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ABSTRACT

A mathematical model is developed which extends the theory of rip
currents developed by Bowen (1969b) for a straight beach to curved beaches
where radii of curvature are large relative to the width of the surf zone.
Nine forcing terms are found to cause rip current systems. The terms are
functions of the longshore variation in wave height and angle of incidence
of the incoming wavesbat the breakers. The model is applied to the case
of a circular beach with conical nearshore bottom topography. A large
rip current component: is foﬁnd to exist which is inversely proportional
to the radius of curvature of the beach. Another significant rip current
component is found to be proportional to the variation in the angle of
incidence of the waves at the breakers. This componenbiwould cause rip
currents on a straight beach where some irregular offshore topography
caused some variation in the incident angle of the incomiﬁg waves.
Another component rip current was found which was essentially the same

as the one predicted by Bowen (1969b).
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LIST OF SYMBOLS

A large number of symbols have been used throughout this thesis and
they are defined within the text as they are introduced. They are summar-

"+ ized bekow for the convenience of the reader.

A : constaht of proportion§11ty between set.up and wave
height (see (2.21)).

B where j = a, by ...y 1: constant coefficients of the forcing
terms.

constant of proportionality for bottom frietion
(see (3.10)).

: average #alue of /é/é

d=7+h -

Cc
C’ ¢ depth from average water surface '7 to bottom;
E enérgy density of waves.

e(a): 6 . dependent factor of 4) s ¢r= ¢o 6(9) .

9' : acceleration of gravity.

H : wave height, twice the amplitude.

H Lf': height of waves just before they break.

l') ¢ depth from undisturbed water surface to bottom.

‘[« : inertial terms in equations of motion.

K ratio of surface slope to bottom slope, K= m?/ mb
/( " : a constant equal to _Lj)/ sy (see (5.17)).
M

\d : ‘total horizontal momentum per unit surface area;
Mo = 2o/pd o= 1,20 .
"M : rate of change of d with respect to r, M= “JJ/J".

m? : slébe of mean.syrface, /?7?-7 c“/7/0//" inside surf zone.
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slope of bottom, m& = oU)/Jr‘.
L

ratio of setwdown at the breakers to surf zone width,
N= /751 .

+
. amplitude factor of 9 - dependent component of /yé

(see (2.1)).

wave number of incoming waves.

radial co-ordinate of polar co-ordinate system.

radial position of breaker line.

radial position of shoreline for undisturbed water surface.
radial poslition of shoreline for disturbed water surface.
width of surf zone, /?4 =hK-r.

variable defining distance from average shoreline,
s= G - V’ ..

value of § at r'=r£ .
mean transport velocity, tensor notation.

mean transport velocity components in the x and y
directions respectively.

mean transport velocities in the " and €& directions
respectively.

cartesian co-ordinate axes defined on the bay (see
Figure 1),

caﬁtésian co-ordinate axes defined on the incoming wave
(see Figure 2).

ratio of wave height and depth inside the surf zone,

/N =&d . (see (2.9)).

amplitude factor of 6 dependent component of d for
term a, € = ?; / },_5 .

mean surface level, 7= 0 for dndisturbed.surface.

amplitude of e varying' component of %- . 7, =;4 le |

for refractive variations.

viii
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amplitude of é varying component of 7 from edge
wave effects in term a.

angular co-ordinate of polar co-ordinate system (see Figure 1).

ratio of wave height to depth just before waves break,

Hbt= )d‘ (see (2.9)).

longshore scaling distance for refractive variables.
longshore scaling distance for edgewave effects in term a.

force per unit mass vector due to divergence of radiation
stress, tensor:(see (3.8) and (3.9)).

ten%or factor of radiation stress tensor. &."e is a
function of ¢ only (see (5.18)).

angle of incidence of waves at breaker line (see Figure 2).

transport stream function (see (3.23) and (3.24)).
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CHAPTER 1

INTRODUCTION

On many long sandy ocean beaches signs are posted to warn swimmers
of the danger of being swept out by near shore currents to water depths
over their heads. These currents flowing away from the beach are commonly
known as rip currents. They are associated with variations of the momentum
flux of the incoming surface waves and are found at specific locations
along a beach at ény one time (see Shepard, Emery and Lafond, 1941 for
an introduction to the subject of rip currents). In this thesis the term
"rip current system".is used to represent the complete flow pattern of
near shore currents, including both seaward flowing currents and longshore
currents.

This thesis discusses theoretically the effects of boitom topography
on rip current systems along a beach and presents a theoretical solution
for a ecircular bay with a conical bottom. The purpose for studying this
suﬁject was to gain some physical insight and understanding of the various
effects of bottom topography on rip current systems.

In 1941 Shepard, Emery and Lafond wrote a mainly descriptive paper
on rip currents, their flow patterns and geological effects on the beach.
Various papers have been presented since then attempting physical explanations
for the causes of rip currents. But it was Bowen's paper (196%9b) which for
the first time presented a satisfactory mathematical model of the rip
current process on a straight beach. His model was based on the theory of
the radiation stress (Longuet-Higgins and Stewart, 1964) of waves proceeding
into shallow water. In this thesis we shall expand upon Bowen's model to

include bottom topographical effects and beach curvature.



This thesis is in two parts. Part I deals with developing the
theoretical model for a general topography and Part II uses this model to
solve for rip currents in the particular case of a circular bay with a
conical bottom topography.

We chose to test our model on a circular bay because it seemed the
next level of complication above a straight beach as modeled by Bowen
(1969b). It also provides insight into the effects of beach curvature on
rip currents.

In section (2¢) we derive formulae for the location of the shoreline
and the breaker line (ihe line describing the locus of points at which.the
waves break). While this is not a very sophisticated development, neverthe-
less I could not find similar calculations in any of fhe literature which

I have read.



CHAPTER 2

THE MODEL

2a The Coastline

In Figure 1 is shown a sketch of a sample beach and a definition of
the co~ordinate systems. It is assumed that the beach ls smooth., By this
it is meant that the radius of curvature of the shereline is much larger
‘than (at least by a factor of five) the width of the surf zone (ry-r 4)
and that the bottom slope is small.

| The breaker line is the locus of points at which the incoming waves
first break on the beach. The shoreline is the locus of points of the
time averaged (over several wave periods) location of the land-sea
boundary.

The origin of the co-ordinate éystem is determined by the average
~ location of the centers of curvature of the:beach within a given region.

The radial distances ’} and ’14 will in general be functions of & .

2b Wave Height and Refraction

When uniform deep water waves proceed toward a non-linear shore,
we expect the waves to be refracted by the bottom topography and thereby
to have variable wave heights as functions of their longshore location.
The éubject of refraction is discussed in the US Hydrographic Office
Publication Number 23hf Analytical and graphical means are available for
estimating, with reasonable accuracy, the refraction patterns of waves on
beaches of any shape. However, in this thesis it is sufficient to make an
educated guess at the refraction pattern of a given beach based on the

discussions in US Hydrographic Office Publication Number 234.
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. We are interested in determining the wave height at the breaker line

ﬁ/ 4+ as a function of position on the breaker line. wé let:

ML= D(1+pH(e)) (2.1)
where D is the average height along the breaker line, .D/b is the
amplitude of the varying component of /l/‘* and /%/9) is the e
dependent function of unit amplitude describing the variable part of /7/ é $.

In Part II we will consider a circular bay with deep water waves
advancing in the positive y co-ordinate direction and we take to represent

,9/, ~ —cos 28

a reasonable refraction pattern the relation:

ML= D(/ — p cos .29) (2.2)

The functions we choose to represent. /7‘[9) and e (5) . as

and so:

discussed in the preceding and following paragraphs serve merely as examples
of possible incoming waves. If one wished to estimate the rip currents on
an actual beach one would first have to measure or ofherwise determine
the /q ! (9) and e(9> function applicable to that particular beach and
wave approach.

| We are also interestedéin the angle of incidence of the wave with
the breaker line. To deal with this analytically we define a co-oxdinate
system as shown in Figure 2. The X axis is in the direction.of the phase
velocity of the refracted wave at the breaker line. The angle of incidence

@  is the angle between the X axis and the radius vector /4 . The
Y axis is parallel to the wave crests. We let:

o= Qe(e) (2.3)

where 43, is the amplitude and € (9) is the variable function 6f

order unity expressing the e dependence of ¢ « In our circular



beach problem we will let:
b= Qcoso (2.4)
On a large smooth beach we expect the incoming waves to have had
sufficient time to adjust t6 the bottom topography such that 4bo will

be at most 15° . Thus we make the approximation:
sin ® = ¢

(2.5)
cos ¢ =/ )

2c__Surf Zone Geometry

In this section we discuss the effects of wave height H on the
shoreline. To understand the followiné discussion, it 1s necessary to
understand the theory of set-down and set-up as described by Longuet-
Higgins and Stewart (1964).

Figure 3 shows a cross section normal to a beach., In general the
r co-ordinate will not be normal to the beach everywhere, but for the purposes
of this discussion we assume this to be the case and this saves us introducing
a new co-ordinate system which would, in general, have components normal
and parallel to the beach. The bottom slope /77! is assumed constant
and the seflup fheory indicates that the surface slope /727 is also
constant for a given bottom slope and wave train (see equation (A7)).
In the following discussion we shall derive relatlonships between the
surf zone measurements ,10 ’ Yos ’ ’?“ ’ %? (see Figure 3)
and the height at the breaker line of the incoming waves .A{éf

From Figure 3 we see that: <( 6)
2.
mbles = 77,54 — 7 |

the run-up distance [os is thus: .



undisturbed surface slo pe, my
surface

T
)
I~ —— T <
din) he
hb
bottom slope, myp
)

Ios

Y

~ Tsp

Figure 3

Profile Normal to Beach

s




Now from (A4) we obtain: 2

_ Hi® (2.8)
7 = "7('”‘) s 778 -

where q is the wave number of the incoming waves.
We denote by /7’4 and /'/ ! respectively the wave height at [ = e l

Jjust outside and just inside the surf zone where:

HiT=2d | K= 49 (2.9)
or HA/H‘ = X/X

where l and )) are constants of order unity. Thus from (2.8)

and in shallow water we obtain for the set-down at the breaker line:
kN

= HE :
'ZL /b ,7‘ ' (2 10)
Again from Figure 3 we have C/L = ML wnere M= M- m? , then

- from (2.9) we obtain:

Hér - A m Il (2.11)
or, for the total width of the surf zone, including run-up, we have:

HEY/ A m

Also we have for the undisturbed depth at the breaker line:

by = M1k rie (2-12)
Thué using (2.12), (2.11) in (2.10), we may write the set~-down '?6 ass
S = L Am/BLYn (2.13)
7 $= 7% b Fo ) ¢
or, for short, - _ .
'ZL - A/,;‘ (2.14)
where - 1,2
= b =_LAm K4 (2.15)
vy [ /6 14 T
and N K /
Thus (2.7) becomes
Vos = —!—(mf"/‘o Vds | (2.16)



From Figure 3 we get for the distance r Ao from breaker line to the

undisturbed shorelines

Plo= 5= 1os = g =31 (17 - N) 1

or Fdo -~ - =N me N
rsi (/ 174 ) T i (2.17)

Thus from (2.15) and (2.17) we obtain:

N= L mtf _mb \ — L ;21/97
/6 Tmp | mr N 6 1+ NV

".or 2 __.___l_ [ z:-
WARR LAY Aw =0

T

_ L L
which yields: W"-‘ _ ﬁ : Y77/ (/ + 2 z
2 2 y
/‘/ must be positive and using the binomial expansion we obtain:
N2 L ‘
N = m2,[/—_1+.....) = 4 (2.18)
/4 /6 /& |

Thus /V is a constant. From Figure 3 we see that:

7 =y (r=rd) — 54 = my(re—rb)+ my(r-r)- 74 (2.19)

Using (2.17) and (2.14) on (2.19) we obtain:

7 = 71 ()R - i ()

ox > = 2 (- (-
7= Z(7 W) b + 7y (r-r)

(2.20)

 From (2.11) and (2.20) we obtain:

p () W+ 7yTR)= AR ()
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Thus, according to our present model, the set-up is determindd by the
breaker height and the slope of the bottom. (note that /”7: K my H

see Appendix A, eguation (A7)). Also, from (2.17) and (2.11) we obtain:

~ — (. m+N LA //z'r g
rln"' m )Hé = Zm‘ : (2522)
\assuming 1&/:: _éll << /
m /6
lFrom‘(2.16):
=y Mg=N ta M7 W7 (2.23)
os ~ ;{’77/724 )4AZ! ;Z;??lﬂg 2.23

"\Thus, we see that the distance of run-up on the beach ’35 and the
position of the breakers rl, are dependent on the bottom slope and
the breaker height.

In order to gain some familiarity ﬁith the magnitude and accuracy of
these equations, we compare calouiated results based on these equations
. with experimental results taken from Bowen, Inman and Simmons (1968).

These results are shown in the following table.

measured calculated
H hs K r, i m r r T
xp| O A T P I . TR I S )
cm,

cnm cm cm cm cm cm cm C1 cm

7L/3 440 | 8.150.27 || 75 o.17|t.48|-022] 52 | 19 | 71 | o0.30] 1.5§ 1.06

51/ 6.60| 5.0(0.32 || 85 {0.19! 2.071l.026 | 61 19 | 8 |o0,.50! 1.541.32

35/77.75] 5.910.39 || 110{0,18 | 3.371[-032 | 72 | 28 | 100 | 0.54| 2.3 1.3t
B5/15(13.0} 9.710.37 || 165]0,43 | 4.65]-030 | 120 | u4 | 164|006 3.61.34
where m; = 0.082




Note that we are able to predict ’24 quite accurately. Our predic-
tion of {Zﬂdx is within 30% of the measured value and 454 | is
"almost 100% too large.

Bow;n, Inman and Simmons (1968) explain this discrepancy by noting
that near the break point the wave fdrm.is not sinuéoidal and therefore,
our set-down theory is not reliable at this point, since we assume a

sinusoidal wave form.

11
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CHAPTER 3

THE EQUATIONS OF MOTION

In the following discussion the cartesian tensor notation will be used.
The eﬁuations will be kept general - go. that they will apply to a general
coastline without restriction to a circular bay configuration. However,
we shall assume that the radius of curvature of the coastline is always
large; that is, at least five times greater than the width of the surf
zone. |

In deriving the relevant equations of motion we use the equations of
conservation of mass and horizontal momentum as given by Phillies (1966),
- and we assume the time averaged motion to take place only in the horizontal

plane. Theselequations are respectively

___[/a(wé)] °’ M, = (3.1)
and Md = (Z?/W +§§4>¢
~

(3.2)
- A
where 0/0/ and /W,( = /@"’4) _2(0‘
a’xx
We assume that the short-term time-averaged variables are steady, so we
obtain:
4 My =0 O (3.3)
Xy
A
and A (2(,/% +5,«A) = 7« (3.4)
K

By expanding (3.4), using (3.3) and dividing by / 470('7—4- 4) we obtain:

Ted Hu= gL 7 -2 d3n
2{479%“ Tget ol %

(3.5)
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.
Writing (3.5) in cartesian co-ordinates with Z( )= ¥ and Z(:. =
where 2¢{ and U are the net velocities in the x and y directions

respectively, we obtain:

2(9)2(+U'o)u —-—-\7?_).7. +.)-;C (3-6)
- IAN Jy ‘

and? 4 JU' a/U_ _-— J7
I +Vo/é¢ j;/}Z— + % (3.7)

where P £ 0/530‘ Q),S-
I 2 ‘jf‘y' (3.8)

and :)’: ~—(&)5>’X+oi;;yy>

Equations (3.6) and (3.7) were derived for an inviscid fluid. For a viscid

(3.9)

fluid we add the extra friction terms /61 ) }ZV « The friction force
should besucomposed of a bottom friction term and an eddy viscosity term.
In this paper, to simplify our equations we use only the bottom friction
term and assume that the eddy viscosity is negligible. That this is not the
case for the entire region over which we are seeking a solution will be
seen later; nevertheless, we shall still obtain useful qualitaéive results
using this assumption.

The bottom friction force aeting on a total column of water of unit
area and height 4 with mean velocity 2%<¢ we will assume to be a linear
function of the mean velocity. Thus the bottom friction force_on a column

per unit mass of the column is expressed as:

= = cd K, = -«
ﬁx T ) 4 )
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where ¢ is a proportionality constant with units of length over time,

In polar co-ordinates we obtain:

_ ~clUr = -¢clUs :
fn = ETf , He c e (3.10)

Thus the complete eqnations of motion in cartesian co-ordinates are;

wJd2u L USU — - <7 + R (3.11)
o= aéjf gf?°1=t: '+':};( X L
and U 4, U - - 2 +Jg + R
¢ i Y /éﬂ 4 4 (3.12)
In éartesian tensor notation these are:
UdUs = —9 L2 +e + 5o (3.13)
Ay I ‘
and in vector notation
(Z('V)Z(= —9vr+AR+F (3.14)
We may eliminate i; by taking the'curl of (3.14) which givess
curl (é‘ v)y = curl E + cur/ 2’ (3.15)
Transforming (3.15) into polar co-ordinates gives:
JTo _ JIr . To - S _ JdRe+ Re (3.16)

Jr rJ/é e A rdé r

+o’379 -0/32+379
Jr rJé r
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where the inertial terms are:

Ly = U;:Q}._Z/;-;- U;o/ﬂ;_,__d_é | (3.17)

la=Vr~'QZQ_;+ Us b 4 Urte (3.18)

and subscripts I” and © indicate components in the direction of r
and & . Equations (3.17) and (3.18) are noﬁlinear. In his theoretical
paper on rip currents, Bowen (1969b) neglects these nonlipear terms in
order to obtain a simple analytic solution.

Arthur (1962) shows that the contribution of these nonlinear terms is
to narrow the currents proceeding to deeper water and to widen the currents
proceeding into shallow water. Bowen (1969b) solved this nonlinear
equation for a linear beach using a computer and the significant difference
between his compﬁter solution and his simplified linear analytic solution
was this narrowing effect. Therefore, we expect to obtain reasonably good
qualitative results by neglecting the nonlinear terms and equation (3.16)

becomes:

- curl = R = curlz I~ (3.19)

or C’“E; -01&29..4E%9:: o e _ 0/737‘ 7%
B Jr r Jr ro/& +'Fﬁ (3.20)

We call curly T the forcing function. 1In Part II, we shall apply

equation (3.19) to the case of a circular bay and obtain an analytical
solution, however it is important to note that (3.19) is quite general and

does not only apply to a circular beach.
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From (3.3) we get: -
__/___ O/Ma( =)

- 3.21
~d Jx. (3.21)
or using the definition &y = ._M_‘_‘_ we obtain:
od
~
Div (c/ Z(o() =0 (3.22)

L

which is the integrated continuity equation. We introduce a transport
stream function q/ (Arthur, 1962) in polar co-ordinates which identically

satisfies (3.22). We let:

) QY

Ur= —g ) ' (3.23)
Up = -a'— -J—,L{L | | (3.24)

where J =7- + ’) as previously defined.
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CHAPTER &

THE FRICTION TERMS

It is convenient to speak of two zones: the surf zone ( [‘é Krik ;
oL 8L ?') and the area outside the surf zone. We shall see in the

following discussions that there are specific differences between these

two zones.,

B

4a The Surf Zone

Let us examine the individual terms of curlz R = 0/.& -0_/_8" + .&Q .
~ Jdt rde T
We wish to examine the relative sizes of these terms so we introduce the
following ordering scheme, Let the primes denote non-dimensional variables

of order unity.

Vs = Vi 7 Jo = Z /6
ve= Vbop' r=r:r"
Jr = LI Jdr)= hdd®
din)= b 4o Jd@)= 7. Jle)

— where V L is the maximum expected velocity. It may be of

the order of 2 to 4 knots for a linear beach (Shepard and Inman 1950).

We introduce two differentials for d representing its changes in the r
direction which over the width of the surf zone will be of order 64

and its change in the 9 direction which wlll be mostly due to ché.nges
in ? in the e direction and are of order 7, = /Q _D,b

(see (2.21) and (2.1)). v, is the average width of the surf zone
J
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nd AA  is the average still water depth at the breaker line.

From (3.10) we obtain:

SR _ _
A

2%  c Vg dd
Jr

<
g{— 0/,. C/; (4.2)

Using (4.1) we obtain:
4 /
e _ 5 M (.3
S

Using (3.10) again, we obtain:

AL — < JOF o
r /8 d n/e iz u;/%/‘é )

and using (4.1) we obtain:

o//(ol‘ = -2<W} o_/Q_F, o/c/ (4.5)
rde M lorr| <6 ; ;,7 ;;

The terms in brackets in (4.3) and (4.5) are of order unity. Thus to

compare a’Pf‘/“o/g to a/ /?QA/ /"~ we take the ratio:

S o//?s = _RW [y _ N (4.6)
== K Hm 7%

We assume we have a large bay and so 2 /5 ‘//3 < / .
Thus we can neglect the O/M‘/ & term relative to the 0/ p& /o

term.
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Again using (3.10) we obtain:

Lo . - e (4.7)
r ro

and using (4.1) we get:

&__CVZ( )
=

= (4.8
rd ‘
Comparing _E_e with & F © we obtain:
r Jr
Pe /i - -cV4 <V - T«
Jr Z_ 4 V54 Ve (4.9)
for a large bay. Hence we can neglect the ‘X;'T's term relative to
O_{_P_Q o Therefore in a large bay and inside the surf zone

region we have:

curl= B = j f é (%.10)

Using (3.10) and the transport stream function defined by (3.23) and (3.24)

we obtain for (4.10):

carl = /(7 = - /o/ z% a;mjr¢) (4.11)

where we define: J</ = —=/7) inside the surf zoéne. (4.12)

r
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Later we shall use (4.11) in the left hand side of the main equation (3.19)

for solving for the current inside the surf zone.only.

4b_ Outside the Surf Zone

In this region we cannot in general neglect the same terms of cur/ 2 5
as we did in the surf zone because we are no longer dealing with a narrow
zone at a large radius r from the origin. WVWesshall use the full expression
for C M"/ 2z 5 in terms of the transport stream function qj . Ve

obtain:

cur/z /?= i&—ﬁf-}-&
~ r rd& r

——c[ JW ~2J4dJY, 1 Y (4.13)
d*| drr d Jrdr ¥ Jr
-2 J¥dd , oﬂ]
r. J& Jé rt Jet
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Equation (4.13) can be simplified. We assume that outside the surf
zone the depth 4 of the mean current is equal to ? +* A!, + Thus we
say that the mean current does.not extend below the depth AL which is
thev depth of the undisturbed water at the breaker line, Shepard and Inman
(1950) found that rip currents seaward of the breakers do not extend to the
bottom. Although their results do not enitirely support our assumption they

do point towards that direction. This assumption should be regarded as a

crudei simplifying one. Thus we get o/o%/f‘ =0 .

We shall also neglect the term containing cla/ / o/ & ., 1o justify

2
this we shall compare the -—;-zjjg 5) g and ﬂ terms using
riJe*

the ordering relationships (4.1):

LYo o (rdoF)= Wﬁna'%z

Je* Lo
rVé }24[_%0'_55[ +Ja/”_ (4.15)
7/ Tode
e 2 Y I - _2rurdk —-Jrl/ug 7,(}'020/ (4.16)
d o4 7 T
Thus
J Y8 rVU )zl_a*;/;/ o/:’Z',
_Z;‘J_?O/C/ ?—/Z V/Z 71 ojf//
J 46 1o T s/ e
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The primed terms we assume are of order unity. The ratilo A 1 >7 / and

so the term containing O/JA/ €  will be insignificant rela.tive to
2 2
the 0} %9 term. We therefore neglect the 6/ O/ /o/ ©  term. Thus

‘equation (%.13) becomes:

( 1
z _efd ¥,1 ¥l olf) (t:18)
CU/‘/Z. E dz/;—(—r—;"'r\ J/‘ +/\1. 0191_

To conclude our discussion of the friction terms, we now have two
forms for the expression cur/ 2 Z_? of equation (3.19). These are

as follows:

curl z

c/ (Jr + o_i_lﬁ:;_}_l_f) (4.19)

inside the surf zone and

Cur/zg :*5[o/z¢+li¢+}ji 917'%) (4.20)

outside the surf zone. We shall now discuss the radiation stress terms sb

that we may put equation (3.19) into a workable form and solve for SI/ .
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CHAPTER 5

THE FORCING TERMS

In this chapter we shall discuss the CLII“/ 2 2., terms in
equation-(3.19) and as defined in equations (3.8) and (3.9). We call these
terms forcing terms because they réﬁresent the driving forces, due to the

excess momentum flux of the waves, which cause the rip currents.

5a OQutside Surf Zone

Fron equation (3.4) we get:

——(7Z@;+i&§ T?/?Jﬁ7 (5.1)
7y A %g
For a linear beach on which there is no. variation in the longshore mass
flux ( e %ﬁ,__.a ) we have from (3.3) ?7/_& =0 . But Mx
mist be zero 4t the shore and hence M, = ox , thus 27 =24 =

and (5.1) becomes:

d——o,i‘x */7‘/% =0 (5.2)

since S, for a plane wave traveling in the positive x
x

g =°

direction. From (5.2) we obtain=: the relation:
2

?:_J ﬂi (5.3)
' g sinA 234
where H is the wave height and 9 is the wave number of the
advancing wave (Longuet-Higgins and Stewart (1964)). Bowen (1969b) used

this derivation for 7 to show that the gradient of the radiation

stress is balanced by the induced pressure field and that there are noinet
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forces outside thessurf zone that might produce circulation patterns.

However, (5.3) is based on the assumption that z_/_a# =0 which
g
'is not in general true for a rip current system. The discussion in
Appendix A shows that the inertial terms may be neglected in equation (5.1)

for a rip current system, thereby making (5.2) and (5.3) reasonably accurate

where rip currents are present. Using the y-component of the radiation stress

(Longuet-Higgins and Stewart (1964)) where

= L /4 (5.4)
el

and equation (5.3) we get:

/ja/g_/f_/, dSe =0 (5.5)
/s oY

which confirms Bowen's finding as stated above providing (5.3) can be used
for the rip current system. For the moment, using the X,:¥ co-ordinate

system shown in Figure 2, equations (5.3) and (5.5) become:

Lfﬁz +/0j°/.z)_f o (5:6)

o/ O)_S'yy _ (5.7)
99 5% + 5~ °

respectively. Note that 5 = Sxy = O ; (Longuet-Higgins and

Stewart, (1964)), Substituting these relations into equations (3.11) and

(3.12) where x and y are replaced by X and Y respectively, we obtain:

U o/%x U 0)2(!( = A (5.8)
“ox T *
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Uy 0)2(1, " z(,,&, = P&
| Ix Jy y. ’ (5.9).

or in tensor notation using JKZL as a generalized co-ordinate:

2, g)Z(é — /g; (5.10)

4Xs

‘Taking the curl of (5.10) we obtain:

corlz K = curlz 7 (5.11)
P ) P -
where ;Z- was defined in polar co-ordinates by (3.17) and (3.18).
(The ~A~ under a symbol indicates a vector quantity). However, since
we neglect the nonlinear terms .Zr we obtain:
Lo d

curl = ,/f_? = O | (5.12)

outside the surf zone where the gradient of the radiation stress balances

the pressure gradient.

5b__Inside Surf Zone
Bowen (1969) assumed that inside the surf zone the height of the

broken wave is directly proportional to the mean water depth d.

M= )/a/ ' (5.13)

Also in the surf zone the water is shallow and hence from (5.4):

Sy = /f/j/yz (5.14)
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'Using these relationships Bowen (1969b) showed that the longshore component
of the radiation stress is not in equilibrium with the pressure component
longshore. Thus we have cdr/ = 5 # 0 inside the surf zone and

there are current generating forces inside the surf zone.

5¢ Radiation Stress Tensor

As the waves approach the bay from deep water, they are refracted and
inclined at an angle ¢ to the normal of the béach at the breaker
line (Figure 2). If our beach is large, as we have assumed, then the waves
should be almost plane. We shall assume this to be the case at the breaker
line and inside the surf zone. |

Refering to Figure 2 where the X axis is It.he axis of advance of these
plane waves, we have the radiation stress for the X aﬁd Y axis given by

Longuet-Higgins and Stewart (1964) as:
Sxx = .E,F) Sy, = £F

Sx y = Sy =0
¢ where E is the energy density of the waves

2
—_ /
= 7/3// (5.15)
or using (5.13) for H inside the surf zone we obtain:

, 2 _

Sxx = 23 éOC/ | (5.16)
2

Syy = ,(/00//1 ‘ (5.17)

where 4:#\7)/’- s 3 constant.
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Transforming _S-“ @ from the X, Y co-ordinates to the r,é

co-ordinates by a rotation of co-ordinates through the angle ¢ we

btain:
° , . r3 ~2 .s‘/nzi, 5/’»72.?4’
S,, = o < (5.18)
@ = B0 .
sin R 3-2cos®
| 2 ¢ 2,

or
5"% = /(/C/ ése (5.19)

inside the surf zone. @u is the téensor shown inside the square
brackets in (5.18). Here the indices o and /S each take on the
values 1 and 2. We assume that C/ and ¢ are known variables for a

given beach with a particular wave system. They can be measured, calculated

or assumed. (see Breakers and Surf, HO Pub. 234).

54 Foreing Terms (Inside Surf Zone)

Since we shall be using polar co-ordinates we use the identity:

curl 2 7 = /e J%'f_j:‘_’.‘ (5.20)
~ Jr rJ/é F

where from (3.8) and (3.9) we have:

Yoe — L L2 (5.21)
20 A
in cartesian tensor notation. Prager (1961, p. 37) gives the polar

co-ordinate components of the vector 0/ 7.¢J . Using this relation

on (5.21) we obtain: of=2C:
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(O/S’”+o/5‘9,”+_5_7‘_£, _5:21)

rd? r r (5.22)

and

rJé

:Aj(&g_/_o/fe"_szw) (5.23)

Now we must>determine _5244? in polar co-ordinates in.terms of
independent variables which can be somehow measured directly from the surf
zone or caleculated. These variables are 45 and A%{

Thus we are now prepared to calculate CW‘/ Zz 2’ in terms of

known variables. From (5.23) we obtain:

Srr = 2hod il
50 = 2o 5 L
25er = 2hpd Bl + ol Ui .

r/e
d3re = 2,(70/ ?,2_%:

J r
& 2 C/ : 22
%;}%f = Q&Ao/.fz 7%//'5""/(/"/%

Thus substituting (5.24) into (5.22) and (5.23) we obtain:

j;: —24},,}/‘;{_24@/—;%, /é(/:;:/%-—/;__‘l/ &' +7.'€."-/ﬁl

(5.25)

Tou-ab ol kol 30Bs 2l
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| Notice that we have not neglected the J‘//./g

in discussing the friction terms because they provide significant forcing

terms to the overall forcing function C l//‘/ 2 I

terms here as we did

+ From
(5.25) and (5.26) we obtain: J é_ Ozt/
0/97".. ,0/0/ 2/\—0/// o/a/ kPt e
akfr/&/r e Ir rot
-2k o/}/z Ao _ kdy }—z —ko/a/o/%z (5.27)
0/9 /‘0/5 10/9 /‘o’

P a a/ zzo/t/ /46/0/ 22
_A;ci o/SZ /rﬁ o/ +/ég 1Ly &= /g

o/fe _ _2%4 J,za__ 2k Bun bl /m/ o@u

o e
—~ Rk éFll __?_/___.a/ .4 olé;’?' (5.28)
r A8Jr rJdr e g

s |

| (5.29)

kP _ 24 e >
,s'L
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Substituting (5.27), (5.28) and (5.29) into (5.20) and collecting like

terms we obtain:

carle F = zw, fn)w .k [42, ,,>of(/]1

(4 )O/{zl _o?/éézg_)_o/

J/~ & @
+ka2«>/a’ +c/)o/f// + ! O/?fﬂ /A
e /6"
To" e
- i_’é ?82. .O_’Q/ 5+
r A

Notice that equation (5.30) is .a general equation regardless of the shape
of the bay or its bottoﬁx contours. The terms have been numbéfed from 1 to
9 and grouped into three categories, I, II and III. Category I includes
all the terms which would be non-zero if the waves advanced normal to the
beach, that is ¢ =0 . Cotegory II inclu&es all the terms which
would be non-zero for a wave system in which ¢ will not be |
zero everywhere and the mean water depth 4 is not a function of é .

That isy these terms represent forcing functions due only to the non=zero angle."
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of incidence ¢ of the wave system. Category III is the
left over terms which are non-zero when Categories I and II terms are both
non-zero.
We can calculate the mean water depth d in terms of the breaker wave
.f-
height /é/ A 49) as discussed in section 2c. We obtain from equation

" (2.21) the following:

d=F+h= AWMy +m(r-r) +m(r-r)

where /q is a constant; ”77 and /77/ are the mean
slopes of the water surface and beach bottom respectively. Thus we obtain

from (5.31):

QZQ_/ = ~(/77/"”7)= - 77
Ar

(5.32)
and
Jd _ * L (herE
;/Q—/; - Af'z/.'éi » (7 P'/é (5.33)

Also, inside the surf zone:

91?_/ =2 _9_/ (5.34)
'Za 7
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and if we assume a circular bay, we have:

?,/{7_7 '= 7, | (5.35)

Using (5.35),+(5.34) and (5 18) in (5.30) we obtaln

curl z = Jf m.ch Jd 4 Mc,,zqﬁ ,///J" T
Zy B

(5.36)

Zf +,4C/ caf>@24’ a)¢ 2 smow[ /-/-0_7&’2 sindd

® © 4
| L™ 34 cosdddD L
qr [ +hE sin 29 0:/5»1 +3ﬁ 07345

where )é = %\7)/2 » a constant.

5e Discussion of Forcing Terms for a Circular Bay

Equations (4.19) and (4.20) are both linear in L// . Thus we may

take each term of CL/I‘/ 2 2’ and solve for its corresponding
value of L)V and add the solutions to obtain the total solution
for V’ . We can regard each term in (5.30) or (5.36) as

a forcing function for its own rip current system. It is of interest to
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examine each of these terms and interpret physically what causes them to |
exlst.

We first describe the relative magnitudes of the terms. We do this by
ordering each of the terms and comparing them. The exact célculations for
(5.36) are given in Appendix B. - The only difference between (5.36) and
(5.30) is that we assumed /¥ ;é')77(159 for (5.36)which gives us a
circular bay. For a non-circular shoreline (a straight beach im considered
circular with FV —> o0 ) the effect of (&) may be large;
however, in this thesis we consider only the next level of complication
above a straight beach and that is a circular beach, Thus we order the
terms for a circulaf bay. Por a circular bay we-assume the independent
variables ¢ and ly é 4 to change significantly over the angle

& ==77741 and we use this in our ordering scheme in Appendix B.
The fesults of this ordering process are given below.

The terms are arranged in descending order of magnitude. Beside each

pair of terms is the multiplication factor relating the two terms. For

example: 'F} _L/ means term f & -4Yx term b .
b .

Term Factor

} 1r/ni
9 y

C ,
r/rs
a # e} 14 /Fb o (5.37)
. F;
b 1
2
J

h} 3/ 2
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We shall discuss each term in descending order of magﬁitude. Term d, the
largest term, exists if (b # O  and the bottom is nonlinear in the

r direction. We expect that on most sandy beaches the bottom will be

» almost linear and hence term d will be small on such a beach. We shall
neglect this term in our circular beach problem by assuming the bottom to be
linear.

Term g then will be the largest term for a beach with a linear
bottom. We see that ferm . g vanishes for a straight coastline ( r—= ,a) .
For a curved coastline, term g exists only if d) -'-';é o and there
exists a bottom slope. Thus we may conclude that term g rip currents on
a curved beach are produced by the angle of incidence ¢ of the
waves onto the beach. And these currents will be the ones most easily
observed since they will be the largest.

Term ¢ depends not only on the existence of ¢ but that ¢
is a variable function of e . Thus on a straight coastline where it
is possible to have ¢ non-zero but constant in the longéhore direc-
tion term. ¢ would be zero and thereﬁy not produce a rip current. In our
problem ¢ = ¢( 9) and term ¢ is significant. Along a straight coastline
there will still likely be some variation in the bottom topography such
as the La Jolla Canyon off the coast of Southern California. This will
make 47 vary in the longshore direction, thereby creatiﬁg the forecing
term ¢c. Term ¢ will be of order of magnitude of term a or greater if
( d)o 44){ is of the order of 3 degrees or more where ~ ¢o is
the scaling wvalue of ¢ and A & is the expected change in

4) over the longshore scaling distance Oo .
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Thus we see that term ¢ is very sensitive to changes in (p .
Term e depends on the existence of d) (9) being a nonlinear
1 2
function of & (1e. o QfO" # © ). This will

usually be the case where the bottom topography is ﬁregﬂar.

Term a is the forcing term Bowen (1969b) found to produce rip
currents along a straight beach. It depends on the longshore fariation of
= - O/C/ / o/ r + We have discussed this under surf zone geome-
try and if the r direction is.normal to the beach (as it is for a straight
or circular beacﬁ) then the bottom topography effects will not make

m a function of & . At this point we just let
0/ C/ / o/ /” be a function of e and say it is due to edge
wave. effects. This shﬁuld be the subject of a future study; however, we

shall assume it to be true for now. Quantitatively we let:

J: ms(/ + 6/4/{9))

(5.38)

where (S is of order a/éz = 0.0

We see that for a curved beach term g will likely dominate the scene
but as the beach becomes morec oi; a straight 'oz;e, terms”c, e and a play a
more dominant role. If the beach were perfectly straight without irregular
bottom topoéraphy, then term a would be the only term available to produce
rip currents. This is the case described by Bowen (1969b).

The remaining terms f, b, i and h are of less significance; however,
it will be interesting to note in our circular bay solution the character-

of the flows these terms produce.
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CHAPTER 6
SUMMARY OF PART I

We are now prepared to use our mathematical model on a given
topographical beach. First, however, it will be useful to summarize
our mathematical model.
. In deriving it, we made the following assumptions:
a. All averaged motion is in'the horizontal plane.
b. Wave reflection is neglected because of the small bottom slope,
c. Eddy viscosity is neglected.
d. Bottom friction 1s linear.
e. At the breaker line the waves are assumed plane.
f. Ve assume a large bay such that ’3“/ e < 0.2 .
g. The energy density £ of the waves is equal to ZL/Oj” *
inside and outside the surf zone.
h, The breakei height H is directly proportional fo the mean
water depth 4 inside the surf zone.
i. The rip currents do not extend below ¢/== b‘ outside the
surf zone.
j» The non-linear inertial terms are neglected.
Apart from these assumptions our model using equations (3.19), (4.19),
(4.20), (5.12) and (5.30) is for a general beach with arbitrary bottom
topography. For a circular beach we assumed only that c‘d&éd” ==m
was not a function of & . Thus for a circular beach our model consists
of equations: (3.19), (4.19), (4.20), (5.12) and (5.36). For a circular
beach we expect term g to produce the most significant rip currents. As

the beach straightens out we see that terms a and ¢ will become dominant.
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~Term a is likely generated by edge wave interaction effects (Bowen 1969b).
The approximated form of cuarl z 5 (equations (4.19) and (4.20)),

does not contain any derivatives with respect to & . This implies that

the © dependence of Q) will exactly correspond with the & dependence

of each of the forcing terms.



PART II

CIRCULAR BAY SOLUTION

38
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CHAPTER 7

THE PROBLEM

7a The Equations

We shall solve for LV using the mathematical model derived in
Part I for a circular bay. The equations to be solved are as follows:

Inside the surf zone we have from equations (3.19), (4.19) and (5.36)

‘ _(J‘% +dmy _f):' grj;cg?wu ,,.g_zc c@.zw//z*

J Jr Jodr Jo

@, @ ® ®
+3 inddde _fsin d cos ;
_;("f_” sin ‘bﬁ? ks 243.’_;. + & 2&} :.. 1}% sinld (JJJ)
(7.1)

@ ® . . © .
+2Km gip 24 +A’ﬁ$r'n2¢iﬁé + —ikfcos::?lpié&)ﬂ
r~ rt 0192- rs J9J6
where l(: -81-3)’1

The forcing terms in (7.1) are arranged in descending order of magnitude
(see (5.37)). Outside the surf zone we have from (4.20) and (5.12):

(a) in polar co-ordinates:

A QT ST A (7.2)

(b) in cartesian co-ordinates:

o) v, O)lq/ _ 0 (7.3)
Aa* Jy

We must solve these equations according to the boundary conditions discussed

in the following section.



7b_ The Boundary Conditions

As discussed in Section lc, the width of the surf zone ’}é will
change sigificantly due to wave height changes at the breaker line. For
example, if the wave height varies by 50% over an interval, the surf zone
width will vary by the same percentage. Thus if we were attempting to
obtain accurate quantitative results we would have to make the boundaries
of the shore and breaker line as accurate as possible. This would involve
tedious matching problems at the boundary involving Fourier series. The
result would give us stream lines which wiggle with the shoreline, but
would not change the overall rip cufrent patterns which we are attempting
to determine. Therefore we will take the space average values of the
radial components of the shoreline and breaker line, denoted by ;E'
and FZ respectively, to represent the boundaries of the surf zone;

We assume that the deep water waves have a phase velocity parallel to
the y axis of Figure 4. 5Since water does not flow across the shoreline
( rs= E ) y >0) s the shoreline must be a stream line and we
arbitrarily let v/ have the value of zero at the shoreline.

We divide the bay into three regions, A, B and C as shown in Figure 4.
In regions A and B we use polar co-ordinates and it is convenient to use
cartesian co-ordinates in region C.

It is not necessary to assume deep water waves with phase velocity
parallel to the y axisj however, since we must assume some sort of wave
approach, this one seems the most convenient as it will 1lsad to symmetric

rip current distributions. Later we solve for a case where the wave

approach is not parallel to the y-axis.
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At the shoreline U—;‘ must be zero. Therefore ol 4‘4/9:0 at
r '=i§ ) OLBL 7 . At the shoreline s  will be zero due to the
bottom friction - :.‘.éheei (3¢10)) ' . Therefore o) W/ =0 .t
r="r ) 0 \4 9\< » « At the breaker line UI-: must be continuous
because of mass conservation, hence o/ (/// (= is continuous at
r= ,Z) 0 \( LN . Also "P itsélf must be continuous at
r=prl since we cannot have o ‘f%/r‘ — o©  yhich would imply
Us —» «© .

Also we know U—; s in physical reality, must be continuous,
otherwise we would have an infinite shear which is not physically possible.
However, this continuity is based on there being eddy viscosity present
vwhich we have not included in our model. Thus we will not insist that

U; or 0( ¢/ / 7" be continuous at the breaker line or any other
boundary; however, it turns out that it will be continuous on the breaker
line using only bottom friction in our model.

The boundary conditions are summarized as follows:

a. ‘-l/=0 at V= ,-; ) o \(6\(77' (7.4)
b. . 3’__‘P=a i r=lh, 04e&r (7.5)
- e
C. Q[_‘_P_:_—_ o at r:/; ) 0\(9\(7 | (7.6)
Al .
d. %‘,ﬂﬁ = _O_I_(é'z at f‘:;; ) o \(g\(” (7.7)
& oy

where subscripts A and B denote values in Regions A and B

respectively.
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e. ¢ﬂ = 4/3 at rt,\é ) 0\<9‘( 7 (7.8)
f. If we can allow c)954JI‘ to be continuous everywhere, then we should

do so; however, the physical cause of this being so was not built

into our model (the cause being eddy viscosity).



CHAPTER 8

THE SOLUTION

8a General

There are nine foreing terms in equation (7.1). Since (7.1) is linear

in ‘7V then we may solve for a ('0 for each term of the
forcing function and add all the resulting (# terms and obtain
the total S& due to the total forcing functions of (7.1).

‘In Section 2b we discussed the effects of the topography on wave
S
height /9/4 and angle of incidence ¢ at the breaker

line. We approximate these effects by assuming the following distributions

for H‘* and d) :
HEt = Df1+ pHe) = D[/~ pcos28] | (8.1)

4) = (pe(ﬁ)r. ¢;ca59

(8.2)

The solutions for outside the surf zone are given in the following:
Region C:

Here we use cartesian co-ordinates as shown in Figure 4. We have:

C“r/z,@: 2..'6.’—.&.@ = O
d X

vhere P = -%J_[z_( , Ky=—c«, (JAE'/)é

and thé transport stream function t// is defined as:
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J¢ U".::._.Z___é_//
u = cfgdy T3

Thus we obtain: CUI‘/z /? = -
P\—
2
or ¢ 0) ('L - Vz (/ =0
Jvc ,_o/;/‘
This is Laplace's Equation and its solution is:

»
Yo = (Aeogsc + Barng)(ke + hee)

and we assume l# is finite at y = -0 thus Ko =©

and we obtain:

: Ry
Ye = (Alc“/y" * &S’”A@ = (8.3)

Region B:

From (4.20) and (5.12) we obtain:

Y a1 ¥ 1 IY -0 (8.4)
Jrr Y Jr rt gst

Solving by separation of variables we let:

Y = Rtr) @ (o) . (8.5)

and (8.4) becomes: ﬁ +

or r +/‘/?_—_——__@_—_-/a



Thus we obtain: @” .f-/é{ 2@ =0

or @ = Acosub + Bgin/aé (8.6)
¥ / 2,
which is Euler's equation and thé solution is:

24
A= /fs""a*kvr : (8.7)

Thus

"//B = (/41 Cosue "'BzS’V';’)(/Grﬂ""/r"r%) (8.8)

since ¥ mustbe finiteat =0 , wo mst have Ky =O

thus we obtain: | : :
W, = (Arcosue + Bisinus) r* (8.9)

where k 3 is absorbed in A and B.
We must match this solution with the various term solutions we obtain
inside the surf zone. We assume a linear bottom so term d:=2 0. We now
solve for (P ' for each term of equafion (7.1) in descending

order of‘magnitude./(See Section 5e for physical interpretation of each term).

8b _Term g
From equation (7.1) we obtain:

ﬂ +-'e.?_'17g)__‘/_' = JLAM C/Z:rina?é (8.10)
rr d Jr c/



k7

where we let /~  on the right hand side (RHS) be /fo .
Since we assume the bay is large the error resulting from this approximation
Now O/-"= M(r-\" —-/‘) but we are assuming the

should be small.
shore to be circular as was discussed in Section 7b,; therefore we have

an approximation: —
=55 (8.11)
and d = m(fi-r)=ms (8.12)
where Ss= E = r
Transferming the variable from r to S we obtain:
1 A 3
I¥_29Y - 2km s*sin2d (8.13)
/st S Js <, |
where Bf = 7 Po
< /e
¢ as

dependence factor of

and () isthe O
shown in (8.2). We let S/ 24) = 2¢ = Zé e(e) .

The complementary solution is determined from the homogeneous

equation: ' '
A
Y 2 =0 (8.14)
Jst S Js
(8.15)

and is found to be

(.’U(’;o):: (C,'I-Cz 53) ‘]U(&)

and the particular solution is:

Y= (Cs 53+_5L_/_2_51/) e(s) .
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. 3 & .-
Thus % - e(Q)[C’ tC 5+ “6‘2 s ] (8.16)

We now apply the boundary conditiohs:

(a) -q/': 7 at I’=‘ /} or S=0

Thus Cir =0 ) y

and Wy = 6’(9)[Cl ) +_§7’z s ] o (8.17)

(b) 5’.}{ = 0 at S=0 |
r

Thus (8.17) gives:

2 ?] _
el)[-3Cs - Bys /=2
which is identically true at s = 0 |
@ Jd¥ -0 & s=o

SO
which is didentically true using (8.17)
(d) 4’,4 (’1) = %("l)

3 ¥

or e(@)[C} St + _% S‘! ]
: A
= [/Q, corub + G, :,Vé) ré (s0 (8.9)

Now if 6[9) were not sinusoidal we would use a Fourier

series expansion. To demonstrate this we let:

e@) = % (A, cosné + B, 5"‘””‘9)' |
== 5, ©) n=0hL3

* where F;’(a) = /4” Cos & -/—B” Sennb

Since (8.13) is linear in "P we say:

.. LVA - nz %n | where (8.18)
Y= E@[CnS S S



b9

We also let: "//B = E . ('Pe,, where
h

’ - ”n
Lpﬂo = (/4,, cosné + B", S0h né) lf‘n-'-‘Gn (9>"

At the boundary S =g é we have: qjﬂ,, = LPBn which
gives us: y
Gn = 5 ( cnss’ + sé )
ry”
and J %}; = 02 %,, which gives us:
ir dr
G, = Z’,,-,[?Cns'é +B.754)
Therefore from these two expressions for 6 n {9) we obtain values
for C n ’ ﬁ ,I, and B :; and our boundary problem is

solved. When we discuss term f we use this method of solution for
n =1 and 3.

However, in this problem we let 8(5) = CO0S5 €&  and hence:

43 Y
, =0, U=/ A4, = C_z_ﬂ.#-»%-% (8.19)

- v;here Sé = E - "7 .
(o) J‘lua(pj) ¢ (ré) |
7— 5
or COS 5[ 3C, S4*— E 5,’/ = A cos &
or A = —3C> S'! - gj Sé'? : (8.20)

Using (8.20) and (8.19) we obtain:

= ~Dasb)/m158 , 1 (38)_ 1 (54 . (8.21I)
N o *5e(7) f‘é) ]



Y &
v = -GBst(l—% %)

for large bays _/é__é << /

| 3T 54 _ 1 (S j Sh)-..
ané ﬁ, = - Bz 54 -/-:Z —‘3,— R)+§L-(%) ]

/A (8.22)
ol /9 ] : - B——-}""Sé q‘ 8
Therefore we obtain: 3

o2 4 Gl0- L) ~F]er

and

py
4/8 P E 54 - cos 9 (8.25)
/R4

Note that by not including eddy viscosity and still saying Us is
continuous at /% r ‘ » We are foreing a value on Cz and /4/

for which the model was not specifically designed. If we did not have

the boundary condition g/gf(l‘l )= 7’;—‘?( ré) , then
we could chop off (V,, .before it i'eached its maximum value. If

eddy viscosity were included, then the equation (7.1) would be of higher

order and would enable us to state with certainty the continuity of Vo
However, since we do get a highly satisfactory solution without eddy ‘

viscosilty, then perhaps it is negligible - relative to the bottom friction.

This seems reasonable although 1t should receive more attention in a

fature study.

0 Yg=% o y=0

Thus .we obtain from (8.3) and (8.25):
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“.QZ__{{V}" EM,, ca;éxﬂ? rn}g,,x) 2 B singx

/12ré | (8.26)
since % (7=o) is an odd function.
Usmg Fourier series expansn.on theory we obtain:
Br= 2 [ l#[x o)sin 222 x Jx (8.27)
where ﬂ
_ ” ‘
Thus ¥ Y

From (8.28) we obtain:

J‘/’c(y"o) = 2/ B S‘r'yf, v v(8.29)

From (8.25)

dU%(o-07) =0 | (8:30)
/e

Thus we cannot match (8.29) and (8.30) at y =0 because (8.29) will
not in:general be identically zero. Therefore we have a discontinuity in
Ur at y = €@ . In real life this is impossible; however,
since we have not included eddy viscosity in our model we obtain this

discontinuity.

In summary then, we have for term g of equation (7.1):
= -1 B _3
% = 3 f[é /% ‘>545 ‘/5 cos &
14
— B; Sé I cos &

% /2 ré
. Ay
Vo = F B 3mx s

(8.31)

(fp
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At the boundary between regions B and C we used a Fourier series
method to match the solutions. This makes region C periodic in x with
period 2 A « To eliminate this periodicity, we could have used

a Fourier integral method by letting:

Yelz ) = /F/)e <

which identically satlsfles Laplace s equation and we have:
P
/CZ(’ [ ‘//( 2, 0) e bd

which satisfies the boundary condition at y = for any function
('l/( 7(, 0) . This same method can be used at the boundary

‘between regions A and B where we would let:

-~(NE I’)/ / _
Ve = ,r(») e (L) dn
~ "y J

and For = oL [ Wrs o) " de
where we let q/(ré,é’ =0 for ©& 7 7 and & <9
We have no need to use this method in this paper for the boundary at

— *

r= r¢ because we let @(5) and /9/! [9)

be simple trigonometric functions.

We find the location of (9  maximum as follows:

_ *cos 6 (|-S4 - s
J‘;“%ﬂ = BySiscos b (I 277 Si

therefore the maximum occurs at:

Sé s -
rs T35 =/
or (/*,_w) | (8.32)

For a/large bay 54//'4 << / and so Sma.( :. 5‘ .
For =0 we plot "P vs I as shown in Figure 5.
From (8.32) and (8.31) we get:

max = q} (’”L) = /154 (8.33)
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Figure 5

© Profile of Yq(x,0)

Figure 6

Streamlines,. Term g
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The entire field of q) is sketched according to equations (8.31) in

Figure 6. We see that there is only one rip current, at & = ?/A .
The streamlines represent the average paths fluid particles would follow
providing the streamline pattern does not change significantly over the time
it would take for the particles to complete a round trip along the streamlines.
The rip current flows.out past the mouth of the bay (where y = o) and then |
curves arcit;nd and enters the surf zone with a strong velocity as indicated
LI;y the high density of the streamlines. The (+) and (-) symbols in Figure 6
show where the transport stream function \P is positive or negative respec-
tively. The effect of the non-linear terms, which we neglected (Chapter 3),
will be to strengthen the rip current at e =7, / & Dbecause the current
there is flowing into deeper water, and to decrease the current flowing into
the surf zone at & = O and 7" because the flow there is into
“shallow water (Arthur 1962).

A sample magnitude of UF ( r ‘ J 7/2 ) -his computed as follows:

4 W _ SJ‘/_, _ Lt 2 L
(7 =3 G604 7)= 74 B = 2L m ESUH)

Let /M =0/ g =32 Fefsec’  sys 100 %4 %'é =4/
9. = 7= y=ro di = /o0f*
2 / x 100 L ()"
- — 3RxIX .of xicc
Then U;(/'Z,g)_ 0?24)‘4 & (/‘6

"

L S8V 0.0033 (_*ZZ‘L‘Q
e -
3 < ré <

Bowen (1969b) estimates ¢ = 0.2 em./sec. = 0.0067 ft./sec. which gives:

Vr(rhF) & - w58 F =08 fifsec

L}
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From Figure 6 we see that the maximum velocity occurs in the surf

zone at & = O, 77 . To calculate this velocity we do the following:
3
-+ JY By s 2_ 35 V¢osr &
”;"o/ 0[;’,_.___?1_ ‘f;‘l'(-?s _fé)o.
U;qu occurs at S5 = :—;2,.5'4 e = &7
2 5
Then ”9-(32“54,0):2‘_;’ _5.?— 5! _-:._??-9-___,_@-54(5 )

If t/}:_(/"é,?) = O.5 fps

then d; (32-5//&),:\’ /3 'FPJ

ma ¥

The effects of the nonlinear terms will be to lessen Ug maximum

and increase (};( r 4 = ) .
Z

8c Term ¢
The equation for ()V inside the surf zone for term ¢ is from (7.1):

Y o 2mdY - 2md® m-‘uf_ﬁ (8.3)
Jr+ d Jr T

Using the same procedure as for term g we obtain:

ﬂ-—ieff—BSeO}e (8.35)
o[:l S a[s‘

where B(_-: ék/ﬂz¢z

C/o

S =

s =7
el = 45/450
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The solution is obtained in the same manner as for term g and is:

3 (74
%sz{C/+C25+Bc5) (8.36)
J& K
or uSing e : C059 we get:
F . B ) sind8 (8.37)
LPﬂ::—((’.FCZS’LéB(*S) 2 |

Subjecting (8.37) to the boundary conditions (BCs) with % , %

given by (8.3) and (8.9) we obtain:

— Eg .S'éS s4 ] 20
q/ﬂ > 3 /_m_) A/ Srh | (8.38)
- B SZ - (.
Smax = 54(/ = 7-:24) (8.40)
Yo =0 (8.41)
| a _ ¥
Pmar = q’c (’"‘) = %‘- sd (_'8‘%)

Again there is a velocity discontinuity at y =0 as was the case
for term g . This indicates that eddy viscosity is significant at this
location in the model.

A sketch of the rip current system for term ¢ is shown in Figure 7.
The dotted lines are estimated flow lines which are expected to exist if
we include eddy viscosity in our model. We obtain rip currents where 47

is maximmn or minimum for a sinusoidal ¢ distribution.
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Figure 7

Streamlines, Term ¢
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84 Term e

From (7.1) we obtain:

J*Y

2 X
o+ A7 Y = hd “cos29 )¢ (8.43)
Ar d cr® 019
which we alter as we did for terms g and ¢ and obtain:
Y _ 2 )¢ _ s7J)e (8.44)
As? 5 45 Jor
where Bc - lé ,f Q
s =Fr-"
Solving we obtain: 2
é
% = - (Cl +C;S — Ee S )j_____:; (8.45)
or with & = Cos5 & we obtain:
_ 3 s o (8.46)
(}.,).94« t(Ci1+ s —_71_5_;.?..5)“’ -
Sub,jecting (8.46) to the BCs we obtain:
2 54 -3
= T[(/-/o"rg 5/5 S]casB |
(8.47)
kPB = _5_6 _.S!_ r cos &
75 rb .
Swee = Sb(1-ZR) 4y
and l.'UC = S 5, S/‘ﬂﬁ K’ &

< (8.48)

vwhere ﬂﬂ

Bn

i
S| \M
~
a3
=
N
S
“
3
X
\§
»
o
It
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Figure 8
Profile of Ye (x, 0)

Figure 9

Streamlines, Term e
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From % and % " we obtain the graph of ('V( 11 a) as
shown in Figure 8.

From (8.47) we obtain:

., = W) =_/Z_j__€ s{° (8.49)

A sketch of the rip current system for term e is shown in Figure 9.
Again we have a discontinuity at y =0 because of the absence

of eddy viscosity in our model.

8¢ Term a

From (7.1) we obtain: 7

1
N4 m I _ 2kd cosad o (8.50)
Jre " %/_ Jr _cr <@ Jesr
or with Ss= )f=-r we obtain: 851
ﬂ— ._2_93_?/——845202/%(9) .
st S ds A&
_ where /3“_ = = ;ﬂé
and H@) =<cos 26
"Here we let C/ = /775(/+é //'{9)) (8.52)

where &  1is of order / Al . This is similar to the
function Bowen(1969b) used, although it cannot be derived from the theory
discussed in our section of surf zone geometry. One may circumvent this
difficulty by saying d ( /‘I 9) arises from an edge wave effect.
This is speculative, but it gives us a finite value for term a.

The solution to (8.51) is:

L, = L= 3- ¢ 7
o= Zef(/- St)ts =325 [sm3e

(8.53)



Figure 10

Streamlines, Term a
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, |
Y, = 2/?; :‘éz P 726 (8.54)
4 - o (8.55)

A' sketch of ‘Fa. is shov:n in Figure 10. Just as Bowen (1969b)
found,‘ we see that the rip current occurs where the waves are the lowest.
( d?" 6= 0, 7—) .

It is important to realize that we assumed term a to have a &
dependence the same as /% * e If term a is influenced by phenom-
enon other than just refraction, then it may very likely have a 6
dependénce different than that of ﬁ/[ * e If term a varie;
signif:{.ca.ntly over a longshore distance of the order qf the surf zone
width, then we must reconsider our assumptions in obtaining equation (4.10).
In particular, we would not be able to neglect the o} /B“/ /5 term
in cur/ 2 /? .

~

8f Term f

From (7.1) we obtain:

2 (8.56)
2Y 4 :zmaw/— - M;smw(omb)
Jre &
Altering this as done for previous terms we obtain:
JYW _2d¥ _ _Bes e/_o_/_f_—’,)l (8.57)
As+ S Js A6

where 4){‘”7 &

We obtain the solution:

3 2 .
(¢ +Cos —%sf)e{g{f) (8.58)
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Letting (& = Cos = , We get:
Je \* Y o £ -
e( ) = CosS®& Srn® = cos — Cos (8.59)

- Since (8.56) is 1inear in ‘V we may treat each of the terms of E(JE)

 as separate forcing functions and add their solutions to obtain Lh:
r'e &
We obtain: - ( — _'_3_5) cos &~ cos 3 (8.60)

= B 5! COSQ f cosZé (8.61)
Vs 23 ( H*
. ) . /ga ]
and LV(_ = % /qn ’”7/5»1 e y (8,62)
where /‘l = ”7/F = 2 3 o

Ap = —-/ l,V(—.:( 0)sin ) d =

and from (8.61) and (8.60) we obtain the sketch of ¢[X,a> shown
in Figure 11. A sketch of cosS & — €OS 3915 shown in Figure 12.

We use these sketches to sketch ‘I/.F as shown in Figure 13.

Sg Term b

From (7.1) we obtain: o/ ¢+2’”o’¢ ‘,/40/ ca;2¢___4 (8.63)
Ar o[/‘ crt
We alter (8.63) to the form: 0/ ¢ 2 0/4, Bl < o///(e) (8.64)
Ast 55
where MU = DI+ (@) and we have
discussed in Section 2b the form of A, (@)= — cos28
thus /H,(6) = 2sinlé

A e
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Figﬁre 11
Profile of %( X,O)
—C0s O - Cc0os 30

Figure 12

klf)zo

Figure 13

Streamlines, Terms f & i
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© Hence we obtain the solution: |
4/,9 = (& +C2 S By 5 ) & /9) (8.65)

.-:/C/ +C S +_€_JS )25‘,)1:29 (8.66)

Using the boundary conditions we obtai.n

q} — ___2 El[( %)545_35 sinae  (&-67)

- </ ; . y
Yg = £ /?é‘fzéi rosm2 8 (8.68)
and Y. = © (8.69)

LPB is sketched in Figure 1%,
Notice that the rip current occurs where the wave height'is greatest.
This is contrary to the result Bowen (1969b) got. However, we obtain
-Bowen's result for our term a which is similar to his forcing term.
Term b is a result of the variation of wave height and the curvature of the

‘ beaéh. It goes- to zero value as the beach becomes straight ( r; "‘"")

8h Term i

From (7.1) we obtain:

ﬂ _o_/_‘_/ 3/4/40/205«24?_& g/_é/_f (8.76)

+ &4
d

0[,_1 I cC - /9 JEé
We alter this éozthi f‘f—m ¢ B Szﬁ o A/I (9)
HE-F5 - s I
where B‘ = 3*,9”7 ¢°pp
c it

Thus we obtain

= (€ +Ca s” 4 %5")0/9 A, (8.71)



Figure 14

Streamlines, Term b

1 Y(x,0)

T -[ -58%

Figure 15
Profile of Y (x,0)

&

I

XY
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or with e = Cos & and A{(a)‘_‘ - cosd @ we get:
= - Sr BesY 8- cos36) (8.72)
| “PA (CI ‘{’Cz; + _‘/_S )(cas )

In a similar manner to the f terms we allow each of the trigonome-
tric terms to represent a foreing function and solve for each. We then add

the solutions and obtain:

90,94' E‘(SZS 35)(6059 C053é) (8.73)

Y = Be /\(6059 I cos 36’)

= - é o ‘ (8.74)
| A ﬁ
and "Pc = 2 % Sen X & - (8.75)
where 4 NZ

4 oy,
and An = 7"‘[ Qp(f/") sin Gy A X
From (8.73) and (8.74) we obtain the sketch of (//[f,d> as shown in

Figure 15. The sketch of ‘71) for term 1 is similar to the sketch
for term f in Figure 13,

8i Term h

From (7.1) we obtain:

(;/;/fé + QC/M %r(f fﬁ 5/024’02/4/['( (8.76)
| ch upon rearrangemen elds: ' 2
which upo g tﬁ__ﬁf 8 s e(é)ﬁ)—ﬂe)
Js‘ S
wore B = 52,4/4%/ d’a/JD/C’?’

We obtain the solution:

3 oy t
c,+C.s + 8 s e Q’ﬁf) (8.78)
(< 8 s)e@e

(8.77)
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or substituting for e( 9) and /6/;{9 )

= Z(C/ +Ca 53+ B 5"){@:9-}- cos39)

 Similarly to term i we obtain:

Vo= - 2 By(shs’~2 s )(:as%cof?@) (8.79)
S E’A sl'r 8 + L cos38 (8.80)
LPB n [coS e )
. . ﬂa‘y
and q/c_ - é /4n 3”}4»1 ot (8.81)

where /n = ”#/_E
/s :
™ A= 73?‘/ (,0) sinfx I
. (] .
From (8.79) and (8.80) we obtain the sketch of (,U[ A, o) shown in

Figure 16. A sketch of COS & + €05 36 is shown in Figure 17,

A sketch of q}h is shown in Figure 18.
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?T'; _Fb N
Figure 16
' Profile of Yh(,0)
cosB + cos36
180°

Figure 17

Graph of cos@ + Cos 36

\’ZOO

Figure 18

Streamlines, Term h
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CHAPTER 9
GENERAL WAVE APPROACH

2& General

In the previous solutions we assumed the deep water wave approach to
be in the direction of the radius vector with & = /2 . Letus
now examine a more general wave approach in the direction of the radius
vector at = 6. . This does not introduce any new difficulty.
We merely determine the functions #A? 9) and ¢(9) for the
new wave approach and solve equations (7.1), (7.2) and (7.3) subject to the
same boundé.ry conditions.

Figure 19 shows a sketch of a sample refraction pattern for waves
approaching with the angle 90 « The sample bottom topography is
shown by contour lines (the dotted lines). The solid lines with direction
arrows represent the direction of the wave phase speed and are called
orthogonals (see H O pub 234). Where the orthogonals diverge we will have
smaller wave heights. From this sketch we assign the following functions

4
to represent the wave characteristics A/A and - ¢
= n_77 & = S/ é
H o= S/ Ze S/ e

(9.1)
where /¢¢ = 7"/290 ) @ 2?/1

¢ = ¢o E(é) (9.2)

e) =cos 22 casus, 8 7Z
If 90 \( Z we would have: °
= Ao = SinZ /190" - & )
| ’ 2 /’ao—éo

and
e®) = cos 7 (/70— &
; ) 2 (/go”—ao )
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Refraction Pattern, General Approach
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Figure 20 is a sketch of these functions. We assume trigonometric
functions, however we need not have and for an actual situation we would
n§£ expect these functions to be purely trigonometric. If the functions
are not trigonometric, then we will have to use Fourier series to solve
the boundary conditions. This is unnecessarily complicated for our present
discussion (see Section 8b). Using (9.1) and (9.2) in (7.1), (7.2) and
(7.3), we arrive at solutions for all the forcing terms. Term g is

discussed in the following section.

b Term

7z

Yo = — __,Lil__ r CO}aé’ (9.4)
/.z/«r!“

(1V<. < /4,7 5/% X eﬂﬁy | (9.5)
where /” = 7’/7/./5
IG(P(v(,o) s;%xjx

%

c /s

__3/. Bj[(/— 54)5!5 35 cogd®  (9.3)

/214

"

and where B -
j —-—

Note that our solution here is the same as the former case where @ = %
except that here = _Z: instead of unity as for the previous
example; This is due to ozhfofunction ¢ (5) we chose. However, the
result is meaningful providing our db(29) is fairly realistic. A
sketch of the transport stream lines is shown in Figure 21. The remaining
rip current systems for each of the other foreing terms can be calculated
in a2 manner similar to that done in CHAPTER 8. Term g, as already |
calculated, will be the dominant rip current and should be readily

observable on a real curved beach.
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H:©) = D(1 +p sin }19-)

F T

@)= Pocos }Je

Qo q0e 6a>~_|B0°

Figure 20

Graph of 4’ (8) ana HL*(Q)

for General Approach

breaker line

Figure 21

Streamlines,
General Approach, Term g
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CHAPTER 10

SUMMARY OF CONCLUSIONS

In this thesis we derived a mathematical model for rip current
systems along beaches vhich takes into account the effects of bottom
tépography. These effects are: the slope and curvature of the bottom
inside the surf zone; the curvature of the shoreline; and the variations
in wave height }/é+land angle of incidence (P of the w%ves at the
breaker line due to wave refraction outside the surf zone.

In this model nine forcing terms caused nine component rip currents
whose sum gives the total predicted rip current system. Ohe of these.
terms (term a) is equivalent to the forcing function Bowen (1969b) used
in his straight beach problem. The model was applied to the special case
of a circular bay and the rip current patterns which occured were discussed
and their streamlinesbsketched. When one interprets these sketches, it
should be remembered that the inertial terms which were neglected in the
equations of motion will cause the streamlines to come together where the
velocity is towards deeper water and to separate where the velocity flows
into shallow;water. This effect tends to strengthen the outward flowing
rip currents.

It was found that as long as the variations in ¢ and //4 4 were
causedaby the cirecular bay topography only, the dominant flow pattern in
the circular bay would be that due to term g (Figure 6). Term:c was the
next lower term on the magnitude scale (See (5.37)). Figure 22 shows a

sketch of the sum of the transport stream functions eﬁ; and (}2 along
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Profile of %+ q’c
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Figure 23

Profile of Ur at the breaker line
due to terms g and ¢ for QP.=/§° .
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the breaker line for ¢% =‘/5—o . The differences between the curves for
% and % + ‘I’c are seen to be small. The remaining stream functions
due to terms e, a, f, b, 1 and h will be insignificant since they are at
least an order of magnitude smaller than term c (see (5.37)). Thus we seé
that tﬁe sketch of (£§ in Figurq 6 represents a first order approximation
of the total flow pattern that one would expect to see .in a eircular bay
as we have described it. A sketch of the sum of the velocities normal to
the breaker line at the breaker 1ine due to terms g and ¢ is'shown in’
Figure 23. We see that the tendency is to establish a uniform seaward
velocity along the breaker line. However, one must be careful when adding
these velocities because the effect of the non.linear inertial terms,
which we have neglected (Chapter 3), will be to wéaken the current due to
term ¢ between .;,7.’ <6 < ,,2, 7 and to strengthen the currents
due to term g in the same region thereby tending to cause a maximum
combined seaward current at 6= T/l which is not apparent from
Figure 23. The currents due to the remaining forcing terms are at least
an order of magnitude smaller than those due to terms g and ¢ and can be
neglected in the first order current approximation.

When discussing this model one must recall that the equation we used
to represent CU"/ = ,@ inside the surf zone (4.10) assumes that the
distance (7S of significant longshore variations is much larger than
the width of the surf zone. This enables us to neglect the o/ /g‘//'olé
term in <dr = ,/f . This assumption is valid for refractive effects

in large circular bays with conical bottom topograrhy; however, this may



77

not be a valid assumption if there were irregular topographic features
present to give small fluctuations to the refractive variables ( /yé 7
and (ﬁ ). Edge wave disturbances may also give significant fluctuations
over 1ongshoré distances Ogq  which are comparable to the surf zone

width., In our circular b_ay problem we limit ourselves to the case where

C;,

O D7 Ii§ » thereby making (4.10) valid.
) .

We find that forcing term g, which is proportiocnal to 'Sin .
will be the most significant forcing term providing that the radius of
curvature Jfo of t\he beach and the longshore distance O  over
which ¢ and /Vé F change significantly are of the same order of
magnitude (See (B8)). This is the case in our circular bay problem.
Because of the S/» ¢ dependence of term g- we obtain qjj along
the_breaker line to be largest w!"xere _ 4’ is largest. This necessitates |

the longshore current being largest where ¢ is largest. When the |
radius of curvature of the beach vré is. nmcﬁ larger than the longshore
distance O, we have the beach tending towards a straight beach solution
and terms ¢ and a will become more significant than term g (See (B8) and
(B7)). In this case the refraction effects would 'be caused by irregular-
ities i.n the local bottom topography sgch as the Lav Jolla Canyon near the
Scripps Institution of Oceanography in California (see Shepard and Imna.n,b
1950). | | \

Ittis interesting to note that term a, which is the forcing function
Bowen (1969b) used for a straight beach,is smaller than térm ¢ providing

¢ exists and ( d’,ﬂd’)% Z %;X 3’ where d>o is the scale
of 4) and 4 ¢ is the change in ¢ over the longshore
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distance OO0 , and Ca is the significant longshore distance
for changes in d in term a (See (Bl)). This suggests that term ¢, as well
as term a, may be responsible for the rip currents along the straight

| beach opposite La {olla Canyon near San Diego, California due to any small
'refraction caused b& the.offshore topography. Term ¢ is in fact very
sensitive to any small amounts of refraction and must be considered as a
potential cause for rip curfents even on a so-called straight beach where
some small degree of refraction will almost always be present. The
foilowing paragraphs state some recommendations for future studies.

It is suggested that this linear analytical model of a circular beach
could be extended to more realistically shaped beaches by fitting the
shoréline wiﬁhvcircular arcs, concave or convex, #nd solving for each
¢ircular arc region in a similar manner to our circular beach solution
and matching each arc solution to it5 adjacent arc solution.

It would be interesting to use a numerical computer method to solve
this circular bay problem inciuding nonlinear ineftial terms and edéy
viscosity as did Bowen (1969b) for his straight beach model.

A computer program could also be made, using our general mathemati-
cal model, to predict rip current systems for general beaches with
irregular bottom topogréphy. A part of this program could predict
refraction patterns for given wave approaches and wave heights and
determine the location of the breaker line and compute /4447?93nd

¢ @) .

It shbéuld be worth studying the effects of edge waves on the mean

surface height’ Q? , thus giving us more insight in discussing term a.



Experimental work should be done to verify our mathematical model
and to examine the effects of a nonlinear bottom slope as predicted by
term d. ExperiMents on straight beaches could be conducted to examine

the relative sizes of currents pfoduced by forcing terms c¢ and a.
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APPENDIX A

DISCUSSION OF SET DOWN

The momentum equation (3.4) gives us:

D (Tl M) e IS _ _ oeddF (A1)
0,7%(2( /e)+y_7§_ s

If we have a straight beach and the waves are advancing normal to the

beach, we have:
~

U =0 | (A2)
as discussed in (5.1) and we obtain:
ISa ,/jd_o_)z (43)
pEPS ,v
from which Longuet-Higgins and Stewart (1964) got:
7 = - ywe (a4)
7 :/012 4
as described in (5.3) of this paper for the region outside the surf zone
for S =0 . Inside the surf zone we assume:
Y= /[f,z.é): Jo! (45)
: 2
Swe = 32 7%/7 5 (46)
Swxy =0

as did Bowen (1969b). That is we assume that the radiation stress is the
same function of wave energy inside the surf zone as outside. Using (A5),

(A6) and (A3) we obtain

/1 == SZé =my, = K (47)

/r:(/%g}‘i‘;)-/

where
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and w7 7 is the absolute value of the surface slope.
Mé is the absolute value of the bottom slope.
A problem arises when we have a rip current system where we know
2(, #*0 . Does (A3) still apply and give us (A4) and (A7) which
- Bowen (1969b) used invhis rip current analysis?

If (A3)1s still applicable for our rip current system, we must have
(Z, A7 ) K Sus (48)
’54 ah;e
* 0. o 70 + Ao M
Now .___; (2{//(%)-':/1//2/—%"- "B (49)
/% | A%e A%

and using (3.3) we obtain:

—j—%(%/%)= /’Zfé% | (410)
or \ :/J(Z/Z{(Z +2}:%_2_(’) (a11)

by the definition of /1/}3 in (3.2).
Near the surf zone in a large bay, we expect that velocity changes in

the onshore direction will be much larger than in the longshore direction.

Thus we neglect the 0/2 A‘/y term of (A11) and obtain:
Z? ~ o % o)g(, (412)
d% [ / /f / a),(

Using (A6) and (A5) we obtain:

IS = JdSr = 3 2/ ) (413)

G w877 ok

Thus by forming a ratio we obtain from (A12) and (A13): '
RNk R /. S y
S % M4 % T, )2,/
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Rip current measurements were made by Shepard and Inman (1950) and

to estimate the magnitude of (Al4) we use some of theif sample results:

Let ¢ =1 dl =10 st.

Z{, = 2 kn. = 3.4 fti/secs

\7 = 32 :’Et-f‘./sec,: “
~ Jo % ~ 29,
Thus (A14) becomes with v/%/ X - "EZ" ) 237’_1-’ Y
ISufel%e = 3 g0 )%t =j0 W

AR, )% 2 Zy

P d
or in general equals /,2 a/ é Z//z in units of feet and seconds.
Hence it is expected that _ 0@%%[ %’ << O/%/y by an order of
magnitude and therefore (Al4) and (A7) may be used with reasonable

accuracy when rip currents exist.



" APPENDIX B

ORDERING OF FORCING TERMS

We shall discuss the relative magnitﬁdes of the forcing terms given
.in equation (5.36). From (2.21) and (2.1) we see that AD/& is the
amplitude of the e varying component of /7 and also of 0/
if we let /7 be independent of & as it is for a circular bay -
(see (5.33)). We intxfoducé:ﬁhécoi'dgrin’gfscheme:
7, =D p  for refractive variables.
7 , = 7,,_ )
¢ = & 96) | --
/w = 4¢ f¢/ in general, and ﬂ¢‘= ¢o for

a circular bay.

Hit=D[ 1 + p # )]

S +*
) for the refraction variables /7/ é
' Jé = —12- f & and ¢ in a circular bay.

for term a only.

i

/
r Jé —_ Jb—___ & {a— for refraction variables on a

general shoreline.

O = 2/ & for a circular bay.
r Jé - Jb—_____.a; fb—l for the longshore variable o
!

term a only.’ :
r = rr
Ir = Gécrf’
J = b d(re) @)
ICERIRC '
Jd(re = V,fo/(’;g)
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where the primed symbols are variables of order unity. The differentials
/ 14 .

O/C/ (") and o/a/ ( /; 5) are introduced to allow for the different
rates of change of c/ in the /= and & component directions as

we did in (4.1). We introduce two longshore scales e and d; to
allow us to differentiate between the longshore variation due to refraction
and any possible longshore variation in term a due to edge waves. We also
let Z = 74 for term a. This is because ﬂ,_ may not be caused by

refraction but by edge waves and therefore may not equal 'z = A -DF .

Terms d and g

_ ksin 2¢ O)W,‘t
‘z_fF-m Srn 2& (B2)

Using the ordering scheme we obtain:

Terms 4. = - L 44 [ /’”.:z{;/r’

7;/'"?5‘ __d_ -

k 9 @m 15 rag U ol (83)
AJ/J‘“ :\_—"/ m (Bl&)

' Yy ¢
therefore 75/‘»::_5_/_ i—b—‘zLF/ég.(r 0)0/4//‘1) (55)
S
’ 2
If we have a large bay, T’. -,’L_‘b— >> /]  and if O)g/ /0//" is of
s .

order unity we see that term d is much larger than term g. However, in a
. YL 3 '

beach with a linear bottom o/ o A/ /' = O and term d is thus zero.
However, this ratio does show us that if the bottom were not linear then

term d could be of great influence.



Terms g and &

1/<m s/n ,245 - )
9 _ d‘
Terms = = C0$2¢a)c/ 4’0(./77_. F—r )[;"iTsz ) (36)
I“ 0)90/,-“ g}d“lo/f'

where we let 77 & ’75/ ,}A
if ¢ ?/1 then Ferms -9- a; /’ )(E‘k.)
| 74- />
Row if we say Aé /f /oo then

7Erms x 50 f/ﬁ =7)

In the absence of short wave length edge wave modulation of the incoming
swell, we can say that the longshore length scale will be determined by the
: et et
beach curvature and then we can say roughly that Vo = Oa. and so
term g = 50 term a. As the bay gets large ( Vo —> o0 ) then term a will
be more significant than term g, providing edge waves are generated and

7a_ is of finite value.

Terms g and ¢

7‘___ 3 _‘_'m. Sra 2¢ _ 2 ] (a-o—) !
erms = = 3/rm ,,,,,wfé 3490 [rzl_a'}
e &

For a circular bay we have A ¢ =¢, & W’/ /A and Odo = 7/ and

so we obtain:

Tarms I = 2 [ 05) o (z6)
/erms = 3A¢(‘l"a)__'£/

Terms ¢ and e

Terms == il:— 5in24 Jlﬂ%/(g: (ﬁg_ggfﬁj j” o
| < _/Sg_/_ cos -?49 ﬂ : ¢/
r: SO
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_and for a circular bay % & /2 ) % = 57— .F?Z we get:
' 5 s
/

Terms = £ 2L
.CI‘MS ) /;/

Thus, if the primed terms are of order unity and we expect them to be so,

R
P
)
R

we see that

Term e = 2lo7,,e | (8t1)

Terms ¢ and a

1’5—.'5’-&'»2450'4%/9 _3mb S
&4 cos2d a’y/é/&//‘_ M% o o

vwhere J’o—_-_- /\f & the longshore arc length. We say é
ana o change by 4 d) and 74- over the distances o and Ja.

’
respectively, then: o/ é
ol O Jdo’

44

So '
and oj;/o_/%/ = I?}%Z: .i___
Ts  Terms £ = 3(5)(]} ¢¢§,(¢’od//a )/( oé%//o/a ') (s12)
If A¢ é = 7‘//;\ ta and then
72rw5' £ = -é- 45/74 thus 7erm C 77 /emra for our circular
bay problem. Also, /erm C S /erm & vinen (A¢ ¢o) 3 assuming

/7 é// and a Jdo

Terms a and e

2/\' o 2C/ ‘ / ! '
Terms £ = - 52{/0;//* _____( He 0'5 'r 0’2‘/ "’/a’o/,\)
= A—_.cos24>,l_, oz.. VINE Y/

der
If we assume the primed terms to be of order unity and assume a circular

bay where A¢=¢o = 7//2 and Jo = /;?/‘7‘

we get:

< .
_7-2/'/”55-

)|
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Torma = 1222 Lo 2= Jerme

L

’ qme——
. and if %"_’:" /ﬁ__z .and 5-\ 0\(/0 and ﬁ.:/
then we obtain:

0.6 Term e £ Terma 12 Term e

_.Thus term a is of the order of magnitude of term e if 9/‘/ 0/0- ’

is of order unity. However, in our problem of the circular bay, we assumed
== Jo’ﬁ/ I tobea éonstant and so o y%/d"o//" = O .
Bowen (1969b) admitted a & dependeﬁce to /77 and thereby obtained
a rip current system; however,‘ according to our present theory of set-up,
we do not obtain a variable /7 -, Perhaps if one were to consider' the
effects of edge waves and not just bottom topography effects, one would
get m to be a function of 9 + If this was found to be the case,
then it is also possible that Ca s the longshére ’scaling parameter for
term a, would not equal () » thse longshore scal:.ng factor for the
refraction variables /‘/é and ¢ . If 4'/&;, / then term a
would be more significant by a factor of &—5/ Ja. . This factor is also

relevant for comparing terms ¢ and a (see (B12)).

Terms e and f Z !
osdd J/ %A/ o ( 0)0~
Terms & = "3 sin2f (F4Hl6) WM‘P ' M),

We expect the primed term to be of order unity,so for a circular bay:

~ / ~ (B15)
Terms £ = - = -4
£ Y4
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Terms f and b

Terms £ TE 25 (GO -mp;éz),ﬁ)/rww%/a’)‘)
4 4 cos 20 JH | A

We expect the primed terms to be of order unity and b‘/ﬂ = /0O thus

for a circular bay:

Terms é_‘: = —é _ﬁ_ = -4 | © (B16)
Terms i and b ,(79 ¢ Jé 0/#‘
. . 3 2 /
s PR cos. Py P - 3L A¢/&,
b _/_4_ éo:2¢ 5@‘ Jo Jo |
or Jerms _é o 2 for a circular bay. (B17)
, z .

Terms = L == = 7 do'lr’

i
4 A sin2d oA 2 e\ gt

We expect the primed terms to be of order unity and A¢ = ,¢o for a -

Termsi'and'h 3!45052¢o;? ﬂ-f 2 A$ , _o_/é,ié//)

circular bay, therefore:

Terms

~ 3 (B18)
2.

s
4
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Thus we obtain a magnitude structure as follows:

3

erm Circular Bay Fac’c.or. General Factor

d

. Lt/ 4E
j .
C% 4 | 1L
} o an/h ¢4 g
e} H / 80 W fh & B9
A G o5 O5
a
e -
-— ’ _ __/__
‘Fg ' 4 ' ‘é¢od¢ -
L} _4 ""-‘/d)od¢2_é§§
L} > S 7
} 3/2 | 2 a¢
h 2 P



