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ABSTRACT 

Some p r o p e r t i e s o f t h i n f i l m aluminum s u p e r c o n d u c t o r s 

(80 - 1 3 0 A) were i n v e s t i g a t e d f o r use as a h i g h f r e q u e n c y 

second sound d e t e c t o r . The f i l m s ' t r a n s i t i o n t e m p e r a t u r e s , 

T
c
, /were r a i s e d t o near the lambda p o i n t o f He by a s u r f a c e 

enhancement o f the BCS c o u p l i n g c o n s t a n t . The f i l m s were 

u s e f u l as s e n s i t i v e thermometers o v e r t h e tem p e r a t u r e range 

o f t h e i r t r a n s i t i o n , & T
c =

 0.06 K, w i t h a s e n s i t i v i t y g i v e n by 

th e t r a n s i t i o n s l o p e , 2 - 3 x 10 ̂ ohms/K. 

The f i l m s m e c h a n i c a l l y and e l e c t r i c a l l y w i t h s t o o d the 

t h e r m a l shock o f f i v e t h e r m a l c y c l e s from room t e m p e r a t u r e 

to 2 K. The i n s t a b i l i t y o f T
c
 a f t e r c y c l i n g was a t most 

0 . 0 5 K. By i n c r e a s i n g t he b i a s c u r r e n t , T
c
 ( t h e He b a t h 

t e m p e r a t u r e a t t h e t r a n s i t i o n ) c o u l d be decreased by a t most 

0 . 0 2 5 K. 

The s l o p e o f t h e t r a n s i t i o n c u r v e , dR, i n c r e a s e d by a t 

dT 

most 30$ upon t h e r m a l c y c l i n g and w i t h i n e x p e r i m e n t a l a c c u r ­

acy t h e b i a s c u r r e n t had no e f f e c t on dR, f o r the range 2-60^A. 

dT 
From measurements o f one f i l m ' s time response t o t h e r m a l 

e x c i t a t i o n , t h e time c o n s t a n t was found t o be l e s s t h a n 

4 5 . 5 n s e c , whic h means t h a t the f i l m i s c a p a b l e o f f u l l y 

r e s p o n d i n g t o second sound o f f r e q u e n c i e s o f a t l e a s t 3 . 5 MHz. 
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CHAPTER I 
INTRODUCTION 

To detect second sound In He II w i t h i n the microscopic 
c r i t i c a l r e g i o n , where the wavelength of the second sound 
i s l e s s than the s u p e r f l u i d coherence l e n g t h , the experimental 
apparatus must be capable of measuring high frequency second 
sound very c l o s e to the lambda p o i n t , T^. Second sound 

—6 1 
measurements have been made as c l o s e as 5 x 10 K below T̂  . 
For t h i s temperature, a second sound frequency of 0.4 MHz i s 
required to produce a thermal wavelength equal to the super-
f l u i d coherence l e n g t h ; higher frequency generation and 
d e t e c t i o n i s required f o r temperatures f u r t h e r below T^. 
Because of the high a t t e n u a t i o n of second sound near the 
lambda poi n t and the dc heat flow a s s o c i a t e d w i t h operating 
the thermometer, t h i s d e t e c t o r must have high thermal s e n s i ­
t i v i t y , low operating r e s i s t a n c e «500 ohms), as w e l l as 
the required low thermal time constant. 

Superconducting t h i n f i l m s operated at t h e i r t r a n s i t i o n 
temperatures f u l f i l the s t r i n g e n t requirements of the needed 
thermometer. This t h e s i s describes an i n v e s t i g a t i o n of t h i n 
f i l m aluminum superconductors f o r p o s s i b l e use as a high 
frequency second sound d e t e c t o r . 

The f i l m p r o p e r t i e s which w i l l be discussed a r e : 
a) the method of s e t t i n g the t r a n s i t i o n temperature, 

T c, near the lambda p o i n t of He 
b) the e f f e c t of the operating dc bias c u r r e n t , Ia c, 

on T and the slope of the t r a n s i t i o n , dR 
c d f 

c) the s t a b i l i t y of T c and dR w i t h thermal c y c l i n g 
dT 

d) the thermal time response to heat impulses. 
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CHAPTER I I 
• THEORY 

A. Enhancement of T c 

A superconductor i s u s e f u l as a second sound d e t e c t o r 
only over a narrow temperature range about i t s t r a n s i t i o n 
temperature, where the r e s i s t a n c e drops from i t s normal 
val u e , R n, to at most a few ohms. The t r a n s i t i o n temperature 
i s u s u a l l y defined as the temperature of the superconductor 
at which the m a t e r i a l ' s r e s i s t a n c e i s one-half of i t s normal 
s t a t e r e s i s t a n c e . In t h i s i n v e s t i g a t i o n , we are Int e r e s t e d i n 
the fl;lms as detectors of thermal waves propagating i n the 
He bath, not i n the f i l m ' s p r o p e r t i e s as a f u n c t i o n of the 
f i l m temperature. Therefore, f o r t h i s i n v e s t i g a t i o n the more 
meaningful d e f i n i t i o n of the t r a n s i t i o n temperature, T c, which 
w i l l be used i s the temperature of the He bath at which the 
f i l m ' s r e s i s t a n c e i s one-half of i t s normal s t a t e r e s i s t a n c e . 

Since superconductors are u s e f u l as s e n s i t i v e thermometers 
only over a narrow temperature range, the f i r s t problem i s to 
prepare a f i l m such t h a t i t s s e n s i t i v e temperature region i s 
at the r e q u i r e d temperature. Because more t h e o r e t i c a l and 
experimental work has been done on s h i f t i n g the t r a n s i t i o n 
temperatures of the elements and the s i m p l i c i t y of f a b r i c a t i o n , 
aluminum was chosen as the thermometer m a t e r i a l . The tr a n s ­
i t i o n temperature of bulk aluminum i s 1.175 K; a s i z e e f f e c t 
enhancement phenomenon was used to r a i s e T c near T^=2.172 K. 

An expression f o r T c i n bulk superconductors derived 
from the Bardeen-Cooper-Schrieffer (BCS) theory i s the s t a r t i n g 
p o i n t of most t h e o r i e s p r e d i c t i n g the enhancement of T c. 



This expression i s ^ : 

kT c = 1 . 1 4 tiw exp(-l/p) , f o r p « l ( 1 ) 

where -u/=the c h a r a c t e r i s t i c c u t o f f frequency corresponding 
to the Debye temperature 

p=the BCS c o u p l i n g constant, which i s the product 
of the e l e c t r o n d e n s i t y of s t a t e s , N, of one 
s p i n at the Fermi s u r f a c e , and the average net 
a t t r a c t i v e phonon mediated e l e c t r o n - e l e c t r o n 
i n t e r a c t i o n , V. 

From Eq. ( 1 ) , i t i s c l e a r that T c can be increased by i n c r e a s ­
i n g e i t h e r ftv or p. Ginzberg-^ has suggested that a surface 
enhancement of T c may a r i s e from i n c r e a s i n g the specimen's 
BCS c o u p l i n g constant, p. The e f f e c t i v e p would be a super­
p o s i t i o n of the bulk metal e l e c t r o n - e l e c t r o n i n t e r a c t i o n i n 
the centre volume of the specimen and the enhanced i n t e r a c t i o n 
at the geometrical boundaries. He a l s o suggested that the 
enhanced surface i n t e r a c t i o n may be due to surface phonons 
and the v a r i a t i o n of electron-nucleus screening at the s u r f a c e . 

Aluminum f i l m s deposited on a room temperature substrate 
are p o l y c r y s t a l l i n e . Therefore, the surface enhancement of 
T c can a r i s e from e i t h e r the f i l m t h i c k n e s s , d, or the 
c r y s t a l l i t e g r a i n s i z e , g, i f e i t h e r dimension i s small enough 
to produce a lar g e enough surface to volume r a t i o . I f g«,d, 
as w i t h aluminum f i l m s deposited i n a l a r g e p a r t i a l pressure 
of oxygen^, the g r a i n s i z e w i l l p r i m a r i l y determine T c. I f 
<K<8» a s w i t h u l t r a t h i n f i l m s deposited at pressures below 
1 0 " 6 T o r r 5 , the f i l m thickness w i l l determine T c . 

An expression f o r T c has been derived by Abeles et a l . 
f o r aluminum f i l m s where g«d. They assumed an ordered array 
of oxide bounded aluminum c r y s t a l l i t e s and developed a three-
dimensional g e n e r a l i z a t i o n of de Gennes' expression^ f o r the 
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enhancement of T "I The de Gennes derivation assumed a slab 
c 

geometry of superconducting-normal-superconducting metals, 

whereas Abeles et a l . were dealing with a three-dimensional 

superconductor-oxide-superconductor geometry. In the d e r i ­

vation, de Gennes was able to simplify a boundary condition 

by assuming the normal layer was not an i n s u l a t i n g b a r r i e r . 

Abeles et a l . were able to make the same s i m p l i f i c a t i o n a f t e r 
comparing t h e i r films' normal resistances to those predicted 

7 
by a model where each c r y s t a l l i t e was an isolated supercon­

ductor. Since the experimental was more than three orders 

of magnitude larger than those predicted, they assumed that 

each c r y s t a l l i t e was strongly coupled to i t s neighbour, and 

that they too could simplify the boundary condition. 

De Gennes also assumed that the coherence length,£, of 

his d i r t y superconductor model was larger than the width of 

the normal slab. Correspondingly, Abeles et a l . found at 

l e a s t 100 grains contained within t h e i r calculated volume £. . 

Both de Gennes and Abeles et a l . assumed that fn^and N 

of the sample were those of the bulk superconductor'. 

The r e s u l t i n g exoression for T„ by Abeles et a l . was: 
T c = 1.14 ftwexp (-l/p) (2) 

(3) 

hw-BCS c u t o f f frequency for bulk aluminum 

pQ=.BCS coupling constant for bulk A l 

_pe =:BCS coupling constant within the surface region 

thickness of the surface region 

g=average c r y s t a l l i t e size. 
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As can be seen from Eq. ( 3 ) , p i s a c t u a l l y the volume 

weighted a d d i t i o n of the b u l k and s u r f a c e BCS c o u p l i n g cons-
B 

t a n t s . From the work of P i n e s " , they a s s i g n e d v a l u e s to fi-ui 

and p . The s u r f a c e r e g i o n t h i c k n e s s , d , was taken as 5 A, 
the approximate t h i c k n e s s of an oxide monolayer, and the-
v a l u e of p was obtained from the b e s t f i t of Eq. (2) to 

s 

t h e i r e xperimental d a t a . With these v a l u e s s u b s t i t u t e d f o r 

the above parameters, Eqs. (2) and (3) reduce t o : 

T c = 216.6 exp(-l/p) (A) 

where p =0.19 + 0.08 [I-(1-10/g) ^] , f o r g « d 

and g has u n i t s of Angstroms. 

For the case d « g , S t r o n g i n et a l . have d e r i v e d an 

e x p r e s s i o n f o r T c . They assume a s l a b geometry of an aluminum 

f i l m w i t h a s u r f a c e oxide l a y e r . The Ginzberg s u r f a c e l a y e r , 

which enhances T , l i e s Just below the oxide l a y e r and i s 

a r b i t r a r i l y assumed to be the same t h i c k n e s s as the oxide 

l a y e r , about 20 A. F o l l o w i n g the above theory of de Gennes^, 

the r e s u l t i n g e x p r e s s i o n f o r T c i s : 

T_ = 1.14 fi-ui exp(-l/p) 

where p = ( p 0 d n + p 8 d g ) / d , f o r d « g . 

A l l the parameters have the same d e f i n i t i o n as i n the theory 

by Abeles e t a l . except f o r d, which i s the t o t a l f i l m t h i c k ­

n ess. Both t h e o r i e s a s s i g n e d the same v a l u e s to the param­

e t e r s fi-w and p Q . S t r o n g i n e t a l . assigned d i f f e r e n t v a l u e s 

t o d g and p g ( d s = 2 0 A and p gr:0.35) than d i d Abeles e t a l . 

The r e s u l t i n g e x p r e s s i o n f o r T c by S t r o n g i n et a l . , i s : 
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T c - 2 1 6 . 6 exp(-l/p) (6) 

where p = 0.19/d fd-20) + 36.84) , f o r d « g 

and d has u n i t s o f A n g s t r o m s . 

The two t h e o r e t i c a l curves are shown i n F i g . 3. 

B. Thermal Time Constant Estimate 

An estimate can be made of the f i l m ' s frequency response 

to thermal e x c i t a t i o n from the f i l m ' s p h y s i c a l dimensions 

and steady s t a t e dc measurements. In the s i m p l e s t model, 

one assumes t h a t the time response of the d e t e c t o r to thermal 

e x c i t a t i o n i s analogous to the response of a low-pass RC f i l t e r 

to e l e c t r i c a l e x c i t a t i o n . N e g l e c t i n g the thermal c a p a c i t a n c e 

of the s u b s t r a t e and t h i n f i l m l e a d s , the d e t e c t o r ' s capac­

i t a n c e i s t h a t of the superconducting f i l m . The thermal 

conductance, G, from the f i l m to the heat s i n k i s i d e n t i f i e d 

w i t h the r e c i p r o c a l of R. 

Pure superconductors e x h i b i t a sharp r i s e i n t h e i r 

s p e c i f i c heat ( & C ) i n going from the normal s t a t e (C^) to 

the superconducting s t a t e ( C s ) . The magnitude of the s p e c i f i c 

heat r i s e , f o r pure superconductors, i s g i v e n by Rutgers' 
o 

formula . In the absence of a magnetic f i e l d , the s p e c i f i c 

heat r i s e i n MKS u n i t s i s : 

A C = Cl - Cl = Tc ItjBA 
n |dT/T=T c 

where AC' has u n i t s of J-Kg^-K"* 1 

£ = f i l r a d e n s i t y (Kg/m^), assuming the d e n s i t y 
i s t h a t of bulk aluminum 

B c = JJKC i n f r e e space and assuming a demagnetizing 
f a c t o r of zero, w i t h u n i t s of T e s l a s . 

d_Bc\ = s l o p e of the c r i t i c a l magnetic f i e l d 
dT / TrT„ strength-tempera t o r e curve at T=T_ . 



The value of ( d B c / d T ) T _ T c was taken as -183 G/K from Abeles 

et al.*° f o r a granular aluminum f i l m whose T c was near those 

of this work. One calculates that A C = 0.19 J-Kg _ 1-K 1 . Now 

C N = 0.11 J - K g " 1 - ^ 1 f o r bulk aluminum at T Q 1 1 . Assuming 

that Rutgers' formula c o r r e c t l y gives A C f o r granular alum­

inum thi n f i l m s , the upper l i m i t of the film's s p e c i f i c heat 

i s C N + A C = 0.30 J - K g ' 1 - ^ 1 . With th i s upper l i m i t on C , 

knowing the film's thickness, and the area of the f i l m acting 

as the detector, one can estimate the upper l i m i t of the 

film's thermal capacitance. 

To determine the detector's thermal conductance, G, we 
12 

followed the analysis of Martin and Bloor . The steady 

state heat flow equation for the f i l m i s : 
G (T-T s) = i 2 R (8) 

where i 2 R = e l e c t r i c a l power dissipated, i n the fi l m 
from the dc operating current 

G = e f f e c t i v e thermal conductance from the 
f i l m to the heat sink (substrate and 
surrounding He bath 

T-T s =temperature difference between the f i l m (T) 
and the heat sink ( T 8 ) . 

The resistance i n Eq. (8) i s a function of T. For low 

operating currents, joule heating raises the film's r e s i s ­

tance by r a i s i n g i t s temperature. However, with high 

enough currents, the film's resistance r i s e i s due to a 

combination of the above Joule heating temperature r i s e 

and. a downward s h i f t of T c, caused by the magnetic f i e l d 

produced by the high current. Since, i n writing Eq. (8) 
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one assumes that the film's temperature r i s e (and therefore 

resistance r i s e ) i s due only to Joule heating, the equation 

i s v a l i d only for currents smaller than those causing a 

magnetic f i e l d s h i f t i n T c. 

D i f f e r e n t i a t i n g Eq. (8) with respect to T, with T s 

held constant, we have: 

& = fo(l2R)) (9) 

The change i n temperature of the f i l m , AT, can be related 

to i t s change i n resistance by using the t r a n s i t i o n slope 

IR: 
dT 

AT r dT AR J<m') • ' (10) 
dR 

Substituting Eq. (10) into (9) results i n : 

& = f ? a ( i 2 R ) ) a£l 
j{dR / T 8 dTj 

dT/ T| =.TC. 

The slope of the t r a n s i t i o n curve i s actually dR , not 
dT s 

dR, since the temperatures measured are those of the He bath, 
dT, 
However, i f the temperature difference ( A T f ) between the 

f i l m and the He bath i s constant over the t r a n s i t i o n region, 
2 

then dR - dR. Now AT/. = T-T_ = i R/G-. In constant current 
dT s dT. T 

measurements of the t r a n s i t i o n curves, one would expect A 

fcosdecrease as the film's resistance decreased, with this 

decrease i n AT^ becoming larger for higher constant opera­

t i n g currents (See F i g . 5). This would r e s u l t i n a current 

dependent value of [dR ) . For the range of currents used dT 8 i 



i n t h i s investigation,[dR ] was found to be indeoendent of UTJI 
the operating current within experimental accuracy. We 

therefore conclude that AT^ was constant over the t r a n s i t i o n 

region and that dR _ dR, f o r the range of currents used. 
dT a dT 

By measuring the film's resistance as a function of 
current, with the He bath temperature set on the l i n e a r 
portion of the dR alone, /d(i^R) ) can be found from the 

dT s \ dR /T s 

slope, of the r e s u l t i n g power versus resistance curve. Again 

we must be c a r e f u l to take the slope of this curve at current 

values below those which cause a magnetic f i e l d s h i f t i n T c. 

I f the film's temperature (resistance) r i s e i s due only to 

Joule heating, the slope of the power yersus resistance curve 

w i l l be of one value over most of the range of power values. 

Since the physical dimensions of the f i l m and the calcu­

lated s p e c i f i c heat places an upper l i m i t on C, one can 

calculate the upper l i m i t of the detector's thermal time 

constant TTCCr, T^-C/G, where f C f t. - 1 and -u^le the RC 
corner frequency of the detector. 
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CHAPTER I I I 
EXPERIMENTAL APPARATUS AND PROCEDURE 

A. F i l m P r e p a r a t i o n 
Aluminum, 99.999$ pure, was evaporated from an aluminum 

oxide c r u c i b l e 1 - 5 , at pressures of 3-6 x 1 0 " ^ Torr, onto poly-
c r y s t a l l i n e quartz or microscope s l i d e s u b s t r a t e s . The 
substrates were degreased, u l t r a s o n i c a l l y cleaned i n a de­
t e r g e n t - d i s t i l l e d water s o l u t i o n , r i n s e d u l t r a s o n i c a l l y i n 
d i s t i l l e d water, and d r i e d j u s t before evaporation i n a stream 
of i n e r t gas. The aluminum was degreased and etched i n a 
KOH s o l u t i o n p r i o r to evaporation. The aluminum vapour was 
masked to the shape of a b a r - b e l l and deposited omto the 
ambient temperature s u b s t r a t e . The evaporator was then opened 
to a i r , to change sources, and approximately 2,000 A of gold 
was evaporated on top of the aluminum to serve as e l e c t r i c a l 
l e a d s . Then # AO AWG copper wires were indium soldered to 
the Al-Au-In overlap r e g i o n (see F i g . 1 ) . With the b a r - b e l l 
shape, one can reasonably assume th a t the sensing area of the 
d e t e c t o r i s the bar of the b a r - b e l l . Since the s m a l l e s t 
c r o s s - s e c t i o n a l area of the A l f i l m Is i n the bar, that 
region c a r r i e s the highest and most uniform current d e n s i t y . 
Also the Al-Au-In a l l o y e d regions are kept w e l l away from 
the sensing area. The gold d i f f u s e d through the aluminum 
oxide l a y e r to provide e l e c t r i c a l contact which withstood 
f i v e thermal c y c l e s from room temperature to 2 K. 

A quartz c r y s t a l thickness monitor connected to a 
recorder was used to measure the f i l m t h i c k n e s s , s i n c e the 
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FIGURE 1. Film Evaporation Pattern 
and Dimensions. 



films were too t h i n to be d i r e c t l y measured by an i n t e r f e r ­

ometer. The monitor was calibrated with thicker films by 

p l o t t i n g the frequency change of the quartz c r y s t a l against 

the interferometer measured f i l m thickness. From th i s 

c a l i b r a t i o n and the frequency change measured by the recorder, 

the thickness of the 80-130 A films were accurate to ±10 A. 

B. Transition Curve Measurements 

Steady state resistance-temperature measurements over 

the t r a n s i t i o n region were made for measuring currents 

ranging from 2-60//A. The temperature of the He bath was 
14 

set by a pressure regulator which kept the bath tempera­

ture constant to 1 mK during the resistance measurements; 

for temperatures above the lambda point, a time lapse of 5 

minutes was allowed for the system to come to thermal equi­

librium before the resistance measurements were made. The 

He vapour pressure above the bath was measured by a butyl 

phthalate o i l manometer and the corresponding bath tempera­

tures were found from the "1958 He^ Scale of Temperatures" 1^. 

The r e s u l t i n g He Bath temperature values were accurate to 

± 3 mK. 

The films' resistance was determined using a 4-point 

measurement technique. V/ith a constant current flowing i n 

one d i r e c t i o n through the f i l m , two voltage measurements 

were made; a po s i t i v e voltage i n the d i r e c t i o n of the 

current and a negative voltage i n the d i r e c t i o n opposite to 

the current. The average of these voltages was then used 

to calculate the resistance. This procedure n u l l i f i e d the 
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e r r o r s due to voltmeter d r i f t s . The r e s u l t i n g e r r o r f o r a l l 
r e s i s t a n c e measurements was at most ± 0.7 ohms. 

C. Time Constant Measurement 
The f i l m s were thermally excited, by sweeping a l a s e r 

beam across them. A 50 mW beam (4416 A wavelength) from a 
helium-cadmium l a s e r was r e f l e c t e d from a r o t a t i n g m i r r o r 
11 meters from the f i l m . At the dewar, the 3 cm diameter 
beam swept across a v a r i a b l e i r i s and through a 10 cm f o c a l 
l e n g t h convergent lens onto the f i l m . The r e s u l t i n g voltage 
pulse was tr a n s m i t t e d out of the dewar through an u l t r a m l n -
i a t u r e c o a x i a l cable"^ and a m p l i f i e d by a wide band a m p l i f i e r . 
The s i g n a l was dis p l a y e d on an o s c i l l o s c o p e ; the sweep being 
t r i g g e r e d by a l i g h t s e n s i t i v e r e s i s t o r placed l n the beam's 
sweep path. 

The method used to determine the f i l m ' s time response 
to the l i g h t pulses was to measure the s i g n a l amplitude as 
the r i s e time of the beam I n t e n s i t y was v a r i e d . I f the 
beami-s i n t e n s i t y versus time p r o f i l e could be equated to a 
sine wave of some "equivalent frequency", then a p l o t of the 
s i g n a l amplitude as a f u n c t i o n of the "equivalent frequency" 
would give the RC corner frequency of the d e t e c t o r , and there­
for e i t s time constant. A t y p i c a l s i g n a l i s shown i n F i g . 2 . 
In t h i s f i g u r e , the camera s h u t t e r was open f o r about 100 
o s c i l l o s c o p e sweeps, so the r e s u l t i n g photograph shows the 
s i g n a l superimposed on the wide band, of a m p l i f i e r n o i s e . 
The s i g n a l to noise r a t i o observed, during the amplitude 



FIGURE 2. T y p i c a l Detector S i g n a l 

V e r t i c a l Axis - 5 rav per d i v i s i o n 

H o r i z o n t a l Axis - 100 na*per d i v i s i o n . 
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measurements., varied from about 5:1 to becoming l o s t i n the 

amplifier noise. The si g n a l appeared to remain approximately 

symmetric during the measurements. 

The following procedure was used to determine the 

beam's intensity-time p r o f i l e . With a l i g h t sensitive re­

s i s t o r placed i n the film's position, an oscilloscope trace 

of i t s voltage was photographed as the beam swept by; the 

beam repefcion rate was also measured by the oscilloscope. 

Since the minimum r i s e time of the l i g h t s e n s i t i v e r e s i s t o r 

was approximately 5 m sec, the beam's r e p e t i t i o n rate was 

adjusted so that the r e s i s t o r would accurately follow the 

in t e n s i t y r i s e . An intensity-voltage c a l i b r a t i o n was then 

used to transform the voltage-time p r o f i l e to an i n t e n s i t y -

time p r o f i l e . Since the laser beam was l i n e a r l y polarized, 

i t s i n t e n s i t y could be quantitatively varied r e l a t i v e to i t s 

minimum by rotating a p o l a r i z e r . The r e s u l t i n g i n t e n s i t y -

voltage curve was normalized to the highest i n t e n s i t y 

transmitted by the p o l a r i z e r . Renormalized i n t e n s i t y - v o l ­

tage curves were drawn f o r each photograph of the r e s i s t o r ^ s 

voltage-time p r o f i l e , with the renormalized i n t e n s i t y corres­

ponding to the minimum voltage across the r e s i s t o r during 

a sweep (the voltage decreased as the Intensity increased). 

From the voltage-time p r o f i l e of the photograph and the 

in t e n s i t y c a l i b r a t i o n , an i n t e n s i t y - ^ m e i p r o f i l e was plotted 

for the corresponding r e p e t i t i o n rate. To obtain the 

intensity-time p r o f i l e for a fas t e r r e p e t i t i o n rate, one 

merely reduced the time scale of the p r o f i l e by a factor 
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equal to the r a t i o of the two r e p e t i t i o n rates. 

To determine the e f f e c t of the amplifier and coaxial 

cable on the detector si g n a l amplitude, the frequency res­

ponse of the .two components was measured f o r d i r e c t e l e c t r i c a l 

e x c i t a t i o n ; the results are shown i n F i g . 6. 



-17-

CHAPTER IV 

RESULTS AND ANALYSIS 

A. Transition Temperature Behaviour 

As previously defined, T c i s the temperature of the He 

bath at which the f i l m resistance i s one-half of i t s normal 

state resistance. From the f i t of the experimental t r a n s i ­

tion temperatures to the t h e o r e t i c a l curve of Eq. (6), which 

assumes that the f i l m thickness determines T c, one notices 

a lack of T c dependence on f i l m thickness (see F i g . 3). 

This lack of thickness dependence indicates that the parameter 

enhancing T c i s probably the grain s i z e , not the thickness, 

and that a l l the films have approximately the same grain 

s i z e . T&ais explanation of F i g . 3 i s supported by work done 
17 

by Cohen and Abeles . They produced granular aluminum 

films (g^C^) with an alumina c r u c i b l e source, where the 

pressureifrefore evaporation was lO'^Tor*?, increasing to 

3 x 10~5 _ 1G~^ Torr during evaporation. Normally aluminum 

films evaporated at these pressures are not granular since 

the p a r t i a l pressure of oxygen i s too low. Cohen and Abeles 

assumed that the c r u c i b l e outgassed enough oxygen when heated 

to produce a f i l m composed of pure aluminum c r y s t a l l i t e s , 

each surrounded by an oxide layer. From Eqs. (2) and (3), 

we can conclude that the 80-130 A film*'prepared i n this i n ­

vesti g a t i o n a l l have an average grain size of 83-88 A. 

If one wishea to increase the t r a n s i t i o n temperature 

closer to the lambda point, i t could be done by two methods. 
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FIGURE 3 . F i l m Thickness versus T c 

O r d i n a t e f o r Eq. ( 4 ) Is g r a i n s i z e , g 
O r d i n a t e f o r data p o i n t s and Eq. ( 6 ) i s f i l m 

t h i c k n e s s , d 

Dots - Thermal C y c l e 1 
Crosses - Thermal C y c l e 4 

Quartz s u b s t r a t e , I
d c =

1 0 < / / A . 
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Th e f i r s t way would be to increase the oxygen p a r t i a l 
4 pressure during evaporation, as was done by Abeles et a l . 

This has been done by the author by bleeding oxygen into 

the evaporator at a rate about equal to the pump speed. 

With a low flow rate valve, the pressure can be s t a b i l i z e d 

totlO"''' Torr. The pressure would then be the reproduceable 

parameter predominantly determining T c. The other method 

of achieving a higher T c would be to evaporate thinner films 

using the procedure of this work. With thinner films 

( <C 60 A), one should "be able to enter the region where 

d ̂ < g and the thickness would determine T c. The l i m i t a t i o n 

to this method, however, i s that the lower l i m i t to e l e c t r i -

c a l l y continuous aluminum films i s about 30 A . 

Six films were thermally cycled f i v e times from room 

temperature to 2 K, with no spe c i a l precautions taken to 

avoid thermal shock. The f i r s t reason for thermally c y c l i n g 

the films was to determine whether they were securely 

adhered to the substrate and to ensure that they would remain 

e l e c t r i c a l l y continuous upon c y c l i n g . One f i l m , out of the 

six thermally cycled, became e l e c t r i c a l l y discontinuous on 

the fourth cycle. Since the other f i v e , f i l m s remained 

e l e c t r i c a l l y continuous, one concludes that they mechanically 

withstood the thermal shock of the f i v e thermal cycles. 

The e f f e c t of thermal c y c l i n g on Rn, dR, and T c was 
dT 

determined f o r three f i l m s . The normal resistance, R n 

(resistance at (temperatures Just above the t r a n s i t i o n ) , was 

t y p i c a l l y 180 ohms for the f i r s t thermal cycle. Upon thermal 
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c y c l i n g , rose monotonlcally f o r a l l f i l m s ; by the f i f t h 
thermal c y c l e , was as much as 80% l a r g e r than f o r the 
f i r s t c y c l e (see F i g . A). The slope of the t r a n s i t i o n curve, 
dR, was t y p i c a l l y 2,000 ohm/K f o r the f i r s t thermal c y c l e . 
dT 
For the f i l m s of thickness l e s s than 100 A, thermal c y c l i n g 
increased dR by at most 30$. 

dT 
This increase i n dR and the decrease i n T c upon thermal 

dT 
c y c l i n g (to be discussed) may have been caused by the reanneal-
i n g of the f i l m s as they were c y c l e d . Since the cycled values 
of these two q u a n t i t i e s are c l o s e r to the expected values of 
a bulk aluminum superconductor, the trends i n d i c a t e an Increase 
of the f i l m s ' average c r y s t a l l i t e s i z e upon thermal c y c l i n g . 

W i t hin experimental accuracy, there was l i t t l e , i f any, 
e f f e c t of the measuring current on dR f o r the ranece 2-60 »k. 

dT 
Another reason f o r thermally c y c l i n g the f i l m s was to 

determine the s t a b i l i t y of T and to check i f the " f i n e tuning" 
of T c by v a r y i n g the b i a s current could compensate f o r the 
thermal c y c l i n g i n s t a b i l i t y of T c. T y p i c a l r e s u l t s of the 
e f f e c t of thermal c y c l i n g on T c are shown i n F i g . A. For 
the tree f i l m s t e s t e d , T c v a r i e d over a range of 0.05 K 
durin g the f i v e thermal c y c l e s . The v a r i a t i o n of T c w i t h 
I d c , f o r currents of the range 6-60 j/k, was at most 0.025 K, 
and only i n the d i r e c t i o n of lower temperatures (see F i g . 5 ) . 

Since the slope of the power versus r e s i s t a n c e curve 
of eleven f i l m s was constant over most of the b i a s current 
range (see d i s c u s s i o n of Chapter I I , p. 8 ) , we assume th a t 
the dependence of T c on I^c i s due only to j o u l e heating. 
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1.95 2 . 0 0 2 . 0 5 2.10 2.15 2 . 2 0 

Ttath (K) . 
FIGURE 4 . T y p i c a l E f f e c t of Thermal C y c l i n g 

on T c and R n 

I d c = 1 0
// / A« 
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1195 2.00 2.05 2.10 2.15 2.20 
Tbath (K) 

FIGURE 5. T y p i c a l T r a n s i t i o n Curves Snowing T c 

Dependence on Ir]C 

Thermal C y c l e 3, F i l m Thickness -96 A, 
R e s i s t a n c e E r r o r -̂ + 0.7 ohms. 
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For, as I d c i s increa s e d , £>Tfr T-Ts =12R/G (the d i f f e r e n c e 
between the f i l m temperature and the s i n k temperature) 
i n c r e a s e s . So even though the f i l m ' s t r a n s i t i o n to the 
superconducting s t a t e occurs at the same temperature T, the 
t r a n s i t i o n temperature T c, as defined by the He bath temp­
e r a t u r e , decreases w i t h i n c r e a s i n g c u r r e n t . 

The l i m i t to the " f i n e tuning" range In these f i l m s 
was the maximum current at which the f i l m s could be operated 
without d e s t r o y i n g t h e i r e l e c t r i c a l c o n t i n u i t y . One 130 A 
f i l m became e l e c t r i c a l l y discontinuous w i t h an operating 
c u r r e n t of SO^A. A l a r g e r " f i n e tuning" range can be r e a l ­
i z e d i n very narrow f i l m s , i f the width i s l e s s than a 
c r i t i c a l width (about one micron) and i f the thickness i s 

10 
l e s s than the pe n e t r a t i o n depth. T.K. Hunt • has reported 
c u r r e n t induced s h i f t s of T c of 2.6 K i n 500 A t i n f i l m s of 
width 1.9 microns. 
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B. Thermal Time Constant 
F o l l o w i n g the a n a l y s i s of Chapter I I , the i n t e n s i t y -

time p r o f i l e of the l a s e r beam was found to be approximately 
Gaussian i n shape. I t i s assumed th a t the detector's response 
to t h i s Gaussian shaped e x c i t a t i o n i s equivalent to i t s 
response to a s i n u s o i d a l e x c i t a t i o n of some "equivalent 
frequency". The "equivalent frequency" i s defined as t h a t 
frequency of a sin e wave whose r i s e time ;(the time between 
10% and 90% of maximum amplitude) i s the same as the r i s e 
time of the Gaussian shaped pulse - w i t h i t s " t a i l " replaced 
by the e x t e n t i o n of i t s steepest s l o p e . Since the "equivalent 
frequency" of the f a s t e r l i g h t pulses were past the corner 
frequency of the a m p l i f i e r , the corresponding d e t e c t o r s i g n a l 
amplitudes were compensated f o r the lower a m p l i f i c a t i o n . 

The bottom curve of F i g . 6 shows the frequency response 
of the c o a x i a l cable and a m p l i f i e r , normalized to low f r e ­
quency s i g n a l s . The top curve shows the compensated frequency 
response of the d e t e c t o r alone. From the graph, one can 
s a f e l y assume th a t the detector's RC corner frequency, f c , 
i s g r e a t e r than 3.5 MHz, which means that the f i l m ' s RC time 
constant, T^ C» i s l e s s than 45.5 n sec. 

One can check the v a l i d i t y of the above measurement, 
and the u n d e r l y i n g assumptions, by c a l c u l a t i n g t C S r , f o r the 
f i l m of F i g . 6, as discussed i n Chapter I I . R e c a l l i n g that 

" £ - C F R ; C / G , one needs only to c a l c u l a t e C and G. From the 
f i l m ' s power versus r e s i s t a n c e curve, we f i n d dPj v 

_ 8 / dR I T S = T C > 
2.25 x 10 0 W/ohm, and from the t r a n s i t i o n curve of t h i s f i l m , 
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"Equivalent Frequency" (MHz) 
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FIGURE 6. Top - Compensated and Normalized 
Detector Response 

Bottom - Amplifier and Cable Response, 
Normalized to Low Frequency Response. 
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dRl = 3,040 ohm/K. So t h a t : 
d T l T s = T c 

G = IdP dR] ^ 6 . 8 5 x 10" 5 W . 
[dR cLTJT 8 = Tc K 

From d i r e c t measurements o f boundary thermal r e s i s t i v -

i t i e s by H o l t , one c a l c u l a t e s t h a t , w i t h i n an order o f 

magnitude, H o l t ' s v a l u e of G f o r t h i s f i l m should be 

G r 5 x 10~ 2 W/K, with 10% of the t o t a l heat flow p a s s i n g 

a c r o s s the film-He bath boundary. The reason f o r the l a r g e 

d i s c r e p a n c y between the above valu e s of G i s probably a 

r e s u l t of the d i f f e r e n t f i l m s t r u c t u r e s . The aluminum f i l m s 
o 

used, by Hol t were at l e a s t 2,000 A t h i c k and were evaporeted 

a t a pressure of 10~^ T o r r . Therefore, H o l t ' s f i l m s prob­

a b l y contained a lower c o n c e n t r a t i o n of l a t t i c e d e f e c t s than 

the g r a n u l a r f i l m s used i n t h i s i n v e s t i g a t i o n . Since the 

mechanism of thermal conduction i s mainly phonon t r a n s m i s s i o n 

a c r o s s i n t e r f a c e boundaries, the h i g h e r c o n c e n t r a t i o n of 

l a t t i c e d e f e c t s i n the g r a n u l a r f i l m s would i n c r e a s e the 

s c a t t e r i n g o f l o n g i t u d i n a l phonons w i t h i n the f i l m and a t 

the boundary and i n t e r f e r e with the c o u p l i n g of the t r a n s ­

v e r s e phonons across the boundary. The val u e of G used i n 

c a l c u l a t i n g 7 ^ w i l l t h e r e f o r e be the e x p e r i m e n t a l l y d e t e r ­

mined v a l u e f o r the f i l m of F i g . 6, G=.6.85 x 10" 5 W/K. 

To c a l c u l a t e C, we use the equation C = C'(*LWd, where: 

C ' x O.30 J - K g " 1 - ^ 1 , as determined i n Chapter II 

£ =2.7 gm/cm^, assuming the f i l m ' s d e n s i t y i s 
th a t of bulk aluminum 

d = 80 1 10 A, the f i l m t h i c k n e s s 

W 4= 1.5 mnf> the area of the f i l m covered by the 
L =• 5amm J* l a s e r p u l s e (from v i s u a l i n s p e c t i o n ) . 
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From these v a l u e s , one f i n d s that C= 5.4 x 10 J/K. Since 
we have now found, the upper l i m i t of C and the lower l i m i t 
of G, the r e s u l t i n g 1 ^ f rshall be an outside upper l i m i t . For 
the f i l m of F i g . 6, we f i n d T j^^800 n sec, which i s i n agree­
ment w i t h the experimental time constant, 7"!

c
-̂ 5.5 n sec. 
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CHAPTER V 

CONCLUSIONS 

Some of the properties of superconducting t h i n aluminum 

f i l m s , with T c near the lambda point of He, have been tested. 

The f i lms are useful as s e n s i t i v e thermometers over the temp­

erature range of t h e i r superconducting t r a n s i t i o n , A T C = 0 . 0 6 K . 

An i n d i c a t i o n of the thermometer's s e n s i t i v i t y i s given by 

the slope of the t r a n s i t i o n curve, t y p i c a l l y dR = 2-3 x lO^ohm. 
dT K 

Because of the high adhesion of aluminum to p o l y c r y s t a l -

l i n e quartz substrates and the technique used to attach the 

leads, these f i lms mechanically and e l e c t r i c a l l y withstood 

the thermal shock of f i v e thermal cycles from room temperature 

to 2 K. The i n s t a b i l i t y of T c during the thermal c y c l i n g 

was at most 0 .05 K. By increasing the bias current , T c could 

be decreased by at most 0 .025 K. Therefore, the thermal 

c y c l i n g i n s t a b i l i t y of T c could not be.<QWh6;lely compensated 

by the bias current " f ine tuning" of T . However, wi th f i lms 

of a smaller c r o s s - s e c t i o n a l area, with a corresponding 

higher degree of current " t u n i n g " , the thermal c y c l i n g i n ­

s t a b i l i t y may be compensatable. 

The normal res is tance , F^, rose monotonically for a l l 

the f i lms tested upon thermal c y c l i n g . By the f i f t h thermal 

c y c l e , R
n
 was as much as 80$ l a rger than for the f i r s t 

thermal c y c l e . 

The t r a n s i t i o n slope increased by at most 30$ upon 

thermal c y c l i n g , but was not effected by bias current v a r i a ­

t i o n , for the range 2 -60j/A . This increase i n the t r a n s i t i o n 
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slope by thermal c y c l i n g would not subt r a c t from these f i l m s ' 
usefulness as a second sound d e t e c t o r. I f , however, the 
f i l m s were to be used to measure the absolute amplitude of 
second sound, the t r a n s i t i o n slope would have to be determined 
each time the f i l m ' s temperature was lowered from room temp­
erat u r e to T c. 

From measurements of one f i l m ' s time response to thermal 
e x c i t a t i o n , the RC time constant was found to be l e s s than 
4 5 . 5 n sec, which means t h a t the f i l m i s capable of f u l l y 
responding to second sound frequencies of at l e a s t 3 . 5 MHz. 
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