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ABSTRACT 

The microwave resonator method f o r studying small 

amplitude surface waves in l i q u i d s has been improved by making 

the time measurement more accurate and much more convenient. 

It was used to measure the o s c i l l a t i o n frequency of the sur­

face as a function of l i q u i d depth. Discrepancies between 

the experimentally obtained r e s u l t s and t h e o r e t i c a l pre­

d i c t i o n s due to the r i g i d i t y of the mercury meniscus where 

contact i s made with the walls of a c y l i n d r i c a l resonator 

were found. Prom these an accurate value f o r the e f f e c t i v e 

reduction i n radius of the resonator because of the meniscus 

e f f e c t was obtained. A method was developed f o r applying 

strong e l e c t r o s t a t i c f i e l d s (about 2 0 kV/cm) onto the f l u i d 

surface without i n t e r f e r i n g with the measuring technique. An : 

i n t e r e s t i n g r e s u l t of this was the observation that the . f i e l d 

cleans the surface from contamination. This phenomenon mani­

fes t s i t s e l f i n a marked reduction i n the damping of surface 

waves just a f t e r a large f i e l d i s applied. A resonator of 

square cross-section was used to demonstrate the Fourier ana­

l y z i n g property of rectangular resonators. 
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CHAPTER 1 

I N T R O D U C T I O N 

E x p e r i m e n t a l i n v e s t i g a t i o n s o f s u r f a c e waves i n 

l i q u i d s have, u n t i l r e c e n t l y , been hampered by t h e l a c k o f a 

s u i t a b l e d i a g n o s t i c t e c h n i q u e . Host e l e c t r o m e c h a n i c a l s e n s i n g 

d e v i c e s d e v e l o p e d over t h e y e a r s had the d i s a d v a n t a g e o f 

b e i n g too I n s e n s i t i v e t o p e r m i t o b s e r v a t i o n s o f l i n e a r s u r ­

f a c e waves ( i . e . p e r i o d i c o s c i l l a t i o n s f o r w h i c h the p r o d u c t 

FA H i s v e r y s m a l l compared t o u n i t y , where F i s 

the a m p l i t u d e , A the w a v e l e n g t h o f the s u r f a c e v;aves, and 

H t h e d e p t h o f the l i q u i d ) . B u t , as i s w e l l known, a 

s a t i s f a c t o r y g e n e r a l t h e o r y ( i . e . n o n - l i n e a r ) f o r s u r f a c e 

waves i n f l u i d s does n o t e x i s t a t p r e s e n t because o f t h e 

enormous c o m p l e x i t y of the r e s u l t i n g g e n e r a l e q u a t i o n s . So, 

w i t h t h e e x c e p t i o n o f a few v e r y s p e c i a l c a s e s , i n w h i c h 

o t h e r s i m p l i f y i n g c o n d i t i o n s e x i s t t h a t r e n d e r t h e e q u a t i ­

ons " m a n i p u l a t a b l e " , i t i s n o t , i n g e n e r a l , p o s s i b l e to 

compare e x p e r i m e n t a l r e s u l t s w i t h e x i s t i n g t h e o r y . O p t i c a l 

t e c h n i q u e s , due t o t h e i r g e n e r a l l y h i g h s p a t i a l r e s o l u t i o n , 

do n o t p r e s e n t us w i t h t h e problem of i n s e n s i t l v l t y ( i n f a c t 

h o l o g r a p h i c methods a r e even t o o s e n s i t i v e ) b u t a g a i n can­

n o t be c o n s i d e r e d f u l l y s a t i s f a c t o r y f o r the f o l l o w i n g r e ­

a s o n s . They a r e d i f f i c u l t and c o m p l i c a t e d t o s e t up and 

c o m p a r a t i v e l y c o s t l y ; a l s o , t o g e t h e r w i t h t h e f i r s t c l a s s 

o f s e n s i n g d e v i c e s mentioned, t h e y can i n g e n e r a l o n l y be 

employed t o observe p e r i o d i c phenomena ( i . e . no c o n t i n u o u s 
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observation of surface i n s t a b i l i t i e s i s po s s i b l e ) . However, 

as was suggested by Curzon and Howard, and developed by 

Curzon and Pike ( r e f s . 2 ,3 ,4 ,5) , a microwave resonator tech­

nique can be employed which does not suffer from the draw­

backs of previous methods. The most important features of 

this method are 

1) Waves of small amplitude ( \0~3 cvn) can be studied (I.e. 

l i n e a r i z e d equations are ap p l i c a b l e ) . 

2) Unstable surfaces can be observed ( i . e . non-periodic 

perturbations). 

3) Under s p e c i a l circumstances the resonator responds to 

single modes of surface waves. This eliminates the tedious 

Fourier analysis which i s normally required i n comparing 

observations with t h e o r e t i c a l predictions. 

The p r i n c i p l e of the technique i s the following. If 

the boundaries of a resonating microwave cavity are perturbed 

a change i n the resonant frequency r e s u l t s . Thus i f one wall 

of a microwave cavity resonator i s taken by a conducting 

l i q u i d , any small surface perturbations of the f l u i d can 

e a s i l y be monitored by monitoring the resonant frequency 

changes of the cavity. Calculations of the s h i f t i n reso­

nance are done by using Slater's theorem ( r e f . 6). I t can 

be shown (see r e f . 2, p. 10-13).. that for a c y l i n d r i c a l and 

a rectangular microwave resonator the s h i f t i n frequency 

f o r a given surface mode of o s c i l l a t i o n and a given e l e c t r o ­

magnetic mode i s proportional to the amplitude of the sur­

face wave. The method was developed by Pike using mercury 
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as the conducting l i q u i d . He checked the t h e o r e t i c a l l y pre­

dicted values of the o s c i l l a t i o n frequency of a surface 

standing wave, both as a function of radius of a c y l i n d r i c a l 

microwave resonator and as a function of depth of the f l u i d . 

He also studied the damping of the surface waves, with and 

without an a x i a l magnetic f i e l d acting on the mercury. 

The work reported in t h i s thesis i s a follow up of 

the o r i g i n a l investigations. The time measuring technique 

has been improved and the f e a s i b i l i t y of applying a strong 

e l e c t r i c f i e l d on the mercury surface has been demonstrated, 

our ultimate future goal being the study of e l e c t r o s t a t l c -

hydrodynamic i n s t a b i l i t i e s . These are the i n s t a b i l i t i e s 

that a r i s e when a strong e l e c t r i c f i e l d i s applied on the 

surface of an o s c i l l a t i n g conducting l i q u i d (see r e f , 7 ) » 

As a by-product of t h i s i n v e s t i g a t i o n , a technique was found 

f o r removing impurities (e.g. small dust p a r t i c l e s or traces 

of o i l ) from the surface of the mercury by applying a strong 

e l e c t r o s t a t i c f i e l d f o r a short period of time on the sur­

face. This i s extremely u s e f u l because even minute amounts 

of impurities on the surface of a l i q u i d have a very d r a s t i c 

e f f e c t on the properties of the surface. Lastly, the f e a s i ­

b i l i t y of employing a rectangular cavity to Fourier ana­

lyse the surface wave modes was demonstrated. 

In the calculations i n the thesis the r a t i o n a l i s e d 

MKS system of units was used. To save unnecessary, and i r -
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r i t a t i n g r e p e t i t i o n of the same long words the following 

nomenclature w i l l be consistently used through out. "Sur­

face modes" w i l l be used to r e f e r to any modes of o s c i l ­

l a t i o n of the mercury surface and "EM modes" f o r the r e ­

sonant electromagnetic modes of the microwave resonator. 
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CHAPTER 2 

E Q U I P M E N T 
. E X P E R I M E N T A L P R O C E D U R E 

2.1 A block diagram of the microwave system i s shown 

i n f i g . ' 1. A 723 A/B Klystron produces 8.6 to 9«6 

KMc/s microwaves. These go through an i s o l a t o r whose pur­

pose i s to prevent any stray r e f l e c t i o n s from the r e s t of 

the system from i n t e r f e r i n g with the klystron output. They 

then go through a c a l i b r a t e d wavemeter which can be used to 

give the frequency of the microwave resonances. L a s t l y , the 

microwave s i g n a l i s s p l i t into two parts of equal power at 

a magic tee. One of these component signals goes to the 

cav i t y , while the other half i s dissipated i n the terminator. 

The r e f l e c t e d s i g n a l from the cavity i s picked up by a crys­

t a l detector and displayed on one channel of a dual beam 

os c i l l o s c o p e . The time-base waveform of the oscilloscope i s 

added to the klystron r e p e l l e r voltage, thereby modulating 

the output frequency of the klystron. In this way, the time 

axis of the oscillograms can be c a l i b r a t e d d i r e c t l y i n terms 

of the output frequency of the klystron. At the resonant 

frequencies of the microwave cavity a drop i n the o s c i l l o ­

gram i s seen on the oscilloscope screen. The resonant frequ­

ency can be accurately measured by bringing the corresponding 

drop (or dip) i n the s i g n a l due to the wavemeter into co­

incidence with the cavity dip (see f i g . 2). The microwave 
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FIG 2 

Measurement of the resonant frequency of an EM 

mode i n the cav i t y . 

Dip 1 i s due to the ca l i b r a t e d wave-meter and can 

be moved r i g h t across the frequency spectrum of the k l y s ­

tron. Dip 2 i s a t y p i c a l example of a cavity EM mode 

resonance. For our experiments we used a klystron frequency 

range of from 8715 Mc/s to 87^5 Mc/s. 
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cavity consists of a n i c k e l plated brass cylinder shown in 

fig.; 3. The layer of n i c k e l (0.003 i n . thick) eliminates 

d i s s o l u t i o n of the brass by the mercury. Mercury can be i n ­

troduced at the bottom of the cavity; Its l e v e l can be very 

f i n e l y adjusted by using a hose c l i p as a tap control on a 

small,length of Tygon tubing connecting the mercury reser­

v o i r to the cavity. Since the resonant frequency of the EM 

modes i s a function both of the radius R and the length L 

of the cavity, resonances are seen on the oscilloscope scre­

en as the mercury l e v e l i s gradually r a i s e d . i n the cavity. 

At a f i x e d cavity length the mercury depth can be varied.by 

means of a plunger. The plunger i s attached to. a threaded 

rod, so it.can.be moved up and down. The threaded.rod pas­

ses through a Teflon nut which provides, an e f f e c t i v e seal ... 

f o r the mercury ( f i g . 3)- A brass plate, d e t a i l s of which 

are shown i n f i g s . 3 and k i s used as the top of the micro­

wave cavity. The best method of e x c i t i n g surface modes on 

the mercury was by pulsing a i r through a.small hole at the 

top of the cavity. The periodic a i r pulses were produced, 

by i n t e r r u p t i n g an a i r jet with a r o t a t i n g s l o t t e d d i s c . 

The d i s c i s e l e c t r i c a l l y driven by a 1/20 hp Bodine elec­

t r i c motor. The speed can.be controlled by varying the i n ­

put voltage with a var i a c . A transistor, potentiometer can. 

be used f o r f i n e adjustment of the motor speed. This i s 

necessary since the mercury surface has a f a i r l y high Q 

f a c t o r (about 50). 'The whole arrangement i s shown i n f i g . 5» 

http://it.can.be
http://can.be
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FIG 3 

The microwave test cavity and mercury re s e r v o i r 



FIG 4 

D e t a i l s of the geometry of the l i d of the c a v i t y . 

This arrangement gives best r e s u l t s of microwave resonances. 

The waveguide i s c a r e f u l l y soldered onto the top p l a t e e 

In our case, R = 3,6k cm 
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Observations of the o s c i l l a t i o n frequency and am­

plitude of the surface modes are made as follows. By v i r t u e 

of the f a c t that our method of e x c i t i n g surface modes ex­

c i t e s only single modes, a time record of the periodic sw­

ing of the E K mode resonance dip from the l e f t to the r i g h t 

of the screen and back gives a l l the information needed. As 

was mentioned i n Chapter 1 , the amplitude of the wave i s 

proportional to the resonant frequency s h i f t . The o s c i l l a t i o n 

frequency can be obtained by a simple time measuring techni­

que which we s h a l l elaborate on s h o r t l y . The time record i s 

most conveniently made by putting a very narrow s l i t (about 

0.5 mm) i n front of the screen, as.shown i n f i g . 6. Ordinary 

photographic f i l m run i n a d i r e c t i o n perpendicular to the 

s l i t records the o s c i l l a t i o n s . A t y p i c a l negative f i l m record 

i s shown i n the same f i g u r e . 

2 . 2 . The measuring method and i t s refinement 

The previously employed method fo r measuring time 

on the f i l m was simply by t r i g g e r i n g the oscilloscope with a 

time-mark generator. This r e s u l t s in the f i l m record con­

s i s t i n g of a series of dots (see f i g . 6) whose spacing i s 

equal to the r e p e t i t i o n rate of the time-mark generator. Thus 

the period of the surface modes was found by counting the 

number of dots from peak to peak of the sinusoidal f i l m trace. 

This method was extremely tedious and time consuming since 

the dots were counted by using a microscope. This had the 

serious disadvantage of causing considerable eye s t r a i n , not 
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to mention temporary mental derangment of the experimenter. 

To eliminate these d i f f i c u l t i e s we now record time marks 

d i r e c t l y on the f i l m . 

A Duraont type 7 8 I A time-mark.generator (abbreviated 

i n any future reference as a TKG) i s used to give 1, 10 and 

100 msec.marks. These, i n turn, are fed Into three t r i g g e r 

pulse amplifiers (abbreviated to TPA) which amplify the 

s i g n a l to between 20 and 25 V o l t s . This l e v e l of s i g n a l i s 

now s u f f i c i e n t to trigger three Tektronix type I 6 3 pulse ge­

nerators (abbreviated to PG) powered by a type l 6 0 A power sup­

ply. The r e s u l t i n g pulses, are fed into the second channel of 

the dual beam os c i l l o s c o p e . The oscilloscope i s i t s e l f t r i g ­

gered externally by the 1 msec TMG marker. The whole arran­

gement, with the exception of power supplies i s shown i n 

block diagram form In f i g . 7 . Pig. 8 shows the TPA, designed 

and b u i l t by Mr. Jim A. Zanganeh to whom I am indebted. 

A l l three pulses have the same amplitude, but the 

duration of the 100 msec pulse i s twice as long as the duration 

of the 1 and 10 msec markers. As: f i g . 9 shows, the 1 msec 

marks appear at the l e f t of the f i l m . At 10 msec i n t e r v a l s , 

the 1 and 10 msec markers add, so that the top of the r e s u l ­

tant marker i s not observed i n the s l i t across the face of 

the oscilloscope; i . e . every tenth marker i s missing. At 100 

msec a l l three markers coincide and add up except f o r the 

r i g h t hand half of the 100 msec marker pulse which i s s t i l l 

v i s i b l e i n the s l i t . The r e s u l t i n g f i l m i s also shown i n f i g . 9. 
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As i t i s e a s i l y seen, th i s method of measuring time 

i s very convenient and much f a s t e r than the one employed be­

f o r e . I t i s also highly adaptable to measuring of any order, 

as long as time-marks are obtainable from the TMG. With the 

TMG and the oscilloscope employed, time in t e r v a l s ranging 

from 1 microsecond up to 1 second can be accurately measured. 

An accuracy of 0.1$ can be attained in.the measurement of ty­

p i c a l periodic times of surface modes. This i s about ten 

times as accurate as the method used i n the past. 

2.3. Application of a strong e l e c t r i c f i e l d onto the  

mercury surface 

One of the objectives of t h i s work was to develop 

a method f o r applying a strong e l e c t r o s t a t i c f i e l d on the 

o s c i l l a t i n g f l u i d . We also sought to f i n d what e f f e c t , i f 

any, the f i e l d would have on the properties of the surface 

i t s e l f . This means that an e l e c t r i c f i e l d must be applied 

between the top of the cavity and the base. To avoid per­

turbing the EM modes, any gap between the top .of the cavity 

and the base must be kept to an absolute minimum. We there­

fore chose to insulate the base from the top of the cavity 

by using a sui t a b l e d i e l e c t r i c , hoping that microwave power 

losses i n the d i e l e c t r i c would not :reduce the Q-factor of 

the cavity EM modes too much. Mylar sheets proved to be 

the best f o r this purpose. Mylar has a d i e l e c t r i c strength 

of 4kV/0.001 inches. In our arrangement, four Mylar sheets 
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each 0.005 inches thick, providing an e f f e c t i v e i n s u l a t i o n .. 

of 80kV were used. No serious reduction.in the cavity Q-

f a c t o r was observed. A simple l u c i t e clamp was used to keep 

the top plate i n pos i t i o n over the cavity. Nylon screws, to . 

avoid the p o s s i b i l i t y of breakdown, were employed to j o i n 

the arms of the clamp together. A novel feature of the ar­

rangement was the f a c t that surface modes could s t i l l be ex̂ -

c i t e d on the mercury., by pulsing the a i r above the Mylar. 

This demonstrates the f a c t that very l i t t l e energy i s required 

to excite surface modes and the very high s e n s i t i v i t y of. the 

measuring technique. The largest of three a v a i l a b l e c a v i t i e s , 

R = 3«64cm, was used f o r the e l e c t r i c f i e l d , runs. The reason 

f o r t h i s was .the.following. .The*distance between the mercury 

and the cavity l i d was smaller f o r a. given EM mode, than the 

corresponding distance.in the other c a v i t i e s . Hence, the ap­

p l i e d s t a t i c e l e c t r i c f i e l d was also largest i n thi s p a r t i ­

cular cavity for a given supply voltage. To avoid operating 

the microwave equipment at high potentials we grounded the 

l i d of the cavity and -connected the base to a 3OkV power 

supply of negative output. Most of our measurements were . 

done with t h i s arrangement. However, i n our f i n a l runs, a 

furt h e r increase of the e l e c t r o s t a t i c f i e l d strength was 

effected as follows. The method of putting Mylar i n the 

path of the microwaves proved so e f f e c t i v e and absorbed so . 

l i t t l e power that we extended i t suc c e s s f u l l y to the micro­

wave waveguides themselves. The microwave j o i n t between the 
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wavemeter and the magic tee (see f i g . l ) was disconnected 

and two Mylar sheets were introduced. Again a l u c i t e clamp ... 

with nylon screws was used to hold the j o i n t together a f t e r 

i n s e r t i o n of the Mylar. Then B a second power supply, of 

p o s i t i v e output t h i s time,.'was used to r a i s e the cavity l i d 

to p o s i t i v e 20kV. This arrangement- of two power supplies i n 

seri e s enabled us to apply an e f f e c t i v e p o t e n t i a l difference 

of 5 0 k V between.the top and the base of the cavity. The set 

up i s shown i n f i g . 10. 

FIG 10 

Method of a p p l i c a t i o n of a strong 
e l e c t r i c f i e l d on the mercury sur 
face. 



CHAPTER 3 

R E S U L T S 

3.1. V a r i a t i o n of the frequency of surface modes with depth 

At f i r s t we compared t h e o r e t i c a l l y predicted values 

of the frequency of surface modes as a function of depth 

with experimentally obtained values. This could be done much 

more r e l i a b l y than before with our refined measuring tech­

nique. 

The l i n e a r i s e d theory of standing surface waves on 

a f l u i d surface gives the dispersion r e l a t i o n 

where T -- surface tension of the l i q u i d , 

k = wave number of o s c i l l a t i o n s , 

f = frequency of o s c i l l a t i o n s , 

^ = density of the l i q u i d , 

H = depth of the l i q u i d , , 

and g = acceleration of gravity. 

The v e r t i c a l displacement J £ of the o s c i l l a t i n g sur­

face from the equilibrium p o s i t i o n i s given by (see r e f . 8 ) 

T K (3.1.1) 

( 3 . 1 , 2 ) 

where amplitude of the o s c i l l a t i o n , 

Bessel function of order s. 

The boundary condition that -O gives 

(3.1.3) K 



where J i s the Uth pos i t i v e root* of T, (kR) - O . The 

self-explanatory notation TSU w i l l be used to r e f e r to i n ­

d i v i d u a l surface modes from now onwards. 

Formula .(3.1.1) was used to plot f vs. H. The ex­

perimentally obtained points are plotted from table 1 on the 

same graph ( f i g . 11). Table 2 gives the values of the parame­

ters used i n the experiment. 

The o s c i l l a t i o n , with k=0»507 cm"'-, was used. 

Curzon and Pike used the Jol mode and found discrepancies 

between experimental values of the frequency and values pre­

dicted by (3«1.1). To explain t h i s , they reasoned that the 

mercury meniscus i s very r i g i d at the edges, where the mercury 

comes into contact with the walls of the container. This bring 

about an e f f e c t i v e reduction i n R, as f a r as the surface 

modes are concerned. As can. be. seen from the graph, i f R i s 

reduced by 0.22 cm, corresponding to a new k of 0.54 cm-' 

(from equation 3»1»3)« there i s excellent agreement between 

corrected theory and experiment. 

Transverse e l e c t r i c EM modes were used i n the ex­

periment. Modes are defined i n an exactly analogous manner 

i n electrodynamics as surface modes were defined i n (3<>1.2). 

* At t h i s stage, we would l i k e to point out to the reader, 
that although i n t h e i r theory Curzon and Pike state that they 
use the Uth p o s i t i v e non-zero root, i n the analysis of t h e i r 
r e s u l t s they use the same nomenclature as given here. 
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TABLE 1 

F l u i d Depth H cm O s c i l l a t i o n frequency f c/s 

0 .49 1 . 8 3 

0 . 6 2 2 .04 

0 . 74 2 . 2 2 

0 . 8 2 . 3 1 

0 . 9 9 2 . 5 3 

1 . 0 8 2 .6 .1 

1 . 1 9 2 . ? 6 

1 . 5 3 2 .97 

1 . 9 6 3 . 2 0 

TABLE 2 

R = 3 .64 cm 

k - 0 . 5 0 7 cia 

T = 4 9 0 dynes/cm 

p = . 1 3 . 6 gm/cm3 

g = 9 8 O cm/sec* 

TE,„ mode used . 

L ="length, of cavity from mercury surface to the top 
= 1 . 6 , 0 cm 
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* • 1 : 1 — — — — " ' 

1 2 3 Hem 
DEPTH OF FLUID 

F I G 11 
P l o t of o s c i l l a t i o n f r e q u e n c y o f s u r f a c e mode v s . f l u i d d e p t h . 
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3 . 2 . Results of the effects of ap p l i c a t i o n of a strong  

e l e c t r i c f i e l d on the mercury surface 

One of the most se n s i t i v e tests to determine the 

physi c a l properties of a l i q u i d surface, short of examining 

i t with an electron microscope, i s to measure the damping 

c o e f f i c i e n t of surface waves. This viscous damping c o e f f i c i e n t 

i s a most, se n s i t i v e indicator of the degree of cleanliness 

of a l i q u i d surface; and most physical properties of'the. 

surface depend, almost e n t i r e l y , on how clean the surface 

i s (see r e f . 9 ) . Experience i n dealing with mercury surfaces 

has shown us that the minutest amounts of impurities tend 

to have a most d r a s t i c e f f e c t on the viscous damping coef­

f i c i e n t o Even a monolayer of ordinary machine o i l , obtained 

by spraying the o i l very f i n e l y close to the surface, so 

that contamination occurs from the o i l vapour, increases 

the viscous damping c o e f f i c i e n t by a factor of 2, or even 

more. 

, Surface waves were excited by varying the frequency 

of the a i r pulses. When t h i s frequency matched one of the 

surface mode frequencies (or sometimes one of the sub-

harmonics) the surface o s c i l l a t e d with that p a r t i c u l a r f r e ­

quency. The a i r supply was then shut off and the surface, a l ­

lowed to o s c i l l a t e f r e e l y , the o s c i l l a t i o n gradually damping 

away. A time record of thi s damped o s c i l l a t i o n was obtained 

on the moving f i l m . A l o g - l i n e a r plot of the amplitude of 

of t h i s damped o s c i l l a t i o n v s 0 time (both obtained from the 
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film) resulted In a very good s t r a i g h t l i n e , A t y p i c a l p l o t 

i s shown i n f i g . 12. This implies an exponential amplitude 

decay e exactly as predicted by the l i n e a r i s e d theory. The 

slope of the st r a i g h t l i n e i s the damping c o e f f i c i e n t . The 

•period ,of o s c i l l a t i o n could be obtained very accurately by 

using the time markers to measure, the time f o r a number of 

o s c i l l a t i o n s / u s u a l l y twenty. 

, In our experiments, newly d i s t i l l e d mercury was 

used at the beginning. The cavity was cleaned as well as pos- -

s i b l e from dust traces. Then the clean mercury was introduced 

and the damping c o e f f i c i e n t measurements performed 6 I t was 

found that, even with the above steps to avoid contamination, 

the damping c o e f f i c i e n t values were higher than the values 

t h e o r e t i c a l l y predicted f o r clean mercury. This rather an­

noying e f f e c t has been observed by other workers as well 

(see r e f . 2). I t also r e s u l t s i n very e r r a t i c and highly i n ­

consistent values f o r the damping c o e f f i c i e n t . After apply­

ing an e l e c t r o s t a t i c f i e l d of 18.5 kV/cm f o r a few,minutes 

and then removing i t , the values obtained f o r the viscous 

damping c o e f f i c i e n t tended to the clean surface values. 

They also became much more consistent. The longer the time 

of a p p l i c a t i o n of the f i e l d the more consistent the.results 

were. Table 3 shows the r e s u l t s f o r comparison. 

After we established the cleaning of the surface 

by the e l e c t r i c f i e l d the mercury was allowed to stand i n the 

cavi t y f o r a few days. The damping c o e f f i c i e n t gradually 
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FIG 12 

Exponential damping of a surface wave i n time. 



increased towards the " d i r t y surface" values, presumably 

because the impurities were slowly r e s e t t l i n g on the sur­

face . I t was very encouraging indeed to f i n d that a p p l i ­

cation of the f i e l d again gave us cleaning e f f e c t . 

• A further, test was conducted as follows. The. top of 

the ;cavity was removed and a piece of cardboard which just f 

ted into the c y l i n d r i c a l cavity was Inserted i n the cavity 

just below the top., A very f i n e spray (an atomizer) was 

used to spray the rim of the cavity with ordinary machine 

o i l . The.cardboard prevented any o i l droplets from s e t t l i n g 

d i r e c t l y on,.the mercury surface (see f i g . 13"K Thus, a f t e r 

removal of the cardboard, and replacement.of the l i d of the 

cavity, the surface.was contaminated by minute amounts of 

o i l vapour coming to s e t t l e onto i t . The. viscous damping 

c o e f f i c i e n t values became even more i r r e g u l a r than before, 

and displayed a sharp.increase, as can be seen from table 3« 

Then the f i e l d was applied as before and cleaning was again 

achieved a f t e r a while. 

The same EM and surface mode used i n the frequency 

measurements of 3*1 were employed i n t h i s t e s t . The geometry 

of the cavity-was i d e n t i c a l and a l l . t h e measurements were 

taken with a depth of mercury H = 4.31 cm. 

It i s seen that . p e r f e c t l y clean values are not at­

tained. ; However,-much more consistent and.relatively clean 

surface r e s u l t s are...obtained... By looking at the .results we. 

can state, with a c e r t a i n amount of confidence, that the 



CARDBOARD 

FIG 13 

Method of contaminating the mercury surface 
with machine o i l vapour. 

TABLE 3 

cr sec"" 
Before f i e l d applied 

Corresponding o~ 
A f t e r f i e l d applied 

0.070 

O.O67 

. 0.048 

0.046 
NO OIL 

0.079 0.045 

0.074 0.044 WITH OIL 
0.112 0.044 

H = 4.31 cm 

P e r f e c t l y clean value predicted by Case and Parkinson 

cr= 0.029 sec"' 
Value predicted by the modified theory of Curzon and Pike 

taking a t h i n , insoluble surface f i l m into account and using 

corrected value of k (= 0.54 cnr')» °~= 0.052 sec"'. 
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cleaning i s a l i t t l e more e f f e c t i v e when o i l i s spread on the 

surface i n the manner described above. The o i l most probably 

c a r r i e s dust p a r t i c l e s with i t . Note that another use of the 

Mylar sheets.is to prevent traces of o i l from, the a i r supply 

from entering the cavity.and contaminating the mercury. A 

white gauze„ used.in an a i r f i l t e r turned dark brown a f t e r 

the a i r uras run through f o r about an hour. 

A good t h e o r e t i c a l approach to c a l c u l a t i n g the viscous 

damping c o e f f i c i e n t was given by Case and Parkinson ( r e f , 10). 

I t was modified by Curzon and Pike (ref.. 2) to take into ac­

count a t h i n insoluble f i l m which i n v a r i a b l y forms on a l l ex­

posed l i q u i d surfaces. This res u l t e d i n an increase i n the 

value of the damping c o e f f i c i e n t s g i v i n g good agreement with 

experiment. However, i n view of. the increased accuracy of the 

tests c a r r i e d out i n t h i s project and the almost, i n c r e d i b l e . 

discordance i n observations„ we must conclude, that a.lot.more 

needs, to. be done, before a. clear understanding of.. the physical 

properties of a mercury surface i s reached. 
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3.4 The rectangular cavity 

Our goal i n this project was to demonstrate the 

Fourier analyzing property of the rectangular cavity reso­

nator. 

According to t h e o r e t i c a l work carried out "by Curzon 

and Pike ( r e f s . 2 and 3) there should be a s e l e c t i v e de­

t e c t i o n of surface modes i n a rectangular cavity. By using 

S l a t e r ' s theorem ( r e f . 6), they showed that the s h i f t i n 

resonant frequency Aw of an EM mode due to small pertur­

bations of one of the surfaces of the resonator i s 

w ScjBlMJ*~ J C j Emboli 

where u> i s the resonant frequency with the surface i n equ­

i l i b r i u m , J i s the perturbation, E and B the e l e c t r i c and 

magnetic f i e l d s associated with the EM mode, dA an element 

of cross-sectional area ( p a r a l l e l to the perturbed base of 

the resonator i n our case) and dz an element of length along 

the axis of the resonator. C denotes the length of the c a v i t y . 

If the cavity has cross-section axb, then Lamb (r e f . 8 ) gives 

the following .expression f o r J 

where an analogous notation to the one f o r the c y l i n d r i c a l * 

c a v i t y has been used. The geometry of the cavity i s shown 

i n f i g . 14. Considering TE modes i n the cavity (most usef u l . 

ones and the ones l i k e l y to be employed), numbered TE w y ip 

* See p. 20 



FIG lk 

Geometry of the rectangular cavity resonator. 
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i n the usual electromagnetic notation, the following expres­

sions f o r Au/ were obtained by Curzon and Pike 

I / P r r c \ 
k I u / C / 

+ 2 
/ 

2.1 

C c 

where c i s the v e l o c i t y of l i g h t . 

It i s r e a d i l y seen that the general EM mode T E M depicted 

above w i l l respond only to the three surface modes 

St*,an > ? o , * h a n o ' J a w o * 
This provides us with a powerful t o o l f o r doing automatic 

Fourier analysis of surface modes. 

A cavity of square' cross-section was used f o r t h i s 

experiment. Since the cavity cannot be made exactly square, 

the degeneracy of the EM modes i s removed s u f f i c i e n t l y f o r 

two of them to appear separately within the bandwidth of the 

kl y s t r o n . Hence both modes could be observed simultaneously 

on the os c i l l o s c o p e screen. F i g . I5 shows a photograph of 

the k l y s t r o n output on the o s c i l l o s c o p e screen with two 

EM modes observed on the screen simultaneously. I f one of 

FIG 15 

Display of two EM modes on the screen simultaneously. 
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them could be shown to respond to a surface mode while the 

other one did not, then the Fourier analyzing technique 

would have been v e r i f i e d . 

Exactly the same experimental arrangement as f o r the 

c y l i n d r i c a l cavity was used. The only noveltywas that i n 

the case of the square cavity the microwaves were fed d i r e c t ­

l y through the centre of the top plate, while the a i r was 

pulsed through a hole on the diagonal. The geometry Is shown 

In f i g . 1 6 * This modification was found to increase the Q-

f a c t o r of the EM modes, r e s u l t i n g In a sharper separation 

between them. Pulsing the a i r through an o f f the centre hole 

was no hindrance at a l l to the ex c i t a t i o n of surface modes. 

Various surface modes could be excited and detected, 

as the frequency of the a i r pulses, was gradually increased. 

I t was observed, much to our de l i g h t , that without any d i f ­

f i c u l t y we could excite resonant o s c i l l a t i o n s of the surface, 

to which only one of the EM modes responded. An example of 

one of our o r i g i n a l f i lms i s shown in f i g . 1 7 . The EM mode 

dips on the screen being pretty sharp, the s l i t In f r o n t of 

the screen was so arranged as to give one trace per dip. 

The s i n u s o i d a l curve on the r i g h t hand side i s obviously 

a resonant surface mode. A s l i g h t motion of the l e f t hand 

dip Can also be detected . It i s e a s i l y recognised as the 

e f f e c t of "stretching" and "compressing" the klystron out­

put curve on the oscilloscope face by the motion of the 

r i g h t hand dip. It i s not an independent o s c i l l a t i o n . I f we 
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look c a r e f u l l y enough we can see that the l e f t hand dip 

only s h i f t s s l i g h t l y to the r i g h t when the r i g h t hand dip 

is c l o s e s t to i t . The r i g h t hand o s c i l l a t i o n e f f e c t i v e l y 

p u l l s the l e f t hand one (notice that the l e f t hand moves 

i n the opposite d i r e c t i o n to the r i g h t hand one). P i g . 18 

shows a s i m i l a r experiment i n which both EM modes are af­

fected by a surface mode of d i f f e r e n t geometry. In t h i s 

case two cl e a r independent o s c i l l a t i o n s can r e a d i l y be se 

on the f i l m . Both films are p o s i t i v e enlargements of the 

si n u s o i d a l curve obtained on the corresponding negative 

i n the method described i n d e t a i l i n chapter 2 . 

WAVEGUIDE 0.75 cm 

0.88 cm 

FIG 16 

Geometry of the top of the rectangular cavit y . 
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PIG 17 

Response of only one EM 
mode to a ce r t a i n surface 
mode. 
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CHAPTER 4 

C O N C L U S I O N S - F U T U R E W O R K 

4,1 Improvement of measuring technique 

The method of studying surface waves of small amplitu­

de by a microwave resonator technique was improved by making 

the time measurement more accurate and much more convenient. 

It was used to check the o s c i l l a t i o n frequency of a. surf ace .. 

mode of d i f f e r e n t geometry from the one used before..The . 

Curzon-Pike meniscus correction was v e r i f i e d . The correction 

obtained was more r e l i a b l e than previous ones because of the 

improvement of the time measuring technique which gave us 

very accurate values f o r the o s c i l l a t i o n frequency f ( = 0.1$). 

•f*•2 Application of a strong e l e c t r i c f i e l d oh the surface 

The main objective of t h i s work was to f i n d a way 

of applying a strong e l e c t r o s t a t i c f i e l d onto the mercury 

surface without i n t e r f e r i n g with the method of monitoring 

surface,perturbations. This was done by i n s e r t i n g Mylar 

sheets as insulators between the l i d of the Cavity and the 

base. Then the base of the cavity and the top were raised 

to constant potentials with a large p o t e n t i a l difference 

between them. To study the electrostatic-hydrodynamic 

i n s t a b i l i t y ( r e f . 7, p. 35) an increase of the f i e l d i s 

necessary. Our calculations show that about 70 kV/cm 

must be obtained to get any observable e f f e c t s . This w i l l 
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be done by using a cavity of larger diameter than the ones 

so f a r used. This w i l l enable us to minimize the distance 

between the mercury surface and the cavity l i d f o r a given 

EM modeB thereby increasing the e l e c t r o s t a t i c f i e l d f o r 

a given applied p o t e n t i a l d i f f e r e n c e . To avoid the pos­

s i b i l i t y of d i e l e c t r i c breakdown i n the cavity sulphur hexa-

f l u o r i d e gas w i l l be pumped into the resonator a f t e r the 

a i r i s expelled. 

4.3 E f f e c t of e l e c t r o s t a t i c f i e l d on the surface 

In preliminary experiments described i n t h i s thesis 

the e f f e c t of a strong e l e c t r i c f i e l d on the properties of 

the mercury surface was demonstrated. A method f o r removing 

traces of .contamination from, the surface was found. This 

can prove very useful, to p h y s i c i s t s a n d physical chemists. 

Their observations have so f a r been plagued by irreproduol-.. . 

b i l i t y due to the great s e n s i t i v i t y of l i q u i d surfaces to 

contamination. 

4.4 Square resonator 

The f e a s i b i l i t y of using a rectangular.resonator as 

an automatic. Fourier, analyzer was demonstrated by using a 

square cavit y . This i s a very Important property of the 

resonator technique f o r studying.surface waves, since, d i s ­

persion r e l a t i o n s can be measured d i r e c t l y , thereby e l i m i ­

nating Fourier a n a l y s i s . 
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4.5 P o s s i b i l i t y of applying the method In other f i e l d s 

A f i n a l aspect of the method as a whole„ on which 

we vrould l i k e to comment, i s the following. This method 

of observation of disturbances on a f l u i d surface can, i n 

p r i n c i p l e , be employed as a selsmometrie device. An old 

method of detecting earthquakes was by observing the d i s ­

turbances on the surface of water i n a well r e s u l t i n g from 

the earthquake. In a 1similar.manner, the.more sophisticated 

microwave resonator technique can be used as an. earthquake, 

detector. It combines the two basic features of.a seismo­

graph. F i r s t l y , i t i s extremely s e n s i t i v e . This was c l e a r ­

l y demonstrated by our being able to excite waves on the 

surface even with the Mylar sheets.in p o s i t i o n i n the path 

of the a i r pulses. Secondly, conventional seismographs have 

a m p l i f i c a t i o n factors between 10 and 10 0 depending on 

t h e i r purpose (see r e f . 11). Our system amplifies waves of 

0.001 i n . to motions of about 2 to 3 inches on the o s c i l ­

loscope screen, i . e . an ampl i f i c a t i o n of 2 to 3 thousand, 

r i g h t inside the range. F i n a l l y , since the Fourier analyzing 

property of rectangular resonators has been demonstrated, 

they can be employed to Fourier analyze an earthquake s i g n a l 

automatically. At present, the Fourier, analysis of. seismo-

grams, takes up a l o t of energy of personnel manning seismo­

graphs. 
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APPENDIX 

.THEORY OF THE CLEANING OF THE MERCURY 

.SURFACE BY THE APPLICATION OF A STRONG  

ELECTROSTATIC FIELD 

Our purpose i n t h i s a p p e ndix i s t o propose a t h e o r e ­

t i c a l e x p l a n a t i o n of the c l e a n i n g e f f e c t t h a t the s t r o n g e l e c ­

t r o s t a t i c f i e l d has on the mercury s u r f a c e . B e f o r e p r o c e e d i n g , 

we would l i k e t o warn the r e a d e r t h a t , as any t e x t b o o k o f . 

P h y s i c a l C h e m i s t r y w i l l convey, the p h y s i c a l p r i n c i p l e s be­

h i n d t h e b e h a v i o u r o f l i q u i d s u r f a c e s a r e s t i l l n o t f u l l y and 

c l e a r l y u nderstood.. T h e i r b e h a v i o u r i s so i n t r i c a t e and com- . 

p l i c a t e d , and e x p e r i m e n t a l t e c h n i q u e s so d i f f i c u l t when i t 

comes t o s t u d y i n g t h e a c t u a l s u r f a c e , t h a t a l o t of work has 

s t i l l t o be . c a r r i e d out b e f o r e any g e n e r a l p i c t u r e o f t h e 

numerous a s p e c t s o f the s u r f a c e s can be g i v e n . What we s h a l l 

s u g g e s t below i s a s i m p l e p h y s i c a l model of the c l e a n i n g 

p r o c e s s . 

A l i q u i d s u r f a c e , when formed by p o u r i n g p e r f e c t l y 

pure l i q u i d i n a c o n t a i n e r , soon forms a t h i n , i n s o l u b l e f i l m 

on i t s e l f . T h i s i s composed of t r a c e s o f g r e a s e t h a t a r e I n 

t h e c o n t a i n e r o r i n the atmosphere above.the s u r f a c e , v e r y 

f i n e d u s t p a r t i c l e s , o r even o x i d e s . The e f f e c t on the p h y s i ­

c a l p r o p e r t i e s o f the s u r f a c e i s more pronounced when c o n t a m i ­

n a t e d w i t h o i l as was d e s c r i b e d i n the p r e v i o u s c h a p t e r . So we 
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s h a l l t r e a t this more general case In our t h e o r e t i c a l argument. 

Our method of contamination of the mercury surface 

with o i l w i l l r e s u l t i n the formation of a collapsed mono­

layer of o i l on the surface. By a collapsed monolayer we mean 

a layer of o i l of molecular thickness (of the order of 10 k), 

on which clusters of o i l molecules forming extremely f i n e 

droplets (not v i s i b l e to the naked eye) are found at random 

positions on the surface, (see fig.19a). A mechanism fo r the 

formation of the collapsed monolayer can be found i n r e f . 12, 

p.75 to p.84. This f i l m i s so t h i n that the surface charge on 

the conductor (mercury) r e s u l t i n g from...the a p p l i c a t i o n of the 

f i e l d can be considered to reside on i t . At f i e l d s of about 

20 kV/cm l i k e the ones employed i n the tests there w i l l be 

large e l e c t r o s t a t i c stresses on the thin o i l f i l m . If we con­

sider an o i l droplet of, f o r convenience sake, hemispherical 

shape (fig.19b) of radius r , we can r e a d i l y v i s u a l i z e the 

simple cleaning mechanism..Due to the surface stress t r y i n g 

to p u l l on the o i l f i l m a deformation w i l l occur when the 

f i e l d i s applied and the configuration of f i g . 19c w i l l be 

assumed. The weight of the droplet, cohesive forces exerted 

by neighbouring o i l molecules and adhesive forces exerted by 

the mercury w i l l tend to p u l l i t back into p o s i t i o n . The equ­

ation f o r the balance of forces can be written as 

•;&£.%TTY*= Q_rrr F sinB t T T r 1 +. p- \ r r r 3 ^ ( A . l ) 
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01L DROPLETS MONOLAYER 

• y y y—y>—•?—•?——y y—y—y~ 
MERCURY 

FIG 19 

A c o l l a i ^ s e d monolayer of o i l on the mercury, 

y y / y y y y y 

MERCURY 

FIG- 20a 

MERCURY 

FIG 20b 
Mechanism o f the removal o f c o n t a m i n a n t s from the 
mercury s u r f a c e by a s t r o n g e l e c t r i c f i e l d . 

FIG 21 

M e c h a n i c a l analogue o f the b r e a k i n g up of the t h i n o i l f i l m . 



where F = cohesion force per un i t length , 

Fp,^ adhesion force per un i t area 

: P = densi ty of o i l 

E = e l e c t r o s t a t i c f i e l d 

and g = a c c e l e r a t i o n of g r a v i t y . 

Therefore 

: " i F = { f i l - FL -e^rfjfe (A .2) 

But s ince 0 i s a very small angle F can become a 

very la rge f o r c e . So large in f a c t that cohesion e f f e c t s 

w i l l not be able to supply i t and the o i l f i l m w i l l break. 

Under the upward a c c e l e r a t i o n of the f i e l d the o i l w i l l be 

acce le ra ted upwards and w i l l s t i c k to the Mylar sheets at the 

top . Notice that only micrograms of o i l are involved so i t 

i s qu i te easy f o r the f i e l d to acce lerate the o i l upwards. 

This i s e a s i l y seen by the f a c t that the s t ress on the o i l 

sur face at f i e l d s of 20 kV/cm i s ; 

. - S-B 5xlO"'^X 1+ xlDn Nt . - dynes (A.3) 

A mechanical analogue of the breaking up of the o i l f i l m i s 

the case of a small weight attached to the centre of a near ­

l y h o r i z o n t a l s t r i n g as shown in f i g . 20 . Even i f the weight 

i s qu i te smal l the tension in the s t r i n g w i l l be enormous 

f o r very small 9 . . 


