and 

(8.79) 

(8.80) 

n 

and C f
c
 = S fl» 2'f»>3»3C e**^ (8.81) 

n 

where 

From (8.79) and (8.80) we obtain the sketch of fy(~*Cf0) shown i n 

Figure 16. A sketch of COS & +• COS ~$Q i s shown i n Figure 17. 

A sketch of i s shown i n Figure 18. 
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Figure 16 

Profile of %(X.,0) 

Figure 18 

Streamlines, Term h 
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CHAPTER 9 

GENERAL WAVE APPROACH 

9a General 

In the previous solutions we assumed the deep water wave approach to 

be i n the direction of the radius vector with . Let us 

now examine a more general wave approach i n the direction of the radius 

vector at & ~ &o. . This,does not introduce any new d i f f i c u l t y . 

We merely determine the functions Hf(9) and $(0) for the 

new wave approach and solve equations (7.1), (7.2) and (7.3) subject to the 

same boundary conditions. 

Figure 19 shows a sketch of a sample refraction pattern for waves 

approaching with the angle Bo . The sample bottom topography i s 

shown by contour lines (the dotted l i n e s ) . The solid lines with direction 

arrows represent the direction of the wave phase speed and are called 

orthogonals (see H 0 pub 234). Where the orthogonals diverge we w i l l have 

smaller wave heights. From this sketch we assign the following functions 

to represent the wave characteristics /VI and 4> : 

where yU = } &0 ^ 

and 

4> = <Po efe)
 (9

.
2) 

&
<&) = cos = cos##

>
 <§ 

I f 0
O
 ^ we would have: 

and efp) = czos (/ro°-& ) 
( /2O

0

-0o ' 
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Figure 19 

Refraction Pattern, General Approach 
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Figure 20 i s a sketch of these functions. We assume trigonometric 

functions, however we need not have and for an actual situation we would 

not expect these functions to be purely trigonometric. I f the functions 

are not trigonometric, then we w i l l have to use Fourier series to solve 

the boundary conditions. This i s unnecessarily complicated for our present 

discussion (see Section 8b). Using (9.1) and (9.2) in (7.1), (7.2) and 

(7*3), we arrive at solutions for a l l the forcing terms. Term g i s 

discussed i n the following section. 

9b Term g 

(9.3) 

= - B?
 s

? r^cos^e (9.4) 

and where 

(9.5) 

Note that our solution here i s the same as the former case where (p
0
 ~ 2?%. 

except that here — instead of unity as for the previous 

example. This i s due to the function 4) (6) we chose. However, the 

result i s meaningful providing our i s f a i r l y r e a l i s t i c . A 

sketch of the transport stream lines i s shown i n Figure 21. The remaining 

r i p current systems for each of the other forcing terms can be calculated 

i n a manner similar to that done in CHAPTER 8. Term g, as already 

calculated, w i l l be the dominant r i p current and should be readily 

observable on a real curved beach. 
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Figure 21 

Streamlines, 
General Approach, Term g 
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CHAPTER 10 

SUMMARY OF CONCLUSIONS 

In this thesis we derived a mathematical model for r i p current 

systems along beaches which takes into account the effects of bottom 

topography. These effects are: the slope and curvature of the bottom 

inside the surf zone; the curvature of the shoreline; and the variations 

i n wave height Ml and angle of incidence sr of the waves at the 

breaker line due to wave refraction outside the surf zone. 

In this model nine forcing terms caused nine component r i p currents 

whose sum gives the t o t a l predicted r i p current system. One of these 

terms (term a) i s equivalent to the forcing function Bowen (1969b) used 

i n his straight beach problem. The model was applied to the special case 

of a circular bay and the r i p current patterns which occured were discussed 

and their streamlines sketched. When one interprets these sketches, i t 

should be remembered that the i n e r t i a l terms which were neglected i n the 

equations of motion w i l l cause the streamlines to come together where the 

velocity i s towards deeper water and to separate where the velocity flows 

into shallow water. This effect tends to strengthen the outward flowing 

r i p currents. 

I t was found that as long as the variations i n and t^l were 

caused by the circular bay topography only, the dominant flow pattern in 

the circular bay would be that due to term g (Figure 6). Ternu c was the 

next lower term on the magnitude scale (See (5«37)). Figure 22 shows a 

sketch of the sum of the transport stream functions and tyc along 



Figure 22 

P r o f i l e of ^ 3 + % 
a t the breaker l i n e 

$ 0 = 1 5° 

F i g u r e 23 

P r o f i l e o f Ur a t the breaker l i n e 
due t o terras g and c f o r tJ>o~/5"* . 



the breaker lin e for ^ — /-~ . The differences between the curves for 

% and % are seen to be small. The remaining stream functions 

due to terms e, a, f, b, i and h w i l l be insignificant since they are at 

least an order of magnitude smaller than term c (see (5«37)). Thus we see 

that the sketch of tyj i n Figure 6 represents a f i r s t order approximation 

of the total flow pattern that one would expect to see in a circular bay 

as we have described i t . A sketch of the sum of the velocities normal to 

the breaker line at the breaker line due to terms g and c is shown in 

Figure 23. We see that the tendency i s to establish a uniform seaward 

velocity along the breaker line. However, one must be careful when adding 

these velocities because the effect of the non-linear i n e r t i a l terms, 

which we have neglected (Chapter 3), w i l l be to weaken the current due to 

term c between and to strengthen the currents 

due to term g i n the same region thereby tending to cause a maximum 

combined seaward current at which is not apparent from 

Figure 23. The currents due to the remaining forcing terms are at least 

an order of magnitude smaller than those due to terms g and c and can be 

neglected i n the f i r s t order current approximation. 

When discussing this model one must r e c a l l that the equation we used 

to represent cu/"/sz R inside the surf zone (4.10) assumes that the 

distance &Z of significant longshore variations i s much larger than 

the width of the surf zone. This enables us to neglect the 

term i n cUt/jc £ . This assumption is valid for refractive effects 

in large circular bays with conical bottom topography; however, this may 
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not be a valid assumption i f there were irregular topographic features 

present to give small fluctuations to the refractive variables ( 

and (fy ). Edge wave disturbances may also give significant fluctuations 

over longshore distances Oei which are comparable to the surf zone 

width. In our circular bay problem we l i m i t ourselves to the case where 

Q£ 0- • thereby making (4.10) valid. 

We find that forcing term g, which i s proportional to 

w i l l be the most significant forcing term providing that the radius of 

curvature /« of the beach and the longshore distance &o over 

which 4> and HI change significantly are of the same order of 

magnitude (See (B8)). This i s the case i n our circular bay problem. 

Because of the sin $ dependence of term g we obtain along 

the^breaker lin e to be largest where <P i s largest. This necessitates 

the longshore current being largest where <P i s largest. When the 

radius of curvature of the beach f° i s much larger than the longshore 

distance we have the beach tending towards a straight beach solution 

and terms c and a will.become more significant than term g (See (B8) and 

( B 7 ) ) . In this case the refraction effects would be caused by irregular

i t i e s i n the l o c a l bottom topography such as the La Jol l a Canyon near the 

Scripps Institution of Oceanography i n California (see Shepard and Inman, 

1950). 

Itt.is interesting to note that term a, which i s the forcing function 

Bowen (1969b) used for a straight beach, i s smaller than term c providing 

4> exists and (fa/lfi)*'^- where 4>o i s the scale 

of (fy and ^ ^ s the change in (fy over the longshore 
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distance C?Z , and ££. i s the significant longshore distance 

for changes i n d i n term a (See (Bl)). This suggests that term c, as well 

as term a, may be responsible for the r i p currents along the straight 

beach opposite La Jol l a Canyon near San Diego, California due to any small 

refraction caused by the offshore topography. Term c i s i n fact very 

sensitive to any small amounts of refraction and must be considered as a 

potential cause for r i p currents even on a so-called straight beach where 

some small degree of refraction w i l l almost always be present. The 

following paragraphs state some recommendations for future studies. 

I t i s suggested that this linear analytical model of a circular beach 

could be extended to more r e a l i s t i c a l l y shaped beaches by f i t t i n g the 

shoreline with circular arcs, concave or convex, and solving for each 

circular arc region i n a similar manner to our circular beach solution 

and matching each arc solution to i t s adjacent arc solution. 

It would be interesting to use a numerical computer method to solve 

this circular bay problem including nonlinear i n e r t i a l terms and eddy 

viscosity as did Bowen (1969b) for his straight beach model. 

A computer program could also be made, using our general mathemati

cal model, to predict r i p current systems for general beaches with 

irregular bottom topography. A part of this program could predict 

refraction patterns for given wave approaches and wave heights and 

determine the location of the breaker line and compute 

It should be worth studying the effects of edge waves on the mean 

, thus giving us more insight i n discussing term a. 



Experimental work should be done to verify our mathematical model 

and to examine the effects of a nonlinear bottom slope as predicted by 

term d. Experiments on straight beaches could be conducted to examine 

the relative sizes of currents produced by forcing terms c and a. 
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APPENDIX A 

DISCUSSION OF SET DOWN 

The momentum equation (3«4) gives us: 

I f we have a straight beach and the waves are advancing normal to the 

beach, we have: 

1U i — o
 (A2) 

as discussed i n (5*1) and we obtain: 

from which Longuet-Higgins and Stewart (1964) got 

JS''4_ s?<fd AjL (A3) 

j - -J-JLgL .
 m  

as described i n (5*3) of this paper for the region outside the surf zone 

for = O . Inside the surf zone we assume: 

// YJ (A5> 

and S - * , - * * ^ > ( A 6 ) 

as did Bowen (1969b). That i s we assume that the radiation stress i s the 

same function of wave energy inside the surf zone as outside. Using (A5), 

(A6) and (A3) we obtain: . 

°Ll = - KsS. =m> = / c r t ( A 7 ) 

where . _/ 



82 

and Wlf is the absolute value of the surface slope. 

Jtf^ is the absolute value of the bottom slope. 

A problem arises when we have a rip current system where we know 

. Does (A3) s t i l l apply and give us (A4) and (A7) which 

Bowen (1969b) used in his rip current analysis? 

If (A3)is s t i l l applicable for our rip current system, we must have 

(A8) 

Now J-(7}lf%)=%,<L%>+X4'Ha ™ 
and using (3*3) we obtain: ^ 

^^c/fZ/, +£l4X>) ( A l l ) 

by the definition of M# in ( 3 . 2 ) . 

Near the surf zone in a large bay, we expect that velocity changes in 

the onshore direction will be much larger than in the longshore direction. 

Thus we neglect the term of (All) and obtain: 

J-(#,/%) s /o^Zt.ilL
 ( A 1 2 )  

Using (A6) and (A5) we obtain: 

J s * J J k . = ^ r / i > 9 y y ^ d ( A 1 3 ) 

Thus by forming a ratio we obtain from (A12) and (A13): 

(A10) 



Rip current measurements were made by Shepard and Inman (1950) and 

to estimate the magnitude of (A14) we use some of their sample results: 

Let Y = 1 Jl - 10 f t . 

2c/ = 2 to. = 3.4 ft;/sec-. 

. a. 
^ = 3 2 ft;/sec. ^ 

Thus (A14) becomes with J<///x - > « ^ ^ TTT ; 

or in general equals /X in units of feet and seconds. 

Hence i t is expected that by an order of 

magnitude and therefore (A4) and (A7) may be used with reasonable 

accuracy when rip currents exist. 



APPENDIX B 

ORDERING OF FORCING TERMS 

We sha l l discuss the relative magnitudes of the forcing terms given 

in equation (5.36). From (2.21) and (2.1) we see that $l)/o i s the 

amplitude of the & varying component of ^ and also of d 

i f we l e t M be independent of £P as i t is for a circular bay 

(see (5«33))« We introduce the-ordering scheme» 

— /9j)/t> for refractive variables. 

y / = fa. for term a only. 

<f> = <t>
0
<p'(e) 

jTa) •= A(y ff (P ^ general, and for 
* a circular bay. 

/^L -T>~ ~ i for the. refraction variables 
d & — (j and q> i n a circular bay. 

v% /o — rfcT({h" * ° r refraction variables on a 
^ general shoreline. 

•for a circular bay. 

5 long 
only. 

(Z-i /~sr~— sT~ jCrr f°r the longshore variable of 
/Vi? = <Ĵ - ̂ <^ 4erm . only" 

J -U d'(r,<s>) (BD 
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where the primed symbols are variables of order unity. The differentials atanc* ( J d a r e
 introduced to allow for the different 

rates of change of or i n the r and & component directions as 

we did i n (4.1). We introduce two longshore scales 6*9 and C?oL to 

allow us to differentiate between the longshore variation due to refraction 

and any possible longshore variation i n term a due to edge waves. We also 

l e t fit. f° r "term a. This i s because may not be caused by 

refraction but by edge waves and therefore may not equal 

Terms d and g 

Jerrys _y - - ~ ~ 7 — 

Using the ordering scheme we obtain: f 

Terms = - -JL £L H frJX ) 

M/ni no 

(B2) 

(B3) 

(B4) 

therefore Terms A- z_-JL 1L(r (B5) 

J * *sl ̂  t / / x 
I f we have a large bay, and i f A/S' i s of 

order unity we see that term d i s much larger than term g. However, i n a 

beach with a linear bottom and term d i s thus zero. 

However, this ratio does show us that i f the bottom were not linear then 

term d could be of great influence. 



Terms g and a . 

where we l e t 17? — hi/rA 

If £ r/fX then terms ^ -f ) 
Now i f we say kk^ then *" ° 

CL ' 
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(B6) 

(B7) 

In the absence of short wave length edge wave modulation of the incoming 

swell, we can say that the longshore length scale w i l l be determined by the 

beach curvature and then we can say roughly that fo — and so 

term g = 50 term a. As the bay gets large — ^ 0°) then term a w i l l 

be more significant than term g, providing edge waves are generated and 

l^cu i s of f i n i t e value. 

Terms g and c , 

For a circular bay we have A ^ If/ IX and &o — 7f/x and 

so we obtain: 

Terms c and e 

6

 kl C O * ^ 4 ' 
r

7

- je-
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and for a circular bay ($L = £ • - J*" w e g e t : 

» / / / / / \ 
(BIO) 

Thus, i f the primed terms are of order unity and we expect them to be so, 

we see that 

7Z,m c £.2M%rMe < B U > 

Terms c and a 

where <fcr - f the longshore arc length. We say <P 

and d change by d $ and over the distances d~o and 

respectively, then: 0^4^ ~ d & 

To1 ~~ ~az o>ar' f 

and JlsL = - jgs=-

Thus ^ _ 3(0j(K )<t<t><k (W/WT )/(iy/S/J^') (B12) 

I f 4(f/= 2=J?y'/2^ ^ and — then 

~7er*s ~~ ~ 'if hi/*?a. thus 7er»* C- *??femQ. for our circular 

bay problem. Also, Tf/VM £ = w h e n ^<^> <Po)%~ 3 assuming 

= and = CTZ . 

Terms a and e 

Terms ± = = V*L)f*S& ^/Jfjr ] 

I f we assume the primed terms to be of order unity and assume a circular 

bay where 6§= tyo - and = A 

we get: 
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^ fsi (B13) 

and If ^ ^ JlA and C" ^ ^ /£> and = / 

then we obtain: 

O.b Term e ^ Term a. ^ 1.2 l&rrn e 

_Thus terra a i s of the order of magnitude of term e i f 

i s of order unity. However, i n our problem of the circular bay, we assumed 

to be a constant and so 

Bowen ( 1 9 6 9 b ) admitted a & dependence to /?? and thereby obtained 

a r i p current system; however, according to our present theory of set-up, 

we do not obtain a variable /?? 1. Perhaps i f one were to consider the 

effects of edge waves and not just bottom topography effects, one would 

get ffl to be a function of & . I f this was found to be the case, 

then i t i s also possible that 0cL , the longshore scaling parameter for 

term a, would not equal , the longshore scaling factor for the 

refraction variables /V^and 4> . I f <%/<K>l then term a 

would be more significant by a factor of This factor i s also 

relevant for comparing terms c and a (see (B12)). 

Terms e and f £. I y \ t. 

We expect the primed term to be of order unity, so for a circular bay: 

-rr e ^ _ I 2z U (B15) 
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Terms f and b 

Tervs ̂Jllf̂  
We expect the primed terms to be of order unity and ^ / f i ̂  ^OO thus 

for a circular bay: ^ 
W^-^S-JLJU 3f _y

 ( a i ) 

Terms i and b 

je _ - 3 IL A$fJb \ 

or 7e~P/*fj ~ 2. f° r a circular bay. (B17) 

Terms i and h 
Ud cos i t 4 _t£ 

We expect the primed terms to be of order unity and A $ (fro for a 

circular bay, therefore: 

. • - (B18) 
Jems — = _ 

4 2~ 
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Thus we obtain a magnitude structure as follows: 

Term Circular Bay Factor General Factor 

3d<p n 
\ 2.r./r,i, c •• at I i hi ni & 

e 

.1 Oo I 

3 n 4<p 

(B19) 

I 


